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ABSTRACT

The main threads of this thesis are related by the theme of the complex Monge-
Ampere type equations. It consists of some analysis results from the partial differ-

ential equation aspect and several geometric consequences as applications.

In the first part, we study the a prior: estimates for complex Hessian type equations
on Hermitian manifolds. These estimates are the key ingredients for the solvability
of the corresponding equations by virtue of the continuity method. In particular, we
establish the first and second order derivative estimates for complex Monge-Ampere

equations which are analogous to Yau’s estimates on Kahler manifolds.

In Chapter 3, we investigate the interior Schauder estimates of the solutions to com-
plex Monge-Ampere equations. Moreover, aiming to extend such regularity results
to more general geometric setting, we also establish the classical Bedford-Taylor’s
interior second order estimate and a local version of Calabi’s third order estimate on

Hermitian manifolds.

The last two chapters of this thesis are devoted to the geometric problems related to
complex Monge-Ampere type equations. In particular, we give some results on the
nonnegative representation for the boundary class of Kahler cone and the existence

of generalized Kéhler-Einstein metrics.
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ABREGE

Dans cette these, il est question de I’étude des équations de type Monge-Ampere
complexes. On y présente une analyse basée sur les différentes techniques utilisées
dans la théorie des équations aux dérivées partielles ainsi que certaines applications
géométriques.

En premier lieu, nous présentons ’estimation a priori des équations de type Hessienne
complexes sur des variétés hermitiennes. Ces estimations sont indispensables a la
résolution de ces équations par le biais des méthodes de continuité. Au fait, nous
établirons des estimations sur la premiere et la seconde dérivée des équations Monge-
Ampere complexes de la méme maniere faite par Yau sur les variétés kahlériennes.
Au troisieme chapitre, nous étudions la régularité de Holder intérieure des dérivées
secondes de la solution pour les équations de type Monge-Ampere complexes. De
plus, en visant la généralisation de ce type de résultats de régularité a des géométries
plus généralee, on a obtenu une estimation de deuxieme ordre de type Bedford-Taylor
classique et une version locale des estimations de Calabi de troisieme ordre sur des
variétés hermitiennes.

Les deux derniers chapitres de cette these sont consacrés aux problemes géométriques
reliés aux équations de type Monge-Ampere complexes. Nous donnons quelques
résultats sur la représentation non négative pour la classe de frontiere du cone de

Kahler et 'existence des métriques généralisée Kahler-Einstein.
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CHAPTER 1
Introduction

We begin by summarizing the main results of the thesis. In section 1.2 we collect
some basic facts in Kahler geometry and Hermitian geometry, and in section 1.3 we

give the outline of Yau’s estimates for the complex Monge-Ampere equations.

1.1 Summary of the results

This thesis consists of four main parts which have come out my study in the
field of geometric analysis. And they are all related by the theme of the complex
Monge-Ampere equation type equations and its geometric applications. We begin
with the results on the a priori estimates for Monge-Ampere equation on Hermitian
manifolds which form the content of Chapter 2.

In 1976, Yau [81] gave an affirmative answer to the Calabi’s conjecture by show-

ing the existence of the solution to the complex Monge-Ampere equation:

det(g;; +u;;) = f(2), (1.1)

on a compact Kahler manifold (M, g). This work by Yau opened a vast field for the
study of complex Monge-Ampere type equations (1.1). And it has proven to be a very

powerful tool in understanding geometry and topology in Kéahler setting. Given these



successes, as a natural extension of Yau’s result, one wants to consider the existence
and uniqueness properties for the above equation on Hermitian manifolds and try to
deduce geometric results from it. Our main result on the complex Monge-Ampere
equation in Hermitian setting is as follows. We consider the Hermitian manifold
(M,w) of dimension n > 2 with smooth boundary dM and seek solutions to (1.1) in

the space of Hermitian metrics defined as
PSH(w, M) ={u & C*(M) | wy, =w +v—190u > 0}.

Theorem 1.1.1 ([87] Theorem 1 and 2). Letu € PSH(w, M) C*(M) be a solution
of equation (1.1). Then there exist positive constants Cy, Co depending on f, [u|coar

and geometric quantities of M (torsion and curvature) such that

m]\%x\Vu\ < Cy(1+ max |Vul) (1.2)
and
max |Au| < Cy(1+ max |Aul) (1.3)

In particular, if the Hermitian manifold M is compact, i.e. OM = (), then one can
get the estimates for gradient and Au from (1.2) and (1.3).

Indeed, the above estimates are proved by the Bernstein type technique. A
substantial difficulty in proving (1.3) is to control the extra terms involving third
order derivatives which appear due to the nontrivial torsion. Similar estimates were

also obtained independently by Guan-Li [44] and Tosatti-Weinkove [76].



We also study another important type of fully nonlinear geometric equations,

complex Hessian equation, which includes (1.1) as a special case. We consider

W AW = (w4 V=100u)* AW TR = fun (1.4)

u

where k =1,2,--- ,n, and f is a positive function on a Hermitian manifold (M,w).
Notice that if £k = n, (1.4) is just the complex Monge-Ampere equation (1.1), while if
k =1, equation (1.4) becomes the Laplacian equation. So the complex Hessian type
equation is a generalization of both complex Monge-Ampere equation and Laplacian
equation over a compact Hermitian manifold.

Let H(n) be the set of n x n Hermitian matrices and A(A) be the eigenvalues

of A. For k=1,2,--- ,n, we define
or(A) = o (AM(A)) for A€ H(n),
where oj()\) is the k — th elementary symmetric function defined on R™ and let
I'y={AeH(n)|oj(A)>0,j=1,--- k}.

It is well known that the k—positive cone I';, is an open convex cone for the admissible
solutions of equation (1.4), i.e., the condition (w + /—190u) € T is natural to
guarantee equation (1.4) to be elliptic. Note that if & = n, ', is just the space of
Hermitian metrics PSH(w, M).

Our main result gives the a priori gradient estimate for the complex Hessian

equation (1.4) under a technique condition.



Theorem 1.1.2 ([87] Theorem 3). Let (M,w) be a Hermitian manifold and u €
C3(M) be a solution of equation (1.4) with (w -+ +/—100u) € T'y11. Then there exist
positive constant Cy depending on f, |u|coyy and geometric quantities of M (torsion

and curvature) such that
max |Vu| < C3(1 + max |Vul) (1.5)
M oM
In particular, if M is compact, one can get the global gradient estimate from (1.5).

Next, we will briefly discuss the results of Chapter 3. The main objects of study
are the Schauder type estimates to the complex Monge-Ampere equations on Kéhler
and Hermitian manifolds.

We consider the a priori C** estimate for the complex Monge-Ampere equation
det(u;;) = f € C°. (1.6)

Generally, if the right hand side data f(z) € C?(M) (or even better), the uniform
C?“ estimate follows from the standard Evans-Krylov theory. One key point in the
proof is to linearize equation (1.6) and use the Harnack inequality. However, if we
only assume f € (% this argument does not work since one can not linearize the
equation. By using a perturbation argument, we can prove

Theorem 1.1.3 ([85] Theorem 1). Let Q be a domain in C* and u € C*(Q) is a
pluri-subharmonic solution to the Monge-Ampére equation (1.6). Assume there exist

positive constants Ky and Ky such that

[ul + | Dul + Dl < K1, Ko < f(2) € C*(Q),



for some constant 0 < « < 1. Then, for any open domain Q' CC €, there exists

constant C' depending only on Ky, Ki,n, f,«a and a positive constant C, such that
|D%ulcnqer) < C (Ko, Ky, [ fllow, o, dist (Y, 09)) (1.7)

In the proof we exploit a perturbation method and the crucial fact used is
Bedford-Taylor interior C1! estimate [6]. Another key ingredient in the proof is that
we use a local version of Calabi’s C® estimate in [64] to get the sharp a—Holder
regularity of the second derivative.

The rest part of Chapter 3 is devoted to establish the corresponding C*< esti-
mates for the complex Monge-Ampere equation on Hermitian manifolds. Let (M, w)

be a Hermitian manifold and we consider equation
(w+V—100u)" = f(z)w", (1.8)

where 0 < f(z) € C*°(M). When the manifold (M,w) is Ké&hler, that is dw = 0,
by using the local potential for w, one can deduce equation (1.8) to be (1.6) locally
and the key tools also applicable. However, if w is just a smooth positive (1,1)-
form (not necessarily closed), there is no local potential for w anymore and thus
Bedford-Taylor’s result and the local Calabi’s estimate can not be applied directly.
In [83], we extend Bedford-Taylor’s interior C? estimate to Hermitian setting by some
modification of their original method.

Theorem 1.1.4 ([83] Theorem 1). Let B be the unit ball on C* and w be a smooth

positive (1,1)-form (not necessary closed) on B. Letu € C(B)NPSH (w, B)NC?(B)



solve the Dirichlet problem

(w+v/—100u)" = fw™ in B
(1.9)

with ¢ € CH(OB) and 0 < f(z) € C(B). Then, for arbitrary compact subset

B’ CC B, there exists a constant Cy dependent only on w and dist{ B',0B} such that

1
[ulle2sry < Call|Pllcrr@ny + | f7]lcris))-

We also generalize the local Calabi’s C? estimate in [64] to Hermitian manifolds.
Theorem 1.1.5 ([83] Theorem 2). Let u € PSH(w, M) N C* M) be a solution of

the Monge-Ampere equation (1.8), satisfying
08l < .

Let Q¥ CC Q C M. Then the third derivatives of u(z) of mized type can be estimated

in the form

IV,00u|, < Cs  forze,

where Cs is a constant depending on K, ||dw||., || R|lw, IVR|w, |T]lw, [|VT||w, dist($Y,09)

and [|[Vef|l. , s =0,1,2,3. Here V is the Chern connection with respect to the Her-
matian metric w, T and R are the torsion tensor and curvature form of V.

The local Calabi’s C? estimate in the above theorem should be useful for study-
ing the geometric problems on Hermitian manifolds, such as the Liouvelle type prop-
erty. As a simple application, following the lines in [35], we prove the sharp interior

C?** estimate for (1.8) on Hermitian manifolds.



Corollary 1.1.1 ([83] Corollary 1). Let 2 be a domain in C" and w be a Hermitian
form defined on Q. Let u(z) € PSH(w,Q) N C3(Q) be a solution of the Monge-
Ampere equation (1.8). Suppose that 0 < f € C*(Q) for some 0 < a < 1 and

|u| + |Du| + |D?*u| < L. Then
|D2u‘ca(9/) S C

for some constant depending on n, L, || f||ce, a, dist(2',0Q) and the geometric quan-

titres with respect to w.

In the Chapter 4, we study some geometric properties of the boundary class of
Kahler cones under the following non-negative quadratic bisectional curvature condi-
tion: for any orthogonal tangent frame {e;,--- ,e,} at any x € M, and for any real
numbers ay, -+, ay:

> Ryjjlai —a;)* > 0. (%) (1.10)
ij=1

In [80], Wu-Yau-Zheng posted an interesting question to ask when the bound-
ary class of Kéhler cone can be represented by a closed, smooth (1,1) form that
is everywhere nonnegative. And they also concluded that the curvature condition
(%) is sufficient, by proving the existence of a smooth solution u to the following

homogeneous complex Monge-Ampere equation:

(w4 ® +/—1900u)" = 0, (1.11)



with (w+®++/=199u) > 0 and the compatibility condition [, (w+®)" = 0, where
® is a d—closed (1,1) form on M such that the cohomology class represented by
w + tP is positive for each 0 <t < 1.

In general, there is no smooth solutions for the degenerate complex Monge-
Ampere equations like (1.11). By observing the special feature of equation (1.11) in
this setting and some old geometric results related with curvature condition (%), we
obtain
Theorem 1.1.6 ([86] Theorem 1). Let (M™,w) be a compact Kihler manifold satis-
fying the curvature condition (1.10). Then, for any closed (1,1) form ¥ on (M", g),
we can find ¥ € [V], such that U is parallel. In particular, for any closed (1,1) form
o, we have

[o] = [B + Aswo]

where [ is a nonnegative C* closed (1,1) form on the boundary of Kdhler cone, As
1 a constant depending on B and w.
The main theorem of Wu-Yau-Zhang[80] can be recovered.
Corollary 1.1.2 ([86] Corollary 1). Let (M™,w) be a compact manifold satisfying the
curvature condition (1.10). Then any boundary class of the Kahler cone of M™ can be
represented by a C*, closed (1,1) form that is parallel and everywhere nonnegative.
If (M,w) satisfies a quasi — (x) curvature condition, namely, for any orthogo-
nal tangent frame e,--- ,e, at any € M, and for any real numbers ay,--- , a,,
Z? i1 Ragzlai — a;)?* > 0 holds everywhere and strictly positive at least at one point

unless a; = --- = a,, we get



Theorem 1.1.7 ([86] Theorem 2). Let (M,,w) be a compact Kdihler manifold satis-
fying the quasi — () curvature condition. Then, dim V' (M,R) = 1.

This theorem weakly generalizes a result of Bishop and Goldberg [10] that any
compact Kahler manifold M"™ with positive bisectional curvature must have its second

Betti number equal to 1.

Finally, in Chapter 5, we consider the existence of generalized Kahler-Einstein
metrics and properness of energy functionals. This is an analog of Tian’s result
[71] on the K&hler-Einstein metrics which asserts that existence of Kéhler-Einstein
metrics is equivalent to the properness of corresponding energy functional.

Let (M, J) be a 2n-dimensional complex manifold, [wy] € H"'(M,C)NH?*(M,R)
be a Kéhler class on (M, J) and [o] = 27y (M) — klw,] for some constant k. Fixing
a closed (1,1)-form 6 € [a], we consider the following generalized Kéhler-Einstein

equation
p(w) — 0 = kw, (1.12)

where p(w) is the Ricci form of the Kéhler metric w € [wp]. If # = 0, equation (1.12)
is just the Kahler-Einstein equation. A Ké&hler metrics w satisfying (1.12) will be
called by a generalized Kahler-Einstein metric. Denote K, to be the set of all Kahler
forms on M cohomologous to wy.

It is easy to see that solving the generalized Kéhler-Einstein equation (1.12) is

equivalent to solving the following complex Monge-Ampere equation,

(wo + V—=100p)™ = exp(hy, — ko)w]', (1.13)



where ¢ € PSH(wo, M) and h,,, € C*(M) satisfying

p(wo) — 0 = kwo + v/ —190h,,, and /

M

exp(ln) )" = [ ()" =V

M

If £ < 0, the complex Monge-Ampere equation (1.13) can be solved by the work
of Aubin [2] and Yau [81]. In [84], we consider the case & > 0, there should be
obstructions to admit generalized Kahler-Einstein metrics. In fact, we show that the
existence of generalized Kéhler-Einstein metric with semi-positive twisting (1, 1)-
form 6 is closely related to the properness of the twisted K-energy functional Vg,
defined by Song-Tian [66].

Theorem 1.1.8 ([84] Theorem 2). Let (M,wy) be a Kdhler manifold, and 6 € [a] =
211 (M) — klwo| is a real closed semipositive (1,1)-form for k > 0. If Vg, is proper
then there must exists a generalized Kdhler-FEinstein metric wgxp € Ku,. Assuming
that the twisting form 0 is strictly positive at a point or M admits no nontrivial
Hamiltonian holomorphic vector field, if there exists a generalized Kahler-Einstein
metric in wekp € Ko, then V., must be proper. In fact, there exist uniform
positive constants Co, C3 depending only on k and the geometry of (M,wq), such

that

Vowo (9) 2 Caduy(0) — Cs, (1.14)

for all ¢ € PSH(wq, M).
In a special case, if [a] = (1 — k)[wo], where 0 < k < 1, we set 0 = (1 — k)wp.

