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Mathématiques who awarded me the 2011 Carl Herz Prize. This gave me great en-

couragement on my research work.

Finally, and above all, I wish to thank my family. I am deeply indebted to my parents

for their selfless love since I was born. Without their support, I could not have gone

this far. I owe my loving thanks to my wife Yuxi. She has sacrificed so much due to

my working style on research. I thank wholeheartedly for her tremendous love and

exclusive understanding, without which this work would not be possible.

iii



ABSTRACT

The main threads of this thesis are related by the theme of the complex Monge-

Ampère type equations. It consists of some analysis results from the partial differ-

ential equation aspect and several geometric consequences as applications.

In the first part, we study the a priori estimates for complex Hessian type equations

on Hermitian manifolds. These estimates are the key ingredients for the solvability

of the corresponding equations by virtue of the continuity method. In particular, we

establish the first and second order derivative estimates for complex Monge-Ampère

equations which are analogous to Yau’s estimates on Kähler manifolds.

In Chapter 3, we investigate the interior Schauder estimates of the solutions to com-

plex Monge-Ampère equations. Moreover, aiming to extend such regularity results

to more general geometric setting, we also establish the classical Bedford-Taylor’s

interior second order estimate and a local version of Calabi’s third order estimate on

Hermitian manifolds.

The last two chapters of this thesis are devoted to the geometric problems related to

complex Monge-Ampère type equations. In particular, we give some results on the

nonnegative representation for the boundary class of Kähler cone and the existence

of generalized Kähler-Einstein metrics.
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ABRÉGÉ

Dans cette thèse, il est question de l’étude des équations de type Monge-Ampère

complexes. On y présente une analyse basée sur les différentes techniques utilisées

dans la théorie des équations aux dérivées partielles ainsi que certaines applications

géométriques.

En premier lieu, nous présentons l’estimation à priori des équations de type Hessienne

complexes sur des variétés hermitiennes. Ces estimations sont indispensables à la

résolution de ces équations par le biais des méthodes de continuité. Au fait, nous

établirons des estimations sur la première et la seconde dérivée des équations Monge-

Ampère complexes de la même manière faite par Yau sur les variétés kählériennes.

Au troisième chapitre, nous étudions la régularité de Hölder intérieure des dérivées

secondes de la solution pour les équations de type Monge-Ampère complexes. De

plus, en visant la généralisation de ce type de résultats de régularité à des géométries

plus généralee, on a obtenu une estimation de deuxième ordre de type Bedford-Taylor

classique et une version locale des estimations de Calabi de troisième ordre sur des

variétés hermitiennes.

Les deux derniers chapitres de cette thèse sont consacrés aux problèmes géométriques

reliés aux équations de type Monge-Ampère complexes. Nous donnons quelques

résultats sur la représentation non négative pour la classe de frontière du cône de

Kähler et l’existence des métriques généralisée Kähler-Einstein.
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CHAPTER 1
Introduction

We begin by summarizing the main results of the thesis. In section 1.2 we collect

some basic facts in Kähler geometry and Hermitian geometry, and in section 1.3 we

give the outline of Yau’s estimates for the complex Monge-Ampère equations.

1.1 Summary of the results

This thesis consists of four main parts which have come out my study in the

field of geometric analysis. And they are all related by the theme of the complex

Monge-Ampère equation type equations and its geometric applications. We begin

with the results on the a priori estimates for Monge-Ampère equation on Hermitian

manifolds which form the content of Chapter 2.

In 1976, Yau [81] gave an affirmative answer to the Calabi’s conjecture by show-

ing the existence of the solution to the complex Monge-Ampère equation:

det(gij̄ + uij̄) = f(z), (1.1)

on a compact Kähler manifold (M, g). This work by Yau opened a vast field for the

study of complex Monge-Ampère type equations (1.1). And it has proven to be a very

powerful tool in understanding geometry and topology in Kähler setting. Given these
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successes, as a natural extension of Yau’s result, one wants to consider the existence

and uniqueness properties for the above equation on Hermitian manifolds and try to

deduce geometric results from it. Our main result on the complex Monge-Ampère

equation in Hermitian setting is as follows. We consider the Hermitian manifold

(M,ω) of dimension n ≥ 2 with smooth boundary ∂M and seek solutions to (1.1) in

the space of Hermitian metrics defined as

PSH(ω,M) = {u ∈ C2(M) | ωu = ω +
√
−1∂∂̄u > 0}.

Theorem 1.1.1 ([87] Theorem 1 and 2). Let u ∈ PSH(ω,M)
⋂
C4(M) be a solution

of equation (1.1). Then there exist positive constants C1, C2 depending on f, |u|C0(M)

and geometric quantities of M (torsion and curvature) such that

max
M̄
|∇u| ≤ C1(1 + max

∂M
|∇u|) (1.2)

and

max
M̄
|∆u| ≤ C2(1 + max

∂M
|∆u|) (1.3)

In particular, if the Hermitian manifold M is compact, i.e. ∂M = ∅, then one can

get the estimates for gradient and ∆u from (1.2) and (1.3).

Indeed, the above estimates are proved by the Bernstein type technique. A

substantial difficulty in proving (1.3) is to control the extra terms involving third

order derivatives which appear due to the nontrivial torsion. Similar estimates were

also obtained independently by Guan-Li [44] and Tosatti-Weinkove [76].
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We also study another important type of fully nonlinear geometric equations,

complex Hessian equation, which includes (1.1) as a special case. We consider

ωku ∧ ωn−k = (ω +
√
−1∂∂̄u)k ∧ ωn−k = fωn (1.4)

where k = 1, 2, · · · , n, and f is a positive function on a Hermitian manifold (M,ω).

Notice that if k = n, (1.4) is just the complex Monge-Ampère equation (1.1), while if

k = 1, equation (1.4) becomes the Laplacian equation. So the complex Hessian type

equation is a generalization of both complex Monge-Ampère equation and Laplacian

equation over a compact Hermitian manifold.

Let H(n) be the set of n × n Hermitian matrices and λ(A) be the eigenvalues

of A. For k = 1, 2, · · · , n, we define

σk(A) = σk(λ(A)) for A ∈ H(n),

where σk(λ) is the k − th elementary symmetric function defined on Rn and let

Γk = {A ∈ H(n) | σj(A) > 0, j = 1, · · · , k}.

It is well known that the k−positive cone Γk is an open convex cone for the admissible

solutions of equation (1.4), i.e., the condition (ω +
√
−1∂∂̄u) ∈ Γk is natural to

guarantee equation (1.4) to be elliptic. Note that if k = n, Γn is just the space of

Hermitian metrics PSH(ω,M).

Our main result gives the a priori gradient estimate for the complex Hessian

equation (1.4) under a technique condition.
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Theorem 1.1.2 ([87] Theorem 3). Let (M,ω) be a Hermitian manifold and u ∈

C3(M) be a solution of equation (1.4) with (ω +
√
−1∂∂̄u) ∈ Γk+1. Then there exist

positive constant C3 depending on f, |u|C0(M) and geometric quantities of M (torsion

and curvature) such that

max
M̄
|∇u| ≤ C3(1 + max

∂M
|∇u|) (1.5)

In particular, if M is compact, one can get the global gradient estimate from (1.5).

Next, we will briefly discuss the results of Chapter 3. The main objects of study

are the Schauder type estimates to the complex Monge-Ampère equations on Kähler

and Hermitian manifolds.

We consider the a priori C2,α estimate for the complex Monge-Ampère equation

det(uij̄) = f ∈ Cα. (1.6)

Generally, if the right hand side data f(z) ∈ C2(M) (or even better), the uniform

C2,α estimate follows from the standard Evans-Krylov theory. One key point in the

proof is to linearize equation (1.6) and use the Harnack inequality. However, if we

only assume f ∈ Cα, this argument does not work since one can not linearize the

equation. By using a perturbation argument, we can prove

Theorem 1.1.3 ([85] Theorem 1). Let Ω be a domain in Cn and u ∈ C3(Ω) is a

pluri-subharmonic solution to the Monge-Ampère equation (1.6). Assume there exist

positive constants K0 and K1 such that

|u|+ |Du|+ |D2u| ≤ K1, K0 ≤ f(z) ∈ Cα(Ω),
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for some constant 0 < α < 1. Then, for any open domain Ω′ ⊂⊂ Ω, there exists

constant C depending only on K0, K1, n, f, α and a positive constant C, such that

|D2u|Cα(Ω′) ≤ C
(
K0, K1, n, ‖f‖Cα , α, dist(Ω′, ∂Ω)

)
(1.7)

In the proof we exploit a perturbation method and the crucial fact used is

Bedford-Taylor interior C1,1 estimate [6]. Another key ingredient in the proof is that

we use a local version of Calabi’s C3 estimate in [64] to get the sharp α−Hölder

regularity of the second derivative.

The rest part of Chapter 3 is devoted to establish the corresponding C2,α esti-

mates for the complex Monge-Ampère equation on Hermitian manifolds. Let (M,ω)

be a Hermitian manifold and we consider equation

(ω +
√
−1∂∂̄u)n = f(z)ωn, (1.8)

where 0 < f(z) ∈ C∞(M). When the manifold (M,ω) is Kähler, that is dω = 0,

by using the local potential for ω, one can deduce equation (1.8) to be (1.6) locally

and the key tools also applicable. However, if ω is just a smooth positive (1, 1)-

form (not necessarily closed), there is no local potential for ω anymore and thus

Bedford-Taylor’s result and the local Calabi’s estimate can not be applied directly.

In [83], we extend Bedford-Taylor’s interior C2 estimate to Hermitian setting by some

modification of their original method.

Theorem 1.1.4 ([83] Theorem 1). Let B be the unit ball on Cn and ω be a smooth

positive (1, 1)-form (not necessary closed) on B̄. Let u ∈ C(B̄)∩PSH(ω,B)∩C2(B)
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solve the Dirichlet problem
(ω +

√
−1∂∂̄u)n = fωn in B

u = φ on ∂B,

(1.9)

with φ ∈ C1,1(∂B) and 0 ≤ f(z) ∈ C∞(B). Then, for arbitrary compact subset

B′ ⊂⊂ B, there exists a constant C4 dependent only on ω and dist{B′, ∂B} such that

||u||C2(B′) ≤ C4(||φ||C1,1(∂B) + ||f
1
n ||C1,1(B)).

We also generalize the local Calabi’s C3 estimate in [64] to Hermitian manifolds.

Theorem 1.1.5 ([83] Theorem 2). Let u ∈ PSH(ω,M) ∩ C4(M) be a solution of

the Monge-Ampère equation (1.8), satisfying

‖∂∂̄u‖ω ≤ K.

Let Ω′ ⊂⊂ Ω ⊂M . Then the third derivatives of u(z) of mixed type can be estimated

in the form

|∇ω∂∂̄u|ω ≤ C5 for z ∈ Ω′,

where C5 is a constant depending on K, ‖dω‖ω, ‖R‖ω, ‖∇R‖ω, ‖T‖ω, ‖∇T‖ω, dist(Ω′, ∂Ω)

and ‖∇sf‖ω , s = 0, 1, 2, 3. Here ∇ is the Chern connection with respect to the Her-

mitian metric ω, T and R are the torsion tensor and curvature form of ∇.

The local Calabi’s C3 estimate in the above theorem should be useful for study-

ing the geometric problems on Hermitian manifolds, such as the Liouvelle type prop-

erty. As a simple application, following the lines in [35], we prove the sharp interior

C2,α estimate for (1.8) on Hermitian manifolds.
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Corollary 1.1.1 ([83] Corollary 1). Let Ω be a domain in Cn and ω be a Hermitian

form defined on Ω. Let u(z) ∈ PSH(ω,Ω) ∩ C3(Ω) be a solution of the Monge-

Ampère equation (1.8). Suppose that 0 < f ∈ Cα(Ω) for some 0 < α < 1 and

|u|+ |Du|+ |D2u| ≤ L. Then

|D2u|Cα(Ω′) ≤ C

for some constant depending on n, L, ‖f‖Cα , α, dist(Ω′, ∂Ω) and the geometric quan-

tities with respect to ω.

In the Chapter 4, we study some geometric properties of the boundary class of

Kähler cones under the following non-negative quadratic bisectional curvature condi-

tion: for any orthogonal tangent frame {e1, · · · , en} at any x ∈ M , and for any real

numbers a1, · · · , an:

n∑
i,j=1

Rīijj̄(ai − aj)2 ≥ 0. (∗) (1.10)

In [80], Wu-Yau-Zheng posted an interesting question to ask when the bound-

ary class of Kähler cone can be represented by a closed, smooth (1,1) form that

is everywhere nonnegative. And they also concluded that the curvature condition

(∗) is sufficient, by proving the existence of a smooth solution u to the following

homogeneous complex Monge-Ampère equation:

(ω + Φ +
√
−1∂∂̄u)n = 0, (1.11)
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with (ω+ Φ +
√
−1∂∂̄u) ≥ 0 and the compatibility condition

∫
M

(ω+ Φ)n = 0, where

Φ is a d−closed (1, 1) form on M such that the cohomology class represented by

ω + tΦ is positive for each 0 ≤ t < 1.

In general, there is no smooth solutions for the degenerate complex Monge-

Ampère equations like (1.11). By observing the special feature of equation (1.11) in

this setting and some old geometric results related with curvature condition (∗), we

obtain

Theorem 1.1.6 ([86] Theorem 1). Let (Mn, ω) be a compact Kähler manifold satis-

fying the curvature condition (1.10). Then, for any closed (1, 1) form Ψ on (Mn, g),

we can find Ψ̃ ∈ [Ψ], such that Ψ̃ is parallel. In particular, for any closed (1, 1) form

α, we have

[α] = [β + λsω0]

where β is a nonnegative C∞ closed (1, 1) form on the boundary of Kähler cone, λs

is a constant depending on β and ω.

The main theorem of Wu-Yau-Zhang[80] can be recovered.

Corollary 1.1.2 ([86] Corollary 1). Let (Mn, ω) be a compact manifold satisfying the

curvature condition (1.10). Then any boundary class of the Kähler cone of Mn can be

represented by a C∞, closed (1, 1) form that is parallel and everywhere nonnegative.

If (M,ω) satisfies a quasi − (∗) curvature condition, namely, for any orthogo-

nal tangent frame e1, · · · , en at any x ∈ M , and for any real numbers a1, · · · , an,∑n
i,j=1Rīijj̄(ai− aj)2 ≥ 0 holds everywhere and strictly positive at least at one point

unless a1 = · · · = an, we get
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Theorem 1.1.7 ([86] Theorem 2). Let (Mn, ω) be a compact Kähler manifold satis-

fying the quasi− (∗) curvature condition. Then, dimh1,1(M,R) = 1.

This theorem weakly generalizes a result of Bishop and Goldberg [10] that any

compact Kähler manifoldMn with positive bisectional curvature must have its second

Betti number equal to 1.

Finally, in Chapter 5, we consider the existence of generalized Kähler-Einstein

metrics and properness of energy functionals. This is an analog of Tian’s result

[71] on the Kähler-Einstein metrics which asserts that existence of Kähler-Einstein

metrics is equivalent to the properness of corresponding energy functional.

Let (M,J) be a 2n-dimensional complex manifold, [ω0] ∈ H1,1(M,C)∩H2(M,R)

be a Kähler class on (M,J) and [α] = 2πc1(M)− k[ωo] for some constant k. Fixing

a closed (1, 1)-form θ ∈ [α], we consider the following generalized Kähler-Einstein

equation

ρ(ω)− θ = kω, (1.12)

where ρ(ω) is the Ricci form of the Kähler metric ω ∈ [ω0]. If θ ≡ 0, equation (1.12)

is just the Kähler-Einstein equation. A Kähler metrics ω satisfying (1.12) will be

called by a generalized Kähler-Einstein metric. Denote Kω0 to be the set of all Kähler

forms on M cohomologous to ω0.

It is easy to see that solving the generalized Kähler-Einstein equation (1.12) is

equivalent to solving the following complex Monge-Ampère equation,

(ω0 +
√
−1∂∂̄ϕ)m = exp(hω0 − kϕ)ωm0 , (1.13)
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where ϕ ∈ PSH(ω0,M) and hω0 ∈ C∞(M) satisfying

ρ(ω0)− θ = kω0 +
√
−1∂∂̄hω0 and

∫
M

exp(hω0)(ω0)m =

∫
M

(ω0)m = V.

If k ≤ 0, the complex Monge-Ampère equation (1.13) can be solved by the work

of Aubin [2] and Yau [81]. In [84], we consider the case k > 0, there should be

obstructions to admit generalized Kähler-Einstein metrics. In fact, we show that the

existence of generalized Kähler-Einstein metric with semi-positive twisting (1, 1)-

form θ is closely related to the properness of the twisted K-energy functional Vθ,ω0

defined by Song-Tian [66].

Theorem 1.1.8 ([84] Theorem 2). Let (M,ω0) be a Kähler manifold, and θ ∈ [α] =

2πc1(M)− k[ω0] is a real closed semipositive (1, 1)-form for k > 0. If Vθ,ω0 is proper

then there must exists a generalized Kähler-Einstein metric ωGKE ∈ Kω0. Assuming

that the twisting form θ is strictly positive at a point or M admits no nontrivial

Hamiltonian holomorphic vector field, if there exists a generalized Kähler-Einstein

metric in ωGKE ∈ Kω0, then Vθ,ω0 must be proper. In fact, there exist uniform

positive constants C2, C3 depending only on k and the geometry of (M,ω0), such

that

Vθ,ω0(ϕ) ≥ C2Jω0(ϕ)− C3, (1.14)

for all ϕ ∈ PSH(ω0,M).

In a special case, if [α] = (1 − k)[ω0], where 0 < k < 1, we set θ = (1 − k)ω0.

Then the generalized Kähler-Einstein equation (1.12) is just the Aubin’s equation

ρ(ω) = (1− k)ω0 + kω. (1.15)
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As a corollary of previous theorem, we have

Corollary 1.1.3 ([83] Corollary 1.4). Let (M,ω0) be a Kähler manifold with 2πc1(M) =

[ω0], and 0 < k < 1. The following are equivalent:

• We can uniquely solve equation (1.15).

• There exists a Kähler metric ω ∈ [ω0] such that ρ(ω) > kω.

• For any Kähler metric ω ∈ [ω0], Vω(ϕ) + (1− k)(Iω − Jω)(ϕ) is proper.

• For any Kähler metric ω ∈ [ω0], there exist uniform positive constants C5 and

C6 such that Vω(ϕ) + (1− k)(Iω − Jω)(ϕ) ≥ C5Jω(ϕ)− C6 for all ϕ ∈ Hω.

where Iω and Jω are the Aubin’s energy functionals.

1.2 Basic Hermitian geometry

In this section, some basic definitions and facts about Hermitian geometry and

Kähler geometry are stated. More information regarding this can be found in [43],

[72].

• General notions of Hermitian geometry

Let (M,J) be a compact complex manifold of complex dimension n. A Rieman-

nian metric g is called Hermitian if it satisfies

g(JX, JY ) = g(X, Y ), for all X, Y ∈ TM.

In this case, we then define a real 2− form ω by the formula

ω(X, Y ) = g(JX, Y ).

11



If ω is closed, that is dω = 0, we call g a Kähler metric. Since ω and g are equivalent

data, we will often refer to ω as the Kähler metric, or Kähler form. It is of type

(1, 1), and if locally we write

g = gij̄dz
i ⊗ dz̄j,

then

ω =
√
−1gij̄dz

i ∧ dz̄j.

where here and henceforth we are using the Einstein summation convention. The

Riemannian volume form of g is equal to ωn

n!
, and we will denote by V the volume of

M

V =

∫
M

ωn

n!
.

Let ∇ be the Chern connection of g. It satisfies

∇Z(g(X, Y )) = g(∇ZX, Y ) + g(X,∇ZY ), for ∀X, Y, Z ∈ TM. (1.16)

The torsion tensor and curvature tensor of ∇ are defined by

T (X, Y ) = ∇XY −∇YX − [X, Y ]; (1.17)

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z. (1.18)

respectively. Since ∇J = 0 we have

g(R(X, Y )JZ, JW ) = g(R(X, Y )Z,W ) ≡ R(X, Y, Z,W ). (1.19)

Therefore R(X, Y, Z,W ) = 0 unless Z,W are of different type.
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In local coordinates, define the Christoffel symbols Γljk by

∇ ∂

∂zj

∂

∂zk
= Γljk

∂

∂zl
.

Then,

Γljk = glm̄
∂gkm̄
∂zj

(1.20)

and the torsion (1.17) is given by

T kij = Γkij − Γkji = gkl̄
(∂gjl̄
∂zi
− ∂gil̄
∂zj

)
, (1.21)

while the curvature (1.18) is

Rij̄kl̄ ≡ R
( ∂

∂zi
,
∂

∂z̄j
,
∂

∂zk
,
∂

∂z̄l

)
= −gml̄

∂Γmik
∂z̄j

(1.22)

= − ∂2gkl̄
∂zi∂z̄j

+ gpq̄
∂gkq̄
∂zi

∂gpl̄
∂z̄j

.

Note that from (1.18), (1.19) and (1.20) that

Rij̄kl = Rijkl = Rijkl̄ = 0.

By (1.21) and (1.22) we have

Rij̄kl̄ −Rkj̄il̄ = gml̄
∂Tmki
∂z̄j

= gml̄∇j̄T
m
ki , (1.23)

which also follows from the general Bianchi identity.

The trace of the curvature tensor

Rij̄ = gkl̄Rij̄kl̄ = − ∂2

∂zi∂z̄j
log det gkl̄. (1.24)
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is called the Ricci curvature of ω. And we associate to it the Ricci form

Ric(ω) =
√
−1Rij̄dz

i ∧ dz̄j.

It is a closed real (1, 1)−form that represents the cohomology class c1(M) ∈ H2(M, 2πZ).

The scalar curvature of ω is denote by

R = gij̄Rij̄.

We use ∇2u to denote the Hessian of a function u ∈ C2(M):

∇2u(X, Y ) ≡ ∇Y∇Xu = Y (Xu)− (∇YX)u, X, Y ∈ TM. (1.25)

In local coordinate, we see that

∇ ∂

∂zj
∇ ∂

∂z̄j
u =

∂2u

∂zi∂z̄j
.

Consequently, the Laplacian of u ∈ C2(M) with respect to the Chern connection ∇

is

∆u = gij̄
∂2u

∂zi∂z̄j
,

or equivalently,

∆u
ωn

n
=
√
−1∂∂̄u ∧ ωn−1.

• Kähler Geometry

As defined above, a Hermitian manifold (M,ω) is Kähler if ω is closed, i.e.,

dω = 0. Below we give a basic example of Kähler manifolds.
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Example 1.2.1 (The projective space Pn). Consider the set Pn of all complex lines

passing through 0 in Cn+1. This set can be endowed with the (complex) manifold

structure by using the natural projection from Cn+1 \ {0} onto it. In order to define

a Kähler form on Pn we consider the form

ddc log
(
|Z0|2 + · · ·+ |Zn|2

)
,

where Zi are the coordinates in Cn+1 \ {0}. Note that, when restricting to a complex

line through 0, the form is invariant (because the function λ→ log |λ| is harmonic on

C\{0}). Thus it descends onto a closed positive (1, 1)−form on Pn. The constructed

form is called the Fubini-Study (Kähler) form and is often denoted by ωFS.

From the definition of Kähler manifold, one can see Kähler geometry is a class

of Hermitian geometry with one extra condition dω = 0. In order to emphasize this,

the following is a well known example of non-Kähler Hermitian manifold.

Example 1.2.2 (Hopf Surface). Let φ : C2 \ {0} → C2 \ {0} defined by φ(z) = 2z.

Denote < φ > to be the group generated by the automorphism φ of C2 \{0}. One can

verify that the quotient C2 \ {0}/ < φ > has the complex manifold structure. This

manifold is called Hopf surface. It can be proved that Hopf surface does not admit

any Kähler structure.

We continue to list some important notions on compact Kähler manifolds.

Lemma 1.2.1 (∂∂̄−Lemma). Let (M,ω) be a Kähler manifold and let ω1, ω2 ∈

H1,1(M,R) and suppose that ω1 is cohomology to ω2. Then there exists a function

f ∈ C∞(M,R) such that ω1 − ω2 =
√
−1∂∂̄f .

As a direct corollary of the ∂∂̄−Lemma, we have
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Corollary 1.2.1. Given Ω ∈ H1,1(M,C) ∩H2(M,R), define

KΩ = { all Kähler metrics ω with [ω] = Ω},

then,

KΩ = {ω +
√
−1∂∂̄φ : φ ∈ C∞(M,R),

∫
M

φωn = 0}

' {φ ∈ C∞(M,R) :

∫
M

φωn = 0, ω +
√
−1∂∂̄φ > 0}.

The set

K̃Ω = {φ ∈ C∞(M,R) :

∫
M

φωn = 0, ω +
√
−1∂∂̄φ > 0}

is called space of Kähler potentials. Then we can define a real-valued functional F 0
ω

on the space of Kähler potentials by the formula

F 0
ω(φ) = − 1

V

∫ 1

0

∫
M

∂φt
∂t

ωnφt
n!
,

where φt is any smooth path of Kähler potentials with φ0 = 0 and φ1 = φ (for

example one can take φt = tφ). It can be written also as

F 0
ω(φ) = Jω(φ)− 1

V

∫
M

φ
ωn

n!
,

where the functional Jω is defined by

Jω(φ) =
1

V

∫ 1

0

∫
M

∂φt
∂t

(ωn
n!
−
ωnφt
n!

)
, (1.26)
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and the integration by parts shows that Jω(φ) ≥ 0. Moreover F 0
ω satisfies the follow-

ing cocycle condition

F 0
ω(φ) = F 0

ω(ψ) + F 0
ωψ

(φ− ψ), (1.27)

for all Kähler potentials φ, ψ. Another useful functional is the Mabuchi energy

functional Mω(φ), which is defined by

Mω(φ) = − 1

V

∫ 1

0

∫
M

∂φt
∂t

(R(ωφt)−R)
ωnφt
n!
, (1.28)

where φt is any smooth path of Kähler potentials with φ0 = 0, φ1 = φ and R denotes

the average of scalar curvature R. It satisfies the same cocycle condition as F 0
ω ,

namely

Mω(φ) =Mω(ψ) +Mωψ(φ− ψ). (1.29)

1.3 Complex Monge-Ampère equation

In this section, we will recall the work by Yau [81] on Calabi’s conjecture and

briefly discuss his a priori estimates for the complex Monge-Ampère equation on

Kähler manifold (M,ω).

Let (M,ω) be a compact Kähler manifold with complex dimension n. The

Calabi’s conjecture states that there is a unique Kähler metric in the same class

whose Ricci form is any given 2−form Ω representing the first Chern class. Indeed,

this geometric problem can be translated to a Monge-Ampère equation. First, notice

that both the Ricci curvature Ric(ω) and Ω represent the first Chern class and

therefore the ∂∂̄−lemma 1.2.1 tells us that we can find F , only depending on ω and
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Ω, such that

Ω−Ric(ω) =
√
−1∂∂̄F,

where F is unique after normalizing to∫
M

(eF − 1)ωn = 0.

It follows from the ∂∂̄−lemma, any Kähler metric ω̃ cohomologous to ω has the form

ω +
√
−1∂∂̄φ. Suppose function φ satisfies

Ric(ω +
√
−1∂∂̄φ) = Ω = Ric(ω)−

√
−1∂∂̄F.

