
AN ALLOCATION BASED MODELING AND 
SOLUTION FRAMEWORK FOR LOCATION 

PROBLEMS WITH DENSE DEMAND 

Ekrem Alper MURAT 

Desautels Faculty of Management 

McGill University, Montreal 

July 2005 

A thesis submitted to the 

Faculty of Graduate Studies and Research 

In partial fulfillment of the requirements of the degree of 

Doctor of Philosophy 

© Ekrem Alper Murat 2006 



1+1 Library and 
Archives Canada 

Bibliothèque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de l'édition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

ln compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page cou nt, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre référence 
ISBN: 978-0-494-27822-2 
Our file Notre référence 
ISBN: 978-0-494-27822-2 

L'auteur a accordé une licence non exclusive 
permettant à la Bibliothèque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par télécommunication ou par l'Internet, prêter, 
distribuer et vendre des thèses partout dans 
le monde, à des fins commerciales ou autres, 
sur support microforme, papier, électronique 
et/ou autres formats. 

L'auteur conserve la propriété du droit d'auteur 
et des droits moraux qui protège cette thèse. 
Ni la thèse ni des extraits substantiels de 
celle-ci ne doivent être imprimés ou autrement 
reproduits sans son autorisation. 

Conformément à la loi canadienne 
sur la protection de la vie privée, 
quelques formulaires secondaires 
ont été enlevés de cette thèse. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



Abstract 

In this thesis we present a unified framework for planar location-allocation 

problems with dense demand. Emergence of such information technologies as 

Geographical Information Systems (GIS) has enabled access to detailed de

mand information. This proliferation of demand data brings about serious 

computational challenges for traditional approaches which are based on dis

crete demand representation. Furthermore, traditional approaches model the 

problem in location variable space and decide on the allocation decisions opti

mally given the locations. This is equivalent to prioritizing location decisions. 

However, when allocation decisions are more decisive or choice of exact loca

tions is a later stage decision, then we need to prioritize allocation decisions. 

Motivated by these trends and challenges, we herein adopt a modeling and 

solution approach in the allocation variable space. 

Our approach has two fundamental characteristics: Demand representa

tion in the form of continuous density functions and allocation decisions in the 

form of service regions. Accordingly, our framework is based on continuous 

optimization models and solution methods. On a plane, service regions (al

location decisions) assume different shapes depending on the metric chosen. 

Hence, this thesis presents separate approaches for two-dimensional Euclidean

metric and Manhattan-metric based distance measures. Further, we can clas

sify the solution approaches of this thesis as constructive and improvement

based procedures. We show that constructive solution approach, namely the 

shooting algorithm, is an efficient procedure for solving both the single dimen

sional n-facility and planar 2-facility problems. While constructive solution 



approach is analogous for both metric cases, improvement approach differs 

due to the shapes of the service regions. In the Euclidean-metric case, a pair 

of service regions is separated by a straight line, however, in the Manhattan 

metric, separation takes place in the shape of three (at most) line segments. 

For planar 2-facility Euclidean-metric problems, we show that shape preserv

ing transformations (rotation and translation) of a line allows us to design 

improvement-based solution approaches. Furthermore, we extend this shape 

preserving transformation concept to n-facility case via vertex-iteration ba..'led 

improvement approach and design first-order and second-order solution meth

ods. In the case of planar 2-facility Manhattan-metric problems, we adopt 

translation as the shape-preserving transformation for each line segment and 

develop an improvement-based solution approach. For n-facility case, we pro

vide a hybrid algorithm. Lastly, we provide results of a computational study 

and complexity results of our vertex-based algorithm. 
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Résumé 

Dans cette dissertation, nous présentons une approche unifiée à la résolution du 

problème d'emplacement et d'attribution (location-allocation problem) avec 

forte demande. L'émergence de technologies d'information telles les systèmes 

d'information géographique (SIG) a rendu possible l'accès à une information 

détaillée sur la demande. Cette prolifération de l'information sur la demande 

entraîne de sérieux défis de calcul pour les approches traditionnèlles, lesquelles 

sont basées sur une représentation discrète de la demande. À la lumière de 

ces nouvelles tendances et nouveaux défis, nous adoptons dans le présent ou

vrage une approche de modélisation et de solution dans l'espace de variable 

d' attri bution. 

Notre approche comporte deux caractéristiques fondamentales: la représen

tation de la demande sous forme d'une fonction de densité continue et des déci

sions d'attribution sous forme de régions de services. Sur un plan, des régions 

de services (décisions d'allocation) prennent des formes différentes selon les 

métriques sélectionnées. Les approches de solutions proposées peuvent égale

ment être classifiées en termes de procédures dites « constructives » ou basées 

sur l'amélioration. Alors que l'approche à solution constructive est similaire 

pour les deux cas de métriques, l'approche basée sur l'amélioration diffère dans 

les deux cas en raison des formes des régions de services. Dans le cas de la 

métrique Euclidienne, une paire de régions de services est séparée par une 

ligne droite, alors que dans le cas de la métrique de Manhattan, la séparation 

s'effectue sous la forme de 3 segments linéaires, au plus. Pour les problèmes de 
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métrique Euclidienne à 2 installations, nous démontrons que des transforma

tions préservant la forme d'une ligne (rotation-translation) nous permettent 

de formuler des approches de solutions basées sur l'amélioration. De plus, 

nous développons ce concept de transformation préservant la forme dans le 

cas à n installations via une approche d'amélioration basée sur des itérations 

vertex et formulons des méthodes de solution d'ordre de premier et second 

ordre. Dans le cas du problème à 2 installations sur un plan avec métrique de 

Manhattan, nous adoptons la translation comme transformation préservant la 

forme pour chaque segment linéaire and développons une approche de solution 

basée sur l'amélioration. Cependant, nous démontrons que cette adaptation 

de l'approche à itération-vertex pour les problèmes de métrique de Manhattan 

à n installations se révèle difficile à mettre en œuvre. Ainsi, nous développons 

un algorithme hybride. 

IV 
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Chapter 1 

1.1 Introduction 

Location-allocation problems arise in many different decision making envi

ronments ranging from supply chain network design in logistics to clustering 

methods in data mining. In the context of logistics, a decision maker of a 

location-allocation problem is concerned with the optimization of system-wide 

costs of locating a number of facilities (servers) to supply a given set of cus

tomers, whose location and demand information are known. This problem 

involves two types of decisions: Location of the facilities and allocation of 

customers to the facilities. While the allocation decisions can be changed 

over time, location decisions often require huge investments, thus considered 

as part of strategie planning. Location-allocation problem has two common 

forms: Discrete and pl anar problems. Discrete location-allocation problem, 

known as p-median problem, has a set of predefined facility locations. Planar 

problems, however, allow location of facilities on any point in the plane. In 

this dissertation, we focus on the planar location-allocation problems. 

Traditionally, planar location-allocation problems are modeled with dis

crete demand representation and solved in the location variable space. In this 

solution approach, allocation decisions are assumed to be optimally made given 

the locations. One advantage of this approach is the ease of optimizing alloca

tion decisions for a given set of facility locations by solving the transportation 

problem. 

In this thesis, we develop an alternative framework for location-allocation 

problems by changing two aspects of the traditional approach: Discrete de

mand representation and solution in the location space. In our approach, we 
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represent demand as continuous density functions and solve the problem in 

the allocation space. In comparison with traditional solution methods, our 

solution approach assumes locations are optimally made given the allocation 

decisions. 

1.2 Motivation 

Our motivation in this thesis is two fold. First, demand information has be

come more abundant with the emergence of new technologies. Over the last 

decade, successful implementation of such information technologies as point 

of sales data and Geographical Information Systems (GIS) has enabled ac

cess to demand information at a detaillevel which was not available before. In 

addition, the scope of the location-allocation problems in the logistics environ

ments has widened due to such economic trends as globalization. Therefore, 

these developments have motivated us to represent demand information in the 

form of continuous functions. 

Secondly, solving location-allocation problems in the location variable space 

has sorne challenges. One challenge is the need for determining location of the 

facilities a priori. This task involves search, selection and feasibility analysis of 

candidate sites to be used in the problem. Another challenge is related to the 

solution procedures. The objective function of the multi-facility location prob

lem with Euclidean-metric is known to be non-differentiable when the facility 

locations overlap with each other or with demand points. This challenge has 

attracted the interest of many researchers who attempt various approximation 

and heuristic methods to overcome it. Hence, these challenges have motivated 

us to solve the planar location-allocation problem in the allocation variable 
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space. 

1.3 Organization of Remainder of the Thesis 

In order to solve the pl anar location-allocation problem in allocation variable 

space with continuous demand density functions, we developed various models 

and solution methodologies. These models and methods are part of an unified 

framework, but differ from each other for different metrics and number of 

facilities. Table 1.1 illustrates various model types and solution methods by 

their corresponding chapter. 

Constructive 
Solution 

Shooting Algorithm 

Sequential Location·Allocation 
(SLA) with Continuous Demand 

Steepest·Descent Method for 
Allocation Decisions 

Chapter 3 

Chapter 3 

Chapter4 Chapter 7 

Chapter 4- Chapter 4- Chapter4- Chapter4-

Chapter4 Chapter 7 

Chapter4 
Modified Newton's Method for 

Improvement Allocation Decisions 
8ased 1--:-....;.;.::.:...:..,,......:.~-=-:---:-:---..,,..-+-------+----+----+----I------1 

Solution Steepest·Descent Method based on 
Vertex·lterations 

Conjugate-Gradient Method based 
on Vertex-Iterations 

Hybrid lmprovement Algorithm 
(Steepest Descent+SLA) 

Chapter 5 

Chapter 5 

Chapter7 

Table 1.1: Overview of the problem types and algorithms 

Chapter 7 

In Chapter 3, we focus on the single-dimensional problem and develop 

an alternative model for the location-allocation problem, i.e., dynamic pro-

gramming model based on the allocation decisions. To solve this model, we 

propose two solution methods: Constructive shooting algorithm and improve-

ment based steepest-descent method. Constructive algorithm solves a relax-

ation of the problem by relaxing the market boundary constraints. In contrast, 

steepest-descent method, starting with an initial solution, improves the Cill-
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rent solution based on the quality of the allocation decisions. This chapter also 

provides several analytical results for the single-dimensional problem with a 

linear demand density. 

In Chapter 4, we present two solution approaches for the 2-facility pla

nar problem with Euclidean-metric. These methods are the constructive and 

improvement-based solution approaches, which constitute an extension of those 

in the single-dimensional setting (Chapter 3). In both of these extensions, 

we utilize the special form (i.e., straight line) of the allocation decisions for 

Euclidean-metric problems. Specifically, planar 2-facility constructive solu

tion approach is based on the following property of a straight line: Two points 

are sufficient to define a line. For the improvement-based steepest des cent 

approach, we couple the line form with shape preserving transformations (ro

tation and translation) as a way to iterate the allocation decisions. Lastly, we 

provide a second-order improvement method, i.e. modified Newton's method, 

to alleviate the linear convergence rate of steepest-descent method. The ap

pendix to this chapter includes a special case of the well-known sequential 

location-allocation(SLA) method, where the demand is a continuous density 

function. 

In Chapter 5, we first illustrate the challenges associated with extension 

from 2-facility case (Chapter 4) to n-facility case. The two methods de

veloped in previous chapt ers bring about different challenges. Extension of 

the constructive solution approach is impracticable due to the incomplete in

formation of the solution. On the other hand, the main challenge for the 

improvement-based approaches is that we can no longer iterate from one al

location solution to another by a simple line movement. However in this 

chapter, we demonstrate that we could iterate the vertices as oppose to the 
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allocation lines. Hence, we are still moving from one allocation solution to an

other, but this time with the use of vertices. Note that, this transition, from 

the line-representation to vertex-representation of the allocation decisions, is 

possible only when the vertices are connected to each other in the form of 

straight lines (special case for Euclidean-metric). We provide two improve

ment algorithms for the vertex-iterations: steepest-descent for vertex iterations 

(first-order method) and conjugate-gradient for vertex iterations (second-order 

method). 

Chapter 6 presents results of a computational study for the planar n-facility 

Euclidean-metric problem. This study includes various demand density func

tions and number of facilities. The solution method employed in solving these 

problems is the vertex-iteration based steepest-descent approach from Chapter 

5. Based on the results of this computational study, we provide insights on 

how demand density (shape and variation), number of facilities and cost pa

rameters affect the objective function as weIl as the solutions. We also report 

on the computation complexity (both theoretical and runtime performance) 

of this method. 

Chapter 7 exclusively considers the problems based on the Manhattan

metric. In this chapter, building on the results from previous chapters, we 

develop models and methods for various problem types, i.e. single-dimensional 

problem, planar 2-facility problem and planar n-facility problem. Organiza

tionaIly, this chapter resembles the development from chapter 3 until chapter 

5. First, we develop a special improvement-based solution method on a line. 

This method is the steepest-descent method, which is based on the iteration 

of optimal locations as surrogate iterates of the allocation decisions. Then, 

we extend this approach to planar n-facility problems by combining the se-
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quential location-allocation approach and steepest-descent method. We refer 

to this composite algorithm as hybrid improvement algorithm. For planar 2-

facility problems, we extend the results of Chapter 4 by accounting for the 

special structure of the Manhattan-metric's allocation line. In contrast to 

the straight line in Euclidean-metric, Manhattan-metric allocation line for 2-

facility is composed of at most three line segments. After adjusting for this 

difference, we extend both the constructive and the improvement-based solu

tion approached of Chapter 4 for Manhattan-metric. 

Since the location-allocation problem is a non-convex optimization problem 

and has many local optimal solutions (with the exception of such special cases 

as on a line with linear demand density) , term "optimal solution" in this thesis 

refers to local optimal solutions unless otherwise stated. 
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Chapter 2 

Literature Review 

2.1 Introduction 

In this review, we present sorne of the earlier work on planar minisum loca

tion and location-allocation problems. Since the literature on planar models 

is enormous, we do not claim to be comprehensive in our review. Our goal is 

to provide references on the studies which relate parts of the planar minisum 

problems addressed in this thesis. Other reviews of interest are Francis et al 

(1983), Brandeau and Chiu (1989), Avella et al. (1998), Harnacher and Nickel 

(1998), Scaparra et al. 2001, Wesolowsky (1993) and Hale and Moberg (2003) 

for general location science, Okabe and Suzuki (1997) for Voronoi diagram 

approaches to various location problems, Agarwal and Sharir (1998) for geo

metric optimization, and Langevin et al. (1996) for continuous approximation 

of distribution problems. There are also several books and chapt ers covering 

the problem in this chapter. Sorne of these books are Drezner (1995), Francis 

and White (1998). 

Before presenting the review of different problems and applications, it is 

important to mention the aggregation technique which aims to remedy the 

complexity of the location-allocation problems by reducing the size of the de

mand data set through aggregations. The literature on this topic is quite 

extensive, and therefore, we provide pointers for the references which analyze 

the techniques in more detail. Francis et al. (2005) provide the most recent 

review of the literature on aggregation. An empirical study on the compari

son of different error bounds is provided in Norman et al. (1995). Zhao and 
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Batta (1999) study the error bound for the centroid aggregation effect on the 

Euclidean distance p-median pl anar location problem. Erkut and Bozkaya 

(1999) study aggregation errors for p-median location problem. They intro

duce sever al new error sources due to the poor choice made by the analyst. To 

summarize the findings of these studies, aggregation aims to reduce the prob

lem complexity by clustering groups of demand points. In doing so, obviously, 

there are sorne errors brought into the problem and solution. In order to mini

mize these errors, analyst must try to find the best aggregation which requires 

another step of optimization dedicated towards reducing the aggregation er

ror. This is called the paradox of aggregation which turns a single optimization 

problem into two-step optimization problem. The absence of consensus on the 

universal error measures is another issue, which limits the applicability of this 

procedure. 

The organization of this chapter is as follows. In section 2.2., we review 

pure facility location problems (i.e., allocation decisions are fixed) for dis

crete demand and continuous demand cases. In section 2.3., we present the 

literature on location allocation problems with discrete and continuous de

mand. Section 2.4. is dedicated to the continuous approximation approach 

for location-allocation problems. Section 2.5. reviews the literature on the 

voronoi diagram approach for location-allocation problems. 

2.2 Pure Location Problems 

This problem deals with the determination of the location of a single facility 

to minimize the sum of weighted distances to demand points. Single facil

ity location problems are also known as the Fermat-Steiner-Weber problems 
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(Drezner, 1995). In this section, we will review the related literature based on 

the two main metrics used in this chapter, namely the Manhattan (or recti

linear metric) and the Euclidean-metric as weIl as generalized metrics. This 

section also presents the pure location studies for continuous demand cases. 

2.2.1 Discrete Demand and Manhattan-metric 

In the transportation literature, Manhattan metric is known to estimate the 

distance traveled in city blocks better than the Euclidean metric. This mea

sure also preferred in the VLSI circuit design and placement of equipment on 

the shop fioor. The objective function is piecewise-linear and convex. For the 

Manhattan-metric, Francis (1963) and Francis and White (1998) show that 

exact solutions are found at median locations, i.e. half of the demand lies 

on the left(above) and other half on the right(below). Vergin and Rodgers 

(1967) provide a test for identifying these median locations. For multi-facility 

case, Cabot et al. (1970) provide a minimum-cost network fiow approach 

whereas Wesolowsky and Love (1971b) provide a linear programming formu

lation after introducing additional variables to replace the absolute term in 

the objective. However, these linear programming formulations proved to be 

large for the algorithms and computers of that time. Accordingly, Pritsker 

and Ghare (1970, 1971) provide a gradient based approach to overcome this 

challenge. Pritsker (1973) made a correction in the algorithm and provided 

upper and lower bounds of the objective function based on the Euclidean dis

tance problem. Rao (1973) showed that Pritsker and Ghare (1970, 1971) may 

not converge to optimal solution with counter examples. Juel and Love (1976) 

extend Pritsker and Ghare (1970, 1971) by providing necessary and sufficient 

conditions and a modification to the earlier method which guarantees con-
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vergence. Picard and Ratliff (1978) provide an approach where they solve at 

most (m-1) minimum-cut flow problems on networks with at most (n+2) ver

tices. They label their approach as the primaI method and compare with dual 

approach, i.e. minimum cost network flow approach in Cabot et al. (1970). 

Wesolowsky and Love (1972) provide a reduced gradient solution approach 

after approximating the objective with hyperboloid functions. Another hyper

boloid approximation is proposed by Eyster et al. (1973). Sherali and Shetty 

(1978) improve the combinatorial step in Juel and Love (1976)'s approach 

which enumerates the subsets of facilities to be moved. Specifically, they solve 

a quadratic binary integer problem for the subset identification. Kolen (1981) 

shows the equivalence of the direct search approach in Prikster and Ghare 

(1970), Juel and Love (1976), and Sherali and Shetty (1978) to the cut ap

proach in Picard and Ratliff (1978). Cheung (1980) modifies the approach in 

Picard and Ratliff (1978) by reducing the size of the network problems and 

tightening the feasible space. 

2.2.2 Discrete Demand and Euclidean-metrÏc 

When the problem is single-facility location on a line, it is known that the 

optimal location coincides with one of the demand locations. Therefore, in the 

planar setting it is assumed that the demand points are non-collinear. 

When the demand points are not collinear, the objective of single facility 

problem with Euclidean metric is known to be strictly convex (Francis and 

White, 1998). The first method for solving this problem is due to Weiszfeld 

(1937). Since original work published distantly (in French and in a Japanese 

journal), it has been rediscovered by Miehle (1958), Kuhn and Kuenne (1962) 

and Cooper (1963, 1964). Miehle (1958) is the first to extend this approach to 
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multi-facility case. This method generates a sequence of iterates, which are the 

weighted average of the demand points. In essence, this method is a steepest

des cent with inexact step length. In this method, objective is everywhere 

differentiable except at the existing demand point. Kuhn and Kuenne (1962) 

provide a modification such that it is everywhere differentiable. Francis and 

Cabot (1972) provided a dual formulation for the multi-facility Euclidean

metric case. They pointed out that the complementary slackness conditions 

could provide useful insights. 

Kuhn (1973) provides first rigorous analysis of this method. Specifically, it 

provides conditions for destination optimality (i.e. one of the demand points 

being the optimal solution) and shows that this method possesses linear con

vergence as long as the location does not coincide with the existing demand 

points. It provides a modification in the search direction in the case of such an 

overlap which guarantees convergence except a denumerable number of start

ing points. Katz (1974) shows that Weiszfeld's method's convergence rate 

depends on the optimal location; if the optimal location is not one of the de

mand points then convergence is linear, or else convergence is either linear, 

superlinear or quadratic. Ostresh (1978) corrects a flaw in the Kuhn (1973)'s 

proof and provides a modification step for Weiszfeld's approach to guaranteed 

convergence when the current iterate coincides with one of the demand points. 

Ostresh (1978) also provides convergence results for the step length and shows 

that convergence is guaranteed when the step length is not less than Weiszfeld's 

step size or greater than double of that. Motivated by the inexactness of the 

step-size in Weiszfeld's method, Katz and Cooper (1981) propose an optimal 

gradient method with inexact line search for single facility problem and show 

it requires less number of iterations than Weiszfeld's method. However, their 
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method requires a line search method for the calculation of step-size. Drezner 

(1992), in an effort to accelerate the Weiszfeld's method, provides bounds for 

the variable step length and recommend 1.8 factor as a good adjustment for 

most problems. Balas and Yu (1982) also modify the Kuhn's method which 

guarantees convergence for any starting point. Rado (1988) extends Miehle's 

algorithm and provides a convergence proof based on the theorem first pro

vided in Kuhn (1973) and corrected in Ostresh (1978). Chandrasekaran and 

Tamir (1989) show that Kuhn (1973)'s convergence pro of does not hold unless 

the convex hull of demand points is in full-dimension of the problem space. 

Brimberg (1995) provides a formaI convergence pro of of the Weiszfeld method 

which states that convergence is guaranteed, except a denumerable number of 

starting solutions, only if the convex-hull of demand points is in full-dimension. 

Ostresh (1977) shows that Miehle's method is indeed a des cent method. 

However, Rosen and Xue (1992) demonstrate that Miehle's algorithm can get 

stuck at nonoptimal solutions due to the nondifferentiability. In order to come 

this nondifferentiability, Eyster et al. (1973) extend the Weiszfeld procedure 

with a Hyperboloid Approximation Procedure (HAP) for multi-facility cases. 

Charalambous (1985) has accelerates the convergence of HAP. Morris (1981) 

provides a convergence pro of of the HAP procedure for special norms and 

powers of the distance. Rosen and Xue (1993) show the HAP is a des cent 

procedure and that it always converges from any initial point. Plastria (1992) 

presents exact optimality conditions when the locations coincide with the de

mand points. Main contribution of this work is that necessary conditions for 

overlapping of facility locations and demand points at the optimal solution are 

generalized. 

In addition to the Weiszfeld or HAP, several researchers proposed alter-
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native methods. Francis and Cabot (1972) and Love (1974) provide dual 

formulations for unconstrained and constrained multi-facility problems, re

spectively. Plastria (1987) provide a cutting plane method for single-facility 

problems with mixed norms and convex transportation costs. Calamai and 

Conn (1980, 1987) and Overton (1983) provide projected Newton methods on 

the linear manifolds. Their approaches present quadratic convergence; how

ever, with the large problem instances they display poorer performance since 

the combinatorial nature of explicitly adding and dropping activities in a pro

jection method prove to be computationally expensive. These methods are 

the first ones to exploit the duality structure of the problem and provide pri

maI and dual solutions at the same time. Vardi and Zhang (2001) provide a 

monotonically convergent modification to the Weiszfeld method. Xue et al. 

(1996) points out that the dual formulation suggested by Francis and Cabot 

(1972) is equivalent to the maximization of a linear function subject to con

vex quadratic inequality constraints. Accordingly, they suggest solving the 

dual problem using interior point methods in polynomial order. Another sec

ond order approach, Newton bracketing for single-facility location problem, 

is proposed in Levin and Ben-Israel (2002). Li (1998) propose a Newton

based acceleration for the single-facility case and state that computational 

results indicate superlinear convergence. Sherali and AI-Loughani (1998) pro

pose reformulations for the multi-facility problem, namely Lagrangian dual 

and primaI space formulation. Their dual formulation is equivalent to Francis 

and Cabot (1972). Since both formulations are differentiable, they propose 

using standard continuous optimization methods. Sherali and AI-Loughani 

(1999) propose a conjugate gradient method for multi-facility problems with 

two different deflection strategies. 
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Sorne of the studies on this problem aim to terminate the solution procedure 

whenever the solution quality is acceptable. For this, several studies propose 

bounding schemes. Love and Yeong (1981) and Juel (1984) provide single 

bounds which can be extended to include multi-facility case. Drezner (1984) 

proposes a bound for Euclidean-metric case for single facility problems which 

is later extended to n-facility L2 case by Dowling and Love (1986). Elzinga and 

Hearn (1983) and Juel (1984) show that Juel (1984) bound is always as good 

as or better than Love and Yeong (1981) bound. Wendell and Peterson (1984) 

present a dual based lower bound after constructing a feasible solution to the 

dual problem a given solution. Love and Dowling (1989a) extend the bound 

for single-facility generalized metric location problem in Love and Dowling 

(1989b). They show that it is as good as the Juel (1984) bound and it is 

equivalent to the bound in Drezner (1984) for Euclidean-metric single-facility 

problem. Their bound is based on the solution of an alternative rectilinear 

problem with adjusted weights. Dowling and Love (1987) propose the dual 

as an alternative lower bound. Uster and Love (2002) provide a rectangular 

bound for the general metric single and multi-facility cases. However, they do 

not report on the quality of this bound. 

Square of the Euclidean metric (i.e. Squared Euclidean-metric) is mostly 

used to penalize excessive distances. It possesses the same dimensional separa

bility property as the Manhattan-metric. Eyster and White (1973) cite sorne 

special applications for this class of problems. Objective is strictly convex and 

everywhere differentiable. Eyster and White (1973) analyze this distance mea

sure and present sorne properties. Since the objective is both separable and 

differentiable, smooth optimization techniques can be used. Due to the ease 

of solution, most of the clustering algorithms assume that this metric provides 
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an accurate separation between cluster centers. Francis et al (1998) provides 

further discussion on this distance measure. 

2.2.3 Other Studies with Discrete Demand 

In addition, there are other studies which are relevant to the pure location 

problems. Brimberg and Love (1995a) show that the optimal solution to multi

facility problem is in the convex hull of demand points when cost components 

are increasing and differentiable function of the norms used to measure the 

distances. Brimberg and Love (1992) extend the Weiszfeld's procedure to 

single-facility problems when the Lp metric's "p" is in the closed interval [1,2]. 

They provide local convergence results and observe that convergence rates are 

asymptotically linear. Later, Brimberg and Love (1993) provide global conver

gence proof for this procedure as long as their iterate does not coincide with 

demand points. They also show that their procedure loses the des cent prop

erty, thus the convergence, for "p" greater than 2. Drezner and Wesolowsky 

(1978b) provide a method based on numerical solution of differential equations 

which is implemented differently for Manhattan and Euclidean metrics. Juel 

and Love (1983) derive a necessary and sufficient conditions for a demand point 

to be the optimal location in the case of mixed lp-norms. Ward and Wendell 

(1980) propose a new norm, called one-infinity, which is a special combination 

of the Manhattan and Tchebbycheff. 

Brimberg and Wesolowsky (2000) consider a different planar location prob

lem, based on rectilinear distances, where the locations of facilities, as weIl as 

the demand locations, are considered as areas rather than points. Later, Brim

berg and Wesolowsky (2002) extend this formulation with solution procedure 

to the Euclidean metric. Tuy et al. (1995) consider three variants of the 
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single-facility location problem: with attraction and repulsion (i.e. negative 

weights), conditional location where there are pre-existing facilities and con

ditional distances where distance is assumed constant beyond a limit. They 

reformulate the problem as a "d.c. programming" problem (maximization of 

differences of convex functions over a convex feasible set). They solve the 

problem using a triangular branch and bound method. 

In addition there are sorne variants of the location problems which try to 

relax the restricting assumptions of the planar models location models. Herein, 

our treatment of these variants serves as providing bibliographic references. 

Hence, we do not discuss specific contributions of each work listed below nor 

we daim to be comprehensive in our listing. 

Planar models assume that any solution on the plane is a feasible solu

tion. However in practice, this assumption is unrealistic for sorne special 

cases. Though it is hard to judge the accuracy, in planar problems, when

ever the solution implies an infeasible point, a nearby point is sought as the 

final destination. If the nearby point is indeed far from the original optimal 

location, then the inaccuracy worsens. There are a number of factors, such as 

regions which are inhabitable or affected by zoning regulations, which needs to 

be accounted for. There are many studies which incorporate these locational 

constraints as forbidden regions in the planar location formulation. Sorne ex

ample of such studies are Love and Morris (1975) , Hansen et al. (1985), Aykin 

and Babu (1987), Harnacher and Nickel (1995), Fliege and Nickel (1997), Kafer 

and Nickel (2001), and Harnacher and Klamroth (2000). 

In general planar models assume that the distances are not very long; hence, 

the planar assumption of the spherical surface of earth is reasonable. However, 

for very large distances, as in global location decisions, this assumption would 
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give rise to errors. There has been a multitude of studies which consider the 

geodesic distances on the earth surface. Sorne of these studies are Drezner and 

Wesolowsky (1978a), Katz and Cooper (1980), Wesolowsky (1982), Drezner 

(1985), Aykin and Babu (1987) and Xue (1995). 

One major assumption of the planar models is that planar distances are 

good approximations of the traveled distance on the network. In order to 

enhance the accuracy of the planar approach, there are several modifications 

proposed. One of them is to calculate a distance predicting function for the 

transportation network. The idea is to include coefficient weights for single di

mensional distances with a rotation of the reference axis and finding an "ideal" 

p value for the least inaccuracy. Sorne of the work in this field is Koshizuka and 

Kurita (1991), Love and Morris (1979), Love and Walker (1994), Brimberg and 

Love (1991), Brimberg and Kakhki (2003), Brimberg and Love (1995b), Brim

berg et al. (1995), and Uster and Love (2001). In addition, planar location 

approach assumes that travel costs are proportionate to the distances. There 

are sever al studies which relax this assumption by regarding the transportation 

costs as nonlinear functions of the distance Hansen et al. (1985). 

Lastly, planar location problems omit the facility fixed costs in the solution. 

Brimberg and Salhi (2005) provide a procedure where location dependent fixed 

costs can be incorporated in the planar problems. 

2.2.4 Studies with Continuous Demand 

Wesolowsky and Love (1971b) provide a gradient-based search algorithm for 

Manhattan-metric multi-facility location problem. Love (1972) considers single

facility location problem with rectangular-shaped uniform-density demand ar

eas. He shows that this is a convex optimization problem and solves it using 
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a nonlinear programming technique. Bennett and Mirakhor (1972) consider 

a similar problem, but recommend using point representation of the area de

mand which does not have to be rectangular in shape or uniform density. They 

propose using the centroid as the concentration point. Drezner and Wesolosky 

(1980) provide an efficient two step solution procedure for Lp metric and gen

eral shape demand areas. Odoni and Sadiq (1982) consider the single-facility 

location problem with Manhattan-metric for uniformly distributed demand 

over rectangular market region. They show that there are two candidate loca

tions for optimum solution. 

Drezner and Drezner (1997) consider competitive single-facility location 

problem which is based on the gravit y model of Huff (1964). They compare the 

solutions obtained from discrete demand and continuous demand assumption. 

Their demand is based on the gravit y model; hence, it is non-uniform. Their 

results indicate that the dis crete demand case results in more local solution 

than the continuous case. Accordingly, the objective is much smoother with 

the continuous demand than discrete. They experiment with 100 starting 

solutions and observe that discrete demand case does not yield the global 

solution whereas continuous demand equivalent results in a global solution. 

As a result, they propose a distance correction for discrete demand in the 

spirit of Eyster et al. (1973)'s hyperboloid approximation. With this distance 

correction, discrete demand results in smoother objective functions. However, 

this distance approximation requires a parametric estimation for the correction 

factor. 

Carrizosa et. al (1998) study the single facility Weber location problem 

with uniform regional demands. In their approach, to reduce the computa

tional cost of evaluating the objective function, they approximate the rectan-
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gular demand regions, first with disks and then with triangles. Chen (2001) 

considers single facility Weber location problems where demand is in the form 

of circular areas each with uniform demand density. The solution procedure is 

an adaptation of the Weiszfeld's method with the evaluation of three scenarios, 

where location is inside, on or outside the circle. 

2.3 Location-Allocation Problems 

2.3.1 Location-Allocation problerns with Discrete Dernand 

This problem is first introduced by Cooper (1963). This problem is a much 

complicated than the multi-facility location problem due to the need of con

currently deciding on the allocation decisions (combinatorial component) and 

location decisions (nonlinear component) and is shown to be NP-hard by 

Megiddo and Supowit (1984). Cooper (1964) proposed a sequentiallocation

allocation procedure (SLA) for Euclidean metric planar problems which is in 

the same spirit as Maranzana (1964)'s approach for discrete p-median prob

lems. 

One dimensional version of the location-allocation problem is solved via 

dynamic programming by Love (1976). Denardo et al (1982) provide an inter

esting property for the location-allocation problem on a line with examples. 

This property, called interleaving property, stipulates that whenever a facility 

is removed from a solution, other facilities shift toward the location of the one 

removed, but not farther toward it than the original location of the adjacent 

facility. 
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Manhattan-metric Case It can be shown that for the Manhattan-metric 

case optimal locations of this problem will be at the grid points of vertical and 

horizontallines passing through customer locations Francis and White (1998). 

Kuenne and Soland (1972) present a branch and bound procedure based on 

constructive assignment of customers to facilities. Love and Morris (1975) 

present a two-stage procedure which includes a set reduction step to reduce 

the set of optimal locations so that problem transforms into a p-median on a 

graph. Accordingly, the second step is the solution of this p-median problem. 

Shetty and Sherali (1977) provide a cutting plane approach for the multi

commodity formulation. Love and Juel (1982) propose five heuristics based on 

the exchange ofthe allocation decisions. Sherali et al. (1994) study capacitated 

version of the location-allocation problem. Based on a st ronger property of 

the optimal locations due to Wendell and Hurter (1973), i.e., candidate grid 

points should be in the convex hull of demand points. Sherali et al. (1994) 

develop an equivalent discrete formulation. Resulting formulation is a bilinear 

mixed-integer program which is solved by a speciallinearization technique. 

Euclidean-metric case: In the case of two-facility problems, Francis and 

White (1998), Ostresh (1975), Drezner (1984) and O'KeIly (1986) are ex am

pIes of studies which use the problem's convex-hull property where two optimal 

subsets are separated by a line. This property, due to Ostresh (1975), stipu

lates that when there are n demand points, there are n(n-1)/2 possible subset 

partitions one of which would correspond to the optimal solution. As Os

tresh (1975) and Drezner (1984) note, extension of this property to more than 

two subsets is too complex. Rosing (1992) further extends this convex hull 

property by generating aIl feasible convex hulls (i.e. subsets) which form the 
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search space for the optimal allocation. Then he formulates a set covering 

model on these generated subsets. This method is capable of solving small 

sized problems optimally. Aykin and Brown (1992) propose a variant of the 

SLA approach for the LAP with inter acting new facilities. 

Cooper (1964,1967) propose a sequentiallocation-allocation method (SLA) 

which alternates between solving single facility location problems and a trans

portation problem by fixing the allocation decisions and location decisions, 

respectively. Love and Juel (1982) show that this problem can be expressed 

as concave minimization problem and present five heuristic methods. Kuenne 

and Soland (1972) propose a branch-and-bound algorithm which optimally 

solves small sized problems based on geometric lower bounds. Chen (1983) 

approximates the nearest-neighbor assignment with special exponents of dis

tances and then provides a Quasi-Newton solution procedure for solving it. 

Multi-start together with lower bounding for location problems is suggested 

to overcome the local optimality. Murtagh and Niwattisyawong (1982) pro

pose a simultaneous solution approach by relaxing the binary constraints on 

the allocation decisiollS. They use the MINOS nonlinear optimization package 

to solve iteratively by fixing the allocation variables whenever they are 0 or 1. 

They continue until no free allocation variable is left. Bongartz et al. (1994) 

develop an approach where, as in Murtagh and Niwattisyawong (1982), the 

binary constraints on allocation variables are relaxed. This method solves for 

location and allocation decisions simultaneously by using the sufficient con

ditions of the relaxed problem. Their algorithm is based on active set meth

ods and orthogonal projections, and exhibits convergence rate between linear 

and quadratic. This approach is different than Murtagh and Niwattisyawong 

(1982) in that it exploits the special structure of the problem and uses New-
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ton update rather than a Quasi-Newton update. Brimberg and Love (1998) 

has shown that two dimensional location-allocation problems can be solved 

with a dynamic programming approach if the demand data set possesses a 

one-dimensional intrinsic property. 

Brimberg and Mladenovic (1996a) introduce Tabu search (TS) to one of the 

heuristics presented in Love and Juel (1982). Variable neighborhood search 

(VNS) framework, which allows a systematic way of exploring different re

gions of the search space, is adopted for the location-allocation problem in 

Brimberg and Mladenovic (1996b). Houck et al. (1996) present a Genetic 

algorithm (GA) implementation and comparison with the random-start and 

two-opt heuristic (H4) in Love and Juel (1982). Salhi and Gamal (2005) pro

vide another genetic algorithm application. A combinat ion of the GA with 

TS is presented in Houck et al. (2006). Chen et al. (1998) consider classical 

location-allocation problem and two other variants: one with existing facility 

interaction and other with a constant distance measure beyond as a threshold 

distance. They formulate the problem as a d.c. programming problem (max

imization of differences of convex functions over a convex feasible set). They 

use an outer approximation for the resulting concave minimization problem. 

Hansen et al. (1998) introduce a p-median heuristic. P-median heuristic first 

solves the p-median problem over demand locations then single-facility We

ber problem for the allocation decisions obtained in the first step. Brimberg 

et al. (2000) present an extensive empirical comparison of SLA, Bongartz et 

al. (1994)'s projection method, GA, TS, VNS, p-median heuristics and newly 

introduced add/ drop heuristics. In their comparison they implement the SLA 

approach with 100 random starting points and then use the computational 

time to limit time allocated for other methods. Their results indicate that 
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VNS and p-median are better than the rest with respect to averaged gap from 

the best known solutions. Gamal and Salhi (2001) provide three constructive 

heuristics: multi-start SLA, furthest-distance and perturbation method plus 

SLA. Essentially the last one is identical to the p-median heuristic in Hansen 

et al. (1998) except the algorithm for solving p-median. Their results, in line 

with Brimberg et al., that for small number of facilities (n<20) multi-start 

SLA is better, but p-median heuristic performs better for larger number of 

facilities. Levin and Ben-Israel (2004) modify the SLA method by replacing 

Weiszfeld's single facility location step with author's Newton-bracketing pro

cedure proposed in Levin and Ben-Israel (2002). Sherali et al. (2002) present 

a global solution procedure for capacitated general metric location-allocation 

problems. Their approach is based on branch-and-bound technique with two 

specialized lower bounding approaches. They report on n=30 and n=50 de

mand points which the method could solve optimal and heuristic branching 

procedure, respectively. 

Taillard (2003) proposes three heuristic solution approaches for Squared 

Euclidean-metric problems. First heuristic, candidate li st search, is a greedy 

heuristic based on perturbation of a solution and application of one step SLA. 

Second heuristic and third heuristics are based on choosing and solving sub

problems using the first heuristic. Second heuristic, called local optimization, 

chooses a random facility and few of its closest facilities to create a subproblem. 

Third heuristic differs from second in the sense that it considers a number of 

facilities at the same time hence creates a number of subproblems. The issue 

of assigning optimal number facilities to each subproblem is determined by a 

dynamic programming. Based on computational study results first heuristic is 

recommended for moderate number of facilities whereas second and third are 
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better performing for large number of facilities. In this study, the author also 

points out the efficacy of the p-median heuristic in Hansen et al. (1998) and 

refers to earlier work as follows: 

"We do not consider methods such as those of Bongartz et al. (1994) 

which are too slow and produce too poor solutions or those of Chen (1983) or 

Murtagh and Niwattisyawong (1982) which are not competitive according to 

Bongartz et al. (1994)." 

2.3.2 Location-Allocation problems with Continuous Demand 

On a line Eaton and Lipsey (1975) analyze the cases where demand is repre

sented with uniform and nonuniform density functions. They present necessary 

conditions for the equilibrium of allocation decision between two firms. They 

conclude that nonuniform demand solutions notably differ from the uniform 

case both in terms of service regions size and facility locations. Drezner and 

Wesolowsky (1996) consider a different problem where customers are traveling 

to the least expensive facility. Price at the facilities depends on the demand 

volume served. They provide first-order conditions for the equilibrium and 

propose three solution procedures. 

Leamer (1968) considers three alternative shapes for the market region 

with uniform demand density. The solution procedure employed is a heuristic 

based on perturbation ofthe locations. Maruchek and Aly (1981) consider the 

case where demand is uniform randomly distributed over rectangular areas 

and propose a branch and bound solution. Cavalier and Sherali (1986) intro

duce the formulation of area demand location allocation problem which is a 

multi-facility location-allocation problem with uniform demand over convex 

polygonal areas. For single facility problem they develop a heuristic based on 
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the triangulation of the demand region. For multi-facility case, they use the 

Cooper (1964)'s sequentiallocation-allocation approach. Drezner (1986) con

siders the problem with circular demand areas and Squared Euclidean-metric 

where demand is uniformly distributed. Fekete et al. (2005) consider multi

facility location-allocation problem for the Manhattan-metric case. They pro

vide a polynomial time algorithm for single-facility and prove the NP-hardness 

for multi-facility case. 

2.4 Continuous Approximation approach for Location

Allocation problems 

The idea of Continuous (a.k.a. continuum) Approximation (CA) is to convert 

finite-dimensional problems with a large number of variables into problems 

involving continuous functions. In the context of logistics, Daganzo (1991) 

builds on the work of Newell (1973) and addresses different transportation 

problems by providing a number CA models for different system settings. 

A detailed taxonomy of CA applications in transportation can be found in 

Langevin et al. (1996). In the economics literature, continuous models for 

competitive location problems are also used to obtain very neat analytical 

results. However, due to modeling complexity, results are only available for 

either uniform spatial demand distributions or in a single dimensional setting. 

Eaton and Lipsey (1975) and Beckman and Thisse (1986) are very good sam

pIes of this literature. From the location point of view, Geoffrion (1979) is the 

first to propose a continuous approximation model for a warehouse location 

problem. In this model, parameters including demand are constant across the 

region; hence, a unique optimal service region size is determined by minimiz-
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ing the total of fixed cost, linear cost of operating, and inbound and outbound 

transportation cost densities. Erlenkotter (1989) presents a General Optimal 

Market Area (GOMA) model for uniform demand distribution. GOMA model 

trades off facility operating and outbound transportation costs, but ignores 

fixed facility and inbound transportation costs. Campbell (1992) studies lo

cation of multiple terminaIs to serve a uniformly distributed demand. This 

model assumes that terminaIs are supplied from a single source and transship-

ments between terminaIs allowed. They use the continuous approximation 

approach to analytically determine the optimal terminal sizes. They conclude 

that location decisions are not significant as long as allocation decisions are 

made optimally, i.e., nearest allocation may not be optimal. Rosenfield et al. 

(1992) implement the GOMA model to determine optimal service territ ory 

size for the United States Portal Service. Webster and Gupta (1995) extend 

the GOMA model by considering uncertain demand in adynamie environ

ment. Erlebacher and Meller (2000) propose a heuristic solution technique for 

inventory-Iocation model which uses CA for the transportation costs. In their 

grid-based customer representation, they point at the importance of spatial 

distributions (demand in this case) on performance. They report a 7-39% 

accuracy range with their heuristic for a 600 customer and nine distribution 

center test problem. Recently, Rutten et al. (2001) refined the GOMA model 

by more precise modeling of fixed costs, of inventory costs and of transport 

cost. Their model differs from GOMA in that they assume square regions and 

a finite market size which allows them to specify number of depots to be 10-

cated as the decision variable. Their results indicate that effect of considering 

market boundaries together with more accurate cost calculations leads to no

tably different results than GOMA model. Dasci and Verter (2001) generalize 
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the GOMA model by allowing parameters to vary spatially, and then applied 

it to the facility location problem with capacity acquisition. Later, Dasci and 

Laporte (2004) extend GOMA to stochastic demand case. Dasci and Verter 

(2005) advance the GOMA model to analyze the plant focus strategies. 

The main result of all GOMA models is an analytical optimal service re

gion size given the parameters. A complete implementation requires allocating 

(or districting) the market region based on this formula. Dasci (2001) recom

mends using a bi-variate step function fitting for continuous optimal service 

region size. Ouyang and Daganzo (2006) propose a heuristic procedure which 

iterates discs that are sized according to the optimal service region formula. 

Another districting method is proposed by Novaes et al. (2000) for the contin

uous approximation approach to determine the type and size of a homogenous 

fleet for distribution from a single depot. Their method is based on allocat

ing radial-ring shaped service regions to vehicles. Accordingly, this shape as

sumption leads to an explicit optimization problem which is solved by genetic 

algorithm. 

2.5 Voronoi Diagram approach for Location-Allocation 

problems 

Voronoi diagram is another approach towards solving planar location opti

mization problems when there are large number of demand points. Voronoi 

diagrams are formed by associating aIl points in a given set (i.e. on a plane) to 

the closest members of another set which is finite and presumably smaller. As a 

result of this nearest-neighbor assignment, polygonal tessellations are formed. 

Okabe et al. (2000) and Okabe and Suzuki (1997) provide excellent surveys 
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on different applications of Voronoi diagrams in locational optimization prob

lems. Iri et al. (1983) propose a gradient based search over a non-uniform 

customer distribution and applied to the optimal configuration of public mail 

boxes in Koganei, Japan. Their search is based on displacement of facilities in 

the optimal direction, namely towards the centroidal location for the squared 

Euclidian metric used in the study. Okabe et al. (1998) look at the location of 

hierarchical facilities where service provided by facilities at a hierarchical level 

encompasses aIl the services provided at lower levels. Their problem solves for 

the optimal levels of the hierarchy and the optimal system configuration of 

each level. 

2.6 Conclusions 

From the review of this literature it is apparent that there is scarcity of studies 

(both the pure-location and location-allocation problems) with continuous de

mand. Problems with discrete demand representation are challenged with the 

algorithmic limitations, i.e., lack of exact procedures for handling large size 

problems Taillard (2003). Furthermore, the non-convex nature of the location

allocation problems result in many local minima for discrete cases, thus global 

optimization techniques in the form of traditional and meta-heuristics appear 

to be promising (Taillard 2003, Brimberg et al. 2000). On the other hand, 

the continuous demand assumption smoothes the objective function by remov

ing much of these local minimums hence reduces the need for heuristic search 

techniques (Drezner 1997). In comparison, when the demand data is dense, 

aggregation techniques bring about aggregation errors and whereas continu

ous approximation reduces this error. Therefore, continuous demand not only 
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reduces the error, but also smoothes the objective function so that it exhibits 

less probability of getting stuck at local solutions. 

On the other hand, continuous approximation, an approach which assumes 

continuous demand density, is a promising method, but suffers from the slowly 

varying assumption which in turn brings in solution errors. There also seems to 

be a lack of a consistent allocationjdistricting methodology to implement the 

nice analytical solutions obtained from continuous approximation. Another 

approach which is promising is by Iri et al. (1993) where the problem is solved 

in the location variable space with continuous demand. The only limitation 

of this approach is the reliance on the location decisions. Accordingly, when 

the costs are demand dependent, or when there are constraints on the demand 

to be served (either distance constraints or capacity constraints on the total 

demand served), then location based approach would not be extendable. 80 

there is a need for models and methods which could benefit from the favor

able aspects of using continuous demand data, but at the same time versatile 

enough to allow various problem variations that discrete demand models could 

easily account for. 
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Chapter 3 

Basic Model on Single Dimension 

3.1 Introduction 

In this chapter, we develop a dynamic programming formulation on a line for 

a fixed-charged continuous location-allocation problem with capacity acqui

sition, which is similar to the discrete model proposed in Verter and Dincer 

(1995). This problem is a representative form of the many supply chain net

work design models found in the literature. Our model differs from Verter and 

Dincer (1995) in that we consider continuous facility locations and continuous 

demand functions. As in Verter and Dincer (1995), we also assume that any 

capacity can be acquired without any constraint. Single sourcing, assigning 

all of the demand at each customer to the closest facility, is therefore a di

rect result of this acquirable capacity assumption. Single sourcing assumption 

not only makes the analysis easier but also is the most preferred method in 

practice as it simplifies the management of distribution. 

Our continuous location-allocation problem (also called service region dis

tricting - location problem) formulation is based on prioritizing the allocation 

decisions. In our approach, we determine the customer allocation decisions by 

districting the market into service regions in which we assume the facilities are 

optimally located. In most of the discrete and planar location-allocation mod

els, optimal location and allocation decisions are jointly determined. Contin

uous model formulations, on the other hand, prioritize the location decisions 

while allocation decisions are determined optimally given the location deci

sions. For a better exposition of this difference, let's consider the following 

30 



optimization problem where the location decisions (x) and allocation deci

sions (y) are jointly determined. This formulation is akin to the discrete and 

planar models suggested for the location-allocation problems. 

min f(x, y) (1) 
x,y 

s.t. 

xE X,y E y 

In the continuous models, the location prioritized formulation is of the 

form: 

min f(x, y*(x)) (2) 
x 

s.t. 

xEX 

y* (x) is the optimal allocation decisions implied by the location decisions 

x. One can easily observe that this formulation has a smaller decision space 

compared to the formulation in (1). Whereas this reduction of the search space 

facilitates the solution, the optimal allocation decisions (y*) further compli-

cates the problem. In our formulation, we instead prioritize the allocation 

decisions. x* (y) is the optimal location decisions implied by the allocation 

decisions y. 

min f(x*(y), y) (3) 
y 

s.t. 

yE Y 
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In this chapter, we consider the fixed-charged continuous location-allocation 

problem with capacity acquisition on a simplified domain, namely on a line. 

It constitutes not only the basic construct for the two dimensional problems 

but also an easy to explain setting without losing the reader in technicali

ties and complex notation arising from additional dimension. In Section 3.2., 

we first present the traditional formulation of the problem. Then, in Sec

tion 3.3, we propose an alternative dynamic programming model on a line 

and derive sorne analytical properties of the optimal solution. In the last sec

tion, Section 3.4., we present two alternative solution methodologies together 

with examples. These two methods are constructive shooting algorithm and 

steepest-descent algorithm based on allocation decision iterations. Although, 

the demand density function is assumed to be linear throughout this chapter, 

our results are applicable for nonlinear demand cases as weIl so long as the 

demand density is Lipschitz continuous. Only exception to this generalization 

is the pseudo-convexity results, Propositions 3.1 and 3.2, which are based on 

the linear demand density assumption. 