Then the generalized Kéahler-Einstein equation (1.12) is just the Aubin’s equation
p(w) = (1 — k)wy + kw. (1.15)

10



As a corollary of previous theorem, we have
Corollary 1.1.3 ([83] Corollary 1.4). Let (M,wy) be a Kdhler manifold with 2meq (M) =
[wol, and 0 < k < 1. The following are equivalent:

o We can uniquely solve equation (1.15).

o There exists a Kdhler metric w € |wy| such that p(w) > kw.

e For any Kdhler metric w € [wol, V(@) + (1 — k)(Lw — Ju)(p) is proper.

e For any Kdhler metric w € [wo|, there exist uniform positive constants Cs and

Cs such that V,(¢) + (1 — k)L, — Ju) (@) = CsJu(¢) — Cg for all ¢ € H,,.

where I, and J,, are the Aubin’s energy functionals.

1.2 Basic Hermitian geometry
In this section, some basic definitions and facts about Hermitian geometry and
Kéhler geometry are stated. More information regarding this can be found in [43],

7).

e General notions of Hermitian geometry
Let (M, J) be a compact complex manifold of complex dimension n. A Rieman-

nian metric g is called Hermitian if it satisfies
g(JX,JY)=9g(X,Y), foral XY € TM.
In this case, we then define a real 2— form w by the formula

w(X,Y)=g(JX,Y).

11



If w is closed, that is dw = 0, we call g a Kahler metric. Since w and ¢ are equivalent

data, we will often refer to w as the Kahler metric, or Kahler form. It is of type

(1,1), and if locally we write

then

w =1 —lgijdzi AdF

where here and henceforth we are using the Einstein summation convention. The

Riemannian volume form of g is equal to fL—T, and we will denote by V' the volume of

M

T

un

Let V be the Chern connection of g. It satisfies

V2(9(X,Y)) = g(VzX,Y) 4+ g(X,V5Y), forVX,Y,ZeTM.

The torsion tensor and curvature tensor of V are defined by

T(X,Y) = VXY—VyX—[X,Y];

RX,Y)Z = VxVyZ—VyVxZ— VixyZ.

respectively. Since V.J = 0 we have

g(R(X,Y)JZ,JW) = g(R(X,Y)Z,W) = R(X,Y, Z,W).

Therefore R(X,Y,Z, W) = 0 unless Z, W are of different type.

12
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In local coordinates, define the Christoffel symbols ng by

0 , 0
VBZJ 0zk Fi 02!
Then,
7 O
l lm m
M= gm0 (1.20)
and the torsion (1.17) is given by
r(09;1  0gi
k _ 1k E _ K jl 9il
Ti=14-1i=9 (azi - azj)’ (1.21)
while the curvature (1.18) is
g o0 o0 0 ory
R = <____) = g Lk 1.22
iGH 07 9% 024 02) — Iz (1.22)
— _% + P‘?%aipl_
0z'0z7 0zt 071
Note that from (1.18), (1.19) and (1.20) that
R = Riji = Ryj; = 0.
By (1.21) and (1.22) we have
o1y .
Rz’jkz’ - Rkﬁl’ = gml’a—;j = gml’vaki ) (1.23)
which also follows from the general Bianchi identity.
The trace of the curvature tensor
Kl §

13



is called the Ricci curvature of w. And we associate to it the Ricci form
Ric(w) = V—1R;;dz" N dZ.

It is a closed real (1, 1)—form that represents the cohomology class ¢; (M) € H*(M, 2r7Z).

The scalar curvature of w is denote by
R=g"R;
We use V2u to denote the Hessian of a function u € C?*(M):
V2u(X,Y)=VyVxu =Y (Xu) — (VyX)u, X,Y €TM. (1.25)

In local coordinate, we see that

2
VoV ou= Ou

97 027 02t0z3°

Consequently, the Laplacian of u € C?(M) with respect to the Chern connection V

1S

or equivalently,

Au% =vV—=100u A W™t

e Kahler Geometry
As defined above, a Hermitian manifold (M,w) is Kahler if w is closed, i.e.,

dw = 0. Below we give a basic example of Kéhler manifolds.

14



Example 1.2.1 (The projective space P™). Consider the set P™ of all complex lines
passing through 0 in C"*'. This set can be endowed with the (complex) manifold
structure by using the natural projection from C"*1\ {0} onto it. In order to define

a Kahler form on P™ we consider the form
ddelog (120 + -+ |Z,[*),

where Z; are the coordinates in C"*1\ {0}. Note that, when restricting to a complex
line through 0, the form is invariant (because the function A — log|A| is harmonic on
C\{0}). Thus it descends onto a closed positive (1,1)—form on P™. The constructed
form is called the Fubini-Study (Kdhler) form and is often denoted by wpg.

From the definition of Kahler manifold, one can see Kahler geometry is a class
of Hermitian geometry with one extra condition dw = 0. In order to emphasize this,
the following is a well known example of non-Kéhler Hermitian manifold.
Example 1.2.2 (Hopf Surface). Let ¢ : C*\ {0} — C?\ {0} defined by ¢(z) = 2z.
Denote < ¢ > to be the group generated by the automorphism ¢ of C*\ {0}. One can
verify that the quotient C* \ {0}/ < ¢ > has the complex manifold structure. This
manifold is called Hopf surface. It can be proved that Hopf surface does not admit

any Kdahler structure.

We continue to list some important notions on compact Kahler manifolds.
Lemma 1.2.1 (90—Lemma). Let (M,w) be a Kdihler manifold and let wy,w, €
HYY(M,R) and suppose that wy is cohomology to wy. Then there exists a function
f € C®(M,R) such that w; — wy = /—190f.

As a direct corollary of the 90—Lemma, we have

15



Corollary 1.2.1. Given Q € H"'(M,C) N H2(M,R), define
Ko = { all Kihler metrics w with [w] = Q},
then,
@ V009 0 € CX(MLR), [ ou" =0}
{¢ € C°(M,R) : /M pw" = 0,w +/—100¢ > 0}.
The set
Ko ={¢pc C®(M,R): /M¢w" =0,w+ v—1900¢ > 0}

is called space of Kdihler potentials. Then we can define a real-valued functional F

on the space of Kéahler potentials by the formula

1 [ [ 0wl
0 = Yt =y

where ¢; is any smooth path of Kéhler potentials with ¢9 = 0 and ¢; = ¢ (for

example one can take ¢; = t¢). It can be written also as

Fy(¢) = 7

M n"

where the functional J,, is defined by

//a@ w Z%) (1.26)

16



and the integration by parts shows that J,(¢) > 0. Moreover F? satisfies the follow-

ing cocycle condition

F(¢) = Fo() + ) (6 — ), (1.27)

for all Kahler potentials ¢,1. Another useful functional is the Mabuchi energy
functional M, (¢), which is defined by

o=y [ [ X (Rl ~ B2 (1.28)

where ¢, is any smooth path of Kahler potentials with ¢y = 0, ¢; = ¢ and R denotes
the average of scalar curvature R. It satisfies the same cocycle condition as FC,

namely

My(9) = Mu(¥) + Mo, (¢ — 1) (1.29)

1.3 Complex Monge-Ampere equation

In this section, we will recall the work by Yau [81] on Calabi’s conjecture and
briefly discuss his a priori estimates for the complex Monge-Ampere equation on
Kéhler manifold (M, w).

Let (M,w) be a compact Kéhler manifold with complex dimension n. The
Calabi’s conjecture states that there is a unique Kahler metric in the same class
whose Ricci form is any given 2—form €2 representing the first Chern class. Indeed,
this geometric problem can be translated to a Monge-Ampere equation. First, notice
that both the Ricci curvature Ric(w) and 2 represent the first Chern class and

therefore the 90—lemma 1.2.1 tells us that we can find F, only depending on w and

17



), such that
Q — Ric(w) = V—190F,

where F'is unique after normalizing to

/M(eF —1w" =0.

It follows from the 90—lemma, any Kihler metric & cohomologous to w has the form

w 4+ v/—100¢. Suppose function ¢ satisfies
Ric(w + v/ —100¢) = Q = Ric(w) — V—190F.

Now, by making use the local expression of Ricci curvature in local coordinate (1.24),

this reads

2
—v/—100 log det (gi; + %) = —V/—190log det(g;;) — V—100F.
z2i0z;

Although this is only locally defined, the following is globally defined

5 det(g;; + ¢i5)\ =

Therefore,

det(g; + &) &

det(gn) e, (1.30)

where F' is a smooth function on M with [, (e" —1)w" = 0. Equation (1.30) is just

a complex Monge-Ampere equation which is also equivalent to

(w4 V—=100¢)" = eFw™. (1.31)
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The Calabi’s conjecture is equivalent to show equation (1.31) has a unique so-
lution. The uniqueness part was proved in the 50’s by Calabi himself [25] using
maximum principle. To prove the existence of a solution, Yau derived a priori C*
estimates for ¢ and then applied the continuity method.

Define Iy = tF + C; for C; constants and 0 < ¢ < 1. Requiring that [, (e"* —
1)w™ = 0 determines the constants uniquely. Observe that Fy = 0 and F; = F.

Consider the following family of equations
(w4 V=100¢,)" = eftw™. (1.32)
The solution of (1.32) is unique up to constants by Calabi’s proof. Define
T ={t €10,1] | (1.32) is solvable for s < t}.

To prove equation (1.31) is solvable, it suffices to prove that 7" is non-empty, open
and closed. Clearly, 0 € T (set ¢=constant).

The openness follows from the invertibility of the linearized equation of (1.30)
and the Implicit Function Theorem. The hard part for the solvability is the closeness.
To prove this, Yau established the a prior: estimates. The precise statement is:
Theorem 1.3.1 (Yau[81]). Let (M,w) by a closed n—dimensional Kdhler manifold,
and let F' be a smooth real function on M that satisfies (1.30). Then there are

constants Ay, k =0,1,---, that depend only on k, F, and w such that

o[|erw) < Ag. (1.33)
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The desired estimates (1.33) were proved in four steps. In what follows we will
always use C' to denote a uniform constant, but this capital may mean many different
constants.

Step 1. To prove an upper bound for A¢ which depends on the Cy-norm of ¢,

i.e., the inequality
tryg < CeMe=infare) (1.34)

holds for some uniform constants A, C'. This inequality follows by applying maximum

principle to the crucial estimate

A(logtry,g — Ag) > trzg — C

which is obtained by delicate computations.

Step 2. The second step is to show the Cy estimate
sup |¢| < C.
M

A Moser iteration argument is used to prove this estimate.
Step 3. From first two steps, one has |[v/—100¢||coy < C. The next is to
deduce that
IV,008 ooy < C.

To establish step 3, one first considers the quantity S = |V§|§, where V is the

covariant derivative with respect to g. In terms of ¢, it can be written as

S = G259 5 b Opgrs (1.35)

20



where the lower indices are covariant derivatives with respect to g. After complicated

computation, one gets

AS>-CS—C. (1.36)

On the other hand, as g and § are equivalent which follows from the the C? estimate

of ¢,

1
Atryg > ES—C.

One can then apply the maximum principle to S + Atr,g, where A is large, to get
the desired estimate S < C.

Step 4. Finally, one can get the higher order estimates following the standard
elliptic PDE theory: V £k =2,3,--- |

[@]|cr(wy < Ag, for uniform Ay.

21



CHAPTER 2

A priori estimates of Monge-Ampere equation
on Hermitian manifolds

In this chapter, we study the a prior: estimate for Monge-Ampeére type equations
on Hermitian manifolds. In section 2.1, we review some background of this problems
and the notions related with complex Hessian equations. In section 2.2, we give
the gradient estimate for the solution of Hessian type equation. As a corollary, C*
bound for the complex Monge-Ampere equation in Hermitian setting follows. Finally,
in section 2.3, we prove the C? a priori estimate by using the Pogorelov technique.

The results in this section can be found in [87].

2.1 Introduction
As discussed in Section 1.3, Yau proved the fundamental existence theorems
of classical solutions of the complex Monge-Ampére equations on compact Kéhler

manifolds.
det(g;; + ¢ij) = det(gi5) f(2) (2.1)

where f is a smooth positive function on (M, g). Moreover, he also studied the
generalized form of this equation when the right hand side function f(z) may degen-
erate or have poles [81]. Later after that, Cheng and Yau [32], Tian and Yau [73, 74]

solved equation (2.1) on complete non-compact Kéhler manifolds which have natural
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applications to algebraic geometry. All these works essentially depend on deriving
the a priori estimates up to C? by virtue of the continuity method.

From the steps recalled in Section 1.3 for Yau’s a priori estimates (Theorem
1.3.1), we see that the crucial step is to derive the C? estimate which depends only
on the CY norm. Then, the standard interpolation yields the gradient estimates
from C? and C°. However, it is of interest to have a C'' bound directly from the C°
estimate, without using a C? estimate. Such direct gradient estimate was obtained
by Blocki [14] and Guan [46, 47] when the background manifold is compact Kéhler.
Using the same technique as [46], we give the direct C! estimate for complex Monge-
Ampere equation in the Hermitian case. we consider the Hermitian manifold (M, w)
of dimension n > 2 with smooth boundary 0M and seek solutions to (2.1) in the

space of Hermitian metrics defined as
PSH(w, M) ={uec C*(M)| w,=w+V—190u > 0}

Theorem 2.1.1 ([87] Theorem 1). Let u € PSH(w, M)(C*(M) be a solution of
equation (2.1). Then there exist positive constants Cy depending on f, |u|cons) and

geometric quantities of M (torsion and curvature) such that
mA%x]Vu] < Cl(l+r181?4X\Vu|) (2.2)

In particular, if the Hermitian manifold M is compact, i.e. OM = (), then one can
get the estimates for gradient from (2.2).
The complex Monge-Ampere equation on Hermitian manifolds has been studied

extensively. In the eighties and nineties some results regarding equation (2.1) in the
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Hermitian setting were obtained by Cherrier [28, 29] and Hanani [50]. For next few
years there seems to be no activity on the subject until very recently, when the results
were rediscovered and generalized by Guan-Li [44] and Zhang [87] independently.
Later, Tosatti and Weinkove [76, 77] gave a more delicate a priori C? estimate and
remove the conditions for the C° estimate in [44]. Moreover, Dinew-Kolodziej [33]
also studied the equation in the weak sense and obtained the L> estimate via suitably
constructed pluripotential theory.

We also study another important type of fully nonlinear geometric equations,

complex Hessian equation, which includes (2.1) as a special case. We consider

WEAWTF = (w4 V=100u)*F Aw"F = fun (2.3)

u

where k =1,2,--- ,n, and f is a positive function on a Hermitian manifold (M, w).
Notice that if &k = n, (1.4) is just the complex Monge-Ampere equation (2.1), while if
k =1, equation (2.3) becomes the Laplacian equation. So the complex Hessian type
equation is a generalization of both complex Monge-Ampere equation and Laplacian
equation over a compact Hermitian manifold. Similar nonlinear equations have been
studied extensively by many authors [13, 21, 23, 58, 52, 53, 46] and the references
therein. Let us mention that the complex Hessian equation (2.3) is also closely
related to the quaternionic version of the Calabi problem on a compact hypercomplex
manifold with an HKT-metric proposed by Alesker [1]. To answer this analogous of
Calabi problem, it is crucial to establish the estimates for the quaternionic Monge-
Ampere type equation which can be reformulated as a special case of complex Hessian

equation.
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Let H(n) be the set of n x n Hermitian matrices and A(A) be the eigenvalues

of A. For k=1,2,--- ,n, we define

or(A) = o (AM(A)) for A€ H(n),

where oy () is the k — th elementary symmetric function, that is, for 1 < k < n and

A= (A1, ) € RY,

g\ = > A

1<i1 <<, <n

We also define
Dy ={A € Hn) | 0;(A) > 0,5 =1, k}.

It is well known that the k—positive cone I'y is open convex cone for the admissible
solutions of equation (2.3), i.e., the condition (w + /—190u) € T is natural to
guarantee equation (2.3) to be elliptic by [23]. Note that if £ = n, I, is just the
space of Hermitian metrics PSH (w, M).