Now, by making use the local expression of Ricci curvature in local coordinate (1.24),

this reads

−
√
−1∂∂̄ log det

(
gij̄ +

∂2φ

∂zi∂̄zj

)
= −
√
−1∂∂̄ log det(gij̄)−

√
−1∂∂̄F.

Although this is only locally defined, the following is globally defined

√
−1∂∂̄ log

(det(gij̄ + φij̄)

det(gij̄)

)
=
√
−1∂∂̄F.

Therefore,

det(gij̄ + φij̄)

det(gij̄)
= eF , (1.30)

where F is a smooth function on M with
∫
M

(eF − 1)ωn = 0. Equation (1.30) is just

a complex Monge-Ampère equation which is also equivalent to

(ω +
√
−1∂∂̄φ)n = eFωn. (1.31)
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The Calabi’s conjecture is equivalent to show equation (1.31) has a unique so-

lution. The uniqueness part was proved in the 50’s by Calabi himself [25] using

maximum principle. To prove the existence of a solution, Yau derived a priori Ck

estimates for φ and then applied the continuity method.

Define Ft = tF + Ct for Ct constants and 0 ≤ t ≤ 1. Requiring that
∫
M

(eFt −

1)ωn = 0 determines the constants uniquely. Observe that F0 = 0 and F1 = F .

Consider the following family of equations

(ω +
√
−1∂∂̄φt)

n = eFtωn. (1.32)

The solution of (1.32) is unique up to constants by Calabi’s proof. Define

T = {t ∈ [0, 1] | (1.32) is solvable for s ≤ t}.

To prove equation (1.31) is solvable, it suffices to prove that T is non-empty, open

and closed. Clearly, 0 ∈ T (set φ=constant).

The openness follows from the invertibility of the linearized equation of (1.30)

and the Implicit Function Theorem. The hard part for the solvability is the closeness.

To prove this, Yau established the a priori estimates. The precise statement is:

Theorem 1.3.1 (Yau[81]). Let (M,ω) by a closed n−dimensional Kähler manifold,

and let F be a smooth real function on M that satisfies (1.30). Then there are

constants Ak, k = 0, 1, · · · , that depend only on k, F, and ω such that

||φ||Ck(ω) ≤ Ak. (1.33)
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The desired estimates (1.33) were proved in four steps. In what follows we will

always use C to denote a uniform constant, but this capital may mean many different

constants.

Step 1. To prove an upper bound for ∆φ which depends on the C0-norm of φ,

i.e., the inequality

trgg̃ ≤ CeA(φ−infM φ), (1.34)

holds for some uniform constants A,C. This inequality follows by applying maximum

principle to the crucial estimate

∆̃(log trgg̃ − Aφ) ≥ trg̃g − C

which is obtained by delicate computations.

Step 2. The second step is to show the C0 estimate

sup
M
|φ| ≤ C.

A Moser iteration argument is used to prove this estimate.

Step 3. From first two steps, one has ||
√
−1∂∂̄φ||C0(ω) ≤ C. The next is to

deduce that

||∇ω∂∂̄φ||C0(ω) ≤ C.

To establish step 3, one first considers the quantity S = |∇g̃|2g̃, where ∇ is the

covariant derivative with respect to g. In terms of φ, it can be written as

S = g̃ip̄g̃qj̄ g̃kr̄φij̄kφp̄qr̄, (1.35)
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where the lower indices are covariant derivatives with respect to g. After complicated

computation, one gets

∆̃S ≥ −CS − C. (1.36)

On the other hand, as g and g̃ are equivalent which follows from the the C2 estimate

of φ,

∆̃trgg̃ ≥
1

C
S − C.

One can then apply the maximum principle to S + Atrgg̃, where A is large, to get

the desired estimate S ≤ C.

Step 4. Finally, one can get the higher order estimates following the standard

elliptic PDE theory: ∀ k = 2, 3, · · · ,

||φ||Ck(ω) ≤ Ak, for uniform Ak.
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CHAPTER 2

A priori estimates of Monge-Ampère equation
on Hermitian manifolds

In this chapter, we study the a priori estimate for Monge-Ampère type equations

on Hermitian manifolds. In section 2.1, we review some background of this problems

and the notions related with complex Hessian equations. In section 2.2, we give

the gradient estimate for the solution of Hessian type equation. As a corollary, C1

bound for the complex Monge-Ampère equation in Hermitian setting follows. Finally,

in section 2.3, we prove the C2 a priori estimate by using the Pogorelov technique.

The results in this section can be found in [87].

2.1 Introduction

As discussed in Section 1.3, Yau proved the fundamental existence theorems

of classical solutions of the complex Monge-Ampére equations on compact Kähler

manifolds.

det(gij̄ + φij̄) = det(gij̄)f(z) (2.1)

where f is a smooth positive function on (M, g). Moreover, he also studied the

generalized form of this equation when the right hand side function f(z) may degen-

erate or have poles [81]. Later after that, Cheng and Yau [32], Tian and Yau [73, 74]

solved equation (2.1) on complete non-compact Kähler manifolds which have natural
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applications to algebraic geometry. All these works essentially depend on deriving

the a priori estimates up to C2 by virtue of the continuity method.

From the steps recalled in Section 1.3 for Yau’s a priori estimates (Theorem

1.3.1), we see that the crucial step is to derive the C2 estimate which depends only

on the C0 norm. Then, the standard interpolation yields the gradient estimates

from C2 and C0. However, it is of interest to have a C1 bound directly from the C0

estimate, without using a C2 estimate. Such direct gradient estimate was obtained

by Blocki [14] and Guan [46, 47] when the background manifold is compact Kähler.

Using the same technique as [46], we give the direct C1 estimate for complex Monge-

Ampère equation in the Hermitian case. we consider the Hermitian manifold (M,ω)

of dimension n ≥ 2 with smooth boundary ∂M and seek solutions to (2.1) in the

space of Hermitian metrics defined as

PSH(ω,M) = {u ∈ C2(M)| ωu = ω +
√
−1∂∂̄u > 0}

Theorem 2.1.1 ([87] Theorem 1). Let u ∈ PSH(ω,M)
⋂
C4(M) be a solution of

equation (2.1). Then there exist positive constants C1 depending on f, |u|C0(M) and

geometric quantities of M (torsion and curvature) such that

max
M̄
|∇u| ≤ C1(1 + max

∂M
|∇u|) (2.2)

In particular, if the Hermitian manifold M is compact, i.e. ∂M = ∅, then one can

get the estimates for gradient from (2.2).

The complex Monge-Ampère equation on Hermitian manifolds has been studied

extensively. In the eighties and nineties some results regarding equation (2.1) in the
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Hermitian setting were obtained by Cherrier [28, 29] and Hanani [50]. For next few

years there seems to be no activity on the subject until very recently, when the results

were rediscovered and generalized by Guan-Li [44] and Zhang [87] independently.

Later, Tosatti and Weinkove [76, 77] gave a more delicate a priori C2 estimate and

remove the conditions for the C0 estimate in [44]. Moreover, Dinew-Kolodziej [33]

also studied the equation in the weak sense and obtained the L∞ estimate via suitably

constructed pluripotential theory.

We also study another important type of fully nonlinear geometric equations,

complex Hessian equation, which includes (2.1) as a special case. We consider

ωku ∧ ωn−k = (ω +
√
−1∂∂̄u)k ∧ ωn−k = fωn (2.3)

where k = 1, 2, · · · , n, and f is a positive function on a Hermitian manifold (M,ω).

Notice that if k = n, (1.4) is just the complex Monge-Ampère equation (2.1), while if

k = 1, equation (2.3) becomes the Laplacian equation. So the complex Hessian type

equation is a generalization of both complex Monge-Ampère equation and Laplacian

equation over a compact Hermitian manifold. Similar nonlinear equations have been

studied extensively by many authors [13, 21, 23, 58, 52, 53, 46] and the references

therein. Let us mention that the complex Hessian equation (2.3) is also closely

related to the quaternionic version of the Calabi problem on a compact hypercomplex

manifold with an HKT-metric proposed by Alesker [1]. To answer this analogous of

Calabi problem, it is crucial to establish the estimates for the quaternionic Monge-

Ampère type equation which can be reformulated as a special case of complex Hessian

equation.
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Let H(n) be the set of n × n Hermitian matrices and λ(A) be the eigenvalues

of A. For k = 1, 2, · · · , n, we define

σk(A) = σk(λ(A)) for A ∈ H(n),

where σk(λ) is the k− th elementary symmetric function, that is, for 1 ≤ k ≤ n and

λ = (λ1, · · · , λn) ∈ Rn,

σk(λ) =
∑

1≤i1<···<ik≤n

λi1 · · ·λik .

We also define

Γk = {A ∈ H(n) | σj(A) > 0, j = 1, · · · , k}.

It is well known that the k−positive cone Γk is open convex cone for the admissible

solutions of equation (2.3), i.e., the condition (ω +
√
−1∂∂̄u) ∈ Γk is natural to

guarantee equation (2.3) to be elliptic by [23]. Note that if k = n, Γn is just the

space of Hermitian metrics PSH(ω,M).

Our results in [87] give the a priori gradient estimate for the complex Hessian

equation (2.3) under a technique condition.

Theorem 2.1.2 ([87] Theorem 3). Let (M,ω) be a Hermitian manifold and u ∈

C3(M) be a solution of equation (2.3) with (ω +
√
−1∂∂̄u) ∈ Γk+1. Then there exist

positive constant C3 depending on f, |u|C0(M) and geometric quantities of M (torsion

and curvature) such that

max
M̄
|∇u| ≤ C3(1 + max

∂M
|∇u|) (2.4)
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In particular, if M is compact, one can get the global gradient estimate from (2.4).

It is worthwhile to mention that the estimate (2.4) does not depend on the lower

bound of f , we may use it to deal with degenerate case.

Remark 2.1.1. In the above theorem, if k = n, one can see that equation (2.3) is

just (2.1) and the condition (ω +
√
−1∂∂̄u) ∈ Γk+1 is the same as u ∈ PSH(ω).

Thus, Theorem 2.1.1 is just a corollary of Theorem 2.1.2.

Remark 2.1.2. One would like to know whether the condition (ω+
√
−1∂∂̄u) ∈ Γk+1

can be weaken to (ω +
√
−1∂∂̄u) ∈ Γk. Indeed, this is the crucial part left for the

solvability of complex Hessian equation (2.3).

Our method of proving the gradient estimate is applicable for more general

complex Hessian type equations. We consider the following complex Hessian equation

with gradient term on the Hermitian manifolds.

σk(gij̄ + φij̄ + µ(z)φiφj̄) = f(z), z ∈M (2.5)

whereµ(z) and f(z) are smooth functions on (M, g) and f is positive.

Theorem 2.1.3 ([87] Theorem 4). Suppose φ ∈ C3 is a solution of equation (2.5)

with (gij̄ +φij̄ +µ(z)φiφj̄) ≥ 0 for some positive function f. Then there exist positive

constant C4 depending on f, |u|C0(M) and geometric quantities of M (torsion and

curvature) such that

max
M̄
|∇u| ≤ C4(1 + max

∂M
|∇u|) (2.6)

In particular, if M is compact, one can get the global gradient estimate from (2.6).
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Remark 2.1.3. Using the same method and test functions in the proof of Theorem

4, one can also consider the gradient estimate for the complex Hessian equation of

the following general form:

σk(gij̄ + φij̄ + aiφj̄ + bj̄φi) = f

where a and b are some smooth functions on the Hermitian manifolds (M, g).

Using the gradient estimate established in Theorem 2.1.1, we have the following

C2-estimate for the complex Monge-Ampère equation (2.1) on Hermitian manifolds.

Theorem 2.1.4 ([87] Theorem 2). Let u ∈ PSH(ω,M)
⋂
C4(M) be a solution of

equation (2.1). Then there exist positive constants C2 depending on f, |u|C0(M) and

geometric quantities of M (torsion and curvature) such that

max
M̄
|∆u| ≤ C2(1 + max

∂M
|∆u|) (2.7)

In particular, if the Hermitian manifold M is compact, i.e. ∂M = ∅, then one can

get the estimates for ∆u from (2.7).

Note that, in the Step 1 (section 1.3) of Yau’s a priori estimates, the C2 estimate

only depends on the C0 norm. In Hermitian case, this type C2 estimate can also be

obtained, see [44, 76] which depends on a careful control of the third order terms.

However, since we already established the C1 estimate in Theorem 2.1.1, we just use

the standard Pogorelov type test function G = log(m+ ∆φ) +B|∇φ|2 − Aφ here.
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2.2 Gradient estimate for complex Hessian type equation

In this section, we give the proof for Theorem 2.1.2 and Theorem 2.1.3. We

write

F (λ) = σk(λ)

where λ = (λ1, · · · , λn) ∈ Γk, F
īi = ∂F

∂λi
.

We recall a lemma from [46].

Lemma 2.2.1. For each integer k ≥ 1, there is constant Cn,k > 0 depending only

on k,n such that for any B ≥ 0, λ ∈ Γk, 0 ≤ si ∈ R with
∑n

i=1 si = 1, we have

n∑
i=1

F īi(1 +Bsi) ≥ Cn,kσ
k−1
k

k (λ)(1 +B)
1
k . (2.8)

Proof. Notice that the lemma is trivial for the case k = 1. We will only consider

k ≥ 2. We may arrange λ1 ≤ λ2 ≤ · · · ≤ λn. This yields

F 11̄ ≥ F 22̄ ≥ · · · ≥ F nn̄.

In turn,

∑
i

F īi(1 +Bsi) ≥
∑
i

F īi +
∑
i

F nn̄Bsi =
∑
i

F īi + F nn̄B

=
∑
i

∂σk
∂λi

(λ)λ̃i,

where λ̃ = (1, · · · , 1, 1 +B) ∈ Rn.
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Now, we apply the Garding’s inequality for polarized σk (see Appendix of [51]),

∑
i

F īi(1 +Bsi) ≥
∑
i

∂σk
∂λi

(λ)λ̃i ≥ Cn,kσ
k−1
k

k (λ)σ
1
k
k (λ̃)

≥ Cn,kσ
k−1
k

k (λ)(1 +B)
1
k .

Proof of Theorem 2.1.2:

Let’s denote g̃ij̄ = gij̄ + φij̄,W = |∇φ|2 and L = supM |φ|. Suppose the maxi-

mum of

H = logW + AeL−φ

is attained at some interior point p. We pick a holomorphic orthonormal coordinate

system at that point such that (g̃ij̄) = (gij̄ + φij̄), is diagonal at that point. We may

assume that W (p) ≥ 1.

As (φij̄) is diagonal at the point p, we differentiate H,

Wi

W
− AeL−φφi = 0,

Wī

W
− AeL−φφī = 0 (2.9)

Also, differentiating W = |∇φ|2, we have

Wi =
∑

gαβ̄,i φαφβ̄ + gαβ̄φαiφβ̄ + gαβ̄φαφβ̄i = gαβ̄,i φαφβ̄ + φαiφᾱ + φiφīi,(2.10)

Wj̄ =
∑

gαβ̄
,j̄
φαφβ̄ + gαβ̄φαj̄φβ̄ + gαβ̄φαφj̄β̄ = gαβ̄

,j̄
φαφβ̄ + φαφj̄ᾱ + φj̄φjj̄(2.11)
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and

Wij̄ = gαβ̄
,ij̄
φαφβ̄ + gαβ̄,i φαj̄φβ̄ + gαβ̄,i φαφj̄β̄ + gαβ̄

,j̄
φαiφβ̄ + gαβ̄φαij̄φβ̄ (2.12)

+gαβ̄φαiφβ̄j̄ + gαβ̄
,j̄
φαφβ̄i + gαβ̄φαj̄φβ̄i + gαβ̄φαφβ̄ij̄

= gαβ̄
,ij̄
φαφβ̄ + gjβ̄,i φjj̄φβ̄ + gαβ̄,i φαφj̄β̄ + gαβ̄

,j̄
φαiφβ̄ + gαī,j̄ φαφīi

+φαiφj̄ᾱ + φ2
ij̄ + φαφᾱij̄ + φαij̄φᾱ

By (2.10) and (2.11), one get

WiWj̄ = gαβ̄,i g
αβ̄
,j̄
φ2
αφ

2
β̄ + gαβ̄

,j̄
|φα|2φβ̄φiα + gαβ̄

,j̄
φαφβ̄φiφīi (2.13)

+gαβ̄,i |φα|2φβφj̄ᾱ + gαβ̄,i φαφβ̄φj̄φjj̄ + |φα|2φαiφj̄ᾱ

+φαφiφj̄ᾱφīi + φᾱφj̄φαiφjj̄ + φiφj̄φīiφjj̄

Again from (2.10) and (2.11) and equations (2.9),

φᾱφiα = AWeL−φφi − φiφīi − gαβ̄,i φαφβ̄ (2.14)

φαφīᾱ = AWeL−φφī − φīφīi − gαβ̄,̄i φαφβ̄ (2.15)

Combining this with (2.12), we may write

|Wi|2 = gαβ̄,i g
αβ̄
,̄i
φ2
αφ

2
β̄ + gαβ̄,i φβ|φα|2φīᾱ + gαβ̄

,̄i
|φα|2φβ̄φαi

+|φᾱφiα|2 − |φiφīi|2 + 2AWeL−φ|φi|2φīi

We pick A ≥ 1 sufficient large, such that

(∑ gαβ̄
,īi
φαφβ̄

W
−
∑
gαβ̄,i g

αβ̄
,̄i
φ2
αφ

2
β̄

W 2
− 100|gαβ̄,k |gij̄ +

A

2
gij̄

)
≥ 0.
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Thus, at the maximal point p,

0 ≥
∑
i

F īiHīi =
∑
i

F īi(
Wīi

W
− |Wi|2

W 2
− AeL−φφīi + AeL−φ|φi|2) (2.16)

=
∑
i

F īi

[
(

∑
gαβ̄
,īi
φαφβ̄

W
−
∑
gαβ̄,i g

αβ̄
,̄i
φ2
αφ

2
β̄

W 2
+

∑
(giβ̄,i φβ̄φīi + gαī,̄i φαφīi)

W

+

∑
(gαβ̄,i φαφīβ̄ + gαβ̄

,̄i
φβ̄φiα)

W
−
∑

(gαβ̄,i |φα|2φβφīᾱ + gαβ̄
,̄i
|φα|2φβ̄φiα)

W 2

+
|φiα|2

W
− |φᾱφiα|

2

W 2
− AeL−φ(φīi − |φi|2 + φīi

2|φi|2

W
)

+
φ2
īi

W
+
|φiφīi|2

W 2
+
φᾱφαīi + φαφᾱīi

W

]

We look for some cancelations and simplify the above terms.

∑
i

F īi

∑
(giβ̄,i φβ̄φīi + gαī,̄i φαφīi)

W
=
∑
i

F īi(g̃īi − gīi)
giβ̄,i φβ̄ + gαī,̄i φα

W

≥
∑
i

F īig̃īi
giβ̄,i φβ̄ + gαī,̄i φα

W
− C

W
1
2

∑
i

F īi ≥ − C

W
1
2

∑
i

F īig̃īi −
C

W
1
2

∑
i

F īi

= − C

W
1
2

kf − C

W
1
2

∑
i

F īi

where C is some positive constant depending on supM |g
αβ̄
,i |.
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Now, we deal with the main trouble term,

∑
i

F īi
[∑(gαβ̄,i φαφīβ̄ + gαβ̄

,̄i
φβ̄φiα)

W
−
∑

(gαβ̄,i |φα|2φβφīᾱ + gαβ̄
,̄i
|φα|2φβ̄φiα)

W 2
(2.17)

+

∑
|φiα|2

W
−
∑
|φᾱφiα|2

W 2

]
=

∑
i,α,β

F īi
[gαβ̄,i φαφīβ̄

W
(1− |φβ|

2

W
) +

gαβ̄,i φαφīβ̄
W

(1− |φβ|
2

W
) +
|φiβ|2

W
(1− |φβ|

2

W
)
]

=
∑
i,α,β

F īi
[
(
φīβ̄

W
1
2

+ gαβ̄,i
φα

W
1
2

)(
φīβ̄

W
1
2

+ gαβ̄,i
φα

W
1
2

)−
|gαβ̄,i φα|2

W

]
(1− |φβ|

2

W
)

≥ −
∑
i,α,β

F īi
|gαβ̄,i φα|2

W
(1− |φβ|

2

W
)

≥ −C
∑
i

F īi

where C is also a positive constant depending on supM |g
αβ̄
,i |.

By equation (2.3), we have,

F ij̄(gij̄α + φij̄α) = fα, F ij̄(gij̄ᾱ + φij̄ᾱ) = fᾱ (2.18)

Thus,

∑
i

F īiφīiα = fα −
∑
i

F īigīiα,
∑
i

F īiφīiᾱ = fᾱ −
∑
i

F īigīiᾱ (2.19)

So,

∑
i

F īiφᾱφαīi + φαφᾱīi
W

=
1

W

∑
i

(φαfᾱ + φᾱfα)− 1

W

∑
i

F īi(gīiαφᾱ + gīiᾱφα)

≥ −2
|∇f |
W

1
2

− C

W
1
2

∑
i

F īi (2.20)

32



where C is a positive constant depending on supM |gij̄α|.

By combining all above estimates together, we get

0 ≥
∑
i

F īi
[∑ gαβ̄

,īi
φαφβ̄

W
−
∑
gαβ̄,i g

αβ̄
,̄i
φ2
αφ

2
β̄

W 2
− 3C

W
1
2

− AeL−φ(φīi − |φi|2

+φīi
2|φi|2

W
)
]
− C

W
1
2

kf − 2
|∇f |
W

1
2

≥
∑
i

F īi
[∑ gαβ̄

,īi
φαφβ̄

W
−
∑
gαβ̄,i g

αβ̄
,̄i
φ2
αφ

2
β̄

W 2
− 3C − AeL−φ((g̃īi − gīi)(1 +

2|φi|2

W
)

−|φi|2)
]
− C

W
1
2

kf − 2
|∇f |
W

1
2

(2.21)

Notice that ω+
√
−1∂∂̄u ∈ Γk+1 is equivalent to, in local coordinates, g̃ij̄ ∈ Γk+1. It

follows that

∂σk+1(g̃ml̄)

∂g̃īi
> 0 for ∀i = 1, · · · , n, (2.22)

by the basic property of convex Γk+1 cone:

if (λ) ∈ Γk+1 =⇒ (λ | i) ∈ Γk for ∀i = 1, · · · , n.

where (λ | i) means removing the i− th element of (λ) = (λ1, · · · , λn) ∈ Rn.
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Now, we are in the place to estimate the last trouble term in (2.21).

−
∑
i

F īiAeL−φ
(

(g̃īi − gīi)(1 +
2|φi|2

W
)− |φi|2

)
= AeL−φ

∑
i

F īi(1 +
2|φi|2

W
+ |φi|2)− AeL−φ

∑
i

F īig̃īi(1 +
2|φi|2

W
)

≥ AeL−φ
∑
i

F īi(1 + |φi|2)− AeL−φ
∑
i

F īig̃īi − AeL−φ
∑
i

F īig̃īi
2|φi|2

W

= AeL−φ
∑
i

F īi(1 + |φi|2)− AeL−φkf − 2AeL−φ
(
f − ∂σk+1(g̃ml̄)

∂g̃īi

) |φi|2
W

≥ AeL−φ
∑
i

F īi(1 + |φi|2)− (k + 2)AeL−φkf

where we have made use of (2.22) in the last inequality. Indeed, this is the only place

where we need the Γk+1 cone condition in the whole proof. Next, putting the above

estimate back to inequality (2.21), we get

0 ≥
∑
i

F īi
[∑ gαβ̄

,īi
φαφβ̄

W
−
∑
gαβ̄,i g

αβ̄
,̄i
φ2
αφ

2
β̄

W 2
− 3C + AeL−φ(1 + |φi|2)

]
−AeL−φ(k + 2)f − C

W
1
2

kf − 2
|∇f |
W

1
2

≥ AeL−φ
[1

2

∑
i

F īi(1 + |φi|2)− (k + 2)f
]
− 2|∇f |+ Ckf

W
1
2

Now by Lemma 2.2.1 (taking B = W,λi = 1 + φīi, si = |φi|2
W

),

0 ≥ AeL−φ
[Df 1− 1

kW
1
k

2
− (k + 2)f

]
− 2|∇f |+ Ckf

W
1
2

= f 1− 1
k

[
AeL−φ(

DW
1
k

2
− (k + 2)f

1
k )− 2|∇f 1

k |+ Ckf
1
k

W
1
2

]
≥ f 1− 1

k

[
AeL−φ(

DW
1
k

4
− (k + 2)f

1
k ) + (AeL−φ

DW
1
k

4
− 2|∇f 1

k |+ Ckf
1
k

W
1
2

)
]
.(2.23)
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where D is a constant from Lemma 2.2.1.

So, either

DW
1
k

4
− (k + 2)f

1
k ≤ 0,

or (
AeL−φ

DW
1
k

4
− 2|∇f 1

k |+ Ckf
1
k

W
1
2

)
≤ 0.

In each case, we can get an upper bound for W at p, which depends on infM Rīijj̄,

supM |g
αβ̄
,i |, supM f, supM |∇f

1
k |.

In the rest this section, we give the proof of the gradient estimate for the complex

Hessian equation in a more general form:

σk(gij̄ + φij̄ + µφiφj̄) = f.

The method is similar to the case above, but there are some extra terms which are

not easy to handle. We need to modify the test function. On the other hand, because

of the gradient term in g̃ij̄ = gij̄ +φij̄ +µ(z)φiφj̄, we can not choose local coordinates

to make g̃ij̄ diagonal, in turn F ij̄ := ∂σk(W )
∂Wij̄

can not be diagonalized anymore.

Proof of Theorem 2.1.3:

Let’s also denote g̃ij̄ = gij̄ + φij̄ + µ(z)φiφj̄,W = |∇φ|2 and L = supM |φ|.

Suppose the maximum of

H̃ = logW + eA(L−φ)
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is attained at some interior point p. We pick a holomorphic orthonormal coordinate

system at that point such that gij̄ and φij̄ are diagonal at that point. We may assume

that W (p) ≥ 1 and pick A sufficient large.