3.2 Basic Model- Allocation Variable Space 

3.2.1 Description of the Decision Variables and Parameters 

The purpose of constructing the model for the allocation problem on a line is 

two fold. Firstly, it is easier to derive analytical properties characterizing the 

optimal solution. Secondly, it forms a basis for the extension to the planar 

model as described in the planar model section. A feasible solution for the 

allocation problem defined on a line is a set of line segments which are disjoint 

and cover the market region completely Figure 3.1. exhibits a feasible solution 
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~x 

Figure 3.1: A feasible solution to the service region districting and location 
problem on a line. 

for the problem on a single dimensional market which is defined as the line 

segment [0, Ml where the origin(O) is any reference point. A's are the service 

regions which disjointedly covers the market [0, Ml. The idea of service regions 

is that any customer demand in A will be served from the facility located in 

service region i at coordinate Xi. 

First, we colloquially define an problem parameters and decision variables, 

and then in the following section, we develop the mathematical relations be-

tween them and substitute the equivalents in the model formulation when 

necessary. 

Decision Variables 

n number of facilities (service regions) 

Ai area of service region i (i.e. Ai = lAI) 

Bi coordinate of boundary between service regions i and i - 1 

Auxiliary Variables 

Xi coordinate of the facility in service region i 

Wi total demand in service region Ai 

Xi coordinate where the average density in A is observed 

(
. D(-.) = fAi D(x) dx) l.e. X 2 Ai 
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Problem Parameters 

D(x) demand density at xE M (items/mile) (= u + vx) 

F 

f(x, w) 

g(x,w) 

f 

a 

c 

fixed cost of opening a plant 

capacity acquisition cost of opening a facility of size w at x 

total transportation cost for serving demand volume w from 

a facility located at x 

fixed cost component of capacity acquisition cost 

unit capacity acquisition cost 

per unit-mile distribution cost 

average customer travel distance in A when facility is located 

at Xi for direct-shipment case. 

TJ(X, Xi) : distance from the facility at Xi to X 

3.2.2 Cost Factors and the Model 

Objective of the problem is to minimize total cost of meeting aIl demand 

which includes minimization of total fixed costs of opening facilities, capacity 

acquisition and transportation costs. We now give explicit forms of these costs 

based on service districting(allocation) variables, namely Ai, i = Ln. 

Capacity Costs 

We assume that capacity acquisition cost is a fixed charged linear function 

of the demand served as shown in Figure 3.2. It also serves as an approximation 

to the generalized nonlinear monotone decreasing per-unit capacity costs. The 

healthcare capacity is a good example where there is an initial fixed cost of 

"ready-to-serve" capacity and a marginal cost component derived from the 

rendered services (LindelOw and Wagstaff 2003). Consideration of explicitly 
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f(wJ 

f 

Wj 

Figure 3.2: Fixed charged variable capacity acquisition cost 

nonlinear capacity costs is proposed as a future research in the later chapters. 

Formulation of the fixed-charged linear capacity cost is as follows: 

(4) 

Since the demand is linear, we have replaced Wi with the average demand 

multiplied with the area. Observe that whereas in the uniform demand case 

capacity is solely determined by the size of service region, in the linear demand 

case location of the service region in the market region is also a factor. 

Distribution Costs 

We assume direct shipping distribution systems where each customer gets 

a reserved dispatch and transportation costs are charged on a per unit-mile 

basis. Distribution strategy is one-to-many meaning that each facility has its 

dedicated territory that no other facility could supply customers in another 

service region. It is also assumed that trucks and customers are identical in 

their cost and time factors. Under these assumptions, total transportation 

35 



cost in service region A becomes, 

(5) 

In the continuous approximation to transportation literature, average travel 

distance, di (Xi), has been popularly approximated by the area size. In these 

models demand is assumed to be uniform and facility locations are static (i.e. 

known before and kept constant). Almost an of these models use a coefficient 

that reflects the effect of number of routes (in peddling case), shape of the dis-

tribution area, location of the facility with respect to the transportation area 

(inside or outside) and distance metric used in calculating travel distances. 

For single dimensional analysis, shape naturally does not have any affect and 

distances are same for LI (Manhattan) and L 2(Euclidian) metrics. However, 

if the demand density uniformity and fixed location assumptions are relaxed, 

it is intuitive to conjecture that di would be some function of the demand 

distribution and area. In general average travel distance, di(Xi), for service 

region Ai could be calculated as follows; 

di(Xi) = Total Distance Traveled (Xi) = fAi D(x) 17(X, Xi) dx (6) 
Total Demand fA; D(x) dx 

Total distance traveled,for the representation in Figure.3.3 is as follows; 

Total Distance Traveled (Xi) l~i(u+vX)(Xi-X)dX (7) 

+ l~i+Ai (u + vx) (x - Xi) dx (8) 

36 



Given the districting solution, the location of the facility, xi is the one that 

minimizes total transportation cost. In the case of Manhattan metric, this 

xi is the well-known median location of A with respect to demand density 

function. xT can be derived from the first-order optimality condition after 

taking the derivative of (7). 

* 1 -4 u + 2 J 4 u2 + 4 v2 Bi Ai+4 v 2 Bi2 + 4 u V Ai + 8 u V Bi + 2 v 2 A~ 
x" = ---------~--------------------------------------------~ 

2 4 v 

(9) 

Note that (9) is the optimal location for Euclidean metric (L2 ) case as weIl, 

since Euclidean and Manhattan metrics are identical in single dimension.1 A 

more clear to remember expression for the xT could be expressed in terms of 

the demand densities at the beginning and end points of the service region A. 

(10) 

In the Manhattan metric, when the facility is located at xT ,the average 

distance traveled, di (xi) , from equation (6): 

( 

2Tl - ( J21? + 4Ti + 4 - 6)T? ) 

-(2J2T? + 4T + 4 - 6)Ti - 2J21? + 4Ti + 4 + 4 
K(~) = 31,?(T

i 
+ 2) (11) 

1 In the case of squared Euclidian distance metric, x; would be at the centroid (center" 

f ) f A ·th t t D() * Ai 2vA;+3u+3vB;) o mass 0 i WI respec 0 x. Xi = 3(vA i +2u+2vE, 
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D(x) 

u 

x 

Figure 3.3: An example representation of the service region A with linear 
demand density function in single dimension. 

(12) 

Ii: demand density elevation measure in A, i.e., the ratio of the demand 

density level elevation to the lowest level of demand. 

The dependence of di(x;) on Ti is a special case due to the linearity of 

demand and is considerably more involved for nonlinear demand cases. Also 

note that there is an area Ai multiplier in the end, so in addition to the 

curvature properties of the demand density function, it also depends on the 

area size of service region. K(Ii) is an average travel distance coefficient 

which depends on the shape of the A, distance metric used and demand 

density distribution. The continuous approximation literature (Daganzo 1991, 

Erlenkotter 1989, Geoffrion 1979, Dasci and Verter 2001, Rutten et al. 2001), 

given the shape and metric, assumes K(T) as a constant value, but when we 

relax the uniform demand assumption, it is no longer a constant. 
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Figure 3.4: K(T) for both linearly increasing (for T ~ 0) and linearly decreas
ing (for T ::; 0) demand density functiollS. 

Figure 3.4 demonstrates the behavior of K(T) for linearly increasing and 

decreasing demand density functions. Note that as the demand density func-

tion slope v ---+ 0 then T ---+ 0 and K(T) parameters both converge to 0.25 

which is the correction factor for average distance traveled in single dimension 

with facility location is at the center of service region. Asymptotically, when 

T ---+ +00 and T ---+ -1 (i.e. v ---+ +00 and v ---+ -00 ), then K(T) ---+ 0.195. 

With these results, the total transportation cost in (5) is as follows: 

(13) 

In the uniform demand case K(1i) is dependent on the shape of the ser-

vice region and the distance metric used, whereas in the linear demand case 

it also depends on the size of the service region, Ai, When uniform demand 

density is assumed, the error in the distribution cost could be as high as 28%.2 

Moreover, this uniformity assumption would also displace the optimal facility 

location (with a limiting value of 20.7% for the model herein).2 These errors 

2 Asymptotically when v ---> +00 and v ---> -00, assuming uniform demand, i.e. K(T) = 

0.25 and xi =Bi + ~i , would bring 28% distribution cost and 20.7% displacement error for 
the optimal location based on (11) and (9), respectively. 
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are for a single service region only. When many service regions are consid-

ered in tandem, this error of uniform demand density assumption propagates 

additively for linear demand density. 

We now combine the cost terms and express the objective function of our 

allocation based service districting-Iocation and capacity acquisition problem: 

n n 

Any feasible solution (n,Ai=l..n) to our problem should coyer the market 

area (i.e. uA = M where A are disjoint). Auxiliary variables in (14) are 
i-1 i-1 

Ti = vAdu + v L:Aj and Xi = L:Aj + ~i. With (14), our problem is a mixed 
j=l j=l 

integer non-linear function hence a non-convex programming model defined 

over Ai and n. Non-convexity is primarily due to the dis crete nature of feasible 

region as necessitated by the number of service regions (n). When the number 

of facilities (n) is given, this problem becomes a pseudo-convex problem as it 

is shown in the following section. In the case of non-linear demand density, 

this pseudo-convexity depends on the structure of the demand density function 

(i.e. convex when demand density is strictly-convex, concave when demand 

density is strictly-concave). 

3.3 Alternative Model- Dynamic Programming Model 

in the Allocation Variable Space 

We now give a mathematical programming formulation for our allocation 

problem for the Manhattan metric and similar derivations for the Euclidian 

Squared metric is straightforward. We replace the auxiliary variables (Ti, Xi) 
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i-l 

with their equivalents using boundary variables Bi (= L Aj). This formula
j=l 

tion is provided below. For notational simplicity, we use total cost mapping 

as before (TC(·)) but this time with two variables (Bi, Ai)' 

Pr-oblem Pl 

S.t. 

BI = 0, Bn+l = M, Ai ~ 0, Bi ~ 0, n ~ ° and discrete (16) 

Since Pl has an additive and separable objective function with linear 

constraints- each relating boundary decision variable Bi+l to the previous 

boundary variable (Bi) and service area variable (Ai), this formulation is a 

good candidate for the dynamic programming formulation for a given n. De-

noting Bi's as the state variables, Ai's as the control variables, (15) as the 

system equation, we obtain the cost-to-go function as follows: 

(17) 

v (Bi, i) : the cost of optimal allocation decisions starting from Bi and ith 

facility 

First two terms in (17) represents the Lagrange fun ct ion of the optimization 

problem in service region i and Ài stands for the Lagrange multiplier for the 

boundary condition of the service region. One way to interpret this formulation 

is to think of it as an event-driven system where every facility has to select 
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its service region based on the previous allocation decisions. The basic idea of 

(17) is to start the problem of districting at an area i onwards (i.e. [Bi' Ml). If 

we move to the next area i + 1 and restart the pro blem again, we will have the 

same service area districting solution for the areas i+ 1 onward (i.e. [EH!' Ml). 

In other words, if the solution to the ith service districting problem is (Ai, Bj), 

j = i, i + 1..., n then the solution to the (i + 1Yhservice districting problem is 

(Ai, Bj), j = i + 1..., n. Note that for any given service region i, Bi+l is also 

a control variable. 

The cost-to-go function in (17), V(Bi , i), satisfies the principle of optimality 

such that optimal trajectories of choice variables (Ai) are as functions of state 

variables (Bi). Since Bellman's equation in (17) is a contraction mapping, for 

which a fixed point theorem exist, the existence of a solution is guaranteed. 

The uniqueness of this solution depends on the convexity properties of the 

Hamiltonian equation in (18). 

(18) 

If (18) is convex then the contraction mapping implied by Bellman's equa

tion would preserve its convexity. However, (18) is not convex in (Ai, Bi, Ài), 

thus we show the unimodularity of our problem through its weak convexity. In 

what follows, we first derive the necessary conditions for the optimal service 

region districting problem and then prove that our problem is a pseudo-convex 

problem; thus, necessary conditions are also sufficient. 
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3.3.1 Necessary and Sufficient Conditions for Optimality 

In this section we first der ive the necessary conditions of the Minimum Prin-

ciple through the Bellman equation in (17) and then present the sufficiency 

of these conditions for an optimum solution. Note that the decision variables 

in (17) are Ai, Bi+l and Ài whereas Bi serves as a parameter in the ith area's 

problem. An optimal solution to the (17) is a triplet (Ai, Bi+1' Ài ) for i = L.n 

and must satisfy the following first order conditions for any given n: 

BV(Bi,i) = o. BTCi(Bi,Ai) _ '. 
BAi . BAi - /\, (19) 

(20) 

BV(Bi,i) - o· B- - B- + A-B>'i - . ,+ l -, , (21) 

(22) 

We are assuming that the solution (Ai, Bi+l' Ài ) for i = L.n, is an internaI 

solution with respect to the non-negativity set 22, i.e. Ai, B i +1 > O. This is 

not a strict assumption since given an initial boundary BI ~ 0, Bi+l would be 

positive except LA = o. However, since we derive these optimality conditions 
j<i 

for a given n, then having sorne m number of the Ai 's at zero would mean we 

have an optimal solution for n - m service regions. In addition to (19),(20) 

and (21) we have the following condition from the envelope theorem (Kimball 

1952). 

dV(Bi , i) = 8TCi(Bi , Ai) _ Ài 

dBi 8Bi 
(23) 

43 



Through algebraic manipulation, we obtain the Euler equation (24) linking 

area sizes in adjacent service regions (Holzapfel 1986). 

8TCi(Bi , Ai) 

8A 
8TCi+1 (Bi+l' Ai+1 ) 8TCi+1(Bi+1 , Ai+l) 

8Ai+l 8Bi+l 
(24) 

This result is the discrete version of the Minimum Principle, which is an 

open -loop control approach to districting-Iocation problem; the optimal con-

trol solutions (Ai( Bi)) are identified only at the optimal states (Bi). How-

ever, the dynamic programming approach in (17) is a closed loop approach, 

where the optimal control solutions are identified for every state condition 

(i.e. Ai(Bi)). Therefore closed-form analytical results are rare with dynamic 

programming. Lastly, it is possible to show the following relation for Ài. 

Ài = 8TCi+1(Bi+l, Ai+l) _ 8TCi+l(Bi+l, AH) 
8Ai+l 8Bi+l 

(25) 

In order to derive (25), we write the envelope condition in (23) for i + 1 

subtract (20) and substitute for Ài+l in (19) for i + 1. 

It is important to point out that above conditions are necessary but not 

sufficient conditions for an optimum solution, and for sufficiency we need to 

explore the convexity properties of Pl. In general, sufficient optimality condi

tions are available for continuous dynamic systems only under sorne restrictive 

convexity assumptions (Leonard and Ngo 1992). However, as we show in 

Proposition 3.1. and 3.2., due to pseudo-convexity property, these conditions 

are also sufficient for an optimum. In further extension of our problem (i.e. 

nonlinear demand cases), we loose these weak convexity properties; hence, we 

are bounded with local optimization techniques. 
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Proposition 3.1. 

For any given consecutive triplet of service regions (Ai, A+l' A+2), 

TCi,3(Bi, Ai) = TCi(Bi , A) + TCi+1 (Bi+l, Ai+d+ TCi+2(Bi+2, A+2), s.t. 

B j+1 = Bj + Aj for j = i, i + 1, i + 2} is a pseudo-convex function of Ai and 

Praof. For brevity, we pravide a description of the praof and an ex-

tended version can be found in the appendix. For v ~ 0, we first show that 

3TCi(Bi , Ai )/3Ai is a convex and increasing function. Also 3TCi+l (Bi+l' Ai+l)/3Ai 

is convex, increasing and:::; O. Further at Ai = 0, sum of these two functions 

is :::; 0, and a convex increasing function of Ai, thus two area cost is uni modal 

is convex, increasing and:::; o. Thus three area costs is also uni modal in Ai. 

Bince total cost ofthree area case is unimodal in Ai+Ai+l, TCi,3(Bi , Ai) is also 

unimodal in Ai and Ai+l. For v :::; 0, praof is done in an identical appraach .• 

Proposition 3.2. 
n 

Given the number of facilities, n, total cost function TC = 2.:= TCi(Bi, Ai) 
i=l 

is a pseudo-convex function of (Bi, Ai) for i = 1,2, ... , n. 

Praof. The minimal service districting prablem would consist of two service 

regions and is a univariate optimization problem in one of the areas, thus is 

pseudo-convex. For the a triplet service region districting problem, previous 

praposition's results are sufficient for pseudo-convexity. In the case of four 
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or more service regions, it follows from the previous proposition's results by 

induction. As we iterate i from n to 1, where Bn = M and BI are given, the 

current area cost (TCi(A, Bi)) is pseudo-convex in Ai and remaining areas' 

increasing function of A .• 

Therefore from the result of Proposition 3.2., our problem is unimodal and 

thus necessary conditions are also sufficient. Since Euler equation (24) is also a 

sufficient condition, we now present result for the physical interpretation of the 

optimal service districting-Iocation solutions. With several steps of algebraic 

manipulations, one can obtain to the following relation. 

(26) 

This is another version Euler equation and it states that, at the optimality, 

the marginal rate of change of total cost in two neighboring areas cancel out 

each other. Proposition 3.3. further elucidates this observation. 

Proposition 3.3. In the optimal solution, facility locations in every neigh-

boring service region pair are equidistant from the shared boundary. 

(27) 

Proof. For brevity, we provide a description of the proof and an extended 

version can be found in the appendix. If we replace Bi+l with Bi+2 - Ai in 

(26), plug into the (14) and through several algebraic manipulation steps, we 
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Figure 3.5: Equidistance property of the optimal solutions to servIce 
districting-location problem. 

obtain this result. • 

Figure 3.5 depicts this proposition; facility locations at A and A+I are 

located d distance apart from the shared boundary Ei+l' This property is 

in a way a condensed expression of the optimality and feasibility conditions 

for the internaI service regions of the market. However, for the peripheral 

market regions (Al and An), this condition, naturally, does not apply. For 

the peripheral service regions, we have the two boundary conditions as the 

constraints. 

This result has an important implication on the manufacturer's districting 

and location decisions: customer's individual patronizing decisions concur with 

the manufacturer's optimal location and optimal assignment of customer's to 

the facilities. This implication is true for the service regions located interior, 

but in the peripheral service regions, Al and An, when the demand is increas

ing, customers to close to the market boundaries are travelling more (case Al) 

and less (case An) than the rest in the respective service regions. This result 

also holds true for squared Euclidian metric. In our problem we regard the 

manufacturer as the only decision maker for the allocation-location decisions, 

whereas, in the economics lit erat ure , competitive location decisions are based 

on the assumption that customers patronize the closest facility and conse-

quently each facility tries to maximize their market niche by their locations. 

47 



Our result in (27) together with the median location of Xi'S establishes that 

our problem solution is equivalent to the competitive location decisions of the 

independent facilities. In the optimal solution, (27) correctly responds to the 

customer's minimum travel seeking behavior and the median location of x/s 

models the competitiveness of i'th facility. If Xi is not at the median location, 

then it can increase its demand catchment by approaching in the increasing 

demand density direction and when it is at the median location this poten

tial is zero. This concordance, however, does not hold true for the Squared 

Euclidian met rie since optimal facility locations are at the centroid. 

The primary use of this equidistance property is that it characterizes both 

the optimal location decisions and the optimal allocation decisions in the 

location-allocation problem. In the next section, we propose a shooting al

gorithm which is based on this equidistance property. 

3.4 Solution Methodologies 

There are three alternative solution approaches for the dynamic programming 

model in (17). First one is to construct a solution from scratch using the 

equidistance property. In contrast, the other two approaches are steepest

descent improvement based methods, which start with an arbitrary solution 

and iteratively improve allocation decisions in a descent direction. Difference 

between the later two methods is that, in the first algorithm we iterate allo

cation decisions one at a time, and, in the second algorithm, we jointly iterate 

allocation decisions. 
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3.4.1 Constructive Solution Approach 

Shooting Aigorithm 

The optimality condition in (27) is similar to the two-point boundary value 

problems in differential calculus and therefore it can be solved from scratch via 

efficient numerical techniques such as shooting methods. Shooting algorithm 

is one of the most popular methods of solving boundary value problems of 

differential equations, especially when a dosed form solution is not available. 

In this approach, we have a system for which there is a dynamic equation in 

the form a differential (or difference) equation of the system's state variable 

and two boundary values for each variable defining the origin and destination 

values of the system's state. The problem is that a dosed form solution of 

the state variable is not available; therefore, as an alternative approach, an 

arbitrary change is triggered in the system's initial state (boundary value) 

and thereon followed until the end of the time horizon. If the initial trigger 

is not accurate then the ending state value differs from the boundary value. 

Therefore, the final state of the system and the path foIlowed from the initial 

state is condition al on the initial change triggered - the more accurate the 

initial trigger, the doser the system gets to the boundary value at the end or 

time horizon. Since this briefly described shooting procedure aims to reach 

the targeted final boundary state by following a dynamic system equation, its 

performance is both conditional on the accuracy of system dynamics as weIl 

as the initial trigger. 

In relation to our problem, the sequential tiling of the market area with 

service regions is analogous to the system dynamics described above. There

fore, adapting this general shooting method to solve our problem is rather 
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straightforward. For a given value of n, we have two boundary conditions (BI 

and M) and starting with an initial estimate of Al, one can incrementally 

tile the market region using the difference equation in (27). When n service 
n 

regions are tiled, Bn+l = BI + LAi is the implied boundary value for that 
i=l 

starting value of Al. Since Bn+l = M is one of the model constraints, any 

solution where IBn+1 - MI =1 0 is an infeasible solution. Therefore we revise 

the initial estimate of Al and repeat the same steps until we obtain a feasible 

solution which is also optimal. 

Now we provide a formaI shooting algorithm for our basic model: 

Shooting Algorithm: 

Step 1. Initialize the model parameters and variables 

k : index for the number of service regions (i.e. n k < nmax
) 

i : index for the service regions (i.e. Ai and Bi for i = l...nk
) 

j : index for the feasibility iterations (i.e. j* = {jl éBOUND 2: IB~k+1 -

MI} 

éCOST, éBOUND : epsilon parameters for stopping decisions in the feasi-

bility and optimality loops 

Ai : lh iteration estimate for the first service region size 

BI, M : boundary conditions 

S t k - 1 . - 1 k - 3 Aj=l -A d Aj=2 -A e -, J - ,n - , 1 - min an l - max 

Step 2. U pdate the number of Service regions, nk 

D Wh·l (ITC(nk )-TC(nk- 1 )1 ) 
Ole TC(nk 1) 2: éCOST : 

Repeat Step 3. and 4 for n k = (nk 
- 1, n k

, nk + 1) 

C 1 1 k+l l k l ( TC(nk+I)-TC(nk-l) )l R S 2 a cu ate n = n - 2" TC(nk +I)-2TC(nk )+TC(nL I) , eturn tep . 

k=k+l 
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Step 3. U pdate the first service region size, A{ 

Do While (IB~k+l - MI 2: éBOUND): 

j=j+1 
( Bi -M) (Ai _Ai- 1 ) 

If J" > 2 then calculate AHI =Aj _ nk+l 1 1 • 
- , 1 1 (BJ _BJ-1) 

nk+l nk+l 

Step 4. Tile the market region, [BI' Ml 

For i = 1 to nk
, REPEAT 

Solve (1 - (Z(Ti)-2)) Aj = (Aj ) (Z(Ti+1)-2) for Aj 
2Ti 2 2+1 2Ti+1 2+1' 

where Z(Ii) = J2Tl + 4Ii + 4 and Ii = vA{ J 
u+vBi 

i=i+1 

Return. 

Step 5. Terminate with the solution nk
, A~=l..nk 

The maximum and minimum value parameters for the first service region 

size, Amax and Amin, could be set at any value ranging from 0 to M. The 

algorithm operates on three different loops. First loop, Step 2, determines the 

number of service regions. Second loop in Step 3 determines an initial service 

region size (Ad. Third loop in Step 4 tiles the market region sequentially 

based on the number of service regions and initial service region size set in the 

previous loops. TC(nk
) is the minimum cost solution for a given predetermined 

number of facilities (nk ). 

In order to find the optimal number of service regions, we cou Id start with 

an arbitrary small number and then iteratively increase by one until there 

is no improvement. Since this approach would be cumbersome, we choose 

a better approach in updating the number of service regions. More specifi

cally, we approximate TC( nk) with a convex function and use a second-order 
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root-finding algorithm (discrete version of the Newton-Raphson method) to 

update n k
• Hence, Steps 3 and 4 are repeated for three consecutive values of n 

(nk-I, nk) nk+l). This is needed for the estimation of second derivative in the 

Newton-Raphson method. With this line search, we are assuming that total 

cost is unimodal in the number of service regions (n). We follow a similar logic 

for the update of Al. The notation II is used to denote the nearest integer 

function. 

For the nk +1, we use the standard approximation of the Newton Raph-

son method as explained next. We first write the Taylor series expansion of 

TC(nk+l ) around nk. 

After taking derivative with respect to nk+l and collecting terms, we obtain 

the following iteration equation. 

Since we do not know the closed form functional expression of TC(n), we 

approximate the first- and second-order derivatives with centered difference 

equations. 

TC'(nk ) = TC(n
k + 1) - TC(n

k 
- 1) 

2 

TC"(nk ) = TC(n
k + 1) - 2TC(n

k
) + TC(n

k 
- 1) 

1 
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Thus the Newton-Raphson iteration function for nk is, 

k+l k 1 ( TC(nk + 1) - TC(nk 
- 1) ) 

n = n -"2 TC(nk + 1) _ 2TC(nk) + TC(nk - 1) (28) 

In updating the initial service region (Al), we also use Newton's method, 

but this time for finding the root of the feasibility condition, i.e. market 

coverage. From the previous sections we know that, for a given number of 

areas, n, the optimal area sizes {Al ,A2 , ... ,An} would follow the Euler relation 

in consecutive pairs. Therefore, we could cast this problem as finding the 

solution of a system of equations which includes the Euler relation between 

consecutive service region sizes and a market coverage equation (i.e. L Ai = 
i=l..n 

M). 

(1- (J2T? + 41i + 4 -2)) k- (J2T? + 41i + 4 -2) k = 
2T, 2 2T, 2+1 0 

2 2+1 

U+V L Aj 
j=l..i 

Vi = Ln 

Vi = Ln 

One way to solve this system of nonlinear equations is to convert it to 

a constrained root-finding problem by lifting the market coverage equation 

as the objective function and leaving the Euler equations as the constraints. 

We could further transform this constrained root-finding problem to an un-

constrained one by implicit substitution of Ai =2,3 .. n. Explicit substitution is 
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impossible due to analytical intractability. We could then solve this root-

finding problem numerically in an iterative fashion. The objective function is 

i=l..n 

implicit substitution. In solving we prefer the Newton's method because of 

its quadratic local convergence property. Newton's method uses the following 

iteration formula to calculate the next candidate for the root. 

Aj+1 - Aj _ F(A{) 
1 - 1 F'(A{) 

(29) 

However calculation of F' (A{) is also impossible since an explicit closed 

form expression of F(A{) is not available. Thus we utilize its discrete approx-

imation which is centered difference approximation of the first-order differen-

tial. 

(30) 

With the substitution of (30), the iteration equation in (29) becomes as 

follows: 

Aj+l = Aj _ F(A{) (A{ - A{-l) 
1 1 F(A{) _ F(A{-l) 

To calculate the coverage fun ct ion F (A{), we perform the sequential tiling 

according to the Euler equations. As a result of this tiling operation, we obtain 

the terminal boundary, B~+l. We could then express F(A{) as follows: 

Accordingly the difference in the coverage function would then be as fol-
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lows: 

(Aj) (Aj-I) Ej Ej-I F I - F I = nk+1 - nk+1 

It is also possible to use other numerical root finding algorithms such as 

bisection and golden section search methods. 

Example 3.1. 

Let's now explain this algorithm with an example. In this example we 

have the demand function defined as D(x) = 10 + 5x and the market region is 

defined over [EI,M] =[0,100]. We further choose the fixed cost, i.e. F and f , 

F + f = 12,000. Since we are assuming a linear capacity acquisition function 

in (17), we could safely exclude it from our analysis since all the solutions will 

have the same capacity acquisition cost. Initial estimates for the first service 

region is Ai=1 =Amin = 0 and Ai=2 =Amax = M /2 = 50. We also set the 

optimality and feasibility sensitivity parameters as éCOST = 2.5 X 10-3 and 

éBOUND = 10-4 Further as suggested in the algorithm above, we start with 

nO = 3 service regions and find the optimal and feasible tiling solution for the 

nO - 1=2, nO = 3, and nO + 1 = 4 service regions as shown in the first iteration 

(k = 1) block in Table 3.1. At the end of first iteration we calculate the nI by 

using the dis crete Newton-Raphson approximation using the formulae in the 

algorithm. So for the first iteration: 

nI = l3 - ( 193792.06 - 300353.81 )1 = l5481 = 5 
193792.07 - 2(225928.57) + 300353.81 . 
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Note that for each n k , the optimal value of Al is achieved whenever Bnk+l = 

100. For faster convergence, we have eliminated the division by two in the 

discrete approximation formula (28). When the same procedure is repeated, 

at the end of the second iteration quadratic estimate for the optimal number 

of service regions is found as 6 for which we know the total cost already. 

The difference of TC(n = 6) and TC(n = 5) is 386 and thus 160~~~.91 < 

f.COST = 2.5 x 10-3
; hence, the stopping condition is satisfied and the optimal 

number of service regions is nk=2 = 6 with the size of service regions Ai=1..6= 

[31.1,17.5,14.7,13.2,12.2,11.4] 

.~ Jn~ '{j) .•... , Ati; ... ~~t~}; .•.. lC(~; tn,~1) 

1 0 0 

2 2 50 77.5524 
3 64.6581 99.7161 
4 64.65812 100 300353.81 
1 0 0 

3 2 50 100.7771 
1 3 49.61452 100.0139 5 

4 49.60752 100 225928.57 
1 0 0 
2 50 121.575 

4 3 41.12688 100.4475 
4 40.93895 99.9999 
5 40.939 100 193792.06 
1 0 0 
2 41.12688 121.575 

4 3 41.12688 100.4475 
4 40.93895 99.9999 
5 40.939 100 166221.66 
1 0 0 
2 50 140.7317 

2 5 3 35.5287 100.9203 6 
4 35.1941 99.9995 
5 35.1943 100 160628.94 
1 0 0 
2 50 158.6702 

6 3 31.5119 101.4013 
4 31.0595 99.9988 
5 31.0599 100 160242.91 

Table 3.1. Iterations for the constructive solution (Example 3.1). 

3.4.2 Improvement Based Solution Approach 

Steepest Descent Method for the Allocation Decisions 

Rather than building the solution from scratch, one can start from an initial 

solution and then iteratively improve it via gradient based improvement tech-
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Figure 3.6: A feasible solution for the allocation problem in single dimension. 

niques. For this we use the Principle of Optimality implied by the Bellman's 

equation in (17). More specifically, at any given state (Bi) the optimal deci

sions (Ai, Bi+l' Ài) would be a minimizing solution not only for the total cost 

in the region [Bi, Bi+2] , but also for the total cost in the region [Bi, Ml if Bi+2 

is optimal (Figure 3.6). Given Bi and Bi+2' optimal (Ai, Bi+1' À i ) can be found 

with the first order condition in (26). Optimality of such a minimizing solution 

is conditional on the optimality of both the Bi and Bi+2' Therefore, in order 

to obtain jointly optimal (Ai, Bi+l, Ài), we need to optimize Bi and Bi+2 as 

weIl. This is performed in a recursive manner which could be in forward or 

backward direction. 

Now we provide a formaI algorithm of the steepest des cent method for the 

allocation decisions for a given n. Note that to determine the optimal number 

of service regions, we could use the discrete Newton-Raphson method as in 

the constructive algorithm presented in the previous section. 

Steepest Descent Solution Algorithm - Allocation Decisions (For

ward direction) 

Step 1. Initialize the model parameters and variables 

k : index for the iterations Set k = 1 

éCOST : epsilon parameter for optimality stopping decisions 

Te(k = 0) = 00 
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Step 2. Start from an initial solution (BI, A;' i = 1,2, .. n) 

Do While (ITC(k) - TC(k -1)1 ~ ECOST): 

k=k+1 

For i = 1 to n - 1, REPEAT 

. S 1 BTC(A;,Bi) + dTC(Bi+2- A;-Bi,Bi+A ;) = 0 C A' 
o ve BA' dA' lor 1 , , 

. Set A~ = A~, Bf+1 = Bf + A~,and A~+l = Bf+2 - A~ - Bf 

Return 

Step 3. Terminate with optimal solution (Bf, A~, i = 1,2, .. n) 

In the above algorithm, the for-Ioop considers one pair of service regions 

([Bf, Bf+1] and [Bf+l' Bf+2]) at a time and repeats n - 1 times (i.e. total 

number of pairs for n service regions) the steps in the loop. The differential 

equation in the Step 2., called Euler step, determines such an A~, which 

optimally divides the region [Bf, Bf+2] into two service regions, namely any 

other allocation would result in a higher total cost. 

Example 3.2. 

We now illustrate this improvement based solution methodology with an 

example. In this example, we have three service regions which are initially 

sized as Al =30, A2=30, and A3 =40 to cover a market region defined over 

[BI,M] =[0,100] as shown in Figure 3.7. We also set our optimal solution 

sensitivity parameter as ECOST = 1.0. Since there are three service regions, 

the algorithm stipulates that the Euler step in Step 2. is to be repeated twice. 

Thus there are two steps j = 1,2 for each iteration k. 

The demand density function defined over the market is D(x) = 10 + 5x. 

Let's now perform the improvement iterations starting from left boundary 
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Figure 3.7: An illustration of districting a market region defined over [Bi 
O,M = 100] with three service regions. 

(Bi = 0) onwards (i.e. in the forward direction). 

We first consider [Bi, B 3 ] = [0,60]. Solving the Euler equation in (26) for 

Al, leads to Al =38.54 and B 2 = 38.54. This solution is conditional on the 

B3 thus we move one area forward and consider [B2' M] = [38.54,100]. Again 

via (26), optimal solution for second service region can be found as A2 =34.26 

(B3 = 72.8 = B 2+34.26). Hence this iteration results in: Al =38.54, A2=34.26, 

and A3=27.2. After repeating the same steps in iteration 1, we obtain Al = 

46.90, A2 = 28.99, and A3 = 24.11. If we continue with the same steps, we 

converge to optimal solution of Al = 49.60,A2 = 27.35, and A2 = 23.05 in the 

sixth iteration after verifying the optimality condition. These iteration steps 

are shown in Table 3.2. Note that ITC(k = 6) - TC(k = 5)1 < 1 = éCOST, 

hence the solution at the end of sixth iteration is optimal. The difference in 

the total cost of the final solution in this example differs from the previous 

one in the constructive approach example where n = 3. This difference arises 

because in this example we excluded the fixed costs, i.e. 3(F + f) = 36,000, 

from the objective function. 
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",'" 

"""""""""'.".~ la' l'i'l 0":, ' : "'.C. ,<u , 

.:TC(k) ,NQfk) " _1> !~i ". 
1 

1 30,00 30,00 0,00 60,00 38,54 
2 21.46 40.00 38.54 100.00 34.26 196291.1 

2 
1 38.54 34.26 0.00 72.80 46.90 
2 25.90 27.20 46.90 100.00 28.99 187546.2 

3 
1 46.90 28.99 0.00 75.89 48.91 
2 26.98 24.11 48.91 100.00 27.76 186969.4 

4 
1 48.91 27.76 0.00 76.68 49.43 
2 27.25 23.32 49.43 100.00 27.45 186930.8 

5 
1 49.43 27.45 0.00 76.88 49.56 
2 27.32 23.12 49.56 100.00 27.37 186928.2 

6 
1 49.56 27.37 0.00 76.93 49.60 
2 27.34 23.07 49.60 100.00 27.35 186928.1 

Table 3.2. Iteration results for improvement based algorithm for the service 

region sizes (Example 3.2). 

In the above algorithm we improve the allocation decisions one at a time. 

Another alternative is to determine a des cent direction for aIl of the allocation 

decisions and then decide on the joint step size. Since our problem is con-

strained, we need to identify the descent directions which are feasible. These 

directions are 

In order to see that these directions are feasible and steepest descent di-

rections, we first write the Lagrangian function of the Pl. 

n n n-l n 

i=l i=l i=l i=l 

where (À, JI 2: 0, v 2: 0) are the Lagrange multipliers associated with the 

state equations and non-negativity constraints. From the KKT conditions we 
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know that for Bi+l,A > 0, the associated lagrange multipliers must be zero, 

i.e. /-li = Vi = o. Thus if the solution of the Pl is an internaI solution with 

respect to the solution set implied by non-negativity constraints, then we 

could ignore the multipliers (/-l, v). In this case, the gradient of the Lagrangian 

function could be expressed as follows: 

VL (V Ai~l .. n L, V Bi~2.n L, VÀi~l...n L) (31) 

where 

V AiL 
BTCi(Bi , Ai) 

- Ài i = L.n (32) 
BAi 

V BiL 
BTCi(Bi , Ai) À À 

BBi + i-l - i i = 2 ... n (33) 

V Ài L Bi+l - Bi - Ai i = L.n (34) 

We know that if (Bi) Ai) Ài ) is an optimal solution to Pl, then V L = O. 

Thus we first perform the following assignments, to obtain V Ài L = o. 

i = L.n - 1 (35) 

(36) 

This assignments will ensure the feasibility of our descent direction. Since 

we have determined Bi+! for i = Ln -1 in (35) for directional feasibility, they 

are no longer independent variables. We could now solve (33) for VBiL = O. 

This brings us following relations (note the change of indices). 
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\7 Bi=2 .. nL 0 

i = L.n - 1 (37) 

From the minimum principle, \7 AiH(Bi, Ai, .Ài ) = 0, we have the following 

relations. 

i = L.n - 1 (38) 

When we substitute expression for .Ài +1 in (38) to (37), and then .À i into 

(32), we obtain the following gradients. 

From the imposed feasibility conditions in (35), we can re-express (39) as 

follows. 

where 

dTCi+1(Bi + Ai, Bi+2 - Bi - A) 
dAi 
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i=1...n-l 

DTCi+l (Bi+1, Ai+l) DAi+l 

DAi+l DAi 
DTCi+l(Bi+l, Ai+l) DBi+l + --

DBi+1 DAi 



Note that we do not iterate An since it is determined by (36). Thus the 

gradient of the TC at a feasible and non-zero solution could be expressed as 

follows. 

Using this feasible des cent direction, we could set up the following algo-

rithm. 

Steepest Descent Solution Aigorithm - AlI Allocation Decisions 

Step 1. Initialize the model parameters and variables 

k : index for the iterations Set k = 1 

tCOST : epsilon parameter for optimality stopping decisions 

TC(k = 0) = 00 

Step 2. Start from an initial solution (El, A}, i = 1,2, .. n) 

Do While (ITC(k) - TC(k - 1)1 ~ tCOST): 

k=k+l 

Gradient Calculation 

C 1 1 t dk - _ (8TC(Bf,An + dTC(Bf+A~,Bf+2-A~-Bn) cor'; = a cu a e Ai - 8Ak dAk 11 0 , , 

l..n-l 

Parametric tiling 

For i = 1 to n - 1, REPEAT 

Return 

Line Search 
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n 

Solve minTC = L TCi(B;, A~) using a line search method 
>.k i=l 

Finalize tiling 

For i = 1 to n - 1, REPEAT 

AHI = Ak + ()..k) * dk Bk+l = Bk+l + Ak+l 
2 2 Ai' 2+1 2 2 

Return 

Step 3. Terminate with solution (Bf,A7,i = l,2, .. n) 

The results are displayed in Table 3.3. Since we are iterating aU the aUoca-

tion decisions at the same time, number of iterations (k = 9) is more than the 

separate iteration. However, here we are only making 9 line searches rather 

than the 12(=2x6) in individual iteration approach. In terms of convergence, 

results seem to be consistent. 

Table 3.3. Iteration results for improvement based algorithm for the 

service region sizes with joint iteration (Example 3.3). 

3.5 Conclusions 

In this chapter we developed a dynamic programing formulation for the fixed-

charge continuous location-allocation model on a line. Based on this formu-

lation, we have characterized the optimal solution using the minimum prin-

ciple of the optimal control theory. These optimality conditions evidenced 
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that when the capacity acquisition cost is linear with the output volume, the 

central planner's allocation decisions concur with the customers' patronizing 

decisiollS. 

From this result, we have designed two alternative solution methodologies 

for the problem on a line. First method is the single-step shooting algorithm 

which is frequently used in the solution of two-point boundary value prob

lems. This method is efficient when there are large number of service regions. 

However, this method is restricted to solving these problems in the single di

mension. Second solution method is the improvement based steepest-descent 

solution approach based on the allocation decision iterations. In this approach, 

we start with an initial solution and then iteratively improve this solution 

until an optimal allocation solution is obtained. When compared with the 

steepest-descent algorithm, the constructive solution method is powerful in its 

convergence rate. However, as described in the next two chapters as weIl as 

in Chapter 7, constructive solution method is not easily extendable to planar 

n-facility problems. However, through the introduction of new allocation de

cision definitiollS, we will demonstrate its extension to planar 2-facility cases 

for Euclidean and Manhattan-metric cases. 
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Chapter 4 

Planar Model: 2-Facility and Euclidean-Metric 

Case 

4.1 Introduction 

The planar location-allocation problem differs from its counterpart in the 

single-dimension with two main aspects. Firstly, the representation of the 

allocation decisions, which are point representations in the single-dimensional 

setting, becomes point-set representation in the planar setting. An example 

illustration of the 2-facility planar location-allocation problem solution is pro

vided in Figure 4.1. The straight line separating the Al and A 2 is a point-set 

as compared to single point (i.e. boundary points) in the single dimensional 

setting. Second difference is related to the improvement of allocation decisions. 

Since the service regions are separated by boundary points in the single dimen

sional setting, any change in the allocation decisions is equivalent to iterating 

these points. However, in the planar setting we iterate a straight line, which 

requires a different approach. Due to these differences, both the improvement 

and constructive solution procedures for the planar 2-facility case are different 

than their single-dimensional counterparts. 

The purpose of this chapter is two fold. First, we establish the differ

ences between the single-dimensional and planar location-allocation problems 

with a special emphasis on the representation of allocation decisions. This step 

paves the way for designing constructive and improvement solution procedures 

for the planar 2-facility location-allocation problem in the allocation variable 

space. Second objective of this chapter is to develop two main classes of solu-
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D(:L:, y) 

Figure 4.1: An illustration of the solution to the planar location-allocation 
problem with two service regions 

tion procedures for the 2-facility case. One class is the constructive solution 

approach and the other class is the improvement based solution approaches. 

Whereas the constructive solution approach constitutes an extension to the one 

introduced for single dimensional problems, improvement solution approaches 

are significantly different and constitutes a starting point for developing meth

ods for more general cases, namely n-facility planar location-allocation prob-

lems. 

In what follows, Section 4.2. presents the notation to be used in this 

chapter as weIl as the representation of the allocation decisions for two distance 

measures, namely Euclidean-metric and Squared Euclidean-metric. Section 

4.3. presents the traditional modeling approach in the location variable space 

and our alternative modeling in the allocation variable space. This section 

also presents analytical properties of the solutions for each modeling approach. 

Section 4.4. presents two categories of solution methods. First category is the 

constructive solution method, namely the shooting algorithm. This shooting 
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algorithm is an adaptation of the single-dimensional version from the previous 

chapter for two different distance measures. Euclidean-metric and Squared 

Euclidean-metric cases share the similar constructive solution algorithm, due 

to the identical form of their allocation decisions, i.e., straight line. They, 

however, differ only in the their single-facility location step. Second category 

includes two improvement based solution approaches, namely the steepest

des cent algorithm and modified Newton's method. 

Throughout this chapter, we consistently use the demand density function 

shown in Figure 4.1, which is a linear demand density function. Note that this 

is not a limitation of the results in this chapter, rather it serves as a simplifi

cation in the presentation of the results and interpretation of the solutions of 

the algorithms. Accordingly, aIl the results developed here are valid for any 

Lipschitz continuous demand density function over the market region M. 

4.2 Description of Parameters and Notation 

In what follows, we first describe the parameters and decision variables of the 

planar location-allocation problems and briefly discuss the differences from 

their single dimensional counterparts. Note that most of the following discus

sion is also applicable to more than 2-facility cases. Sorne of these definitions 

can be observed in Figure 4.1, where a representative solution to the planar 

location-allocation problem for two service regions is plotted with a linear 

demand density function. 

This section introduces the following notation and parameter definitions: 

Parameters: 

x : a point in the two dimensional space x (x, y) 
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M: Two dimensional market area (assumed to be a closed and compact 

set) 

D(x) : Demand density function over the two-dimensional market region 

M (D(x) D(x, y)) 

dp(XI, x) : Shortest distance between Xl and X for a given distance mea

sure p (p = L2 denotes Euclidian-metric, p = L~ denotes Squared Euclidian

metric) 

In two-dimensional formulations, we have two main decision variables: Lo

cation decisions and Allocation decisions. These decision variables are defined 

below. 

Decision Variables: 

Xl, X2: Locational coordinates of the facilities in service region 1 and 2, i.e. 

xI- (Xl, YI), X2 (X2, Y2) 

Al, A 2 : Service regions 1 and 2 (assumed to be closed sets) 

xi, x~ : Optimal locations given the allocation decisions Al and A2 

Given location decisions (Xl, X2), optimal allocation decisions can be found 

using the nearest-neighbor propeny. In this case, they would be the point sets 

defined as follows. 

Al {x 1 dp(XI, x) :::; dp(X2, x), X EM} 

A2 {x 1 dp(X2, x) :::; dp(XI, x), X EM} 

Traditionally, continuous location-allocation problems have been modeled in 

the location variable space. Accordingly allocation decisions are optimally 

decided given the location variables, such as the case of nearest-neighbor as

signment. In order to solve the problem in the allocation space, however, we 
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need to define additional constructs to represent these allocation decisions. 

First step is to define the Allocation Line (BR) as follows: 

BR : intersection point set of the allocation decisions Al and A2 (i.e. BR = 

Al n A 2 ). Herein it will be referred as the Allocation Line. For the nearest-

neighbor solution case, this allocation line could be expressed as below. 

for p = L 2 and p = L~ 

Since we are assuming that service regions are closed sets, an points on the BR 

must be connected. It can be shown that nearest-neighbor solution of BR is a 

straight line for both the Euclidian-metric distance measure (i.e. p = L 2 ) and 

the Squared Euclidian-metric distance measure (i.e. p = L§).3 From now on, 

we will adopt this form of the allocation line, i.e. straight line, for Euclidean-

metric based distance measures and introduce the following parameters and 

formulations for BR. 

BR can be characterized by using the slope and intercept parameters. 

BR = {xix = (x, y) E M and y = ax + b} 

where 

a slope of the straight line BR 

b intercept of the straight line BR 

3For other metrics, BR is a different shape than a straight line, which will be discussed 
for the Manhattan-metric case in Chapter 7. 
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Y~_x __ ~~ ________ A __ 2~ 

Figure 4.2: Separating allocation set BR (a.k.a. 
Euclidean-metric based distance measures. 

Allocation Line) for 

Using the above notation, we define the functional form of BR as br(x). 

br(x) = y = ax + b for V(x, y) E BR 

Accordingly the inverse Junction of br(·), namely br-1(.), is as follows: 

y-b 
br-1(y) = x = -

a 
for V(x, y) E BR 

Above formulations allow us to represent the allocation line mapping in closed 

Jorm. Next, we will define specific sets on the x- and y - axis to define the 

domains of these mappings. 

Thus far we have not assumed any particular shape for the market re-

gion M, but, without loss of generality, we hereafter consider a square-shaped 

market region. While this may seem a rather stringent assumption, aIl of the 

subsequent sections' results can be shown to be adapted easily, provided that 

M is fully known in its shape and size. With this assumption, we now segment 
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the x- and y - axis into sections to differentiate point sets which form the 

domain of the functional form of BR from those which do not. 

Any point x E BR could be represented by its coordinates x and y from 

the origin. Let's define following sets associated with BR. 

X BR {x 1 x =(x, y) E BR} 

X AI {x 1 x =(x, y) E Al and x =(x, y) ~ BR} 

XA2 {x 1 x =(x, y) E A 2 and x =(x, y) ~ BR} 

YBR {y 1 x =(x, y) E BR} 

YAI {y 1 x =(x, y) E Al and x =(x, y) ~ BR} 

YA2 {y 1 x =(x, y) E A 2 and x =(x, y) ~ BR} 

These sets are illustrated in the Figure 4.3 for the case when BRis a straight 

line (i.e. cases L 2 and L~). 

Further, we define four special points, namely extreme points of the 

domain of BR (Xmin , X max , Ymin , Ymax ) , for use in the subsequent sections of 

this chapter. These points are illustrated in Figure 4.3. 

X BR = {x 1 x =(x,y) E BR} 

YBR = {y 1 x =(x,y) E BR} 

Lastly, we define the following functions using functional form of the allo-
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'v""" 
XBR XA2 XBR 

Figure 4.3: Sets specifying the domain of functions of the allocation line (BR). 

cation line (BR) and above sets as corresponding domains. 

BR = (AX(y), y) = (x, AY(x)) 

These functions are illustrated in the Figure 4.4. Hereon, we will be referring 

to these functions (namely AY(x) and AX(y)) as the Single-dimensional AI-

location Decisions. Although, AX(y) and AY(x), represents the same line, 

BR, we will use both of them in our model formulation to handle the degener

ate cases of BR where AX(y) or AY(x) is not defined. These degenerate cases 

are illustrated in Figure 4.5. 

4 To better understand this equality, consider a point x = Xo and y = Yo on BR. Then, 
from the definitions ofAx (y) and AY (x) in Figure 4.4, this equality holds true. 
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Yo 

Y~-x-----L--~x~o~------~ 
Xo 

Figure 4.4: Illustration of the single-dimensional allocation decisions AY (x) and 
AX(y) for two cases of X BR and YBR. 

4.3 Alternative Modeling Approaches for 2-Facility Case 

In this section we will describe two alternative modeling approaches for planar 

location-allocation problems; these approaches are also applicable to cases 

with more than two facilities. In the location-allocation problem, there are 

two independent sets of decisions: Locations of the facilities and Allocations of 

demand to these facilities. Despite the innate independence of these decisions, 

location-allocation problems are traditionally modeled in the location variable 

space and allocation decisions are decided optimally given these locations. One 

exception, to the best of our knowledge, is the Sherali and Thncbilek (1992) 

which models the location-allocation problem with discrete demand in the 

allocation variable space for the Squared-Euclidean metric (L§) case. 

In order to juxtapose the two modeling approaches, Location Variable 

Space (LVS) and Allocation Variable Space (AVS) , we first present 

the generic model formulation in the joint variable space. In aIl of these 

models, we use (Xl,X2) to denote the location decisions and, AY(x) and AX(y) 

to denote the allocation decisions. For sake of notational simplicity, we use 

implicit representation of the objective function in this section. In the following 
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sections, individual terms of the objective function will be specified in more 

detail. 

The generic model in joint variable space is as follows. 