Our results in [87] give the a priori gradient estimate for the complex Hessian
equation (2.3) under a technique condition.
Theorem 2.1.2 ([87] Theorem 3). Let (M,w) be a Hermitian manifold and u €
C3(M) be a solution of equation (2.3) with (w + +/—190u) € Tj11. Then there exist
positive constant Cs depending on f, |u|cory and geometric quantities of M (torsion

and curvature) such that

max |Vu| < C3(1 + max |Vul) (2.4)
M oM
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In particular, if M is compact, one can get the global gradient estimate from (2.4).
It is worthwhile to mention that the estimate (2.4) does not depend on the lower

bound of f, we may use it to deal with degenerate case.

Remark 2.1.1. In the above theorem, if k = n, one can see that equation (2.3) is

just (2.1) and the condition (w + /—100u) € T)y; is the same as u € PSH(w).

Thus, Theorem 2.1.1 s just a corollary of Theorem 2.1.2.

Remark 2.1.2. One would like to know whether the condition (w++/—100u) € 41

can be weaken to (w + /—100u) € T'y. Indeed, this is the crucial part left for the

solvability of complex Hessian equation (2.3).

Our method of proving the gradient estimate is applicable for more general
complex Hessian type equations. We consider the following complex Hessian equation

with gradient term on the Hermitian manifolds.

or(gi; + b5 + u(2)0i0;) = f(2), zeM (2.5)

wherep(z) and f(z) are smooth functions on (M, g) and f is positive.

Theorem 2.1.3 ([87] Theorem 4). Suppose ¢ € C? is a solution of equation (2.5)
with (g5 + ¢i; + u(2)did;) > 0 for some positive function f. Then there exist positive
constant Cy depending on f,|u|cosy and geometric quantities of M (torsion and
curvature) such that

mA%X\Vu\ < Cy(1+ max |Vul) (2.6)

In particular, if M is compact, one can get the global gradient estimate from (2.6).
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Remark 2.1.3. Using the same method and test functions in the proof of Theorem
4, one can also consider the gradient estimate for the compler Hessian equation of

the following general form:
ok(9ij + bij + aidj + bjdi) = f

where a and b are some smooth functions on the Hermitian manifolds (M, g).

Using the gradient estimate established in Theorem 2.1.1, we have the following
C?-estimate for the complex Monge-Ampere equation (2.1) on Hermitian manifolds.
Theorem 2.1.4 ([87] Theorem 2). Let u € PSH(w, M) C*M) be a solution of
equation (2.1). Then there exist positive constants Cy depending on f, |u|conry and

geometric quantities of M (torsion and curvature) such that
mA%X|Au] < Cg(l—l—rg]z@xmu]) (2.7)

In particular, if the Hermitian manifold M is compact, i.e. OM = (), then one can
get the estimates for Au from (2.7).

Note that, in the Step 1 (section 1.3) of Yau’s a priori estimates, the C? estimate
only depends on the C° norm. In Hermitian case, this type C? estimate can also be
obtained, see [44, 76] which depends on a careful control of the third order terms.
However, since we already established the C! estimate in Theorem 2.1.1, we just use

the standard Pogorelov type test function G = log(m + A¢) + B|V¢|? — A¢ here.
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2.2 Gradient estimate for complex Hessian type equation
In this section, we give the proof for Theorem 2.1.2 and Theorem 2.1.3. We

write

F(A) = ox(X)

Where)\:<)\17'“ 7)\n>€Fk7Fﬁ:gTF

We recall a lemma from [46].
Lemma 2.2.1. For each integer k > 1, there is constant C, > 0 depending only

on k,n such that for any B> 0,A € I';,0 < s; € R with )" | s; = 1, we have

n

S"F(1+ Bsi) > Cugo® V(1 + B)E, (2.8)

i=1
Proof. Notice that the lemma is trivial for the case k = 1. We will only consider

k > 2. We may arrange \; < Ay < --- < \,. This yields
Fli EFQQ 2 ZFnﬁ.

In turn,

> Fi(14+Bs) > Y F"+> F"Bs;=)» Fi+F"B
K3 1 ao—k 7; K3
— : N (M)A,

WhereS\:(l,-~ ,1,1+ B) € R™.
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Now, we apply the Garding’s inequality for polarized o, (see Appendix of [51]),

SO P14 Bs) 2 Y TEON 2 et (Nt (V)

7 7

> Coxot (N)(1+ B)F.

Proof of Theorem 2.1.2:

Let’s denote g;; = g5 + ¢55, W = |V¢[* and L = sup,, [¢|. Suppose the maxi-
mum of

H = logW 4 Ael=

is attained at some interior point p. We pick a holomorphic orthonormal coordinate
system at that point such that (g;;) = (g;; + ¢:7), is diagonal at that point. We may
assume that W(p) > 1.

As (¢;;) is diagonal at the point p, we differentiate H,

% — Ae"0¢; =0, % — Ae" 0 =0 (2.9)

Also, differentiating W = |V ¢|?, we have

=
I

> 0% 0ats + 97 baits + 977 Gatg = 950 bats + Paita + Gidi, (2.10)

W = > g7 6005+ 977 Gajts + 6°7 Gatis = 6% Gats + datia + 6j05(2.11)
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and
Ws; = g%@ Gads + 9% ajds + 9% Gatiz + gf’;ﬂ G0id5 + 9P baids  (2.12)
+9°%60i5; + 95 Gabgi + 9% Gai®ii + 9”7 btz
9% 605+ 9 85705 + 95 batiz + 95 Paits + 95 Gati
+¢aidia + 05 + Gabaij + PaijPa
By (2.10) and (2.11), one get
WV = a®PaPo262 + a®®lo 2bab. B b=bira 213
Vg g,z gJ‘ ¢a¢ﬁ +g,j ‘(ba’ ¢B¢1a+g7j ¢a¢ﬁ¢z¢m ( . )
+95 0?0075 + 95000307055 + |Gal* buitia
+0a0iP56Pi + Pa®;Pai®s; + 005
Again from (2.10) and (2.11) and equations (2.9),
batia = AWe' 00— 36 — g7 6t (2.14)
Gatia = AW 06 — ¢yt — 93 bty (2.15)
Combining this with (2.12), we may write
Wil* = 579578205 + 95763l 6al*bia + 95 |dal D 0ai
Hoatinl* — [dipial” + 2AWe %023
We pick A > 1 sufficient large, such that

(2935%% Y6 R
%74 W2

of A
- 100|g,k5|gij + 591'3) > 0.
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Thus, at the maximal point p,

[x ’L’L W’L’L |W|
0 > Y FiHy ZF T — A0 + A6 %) (2.16)

7

Zﬁ%m§§mﬁﬁ%% (g b3 + 9% dadi)

= ; F ( ,W o ) WQ + i
(957 0atis + 95 05010) (9710020805 + 92| 0al*D501a)
+ W - 7772
¢io¢ 2 ¢5c¢ioz 2 — ¢z 2
0ol 000nl _ pete(— 16 + o5
¢?g |0:0i|*>  Pabaii + Pabaii
T T

We look for some cancelations and simplify the above terms.

ZB _ od 1/3 o
i1 A [ i Ya¥Pi o
ZF”Z(!], P5Pi + 95 Gadii) ZF P05t 93o

7

i1 ~ gf§¢5_ + g%%a ¢ i1 ¢ it ~ c it
S R e S P o S

% % % A

= - Clkf_ Cl ZFZE

v

Wa W2

where C is some positive constant depending on sup,, g5 |
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Now, we deal with the main trouble term,

(0 batin + 92 b50) (07 | PalPPadia + gaﬁ|¢a|2¢5%>
>oF ’

_ 2.17
- %4 W2 )
+Z |¢ia|2 . Z |¢a¢ia|2]
W W2
ap ap _
95 %@5 Bsl?\ | 9 Patis lps?,  |digl? |ps°
- F[ ’ - 1-
ng ) (- )+ (- )
— aB 12 2
X a Qba gbz o ¢a |g,z ¢Oé| Qb
D . (B8
oy W2 W2 W2
“~|gCZB¢a|2 |¢B|2
> _ FZZ ) 1 _
> TP
where C is also a positive constant depending on sup,, |¢% g |
By equation (2.3), we have,
Fij(gija + bij0) = fa Fij(gijd + bija) = fa (2.18)
Thus,
Y Fia=fam Y Flia D Fi=Ja— Y Flgia (2.19)
So,

> Fi %%V*VW@” = % Z(cbafa + dafa) — % > F(giata + giada)

IVf| ¢
> FY R 2.20
wr W (2:20)

i
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where C is a positive constant depending on sup,; |g;;a|-

By combining all above estimates together, we get

Z i [ng bty 2979 0N%  3C

W s AT @i lal
+<bz-z-2|5vi|2>} - ufl kf_2|§/€|
> Z P [Zg“%a% Egﬁ-‘iﬁ%iq% —3C — Ae" (g5 — 9i) (1 + 2';;;'2)
—|¢>il2)] — Chp -2 ’Z/]; (2.21)

Notice that w4+ v/—100u € I';41 is equivalent to, in local coordinates, 0i5 € U1 Tt

follows that

ao—k-ﬂ (gmf)

i >0 forVi=1,---,

n, (2.22)
by the basic property of convex ['y.; cone:
if(\) el = (A|i)ely forVi=1,--- n.

where (A | i) means removing the ¢ — th element of (A) = (A\,--- ,\,) € R™
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Now, we are in the place to estimate the last trouble term in (2.21).
i — ~ 2 ¢z 2
-3 A (o) 25~ o)

_ L (j)ZFzz |¢Z 4+ |¢z L ¢ZF“~'7' 2|¢2|2)

w
L ) E u L ¢ E zz~ L—¢ § ﬁ~_2|¢i’2
- - - 00341 (Gmi) |94
_ L—¢ i 12y L—¢ . L—¢ N k+1\Yml
Ae Ei:F (1+ |6if?) — AP0k f — 24e (f 55 ) -

> A FU(1+|¢l) — (k+2)Ae" 0k f

where we have made use of (2.22) in the last inequality. Indeed, this is the only place
where we need the I'y,; cone condition in the whole proof. Next, putting the above

estimate back to inequality (2.21), we get

aB oB 2 12
ZF”[ZQM ¢a¢6 Zg,z g,z ¢a¢/5 _ 30+A6L_¢<1—|— |¢l|2)

W2
—AeL_¢(k:+2)f— C _Q‘Vf‘
1 - 2|V Ck
[ ZiF”ﬂ o)~ 2>f] AR

Now by Lemma 2.2.1 (taking B = W, \; = 1+ ¢5,s; = |¢i|2),

W
_[Df'iWE 2|V f| + Ckf
> L—¢|\ =) """ = _ _ayJsr s
0 > At (k+2)]] -
1 DW# L 2AVfE| 4 ChfE
= 1- k d) — k i
It A (= — (k4 2)fh) =
> ot [ac o (P (g )ty ¢ (a0 P AVIE ORI )
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where D is a constant from Lemma 2.2.1.

So, either
DWi
— —(k+2)f

Eall

<0,

or

1 1 1
(acs-eDWVE 2V CRIy
4 W2
In each case, we can get an upper bound for W at p, which depends on infy; R;;;,

of 1
Sup s ’g,i18|7 supy, f,supy, [V &[0

In the rest this section, we give the proof of the gradient estimate for the complex

Hessian equation in a more general form:

095 + b5 + ndid;) = f.

The method is similar to the case above, but there are some extra terms which are
not easy to handle. We need to modify the test function. On the other hand, because

of the gradient term in g;; = g;; + ¢;; + j1(2)Pi¢;, we can not choose local coordinates

_ Aoy (W)

to make g;; diagonal, in turn Fii oW,

can not be diagonalized anymore.

Proof of Theorem 2.1.3:

Let’s also denote g; = gij + ¢ij + pu(2)¢id;, W = |[Vo|*> and L = sup,, |4).
Suppose the maximum of

H =logW + A9
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is attained at some interior point p. We pick a holomorphic orthonormal coordinate
system at that point such that g;; and ¢;; are diagonal at that point. We may assume
that W(p) > 1 and pick A sufficient large.

As (¢;5) is diagonal at the point p, we differentiate H,

: W-
% — AN, = 0, WJ — At g = (2.24)

By the same way as (2.14) and (2.15), we have

adia = AW D — pib; — g% 000y (2.25)
batia = AW — 5o — 9% dads (2.26)
From this, we may write
Wy = g9 020% + 9% |0a*Baia + 95|60l DsBja + | Gal*baitia (2.27)
+AW A= (305t + Gidids5) + bitidiidy;

We pick A > 1 sufficient large, such that

(Z 970ty 95 9T 20}

2

N A
W 77 — 100[g% |gi5 + =95 | = 0.

and

]

> sup |u
M
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Thus, at the maximal point p,

W Wi

Zg‘:f%% . > 9379 92 2 . S (g7 65055 + 9% batdir)

= ZFW

w2 w

+z< 97 0atis + 9% 0500) Y07 100 P0805a + 9% 100 Pd5010)

w w2

2 :¢ia¢ja Z |¢a|2¢ia¢36z - ¢Z¢j¢ﬂ gbngjgbj}
¢?j 019505055 . 2 Pabaij T PaPaij
ot T T T

Again, we look for cancelations and simplify the above terms, first

3 i 2(91‘%6% + 9% Patir)

— W
’L,j B
- S (g b5+ 9% ba)
= Z F9(g:5 — 95 — noid3) W .
,J
C I C C i—.
> G D D - S

1,J

= Tk - o ZF— ZF%@J
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where Cy, C; and C; are some positive constants depending on sup,, [g,5,| and the

function p(z). In turn, we have

>

597 Satzs + 05 050i)  L(0510al G500 + 97|60 *05010)

I W W2
+Z ¢ia¢5& - Z ’¢a‘2¢ia¢5&
w W2

7 | O{B ja a 2 CE.BQb’QSia a2 iaPja a2

|$al”
)

_ _ ) . aB 4 12
= ZFU ((bi& + af (ZSB )(%_‘_gaﬁ (bﬁ )_ |g,z ¢ﬁ‘

; : 1—
Wé Tws T Wws o 07 W W (

D 2
_ZFU ’gz ¢,3‘ |¢a| )

W
~C Z F
2]

v

v

where C is also a positive constant depending on sup,, |¢% g \

By equation (2.3),we have,
FY (950 + b + (10i65)a) = far  FY (950 + diga + (ndidy)a) = fa  (2.28)
Thus,
D FU0aba = bafa— D F0a (950 + Hadits + ndiad; + 1io2:29)
J > Gafa— CZW% NPT CWE Y Flgg;
1, 1,J

— Z Fa(diat; + 0it5)
i,J
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we need to control the last term in (2.29). By (2.25) and (2.26), we have

Y Fibatind; = —pY FIo (AW 96, — 6167 — 7 6a042.30)
Y]

i?j

> —pAWeAED N Fliggs — W S Filg)|
i,j (2]

—p Y FUgitio
ij
—u Y Figiita = —p Y FI (G — g7 — udic;)¢io; (2.31)
ij 2

v

)

—CoWkf = Cr Yy FU &P + 12 Yy F916uf |5
1,J
It follows that,
—f Z F¢a(Giats; + di0j5) > —CsW Z Fi|g;| — CsW Z F :¢2.32)
’ — uAWeZ(Ld’) > Figig; —] CoWkf
,J
Combining (2.29) and (2.32) together, we can get

Z Fij?%@ja > —C oW Z FY — Cr AW eA=9) Z Fﬁ(ﬁi@ (2.33)
irj 05 b

—CoWEf + ¢afa

Moreover, similar argument as above also yields,

ZFﬁﬁﬁa@j& > —CwWZFij — O AW eAE=2) ZFﬁ@% (2.34)
ij iJ b

—CoWEf + ¢afa
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where Cj, - - -, C}; are some constants depending only on sup,, | gz‘g | and the function

Lb.
Thus,
'fngdqs 7 T PaPaij
ij aij atj
Z F i (2.35)
Zh]
1 - .
=z W Z(Q%fa + dafa) — Cra Z F9 — Cy3Ae*t=9) Z FY¢i¢; — Cukf
o 2,J 2,7
> 20, 3 P a9 g - Cuks
’ i i.j

where Ca, C13, C14 are some constants depending only on sup,, | ggB | and the function

L.
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By combining all the above estimates together and using the fact that W > 1

is large, we get

0 >

v

Vv

Vv

v

DN R S e
+ 9,

; Fi{( o e — CyAe =9 g,65 — C) (2.36)
A8 < b Ay + 280t m@i) ]
W
—d C _ IV |Vf\
Z Zgi“ﬁ Gads 2935 ot R
;FJ ( V]V + Wg — CyAe =) g5 —
Gi; + 005 _
—AeM (G5 — g5 — noid;) (1 + —JW =) + A% 605
C oV \Vf |
S pi (Zgi“f%% N Zg,‘?ﬁg%ﬁfbisﬁ% LA g
— W W2 2 ° e
FAAL= g 4 AAT=) 5. (1 L %% VJIF/ ¢j¢¢> ]
. vf |
—4 A= k: oVl
= " f T
S Fi (chﬁf%% N > 97 Y 62 LA e
— W W2 1° R
A - - C V/]

+§eA<L Dgs| — 44Ok f — msz—Q ;

2|Vf| + Ckf

1 -
AeAE=9) [5 > F(g; + ¢igy) — Ak f

.3

W3
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Let’s denote g;; + ¢;¢; by Q;5, then

or(Qij) = ok(MQyz}) =1+ W (2.37)

Now, by Garding’s inequality for polarized o} and (2.37), we have

~ oF LES 1
Do Fg+00) = 3 52-Qu 2 ot )k (@) (239)
1] .3 Y

= Copf 7 H 1+ W)

Sl

CfimiwE

v

Finally, the inequalities (2.36) and (2.38) give that

i
0 > At |G E —4l~cf] _ VAT CRY
2 W2
1 [ % 1 2 % %
Y el s s _CWE 2|V 4 ChfE
S| L—¢ _ L—¢ _ '
> fE | AT — k) + (A0 )
So, either
cws Ak fr <0,
4
or

L yCWE 2|V fi|+ Ckfr
e —_
4 W3

In each case, we can get an upper bound for W at p, which depends on inf,; R

(A ) < 0.