As (φij̄) is diagonal at the point p, we differentiate H̃,

Wi

W
− AeA(L−φ)φi = 0,

Wj̄

W
− AeA(L−φ)φj̄ = 0 (2.24)

By the same way as (2.14) and (2.15), we have

φᾱφiα = AWeA(L−φ)φi − φiφīi − gαβ̄,i φαφβ̄ (2.25)

φαφj̄ᾱ = AWeA(L−φ)φj̄ − φj̄φjj̄ − gαβ̄,j̄ φαφβ̄ (2.26)

From this, we may write

WiWj̄ = gαβ̄,i g
αβ̄
,j̄
φ2
αφ

2
β̄ + gαβ̄

,j̄
|φα|2φβ̄φiα + gαβ̄,i |φα|2φβφj̄ᾱ + |φα|2φαiφj̄ᾱ (2.27)

+AWeA(L−φ)
(
φj̄φiφīi + φiφj̄φjj̄

)
+ φiφj̄φīiφjj̄

We pick A ≥ 1 sufficient large, such that(∑
gαβ̄
,īi
φαφβ̄

W
−
∑
gαβ̄,i g

αβ̄
,̄i
φ2
αφ

2
β̄

W 2
− 100|gαβ̄,k |gij̄ +

A

2
gij̄

)
≥ 0.

and

A

4
≥ sup

M
|µ|
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Thus, at the maximal point p,

0 ≥
∑
i,j

F ij̄

(
Wij̄

W
−
WiWj̄

W 2
− AeA(L−φ)φij̄ + A2eA(L−φ)φiφj̄

)

=
∑
i,j

F ij̄

[
(

∑
gαβ̄
,ij̄
φαφβ̄

W
+

∑
gαβ̄,i g

αβ̄
,j̄
φ2
αφ

2
β̄

W 2
+

∑
(gjβ̄,i φβ̄φjj̄ + gαī,j̄ φαφīi)

W

+

∑
(gαβ̄,i φαφj̄β̄ + gαβ̄

,j̄
φβ̄φiα)

W
−
∑

(gαβ̄,i |φα|2φβφj̄ᾱ + gαβ̄
,j̄
|φα|2φβ̄φiα)

W 2

+

∑
φiαφj̄ᾱ
W

−
∑
|φα|2φiαφj̄ᾱ
W 2

− AeA(L−φ)

(
φij̄ − Aφiφj̄ +

φiφj̄φīi + φiφj̄φjj̄
W

)
+
φ2
ij̄

W
+
φiφj̄φīiφjj̄

W 2
+

∑
φᾱφαij̄ + φαφᾱij̄

W

]

Again, we look for cancelations and simplify the above terms, first

∑
i,j

F ij̄

∑
(gjβ̄,i φβ̄φjj̄ + gαī,j̄ φαφīi)

W

=
∑
i,j

F ij̄(g̃ij̄ − gij̄ − µφiφj̄)
∑

(gjβ̄,i φβ̄ + gαī,j̄ φα)

W

≥ − C0

W
1
2

∑
i,j

F ij̄ g̃ij̄ −
C1

W
1
2

∑
i,j

F ij̄ − C2

W
1
2

∑
i,j

F ij̄φiφj̄

= − C0

W
1
2

kf − C1

W
1
2

∑
i

F īi − C2

W
1
2

∑
i,j

F ij̄φiφj̄
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where C0, C1 and C2 are some positive constants depending on supM |gαβ̄,i| and the

function µ(z). In turn, we have

∑
i,j

F ij̄

[∑
(gαβ̄,i φαφj̄β̄ + gαβ̄

,j̄
φβ̄φiα)

W
−
∑

(gαβ̄,i |φα|2φβφj̄ᾱ + gαβ̄
,j̄
|φα|2φβ̄φiα)

W 2

+

∑
φiαφj̄ᾱ
W

−
∑
|φα|2φiαφj̄ᾱ
W 2

]

=
∑
i,j

F ij̄

[
gαβ̄,i φβφj̄ᾱ

W
(1− |φα|

2

W
) +

gαβ̄
,j̄
φβ̄φiα

W
(1− |φα|

2

W
) +

φiαφj̄ᾱ
W

(1− |φα|
2

W
)

]

=
∑
i,j

F ij̄

[
(
φīᾱ

W
1
2

+ gαβ̄,i
φβ

W
1
2

)(
φjα

W
1
2

+ gαβ̄,j
φβ

W
1
2

)−
|gαβ̄,i φβ|2

W

]
(1− |φα|

2

W
)

≥ −
∑
i,j

F ij̄
|gαβ̄,i φβ|2

W
(1− |φα|

2

W
)

≥ −C
∑
i,j

F ij̄

where C is also a positive constant depending on supM |g
αβ̄
,i |.

By equation (2.3),we have,

F ij̄
(
gij̄α + φij̄α + (µφiφj̄)α

)
= fα, F ij̄

(
gij̄ᾱ + φij̄ᾱ + (µφiφj̄)ᾱ

)
= fᾱ (2.28)

Thus,

∑
i,j

F ij̄φᾱφij̄α = φᾱfα −
∑
i,j

F ij̄φᾱ
(
gij̄α + µαφiφj̄ + µφiαφj̄ + µφiφjj̄

)
(2.29)

≥ φᾱfα − C3W
1
2

∑
i,j

F ij̄ − C4W
1
2

∑
i,j

F ij̄φiφj̄

−µ
∑
i,j

F ij̄φᾱ(φiαφj̄ + φiφjj̄)
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we need to control the last term in (2.29). By (2.25) and (2.26), we have

−µ
∑
i,j

F ij̄φᾱφiαφj̄ = −µ
∑
i,j

F ij̄φj̄(AWeA(L−φ)φi − φiφīi − gαβ̄,i φαφβ̄)(2.30)

≥ −µAWeA(L−φ)
∑
i,j

F ij̄φiφj̄ − C5W
∑
i,j

F ij̄|φj|

−µ
∑
i,j

F ij̄φj̄φiφīi

−µ
∑
i,j

F ij̄φj̄φiφīi = −µ
∑
i,j

F ij̄(g̃ij̄ − gij̄ − µφiφj̄)φīφj (2.31)

≥ −C6Wkf − C7

∑
i

F īi|φi|2 + µ2
∑
i,j

F ij̄|φi|2|φj̄|2

It follows that,

−µ
∑
i,j

F ij̄φᾱ(φiαφj̄ + φiφjj̄) ≥ −C5W
∑
i,j

F ij̄|φj| − C8W
∑
i,j

F ij̄φiφj̄(2.32)

−µAWeA(L−φ)
∑
i,j

F ij̄φiφj̄ − C9Wkf

Combining (2.29) and (2.32) together, we can get

∑
i,j

F ij̄φᾱφij̄α ≥ −C10W
∑
i,j

F ij̄ − C11AWeA(L−φ)
∑
i,j

F ij̄φiφj̄ (2.33)

−C9Wkf + φᾱfα

Moreover, similar argument as above also yields,

∑
i,j

F ij̄φαφij̄ᾱ ≥ −C10W
∑
i,j

F ij̄ − C11AWeA(L−φ)
∑
i,j

F ij̄φiφj̄ (2.34)

−C9Wkf + φαfᾱ
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where C3, · · · , C11 are some constants depending only on supM |g
αβ̄
,i | and the function

µ.

Thus,

∑
i,j

F ij̄

∑
φᾱφαij̄ + φαφᾱij̄

W
(2.35)

≥ 1

W

∑
α

(φαfᾱ + φᾱfα)− C12

∑
i,j

F ij̄ − C13Ae
A(L−φ)

∑
i,j

F ij̄φiφj̄ − C14kf

≥ −2
|∇f |
W

1
2

− C12

∑
i,j

F ij̄ − C13Ae
A(L−φ)

∑
i,j

F ij̄φiφj̄ − C14kf

where C12, C13, C14 are some constants depending only on supM |g
αβ̄
,i | and the function

µ.
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By combining all the above estimates together and using the fact that W > 1

is large, we get

0 ≥
∑
i,j

F ij̄

[
(

∑
gαβ̄
,ij̄
φαφβ̄

W
+

∑
gαβ̄,i g

αβ̄
,j̄
φ2
αφ

2
β̄

W 2
− C ′0AeA(L−φ)φiφj̄ − C

′

1 (2.36)

−AeA(L−φ)

(
φij̄ − Aφiφj̄ +

φiφj̄φīi + φjφīφīi
W

)]

−c′2kf −
C

W
1
2

kf − 2
|∇f |
W

1
2

≥
∑
i,j

F ij̄

[
(

∑
gαβ̄
,ij̄
φαφβ̄

W
+

∑
gαβ̄,i g

αβ̄
,j̄
φ2
αφ

2
β̄

W 2
− C ′0AeA(L−φ)φiφj̄ − C

′

1

−AeA(L−φ)(g̃ij̄ − gij̄ − µφiφj̄)
(

1 +
φiφj̄ + φjφī

W

)
+ A2eA(L−φ)φiφj̄

]

−C ′2kf −
C

W
1
2

kf − 2
|∇f |
W

1
2

≥
∑
i,j

F ij̄

[
(

∑
gαβ̄
,ij̄
φαφβ̄

W
+

∑
gαβ̄,i g

αβ̄
,j̄
φ2
αφ

2
β̄

W 2
+
A2

2
eA(L−φ)φiφj̄ − C

′

1

+AeA(L−φ)gij̄ + µAeA(L−φ)φiφj̄

(
1 +

φiφj̄ + φjφī
W

)]

−4AeA(L−φ)kf − C

W
1
2

kf − 2
|∇f |
W

1
2

≥
∑
i,j

F ij̄

[
(

∑
gαβ̄
,ij̄
φαφβ̄

W
+

∑
gαβ̄,i g

αβ̄
,j̄
φ2
αφ

2
β̄

W 2
+
A2

4
eA(L−φ)φiφj̄

+
A

2
eA(L−φ)gij̄

]
− 4AeA(L−φ)kf − C

W
1
2

kf − 2
|∇f |
W

1
2

≥ AeA(L−φ)

[
1

2

∑
i,j

F ij̄(gij̄ + φiφj̄)− 4kf

]
− 2|∇f |+ Ckf

W
1
2
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Let’s denote gij̄ + φiφj̄ by Qij̄, then

σk(Qij̄) = σk(λ{Qij̄}) = 1 +W (2.37)

Now, by Garding’s inequality for polarized σk and (2.37), we have

∑
i,j

F ij̄(gij̄ + φiφj̄) =
∑
i,j

∂F

∂g̃ij̄
Qij̄ ≥ Cn,kσ

k−1
k

k (g̃ij̄)σ
1
k
k (Qij̄) (2.38)

= Cn,kf
1− 1

k (1 +W )
1
k

≥ Cf 1− 1
kW

1
k

Finally, the inequalities (2.36) and (2.38) give that

0 ≥ AeL−φ

[
Cf 1− 1

kW
1
k

2
− 4kf

]
− 2|∇f |+ Ckf

W
1
2

= f 1− 1
k

[
AeL−φ(

CW
1
k

2
− 4kf

1
k )− 2|∇f 1

k |+ Ckf
1
k

W
1
2

]

≥ f 1− 1
k

[
AeL−φ(

CW
1
k

4
− 4kf

1
k ) + (AeL−φ

CW
1
k

4
− 2|∇f 1

k |+ Ckf
1
k

W
1
2

)

]
.

So, either

CW
1
k

4
− 4kf

1
k ≤ 0,

or

(AeL−φ
CW

1
k

4
− 2|∇f 1

k |+ Ckf
1
k

W
1
2

) ≤ 0.

In each case, we can get an upper bound for W at p, which depends on infM Rīijj̄,

supM |g
αβ̄
,i |, supM f, supM |∇f

1
k |.
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2.3 C2 estimate for Monge-Ampère equation on Hermitian
manifolds

In this section, we estimate the second derivatives φij̄ assuming φ solves equation

(2.1) and f is C3(M).

First, we want to fix one notation: in the following proof, we write f = O(|∇φ|),

if there exist two nonnegative constants C1, and C2 such that

−C1|∇φ| ≤ f ≤ C2|∇φ|.

Proof of Theorem 2.1.4:

Let’s denote g̃ij̄ = gij̄ + φij̄. Suppose the maximum of the test function

G = log(m+ ∆φ) +B|∇φ|2 − Aφ

is attained at some interior point p. We pick a holomorphic orthonormal coordinate

system at that point such that (g̃ij̄) = (gij̄ + φij̄), is diagonal at that point. We may

assume (m+ ∆φ) is large.

As φij̄ is diagonal at the point p, we have the following inequality at p,

0 ≥
∑
i

F īiGīi (2.39)

=
∑
i

F īi

[
(m+ ∆φ)īi
m+ ∆φ

− (m+ ∆φ)i(m+ ∆φ)ī
(m+ ∆φ)2

+B|∇φ|2īi − Aφīi
]
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Now, we differentiate G at the maximal point p,

(m+ ∆φ)i
m+ ∆φ

= −B|∇φ|2i + Aφi

= −Bgkl̄,i φkφl̄ −B(φkiφk̄ + φkφk̄i) + Aφi

= −Bφiφīi −BφBk
φki + Aφi −Bgkl̄,i φkφl̄

= −Bφiφīi −BφBk
φki +O(|∇φ|2)

Similarly, by ∇īH = 0, we have

(m+ ∆φ)ī
m+ ∆φ

= −Bφj̄φjj̄ −Bφlφl̄j̄ +O(|∇φ|2)

So,

(m+ ∆φ)i(m+ ∆φ)ī
(m+ ∆φ)2

= [B(φiφīi + φBk
φki +O(|∇φ|2)][B(φiφīi + φlφl̄̄i) +O(|∇φ|2)]

= B2(φiφīi + φBk
φki)(φīφīi + φlφl̄̄i) +B(φiφīi + φīφīi

+φBk
φki + φlφl̄̄i) ·O(|∇φ|2) +O(|∇φ|4)

= B2(|∇φ|2φ2
īi + φiφlφīiφl̄̄i + φīφīiφBk

φki + φBk
φlφkiφl̄̄i)

+Bφīi ·O(|∇φ|3) +Bφkiφl̄j̄ ·O(|∇φ|3) +O(|∇φ|4)

= B2|∇φ|2φ2
īi +B2(φl̄̄iφīi + φkiφīi) ·O(|∇φ|2) +B2φkiφl̄̄i ·O(|∇φ|2)

+Bφīi ·O(|∇φ|3) +B(φki + φl̄̄i) ·O(|∇φ|3) +O(|∇φ|4)

|∇φ|2īi = gkl̄,īiφkφl̄ + gkl̄,i (φkīφl̄ + φkφīl̄) + gkl̄,̄i (φkiφl̄ + φkφil̄) + (φkφl̄)īi

= O(|∇φ|2) + (gkl̄,i φl̄φīi + gkl̄,̄i φkφīi) + (gkl̄,i φkφl̄̄i + gkl̄,̄i φl̄φki)

+φkiφl̄̄i + φ2
īi + φkīiφl̄ + φkφl̄īi
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By equation (2.1),

F īi =
∂σn(λ)

∂λi
= σn−1(λ|i)

∑
i,j

F ij̄(gij̄α + φij̄α) = fα,
∑
i,j

F ij̄(gij̄ᾱ + φij̄ᾱ) = fᾱ

So,

∑
i

F īiφīi =
∑
i

σn−1(λ|i)λi = nσn(λ) = nf (2.40)

∑
i

F īi(φkīiφl̄ + φkφl̄īi) = φl̄fk + φkfl̄ −
∑
i

F īi (gīik + gīil̄) (2.41)

Combining the above expressions, we get the estimates for the third and fourth

terms of (2.39),

∑
i

F īi

(
B|∇φ|2īi −

(m+ ∆φ)i(m+ ∆φ)ī
(m+ ∆φ)2

)
(2.42)

=
∑
i

F īi{[(Bφ2
īi +B2|∇φ|2φ2

īi +B(gkl̄,i φl̄ + gkl̄,̄i φk)φīi +Bφīi ·O(|∇φ|3))]

+[B(φkiφl̄̄i + gkl̄,i φkφl̄̄i + gkl̄,̄i φl̄φki)−B
2(φl̄̄i + φki)φīi ·O(|∇φ|2)

−B2φkiφl̄̄i ·O(|∇φ|2)−B(φki + φl̄̄i) ·O(|∇φ|3)]

+[O|∇φ|2) +O|∇φ|4)]− (gīik + gīil̄)}+ (φl̄fk + φkfl̄)

where we used (2.41) to get the last term.
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Note that, all the terms in the second brackets involves the factors φki, or φl̄̄i.

We can estimate these terms in the following way, if B is small enough.

B(φkiφl̄̄i + gkl̄,i φkφl̄̄i + gkl̄,̄i φl̄φki)−B
2(φl̄̄i + φki)φīi ·O(|∇φ|2)−B2φkiφl̄̄i ·O(|∇φ|2)

−B(φki + φl̄̄i) ·O(|∇φ|3)

≥ B

[
1

4
−B ·O(|∇φ|2)

]
φkiφl̄̄i +B

[
1

4
φkiφl̄̄i + gkl̄,i φkφl̄̄i + gkl̄,̄i φl̄φki

]
+B

[
1

4
φkiφl̄̄i −Bφīi(φl̄̄i + φki) ·O(|∇φ|2)

]
+B

[
1

4
φkiφl̄̄i −O(|∇φ|3)(φki + φl̄̄i)

]
≥ −BC1 ·O(|∇φ|2)−B3φ2

īi ·O(|∇φ|4)−B ·O(|∇φ|6)

≥ −C2B
3φ2

īi − C3

where C1, C2 and C3 depends on |∇φ|, |gkl̄,i |.

Thus, we have

∑
i

F īi

(
B|∇φ|2īi −

(m+ ∆φ)i(m+ ∆φ)ī
(m+ ∆φ)2

)
(2.43)

≥
∑
i

F īi
[
(Bφ2

īi +B2|∇φ|2φ2
īi +B(gkl̄,i φl̄ + gkl̄,̄i φk)φīi +Bφīi ·O(|∇φ|3))

]
−
∑
i

F īiC2B
3φ2

īi − C4 − 2|∇φ||∇f |

≥
∑
i

F īi
[
(B +B2|∇φ|2 − C2B

3)φ2
īi +B(gkl̄,i φl̄ + gkl̄,̄i φk +O(|∇φ|3))φīi

]
−C4 − 2|∇φ||∇f |

≥ −C5nf − C4 − 2|∇φ||∇f |

For the last inequality, we used equation (2.40) and the fact that B is small enough.
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Now, we will consider the remaining two terms in (3.1).

∑
i

F īi

[
(m+ ∆φ)īi
m+ ∆φ

− Aφīi
]

=
∆̃(m+ ∆φ)

m+ ∆φ
− A∆̃φ (2.44)

where ∆̃ is the Laplace operator with respect to the new metric g̃ij̄ = gij̄ + φij̄.

By directly computation, we get

∆̃(m+ ∆φ) = −
∑
i

Rīi + ∆f + g̃kl̄Rkl̄ + g̃kl̄gīi,kl̄φīi − g̃
kl̄|∂igkl̄|2 (2.45)

+g̃kl̄g̃pq̄∂ig̃kq̄∂īg̃pl̄ + g̃kl̄
(
gij̄,kφij̄l̄ + gij̄

,l̄
φij̄k

)
Everything is in order for the application of the maximum principle to get an upper

bound of the test function except the last two terms.

Since g̃ij̄ = (gij̄ + φij̄) is diagonal at the maximal point, g̃kl̄ = 1
1+φkk̄

δkl.

g̃kl̄g̃pq̄∂ig̃kq̄∂īg̃pl̄ + g̃kl̄
(
gij̄,kφij̄l̄ + gij̄

,l̄
φij̄k

)
(2.46)

=
∑
i,p,k

1

1 + φkk̄

1

1 + φpp̄
|g̃kp̄i|2 +

1

1 + φkk̄

(
gip̄,k g̃ip̄k̄ + gip̄

,k̄
g̃ip̄k

)
− 1

1 + φkk̄

(
gij̄,kgij̄k̄ + gij̄

,k̄
gij̄k

)
≥

∑
i,p,k

1

1 + φkk̄

1

1 + φpp̄
|g̃kp̄i|2 −

1

1 + φkk̄

(
|gip̄,k g̃ip̄k̄|+ |g

ip̄

,k̄
g̃ip̄k|

)
+2
|gip̄k|2

1 + φkk̄

=
∑
i,p,k

1

1 + φkk̄

1

1 + φpp̄
|g̃kp̄i|2 − 2

1

1 + φkk̄
|gip̄
,k̄
g̃ip̄k|+ 2

|gip̄k|2

1 + φkk̄

Let Tip̄k = gip̄k − gkp̄i, then

g̃kp̄i = g̃ip̄k − (g̃ip̄k − g̃kp̄i) = g̃ip̄k − (gip̄k − gkp̄i) = g̃ip̄k − Tip̄k
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So,

g̃kl̄g̃pq̄∂ig̃kq̄∂īg̃pl̄ + g̃kl̄
(
gij̄,kφij̄l̄ + gij̄

,l̄
φij̄k

)
(2.47)

≥
∑
i,p,k

1

1 + φkk̄

1

1 + φpp̄
|g̃ip̄k − Tip̄k|2 − 2

1

1 + φkk̄
|gip̄k̄g̃ip̄k|

We will estimate the right hand side of (2.47) by divide it into two cases. For any

fixed index i, j, k,

If |g̃ip̄k| ≤ C̃(m + ∆φ) maxM{|Tip̄k|, |gip̄k̄|} for some constant C̃, then it follows

from (2.46) and (2.47),

g̃kl̄g̃pq̄∂ig̃kq̄∂īg̃pl̄ + g̃kl̄
(
gij̄,kφij̄l̄ + gij̄

,l̄
φij̄k

)
(2.48)

≥ − 2

1 + φkk̄
C̃(m+ ∆φ) max

M
{|Tip̄k|2, |gip̄k̄|2}

≥ − 1

1 + φkk̄
C6(m+ ∆φ)

where C6 is a constant depending on C̃, |gip̄k̄|.
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If |g̃ip̄k| ≥ C̃
′
(m + ∆φ) maxM{|Tip̄k|, |gip̄k̄|} for some constant C̃

′ ≥ 4, then it

also follows from (2.46) and (2.47) that,

g̃kl̄g̃pq̄∂ig̃kq̄∂īg̃pl̄ + g̃kl̄
(
gij̄,kφij̄l̄ + gij̄

,l̄
φij̄k

)
(2.49)

≥ 1

1 + φkk̄

1

1 + φpp̄
|g̃ip̄k − Tip̄k|2 − 2

1

1 + φkk̄
|gip̄k̄g̃ip̄k|

≥ 1

1 + φkk̄

1

1 + φpp̄
(|g̃ip̄k| − |Tip̄k|)2 − 2

1

1 + φkk̄
|gip̄k̄g̃ip̄k|

≥ 1

1 + φkk̄

1

1 + φpp̄

(
1

2
|g̃ip̄k|

)2

− 2
1

1 + φkk̄
|gip̄k̄g̃ip̄k|

≥ 1

1 + φkk̄

(
|g̃ip̄k|

2(1 + φpp̄)
− 2|gip̄k̄|

)
|g̃ip̄k|

≥ 1

1 + φkk̄

(
C̃
′
(m+ ∆φ)|gip̄k̄|
2(1 + φpp̄)

− 2|gip̄k̄|

)
|g̃ip̄k|

≥ 1

1 + φkk̄

(
C̃
′|gip̄k̄|
2

− 2|gip̄k̄|

)
|g̃ip̄k| ≥ 0

By combining the estimate (2.45), (2.48) and (2.49), we have

∆̃(m+ ∆φ)

m+ ∆φ
≥ 1

m+ ∆φ

(
−C7 − C8

∑
k

1

1 + φkk̄
− C6(m+ ∆φ)

)
(2.50)

≥ −C8

∑
k

1

1 + φkk̄
− (C6 + C7)

where C7 is a constant depending on infM Rīijj̄ and ∆f , C8 is a constant depending

on infM Rīijj̄ and |gip̄k̄|.

On the other hand,

∆̃φ =
∑
i

φīi
1 + φīi

= m−
∑
i

1

1 + φīi
(2.51)
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Then it follows from (2.43), (2.50) and (2.51) that

0 ≥
∑
i

F īi

[
(m+ ∆φ)īi
m+ ∆φ

− (m+ ∆φ)i(m+ ∆φ)ī
(m+ ∆φ)2

+B|∇φ|2īi − Aφīi
]
(2.52)

≥
∑
i

−C8
1

1 + φīi
− (C6 + C7)− Am+ A

1

1 + φīi
− C5mf − C4

−2|∇φ||∇f |

≥ C9

∑
i

1

1 + φīi
− C10

if A is large enough. Where C9 is a constant depending on C8, A and C10 is a constant

depending on C5, C4, C6, C7,m, f, |∇f |.

Now, let us notice the following inequality:

∑
i

1

1 + φīi
≥
(∑

i(1 + φīi)

Πi(1 + φīi)

)1/(m−1)

(2.53)

Therefore, by equation (2.1) and (2.53),

∑
i

1

1 + φīi
≥ (m+ ∆φ)1/(m−1) f

−1
m−1 (2.54)

Thus it follows (2.52) and (2.54) that (m + ∆φ)(p) has an upper bound C

depending only on supM |∆f |, supM | infM Rīijj̄|, supM f, supM |gip̄k|, A,B,m.
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CHAPTER 3
A priori C2,α estimate of Complex Monge-Ampère

equation

The a priori C2,α estimate for the classical solutions of complex Monge-Ampère

equation is a crucial step in the continuity method. In section 3.2, we use a pertur-

bation argument to give the Schauder estimate when the right hand side function is

only Cα(Ω) for a domain Ω ⊂ Cn.

To establish this type estimate on Hermitian manifolds, we will generalize the

crucial tools: Bedford-Taylor’s interior C2 estimate and a local Calabi’s C3 estimate

in Hermitian setting in section 3.3 and section 3.4, respectively.

The results in this chapter are contained in joint works with Xi Zhang [85, 83].

3.1 Introduction

We consider a priori C2,α estimate for the complex Monge-Ampère equation

det(uij̄) = f ∈ Cα. (3.1)

Let’s recall that, to prove the closeness for continuity method, we always assume in a

priori that the solution u is smooth enough and establish the uniform C2,α estimate

for it. Then, all the higher order estimates follows by the bootstrap argument.
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Generally, if the right hand side function f(z) ∈ C2(Ω) (or even better), the

uniform C2,α estimate of u follows from the standard Evans-Krylov theory (see [48]).

One key point in the proof is to linearize equation (3.1) and use the Harnack in-

equalities for the non-divergent linear equations. Actually, following the main lines

in the proof of the Evans-Krylov theorem, the requirement of f(z) only need to be

Lipschtz (see [12]) or even f ∈ W 1,p for p > n by using the Harnack inequalities for

divergent linear equations. But this argument does not work for f ∈ Cα(Ω), one can

not linearize the equation to follow Evans-Krylov’s proof.

On the other hand, for real Monge-Ampère equation, Caffarelli [19] proved the

following interior regularity:

Theorem (Caffarelli [19]). Let Ω be a convex domain in Rn and u is a convex solution

(understood in the viscosity sense) of the problem

det(uij) = f, (3.2)

where f is positive and α-Hölder continuous for some α ∈ (0, 1). Assume moreover

that u is equal to 0 on ∂Ω. Then u ∈ C2,α(Ω).

However, Caffarelli’s proof for this regularity result relies essentially on tools in

convex analysis, like the geometric interpretation of the gradient image mappings,

and good shape results for sublevel sets which are not available in the complex setting.

In a joint work with Xi Zhang, by adopting some idea from [31], we can establish

the a priori estimate under the weak regularity of f via a perturbation method. Our

result is
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Theorem 3.1.1 ([85] Theorem 1). Let Ω be a domain in Cn and u ∈ C3(Ω) is a

pluri-subharmonic solution to the Monge-Ampère equation (3.1). Assume there exist

positive constants K0 and K1 such that

|u|+ |Du|+ |D2u| ≤ K1, K0 ≤ f(z) ∈ Cα(Ω),

for some constant 0 < α < 1. Then, for any open domain Ω′ ⊂⊂ Ω, there exists

constant C depending only on K0, K1, n, f, α and a positive constant C, such that

|D2u|Cα(Ω′) ≤ C
(
K0, K1, n, ‖f‖Cα , α, dist(Ω′, ∂Ω)

)
(3.3)

Remark 3.1.1. Note that, in the above estimate, we consider u ∈ C3(Ω) which is

a classical solution to the complex Monge-Ampère equation (3.1). In the later joint

work with S. Dinew and Xi Zhang [35], we also proved that any C1,1 solution (in the

weak sense of current) of (3.1) is indeed C2,α by a similar perturbation argument as

the proof of the above theorem.