Location-Allocation Model (LAM): 

min TC(AY(x), AX(y), Xl, X2) 
AX(y),AY(x) 

Xl =(XI ,YI),X2=(X2,Y2) 

subject to 

(AX(y), y) = (x, AY(x)) 

where 

TC(AY(x), AX(y), Xl, X2) : is the total cost function defined over the (2 x 1) 

column vectors, Xl and X2, and functionals, AY(x) and AX(y), which are defined 

in the preceding section. 

Since the feasible region is composed of affine relations, LAM is a biconvex 

programming problem; when we fix the allocation decisions, it becomes a 

multifacility pl anar location problem and fixing location decisions transforms 

it into a transportation problem. It can be further shown that LAM is non

convex problem (for L 2 and L~ as weIl as the Manhattan-metric-LI ). To 

illustrate this consider the solution for a square-shaped market region M in the 

Figure 4.5 where D(x, y) = constant, i.e. uniform demand density function. 

These solutions (left and right) are both minimizers of TC and existence of 

other feasible solutions which are worse in terms of TC can be shown. 

Next section analyzes the model in the location variable space, where the 

allocation decisions are optimized given the location decisions. 
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Figure 4.5: Locally optimal solutions when D(x, y) is a uniform demand den
sity function. 

4.3.1 Modeling in Location Variable Space 

Location prioritized model is based on transforming LAM into an equivalent 

form with decisions variables as the location decision only. Therefore following 

problem is equivalent to the LAM: 

min TC(Xl, X2) 
XI,X2 

where 

TC(AY(x), AX(y), Xl, X2)1 } 

(AX(y), y)=(x, AY(x)) for x E X BR , Y E YBR 

This is equivalent to optimizing first over the allocation decisions and then 

over the location decisions. ldeally, we would solve TC(AY(x), AX(y),Xl,X2) 

only for the allocation decisions and substitute optimal allocation decisions to 

obtain TC(Xl, X2). In the single-dimensional case, optimal allocation decision, 

which is a single boundary point, can be expressed as (Xl t X2
) which leads to 

a closed form of TC(Xl, X2). However, a closed form expression of TC(XI, X2) 

in two-dimensional setting is difficult to obtain, besides being unnecessary. 
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Instead, we include a condition that characterizes the optimal allocation de-

cisions in the constraint set. Given locations Xl and X2, optimal allocation 

decisions would satisfy the following condition. This condition stipulates that 

each point on the allocation line is equidistant from the locations. 

for X E X BR and y E YBR 

We now present the location-allocation problem in the location variable space. 

LAM- Location Variable Space (LAM-LVS): 

min TC(AY(x), AX(y), Xl, X2) 
Xl =(Xl ,Yl),X2=(X2,Y2) 

s.t. 

(x, AY(x)) for x E X BR and y E YBR 

for x E X BR and y E YB1(41) 

In addition to the variable space, a notable difference between LAM and LAM

LVS is the last constraint (41). This constraint conditions the optimality of 

allocation decisions on the location decisions, while making the allocation de-

cisions endogenous decision variables and leaving the location variables as 

exogenous decision variables. Furthermore, LAM-LVS would be a convex pro-

gramming problem if constraint (41) had been affine. Since LAM-LVS and 

LAM are equivalent problems, LAM-LVS is also a nonconvex problem. We 

now characterize the first order necessary conditions for LAM-LVS (assuming 

the presence of only the transportation costs in the objective) in the case of 
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Proposition 4.1. 

The optimal locations of the two facilities (xr and x;), given the allocation 

decisions, satisfy the following conditions when the distance measure is based 

on the Squared Euclidean-Metric (L!) : 

( * *) _ (.G G) 
Xi 'Yi - Xi' Yi for i = 1,2 

where xf and yf are the x- and y- dimensional centroids of A i=1,2 with 

respect to D(x). 

J xD(x)dx 
G Ai 

Xi = -J::-D--:-( x---:-)-dx-

Ai 

Proof. 

and 

JyD(x)dx 
G A; 

Yi = -J::-D--:-(--:-x )-dx-

Ai 

Proof can be found in Appendix 4. • 

Proposition 4.2. 

for i = 1,2 

The optimal locations of the two facilities (xi and x;), given the allocation 

decisions, satisfy the following conditions when the distance measure is based 

on the Euclidean-Metric (L2 ) : 

78 



Proof. 

J(Xi - x) 
Ilxi-xll D(x)dx 

Ai 

J(y;-y) 
Ilxi-xll D(x)dx 

Ai 

o 

o 

Proof can be found in Appendix 4. • 

for i = 1,2 

for i = 1,2 

4.3.2 Modeling in Allocation Variable Space 

Similar to the location-allocation model in the location variable spaee, the 

model in allocation variable spaee is also based on transforming LAM into an 

equivalent form with decision variables as the allocation decisions only. Henee, 

the following problem is equivalent to the LAM. 

where 

TC(AX(y), AY(x)) = min{TC(AY(x), AX(y), Xl, X2)} (42) 
Xl,X2 

This is equivalent to optimizing first over the location decisions and then over 

the allocation decisions. Optimal solution to (42) can be expressed in closed 

form for the single-dimensional case, but the same is not true for the two

dimensional case. In particular, these optimal location solutions satisfy the 

first order neeessary conditions of the LAM-LVS in the previous section (i.e. 

outlined in the Propositions 4.1. and 4.2.). When these neeessary conditions 
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are included in the constraint set of the LAM, we obtain the following location-

allocation model in the allocation variable space. 

LAM- Allocation Variable Space (LAM-AVS): 

s.t. 

(x, AY(x)) for x E X BR and y E YBR 

x* t arg min J dp(Xi, x)D(x)dx 
(Xi) 

Ai 

for i = 1,2 (43) 

In addition to the variable space, a notable difference between LAM and LAM

AVS is the last constraint (43). This constraint conditions the optimality of 

location decisions on the allocation decisions, while making the location de-

cisions as endogenous decision variables and leaving the allocation variables 

as exogenous decision variables. LAM-AVS would have been a convex pro-

gramming problem if constraint (43) had been affine. Since LAM-AVS and 

LAM are equivalent problems, LAM-AVS is also a nonconvex problem. We 

now characterize first order necessary conditions for LAM-AVS (assuming the 

presence of only the transportation costs in the objective). These conditions 

are in the same form for both Euclidean-metric based distance measures, i.e. 

L2 and L~. 

First Order Necessary Conditions for LAM-AVS (for p = L2' and 

L~) : 

(44) 
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for Vx E X BR, Vy E YBR, and (AX(y), y) = (x, AY(x)) 

Note that first order condition of the LAM-AVS is part of the constraint 

set of LAM-AVS and vice-versa. 

4.4 Solution Methodologies 

In this section, we describe three alternative solution methods to determine the 

local optimum solutions for the LAM-AVS. First of these methods is the Con-

structive Solution approach which is analogous to the one presented in the 

previous chapter for single-dimensional case. The later two approaches are im-

provement based approaches: Steepest-Descent method, and Modified

Newton method.5 

4.4.1 Constructive- Shooting Aigorithm 

Along the lines of the single-dimensional case in the previous chapter, planar 

location-allocation problem in the allocation variable space (LAM-AVS) for 2-

facility case can be cast as an equivalent system of differential equations, where 

the unknowns are the single dimensional allocation decisions, namely AX(y) 

and AY(x). Accordingly, this system of differential equations can be solved 

using the shooting algorithm. However, as we move from single-dimensional 

space to planar space, there are two additional complications which are de-

scribed in the following paragraphs. First of these complications is the mul-

titude of boundary conditions and second one is the multitude of unknown 

variables. 

5There is also a third improvement based approach: Sequential Location Allocation 
Illethod (SLA). This method has traditional1y been used for discrete demand cases. In 
Appendix 4, we provide a continuous demand version. 
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In the single-dimensional case, this system of equations is considered as a 

two-point boundary value problem where initial boundary condition was the 

point of start of the market li ne and the terminal boundary condition was 

the ending point. For a given x-coordinate (y-coordinate) planar problem 

reduces to a line on the y-dimension (x-dimension), with two points as before. 

Therefore, when the M is a square shape, the boundary conditions are lines 

rather than points. In the previous section, we have made the assumption of 

a square-shaped market region M, which translates into identical boundary 

points for every x- and y-coordinate point. As pointed out earlier, with this 

shape assumption, there is no loss of generality of our results. For instance, 

when M is a trapezoid with parallel base and ceiling, then the boundary 

points at any y-coordinate level would be based on the affine relationship of 

non-parallel sides. Since we assume that we know the M in shape and size, 

then this affine relationship information would be available to determine the 

boundary values at any y-coordinate level. 

The second complication with respect to the single dimensional case is that 

we need to determine an allocation line (BR) in the planar setting, rather 

than an allocation point as in the case of single-dimension. In other words, we 

have an infinite number of unknowns to solve for these system of differential 

equations, i.e. AX(y) for Vy E YBR and AY(x) for Vx E X BR. Overcoming this 

difficulty requires separate approaches for Manhattan and Euclidean-metric 

based distance measures. For Euclidean-metric cases, BR is a straight line. 

Since two points on a line is sufficient to define the affine relationship, we can 

reduce this problem down to a two-point boundary value problem with only 

two variables. 

In what follows, we first derive the system of differential equations based 

82 



• 
N(YP2) P2 

YP2 ------------------
YPI • 

: (X2,Y2) , 
:N(XP2) A2 

Figure 4.6: Choice of single dimensional allocation variables as the unknowns 
to the system of differential equations. 

on the first order conditions of LAM-AVS, and then describe the constructive 

solution approach. Next, we provide a formaI algorithm with an example ap-

plication. Before the derivation of the system of differential equations, we need 

to decide on which of the two single dimensional-allocation variables, AX(y) 

or AY(x), we wish to denote as the unknowns. Figure 4.6 helps understand-

ing the equivalence of choosing the unknown variables as either x-dimensional 

allocation variables (AX(y)) or y-dimensional allocation variables (AY(x)). 

Figure 4.6 illustrates the two alternatives in characterizing the allocation 

line BR, i.e. deciding on whether to use AX(y) or AY(x) as the unknown 

variables. For both cases, we are choosing the same two points on the allocation 

line BR, namely Pl and P2. Difference between AX(y) and AY(x) lies in the 

choice of the reference axis for measuring distance. First alternative (one on 

the left in Figure 4.6) measures location of Pl and P2 as distances from y

coordinate axis (i.e. x=O), thus the unknown variables are the x-dimensional 

allocation decisions (AX(y)). Second alternative (one on the right in Figure 

4.6) measures distance from x-coordinate axis (i.e. y=O), thus the unknown 

variables are y-dimensional allocation decisions (AY (x)). In both cases, we need 
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to specify two fixed-points on the reference axis chosen: (YPl' YP2) for y - axis 

choice and (XPl' XP2) for x ~ axis choice. Selection between these alternatives 

can be made arbitrarily since either of the two implies the same allocation 

line BR. Depending on the choice, the system of differential equations can 

be formed by applying the following first order conditions to the objective 

function of LAM-AVS. 

dTC 
dAx(y) 
dTC 

dAY(x) 

oTC + oTC oAY(x) = 0 
oAx(y) oAY(x) oAx(y) 

oTC + oTC oAX(y) = 0 
oAY(x) oAx(y) oAY(x) 

for AY(x) 

Hereafter, we choose y - axis as the reference axis as such we will solve 

the first of the above differential equations for AX(YPl) and AX(yP2). We now 

provide the closed form expressions for these differential equations for two 

Euclidean-metric based distance measures, p = L2 and L§. 

dp(x~, (AX(YPl)' AY(x))) - dp(x;, (AX(yPl)' AY(x))) 

dp(x~, (AX(yP2) , AY(x))) - dp(x;, (AX(YP2) , AY(x))) 

These equations would take the following explicit forms for: 

Euclidean-metric Case (L2 ): 

o 

o 

(45) 

( 46) 

( 47) 

J[(xi - AX(YPl))2 - (x2 - AX(YPl))2]- J[(Y2 - YPl)2 - (Yi - YPl)2] 0 

J[(xi - AX(YP2))2 - (x2 - AX(YP2))2]- J[(Y2 - YP2)2 - (Yi - YP2)2] 0 
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Squared Euclidean-metric Case (Ln: 

[(x~ - AX(YPI)? - (x; - AX(YPI))2] - [(y; - YPl)2 - (y~ - YPI)2] 0 

[(x~ - AX(YP2))2 - (x; - AX(yP2)?] - [(y; - YP2)2 - (y~ - YP2)2] 0 

where xi = (xi, yi) and x; = (x;, Y2) are the coordinates ofthe optimal facility 

locations of allocation decisions, Al and A2' implied by AX(YPI) and AX(yP2). 

In solving the ab ove system of equations as a boundary-value problem, 

AX(YPd and AX(YP2) are considered as the system's state variables. The origin 

(x = 0) and the market region boundary (x=M) are the two boundary values 

defining the initial and ending values of the system's state. Shooting algorithm, 

as described before in the single-dimensional case, starts with two arbitrary 

and independent triggers (AX(YPI) and AX(yP2)) at the system's initial state 

(boundary value). Then, the procedure sequentially decides on the allocation 

decisions satisfying the state transition equations (45) until the end, i.e., after 

deciding on the final single dimensional allocation decision. If these initial 

triggers are not correct, then the ending state value would differ from the 

boundary value (M). As the accuracy of the initial triggers are improved, 

the system gets doser to the boundary value at the end. From this point 

onward, we denote this variable ending state value as M' and refer J'v! as the 

actual ending boundary value of square market region M. We now describe 

the constructive solution approach, i.e. the shooting algorithm, in more detail 

by pointing out the differences from the single dimensional case. 

For ease of exposition, let's define the following notation as illustrated in 
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BR 

Service Region 1 Service 
Region 2 

A2 
YP2 • 

(XJ,Yl) 

YPI 
Al 

• 
A3 (X2,Y2) 

Xpl Xp2 

Figure 4.7: Initial triggers for the constructive solution approach (Euclidean
rnetric based rneasures) 

Figure 4.7. 

As in the single-dirnensional case application of the shooting algorithrn, we 

first deterrnine two initial triggers, Al and A2, at pre-specified points, YPI and 

YP2. These two triggers deterrnine the straight allocation line (BR) passing 

through (Al, YPl) and (A2, YP2), thus the two service regions, Al and A 2 • 

While sorne of the triggers, Al and A2, fully characterize Al, sorne do not. In 

both cases, A 2 is allowed to be a variable region such that its right-hand side 

(M') is not fixed. In order to further illustrate this, two alternative cases are 

plotted in the Figure 4.8. In the first case (on the left) , Al, service region 1, 

is defined fully when BR is constructed, but A2 's right-hand side border line 

M' (i.e. ending state), which is conjectured to be a verticalline, is not. In the 
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4 Al 1 
1 'M' A2 1 A2 1 

M' 1 
YP2 +-1 • 1 M 1 

• r+ +-1 
Al 1 Al 1 

YPI 1 YPI 1 
1 • ......... ........ 1 
1 A2 1 

Figure 4.8: Illustration of cases where initial single-dimensional allocation trig
gers characterize only one or both of the service regions. 

second case, since the M' is part of both Al and A2, neither of them are fully 

characterized with the determination of BR. In other words, the two initial 

triggers Al and A2 are sufficient to determine BR, but not to determine the 

service regions Al and A2 at aIl times. In either case, the ultimate goal of 

choosing initial triggers is to coincide M' with M. 

In the single dimensional case, the initial trigger allowed us to determine 

the allocation boundaries on the market region (i.e. market line) and identify 

a single boundary value M'. In the pl anar case, we first decide on the initial 

triggers (Al and A2 in Figure 4.8) to determine the allocation line BR, then we 

parametrize the Al and A2 based on the BR and the ending state M'. Note 

that this parametrization is analogous to the tiling operation in the single 

dimensional case. This parametrization works as follows: Optimal locations of 

facilities, (xi, yn and (x;, Y;), are expressed in terms of M'and used to solve 

the differential equations in (45) for M'. Since there is only one unknown but 

two equations, (46) and (47), there would be two different solutions of M' (i.e. 

Ml' and M2'), one for each initial trigger. When these initial triggers (Al 

and A2) are optimal, Ml' and M2' would be equal to the market boundary, 

i.e. Ml' = M and M2' = M. This is the difference of the two dimensional 

constructive approach from the single dimensional equivalent, which had one 
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ending state for a single initial trigger. Aiso note that (xi, yi') and (x;, Y2) 

are functions of (Al, A2) and M' which satisfy the below locational optimality 

condition as weIl as the system of equations in (48) and (49) for Euclidean-

metric and Squared Euclidean-metric cases, respectively. 

x: = argmin J dp(Xi,X)D(x)dx 
(Xi) 

for i = l, 2 and p = L2, L~ 

A;(M') 

where A(M') is used to illustrate the dependence of the service region on the 

ending boundary condition as illustrated in Figure 4.8. 

Euclidean-rnetric Case (L2 ): 

J[(xi - AI))2 - (x; - AI))2]- J[(Y2 - A3)2 - (Yi - A3)2] 

J[(xi - A2)2 - (x; - A2))2]- J[(Y2 - A4)2 - (Yi - A4)2] 

Squared Euclidean-rnetric Case (Ln: 

[(x~ - AI))2 - (x; - Al)?] - [(y~ - A3)2 - (y~ - A3)2] 

o (48) 

o 

o (49) 

Thus the optimal locations depend not only on the initial triggers, but also 
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on the ending boundary condition. 

(xi, yi) ex (Al, A2, M') 

(x;, y;) ex (Al, A2, M') 

(50) 

(51) 

The shooting algorithm tries to minimize the deviation from the pre-specified 

boundary condition M; in other words it aims to find the root of absolute 

difference between M and M'. Thus, in a similar approach to the single di-

mensional case, we here define the root finding functional as below. 

( 

Fl (AI,A2) = MI'- M ) 
F(Al, A2) = (F dAl, A2), F 2 (Al, A2))T = 

F2 (AI,A2) = M2' - M 

where 

Ml' :is the ending state M' which solves the first equation in (48) or (49) 

M2f :is the ending state Mf which solves the second equation in (48) or (49) 

The objective is to find the root of F(Al, A2) = (0,0). In solving this 

root-finding problem, we could use either the fust-order line-search methods 

or second-order methods. In the case of Euclidean-metric( L2), optimal 10-

cations given the allocation decisions is computationally demanding, thus we 

will use a first-order method with a fixed step size. For the Squared Euclidean

metric( LV measure, we will use the Newton-Raphson multidimensional root

fin ding method since optimal locations are significantly easier to solve for. 

Newton-Raphson is also preferable because of its quadratic local convergence 

property while assuming that our initial triggers are sufficiently good. The 
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Newton-Raphson method uses the following iteration formula to calculate the 

next candidate for the root. 

( ) 

new ( ) old Al Al 1 
- J- F 

A2 A2 
(52) 

where 

J, J-l : are the Jacobian and inverse Jacobian matrix of F, i.e. Jij = ~~' 
J 

Analytical calculation of J is impractical since the closed form expression of 

F(AI, A2) is not available. Hence, as in the single dimensional case, we utilize 

a discrete approximation which is the centered difference approximation of the 

first-order differential ~~ i • 
J 

BFl Fl(AI,A2+h)-Fl(AI,A2-h) 
--- ~ ---------------------------
BA2 2h 

BF2 F2(AI + h,A2) - F2(AI- h, A2) 
--- ~ --~----~~----~----~~ 

BAI 2h 

BF2 F2(AI, A2 + h) - F2(AI, A2 - h) 
--- ~ ---------------------------
BA2 2h 

As mentioned previously, different initial triggers, Al and A2 , create differ-

ent scenarios for the two service regions Al and A 2 . As illustrated in Figure 

4.8, sorne of these initial trigger combinat ions will fully characterize Al and 

sorne will not. These scenarios are dependent on the type of BR characterized 

by the initial triggers and displayed in Figure 4.9. 
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Service Region 1 Service 
Region 2 

Service 
Region 2 

Figure 4.9: Allocation line scenarios. 

N ow we provide a formaI shooting algorithm for our basic model: 

Shooting Aigorithm: Euclidean-metric Based Distance Measure (L2 

and L§) 

Step 1. Define and Initialize the model parameters and variables 

j : index for the feasibility iterations (i.e. j* = {jl EBOUND ~ IMl' - MI 

and EHOUNIJ ~ 1M2' - MI} 

tion) 

EBOUND : epsilon parameter for feasibility stopping decision 

h : centered difference approximation parameter for partial differentials 

Alj : /h iteration estimate for the first service region size at YPI 

A2j : /h iteration estimate for the first service region size at YP2 

x; = (x;, yt) : optimal locations corresponding to Ai-l 2 - , 

(M,)j : boundary variable (i.e. Mj = M is the feasible boundary condi-

Ml', M2' : solutions for Mj to the first and second equations in (48) or 

(49), respectively. 

Set j = 0, Alj=l and A2j =1 

Step 2. Update the first service region sizes Alj and A2j 

Do While (IMl' - MI 2: EBOUND and 1M2' - MI 2: EBOUND): 
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j=j+1 

Step 2.1. Calculate Slope(a) and Intercept(b) of BR using U,;_A14) = 

(
x-Al) 
AI-A2 

Slope a 0= A3-A4 
° AI-A2 

Intercept b 0= AIA4-A3A2 
° AI-A2 

Step 2.2. Parameterize Al and A 2 as a function of (M,)j 

Type 1: If a 2: 0 and br(x = 100) 2: M and br(x = 0) ~ 0 then 

Al := {(x,y)ly E YBR and x E [O,bro(y)-l]) 

A 2 := {(x, y)ly E YBR and x E [br(y)-l, (M,)j]) 

Type II: If a 2: 0 and br(x = 100) 2: M and br(x = 0) 2: 0 then 

Al := {(x, y)ly E YBR and x E [0, br(y)-l]) 

A 2 := {(x, y)ly E YBR and x E [br(y)-l, (M,)j] U y E YA2 and 

x E [0, (M,)j]) 

Type III: If a 2: 0 and br(x = 100) ~ M and br(x = 0) 2: 0 then 

Al 0- {(x, y)ly E YBR and x E [0, br(y)-l] U y E YAI and 

x E [0, (M,)j]) 

A 2 := {(x, y)ly E YBR and x E [br(y)-l, (M,)j] U y E YA2 and 

x E [0, (M,)j]) 

Type IV: If a 2: 0 and br(x = 100) ::; M and br(x = 0) ::; 0 then 

Al 0- {(x, y)ly E YBR and x E [0, br(y)-l] U y E YAI and 

x E [0, (Mir]) 

A 2 := {(x,y)ly E YBR and x E [br(y)-l,(M,)j]) 

Type V: If a ~ 0 and br(x = 100) ~ 0 and br(x = 0) 2: M then 

Al := {(x, y)ly E YBR and x E [0, br(y)-l]) 

A 2 := {(x,y)ly E YBR and x E [br(yt\ (M,)j]) 

Type VI: If a ~ 0 and br(x = 100) ~ 0 and br(x = 0) ~ M then 
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Al := {(x, y)ly E YBR and x E [0, br(y)-l]} 

A2 := {(x, y) Iy E YBR and x E [br(y)-l, (M,)j] U y E YA2 and 

x E [0, (M,)j]} 

Type VII: If a ~ 0 and br(x = 100) ;::: 0 and br(x = 0) ~ M then 

A I := {(x,y)ly E YBR and xE [O,br(y)-l] U y E YAI and xE 

A2 := {(x, y)ly E YBR and x E [br(y)-l, (M,)j] U y E YA2 and 

x E [0, (M,)j]} 

Type VIII: If a ~ 0 and br(x = 100) ;::: 0 and br(x = 0) ;::: M then 

Al := {(x,y)ly E YBR and xE [O,br(yt l ] U y E YAI and xE 

Step 2.3. Solve the following single facility location problems as a 

function of (M,)j 

xi = (xi,yi):= arg min UA dp(Xl,X)D(x)dx) 
Xl =(Xl,YI) 1 

x2 = (x2, Y2) := arg min (fA dp (X2, x)D(x)dx) 
X2=(X2,Y2) 2 

Step 2.4. Solve following for the boundary value M1 j 

Step 2.5. Solve following for the boundary value M2j 

Step 2.6. Calculate FI and F 2 

FI(A1 j , A2j ) = M1' - M 

F2(A1j
, A2j

) = M2' - M 

Step 2.7. Approximate J using centered difference approximation (only 

for the Squared Euclidean - metric case, i.e. L~) 

Repeat Steps 2.1-2.6 for (A1 j - h, A2j ), (A1 j + h, A2j ), (A1 j , A2j 
-
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h),(Ali, A2i + h) 

Step 2.8. Assign 

Euclidean - metric (L2 ) 

Squared Euclidean - metric (L§) 

Return. 

Step 3. Terminate with the solution Ali, A2i and BR 

Before we illustrate the application of the above constructive solution ap-

proach, it is important to distinguish between the Squared Euclidean-metric 

and Euclidean-metric. Recalling the first-order conditions of the previous sec-

tion, we have the following for two metrics. 

x; = argmin J dp(Xi,X)D(x)dx 
(Xi) 

Ai(M') 

94 

for i = 1,2 



fAxD(x)dx 

f
Ai 

D(x)dx 

r 7":-'-( x---=;_-_x):..,.-,. = 0 
lA Ilx; -xii 

for Squared Euclidean-metric, i.e. p = .as3) 

for Euclidean-metric, i.e. p = L2 (54) 

Whereas analytical solution to (53) is straightforward, same is not true 

for (54). In order to find the solution satisfying (54), we need to use the 

Weiszfeld's approach (Weiszfeld, 1937). This requires minor modification to 

the constructive algorithm presented above, namely repetitive iterations of the 

algorithmic Steps 2.3 to 2.6 with variable M'. Since we cannot solve for M' 

and optimal locations at the same time, we start with an initial estimate of 

M' and find the optimal locations based on the standard Weiszfeld procedure. 

Note that we do not need to account for the singularity due to continuous 

demand distribution. We then update the M' estimate to satisfy the the 

equidistance property, i.e. optimality condition of LAM-AVS presented in the 

previous section. Next, we provide ex amples for both distance measures to 

illustrate the differences. 

Note that in the implementation of the shooting algorithm we are assuming 

that our shooting levels YPI = A3 and YP2 = A4 are in the set of YBR at the 

optimal solution.6 

Example 4.1.: Constructive Solution Approach- Squared Euclidean

metrÏc (L~) Case 

6Ifwe start with such levels outside the YBR or X BR ofthe optimal solution, counstructive 
solution would not converge. This would then indicate us to either change the shooting levels 
or switch to horizontal shooting or to vertical shooting pattern. An example of this switching 
is presented in the example for L 2 . 
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Service Region 1 

A2 
Yp21------:.~---___ 

(XbYl) 

Al 
Ypll--------.... 

A3 

Xpl Xp2 

Service 
Region 2 

Figure 4.10: Illustration of shooting algorithm using initial triggers, Al and 
A2. 

For convenience, the notation for the parameters and variables are illus-

trated in Figure 4.10. Here we have a square-shaped market region M={(x, y)lx E 

(0,100) and y E (0,100)}, i.e. M = 100. We wish to determine an optimal allo

cation decision for a linear demand density function (D(x, y) = 100+ 10x+5y) 

over the market region M. The starting solution for this instance is A1=30 

and A2 =45 at YPI = A3 = 40 and YP2 = A4 = 50, respectively. 

The steps of the algorithm is as follows: 

ITERATION 1 

Step 1. Initialize the model parameters and variables 

Set: j = 1 

YPI = A3 = 40 and YP2 = A4 = 50 

A1 j =1=30 and A2j =1 =45 

EBOUND = 0.01 and h = 0.1 

M= 100 
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Figure 4.11: Allocation decision at the start of iteration 1 (Example 4.1). 

Step 2. Update the first service region sizes A1 j=1 and A2j=l. 

Step 2.1. Calculate Slope(a) and Intercept(b) of BR using (X;_A;4) 

( 
x-Ali=l ) 

Ali-l-A2i-1 

Slope a := ~, Intercept b := 20 

br(x) = y = ~x + 20, br(y)-l = x = Y;j;O 

YBR = [20, 2~O], X BR = [0, 100], YAI = [2~O, 100], YA2 = [0,20] 

Step 2.2. Parametrize Al and A2 in terms of (M,)j=l 

Type III: If a ~ 0 and br(x = 100) = 260/3 ::; M 

br(x = 0) = 20 2:: 0 then 

100 and 

Al := {(x, y)ly E YBR = [20, 2~O] and x E [0, Y;j;O] U y E YAI 

[2~O, 100] and x E [0, (M,)j=l]} 

A2 := {(x, y)ly E YBR = [20, 2~O] and xE [Y;j;O, (M,)j=l] U y E YA2 = 

[0,20] and x E [0, (M,)j=l]} 

Step 2.3. Solve the following single facility location problems in terms of 
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* - 66667 (M,)j=l 16000 769.30 + 769.30 
Xl - . - . - (M')J-i_192.64 (M')J-i+64.072 

* 68 002 + 64.236 64.236 
YI =. (M,)J-l_192.64 (M')J-l+64.072 

x* = .66665 (M,)j=l - 2.9996 + . 28998.7 . 
2 2.5926( (M')J=l) +166.67(M')l=1+2999.9 

* = 14.000 (M,)j=l _ . 8665.6 . 
Y2 2.5926( (M')l=l )2 +166.67(M')J=1+2999.9 

Step 2.4. Solve following for the boundary value (M1,)j=1 

[(Xi - 30)2 - (x2 - 30)2] - [(Y2 - 40)2 - (Yi - 40)2] = 0 

(M1,)j=1 =101.682 

Step 2.5. Solve following for the boundary value (M2,)j=1 

[(xi - 45)2 - (x2 - 45)2] - [(Y2 - 50)2 - (Yi - 50?] = 0 

(M2,)j=1 =95.718 

Step 2.6. Calculate FI and F 2 

FI =101.682-100=1.682 

F 2 =95.718-100=-4.282 

Step 2.7. Approximate J using centered difference approximation 

Repeat Steps 2.1-2.6 for (A1 j=1 - 0.1, A2j=I), (A1 j=1 + 0.1, A2j=I), 

(A1j=1, A2j=1 - 0.1), and (A1j=l, A2j=1 + 0.1) 

For (A1j=1 - h, A2j=I): 

For (A1 j=1 + h, A2j=1): 

For (A1j=l, A2j=1 - h): 

For (A1j=1, A2j=1 + h): 

Step 2.8. Assign 

FI =1.7569302 and F 2 =-4.24153533 

FI =1.6067966 and F 2 =-4.32283664 

FI =1.5437098 and F 2 =-4.39969988 

FI =1.8196613 and F2 =-4.16472687 

(

Al ) J=2 (30) J=l _ J-1 ( 1.682 ) 

A2 45 -4.282 ( 

54.558 ) 

57.142 
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Figure 4.12: Allocation decision at the start of iteration 2 (Example 4.1). 

[ 

~~~ =-0.750668 ~~~ =1.379757 ] 
where J = 

~~r =-0.406507 g~~ =1.174865 

ITERATION 2 

Set j = 2, A1j=2=54.558 and A2j=2 = 57.142 

Step 2.1. Caiculate Slope(a) and Intercept(b) of BR using (l,;_A14) 

Siope a:= 3.871, Intercept b:= -171.197 

br(x) = y = 3.871x - 171.197, br(y)-l = x = Y+i.~~;97 

YBR = [0, 100], X BR = [44.23,70.06], X AI = [0,44.23], X A2 = [44.23, 100] 

Step 2.2. Parametrize Al and A 2 in terms of (M,)j=2 

Type 1: If a ~ 0 and br(x = 100) = 215.903 ~ M and br(x = 0) = 

-171.196 :::; 0 then 

Al := {(x,y)ly E YBR = [0,100] and x E [0, Y+i.~~;97]} 
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A2 := {(x, y)/y E YBR = [0,100] and x E [y+~.~~~97, (M,)j=2]} 

Step 2.3. Solve the following single facility location problems in terms of 

(M,)j=2 

xi =34.4044 

yi =61.5831 

x* = 35 000000 _ 742.95692 1707.0429 
2' (M')J 2-58.60036164 (M')J 2+128.6003616 

Y2 = 50.000000 - (M')J~~~:!~6302036164 + (M')J!~:8i;~~:003616 
Step 2.4. Solve following for the boundary value (M1,)j=2 

[(xi - 54.558)2 - (x2 - 54.558)2] - [(Y2 - 40)2 - (Yi - 40)2] = 0 

(M1,)j=2 =104.091 

Step 2.5. Solve following for the boundary value (M2,)j=2 

[(xi - 57.142)2 - (X2 - 57.142)2] - [(Y2 - 50)2 - (yi - 50)2] = 0 

(M2,)j=2 =104.612 

Step 2.6. Calculate FI and F 2 

FI =104.091-100.0=4.091 

F 2 =104.612-100.0=4.612 

Step 2.7. Approximate J using centered difference approximation 

Repeat Steps 2.1-2.6 for (A1j=2 - h, A2j=2), (A1 j=2 + h, A2j=2), 

(A1j=2, A2j=2 - h), and (A1j=2, A2j=2 + h) 

For (A1 j=2 - h, A2j=2): 

For (A1 j=2 + h, A2j=2): 

For (A1j=2, A2j=2 - h): 

For (A1j=2, A2j=2 + h): 

Step 2.8. Assign 

FI =4.0317955 and F 2 =4.6281418 

FI =4.1514577 and F 2 =4.5943379 

FI =4.0112743 and F2 =4.4369477 

FI =4.1702835 and F 2 =4.7847247 
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( 

54.558 ) j=2 _ J-1 ( 4.091 ) 

57.142 4.612 ( 

51.624 ) 

54.205 

[ 

~~~ =.5983110 ~~~ =.7950460 1 
where J = 

~~i =-.1690195 ~~§ =1.738885 

When we continue with the iterations 3 and 4, we would obtain the following 

local optimum solution. 

( 

51.569216 ) 

54.181516 

x~ (x~, y~) = (32.662,61.992) 

x; (x;, y;) = (78.816,49.935) 

br(x) y = 3.828045x - 157.409263 

TC 8,459,944,237.00 

Complete results for this starting point displayed in Table 4.1. Resulting allo-

cation decision is illustrated in Figure 4.13. Observe that converge is attained 

when lM' - MI ~EBOUND= 0.01. 
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~) .:"A1 1 • 1.11_, J A.t ~I;.~I;~ "] ..• .IIlI$~; .'" .. 
Ft t~t 

1 30.000 45.000 40 50 0.667 20.000 III 101.68 95.72 1.6820 -4.2820 
2 54.558 57.142 40 50 3.871 -171.197 1 104.09 104.61 4.0910 4.6120 
3 51.624 54.205 40 50 3.875 -160.062 1 100.04 100.03 0.0418 0.0261 
4 51.569 54.182 40 50 3.828 -157.427 1 100.00 100.00 0.0001 0.0000 

Table 4.1. Constructive solution algorithm iteration results for initial 

triggers Al = 30 and A2 = 45 with q (Example 4.1). 
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Figure 4.13: Allocation decision in the end of iteration 4 (Example 4.1). 

To illustrate the existence of multiple local solutions, Table 4.2. displays 

the iteration results when constructive algorithm is started with the initial 

triggers A1=35 and A2 =40 at YPI = A3 = 40 and YP2 = A4 = 50, respec-

tively. 
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, ). ~ifl Ai" 1 A3.Efc~ 
1 35.000 40.000 40 50 2.000 -30.000 1 84.98 82.10 -15.0236 -17.9038 
2 44.574 52.467 40 50 1.267 -16.470 1 99.35 99.05 -0.6536 -0.9537 
3 45.487 53.280 40 50 1.283 -18.369 1 100.01 100.01 0.0108 0.0129 
4 45.479 53.270 40 50 1.284 -18.374 1 100.00 100.00 0.0000 0.0000 

Table 4.2. Constructive solution algorithm iteration results for initial 

triggers Al = 35 and A2 = 40 with q (Example 4.2). 

The solution to this problem and the objective function value is as below 

and Figure 4.14 illustrates the corresponding allocation decisions 

(
Al) j=5 = ( 45.4787 ) 

A2 53.2697 

xi (xi, yi) = (39.664,70.593) 

x; (x;, y;) = (76.565,41.844) 

br(x) y = 1.2835x - 18.3738 

TC 8, 534, 652, 763.00 

We have conducted a large number of experiments and the best yet solution 

with this example, starting with initial triggers A1=1O and A2 =50 at YPI = 

A3 = 45 and YP2 = A4 = 50, is as follows. 

(
Al) j=6 = ( 10.27147 ) 

A2 43.31926 
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Figure 4.14: Allocation decision with the starting solution Al = 35 and A2 = 

40 (Example 4.2). 

x~ (x~, y~) = (56.4500,77.0701) 

x; (x;, y;) = (63.8702,28.0258) 

br(x) y = 0.1512961x + 43.44597 

TC 7,965,251,223.00 

Table 4.3. displays the iteration results. Figure 4.15 illustrates the correspond-

ing allocation decision. 
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Figure 4.15: Allocation decision with the starting solution Al = la and A2 = 

50 (Example 4.3). 

,~) '1''''1 ~",,?, ' .. <, • M'r Al ;>;l11"P~;; ;_1' ~--t:ITJIlC!; t_:i:t,'~::vj:; ;jlf)jfii: :1 '2:,:; 
1 10.000 50.000 45 50 0.125 43.750 III 100.82 106.49 0.8197 6.4907 
2 9.809 43.713 45 50 0.147 43.553 III 99.92 100.39 -0.0823 0.3922 
3 10.260 43.320 45 50 0.151 43.448 III 100.00 100.00 -0.0034 0.0018 
4 10.263 43.326 45 50 0.151 43.448 III 100.00 100.01 -0.0014 0.0068 
5 10.271 43.319 45 50 0.151 43.446 III 100.00 100.00 0.0000 0.0000 

Table 4.3. Constructive solution algorithm iteration results for initial 

triggers Al = 10 and A2 = 50 with L~ (Example 4.3). 

Example 4.4: Constructive Solution Approach- Euclidean-metrÎc 

For consistency we use the same example as in the case of Squared Euclidean-

metric. Hence our market region is a square, M={(x, y)lx E (0,100), and 

y E (0, 100)}, i.e. M = 100 and demand density function is linear (D(x, y) = 

100 + 10x + 5y) over the market region M. The starting solution for this 

instance is A1=35 and A2 =40 at YPI = A3 = 40 and YP2 = A4 = 50, 

respectively. 
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Figure 4.16: Allocation decision at the start of iteration 1 (Example 4.4). 

The steps of the algorithm is as follows: 

ITERATION 1 

Step 1. Initialize the model parameters and variables 

Set: j = 1 

YPI = A3 = 40 and YP2 = A4 = 50 

A1j =1=35 and A2j =1 =40 

EBOUND = 0.01 

M= 100 

Step 2. Update the first service region sizes A1j =1 and A2j =1. 

Step 2.1. Calculate Slope(a) and Intercept(b) of BR using Cx;_A14) 
(Al~-f~~~~ 1) 

Slope a := 2, Intercept b := -30 

br(x) = y = 2x - 30, br(y)-l = x = ~ + 15 

YBR = [0, 100], X BR = [15,65], XAI = [15,0], X A2 = [65, 100] 
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Step 2.2. Parametrize Al and A 2 in terms of (M,)j=l 

Type 1: If a ~ 0 and br(x = 100) = 170 ~ M =100 and br(x = 0) = 

-30 ::; 0 then 

Al := {(x, y)ly E YBR = [0, 100J and x E [0, ~ + 15]) 

A 2 := {(x, y)ly E YBR = [0,100] and x E [~+ 15, (M,)j=l]} 

Step 2.3. Solve the following single facility location problems in terms of 

(M,)j=l 

For the first area, Al, we start with the initial estimates using cen-

troidal locations and employ Weiszfeld method to find the correct median lo

cations. Hence we start with (xf, yf) = (27.7197,69.0713) and after 10 itera-

tions of Weiszfeld method, we obtain optimal median locations, (xi, yi) = 

(28.7537,71.8961). 

For the second area's, A2' optimum locations, we cannot employ the 

Weiszfeld method with the unknown (M,)j=l in the equation. Hence we ten

tatively locate them at the centroidal locations which can be expressed as a 
. l 

closed form function of (M')J= as below. 

G 2(M,)j~1 2 90.7326 4257.3999 
x 2 = 3 - 113 - (M,))-1-44.0569 + (M')) 1+114.0569 

YG = 50 _ 373.9028 + 1207.2360 
2 (M')) 1-44.0569 (M')) 1+114.0569 

Step 2.4. Solve following for the boundary value (M1,)j=1 

Now we start with an initial value of (M1,)j=1 = M = 100 and solve for 

the (xf, yf) and then employ Weiszfeld method to find the correct median 

locations. 

·-1 
Next we perform a line search over (M1')J- to find the value of 

(M1,)j=1 satisfying below equation. 

[(xi - 35)2 - (x~ - 35?J - [(Y2 - 40)2 - (Yi - 40)2J = 0 

That value is (M1,)j=1 =87.732 with (x~, Y2) = (66.5122,47.9598) as 
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the median locations 

Step 2.5. Solve following for the boundary value (M2,)j=1 

Again we start with an initial value of (M2'y=1 = M = 100 and 

solve for the (x~, Y~) and then employ Weiszfeld method to find the correct 

median locations. 

"-1 Next we perform a line search over (M2')J- to find the value of 

(M2,)j=1 satisfying below equation. 

[(xi - 40)2 - (x; - 40)2J - [(y~ - 50)2 - (yi - 50)2J = 0 

That value is (M2,)j=1 =84.495 with (x2' Y2) = (64.44497,47.1388) as 

the median locations 

Step 2.6. Calculate Fi and F 2 

Fi =87.732-100=-12.268 

F 2 =84.495-100=-15.505 

Step 2.7. (In referenee to the formaI representation of the algorithm, we 

skip this step sinee we use first order based updating for L 2 ) 

Step 2.8. Assign 

(

Al) j=2 ( 35 ) j=l -.À ( -12.268 ) = ( 47.268 ) 

A2 40 -15.505 55.505 

where .À is constant step size and assigned to be 1. 

ITERATION 2 

Step 1. Initialize the model parameters and variables 

Set: j = 2 

YP1 = A3 = 40 and YP2 = A4 = 50 

A1j=2=47.268 and A2j=2 =55.505 
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Figure 4.17: Allocation decision at the start of iteration 2 (Example 4.4). 

EBOUND = 0.01 

M= 100 

Step 2. Update the first service region sizes A1 j =2 and A2j =2. 

Step 2.1. Calculate Slope(a) and Intercept(b) of BR using (13-_A14) 

( AI~=:~~~~-2 ) 
Slope a := 1.214, Intercept b := -17.385 

br(x) = y = 1.214x - 17.385, br(y)-l = x = .8237y + 14.32 

YBR = [0, 100], X BR = [14.32,96.69], X AI = [0, 14.32], X A2 = [96.69, 100] 

Step 2.2. Parametrize Al and A2 in terms of (M,)j=2 

Type 1: If a ;::: 0 and br(x = 100) = 104.02 ;::: M =100 and br(x = 

0) = -17.385 :::; 0 then 

Al := {(x, y)ly E YBR = [0,100] and x E [0, .8237y + 14.32]} 

A 2 := {(x, y)ly E YBR = [0,100] and x E [.8237y+ 14.32, (M,)j=2]} 

Step 2.3. Solve the following single facility location problems in terms of 
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For Al, we again start with the initial estimates using centroidal 10-

cations and then employ the Weiszfeld's method to find the correct median 

locations. Renee, we start with (xf, yf) = (41.6748,70.7475), and after 6 

iterations of Weiszfeld method, we obtain optimal median locations, i.e. 

(xi, yn = (42.9261,72.6472). 

For the second area's, A2' optimal (median) locations, we cannot em

ploy the Weiszfeld method with the unknown (M,)j=2 in the equation. Renee 

we tentatively locate them at the eentroidal locations which can be expressed 
. 2 

as a closed form function of (M')J= as below. 

G 2(M,)j=2 112 241.56 6536876 
x 2 = 3 - "3 - (M'F '2-62.175 + (M')) 2+132.175 

yf = 50 - (M,/10~:~2~74961 + (M,)}4~~~~~~17496 
Step 2.4. Solve following for the boundary value (M1,)j=2 

Now we start with an initial value of (M1,)j=2 = M = 100 and solve 

for the (xf, yf) and then employ Weiszfeld's method to find the correct 

median locations. 

'-2 
Next we perform a line search over (M1')J- to find the value of 

(M1,)j=2 satisfying below equation. 

[(xi - 47.268)2 - (x~ - 47.268)2] - [(y~ - 40)2 - (y~ - 40)2] = 0 

That value is (M1,)j=2 =103.40 with (x~, y~) = (80.182,41.183) as the 

median locations 

Step 2.5. Solve following for the boundary value (M2,)j=2 

Again we start with an initial value of (M2'f=2 = M = 100 and 

solve for the (xf, yf) and then employ Weiszfeld method to find the correct 

median locations. 

'-2 
Next we perform a line search over (M2')J- to find the value of 
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(M2,)j=2 satisfying below equation. 

[(xi - 55.505)2 - (x; - 55.505)2] - [(y; - 50)2 - (Yi - 50)2] = 0 

That value is (M2,)j=2 =102.86 with (x;, Y2) = (79.797,40.986) as the 

median locations 

Step 2.6. Calculate FI and F 2 

FI =103.40-100=3.40 

F 2 =102.86-100=2.86 

Step 2.7. (In reference to the formaI representation of the algorithm, we 

skip this step since we use first order based updating for L 2 ) 

Step 2.8. Assign 

( 

47.268 ) j~2 _ À ( 3.40 ) = ( 43.868 ) 

55.505 2.86 52.645 

where À is the constant step size and assigned to be 1. 

Note that since we are able to exactly determine the median locations of the 

Al through Weiszfeld's procedure, A2 's optimal locations are consequently 

determined by performing a line search over the M', with a Weiszfeld iteration 

at each step. This is possible when the initial triggers Al and A2 leads to 

allocation line alternatives l, II, V, and VI illustrated in Figure 4.9. In 

all other alternatives, Al and A 2 would both depend on M'and thus their 

optimal locations would depend on M'. In such a case, previously followed 

implementation of the shooting algorithm with integrated Weiszfeld procedure 

steps would be difficult. To overcome this difficulty, we switch our initial 

trigger parameters from being (Al,A2) to (A3,A4) and update (A3,A4) for 

given locations at (Al,A2). This is equivalent to changing the reference 
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axis from y-axis to x-axis, i.e. triggers are now chosen according to single-

dimensional allocation decisions shown on the right in Figure 4.6. In order to 

illustrate this transition, we jump to iteration 5 and detail this switch. Note 

that in step 2.2. of iteration 5, we change the service regions' notation; Al 

is the service region below the allocation line and A2 is the one above. The 

boundary condition M' is now the ceiling of the square market region. With 

this change in notation, itemtion 5 could be executed as follows. 

ITERATION 57 

Step 1. Initialize the model parameters and variables 

Set: j = 5 

X Pl = A1j =5=40.048 and x P2 = A2j =5 =52.715 

A3j =5 = 40 and A4j =5 = 50 

EBOUND = 0.01 

M= 100 

Step 2. Update the first service region sizes A3j =5 and A4j =5. 

Step 2.1. Calculate Slope(a) and Intercept(b) of BR using (A3;=-:!:::~5) = 

(
X-Al) 

Al-.42 

Slope a := .78945, Intercept b :=8.384 

br(x) = y = 0.78945x + 8.384, br(y)-l = x = 1.2667y - 10.62 

YBR = [8.384,87.33], X BR = [0, 100], YAI = [87.33, 100], YA2 = [0,8.384J 

Step 2.2. Parametrize Al and A 2 in terms of (M,)j=5 

Type III: If a ~ 0 and br(x = 100) = 87.33 ::; M =100 and br(x = 

0) = 8.384 ~ 0 then 

Al := {(x, y)ly E [0, br(x) = 0.78945x + 8.384J and x E X BR } 

7 Starting solution obtained from Iteration 4's results. 
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Figure 4.18: Allocation decision at the start of iteration 5 (Example 4.4). 

A 2 := {(x, y)ly E [br(x) = 0.78945x + 8.384, (M,)j=5] and x E 

Step 2.3. Solve the following single facility location problems in terms of 

(M,)j=5 

For Al, we start with the initial estimates using centroidal locations 

and employ Weiszfeld's method to find the correct median locations. Hence we 

start with (xr, yr) = (72.4722,34.6121) and after 8 iterations ofWeiszfeld's 

method, we obtain optimal (median) locations, (xi, yi) = (74.35378,34.96516). 

For the second area's, Al, median locations, we cannot employ the 

Weiszfeld method with the unknown (M,)j=5 in the equation. Hence we ten-

tatively locate them at the centroidal locations which can be expressed as a 

closed form function of (M'f=5 as below. 

x~ = -306679112.2 + 3833333.333 (M,)j=5 + 12500.0 ((M'f=5) 2 

G _ 2(M,)j=5 40 0 21089.7346 205.2526 
Y2 - 3 - . + (M')J 5+296.9936 (M,)J-5- 56.9936 
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Step 2.4. Solve following for the boundary value (Ml,)j=5 

Now we start with an initial value of (M1,)j=5 = M = 100 and solve 

for the (x~, y~) and then employ Weiszfeld's method to find the correct 

median locations. 

"-5 Next, we perform a line search over (Ml')1- to find the value of 

(Ml,)j=5 satisfying below equation. 

[(xi - 40.048)2 - (x; - 40.048)2] - [(y; - 40)2 - (Yi - 40)2] = 0 

That value is (M1,)j=5 =96.65 with (x;, y;) = (47.356,73.904) as the 

median locations. 

Step 2.5. Solve following for the boundary value (M2,)j=5 

Again we start with an initial value of (M2,)j=5 = M = 100 and solve 

for the (x~, y~) and then employ Weiszfeld's method to find the correct 

median locations. 

"-5 
Next, we perform a line search over (M2')1- to find the value of 

(M2,)j=5 satisfying below equation. 

[(xi - 52.715)2 - (x; - 52.715)2] - [(y; - 50)2 - (Yi - 50)2] = 0 

That value is (M2,)j=5 =99.72 with (x;, y;) = (48.394,75.985) as the 

median locations. 

Step 2.6. Calculate FI and F 2 

FI =96.65-100=-3.35 

F 2 =99.72-100=-0.28 

Step 2.7. (In reference to the formaI representation of the algorithm, we 

skip this step since we use first order based updating for L2 ) 

Step 2.8. Assign 
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( 

A3 ) )=6 ( 40 ) )=5 _ À ( -3.35 ) ( 43.35 ) 

A4 50 -0.28 50.28 

where À is the invariant step size and assigned to be 1. 

When we continue until iteration 9, we would obtain the following local 

optimum solution. 

(~: r
g 

( 

40.048 ) 

52.715 

and 

( 

A3 ) j=9 ( 48.72 ) 

A4 51.00 

x~ (x~,Yn = (67.39,28.43) 

x; (x;, Y~) = (58.63,77.26) 

br(x) y = 0.18x + 41.512 

TC 236,344,838.9 

Note that at iteration 5, we keep x-dimensional allocation decisions Al and 

A2 constant and change the y-dimensional allocation decisions A3 and A4. 