11579
3 1

sSup s |giﬂ|7 Sup s f7 Sup s |ka |

U
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2.3 (C? estimate for Monge-Ampeére equation on Hermitian
manifolds

In this section, we estimate the second derivatives ¢;; assuming ¢ solves equation
(2.1) and fis C3(M).
First, we want to fix one notation: in the following proof, we write f = O(|V¢|),

if there exist two nonnegative constants C7, and Cy such that

—Gi|Ve| < f < G|V,

Proof of Theorem 2.1.4:

Let’s denote g;; = g;; + ¢;;. Suppose the maximum of the test function
G =log(m + A¢) + B|Ve|> — Ag

is attained at some interior point p. We pick a holomorphic orthonormal coordinate
system at that point such that (g;;) = (g;; + ¢:7), is diagonal at that point. We may
assume (m + A¢) is large.

As ¢;; is diagonal at the point p, we have the following inequality at p,

0 > Y FiG, (2.39)

oy [(m T A0 _ (m+ A9)lm+ A% | g gg

m+ A¢ (m + A¢)?

43



Now, we differentiate G at the maximal point p,

= _B 21 A,

= —Bg o1 — B(drity + dorop:) + Adi
= —Béipsi — Bop,dni + Adi — By oo

= —B¢ip; — Bop i + O(|V9|?)

Similarly, by V;H = 0, we have

Ad)-
%:—;j} = ~Bo;o;; — Bowdg + O(IVoP)
So,
AG)i(m + A¢);
= +(nﬁ (Z;; % - [B(¢iii + dp, 0w + O(IVO)[B(¢iii + didi) + O(|V[)]

= B*(¢idii + 05, 0ni) (¢3¢ + 0165) + B($idis + $idia
+65,0 + didm) - O(IVe") + O(IVel')

= BY|VoPo5 + ¢itidatn + ¢idit s, ri + 5, 01dkidr)
+B¢y; - O(IVo[’) + Boriors - O(IVe[’) + O([Vol!)

= B*|Vo|*¢;; + B*(¢ndi + drida) - O(IVI*) + B duidp; - O(IVo*)
+B¢;; - O(IVo[) + B¢ + i) - O(IVel’) + O(|Vel)

Vo2 = g ot + g8 (dnidn + dndm) + 0 (bricr + drdir) + (S0
= O(VoP) + (6501 + 95 dr0is) + (95 b + 9% broowa)

+ ity + 05 + riadr + Ordr
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By equation (2.1),

i aan(/\)
= O\

= o1 (Ai)

Z Fﬁ(gﬁa + Qbija) = fou Z Fﬁ<gi55‘ + (bijd) - fa
i iJ

So,

)

> Fiig; = Z Tn1 (N[N = non(N) = nf (2.40)

7

> Fi(Guadr + oudua) = Orfe + Ol = 3 F (g + 91) (241)

Combining the above expressions, we get the estimates for the third and fourth

terms of (2.39),

S (Byw@ R M)i) o

_ Z F{[(Be% + B*|Vo|*6% + B(gor+ g ow)di + Boi - O(IVo|)))]

+[B(drin + g,lzl_@(bﬁ + gf%%z‘ﬁbki) — B*(¢; + dri) i - O(IVo]?)
— B¢ty - O(IVO|") — B(dwi + o) - O(IVI*)]

+HOIVeP) + OV = (gin + ga)} + (dufi + d1fi)

where we used (2.41) to get the last term.
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Note that, all the terms in the second brackets involves the factors ¢;, or ¢r.

We can estimate these terms in the following way, if B is small enough.

B(¢ridy + g,’“f(bkcbﬁ + 9,’%%1’%@‘) — B*(¢ + o) ¢ii - O(IVoI*) = B*brachyi - O(IV )

—B(dni + o5) - O(IVoP)

1 1 I I
> B [Z ~B- 0<|V¢|2>} Sridi + B hmm + 95 Pndr + gﬁlaﬁz%}
1 1
+B | Joun — Boa(on + o) - OV6P)| + B | Joun — O1Vol)ns + o)
> —BC, - O(|Vo’) — B¢ - O(IVel') — B- O(IVé[°)
> —CyB%¢% — C

where Cy,Cy and Cy depends on [V¢l, |g].

Thus, we have

> FT[(Bo} + BAV6Lo% + Blgilor+ gtlon) o + Bos - OVl

v

— Y FUCyB%% — Ci— 2|Vl V S|

> Y FT|(B+ BV — GBY)6% + Blgior + ¢¥on + O(Vel) o]
—Ci = 2|Ve||Vf|

> —Csnf —Cy—2|Ve||Vf]|

For the last inequality, we used equation (2.40) and the fact that B is small enough.
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Now, we will consider the remaining two terms in (3.1).

. AQ); A A <
ZF” [(TZl_:_ A(Z)m _ A¢ﬁ:| — % _ AA¢ (2.44)

where A is the Laplace operator with respect to the new metric 9i5 = 9ij + 4.

By directly computation, we get

Am+A¢) = = Ra+Af+ "R+ 39507 — 3¥10wgul”  (2.45)
35 0hrad:50 + 7 (9305 + 97 0

Everything is in order for the application of the maximum principle to get an upper

bound of the test function except the last two terms.

Since g;; = (g;7 + ¢i;7) is diagonal at the maximal point, G = - Jé)k% Okt
§15710.5a0id + 7 (92051 + 97913 (2.46)
B % 1 +1¢kl_c 1 +1¢pp lgkﬁi‘Q * 1+ i <gfg§iﬁ’_€ + 955?]1‘%)
T3 oa (gf,zgm; +gf,%gi3k>
> szk 7 +1¢k’_€ 1 _'_1¢pp|gk’pi|2 1 +1¢k]5 <|9,i£§iﬁk| + !gf,lfémkl)
I 1| iip]:b‘kl_f
_ ]2
B zpzk 1 +1¢kk 1 +1¢pﬁ 9inl” - 21 + Ok |g?€giﬁk| 2 1|ip]:b|kk

Let Tipr = Gipk — Grpi, then

Grpi = Gipk — (Gipk — Grpi) = Gipk — (Gipk — Jrpi) = Jipk — Tiph
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So,

§15710.5a0id + 7 (92051 + 97013 (2:47)

1 1 1
> E Gipk — Tipk|> — 2———9ipiGin
= ipk1+¢kk1+¢m3‘gpk pk| 1+¢kl§:’gpkgpk’

We will estimate the right hand side of (2.47) by divide it into two cases. For any

fixed index i, j, k,

If [Gipe| < C(m + Ad) maxy{|Tipl, |9ip%|} for some constant C, then it follows

from (2.46) and (2.47),

315710,k + 3 (92051 + 97013 (2.48)
9
> C A 7‘;_ 2 . 2
- 1+¢kl} (m+ ¢) Hl]\%X‘“ p’f| 7|g7,pk| }
> — Ce(m + A
N 6( o)

where Cj is a constant depending on C, |Gk
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If |Gip| > C'(m + Ag) maxys{|Tipk|, |gipr|} for some constant C’ > 4, then it
also follows from (2.46) and (2.47) that,

35710, G4q05G,1 + G (i@ﬁ+g%%ﬁ (2.49)
1 1 1
> \Gipk — Tige|* — 2———giuGipk|
e R T
1 1 ) 1
= (1Gipk| = | Tipk|)”™ = 2—————GiprTipk|
L+ g1+ épp g R
> (5 |)2 L
= Gipk Gipk Gipk
1+¢kk1+¢pp P ]_—f—gbk’*ﬂ pkIp
1 | G| ) B
> — 2{gipg| | |Gipr]
1+ dpr <2(1 + Opp) Pk P
>

2t gy) 0 | O

1 C'|gipil
> Rl 200z ~i‘ > ()

By combining the estimate (2.45), (2.48) and (2.49), we have

1+ ¢ur

A(m + Ad) 1 1
e > o (—07 — cggk: — Co(m + A¢)> (2.50)

1
> _
> —Cy gk . (Cs + C7)

where C'; is a constant depending on inf,; R;; and Af, Cy is a constant depending

lej

on infys R;555 and |g;|.

On the other hand,

¢n 1

2
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Then it follows from (2.43), (2.50) and (2.51) that

m+ A (m + A¢)?

0> Y F {(m FAQ);  (m+ Ad)i(m + Ag);

1
Z ;—Cgl_i_(bn—(CG—'—Cﬁ—Am—i—Al

—2|Vo[|Vf

1
> 0921+¢ﬁ—010

1
+ ¢

+ B0} - A0a[252)

— Cymf — C,

if A is large enough. Where Cy is a constant depending on Cg, A and C} is a constant

depending on 057 O4a 067 O7a m, f’ Ivf|

Now, let us notice the following inequality:

! i1+ oa) )Y
21542 (Hi<1+¢ﬁ)>

%

Therefore, by equation (2.1) and (2.53),

1 1/(m—1) =1
> m—1
> g = mr Ay

i

(2.53)

(2.54)

Thus it follows (2.52) and (2.54) that (m + A¢)(p) has an upper bound C

depending only on sup,, |Af[,sup,, [ infar Riijjl, supa f,supay [giwl, A, B, m.

0
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CHAPTER 3
A priori C*“ estimate of Complex Monge-Ampeére
equation

The a priori C*“ estimate for the classical solutions of complex Monge-Ampere
equation is a crucial step in the continuity method. In section 3.2, we use a pertur-
bation argument to give the Schauder estimate when the right hand side function is
only C*(Q2) for a domain Q C C™.

To establish this type estimate on Hermitian manifolds, we will generalize the
crucial tools: Bedford-Taylor’s interior C? estimate and a local Calabi’s C? estimate
in Hermitian setting in section 3.3 and section 3.4, respectively.

The results in this chapter are contained in joint works with Xi Zhang [85, 83].

3.1 Introduction
We consider a priori C** estimate for the complex Monge-Ampere equation

det(u;) = f € C°. (3.1)

Let’s recall that, to prove the closeness for continuity method, we always assume in a
priori that the solution u is smooth enough and establish the uniform C** estimate

for it. Then, all the higher order estimates follows by the bootstrap argument.
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Generally, if the right hand side function f(z) € C%*(Q) (or even better), the
uniform C** estimate of u follows from the standard Evans-Krylov theory (see [48]).
One key point in the proof is to linearize equation (3.1) and use the Harnack in-
equalities for the non-divergent linear equations. Actually, following the main lines
in the proof of the Evans-Krylov theorem, the requirement of f(z) only need to be
Lipschtz (see [12]) or even f € WP for p > n by using the Harnack inequalities for
divergent linear equations. But this argument does not work for f € C*()), one can
not linearize the equation to follow Evans-Krylov’s proof.

On the other hand, for real Monge-Ampere equation, Caffarelli [19] proved the
following interior regularity:

Theorem (Caffarelli [19]). Let 2 be a convex domain in R™ and u is a convex solution

(understood in the viscosity sense) of the problem
det(u;j) = f, (3.2)

where f is positive and a-Hdélder continuous for some « € (0,1). Assume moreover
that u is equal to 0 on 0. Then u € C*(Q).

However, Caffarelli’s proof for this regularity result relies essentially on tools in
convex analysis, like the geometric interpretation of the gradient image mappings,
and good shape results for sublevel sets which are not available in the complex setting.
In a joint work with Xi Zhang, by adopting some idea from [31], we can establish
the a priori estimate under the weak regularity of f via a perturbation method. Our

result is
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Theorem 3.1.1 ([85] Theorem 1). Let Q be a domain in C* and u € C*(Q) is a
pluri-subharmonic solution to the Monge-Ampére equation (3.1). Assume there exist

positive constants Ky and Ky such that
ul + |Du| + |D*ul < Ky, Ko < f(z) € C¥(Q),

for some constant 0 < « < 1. Then, for any open domain Q' CC S, there exists

constant C' depending only on Ky, Ki,n, f,a and a positive constant C, such that
|D%ulcnqer) < C (Ko, Ky, [fllow, o, dist($Y, 09)) (3.3)

Remark 3.1.1. Note that, in the above estimate, we consider u € C3(Q) which is
a classical solution to the complex Monge-Ampere equation (3.1). In the later joint
work with S. Dinew and Xi Zhang [35], we also proved that any C' solution (in the
weak sense of current) of (3.1) is indeed C** by a similar perturbation argument as

the proof of the above theorem.

The key tools used in the proof are the Bedford-Taylor’s interior C'! estimate
(Theorem 3.1.3) and the local Calabi’s C? estimate (Theorem 3.1.4). In the rest of
this section, we recall these important results that will be used.

First, recall below the comparison principle due to Bedford and Taylor:
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Theorem 3.1.2 ([6] Comparison principle). Given a domain Q C C", let u and v

be CH1(Q) N C(Q) plurisubharmonic functions.t  Suppose that

det(u;;) > det(u;)  in Q
u<v on 0.
Then v < v in the whole ).

Building on this result and using the transitivity of the automorphism group
of the unit ball in C* Bedford and Taylor were able to prove the following interior
estimate:

Theorem 3.1.3 ([6] Interior C? estimate). Let B be the unit ball in C* and let
B' CC B be arbitrary compact subset of B. Let w € PSH(B) N C(B) solve the

Dirichlet problem

det(u;z)=f inB
u=¢on ondB,

where ¢ € CYY(OB) and 0 < fY/" € CYY(B). Then u € C“'(B) and moreover there

exist a constant C' dependent only on dist{B’,0B} such that

1
[ullerasy < C(l|dllcraosy + 1f 7 lcras))-

Remark 3.1.2. Note that no strict positivity of f is needed. Observe also that this

estimate is scaling and translation invariant, i.e. the same constant will work if we

1 Actually the theorem holds for merely locally bounded u and v, see [6]. Here we
state it in this form for the sake of simplicity.
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consider the Dirichlet problem in any ball with arbitrary radius (and suitably rescaled
set B').