The key tools used in the proof are the Bedford-Taylor’s interior C1,1 estimate

(Theorem 3.1.3) and the local Calabi’s C3 estimate (Theorem 3.1.4). In the rest of

this section, we recall these important results that will be used.

First, recall below the comparison principle due to Bedford and Taylor:
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Theorem 3.1.2 ([6] Comparison principle). Given a domain Ω ⊂ Cn, let u and v

be C1,1(Ω) ∩ C(Ω̄) plurisubharmonic functions.1 Suppose that det(uij̄) ≥ det(uij̄) in Ω

u ≤ v on ∂Ω.

Then u ≤ v in the whole Ω.

Building on this result and using the transitivity of the automorphism group

of the unit ball in Cn Bedford and Taylor were able to prove the following interior

estimate:

Theorem 3.1.3 ([6] Interior C2 estimate). Let B be the unit ball in Cn and let

B′ ⊂⊂ B be arbitrary compact subset of B. Let u ∈ PSH(B) ∩ C(B̄) solve the

Dirichlet problem  det(uij̄) = f in B

u = φ on on ∂B,

where φ ∈ C1,1(∂B) and 0 ≤ f 1/n ∈ C1,1(B). Then u ∈ C1,1(B) and moreover there

exist a constant C dependent only on dist{B′, ∂B} such that

||u||C1,1(B′) ≤ C(||φ||C1,1(∂B) + ||f
1
n ||C1,1(B)).

Remark 3.1.2. Note that no strict positivity of f is needed. Observe also that this

estimate is scaling and translation invariant, i.e. the same constant will work if we

1 Actually the theorem holds for merely locally bounded u and v, see [6]. Here we
state it in this form for the sake of simplicity.
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consider the Dirichlet problem in any ball with arbitrary radius (and suitably rescaled

set B′).

Finally let us mention an interior C3 estimate which (in the real case) is due

to Calabi [24] (the complex version due to Yau ([81]) for the global case and to

Riebesehl and Schulz ([64]) for a local estimate).

Here we state the complex version which will be the one we shall use:

Theorem 3.1.4 ([64] A local Calabi’s estimate). Let Ω be a domain in Cn and

suppose that u ∈ PSH(Ω) ∩ C4(Ω) satisfy the Monge-Ampère equation

det(uij̄) = f(z).

Then one has the interior third order estimate

||∇∆u||Ω′ ≤ C

where C is a constant depending only on n, ||∆u||Ω, infΩ f , ||∇1f ||Ω, ||∇2f ||Ω and

dist{Ω′, ∂Ω}.

3.2 A priori C2,α estimate

In this section, we will prove the a priori Schauder estimate (Theorem 3.1.1) via

a perturbation method by using the Bedford-Taylor’s interior C2 estimate (Theorem

3.1.3) and the local Calabi’s C3 estimate (Theorem 3.1.4). Besides these two key

tools, we still need the following elementary lemmas. (The proof of these lemmas

can be found in [31].)
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Lemma 3.2.1. If u ∈ Cα
loc(Cn) for some 0 < α ≤ 1, then there exists a constant

C = C(n, α, k, ρ), such that

|Dkũ(z, τ)| ≤ Cτα−k|u|Cα(Bτ (z))

where ρ ∈ C∞0 (Cn) is a mollifier and

ũ(z, τ) = τ−2n

∫
Cn
ρ
(z − w

τ

)
u(w)dw

is the mollified function of u(z). In the case of α = 0, the same conclusion is true if

u ∈ Cα
loc(Cn) is replaced by u ∈ L∞loc(Cn).

Lemma 3.2.2. Suppose u ∈ C(Cn) and R > 0. If for any 0 < α ≤ 1,

sup
w∈BR(z),0<τ<R

τ 1−α|Dũ(w, τ)| <∞

then u is Hölder continuous at z in BR(z) and

|u|Cα(BR(z)) ≤ C sup
w∈BR(z),0<τ<R

τ 1−α|Dũ(w, τ)|,

for some constant C only depends on n, α and ρ, where ρ is the mollifier and ũ(z, τ)

is the mollified function of u(z) defined as in Lemma 3.2.1.

Lemma 3.2.3. Suppose φ(t) is a bounded and nonnegative function on [T0, T1] with

T1 > T0 ≥ 0. If for any s, t with T0 ≤ t < s ≤ T1, φ satisfies

φ(t) ≤ θφ(s) +
A

(s− t)α
+B,
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where θ, A,B and α are nonnegative constants, and θ < 1. Then, there exits a

constant C depends only on α and θ, such that

φ(ρ) ≤ C
[ A

(R− ρ)α
+B

]
, ∀T0 ≤ ρ < R ≤ T1.

Proof of Theorem 3.1.1:

For any fixed point z0, we may assume z0 = 0 and u(0) = ∇u(0) = 0 (if

necessary, replace u by u(z)−u(0)−Diu(0)z1−Dīu(0)zī). For any ball B2R(0) ⊂⊂ Ω,

consider the following Dirichlet problem: det(vij̄) = f(0), in B2R(0)

v|∂B2R
= u on ∂B2R(0)

(3.4)

Without lost of generality, we may assume f(0) = 1. Moreover, let

vR(z) =
1

(2R)2
v(2Rz),

then we just need to consider the following Dirichlet problem instead of (3.4): det(vRij̄) = 1, in B1(0)

vR|∂B1 = wR(z) on ∂B1(0)
(3.5)

where wR(z) = 1
(2R)2u(2Rz).

Under the original assumption on u,

wR(z) ∈ C1,1 and |D2wR(z)| ≤ K, ∀z ∈ B1(0).
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Here, K is a constant depending only on K1, n, not on R.

By Bedford-Taylor interior estimate (Theorem 3.1.3), it follows that the solution

vR of (3.63) satisfies

|vR|C1,1(B3/4) < C1, (3.6)

where C1 = C(n,K0, K1) is a constant independent on R. Note that we may assume

vR is smooth (by approximating wR in (3.63) with smooth functions and make use

of regularity of complex Monge-Ampère equation in [21]). By the Calabi’s interior

C3 estimate (Theorem 3.1.4),

|D2vR(z)|Cγ(B 1
2

) < C2, ∀ 0 < γ < 1.

The standard Schauder estimate implies that there exists a constant C3 such that

|D3vR(z)| ≤ C3(n,K0, K1) for any z ∈ B 1
2
(0).

Rescaling back to BR(0), we get the following interior estimate for the solution of

the Dirichlet problem (3.4):

|D2v(z)| ≤ C, |D3v(z)|BR(0) <
C

R
(3.7)

for some constant C depending only on n,K0 and K1.

Let

q(z) =
1

2
uij̄(0)zizj̄

and also denote

v̂(z) = v(z)− q(z), û(z) = u(z)− q(z)
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From the first inequality in (3.7), v is a smooth function in BR(0) satisfies the

uniform elliptic complex Monge-Ampère equation

det(vij̄(z)) = 1, in BR(0).

Thus, by standard interior estimate for uniform elliptic concave equations (e.g., (6.10)

in chapter 7 in [31]), for any 0 < ρ < r ≤ R,

|D3v(z)|Bρ(0) ≤
C

(r − ρ)
oscBr(0)D

2v ≤ 2C

(r − ρ)
|D2v̂|Br(0) (3.8)

And the interpolation inequality yields,

|D3v(z)|Bρ(0) ≤
C

r − ρ

[
ε|D3v̂|Br(0) +

C

ε2
|v̂|Br(0)

]
(3.9)

Choosing ε small enough that εC
r−ρ = 1

2
. By Lemma 3.2.3,

|D3v|Bρ(0) ≤
C

(R− ρ)3
|v̂|BR(0) ≤

C

R3
|v̂|B2R(0) (3.10)

From equation (3.4) and the definition of v̂, the function v̂ satisfies the Dirichlet

problem:  det(v̂ij̄(z) + uij̄(0)) = f(0), in B2R(0)

v̂ = û, on ∂B2R(0)
(3.11)

Also, notice that det(uij̄(0)) = f(0). Thus,

det(v̂ij̄(z) + uij̄(0))− det(uij̄(0)) = 0 =⇒ F ij̄ v̂ij̄(z) = 0
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where

F ij̄ =

∫ 1

0

∂F

∂rij̄

(
t(v̂ij̄(z) + uij̄(0)) + (1− t)uij̄(0)

)
dt (3.12)

=

∫ 1

0

∂F

∂rij̄

(
tv̂ij̄(z) + uij̄(0)

)
dt

=

∫ 1

0

∂F

∂rij̄

(
tvij̄(z) + (1− t)uij̄(0)

)
dt

By the assumption |D2u(z)| < K1 and u(z) is the solution of (3.1) with f(z) > 0,

there exists Λ > λ > 0, such that

λI ≤ uij̄(0) ≤ ΛI

Hence, we have

∂F

∂rij̄

(
tvij̄(z) + (1− t)uij̄(0)

)
≥ (1− t)n−1λn−1I (3.13)

=⇒ F ij̄ξiξj̄ ≥ λn−1|ξ|2
∫ 1

0

(1− t)n−1dt ≥ δ0 > 0

for any unit vector ξ = (ξi) ∈ Cn. It follows that

F ij̄ v̂ij̄(z) = 0

is an uniform elliptic equation. By the maximal principle,

|v̂|B2R(0) ≤ |û|B2R(0)

Putting this estimate back into (3.10), we get, for any γ < 1,

|D3v|Bρ(0) ≤
C

R3
|v̂|B2R(0) ≤

C

R3
|û|B2R(0) ≤

C

R1−γ |D
2u|Cγ(B2R(0)) (3.14)
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where the last inequality follows from an interpolation.

Let w = u− v, then w satisfies the equation

aij̄wij̄ = f(z)− f(0)

where

aij̄ =

∫ 1

0

∂F

∂rij̄

(
(1− t)vij̄(z) + tuij̄(0)

)
dt.

By the same reason and estimates as (3.12, 3.13), for any unit vector ξ = (ξi) ∈ Cn,

aij̄ξiξj̄ ≥ λn−1|ξ|2
∫ 1

0

tn−1dt ≥ δ1 > 0

Now, by the Alexandrov-Bakelman-Pucci estimate and the condition f(z) ∈ Cα(Ω),

sup
B2R(0)

w ≤ CR
∣∣∣∣∣∣f(z)− f(0)

δ1

∣∣∣∣∣∣
L2n(B2R(0))

≤ CR2+α (3.15)

where C = C(n, δ1) is a constant independent of R.

|D3w̃|Bτ (0) ≤ Cτ−3 sup
Bτ (0)

w ≤ C
(R
τ

)2

Rατ−1

Thus,

τ 1−α|D3ũ|Bτ (0) ≤ τ 1−α|D3v|Bτ (0) + τ 1−α|D3w̃|Bτ (0) (3.16)

≤ C
[( τ
R

)1−α
|D2u|Cα(B2R(0)) +

(R
τ

)2+α]
Let 2R = Nτ , N > 0 is a constant to be determined. Then

τ 1−α|D3ũ|Bτ (0) ≤ C
[
Nα−1|D2u|Cα(B2R(0)) +N2+α

]
(3.17)
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Now, for any 0 < s < t < d0 = dist{0, ∂Ω},

• If t− s ≥ 2R, i.e. τ = 2R
N
≤ 1

N
(t− s),

τ 1−β|D3ũ|Bτ (0) ≤ C
[
Nβ−1|D2u|Cα(Bt−s(0)) +N2+α

]
• If t − s ≤ 2R, i.e. τ = 2R

N
≥ 1

N
(t − s)( we can extend u(z) to outside of Ω by

defining u(z) = 0), by Lemma 3.2.1,

τ 1−α|D3ũ|Bτ (0) ≤ τ 1−α · Cτ−3|u|B2R(0) ≤
CN2+α

(t− s)2+α
|u|B2R(0)

Combining above two cases together, it follows from Lemma 3.2.2 that

sup
τ>0

τ 1−α|D3ũ|Bτ (0) ≤ C
[
Nα−1|D2u|Cα(Bt−s(0)) +N2+α

(
1 +

|u|B2R(0)

(t− s)2+α

)]
≤ C

[
Nα−1 sup

τ>0,y∈Bt−s(0)

τ 1−α|D3ũ|Bτ (y) +N2+α
(

1 +
|u|B2R(0)

(t− s)2+α

)]
.

In turn,

sup
τ>0,y∈Bs(0)

τ 1−α|D3ũ|Bτ (y) ≤ C
{
Nα−1 sup

τ>0,y∈Bt(0)

τ 1−α|D3ũ|Bτ (y)+N
2+α
(

1+
|u|B2R(0)

(t− s)2+α

)}
Set CNα−1 = 1

2
, by Lemma 3.2.3,

sup
τ>0,y∈Bρ(0)

τ 1−α|D3ũ|Bτ (y) ≤ C
(

1 +
|u|B2R(0)

(R− ρ)2+α

)
, ∀ 0 < ρ < R ≤ d0.

Again, by Lemma 3.2.2,

|D2u|Cα(Bρ(0)) ≤ C
(

1 +
|u|B2R(0)

(R− ρ)2+α

)
, ∀ 0 < ρ < R ≤ d0. (3.18)

where C is a constant depending only on n,K0, K1, α, f, and Ω.
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3.3 A priori C2,α estimate on Hermitian manifolds

The regularity estimates of the complex Monge-Ampère equation are closed

related to the study of existence and uniqueness of the Kähler-Einstein metric and

constant scalar curvature metric in the given Kähler class (see [30]). This motivates

us to extend the results established in section 3.1 (Theorem 3.1.1 and Remark 3.1.1)

from a domain in Cn to general Hermitian manifolds.

Let (M,ω) be a smooth Hermitian manifold and we consider the equation

(ω +
√
−1∂∂̄u)n = f(z)ωn, (3.19)

where 0 < f(z) ∈ C∞(M). When the manifold (M,ω) is Kähler, that is dω = 0, one

can always find a local potential function ρ ∈ C∞(M) such that

ω =
√
−1∂∂̄ρ

Let v = ρ+ u, we can deduce equation (3.19) to be (3.1) locally. Moreover, the key

tools (Theorem 3.1.3 and Theorem 3.1.4) are also applicable. Thus, as a corollary

of Theorem 3.1.1, we get the interior C2,α estimate of v. And the estimate of u also

follows since ρ only depends on ω which is smooth.

Corollary 3.3.1. Let Ω be a domain on a Kähler manifold (M,ω). Let u ∈ PSH(ω,Ω)∩

C3(Ω) be a solution of the Monge-Ampère equation (3.19). Suppose that 0 < f ∈

Cα(Ω) for some 0 < α < 1 and |u| + |Du| + |D2u| ≤ L. Then, for any domain

Ω′ ⊂⊂ Ω, we have

|D2u|Cα(Ω′) ≤ C
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for some constant depending on n, L, ‖f‖Cα , α, dist(Ω′, ∂Ω) and the geometric quan-

tities (curvature and torsion) with respect to ω.

However, if ω is just a smooth positive (1, 1)-form (not necessarily closed), no

local potentials for ω anymore which means one can not deal with this case as

on Kähler manifolds. On the other hand, Bedford-Taylor’s interior estimate and

the local Calabi’s estimate can not be applied directly, neither. This force us to

extend these two important estimates to Hermitian manifolds. Once the crucial

tools established, following the lines of the proof for Theorem 3.1.1, we can prove

the following corollary:

Corollary 3.3.2. Let Ω be a domain in Cn and ω be a Hermitian form defined on

Ω. Let φ(z) ∈ PSH(ω,Ω) ∩ C3(Ω) be a solution of the Monge-Ampère equation

(ω +
√
−1∂∂̄φ)n = f(z)ωn.

Suppose that 0 < f ∈ Cα(Ω) for some 0 < α < 1 and |u|+ |Du|+ |D2u| ≤ L. Then,

for any domain Ω′ ⊂⊂ Ω, we have

|D2u|Cα(Ω′) ≤ C

for some constant depending on n, L, ‖f‖Cα , α, dist(Ω′, ∂Ω) and the curvature with

respect to ω.

This corollary gives the a priori C2,α estimate of the complex Monge-Ampère

equation with Cα right hand side on Hermitian manifolds. Moreover, the interior C2,α

regularity for the weak solutions mentioned in Remark 3.1.1 could also be extended

to the Hermitian setting via the same method.
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3.3.1 Bedford-Taylor’s interior C2 estimate on Hermitian man-
ifolds

The interior estimate for second order derivatives is an important and difficult

topic in the study of complex Monge-Ampère equation. It has many fundamental

applications in complex geometric problems. In the cornerstone work of Bedford

and Taylor [6], by using the transitivity of the automorphism group of the unit ball

B ⊂ Cn, they obtained the interior C2-estimate (Theorem 3.1.3) for the following

Dirichlet problem: 
det(uij̄) = f in B

u = φ on ∂B,

where φ ∈ C1,1(∂B) and 0 ≤ f
1
n ∈ C1,1(B).

Unfortunately for generic domains Ω ⊂ Cn, due to the non-transitivity of the

automorphism group of Ω, Bedford and Taylor’s method is not applicable and the

analogous estimate is still open. Here, we exploit the method of Bedford-Taylor to

study the interior estimate for the Dirichlet problem of the complex Monge-Ampère

equation in the unit ball in the Hermitian setting (notice that for local arguments

the shape of the domain is immaterial and hence it suffices to consider balls). We

consider the following Dirichlet problem: (ω +
√
−1∂∂̄u)n = fωn in B,

u = φ on ∂B,
(3.20)

where 0 ≤ f
1
n ∈ C1,1(B) and ω is a smooth positive (1, 1)-form (not necessarily

closed ) defined on B̄. We denote PSH(ω,Ω) be the set of all integrable, upper
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semicontinuous functions satisfying (ω +
√
−1∂∂̄u) ≥ 0 in the current sense on the

domain Ω. Our result is as following:

Theorem 3.3.1 ([83] Theorem 1). Let B be the unit ball on Cn and ω be a smooth

positive (1, 1)-form (not necessary closed) on B̄. Let u ∈ C1,1(B)∩C(B̄)∩PSH(ω,B)

solve the Dirichlet problem (3.20) with φ ∈ C1,1(∂B). Then, for arbitrary compact

subset B′ ⊂⊂ B, there exists a constant C dependent only on ω and dist {B′, ∂B}

such that

||u||C1,1(B′) ≤ C(||φ||C1,1(∂B) + ||f
1
n ||C1,1(B)).

Remark 3.3.1. Observe that this estimate is scale and translation invariant, i.e.

the same constant will work if we consider the Dirichlet problem in any ball with

arbitrary radius (and suitably rescaled set B′).

In the proof of interior C2-estimates, the comparison theorem will play the key

role. Following the same idea as in [21], it’s easy to see that the comparison theorem

is still true for the complex Monge-Ampère equation on Hermitian manifold (M,ω).

Lemma 3.3.1. Let Ω ⊂ M be a bounded set and u, v ∈ C2(Ω̄), with ω+
√
−1∂∂̄u ≥ 0,

ω +
√
−1∂∂̄v > 0 be such that

(ω +
√
−1∂∂̄v)n ≥ (ω +

√
−1∂∂̄u)n

and

v ≤ u on ∂Ω,

then v ≤ u in Ω̄.

Proof of Theorem 3.3.1:
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As mentioned above, we will follow the idea of Bedford and Taylor from [6]. For

a ∈ Bn, let Ta ∈ Aut (Bn) be defined by

Ta(z) = Γ(a)
z − a

1− ātz
,

where Γ(a) = atā
1−v(a)

− v(a)I and v(a) =
√

1− |a|2.

Note that Ta(a) = 0, T−a = T−1
a , and Ta(z) is holomorphic in z, and a smooth

function in a ∈ Bn. For any a ∈ B(0, 1− η) = {a : |a| < 1− η} set

L(a, h, z) = T−1
a+hTa(z)

and

U(a, h, z) = L∗1u(z), U(a,−h, z) = L∗2u(z),

Φ(a, h, z) = L∗1φ(z), Φ(a,−h, z) = L∗2φ(z), for z ∈ ∂Bn.

where L∗i means the pull-back of Li for i = 1, 2 and L1 = L(a, h, z), L2 = L(a,−h, z).

Since U(a, h, z) = Φ(a, h, z) for z ∈ ∂Bn, it follows that

U ∈ C1,1(B(0, 1− η)×B(0, η)× ∂Bn).

Consequently, for a suitable constant K1, depending on η > 0, we have

1

2
(U(a, h, z) + U(a,−h, z))−K1|h|2 ≤ U(a, 0, z) = φ(z) (3.21)

for all |a| ≤ 1− η, |h| ≤ 1
2
η, and z ∈ ∂Bn. If it can be shown that v(a, h, z) satisfies

(ω +
√
−1∂∂̄v)n ≥ f(z)ωn, (3.22)
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where

v(a, h, z) =
1

2

[
U(a, h, z) + U(a,−h, z)

]
−K1|h|2 +K2(|z|2 − 1)|h|2, (3.23)

then it follows from the comparison theorem in the Hermitian case that v(a, h, z) ≤

u(z). Thus, if we set a = z, we conclude that

1

2
[u(z + h) + u(z − h)] ≤ u(z) + (K1 +K2)|h|2

which would prove the theorem.

Let now

F (ω +
√
−1∂∂̄v) =

( (ω +
√
−1∂∂̄v)n

(
√
−1)ndz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

) 1
n

(3.24)

=
(

det(gij̄ + vij̄)
) 1
n
,

where gij̄ is the local expression of ω under the standard coordinate {zi}ni=1 in Cn.

By the concavity of F , we have

F (ω +
√
−1∂∂̄v) = F

(
ω +

√
−1

2
(∂∂̄L∗1u+ ∂∂̄L∗2u+ 2K2|h|2∂∂̄|z|2)

)
(3.25)

= F
(1

2
(ω − L∗1ω) +

1

2
(ω − L∗2ω) +K2|h|2

√
−1∂∂̄|z|2

+
1

2
(L∗1ω +

√
−1∂∂̄L∗1u) +

1

2
(L∗2ω +

√
−1∂∂̄L∗2u)

)
≥ 1

2
F (L∗1ω +

√
−1∂∂̄L∗1u) +

1

2
F (L∗2ω +

√
−1∂∂̄L∗2u)

+
1

2
F
(

(ω − L∗1ω) + (ω − L∗2ω) + 2K2|h|2
√
−1∂∂̄|z|2

)
.

Since the Hermitian metric ω is smooth, one can find K2 large enough, such that

(ω − L∗1ω) + (ω − L∗2ω) +K2|h|2
√
−1∂∂̄|z|2 ≥ 0. (3.26)
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On the other hand, since L(a, h, z) is holomorphic in z, it follows from equation

(3.20) that

F (L∗1ω +
√
−1∂∂̄L∗1u) = F (L∗1(ω +

√
−1∂∂̄u)) (3.27)

=
( L∗1(ω +

√
−1∂∂̄u)n

(
√
−1)ndz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

) 1
n

=
( L∗1(f(z)ωn)

(
√
−1)ndz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

) 1
n

= F (L∗1(f
1
nω)) = L∗1(f

1
n )F (L∗1(ω)).

Similarly, we can get

F (L∗2ω +
√
−1∂∂̄L∗2u) = F (L∗2(f

1
nω)) = L∗2(f

1
n )F (L∗2(ω)).

Thus,

F (ω +
√
−1∂∂̄v) ≥ 1

2

(
F (L∗1(f

1
nω)) + F (L∗2(f

1
nω))

)
+

1

2
F (K2|h|2

√
−1∂∂̄|z|2)

= F (f
1
nω) +

1

2

(
F (L∗1(f

1
nω)) + F (L∗2(f

1
nω))− 2F (f

1
nω)
)
(3.28)

+
1

2
F (K2|h|2

√
−1∂∂̄|z|2).

Again, since ω is smooth and f 1/n ∈ C1,1, choosing K2 large enough, we have

F (L∗1(f
1
nω)) + F (L∗2(f

1
nω))− 2F (f

1
nω) ≤ F (K2|h|2

√
−1∂∂̄|z|2). (3.29)

Finally, we obtain

F (ω +
√
−1∂∂̄v) ≥ F (f

1
nω), (3.30)

and thus, inequality (3.22) follows.
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3.3.2 A local Calabi’s C3 estimate on Hermitian manifolds

Calabi’s C3-estimate for the real Monge-Ampère equation was first proved by

Calabi himself in [24]. After that many mathematicians paid a lot of attention to

this estimate. In Yau’s work [81], he gave a detailed proof of the C3-estimate for the

complex Monge-Ampère equation on Kähler manifolds, which was generalized to the

Hermitian case by Cherrier [28].

Most of these C3-estimates are global. However, in some situations, a local C3-

estimate is needed. For example Riebesehl and Schulz [64] gave a local version of

Calabi’s estimate in order to study the Liouville property of Monge-Ampère equations

on Cn. And also, for the result in section 3.2 (Theorem 3.1.1, Remark 3.1.1), the

local result in [64] played an important role to get the optimal value of α in the

C2,α estimate of solutions to the complex Monge-Ampère equations. Thus, it is also

natural to generalize this local estimate to Hermitian manifolds and hope to find

some interesting geometric applications.

Let (M,ω) be a Hermitian manifold. We consider the following complex Monge-

Ampère equation

(ω +
√
−1∂∂̄φ)n = efωn, (3.31)

where f(z) ∈ C∞(M).

Theorem 3.3.2 ([83] Theorem 2). Let φ(z) ∈ PSH(ω,M)∩C4(M) be a solution of

the Monge-Ampère equation (3.31), satisfying

|dφ|ω + |∂∂̄φ|ω ≤ K. (3.32)
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Let Ω′ ⊂⊂ Ω ⊂M . Then the third derivatives of φ(z) of mixed type can be estimated

in the form

|∇ω∂∂̄φ|ω ≤ C for z ∈ Ω′,

where C is a constant depending on K, |dω|ω, |R|ω, |∇R|ω, |T |ω, |∇T |ω, dist(Ω′, ∂Ω)

and |∇sf |ω , s = 0, 1, 2, 3. Here ∇ is the Chern connection with respect to the

Hermitian metric ω, T and R are the torsion tensor and curvature form of ∇.

From the detailed proof in Yau’s paper [81] (see also [62]), in the Kähler case,

we know that the quantity considered by Calabi

S = g̃jr̄g̃sk̄g̃ml̄φjk̄mφr̄sl̄

satisfies the following elliptic inequality:

4̃S ≥ −C1S − C2. (3.33)

Here φ is a smooth solution of equation (3.31), g̃ denotes the Hermitian metric with

respect to the form ωφ = ω +
√
−1∂∂̄φ, φij̄k denotes the covariant derivative with

respect to the Chern connection ∇.

Riebesehl and Schulz [64] used the above elliptic inequality to get the Lp estimate

for S. Then, a standard theorem for linear elliptic equations gave the L∞ estimate.

For the Hermitian case, due to the non-vanishing torsion term, the estimates are

more complicated.