Accordingly, the boundary value compared has become the ceiling of the square 

market region rather than the right-hand edge. Complete results are displayed 

in Table 4.4. Resulting allocation decision is illustrated in Figure 4.19. 
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Figure 4.19: Allocation decision in the end of iteration 9 (Example 4.4) . 

. ~ A1."I. /42 {,\;".J A4 ~J,iI-.,t~~ "iM1'::f"",:",: :::S'Y:;;·,IFz : 
1 35.000 40.000 40 50 2.000 -30.000 1 87.73 84.50 -12.268 -15.505 
2 47.268 55.505 40 50 1.214 -17.385 1 103.40 102.86 3.400 2.860 
3 43.868 52.645 40 50 1.139 -9.981 1 101.19 99.70 1.190 -0.300 
4 42.678 52.945 40 50 0.974 -1.568 IV 102.63 100.23 2.630 0.230 
5 40.048 52.715 40 50 0.789 8.384 '" 96.65 99.72 -3.350 -0.280 
6 40.048 52.715 43.35 50.28 0.547 21.440 '" 96.88 99.79 -3.120 -0.210 
7 40.048 52.715 46.47 50.49 0.317 33.760 '" 98.11 99.64 -1.890 -0.360 
8 40.048 52.715 48.36 50.85 0.197 40.488 '" 99.60 99.84 -0.400 -0.160 
9 40.048 52.715 48.76 51.01 0.178 41.646 '" 100.04 100.01 0.040 0.010 

10 40.048 52.715 48.72 51.00 0.180 41.512 '" 100.01 100.00 0.010 0.000 

Table 4.4. Constructive solution algorithm iteration results for initial 

triggers Al = 35 and A 2 = 40 with L 2 (Example 4.4). 

4.4.2 Improvement Based- Steepest Descent Method 

In this subsection, we first present the concept of shape-preserving transfor

mations for both of the Euclidean-metric based distance measures. This con-

cept allows us to design two improvement-based solution procedures, namely 

steepest-descent and modified Newton's methods. In what follows, we explain 
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this shape-preserving concept and then illustrate its contribution in designing 

solution methods by presenting the steepest-descent algorithm for both dis-

tance measures. Modified Newton's method is developed in the last section. 

Shape Preserving Transformations 

The purpose of this section is to develop an approach for improving the 

allocation decisions of the location-allocation problem in allocation variable 

space (LAM-AVS). This improvement approach forms the basis for both the 

first-order steepest-descent improvement algorithm in this section as weIl as 

the second-order method presented in the next section. In comparison with 

improving location decisions of LAM-LVS, improving allocation decisions of 

LAM-AVS is more complicated. To improve locational decisions, one needs 

to change two coordinate values, x and y, for a given facility. On the other 

hand, allocation decisions are sets of an infinite number of points thus requires 

a different type of transformation than a single-point iteration. Before ex-

plaining this transformation, we first present the LAM-AVS in terms of single

dimensional allocation decisions, i.e. AY(x) and AX(y). More specifically, we 

will explicitly express the objective function in terms of these variables. Then 

we will derive the relationships between these allocation decisions and the slope 

and intercept of the allocation line BR. For any distance measure metric p, 

the objective function is as follows: 

TC(AY(x),AX(y),x~,x;) = J dp(x~,x)D(x)dx+ J dp(x;,x)D(x)dx (55) 

Al A2 

For brevity, we will represent TC(AY(x), AX(y), xr,x;) with a shorter notation 

TC. It is possible to define TC in terms either AY(x) or AX(y). In Figure 4.20, 
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Figure 4.20: Discretization of the problem using grids which are parallel to 
x-axis and defined for each y. 

we take an infinite number of strips on the y-axis and define the BR using the 

function AX(y). This formulation measures all of the two dimensional travel (x 

and y dimensions) using only the horizontal strips. 

Alternatively, we could take vertical strips and define the BR using the func-

tion AY(x) as in the Figure 4.21. This formulation measures aIl of the two-

dimensional travel (in x- and y-dimensions) using only the vertical strips. 

TC 1 {M dp(x~, x)D(x)dx + 1 (M dp(x~, x)D(x)dx (57) 
XEXAl Jo xEXBR J AY(x) 

+ 1 (AY(x) dp(x;, x)D(x)dx + 1 {M dp(x;, x)D(x)dx 
xEXBR Jo xEXA2 Jo 

Recall from the model formulations (LAM, LAM-LVS, LAM-AVS) that we 

have the joint constraint (58), which ensures a feasible allocation decision. It 

stipulates that single-dimensional allocation decisions must map to the same 
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Figure 4.21: Discretization of the problem using grids which are parallel to 
y-axis and defined for each x. 

point on the allocation line BR, i.e. they must form a line in Euclidean-metric 

based measures. When we move from a feasible solution of allocation line 

BR, i.e. satisfying below constraint, to another feasible BR, we must follow 

a shape preserving transformation on the plane. 

(AX(y), y) = (x, AY(x)) for x E X BR and y E YBR (58) 

When BR is a straight line, as in the case of Euclidean-metric and Squared 

Euclidean-metric, there are two types of such transformation: Rotation and 

Translation. Herein, we will define the term "Pure Rotation" where the 

line rotates around (0, b), namely only its slope (a) changes. In the other 

form of rotation around an axis of rotation, i.e. referenee point which is fixed 

during rotation, both the slope(a) and intercept(b) changes. In the case of 

translation, only the intereept changes. Sinee by changing only the slope or 

the intereept, we cannot aceess aIl feasible solutions in the allocation decision 

spaee, we need to change them at the same time or alternate between pure 
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Figure 4.22: Shape preserving transformation for Euclidean-metric based allo
cation decisions. 

rotation and translation. In fact, changing both the slope and the intercept is 

equivalent to rotating the allocation line BR around a reference point, which 

we will discuss in more detail shortly. 

Figure 4.22 illustrates shape preserving transformation for Euclidean-metric 

based distance measures. In brief, Euclidean-metric based allocation line re-

quires both rotation and translation to access all admissible solutions. Since 

the case for Euclidean-metric based shape preserving transformations include 

rotation in addition to the simple translation, there is need for sorne additional 

analysis. In the rest of this section, we will propose sorne results which lay the 

groundwork of the improvement algorithms for Euclidean-metric based prob

lems. 

Let's define the reference point around which we rotate the allocation line: 

(xr, Yr) : a point which is the axis of rotation for BR 

Proposition 4.3. For Euclidean-metric based distance measure cases, the 

derivative of the single dimensional allocation decisions (AY(x) and AX(y)) 

with respect to the slope (a) of BR when rotated around a reference point 
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(Xr, Yr) is as follows: 

Proof. 

Proof can be found in Appendix 4. • 

From this proposition, it foUows that when we rotate BR around the y axis 

(i.e. Yr = b), it is equivalent to changing only the slope a, i.e. pure rotation. 

This rotation point is (xr , Yr) = (0, b) . 

dAY(x) 

da 

(b - (ax + b)) 

a a 

Similarly, as Yr --+ 00, dAda x (y) = (Yr-:;Y) becomes invariant to y, namely aU 
r a 

the single dimensional decisions, AX(y), will change equal amount. This is in 

a sense equivalent to translation where y coordinate does not affect amount 

of change in AX(y) and this change is ~1. Therefore, we have the foUowing 

relations for the translation, i.e. changing the intercept of BR. 

_dA_Y....:....( x....:....) = 1 
db 
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Proposition 4.4. For Euclidean-metric based distance measure, when we ro-

tate the allocation line BR around a reference point, the following relationship 

holds true irrespective of the reference point. 

Proof. 

dAY(x) 

da 
dAY(x) 

db 

Proof can be found in Appendix 4. • 

Furthermore, the following proposition establishes the equivalence of "pure 

rotation combined with a translation" to "rotation around a reference point 

Proposition 4.5. Rotation around a reference point (xr, Yr) is an equivalent 

transformation to first decreasing the intercept by X r and then performing a 

pure rotation around (0, b). 

Proof. 

Proof can be found in Appendix 4. • 

80 we could cover aIl the possible single dimensional solutions by a com-

bination of a pure translation and pure rotation step which has an equivalent 

form of generalized rotation. Thus next corollary establishes similar differen-

tial equivalence for the objective function. 
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Corollary 4.1. Rate of change in the objective function with the rotation 

around a reference point (XT) Yr) is equivalent to rate of change as decreasing 

intercept by X r and then performing a pure rotation around (0, b). 

dTC dTC dTC 
--=---Xr --
dar da db 

where dTC is the change in TC when we rotate BR around a reference point 
dar 

Note that we could represent aIl possible movements of the line, i.e. any 

combination of pure rotation and translation, by rotating around a reference 

point. In the next section, we will describe the first-order steepest des cent 

method for both Euclidean-metric based distance measures. 

Steepest-Descent Algorithm 

In this section, we first present the gradient of objective function with respect 

to rotation around a reference point and then provide the formaI improvement 

algorithms for both Euclidean-metric based distance measures (L2 and L~) 

with ex ample applications. We denote the derivative of the objective func

tion with respect to rotation around any reference point as dTC. Following 
dar 

proposition delineates this derivative. 

Proposition 4.6. The derivative of objective function with respect to the 

slope when it is rotated around a reference point (xr, Yr) can be found through 

either (59) or (60). (59) and (60) corresponds to the horizontal and vertical 

representations of TC in (56) and (57), respectively. 
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(59) 

(60) 

Pro of. 

Proof can be found in Appendix 4. • 

Next proposition presents the functional form of the partial derivatives of 

TC with respect to single dimensional allocation decisions. 

Proposition 4.7. 

The partial derivatives of the objective function with respect to single-

dimensional allocation decisions satisfy the following relationship. 

where x = (AX(y), AY(x)) E BR and for p = L 2 and p = L~. 

Proof. 

Proof can be found in Appendix 4. • 

Note that Propositions 4.6. and 4.7. establish an analogous result to the 

first order condition obtained in the single dimensional chapter. Specifically, 

when the allocation line (BR) is such that every point on the line is at equidis-

tant to the locations, then the derivative of the system cost with respect to 

slope and intercept dTC and dTC is zero This property is the first-order 
'da dh ' . 

optimality condition for the LAM-AVS. 
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Note that Squared Euclidean-metric (L~) is a separable distance measure. 

Accordingly the objective function for such types of separable distance mea-

sures can be written as a mixed measure of x- and y-dimensional travel using 

both the horizontal and vertical strips. This mixed measure is expressed as 

follows. Figure 4.23 further illustrates this mixed form of distance measure. 

where 

Squared Euclidean-metric (LD: 

(x; - x)2 

(y; _ y)2 

Due to this separable property of Squared Euclidean-metric based distance 

measure, the partial derivative with respect to single-dimensional allocation 

decisions could be independently expressed. Following proposition illustrates 

this characteristic. 

Proposition 4.8. The partial derivative of the objective function with respect 

to single-dimensional allocation decisions satisfies the following relationship 
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Figure 4.23: Discretization of the problem using grids parallel to x- annd y
coordinate axes. 

when the distance measure is separable, i.e. dp(xT,x) = dpJxT,x) +dpy(xT,x) 

aTC 
aAx(y) 
aTC 

aAy(x) 

where x = (AX(y), AY(x)) E BR 

Proof. 

Proof can be found in Appendix 4. • 

(63) 

(64) 

In what follows, we provide the steepest-descent algorithm for the L 2 and 

L~) for which the allocation line BR is a straight line. Note that, so far, we 

have derived gradient properties of the total cost with respect to the slope (a) 

and intercept (b), so a natural implementation of steepest-descent algorithm 

would be to use a and b as iterates in the algorithm. However, for consistency, 

we will implement the algorithm in terms of two triggers as in the case of 
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Service Region 1 

A2 
Yp21-----.=-----....... .,. 

(XhYl) 

Al 
Ypll--------. 

A3 

Service 
Region 2 

Figure 4.24: Steepest-descent improvement algorithm example for Euclidean
metric. 

constructive algorithm. These triggers serve as a construct for implementation 

of the algorithm in a way that is consistent with the constructive algorithm. 

Let's describe the use of these triggers in relation to the slope and intercept 

iterations using Figure 4.24. We can express the slope and intercept of the 

allocation line BR using the pair (Al, A3) and (A2, A4) as follows. 

A3-A4 
a=----

Al-A2 
and b = A3 - Al (a) 

Accordingly, Al and A2 can be expressed as in (65), which is used in the 

algorithm to achieve the consistency with the constructive approach. 

A3-b 
Al=--

a 
and 

A4-b 
A2=--

a 

Steepest-Descent Improvement Algorithm: 

(65) 

Step 1. Define and Initialize the model parameters and variables 
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j : index for optimality iterations (i.e. j* = {jl éCOST ~ ITC~;~~rCjl} 

éCOST : epsilon parameter for optimality stopping decision 

{)Ij : step length for line search iterations at the lh iteration 

A1j : ph iteration value for the first service region size at y = YPI 

A2j 
: ph iteration value for the first service region size at y = YP2 

x? = (x?, y:) : optimal locations corresponding to A1=1,2 

M : market boundary parameter 

Set j = 0, A1j =o and A2j =o 

Step 2. Initialization: Allocate the service regions and optimally 

locate facilities 

Step 2.1. Calculate Slope(a) and Intercept(b) of the initial BR using 

Ci';-~4) = (A~j~~~j ) 
Step 2.2. Identify the following sets and functions given BR 

Step 2.3. Find the optimal locations and calculate the total cost 

xi = (xi, Yi)j := arg min (fA dp(Xl' x)D(x)dx) 
(Xl,Yl) 1 

x; = (x;, yz)j := arg min (fA dp(X2' x)D(x)dx) 
(X2,Y2) 2 

TCj 
= JAl dp(xi, x)D(x)dx + JA2 dp(x;, x)D(x)dx 

Step 3. Improvement: Update the first service region sizes A1j and 

A2j 

Do While (ITC~;~~rCjl ~ éCOST): 

j=j+1 

Step 3.1. Calculate the partial gradients 

. Total cost with respect to single-dimensional allocation decisions 
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· Total cost with respect to: 

SI (P t t" ). dTC - r ( aTC aTC ) aAX(y) d ope ure ro a Ion . ~ - JyEYBR aAX(y) - aAY(x) ---a;;:- y 

1 t t (T 1 t · ). dTC - r ( aTC aTC ) aAX(y)d n ercep rans a IOn . -;]h - JyEYBR aAX(y) - aAY(x) -----a;;- y 
aAX( ) AX( ) aAX( ) l where --y- = - -y- and --y- = --

aa a ab a 

· Normalize the gradients 
. dTG 

dJ - da 
SLOPE - J (dIaG )2 +( dIbG )2 
. dTG 

dJ - ~ 
INTERCEPT - J(dIaG )2+(dIbG )2 

Step 3.2. Perform a Hne search for step size a j 

· Update the two allocation decisions Alj and A2j 

(Alj)' = A3-(bLajd~fTERGEPT) 
(aJ-aJdSLOPE) 

(A2j )' = A4-(~~ajdjfTERGEPT) 
(aJ-aJdSLOPE) 

· Repeat Steps 2.1, 2.2, 2.3 using (Alj)' and (A2j )' 

· Find (aj )* = argminTC 
aJ 

Step 3.3. Update the allocation decisions 

AIJ+l = A3-(~-(ajrd~NTERGEPT) 
(aL(aj )* d"kLOPE) 

A2j +1 = A4-(~-(ajrdjNTERCEPT) 
(a j -(aj

)' d"kLOPE) 

· Repeat Steps 2.2, 2.3 using AIJ+l and A2J+l 

· Return to Step 3 

Step 4. Terminate with the solution Alj, A2j and BR 

The only difference between L2 and L§ is that in the L§ case there are closed 

form solutions for the centroids whereas we need to resort to the Weiszfeld's 

method to numerically calculate the median locations for the L 2 case. 

Example 4.5: Steepest-Descent Improvement Algorithm - Euclidean

metric (L2 ) Case 
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Let's consider an example implementation of the ab ove algorithm for the 

Figure 4.24. We will use the same example in the preceding sections. We 

have a square market region M={ (x, y) lx E (0,100) and y E (0, 100)}, i.e. 

M = 100. We wish to determine an optimal allocation decision for a linear 

demand density function (D (x, y) = 100 + lOx + 5y) over the market region M. 

The starting solution for this instance is A1=35 and A2 = 40 at YP1 = A3 = 40 

and YP2 = A4 = 50, respectively. 

The steps of the algorithm are as follows: 

ITERATION 1 

Step 1. Define and Initialize the model parameters and variables 

j=O 

ECOST :=5 x 10-4 

YP1 = A3 = 40 and YP2 = A4 = 50 

A1 j =1=35 and A2j =1 = 40 

M=100 

Step 2. Initialization: Allocate the service regions and optimally 

locate facilities 

Step 2.1. Calculate Slope(a) and Intercept(b) of BR using (13-_A':4) 

( 
x-A1j ) 

A1j-A2J 

Slope a := 2, Intercept b := -30 

Step 2.2. Identify the following sets and functions given BR 

br( x) = y = 2x + 30, br(y) -1 = X = ~ + 15 

YBR = [0, 100], X BR = [15,65], X A1 = [0, 15], X A2 = [65, 100J 

Step 2.3. Find the optimal locations and calculate the total cost 

Start with the initial estimates using centroidal locations: 

(xf, yf) = (27.72,69.07) and (xf, yf) = (73.27,48.96) 
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Employ Weiszfeld 's method to find the correct median locations. 

(xi, Yi)j=l := (28.72,71.89) 

(x2, Y2)j=1 := (74.22,49.94) 

TCj=l = 248,018, 120.86 

Step 3. Improvement: U pdate the first service region sizes A1j =1 and 

A2j =1 

. ITCH1_TCjl 
Do WhIle ( ITCll ~ écasT): 

Step 3.1. Calculate the partial gradients 

· Total cost with respect to Single dimensional allocation decisions 

Slope (Pure rotation): d~C = 13,446,950.0 

Intercept (Translation): d~C = 292,916.5 

N ormalize the gradients 

d~~~PE = 0.9998 

dj~~ERCEPT = 0.0218 

Step 3.2. Update the two allocation decisions A1 j =1 and A2j =1 

(A1j =1)' = 70-0.02180< 
2-0.99980< 

(A2j =1)' = 80-0.02180< 
2-0.99980< 

· Repeat Steps 2.1, 2.2, 2.3 using (A1 j =1)' and (A2j =1)' 

· (a j =l)* = arg minTC = 0.5660 
0<) 

Step 3.3. Update the allocation decisions 

A1 j =2 = 40-(-30-(0.5660)0.0218) =48 82 
(2-(0.5660)0.9998) . 

A2j =2 = 50-(-30-(0.5660)0.0218) =5579 
(2-(0.5660)0.9998) . 

TCj=2 = 243,423,874.69 

Return to Step 3 
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Figure 4.25: Solution in the end of first iteration of the Euclidean-metric based 
example for Steepest-descent improvement method (Example 4.5). 

Allocation decisions in the end of iteration 1 is displayed in Figure 4.25. For 

brevity, we do not detail the remainder of iterations. Table 4.5. presents the 

results for the remaining iterations. Last column, % GAP, represents the 

percentage gap between the current iteration result and the solution of the 

constructive shooting approach. Optimality condition (less than 0.05% im

provement) is reached at j = 20th iteration, which is illustrated in Figure 4.26. 

Note that linear convergence rate associated with the steepest-descent al-

gorithm is apparent from the iteration results. 
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Figure 4.26: Solution in the end of 20th iteration of the Euclidean-metric based 
ex ample for Steepest-descent improvement method (Example 4.5). 

Table 4.5. Steepest-descent improvement algorithm's iteration results 

Euclidean-metric (L2 ) example (Example 4.5). 
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4.4.3 Improvement Based: Modified-Newton Method 

The purpose of this section is to illustrate performance gain by using second

order improvement methods over the gradient-based improvement method (i.e. 

steepest-descent) discussed in the previous section. Since the shape preserving 

transformation concept is developed in the previous section, we do not repeat 

here. Instead, we will first present an analytical form of the second-order 

derivatives for Euclidean-metric based cases, and then, provide the modified-

Newton algorithm, which accounts for negative-definiteness of the Hessian, 

thus providing guaranteed convergence. Lastly, we will illustrate the perfor-

mance difference between first-order and second-order methods on a simple 

example. 

Due to the simplicity of allocation decision in 2-facility case, i.e. a straight 

line, we can calculate the second or der derivatives without much difficulty. 

Following proposition provides the analytical form of the Hessian for the case 

when allocation line BR is a straight line, namely Euclidean-metric based 

distance measures p = L 2 and p = L~. 

Proposition 4.9. Hessian of the TC with respect to the allocation line BR 

parametrized over its slope (a) and intercept (b), for the cases L2 and L~, can 

be found as follows: 
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where 

where x = (AX(y), AY(x)) E BR. 

ôTC ôTC ô
2
TC d ô

2
TC b b . d f, (56) d (57) M ôAx(y) , ôAY(x) , ôAx(y)2 an âAY(x)2 can e 0 tame Jram an . oreover 

derivatives of AX(y) with respect to slope and intercept are as follows. 

Proof. 

oAX(y) 

oa 
oAX(y) 

ob 
02 AX(y) 

oaob 

Praof can be found in Appendix 4. • 

We now present the second-order improvement algorithm. For consistency, 

we will implement the algorithm in terms of two triggers (Al and A2) as in 

the case of constructive and steepest des cent algorithm. Figure 4.27, repeated 

here for convenience, illustrates the notation used in the algorithm. 

Modified-Newton Improvement Algorithm: 
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Figure 4.27: Illustration of the allocation decisions for 2-facility Euclidean
metric based distance measure. 

Step 1. Define and Initialize the model parameters and variables 

j : index for optimality iterations (i.e. j* = {jl ECOST ~ ITC~;~~rCjl} 

ECOST : epsilon parameter for optimality stopping decision 

a j : step length for line search iterations at the lh iteration 

Al) : /h iteration value for the first service region size at y = YPI 

A2j 
: /h iteration value for the first service region size at y = YP2 

x? = (x?, yi) : optimal locations corresponding to Ai=1,2 

M : market boundary parameter 

Set j = D, Alj and A2j 

Step 2. Initialization: Allocate the service regions and optimally 

locate facilities 

Step 2.1. Calculate Slope(a) and Intercept(b) of BR using cr;_A;4) 

( 
x-Ali ) AIJ-A2J 
Step 2.2. Identify the following sets and functions given BR 
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Step 2.3. Find the optimal locations and calculate the total cost 

xi = (xi,yn j := arg min UA dp(Xl,X)D(x)dx) 
(Xl,Yl) 1 

x~ = (x~, y~)j := arg min UA dp(X2, x)D(x)dx) 
(X2,Y2) 2 

TCj = JAl dp(xi, x)D(x)dx + JA2 dp(x~, x)D(x)dx 

Step 3. Improvement: Update the first service region sizes A1 j and 

D YUhol (ITCH1-TCjl ) o vv 1 e 1 TC) 1 ~ fCOST : 

j=j+1 

Step 3.1. Calculate the Partial Derivatives and the Hessian 

o Total cost with respect to single dimensional allocation decisions 

(AX(y), AY(x)) 

(a~~7u) - a~~fx») = [dp(xi, x) - dp(x~, x)] D(x) 

o Total cost with respect to: 

SI (P t t o )0 dTC _ r ( aTC ôTC ) aAX(Y)d 
ope ure ro a IOn 0 --ria - JYEYBR aAX(y) - aAY(x) au y 

1 t t (rn.. 1 t O 

)" dTC - r ( aTC aTC ) aAX(Y)d n ercep Hans a IOn 0 dh - JyEY
BR 

aAx(y) - aAY(x) --a;;- y 
aAX( ) AX( ) aAX( ) 1 where --y- = -_Y- and -_Y- =--

aa a ab a 

o Gradient \lTC = (dTC dTC) t 

o Hessian \l2TC = [d;~;p db a;a~~ ] from Proposition 4090 
a2TC a2 TC 
aaab 7Jïj2 

o Check if \l2TC is positive-definite. If yes \l2TC := (\l2TC) + , 

el se find smallest k where (\l2TC) + := \l2TC + 4 k l is positive-definite. 

o Ca1culate direction vector for the slope( a) and the intercept (b ) 0 

- and normalize direction vector 0 

( 
d~ ) ('VTC) 
d~ - - ('V2TCt 

dj - d~ 
SLOPE - J(d~)2 +(d02 
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dj - db 
INTERCEPT - J(d~)2+(d02 

Step 3.2. Perform a Hne search for step size a j 

· Update the two allocation decisions Alj and A2j 

(Alj)' = A3-(bLajd~rTERCEPT) 
(aJ-aJdSLOPE) 

(A2 j )' = A4-(/;J-ajd~rTERCEPT) 
(aJ-aJdSLOPE) 

· Repeat Steps 2.1, 2.2, 2.3 using (Alj)' and (A2j )' 

· Find (ajr = argminTC 
a) 

Step 3.3. Update the allocation decisions 

AlJ+l = A3-(/;J-(ajrd~NTERCEPT) 
( a j -(aj )* d~LOPE) 

A2J+l = A4-(/;J-(ajrd~NTERCEPT) 
( aj -(aj )* d~LOPE) 

· Repeat Steps 2.2, 2.3 using Alj+l and A2J+l 

· Return to Step 3 

Step 4. Terminate with the solution Alj, A2j and BR 

Now, we provide an illustration of the ab ove algorithm using the Squared 

Euclidean-metric based distance measure. 

Example 4.6: Modified-Newton Improvement Algorithm - Squared 

Euclidean-metric (L~) Case 

For convenience, we use the same example in the preceding sections, where 

we have a square market region M={(x, y)lx E (0,100) and y E (0,100)},i.e. 

M = 100. We wish to determine an optimal allocation decision for a linear 

demand density function (D(x, y) = 100+ 10x+5y) over the market region M. 

The starting solution for this instance is AI=35 and A2 = 40 at YPI = A3 = 40 

and YP2 = A4 = 50, respectively. The steps of the algorithm is as follows: 
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ITERATION 1 

Step 1. Define and Initialize the model parameters and variables 

j=O 

EcaST :=1 x 10-5 

YPI = A3 = 40 and YP2 = A4 = 50 

A1 j =1=35 and A2j =1 = 40 

M= 100 

Step 2. Initialization: Allocate the service regions and optimally 

locate facilities 

Step 2.1. Calculate Slope(a) and Intercept(b) of BR using (1;_A14) 

( 
x-Alj ) 

Alj-A2j 

Slope a := 2, Intercept b := -30 

Step 2.2. Identify the following sets and functions given BR 

br(x) = y = 2x + 30, br(y)-l = x = ~ + 15 

YBR = [0, 100], X BR = [15,65], X A1 = [0, 15], XA2 = [65, 100] 

Step 2.3. Find the optimal locations and calculate the total cost 

Centroidal locations are optimal: 

(xi, Yi)j=l := (x?, yf) = (27.72,69.07) 

(x2, Y2)j=1 := (xf, yf) = (73.27,48.96) 

TCj=l = 8,757,663,304.33 

Step 3. Improvement: Update the first service region sizes A1j =1 

and A2j =1 

D Wh·l (ITCj+l-TCjl ) 
Ole ITC) 1 ~ EcaST : 

j=j+1 

Step 3.1. Calculate the partial gradients 
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Figure 4.28: Starting solution of the Squared Euclidean-metric based example 
for Modified-Newton's improvement method (Example 4.6). 

· Total cost with respect to single-dimensional allocation decisions 

Slope (Pure rotation): d~C = 841,815,739.92 

Intercept (Translation): d~C = 20,032,429.78 

VTC = (841,815,739.92,20,032, 429.78)t 

[ 

744,158,858.85 23,270,194.78] 
· Hessian V 2TC = is not Positive-

23,270,194.78 702,559.25 

definite. 

· With k:=9, 

( 
2)+ 2 k-9 [ 744,421,002.85 

V TC := V TC + 4 - 1 = 
23,270,194.78 

is Positive-definite 

23,270,194.78 ] 

964,703.25 

· Calculate direction vector for the slope( a) and the intercept (b). 
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( 
d~=l ) (\lTC) (1.9584) 
d~=l = - (\l2TC) + = -26.4751 

N ormalize the direction vector. 

j=l 
dSLOPE = 0.73771 

j=l 
dINTERCEPT = -0.99728 

Step 3.2. Perform a Hne search for step size a j 

. Find (aj =l)* = arg minTC = 8.48 
a)=l 

Step 3.3. Update the allocation decisions 

A1j=2 = 44.78, A2j=2 = 52.05, TCj=2 = 8,532,834,684.62 

Table 4.6. illustrates the remainder of iterations. Optimality condition (0.001 % 

improvement) is reached at j = 5 iteration. Iteration result for j = 5 is as 

below and displayed in Figure 4.29. 

(

Al ) j=100 (51.57 ) 

A2 54.18 

x~ (x~,Yn = (32.66,61.99) 

x; (x;, y;) = (78.82,49.93) 

br(x) y = 3.826x - 157.326 

TC = 8,459,944,242.44 
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,'"i'ilRlIIS'mS :, 
'<4"'{ l'·'''·:,,}·~··· 

"',~:/~;; yp.t.ooA'flONtINE,' 
",'»' 

1 BR:tP ;'Ai ,,,.ja; • .Ml ,,"I;if ·,.y,ill xZ;0; ,;1 y2.> ::;~$Iope lnII!rœiil::' ...... ·tt' ,,~ 

0 35.00 40,00 40 50 27,72 69,07 73,27 48,96 2,000 -30,000 8,757,663,304,33 
1 44,78 52,05 40 50 38,08 70,13 76,56 43,16 1,374 -21,543 8,532,834,684,62 2,63% 
2 45,20 49,59 40 50 32,07 65,99 76,79 48,11 2,277 -62,918 8,501,426,366.85 0.37% 
3 50.84 54.33 40 50 33,68 63.62 78.77 48,57 2,858 -105.288 8,465,602,279.68 0.42% 
4 51.43 54.07 40 50 32.62 62.05 78.77 49.91 3.793 -155.090 8,459,968,472.85 0.07% 
5 51.57 54,18 40 50 32.66 61.99 78.82 49.93 3.826 -157.326 8,459,944,242.44 0,0003% 

Table 4.6. Modified-Newton improvement algorithm's iteration results 

for the Squared Euclidean-metric (L~) example (Example 4.6). 
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Figure 4.29: Solution at the end of 5th iteration of the Squared Euclidean
metric based example for Modified-Newton's improvement method (Example 
4.6). 

In order to compare with the performance of first-order approach, steepest

descent, Table 4.7. illustrates iteration results for the same problem with L~ 

and identical starting solution. When Table 4.6. and 4.7. are compared, it is 

obvious that second-order method is significantly better. This is due to the 

ill-conditioning of the Hessian of TC of the LAM-AVS. Steepest-descent, in 

Table 4.7., converges in more than 100 iterations, which is roughly twenty-fold 

worse than Newton's method. Sinee Newton's method require the ca1culation 
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of Hessian, it is computationally costly. We have experimented with alterna-

tives, such as Quasi-Newton and conjugate-gradient methods which perform 

significantly better than the first order approach. Conjugate-gradient method 

will be discussed in more detail in the next Chapter 5. 

'~~',; ,~.;u" ";;~ps,,;;;) 

j 'Ai' l;;A2mn ' ... :l ... t_, ,.1"1'~Yït'r.T ~. ":' 'uq, ~t,d __ : 
,:~."" A!C(%}u 

1 35,000 40,000 2.000 -30.000 27.72 69.07 73.27 48.96 8,757,663,302.00 0.9997 0.0238 0.458 -
2 45.395 51.879 1.542 -30.011 36.59 69.01 76.92 44.50 8,521,668,250.00 -0.0238 0.9997 17.697 0.02695 
3 44.676 49.770 1.963 -47.703 33.19 67.18 76.70 47.10 8,508,818,563.00 0.9997 0.0238 0.093 0.00151 
4 46.892 52.238 1.870 -47.705 34.95 67.15 77.50 46.18 8,498,144,540.00 -0.0238 0.9997 12.660 0.00125 
5 46.222 50.828 2.171 -60.362 33.07 66.15 77.20 47.58 8,491,555,991.00 0.9997 0.0238 0.073 0.00078 
6 47.839 52.605 2.098 -60.364 34.30 66.12 77.81 46.98 8,485,744,834.00 -0.0238 0.9997 10.245 0.00068 
7 47.239 51.510 2.341 -70.606 33.00 65.44 77.53 47.93 8,481,796,774.00 0.9997 0.0238 0.061 0.00047 
8 48.493 52.877 2.281 -70.607 33.93 65.42 78.02 47.50 8,478,269,300.00 -0.0238 0.9997 8.570 0.00042 
9 47.964 51.989 2.485 -79.175 32.95 64.92 77.76 48.20 8,475,731,300.00 0.9997 0.0238 0.051 0.00030 
10 48.972 53.081 2.434 -79.176 33.69 64.90 78.16 47.87 8,473,446,321.00 -0.0238 0.9997 7.216 0.00027 
11 48.507 52.345 2.606 -86.390 32.92 64.53 77.93 48.41 8,471,751,476.00 0.9997 0.0238 0.044 0.00020 
12 49.333 53.236 2.562 -86.391 33.52 64.51 78.26 48.15 8,470,213,650.00 -0.0238 0.9997 6.387 0.00018 
13 48.922 52.606 2.714 -92.776 32.89 64.21 78.06 48.59 8,468,991,391.00 0.9997 0.0238 0.038 0.00014 
14 49.624 53.361 2.676 -92.777 33.39 64.19 78.34 48.38 8,467,880,100.00 -0.0238 0.9997 5.618 0.00013 
15 49.260 52.819 2.809 -98.393 32.86 63.95 78.16 48.74 8,466,989,479.00 0.9997 0.0238 0.034 0.00011 
16 49.860 53.463 2.776 -98.394 33.29 63.93 78.41 48.57 8,466,177,658.00 -0.0238 0.9997 - 0.00010 
100 51.479 54.135 3.765 -153.842 32.68 62.08 78.79 49.88 8,459,958,200.00 -

Table 4.1. Iteration results for Steepest-descent improvement algorithm 

for the case L~ (Example 4.6). 
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4.5 Conclusions 

In the context of the most general model, we first established the relation 

between solving the problem in the location variable space versus solving in 

the allocation variable space. The only approach that has been pursued in 

the literature is the former approach. In this chapter, we contribute by devel

oping constructive and improvement based heuristics for the problem in the 

allocation variable space. 

Our constructive heuristic approach builds on its counterpart in the single

dimensional case. In this approach, based on an initial shooting, we again tile 

the market region according to the first-order conditions. The main difference 

from its single dimensional counterpart is the boundary of the service region. 

On a line, the boundary is a point, on the other hand, in the planar setting, 

boundary is a straight line. Accordingly, when we shoot the first service region, 

we use the information from the first order conditions to match the second re

gion with the market boundary. The level of match between the second service 

region and market boundary guides us in improving our shooting decisions. 

We propose two improvement heuristics: steepest-descent (first-order method) 

and modified Newton's method (second-order method). In both of these 

heuristics, we improve the allocation decision, which is a straight line, by trans

lation and rotation movements. Starting with an initial allocation solution, 

these methods improve the allocation decisions based on their cost improve

ment prospects of these two methods. One difference of these heuristics from 

the single dimensional improvement methods is that we are now iterating an 

allocation line rather than an allocation point. 

In conclusion, with the constructive heuristic we try to find a solution which 
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satisfies the first-order conditions whereas with the improvement heuristics we 

try to find a solution which will decrease the total cost. In addition, construc

tive approach can be viewed as an effort where we impose the equidistance 

condition and try to match with the market boundary. In contrast, improve

ment method imposes the market boundary and tries to achieve equidistance 

property of the allocation line with respect to locations. While the constructive 

heuristic constitutes an extension to the single-dimensional version, it is not 

straightforward to extend it further to the planar n-facility case as described 

in the next chapter. Reasons of this challenge will be discussed in more detail 

in the introduction section of the next chapter. On the other hand, we use 

most of the results developed in this chapter for the improvement heuristics 

in extension to the n-facility case. 

Even though we have not included it in this chapter, for brevity, there 

is also another approach, the sequential location-allocation method which is 

originally proposed by (Cooper, 1964). This method so far has been used for 

the dis crete demand cases. In the Appendix 4, we provide an extension of SLA 

for the continuous demand together with an illustration for a planar 2-facility 

example. 
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Chapter 5 

Planar Model: N-Facility and Euclidean-Metric 

Case 

5.1 Introduction 

The purpose of this chapter is to develop solution methodologies for the planar 

n-facility location-allocation problems in the allocation variable space. This 

effort will extend the approaches developed for the 2-facility case. An ex am

pIe illustration of the 15-facility problem with nonlinear demand is provided 

in Figure 5.1. One major difference between the n-facility case and 2-facility 

case is the difficulty in the representation of the allocation decisions. As a 

result of this fundamental difference in the allocation variable representation, 

the adoption of the methods developed for the 2-facility case is not straightfor

ward. Nonetheless, basic ideas underlying the methods developed for 2-facility 

case, such as the shape preserving transformation, help develop alternative 

methodologies for the n-facility case. 

In this introduction section, Section 5.1., we discuss the challenge of moving 

from 2-facility representation of the allocation decisions to n-facility represen

tation and the resulting difficulties in the adoption of the methods developed 

for the 2-facility case. We also describe briefiy the voronoi-diagram approach 

as a tool for representing the allocation solutions. In Section 5.2., we intro

duce the additional notation such as the new decision variables: Vertices and 

edges. In Section 5.3., we extend the location-allocation problem formulations 

in location and allocation variable spaces (LAM-LVS and LAM-AVS) to the 

n-facility setting. Eventhough, there is no fundamental change neither in these 
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models nor in their analytical properties, we still inc1ude them for the com

pleteness of the material in this chapter. In Section 5.4., we provide a novel 

solution approach for the planar n-facility case with Euclidean-metric based 

distance measures. This approach is the vertex-iteration based improvement 

approach which extends the allocation decision improvement methods devel

oped in the previous chapter. The only limitation of this approach is that 

it is suit able for mainly the Euclidean-metric based distance measures where 

the allocation decisions are in the form of straight lines. We first provide the 

vertex-based representation of the allocation decisions and then describe spe

cial procedures to handle the vertex-events which can cause inconsistencies. 

For the vertex-iteration based improvement approaches, we provide steepest

des cent and conjugate-gradient solution procedures. In addition to formaI rep

resentation of the algorithms, we provide ex ample implementations for these 

two solution approaches. 

In what follows we first briefly review voronoi diagram approach to the 

location-allocation problems. Next we discuss the challenges of extension of 

the solution techniques for 2-facility to n-facility case. More specifically, we 

will explain why the constructive solution technique cannot be adopted to the 

n-facility case and the necessary changes to the improvement based algorithms. 

5.1.1 Voronoi Diagrams for Location-Allocation Problerns 

The purpose of this section is to summarize a powerful computational geome

try approach to the location-allocation problem, namely the voronoi diagrams. 

This section is by no means a comprehensive overview of the voronoi applica

tions; however, Okabe et al. (2000) represent a stellar reference on this subject. 

A whole chapter of this reference is dedicated to application of Voronoi dia-
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Figure 5.1: An illustration of the solution to the pl anar location-allocation 
problem with n = 15 service regions and a nonliner demand density function. 

grams to various types of planar location problems. Voronoi diagrams are 

polygonal tesselations of the plane where each polygon (~) is associated with 

a generator point (Pi). This association between the voronoi polygons and the 

generator points are based on a closeness measure such as a distance measure 

based on any metric. From this definition, a generator point (Pi) in a poly

gon (~) is called the nearest generator. For notation reference, let's define 

the set of polygons as A = {Al' A2' ... , An} and the set of generator points as 

p = {Pl,P2, .. ·,Pn}. An example voronoi diagram tesselation is illustrated in 

Figure 5.2. 

Depending on the metric chosen as the basis of closeness measure, a voronoi 

polygon can be defined as collection of points satisfying the following relation 

which is based on the nearest-neighbor property. Note that this representation 

defines Ai as a closed set which is a subset of the plane where Pi dominates 
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Figure 5.2: An illustration of voronoi-diagram for n = 10 generator points. 

all other generators with respect to distance measure based on Lp norm. 

It is also useful to define the set of boundary points of the A as 3A, which, 

then, allows us to define the intersection of boundaries of two voronoi polygons 

as follows.8 

These intersection sets are generally referred as Voronoi Edges (eij). When 

three of these edges intersect at a point, V, then it is referred as Voronoi 

Vertex. When four or more edges intersect at a voronoi vertex then it is 

SIn planar 2-facility case, recall that, in place of BAI nBA2 , we used Al nA2 . Accordingly, 
allocation line BR of 2-facility case is a voronoi edge. 
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Figure 5.3: An illustration of the voronoi edges and vertices. 

called a degenerate voronoi vertex. Figure 5.3 illustrates these definitions. 

There are interesting properties of Voronoi edges and vertices. From this 

point onward, we will be referring to voronoi diagrams based on Euclidean-

metric based measures (i.e. L2 and L~). In the case of Euclidean-metric 

based distance measures, the voronoi edge, eij, is a bisector between Pi and Pj· 

Since each bisector divides the plane into two half spaces, a voronoi polygon 

as the intersection of at most (n - 1) half planes, where n is the number 

of generator points. Accordingly, a voronoi polygon is bounded by at most 

(n - 1) voronoi edges and (n - 1) voronoi vertices. Note that voronoi polygons 

can be unbounded, such as Al, Al and A7 in Figure 5.3. Unless the generator 

points are collinear, the voronoi edges are either line segments or half lines. In 

addition, Voronoi diagram of n generators has at most (2n - 5) vertices and 
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(3n - 6) edges. 

5.1.2 Extension from 2-facility to n-facility 

This section serves two purposes: Discussion of the difficulty of developing a 

constructive solution approach and justification of the need for the modifica

tions to the improvement algorithms introduced for the 2-facility case in the 

previous chapter. 

In both the single-dimensional case and the 2-facility planar cases, the 

constructive solution approach follows the following generic steps: Generate 

initial trigger(s), solve sequentially the differential equations in order to tile 

the remaining service regions, and improve the initial triggers according to 

the violation of boundary conditions. The challenge in implementing this 

constructive solution approach to the n-facility planar case is that the number 

of remaining service regions at each trigger level is unknown. Please see the 

y = YI and Y = Y2 in Figure 5.4, which illustrates this point. Note that this is 

a mute issue in the planar 2-facility case. 

We now turn to the improvement based heuristic. In the planar 2-facility 

case, we have described that there are two ways to improve an allocation de

cision: Pure rotation and translation. Recall that the allocation decision is a 

straight line for the Euclidean-metric cases and a special form composed of at 

most three segments for the Manhattan-metric case, which will be discussed in 

Chapter 7. Furthermore, we showed that with these shape preserving trans

formations, it is possible iterate from one feasible solution to the other by 

changing the slope and intercept of the allocation line. In the 2-facility case, 

this is a viable procedure since we have a single allocation line BR which char

acterizes the solution uniquely. However this is a challenging task when there 
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Figure 5.4: In the n-facility case, the major limitation for constructive solution 
approaches is the inability to know the number of service regions at each trigger 
level. 

are three or more service regions. Without loss of generality, we will illustrate 

the arising complication for the Euclidean-metric based case. Figure 5.5 helps 

us understand this further. 

In Figure 5.5, the solid lines depict a feasible allocation solution for 3-

facility case. In the terminology of the previous chapter, we have three al-

location lines, ER1, ER2, and ER3, which allocate the rectangular market 

region to three service regions. The vertex point, P123 , is the point at which 

three allocation decisions intersect. Improvement algorithms presented in the 

2-facility chapter is based on the shape-preserving transformation of the allo-

cation line. Accordingly, when we improve the allocation lines, ERl, BR2, 

and ER3, independently to reduce total cost, as shown in Figure 5.5 with 

dashed lines, we would end up with three candidates points (P12 , P 23 , and P 13 ) 

to replace H23. We need to evaluate these three alternative cases and choose 
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Figure 5.5: Iterating allocation decisions (BRI, BR2 and BR3). 

the best as the next solution. None of these candidate points (PI2, P 23 , and 

P 13 ) conform to the definition of a vertex. In order for P 12 , P 23 , or H3 to 

be considered as a vertex, we need to force the third allocation line to pass 

through that point.9 

There are other alternative ways if one wants to iterate the allocation de-

cisions independently. One approach is to choose Pl23 as the axis of rotation 

(i.e. reference point of rotation which is kept constant) and rotate allocation 

decisions around that point. Another approach is to rotate only two allocation 

decisions (i.e. BRI and BR2) and consider the effect of their rotation on the 

remaining one (BR3). Whereas the first method would be suboptimal since 

we are restricting the search space (i.e. any point in the region could be a 

9 An independent iteration of each edge would create 3 candidate vertices. Hence, we 

have to search among, at most, ( 3 ~:~ ~ 55) ) possible feasible solutions to evaluate an 

improvement iteration step. As an example when we have n = 10 facilities, the voronoi 
tesselation will have at most 15 (= 2 x 10 - 5) vertices. On the other hand, when we 

iterated the allocation lines (i.e. voronoi edges), there will be ( 3 ~~5) ) = 1.4771 X 1013 

possible solutions to evaluate and choose from. 
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vertex point), second method would be as difficult to implement as indepen

dent iteration of the allocation decisions. For instance the choice of which two 

allocation decisions to improve and which to leave as the dependent allocation 

decision constitutes another set of combinatorial decisions. 

In the light of these complications, we decided to move the vertices rather 

than the allocation lines. We calI this vertex-iteration based improvement 

approach for the n-facility case. This not only helps us overcome the above 

difficulties but also allows us to use most of the results obtained in the 2-facility 

case. 

5.2 Description of Parameters and Notation 

In what follows, we first describe parameters and decision variables of the 

planar location-allocation problems with more than two facilities. For the 

continuous fiow of the material in this chapter, sorne of the previously defined 

notation will be repeated here. Sorne of these definitions could be observed in 

Figure 5.3, where an n = 10 facility solution is presented. 

This section uses the following notation and parameter definitions: 

Parameters: 

x : a point in the two dimensional space x = (x, y) 

M: Two dimensional market area (assumed to be a c10sed and compact 

set) 

D(x) : Demand density function over the two-dimensional market region 

M (D(x) D(x, y)) 

dp (Xi, x) : Short est distance between Xi and x for a given distance measure p 
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(p = L2 denotes Euclidian-metric, p = L~ denotes Squared Euclidian-metric) 

As in the 2 facility case, we have two main decision variables: Location deci

sions and Allocation decisiollS. These decision variables are defined below. 

Decision Variables: 

Xi : locational coordinates ofthe facility in service region i, i.e. X(== (Xi, Yi). 

Ai : Allocation polygon for ith service region (assumed to be a closed set 

and in polygonal shape but not necessarily convex). 

xt : Optimal locations given the allocation decisions Ai =I,2, .. ,n 

In the n-facility case, we need to introduce additional constructs for allocation 

decisiollS which are the vertices and edges forming the allocation decisions 

or more precisely allocation polygons. 

eij : is the edge between two service regions ~ and Aj and more formally 

eij = ~ nAj 

Vk : is the vertex formed by the intersection of at least three edges (i.e. 

Vk = eij n eik n ejk) 

In the 2-facility case, a single allocation line BR is sufficient to characterize 

the allocation decisions Al and A2 . Each of these allocation decisions are 

bounded with the allocation line and market boundary. In comparison with 

the 2-facility case's allocation line BR, in the n-facility case we have a finite 

number of edges, each of which is an allocation line separating the two service 

regions sharing that edge(s). Note that it is possible to have more than one 

edge shared by the same pair of allocation polygons if they are non-convex 

polygons. Therefore, in or der to characterize an allocation polygon, we need 
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to characterize aIl the edges which separate the polygon from its neighbors. 

Since within each allocation polygon A we can draw horizontal and ver

tical straight lines from one edge to another edge, we can define the Single

dimensional Allocation Decisions (Ar (x) and Ai (y)) as in the 2 facility 

case. The subscript i denotes that these allocation decisions are measured 

within the allocation polygon A. For notational accuracy, we will define these 

single dimensional decisions more formally. For these definitions Figure 5.6 is 

illustrative. In the 2-facility case, since there is a single allocation line BR 

and that single dimensional allocation decisions were sufficient to characterize 

this allocation line, these single-dimensional allocation decisions are measured 

from two reference axes, i.e. x = 0 and y = O. In n-facility case, however, 

there allocation decisions are formed by more than one edge (a.k.a allocation 

line), thus single dimensional allocation decisions for an allocation polygon A 

need to be measured from variable reference points as illustrated in Figure 

5.6. Let's take the x-dimensional allocation decision at level y, namely Ai(Y). 

This single-dimensional allocation decision would be measured from Bf (y), 

the starting boundary point of A at the level y. Similarly Bf(x) denotes the 

starting boundary point of A at the level x for the single-dimensional allo

cation decision Ar (x). If we denote the set of indices of the service regions 

A=1,2, ... n at x and y levels as OS (x) and OS(y), then we could define the 

starting boundary points with respect to these sets. 

OS(x),OS(y) : set of indices of the service regions A=1,2, ... n at x and y 

levels. 

Note that the set of indices are ordered according to the corresponding service 

regions position with respect x = 0 and y = O. For example, if a straight line 
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parallel to x - axis at level y = YI passes through both Ai and Aj and if Ai 

is doser to x = 0 than A j then in the set OS (y = YI), i will precede j. In 

order to refer to this ordering, we define pos(i, S) < pos(j, S), where pos(·, S) 

is defined as below. 

pos(k, S) : represents the position of element k in set S. 

Now we could define the starting boundary points, Bf(y) and Br(x), for the 

service region A at any level of x and y-dimensions. 

Bf(y) L Aj(y) 
jEOS(y) 

pos(j,OS(y) )<pos( i,OS(y)) 

Br(x) L A;(x) 
jEOS(x) 

pos(j,oS(x ))<pos( i,OS(x)) 

For notational brevity, we herein limit the use ofthe Bf(y) and Bf(x) and 

assume that single dimensional allocation decisions Ai( y) and Ar (x) would 

be interpreted according to the starting boundary points within each service 

reglOn. 

Observe that, in the above notation, we take x = 0 and Y = 0 as the 

reference axes and the increasing direction from the starting boundary points, 

Bi (y) and Br (x) as the measure of the single dimensional allocation decisions 

Ai (y) and Ar (x). However since the results in this chapter can be shown to 

be adopted for any reference axes and directions, there is no loss of generality 

of our results with respect to the above definitions and assumptions. 

Lastly, we define the following objective functions, overall problem and for 

service region Aï. 

TC(A;(x) , Ai(y) , Xi, i 1,2, ... , n) : total cost objective function for a 
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Figure 5.6: Illustration of the single-dimensional allocation decisions and the 
boundary points. 

given solution of (Af(x) , Af(y), Xi, i = 1,2, ... , n) 

TCi(Af(x),Af(y),Xi): cost in the service region Ai. 

Accordingly following holds true. 