Finally let us mention an interior C* estimate which (in the real case) is due
to Calabi [24] (the complex version due to Yau ([81]) for the global case and to
Riebesehl and Schulz ([64]) for a local estimate).

Here we state the complex version which will be the one we shall use:
Theorem 3.1.4 ([64] A local Calabi’s estimate). Let Q be a domain in C" and

suppose that uw € PSH(Q) N C*(Q) satisfy the Monge-Ampére equation
det(u;) = f(2).
Then one has the interior third order estimate
[VAu|lor < C

where C is a constant depending only on n, ||Aullg, infq f, ||V flla, [|[V2f]|la and
dist{§Y,00}.

3.2 A priori C*“ estimate

In this section, we will prove the a priori Schauder estimate (Theorem 3.1.1) via
a perturbation method by using the Bedford-Taylor’s interior C? estimate (Theorem
3.1.3) and the local Calabi’'s C? estimate (Theorem 3.1.4). Besides these two key
tools, we still need the following elementary lemmas. (The proof of these lemmas

can be found in [31].)
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Lemma 3.2.1. If u € C.(C") for some 0 < o < 1, then there exists a constant

C =C(n,a,k,p), such that
|Dkl~L<Z7 T)| S CTa_k|u|Ca(BT(Z))

where p € C3°(C") is a mollifier and

(s, ) = 72 / p(F uluw)du

T

is the mollified function of u(z). In the case of « = 0, the same conclusion is true if

ue CY

loc

(C™) is replaced by u € L2 (C™).

loc

Lemma 3.2.2. Suppose u € C(C") and R > 0. If for any 0 < a < 1,

sup 1% Dii(w, 7)| < 00
wEBR(2),0<T<R

then u is Hélder continuous at z in Br(z) and

ulcaBrey <C sup T Y Da(w, 7)),
wEBR(2),0<T<R

for some constant C only depends on n,« and p, where p is the mollifier and u(z, T)

is the mollified function of u(z) defined as in Lemma 3.2.1.

Lemma 3.2.3. Suppose ¢(t) is a bounded and nonnegative function on [Ty, T1] with

Ty > Ty > 0. If for any s,t with Ty <t < s < T, ¢ satisfies

P(t) < 06(s) +
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where 0, A, B and o are nonnegative constants, and 0 < 1. Then, there exits a

constant C depends only on o and 6, such that

A
<C|—=——+8B Vio <p< R<ZTy.
Qb(p)_ (R—p)a+ ) 0ox>p >~ 11
Proof of Theorem 3.1.1:
For any fixed point zp, we may assume zy = 0 and u(0) = Vu(0) = 0 (if

necessary, replace u by u(z) —u(0)—D;u(0)z; — D;u(0)z;). For any ball Bog(0) CC €,

consider the following Dirichlet problem:

det(v;3) = f(0), in Byr(0)

(3.4)

V|op,r = U on 0Byp(0)

Without lost of generality, we may assume f(0) = 1. Moreover, let
vfi(2) = ! v(2Rz)
(2R)? ’

then we just need to consider the following Dirichlet problem instead of (3.4):

det(vE) =1, in B;(0

vR|op, = wl(2) on 0B;(0)
where wf(z) = ﬁu(ﬂ%z).

Under the original assumption on w,

wf(z) € O and |D*wf(2)| < K, Vz € By(0).
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Here, K is a constant depending only on Ki,n, not on R.
By Bedford-Taylor interior estimate (Theorem 3.1.3), it follows that the solution
v of (3.63) satisfies
[0 s,,.) < C, (3.6)
where Cy = C(n, Ky, K1) is a constant independent on R. Note that we may assume
v® is smooth (by approximating w® in (3.63) with smooth functions and make use

of regularity of complex Monge-Ampere equation in [21]). By the Calabi’s interior

C3 estimate (Theorem 3.1.4),

|D*vf(2)|ovip,) < Coy VO <y < 1.

[N

The standard Schauder estimate implies that there exists a constant C'3 such that
|D30f(2)| < Cs(n, Ko, K1) for any z € B%(O).

Rescaling back to Br(0), we get the following interior estimate for the solution of

the Dirichlet problem (3.4):

D%(2)| < €. 1DP0(2) o) < (3.7)

= Q

for some constant C' depending only on n, Ky and K;.

Let

1
q(z) = §ui3(0)z7;25

and also denote
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From the first inequality in (3.7), v is a smooth function in Br(0) satisfies the

uniform elliptic complex Monge-Ampere equation
det(v;;(2)) =1, in Bg(0).

Thus, by standard interior estimate for uniform elliptic concave equations (e.g., (6.10)

in chapter 7 in [31]), for any 0 < p <7 < R,

|D21§]BT(0) (3.8)

2C
OSCBT(O)DQ’U <

C
(r=p) ~(r—p)

And the interpolation inequality yields,

|D*0(2)|p,0) <

C .. C. .
; €| D0, 0) + 6—2!1)1340) (3.9)

\D3@(z)|3p(g) < —

Choosing € small enough that TE,CP = % By Lemma 3.2.3,
C . c .
| D], (0) < WWIBR(O) < 1510520 (3.10)

From equation (3.4) and the definition of 0, the function ¢ satisfies the Dirichlet

problem:

(3.11)

Also, notice that det(u;;(0)) = f(0). Thus,

det(0;5(2) + u;5(0)) — det(u;3(0)) =0 = Fﬁ@ﬁ(z) =0
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where

J - /01 88:; <t(@ij(2) + ui;(O)) + (1 - t)uij(()))dt (3.12)
_ /0 1 g:; (t03(2) + i (0) ) dr
_ Aﬁi}mma+a 1) (0)) i

By the assumption |D?u(z)| < K; and u(z) is the solution of (3.1) with f(z) > 0,

there exists A > A > 0, such that

AT < ug(0) < AT

2

Hence, we have

% (t%(z) +(1- t)ui;(0)> > (1 —t)" AT (3.13)

_ 1
— F¢& > A”‘1|§!2/ (1—t)"tdt > 5y > 0
0

for any unit vector £ = (&) € C™. It follows that

Putting this estimate back into (3.10), we get, for any v < 1,

C . C . C
[D*l5,0) < 7510182000 < T8 Ban(0) < = 1D ulor(Bm(0) (3.14)
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where the last inequality follows from an interpolation.

Let w = u — v, then w satisfies the equation

where

1
’Lj 8F
ol — / (1= 1)ug(2) + tu(0) )t
0 ij
By the same reason and estimates as (3.12, 3.13), for any unit vector £ = (&;) € C",
~ 1
av€,&5 > A"‘1|§|2/ t"ldt > 6 >0
0
Now, by the Alexandrov-Bakelman-Pucci estimate and the condition f(z) € C*(Q),

|75

sup w < CR
Bar(0)

< CR*™ (3.15)

L2"(B3g(0))

where C' = C(n, d;) is a constant independent of R.

R\ 2
| D% 5,0y < C77° sup w < C(—) ROt !
T

B (0)
Thus,
Tl_a|D3ﬂ’BT(o) S Tl_a|D3U|BT(0) + Tl_a|D3@|BT(0) (316)
7\ - R\ 2+a
< c|(z) Do+ (7))
Let 2R = N7, N > 0 is a constant to be determined. Then
779 D3| (o) < C[Na*1]D2u|Ca(B2R(O)) + NM} (3.17)
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Now, for any 0 < s < t < dy = dist{0, 00},

o Ift—s>2R, ie 7=2<1L(t—ys),
7—1_6|D31~1'|B-,—(0) S C[Nﬁ_1|D2u|Ca(Bt_s(0)) + N2+a

o Ift —s <2R, ie. 7 =22 > (t — s)( we can extend u(z) to outside of Q by

defining u(z) = 0), by Lemma 3.2.1,

C N2+a

Tlia|D3a‘Br(0) < T CT?glu‘Bm%(O) < m’u‘BzR(O)

Combining above two cases together, it follows from Lemma 3.2.2 that

o N o a U|Byg (0
Sling | D%, 0) < C[N D%l g s, (o)) + N** (“wil%)]

_ _ - |U|B (0)
< C’[NO‘ ! sup 17| D% g, —|—N2+°‘<1+—2R )]
7>0,y€Bt—_5(0) ®) (t - 5>2+a

In turn,

U
sup Tl_a‘Dga‘BT(y) < C{Na_l sup Tl_a|D3a‘Br(y)+N2+a (1+—| |BQR§J)F)Q> }
7>0,y€B;s(0) 7>0,y€B4(0) (t - 5)

Set CN*~' =1 by Lemma 3.2.3,

1—a| 35 |ulByr(0)
sup T *|D°u|g. §C<1+—>, V0<p<R<d.
7>0,y€B,(0) ) (R - p)2+a
Again, by Lemma 3.2.2,
|| B, (0)

D% <C<1 $> VO0<p<R<d 3.18

| D ulca(s, o) < C(1+ (R — p)ro p<R<do (3.18)
where C' is a constant depending only on n, Ky, K1, «, f, and (2. U
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3.3 A priori C** estimate on Hermitian manifolds

The regularity estimates of the complex Monge-Ampere equation are closed
related to the study of existence and uniqueness of the Kahler-Einstein metric and
constant scalar curvature metric in the given Kéhler class (see [30]). This motivates
us to extend the results established in section 3.1 (Theorem 3.1.1 and Remark 3.1.1)
from a domain in C” to general Hermitian manifolds.

Let (M,w) be a smooth Hermitian manifold and we consider the equation
(w+V—=100u)" = f(z)w", (3.19)

where 0 < f(z) € C*°(M). When the manifold (M,w) is Kéhler, that is dw = 0, one

can always find a local potential function p € C°°(M) such that
w=+—190p

Let v = p+ u, we can deduce equation (3.19) to be (3.1) locally. Moreover, the key
tools (Theorem 3.1.3 and Theorem 3.1.4) are also applicable. Thus, as a corollary

of Theorem 3.1.1, we get the interior C?“ estimate of v. And the estimate of u also
follows since p only depends on w which is smooth.

Corollary 3.3.1. Let 2 be a domain on a Kdihler manifold (M,w). Letu € PSH(w, Q)N
C3(Q) be a solution of the Monge-Ampére equation (3.19). Suppose that 0 < f €
C*(Q) for some 0 < a < 1 and |u| + |Du| + |D?u| < L. Then, for any domain
Q' CcC Q, we have

|D2/U/|C’[¥(Q/) S C
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for some constant depending on n, L, || f||ce, «, dist(Q',02) and the geometric quan-

tities (curvature and torsion) with respect to w.

However, if w is just a smooth positive (1, 1)-form (not necessarily closed), no
local potentials for w anymore which means one can not deal with this case as
on Kéahler manifolds. On the other hand, Bedford-Taylor’s interior estimate and
the local Calabi’s estimate can not be applied directly, neither. This force us to
extend these two important estimates to Hermitian manifolds. Once the crucial
tools established, following the lines of the proof for Theorem 3.1.1, we can prove
the following corollary:

Corollary 3.3.2. Let 2 be a domain in C" and w be a Hermitian form defined on

Q. Let ¢(z) € PSH(w,Q) N C3(Q) be a solution of the Monge-Ampére equation
(w+V—=100¢)" = f(2)w".

Suppose that 0 < f € C*(Q) for some 0 < a < 1 and |u| + |Du| + |D?*u| < L. Then,

for any domain Q' CC ), we have
|D2/U/|C’E¥(Q/) S C

for some constant depending on n, L, || f||ce, a, dist(§2,092) and the curvature with
respect 1o w.

This corollary gives the a priori C*® estimate of the complex Monge-Ampere
equation with C® right hand side on Hermitian manifolds. Moreover, the interior C%
regularity for the weak solutions mentioned in Remark 3.1.1 could also be extended

to the Hermitian setting via the same method.
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3.3.1 Bedford-Taylor’s interior C? estimate on Hermitian man-
ifolds

The interior estimate for second order derivatives is an important and difficult
topic in the study of complex Monge-Ampere equation. It has many fundamental
applications in complex geometric problems. In the cornerstone work of Bedford
and Taylor [6], by using the transitivity of the automorphism group of the unit ball
B C C", they obtained the interior C*-estimate (Theorem 3.1.3) for the following
Dirichlet problem:

det(u;;)=f inB
U= ¢ on 0B,

where ¢ € CY1(0B) and 0 < f» € CY1(B).

Unfortunately for generic domains {2 C C", due to the non-transitivity of the
automorphism group of €2, Bedford and Taylor’s method is not applicable and the
analogous estimate is still open. Here, we exploit the method of Bedford-Taylor to
study the interior estimate for the Dirichlet problem of the complex Monge-Ampere
equation in the unit ball in the Hermitian setting (notice that for local arguments
the shape of the domain is immaterial and hence it suffices to consider balls). We

consider the following Dirichlet problem:

(w+V/—100u)" = fw" in B,
u=¢ ondB,

(3.20)

where 0 < f» € CY(B) and w is a smooth positive (1,1)-form (not necessarily

closed ) defined on B. We denote PSH(w,) be the set of all integrable, upper
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semicontinuous functions satisfying (w + v/—199u) > 0 in the current sense on the
domain 2. Our result is as following:

Theorem 3.3.1 ([83] Theorem 1). Let B be the unit ball on C* and w be a smooth
positive (1,1)-form (not necessary closed) on B. Letu € CYY(B)NC(B)NPSH (w, B)
solve the Dirichlet problem (3.20) with ¢ € CY1(OB). Then, for arbitrary compact
subset B' CC B, there exists a constant C' dependent only on w and dist {B’,0B}

such that

1
[ullerasy < C([|dllcra@sy + 1f7lcras))-

Remark 3.3.1. Observe that this estimate is scale and translation invariant, i.e.
the same constant will work if we consider the Dirichlet problem in any ball with

arbitrary radius (and suitably rescaled set B').

In the proof of interior C?-estimates, the comparison theorem will play the key
role. Following the same idea as in [21], it’s easy to see that the comparison theorem
is still true for the complex Monge-Ampere equation on Hermitian manifold (M, w).
Lemma 3.3.1. Let Q C M be a bounded set and u,v € C*(Q), with w++/—1900u > 0,
w++/—100v > 0 be such that

(w+ V—=1900v)" > (w + v/ —190u)"
and
v<wu on 0f,

then v < u in .
Proof of Theorem 3.3.1:
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As mentioned above, we will follow the idea of Bedford and Taylor from [6]. For

a € B" let T, € Aut (B") be defined by

Z—a
7,(z) = M@y —r-.

where I'(a) = 1_“:}‘?&) —v(a)I and v(a) = /1 — |a|?.

Note that T,(a) = 0,T7_, = T, !, and T,(z) is holomorphic in z, and a smooth

function in @ € B". For any a € B(0,1 —n) ={a:|a] <1 —n} set
L(a,h,z) =T, T.(2)

and

U(CL, h7 Z) = LTU(Z)’ U(CL, _h7 Z) = L;u(z)a

®(a,h,z) = Lip(z), P(a,—h,z) = Lip(z), forze dB".

where L} means the pull-back of L; for i = 1,2 and L, = L(a, h, z), Ly = L(a,—h, 2).
Since U(a, h, z) = ®(a, h, z) for z € 0B, it follows that

U e CH(B(0,1—n) x B(0,n) x 0B™).
Consequently, for a suitable constant K, depending on 1 > 0, we have
%(U(a, h,2)+ Ula, —h, 2)) — K1 B2 < U(a,0, 2) = (2) (3.21)
for all |a| <1 —mn,|h| < 37, and z € B™. If it can be shown that v(a, h, z) satisfies

(w4 V=190v)" > f(z)w", (3.22)
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where
1
vlah2) =5 [U<a, h,2) + Ula, —h, 2)| — Ki|h]? + Ko(|2]2 = DR, (3.23)

then it follows from the comparison theorem in the Hermitian case that v(a, h, z) <

u(z). Thus, if we set a = z, we conclude that
1
§[u(z +h) +u(z — h)] <u(z) + (K + Ky)|h|?

which would prove the theorem.