Thus, aim to get the local Calabi’s estimate, one should establish the similar

inequality as (3.33) on Hermitian manifolds. Indeed, Cherrier [28] gave such an
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inequality:

4̃S ≥ −C1S
3
2 − C2, (3.34)

where 4̃ is the canonical Laplacian with respect to the Hermitian metric g̃ (i.e.

4̃f = 2g̃ij̄fij̄), positive constants C1 and C2 depend on K, |R|ω, |∇R|ω, |T |ω, |∇T |ω,

and |∇sf |ω, s = 0, 1, 2, 3. Cherrier’s proof for (3.34) follows closely to Yau’s [81]

computation in the Kähler case. Here, by a geometric understanding of the Calabi

quantity S, similar to [62], we give a simpler proof for the elliptic inequality (3.34).

Proof of the elliptic inequality (3.34):

Let (M,J, ω) be a Hermitian manifold and ∇ denote the Chern connection with

respect to the metric ω. Let locally ω =
√
−1gij̄dz

i ∧ dz j̄, then the local formula for

the connection 1-form reads θ = ∂g · g−1. We also denote

θα = ∂αg · g−1, θγαβ =
∂gβδ̄
∂zα

gγδ̄.

The torsion tensor of ∇ is defined by

T (
∂

∂zα
,
∂

∂zβ
) = ∇ ∂

∂zα

∂

∂zβ
−∇ ∂

∂zβ

∂

∂zα
− [

∂

∂zα
,
∂

∂zβ
]

=
(∂gβδ̄
∂zα

− ∂gαδ̄
∂zβ

)
gγδ̄.

Notice that T = 0 ⇐⇒ ω is Kähler (and ∇ is the Levi-Civita connection on M).
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The curvature form of ∇ is defined by R = ∂̄θ = dθ − θ ∧ θ = ∂̄(∂g · g−1). In

local coordinates, we have

Rj

iαβ̄
= −∂̄β(∂αg · g−1)ji = −gjk̄ ∂2gik̄

∂zα∂z̄β
+
∂gik̄
∂zα

gjs̄
∂gts̄
∂z̄β

gtk̄,

Rij̄αβ̄ = gkj̄R
k
iαβ̄.

Note that R(2,0) = R(0,2) = 0 and T (1,1) = T (0,2) = 0, since the almost complex

structure J is integrable and ∇ is the Chern connection.

Let ∇ and ∇̃ denote the Chern connections corresponding to the Hermitian

metrics ω and ω +
√
−1∂∂̄φ respectively. Define

h = g̃ · g−1 (3.35)

and

hji = g̃ik̄g
jk̄, (h−1)ji = gik̄g̃

jk̄.

In fact, h can be thought to be an endomorphism h : T 1,0(M) −→ T 1,0(M), such

that g̃(X, Y ) = g(h(X), Y ).

Set

S = g̃jr̄g̃sk̄g̃ml̄φjk̄mφr̄sl̄, (3.36)

where φjk̄m = ∇m∇k̄∇jφ.
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By (3.35), we have

θ̃ = ∂g̃ · g̃−1 = ∂(h · g) · g−1h−1 (3.37)

= ∂h · g · g−1 · h−1 + h · ∂g · g−1 · h−1

= ∂h · h−1 + h · θ · h−1

= ∂h · h−1 + h · θ · h−1 − θ · h · h−1 + θ

= θ + (∇1,0h) · h−1.

R̃ = ∂̄θ̃ = ∂̄(θ + (∇1,0h) · h−1) (3.38)

= R + ∂̄((∇1,0h) · h−1).

By similar computation, we can get

θ = ∂g · g−1 = θ̃ − h−1(∇̃1,0h), (3.39)

R = R̃− ∂̄(h−1 · (∇̃1,0h)). (3.40)

Now, using the definitions, one can see that

φjk̄m = (∇mg̃)(∂j, ∂̄k) = g̃jk̄,m.

Thus,

S = g̃jr̄g̃sk̄g̃ml̄φjk̄mφr̄sl̄ = |∇1,0g̃|2g̃. (3.41)

On the other hand,

∇mg̃ = ∇m(h · g) = ∇mh · g =
( ∂

∂zm
h+ h · θm − θm · h

)
· g,
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so

∇̃mh =
∂

∂zm
h+ h · θ̃m − θ̃m · h

=
∂

∂zm
h+ h · θm − θm · h+ h · (∇mh) · h−1 −∇mh

= h · (∇mh) · h−1.

Thus,

∇mg̃ = ∇mh · g = h−1 · (∇̃mh) · h · g = h−1 · (∇̃mh) · g̃.

Finally we end up with the formula

S = |∇1,0g̃|2g̃ = |h−1 · (∇̃1,0h)|2g̃ = |θ̃ − θ|2g̃ (3.42)

i.e. S can be thought as the g̃-norm of the difference between the two connection

1-forms.

Now, we can deduce the elliptic inequality:

4̃S = 4̃|h−1 · (∇̃1,0h)|2g̃ (3.43)

= g̃ij̄∂i∂j̄ < h−1 · (∇̃1,0h), h−1 · (∇̃1,0h) >g̃

= g̃ij̄∂i

(
< ∇̃j̄(h

−1 · (∇̃1,0h)), h−1 · (∇̃1,0h) >g̃

+ < (h−1 · (∇̃1,0h)), ∇̃jh−1 · (∇̃1,0h) >g̃

)
= g̃ij̄ < ∇̃i∇̃j̄(h

−1 · (∇̃1,0h)), h−1 · (∇̃1,0h) >g̃

+g̃ij̄ < h−1 · (∇̃1,0h), ∇̃ī∇̃j(h−1 · (∇̃1,0h)) >g̃

+|∇̃1,0(h−1 · (∇̃1,0h))|2g̃ + |∇̃0,1(h−1 · (∇̃1,0h))|2g̃.
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Using the relation R = R̃− ∂̄(h−1 · (∇̃1,0h)), we have

g̃ij̄∇̃i∇̃j̄(h
−1 · (∇̃1,0

t h))lm = g̃ij̄∇̃i

(
R̃l
mtj̄ −R

l
mtj̄

)
. (3.44)

Recall the Bianchi identities of curvature forms which can be found in [57](p.

135):

∑
(R(X, Y )Z) =

∑
T (T (X, Y ), Z) + (∇XT )(Y, Z); (3.45)∑

{∇XR(Y, Z) +R(T (X, Y ), Z)} = 0, (3.46)

where X, Y, Z ∈ TM and T is the torsion of the connection ∇ (recall that ∇ is not

necessarily the Levi-Civita connection), while
∑

denotes the cyclic sum with respect

to X, Y, Z.

By the first Bianchi identity (3.45), one obtains

R̃(∂i, ∂j̄)∂m + R̃(∂j̄, ∂m)∂i + R̃(∂m, ∂i)∂j̄

= T̃
(
T̃ (∂i, ∂j̄), ∂m

)
+ T̃

(
T̃ (∂j̄, ∂m), ∂i

)
+ T̃

(
T̃ (∂m, ∂i), ∂j̄

)
+(∇̃iT̃ )(∂j̄, ∂m) + (∇̃j̄T̃ )(∂m, ∂i) + (∇̃mT̃ )(∂i, ∂j̄).

Recall the fact that R̃2,0 = R̃0,2 = 0, T̃ 1,1 = 0 (since ∇̃ is the Chern connection) and

T̃ (∂m, ∂i) ∈ T 1,0(M). Also

T̃ (∂i, ∂j̄) = T̃ (∂j̄, ∂m) = (∇̃iT̃ )(∂j̄, ∂m) = (∇̃mT̃ )(∂i, ∂j̄) = 0,

R̃(∂m, ∂i)∂j̄ = 0.
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Thus,

R̃(∂i, ∂j̄)∂m + R̃(∂j̄, ∂m)∂i = (∇̃j̄T̃ )(∂m, ∂i).

By definition R̃(∂i, ∂j̄)∂m = R̃l
mij̄∂l and R̃l

mij̄ = −R̃l
mj̄i, so we get

R̃l
mij̄ = R̃l

imj̄ + T̃ lmi,j̄. (3.47)

Similarly, one can also obtain

R̃l̄
k̄ij̄ = R̃l̄

j̄ik̄ + T̃ l̄j̄k̄,i. (3.48)

Moreover, by the second Bianchi identity (3.46) and following the same step as

above we have

R̃l
mtj̄,i + R̃l

mj̄i,t + R̃l
mit,j̄ = −R̃(T̃ (∂i, ∂t), ∂j̄)− R̃(T̃ (∂t, ∂j̄), ∂i)− R̃(T̃ (∂j̄, ∂i), ∂t)

and R̃l
mit,j̄ = 0, T̃ (∂t, ∂j̄) = T̃ (∂j̄, ∂i) = 0. Thus,

R̃l
mij̄,t = R̃l

mtj̄,i + T̃ sitR̃
l
msj̄. (3.49)
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Now, using the identities (3.47), (3.48) and (3.49), we obtain

g̃ij̄∇̃iR̃
l
mtj̄ = g̃ij̄R̃l

mtj̄,i = g̃ij̄R̃l
mij̄,t − g̃

ij̄T̃ sitR̃
l
msj̄ (3.50)

= g̃ij̄R̃mk̄ij̄,tg̃
lk̄ − g̃ij̄T̃ sitR̃l

msj̄

= g̃ij̄(R̃ik̄mj̄,t + T̃ smi,j̄tg̃sk̄)g̃
lk̄ − g̃ij̄T̃ sitR̃l

msj̄

= −g̃ij̄R̃k̄imj̄,tg̃
lk̄ + g̃ij̄T̃ lmi,j̄t − g̃

ij̄T̃ sitR̃
l
msj̄

= −g̃ij̄R̃j̄imk̄,tg̃
lk̄ − g̃ij̄T̃ l̄j̄k̄,mtg̃il̄g̃

lk̄ + g̃ij̄T̃ lmi,j̄t − g̃
ij̄T̃ sitR̃

l
msj̄

= g̃ij̄R̃ij̄mk̄,tg̃
lk̄ − g̃ij̄T̃ l̄j̄k̄,mtg̃il̄g̃

lk̄ + g̃ij̄T̃ lmi,j̄t − g̃
ij̄T̃ sitR̃

l
msj̄

= R̃i
imk̄,tg̃

lk̄ − g̃ij̄T̃ l̄j̄k̄,mtg̃il̄g̃
lk̄ + g̃ij̄T̃ lmi,j̄t − g̃

ij̄T̃ sitR̃
l
msj̄

From the Monge-Ampère equation (3.31), it follows that

R̃i
imk̄,t = ∇̃tR

i
imk̄ − ∇̃tfmk̄. (3.51)

In the following, we denote ε = O(Sα) if there is a constant C depending only on

K, |dω|ω, |R|ω, |∇R|ω, |T |ω, |∇T |ω and |∇sf |ω , s = 0, 1, 2, 3, such that ε ≤ CSα.

Note that ∇̃ is O(S
1
2 ), so

R̃i
imk̄,tg̃

lk̄ = O(S
1
2 ) +O(1). (3.52)
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For the second term in (3.50)

T̃ s̄j̄k̄,mt =
(

(∂j̄gnk̄ − ∂k̄gnj̄)g̃ns̄
)
mt

(3.53)

= (Tj̄k̄ng̃
ns̄)mt = ∇̃t∇̃mTj̄k̄ng̃

ns̄

= ∇̃t(∇mTj̄k̄n − (θ̃m − θm)lnTj̄k̄l)g̃
ns̄

=
(
∇t(∇mTj̄k̄n)− (θ̃t − θt)lm∇lTj̄k̄n − ∇̃t((θ̃m − θm)ln)Tj̄k̄l

−(θ̃t − θt)ln∇mTj̄k̄l − (θ̃m − θm)ln(∇tTj̄k̄l − (θ̃t − θt)slTj̄k̄s)
)
g̃ns̄.

Again, by the fact that ∇̃ is O(S
1
2 ) and |h−1 · (∇̃1,0h)|g̃ is also O(S

1
2 ), we have

|g̃ij̄T̃ l̄j̄k̄,mtg̃il̄g̃
lk̄| ≤ O(S

1
2 ) +O(S) + C|∇̃1,0(h−1 · (∇̃1,0h))|+O(1). (3.54)

Similarly, we can get the estimate for the last two terms in (3.50)

|g̃ij̄T̃ lmi,j̄t| ≤ O(S
1
2 ) +O(S) + C|∇̃0,1(h−1 · (∇̃1,0h))|+O(1), (3.55)

|g̃ij̄T̃ sitR̃l
msj̄| ≤ C|∇̃0,1(h−1 · (∇̃1,0h))|+O(1). (3.56)

Put the above estimates (3.50)-(3.56) into (3.44), we can conclude that

|g̃ij̄∇̃i∇̃j̄(h
−1 · (∇̃1,0

t h))lm| (3.57)

≤ O(S
1
2 ) +O(S) + C|∇̃1,0(h−1 · (∇̃1,0h))|+ C|∇̃0,1(h−1 · (∇̃1,0h))|.

One the other hand,

g̃ij̄∇̃ī∇̃j(h
−1 · (∇̃1,0h)) = g̃ij̄∇̃j∇̃ī(h

−1 · (∇̃1,0h))− (g̃ij̄R̃l
mij̄)#(h−1 · (∇̃1,0h))
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where

(g̃ij̄R̃l
mij̄)#(h−1 · (∇̃1,0h))

= g̃ij̄{h−1 · (∇̃1,0
t h)smR̃

l
sij̄ − h

−1 · (∇̃1,0
s h)lmR̃

s
tij̄ − h

−1 · (∇̃1,0
t h)lsR̃

s
mij̄}

dzt ⊗ dzm ⊗ ∂
∂zl

and

g̃ij̄R̃l
mij̄ = g̃ij̄R̃l

imj̄ + g̃ij̄T̃ lmi,j̄ = g̃ij̄R̃ij̄mk̄g̃
lk̄ + g̃ij̄T̃ s̄j̄k̄,mg̃is̄g̃

lk̄ + g̃ij̄T̃ lmi,j̄.

Thus

|g̃ij̄R̃l
mij̄| ≤ O(S

1
2 ) +O(1).

Hence we conclude that

|g̃ij̄∇̃ī∇̃j(h
−1 · (∇̃1,0h))| (3.58)

≤ |g̃ij̄∇̃j∇̃ī(h
−1 · (∇̃1,0h))|+ |(g̃ij̄R̃l

mij̄)#(h−1 · (∇̃1,0h))|

≤ O(S
1
2 ) +O(S) + C|∇̃1,0(h−1 · (∇̃1,0h))|+ C|∇̃0,1(h−1 · (∇̃1,0h))|.

Finally, by (3.43) and (3.57), (3.58), we obtain the elliptic inequality:

4̃S ≥ −C1S
3
2 − C2 (3.59)

where C1, C2 are positive constants depending only onK, |dω|ω, |R|ω, |∇R|ω, |T |ω, |∇T |ω

and |∇sf |ω , s = 0, 1, 2, 3.
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Now, we are in the place to prove the local Calabi’s estimate. We will use

inequality (3.34) and delicate integration by parts to get a Lp estimate for u. Then,

applying the Moser’s iteration technique to complete the proof.

Proof of Theorem 3.3.2:

By the assumption (3.32) for the solution of equation (3.31), we know that

1

λ
g ≤ gφ ≤ λg for some constant λ > 0,

where λ depends only on K and ‖f‖C0 , and gφ denotes the Hermitian metric with

respect to the form ωφ = ω +
√
−1∂∂̄φ. Thus,

S = (gφ)jr̄(gφ)sk̄(gφ)ml̄φjk̄mφr̄sl̄ ≤ λ(gφ)jr̄(gφ)sk̄gml̄φjk̄mφr̄sl̄. (3.60)

On the other hand, we have

gjk̄φ g
ml̄φjk̄ml̄ =

(
gjk̄φ g

ml̄φjk̄m

)
l̄
− (gjk̄φ )l̄g

ml̄φjk̄m

= gml̄fml̄ + gjs̄φ φts̄l̄g
tk̄
φ g

ml̄φjk̄m,

where we used equation (3.31) in the last equality above. Thus

S ≤ λ
[
gjk̄φ g

ml̄φjk̄ml̄ −4f
]
. (3.61)

Notice that gjk̄φ g
ml̄φjk̄ml̄ = ∧gφ(gml̄∇l̄∇m(

√
−1∂∂̄φ)) is a globally defined quantity.

Therefore we can estimate for every sufficiently large exponents ρ, σ, and every non-

negative test function η(z) ∈ C1
0(Ω):∫

Ω

Sσηp+1ω
n

n!
≤ λ

∫
Ω

Sσ−1ηp+1[gjk̄φ g
ml̄φjk̄ml̄ −4f ]

ωn

n!
. (3.62)
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Now, using the following identity:

φjk̄ml̄ = φjk̄l̄m + φsk̄R
s
jml̄ − φjt̄R

t̄
k̄ml̄

= φjl̄mk̄ + φsl̄R
s
jmk̄ + φsk̄R

s
jml̄ − φjt̄R

t̄
l̄mk̄ − φjk̄R

t̄
k̄ml̄

= φml̄jk̄ + C1,

where C1 is a constant depending on K and |R|ω. Therefore, we have∫
Ω

Sσηp+1ω
n

n!
≤ λ(

∫
Ω

Sσ−1ηp+1gjk̄φ g
ml̄φml̄jk̄

ωn

n!
+ (3.63)∫

Ω

Sσ−1ηp+1(C1 −4f)
ωn

n!
)

≤ λ

∫
Ω

Sσ−1ηp+1gjk̄φ (4φ)jk̄
ωn

n!
+ C2

∫
Ω

Sσ−1ηp+1ω
n

n!
,

where C2 is a constant depending on C1 and 4f .

Now, using integration by parts, it is easy to see that∫
Ω

Sσ−1ηp+1gjk̄φ (4φ)jk̄
ωn

n!

=

∫
Ω

e−fSσ−1ηp+1gjk̄φ (4φ)jk̄
ωnφ
n!

=

∫
Ω

e−fSσ−1ηp+1
√
−1∂∂̄(4φ) ∧

ωn−1
φ

(n− 1)!

=

∫
Ω

√
−1d(e−fSσ−1ηp+1∂̄(4φ)) ∧

ωn−1
φ

(n− 1)!

−
∫

Ω

√
−1d(e−fSσ−1ηp+1) ∧ ∂̄(4φ) ∧

ωn−1
φ

(n− 1)!

=: I − II.
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Next, we will estimate I and II. First,

I =

∫
Ω

√
−1d(e−fSσ−1ηp+1∂̄(4φ)) ∧

ωn−1
φ

(n− 1)!
(3.64)

= −
∫

Ω

√
−1e−fSσ−1ηp+1∂̄(4φ) ∧ dωφ ∧

ωn−2
φ

(n− 2)!
.

By the equivalence of two forms ω and ωφ (i.e., the assumption (1.2) on φ), we know

∂̄(4φ) ∧ dωφ ∧
ωn−2
φ

(n− 2)!
= ∂̄(4φ) ∧ dω ∧

ωn−2
φ

(n− 2)!
(3.65)

≤ C3|∂̄(4φ)|gφ|dω|gφ
ωn

n!

≤ C4S
1
2
ωn

n!
,

where C4 is a constant depending on |dω|g, ‖f‖C0 and K (for the justification of the

last inequality we refer to the formula of S given in the appendix). This estimate

yields

I ≤ C5

∫
Ω

Sσ−
1
2ηp+1ω

n

n!
(3.66)

for some constant C5 dependent on ω, ‖f‖C0 and K.

Let us now estimate the second term:

II =

∫
Ω

√
−1d(e−f )Sσ−1ηp+1 ∧ ∂̄(4φ) ∧

ωn−1
φ

(n− 1)!
(3.67)

+(σ − 1)

∫
Ω

√
−1e−fSσ−2ηp+1dS ∧ ∂̄(4φ) ∧

ωn−1
φ

(n− 1)!

+(p+ 1)

∫
Ω

√
−1e−fSσ−1ηpdη ∧ ∂̄(4φ) ∧

ωn−1
φ

(n− 1)!

≤ C6

(∫
Ω

Sσ−
1
2ηp+1ω

n

n!
+ (σ − 1)

∫
Ω

Sσ−
3
2 |∇S|ηp+1ω

n

n!

+(p+ 1)

∫
Ω

Sσ−
1
2ηp|∇η|ω

n

n!

)
,
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where C6 is a constant depending on ‖f‖C1(ω) and K.

By the estimates (3.66), (3.67) and using Cauchy’s inequality

(σ − 1)ηp+1Sσ−
3
2 |∇S| ≤ (σ − 1)2

4ε
ηp+1Sσ−3|∇S|2 + εηp+1Sσ

we have, for ε > 0 small enough,∫
Ω

Sσηp+1ω
n

n!
≤ C7

(
(σ − 1)2

∫
Ω

Sσ−3|∇S|2ηp+1ω
n

n!
+

∫
Ω

Sσ−1ηp+1ω
n

n!
(3.68)

+(p+ 1)

∫
Ω

Sσ−
1
2ηp|∇η|ω

n

n!
+

∫
Ω

Sσ−
1
2ηp+1ω

n

n!

)
,

where C7 is a constant depending on |dω|ω, |R|ω, K, ‖f‖C1(ω) and 4f .

Now we are in the place to use the elliptic inequality (3.34) in the introduction.

Recall that

4φS ≥ −CS
3
2 − C0. (3.69)

Multiplying by Sσ−2ηp+1 on both sides of the above inequality and integrating over

Ω, we have

−C
∫

Ω

Sσ−
1
2ηp+1ω

n

n!
− C0

∫
Ω

Sσ−2ηp+1ω
n

n!
≤
∫

Ω

Sσ−2ηp+14φS
ωn

n!
. (3.70)
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The right hand side of above inequality can be estimated as follows∫
Ω

Sσ−2ηp+14φS
ωn

n!

=

∫
Ω

e−fSσ−2ηp+1
√
−1∂∂̄S ∧

ωn−1
φ

(n− 1)!

=

∫
Ω

√
−1d(e−fSσ−2ηp+1∂̄S) ∧

ωn−1
φ

(n− 1)!
−
∫

Ω

√
−1d(e−fSσ−2ηp+1) ∧ ∂̄S ∧

ωn−1
φ

(n− 1)!

= −
∫

Ω

√
−1e−fSσ−2ηp+1∂̄S ∧ dω ∧

ωn−2
φ

(n− 2)!
−
√
−1

∫
Ω

d(e−f )Sσ−2ηp+1 ∧ ∂̄S ∧
ωn−1
φ

(n− 1)!

−(σ − 2)

∫
Ω

√
−1e−fSσ−3ηp+1∂S ∧ ∂̄S ∧

ωn−1
φ

(n− 1)!

−(p+ 1)

∫
Ω

√
−1e−fSσ−2ηp∂η ∧ ∂̄S ∧

ωn−1
φ

(n− 1)!

≤ −C8(σ − 2)

∫
Ω

Sσ−3ηp+1|∇S|2ω
n

n!
+ C9

∫
Ω

Sσ−2ηp+1|∇S|ω
n

n!

+C9(p+ 1)

∫
Ω

Sσ−2ηp|∇η||∇S|ω
n

n!
.

From this, we obtain,

(σ − 2)

∫
Ω

Sσ−3ηp+1|∇S|2ω
n

n!
(3.71)

≤ C10

(
(p+ 1)

∫
Ω

Sσ−2ηp|∇η||∇S|ω
n

n!
+

∫
Ω

Sσ−2ηp+1|∇S|ω
n

n!

+

∫
Ω

Sσ−
1
2ηp+1ω

n

n!
+

∫
Ω

Sσ−2ηp+1ω
n

n!

)
.

Now, by Cauchy’s inequality again,

Sσ−2ηp+1|∇S| ≤ ε|∇S|2Sσ−3ηp+1 +
1

4ε
ηp+1Sσ−1

(p+ 1)Sσ−2ηp|∇η||∇S| ≤ ε|∇S|2Sσ−3ηp+1 +
(p+ 1)2

4ε
ηp−1Sσ−1|∇η|2.
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These two inequalities, together with (3.71) and (3.68) yield∫
Ω

Sσηp+1ω
n

n!
(3.72)

≤ C11σ
2(p+ 1)2

(∫
Ω

Sσ−
1
2ηp+1ω

n

n!
+

∫
Ω

Sσ−
1
2ηp+1ω

n

n!

+

∫
Ω

Sσ−
1
2ηp|∇η|ω

n

n!
+

∫
Ω

Sσ−2ηp+1ω
n

n!

∫
Ω

Sσ−1ηp−1|∇η|2ω
n

n!

)
for p ≥ 2, σ ≥ 4.

Now, let BR0(z) ⊂⊂ Ω be a ball, and let 0 < R ≤ r < t ≤ R0, R0 − R ≤ 1. By

choosing an appropriate testing function η(z), with 0 ≤ η ≤ 1, η|Br = 1, η|M/Bt =

0, |∇η| ≤ C
t−r , and putting p = σ − 1, we conclude that∫

Bt(z)

(Sη)σ
ωn

n!
≤ C12σ

4

∫
Bt(z)

{ 1

(t− r)2
(Sη)σ−2S

+
1

t− r
(Sη)σ−1S

1
2 + (Sη)σ−

1
2η

1
2 + (Sη)σ−1η + (Sη)σ−2η2

}ωn
n!

(3.73)

By Young’s inequality

ab ≤ ε
aα

α
+

1

εβ/α
bβ

β
, for ε > 0,

1

α
+

1

β
= 1.

86



It follows that,

1

t− r
(Sη)σ−1S

1
2 ≤ ε

σ
σ−1

(
(Sη)σ−1

) σ
σ−1

+
1

εσ−1σ

( 1

t− r
S

1
2

)σ
;α =

σ

σ − 1
, β = σ

1

(t− r)2
(Sη)σ−2S ≤ ε

σ
σ−2

(
(Sη)σ−2

) σ
σ−2

+
1

ε
σ−2

2
σ
2

( 1

(t− r)2
S
)σ

2
;α =

σ

σ − 2
, β =

σ

2

(Sη)σ−2 ≤ ε
σ
σ−4

(
(Sη)σ−4

) σ
σ−4

+
1

ε
σ−4

4
σ
4

(
(Sη)2

)σ
4
;α =

σ

σ − 4
, β =

σ

4

(Sη)σ−1 ≤ ε
σ
σ−2

(
(Sη)σ−2

) σ
σ−2

+
1

ε
σ−2

2
σ
2

(
Sη
)σ

2
;α =

σ

σ − 2
, β =

σ

2

(Sη)σ−
1
2 ≤ ε

σ
σ−1

(
(Sη)σ−1

) σ
σ−1

+
1

εσ−1σ

(
(Sη)

1
2

)σ
;α =

σ

σ − 1
, β = σ.

All the above inequalities combined with (3.73), lead to∫
Br(z)

Sσ
ωn

n!
≤ C13B(ε)σ

( 1

(t− r)σ
+

1

(t− r)σ2
+ 1
)∫

Bt(z)

S
σ
2
ωn

n!
(3.74)

≤ C13
B(ε)σtn

(t− r)σ
(∫

Bt(z)

Sσ
ωn

n!

) 1
2
,

where B(ε) is a constant depending on ε which comes from the coefficients in the

Young’s inequalities above.