TC(Af(x) , AHy), Xi, i = 1,2, ... , n) = L TCi(Af(x), Af(y), Xi) 

i=1,2, ... n 

5.3 Alternative Modeling Approaches for N-Facility Case 

In this section, we will extend the two alternative modeling approaches for the 

2-facility planar location-allocation problems of Chapter 4 to n-facility case. 

We will again introduce the location-allocation problem modeling in two dif-

ferent variable spaces, Location Variable Space (LVS) and Allocation 

Variable Space (AVS). In all of these models, we use (Xi=1,2 .... ,n) to denote 
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the location decisions and (At(x) , AHy)) to denote the single-dimensional 

allocation decisions within each allocation polygon. For sake of notational 

simplicity, we use implicit representation of the objective function in this sec-

tion. In the following sections, individual terms of the objective function will 

be specified in more detail. 

The generic model in the joint variable space is as follows. 

Location-Allocation Model (LAM): 

min TC(At(x), Af(y), Xi, i = 1,2, ... , n) 
AiCy),AY(x) 
Xi=(Xi,Yi) 

subject to 

(Bf(y) + Af(y), y) = (x, Bf(x) + At(x)) for (x, y) E BAi 

Since the feasible region is composed of affine relations, LAM is a biconvex 

programming problem; when we fix the allocation decisions, it becomes a 

multifacility planar location problem and fixing location decisions transforms 

it into a transportation problem. It can be further shown that LAM is non

convex problem for L2 and L~. 

Next section analyzes the model in the location variable space, where the 

allocation decisions are optimized given the location decisions. 

5.3.1 Modeling in Location Variable Space 

A location prioritized model is based on transforming LAM into an equivalent 

form with decisions variables as the location decisions only. At this point, 

we assume that our total cost is solely composed of the transportation cost. 
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Therefore the following problem is equivalent to the LAM: 

where 

mm TC(Xi, i = 1,2, ... , n) 
Xi=1,2, ... n 

1,2, ... , n) 

min 
A;Cx),AiCY) 

i=1,2 ... ,n 

TC (At(x) , Af(y) , Xi, i = 1,2, ... , n)J 

(Bf(y) + Af(y), y) = (x, Bf(x) + Af(x» 

V (x, y) E BA 

The above bi-Ievel optimization is equivalent to optimizing first over the alla-

cation decisions and then over the location decisions. If the allocation decisions 

At (x) and Af (y) were possible to express in closed form in terms of the loca

tion decisions then TC(Xi, i = 1,2, ... , n) could have been optimized directly. 

Since this is not possible, we include the solution to the allocation-problem as 

below in the constraint set of the location problem. 

dp (Xi, (x, Bt (x) + At(x») = dp (Xj, (Bf (y) + Af (y), y» (66) 

for V(Bf(y) + Af(y), y) = (x, Bf(x) + Af(x» E BA n BAj 

for Vi,j, and i =1- j (67) 

We now present the location-allocation problem in the location variable space. 

LAM- Location Variable Space (LAM-LVS): 

mm TC(At(x), Af(y), Xi, i = 1,2, ... , n) 
Xi=1,2, ... 7t 
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s.t. 

(Bf(y) + Af(y), y) (x, Bf(x) + At(x)) for \;f (x, y) E DA and \;fi 

and constraint (66) 

The only difference between LAM and LAM-LVS is the last constraint (66) 

which conditions the optimality of allocation decisions on the location deci-

sions, while making the allocation decisions endogenous decision variables and 

leaving the location variables as exogenous decision variables. Since LAM-LVS 

and LAM are equivalent problems, LAM-LVS is also a nonconvex problem for 

the n-facility case. The first order necessary conditions for LAM-LVS in the 

case of L 2 and L~ for n-facility case are analogous to the 2-facility case. For 

completeness we simply state their n-facility version with the notation used in 

this chapter. 

Proposition 5.1. 

The optimal locations of the n-facilities (xt), gzven the allocation deci

sions, satisfy the following conditions when the distance measure is based on 

the Squared Euclidean - Metric (L;) : 

for i = 1, 2, ... , n 

where xf and yf are the x- and y- dimensional centroids of A=1,2, ... ,n with 

respect to D(x). 

J xD(x)dx 
G A; 

Xi = --cJ::-D--c(--cx )-dx-
Ai 

and 

J yD(x)dx 
G Ai 

Yi = -J::-D----,(......,.x )-dx- for i = 1, 2, ... , n 

Ai 

161 



Proof. 

Proof follows from the 2-facility case proposition 4·1. • 

Proposition 5.2. 

The optimal locations of the n-facilities (xi), given the allocation deci

sions, satisfy the following conditions when the distance measure is based on 

the Euclidean - MetrÏc (L 2) : 

Proof. 

j (x: - x) 
Ilxt-xll D(x)dx 

Ai 

j (y;-y) 
Ilxt-xll D(x)dx 

Ai 

o for i = 1,2, ... , n 

o for i = 1, 2, ... , n 

Proof follows from the 2-facility case proposition 4.2. • 

5.3.2 Modeling in Allocation Variable Space 

Similar to the location-allocation model in the location variable space, the 

model in allocation variable space is also based on transforming LAM into an 

equivalent form with decisions variables as the allocation decisions only. Again 

for a given number of facilities, without loss of generality, we assume that our 

total cost is composed of only the transportation costs. Hence, the following 
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problem is equivalent to the LAM. 

where 

min TC(A;(x), Af(y)) 
Ar(x),Af(y) 

TC(AX(y), AY(x)) = mm {TC(A;(x) , Af(y), Xi, i = 1,2, ... , n)} (68) 
Xi=l,2, ... ,n 

Solving the above bi-Ievel model is equivalent to optimizing first over the 

location decisions and then over the allocation decisions. Again the optimal 

solution to the single facility location problem in (68) can be expressed in closed 

form for only the single-dimensional case. These optimal location solutions 

satisfy the first order necessary conditions of the LAM-LVS in the previous 

section and, thus, when we include them in the constraint set of the LAM, we 

obtain the following location-allocation model in the allocation variable space. 

LAM- Allocation Variable Space (LAM-AVS): 

min TC(A;(x),Af(y),x;,i = 1,2, ... ,n) 
Ar(x),AfCy) 

i=1,2, ... ,n 

(Bf (y) + Af(y), y) 

* x· 
~ 

S.t. 

(x, B;(x) + A;(x)) for '1/ (x, y) E 8A and 'l/i 

argminjdp(Xi,X)D(X)dX for i = 1,2, ... ,n (69) 
(Xi) 

Ai 

Since LAM-AVS and LAM are equivalent problems, LAM-AVS is also a non-

convex problem. First order necessary conditions for LAM-AVS in n-facility 

case are in the same form for both distance measures (i.e. L2 and L~). 
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First Order Necessary Conditions for LAM-AVS (for p = L2, and 

L~) : 

dp (Xi, (x, Bf(x) + Af{x))) - dp (Xj, (Bf(y) + Af(y), y)) = 0 (70) 

for V(Bf(y) + Af(y), y) = (x, Bf(x) + Af{x)) E BA n BAj and Vi,j, i =1- j. 

In the next section, we describe two improvement based solution meth

ods to determine the local optimum solutions for the LAM-AVS. These are 

Steepest-Descent Improvement and Conjugate-Gradient Improvement 

methods which are based on the iteration of vertices. 

5.4 Solution Methodologies 

As stated before, a direct adaptation of the allocation line improvement meth

ods developed for the 2-facility case is impossible due to the combinatorial 

aspect of choosing the best feasible vertex. Feasible vertex is defined as the 

intersection point of three or more allocation edges. In order to avoid the need 

to choose between alternative vertices, we implement a different approach 

where we iterate the vertices rather than the allocation lines (i.e. edges). 

Note that iteration of vertices is impossible without iteration of the allocation 

lines, but the difference is the need for choosing between candidate vertices, 

illustrated in Figure 5.5, is eliminated when vertices are used as the itera

tion variables. In what follows, we first present sorne analytical results for 

the vertex-representation. Next, we illustrate sorne special vertex events and 

corresponding handling methods. Lastly we present two improvement based 
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solution procedures. 

5.4.1 Vertex-based Representation 

In this section, we first describe the representation of feasible allocation so

lutions using vertiees of the allocation polygons and describe three types of 

vertices. Next, we derive first-order differential relationships between the ver

tiees and edges of the allocation polygons. Using these results and the results 

from the planar 2-facility chapter, we der ive gradients ofthe objective function 

with respect to the vertiees. Finally, we briefly explain the special cases of the 

vertex events as a result of vertex iterations and how we handle these vertex 

events in our improvement algorithms. 

In the traditional voronoi diagram approach, there are two types of ver

tiees: a set of vertiees formed by the intersection of voronoi edges and a single 

vertex which is located at infinity. In contrast, we here define three alternative 

types of vertices: Interior vertiees, Border vertices, and Market-boundary 

vertices. Interior vertices are the ones formed by the intersection of three or 

more edges of the allocation polygons. Border vertices are formed by the inter

section of market boundary and one or more edges of the allocation polygons. 

Market boundary vertices are the ones which are formed by the intersection 

of two edges of the market-boundary. Without loss of generality, we herein 

assume a square-shaped market region M. Figure 5.7 illustrates these three 

different types of vertices for a 3-facility example. 

In this example there is only one interior vertex, VI, which is formed by the 

intersection of three edges (e121 e13, e23) as shown with filled circle. Note that 

this is a non-degenerate vertex sinee it is formed by the intersection of exactly 

three edges. In addition, there are three border vertices, namely V2, V3, and V4, 
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Figure 5.7: Illustration of three vertex types: Interior, Border and Market
boundary vertices. 

as shown with empty circles. Finally there are four market-boundary vertices, 

namely the corners of the market boundary as shown with empty squares. 

In this example, it is possible to coyer the entire solution space for 3-facility 

case by iterating the four vertices, one interior and three border vertices, si-

multaneously. The main difference between an interior vertex and a border 

vertex is the admissible movement direction. Whereas an interior vertex is 

allowed to move on any directional vector, border vertices can only move on 

either on x-dimensional or y-dimensional vectors. These restrictions are illus-

trated in Figure 5.7 with arrows. For example, border vertices V2 and V4 can 

only translate along the y-coordinate axis, whereas V3 can only translate hori-

zontally. Market-boundary vertices are static and thus not allowed to iterate. 

Note that, even though it is visually possible for a vertex to appear as both a 

border and a market-boundary vertex, we treat it as a border vertex which is 

allowed to move on either x-axis or y-axis but not both. 
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Next, we will illustrate the differential relationships between the vertices 

and edges of the allocation polygons using the example in Figure 5.7. Let's 

define the following slope and intercept parameters for the three edges and the 

coordinates of the vertices: 

aij : slope of the edge eij (= BA n BAj) 

bij : intercept of the edge eij (= BA n BAj) 

(v%, vk) : x- and y-coordinat es of the vertex Vk. 

Recall that from Proposition 4.4. of the previous chapter we have the 

following first order relations between single dimensional allocation decisions 

and the slope when the allocation line is rotated around a reference axis 

(71) 

(72) 

Based on these results, we now provide the following proposition which 

establishes the relationship between the movement of a vertex and the slope 

and intercept of one of its edges. 

Proposition 5.3. 

Suppose an edge eij passes through two vertices Vk = (vk, v~) and Vt = 

(vf, v%). Moving the vertex Vk by increasing vk and v~, would change the slope 

(aij) and intercept (bij ) of the edge eij according to the following relations: 

(vi - vk) 
and 
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(Vk - vi) 
and 

Proof. 

Prao! is provided in Appendix 5. • 

(vf - vk) 
vf 

Using above relations and Figure 5.7, we now exemplify the first-order 

relationships between two vertex types and the allocation lines (i.e. edges of 

the allocation polygon). First, we provide the results for the interior vertex, 

VI. A differential change in the coordinates of VI would change the slope and 

intercept of the three edges (eI2, e13, e23). Let's focus on the edge e12. Note 

that vertex V2 is fixed. A differential change in the x-coordinate of vertex VI is 

equivalent to changing the single dimensional allocation decision AX(y = vi) 

with respect to the reference axis (v~, v~): 

(v~ - vi) 

Similarly, a differential change in the x-coordinate of vertex VI is equivalent to 

changing the single dimensional allocation decision AY(x = vI) with respect 

to the reference axis (v~, v~): 

2 x a I 2v2 

(v~ - vi) 

o since v~ = 0 
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Similar analysis could be performed for the y -coordinate of VI, i.e. vi : 

8aI2 1 1 

8vY 
I (vf -v2) Vx 

I 

8bI2 -vx 
2 = 0 

8vi (vf - vi) 

Similar type of analysis on eI3 would yield the following results: 

8aI3 2 8bI3 ai3 M aI3 and 
8vX (v~ - vi) 8vx (v~ - vi) I I 

8aI3 1 
and 

8bI3 -M 

8vi (vf- M) 8vi (vf - M) 

Similar type of analysis on e23 would yield the following results: 

8a23 2 8b23 2 x a23 and 
a23v3 

8vX (M-vi) 8vf (M-vi) I 

8a23 1 
and 

8b23 -vs 
8vi (vf - v3') 8vi (vf - v3') 

Finally, we illustrate first-order relationship between a border vertex and its 

corresponding allocation polygon edge. In the ex ample shown on Figure 5.7, aIl 

the three border vertices connects to only one edge of the allocation polygons. 

We here choose V3 and perform similar first-order analysis as above. Note that 

V3 is only allowed to translate horizontally (i.e. Vs is variable and v~ = M is 

constant), and the reference axis is vertex VI, (vI, vi). 

(vi - M) 
and 

In summary, for a given allocation solution with allocation polygons A=I,2 ... n, 

the first order relationship between the vertices (Vk) and their corresponding 
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edges (eij) can be calculated through relations in Proposition 5.3. Note that 

(
da' db) (da db') d for border vertices, either dV% and dV'~ or dV~ and -if is use . 

We now present the fust-order relationships between the vertices and the 

objective function rc = rC(Ay(x), Af(y), Xi, i = 1,2, ... , n): 

arc 
av~ 

arc 
aVk 

where Ek is the set of edges that intersect at vertex Vk. 

(73) 

(74) 

The partial derivatives of the rc with respect to the slope (aij) and in

tercept (bij ), ~~c and ~r?, have been derived in the previous chapter for the 
tJ 'l,J 

planar 2-facility case, and thus, not repeated here. Corresponding formulae can 

be found in Propositions 4.7. and 4.8. as (59), (60) and (61). The derivative 

information in (73) and (74) is calculated for each interior and border vertex 

and used in the two improvement algorithms described in the next section. 

In the next section, we describe the special vertex events that arise as 

a result of changes in the vertex coordinates. For brevity we will sim ply 

demonstrate the most important five of them in this section. lO 

5.4.2 Special Vertex-events and Event-Handling 

For an allocation solution A=1,2, .. ,n to be feasible the following two conditions 

must be met: Allocation decisions should coyer the market region (75) and 

lOThere are nine vertex events which we handle in our solution approach. The remaining 
four events are special cases when two, of the first five cases, occur at the same time. 
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their interiors do not intersect (76). 

n 
uA; 

i=l 

[A;jBA;j n [Az/BAz] 

M 

0, i =1- l, Vi, l = Ln 

(75) 

(76) 

The two improvement-based solution methodologies in the following sections 

are based on the vertex iterations. Since these vertices are moved indepen-

dently, it is possible that the edges intersecting at these vertices crosses each 

other, more frequently at the initial iterations. This means that the service 

regions are intersecting which is infeasible according to (76). Since crossing 

edges do not represent feasible allocation decisions, we need to perform han-

dling (feasibility recovery) procedures for each specifie event. In this section we 

will exemplify five such procedures. Note that there are in total nine such pro-

cedures and the remaining four are excluded for the sake of brevity. We start 

with the most straightforward event type and then gradually move towards 

more difficult vertex events. 

1. A Border Vertex Exiting the Market Boundary 

This vertex event is illustrated in Figure 5.8. The border vertex V6 is ini-

tially on the market boundary at x = M and if it moves in the negative y-axis 

direction such that it exits the lower-right corner of the market region. The 

figure on the right of Figure 5.8 illustrates this iteration. Note that the motion 

of the edge e14, edge connecting V2 and V6, is shown as a dashed line. As part 

of the improvement algorithm, this iteration is allowed and the resulting final 

allocation solution state, shown on the right in Figure 5.8, is evaluated. In 

this event type one type of border vertex (V6) is replaced with another type of 
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border vertex (v~). 
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V1 
~--__ -.lV2 

Al 

Figure 5.8: Illustration of the vertex event where a border vertex exits the 
market boundary. 

2. Two Border Vertices Crossing 

This vertex event involving two border-vertices is illustrated in Figure 5.9. 

The two border vertices V4 and V5 iterates towards and passes over each other 

as shown on the left. The affected edges are e23 and e34 and their motion 

due to this iteration are shown as dashed lines. As part of the improvement 

algorithm, this iteration is allowed and the resulting final allocation solution 

state, shown on the right in Figure 5.9, is evaluated. Observe that one internaI 

(v~) and one border (v~) vertex are created. Whereas the coordinat es of v~ is 

determined by the intersection of the two edges, the x-coordinate of v~ is not 

obvious. In our approach we take the median location implied by the iteration 

of the two original border vertices. 

3. An internaI vertex exits market boundary 
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~-___ ~V2 

Vs Vs 

Figure 5.9: Illustration of the vertex event where two border vertices crosses 
over each other. 

This vertex event, due to market-boundary crossing internaI-vertex, is il-

lustrated in Figure 5.10. The direction of the exiting internaI vertex, VI, is 

indicated with an arrow together with the filled-circle outside as the final po-

sition attempted with this iteration. The affected edges are e23, eI3 and eI2 

and their motion due to this iteration are shown as dashed lines. As part of 

the improvement algorithm, this iteration is allowed and the resulting final al-

location solution state, shown on the right in Figure 5.10, is evaluated. When 

the internaI vertex leaves the list of vertices, two border vertices v~ and v~ are 

created. In addition the edge eI2 is excluded from the list of edges since it falls 

outside the market boundary. 

4. An internaI vertex crosses an edge 

This vertex event, involving one internaI vertex (VI) and an edge (e34), is 

illustrated in Figure 5.11. An internaI vertex VI is iterated in the direction 

indicated with an arrow to the filled-circle within the allocation polygon A4' 

In this motion, VI crosses the edge e34 and the other affected edges are e23, eI2 
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Figure 5.10: Illustration of the vertex event where an internaI-vertex exits the 
market boundary. 

and eI3 whose motion due to this iteration are shown as dashed lines. As part 

of the improvement algorithm, this iteration is allowed and the resulting final 

allocation solution state, shown on the right in Figure 5.11, is evaluated. As 

a result of this iteration step, two internaI vertices, v~ and v~, are created and 

original internaI vertices VI and V2 have disappeared. Further, the edge eI3 

disappears since its two vertices (VI, V2) have been excluded from the vertex 

list and eI4 is relocated due to the disappearance of V2. 

5. Two internaI vertices crisscrosses 

This vertex event involving two internaI vertices, VI and v2, is illustrated 

in Figure 5.12. InternaI vertices VI and V2 iterate in the direction indicated 

with arrows to the filled-circles within the allocation polygon ~ and A2' 

respectively. In this motion, the two edges of VI and V2, other than the eI3 

connecting them, crisscrosses each other shown as dashed lines. As part of 

the improvement algorithm, this iteration is allowed and the resulting final 

allocation solution state, shown on the right in Figure 5.12, is evaluated. As 
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.,42 
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Vs 

Figure 5.11: Illustration of the vertex event where an internaI-vertex crosses 
an edge. 

a result of this iteration step, two internaI vertices, v~ and v~, are created and 

original internaI vertices VI and V2 have disappeared. Further, the edge eI3 is 

replaced with the new edge e24 between v~ and v~. 

Vs Vs 

, Vs 
Vs 

Figure 5.12: Illustration of the vertex event two internai-vertices criss-crosses 
each other. 
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5.4.3 Steepest-Descent Improvement Algorithm 

In this section, we describe the steepest-descent improvement algorithm for 

the LAM-AVS based on the vertex-representation described in the previous 

section. The main structure of the algorithm is similar to the steepest-descent 

method for allocation decisions presented in the 2-facility case. However, as 

described in earlier, we adopt a vertex-iteration based improvement solution 

approach for the n-facility case. This change of iteration variables changes the 

algorithm in several ways which will be described next. 

One main difference is the addition of the venex-event handling procedures, 

sorne of which are described in the preceding section. Whenever the vertices 

are iterated in an improving direction, the structure of the allocation solution 

changes thus we implement an intermediate vertex-event handling procedure 

to generate a feasible solution. These vertex-event handling procedures aim 

to recover the feasibility of the allocation solution as a result of independent 

vertex iterations. Note that allocation decisions in the form of non-convex sets 

would still satisfy the two feasibility conditions (75) and (76). Therefore, when 

the vertex-event handling procedures generate non-convex allocation decision, 

as in Figure 5.13, it is accepted as long as the objective function value im

proves. Note that this type of non-convex allocation decisions are not possible 

in the case of voronoi diagrams, since it can be shown that nearest-neighbour 

property disallows such non-convex sets. However, as it will be shown in 

Proposition 5.4., our vertex-iteration based approach converges to a solution 

where the allocation decisions are in the form of convex sets. In other words, 

whereas we allow non-convex sets, our final allocation solution is in the form 

of convex sets. 

176 



Al 

Aa 

Al V6 

Figure 5.13: Illustration of a feasible allocation solution where one of the allo
cation polygons are non-convex. 

The second difference is the complexity of n-facility steepest-descent algo-

rit hm compared to the one in 2-facility case. In order to mediate the increased 

computational burden, we adopt three modifications: Variable resolution nu-

merical integration, Newton's method based on finite-differences for solving 

Fermat-Weber problems, and Inexact line-search procedure using Armijo's 

rule. We now briefly describe these approaches. 

Since it is impossible to perform implicit integrations in the calculation 

of objective function, locations, and derivatives, we utilize numerical integra-

tion methods. The method we use is based on the Gaussian quadratures, 

which chooses the locations of the function evaluations as weIl as the weigh-

ing coefficients for them (Press et al. 1988). It thus has the advantage over 

the Newton-Cotes formulas (i.e. trapezoidal, Simpson's rule) in choosing the 

optimal locations. Since at the early stages of the improvement algorithm the 

gains, i.e. improvement over the previous iteration's objective function value, 

is larger, we can afford less numerical accuracy. However, as the solution ap-

proaches to a local minima, the gain diminishes thus the numerical accuracy 
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becomes crucial for quality of the iteration directions. Therefore, before each 

line search in the improving direction, we perform a resolution update based 

on the incumbent gain and the current level of numerical accuracy. With this 

approach, initial iterations' numerical calculations are significantly less. 

When the number of facilities is large, then the computation time spent in 

solving the single facility location problem, Fermat-Weber problem, becomes a 

significant overhead. Eventhough Weiszfeld's method provides a rather simple 

way of calculating the iterate which converges to the optimal median location, 

the number of iterations is significant. Based on our empirical observations, 

number of necessary Weiszfeld's iterations increase especially with the non-

convex shapes. Since Weiszfeld's iterate is based on the first-order condition, 

for a faster convergence, we adopt Newton's method. Since Newton's method 

requires calculation of both the gradient and the Hessian, we utilize difference 

approximations for both of them. The forward difference approximation of 

first order derivatives require two additional function calls for any bivariate 

function, ] (x, y). For second-order derivatives it requires additional three 

function calls over first order derivatives. Thus in total we calI the fU six 

times versus the central difference approximations which require more than 

double that number. These forward difference approximations used in the 

solving Fermat-Weber problem is summarized as below. 

of 
ox 

02
] 

ox2 

02
] 

oxoy 

f(x + h, y) - f(x, y) 
h 

](x + 2h, y) - 2](x + h, y) + ](x, y) 
h2 

](x + h, y + h) - f(x + h, y) - f(x, y + h) + f(x, y) 
h2 
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Final modification is the inexact line search method which is based on 

the Armijo's rule. For more details on this approach, we refer the reader to 

(Bazaraa et al. 1993). Herein we adopt the implementation described in this 

reference. We first choose a fixed step length, ŒO, then we compare it with the 

desired level of des cent based on the Armijo's test parameter and first-order 

approximation of the objective function. If ŒO leads to a higher objective 

function value than the first order approximation, then we decide on a update 

parameter which reduces the step length at every line search iteration, i.e. 

D < cp < 1. If it leads to a lower function value, then we choose an amplifying 

update parameter ,i.e. 1 < cp < 2. In the former case, line search is continued 

until first-order approximation of the objective function is lower. In the later 

case, line search is continued until first-order approximation of the objective 

function exceeds the exact one. 

We now provide a convergence result for our improvement-based algorithms 

which are based on the vertex-iterations. This proposition guarantees that 

our allocation solutions coincide with that of location-based methods, i.e. aIl 

allocation polygons are convex-sets. 

Proposition 5.4. 

Starting from an initial solution, a vertex-iteration based impravement ap

praach which uses the gradient information in (73) and (74) converges to an 

allocation solution where all allocation polygons are convex sets. 

Proof. 

We will briefty establish this result with a contradiction praof and use the 

Figure (5.13) as an illustrative example. Assume that our algorithm has con-
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verged to a feasible, but non-convex solution as shown in Figure (5.13). Our 

convergence condition is achieved when the gradients in (73) and (74) are zero 

for aU six vertices. Let's assume that for VI and V2, these gradients are zero. 

Furthermore, xi, x2 and x:; are such that, the gradient for V3 and V4 are also 

zero, i. e. eI2 and e23 are bisectors. Then it can be shown that the bisector of 

xi and x; would be different than the edge eI3 connecting VI and V2. Therefore 

the gradient term for eI3, which would be zero if and only if eI3 is a bisector, 

is not zero. For the vertex VI, gradients (73) and (74) are therefore nonzero 

(terms for eI2 and e23 are zero and term for e13 is nonzero). This is a con

tradiction to our initial assumption thus our algorithm would not converge to 

an allocation solution where there is at least one allocation polygon which is a 

non-convex set.. • 

In what follows, we first provide the abridged version of the steepest-descent 

algorithm based on the vertex-iterations for the L 2 and L~. Then we illustrate 

it on an example. 

Steepest-Descent Improvement Aigorithm based on Vertex Itera

tions: 

Step 1. Define and Initialize the model parameters and variables 

j : index for optimality iterations (i.e. j* = {jl tCOST 2': ITC~;~rCjl} 

tCOST : epsilon parameter for optimality stopping decision 

exj 
: step length for line search iterations at the lh iteration 

A{ : set of allocation decisions (polygons and not necessarily convex) at 

iteration j 

(xi)j = (xi, yi)j : optimal locations corresponding to Ai=I,2, .. ,n 
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vj : set of vertices formed by the intersection of three or more edges in 

A1=1,2, .. ,n at iteration j 

Ej : set of edges defining A;=1,2, .. ,n at iteration j 

M : market boundary parameter (assuming a square-shaped market region) 

é : test parameter for Armijo's line search rule 

q} : step size update parameter for Armijo's line search rule at iteration j 

ENUMINT : parameter sets for 1- and 2-dimensional Gaussian quadrature 

integration schemes 

Set j = 0 

Step 2. Initialization: Allocate the service regions and optimally 

locate facilities 

Step 2.1. Generate the an initial set of voronoi-generator points Pi=1,2, ... ,n 

Step 2.2. Generate the voronoi-diagram of the Pi=1,2, ... ,n and identify the 

following sets: 

· Allocation polygons A;=l 2 n , ), .. , 

· Set of vertices V j 

· Set of edges Ej 

Step 2.3. Find the optimal locations and calculate the total cost. Start-

ing with centroidallocations, employ Newton's method based on the forward 

difference approximations. 

xi = (xi, yi)j := arg min UA dp(Xi, x)D(x)dx) 
(Xi,Yi) , 

TCj = L fAi dp(Xi' x)D(x)dx 
i=1,2, ... n 

Step 3. Improve the current solution with vertex iterations 

Do While (ITc~;~;fCjl 2 ECOST): 

j=j+1 

Step 3.1. Update the numerical resolution 
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If ITCHl_TCjl . 1 h h . 1 1· 
iTCJI lS ess t an t e numenca reso utlOn, éNUMINT, then 

increase the numerical integration resolution. 

Step 3.2. Calculate the partial gradients 

For each vertex Vk E vj, repeat the next three steps for all edges eij 

intersecting at Vk: 

1- Find partial derivative of TC with respect to single-dimensional 

allocation decisions (Af (y), Ar (x) ) 

(B~~fu) - B~rfx)) = [dp(Xi, x) - dp(Xj, x)] D(x) 

2- Find partial derivative of TC with respect to the Slope and Intercept 

parameters of the edge eij 

BTC 
Bvi 

Slope (Pure rotation): dTC = r ( BTC _ BTC) BAX (y) dy 
daij JyEYBR BA'f(y) BA; (x) Baij 

1 t t (Tr 1 t · ). dTC - r ( BTC BTC ) BAX(y)d n ercep ans a Ion. dbij - JyEYBR BAf(y) - BA;(x) --m;;;- y 

where BAf(y) = _ A'f(Y) and BAf(y) = _....!... 
Baij aij Bbij aij 

3- Find partial derivative of TC with respect to v X

k and v
y
k , i.e. BTC and 

Bv~ 

Using the derivative aggregation formulae in (73) and (74) to obtain 

Normalize the gradients dVk to obtain gradient vectors, d~~rm, for VVk E Vj 

Step 3.4. Perform a Hne search for step size a j 

. Choose qJ, step size update parameter for Armijo's line search rule 

. Repeat following until Armijo's line test is satisfied (Set t = 0) 

Set t:= t + 1 and a j := 0'.0 (qJ)t 

U pdate the vertex coordinates 

Perform Vertex-Event Handling Procedures and update (An' , (Vj)' 

and (fj )' 
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Repeat Step 2.3 using (An' , (Vj)' and ([j)' 

. Set (o:j)* = 0:0 (4Yf 

Step 3.3. Update the allocation decisions 

Update the vertex coordinates 

Perform Vertex-Event Handling Procedures and update Ai, vj and [j 

Repeat Step 2.3 using Ai, vj and [j 

Return Step 3. 

Step 4. Terminate with the solution Ai and xt 

Example 5.1: Steepest-Descent Improvement Aigorithm based on 

Vertex Iterations - Euclidean-metric (L2 ) Case 

We now illustrate the above algorithm on an example. In this example, we 

have a square-shaped market region M={(x, y)lx E (0,100) and y E (0,100)}, 

i.e. M = 100. The demand density function, D(x) is a highly nonlinear 

demand function shown in Figure 5.14. The distance measure is based on the 

Euclidean-metric (L2 ). 

In our example illustration, we have six service regions and the starting 

solution is illustrated in the Figure 5.15. Note that the facilities are at the 

optimal locations within their respective service regions. More importantly, 

the allocation lines are not equidistant. 

ITERATION 1 

Step 1. Define and Initialize the model parameters and variables 

ECOST = 1 X 10-6 

183 



D(x,y) 

x 

Figure 5.14: Demand density function of the example for steepest-descent al
gorithm on vertex iterations (Example 5.1). 

20 40 60 80 100 

Figure 5.15: Starting solution for the example implementation of the steepest
descent algorithm based on vertex iterations (Example 5.1). 
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é = 0.3, q) = 2 (for this implementation cp is either 2 or 1/2, namely the 

step length is either doubled or halved) 

ENUMINT : numerical accuracy for the integration is set at 10 x 10-4 
. Note 

that this is the guaranteed accuracy, on the average it results in 10 X 10-5. For 

example, total demand for the demand density shown in figure is 8,500,000.0 

and éNUMINT = 10 X 10-4 results in 8,500,768.0 which is 9.0 x 10-5 error 

level. 

Set initial step length ao = 1.0. 

Step 2. Initialization: Allocate the service regions and optimally 

locate facilities 

Initial points for the generation of the voronoi diagram are as follows. 

Pi=l...6 = {(30, 46), (80,60), (43,61), (22,78), (31,32), (51, 27)} 

Allocation polygons A{=o, set of vertices Vj=o, set of edges Ej=o are shown 

in Figure 5.15. 

Optimal locations are follows which are also shown in the Figure 5.15. 

xi=l...6 = { (29.326,48.132), (72.806,56.746), (48.063, 63.120), } 

(27.264,74.753), (30.948,30.044), (56.745,30.851) 

TC = 105,013,252.10 

Step 3. Improve the current solution with vertex iterations 

D Wh·l (ITCj+l_TCj l ) 
Ole ITCjl ~ ECOST : 

j=l 

Step 3.1. U pdate the numerical resolution 

Since it is first iteration, numerical accuracy is not a constraint. 

Step 3.2. Calculate the partial gradients 

We will illustrate the calculation of the partial gradients for a single vertex 
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Figure 5.16: Illustration for the calculation of partial derivatives for an interior 
vertex (Example 5.1). 

then provide the gradient results for the remaining vertices. Figure 5.16 illus-

trates this vertex (Vk) which is a non-degenerate vertex and is the intersection 

of three edges e36, e23 and e26· 

For the vertex Vk = (61.14,47.33), partial derivative of TC with respect 

to the Slope (a) and Intercept (b) parameters of the edges are calculated as 

follows: 

Edge e23 : 

AHy) = Y:::3, where a23 = 37.0 and b23 = -2215.0 

Slope·. dTC - J,Y=100 [d (* ) d (* )] ( Y-b23 ) D(AX() )d da23 - y=47.33 P x 3 , X - p x 2 , X - (a23)2 3 y ,y y 

= -97,209.4 

Intercept: ~~~ = J::41;~3 [dp(x3' x) - dp(x;, x)] (~~) D(A3(y) , y)dy 

= -1,613.2 
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Edge e26 : 

A6(Y) = Y:::6, where a26 = -0.8787 and b26 = 101.0606 

Slope: ~~2~ = J::l~7~383 [dp(x(;, x) - dp(x~, x)] ( -(,::)~) D(A6(Y)' y)dy 

= -385,488.9 

Intercept: ~2~ = J::t;}8
3 

[dp(x(;,x) - dp(x~,x)] (~~) D(A6(y),y)dy 

= -47,517.6 

Edge e36: 

A3 (y) = Y:::6, where a36 = 0.235294 and b36 = 32.941 

Slope·. dTC_ fY=47.33[d( * ) d( * )]( Y-b36 )D(AX() )d da36 - Jy =44.085 p x 3 , X - p x 6 , X - (a36)2 6 y ,y y 

= -6,337,940.7 

Intercept: ~3~ = J::4:~~3835 [dp(x~, x) - dp(x(;, x)] (~~) D(A6(Y)' y)dy 

= -116, 118.7 

3- Find the partial derivatives of TC with respect to v% and v~, i.e. ~~~ 

and ÔôTf , using the derivative aggregation formulae in (73) and (74). 
V k 

ôTC = (ÔTC ôa23 + ôTC Ôb23 ) + (ÔTC Ôa26 + ôTC Ôb26 ) + (ÔTC ôa36 + oTC Ob36) = 
ôv'k aa23 av'k ab23 av'k aa26 av'k Ôb26 av'k aa36 av'k ab36 av'k 

90,543.234 

-86,564.81 

where 

aaa~l = 25.99, aab2; = -1626.2, ~a2j = -0.70246, aab2J = 43.951. 
'Lk V k UVk V k 

aaa;6 = -0.02261653, aab2,!' = 2.261653, aaa2J' = -0.0257361, aab2g = 2.573605 
V k V k V k V k 

aaas,,6 = -0.01707379, aab3,!' = 0.80866586, ôaa
3!J6 = 0.07256362, aab3g = -3.43683 

~ ~ ~ ~ 

Normalize the gradients dVk to obtain gradient vectors, d~~rm, for '\JVk E V j 

Step 3.4. Perform a Hne search for step size a j 

aO = 1 lead to a better objective value than the first-order approxi

mation, thus set q)=1 = 2 
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Figure 5.17: Solution at the end of first iteration for the example implemen
tation of the Steepest-descent algorithm based on vertex iterations (Example 
5.1). 

Perform Vertex-Event Handling Procedures and update (An', (Vj)' 

and (Ej)' 

Repeat Step 2.3 using (An' ) (Vj)' and (Ej)' 

Line search takes t = 5 iterations and terminates with (o:j=l) * 

Step 3.3. Update the allocation decisions 

Update the vertex coordinates 

Perform Vertex-Event Handling Procedures and update Ai, vj and Ej 

Repeat Step 2.3 using Ai, vj and Ej 

End of ITERATION 1 

Solution at the end of this first iteration is illustrated in Figure 5.17, to

gether with the vertex (Vk) analyzed in the first iteration. 
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Table 5.1. presents the iteration results for this example. Note that we 

have employed an adaptive numerical accuracy procedure; thus, when the 

integration accuracy is not satisfactory, it is increased. The solution converges 

to a local optima with TC = 99,121,760.4. The final solution is illustrated in 

the Figure 5.18. 

10,501,325.21 
10,235,151.91 3.2 

5 10,002,782.78 2.8 
10 9,930,857.70 1.8 
15 9,919,435.55 1.6 
20 9,914,812.62 2.2 
25 9,913,619.03 2.4 
30 9,912,843.88 2.8 
35 9,912,265.18 3.4 
40 9,912,182.40 

Table 5.1. Steepest-descent improvement algorithm's iteration 

results for the Euclidean-metric (L2 ) example (Example 5.1). 

5.4.4 Conjugate-Gradient Improvement Algorithm 

In this section we describe the conjugate gradient method as an alternative 

to the steepest-descent improvement approach for the vertex-iterations. The 

conjugate gradient methods' performance lies in between that of steepest-

des cent and Newton's method and requires calculation of only the first order 

derivatives. This simplicity of the conjugate gradient method is the reason 

why we have chosen it over Newton's methods. 

It is also worthwhile to explain why the conjugate gradient method is 

preferable over the Quasi-Newton methods which also requires first order 

derivative information and iteratively approximates the Hessian. As described 
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Figure 5.18: Final solution at the end of 40th iteration for the example imple
mentation of the Steepest-descent algorithm based on vertex iterations (Ex
ample 5.1). 
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in the preceding section, vertex iterations results in special vertex events which 

are handled according to certain rules. The impact of these vertex-event han

dling procedures is that the variable space of the problem is constantly being 

updated, such that certain vertices are removed from the variable space and 

others are included in the variable space. Quasi-Newton methods approxi-

mates the Hessian iteratively by using the update from the previous itera-

tions. Therefore the inclusion and exclusion of variables would destroy the 

accuracy of the Hessian matrix for the incumbent vertex setY Since, in gen-

eral, the performance of the conjugate gradient methods lies between those 

of steepest-descent and quasi-newton methods, we choose conjugate gradient 

method. In our implementation, we use the Polak-Ribiere update which is 

known to perform better than its alternatives (Bazaraa et al. 1993). 

The only difference between the steepest-descent algorithm presented in 

the previous section and the conjugate gradient is the Step 3.2., where the 

search direction is calculated based on the following formula. 

(77) 

(78) 

where 

d~ : direction vector of the vertices at iteration j 

gi+ 1 : gradient vector for TC with respect to vertices, i.e. gj+ 1 = V' Vk TC 

As part of the convergence requirement of the conjugate gradient method, 

(78) is reset at every IVjL 1 iterations, namely the cardinality of the vertex set 

11 However, it is also possible to track the updates on the approximate Hessian and fil
ter according to the incumbent vertex set, but this type of selective reconstruction of the 
approximate Hessian is left as a future research direction. 
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at the last reset (Bazaraa et al. 1993). The initial value of dt and gj are set 

at: 

Note that since sorne of the vertices are leaving and entering the vertex 

variable set, we need to account for their conjugate directions accordingly. This 

is done through a filtering procedure at Step 3.2., where the exiting vertices' 

rows are removed from gi and, for the new vertices, the corresponding rows 

in gi are set at O. 

Since the remaining algorithmic steps of conjugate gradient approach is 

similar to that of steepest-descent, we omit formaI description of the conju

gate gradient improvement algorithm based on vertex iterations. However, 

to demonstrate the differences in the convergence rates of the two methods, 

we implement the conjugate gradient method to the example in the previous 

section. Table 5.2. compares the performances of the two methods. From this 

table, it is apparent that conjugate-gradient method has a superior convergence 

rate near the solution compared to the steepest descent. Note that its initial 

performance is not as good as the steepest-descent, which is attribut able to 

the fact that vertex-events degrades the conjugacy of the directions generated. 

As the solution approaches to the local minima, there is less of such vertex 

events thus the benefit of the conjugate gradient method is more pronounced. 
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Table 5.2. Comparison of Steepest-descent and Conjugate-gradient 

methods for the Euclidean-metric (L2 ) example (Example 5.1). 
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5.5 Conclusions 

In this chapter, we have provided a solution framework for the planar n-facility 

location-allocation problems in the allocation variable space when the distance 

measure is based on Euclidean-metric. Our solution framework, in sorne part, 

constitutes as an extension to the one developed for the 2-facility case. The 

framework developed here is based on vertex representation of the allocation 

decisions for a special class of distance measures which are shape invariant, 

such as Euclidean-metric based distance measures. 

The vertex-iteration based representation allows the application of shape 

preserving transformation concepts which form the basis of the improvement 

approaches developed in the 2-facility case. While the allocation decision rep

resentation of the 2-facility case for Euclidean-metric based measures is in the 

form of a straight line, in the n-facility case allocation decisions are represented 

in more complex structures. For this complication, we utilized the vertex and 

edge representation of the voronoi diagrams. Using the results developed for 

the allocation decisions in the 2-facility case, we adopted a vertex-based rep

resentation and establish the analytical relations between these vertices and 

the allocation decisions, i.e. edges. This approach allows designing solution 

methodologies for the n-facility location-allocation problem in the allocation 

variable space. Since this approach is based on the independent movement of 

the vertices, the resulting solution can lead to an infeasible allocation solution. 

Therefore, we additionally developed a set of event handling procedures which 

not only recovers the feasibility but also regards the directional improvement 

in the allocation decisions. Due to this trade-off between the recovery of solu

tion feasibility and allowing as much directional improvement as possible, the 
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resulting solution can be non-convex allocation decisiollS. This is in contrast 

with the solution techniques in the location space where allocation decisiollS 

are always convex sets. Even though intermediate steps of our approach can 

result in non-convex solutions, the final solution we converge to coincides with 

that of location-based methods. Based on the vertex iterations concept, two 

improvement-based solution procedures are developed: Steepest-descent and 

Conjugate gradient method. Whereas, the steepest des cent method performs 

satisfactorily except for the slow rate of convergence near local solutions, the 

conjugate gradient method displays a faster convergence rate as it approaches 

to a local solution. 
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Chapter 6 

Computational Experiments: Euclidean-Metric 

6.1 Introduction 

In this chapter we report on our computational results. This computational 

study is conducted to investigate the following relations: 

i) Investigate the effect of the number of facilities with different de

mand density functions 

ii) Investigate the effect of the transportation cost parameter on the 

number of facilities 

iii) Understand how demand density affects the objective as weIl as 

the solutions 

The model used is the Euclidean-metric planar n-facility location-allocation 

problem in the allocation variable space (LAM-AVS), which is repeated below 

from Chapter 5. Accordingly, the solution method used is the steepest-descent 

improvement algorithm presented in the same chapter. 

LAM- Allocation Variable Space (LAM-AVS): 

min TC(Af(x) , Af(y), x;, i = 1,2, ... , n) 
Ar(x),Ai(Y) 

i=1,2, ... ,n 

(Bf(y) + Af(y), y) 

x* 
2 

S.t. 

(x, Bf(x) + A;(x)) for (x, y) E GAi 

for i = 1, 2, ... , n 
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where 

TC(At(x), Af(y) , xi, i = 1,2, ... , n) = L A; 

n ( F + f + a J D(x)dx ) 

~=1 +c J dL2 (xi, x)D(x)dx 
A; 

Each service region's cost is composed of fixed facility cost (F), fixed-charge 

linear capacity acquisition cost (f + a J D(x)dx), and the transportation cost 
Ai 

(c J dL2 (xi, x)D(x)dx). In aH problems, we assume a square-shaped market 
Ai 

region M, i.e. M={(x,y)lx E (0,100), and y E (0,100)}. Note that, when 

total demand volume (J D(x)dx) is constant in two different problems, then 
Ai 

the capacity acquisition cost of each problem is identical. 12 In this chapter, 

we will refer to (Li=l..n J dL2 (xi, x)D(x)dx) as the total traveled distance. 
Ai 

We developed the steepest-descent algorithm code in Matlab and performed 

rUllS for a randomly generated problem set. We have restricted the number of 

iterations for the steepest descent to 200. However, the majority of the runs 

converged in less iterations than the 200 limit. For example, for n = 5 and 

LD-l, Figure 6.1 presents the solutions for aH 27 iterations where convergence 

to a local solution is achieved. 

In Section 6.2, we describe the experimental design in more detail. Section 

6.3 presents results for the computational complexity and run-time perfor

mance of the steepest descent algorithm for different demand density functions 

as weH as number of facilities. Section 6.4 and Section 6.5 present results for 

linear and nonlinear demand density functions. 

12This is because we are assurning linear capacity acquisition cost with which total ca

pacity acquisition cost is same for i~ (al D(X)dX) and (al D(X)dX) . 
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Figure 6.1: Complete iteration results for n = 5 facility with the demand 
density function D(x) = 100 + 10x + 5y, i.e. LD-1 in Table 6.1. 
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6.2 Experimental Design 

In our experimental design, we consider two main categories of demand density 

functions: Linear and Nonlinear demand density functions. For each category, 

we have chosen six different demand density functions, which are illustrated in 

Table 6.1. and Table 6.2. The first column in both tables includes the reference 

labels used hereafter. The second column is self explanatory, whereas the third 

column is described in the next paragraphs. Furthermore, we consider five 

facility combinat ions for each demand density, i.e. n = 3, 5, 8, 10, and 15 

facility cases. In total, 60 (=12 demand functions x 5) problems are solved. 

In order to increase the confidence of the results, we performed ten rUllS for 

each problem starting with different initial solutions. These starting points 

are chosen randomly. Hence, the total number of experimental runs on which 

we base our results is 600. Note that we are reporting on the solutions which 

are best among ten random starts. 

In order to compare the solutions without need for any adjustment, we 

setup a demand density function such that the total demand volume is constant 

for all demand types. 

J D(x)dx =8,500,00.0 units for VD(x) in Table 6.1. and Table 6.2. 

M 

With this setup, the variable component of the capacity acquisition cost is 

same for aH problems, i.e. 8.5x 106 (a). However, total fixed costs (L:i=1..n (F + f)) 

and the transportation costs are still different for problems with different de

mand function and/or number of facilities. Note that for a given demand 
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pattern (shape), the total volume of demand does not change the optimal 

allocation solution.13 

Table 6.1. illustrates linear demand functions. First column reference 

LD - # stands for" Linear Demand". Last column of the Table 6.1., fy'MX, 
mm 

measures the ratio of maximum demand density level (Dmax) in the market 

region M to the minimum demand density level (Dmin ). This measure, though 

not an exact measure of the variance, allows us to judge the rate of change 

of the demand density within the market region. Note that demand functions 

(LD-l, LD-2, LD-3) represent rapidly varying demand, whereas (LD-4, LD-

5, LD-6) represent slowly varying demand. Herein, this labeling (i.e. slowly 

and rapidly varying) is comparative. Furthermore, LD-l and LD-3 (or LD-4 

and LD-5) differs from each other in their single-dimensional demand density 

change, which will be discussed in the following sections. 

LD-1 100+10x+5y 16.00 

LD-2 100+ 7.5x+ 7.5 y 16.00 

LD-3 
100x 5y 

16.00 100+--+-
7 7 

LD-4 
10x 5y 

1.83 600+--+-
3 3 

LD-5 600+ 2.5x+ 2.5y 1.83 

100x 5y 
LD-6 600+--+- 1.83 21 21 

Table 6.1: List of linear demand density functions 

Table 6.2. illustrates the nonlinear demand density functions. Again the 

13Consider two demand functions LD-l and 2 xD(x) = 200+20x+lOy. The solution (i.e. 
allocation and location decisions) would be same for these two functions, but the objective 
function would be different. 
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last column alIows us to compare the rate of change in the demand density 

across the market region. Last two demand functions, NLD-5 and NLD-6 are 

Newling type demand density functions which represent the distribution of 

urban population in major cities (Newling, 1969). Note that ~:7: ratio of LD-

6 is notably higher than others. AlI six nonlinear demand cases are illustrated 

in Figure 6.2. 14 

NLD-1 

NLD-2 

NLD-3 

NLD-4 

NLD-5 

NLD-6 

3 (x- 50)2 3 (y- 50)2 
950-

50 50 

1200-
21(X-50)2 21(y-50)2 

100 100 

3 (x- 50)2 3 (y- 50)2 
750+ + 

50 50 

33(x- 50)2 33(y- 50)2 
300+ + 

100 100 

«x-50.)2+(y-50i) 2 2 0.5 
( ( 

0.5 J J 
854115 - 1000 - 0.05 «x- 50.) + (y- 50.) ) 
--e 

1372 

2000e 
(~ 

05 
2579«x- 50.)2+ (y- 50}) 

1188439 J 
0.5J 

0.05 ({x-50i+(y-50}) 

Table 6.2: List of nonlinear demand density functions 

1.46 

8.00 

1.40 

6.50 

8.08 

2003.88 

14Due to the ease of their visualization, we have excluded the similar plots for linear 
demand density cases. 
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Figure 6.2: Six nonlinear demand density functions used in the experimental 
study. 
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6.3 Computational Complexity 

In this section we report on the computational runtime performance of the 

steepest-descent algorithm applied to LAM-AVS. In particular, we present 

some results on the following: 

a) Effect of the number of facilities on the number of iterations for conver-

gence 

b) Effect of the demand density pattern on the number of iterations for 

convergence 

Note that (a) and (b) are both dependent on the starting solution. 

Before discussing (a) and (b), we first illustrate the effect of numerical 

iolerance on the computational time. In Table 6.3., we illustrate the CPU 

time for one iteration of the problem with n = 15 and NLD-6.15 Numerical 

tolerance, in second column, represents the tolerance parameter set in the 

steepest-descent algorithm for numerical integration calculations. This is the 

minimum tolerance level required from the numerical integration; however, 

actual accuracy (last column) is significantly better. Last column represents 

the deviation of total demand in column five from the exact value 8,500,000.0. 

Therefore in our implementations, we start with an initial tolerance of 1 x 10-2 

and reduce it gradually as per need basis (Chapter 5). Note that the majority 

of the time, approximately 94%, is spent in solving single-facility location 

problems (Fermat-Weber solution). Fermat-Weber problems are solved with 

a difference approximation based Newton's method to a minimum precision 

level of 1 x 10-4 . 

15Results are from the Matlab Profiler on a P4 2.8MHz and 1GB RAM PC. Note that 
times reported also includes overhead times, i.e. actual run times are lesser. 
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Table 6.3: Effect of numerical tolerance on the computational performance 

(one iteration of the problem with n = 15 and NLD-6) 

In order to investigate the effect of the demand density on the solution 

performance we have experimented with three demand types: linear, quadratic 

and fourth-order convex polynomial. These demand functions (LD2, N LD

a, N LD - b) are as below and illustrated in Figure 6.3. 