Let now

( (w + /—=190v)"
(V=D)ndz! NdZY N - Adz™ A dZn

1

= (det<9z‘3 + Uﬁ)) "

Fw+ \/—_1851)) =

)’IL (3.24)

where g;; is the local expression of w under the standard coordinate {z;}? ; in C".

By the concavity of F', we have

F(w++V-100v) = F(w + T_l(ﬁaﬂfu + 00L5u + 2K2|h’235‘2|2)> (3.25)
= P50 Liw) + 5w Liw) + Kol ol?V 1002

1 . 1 _
5 (Liw + V=100L1u) + 5(Lyw + \/—188L§u)>

2
1 ] 1 )
> SF(Liw+V=100Lju) + 5 F(Lyw + V=109L3u)
1 i
+§F<(w — Liw) + (w— Liw) + 2K2\h\2\/—188\z|2>.

Since the Hermitian metric w is smooth, one can find K, large enough, such that

(w— Liw) + (w — Liw) + Ky|h|*v/—100|z]* > 0. (3.26)
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On the other hand, since L(a,h,z) is holomorphic in z, it follows from equation

(3.20) that

F(Liw++V—100Lju) = F(L}(w+ v—190u)) (3.27)
( L3 (w + v/—100u)" >711
(V=1)rdzX AdZE A - Adzm A dzn
_ ( Li(f(z)w") )
(V=1)ndzt AdZY A -+ Adzm A dzn
= F(Li(f*w)) = Li(f ") F(Li(W)).

1
n

Similarly, we can get
F(Liw + V=100Lu) = F(Ly(frw)) = Ly(f=)F(Lj(w)).
Thus,

(F(E(Fh0)) + F(LY(FH))) + 5 (bl ~T00]2P)

F(w+V—-100v) >
= F(7hw) + 5 (R Fw) + F(L5(f7w) — 27 (f+0))3.29)

1
S PRI Y/=100]: ).

DN | —

Again, since w is smooth and f'/" € C"', choosing K, large enough, we have
F(Li(f7w)) + F(L5(f7w)) = 2F(frw) < F(G|h*V=100]2%).  (3.29)

Finally, we obtain

F(w + v/—=100v) > F(f=w), (3.30)

and thus, inequality (3.22) follows. O
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3.3.2 A local Calabi’s (® estimate on Hermitian manifolds

Calabi’s C3-estimate for the real Monge-Ampere equation was first proved by
Calabi himself in [24]. After that many mathematicians paid a lot of attention to
this estimate. In Yau’s work [81], he gave a detailed proof of the C3-estimate for the
complex Monge-Ampere equation on Kéhler manifolds, which was generalized to the
Hermitian case by Cherrier [28].

Most of these C3-estimates are global. However, in some situations, a local C®-
estimate is needed. For example Riebesehl and Schulz [64] gave a local version of
Calabi’s estimate in order to study the Liouville property of Monge-Ampere equations
on C". And also, for the result in section 3.2 (Theorem 3.1.1, Remark 3.1.1), the
local result in [64] played an important role to get the optimal value of « in the
C?** estimate of solutions to the complex Monge-Ampere equations. Thus, it is also
natural to generalize this local estimate to Hermitian manifolds and hope to find
some interesting geometric applications.

Let (M,w) be a Hermitian manifold. We consider the following complex Monge-
Ampere equation

(w4 V—1009)" = efw", (3.31)

where f(z) € C*(M).
Theorem 3.3.2 ([83] Theorem 2). Let ¢(z) € PSH(w, M)NC*(M) be a solution of

the Monge-Ampere equation (3.31), satisfying

|do., + 006, < K. (3.32)
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Let ) cC Q C M. Then the third derivatives of ¢(z) of mized type can be estimated
in the form

|V,009|, < C for z €,

where C' is a constant depending on K, |dw|y, |R|w, |VR|w,|T|w, VT |, dist($Y,00)

and |V°fl, , s = 0,1,2,3. Here V is the Chern connection with respect to the

Hermitian metric w, T and R are the torsion tensor and curvature form of V.
From the detailed proof in Yau’s paper [81] (see also [62]), in the Ké&hler case,

we know that the quantity considered by Calabi
S = §75* 5" bjm et
satisfies the following elliptic inequality:
AS > —C1S — C,. (3.33)

Here ¢ is a smooth solution of equation (3.31), § denotes the Hermitian metric with
respect to the form wy; = w + V/—100¢, ¢ij, denotes the covariant derivative with
respect to the Chern connection V.

Riebesehl and Schulz [64] used the above elliptic inequality to get the L” estimate
for S. Then, a standard theorem for linear elliptic equations gave the L*° estimate.
For the Hermitian case, due to the non-vanishing torsion term, the estimates are
more complicated.

Thus, aim to get the local Calabi’s estimate, one should establish the similar

inequality as (3.33) on Hermitian manifolds. Indeed, Cherrier [28] gave such an
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inequality:

AS > —C152 — C, (3.34)

where A is the canonical Laplacian with respect to the Hermitian metric § (i.e.
Af =23 f;3), positive constants Cy and Cy depend on K, |R|., [V R|u, |T]w, |VT |,
and |V*fl|,, s = 0,1,2,3. Cherrier’s proof for (3.34) follows closely to Yau’s [81]
computation in the Kahler case. Here, by a geometric understanding of the Calabi

quantity S, similar to [62], we give a simpler proof for the elliptic inequality (3.34).

Proof of the elliptic inequality (3.34):
Let (M, J,w) be a Hermitian manifold and V denote the Chern connection with
respect to the metric w. Let locally w = v—lgi;dzi A dz, then the local formula for

the connection 1-form reads 6 = 0¢g - g~!. We also denote

9955 5
ea = Uad - -1 07, = i) 76.
g g ’ aﬁ aza
The torsion tensor of V is defined by
o 0 0 0 o 0
T(—— 2y — - _
(G928 = Vs~ Vibgm g 5
_ (3%5 N 3ga5> "5
0z 928 '

Notice that T'=0 <= w is Kéhler (and V is the Levi-Civita connection on M).
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The curvature form of V is defined by R = 90 = df) — O A0 = 0(0g - g ). In

local coordinates, we have

R = —55(5ag ) g—l)j _ ik 829115 9k jgagtE th

iaf 1T T 90058 T 99 9289

o _pk
Rijop = 95 R5-

Note that R?% = R0 = 0 and T = T2 = 0, since the almost complex
structure J is integrable and V is the Chern connection.
Let V and V denote the Chern connections corresponding to the Hermitian

metrics w and w 4+ v/—190¢ respectively. Define
h=g-¢g! (3.35)
and
hf = §ii€;gjka (h_l)g = gz‘l?;gj];'
In fact, h can be thought to be an endomorphism h : TV0(M) — T'9(M), such
that §(X,Y) = g(h(X),Y).
Set
S = F7G GG kmrat: (3.36)

where ¢z, = V,, Vi V;0.
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By (3.35), we have

S
Il

9g-g'=0(h-g)-g'h™" (3.37)
= Oh-g-g Rt +h-0g-g7t-h!

= Oh-h'+h-0-h"

= Oh-h*+h-0-h'—0-h-h'+0

= 0+ (V') - nl.
R = 00=0(0+ (V) -hY (3.38)
= R+09((V"h)-h).
By similar computation, we can get

0:

QD
Q

N 0 — h—l(@lvoh), (3.39)
R=R—-09(h™'- (V). (3.40)
Now, using the definitions, one can see that
¢jEm = (vmg)(am 5k) = gjl_c,m'

Thus,
S =375 6 jtmbra = V913 (3.41)

On the other hand,

0
Vi = Vinlh-9) = Vih - g = (5mh+h O — O h) - g,
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SO

Vo,h = —h+h-0,—0, h
ozm

= azimh+h~9m—9m.h+h-(vmh).h1—vmh

= h-(Vah)-h.

Thus,

Vi =Vamh-g=h"1-(Vyh)-h-g=h""-(V,,h) g
Finally we end up with the formula
S = ]Vl’og\g = ]h_l . (@170h)|§ = |§ — 9|§ (3.42)

i.e. S can be thought as the g-norm of the difference between the two connection
1-forms.

Now, we can deduce the elliptic inequality:

AS = ApT' (VY02 (3.43)
= §99,0; < h™'- (VYOh),h=1. (V10h) >,

= 90 < V(- (V) B (VR >,

+ < (B (VMOR)), VA1 - (VIOR) >; )

= G <V, V3(h - (VYOR)), b=t - (V1OR) >,

+§7 < h™' - (VOR), ViV, (=t - (VIOR)) >;

HVORT - (VIR V(B (VIR
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Using the relation R = R — d(h~" - (V'°h)), we have

mtj mtj

IV (V) = GV (R = R ). (3.44)

Recall the Bianchi identities of curvature forms which can be found in [57](p.

135):
Y (R(X,Y)Z) =) T(T(X,Y),Z) + (VxT)(Y, Z); (3.45)
Y {VxR(Y,2) + R(T(X,Y), Z)} =0, (3.46)
where XY, Z € TM and T is the torsion of the connection V (recall that V is not

necessarily the Levi-Civita connection), while > denotes the cyclic sum with respect

to X,Y, Z.

By the first Bianchi identity (3.45), one obtains

Recall the fact that R*® = R%2 = 0, T™! = 0 (since V is the Chern connection) and

T(Om,d;) € TYO(M). Also

T(8:, ;) = T(85,0) = (ViT)(85,0m) = (Vi T)(8:, 0

7 fi

) =0,

R(Op, 03)05 = 0.
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Thus,

R(0;,07)0m + R(95,01,)0; = (V5T) (0, ;).

iy Yj 7

By definition R(d;, 05)0p, = Rﬁmjal and Rinzj = —Rﬁnﬁ, so we get

Ll _ Pl il
Rmz] - Rzm] + Tmz,} (347)
Similarly, one can also obtain
Pl Pl I
Ry = R + T - (3.48)

Moreover, by the second Bianchi identity (3.46) and following the same step as

above we have

—R(T(9;,8,),0;) — R(T (04, 05),0;) — R(T(85,0,),0)

VAR

Rl

mt] 7

+Rfmt+R

mztj -

and Rﬁm‘t,j = 0,7y, 0;) = T(d;,9;) = 0. Thus,

J J

Rl . Rl

mzi t mtj %

+T5R - (3.49)

msj
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Now, using the identities (3.47), (3.48) and (3.49), we obtain

§IViRL - = §IR. - =GR, — TR, (3.50)

mt] mtj % maij,t msy

=g p __ ~lk ~ijis pl
= 4g Rmkij,tg —g"TR

msj

= gij (Ril_cmj,t + Trii,jtésfc)élk - gijﬂiRLlsy
= _giEREimE,tg + gZJTfm gt ~Z]T£R£nsy

=~ Ry 1™ — G0 ™ + 57T 5 — GO THR,

tgzlg + ngrlm jt glgjjziRl

msj

- ]Rmmk tg - gjjgﬁm

- Rka tglk - gZJle mtgzlg + gz]Tl P ~Z]TSRZ

ma,jt msj
From the Monge-Ampeére equation (3.31), it follows that

RZ

imk,t

=ViR — —Vifo (3.51)

In the following, we denote ¢ = O(S®) if there is a constant C depending only on
K,|dw|y, |R|w, [VR|w, |T|w, [VT|w and |Vof|, , s = 0,1,2,3, such that ¢ < CS“.
Note that V is O(S2), so

Rl = 0(52) + 0(1), (3.52)
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For the second term in (3.50)

?

Tt = ((359nz;—3;;gn3)§"§) (3.53)

mt

<.l

= (ij_l_cngng)mt = @t@mT’}l_ﬂngng

= Vt(vmjjjl_cn - (ém - em)zjjjl_cl)gng

- <vt(vaﬁn) — (0, — 0", ViTsn — V(O — 0),) Tty

(0 — 0LV Ty — O — 0,0)L (Vi Ty — (6, — Ht)stjfcs)>§”§-

Again, by the fact that V is O(S2) and |[h~ - (V20h)|; is also O(S2), we have
1G9 ™| < O(S7) + O(8) + C|VH (™" - (V'Oh))| + O(1). (3.54)

Similarly, we can get the estimate for the last two terms in (3.50)

GITL, 5] < O(S2)+0(8) + CIV* (A~ (VIOh))| + O(1),  (3.55)
GITER, G| < CIVULH(R™ (VROR)| + O(1). (3.56)

Put the above estimates (3.50)-(3.56) into (3.44), we can conclude that

§IVVG (- (Vi) (3.57)

< O(52) 4 O(8) + C|VO(h" - (VYOR))| + C|VO (AL - (VOR))].
One the other hand,

GIVIV, (0 (V20R)) = G0, Vi (VH0R)) = (5 Rl ) (V10h)

mij
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where

(57 R, 5)#(h™" - (V'Oh)
= GH{h (VR R — (VOB Res — b= - (ViPh)LRS -}

m= Vsij m= g $7 "mayj

dzt @ dz™ ® @

and
GIR = GRS+ T = G R + G950+ GOT

mij imj mi,j

Thus

Hence we conclude that

1§V (- (Vh)) (3.58)

IN

G7VVi (- (VIOR)] |7 B ) # (- (VOh)

mij

O(82) + O(S) + CIV (b= - (V'h))| + C[VO (b=t - (VHOh))].

IN

Finally, by (3.43) and (3.57), (3.58), we obtain the elliptic inequality:
AS > —C182 — O, (3.59)

where C1, Cy are positive constants depending only on K, |dw|,, |R|w, |V R|w; |T|w, |VT|w
and |V*f|,,s=0,1,2,3.
0
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Now, we are in the place to prove the local Calabi’s estimate. We will use
inequality (3.34) and delicate integration by parts to get a L? estimate for u. Then,
applying the Moser’s iteration technique to complete the proof.

Proof of Theorem 3.3.2:

By the assumption (3.32) for the solution of equation (3.31), we know that

1
39 <gs < Ag  for some constant A >0,

where A depends only on K and || f||co, and g, denotes the Hermitian metric with

respect to the form wy = w + /—199¢. Thus,
S = (96)"" (96" (96) ™ O tmrst < N98)”" (96) 9™ Sstm et (3.60)
On the other hand, we have
79 bt = (gfg’”i jEm)Z_ (9)i9"™ b5
= 9" i + 950519 9™ 6 ms
where we used equation (3.31) in the last equality above. Thus
S < Mgl " by — O . (3.61)

Notice that gfgm%j,;ml- = Mg, (9™ V1V, (v/—=100¢)) is a globally defined quantity.
Therefore we can estimate for every sufficiently large exponents p, o, and every non-
negative test function n(z) € C3(Q):

wh _ T w
ST = <A [ ST g g g — D] (3.62)
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Now, using the following identity:

Gjimi = Djiim + Pk Ry — GsiRe
= ¢jlmk =+ (bSlemk: + (bsk Gml (b]tlek ¢]kkal

i + C1,

where C is a constant depending on K and |R|,. Therefore, we have

TL

o w" o— m
/ S UPH— S )‘(/ S 177p+1 l(bml]k
Q Q

n!
n

ST (G = A5

S~

< )\/Sa—l p+1 ]k(Aqb) +CQ/SU_177P+1W_7
Q nl Q n!

where (5 is a constant depending on C; and Af.
Now, using integration by parts, it is easy to see that

n

o— ik w

/ ST g (AG)

Q mn.