Now we can apply the Meyers’ lemma:

Lemma 3.3.2 ([60]). If u = u(x) is a nonnegative, non-decreasing continuous func-

tion in the interval [0, d), which satisfies the functional inequality:

u(s) ≤ c

r − s

(
u(r)

)1−α
, forany 0 ≤ s < r < d,

with α and c being constants (0 < α < 1), then

u(0) ≤
( 2α+1c

(2α − 1)d

) 1
α
.
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Using (3.74) and applying the Meyers’ lemma with d = R0 − R, s = r −

R and φ(s) =
( ∫

BR+s(z)
Sσ ω

n

n!

) 1
σ
, one can obtain

φ(0) ≤ C
1
σB(ε)R

1
σ
0

(R0 −R)2
,

and thus (∫
BR(z)

Sσ
ωn

n!

) 1
σ ≤ (CR0)

1
σ

(R0 −R)2
B(ε). (3.75)

From this, we obtain the Lp estimate of S for arbitrary p. However, by tracking the

constant B(ε), one can find that B(ε) ∼ σ4. Thus, we cannot get the estimate for

supΩ S by letting σ −→ ∞. We should instead use the standard Moser iteration to

finish the L∞ estimate for S.

Recall that by inequality (3.71) we have

(σ − 2)

∫
Ω

Sσ−3ηp+1|∇S|2ω
n

n!

≤ C10

(
(p+ 1)

∫
Ω

Sσ−2ηp|∇η||∇S|ω
n

n!
+

∫
Ω

Sσ−2ηp+1|∇S|ω
n

n!

+

∫
Ω

Sσ−
1
2ηp+1ω

n

n!
+

∫
Ω

Sσ−2ηp+1ω
n

n!

)
.

Coupling this with Young inequalities

Sσ−2ηp+1|∇S| ≤ ε|∇S|2Sσ−3ηp+1 +
1

4ε
ηp+1Sσ−1,

(p+ 1)Sσ−2ηp|∇η||∇S| ≤ ε|∇S|2Sσ−3ηp+1 +
(p+ 1)2

4ε
ηp−1Sσ−1|∇S|2
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we have

(σ − 2)

∫
Ω

Sσ−3ηp+1|∇S|2ω
n

n!
(3.76)

≤ C14

∫
Ω

(p+ 1)2

σ − 2
ηp−1Sσ−1|∇η|2 +

1

σ − 2
Sσ−1ηp+1 + Sσ−

1
2ηp+1 + Sσ−2ηp+1ω

n

n!
.

Let now q = σ − 1 ≥ 2, and p = 1, then one obtains∫
Ω

Sq−2η2|∇S|2ω
n

n!
(3.77)

≤ C15

∫
Ω

1

(q − 1)2
Sq|∇η|2 +

1

(q − 1)2
Sqη2 +

1

q − 1
Sq+

1
2η2 +

1

q − 1
Sq−1η2ω

n

n!
.

By the Sobolev inequality

(∫
Ω

v
2m
m−1

ωn

n!

)m−1
2m ≤ C

(∫
Ω

|∇v|2ω
n

n!

) 1
2

+ C
(∫

Ω

v2ω
n

n!

) 1
2

applied to v = ηS
q
2 , we conclude that

(∫
Ω

(ηS
q
2 )

2m
m−1

ωn

n!

)m−1
2m

(3.78)

≤ C16

[( ∫
Ω

|∇(ηS
q
2 )|2ω

n

n!

) 1
2

+
(∫

Ω

(ηS
q
2 )2ω

n

n!

) 1
2
]

≤ C17

[( ∫
Ω

Sq|∇η|2 + (
q

2
)2Sq−2η2|∇S|2ω

n

n!

) 1
2

+
(∫

Ω

η2Sq
ωn

n!

) 1
2
]
.

Using inequality (3.77), we have

(∫
Ω

(η2Sq)
m
m−1

ωn

n!

)m−1
m

(3.79)

≤ C18

∫
Ω

(
|∇η|2Sq + η2Sq +

q2

(q − 1)2
Sq|∇η|2 +

q2

(q − 1)2
Sqη2

+
q2

q − 1
Sq+

1
2η2 +

q2

q − 1
Sq−1η2

)ωn
n!
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for any q > 4.

Again, let BR0(z) ⊂⊂ Ω be a ball, and let 0 < R ≤ r1 < r2 ≤ R0, R0−R ≤ 1. By

choosing an appropriate testing function η(z), with 0 ≤ η ≤ 1, η|Br1 = 1, η|M/Br2
=

0, |∇η| ≤ C
r2−r1 , we conclude that

(∫
Br1 (z)

Sq
m
m−1

ωn

n!

)m−1
m

(3.80)

≤ C19

∫
Br2 (z)

(
(1 +

q2

(q − 1)2
)(

1

(r2 − r1)2
+ 1)Sq +

q2

q − 1
Sq+

1
2 +

q2

q − 1
Sq−1

)ωn
n!

≤ qC20(
1

(r2 − r1)2
+ 1)

∫
Br2 (z)

(Sq + Sq−1 + Sq+
1
2 )
ωn

n!

≤ qC21(
1

(r2 − r1)2
+ 1)

∫
Br2 (z)

Sq+
1
2
ωn

n!
.

Thus,

||S||
L

qm
m−1 (Br1 (z))

≤
[
Cq(

1

(r2 − r1)2
+ 1)

] 1
q ||S||

q+ 1
2
q

Lq+
1
2 (Br2 (z))

(3.81)

for any 0 < R ≤ r1 < r2 ≤ R0.

Let qkm
m−1

= qk+1 + 1
2

and rk = R + (R0 −R)2−k. Then,

qk =
( m

m− 1

)k
+
m− 1

2
, and |rk − rk−1| = (R0 −R)2−k

By (3.81), we have

||S||
Lqk+1+ 1

2 (Brk+1
(z))

≤
[
Cqk(1 +

1

(rk+1 − rk)2

] 1
qk ||S||ak

Lqk+ 1
2 (Brk (z))

(3.82)

≤ q
1
qk
k

(
C(1 +

1

(R0 −R)2
)
) 1
qk 2

2k
qk ||S||ak

Lqk+ 1
2 (Brk (z))

.
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where ak :=
qk+ 1

2

qk
. By iteration, it follows from (3.82) that

||S||
Lqk+1+ 1

2 (Brk+1
(z))

(3.83)

≤
[ k∏
i=1

q
1
qi
i

(
C(1 +

1

(R0 −R)2
)
) 1
qi 2

2i
qi

]∏k
i=1 ai ||S||

∏k
i=1 ai

Lq1+ 1
2 (Br1 (z))

.

Notice that ak =
qk+ 1

2

qk
=

qk−1m

m−1

qk
= m

m−1

qk−1

qk
, so

k∏
i=1

ai =
( m

m− 1

)k q0

q1

· · · qk−1

qk
=
( m

m− 1

)k q0

qk

and thus

lim
k→∞

k∏
i=1

ai = q0 =
m+ 1

2
.

Moreover,

k∏
i=1

q
1
qi
i

(
C(1 +

1

(R0 −R)2
)
) 1
qi 2

2i
qi =

k∏
i=1

q
1
qi
i

(
C(1 +

1

(R0 −R)2
)
)∑k

i=1
1
qi 2

∑k
i=1

2i
qi .

When k → ∞, it is easy to show that
∑∞

i=1
1
qi
< ∞ and

∑∞
i=1

2i
qi
< ∞. Notice also

that log(
∏∞

i=1 q
1
qi
i ) <∞. Thus,

lim
k→∞

k∏
i=1

q
1
qi
i

(
C(1 +

1

(R0 −R)2
)
) 1
qi 2

2i
qi <∞.

It follows from (3.83), by letting k →∞,

||S||L∞ ≤ C||S||
m+1

2

Lq1+ 1
2 (BR0

(z))
. (3.84)

Choosing now σ = q1 + 1
2

= m
m−1

+ m
2

in (3.75), we finally obtain

||S||L∞ ≤ C, (3.85)
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where C is a positive constant depending onK, |dω|ω, |R|ω, |∇R|ω, |T |ω, |∇T |ω, dist(Ω′, ∂Ω)

and |∇sf |ω , s = 0, 1, 2, 3.
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CHAPTER 4
On the boundary of Kähler cone

Kähler cone is the convex cone formed by all the cohomology classes that can

be represented by smooth closed (1, 1) forms which are everywhere positive. It is

interesting to investigate the question that whether any boundary class of the Kähler

cone can always be representable by a smooth closed (1, 1) form that is everywhere

nonnegative. In section 4.1, we introduce the background and recall some works

done by Wu-Yau-Zheng [80] on this geometric problem where they related it to a

degenerate complex Monge-Ampère equation.

In section 4.2, we deduce some geometric results for the manifolds with the non-

negative quadratic orthogonal bisectional curvature condition (see Definition 4.1.1).

As a direct corollary, we recover the main result in [80] which asserts that any

boundary class of the Kähler cone of (M,ω) can be represented by a C∞ closed (1, 1)

form that is everywhere nonnegative and parallel if M satisfies the non-negative

quadratic orthogonal bisectional curvature condition. A result on the rigidity of

h1,1(M,R) under this curvature condition is given in section 4.3.

The results in this chapter can be found in [86].
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4.1 A degenerate complex Monge-Ampère equation

Let (M,ω) be a compact Kähler manifold. Denote by

H(M) = H1,1
R (M) = H1,1(M)

⋂
H2(M,R)

the vector space of real (1, 1) classes. Write K(M) for the Kähler cone in H(M),

namely, the convex cone formed by all the cohomology classes that can be represented

by smooth closed (1, 1) forms that are everywhere positives. We are interested in

the boundary set B = K\K of the Kähler cone. We will call a (non-trivial) coho-

mology class α in B a boundary Kähler class of M. We want to know when α can be

represented by a closed, smooth (1,1) form that is everywhere nonnegative.

In general, such a result does not hold without any extra conditions. This

follows from the well known fact that a numerically effective line bundle on a compact

complex manifold M may not admit any smooth Hermitian metric whose curvature

is everywhere nonnegative. The first such example were discovered by Demailly,

Peternell and Schneider in 1994 [34]. They showed that for a non-splitting extension

0→ O → E → O → 0

on an elliptic curve C, the line bundle L dual to the tautological line bundle of the

projective bundle M2 = P(E) does not admit any smooth Hermitian metric with

nonnegative curvature. In fact, they prove that any singular Hermitian metric on L

with nonnegative curvature must have logarithmic singularity, so the metric cannot

even by continuous. Clearly, L is a numerically effective line bundle on the ruled

surface M , since E is numerically effective on C.
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Given this failure, one need to seek extra condition to guarantee that any nu-

merically effective line bundles, or more generally any boundary classes of the Kähler

cone, will always be representable by a smooth closed (1, 1) form that is everywhere

nonnegative. In [80], the authors found a sufficient curvature condition for this as-

sertion to hold.

Definition 4.1.1. A Kähler manifold (M,ω) of complex dimension n ≥ 2 is said

to have nonnegative quadratic orthogonal bisectional curvature (NQOBC) condition

at p ∈ M if: for any unitary frame {e1, · · · , en} of T 1,0
p (M) and any real numbers

a1, · · · , an we have

n∑
i,j=1

Rīijj̄(ai − aj)2 ≥ 0. (4.1)

And we say that a manifold (M,ω) satisfies NQOBC if it does for any point

p ∈M .

In fact, the curvature condition NQOBC comes out naturally from the Bernstein

type technique and it was studied in some previous works [10, 54]. It is weaker than

requiring M to have nonnegative orthogonal bisectional curvature:

R(V, V̄ ,W, W̄ ) ≥ 0

for any orthogonal unitary pair V,W ∈ T 1,0(M), while the two conditions are equiv-

alent on complex surfaces, i.e. dimM = 2.

Also note that if a product of Kähler manifolds M1 × M2 has NQOBC then

so must each factor M1 and M2. However, the reverse implication may be false in

general: M1 and M2 may both have NQOBC which M1 ×M2 may not.
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Under the NQOBC condition, Wu-Yau-Zheng proved the following result:

Theorem ([80]). Let (M,ω) be a compact Kähler manifold satisfying the NQOBC

condition, then any boundary class of the Kähler cone of Mn can be represented by

a C∞ closed (1, 1) form that is everywhere nonnegative.

The key point of the proof in [80] is that they deduced the original geometric

problem to a special form of degenerate complex Monge-Ampère equation as follow-

ing.

Let ω be the Kähler form. Consider a path in H(M) from [ω] to the boundary

class α ∈ B:

αt := (1− t)[ω] + tα, for t ∈ [0, 1].

Note that for 0 ≤ t < 1, αt lies in the Kähler cone. Then

a(t) :=
1

V

∫
M

αnt

is positive for 0 ≤ t < 1, and a(1) ≥ 0. Here we denote by V =
∫
M
ωn. Let us fix

a smooth (1, 1) form η in the class α (certainly if η happens to be nonnegative then

we are done.). Since a(t)ωn defines a smooth volume form on M , by the result of

Yau on the solvability of complex Monge-Ampère equations, there exists a smooth

function ut on M , unique up to a constant, satisfying the following equations (ω + t(η − ω) + ddcut)
n = a(t)ωn

ω + t(η − ω) + ddcut > 0,
(4.2)

for all 0 ≤ t < 1. If there is a smooth limit of ut, say u1, as t → 1, then η + ddcu1

will be a desired nonnegative (1, 1) form representing the boundary class α.
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In fact, this feature is equivalent to the following partial differential equation

problem. Let Φ be a d−closed (1, 1) form on M , such that the cohomology class

represented by ω + tΦ is positive for each 0 ≤ t < 1. In other words, for each

0 ≤ t < 1, there is a smooth function ft on M such that

ω + tΦ + ddcft > 0, on M.

We assume that ∫
M

(ω + Φ)n = 0. (4.3)

The goal is to find a smooth solution v to the following equations (ω + Φ + ddcv)n = 0

ω + Φ + ddcv ≥ 0.
(4.4)

Here, we remark that the condition (4.3) is exactly the compatibility condition for

equation (4.4).

In [80], the authors proved:

Theorem ([80]). Let ω and Φ be given as above. Suppose that the compact Kähler

manifold (M,ω) satisfies the NQOBC condition. Then there exists a smooth solution

v for the problem (4.4) and (4.3).
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The approach for the above theorem is by the perturbation method. Instead

solving the degenerate equation like (4.4), one consider
(ω + tΦ + ddcvt)

n = γ(t)ωn

ω + tΦ + ddcvt > 0∫
M
vtω

n = 0

(4.5)

where

γ(t) =
1

V

∫
M

(ω + tΦ)n, for all t ∈ R.

It is easy to see that γ(t) is a smooth function which is positive on [0, 1) and (4.3) is

equivalent to γ(1) = 0. To solve (4.4), it suffice to show that there is a smooth limit

for a subsequence of {vt} as t→ 1.

In general, one can not hope to solve the degenerate Monge-Ampère equations

like

det(uij̄) = f(z) with f ≥ 0

smoothly. The counter-example can be found in [7]. In general, one can only hope

for C1,1 regularity in the degenerate case (e.g., [45]). Thus, some special properties

should be involved here to insure the existence of the smooth solution to equation

(4.5).

The key observation in [80] is that, under the condition NQOBC, they can prove

∆̃ log(trωtω) ≥ 0 (4.6)

where ∆̃ is the Laplacian operator with respect to the Kähler metric ωt = ω + tΦ +

ddcvt. This inequality follows from the Chern-Lu formula [20, 59]. Applying the
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maximum principle on inequality (4.6), we conclude that log(trωtω) depends only on

t.

On the other hand, linearizing equation (4.5) with respect to t, we have

∆̃(vt − tv̇t) = C(t)− log(trωtω), (4.7)

where C(t) is a constant depending only on t.

Thus, the function vt − tv̇t depends only on t by the maximum principle, since

the right hand side C(t)− log(trωtω) does. By the normalization condition,∫
M

v̇tω
n = 0.

Thus, we obtain

vt − tv̇t = 0 on M.

Solving this ordinary differential equation, we conclude that

vt = th

for some smooth function h on M with ω + tΦ + ddch > 0 for all 0 ≤ t < 1. Finally,

let t→ 1, it gives a nonnegative, smooth (1, 1) form

ω1 = ω + Φ + ddch

which satisfies ωn1 = 0.
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4.2 On the Boundary class of Kähler cone

In the previous section, we reviewed Wu-Yau-Zheng [80]’s main result and their

proof by solving the degenerate complex Monge-Ampère equation in which the cur-

vature condition NQOBC plays the crucial role. In fact, this condition has been

studied in many old works [10, 54]. In particular, a nice result related with this

curvature condition was given in [54] that,

Lemma 4.2.1 ([54]). If a compact Kähler manifold M satisfies NQOBC condition,

then all harmonic forms of type (1, 1) are parallel.

Observation this lemma, we prove a geometric result about the cohomology

classes in the Kähler cone.

Theorem 4.2.1. Let (Mn, g) be a compact Kähler manifold satisfying the curvature

condition (∗). Then, for any closed (1, 1) form Φ on (Mn, g), we can find Φ̃ ∈ [Φ],

such that Φ̃ is parallel. In particular, for any closed (1, 1) form α, we have

[α] = [β + λsω0]

where β is a nonnegative closed (1, 1) form on the boundary of Kähler cone, λs is a

constant depending on β and ω0 is the Kähler form on (Mn, g).

Proof of Theorem 4.2.1.

Consider the equation

σ1(ω + Φ + ∂∂̄v) = C (4.8)
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where C is some constant to be determined. The above equation is equivalent to

4v = C − (n+ TrgΦ)

By standard theory of partial differential equation, we know 4u = f is solvable if

and only if
∫
M
f = 0. So, if we choose

C = n+
1

V ol(M)

∫
M

ωn−1 ∧ Φ,

there is a smooth solution to equation (4.8).

Let Φ̃ = Φ + ∂∂̄v, then the equation is

σ1(ω + Φ̃) = C (4.9)

Recall a well-known fact that a closed (1, 1) form Φ on a compact Kähler manifold

is harmonic if and only if its trace is constant (see [8] (2.33)). It follows that ω + Φ̃

is harmonic. And thus, Φ̃ is parallel by Lemma 4.2.1.

Let λs be the smallest eigenvalue of the (1, 1) form Φ̃ (under the fixed orthonor-

mal frame) and define φ = Φ̃ − λsω0. Then, it’s easy to see that φ is nonnegative

everywhere on Mn and on the boundary of Kähler cone.

Thus, for any closed (1, 1) form α, we can find a nonnegative closed (1, 1) form

β on the boundary of Kähler cone such that

[α] = [β + λsω0]

where ω0 is the Kähler form.
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As an application of above theorem, we give a new proof for the main theorem

in [80].

Corollary 4.2.1. Let (M,ω) be a compact manifold satisfying the curvature condi-

tion NQOBC. Then any boundary class of the Kähler cone of Mn can be represented

by a C∞ closed (1,1) form that is parallel and everywhere nonnegative.

Proof of Corollary 4.2.1.

Suppose α is a closed (1,1) form on the boundary of Kähler cone. By the

definition of boundary Kähler class, we know there exists a sequence of smooth

closed (1,1) forms ωm which are everywhere positive such that

ωm −→ α.

Now, consider the integration to be a continuous functional on the form space H(M),

and by the convergence, we get∫
M

ωkm ∧ ωn−k0 −→
∫
M

αk ∧ ωn−k0 , k = 0, 1, · · · , n. (4.10)

Consequently, we have∫
M

αk ∧ ωn−k0 ≥ 0 for ∀k = 0, 1, · · · , n.

By the result of Theorem 4.2.1, there is a parallel closed (1, 1) form α̃ ∈ [α].

Thus, the eigenvalues of α̃ are all constant on Mn and

0 ≤
∫
M

αk ∧ ωn−k0 =

∫
M

α̃k ∧ ωn−k0 = σk(α̃)

∫
M

ωn0 . (4.11)
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In turn, we obtain the fact that

σk(α̃) ≥ 0, for ∀k = 0, 1, · · · , n.

This means α̃ is in the Γn convex cone. So, α̃ ∈ [α] is nonnegative everywhere.

Remark 4.2.1. Notice that, in our result, the nonnegative (1, 1) form can also be

parallel on (M,ω).

4.3 Rigidity result on Hodge number

The Hodge number is an important topological invariant in the study of algebraic

geometry. We consider a real vector space W , a Hodge structure of integer k on W

is a direction sum decomposition of WC = W ⊗ C, the complexification of W , into

graded pieces W p,q where k = p+ q.

For a compact Kähler manifold (M,ω), let W be the tangent space of M . We

defined the dimension of the complex subspaces W p,q to be the Hodge number and

denote it by hp,q(M). And also define

bk = dimHk(M) =
∑
p+q=k

hp,q(M)

to be the k−th Betti number of M .

In [10], Bishop and Goldberg showed that any compact Kähler manifold M with

positive bisectional curvature must have its second Betti number equal to 1. Later,

Goldberg and Kobayashi [42] introduced the conception of holomorphic bisectional
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curvature and proved that the second Betti number of a compact connected Kähler

manifold M with positive holomorphic bisectional curvature is 1.

It would be interesting to know what kind restriction the second Betti number

must obey under the NQOBC condition (see Definition 4.1.1). Unfortunately, we

cannot expect the second Betti number to always be 1, even when n = 2 case.

This can be see from a very quick example: the product of CP1 (equipped with a

sufficiently positively curved metric) with another curve always satisfies the NQOBC

curvature condition. Thus, to get some rigidity, we introduce a so-called Quasi-

NQOBC condition.

Definition 4.3.1. We say a compact manifold (M,ω) satisfying the Quasi-NQOBC

curvature condition if it satisfies: for any orthogonal tangent frame e1, · · · , en at any

x ∈M , and for any real numbers a1, · · · , an,

n∑
i,j=1

Rīijj̄(ai − aj)2 ≥ 0

is nonnegative everywhere and strictly positive at least at one point unless the real

numbers a1 = · · · = an.

Under this Quasi-NQOBC condition, we can get some restriction on the Hodge

number h1,1(M). Indeed, we can prove

Theorem 4.3.1 ([86] Theorem 2). Let (M,ω) be a compact Kähler manifold satis-

fying the Quasi-NQOBC curvature condition. Then, h1,1(M,R) = 1.

The key observation for Theorem 4.3.1 is that we notice that the constant rank

theorem in [9] still holds under the curvature condition Quasi-NQOBC for some

special equations.
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Proof of Theorem 4.3.1.

Let ξ be a closed (1,1) form on a compact Kähler manifold Mn. For any fixed

point on Mn, we can choose a local coordinate {z1, · · · , zn} such that

gαβ̄ = δαβ,
∂gαβ̄
∂zi

=
∂gαβ̄
∂zī

= 0

and ξ = ξij̄dz
i ∧ dz j̄. Let φ = σ2(gil̄ξlj̄) and W = (wij̄) = (gil̄ξlj̄), we have

φα = σ1(W |i)(gil̄ξl̄i)α (4.12)

φαβ̄ = σ1(W |i)(gil̄ξl̄i)αβ̄ + (gil̄ξl̄i)α(gik̄ξkī)β̄ − (gil̄ξl̄i)α(gik̄ξkī)β̄

By the proof of Theorem 4.2.1, we know that there is a closed (1, 1) form (which we

still denote by ξ) in [ξ] such that

F (ξ) = σ1(gil̄ξlj̄) = C (4.13)

where C is some constant.

By (4.13), we have

Fαβ̄ =
∂σ1(ξ)

∂ξαβ
= gαβ̄ = δαβ (4.14)

σ1(gαη̄ξηβ̄) = C =⇒
n∑
i

ξīi,α = 0

σ1(gαη̄ξηβ̄) = C =⇒ gαη̄
,īi
ξηβ̄ + gαη̄ξηβ̄,īi = 0 (4.15)

=⇒ ξαᾱ,īi = −gαη̄
,īi
ξηᾱ = −gαᾱ,īi ξαᾱ
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Thus, by directly computation, we have

Fαβ̄φαβ̄ = σ1(W |i)(gil̄ξl̄i)αᾱ + (gil̄ξl̄i)α(gik̄ξkī)ᾱ − (gil̄ξl̄i)α(gik̄ξkī)ᾱ (4.16)

= σ1(W |i)(gīiαᾱξīi + ξīi,αᾱ) + ξīi,αξjj̄,ᾱ − ξij̄,aξij̄,ᾱ

= σ1(W |i)(gīiαᾱξīi + ξαᾱ,īi) + ξīi,αξjj̄,ᾱ − ξij̄,aξij̄,ᾱ (4.17)

= σ1(W |i)(gīiαᾱξīi − gαᾱ,īi ξαᾱ)−
∑
i,j

|∇ξij̄|2 + (
n∑
i=1

ξīi,α)2

= σ1(W |i)(−Rīiαᾱξīi +Rīiαᾱξαᾱ)−
∑
i,j

|∇ξij̄|2

= −1

2

∑
iα

Rīiαᾱ(σ1(W |i)− σ1(W |α))(ξīi − ξαᾱ)−
∑
i,j

|∇ξij̄|2

= −1

2

∑
iα

Rīiαᾱ(ξīi − ξαᾱ)2 −
∑
i,j

|∇ξij̄|2

In equality (4.17) above, we have used the fact that ξ is a closed (1, 1) form which

gives us

ξαᾱ,i = ξiᾱ,α, ξαᾱ,̄i = ξαī,ᾱ =⇒ ξīi,αᾱ = ξαī,iᾱ = ξαī,ᾱi = ξαᾱ,īi (4.18)

From equality (4.16), we can see if the compact Kähler manifold Mn satisfies the

curvature condition Quasi-NQOBC, then

Fαβ̄φαβ̄ = −1

2

∑
i,α

Rīiαᾱ(ξīi − ξαᾱ)2 −
∑
i,j

|∇ξij̄|2 ≤ 0 (4.19)

By strong maximal principle, we have φ=constant. Thus, σ1(gil̄ξlj̄)=constant and

σ2(gil̄ξlj̄)= constant, from which we can get ξīi are constants on Mn. Furthermore,

if the manifold satisfies the Quasi-NQOBC condition, by (4.19), we can see that
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ξīi = ξαᾱ for i, α = 1, · · · , n. Thus, ξ = λω0, where λ is a constant. In turn, we

conclude that

h1,1(M) = 1.

Remark 4.3.1. For the results in [10], [42], [54], the restriction of the bisectional

curvature makes the Ricci tensor of M to be positive. So there is no nontrivial

holomorphic 2-forms on M (cf. Bochner [15]), i.e. H2,0(M) = H0,2(M) = 0. Thus,

b2(M) = dimH2(M) = dimh1,1(M).
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CHAPTER 5
Generalized Kähler-Einstein metrics and Energy

functionals

The existence of canonical metrics in any given Kähler classes was conjectured by

Calabi in 1950. By Aubin [2] and Yau [81], we know that [ω] admits a Kähler-Einstein

metric when the first Chern class c1(M) < 0 or c1(M) = 0 and [ω] = −kc1(M). For

the case c1(M) > 0, the existence question is still open. In a remarkable work [71],

Tian introduced the K stability and showed that the existence of Kähler-Einstein

metrics is equivalent to the properness of corresponding energy function. In this

chapter, we consider the generalized Kähler-Einstein metrics which is the case that

[ω] is not proportional to c1(M).