LD2 D(x, y) = 100 + 7.5x + 7.5y 

NLD-a 
9 9 

D(x, y) = 100 + 80 X2 + 80 y2 

NLD-b D(x y) - 100 + 3 x4 + 3 y4 
,- 1.6 X 105 1.6 X 105 

Table 6.4. illustrates the number of iterations for three demand densities 

as weIl as four different number of facilities, i.e. n = 4, 9, 16, and 36. The 

numerical tolerance parameter for each of these runs are set at 1 x 10-3 . The 

gap (% Difference) between the solution converged and the best known local 

solution are also illustrated in Table 6.4.16 From the number of iterations in 

Table 6.4., it is apparent that as we increase the number of facilities, the num-

ber of iterations increases polynomiaIly. However, each iteration takes longer, 

16 Best known solution is the solution when we increase the numerical integration tolerance 
to 1 x 10-7 and continue with the iterations until the convergence is attained with the local 
solution gap of 0.1, i.e. (TCk - TCk - 1 ) :::; 1 X 10-1• 
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Figure 6.3: Illustration of the three demand density functions for computa
tional comparison. 

as we are solving more Fermat-Weber problems. For example, in Table 6.3 (for 

n = 15), Fermat-Weber solutions takes 10.5 seconds with 1 x 10-3 numerical 

accuracy. When we increase the number of facilities to n = 36, single-facility 

location solution would amount to approximately 25 seconds per iteration. 

Hence, with a large n, starting with a small numerical integration tolerance is 

computationally more attractive. Furthermore, from Table 6.4, there is a clear 

difference between the linear demand density (LD2) and the nonlinear demand 

density (N LD - b). Based on this example, we could conclude that nonlin-

ear density functions require more descent iterations than the linear demand 

functions. 17 

17Note that at every iteration, we use numerical integration procedures which converge 
faster to the tolerance limit when the functions are linear than the case where they are 
nonlinear. However, this is the effect of linearity jnonlinearity on the time spent per iteration 
rather than the number of iterations for convergence to a local solution. 
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Table 6.4: Number of steepest-descent iterations and percent age difference 

from best solution for three different demand density functions and four levels 

of number of facilities 

Finally, note that our vertex-iteration based algorithms (both the steepest

des cent and conjugate-gradient methods) have the order of complexity propor

tionate to the number of facilities as illustrated in Table 6.5. Note that in the 

table, the number of vertices and edges are assumed to be at their theoretical 

maximum levels (see Section 5.1.1). Furthermore, "kil represents the coeffi

cient for the border vertices, and Cl and C2 are constants. Hence, it is ap

parent that each iteration of the steepest-descent has the order of complexity 

proportionate to the number of facilities n. 

0- Start with an initial allocation solution 

1- Calculate the gradient information for each edge 0(3n-6) 

2- Calculate gradient information for each vertex 0(2n-5+kn) 

3- Construct feasible allocation polygons 

a) Iterate vertices one at a time 0(2n-5+kn) 

b) Check for vertex events 0(2n-5+kn) 

c) Apply one of the vertex event handling operations 0(9(2n-5+kn» 

Total 

Table 6.5: Iteration steps of the steepest-descent algorithm and 

respective orders of complexity. 
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Figure 6.4: Graph illustrating the effect of number of facilities on the total 
distance traveled when the demand is linear. 

6.4 Linear Demand 

In this section, we will analyze the effect of number of facilities, transportation 

cost parameter, and demand density function on the objective function and 

allocation solutions based on the demand types listed in Table 6.1. 

6.4.1 Effect of Nurnber of Facilities 

Figure 6.4 illustrates the results for five different number of facilities. One 

major observation is that all the six demand density functions exhibit similar 

diminishing returns on the total traveled distance as we increase the number 

of facilities. In other words, average travel distance per unit is nonlinearly 

increasing as we decrease the number of facilities, i.e. increase the service 

region sizes. This observation conforms to the findings in Chapter 3, where we 

showed that transportation cost is proportionate to the square of the service 

reglon Slze. 
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6.4.2 Effect of Transportation Cost 

As stated before, aU linear demand cases have the same demand volume. 

Therefore, we parametrically vary the unit transportation cost parameter (c) 

to compare its effect on the optimal solutioncharacteristics such as the number 

of facilities. For this we have chosen three c values, i.e. c = 0.75, 1.0, and 1.25, 

to denote low, average and high unit transportation costs. In addition, we 

have specified total fixed cost, i.e. summation of the fixed facility cost (F) and 

capacity-acquisition fixed cost (1), to be F + f = 10 X 105 . As an example, for 

n = 3, total traveled distance for LD-1 is 184,803, 765.05 (Table 6.6.). Hence, 

when c = 0.75, we have a total cost of (0.75) (184,803,765.05) +3 x 10 x 105 = 

168,602,823.79. This can be verified in Figure 6.5. 

Figure 6.5 illustrates the case c = 0.75, i.e. low unit transportation cost. 

Observe that for aIl demand types n = 5 is the best number of facilities. 

Figures 6.6 and 6.7 illustrate the similar results for the c = 1.0 and c = 1.25 

cases. One major insight, though intuitive, is that the ideal number of facilities 

increases with increasing unit transportation cost. 

Another interesting, but not intuitive, observation is the faster rate of 

change in the total cost when number of facilities is less than the ideal com

pared to the case when it is higher. This is due to nonlinearly increasing 

transportation cost in proportion to service region sizes. Also note that as we 

increase c, the relative importance of the transportation cost increases with 

respect to the fixed-cost terms. Therefore, Figure 6.7 with c = 1.25 illustrates 

this observation more distinctly than other figures. A major insight from this 

observation is that it is better to locate more facilities, as oppose to less, than 

the ideal number. We will discuss this insight in combination with another 
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observation more in the next section. 

Total Cost (c=$O.75/unit demand) 
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15 
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• LD-2 

-.- LD-3 
~LD-4 

-J<- LD-5 

--LD-6 

Figure 6.5: Total cost as a function of the number of facilities with transporta
tion cost parameter c = $0.75junit (Linear Demand). 

6.4.3 Effect of Dernand Density Functions 

Table 6.6. presents the total traveled distance results. In our analysis of 

these results, we can safely ignore the fixed cost of facilities as weIl as the 

capacity acquisition costs. This is because our interest is to compare the effect 

of demand density function parameters on the solution for a given nurnber 

of facilities. In what foIlows, we first analyze the effect of rate of change in 

the demand density over the market region. Later, we will consider the cases 

when the demand density varies differently in x- and y- dimensions. 

RecaIl from Table 6.1. that (LD-4, LD-5, LD-6) represent slowly varying 

demand, whereas (LD-l, LD-2, LD-3) represent rapidly varying demand. With 

this information, Table 6.6., illustrates that slowly varying demand cases have 

consistently higher total traveled distance than the rapidly varying demand 

cases. Note that this observation is only valid for monotonicaIly increasing 
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Figure 6.6: Total cost as a function of the number of facilities with transporta
tion cost parameter c = $1.00/unit (Linear Demand). 

linear demand cases. 

Table 6.6: Total traveled distance results with five different number of 

facilities when demand is linear 

In order to better understand the effect of the rate of change (i.e. Dmax) 
D rnin 

in demand density, consider Table 6.7. Second, third and fourth columns are 

percentage differences (of the total traveled distance) between pairs (LD-l, 

LD-4) , (LD-2, LD-5) and (LD-3, LD-6), respectively. These pairs are chosen 

in order to isolate any other functional differences than the ~m~x. For exam-
mm 

pIe, LD-l and LD-2 are identical in terms of ratio ~ where v and w are the 

coefficients of x and y coordinates in the demand, i.e. D(x) = u + vx + wy. 

In each of these pairs, first one varies more rapidly than the second one, thus 
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Figure 6.7: Total cost as a function of the number of facilities with transporta
tion cost parameter c = $1.25/unit (Linear Demand). 

the percent age is calculated by taking the first one as the base level. ROW Max 

(ROWMin ) represents the highest(1owest) total traveled distance of the corre

sponding row. The last column represents the difference (between the highest 

and lowest) as a percent age of the lowest. To illustrate, consider n = 3 fa

cilities. The lowest value in the first row is 181,576,613.59 for LD-3 and the 

highest value is 197,167,624.16 for the LD-5, and 8.59% is obtained as the 

percent age difference. Results of Table 6.7. illustrate that the rate of change 

in demand density has more impact when the number of facilities is low. One 

insight from this result is that when the number of facilities are small, the 

planner should demand higher accuracy in the demand data. 

Another insight, from the results thus far, is related to the under-/over-

estimating the demand variation. When we underestimate the variation, i.e. 

assume slowly varying, then we tend to locate more facilities since the trans-

portation cost is a significant portion of the system cost. In contrast, when we 

overestimate we locate less number of facilities. Note that these errors are due 
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to inaccurate information on the demand distribution. If we compare these 

two error alternatives, underestimation (slowly varying assumption) is better 

than overestimation (rapidly varying) since the cost of erring on the higher 

side of the ideal number of facilities is less than on the lower side (Figure 6.7). 

Table 6.7: Effect of the rate of change in the demand density on the 

total distance traveled 

Figure 6.8 illustrates the difference in the solutions for two demand in

stances, LD-5 for slowly-varying demand and LD-2 for rapidly-varying de

mand. Observe that the solutions are considerably different. Similar patterns 

hold true for other pairs, i.e. (LD-4, LD-1) and (LD-6, LD-3). Hence, we con

c1ude that the rate of change in demand affects not only the objective function 

(Table 6.7.) but also the solution (Figure 6.8). 

We now turn to the cases where demand varies differently in x- and 

y-dimensions. Either of the triplets (LD-1, LD-2, LD-3) or (LD-4, LD-5, 

LD-6) can be analyzed for this type of variation. We choose the former triplet 

and order the demand functions as in (LD-2, LD-1, LD-3). While in the func

tion of LD-2 x and y share the same coefficients, LD-3's coefficients have the 

highest difference. Figure 6.9 illustrates problems with n = 5,8, and 15 for this 

ordering. We note that LD-2's solution is moderately different than LD-1 's, 

212 



LD-5 LD-2 

n=5 

n=8 

,.; •••••••••• , •••• v •••• ; 

:l: + H· 

n=15 

Figure 6.8: Solution to n = 5,8, and 15 facility cases for demands LD-5 and 
LD-2. 
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whereas LD-l and LD-3's difference is mute, especially with fewer facilities. 

This result, based on visual comparison, is also supported by the results in 

Table 6.6. However, note that the gap between LD1 and LD3's objectives is 

higher than the gap between LD1 and LD2's objectives, which is not obvious 

from the Figure 6.9. Nevertheless, these gaps are not comparable to the gap 

between slowly and rapidly varying demand cases. Hence, we could speculate 

that overaU variation (i.e. ~m~x), is a much st ronger determinant of objective mm 

differences than the axis dependent variation in demand density. 

6.5 Nonlinear D.emand 

6.5.1 Effect of Number of Facilities 

Figure 6.10 illustrates the results for five different numbers of facilities. As in 

the case of linear demand density, an the six cases exhibit similar diminishing 

returns on the total traveled distance as we increase the number of facilities. 

One particular difference is the case NLD-6 which not only has significantly 

lower total travel but also is less sensitive to the decrease in the number of 

facilities. 

6.5.2 Effect of Transportation Cost 

We parametricaUy vary the unit transportation cost parameter (c) to compare 

its effect on the optimal solution characteristics such as the number of facilities. 

For this we choose the same three c values, i.e. c = 0.75, 1.0, and 1.25, as 

before. Total fixed costs is same as before, i.e. F + f = 10 X 105 . Figures 6.11, 

6.12 and 6.13 illustrate aU three cases. Since the pattern of these graphs is 

similar to the linear demand case, earlier observations apply to the nonlinear 
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Figure 6.9: Solutions to n = 5,8 and 15 facilities for demand functions LD-2, 
LD-1, and LD-3. 
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Figure 6.10: Graph illustrating the effect of number of facilities on the total 
distance traveled when the demand is nonlinear. 

demand as weIl. One difference is the NLD-6, which represents a highly-

varying demand scenario. Note that its ideal number of facilities is relatively 

insensitive to the transportation cost parameter. 

6.5.3 Effect of Demand Density Function 

Table 6.8. presents the total traveled distance for six nonlinear demand cases. 

We again compare the effect of demand density function parameters on the 

solution for a given number of facilities. In what follows, we first analyze 

the effect of rate of change in the demand density on the objective function. 

Later, we will discuss these differences from the solutions perspective using 

visual representations of the solutions. 

Recall from Table 6.2. that NLD-1, NLD-3, and NLD-5 represent a slowly 

varying demand in comparison with NLD-2, NLD-4, and NLD-6, respectively. 

Table 6.8. illustrates that slowly varying demand cases have consistently 

(with the exception of n = 3 for NLD-3 and NLD-4) higher total traveled 
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Figure 6.11: Total cost as a function of the number of facilities with trans
portation cost parameter c = $O.75junit. 
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Figure 6.12: Total cost as a function of the number of facilities with trans
portation cost parameter c = $1.00junit. 

217 



Total Cost (c=$1.25/unit demand) 

300,000,000,00 .,..--------------

280,000,000,00 i',\--------------c 

_ 280,000,000,00 ~+------------c 

~ 
(J 240,000,000,00 +----"~,.-------~~"-------; 

~ 
220,000,000,00 +---=-=====~~"-------;7--"------; 

200,000,000,00 t-----------=-L----------, 

3 6 9 12 15 
Number of Facilities 

-- NLD-1 

'. NLD-2 
-k- NLD-3 

-0é- NLD-4 
'<- NLD-5 

---NLD-6 

Figure 6.13: Total cost as a function of the number of facilities with trans
portation cost parameter c = $1.25junit. 

distance than the rapidly varying demand cases. 

Table 6.8: Total traveled distance results with five different number of 

facilities when demand is nonlinear 

Let's consider Table 6.9. which is calculated from Table 6.8. as before. In 

comparison with Table 6.7. for linear demand case, Table 6.9. brings about 

additional findings. The first finding is that there are such cases as n = 3 

for NLD-3 and NLD-4 where the slowly varying demand would have lower 

objective than the rapidly varying demand. This special case is attribut able 

to the low number of facilities and the symmetric demand distribution. 

Second finding is the extent of the gap between the objective functions 

of slowly and rapidly varying demand. For example, NDL-5 and NDL-6 has 
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more than 20% difference. Last column in Table 6.9. shows that this difference 

could well be as high as 60%.18. Last additional finding is the impact of the 

demand density variation on the ideal number of facilities as described in the 

previous section. 

Table 6.9: Effect of the rate of change in the demand density 

on the total distance traveled 

Let's now turn to the effect of demand density variation on the allocation 

solutions. Figures 6.14, 6.15 and 6.16 illustrate these results. 

Firstly, we discuss Figures 6.14 and 6.15 due to the concave and convex 

structure of their respective demand densities. From Figure 6.14, we can con-

clude that higher demand density at the center tend to create more central 

service regions. This is supported with Figure 6.15 where lower density con-

centration at the center creates more outside service regions. An interesting 

observation is the case n = 8 in Figure 6.15, where NLD-3 and NLD-4 share 

similar solution characteristic. This is not the case for concave demand den-

sity in Figure 6.14. Also when we rotate NLD-4 figure for n = 5 clockwise, 

we notice the similarity of the solution with NLD-3. In both Figure 6.14 and 

6.15, the difference in the size of the service regions is not extreme. 

18 Theoretically, extreme case of the rapidly varying demand is when aH demand is con
centrated at a single point. In that case, this gap would be infinity. 
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From Figure 6.16, we further observe that a drastic increase in demand 

variation results in significant variations of the service region sizes. In addition, 

high demand variation, with symmetry, tends to favor symmetric allocation 

regions. Final observation is related to the n = 8 cases in NDL-2 and NDL-5. 

These two allocation solutions are almost identical to each other, i.e. inverted 

forms. 
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Figure 6.14: Solution to n = 5,8, and 15 facility cases for demands NLD-1 and 
NLD-2 (i.e. concave demand). 
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Figure 6.15: Solution to n = 5,8, and 15 facility cases for demands NLD-3 and 
NLD-4 (i.e. convex demand). 
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Figure 6.16: Solution to n = 5,8, and 15 facility cases for demands NLD-5 and 
NLD-6 (i.e. Newling type demand). 
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6.6 Conclusions 

In this chapter, we have experimented with different demand density functions 

and number of facilities using vertex-iteration based steepest-descent algorithm 

developed in Chapter 5. More specifically, we attempt to gain insight on 

how the rate of change in demand density and the number of facilities affect 

the objective function as weIl as the allocation solutions. We conducted this 

computational study with twelve different demand density functions (six linear 

and six nonlinear demand density types) and five different number of facilities. 

Results from our computational study support our analytical results ob

tained in Chapter 3 for single dimensional problems. In other words, when the 

number of facilities is decreased, average size of the service regions increases, 

which, in turn, nonlinearly increases the transportation cost. Furthermore, 

we have experimented with various transportation cost parameters to under

stand their impact on the ideal (i.e. lowest total cost) number of facilities. Our 

results indicate that, for various transportation cost parameters, any reduction 

from the ideal number of facilities nonlinearly increases the total cost, whereas 

any increase from this ideal number has an effect of linear increase on the to

tal cost. As we increase the transportation cost parameter, i.e. transportation 

cost becomes more important relative to fixed costs, then this pattern becomes 

more pronounced. 

In our analysis for the effect of the rate of change in the demand density, 

we found that slowly varying demand distributions increase the transportation 

cost. Rence, in a market region where demand is rapidly varying, the trans

portation costs would be smaller than the case where demand is even across 

the market region. Rowever, this differential, caused by the rate of change in 
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demand, diminishes with the number of facilities. Our experimental results in

dicate that this differential could be as high as 60%. Based on this observation 

as weIl on the result of previous paragraph, we conclude that, in the absence of 

accurate demand information, it is better to assume a slowly varying demand. 

The rationale behind this conclusion is that assuming slowly varying demand 

induces more facilities than the ideal. Henee the error in total cost by the in

creased number of facilities is a linear function of the number of facilities (i.e. 

right side of minimum in Figure 6.7). In contrast, an assumption of rapidly 

varying demand would induee less number of facilities than the ideal, which 

would increase the error in total cost nonlinearly (i.e. left side of minimum in 

Figure 6.7). 

Another objective of this chapter is to present results regarding the compu

tational complexity of the vertex-iteration based steepest-descent algorithm. 

We show that computational complexity of the vertex-iterations is O( n), which 

is comparable to the efficient voronoi-diagram approach which also has com

plexity of O( n). Based on our experiment in Section 6.3, number of iterations 

of the steepest-deseent algorithm increases polynomiaIly with the number of 

facilities. Furthermore, the algorithm requires more iterations with highly non

linear demand density functions than with linear density functions. Lastly, per 

iteration runtime increases exponentiaIly with the toleranee parameter of the 

numerical integration. 
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Chapter 7 

Manhattan Metric: Models and Algorithms 

7.1 Introduction 

In this chapter, we develop alternative modeling and solution techniques for 

the location-allocation problems in the allocation variable spaee based on the 

Manhattan-metric. This chapter follows the pattern established in the pre

ceding chapters for the Euclidean-metric. Such that, it extends results from 

the single-dimensional problem setting to planar 2-facility case and finally to 

n-facility planar problems. 

In Section 7.2., we revisit the single dimensional problem and propose 

two variants for the steepest-deseent algorithm based on the iteration of the 

optimal locations. Sinee, Euclidean-metric and Manhattan-metric cases are 

identical for single-dimensional problerns, these methods are complementary 

to the ones presented in Chapter 3. These additional methods lays out the 

algorithmic framework for planar n-facility case. In section 7.3., we provide 

models and solution approaches for the planar 2-facility case. Similar to the 

approach in Chapter 4, we represent planar 2-facility allocation decisions us

ing a construct, which is different than the straight line representation of 

Chapter 4. We further provide both constructive and improvement based so

lution approaches using this representation. In Section 7.4., we first discuss 

why it is not possible to extend either the approaches in Section 7.3. or the 

vertex-iteration based method in Chapter 5 to the planar Manhattan-metric 

n-facility problems. Building on the results of Section 7.2., we propose a 

hybrid-method for solving planar n-facility problems. This hybrid-method is 
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a composite algorithmic mapping of the steepest-descent method and the se

quentiallocation-allocation (SLA) approach, which is described in Appendix 

4. 

7.2 Single-dimension: Alternative Solution Techniques 

for Manhattan Metric 

In single-dimension, Manhattan-metric is equivalent to the Euclidean-metric, 

thus, aIl the methods iIlustrated in Chapter 3 are applicable for the Manhattan 

metric as weIl. However, these two metrics differ in the planar n-facility setting. 

Therefore, when we extend the problem scope to planar n-facility setting, the 

methods illustrated in Chapter 3 are not as useful for the Manhattan-metric 

case as they are for the Euclidean-metric case. Accordingly, in this section, 

we propose two variants of the steepest-descent based solution methods for 

the single-dimensional problem. As it will be illustrated in the final section 

of this chapter, the second variant would extend to the planar n-facility case 

for the Manhattan metric. Hence, the purpose of this section is to lay out the 

algorithmic framework for pl anar n-facility cases. 

For continuous flow, we summarize the notation for single-dimensional 

problem with less detail than Chapter 3. As before, we will present algorithms 

based on the linear demand density function without loss of any generality. It 

can be easily shown that these algorithms do not rely on the linearity assump

tion. However, extension to nonlinear demand cases would prevent us from 

expressing sorne of the closed form results (e.g. optimal location of a single 

facility) and would likely result in non-convex problem structure. 
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Decision Variables 

n : number of facilities (service regions) 

Ai area of service region i (i.e. Ai = I~I) 

Bi coordinate of boundary between service regions i and i - 1 

Auxiliary Variables 

Xi coordinate of the facility in service region i 

Xi optimal location of single--facility for a given service region ~ 

(xi = XiM is used to denote median location as the optimal location) 

Problem Parameters 

D(x) = u + vx demand density at xE M (items/mile) 

F : fixed cost of opening a plant 

f : fixed cost component of capacity acquisition cost 

a : unit capacity acquisition cost 

c : per unit-mile distribution cost 

M : size of the single-dimensional market region M 

From Chapter 3, recall the location-allocation problem in single dimension in 

the allocation variable space. 

Problem Pl 

s.t. 

BI = 0, B n +1 = M, Ai 2:: 0, Bi 2:: 0, n 2:: a and discrete (80) 
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where K (.) represents the coefficient for the linear demand density variation. 

Due to the additivity and separability of the objective function together 

with linearity of constraints in problem Pl, this formulation is amenable for 

dynamic programming formulation for a given n. Hence we could write the 

Bellman's equation as in (81) after denoting BiS as the state variables, AiS as 

the control variables. 

(81) 

V(Bi1 i) : the cost of optimal allocation decisions starting from Bi and ith 

facility 

A more detailed explanation of this transformation of problem Pl to the 

dynamic programming formulation in (81) and derivation of optimality condi

tions are provided in Chapter 3. From the results in Chapter 3, the fust-or der 

necessary optimality conditions, i.e. Euler equations, are as below. 

BTCi(Bi , Ai) + dTCi+l (Bi+l , Ai+1) = 0 

BAi dAi 
(82) 

Using the above notations and first-order optimality condition in (82), we 

could design steepest-descent improvement algorithm as in Section 3.4.2. In 

the next section, we present two steepest-descent based improvement algo-

rithms which are different than the one in Chapter 3 in the sense that the 

iteration variables are optimal locations rather than the allocation variables. 

Steepest Descent Method for the Optimal Location Decisions 

The improvement method described in the Chapter 3 is based on the iteration 
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of allocation decisions, which, starting from an initial solution, are updated 

according to the optimality condition in (82). We can also start with an initial 

set of locations and apply a similar procedure. Our rationale behind designing 

a similar improvement procedure based on the location decisions is to obtain a 

procedure which could readily be transferred to planar setting (this is discussed 

more in the next section). Before we describe this location-based improvement 

solution approach, it is important to differentiate our approach from an earlier 

work (Iri et al. 1983), which also suggests an improvement based solution 

methodology based on the locations. We differ from their approach in that we 

iterate the optimal locations as surrogate iterates of the allocation decisions 

(i.e. problem in the allocation variable space) whereas theirs is based on 

location decisions (i.e. problem in the location variable space). 

Recall from Chapter 3 that, for a two service-region problem, we were 

able to identify the optimal allocation solution in a single iteration of steepest 

des cent method (based on the allocation decisions). Whereas the iteration of 

the optimal-locations as surrogates retains this property, location-space based 

methods do not. In order to see this, let's consider Figure 7.1 where we have a 

starting location solution (Xl and X2) for a two-area problem. Initial locations 

of the facilities are at Xl and X2, and the border between them is set as B 2 

which is at equidistance from these locations. When we evaluate this allocation 

solution (i.e. B 2 ) using (82), we observe that the des cent direction for Xl is to 

the right. The maximum step length for a single improvement iteration of a 

location-space based method would bring the first facility to the location of X2, 

where the second facility is located. It is obvious that this is not the optimal 

solution as the optimal solution is displayed to the scale in the same figure. In 

other words, as long as the second facility is located at X2, the optimal solution 
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is not attainable. However, when we start with optimal locations (XIM and 

X2M) and iterate XIM as a surrogate of the allocation decision Al, we would 

reach to the optimal solution in a single iteration.19 

In what follows, we describe two variant of the steepest-descent method 

based on the iteration of optimal locations using the information from alloca-

tion decisions. 

In the first variant, given an initial set of locations, we first calculate 

their implied allocation decisions. Based on these allocations, we identify the 

optimal locations. Next, we determine the improvement directions for these 

optimal locations based on the Euler equation in (82) and partial derivative of 

allocation decisions with respect to the optimal locations. In other words, we 

are still optimizing over the allocation variables but performing the line search 

using the optimal locations implied by these allocations. Sinee optimality of 

these locations with respect to their allocation regions is imposed, allocation 

decisions are iterated as weIl. 

N ow we provide a formaI algorithm of the first variant of the steepest-

deseent method based on optimal location iterations(i.e. median locations) 

for a given n: 

Steepest Descent Solution Aigorithm - Independent Optimal Loca-

tion Iterations (Forward direction) 

Step 1. Initialize the model parameters and variables 

k : index for optimality iterations 

ECOST : epsilon parameter for optimality stopping decisions 

19Note that this is one of the three variants of the steepest descent algrotihm described 
next. X2M will be located optimally after the iterating XIM. 
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Figure 7.1: Comparison ofthe improvement based solution approach when the 
starting solution is given as an initial location decision. 

TC(B~,A~) = 00 
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and a starting boundary to the service region 
"Q • ( * B.) = (~) A. = -(U+VBi)+V;-(U-+-v-B,-+-x,-~v""")2"--+--:-(x-i----:v )...".2 
"f/. X t , t - xt ---t t V 

Step 2. Start from an initial solution (Bl, AL i = 1,2, .. n) 

Do While CITC(Bf,An -TC(B~-l,A~-l)l;:: éCOST): 

k=k+1 

For i = 1 to n - 1, Repeat 

• Calculate the optimal location (xi)kby minimizing (6) which is the 

. . f .Q C Il (*)k -2(u+vBi )+J(2u+2vB;+AiV)2+(AiV)2 mverse mappmg 0 "f/. as 10 ows Xi = 2v . 

• Calculate the steepest direction vector: 

dk = _ (aTC(Bi,A~) + dTC(Bi+A~,Bi+2-A~-Bi)) dA~ 
xi aA: dA: dxi 

where ::i 
(xi)k. 

B k * i ,Xi 

• Solve min TC(Bf, iJ(xi + )'~dn) + TC(Bf + iJ(xi + )'~d~), Bf+2 -
).k , 
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x,=20 8 2=30 xz=40 83=60 x3=80 
Starting t * ~ * ~ Solution 0\ '1 '1 CI , ~, 

TJ Tl <J <::> 

y 
Al Al A3 

Figure 7.2: Three area example where facilities are initially located at Xl 

20, X2 = 40, and X3 = 80 (Example 7.1). 

M 

J 

Bf - () (xi + À~ df)) using a line search method and set Af = () (xi + (À~) * df). 

• Set BiH = Bf + Af,and Af+l = Bf+2 - Af - Br 

Return 

Step 3. Terminate with the solution (Bf,Af,i = 1,2, .. n) 

Example 7.1: 

We now illustrate this approach with the example used in Chapter 3. As-

sume that we are given three initial locations: Xl = 20, X2 = 40, and X3 = 80. 

Note that these locations correspond to the service regions of size Al =30, 

A2=30, and A3=40 for the market region defined over [BI,M] =[0,100] as 

shown in Figure 7.2. 

The demand density function defined over the market is again D(x) = 10+ 

5x. The median locations are shown with triangles: XIM = 20.47, X2M = 47.36, 

and X3M = 82.40. With the facilities at these median locations our problem 

is locationally optimal but is infeasible in terms of allocation decisions (i.e. 

Let's now perform the improvement iterations starting from left boundary 

(BI = 0) onwards (i.e. in the forward direction). We first consider [Bi, B§] = 

[0,60] where (xi/ =20.67. 

A d· 1 dAi -1 4170 d DTC(BI,Ai) - 1492 5 dTC(BI +Ai,B3-Ai -BI) -ccor Ing y, dx* - . an DA' - . , dA'1 
l l 
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B2=30 B3=60 M 
Median x,u=20.67 

* 
x,u=47.34 

* 
x3u=82.40 J Location OC Li A 

~ Initialization 

y y 
A2 A3 

B2=38.5 B3=60 M 
Iteration x,u=26.7 'l 9 x3u=82.40 J k=l, i=l 0': 2l Tl 

~ Y 
Al Al A3 

B2=38.5 B3=72.8 M 
Iteration x,u=26.7 

J x2u=58.16 

* 
x3u=87.44 1 0': ZK ~' (I ; k=l, i=2 A .,.. 

" 

y y 
Al Al A3 

Figure 7.3: First iteration steps for the Example 7.1. 

-2773.7 hence dt =1815.3. When we minimize 

TC(O, 19(20.67 + 1815.3 (Ài))) + TC(19(20.67 + 1815.3 (,Xi)), 60 -19(20.67 + 

1815.3 (Ài))) ,we obtain Ài = 0.003. We update Ai = 19(20.67+1815.3 (0.003)) =38.54, 

B~ =38.54, and A§ = 60 - 38.54 - 0 = 21.46. 

Next we consider [BL MJ = [38.54,100J where (X;)l =50.38. Accord-

. 1 ~ --16897 d 8TC(B2,A2) -- 2981 7 dTC(B2+A2,M-A2- B2) 69452 lng y, dx* . an BA' . , dA' =-. 
2 2 2 

hence d§ =6697.1. When we minimize TC(38.54,19(21.46 + 6697.1 (ÀD)) + 

TC(38.5419(21.46+6697.1 (ÀD), 100-38.54-19(21.46+6697.1 (ÀD)) ,we ob-

tain À~ =0.001. We update A§ = 19(21.46+6697.1 (0.001)) =34.26, B§ =38.54+34.26=72.80, 

and A~ = 100 - 38.54 + 34.26 = 27.20. This completes the first iteration. 

At = 38.54, A§ =34.26, and A~ = 27.20 and optimal facility locations are the 

median centers at xiM = 26.70, X§M = 58.16, and x~M = 87.44. Figure 7.3 

illustrates the steps of this iteration. 

After repeating the same steps in iteration 1, we obtain Al = 46.90, A2 = 
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28.99, and A3 = 24.11 at the end of iteration 2. Corresponding optimal facility 

locations are the median cent ers located at XiM = 32.61, X~M = 63.03, and 

X§M = 88.75, respectively. 

When we repeat, we converge to the optimal solution of Al = 49.60, A2 = 

27.35, and A2 = 23.05 in the sixth iteration. Note that the results of this 

approach are identical to those in Chapter 3. This is expected, sinee we are 

still optimizing the allocation decisions through the optimal facility locations. 

Complete iteration results are shown in Table 7.1. First column represents the 

iteration no, i.e. k. Second column is for the service region pairs, i.e. i = 1 

and i = 2 blocks consider Al and A2' and A2 and A3, respectively. 

60.00 50.38 2981.7 0.001 

38.54 0.00 38.54 72.60 26.70 2400.0 ·3977.1 1.4159 2233.1 0.003 32.605 

25.90 46.90 72.80 100.00 61.19 4342.2 ·5475.2 1.6896 1914.3 0.001 63.030 

46.90 0.00 46.90 75.89 32.61 3494.5 ·3944.1 1.4154 636.4 0.002 34.030 48.91 

26.96 48.91 75.89 100.00 63.80 4708.6 ·5008.1 1.6896 506.1 0.001 64.266 27.76 

4 48.91 0.00 48.91 76.66 34.03 3789.2 ·3908.1 1.4153 168.2 0.002 34.393 49.43 

27.25 49.43 76.68 100.00 64.48 4804.3 -4882.3 1.6895 131.8 0.001 64.564 27.45 

49.43 0.00 49.43 76.68 34.39 3866.3 ·3897.2 1.4153 43.8 0.002 34.487 49.56 

27.32 49.56 76.88 100.00 64.64 4829.2 -4649.4 1.6895 34.2 0.001 64.667 27.37 

6 49.56 0.00 49.56 76.93 34.49 3886.3 ·3894.3 1.4153 11.4 0.002 34.511 49.60 

27.34 49.60 76.93 100.00 64.68 4835.7 -4640.9 1.6895 8.9 0.001 64.688 27.35 

Table 7.1: Iteration results for improvement based algorithm for 

independent iteration of optimal-facility locations (Example 7.1). 

Second variant differs from the first in that it itemtes aU the optimal 

decisions (xi) at the same time, as in the case of joint iteration of allocation 

decisions in Chapter 3. If we assume that each allocation decision (Ai, i = 

1...n-1) is dependent only on its optimal location as in equation (83), then this 

approach is indeed equivalent to the joint iteration of the allocation decisions, 

and it is merely a joint iteration of the optimal locations in the first variant. 
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(83) 

h d dTC d d aTC w ere A· = dA. an x* = 7')*' 
l l l Xi 

The gradient for x; in (83) implicitly assumes that x;+1 would be automat-

ically positioned after the determination of Ai, thus x;+1 is dependent on xi 

with a known formulae. This assumption is easy to implement in the single 

dimension, since xi+l can be easily expressed in terms of the preceding allo-

cation decision A. As we will see in the next section, we cannot follow the 

same approach in the planar case due to the difficulty in iterating allocation 

decisions. Instead, we need to consider x; s independently and thus account 

for the effect of change in Ai on xi+ l' Therefore, we propose a more proper 

gradient measure for the optimal location decisions as in (84). 

(84) 

At each iteration, we determine a gradient of the total cost with respect 

to the optimal locations and then perform a line search for the step size. The 

gradient component for each optimal location (dx~) is based on the allocation , 

decision as in (84). 

Before presenting the algorithm, we first show the derivation for (84). Con

sider the allocation decision, Ai, as a function of the optimal locations that 

it separates (i.e. Ai(xi, xi+1))' hence we can express the differential change in 

the allocation decision as a function of the differential in the optimal locations 
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dTC 

where TC 
i=l..n 

First relation ab ove assumes that allocation decision between two areas 

(Ai, Ai+!) is solely determined by the optimal locations within each area. We 

can therefore express the partial derivatives of TC with respect to the optimal 

locations as follows: 

oTC 
ox* 

2 

oTC 

oxi 

dTC oAi dTC OA-I ----+---- i=2 ... n-l 
dAi ox; dA i - 1 ox; 

dTC OAI and arc = dTC OAn-1 
dA l oxi ox;' dAn-1 OX;' 

Denoting dA; = ~~~ and dx ; = ~~c:, (84) is obtained. For instance, in the , 

two service regions case: 

oTC dTC OAI d oTC dTC OAI 
-- = ---- an -- = ----
oxi dA l oxi oX2 dA l OX2 

When we translate the effect of the change in Ai to x; sand move these 

optimal locations as surrogate iterates, we have two alternative ways to re-

allocate. One is to calculate new allocations, i.e. Ai + >"dAi 's, and then relocate 

facilities optimally given these new allocation decisions. However, in this case 

we would be again iterating the allocation decisions which, as mentioned above, 
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brings about difficulties in the planar case. 

Second alternative is to make an optimal allocation based on the iterated 

optimal locations, i.e. x;=x; + )"dx *. These optimal allocations are the equidis-
l 

tant allocation decisions, which can be found by calculating Êi +1 = xi+:i+1 

and Âi = Êi+1 - Êi' Note that in this case, there is no guarantee that optimal 

locations (xn would still be optimal with respect to the allocation decisions 

(Âi ). In fact, iterated locations would be optimal with respect to the allocation 

decisions (Âi ) if they represent an optimal solution to the problem Pl. There-

fore, in order to return to the original state, where we have optimal locations 

for a given set of allocation decisions, we perform one last step of optimal lo

cations for the given allocation decisions by x; = -a-1(Âi' Bi)' Here '19-1 is the 

mapping to determine optimal location given the allocation decisions (Âi , Bi), 

i.e. inverse mapping of '19 introduced earlier in this section. 

It is important to point out that optimal step length ().. *) is determined 

based on the final solution where the location decisions are optimal given the 

allocation decisiollS. Therefore, in a single iteration step, we move from one 

solution to another while retaining the optimality of the location decisions. 

When viewed as a single iteration step, this approach is a single step of a 

two-step algorithm. We call this approach hybrid approach which would be 

discussed in more detail in the last section for the planar n-facility case. 

We will now provide the algorithm for the joint iteration of optimalloca

tions based on the gradient in (84). The algorithm for this second variant is 

as follows: 

Steepest Descent Solution Algorithm - Joint Optimal Location Iter

ations (Forward direction) 
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Step 1. Initialize the model parameters and variables 

k : index for the iterations 

(COST : epsilon parameter for optimality stopping decisions 

TC(k = 0) = 00 

Step 2. Start from an initial solution (BI, AL i = 1,2, .. n) 

Do While (ITC(k) - TC(k -1)1 ~ (COST): 

k=k+l 

• Gradient Calculation 

C 1 ul dk - dk BALI dk BAf c . - 1 a c ate x.,. - Ai-l ---ax* + Ai Bx~ lor 't - .. n , , 

where xt = (X:)k and, 

dk = _ (OTC(Bf,Af) dTC(Bf + Af,Bf+2 - Af - Bn) 
Ai oAk + dAk 

t t 

oAf 2(u + xtv) 

oxi \12(vxi + U)2 - (vBf + U)2 

OAf-1 2(u + xiv) 
oxi y'4(vxi + u)2 - (VA)2 

• Parametric tiling 

x* = (x*)k + (>.}) dk• , i = l, ... ,n. 
t t t Xi 

B' - xi+xi+l '-
Hl - 2 ' 't - l, ... ,n - 1. 

A~ = B;+l - B;, i = l, ... ,n. 

• Line Search for À~ 
n 

Solve minTC = L TCi (B;, AD using line search method 
)..k i=l 

• Finalize tiling 

xi = (X:)k + (À~r d~. , i = l, ... ,n. , 
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B k+l - xt+xt+1 . - 1 1 
i+1 - 2 ' Z - , .•• ,n - . 

A~+l = Bft11 - Bf+1, i = 1, ... ,n. 

(xi)k+1 = 19-1 (A~+l) 

Step 3. Terminate with the solution (Bf,A7,i = 1,2, .. n) 

Table 7.2. presents the iteration results for the same example used in the 

first variant. Compared to the first variant, we have a faster convergence since 

convergence is attained in fewer iterations. At each iteration step, we perform 

a line search which involves determining optimal allocation decisions. Even 

though in the single dimensional case this is a mere arithmetical operation 

(i.e. Êi+1 = x: +::+1 ), in the planar case this would require a nearest-neighbor 

search. 

~:: 

228,917.96 
1 76.26 1815.35 6149.79 3107.71 0.0027 189,864.08 
2 75.93 1560.24 -308.00 -899.54 0.0010 187,283.60 
3 76.96 89.24 327.43 592.93 216.85 0.0027 186,933.79 
4 49.57 76.92 89.19 68.35 -38.49 -53.48 0.0008 186,928.32 

Table 7.2: Iteration results for improvement based algorithm for joint 

iteration of optimal-facility locations (Example 7.1). 

7.3 Planar Model: 2 Facility Case 

In this section, we model the pl anar 2-facility location-allocation problem in 

the allocation variable space. We first present the notation, parameters and 

constructs necessary for representation of the problem. Then, we provide the 

traditional modeling approach in the location variable space and our alterna-

tive model in the allocation variable space. Lastly, we propose two solution ap-
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proaches, namely constructive shooting and steepest-descent algorithms, 

for the location-allocation problem model in allocation variable space.20 

7.3.1 Description of Parameters and Notation 

Although most of the notation and parameters, introduced below, are already 

presented in Chapter 4 for the Euc1idean-metric cases, we repeat them for 

the continuous flow of the material in this chapter. In the remainder of this 

section, we will use the following notation and parameter definitions: 

Parameters: 

x : a point in the two dimensional space x (x, y) 

M: Two dimensional market area (assumed to be a c10sed and compact 

set) 

D(x) : Demand density function over the two-dimensional market region 

M (D(x)- D(x, y)) 

dL1 (Xl, X) : Shortest distance between Xl and X based on Manhattan-metric 

In two-dimensional formulations, we have two main decision variables: Loca-

tion decisions and Allocation decisions. These decision variables are defined 

below. 

Decision Variables: 

Xl, X2: locational coordinates of the facilities in service region 1 and 2, 

20In most part, the notation, parameters and alternative modeling approaches are similar 
to the Euclidean-metric case of Chapter 4. However, the allocation decision representation 
and first-order conditions are different for the Manhattan-metric. Reader could comfortably 
skip the subsections other than these two differences. 
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i.e. XI= (Xl, YI), X2- (X2, Y2)) 

Al, A2 : Service regions 1 and 2 (assumed to be closed sets). 

xi, x2 : Optimal locations given the allocation decisions Al and A2 

Given the location decisions (Xl, X2), optimal allocation decisions can be found 

based on the nearest-neighbor property. In this case, they would be the point 

sets defined as follows. 

Al {x 1 dL1 (Xl, X) ::; dL1 (X2, X), X EM} 

A2 {X 1 dL1 (X2, X) ::; dL1 (Xl, X), X EM} 

When we formulate the location-allocation problem in the allocation variable 

space, we need to use a more descriptive construct for the allocation decisions 

than the above point-set definitions. This construct is the Allocation Line 

(BR), which is defined as follows: 

BR : intersection point set of the allocation decisions Al and A 2 (i.e. 

BR = Al n A2 ). Herein it will be referred as the Allocation Line. For the 

nearest-neighbor solution case, this allocation line could be expressed as below. 

Since we are assuming that service regions are closed sets, aIl points on the 

BR must be connected. Whereas the allocation Hne (BR) is a straight line for 

the Euclidean-metric cases, it has a different form for the Manhattan-metric 

cases. For the Manhattan-metric distance measure, nearest-neighbor solution 

of BR consists of at most three straight lines that are parallel to the x-axis, 
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• BR 

• 

Figure 7.4: Metric dependent alternatives of the separating allocation set BR 
(a.k.a. Allocation Line). 

y-axis, or diagonallines with angles 7r / 4 and 37r /4. Figure 7.4 illustrates this 

form of the allocation line BR. From this point on, we will adopt this form of 

the allocation line for the Manhattan-metric case. 

Depending on the ordering of these facility locations, we would have a 

diagonalline with either 7r/4 or 37r/4 angles, i.e. cases 1 and 2 in Figure 7.5. 

Furthermore, depending on the absolute differences in the locational facility 

coordinates, Xl and X2, BR would have two horizontal or two vertical segments. 

This is illustrated in Figure 7.5, i.e. case 1 versus case 3. 

In addition to the cases in Figure 7.5, there are two special cases of BR 

for the LI metric. First of these cases is when coordinates of the facilities are 

identical in either dimension (equivalence in y dimension is shown in Figure 

7.6 on the left). Second special case is when the absolute difference in the 

two facilities' coordinates is equal. In this case, as shown in Figure 7.6 on the 

right, any point in the shaded corner regions belongs to BR. 

The characterization of the BR for the LI metric using slope and intercept 

is more involved than the straight line case. Therefore we distinguish between 

diagonal and pamllel elements of BR using the indices d and p, namely BRd 
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• BR 

Case 1: XI< x, 
YI>Y' 

1 xl-x,I>1 YI-y,1 

Case 3: XI< x, 
YI> y, 

1 xl-x,I<1 YI-y,1 

Al 

(XI,YI) 

Al 

BR 

(XI,YI) 

BR 
(x"y,) 

• 

• 

A2 

Case 2: x,> XI 
y,> YI 

1 xl-x,I>1 YI-y,1 

• (x"y,) 

• 

A2 

Case 4: x,> XI 
y,> YI 

1 xl-x,I<1 YI-y,1 

Figure 7.5: Alternatives of the allocation line (BR) for LI metric. 

BR 

(X"YI) (x"y,) 

• • 

AI 

Figure 7.6: Special cases of the allocation line, BR, for LI metric. 
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and BRp. 

where 

B~={ 

B~={ 

B~={ 

BRd = {xix = (x, y) E M and y = ad x + bd } 

{ 1 for Xl < X2 and YI > 112 } 

-1 for Xl < X2 and YI < Y2 

{ Yi -Xl + Y2- X 2 for Xl < X2 and YI > Y2 } 2 2 

Yi +Xl + Y2+X 2 for Xl < X2 and YI < Y2 2 2 

xix = (X, y) E M and X = Xl~Yl + X2;Y2 for Y > max(Yb Y2) } 

xix = (x,y) E M and X = Xl;Yl + X2~Y2 for Y < min(YI,Y2) 

xix = (x, y) E M and x = Xl~Yl + X2;Y2 for Y > max(YI, Y2) } 

xix = (x,y) E M and x = Xl;Yl + X2~Y2 for Y < min(YI,Y2) 

xix = (x,y) E M and Y = Y1;Xl + Y2~X2 for x > max(xl,x2) } 

xix = (x,y) E M and Y = Yl~Xl + Y2;X2 for x < min(xI,x2) 
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xix = (x, y) E M and y = Yl~Xl + Y2;
x2 for x > max(xI' X2) } 

xix = (x, y) E M and y = Yl;Xl + Y2~X2 for x < min(xI' X2) 

Note that while a closed form expression of br- l
(.) exists for ERd, the same is 

not true for ERp. This is because ERp represents a one-to-many relationship 

whereas BRd represents one-to-one relationship. 

7.3.2 Alternative Modeling Approaches for 2-Facility Case 

In this section we will describe two alternative modeling approaches for pla-

nar location-allocation problems; these approaches are also applicable to cases 

with more than two facilities as we will illustrate in the final section of this 

chapter. In order to juxtapose these two modeling approaches, namely Loca-

tion Variable Space (LVS) and Allocation Variable Space (AVS), we 

first present the generic model formulation in the joint variable space. In aIl of 

these models, we use (Xl,X2) to denote the location decisions and AY(x) and 

AX(y) to denote the allocation decisions. 

The generic model in joint variable space is as follows. 

Location-Allocation Model (LAM)21: 

mm TC(AY(x), AX(y), Xl, X2) 
AX(y),AY(x) 

Xl =(Xl ,Yl),X2=(X2,Y2) 

21 Location-allocation problem, independent of which variable space(s) it is formulated in, 
is a non-convex problem as illustrated in Chapter 4. 
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subject to 

for x E X BR, y E YBR 

where 

TC(AY(x), AX(y), Xl, X2) : is the total cost function defined over the (2 x 1) 

column vectors, Xl and X2, and functionals, AY(x) and AX(y), defined in the 

preceding section. 

We first present the model in the location variable space, where the al-

location decisions are optimized given the location decisions. In the single-

dimensional case, optimal allocation decision, which is a single boundary 

point, could be expressed as (Xl !X2) . However, closed form expressions in 

two-dimensional setting are difficult to obtain, besides being unnecessary. In-

stead, we will include this solution in the constraint set. It can be shown 

that optimal allocation decisions, given locations, would satisfy the following 

condition. 

for '\Ix E X BR, '\Iy E YBR, and (AX(y), y) = (x, AY(x)). 

We now present the location-allocation problem in the location variable 

space (LAM-LVS). 

LAM- Location Variable Space (LAM-LVS): 

min TC(AY(x), AX(y), Xl, X2) 
Xl =(XI,YI),X2=(X2,Y2) 
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s.t. 

(x, AY(x)) for x E X BR and y E YBR 

for Vx E X BR , Vy E YB h85) 

The only difference between LAM and LAM-LVS is the last constraint (85). 

This constraint conditions the optimality of allocation decisions on the 10-

cation decisions, while making the allocation decisions endogenous decision 

variables and leaving the location variables as exogenous decision variables. 

The following proposition establishes the first-order necessary condition for 

the LAM-LVS given the allocation decisions (Ai). 

Proposition 7.1 

The optimal locations of the two facilities (xi and x;), given the allocation 

decisions, satisfy the following conditions when the distance measure is based 

on the Manhattan - MetrÏc (L 1) : 

1 J D(x)dx = 1 J D(x)dx 
y * A y * A x<xi ' xE i X2xi, xE i 

for i = 1,2 

1 J D(x)dx = 1 J D(x)dx for i = 1,2 

Y<Yi, yEAi Y2Y;, yEA; 

Proof. 

Proof can be found in Appendix 7. • 
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7.3.3 Modeling in Allocation Variable Space 

Next we present the model in the allocation variable space, where the location 

decisions are optimized given the allocation decisions. 

LAM- Allocation Variable Space (LAM-AVS): 

s.t. 

(x, AY(x)) for x E X BR and y E YBR 

x~ z argminj dLl (xi,x)D(x)dx for i = 1,2 
(Xi) 

(86) 

Ai 

Optimal solution to (86) can be expressed in closed form for the single-dimensional 

case, but same is not true for the two-dimensional case. In particular, these 

optimal location solutions satisfy the first order necessary condition of the 

LAM-LVS outlined in the Proposition 7.1. When these necessary conditions 

are included in the constraint set of the LAM, we obtain the above location-

allocation model in the allocation variable space (LAM-AVS). First order nec

essary condition for LAM-AVS (assuming the presence of only the transporta

tion costs in the objective) is as below. 

First Order Necessary Conditions for LAM-AVS 

(87) 
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for \Ix E X BR, \ly E YBR , and (AX(y), y) = (x, AY(x)) 

7.3.4 Solution Methodologies for 2-Facility Case 

Constructive- Shooting Algorithm 

Constructive solution approach for the Manhattan metric is similar to the 

Euclidean-metric based methods except the number of equations to be solved. 

Since Euclidean-metric based allocation line is a straight line, which can be 

characterized by its slope and intercept, the constructive solution approach 

for Euclidean metric requires solution of only two equations. In comparison, 

Manhattan-metric based allocation line is made up of three special components 

which can be fully characterized by three parameters. A general form of this 

type of allocation line is illustrated in Figure 7.7. The two special cases in 

the figure, horizontal and vertical parallel components, are determined by 

the absolute differences of the x- and y-dimensional location coordinat es as 

explained before. Without loss of generality, herein we will adapt the allocation 

line on the left in Figure 7.7.22 

First, we will derive the differential equations based on the first-order con-

dit ions of the LAM-AVS for Manhattan-metric. Next, a formaI presentation 

of the shooting algorithm based on the vertical paraUel components (case on 

the left in Figure 7.7) will be presented. Lastly, this section will conclude with 

an example application of the shooting algorithm for the Manhattan metric. 