—f qo—1,p+1 ik Wy

= [ eSS gy (Ad)—y
Q n

-1

_ / e~ 57 1Pt/ ZTOH(Ag) A (“‘b
Q n—

— /\/—_1d(e_f5’”_17]7’+15(A¢))/\
Q

1)
-
(n—1)!
- [ VAT ST ) no(ag) A

= [-1II
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Next, we will estimate I and I1. First,

n—1

I = /Q V=1d(e ST 1Pt a(Ag)) A (:i o (3.64)

n—2

= —/ V—1e ST PO AQ) A dwy A 2

By the equivalence of two forms w and wy (i.e., the assumption (1.2) on ¢), we know

_ wZ’Q 5 Z’Q
I(AP) N dwg N -2 " O(AP) N dw N =2 (3.65)

B w
< Cg|8(A¢)\g¢’dw|9¢E

S 045%("}_7
n!
where Cy is a constant depending on |dw|gy, || f||ce and K (for the justification of the
last inequality we refer to the formula of S given in the appendix). This estimate
yields

wn

I§C5/S”%nf’+1 , (3.66)
Q mn.:

for some constant C5 dependent on w, || f||co and K.

Let us now estimate the second term:

= /Q V=Td(e~) ST A BAG) A (:f 5 (3.67)

n—1

+(o—1) /Q V—=1e 1 S72P L AS A O(Ap) A (:i i

n—1

+(p+1) /Q V=187 \nPdn A O(Lp) A (:i 1)!

C«ﬁ(/saénp+l%+(0_1)/sag‘vsmp+l%
Q : Q :

1 w"
+(p+1)/S”‘277”\V77I—.),
o) n:

IN
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where Cg is a constant depending on || f]|¢1(.) and K.

By the estimates (3.66), (3.67) and using Cauchy’s inequality
+1go—3 (0 —1)° bi1cos 2 +1 go
(o —1)nPT 8772 |VS| < 4—77” STE|IVS|F+en™ S
€

we have, for € > 0 small enough,
/ ST < C7<(0 - 1)2/ So3|v S|Pt +/ Sl (3.68)

o+ 1) [ shion 4 [ s,
Q n. Q

n!
where C7 is a constant depending on |dwl,, |R|., K, || f|lc1(w) and Af.
Now we are in the place to use the elliptic inequality (3.34) in the introduction.

Recall that

NS > —CS? — (. (3.69)

Multiplying by S°~2nP™! on both sides of the above inequality and integrating over

2, we have

—C / se=aptt s o / go-2pt1 ¥ < / ST 2PN LSS (3.70)
Q n' Q n' Q n'
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The right hand side of above inequality can be estimated as follows

/ 5072np+1A¢Sw_‘
Q n

- / ¢! §72p+1/Z1908 A
Q

n—1

@
(n—1)!

n—l

_ /\/_d £ 97-2pH198) A /\/ Td(e 57271 A DS A

(—1

n—2

= —/ V—le‘fS”_zangS/\dw/\(

—(o0 —2) /\/ lefg°—3 p+185/\85/\

n—l

(n—l)

n 1

(n—1)!
_Ca(o —2) / st vsRL 1 ¢, / sTph v
Q n' Q n

p+1/\/ 1e 7S 2Pon A OS A

IN

wn
+Colp+1) [ ST pI|VSI;
Q
From this, we obtain,
c—3, p+1 an
(0—2)/3 P VS| —
Q n.
o—2.p w" o—2, p+1 w"
< Cu(+1) [ S PITnlvS|S+ [ 7 eS|
Q
S(r—* P+1w /SU 2 p+1w )
+/Q K n! Q -
Now, by Cauchy’s inequality again,

1
507277p+1|v5‘ S 6’v5|25073np+1 + 4_?7p+15071
€

(p+1)?

(p+ 1S 2P| Vn||[VS| < e|VSPST Pt + Tn”*lS"*IIWF-
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n—l

(n—1)!

n—l

(n— 1)!

(3.71)



These two inequalities, together with (3.71) and (3.68) yield

/ SopL (3.72)
Q n:
< 01102(p+1)2(/50—§np+1w_+/Sa—énzﬂrlw_

o—1 w" o— w" o— — w"
+/QS 2np|Vn|H+/QS 277”“5/95 L 1|V77|25)
forp>20>4.

Now, let Br,(z) CC Q2 beaball,andlet 0 < R<r <t < Ry,Ry— R <1. By
choosing an appropriate testing function 7(z), with 0 < n < 1,9(p, = 1,9|lm/B, =

C - _
0,|Vn| < 7=, and putting p = o — 1, we conclude that

w™ 1
o__ < 4 o—2
/Bt(z)<Slr]> n‘ = 0120 /Bt(z) {(t _ 7")2 (577) S
]‘ o—1 % o—% % o—1 o—2_ 2 z
T T(STI) Sz 4+ (Sn)7 2nz + (Sn)"'n+ (Sn)7*n ]{%—33)
By Young’s inequality

a® 1 v 1 1
abgeg—kmg, fore>0,a+gzl.
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It follows that,

t i T(Sn)ails% - % ((Sn)ol>":‘1 * e”—lla (t i TS§>U;004 T i 1’ﬁ -7
@EMJSWP%JS ;%«Sm“ﬁ”2+g;%<@jﬂgﬂ?a:ai2J%=%
o = () s () - -
s (50T g (9n) = 0=
o— 2
st < () () = STy =0

All the above inequalities combined with (3.73), lead to

w™ 1 1
S7— < (C13B(€)°
/Br(z) nl = P (€) ((t —r)e * (t—r)

B(e)7t" w™\ 2
< —t T —
= 013(t_7a)0</3t(z)5 n,) )

where B(e) is a constant depending on e which comes from the coefficients in the

(SE]

Young’s inequalities above.

Now we can apply the Meyers’ lemma:
Lemma 3.3.2 ([60]). If u = u(x) is a nonnegative, non-decreasing continuous func-

tion in the interval [0, d), which satisfies the functional inequality:

u(s) < ¢

l1—a
(u(r)) ,  forany 0 < s <r <d,
r—s

with o and ¢ being constants (0 < a < 1), then
20te o
o< (270 )

w0 = (a7
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Using (3.74) and applying the Meyers’ lemma with d = Ry — R,s = r —

1

R and ¢(s <fBR+s oL ) , one can obtain

D D\

and thus

(/B o SU%T); = %B(E)- (3.75)

From this, we obtain the L estimate of S for arbitrary p. However, by tracking the
constant B(e), one can find that B(e) ~ o*. Thus, we cannot get the estimate for
supg S by letting 0 — o0o. We should instead use the standard Moser iteration to

finish the L estimate for S.
Recall that by inequality (3.71) we have
o—3 p+1 pw"
(0—2)/3 Nt
Q nt
B W™ o W
< o+ D) [ SpalvsIS + [ sorphies);
Q Q

—l—/S"éanw /So 27]p+1w'>
Q Q n

Coupling this with Young inequalities

1
307277p+1‘v3’ S E|VS|2S¢77377}7+1_i_4_,,7p+150717
€
1 2
0+ DS nl[vs) < duspsript ¢ gy
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we have

(0-_2)/510'3?7p+1’v5’2w_' (376)
Q n

< 014/M D— 15«0 1|V |2 Sa 1 p+1_{_Sg_, p+1—|—SU 277p+1w .
- Q 02 n!

Let now g =0 — 1 > 2, and p = 1, then one obtains

/ G492 2|VS|2W (3.77)
Q

1 1 1 1 1 W
< C / SV 2 + S92 + _— GQat3p? 4 g2

By the Sobolev inequality

(/_> SC(L|VU,2%7>2 +c(/ﬂvz%)%

applied to v = nS%, we conclude that

m—1

( /Q sty ) (3.78)

< cul([19asHL)" + ([ wsh %) ]
< cal( [sronr+ Grsaosea) o (e

Using inequality (3.77), we have

(3.79)

< 2 .Qq 2 Qq q q 2 q q,.2

2 n
Sq+2 T} + q Sq_1n2> (U_
qg—1 n!

Q
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for any ¢ > 4.
Again, let Bg,(z) CC Qbeaball,andlet 0 < R <r; <ry < Ry, Ry—R < 1. By

choosing an appropriate testing function 7(z), with 0 < n < 1,7, = 1,9|m/B,, =

0,|Vnl < .=,
wh m—1
(/ Sqm—1—> " (3.80)
n!
By (2)
< C / ((1+ - ) ! +1)57+ < grts 4 1 —— 8" 1)‘*’
- Y Bry(2) (q—1)2"" (ry —11)? q—1 q— n!
1 1 w"
< qCoyl——— + 1)/ (591 501 4 g+
(r2 —11)? Bry(2) n!
1 1w
< qC’21( + 1)/ Sq+§w—
(rg —11)? By (2) nl
Thus,
11 g1, o < [Ctl—ry 4 ) IS 381
LT (B, (2)) ¢ (o —Tl) L5 (Bry (2)) .
forany 0 < R <71y <71y < Ry.
Let &7 = g + 5 and 7, = R+ (Ry — R)27". Then,
m \¢ m-—1 _
qr = <m> + — and |ry — 11| = (Ro — R)27*
By (3.81), we have
1 1
1 :|qk aj . 2
190 s, o [C%<-%U;Tj75; ||HHHHB“Q) (3.82)

1

1
< qdf qk q ag )
< a (CO+ g "2 18IS sy
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QkJr%

where a;, := =_-2. By iteration, it follows from (3.82) that
|‘S||qu+1+2 B k+1(z)) (383)
1 q%. 2i Hf:1 @i k a,
[Hq (cO+Gmmp) 2] IS,
(Ro — R)? L9+ (B,, ()
+l q_1m
Notice that a = 2 = ==L — _m k=1 g,
9k qk m 9k
k
Ha.:<L>k@...q’f1:< m )’“q_o
i1 Z m—1/ q Ak m—1/ g
and thus
m + 1
li =
k;n;Haz o =
Moreover,
1 1 i i
Vol = ( + o)) T i
Hq ( TR —R? ) Hq RO—R))
When k — oo, it is easy to show that 37, - < oo and > 777, 2 2 < 50. Notice also
1
that log([ [, ¢) < co. Thus,
ko1 1 Ly
i 1o (CO e L))ot <o
i Lo (CO+ =) "2 <
It follows from (3.83), by letting k — oo,
Sl < CJ|9 . 3.84
Ille~ < CUSIE, L (3:34
Choosing now o = ¢q; + % = o+ & in (3.75), we finally obtain
S]]z~ < C, (3.85)

91



where C'is a positive constant depending on K, |[dw/|y,, |R|w, |V R|w, [T |w, |VT s, dist(€Y, 00)
and |V°f|,,s=0,1,2,3. 0
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CHAPTER 4
On the boundary of Kahler cone

Kéhler cone is the convex cone formed by all the cohomology classes that can
be represented by smooth closed (1,1) forms which are everywhere positive. It is
interesting to investigate the question that whether any boundary class of the Kahler
cone can always be representable by a smooth closed (1, 1) form that is everywhere
nonnegative. In section 4.1, we introduce the background and recall some works
done by Wu-Yau-Zheng [80] on this geometric problem where they related it to a
degenerate complex Monge-Ampere equation.

In section 4.2, we deduce some geometric results for the manifolds with the non-
negative quadratic orthogonal bisectional curvature condition (see Definition 4.1.1).
As a direct corollary, we recover the main result in [80] which asserts that any
boundary class of the Kéhler cone of (M,w) can be represented by a C* closed (1,1)
form that is everywhere nonnegative and parallel if M satisfies the non-negative
quadratic orthogonal bisectional curvature condition. A result on the rigidity of
hY1(M,R) under this curvature condition is given in section 4.3.

The results in this chapter can be found in [86].
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4.1 A degenerate complex Monge-Ampere equation

Let (M,w) be a compact Kéahler manifold. Denote by
H(M) = Hg'(M) = H"' (M) )H*(M,R)

the vector space of real (1,1) classes. Write (M) for the Kéhler cone in H(M),
namely, the convex cone formed by all the cohomology classes that can be represented
by smooth closed (1,1) forms that are everywhere positives. We are interested in
the boundary set B = KC\K of the Kihler cone. We will call a (non-trivial) coho-
mology class a in B a boundary Kahler class of M. We want to know when « can be
represented by a closed, smooth (1,1) form that is everywhere nonnegative.

In general, such a result does not hold without any extra conditions. This
follows from the well known fact that a numerically effective line bundle on a compact
complex manifold M may not admit any smooth Hermitian metric whose curvature
is everywhere nonnegative. The first such example were discovered by Demailly,

Peternell and Schneider in 1994 [34]. They showed that for a non-splitting extension
0=-0—=E—-0—0

on an elliptic curve C the line bundle L dual to the tautological line bundle of the
projective bundle M? = P(€) does not admit any smooth Hermitian metric with
nonnegative curvature. In fact, they prove that any singular Hermitian metric on L
with nonnegative curvature must have logarithmic singularity, so the metric cannot
even by continuous. Clearly, L is a numerically effective line bundle on the ruled

surface M, since £ is numerically effective on C.
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Given this failure, one need to seek extra condition to guarantee that any nu-
merically effective line bundles, or more generally any boundary classes of the Kahler
cone, will always be representable by a smooth closed (1,1) form that is everywhere
nonnegative. In [80], the authors found a sufficient curvature condition for this as-
sertion to hold.

Definition 4.1.1. A Kdhler manifold (M,w) of complex dimension n > 2 is said

to have nonnegative quadratic orthogonal bisectional curvature (NQOBC) condition

at p € M if: for any unitary frame {ey,--- ,e,} of TI}’O(M) and any real numbers
ai,--- ,a, we have
ij=1

And we say that a manifold (M,w) satisfies NQOBC' if it does for any point
pe M.

In fact, the curvature condition NQOBC comes out naturally from the Bernstein
type technique and it was studied in some previous works [10, 54]. It is weaker than

requiring M to have nonnegative orthogonal bisectional curvature:

R(V,V,W,W) >0

for any orthogonal unitary pair V, W € T19(M), while the two conditions are equiv-
alent on complex surfaces, i.e. dim M = 2.

Also note that if a product of Kéhler manifolds M; x M; has NQOBC then
so must each factor M; and Ms. However, the reverse implication may be false in

general: M; and M, may both have NQOBC which M; x Ms; may not.
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Under the NQOBC condition, Wu-Yau-Zheng proved the following result:
Theorem ([80]). Let (M,w) be a compact Kdhler manifold satisfying the NQOBC
condition, then any boundary class of the Kahler cone of M™ can be represented by

a C* closed (1,1) form that is everywhere nonnegative.

The key point of the proof in [80] is that they deduced the original geometric
problem to a special form of degenerate complex Monge-Ampere equation as follow-
ing.

Let w be the Kéhler form. Consider a path in H(M) from |w] to the boundary
class a € B:

ap = (1 —t)[w] +ta, fortel0,1].

Note that for 0 <t < 1, a4 lies in the Kahler cone. Then

a(t) :== %/Maf‘

is positive for 0 < ¢ < 1, and a(1) > 0. Here we denote by V = [, w™. Let us fix
a smooth (1,1) form 7 in the class « (certainly if 7 happens to be nonnegative then
we are done.). Since a(t)w” defines a smooth volume form on M, by the result of
Yau on the solvability of complex Monge-Ampere equations, there exists a smooth

function u; on M, unique up to a constant, satisfying the following equations

w+tn —w) + ddu)™ = a(t)w"
(w0t =) + dd°w)" = aft) )
w+t(n—w)+ddu >0,

for all 0 <t < 1. If there is a smooth limit of wu;, say uq, as t — 1, then n + ddu;

will be a desired nonnegative (1, 1) form representing the boundary class «.
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In fact, this feature is equivalent to the following partial differential equation
problem. Let ® be a d—closed (1,1) form on M, such that the cohomology class
represented by w + t® is positive for each 0 < t < 1. In other words, for each

0 <t <1, there is a smooth function f; on M such that
w+td+dd°f, >0, on M.

We assume that

/ (w+®)" = 0. (4.3)

The goal is to find a smooth solution v to the following equations

(w+ P+ ddv)" =0
(4.4)
w—+ &+ ddv > 0.