In Section 5.2, we give some preliminary results about energy functionals and

prove the existence result for generalized Kähler-Einstein metric, i.e. the properness

of twisted K energy implies the existence of generalized Kähler-Einstein. In section

5.3, we obtain a Moser-Trudinger type inequality on the generalized Kähler-Einstein

manifolds. As an application of this inequality, we get a strictly slope stability result

in section 5.4.

The results in this chapter can be found in [84], a joint work with a visiting

professor Xi Zhang. The problem was suggested by him and came out from our

discussion.
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5.1 Introduction

An important problem in Kähler geometry is that of finding a canonical kähler

metric in a given Kähler class. By Aubin and Yau’s work ([2], [81]), we know that [ω]

admits a Kähler-Einstein metric when c1(M) = 0, or c1(M) < 0 and [ω] = −kc1(M).

For the remained case, i.e. c1(M) > 0, the existence question is still open. Important

progress was made by Tian [69, 70, 71], Tian and Yau [75], Siu [65], Ding [36] and

others. In [71], Tian introduce the notion of K stability and show that the existence

of Kähler-Einstein metrics is equivalent to the properness of corresponding energy

functional. For the case that the given Kähler class is not proportion to the first

Chern class, we can consider constant scalar curvature Kähler metrics or more general

extremal Kähler metrics which was first raised by Calabi [26]. It is well known that

the existence of canonical Kähler metrics is related to stability in the sense of Hilbert

schemes and geometric invariant theory by a conjecture of Yau [82], Tian [37] and

Donaldson [38].

Let (M,J) be a m-dimensional complex manifold, [ω0] ∈ H1,1(M,C)∩H2(M,R)

be a Kähler class on (M,J), and

[α] = 2πc1(M)− k[ω0],

where k is a constant. Fixing a closed (1, 1)-form θ ∈ [α], we consider the following

genenralized Kähler-Einstein equation

ρ(ω)− θ = kω, (5.1)

where ρ(ω) is the Ricci form of the Kähler metric ω ∈ [ω0].
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If θ ≡ 0, the above equation (5.1) is just the Kähler-Einstein equation. A Kähler

metrics ω satisfying (5.1) will be called by a generalized Kähler-Einstein metric. Let’s

denote Hω0 to be the set of all smooth strictly ω0-plurisubharmonic functions, i.e.

Hω0 = {ϕ ∈ C∞(M) : ω0 +
√
−1∂∂̄ϕ ≥ 0}, (5.2)

and Kω0 to be the set of all Kähler forms on M cohomologous to ω0. It is easy to

see that solving the above generalized Kähler-Einstein equation (5.1) is equivalent

to solving the following complex Monge-Ampère equation,

(ω0 +
√
−1∂∂̄ϕ)m

ωm0
= exp(hω0 − kϕ), (5.3)

where ϕ ∈ Hω0 and hω0 is a smooth function which satisfies

ρ(ω0)− θ = kω0 +
√
−1∂∂̄hω0

and ∫
M

exp(hω0)(ω0)m =

∫
M

(ω0)m = V.

If k ≤ 0 , by Aubin and Yau’s work ([2], [81]), the above complex Monge-Ampère

equation (5.3) can be solved. In this chapter, we consider the case k > 0, there should

be obstructions to admit generalized Kähler-Einstein metrics. Through the work of

Bando and Mabuchi[5], Ding and Tian[37], Tian[71], Donaldson [38] and others, it

is well known that the Mabuchi K-energy is very useful in Kähler geometry. Let’s

recall the following twisted K-energy which was first introduced by Song and Tian

in [66].
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Definition 5.1.1. For every (ϕ0, ϕ1) ∈ Hω0 ×Hω0, we define

Mθ(ϕ0, ϕ1) = − 1

V

∫ 1

0

∫
M

ϕ̇t(S(ωt)− Λωϕt
θ − S̄θ)ωmϕtdt, (5.4)

where {ϕt|0 ≤ t ≤ 1} is an arbitrary piecewise smooth path in Hω0 such that ϕt|t=0 =

ϕ0 and ϕt|t=1 = ϕ1, S(ωϕt) is the scalar curvature of ωϕt , Λωϕt
is the contraction

with ωϕt and S̄θ = 1
V

∫
M
m(2πc1(M)− [θ]) ∪ [ω0]m−1. For every ϕ ∈ Hω0, we define

Vθ,ω0(ϕ) =Mθ(0, ϕ). (5.5)

Song and Tian ([66], proposition 6.1) have shown that the integral in (5.4) is

independent of the choice of the path ϕt. Thus,Mθ is well defined. By the definition,

it is easy to check that Mθ satisfies the 1-cocycle condition, i.e.

Mθ(ϕ0, ϕ1) +Mθ(ϕ1, ϕ0) = 0, (5.6)

Mθ(ϕ0, ϕ1) +Mθ(ϕ1, ϕ2) +Mθ(ϕ2, ϕ0) = 0, (5.7)

and

Mθ(ϕ0 + C0, ϕ1 + C1) =Mθ(ϕ1, ϕ0), (5.8)

for all ϕ0, ϕ1, ϕ2 ∈ Hω0 and all C0, C1 ∈ R. By the above properties, we know that

Mθ (or Vθ,ω0) can also be defined on the space Kω0 ×Kω0 (Kω0).

We say the K-energy functional Vθ,ω0 is proper if

lim sup
i→+∞

Vθ,ω0(ϕi) = +∞ whenever lim
i→+∞

Jω0(ϕi) = +∞,
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where ϕi ∈ Hω0 and Jω0 is the Aubin’s functional (see (1.26)).

By using Tian’s method in [71], we can prove that the existence of generalized

Kähler-Einstein metric is closely related to the properness of the twisted K-energy

functional. Moreover, we also follow the discussion in Phong-Song-Sturm-Weinkove’s

([63]) to deduce a Moser-Trudinger type inequality. In fact, we obtain the following

theorem.

Theorem 5.1.1 ([84]). Let (M,ω0) be a compact Kähler manifold, and θ ∈ [α] =

2πc1(M) − k[ωo] is a real closed semipositive (1, 1)-form, where k > 0. If Vθ,ω0 is

proper then there must exists a generalized Kähler-Einstein metric ωGKE ∈ Kω0.

Furthermore, assuming that the twisting form θ is strictly positive at a point

or M admits no nontrivial Hamiltonian holomorphic vector field, if there exists a

generalized Kähler-Einstein metric in ωGKE ∈ Kω0, then Vθ,ω0 must be proper.

In fact, there exist uniform positive constants C2, C3 depending only on k and

the geometry of (M,ω0), such that

Vθ,ω0(ϕ) ≥ C2Jω0(ϕ)− C3, (5.9)

for all ϕ ∈ Hω0.

5.2 Generalized Kähler-Einstein metric

In this section, we prove some properties for the twisted K−energy functional

defined in [66] and show the relation between the properness of this functional and

the existence of generalized Kähler-Einstein metric.
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5.2.1 Twisted K-energy functional

Let (M,ω0) be a Kähler manifold, and [α] ∈ H1,1(M,C) ∩ H2(M,R). Fixed a

real closed (1, 1) form θ ∈ [α], the twisted K-energy functional can be expressed by

Mθ(ϕ0, ϕ1) = − 1

V

∫
M

m−1∑
j=0

(ϕ1 − ϕ0)(ρ(ωϕ0)− θ) ∧ ωjϕ0
∧ ωm−j−1

ϕ1
(5.10)

+
S̄θ

(m+ 1)V

m∑
j=0

∫
M

(ϕ1 − ϕ0)ωjϕ0
∧ ωm−jϕ1

+
1

V

∫
M

log
ωmϕ1

ωmϕ0

ωmϕ1
,

and

Vθ,ω0(ϕ) = − 1

V

∫
M

m−1∑
j=0

ϕ(ρ(ω0)− θ) ∧ ωj0 ∧ ωm−j−1
ϕ (5.11)

+
1

V

∫
M

log
ωmϕ
ωm0

ωmϕ +
S̄θ

(m+ 1)V

m∑
j=0

∫
M

ϕωj0 ∧ ωm−jϕ ,

for all ϕ, ϕ0, ϕ1 ∈ Hω0 . Let’s recall the Aubin’s functionals

Iω0(ϕ) =
1

V

∫
M

ϕ{(ω0)m − (ωϕ)m} (5.12)

Jω0(ϕ) =

∫ 1

0

1

s
Iω0(sϕ)ds.

Let ϕs be a smooth curve in Hω0 , by direct calculation, we have

d

ds
Iω0(ϕs) =

1

V

∫
M

ϕ̇s{(ω0)m − (ωϕs)
m} − 1

2V

∫
M

ϕs4ϕsϕ̇s(ωϕs)
m, (5.13)

d

ds
Jω0(ϕs) =

1

V

∫
M

ϕ̇s{(ω0)m − (ωϕs)
m}, (5.14)
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and then

d

ds
{Iω0(ϕs)− Jω0(ϕs)} = − 1

2V

∫
M

ϕs(4sϕ̇s)(ωϕs)
m. (5.15)

Moreover, we also have the following properties for I and J , the proof can be found

in [5]. Let C be a constant, then

Iω0(ϕ+ C) = Iω0(ϕ), Jω0(ϕ+ C) = Jω0(ϕ), (5.16)

and

0 ≤ Iω0(ϕ) ≤ (m+ 1){Iω0(ϕ)− Jω0(ϕ)} ≤ mIω0(ϕ), (5.17)

for all ϕ ∈ Hω0 . Let ω′ be an another Kähler form in [ω0], and assume that ω′ =

ω0 +
√
−1∂∂̄φ for some function φ. It is easy to check that

|Iω′(ϕ− φ)− Iω0(ϕ)| ≤ (m+ 1)Osc(φ) (5.18)

for all ϕ ∈ Hω0 . If θ1 − θ2 =
√
−1∂∂̄f , then we have

Vθ1,ω0(ϕ)− Vθ2,ω0(ϕ) =
1

V

∫
M

m−1∑
j=0

ϕ(θ1 − θ2) ∧ ωj0 ∧ ωm−j−1
ϕ (5.19)

=
1

V

∫
M

m−1∑
j=0

ϕ
√
−1∂∂̄f ∧ ωj0 ∧ ωm−j−1

ϕ

=
1

V

∫
M

m−1∑
j=0

f(ωϕ − ω0) ∧ ωj0 ∧ ωm−j−1
ϕ

=
1

V

∫
M

f(ωmϕ − ωm0 ).
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Lemma 5.2.1. Let θ1 − θ2 =
√
−1∂∂̄f , then

|Vθ1,ω0(ϕ)− Vθ2,ω0(ϕ)| ≤ Osc(f) (5.20)

for all ϕ ∈ Hω0.

Now, we suppose that θ ∈ [α] = 2πc1(M)−k[ωo]. Let hω0 is the smooth function

which satisfies

ρ(ω0)− θ = kω0 +
√
−1∂∂̄hω0 and

∫
M

exp(hω0)(ω0)m =

∫
M

(ω0)m = V.

Let’s recall the Ding-Tian’s functional

F 0
ω0

(ϕ) = Jω0(ϕ)− 1

V

∫
M

ϕ(ω0)m, (5.21)

Fω0(ϕ) = F 0
ω0

(ϕ)− k−1 log{ 1

V

∫
M

ehω0−kϕ(ω0)m}.

Denote ϕs to be a smooth path in Hω0 , then

d

ds
F 0
ω0

(ϕs) = − 1

V

∫
M

ϕ̇s(ωϕs)
m, (5.22)

and

d

ds
Fω0(ϕs) = − 1

V

∫
M

ϕ̇s(ωϕs)
m (5.23)

+(

∫
M

ehω0−kϕ(ω0)m)−1

∫
M

ϕ̇se
hω0−kϕ(ω0)m.

From (5.23), it is easy to check that the critical points of Fω0 are generalized Kähler-

Einstein metrics. As that in [69], one can easily check that Fω0 satisfies the following
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cocycle property, i.e.

Fω0(ψ) + Fω′(φ− ψ) = Fω0(φ), (5.24)

and

Fω0(ψ) = −Fω′(−ψ) (5.25)

for all φ, ψ ∈ Hω0 and ω′ = ω0 +
√
−1∂∂̄ψ. Moreover, F 0

ω0
also has the same cocycle

condition.

By the definitions and direct calculation, we have

V (Iω0 − Jω0)(ϕ) = − m

m+ 1

∫
M

ϕωmϕ +
1

m+ 1

∫
M

m∑
j=1

ϕωj0 ∧ ωm−jϕ . (5.26)

and ∫
M

hω0(ωm0 − ωmϕ ) = −
∫
M

hω0(
√
−1∂∂̄ϕ) ∧

m−1∑
j=0

ωj0 ∧ ωm−j−1
ϕ (5.27)

= −
∫
M

ϕ(
√
−1∂∂̄hω0) ∧

m−1∑
j=0

ωj0 ∧ ωm−j−1
ϕ

= −
∫
M

ϕ(ρ(ω0)− θ + kω0) ∧
m−1∑
j=0

ωj0 ∧ ωm−j−1
ϕ

Noting that S̄θ = km, by (5.11), it’s easy to check that

Vθ,ω0(ϕ) = −k(Iω0 − Jω0)(ϕ) (5.28)

+
1

V

∫
M

hω0(ωm0 − ωmϕ ) +
1

V

∫
M

log(
ωmϕ
ω0

)ωmϕ .
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We also have the following relation between the Ding-Tian’s functional and the

twisted Mabuchi K-energy functional.

Lemma 5.2.2. Let (M,ω0) be a Kähler manifold, and θ ∈ [α] = 2πc1(M) − k[ωo],

then

Vθ,ω0(ϕ)− kFω0(ϕ) =
1

V

∫
M

hω0(ω0)m − 1

V

∫
M

hωϕ(ωϕ)m (5.29)

for any ϕ ∈ Hω0, where hω is the smooth function which satisfies

ρ(ω)− θ = kω +
√
−1∂∂̄hω

and the normalized condition
∫
M

exp(hω)(ω)m = V . Further more, we have

Vθ,ω0(ϕ) ≥ kFω0(ϕ) +
1

V

∫
M

hω0(ω0)m. (5.30)

Proof of Lemma 5.2.2:

By the definition of hω, it is easy to check that

− log
(ωϕ)m

(ω0)m
− kϕ+ cϕ = hωϕ − hω0 (5.31)

for all ϕ ∈ Hω0 , where the constant cϕ = − log( 1
V

∫
M
ehω0−kϕω0). Then, by (5.28)

and (5.31), we have

Vθ,ω0(ϕ) (5.32)

= kJω0(ϕ)− kIω0(ϕ)− k

V

∫
M

ϕωmϕ + cϕ +
1

V

∫
M

hω0ω
m
0 −

1

V

∫
M

hωϕω
m
ϕ

= k(Jω0(ϕ)− 1

V

∫
M

ϕωm0 + k−1cϕ) +
1

V

∫
M

hω0ω
m
0 −

1

V

∫
M

hωϕω
m
ϕ .
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So, (5.32) implies (5.29). By the normalized condition of hωϕ , we known that∫
M

hωϕω
m
ϕ ≤ 0,

then we have (5.30).

5.2.2 Existence result for the generalized Kähler-Einstein met-
rics

Let (M,ω0) be a Kähler manifold, and θ ∈ [α] = 2πc1(M) − k[ω0]. Finding

generalized Kähler-Einstein metric can be reduced to solving the complex Monge-

Ampère equation (5.3). As in Kähler-Einstein case, we consider a family of complex

Monge-Ampère equation

(ω0 +
√
−1∂∂̄ϕ)m

ωm0
= exp(hω0 − tkϕ), (5.33)

and set

S = {t ∈ [0, 1] | (5.33) is solvable for t}. (5.34)

By [81], we know that (5.33) is solvable for t = 0, and then S is not empty. If we can

prove that S is open and closed, then we must have S = [0, 1], and so the complex

Monge-Ampère equation (5.3) can be solved.

In the proof of the openness and closeness of S, we need the assumption that θ

is semipositive. The key point is that the semipositivity of θ will lead a lower bound

of the Ricci curvature by a positive constant, then we can use the implicity function

theorem to prove the openness and obtain a lower bound of the Green’s function
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which is very important to get C0 estimate. We follow Aubin’s discussion ([2]) in

the proof of the openness and follow Tian’s method ([71]) to prove the closeness. We

first obtain the following proposition and the proof is similar as that in [5].

Proposition 5.2.1. Let (M,ω0) be a compact Kähler manifold and θ ∈ [α] =

2πc1(M)− k[ω0] is a real closed semipositive (1, 1)-form, where k > 0.

Let 0 < τ ≤ 1, and suppose that (5.33) has a solution ϕτ at t = τ . If 0 < τ < 1,

then there exists some ε > 0 such that ϕτ uniquely extends to a smooth family of

solution {ϕt} of (5.33) for t ∈ (0, 1) ∩ (τ − ε, τ + ε). S is also open near t = 0, i.e.

there exists a small positive number ε such that there is a smooth family solution of

(5.33) for t ∈ (0, ε).

Furthermore, if M admits no nontrivial Hamiltonian holomorphic vector field

or the twisting form θ is strictly positive at a point, ϕ1 can also be extended uniquely

to a smooth family of solution {ϕt} of (5.33) for t ∈ (1− ε, 1].

Proof of Proposition 5.2.1:

Let Hγ,α be the set of all function ϕ ∈ Cγ,α(M) such that ω0 +
√
−1∂∂̄ϕ is

positive definite, where 2 ≤ γ ∈ Z+ and 0 < α < 1. Consider the operator

Ξ : Hγ,α ×R→ Cγ−2,α(M)

defined by

Ξ(ϕ, t) := log
(ω0 +

√
−1∂∂̄ϕ)m

(ω0)m
+ tkϕ− hω0 . (5.35)
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The linearized operator is

DϕΞ(ψ) =
1

2
4ϕψ + tkψ, (5.36)

where ψ ∈ Cγ,α(M). By the implicit function theorem, it is sufficiently to prove

that DϕΞ is invertible. For further consideration, let’s recall the Bochner-Kodaira

formula,

2

∫
M

|∇1,0(∇1,0
ω u)|2ωωm =

∫
M

(4ωu)2 − 2ρ(ω)(∇ωu, J(∇ωu))ωm (5.37)

for any u ∈ C2(M).

In the case of τ ∈ (0, 1). Since ϕτ is a solution of (5.33), we have

ρϕτ = θ + kω0 + τk
√
−1∂∂̄ϕτ > τkωϕτ . (5.38)

If ψ ∈ kerDϕτΞ, the Bochner-Kodaira formula (5.37) implies ∇ωϕτψ ≡ 0, and then

ψ ≡ 0. This shows that DϕτΞ is invertible.

When τ = 0, we consider the following operator

Ξ̃(ϕ, t) := log
(ω0 +

√
−1∂∂ϕ)m

(ω0)m
+ tkϕ− hω0 + β

∫
M

ϕ(ω0)m, (5.39)

where β > 0 is a constant. Its linearized operator is given by

DϕΞ̃(ψ) =
1

2
4ϕψ + tkψ + β

∫
M

ψ(ω0)m. (5.40)

It’s easy to check that DϕΞ̃ is invertible at t = 0. By the implicit function theorem,

there is a smooth one parameter family

{ϕ̃t | t ∈ [0, ε)}
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such that Ξ̃(ϕ̃t, t) = 0. Then

ϕt = ϕ̃t +
β

tk

∫
M

ϕ̃t(ω0)m (5.41)

is a family solution of (5.33) for t ∈ (0, ε). So, S is open near t = 0.

When τ = 1. Let ϕ1 be a solution of (5.33) for t = 1, and ψ ∈ kerDϕ1Ξ, i.e.

4ωϕ1
ψ = −2kψ.

Replacing ω and u in (5.37) by ωϕ1 and ψ, we have∫
M

|∇1,0(∇1,0
ωϕ1

ψ)|2ωϕ1
ωmϕ1

= −
∫
M

θ(∇ωϕ1
ψ, J(∇ωϕ1

ψ))ωmϕ1
(5.42)

If θ is positive at some point, then ∇ϕ1ψ = 0 on some open domains. Since the

Laplace-Beltrami operator 4ϕ1 is real, Aronszajin’s unique continuation theorem

implies ∇ϕ1ψ ≡ 0. If M admits no nontrivial Hamiltonian holomorphic vector field,

since θ is semi positive, (5.42) implies that ∇1,0
ϕ1
ψ ≡ 0. So, Dϕ1Ξ is invertible.

Using the generalized Aubin’s equations and discussing as that in Bando-Mabuchi’s

paper [5], we can obtain the uniqueness of the solution of equation (5.3) (i.e. the

uniqueness of generalized Kähler-Einstein metric). So, we omit the proof of the

following lemma.

Lemma 5.2.3. Let (M,ω0) be a Kähler manifold, and θ ∈ [α] = 2πc1(M) − k[ωo]

is a real closed semipositive (1, 1)-form, where k > 0. If M admits no nontrivial

Hamiltonian holomorphic vector field or the twisting form θ is strictly positive at a

point, then there exists at most one solution of (5.3).
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Let {ϕt} be a smooth family of solution of (5.33) for t ∈ (0, 1]. Differentiating

(5.33) with respect to t, we have

1

2
4tϕ̇t = −t(m+ 1)ϕ̇s − (m+ 1)ϕt. (5.43)

Using (5.37) and (5.43), by the same discussion as in [5] we have the following lemma.

Lemma 5.2.4. Let {ϕt} be a smooth family of solution of (5.33) for t ∈ (0, 1], then

d

dt
(Iω0 − Jω0)(ϕt) ≥ 0. (5.44)

Now, we consider the existence problem of generalized Kähler-Einstein metrics.

The following theorem gives the proof of the first part of our main result Theorem

5.1.1.

Theorem 5.2.1. Let (M,ω0) be a Kähler manifold, and θ ∈ [α] = 2πc1(M)− k[ωo]

is a real closed semipositive (1, 1)-form, where k > 0. If Vθ,ω0 (or Fω0) is proper then

there exists a generalized Kähler-Einstein metric ω ∈ Kω0.

Proof of Theorem 5.2.1:

From inequality (5.30) in Lemma 5.2.2, we only need to prove the case when

K-energy is proper.

By Proposition 5.2.1, we can suppose that there exists a smooth family of so-

lution {ϕt} of (5.33) for t ∈ (0, τ) with some τ ∈ (0, 1). From equation (5.33), we

know that

4tϕt ≤ 2m and ρ(ωϕt) ≥ tkωϕt .
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Using the Green’s formula and the lower bound of the Green’s function by Bando-

Mabuchi [5], we have

1

V

∫
M

ϕt(ωϕt)
m ≤ inf

M
ϕt +

ε1(m)

tk
. (5.45)

where positive constant ε1(m) depends only on m. Using the fact 4ω0ϕt ≥ −2m and

the Green’s formula, we have

sup
M

ϕt ≤
1

V

∫
M

ϕt(ω0)m + ε2 (5.46)

where ε2 is a positive constant depends only on the geometry of (M,ω0). By the

normalization condition, it’s easy to see that

sup
M

ϕt ≥ 0 and inf
M
ϕt ≤ 0.

Then

‖ϕt‖C0 ≤ sup
M

ϕt − inf
M
ϕt (5.47)

≤ Iω0(ϕt) +
ε1(m)

tk
+ ε2.

By (5.17) and (5.44), it follows that

Iω0(ϕt1) ≤ (m+ 1)(Iω0 − Jω0)(ϕt2) (5.48)

for any 0 < t1 ≤ t2 < τ . Combining (5.47) and (5.48), we get

t‖ϕt‖C0 ≤ t0(m+ 1)(Iω0 − Jω0)(ϕt0) + ε3 (5.49)
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for any 0 < t ≤ t0 < τ , where ε3 is a positive constant depends only on k and the

geometry of (M,ω0). Thus, we obtain an uniform bound on∣∣∣(ω0 +
√
−1∂∂̄ϕt)

m

(ω0)m

∣∣∣
for 0 < t ≤ t0 < τ . By Yau’s C0 estimate ([81]) for complex Monge-Ampère

equations, there exists a uniform constant ε4 such that

‖ϕt‖C0 ≤ ε4 (5.50)

for 0 < t ≤ t0 < τ .

On the other hand, it is easy to see that along the solutions ϕt of (5.33), we

have

S(ωϕt) = k(m− (1− t)
2
4ωϕt

ϕt) + Λωϕt
θ, (5.51)

and

Vθ,ω0(ϕt) = −k(Iω0 − Jω0)(ϕt) +
1

V

∫
M

hω0ω
m
0 −

tk

V

∫
M

ϕt(ωϕt)
m. (5.52)

Then, by (5.15) and (5.51), one obtain

d

dt
Vθ,ω0(ϕt) = − 1

V

∫
M

ϕ̇t(S(ωϕt)− Λωϕt
θ − km)(ωϕt)

m (5.53)

=
k

V

∫
M

ϕ̇t
(1− t)

2
4ωϕt

ϕt(ωϕt)
m

= k(t− 1)
d

dt
((Iω0 − Jω0)(ϕt)).
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From (5.52) and (5.53), we have

d

dt
(
t

V

∫
M

ϕt(ωϕt)
m + t(Iω0 − Jω0)(ϕt)) = (Iω0 − Jω0)(ϕt). (5.54)

By the uniform estimate (5.50) near t = 0, it is easy to check that

t

V

∫
M

ϕt(ωϕt)
m + t(Iω0 − Jω0)(ϕt)→ 0, as t→ 0.

In turn, the identity (5.54) implies that

1

V

∫
M

ϕt(ωϕt)
m + (Iω0 − Jω0)(ϕt) ≥ 0, (5.55)

and

Vθ,ω0(ϕt) ≤ −k(1− t)(Iω0 − Jω0)(ϕt) +
1

V

∫
M

hω0ω
m
0 (5.56)

≤ 1

V

∫
M

hω0ω
m
0 .

Then the properness of Vθ,ω0 implies that Jω0(ϕt) and Iω0(ϕt) is uniformly bounded.

Using (5.47), we obtain a uniform C0 estimate on ϕt for t ∈ [ε, τ).

Again, by Yau’s estimates ([81]) for complex Monge-Ampère equations, the C0-

estimate implies the C2,α-estimate, and the elliptic Schauder estimates give higher

order estimates. Therefore, equation (5.3) can be solved, i.e. there is a generalized

Kähler-Einstein metric in Kω0 .
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5.3 A Moser-Trudinger type inequality

In this section, we will establish a Moser-Trudinger type inequality on the gen-

eralized Kähler-Einstein manifolds which will finish the proof for the rest part of our

main result Theorem 5.1.1.

First, we consider the following generalized Kähler-Ricci flow

∂ωs
∂s

= −(ρ(ωs)− θ − kωs) (5.57)

with ωs|s=0 = ω̃0 ∈ [ω0]. Solving the above equation is equivalent to solve the

following parabolic version of complex Mong-Ampere equation

∂v

∂s
= log

(ω̃0 +
√
−1∂∂̄v)m

ω̃m0
+ kv − hω̃0 , (5.58)

with v|s=0 ≡ 0. It is well known that the long-time existence of the above parabolic

equation follows from Cao’s result [27].