As illustrated in Chapter 3, we can express the objective function in either 

22 Recall from the case of Euclidean-metric that when our shooting levels are not accurate, 
shooting algorithm would not converge. In the case of Manhattan-metric, if we assume the 
two parallel components of BR as verticallines whereas they are indeed horizontal at the op
timal, then shooting algorithm would not converge. Then we would change two-components 
from vertical to horizontallines, which is similar to the change over from horizontal shooting 
to vertical shooting in the Euclidean-metric case. 
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Figure 7.7: Allocation line form when distance measure is based on Manhattan
metric 

horizontal single-dimensional decisions (A x (y)) or vertical single-dimensional 

decisions (AY(x)). For the Manhattan-metric, we choose the horizontal single-

dimensional allocation decision, AX(y), as the unknown variables. As men

tioned before, Manhattan-metric case requires three differential equations for 

three AX(y) unknowns. Hence we arbitrarily choose three y - axis values 

These variables must satisfy the following equations, which are derived from 

the first-order conditions of the LAM-AVS in (87).23 

for j = 1,2,3 

(88) 

For ease of exposition, let's define the following notation as illustrated in Figure 

23These first order conditions are as a result of choosing AX(y) as the decision variable 

d . h r Il . fir d d' . dTC - BTC BTC BAY(x) - 0 D an usmg t e 10 owmg st-or er con ltIon dAX(y) - BAx(y) + BAY(x) BAX (y) - . ror a more 
detailed explanation, readers could refer to Chapter 3. 
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Figure 7.8: Initial triggers for the constructive solution approach (Manhattan
metric based measure) 

7.8. 

Shooting algorithm philosophy for the Manhattan-metric is same as in the 

Euclidean-metric based case, thus for brevity we do not repeat here. For algo

rithmic efficiency, Newton-Raphson method of updating is used for aIl three 

triggers. One difference is that with the Manhattan metric, allocation decisions 

Al and A2 are fully characterized when the initial triggers (Al, A2, A3) are 

decided. So we do not need to account for special cases in the same capacity 

as in the Euclidean-metric based shooting algorithm. Lastly, since LAM-AVS 

problem is in the allocation variable space, (xi, yn and (x2' Y2) satisfy the 
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following conditions which are repeated for convenience. 

1 J D(x)dx 1 J D(x)dx for i = 1,2 (89) 
y • A x<Xi,XEAi x2:x i ,xE i 

1 J D(x)dx 1 J D(x)dx for i = 1,2 (90) 

Y<Yi,YEA; Y2:Yi,yEA; 

Shooting Aigorithm: Manhattan-metric Based Distance Measure 

Step 1. Define and Initialize the model parameters and variables 

j : index for the feasibility iterations 

(i.e. j* = {jl éBOUND 2 IMI' - MI, éBOUND > 1M2' - MI, and 

éBOUND 21M3' - MI} 

tion) 

éBOUND : epsilon parameter for feasibility stopping decision 

h : centered difference approximation parameter for partial differentials 

Alj : lh iteration estimate for the first service region size at YPI 

A2j 
: lh iteration estimate for the first service region size at YP2 

A3j 
: ph iteration estimate for the first service region size at YP3 

x: = (x:, yi) : optimal locations corresponding to A{-l 2 - , 

(M,)j : boundary variable (i.e. Mj = M is the feasible boundary condi-

Ml', M2', M3' : solutions for Mj in (88) for YPj=1,2,3 

Set J. = 0 Alj=l A2j =1 and A3j=1 , , 

Step 2. Update the first service region sizes Alj ,A2j and A3j=1 

Do While (IMI'-MI 2 éBOUND and IM2'-MI 2 éBOUND and éBOUND 2 
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/M3'-M/): 

j=j+1 

Step 2.1. Calculate P3 = A5 - A2 and define piecewise functional form 

of allocation line BR 

br(y) = y - P3 

A3i 

y::;: Ali + P3 

Ali + P3 ::;: Y ::;: A3i + P3 

Y ~ A3i + P3 

Step 2.2. Parametrize Al and A 2 in terms of (M,)i 

YBR1 = {y/y E [0, Ali + P3] 

YBR2 = {yly E [Ali + P3, A2i + P3] 

YBR3 = {yly E [A2i + P3, M] 

Al := {(x, y)ly E YBR1 and x E [0, Ali] U Y E YBR2 and x E 

[0, Y - P3] U y E YBR3 and x E [0, A2i ]} 

A 2 := {(x, y)ly E YBR1 and x E [Ali, (M,)i] U Y E YBR2 and x E 

[y - P3, (M,)i] U Y E YBR3 and x E [A2i , (M,)i]} 

Step 2.3. Solve the following single facility location problems in terms 

of (M,)i 

x; := arg min( r IX2 - xl D(x)dx) 
X2 JA2 

Step 2.4. Assign Y2 equidistant value based on xi, yi, and x2 and solve 
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following for boundary value Ml' 

Ixi - Ali + IYi - A41-lx; - Ali + A4 

-Ixi - AII-IYi - A41 + lx; - Ali + A4 

l j l Y
= yi lMl' 2" D(x)dx = D(x)dx 

A2 y=ü x=br(y) 

Y2 2: A4 } 

Y'2 ::; A4 

Step 2.5. Assign Y2 equidistant value based on xi, yi, and x; and solve 

following for boundary value M2' 

Ixi - A21 + IYi - A51-lx; - A21 + A5 

-Ixi - A21-IYi - A51 + lx; - A21 + A5 

l y=~ M2' - r D(x)dx = r 1 D(x)dx 
2 } A2 Jy=ü x=br(y) 

Y'2 2: A5 } 

Y'2 ::; A5 

Step 2.6. Assign Y2 equidistant value based on xi, yi, and x; and solve 

following for boundary value M3' 

y;:= { 
Ixi - A31 + IYi - A61 - lx; - A31 + A6 

-Ixi - A31 - IYi - A61 + lx; - A31 + A6 

l J l Y
= Yj 1M3

' - D(x)dx = D(x)dx 
2 A2 y=ü x=br(y) 

Step 2.7. Calculate F land F 2 

Fl(Alj,A2j ,A3j ) = Ml' - M 

F 2(Alj , A2j , A3j ) = M2' - M 

F 3(Alj, A2j , A3j ) = M3' - M 

Y2 2: A6 } 

Y2 ::; A6 

Step 2.8. Approximate J using centered difference approximation 
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Repeat Steps 2.1-2.6 for (A1 j -h, A2j , A3j ),(A1 j +h, A2j
, A3j

), (A1 j
, A2j

-

h, A3j
), (A1 j

, A2j + h, A3j
), (A1 j

, A2j
, A3j 

- h), (A1 j
, A2j

, A3j + h) 

Step 2.9. Assign 

)+1 j 

Al Al FI (A1 j
, A2j

, A3j
) 

A2 A2 _ J-l F 2(A1j
, A2j

, A3j
) 

A3 A3 F 3(A1j
, A2j

, A3j
) 

aFl aFl aFl 
aAl aA2 aA3 

where J = aF2 aF2 aF2 
aAI âA2 âA3 

âF3 aF3 aF3 
aAI aA2 aA3 

Return. 

Step 3. Terminate with the solution A1 j , A2j , A3j and BR 

Note that in Step 2.3, (xi, yi) are identified numerically and x2 is parametrized 

over M'. Reason for leaving Y2 to Steps 2.4 to 2.6 is because of the depen-

dency of the optimality condition on A4, A5 and A6. If we had chosen the case 

on right in Figure 7.7, then similar procedure would have been applied for x2. 

Next, we provide an illustrative example for the application of the shooting 

algorithm for Manhattan-metric. 

Example 7.2: Shooting Algorithm- Manhattan-metric Based Dis

tance Measure (LI) 

ITERATION 1 

Step 1. Define and Initialize the model parameters and variables 
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Set: j = l, h = 0.1, M = {(x, y)I, xE [0,100] and y E [0, 100]} , EBOUND = 

0.01 

YPI = A4 = 30, YP2 = A5 = 50 and YP3 = A6 = 80 

Alj=I=30 A2j=I=40 and A3j=1 =50 , 

Step 2. Update the first service region sizes Alj ,A2j and A3j 

Do While (IMI'-MI .:::: EBOUND and IM2'-MI .:::: EBOUND and EBOUND .:::: 

1M3' - MI): 

j=j+l 

Step 2.1. 

P3 = A5 - A2j = 50 - 40 = 10 

30 

br(y) = y - 10 

50 

y::::; 40 

40::::; Y ::::; 60 

Y':::: 60 

Step 2.2. Parametrize Al and A2 in terms of (M,)j 

YBRI = {yly E [0,40] 

YBR2 = {yly E [40,60] 

YBR3 = {yly E [60, 100] 

Al := {(x, y)ly E YBRI and x E [0,30] U y E YBR2 and x E [0, y-

10] U y E YBR3 and x E [0, 50]} 

A2 := {(x, y)ly E YBRI and x E [30, (M,)J] U y E YBR2 and x E 

[y - 10, (M,)J] U y E YBR3 and x E [50, (M,)J]} 

Step 2.3. Solve the following single facility location problems in terms 
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Figure 7.9: Allocation decision in the beginning of first iteration of the shooting 
algorithm for Manhattan-metric (Example 7.2). 

of (M,)j 

x* 2 

= arg min (/ IXI - xl D(x)dx) 
XI=(XI,YI) Al 

(24.9305,69.4035) 

= argmin( r IX2 - xl D(x)dx) 
X2 JA2 

(J129300 + 1260M' + 18(M')2) 
-35 + -'-'------6-----'----

Step 2.4. Ml' =72.76897530 

Step 2.5. M2' =98.45515141 

Step 2.6. M3' =77.89286118 

Step 2.7. Calculate FI and F 2 
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FI (A1j=1, A2j =1, A3j =1) = Ml' - 100 =-27.231 

F 2(A1j =l, A2j =l, A3j =l) = M2' - 100 =-1.545 

F 3(A1j =l, A2j=l, A3j =l) = M3' - 100 =-22.107 

Step 2.8. Approximate J using centered difference approximation 

BFl BFl BFl 1.242 -0.332 0.437 BAI BA2 BA3 

J= BF2 8F2 8F2 -1.007 2.266 0.194 8AI 8A2 8A3 

8F3 8F3 8F3 -0.868 -1.487 3.757 BAI BA2 BA3 

Step 2.9. Assign 

j=2 j=l 

Al 30.0 -27.231 49.326 

A2 40.0 _ J-I -1.545 48.112 

A3 50.0 -22.107 63.558 

When we repeat for seven iterations, the algorithm converges to the so-

lut ion illustrated in Figure 7.10. Results of these iterations are displayed in 

Table 7.3. 

,~., RL:~1.·v··;j,i::N:;: .. I.·.···"i:;,i· ;:a~:l.; ··~TH.,;,:~.::)!::_. ! ;':l'l:i 1··F?i1··I···~1. 
1 30.000 40.000 50.000 30 50 80 10.000 72.77 98.46 77.89 27.231 1.545 22.107 
2 49.326 48.112 63.558 30 50 80 1.888 100.53 85.46 91.68 ·0.532 14.539 8.319 
3 47.701 53.557 70.518 30 50 80 -3.557 99.91 111.20 102.78 0.093 -11.202 -2.776 
4 47.884 53.811 70.282 30 50 80 -3.811 99.33 115.27 101.11 0.669 -15.273 -1.108 
5 47.203 47.153 68.292 30 50 80 2.847 99.25 90.87 99.02 0.746 9.135 0.983 
6 48.140 49.851 69.228 30 50 80 0.149 100.31 100.63 100.58 -0.308 -0.627 -0.583 
7 47.910 49.513 68.926 30 50 80 0.487 100.00 100.00 100.00 0.000 0.000 0.001 

Table 7.3: Constructive solution algorithm results for initial triggers 

Al = 30, A2 = 40 and A3 = 50 with LI (Example 7.2) 

Improvement Based- Steepest-Descent Algorithm 

Next, we will present the steepest-descent improvement algorithm for the 
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Figure 7.10: Allocation decision at the end of seventh iteration of the shooting 
algorithm for Manhattan-metric (Example 7.2). 

Manhattan-metric case. For this, we first outline the details of the algorithm 

and use Figure 7.11 as the reference for algorithmic description and its example 

implementation. 

In the case of Manhattan-metric, rotation type of transformation is not 

shape preserving. In a more formaI definition, Manhattan-metric based al-

location line is not shape invariant with respect to rotation. However, it is 

shape invariant with respect to translation, but translation of BRas a single-

ton would not access all feasible allocation solutions for the Manhattan-metric. 

Instead, one could treat each of the three parts of BR independently and define 

a shape preserving transformation for each of these three parts. For instance, 

in Figure 7.12 , the two vertical segments could translate sidewise and the 

diagonal could translate vertically. Similarly, for the case on the right in Fig-

ure 7.7, horizontal segments could translate vertically and diagonal element 

could translate horizontally. With such transformation pattern, the aforemen-
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Figure 7.11: Representative solution and illustration of allocation line BR pa
rameters for the Manhattan-metric . 

• 

• 

Figure 7.12: Shape preserving transformation for Manhattan-metric-based al
location decisions. 

tioned shape for the Manhattan-metric's allocation line BR shape is preserved 

(see Figure 7.12). Our improvement algorithm is thus developed according to 

independent iteration of these three components. There are many ways to 

parametrize the allocation line BR, hence many alternatives of these three 

components. We, herein, choose the parameters pl, p2 and p3 as illustrated 

in Figure 7.11. 

In comparison with the notation used for constructive approach for Manhattan-

metric in Figure 7.8, following relations exist with the improvement based ap-
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proach. Note that we no longer require the definition of A2 used in Figure 7.8, 

but rather will use the p3, the intercept of the diagonal component of BR. 

pl Al 

p2 A3 

Steepest-Descent Improvement Algorithm: Case p = LI 

Step 1. Define and Initialize the model parameters and variables 

j : index for optimality iterations (i.e. j* = {j 1 écaST 2: ITC~;~rCj 1 } 

écaST : epsilon parameter for optimality stopping decision 

a j 
: step length for line search iterations at the lh iteration 

Pl : lh iteration value for the ith component 

x; = (x;, yi) : optimal locations corresponding to Ai=I,2 

M: market boundary parameter 

, '=0 '=0 '=0 
Set J = 0, Pi ,~ and P§ 

Step 2. Initialization: Allocate the service regions and optimally 

locate facilities 

Step 2.1. Define piecewise functional form of allocation line BR 

Pi 
br(y) = y - 14 

d 

y:s;Pi+14 

Pi+14:S;y:s;d+14 

Y2:d+14 

Step 2.2. Identify the following sets and functions given BR 

YBRI = {yly E [D,Pi + 14] 
YBR2 = {yly E [Pi + 14,d + 14] 
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YBR3 = {yly E [~ +~, Ml 

Al := {(x,y)ly E YBRl and x E [D,Pi] u y E YBR2 and x E [D,y

~] U Y E YBR3 and x E [D,~]} 

A2 := {(x, y)ly E YBRl and x E [Pi, M] U y E YBR2 and x E [y

~,M] U y E YBR3 and x E ~,M]} 

Step 2.3. Find the optimal locations and calculate the total cost 

xi = (xi, yi)j := arg min (fA dp=Ll (Xl, x)D(x)dx) 
(Xl,Yl) 1 

X2 = (X2' Y2)j := arg min UA dp=Ll (X2, x)D(x)dx) 
(X2,Y2) 2 

TCj = fAl dp=Ll (xi, x)D(x)dx + fA2 dp=LJX2' x)D(x)dx 

Step 3. Improvement: Update the first service region sizes Alj and 

A2j 

D Wh'l (ITCH1_TCjl ) 
Ole ITCi 1 2': ECOST : 

j=j+1 

Step 3.1. Calculate the partial gradients 

· Total cost with respect to PI,P2 and P3: 

dTC dTC dTC found in Appendix 7 
dPl ' dP2 ' dP3 

· N ormalize the gradients 

Step 3.2. Perform a Hne search for step size a j 

· Update the two allocation decisions Al j and A2j 

for i = 1,2,3 

· Repeat Steps 2.1, 2.2, 2.3 using (PI)' 

· Find (aj )* = argminTC 
a) 

Step 3.3. U pdate the allocation decisions 

for i = 1,2,3 
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. Repeat Steps 2.2, 2.3 using p{+1 for i = 1,2,3 

. Return to Step 3 

Step 4. Terminate with the solution p{ and BR 

Example 7.3: Steepest-Descent Improvement Aigorithm - Manhattan

metric (LI) Case 

Let's consider an example implementation of the ab ove algorithm for the 

Figure 7.11. We will use the same example in the preceding section, namely 

constructive solution approach. We have a square-shaped market region M= 

{(x, y)lx E (0,100) and y E (0, 100)}, i.e. M = 100. We wish to determine an 

optimal allocation decision for a linear demand density function (D(x, y) = 

100 + lOx + 5y) over the market region M. The starting solution for this 

instance is A1=35 and A2 = 40 at YPI = A3 = 40 and YP2 = A4 = 50, 

respecti vely. 

ITERATION 1 

Step 1. Define and Initialize the model parameters and variables 

Set: j = 0, h = 0.1, M = {(x, y)l, x E [0,100] and y E [0, 100]}, tCaST : 

1 x 10-5 

~=O 30 

Pb=o 50 

p{=o 10 

Step 2. Initialization: Allocate the service regions and optimally 
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locate facilities 

Step 2.1. Define piecewise functional form of allocation line BR 

30 

br(y) = y - 10 

50 

y ::; 40 

40 ::; Y ::; 60 

Y ~ 60 

Step 2.2. Identify the following sets and functions given BR 

YBHI = {yJy E [0,40]} 

YBR2 = {yJy E [40,60]} 

YBR3 = {yJy E [60,100]} 

Al := {(x, y)Jy E YBRI and x E [0,30J U y E YBR2 and x E [0, Y -

lOJ U y E YBR3 and x E [0, 50]} 

A 2 := {(x, y)Jy E YBRI and x E [30,100J U y E YBR2 and x E 

[y - 10, 100J U y E YBR3 and x E [50, 100]} 

Step 2.3. Find the optimal locations and calculate the total cost: 

xi = (xi, ynj=o := (24.93,82.06) 

x; = (x;, Y2)j=O := (74.96,50.60) 

TCj=o = 323,252,518.60 

Step 3. Irnprovernent: Update the first service region sizes A1j and 

A2j 

j=l 

Step 3.1. Calculate the partial gradients 
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. Total cast with respect ta PI,P2 and P3: 

dTC 

dPI 
dTC 

dP2 
dTC 

dP3 

. N ormalize the gradients 

dj =l 
Pl 

dj =l 
P2 

dj =l 
P3 

-168,522.5 

-798,366.4 

-118,182.8 

-0.20440 

-0.96834 

-0.14334 

Step 3.2. Perform a Hne search for step size a j 

(aj )* = argminTC =16.74 
a J 

Step 3.3. U pdate the allocation decisions : 

p{=1 

~=1 

i§=1 

30 -0.20440 

50 - (16.74) -0.96834 

10 -0.14334 

33.42 

66.21 

12.40 

Allocation decisions at the end of iteration 1 is displayed in Figure 7.13. 

Again, for brevity, we do not detail the remainder of iterations. Table 7.4. 

presents the results for the remaining iterations. Last column, % Change, 

is the percent age improvement in the current iteration over the incumbent 

solution. Optimality condition (less than 0.001% improvement) is reached at 

j = lOth iteration, which is illustrated in Figure 7.14. 
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Figure 7.13: Solution at the end of first iteration of the Manhattan-metric 
based ex ample for Steepest-descent improvement method (Example 7.3). 

, ,," 

~~",:'R' L':'"h. "', +;.,Ei . :,~::: ';;:,;:'1Ii/0lJi 
>, '"" 

14, .• ::..·2] .~p:~i b.~~,JÇi~;! ;~'<, "":': . :f.· ~:~~~~~ ., 
kt., . ~ 0, " ,'"c-

o 30.00 50.00 10.00 24.93 82.06 74.96 50.60 16.74 323,252,518.60 -
1 33.42 66.21 12.40 29.50 74.24 77.52 47.23 8.43 310,736,238.00 4.0279% 
2 39.75 67.00 6.89 32.12 71.62 79.04 47.25 5.11 307,776,686.90 0.9616% 
3 43.84 67.95 3.97 33.77 70.16 80.02 47.59 2.55 306,743,866.60 0.3367% 
4 45.82 68.23 2.39 34.56 69.35 80.49 47.86 1.51 306,461,768.70 0.0920% 
5 46.96 68.28 1.40 35.00 68.84 80.76 47.99 0.91 306,366,908.00 0.0310% 
6 47.59 68.30 0.74 35.25 68.52 80.91 48.01 0.55 306,333,426.00 0.0109% 
7 47.91 68.35 0.30 35.40 68.36 81.00 47.96 0.33 306,320,362.00 0.0043% 
8 48.04 68.43 0.01 35.49 68.29 81.06 47.86 0.19 306,314,324.40 0.0020% 
9 48.07 68.52 -0.16 35.55 68.29 81.09 47.77 0.13 306,311,300.70 0.0010% 
10 48.06 68.60 -0.26 35.58 68.30 81.11 47.69 - 306 309 564.20 0.0006% 

Table 7.4: Steepest-descent improvement algorithm's iteration results 

Euclidean-metric (LI) example (Example 7.3). 

7.4 Planar Model: n Facility Case 

7.4.1 Hybrid Approach: Optimallocation-based Improvement 

In the planar n-facility case for Euclidean-metric case, Chapter 5, we pre-

sented two solution methods: Steepest-descent and conjugate-gradient meth-
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Figure 7.14: Solution at the end of lOth iteration of the Manhattan-metric 
based example for Steepest-descent improvement method (Example 7.3). 

ods. Both of these methods require service regions to be separated by straight 

lines (i.e. allocation lines or voronoi edges) which is a property satisfied by 

the Euclidean-metric based measures. Hence, the straight line form of the 

allocation decisions allowed us to parametrize these lines with their slope and 

intercept parameters and develop vertex iteration based improvement meth

OdS.24 However for the cases where the service regions are not separated by 

lines but rather with more complex forms, it is nearly impossible to parametrize 

the allocation decisions. One example is the Manhattan-metric case where the 

separation of the service regions are in a special structure as described in the 

previous section. Figure 7.15 illustrates a typical allocation solution based 

on the nearest-neighbor property for 5-facility case for the Manhattan metric. 

Since the relationship between the vertices and the allocation lines cannot be 

24For a detailed explanation of the voronoi-diagram concepts and vertex-iteration based 
approach, we refer the reader to Chapter 5. 
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• 

Figure 7.15: Illustration of the allocation solution for 5-facility case based on 
the Manhattan-metric. 

characterized as easily as in the case of Euclidean-metric, we cannot follow 

the vertex iteration based approaches introduced in the Chapter 5. Instead we 

will follow a different approach which solves the LAM-AVS (location-allocation 

problem in the allocation variable space) using information from the incum-

bent allocation decisions. This approach has been introduced at the beginning 

of this chapter for the single dimensional problem. The second variant of the 

steepest-descent method, which combines steepest-descent with one-step opti-

mal location and one-step optimal allocation, is the method we extend to the 

pl anar n-facility case. 

Our approach is based on the composition of the allocation improvement 

approach and the sequential location-allocation (SLA) method which is pre

sented in the appendix of Chapter 4.25 The SLA method is a form of cyclic-

coordinate method where the method sequentially solves the problem in one 

variable space, either in the location variable space or in the allocation vari-

ables space, while fixing the other variable set. In that respect, an improve-

ment based approach to the LAM -A VS is a different class of algorithm than the 

25 Reader unfarniliar with the Sequetial Location-Allocation rnethod for location-allocation 
problerns is referred to Appendix 4 for a brief treatrnent of the rnethod. 
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SLA method. An improvement based approach applied to LAM-AVS moves 

from an allocation solution to another, while the locations are kept optimal. 

Therefore, given a solution where allocation decisions are not optimal but lo

cations are optimal, we could proceed with either an improvement approach 

using the LAM-AVS or perform, first, the optimal allocation step, then the 

optimal location step of the SLA method. These two alternatives would both 

lead to solutions where locations are optimal, but allocation decisions are not 

necessarily optimal. 

Now consider the case where we alternate between these two alternatives: 

given an optimal location solution, we first perform an improvement iteration, 

i.e. steepest des cent , on the allocation variables, and in the second stage we 

perform, first, the optimal allocation and then the optimal location step of 

the SLA. As a result, we would again have a solution where the locations 

are optimal but allocations are not necessarily optimal. Since first step is an 

improving step as is the second step, the composite approach would improve 

the objective function. 

This sequence of alternating between an improvement method applied to 

LAM-AVS and then the SLA implementation is at the core of our hybrid 

approach. Since we are using the SLA method's steps in reverse order, first 

the optimal allocation and then optimal location step, we could refer to this 

implementation more appropriately as the sequential allocation-location (SAL) 

method. Note that so far we have presented these two steps of the hybrid 

approach as a sequential implementation of the allocation improvement and 

SAL approaches, meaning that each step is independently performed from each 

other. 

Our hybrid improvement algorithm is the composition of these two 

270 



steps and moves from one solution to the next one after performing first the 

allocation improvement step and then the SAL. In order to illustrate this, 

Figure 7.16 would be instructive. This figure represents the contour plot of 

the objective function in the two-dimensional representation of the location 

and allocation variable spaces (i.e. x - axis is the allocation variables and 

y - axis is the location variables). At the top of figure, the path followed 

by the steepest-descent improvement approach is illustrated. Note that this 

path corresponds to two steepest descent iterations. In the middle of Figure 

7.16, one step implementation of the SAL approach, i.e. optimal allocation 

and then optimal location, is illustrated. At the bottom, we tie the SAL and 

steepest-descent approach in a sequence, i.e. one step of SAL followed by one 

step of steepest-descent, thus this sub-figure also represents two iterations. 

In comparison with the sequential SAL and steepest-descent approach 

(bottom of Figure 7.16), Figure 7.17 displays the composition of these two 

approaches. As shown in Figure 7.17, at every iteration, we are moving in the 

steepest-descent direction and performing one step of SAL. The dashed arrow 

from the starting point to the final point illustrates this single iteration. Given 

an allocation decision with optimal locations, we first identify the steepest

des cent direction for the allocation decisions. Next, we check whether moving 

in that direction leads to a better solution than the direct implementation 

of the SAL. This direct implementation is illustrated in the figure with the 

dashed arrows representing the SAL steps when we start from the current 

solution. As we iterate in the steepest-descent direction and repeat the same 

SAL steps, we reach to an improved solution (second set of dashed arrows 

representing SAL). Therefore, steepest descent direction in combinat ion with 

the SAL step dominates the solutions reached by direct implementation of the 
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Figure 7.16: Illustration of the allocation improvement approach (top figure), 
the SLA method (middle figure) and the sequential implementation of these 
two methods (bottom figure) in the allocation-location variable space. (x-axis 
is the allocation variables and y - axis is the location variables) 
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Figure 7.17: Illustration of the Hybrid algorithm as the composition of SAL 
and steepest-descent approach. 

SAL approach. With this information, we perform a line search along the 

steepest-descent direction using this composite mapping. In another example, 

it can be shown that steepest-descent direction may lead to an inferior solution 

compared to the solution obtained by direct implementation of SAL. In this 

case, a zero step length is the best solution, i.e. direct implementation of the 

SAL approach.26 

If we look at this algorithmic mapping as a composition of two mappings, 

then the follow-up question would be whether this is a closed mapping and, 

therefore, can we establish its convergence? The answer is yes, and for more in-

formation on the composition of mappings and the global convergence theorem 

we refer the reader to (Luenberger 1984). 

Another question is how we will perform the first step, i.e. steepest-descent 

for allocations, of this composite algorithm (i.e. hybrid algorithm), since im-

26In our algorithm, we further control this decision between performing a hybrid-algorithm 
step and a pure SAL by a desired improvement factor. When the hybrid algorithm with a 
small step size does not exceed the pure SAL step by a certain factor, we skip the hybrid
step and perform a pure SAL step. This is reflects the tradeoff between the cost of hybrid
algorithm's line-search iterations and potential improvement over pure SAL step. 
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Figure 7.18: Illustration of the relationship between the allocation decisions 
and optimal locations. 

provement approaches for the LAM-A VS require allocation decisions to be in 

particular structure, namely service regions are separated by lines. The an-

swer lies in the relationship between the allocation decisions and their implied 

optimal locations. In other words, instead of iterating the allocation decisions, 

we will iterate the optimal locations as surrogate iterates as done in the second 

variant of Section 7.2. Figure 7.18 is illustrative for understanding this rela-

tionship between the iteration of allocation decisions and the corresponding 

optimal locations. 

In this figure, solid line and the filled circles represents ex-ante solution, and 

the dashed line and circles represent improved solution. The dashed arrows 

show the paths followed by the optimal locations as the allocation decision 

is iterated using an improvement solution approach applied to LAM-AVS. It 

is possible to identify these paths with Taylor expansion of the relationship 

between the allocation solution and its corresponding optimal locations. First 

order Taylor expansion is the method we have chosen here, since second order 

expansion brings about additional computational complexity. 
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In what follows, we first establish the linkage between the allocation deci-

sions and their corresponding optimal locations. Then we present the formaI 

hybrid-improvement algorithm and illustrate its implementation with an ex

ample. 

Optimal Locations 

In the first step of our hybrid improvement algorithm, we improve the al-

location decisions by iterating the optimal locations. As stated earlier, the 

path followed by the optimal locations could be approximated with Taylor 

series and that we herein choose to use first order approximation. First order 

approximation of the change in optimal locations in terms of changes in the 

allocation decisions is obtained from the optimality conditions presented in 

the Proposition 7.1. The following proposition, establishes this relationship 

for the Manhattan-metric. 

Proposition 7.2 

The differential change in the optimal locations with respect to single dimen-

sional allocation decisions satisfy the following conditions when the distance 

measure is based on the Manhattan - Metric (L 1) : 

âx~ 
2 

âAf(y) 

âyi 
âAy(x) 

D(Bf(y) + Ai(y) , y) 

2D(xi,y) 

D(x, Bf(x) + A;(x)) 

2D(x,yi) 
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for i = 1, 2, ... , n 

for i = 1, 2, ... , n 



8x* 2 

8ALI (x) 

Proof. 

D(Bf(y), y) 
2D(x;, y) 

D(x, B;(x)) 
2D(x, y:) 

Prao! is provided in the Appendix 7 • 

for i = 1,2, ... ,n 

for i = 1, 2, ... , n 

As illustrated in Chapter 4, we can express the objective function in either 

horizontal single-dimensional decisions (A x (y)) or vertical single-dimensional 

decisions (AY (x) ). By using the representation based on the horizontal single

dimensional decisions (AX(y)), ~~? can be expressed as follows: , 

8TC -1 (arc 8Af_I(Y) 8TC 8Af(Y)) d (91) 
8x; - yEYBR 8ALI (y) 8x; + 8Af(y) 8x; y 

Similarly, with the vertical single-dimensional decisions (AY (x)) representation, 

~f can be expressed as follows: 

8TC = 1 (8TC 8Af_I(Y) 8TC 8Af(Y)) dx 
8y; xEYBR 8ALI (y) 8y; + 8Af(y) 8y; 

(92) 

where 

8:C = [ (Ixi - (Bf(y) + Af(y))1 + IYi - yI) - ] D (Af(y), y) (93) 

8Ai (y) (Ix; - (Bf(y) + Af(y)) 1-IYj - yi) 

D~C = [ (Ix; - xl + Iy; - (Bf(y) + Af(y))I) - ] D (x, Anx)) (94) 

DAi (x) (Ix; - xl-Iyj - (Bf(y) + Af(y)) 1) 
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Note that (91) and (92) are planar versions of the single-dimensional gra

dients in (84). Furthermore, as in Chapter 4, when the allocation decisions are 

at equidistanee from the locations, then (91) and (92) would be zero sinee (93) 

and (94) will be zero. We now provide the formaI description of the hybrid 

improvement algorithm. 

Hybrid Improvement Algorithm: 

Step 1. Define and Initialize the model parameters and variables 

j : index for optimality iterations (i.e. j* = {jl écaST ~ ITC~;~~rCjl} 

écaST : epsilon parameter for optimality stopping decision 

éSLA : epsilon parameter for skipping the steepest-descent improvement 

step and performing one iteration of SLA 

ai : step length for line search iterations at the ;th iteration 

aTEST : step length for comparison with SLA approach and Steepest-

deseent improvement solution 

A1=1,2, .. ,n : set of allocation decisions at iteration j 

(xi)i = (xi, yi)j : optimal locations corresponding to A1=12 n , , .. , 

M : market boundary parameter (assuming a square-shaped market region) 

Set j = 0 

Step 2. Initialization: Allocate the service regions and optimally 

locate facilities 

Step 2.1. Generate the an initial set of voronoi-generator points Pi=1,2, ... ,n 

Step 2.2. Generate the voronoi-diagram of the Pi=1,2, ... ,n and identify the 

following sets: 

Allocation polygons A1, 

Step 2.3. Find the optimal locations and calculate the total cost. 
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(xi)j = (xi, yi)i := arg min (fA dp(Xi, x)D(x)dx) 
(Xi,Yi) , 

TCj = L fA{ dp((x:)j ,x)D(x)dx 
i=1,2, ... n 

Step 3. Check for optimality 

Step 3.1. Optimality check 

If ' 1 d > ITCj+1-TC
j

l G St 6 J > an éCOST _ 1 TC) l ' 0 to ep . 

Else set j := j + 1 and continue with Step 3.2. 

Step 3.2. Calculate the partial gradients 

For each optimal location (xi)j, repeat : 

1- Find partial derivative of Single-dimensional allocation decisions 

(Af(y) , Ar( x)) with respect to (xi, y;)j 

ôAf(y) d ôAf(x) 
-ô* an -ô* Xi Yi 

2- Find partial derivative of TC with respect to Single-dimensional 

allocation decisions (Af (y), At (x) ) 

ô~~~)and ô~'fg) using (93) and (94) 

3- Find partial derivative of TC with respect to (xi)j ,i.e. ôTC 
ô (x:'Y 

8TC -1 (8TC 8Af_l(Y) 8TC 8Af(y)) d 
8xi - yEYBR 8Af_l (y) 8xi + 8Af(y) 8xi y 

8TC -1 (arc 8AL1(y) 8TC 8Af(Y)) d 
8xi - yEYBR 8Af_l (y) 8xi + 8Af(y) 8xi y 

Normalize the gradients d x : to obtain gradient vectors, d~~m, for V (xi)j , 

Step 4. Compare SLA performance with the improvement direction 

Step 4.1. SLA Approach 

. Solve LAM-AVS by relaxing constraint (69) 

Find Nearest-Neighbor solution for (xi)j 
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Assign solution to (A)~LA 

· Solve LAM-LVS by relaxing constraint (66) 

Solve Single-facility problem in (A)~LA 

Assign solution to (x; )~LA 

· Calculate total cost 

TC~LA = L J(Ai)~LA dp ( (X;)~LA ,x)D(x)dx 
i=1,2, ... n 

Step 4.2. Improvement Approach 

· Update the optimal location decisions 

( *)i ._ ( *)i dnorm 
Xi DESCENT'- Xi - aTEST x: 

· Solve LAM-AVS by relaxing constraint (69) 

Find Nearest-Neighbor solution for (X;)bESCENT 

Assign solution to (A)bESCENT 

· Solve LAM-LVS by relaxing constraint (66) 

Solve Single-facility problem in (A)bESCENT 

Assign solution to (x;)bESCENT 

· Calculate total cost 

TC1ESCENT = J;(A)j dp ( (X;)bESCENT ,x)D(x)dx , DESCENT 
i=1,2, ... n 

Step 4.3. Compare TC1ESCENT and TC~LA 

If TCbESCENT-TC~LA ~ ESLA , then Go to Step 5, 
TCbESCENT 

else assign 

(X;)Hl := (X;)~LA and (A)Hl := (A)~LA' and TCi := TC~LA 

Return to Step 3. 

Step 5. Steepest-Descent Improvement Line search 

Step 5.1. Repeat following until (air := argminaj TC' : 
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· U pdate the optimal location decisions 

(x:)' := (x:)j - ajd~~rm , 

· Solve LAM-AVS by relaxing constraint (69) 

Find Nearest-Neighbor solution for (x:)' 

Assign solution to (~), 

· Solve LAM-LVS by relaxing constraint (66) 

Solve Single-facility problem in (~), 

Assign solution to (x:), 

· Calculate total cost 

TG' = L J(Ai)' dp((x:)' ,x)D(x)dx 
i=1,2, ... n 

Step 5.2. Assign (x:)j+1 := (x:)', (~)j+l := (~), , TGj := TG' and 

Return Step 3. 

Step 6. Terminate with the optimal solution Ai and xi 

We now provide an illustrative example of the above algorithm. 

Example 7.4: Hybrid Improvement Aigorithm - Manhattan-metric 

Let's consider an example implementation of the ab ove algorithm on a 

small scale example of 3-facility for the Manhattan-metric case. Our market 

region is a square market region M={ (x, y)/x E (0,100) and y E (O,lOO)}, 

i.e. M = 100. and the demand density function is a linear density function 

(D(x, y) = 100 + 10x + 5y) over the market region M. 

ITERATION 1 

Step 1. Define and Initialize the model parameters and variables 
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Set j = 0 

ECOST := 5 x 10-4 

ESLA := 1 x 10-7 

ŒTEST := 0.01 

Step 2. Initialization: Allocate the service regions and optimally 

locate facilities 

Step 2.1. Initial generator points: Pl = (21,52) , P2 = (21,52) , Pl 

(21,52) 

Step 2.2. Generate the voronoi-diagram of the Pi=I,2,3 and identify the 

allocation polygons A1=~,2,3 

Step 2.3. Find the optimal locations and calculate the total cost. 

(xi)j=O = (22.116,49.567), (x;)j=o = (63.467,83.106), 

(x3)j=o = (80.261,33.687) 

TCj=o = 247,641,899.7 

(x;)j=o and A1=o are displayed in Figure 7.19. 

Step 3. Check for optimality 

Step 3.1. Optimality check 

j:= 1 

Step 3.2. Calculate the partial gradients 

dx't = (-796,742.1, -433,628.1) 

d X2 = (-1,620,312.2,367,934.9) 

d x; = (-369,543.5,855,000.9) 

Normalize the gradients dxi to obtain gradient vectors, d~;n-m, for 'yi (x;)j , 

d~~rm = (-0.3776407091, -0.2055315576) 
1 

d~~rm = (-0.7679974108,0.1743942199) 
2 

d~~rm = (-0.1751566286,0.4052543186) 
3 
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Figure 7.19: Starting solution for the example implementation of the Hybrid 
Improvement Algorithm for Manhattan-metric (Example 7.4). 

Step 4. Compare SLA performance with the improvement direction 

Step 4.1. SLA Approach 

(xn~~~ = (24.155,52.006), (X2)j=1 = (67.803,82.477), 

(X;)j=l = (79.772,31.052) 

(xn~~~ and (~)~~~ are displayed in Figure 7.20. 

· Calculate total co st 

TC~~~ =242,830,415.8 

Step 4.2. Improvement Approach 

· U pdate the optimal location decisions 

( *)j=l ._ (*)j=l 0 01 dnorm 
Xi DESCENT·- Xi -. x; 

(xi)b=isCENT = (24.158,52.008), (X2)j=1 = (67.808,82.476), 

(x3)j=l = (79.772,31.048) 

· Solve LAM-AVS by relaxing constraint (69) 
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Figure 7.20: Solution from direct implementation of the SAL in the first iter
ation (Example 7.4). 

· Solve LAM-LVS by relaxing constraint (66) 

· Calculate total cost 

TcbiscENT = 242,825,846.60 

Step 4.3. Compare TcbiscENT and TC~~~ 
TCj =l -Tcj=l • 

DES~~fT SLA = 188.17 X 10-7 ~ ESLA = 1 X 10-7 , thus contmue 
TCDESCENT 

with Step 5, 

Step 5. Steepest-Descent Improvement Line search 

· (aJ=l) * := arg minaj=l TC' = 15.6 

(xi)' := (28.532,55.775) , (x~)' := (74.695,80.462) , 

(x3)' := (79.662,26.595) 

(xi)2 := (x;)' and (~)2 := (~) 1 are illustrated in Figure and corre

sponding total cost is TC I := TC' = 238, 698, 979.4 
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Figure 7.21: Solution in the end of first iteration of the Hybrid Improvement 
Algorithm for Manhattan-metric (Example 7.4). 

ITERATION 2 

Step 3. Check for optimality 

Step 3.1. Optimality check 

j:= 2 

Step 3.2. Calculate the partial gradients 

dxi = (116,454.14, -333, 575.06) 

d x ; = (-252,388.02, -65,570.80) 

dxâ = (629,593.06, -114,993.85) 

Normalize the gradients d xi to obtain gradient vectors, d~rm, for V (Xi)j=2 

d~~rm = (0.1500363677, -0.4297690997) 
1 

d~~rm = (-0.3251698989, -0.08447964223) 
2 

d~~rm = (0.8111506895, -0.1481549699) 
3 
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Figure 7.22: Solution from direct implementation of the SAL in the second 
iteration (Example 7.4). 

Step 4. Compare SLA performance with the improvement direction 

Step 4.1. SLA Approach 

(xn~~~ = (28.169,57.616), (X:2)j=2 = (75.458,80.380), 

(X~)j=2 = (78.198,26.436) 

(xn~~~ and (A)~~~ are displayed in Figure 7.22. 

· Calculate total cost 

TC~~~ = 237,911,402.0 

Step 4.2. Improvement Approach 

· U pdate the optimal location decisions 

( *)j=2 ._ (*)j=2 0 01 dnorm 
Xi DESCENT'- Xi -. xi 

(Xt)~=iSCENT = (28.168,57.620), (x:Dj=2 = (75.461,80.3798), 

(X~)j=2 = (78.194,26.437) 

· Solve LAM-AVS by relaxing constraint (69) 

· Solve LAM-LVS by relaxing constraint (66) 
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. Calculate total cost 

Tcb=isCENT = 237,909,774.60 

Step 4.3. Compare Tcb=isCENT and TC~~~ 

Tcb=isCENT-TC~7,~ = 68.4 X 10-7 2:: ESLA = 1 X 10-7 , thus continue 
TC1--jfsCENT 

with Step 5, 

Step 5. Steepest-Descent Improvement Line search 

. (o:j=2)* := argmina j=2 TC' = 5.75 

(xr)' := (27.575,60.059) , (x;)' := (77.092,80.339) , (x;)' := (75.702,26.628) 

(x:)j=3 := (x:)' and (~)j=3 := (~) 1 are illustrated in Figure 7.23 and 

corresponding total cost is TCj=2 := TC' = 237,292,546.7 
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Figure 7.23: Solution in the end of second iteration of the Hybrid Improvement 
Aigorithm for Manhattan-metric (Example 7.4). 

When we continue with two more iterations, we reach the optimality spec-

ified by ECOST= 5 X 10-4 . The results are summarized in the Table 7.5. Third 
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column in the table, TeSLA, represents the solution obtained when we impIe-

ment a direct SAL iteration instead of the hybrid-algorithm. Accordingly, the 

last column presents the factor by which performing a line search in the de

scent direction improves the solution over that of direct implementation of the 

SAL. Even though, by design, the hybrid approach's worst case performance 

is equivalent to the SLA (or SAL) method, last column shows that it is indeed 

better. 

0 247,641,899.70 
1 238,698,979.40 242,830,415.80 1.86 
2 237,292,546.70 237,911,402.00 1.79 
3 237,067,825.20 237,151,460.80 1.59 
4 237,024,382.70 237,043,355.30 1.78 

Table 7.5: Iteration results for the Hybrid algorithm for the 

Manhattan-metric (LI) example (Example 7.4). 

The resulting solution is as follows and illustrated in Figure 7.24. 

(27.831,62.0), (X;)j=5 = (78.931,79.538), (X;)j=5 = (73.920,26.009) 

237,024,382.70 
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Figure 7.24: Solution in the end of fourth iteration of the Hybrid Improvement 
Algorithm for Manhattan-metric (Example 7.4). 

7.5 Conclusions 

This chapter presents alternative modeling and solution techniques for the 

location-allocation problems based on the Manhattan-metric. There are two 

main contributions of this chapter. Firstly, we have extended the two main 

classes of solution methods, constructive and improvement-based techniques, 

to the planar 2-facility problems. Secondly, we have developed a hybrid-

algorithm which allows us to solve the location-allocation problems in the 

allocation variable space. 

In the first contribution, we have extended the definition of the allocation 

line from a straight line form for the Euclidean-metric based distance measures 

to a three-segment form for the Manhattan-metric case. With this revision, 

we have adapted both the constructive solution approach and improvement

based steepest-descent algorithms to the planar 2-facility case based on the 

Manhattan metric. This contribution hints that, when the particular shape 
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of the optimal allocation decisions are known, we could adopt these two main 

classes of solution methods to any another metric. However, as the form of 

the optimal allocation decision becomes more complex, i.e. higher degrees of 

freedom, then the solution performance of these methods degrades. 

The second contribution is the hybrid improvement approach, which is a 

composition mapping of the steepest-descent and sequentiallocation-allocation 

(SLA) method. This approach is superior to the vertex-iteration based ap-

proach as it is not limited by the assumption of shape invariant allocation 

decisions. In this approach, we are able to combine the solution-improvement 

strength of the des cent search methods with the simple, yet good-performing 

aspect of the SLA method. The closeness and global convergence of this algo-

rit hm follows from Zangwill's theorems on the closeness of the algorithmic com

positions (Luenberger 1984).27 Although, this approach is primarily developed 

for the Manhattan-metric due to the generalizable design of the algorithm, i.e. 

the composition of the steepest-descent for optimal location iterations and one 

step SLA, this algorithm can be adapted to a variety of different metrics with a 

guaranteed worst-case performance of the SLA approach. The main ingredient 

for the implementation of this hybrid algorithm is the derivation of the dif-

ferential relationship between the single dimensional allocation decisions and 

optimal locations for a given allocation solution. The only drawback to this 

hybrid approach is the inability to accommodate approximate second-order 

procedures such as conjugate-gradient or Quasi-Newton methods. 

27By "global convergence" we referring to the convergence property of this composite al
gorithm from any starting solution to a local optimum solution in finite number of iterations. 
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Chapter 8 

Conclusions and Future Research 

In this chapter we present a conclusion of our results and findings, describe 

our contribution to the literature and state future research directions. 

8.1 Concluding Remarks 

In this dissertation, we have developed an allocation-based modeling and solu

tion framework for location-allocation problems with continuous demand data. 

Our objectives have been two fold. The first objective is to address the com

plexity issue of the problems when the demand is dense. The second objective 

is to provide a framework based on the allocation decisions such that our model 

and solution approach canaccount for more general problem characteristics, 

i.e. constrained problems and capacity dependent costs. 

We have primarily used the single dimensional setting in Chapter 3, i.e. 

line, to develop and test our algorithms which can be extended to planar set

tings. One observation we had is that, planar problem extension of allocation 

space models, is remarkably difficult due to the topological properties of pla

nar allocation decisions. In the case of location based models, this transition 

is not as difficult, since on both the line and the plane, points are used to 

characterize the locations. In comparison, while allocation decisions on the 

line are line segments, on the plane, allocation decisions are areas. In order 

to accommodate this difference, we have differentiated between two metrics, 

Euclidean and Manhattan metrics. This differentiation is necessary, because 

the constructs used to define their allocation decisions on the plane are dissim-
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ilar. For the Euclidean metric, straight lines are the separators of allocation 

decisions, whereas Manhattan metric separation is via a piecewise linear form. 

In the 2-facility Euclidean-metric problems, Chapter 4, a straight line is 

sufficient to characterize the allocation decisions. This has been also observed 

for the discrete demand cases by Francis and White (1998), Ostresh (1975), 

Drezner (1984) and O'Kelly (1986). However, we have implemented the con

tinuous demand versions and developed two solution procedures. The first 

solution procedure is the constructive approach where we solve first-order con

ditions by relaxing the boundary constraints. Second approach is an improve

ment based method, where, starting with an initial solution, we change the 

slope and intercept of the allocation line using first or second order gradient in

formation to improve the solution quality. In the case of the Manhattan-metric 

2-facility problems, Chapter 7, the constructive solution approach is similar 

except that we need to solve one more first-order condition. The improvement 

approach for the Manhattan-metric uses the special structure of the allocation 

line and independently translates segments of the allocation line. 

In the n-facility Euclidean-metric case, Chapter 5, we have developed an 

improvement based solution procedure where we move the vertices of the al

location polygons. This approach uses the results developed for the 2-facility 

case to calculate the effect on the edges connecting to the vertices and aggre

gates this information at the vertex level. In a sense we move from the slope 

and intercept decision variable space of the 2-facility case to vertex variable 

space in the n-facility case. Since we iterate the vertices which are connected to 

each other, sorne iterations results in infeasible allocation solutions, i.e. over

lapping allocation decision polygons. We account for these infeasibilities by 

the vertex-event handling procedures as described in Chapter 5. Specifically, 
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with these vertex-event handling procedures, we recover the feasibility of the 

allocation solutions while allowing solution improving movements as much as 

possible. In order to understand the runtime performance of our algorithm 

(i.e. steepest-descent method based on vertex iteration) as weIl as to gain 

insights into the effect of problem parameters on the solution, we perform a 

computational study in Chapter 6. 

For the n-facility Manhattan-metric case, Chapter 7, we note that the ver

tex iteration approach is not applicable for the Manhattan-metric due to the 

shape of the allocation line. Accordingly, we developed a hybrid algorithm 

which combines one step of the sequential location-allocation (SLA) method 

of Cooper (1964) with the des cent based improvement approach. With this 

procedure, we are able to solve the problem in the allocation variable space 

with a guaranteed performance which is better than the steepest des cent or 

SLA approach alone. However, this approach requires calculation of the gra

dients for the optimal locations which are surrogate iterates of the allocation 

decisions. Note that this approach is generalizable to other metrics as weIl. 

8.2 Contributions to Research 

Our contribution to the literature with this thesis can be classified into four 

categories: 

1- Development of a modeling and solution framework for continuous 

demand planar location-allocation problems based on the allocation 

decisions 

In real applications of the location-allocation problems the demand data is 

usually large (Taillard 2003, Brimberg 2000, Miller 1996). One way to over-
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corne this is the aggregation approach, which results in various types of errors 

(Erkut and Bozkaya 1999, Norman et al. 1999). Accordingly, continuous 

demand, a form of disaggregation, provides two benefits. Firstly, it is more 

accurate and accessible with current technologies (Miller 1996, Drezner 1997). 

Second, the continuous demand smooths the objective function; thus, local 

optirnization techniques have higher a chance to converge to a global solution 

Drezner (1997). Furthermore, traditional approaches focus on location deci

sions and assume optimal allocation decisions given the locations. Accordingly 

allocation decisions are dependent on the location decisions. Choice of loca

tions involves consideration of many different factors other than the trade-offs 

considered in location-allocation problems. Hence, with this thesis, we com

plement the location-based approaches by providing a framework which could 

defer the site selection decisions until after the allocation decisions (service 

regions) are made. Since our model and solution procedure operate on con

tinuous demand, our approach also provides such benefits as smoothing of the 

objective function and avoiding aggregation errors. 

Continuous approximation literature for locational-allocation problerns as

sumes the demand is slowly varying and that service regions are in the form of 

certain shapes (i.e. round). However, this is a restrictive assumption and could 

lead to significant errors in the location and allocation decisions (Chapter 3 

and Chapter 6 in this thesis). On the other hand continuous approximation 

is favorable due to its reduced data requirements. With our approach, we 

contribute to the literature by providing the same desirable property of re

duced data requirements without having any restrictions on the demand or 

the service regions. 
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2- Development of an efficient solution approach for 2-facility prob

lems 

Francis and White (1998), Ostresh (1975), Drezner (1984) and O'Kelly 

(1986) utilized the convex hull property of optimal subsets that they must be 

separated by a line. However, these methods are limited to small size prob

lems due to the increasing number of such partitions. When we consider a 

continuous demand function as an infinite number of demand points, surely 

this property is not useful. Instead we utilize the same line separation prop

erty and develop computationally efficient constructive solution approaches 

for planar 2-facility problems. This approach is based on solving a first-order 

condition which jointly characterizes optimal location and allocation decisions. 

For the manhattan-metric, line separation is different than the straight line, 

thus we have adjusted the constructive solution procedure accordingly. The 

constructive solution property relies on the equidistance of the allocation line 

to the optimal locations. This might not be the case for different settings, such 

as nonlinear capacity acquisition costs. Hence, we also developed an gradient 

based improvement solution approach which can handle these cases. 

3- Develop an alternative approach to the voronoi-based solution 

approaches for Euclidean-metrÏc location-allocation problems with 

continuous demand 

The voronoi diagram approach for solving location-allocation problems 

with continuos demand involves iteration of the location decisions (Iri et al. 

1983). At each step, a new voronoi diagram is constructed based on the new 

locations. In this thesis, we show that it is possible to solve Euclidean-metric 

location-allocation problems without the need of reconstructing the voronoi di-
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agram, except at the start to obtain an initial allocation solution. Specifically, 

we provide a vertex-iteration based update of the service region districts. In 

this approach vertices characterizing the allocation polygons are iterated. In 

the case of infeasibility, such as overlapping allocation polygons, we developed 

a set of feasibility recovery procedures called vertex-event handling procedures. 

4- Develop a hybrid irnprovernent algorithrn for Manhattan-rnetric 

location-allocation problerns 

The sequential location-allocation solution approach is a popular method 

for solving location-allocation problems. This approach, though simple and 

devoid of line-search step, is known to be slow in its convergence rate (Taillard 

2003, Brimberg et al. 2000). We develop a hybrid improvement approach, 

i.e. composition of steepest-descent with the SLA method, which provides an 

improvement over sole implementation of either method. One major aspect of 

this approach is that it can be generalized to other metrics and still solve the 

problem in the allocation variable space. Accordingly, the fiexibility associated 

with the allocation space (contribution 1) can be extended to the Manhattan 

as weIl as to other metrics. 

8.3 Future Research 

There are a number of possible extensions of this research. 

1. Cornparison of the error bound with dernand aggregation versus 

dernand disaggregation 

For the most part, the location-allocation literature assumes discrete de-
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mand data. Studies with continuous demand are scaree (Fekete, 2005), exeept 

the continuos approximation literature which primarily assumes a continuous 

demand. Hence, there is a need for further investigation of the error types and 

bounds when we disaggregate the discrete demand data. Sinee the aggrega

tion literature is weIl developed in this direction, similar steps can be taken to 

investigate the pros/cons of replacing discrete demand with continuos demand 

density function. Furthermore, comparison the effect of these two alternative 

methods (aggregation vs. disaggregation) on the solution oflocation-allocation 

problems would be the next step. 

2. Extension of the vertex-based improvement method to constrained 

problems 

In the location-allocation problems sever al studies considered such con

straints as limited capacity, restricted distances and forbidden regions for 10-

cating facilities. We plan to incorporate these model features and adapt a 

barrier or penalty based method to solve these constrained problems. Lim

ited capacity can be handled with our model much easier than the alternative 

modeling approach in the location variable space. Location based models iter

ate locations and then perform a voronoi tesselation (i.e. nearest assignment) 

during which accounting for the capacity restrictions is not possible. In our 

approach, we iterate the allocation decisions on a smooth subspaee thus we 

could control or priee them. 

3. Extension of the vertex-based improvement method to account 

for location and allocation dependent cost parameters 

Throughout this thesis we assumed fixed costs, capacity acquisition costs 

296 



and transportation costs are independent of the location and allocation amount. 

In other words, every unit of demand cost us the same in unit distance trans

portation and capacity acquisition. However, the model would be more prac

ticable if we could express them as spatial variables and include economies 

of scale in the capacity acquisition cost (Berman and Parkan 1984, Drezner 

and Wesolowsky 1989, 1999a, Berman and Drezner 2002, Brimberg and Salhi 

2005). Furthermore, by assigning very large fixed costs to the regions where 

facility location is not allowed, we could solve the location-allocation problems 

with forbidden regions (Fliege and Nickel 2000). 

4. Competitive facility location 

In the competitive models, competition takes places over the catchment 

areas, i.e. allocation decisions (Dasci and Laporte 2005b, Berman and Krass 

1992, Drezner 1982). Hence, since we model and solve the problem in the 

allocation variable space, it is possible to adopt our approach for competitive 

problems. 

297 



9 Appendices 

9.1 Appendix 3 

Proposition 3.1 

TC(Bi , Ai) + TC(Bi+l, Ai+d + TC(Bi+2' Ai+2) , s.t. B j+1 = Bj + Aj for j = 

i, i + 1, i + 2} is a strongly quasi-convex funciion of Ai and Ai+l for a given 

Proof. 

We will prove this proposition in two major steps. In the first step, we 

focus on the total cost of last two service regions and prove its quasi-convexity 

for Ai+l. Then, in step 2, we focus on the terminal service region triplet 

and prove quasi-convexity of its total cost in Ai+l and Bi+1. Since fixed costs 

are independent allocation decisions, we exclude them from consideration. In 

addition, the total capacity acquisition cost in a given market region is constant 

with linear capacity acquisition cost, thus we also ignore them for notational 

simplicity.28 

STEP 1. 

First we prove that TCn- 1,2 (Bn-l , An- 1) is a strongly quasi-convex function 

of An-l for any given Bn-l. (note that Bn = Bn-l + An-l and M = Bn + An) 

28 Total capacity acquisition cost is indepedent of the allocation decisions since 

i~ (fAi D(x)dx) = IM D(x)dx. 

298 



a) TC(Bn-l' An-d is a non-decreasing (i) and convex (ii) function of 

An-l for any given Bn-l. 

i) Show that TC(Bn- 1 , An- 1 ) is non-decreasing in An-l for any given Bn- 1 : 

It can be shown by the first order condition 

where 

8TC(Bn- 1 , An- 1) 

8An-l 
8TC(Bn- 1 ,An- 1) 8Tn- 1 > 0 

8Tn- 1 8An-l -

8TC(An-l, Bn- 1 ) 

8Tn- 1 

c(u + VBn_l)3 (2G(Tn- 1 )(Tn- 1 + 1)2 - V2G(Tn_1 )2(Tn_1 + 1)) 
2v2 G(Tn- 1 ) 

fT' _ VAn-l 
1n-l -

U + VBn-l 

v 

u + VBn-l 

It can be easily verified that 8TC(Bn-l,An-t) > 0 « 0) and 8Tn-l ~ 0 (::; 0) 
8Tn-l - - 8An-l 

ii) Show that TC(Bn- 1 , An-d is convex in An-l for any given Bn-l: 

TC(Bn-l' An- 1 ) is convex if second order derivative is nonnegative. How-

ever we will use a much more easier approach in showing that TC(Bn- 1 , An-d 

is convex using the composition conditions of convexity. 

For TC(Bn- 1 , An- 1 ) to be convex either: 
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and non-decreasing in Tn - 1. (v 2: 0) 

Tn-1(An-d is obviously convex and further from the results of part (i) 

TC (Bn-l' An- 1) is non-decreasing in Tn- 1. What remains to be shown is 

TC(Bn- 1, An- 1) is convex in Tn- 1. 

82TC(Bn_l, An- 1) 

8T~_1 

c(u + vBn_d3 (4G(Tn-l)(Tn-l + 1) - 2V2G(Tn _ 1)2 + V2) 
2v2 G(Tn- 1 ) 

andsince4(Tn _ 1+1)-2V2G(Tn _ 1) 2: 0 (evenforv:S 0), thenTC(Bn-l,An-l) 

is convex in Tn- 1. Thus TC(Bn-l, An- 1) is convex in An-l when v 2: o. 
2. Tn-1(An-d = ~A~-l is concave in An-l and TC(Bn- 1, An- 1) is convex 

U V n-l 

and non-increasing in Tn - 1 . (v:S 0) 

Tn-1(An- 1) is also concave and from the results of case when v 2: 0, 

TC (Bn-l, An- 1 ) is non-decreasing in Tn- 1 and TC (Bn-l' An- 1) is convex in 

Tn- 1. Thus TC(Bn_1 , An-d is convex in An-l when v < O. Therefore 

TC(Bn_l' An- l ) is convex in An-l when v ~ O. 

b) TC(Bn, An) is a strongly quasi-convex and non-increasing function 

of An-l for any given Bn-l' where Bn = M - An and An = M - Bn- 1 -

First, we show that TC(Bn, An) is a non-decreasing function of An-l (i.e. 

8TC(Bn,An) < 0) 
8An-l -
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Define Tn = ~ = v(M -Bn-l -An-l) , then we need to show: 
u+vBn U+VBn-l+vAn-l 

8TC(Bn, An) = c(u + VM)3 (V2G(Tn? - 2G(Tn)) 
aTn 2v2(Tn + 1)4 G(Tn) 

-v(Tn + 1)2 

u+vM 

It can be easily verified that 8TC~~:,An) 2 0 (~ O)and 8~~~1 ~ 0 (2 0) when 

V 2 0 (~ 0), thus 8T~~~~,:n) ~ 0 when V ~ 0 and TC(Bn, An) is a strictly 

non-increasing therefore strongly quasi-convex function of An-l. 

Next we need to further explore the particular behavior of TC(Bn , An) over 

An-l in order to characterize the result of its summation with TC (Bn-l' An-l). 

(i) When V > 0 8TC(Bn,An) is < 0 and convex (i.e. 8
3
TC( B n,An) > 0) 

-, 8An-l - 8A;_1 - , 

8TC(B A ).. > 83 TC(B A ) 
.::....::...c~n=,=n= < 0 lS an earlier result for v = o. Now we look at 3 n, n : 

8An-l - < 8An_l 

83TC(Bn, An) = ( aTn ) 2 a3TC(Bn, An) a2TC(Bn, An) 82Tn 
8A~_1 8An-l 8TLl + aT;_l 8A~_1 ' 

a2Tn 2v2(Tn + 1)2 

8A~_1 u+ vM 

After taking the derivatives and arranging terms, we obtain the following: 

and the numerator reduces to 4JT~ + 2Tn + 2 - 3V2, which is 2 0 for Tn 2 

O(v 2 0). Thus 8T~~~~,:n) is a convex function of An-1for v 2 o. 
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(ii) When v ::; 0, OT~~~~,:n) is ::; 0 and concave (i.e. o3Tijt~An) ::; 0), 

In the numerator of f)3
T
il:n ,An) we have 

n-l 

which attains its minimum at Tn = -1 in the domain of Tn E [-1,00], since 

G (Tn ) is a strictly increasing function between [-1, 00 J. Further, 

and since there is v in the expression, o3Tilt~An) ::; O. Thus OT~~~:'lAn) is a 

concave function of An-l for v ::; o. 

c) Lastly, we show that: 

At A = 0 'T' = 0 d 'T' = v(M-Bn-l) > 0 F th oTC(Bn-l,An-l) = 0 n-l , .ln-l an.l n U+VBn-l _ . ur er OAn-l 

when Tn - l = 0, and from part (h) we know that OT~~~~,:n) < 0(= 0) when 

Tn > 0(= 0) or equivalently M > Bn-l (= Bn-l)' Hence, oTC(Bn-l,An-l) + 
OAn-l 

OT~~~~,:n) < 0(= 0) when M > Bn-l (= Bn- l ) at An-l = O. 

To summarize the results obtained in parts (a),(b) and (c): 

a) TC(Bn- l , An-d is a convex non-decreasing function of An-l for any 

given Bn-l' 

b) TC(Bn, An) is a strongly quasi-convex and non-increasing function of 

An-l (when An = M - Bn-l - An-l and Bn = Bn-l + An- l ) and OT~.~~~,:n) 
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is convex (concave) for v 2: 0 (:S 0). 

c) ôTC(:~:~,:n_l) + ôT~i~~,:n) :S 0 when An-l = 0 

In the light of these results, we conclude that TCn- l ,2(Bn- l , A n- l ) 

{TC(Bn- l , A n- l ) + TC(Bn, An), S.t. Bj+l = Bj + Aj for j = n - 1, n} is 

a strongly quasi-convex(unimodal) function of An-l' 

STEP 2. 

In the second step of our proof, we prove that TCn- 2,3(Bn- 2, An- 2) = 

j = n - 2, n - 1, n} is a strongly quasi-convex function of An-2 for any given 

Bn-2 at a solution A~_l satisfying necessary conditions (19),(20) and (21). 

Note that TCn- 2,3(Bn- 2, A n- 2) is a univariate function of An-2 in which 

Bn-2 is a parameter and A~_l satisfies the corresponding first order optimality 

conditions. This proof is along the lines of STEP 1, and we here prove the 

following: 

a) TC(Bn-2' An- 2) is a convex non-decreasing function of An-2' 

b) TC(Bn-l' A~_l) + TC(Bn, A~) is a strongly quasi-convex non-

. . f . f A F h ô( TC(Bn- 1 ,A~_l)+TC(Bn,A:')) • 
lncreaslng unctIon 0 n-2' urt er ÔAn-2 IS a con-

vex(concave) function of An-2 when v 2: 0 (:S 0). 

) 
ôTC(Bn-2,An-2) ô(TC(Bn-l,A~_l)+TC(Bn,A:')) 0 h A - 0 

C BA + BA > W en n-2 - . n-2 n-2 

a) TC(Bn-2' An- 2) is non-decreasing (i.e. ÔTC(~Â:~,:n-2) 2: 0) and convex in 

An-2 can be showed in the same way as in previous result of (a) at STEP 1. 

b) If h th t B(TC(Bn-l,A~_l)+TC(Bn,A:')) < 0 c 2: 0 th 
we can s ow a BAn-2 _ lor v <' ' en 

TC(Bn-l' A~_l) + TC(Bn, A~) is a strongly quasi-convex non-increasing 
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function of An-2' 

Observe that: 

a (TC(Bn- l , A~_l) + TC(Bn, A~)) 
aAn - 2 

aTC(!;:~~A~-l) ;:::: 0 (::; 0) and aTc~~:,A::') ;:::: 0 (::; 0) for v ;:::: 0 (::; 0) is already 

shown in STEP 1. The following can be shown from first-order necessary 

conditions of TCn- l,2(Bn- l , A~_l): 

-4Dl + J 4Dî + 4D~ + 2J2Di + 2Di + 12Dî D~ 
T* 1 = ------'----------------n- Dl 

where Dl = U + VBn-l and D2 = u + vM. 

aT* n 

where 1/1n-l and 1/1n are positive valued functions for Dl, D2 ;:::: 0 and v ~ O. 

aT* aT* 
Therefore, aB:~~ ::; 0 (;:::: 0) and aBn"'-l ::; 0(;:::: 0) for v ;:::: 0 (::; 0). Thus 

a(TC(Bn-l,A~-l)+TC(Bn,A::.)) < 0 d TC(B A* )+TC(B A*)' -
aA

n
-2 - an n-l, n-l n, n lS a non 

increasing and quasi-convex function of An-2' 

F h d h h 
a(TC(Bn-l,A* l)+TC(Bn,A;')) . ( ) 

urt er, we nee to s ow t at a:4
n

-
2 

lS a convex concave 

function of An-2 when v ;:::: 0 (::; 0) . This proof is again along the lines 
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of previous results and could be shown from the second order derivative of 

a3(TC(Bn_l,A~_1)+TC(Bn,A:-O)) . h cil· 1· 
aA3 usmg t e 10 owmg re atIon. 

n-2 

83 (TC(Bn- l , A~-l) + TC(Bn, A~)) 
8A~_2 8B~_1 

In the above equation, last term cancels out since (A~_l' A~) satisfies the first-

d d·· a(TC(Bn-l,A* l)+TC(Bn,A:-O)) I h .. 
or er con ltIon a"i-l = o. n t e two remammg terms, 

squares are obviously positive for v ~ 0, and from previous results we obtain 

that 

a(TC(Bn_1,A* l)+TC(Bn,A:-O)) . ( ) f . fA h 
a~-"-2 1S a convex concave unctlOn 0 n-2 W en v 2:: 

o (:s; 0) . 

c) Lastly we show that: 

8TC(Bn-2' An- 2) 8 (TC(Bn-1' A~_l) + TC(Bn, A~)) (_) h A _ 
8A + 8A < 0 - 0 w en n-2 - o. 

n-2 n-2 

Wi k th t t A 0 '7' 0 th aTC(Bn-2,An-2) 0 e now a a n-2 = ,.1 n-2 = us aA
n
-2 =. 

8 (TC(Bn- l , A~_l) + TC(Bn, A~)) 
8An-2 

8TC(Bn- l , A~_l) 8T~_1 

8Tn- 1 8Bn-1 
8TC(Bn, A~) 8T~ 

+--.,------....,..-----
8Tn 8Bn-l 

A h . t (h) a(TC(Bn-l,A~_l)+TC(Bn,A:-O)) < 0 C > 0 d tA s s own ln par, aAn-2 _ lor v < an a n-2 = 
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Othe equality only holds when T~_l = 0 (i.e. A~_l = 0) and T~ = 0 (i.e. 

A;t = 0), in other words Bn-2 = M. Since this is a contradiction the existence 

h a(TC(Bn_l,A* l)+TC(Bn ,A;')) C Il d fi d bl of t e problem, ar;n-2 < 0 Lor we - e ne pro ems. 

In summary, we have first proved in STEP 1 that TCn- 1,2(Bn- 1 , An-d is 

a strongly quasi-convex function of An-l for any given Bn-l. Then in STEP 

2, we have shown that, at any solution A~_l satisfying necessary conditions, 

TCn- 2,3(Bn- 2, An- 2) is a strongly quasi-convex function of Bn-l and thus uni

modal in An-l and Bn-l. STEP 1 proves that TCn- 2,3(Bn- 2, A n- 2) is uni

modal( convex) in An-l for any given Bn-l or equally for any An-2 given 

Bn-2. STEP 2 proves that TCn- 2,3(Bn- 2, A n- 2) is also unimodal in An-2 at 

the minimizing values of An-l. Thus total cost in this last triplet of areas is 

jointly unimodal (strongly quasi-convex) in An-l and An-2. As a generaliza-

tion for any given two boundaries, Bi and Bi+3, total cost is jointly unimodal 

Proposition 3.3 

In the optimal solution, facility locations in every neighboring service region 

pair are equidistanced from the shared boundary. 

Proof. 

Rewriting the Euler equation in (26) with Ai+l = Bi+2-Bi-Ai and Bi+l = 
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Bi+ Ai gives us the below expression. 

BTC(Bi, Ai) + dTC(Bi+1 , Ai+!) (95) 
BAi dA 

B (TC(Bi, Ai)) B (TC(Bi + Ai, Bi+2 - Bi - Ai)) 
--'---='-:-----'--'-+--'----'-----::--:--------'--'-

BAi BAi 
B (TC(Bi, Ai) + TC(Bi + Ai, Bi+2 - Bi - Ai)) = 0 

BAi 

Recalling that total cost for each service region is calculated as follows: 

F + ! + aAi D ( (Bi + ~i) 

+cK( (u :~iBi) A; D( (Bi + ~i) 
F+! 

We can now explicitly express total cost for service regions Ai and Ai+l ac-

cordingly. 

Note that in (96), only the last two terms, transportation costs in Â and 

Â+l' have explicit dependence on Ai, Hence remaining terms of (96) cancel 
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out in the differentiation operation. The elevation factors for A and A+l are 

defined as follows: 

VAi 
u+vBi 

V(Ai+l) 
U + V(BiH) 

V(Bi+2 - Bi - Ai) 

U+V(Bi+Ai) 

(97) 

(98) 

Using the result in (11) we could express transportation costs, the last two 

terms of (96) in terms of (97) and (98) as below. 

(4 - Z(Ti)3 + 2T3 + 6T2 + 6T,)(u + vH)3 
T . C· A 2 2 2 2 2 ransportatlOn ost III oI'"1i = 2 

6v 

Transportation Cost in AH 

(4 - Z(T~+d + 2Ti~1 + 67i~1 + 6Ti+1)(U + V(Bi + Ai))3 

6v2 

Expression (95) becomes: 

B(Transportation Cost in ~ + Transportation Cost in ~+d 

BA (99) 

( 

( Z(Ti)3 3 2 )( )3 ( Z(Ti+l)3 3 2 .)( (B. A.))3) B 4--2 -+2Ti +6Ti +6Ti U+VBi + 4- 2 +2Ti+1+6Ti+1+6T,+1 U+V ,+ , 
6v2 6v2 

--~--------------------------------------------------~=O 
BAi 

(100) 

For convenience, first order condition in (99) can be revised for partial 

differentiation with respect to the elevation factor 1i if we observe the following 
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equivalence. 
a(-) v a(-) 
aA (u + vBi ) a~ 

(101) 

Note that in (101) Bi is subjec to to Bi S; M, so equality holds true only 

when the differentiation is equal to zero. For simplicity in disposition, it is bet-

ter to evaluate the differentiation in (99) separately for the two transportation 

terms. 

( -3 Z(~2i? aZa~,_i) + 61',? + 127: + 6) (u + vR)3 a(Transportation Cost in A) 1_·· . 
a~ 6v2 

a(Transportation Cost in A+l) 
aTi 

(102) 

( -3 Z(Ti+1)2 aZ(Ti+l) aTi+1 + (6T2 + 12T,- + 6) aTi+1 ) (u + v(B- + k))3 
2 aTi+1 aTi t t aTi t t 

6v2 

(4 - Z(T~+1)3 + 2Ti~t-1 + 6Ti~1 + 6~+1)(1 + ~)2(U + vBi)3 
+ 6v2 (103) 

Note that 

u + V(Bi + Ai) (u + vBi)(l +~) (104) 

(1 + ~)(1 + Ti+1 ) 
(u + VBi+2) 

(105) 
(u + vBi ) 

aZ(~) 2(~ + 1) 
(106) 

a~ Z(~) 

a~+l -(u + VBi+2) 
(107) 

aTi (~+ l)2(u + vBi ) 

After sorne algebraic manipulations by using (106) and (107), partial deriva-
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tives in (102) and (103) results in the following expressions. 

8(Transportation Cost in ~) (-Z(Ti) + 2Ti + 2)(Ti + 1)( u + vBi )3 
8Ti 2v2 

8(Transportation Cost in ~+1) 

8Ti 

(u + VBi+2)(Ti + 1)(u + vB
i
)2 (Ti+l Z (Ti+d + Z(Ti~d - Z(Ti+l)2 + 2) 

2v 
(4 - Z(T~+1)3 + 2~~1 + 6~~1 + 6Ti+1)(1 + Ti)2(U + VBi)3 

+ 6v2 

Through variable substitution using (105) and additional manipulations, 

expression (99) transforms to the following expression. 

(Z(T) - 2rr _ 2)(u + vE-) _ (u + vBi+2) 
2 2 2 (Ti+1 + 1) 

[(Ti+l + 1)2(Z(Ti+l) - 2Ti +1 - 2) + 4 - Z(T;+1)3 + 2~~1 + 6~~1 + 6Ti+l] = 0 

Above expression further reduces to, 

(
1 - (Z(Ti) - 2)) k = (E- _ B. _ k) (Z(Ti+l) - 2) (108) 

2T
i 

2 2+2 2 2 2 Ti +1 

From the earlier result in (97), one can derive the following expression: 

(Z(Ti) - 2) k - x· - E-
2Ti 2 - 2 2 

(109) 

When (109) is substituted in (108), we obtain the following: 
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which is the property in (27). • 

9.2 Appendix 4 

9.2.1 Improvement Based- Sequential Location-Allocation (SLA) 

Method 

Second solution approach in Section 4.4. is the sequential location-allocation 

(SLA) method. Eventhough this method has been introduced in the literature 

long time ago (Cooper 1964) for location-allocation problems with discrete 

demand, we extend this approach to case where the demand is in the form of 

a continuous function. 

Sequential Location-Allocation algorithm (SLA), due to (Cooper, 1964), 

is an inexact first-order solution procedure which alternates between location 

and allocation variable spaces. Originally, this procedure has been suggested 

for planar location-allocation problems with discrete demand data. In this 

section, we will extend this approach to planar location-allocation problems 

with continuous demand data. Although this extension is merely an al

gorithmic adaptation of SLA method for continuous demand, it nevertheless 

represents a missing component of SLA method and constitutes the linkage 

between location-allocation problem in allocation (LAM-AVS) and location 

variable spaces (LAM-LVS). 

We first present the formaI algorithm for the SLA method for continuous 

demand functions and then provide an example for the case of Euclidean

metric (L2 ). 

Sequential Location-Allocation (SLA) Method: 
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Step 1. Define and Initialize the model parameters and variables 

j : index for the feasibility iterations 

E BOU ND: epsilon parameter for optimality stopping decision 

(i.e. optimality stopping iteration j* = {jl EBOUND ::::: ITC~~;C:-11} 

Set j = 1, and select a feasible solution: 

. Allocation decisions (A1)j and (A2 )j 

. Location decisions (Xl)j and (X2)j 

Step 2. Solve Problem in Location Variable Space (LAM-LVS) by 

relaxing constraint (41) 

Solve Single-facility problem in (A1)j and (A2)j 

Assign solution to (xi)j and (x~)j 

Step 3. Solve Problem in Allocation Variable Space (LAM-AVS) by 

relaxing constraint (43) 

Find Nearest-Neighbor solution for (xi)j and (x~)j 

Assign solution to (A1)j and (A2 )j 

Step 4. Check for optimality 

. ITCLTCj-11·· 
Stop If éBOUND ;:::: TCj 1 else ass1gn for 1=1,2 

(x;)Hl f- (x;)j 

Return to Step 2. 

Let's illustrate the SLA algorithm with an example based on Euclidean-metric 

(L2 ). For consistency and comparison purposes, we choose the same ex-

ample as the one previously presented. Our market region is a square , 

M={(x, y) lx E (0,100), and y E (0, 100)}, i.e. M = 100 and demand density 

function is linear (D(x, y) = 100 + 10x + 5y) over the market region M. The 
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Figure 9.25: Starting solution of the Euclidean-metric based example for Se
quential Location-Allocation Method. 

starting solution is illustrated in Figure 9.25. 

This starting solution, both the locations and the allocation decisions, cor-

respond to the example presented in the constructive solution method sec-

tion where initial triggers were A1=35 and A2 =40 at YPl = A3 = 40 and 

YP2 = A4 = 50, respectively. 

The steps of the algorithm is as follows: 

ITERATION 1 

Step 1. Define and Initialize the model parameters and variables 

EBOUND = 1.0 X 10-4 

Allocation Decisions: 

Allocation Line BR 

Slope a := 2, Intercept b := -30 

br( x) = y = 2x - 30 
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Service Regions 

'-0 
(AI)J- := {(x, y)ly E YBR = [0,100] and x E [0, ~ + 15]) 

(A2)j=0 := {(x, y)ly E YBR = [0,100] and x E [~ + 15, 100]) 

Location Decisions: 

(XI)j=O = (XI, YI) = (27.720,69.071) 

(X2)j=0 = (X2, Y2) = (73.267,48.956) 

Total Cost: 

TCj=O(A I , A2' Xl, X2) = 248,433,712.40 

Step 2. Solve Problem in Location Variable Space (LAM-LVS) by 

relaxing constraint (41) 

Solve Single-facility median problem using Weiszfeld's Method 

(xi)j=l = (xr, yi) = argmin(xl) J dL2 (Xl, x)D(x)dx = (28.742,71.890) 
(Al)j=O 

(X;)j=l = (x;, y;) = argmin(x2) J dL2 (X2, x)D(x)dx = (74.213,49.946) 
(A2 )j=o 

Step 3. Solve Problem in Allocation Variable Space (LAM-AVS) by 

relaxing constraint (43) 

Solve following for Nearest-Neighbor solution: 

Allocation Decisions: 

Allocation Line BR 

Slope a := 2.072, Intercept b := -45.750 

br(x) = y = 2.072x - 45.750, 

Service Regions 

(AI)j=1 := {(x, y)/y E YBR = [0,100] and x E [0,0.4826y + 
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22.0790]} 

(A2 )j=1 := {(x, y)ly E YBR = [0,100] and xE [0.4826y+22.0790, 100]} 

Step 4. Check for optimality 

Total Cost: 

ITCj=l_TCj=ol -3 
TCJ-o = 9.0 x la > éBOUND 

Figure 9.26 illustrates the solution at the end of first it erat ion. 

100~----------~----~ 

80 

60 

40 

20 

o 0 20 40 60 80 100 

Figure 9.26: Solution at the end of first iteration of the Euclidean-metric based 
example for Sequential Location-Allocation Method. 

For brevity, illustration of a single iteration would suffice to understand 

the SLA approach. When continued with the SLA method, by the end of 

32nd iteration, solution displayed in Figure 9.27 is obtained. Iteration steps 

are summarized in Table A.4.1. Note that, despite the three-fold iteration 
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Figure 9.27: Solution at the end of 32nd iteration of the Euclidean-metric based 
example for Sequential Location-Allocation Method. 

count, final objective function value is still worse than the one obtained in the 

constructive approach. 
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f,~ VL;·";,.;;;~t TyJJe "':,) ... ····",11î~ 1 .... O' 'n, ,yt}.::;~::, o;~li~t 
0 27.72 69.07 73.27 48.96 2.000 -30.000 
1 Location 28.74 71.89 74.21 49.95 2.000 -30.000 

Allocation 28.74 71.89 74.21 49.95 2.072 -45.750 
2 Location 31.97 70.10 76.31 48.85 2.072 -45.750 

Allocation 31.97 70.10 76.31 48.85 2.087 -53.509 
3 Location 33.76 69.24 77.39 48.02 2.087 -53.509 

Allocation 33.76 69.24 77.39 48.02 2.056 -55.638 
4 Location 34.85 68.94 77.96 47.44 2.056 -55.638 

Allocation 34.85 68.94 77.96 47.44 2.005 -54.913 
5 Location 35.65 69.06 78.28 46.99 2.005 -54.913 

Allocation 35.65 69.06 78.28 46.99 1.931 -51.998 
6 Location 36.17 69.21 78.36 46.49 1.931 -51.998 

Allocation 36.17 69.21 78.36 46.49 1.857 -48.467 
... ... .. . ... ... ... ... ... 
21 Location IV 45.41 75.01 75.49 37.46 0.974 -1.625 

Allocation IV 45.41 75.01 75.49 37.46 0.801 7.809705 
22 Location III 48.21 76.08 74.38 35.16 0.801 7.809705 

Allocation III 48.21 76.08 74.38 35.16 0.64 16.41292 
25 Location III 56.63 77.28 69.14 29.54 0.316 33.821 

Allocation III 56.63 77.28 69.14 29.54 0.262 36.924 
29 Location III 59.02 77.49 67.24 28.66 0.198 40.873 

Allocation III 59.02 77.49 67.24 28.66 0.168 42.451 
32 Location III 58.67 77.32 67.27 28.50 0.173 42.067 

Allocation III 58.67 77.32 67.27 28.50 0.176 41.816 

Table A.l: Sequential Location-Allocation Algorithm's iteration 

results based on Euclidean-metric (Example A.l). 

Proposition 4.1. 

".XC 
248,433,712.40 
248,018,074.90 
246,204,796.30 
245,199,184.10 
244,603,093.00 
244,286,638.40 
244,099,369.20 
243,988,299.20 
243,920,560.50 
243,869,818.80 
243,833,019.00 
243,803,494.30 
243,779,915.00 

.. . 
242,236,124.40 
241,753,555.30 
240,295,442.80 
239,541,760.20 
236,592,568.70 
236,491,785.10 
236,386,847.00 
236,352,293.60 
236,346,792.00 
236,345,501.30 

The optimal locations of the two facilities (xi and x;), given the allocation 

decisions, satisfy the following conditions when the distance measure is based 

on the Squared Euclidean - MetrÏc (L;) : 

for i = 1,2 

where xf and yf are the x- and y- dimensional centroids of A i=1,2 with 

respect to D(x). 

J xD(x)dx JyD(x)dx 
G Ai x· = --0,----
Z J D(x)dx 

and G Ai 
Yi = -J=-D-(-x)-dx- for i = 1,2 

A; Ai 
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Proof. 

Since the proof is identical for x and y dimensions, we will only prove for Xi. 

For a given allocation solution (Â, i = 1,2), define the objective function as 

TC (Â, i = 1,2). When we take the partial derivative of the TC (Â, i = 1,2) 

with respect to Xi, the only differential term is due to the transportation cost 

component of TC (Â, i = 1,2) , which is J [(Xi - X)2 + (Yi - y)2] D(x)dx.Hence, 
A; 

we have the following steps. 

8TC(Â,i=1,2) 

8Xi 
2 J J (Xi - x)D(x)dxdy 

y Any) 

2Xi J J D(x)dxdy - 2 J J xD(x)dxd]J'110) 
y Af(y) y Af(y) 

2(Xi - xf)Wi (111) 

where Wi = J J D(x)dxdy is the total demand volume served in service 
y Af(y) 

region Â and xf, centroid of A with respect to D(x) is defined as follows. 

J xD(x)dx 
G A; 

Xi =----
Wi 

J xD(x)dx 

J D(x)dx 
Ai 

Thus the optimal location decisions (xT, y;), are the centroids of the des

ignated service regions, A with respect to D(x) for the Squared Euclidian-

metric. .. 

Proposition 4.2. 

The optimal locations of the two facilities (xi and x;), given the allocation 

318 



decisions, satisfy the following conditions when the distance measure is based 

on the Euclidean - Metric (L 2) : 

j(X: - x) 
Ilx:-xll D(x)dx 0 for i = 1,2 (112) 

Ai 

j(Y;-Y) 
Ilx:-xll D(x)dx 0 for i = 1,2 (113) 

Ai 

Proof. 

Along the lines of proof for Proposition 4.2., we will only prove for Xi. 

When we take the partial derivative of the TC (A, i = 1,2) with respect to 

Xi, the only differential term is due to the transportation cost component of 

TC(Ai,i = 1,2), which is J Ilx:-xll D(x)dx.Hence, we have the following 
A; 

steps. 

oTe (A, i = 1,2) = j (Xi - X) D(x)dxdy = 0 (114) 
OXi Ilx: -xii 

Ai 

Thus the optimal location decisions (x:, yi) satisfy the relations in (112) 

and (113) for A with respect to D(x) for Euclidian-metric. • 

Proposition 4.3. For Euclidean-metric based distance measure cases, the 

derivative of the single dimensional allocation decisions (AY(x) and AX(y)) 

with respect to the slope (a) of BR when rotated around a reference point 

(xr , Yr) is as follows: 
dAX(y) (Yr - y) 

dar a2 
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i j 

/ 

/ 

Figure 9.28: Rotating line(y = alx + bd around a reference point (xr, Yr). 

Proof. 

First, we derive (8A;;Y)) using the Figure 9.28. In the figure, (xr,Yr) is 

the reference point for our clockwise rotation. As a result of this rotation, 

equation of the line changes from y = alX + bl to y = a2X + b2. Accordingly, 

coordinates of point Pl, i.e. (Xl, YI) changes. Hence we could express this 

change in Xl as dAX(YI), i.e change in single-dimensional allocation decision 
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YI - Yr YI - Yr 

a2 al 

(Yr - Yd (~ - ~) 
al a2 

(Yr - Yd (a2 - al) 
ala2 

When we take the limit of the new slope a2 towards original slope al : 

dal lim (a2 - al) 
a2---ta l 

lim ala2 a2 
l 

a2---ta l 

dAX(YI) (Yr - YI) 

dal a2 
l 

We can deriveo"!Y(x) along the lines of ab ove approach. 
Ual 

Y2 - YI 

lim (a2 - ad 
a2---ta l 

• 
Proposition 4.4. For Euclidean-metric based distance measure, when we TO-

tate the allocation line BR around a reference point, the following relationship 
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holds true irrespective of the reference point. 

Proof. 

dAY(x) 
da 

dAY(x) 
db 

Recall from Proposition 4.3.: 

dAX(y) 
dar 

dAY(x) 
dar 

(115) 

(116) 

When we express (Yr - y) = a (xr - x), below relation proves (115) in the 

proposition. 

In order to prove (116), we first need to derive the results for the translation, 

i.e. dA;;X) and dA:(Y). Figure 9.29 illustrates this transformation. 

With the translation (i.e. change in the intercept b), the change in the 
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Figure 9.29: Translating line(y = ax + bl ) by changing the intercept. 

horizontal allocation decision dAX (YI) is as follows. 

dAX (YI) X2 - Xl 

YI - b2 YI - bl 

a a 
bl - b2 - (b2 - bl ) 

a a 

db lim (b2 - bl ) 
b2->bl 

dAX(YI) -1 

db a 
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Accordingly, the change in the vertical allocation decision dAY(XI) is as follows. 

Y2 - YI 

1 

Note that as in the case of rotation around a reference point, the following 

relationship holds true for translation as weIl (for brevity exluded). 

Proposition 4.5. Rotation around a reference point (xr, Yr) by (da) is an 

equivalent transformation to first decreasing the intercept by X r ( da) and then 

performing a pure rotation around (0, b). 

Proof. 

Now we establish the equivalence of rotation around a reference point 

(xr , Yr) with the translation and pure rotation. Figure 9.30 illustrates trans-

forming line (y = alX + b1) by first translation and then rotation. 

From the above illustration, the value ~ = b2 - b1 should take for the 

translation followed by a rotation to be an identical transformation to the 

rotation around (xr, Yr) can be found as follows. 
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Figure 9_30: Translating and rotating line(y 
tercept and slope_ 
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Yr - bl 
al 

Xr 

a2 
Yr - b2 Yr - (~+ bl ) 

Xr Xr 
~ 

al - a2 
Xr 

When we express dal = lima2 --+a1 (a2 - al), then the necessary translation 

amount ~ would be as below. 

From the figure above, it follows that a unit increase in the slope (when rotated 

around reference point) would be equivalent to decreasing the intercept by X r 

and performing pure rotation. • 

Proposition 4.6. The derivative of objective function with respect to the slope 

when it is rotated around a reference point (xr , Yr) can be found through either 

(117) or (118). (117) and (118) corresponds to the horizontal and vertical 

representations of TC in (56) and (57), respectively. 

Proof. 
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We could differentiate total cost (TC) with respect to the slope(a) of BR. 

Since we are rotating BR around a reference point (xr, Yr), we will use ar 

(instead of a) to distinguish between pure rotation and rotation around a 

reference point. 

We know from the previous proposition that: 

DAY(x) = (-a) BAX(y) 
Bar Dar 

Furthermore, we could change the integration variable using the following 

relation: 

y ax+b 

thus 

dy a (dx) 

dTC 

After substituting oAY(x) = (-a) oAX(y) : 
oar Oar 

dTC 
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When we multiply each si de with dar : 

dTC 

dTC 
dAx(y) 

1 ( aTC aTC) x 
yEYBR aAx(y) - aAY(x) dA (y)dy 

aTC aTC 
aAx(y) aAy(x) 

(119) 

Similarly, we could substitute f)Af)X(y) = (-1) f)Af)Y(x) and obtain the following. 
ar a ar 

After multiplying each si de with dar : 

• 

dTC 

dTC 
dAY(x) 

Proposition 4.7. 

1 ( aTC aTC) y 
XEXBR aAy(x) - aAx(y) dA (x)dx 

aTC aTC 
aAY(x) aAx(y) 

(120) 

The partial derivatives of the objective function with respect to single

dimensional allocation decisions satisfy the following relationship. 
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where x = (AX(y), AY(x)) E BR and for p = L2 and p = L~. 

Pro of. 

Note that in Section 4.4.2, we have illustrated the TC could be expressed 

in terms of either horizontal (AX(y)) or vertical (AY(x)) single dimensional 

allocation decisions. In either case, partial derivative with respect to other 

single-dimensional allocation decision would be zero. Recall the expression of 

TC in terms of horizontal (AX(y)) single dimensional allocation decisions: 

When we take the partial derivative of TC with respect to AX(y), i.e. a~:fu), 

using the Leibniz's rule. 

Similarly, when we follow the same steps for the expression of TC in terms of 

AY(x), we obtain the other form. 

aa;;~) = [dp (x;, (x, AY(x))) - dp (xi, (x, AY(x)))] D (x, AY(x)) 

Sinee either a~~fx) or a~:fu) is non-zero, (121) holds true. 

Proposition 4.8. The partial derivative of the objective function with re-
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spect to single-dimensional allocation decisions satisfy the following relation

ship when the distance measure is separable, i. e. dp (xi, x) = dp.,( xi, x) + 

dpy(xi, x) 

aTC 
aAx(y) 

aTC 
aAY(x) 

where x = (AX(y), AY(x)) E BR 

Proof. 

(122) 

(123) 

The proof is along the lines of Proposition 4.7. When we express TC in 

terms of both the horizontal and vertical single-dimensional allocation deci-

si ons and take partial derivative as in the previous proof, we would obtain 

(122) and (122) 

Note that, since dp (xi, x) = dpx (xi, x) + dpy (xi, x), the following result still 
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holds. 

• 

(122) - (123) 

[dpx(xi,x) - dpx(x;,x)] D(x) 

- [dpy (xi, x) - dpy (x;, x) ] D(x) 

[dp(xi, x) - dp(x;, x)] D(x) 

Proposition 4.9. Hessian of the TC with respect to the allocation line BR 

pammetrized over its slope (a) and intercept (b), for the cases L2 and L~, can 

be found as follows: 

where 

where x = (AX(y), AY(x)) E BR. 

a~~7u), a~;fx), a~2x~~2 and a~2Y~~2 can be obtained from (56) and (57). Moreover 
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derivatives ofAX(y) with respect to slope and intercept are as follows. 

Proof. 

oAX(y) 

oa 
oAX(y) 

ob 
02 AX(y) 

oaob 

AX(y) 02AX(y) AX(y) 
--- and =2--

a oa2 a2 
1 02 AX(y) 

--;; and ob2 = 0 

1 

a2 

T.' b h d' a2
TC d {PTC b b . d . h L'or ot lstance measures, aAX(y)2 an 8AY(x)2 can e 0 tame as m t e 

proofs of Propositions 4.7. and 4.8. We now prove the terms in the Hessian. 

For the slope, the second order derivative with respect to the slope d'Zf can 

be derived as follows: 

dTC -1 ( oTC _ oTC ) oAX(y) dy 
da - yEYBR oAx(y) oAY(x) oa 

since 

dAY(x) = (-a) dAX(y) 
da da 

where 
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A bove result follows from the below: 

cP AX(y) 
da2 

dAX(y) 
Slllce -----'..:-:... 

da 
cP AX(y) 

da2 

d(~) 
d 

AX(y) 
a 

_ [dA:~y) a-1 + AX(Y)(-1)(a12
)] 

2AX (y) 
a2 

Now we will first derive the second order derivative with respect to the inter

eept d2cJ;P. 

Sinee 

Furthermore second order derivative of AX(y) with respect to the intereept (b). 

Above result follows from 

d (~l) 
db = 0 
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As a result: 

Now we will derive the second order partial derivatives with respect to the 

slope and intereept Z~. We use the following first. 

d(~) 
db 

Sinee 

dAY(x) = (_ ) dAX(y) 
db a db 

Above result follows from 

d(~) 1 

da 

Renee the Ressian follows as in proposition. • 
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9.3 Appendix 5 

Proposition 5.3. 

Suppose an edge eij passes through two vertices Vk = (v%, v%) and Vt = 

( v: , vf). M oving the vertex Vk by increasing v% and v~, would change the slope 

(aij) and intercept (bij ) of the edge eij according to the following relations: 

(vf - v%) 
and 

1 

(v% - vt) 

and 
(vf - vn 

Proof. 

Recall from Proposition 4.3. the following relation for the allocation line, 

i.e. edge, rotating around a reference point (xr, Yr). 

Hence, with respect to the notation in the Proposition 5.3, we have the 

following relations. 
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(AX(y), AY(x)) 

(xr, Yr) 

ar (= a) 

da da Henee d;' and d 'J follows directly from the inverted result of Proposition 
V k V

k 

4.3. 

(vi - vk) 
and 

1 

(Vk - vf) 

db dh For d '~ and -;pT'] consider the following equation of the edge eij. 
V k V

k 

From this equation, (daij) x = - (dbij ) follows, aB III Proposition 4.5. 

Henee we could substitute -(~ij) in place of daij and obtain the following. 

and 
(vf - vn 

• 
9.4 Appendix 7 

Proposition 7.1 

The optimal locations of the two facilities (xi and x;), given the allocation 

decisions, satisfy the following conditions when the distance measure is based 

on the Manhattan - Metric (L 1) : 
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1 J D(x)dx = 1 J D(x)dx 
x<xi, xEAi x;::'xi, xEA; 

for i = 1,2 

1 J D(x)dx = 1 J D(x)dx for i = 1,2 

y<y;, yEA; y;::'y;, yEAi 

Proof. 

Since the proof is identical for x and y-dimensions, we will only prove the 

optmality condition for Xi. For a given A, the total travel in Manhattan-

metric can be written as: 

J IXi - xl D(x)dxdy = 1. J IXi - xl D(x)dxdy 

Ai Af(y) 

Let's define 

Define TCAi = total travel in x-dimension in A 

If we discretize (Jy ) with (~), we obtain the following equivalent. 
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Bf(Yj)+Af(Yj) Bf(Yk)+Ai(Yk) 

J IXi - xl D(x)dx + t J IXi - xl D(x)dx 

Bf(Yj) ~;3 Bf(Yk) 

Xi Bf(Yj)+Ai(Yj) J (Xi - x)D(x)dx - J (Xi - x)D(x)dx 

Xi 

[

X, Bf(Yk)+Ai(Yk) ] 

+ ~ B:L (Xi - X) D(x)dx - ! (Xi - X) D(x)dx 

The optimal location (median in this case) could be found from the first order 

condition. d~X~i = Q. Using the Leibniz rule, we obtain the following. 

Xi Bf(Yj)+Ai(Yj) 

J D(x)dx - J D(x)dx 

After combining positive and negative signed terms and taking m ---+ 00, 

1 [ J D(x)dx - J D(X)dX] dy Xi:-X; Q 

y X<Xi,XEAi(Y) X~Xi,XEAi(Y) 

Henee the pro of is complete. • 
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Proposition 7.2 

The partial derivative of the objective function TC with respect to pi, p2 

and p3 is as follows: 

Proof. 

Consider Figure 7.11. Here we will use the triple-tuplet (Pl,P2,P3) to char-

acterize this special allocation line. 
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Pl Y ::s; Pl + P3 

br(y)-l = y - P3 Pl + P3 < Y ::s; P2 + P3 

P2 y>P2+P3 

o x::S; Pl 

br(x) = X + P3 Pl < X ::s; P2 

M X>P2 

Recall from Chapter 7, that AY(x) = br(x) and AX(y) = br(y)-l and when we 

substitute the expression for these single dimensional allocation decisions. 

TC 1 r l 

IXI - xl D(x, y)dxdy + 1 r-P3 
IXI - xl D(x, y)dxdy 

yEYBRl Jo yEYBR2 Jo 
+ 1 {P2 IXI - xl D(x, y)dxdy + 1 lM IX2 - xl D(x, y)dxdy 

yEYBR3 Jo yEYBRl Pl 

+ 1 lM IX2 - xl D(x, y)dxdy + 1 lM IX2 - xl D(x, y)dxdy 
yEYBR2 y-P3 yEYBR3 Pz 

+ {Pl {M IYI _ yi D(x, y)dydx + {PZ lM IYI - yi D(x, y)dydx 
Jo Jo Jpl X+P3 

+ l p2 
r+P31Y2 - yi D(x, y)dydx + lM {M IY2 - yi D(x, y)dydx 

~ Jo ~ Jo 

When we apply the Leibniz rule to obtain the derivatives d::;~, d::;; and 

ddTC , proposition results follows. • P3 

Proposition 7.3 

The difJerential change in the optimal locations with respect to single dimen-

sion al allocation decisions satisfy the following conditions when the distance 
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measure is based on the Manhattan - Metric (L 1) : 

Proof. 

8x* 
2 

8Ai(Y) 
8yi 

8Af(x) 

8x* 
2 

D(Bf(y) + Af(y) , y) 
2D(xi,y) 

D(x, Bf(x) + Af(x)) 
2D(x,y:) 

D(Bf(y), y) 
2D(xi, y) 

D(x, By(x)) 
2D(x,y:) 

for i = 1,2, ... , n 

for i = 1, 2, ... , n 

for i = 1,2, ... , n 

for i = 1, 2, ... , n 

For brevity, we will outline the proof which is based on application of the 

Leibniz's mIe. Recall from proposition 7.1 the following first-order condition: 

1 j D(x)dx -1 j D(x)dx =0 
x<xj, xEAi x?xj, xEA; 

When we re-express above as follows and take the partial derivative with 

respect to Ai(Y). Note that we will consider xi as a function of Ai(Y), i.e. 

xi (Af(y)). 

1 j X:; l1x=Bf(Y)+Af(Y) 
D(x)dx - D(x)dx =0 

y y x=xj 
x=Bf(y) 

Then, below follows. 

8xi D(Bf(y) + Af(y) , y) 
8Ai(Y) 2D(xi, y) 
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For the âA~x:( )' we will express Bf(y) as Bf(y) = Bf-I (y) + ALI (y) and 
,-1 y 

apply the Leibniz's mIe to differentiate the equation below with respect to 

J j X; J l x=BL1(Y)+AL1(Y)+Af(Y) 
D(x)dx - D(x)dx =0 

y y x=x* 
x=Bi_1 (y)+Af_1 (y) , 

Hence, the differential relation between the optimal location and its pre-

ceding single-dimensional allocation decisions follows as below. 

3Af_1 (y) 

D(Bf(y), y) 

2D(x;, y) 

ôy* âYi Similar procedure applies for âA,Y'(·x) and ..,,--,-;i'-'-7," âAL1(x)" 
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