Let vs be a smooth solution of (5.58), and ω̃s = ω̃0 +
√
−1∂∂̄vs. By direct

calculation, we have

∂

∂s
v̇s =

1

2
4ω̃s v̇s + kv̇s, (5.59)

∂

∂s
|dv̇s|2ω̃s =

1

2
4ω̃s|dv̇s|2ω̃s + k|dv̇s|2ω̃s − |∇ω̃sdv̇s|2ω̃s (5.60)

−θ(∇ω̃s v̇s, J(∇ω̃s v̇s)),
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(
∂

∂s
− 1

2
4ω̃s)(v̇

2
s + s|dv̇s|2ω̃s) (5.61)

= 2kv̇2
s + sk|dv̇s|2ω̃s − s|∇ω̃sdv̇s|2ω̃s − sθ(∇ω̃s v̇s, J(∇ω̃s v̇s))

≤ 2k(v̇2
s + s|dv̇s|2ω̃s),

and

(
∂

∂s
− 1

2
4ω̃s)(4ω̃s v̇s) = k4ω̃s v̇s − |∂∂̄v̇s|2ω̃s (5.62)

where v̇s = ∂
∂s
vs. Note that we have used the semi-positivity of θ in (5.61). Applying

the maximum principle to the above equalities and discussing as that in [4] (or

Lemma 4 in [63]), we have the following lemmas.

Lemma 5.3.1. The following inequalities

‖∂vs
∂s
‖C0 ≤ eks‖hω̃0‖C0 , (5.63)

sup
M

(|hω̃s|2 + s|dhω̃s|2ω̃s) ≤ 4e2ks‖hω̃0‖2
C0 , (5.64)

e−ks4ω̃shω̃s ≥ 4ω̃0hω̃0 , (5.65)

hold for all s ≥ 0.

Lemma 5.3.2. Suppose there exists a generalized Kähler-Einstein metric ωGKE ∈

[ω0]. Let vt,s be a solution of (5.58) with ω̃0 = ωϕt. Let

h̃ = hω̃1 −
1

V

∫
M

hω̃1(ω̃1)m
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and assume that

1

2
ωGKE ≤ ω̃1 ≤ ωGKE. (5.66)

Then for any p > 2m, there exist positive constant C̄1 depending only on p, k and

(M,ωGKE) such that

‖h̃‖C0 ≤ C̄1(1− t)
1
p−1‖hωϕt‖

p−2
p−1

C0 . (5.67)

Proof of Lemma 5.3.2:

By the condition ω̃0 = ωϕt , we have

ρ(ω̃0) = θ + kω0 + tk
√
−1∂∂̄ϕt ≥ θ + tkω̃0 (5.68)

and

4ω̃0hω̃0 ≥ 2mk(t− 1).

Thus, it follows from (5.65) that

−4ω̃1hω̃1 ≤ 2mkek(1− t). (5.69)

Integrating by parts, we have∫
M

|dh̃|2ω̃1
(ω̃1)m = −

∫
M

h̃4ω̃1h̃(ω̃1)m (5.70)

≤
∫
M

(h̃− inf h̃) sup
M

(−4ω̃1h̃)(ω̃1)m

≤ C̄2(1− t)‖h̃‖C0 ,

where C̄2 depends only on k, m and the volume V .
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On the other hand, (5.64) implies that

‖h̃‖C0 ≤ 4ek‖hω̃0‖C0 .

Let p ≥ 2m+1, by the Sobolev imbedding theorem (Lemma 2.22 of [3]), the Poincaré

inequality, (5.64) and the condition (5.66), we have

‖h̃‖pC0 ≤ C̄3

∫
M

|h̃|p + |dh̃|pωGKE(ωGKE)m (5.71)

≤ C̄4‖hω̃0‖
p−2
C0

∫
M

|h̃|2 + |dh̃|2ωGKE(ωGKE)m

≤ C̄5‖hω̃0‖
p−2
C0

∫
M

|dh̃|2ωGKE(ωGKE)m

≤ C̄6‖hω̃0‖
p−2
C0

∫
M

|dh̃|2ω̃1
(ω̃1)m,

where constants C̄i depends only on p, m and the geometry of (M,ωGKE). Then

(5.70) and (5.71) imply (5.67).

Lemma 5.3.3. Let vt,s be a solution of (5.58) with initial data ω̃0 = ωϕt, and ut =

vt,1. We have the inequality

‖ut‖C0 ≤ 1

k
ek‖hωϕt‖C0 , for all t ∈ [0, 1]. (5.72)

Moreover, assume that

1

2
ωGKE ≤ ωϕt+ut ≤ ωGKE for all t ∈ [t1, 1],
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where t1 ∈ [0, 1). Then for any p > 2m and 0 ≤ δ < 1, there exists a constant C̄7

depending only on p, k and (M,ωGKE) such that

‖hωϕt+ut‖C0,δ(ωGKE) ≤ C̄7(1− t)1−β(1 + ‖hωϕt‖C0)β (5.73)

for all t ∈ [t1, 1], where β = p+δ−2
p−1

.

Proof of Lemma 5.3.3:

Inequality (5.72) can be easily deduced from (5.63).

By the condition 1
2
ωGKE ≤ ωϕt+ut ≤ ωGKE , we have

|dhωϕt+ut |ωGKE ≤
√

2|dhωϕt+ut |ωϕt+ut .

In the following, let d(x, y) be the distance between x and y with respect to the

metric ωGKE.

If d(x, y) ≤ (1− t)
1
p−1 (1 + ‖hωϕt‖C0)−

1
p−1 , by (5.64) in lemma 4.1, we have

|hωϕt+ut (x)− hωϕt+ut (y)| ≤ d(x, y) sup
M
|dhωϕt+ut |ωGKE (5.74)

≤
√

2d(x, y) sup
M
|dhωϕt+ut |ωϕt+ut

≤ 4
√

2ekd(x, y)(1 + ‖hωϕt‖C0)

≤ 4
√

2ek(1− t)
1−δ
p−1 (1 + ‖hωϕt‖C0)

p+δ−2
p−1 d(x, y)δ.

130



If d(x, y) ≥ (1− t)
1
p−1 (1 + ‖hωϕt‖C0)−

1
p−1 , then the estimate (5.67) in lemma 4.2

implies

|hωϕt+ut (x)− hωϕt+ut (y)| ≤ 2‖h̃‖C0 (5.75)

≤ 2C̄1(1− t)
1
p−1 (‖hωϕt‖C0)

p−2
p−1

≤ 2C̄1(1− t)
1−δ
p−1 (1 + ‖hωϕt‖C0)

p+δ−2
p−1 d(x, y)δ.

On the other hand, the integral normalization
∫
M
ehωϕt+ut (ωϕt+ut)

m = V implies

hωϕt+ut change signs, so we have

‖hωϕt+ut‖C0 ≤ Osc(hωϕt+ut ) = Osc(h̃) ≤ 2‖h̃‖C0 (5.76)

≤ 2C̄1(1− t)
1
p−1 (‖hωϕt‖C0)

p−2
p−1 .

It is easy to see that (5.74), (5.75) and (5.76) imply the estimate (5.73).

Set ζ := 1− 1
4m

> 1
2

and define the function fω0 by

fω0(t) := (1− t)1−ζ(k−1 + 2(1− t)‖ϕt‖C0)ζ . (5.77)

Discussing as that in [69] (or lemma 1 in [63]), we have the following proposition.

We write out the proof just for reader’s convenience.

Proposition 5.3.1. Let ϕt be a smooth family of solutions of equation (5.33) for

t ∈ (0, 1], and ωGKE = ω0 +
√
−1∂∂̄ϕ1. There exist a constant D > 0 depending only

on k and (M,ωGKE) such that

‖ϕ1 − ϕt‖C0 ≤ A(1− t)‖ϕt‖C0 + 1 (5.78)
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for all t ∈ [t0, 1], where t0 ∈ [0, 1) satisfies fω0(t0) = max[t0,1] fω0 = D and A

depending only on m and k.

Proof of Proposition 5.3.1:

Let’s rewrite (5.33) as the following complex Monge-Ampère equation with ωGKE as

reference metric

(ωGKE +
√
−1∂∂̄(ϕt − ϕ1))m

(ωGKE)m
= exp(−k(ϕt − ϕ1) + (1− t)kϕt). (5.79)

It is easy to see that hωϕt = (t − 1)kϕt + ct, for some constant ct. The integrate

normalization of the potential function hωϕt implies

|ct| ≤ k(1− t)‖ϕt‖C0 , (5.80)

and

‖hωϕt‖C0 ≤ 2k(1− t)‖ϕt‖C0 . (5.81)

Then, Lemma 5.3.3 implies that

‖ut‖C0 ≤ 2ek(1− t)‖ϕt‖C0 . (5.82)

Note that

ωϕt+ut = ω0 +
√
−1∂∂̄(ϕt + ut) = ωGKE +

√
−1∂∂̄(ϕt + ut − ϕ1),

and then

(ωGKE +
√
−1∂∂̄(ϕt + ut − ϕ1))m

(ωGKE)m
= exp(−k(ϕt + ut − ϕ1)− hωϕt+ut − c̃t) (5.83)
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for some constant c̃t. Let ϕ̃t = ϕt + ut − ϕ1 + c̃t
k

, from (5.83), (5.79) and (5.82), we

have ∫
M

ehωϕt+ut (ωϕt+ut)
m =

∫
M

e−kϕ̃t(ωGKE)m (5.84)

=

∫
M

e−kϕ̃t+tkϕt−kϕ1(ωϕt)
m

=

∫
M

e(t−1)kϕt−kut−c̃t(ωϕt)
m,

and then

|c̃t| ≤ (1− t)k‖ϕt‖C0 + k‖ut‖C0 (5.85)

≤ (1− t)k(1 + 2ek)‖ϕt‖C0 .

Recall that ϕt − ϕ1 = ϕ̃t − ut − c̃t
k

, it follows from (5.82) and (5.85) that

‖ϕt − ϕ1‖C0 = ‖ϕ̃t‖C0 + (1− t)(4ek + 1)‖ϕt‖C0 . (5.86)

From above estimates, it will suffice to show that

‖ϕ̃t‖C0 ≤ 1.

Let’s consider the following complex Monge-Ampère equation

log{(ωGKE +
√
−1∂∂̄ψ)m

(ωGKE)m
}+ kψ = ψ̃. (5.87)

The linearization of the left side of (5.87) at ψ = 0 is

δψ 7→ 1

2
4ωGKEδψ + kδψ. (5.88)
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If M doesn’t have non-trivial Hamiltonian holomorphic vector fields or θ is strictly

positive at a point, by (5.42), we know that

ker(
1

2
4ωGKE + k) = 0,

then the operator (1
2
4ωGKE + k) : Ci+2,ε(M) → Ci+2,ε(M) is invertible. Applying

the implicit function theorem, there exist positive constants ε(ωGKE) and C∗(ωGKE)

which depend only on δ and the geometry of (M,ωGKE), so that

if ‖ψ̃‖C0,δ ≤ ε(ωGKE) then ‖ψ‖C2,δ ≤ C∗(ωGKE)‖ψ̃‖C0,k . (5.89)

Let

D =
εk−ζ

2(C̄7 + 1)(C∗ + 1)(ε+ 1)
,

where ε = ε(ωGKE), C∗ = C∗(ωGKE) are chosen as in (5.89), ζ = 1 − 1
4m

, C̄7 is

defined as in Lemma 5.3.3 (by choosing δ = 1
2

and p = 2m + 1). Let t0 ∈ [0, 1)

satisfies fω0(t0) = max[t0,1] fω0 = D. Now, we only need to prove the following claim:

Claim For all t ∈ [t0, 1], we have

‖ϕ̃t‖C2, 12
<

1

2
. (5.90)

We assume the contrary. Since ϕ̃1 = 0, there exists t1 ∈ [t0, 1) such that

‖ϕ̃t1‖C2, 12 (ωGKE)
=

1

2
, and ‖ϕ̃t‖C2, 12 (ωGKE)

<
1

2
if t1 < t < 1. (5.91)
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In particular −1
4
ωGKE ≤

√
−1∂∂̄ϕ̃t ≤ 1

4
ωGKE, and then

3

4
ωGKE ≤ ωϕt+ut ≤

5

4
ωGKE (5.92)

for all t ∈ [t1, 1]. By applying (5.73) in Lemma 5.3.3 (by choosing p = 2m + 1) and

(5.81), we have

‖hωϕt+ut‖C0, 12 (ωGKE)
≤ C̄7(1− t)1−ζ(1 + ‖hωϕt‖C0)ζ (5.93)

≤ C̄7(1− t)1−ζ(1 + 2(1− t)k‖ϕt‖C0)ζ

≤ C̄7k
ζ(1− t)1−ζ(k−1 + 2(1− t)‖ϕt‖C0)ζ

≤ C̄7k
ζD

=
C̄7ε

2(C̄7 + 1)(C∗ + 1)(ε+ 1)
< ε,

for all t ∈ [t1, 1]. Using (5.89) again, we get

‖ϕ̃t1‖C2, 12 (dηSE)
≤ C∗‖hdηϕt+ut‖C0, 12 (ωGKE)

(5.94)

≤ C∗C̄7ε

2(C̄7 + 1)(C∗ + 1)(ε+ 1)
<

1

2
.

This gives a contradiction and complete the proof of the claim. Thus, the proof of

the proposition is complete.

Using Proposition 5.3.1 and discussing as that in [63] (Theorem 1), we establish

a Moser-Trudinger type inequality for functional FωGKE . In fact, we obtain the

following theorem. We write out the proof in details just for reader’s convenience.

Theorem 5.3.1. Let (M,ω0) be a Kähler manifold, and θ ∈ [α] = 2πc1(M)−k[ω0] is

a real closed semipositive (1, 1)-form, where k > 0. Assuming that the twisting form
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θ is strictly positive at a point or M admits no nontrivial Hamiltonian holomorphic

vector field. If there exists a generalized Kähler-Einstein metric ωGKE ∈ Kω0, then

there exist uniform positive constants C̃1, C̃2 depending only on k and the geometry

of (M,ωGKE), such that

FωGKE(ϕ) ≥ C̃1JωGKE(ϕ)− C̃2, (5.95)

for all ϕ ∈ HωGKE .

Proof of Theorem 5.3.1:

Fix a function φ ∈ HωGKE , and set ω0 = ωGKE +
√
−1∂∂̄φ. We consider the complex

Monge-Ampère equation (5.33). Since M admits no nontrivial Hamiltonian holo-

morphic vector fields or the twisting form θ is strictly positive at a point , by the

uniqueness of generalized Kähler-Einstein structure (Lemma 5.2.3) and Proposition

5.3.1, a unique solution ϕt exists for all t ∈ (0, 1] and ωϕ1 = ωGKE. In particular ϕ1

and −φ differ by a constant.

For further consideration, we give the following estimates for functionals F , I

and J . From (5.12), (5.14) and (5.43), we have

d

ds
(Iω0 − Jω0)(ϕs) = − d

ds
(

1

V

∫
M

ϕs(ωϕs)
m)− 1

V

∫
M

ϕ̇s(ωϕs)
m. (5.96)

The uniform C0 estimate (5.50) of ϕt implies that

s
1

V

∫
M

ϕs(ωϕs)
m → 0, as s→ 0. (5.97)
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By integrating on [0, t], we get

t(Iω0 − Jω0)(ϕt)−
∫ t

0

(Iω0 − Jω0)(ϕs)ds = − t

V

∫
M

ϕt(ωϕt)
m, (5.98)

and then

F 0
ω0

(ϕt) = −(Iω0 − Jω0)(ϕt)−
1

V

∫
M

ϕt(ωϕt)
m (5.99)

=
−1

t

∫ t

0

(Iω0 − Jω0)(ϕs)ds.

Taking t = 1 and considering Fω0(ϕ1) = −FωGKE(φ), so that

FωGKE(φ) =

∫ 1

0

(Iω0 − Jω0)(ϕs)ds. (5.100)

By the definitions (5.21) and the cocycle property of F 0
ω0

, it is easy to check

|Jω0(ϕ1)− Jω0(ϕt)| ≤ Osc(ϕ1 − ϕt) (5.101)

and

|(Iω0 − Jω0)(ϕt)− (Iω0 − Jω0)(ϕ1)| ≤ m ·Osc(ϕ1 − ϕt). (5.102)
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Using the relationship Fω0(ϕ1) = −FωGKE(φ), we have

Jω0(ϕ1) = Fω0(ϕ1) +
1

V

∫
M

ϕ1(ω0)m (5.103)

= −FωGKE(φ) +
1

V

∫
M

ϕ1(ω0)m

= −JωGKE(φ) +
1

V

∫
M

φ{(ωGKE)m − (ω0)m}

= (IωGKE − JωGKE)(φ)

≥ 1

m
JωGKE(φ),

where we have used inequality (5.17). On the other hand, since (Iω0 − Jω0)(ϕt) is

nondecreasing in t, (5.100) implies that

FωGKE(φ) ≥ (1− t)(Iω0 − Jω0)(ϕt) ≥
1− t
m

Jω0(ϕt). (5.104)

Combining this inequality with (5.103) and (5.101), we have

FωGKE(φ) ≥ 1− t
m2

JωGKE(φ)− 1− t
m

Osc(ϕt − ϕ1). (5.105)

In the following, we choose t0 as that in Proposition 5.3.1.

If 2(1− t0)‖ϕt0‖C0 ≤ k−1, by the definition of t0, we have

D ≤ (1− t0)1−ζ2ζk−ζ ,

which gives

(1− t0) ≥ 2−
ζ

1−ζ k
ζ

1−ζD
1

1−ζ . (5.106)
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Similarly, if 2(1− t0)‖ϕt0‖C0 ≥ k−1, we have

D ≤ 4ζ(1− t0)‖ϕt‖ζC0 ,

then

(1− t0) ≥ D

4ζ‖ϕt0‖
ζ
C0

. (5.107)

For the second case, we may assume that 1− t0 < A−1

2
, the inequality implies that

‖ϕt0‖C0 ≤ 2‖ϕ1‖C0 + 2, (5.108)

then

(1− t0) ≥ D

4ζ(2‖ϕ1‖C0 + 2)ζ
. (5.109)

Again, since supϕ1 · inf ϕ1 ≤ 0, we always have the following inequality

(1− t0) ≥ C ′

(‖ϕ1‖C0 + 1)ζ
≥ C ′

(Osc(φ) + 1)ζ
, (5.110)

where C ′ is a positive constant depending only on k and (M,ωGKE). On the other

hand, using Proposition 5.3.1 again, we have

(1− t0)‖ϕ1 − ϕt0‖C0 ≤ (1− t0)2A‖ϕt0‖C0 + 1 ≤ AD
1
ζ + 1. (5.111)

By inequalities (5.105), (5.110) and (5.111), we obtain

FωGKE(φ) ≥ C̃3
JωGKE(φ)

(Osc(φ) + 1)ζ
− C̃4, (5.112)
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for all φ ∈ HωGKE , where C̃3 and C̃4 are positive constants depending only on k and

the geometry of (M,ωGKE).

Notice that ϕt−ϕ1 ∈ HωGKE and ρ(ωϕt) ≥ θ+tkωϕt , we can use (5.47) to obtain

the following estimate

Osc(ϕt − ϕ1) ≤ IωGKE(ϕt − ϕ1) + C̃5, (5.113)

for t ∈ [1
2
, 1], where C̃5 is a constant depending only on on k and the geometry of

(M,ωGKE). By(5.17), (5.112) and (5.113), we have

FωGKE(ϕt − ϕ1) ≥ C̃6
JωGKE(ϕt − ϕ1)

(JωGKE(ϕt − ϕ1) + 1)ζ
− C̃4, (5.114)

for t ∈ [1
2
, 1], where C̃6 is a positive constant depending only on k and the geometry

of (M,ωGKE).

Finally, by the cocycle property of the functional F , (5.98), (5.99), (5.47), non-

decreasing of (Iω0 − Jω0)(ϕt) and the concavity of the log function, we have

FωGKE(ϕt − ϕ1) = Fω0(ϕt)− Fω0(ϕ1) (5.115)

≤ m(1− t){(m+ 1)JωGKE(ϕt − ϕ1) +
C̃7

tk
+ C̃8}

By a same discussion in [63] (Page 1083), we know that (5.105), (5.113), (5.114)

and (5.115) imply the Moser-Trudinger inequality (5.95).

In view of the cocycle identity of Fω and properties of Iω, Jω (see (5.24), (5.18)

and (5.17)), inequality (5.9) holds for every Kähler metric ω which is cohomology to

ωGKE. Moreover, the relation (5.30) implies that the Moser-Trudinger type inequality

(5.95) also be valid for the K-energy Vθ,ω.
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Corollary 5.3.1. Let (M,ω0) be a Kähler manifold, and θ ∈ [α] = 2πc1(M)−k[ωo] is

a real closed semipositive (1, 1)-form, where k > 0. Assuming that the twisting form

θ is strictly positive at a point or M admits no nontrivial Hamiltonian holomorphic

vector field. If there exists a generalized Kähler-Einstein metric in Kω0. Then, for

any Kähler metric ω ∈ Kω0 there exist uniform positive constants {D̃i}4
i=1 depending

only on k and the geometry of (M,ω), such that

Fω(ϕ) ≥ D̃1Jω(ϕ)− D̃2, (5.116)

and

Vθ,ω(ϕ) ≥ D̃3Jω(ϕ)− D̃4, (5.117)

for all ϕ ∈ Hω.

Remark 5.3.1. Theorem 5.2.1 and Corollary 5.3.1 imply the main result Theorem

5.1.1.

5.4 A result on Slope stability

In [67], Stoppa discussed the so called twisted cscK equation, i.e. finding a

metric ω ∈ [ω0] such that

S(ω)− Λωθ = S̄θ (5.118)

where θ is a real closed semipositive (1, 1)-form. In particularly, if θ ∈ 2πc1(M) −

k[ωo], then the above twisted cscK equation is equivalent to the generalized Kähler-

Einstein equation (5.1). By the definition of the twisted K-energy, it is easy to check
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that the second derivative along a path ϕt ∈ Hω0 is given by

V
d2

dt2
Vθ,ω0(ϕt) = ‖∂̄∇1,0

ωϕt
ϕ̇t‖2

ϕt + (∂ϕ̇t ∧ ∂̄ϕ̇t, θ)ϕt (5.119)

−
∫
M

(ϕ̈t −
1

2
|∇1,0

ωϕt
ϕ̇t|2ϕt)(S(ωt)− Λωϕt

θ − S̄θ)ωmϕt .

If either the twisting form θ is strictly positive at a point or M admits no nontrivial

Hamiltonian holomorphic vector field, Vθ is strictly convex along geodesics in Hω0 .

Then, the results of Chen and Tian [30] on the regularity of weak geodesics imply

uniqueness of solution of the twisted cscK equation (5.118) and that the twisted

K-energy Vθ,ω0 has a lower bound. The above facts were pointed out by Stoppa in

[67], where he used the lower bound of Vθ,ω0 to get a slope stability condition.

Let D ⊂M be an effective divisor. The Seshadri constant of D with respect to

the Kähler class [ω0] is given by

ε(D, [ω0]) = sup{x | [ω0]− x2πc1(D) ∈ K}, (5.120)

whereK is the Kähler cone. Stoppa also defined the twisted Ross-Thomas polynomial

of (M, [ω0]) with respect to D and θ by

Fθ,D(λ) =

∫ λ

0

(λ− x)α2(x)dx+
λ

2
α1(0)− S̄θ

2

∫ λ

0

(λ− x)α1(x)dx, (5.121)

where

α1(x) =
1

(m− 1)!

∫
M

2πc1(D) ∪ ([ω0]− 2xπc1(D))m−1, (5.122)
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α2(x) (5.123)

=

∫
M

2πc1(D) ∪ (2πc1(M)− [θ]− 2πc1(D)) ∪ ([ω0]− x2πc1(D))m−2

2(m− 2)!
.

In [67], it was proved that if (5.118) is solvable in [ω0] then Fθ,D(λ) ≥ 0 for all

effective divisors D ⊂ M and 0 ≤ λ ≤ ε(D, [ω0]). In fact, see Theorem 3.1 in [67],

we can find a family of Kähler metrics ωε ∈ [ω0] with ωε|ε=1 = ω0 such that as ε→ 0

Vθ,ω0(ωε) = −πFθ(λ) log(ε) + l · o · t. (5.124)

By the calculation in [67] (Lemma 3.12, Lemma 3.15), we also have the following

asymptotic behavior of the Aubin’s functional

Jω0(ωε) = −π
2

∫ λ

0

(λ− x)α1(x)dx log(ε) + l · o · t. (5.125)

By the above Moser-Trudinger inequality (5.9) in Theorem 5.1.1, we can obtain a

strictly slope stability. In fact, we have the following corollary.

Corollary 5.4.1. Let (M,ω0) be a Kähler manifold, and θ ∈ [α] = 2πc1(M)−k[ωo] is

a real closed semipositive (1, 1)-form, where k > 0. Assuming that the twisting form

θ is strictly positive at a point or M admits no nontrivial Hamiltonian holomorphic

vector field. If there exists a generalized Kähler-Einstein metric in ω ∈ Kω0, then

there exists a uniform positive constant C4 such that

Fθ,D(λ) ≥ C4

∫ λ

0

(λ− x)α1(x)dx > 0 (5.126)

for all effective divisors D ⊂M and 0 < λ ≤ ε(D, [ω0]).
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In a special case of the generalized Kähler-Einstein equation (5.1), if

[α] = (1− k)[ω0],

where 0 < k < 1, we set θ = (1 − k)ω0. Then the generalized Kähler-Einstein

equation (5.1) is just the Aubin’s equation

ρ(ω) = (1− k)ω0 + kω. (5.127)

The twisted K-energy V(1−k)ω0,ω0 can be expressed by

V(1−k)ω0,ω0(ϕ) = Vω0(ϕ) + (1− k)(Iω0 − Jω0)(ϕ), (5.128)

for all ϕ ∈ Hω0 , where Vω0 is the Mabuchi K-energy, Iω0 and Jω0 are the Aubin’s

energy functionals. If there exists a Kähler metric ω ∈ [ω0] such that

ρ(ω)− kω > 0. (5.129)

Let θ = (1 − k)ω′ = ρ(ω) − kω > 0, we know that the generalized Kähler-Einstein

equation (5.1) can be solved in [ω0]. By Theorem 5.1.1, we know that

V(1−k)ω′,ω0 is proper.

In fact, it satisfies the Moser-Trudinger type inequality (5.9).

On other hand, by Lemma 5.2.1, the cocycle identity of Mθ and properties of

Iω, Jω (see (5.7), (5.18) and (5.17)), it is easy to see that the properness of the twisted

K-energy Vθ,ω is independent on the choice of the twisting form θ ∈ [α] and Kähler
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metric ω ∈ [ω0]. So, we have the following corollary which also was proved by G.

Székelyhidi in [68].

Corollary 5.4.2. Let (M,ω0) be a Kähler manifold with 2πc1(M) = [ω0], and 0 <

k < 1. The following are equivalent.

(1) We can uniquely solve equation (5.127).

(2) There exists a Kähler metric ω ∈ [ω0] such that ρ(ω) > kω.

(3) For any Kähler metric ω ∈ [ω0], Vω(ϕ) + (1− k)(Iω − Jω)(ϕ) is proper.

(4) For any Kähler metric ω ∈ [ω0], there exist uniform positive constants C5

and C6 such that

Vω(ϕ) + (1− k)(Iω − Jω)(ϕ) ≥ C5Jω(ϕ)− C6, (5.130)

for all ϕ ∈ Hω.
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