Here, we remark that the condition (4.3) is exactly the compatibility condition for
equation (4.4).

In [80], the authors proved:
Theorem ([80]). Let w and ® be given as above. Suppose that the compact Kdihler
manifold (M, w) satisfies the NQOBC' condition. Then there exists a smooth solution

v for the problem (4.4) and (4.3).

97



The approach for the above theorem is by the perturbation method. Instead

solving the degenerate equation like (4.4), one consider

(W +tP + ddv)" = y(t)w"
w + t® + ddv; > 0 (4.5)
fM v =0

where

1
~(t) = —/ (w+td)", forallt € R.
V Jm

It is easy to see that y(t) is a smooth function which is positive on [0,1) and (4.3) is
equivalent to y(1) = 0. To solve (4.4), it suffice to show that there is a smooth limit
for a subsequence of {v;} as t — 1.

In general, one can not hope to solve the degenerate Monge-Ampere equations
like

det(u;;) = f(z) with f>0

smoothly. The counter-example can be found in [7]. In general, one can only hope
for O regularity in the degenerate case (e.g., [45]). Thus, some special properties
should be involved here to insure the existence of the smooth solution to equation
(4.5).

The key observation in [80] is that, under the condition NQOBC, they can prove
Alog(try,w) >0 (4.6)

where A is the Laplacian operator with respect to the Kahler metric w; = w + t® +

ddvy. This inequality follows from the Chern-Lu formula [20, 59]. Applying the
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maximum principle on inequality (4.6), we conclude that log(tr,,w) depends only on
t.

On the other hand, linearizing equation (4.5) with respect to ¢, we have

A(vy — tvy) = C(t) — log(try,w), (4.7)

where C'(t) is a constant depending only on t.
Thus, the function v; — tv; depends only on ¢ by the maximum principle, since

the right hand side C(t) — log(tr,,w) does. By the normalization condition,
/ U’tw” = 0.
M

vt—tv't:O on M.

Thus, we obtain

Solving this ordinary differential equation, we conclude that
V¢ = th

for some smooth function h on M with w + t® + dd°h > 0 for all 0 <t < 1. Finally,

let t — 1, it gives a nonnegative, smooth (1, 1) form
wi =w+ D+ ddh

which satisfies w] = 0.
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4.2 On the Boundary class of Kahler cone

In the previous section, we reviewed Wu-Yau-Zheng [80]’s main result and their
proof by solving the degenerate complex Monge-Ampere equation in which the cur-
vature condition NQOBC plays the crucial role. In fact, this condition has been
studied in many old works [10, 54]. In particular, a nice result related with this
curvature condition was given in [54] that,

Lemma 4.2.1 ([54]). If a compact Kdhler manifold M satisfies NQOBC' condition,
then all harmonic forms of type (1,1) are parallel.

Observation this lemma, we prove a geometric result about the cohomology
classes in the Kahler cone.

Theorem 4.2.1. Let (M™,g) be a compact Kdhler manifold satisfying the curvature
condition (). Then, for any closed (1,1) form ® on (M",g), we can find ® € [®],

such that ® is parallel. In particular, for any closed (1,1) form «, we have
[a] = [B+ Aswo]

where (5 is a nonnegative closed (1,1) form on the boundary of Kdhler cone, X\ is a

constant depending on 3 and wy is the Kahler form on (M™, g).

Proof of Theorem 4.2.1.

Consider the equation

o1 (w + @ + 00v) = C (4.8)
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where C is some constant to be determined. The above equation is equivalent to
Av=C—(n+Tr,®)

By standard theory of partial differential equation, we know Au = f is solvable if

and only if [, f = 0. So, if we choose

1 1
C n—i—vol(M)/Mw NP,

there is a smooth solution to equation (4.8).

Let ® = ® + 9dv, then the equation is

o(w+P)=C (4.9)

Recall a well-known fact that a closed (1,1) form ® on a compact Kahler manifold
is harmonic if and only if its trace is constant (see [8] (2.33)). It follows that w + ®
is harmonic. And thus, ® is parallel by Lemma 4.2.1.

Let A, be the smallest eigenvalue of the (1, 1) form @ (under the fixed orthonor-
mal frame) and define ¢ = ® — A\wo. Then, it’s easy to see that ¢ is nonnegative
everywhere on M™ and on the boundary of Kéhler cone.

Thus, for any closed (1,1) form «, we can find a nonnegative closed (1,1) form

[ on the boundary of Kahler cone such that
[o] = [B+ Aswo

where wg is the Kahler form. U
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As an application of above theorem, we give a new proof for the main theorem
in [80].
Corollary 4.2.1. Let (M,w) be a compact manifold satisfying the curvature condi-
tion NQOBC. Then any boundary class of the Kdhler cone of M™ can be represented

by a C™ closed (1,1) form that is parallel and everywhere nonnegative.

Proof of Corollary 4.2.1.
Suppose « is a closed (1,1) form on the boundary of Kéhler cone. By the
definition of boundary Kahler class, we know there exists a sequence of smooth

closed (1,1) forms w,, which are everywhere positive such that
Wiy — Q.

Now, consider the integration to be a continuous functional on the form space H (M),

and by the convergence, we get

/wﬁl/\wo H/a Awy™  k=0,1,--- n. (4.10)
M

Consequently, we have
/ " AwpF >0 forVk=0,1,---,n
M

By the result of Theorem 4.2.1, there is a parallel closed (1,1) form & € [a].

Thus, the eigenvalues of & are all constant on M™ and

OS/ o AWl k—/ aF A Wik O'k(d)/ wy - (4.11)
M M M
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In turn, we obtain the fact that
op(&) >0, forVk=0,1,--- n.

This means & is in the I';, convex cone. So, & € [] is nonnegative everywhere.
U
Remark 4.2.1. Notice that, in our result, the nonnegative (1,1) form can also be

parallel on (M, w).

4.3 Rigidity result on Hodge number

The Hodge number is an important topological invariant in the study of algebraic
geometry. We consider a real vector space W, a Hodge structure of integer £k on W
is a direction sum decomposition of W€ = W ® C, the complezification of W, into
graded pieces W4 where k = p + q.

For a compact Kéhler manifold (M, w), let W be the tangent space of M. We
defined the dimension of the complex subspaces W?? to be the Hodge number and
denote it by A??(M). And also define

by = dimH*(M) = Y hWPI(M)
p+q=k
to be the k—th Betti number of M.

In [10], Bishop and Goldberg showed that any compact Kahler manifold M with

positive bisectional curvature must have its second Betti number equal to 1. Later,

Goldberg and Kobayashi [42] introduced the conception of holomorphic bisectional
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curvature and proved that the second Betti number of a compact connected Kéahler
manifold M with positive holomorphic bisectional curvature is 1.

It would be interesting to know what kind restriction the second Betti number
must obey under the NQOBC condition (see Definition 4.1.1). Unfortunately, we
cannot expect the second Betti number to always be 1, even when n = 2 case.
This can be see from a very quick example: the product of CP! (equipped with a
sufficiently positively curved metric) with another curve always satisfies the NQOBC

curvature condition. Thus, to get some rigidity, we introduce a so-called Quasi-

NQOBC condition.

Definition 4.3.1. We say a compact manifold (M,w) satisfying the Quasi-NQOBC
curvature condition if it satisfies: for any orthogonal tangent frame ey, --- , e, at any
x € M, and for any real numbers ay,--- ,a,,

Z Riji(a; —a;)* >0

ij=1
1s nonnegative everywhere and strictly positive at least at one point unless the real

numbers a; = -+ = Q.

Under this Quasi-NQOBC condition, we can get some restriction on the Hodge
number A (M). Indeed, we can prove
Theorem 4.3.1 ([86] Theorem 2). Let (M,w) be a compact Kdihler manifold satis-
fying the Quasi-NQOBC curvature condition. Then, h''(M,R) = 1.

The key observation for Theorem 4.3.1 is that we notice that the constant rank
theorem in [9] still holds under the curvature condition Quasi-NQOBC for some

special equations.
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Proof of Theorem 4.3.1.
Let & be a closed (1,1) form on a compact Kéhler manifold M™. For any fixed

point on M"™, we can choose a local coordinate {z1,--- , 2,} such that

9903 _ 09up _

Yo = Oabr "5, Dz 0

and § = &;dz" A dzi. Let ¢ = ag(g“_{l;) and W = (w;;) = (gil_&;), we have
6o = 1(W)(g"&)a (4.12)
¢a5 = Ul(WW(QJ&i)aB + (gil_fﬁ)a(gﬁgfkf)é - (gil_fli)a(gikfki)é

By the proof of Theorem 4.2.1, we know that there is a closed (1,1) form (which we

still denote by &) in [¢] such that

F(¢) = 01(g"¢5) = C (4.13)
where C is some constant.
By (4.13), we have
3 301 (5) 3
Faﬁ — — af =0, 4.14
T g 8 (4.14)

01(9"65) =C = Y &ia=0
a1(g*€,5) = C = ¢35+ 9765 =0 (4.15)

= aayii = _g%}én& = _g%&gad
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Thus, by directly computation, we have

F%5 = oi(WIi)(g")aa + (9"60)a(9"6i)a — (9"C)alg™E)a  (4.16)
= Ul(W’ixggafﬁ + &itaa) T &ialia — &ijabia
= Ul(W’i)<gga£ﬁ + &aqii) T §iialjja — Sij, afz‘j & (4.17)
= al(W’Z) (ggdéﬁ - g3?£a5¥> - Z |v£zj‘2 Z gzz «
= Ul(W’Z)< zzaaéu + Rmaagaa Z |V£Zj |2
= T3 Z Ruaa 01(W| ) - 0'1(W|Oé) gzz goca Z |v€z]|2

= —5 Z Rﬁaa(fii - fa&)Q - Z ‘VéiﬂQ
{1e 2y

In equality (4.17) above, we have used the fact that £ is a closed (1,1) form which

gives us
ga&,i = gi@aa fad,i = goﬂ,o’a — Sﬁ,aa = Soﬁ,’i& = goﬂ,&i = ga&,ﬁ (418)

From equality (4.16), we can see if the compact Kédhler manifold M" satisfies the

curvature condition Quasi-NQOBC, then
1
FP9u5 = ~5 > Riaalbi = aa)’ = Y_IVEG* <0 (4.19)
i,00 1,7

By strong maximal principle, we have ¢=constant. Thus, oy (gizglj):constant and
Ug(g“_gl;): constant, from which we can get &; are constants on M". Furthermore,

if the manifold satisfies the Quasi-NQOBC condition, by (4.19), we can see that
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&i = Eqa for i,a = 1,--- ;n. Thus, £ = Awy, where A is a constant. In turn, we
conclude that

RUH (M) = 1.

Remark 4.3.1. For the results in [10], [42], [54], the restriction of the bisectional
curvature makes the Ricci tensor of M to be positive. So there is no nontrivial
holomorphic 2-forms on M (cf. Bochner [15]), i.e. H**(M) = H*?(M) = 0. Thus,
bo(M) = dimH?*(M) = dimh"'(M).
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. CHAPTER 5
Generalized Kahler-Einstein metrics and Energy

functionals

The existence of canonical metrics in any given Kahler classes was conjectured by
Calabi in 1950. By Aubin [2] and Yau [81], we know that [w] admits a K&hler-Einstein
metric when the first Chern class ¢;(M) < 0 or ¢;(M) =0 and |[w] = —kcy (M). For
the case ¢;(M) > 0, the existence question is still open. In a remarkable work [71],
Tian introduced the I stability and showed that the existence of Kahler-Einstein
metrics is equivalent to the properness of corresponding energy function. In this
chapter, we consider the generalized Kahler-Einstein metrics which is the case that
[w] is not proportional to ¢ (M).

In Section 5.2, we give some preliminary results about energy functionals and
prove the existence result for generalized Kahler-Einstein metric, i.e. the properness
of twisted K energy implies the existence of generalized Kéhler-Einstein. In section
5.3, we obtain a Moser-Trudinger type inequality on the generalized Kahler-Einstein
manifolds. As an application of this inequality, we get a strictly slope stability result
in section 5.4.

The results in this chapter can be found in [84], a joint work with a visiting
professor Xi Zhang. The problem was suggested by him and came out from our

discussion.
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5.1 Introduction

An important problem in Kahler geometry is that of finding a canonical kdahler
metric in a given Kéhler class. By Aubin and Yau'’s work ([2], [81]), we know that [w]
admits a Kéhler-Einstein metric when ¢, (M) = 0, or ¢;(M) < 0 and [w] = —kecy (M).
For the remained case, i.e. ¢1(M) > 0, the existence question is still open. Important
progress was made by Tian [69, 70, 71], Tian and Yau [75], Siu [65], Ding [36] and
others. In [71], Tian introduce the notion of K stability and show that the existence
of Kahler-Einstein metrics is equivalent to the properness of corresponding energy
functional. For the case that the given Kahler class is not proportion to the first
Chern class, we can consider constant scalar curvature Kahler metrics or more general
extremal Kéhler metrics which was first raised by Calabi [26]. It is well known that
the existence of canonical Kahler metrics is related to stability in the sense of Hilbert
schemes and geometric invariant theory by a conjecture of Yau [82], Tian [37] and
Donaldson [38].

Let (M, J) be a m-dimensional complex manifold, [wo] € H"'(M,CYNH?*(M, R)
be a Kéahler class on (M, J), and

[a] = 2meq (M) — kwo,

where k is a constant. Fixing a closed (1, 1)-form 6 € [«], we consider the following

genenralized Kahler-Einstein equation
p(w) — 0 = kuw, (5.1)
where p(w) is the Ricci form of the Kéhler metric w € [wy).
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If # = 0, the above equation (5.1) is just the Kédhler-Einstein equation. A Kéahler
metrics w satisfying (5.1) will be called by a generalized Kdhler-Einstein metric. Let’s

denote H,, to be the set of all smooth strictly wy-plurisubharmonic functions, i.e.
Huy = {p € C®(M) : wo + V—180¢ > 0}, (5.2)

and Ky, to be the set of all Kéhler forms on M cohomologous to wy. It is easy to
see that solving the above generalized Kéahler-Einstein equation (5.1) is equivalent

to solving the following complex Monge-Ampere equation,

(wo + V—190p)™

m
Wo

- exp(hwo - k@)? (53)

where ¢ € H,,, and h,,, is a smooth function which satisfies
p(wo) — 0 = kwo + v/ —190h,,

and

| expi e = [ @ =v.

M

If £ <0, by Aubin and Yau’s work ([2], [81]), the above complex Monge-Ampere
equation (5.3) can be solved. In this chapter, we consider the case k > 0, there should
be obstructions to admit generalized Kéhler-Einstein metrics. Through the work of
Bando and Mabuchi[5], Ding and Tian[37], Tian[71], Donaldson [38] and others, it
is well known that the Mabuchi K-energy is very useful in Kéhler geometry. Let’s
recall the following twisted K-energy which was first introduced by Song and Tian
in [66].
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Definition 5.1.1. For every (¢o, 1) € Huwy X Ha,, we define

I .
Mo o) = =5 [ [ @u(S(a) = b, 6= Sa)ulyt, (5.4
0

where {@¢|0 <t < 1} is an arbitrary piecewise smooth path in H,,, such that p|—o =
wo and =1 = @1, S(wy,) is the scalar curvature of wy, , A, is the contraction

with wy, and Sy = 3 [, m(2wer (M) — [0]) U [wo]™ . For every ¢ € H,,, we define

Voo (p) = Mo (0, ). (5.5)

Song and Tian ([66], proposition 6.1) have shown that the integral in (5.4) is
independent of the choice of the path ¢;. Thus, My is well defined. By the definition,

it is easy to check that M, satisfies the 1-cocycle condition, i.e.

Mo (o, p1) + Mg(p1,90) =0, (5.6)
Mo(po, p1) + Mg(p1, 02) + Ma(p2, 90) = 0, (5.7)

and
Mo (o + Co, p1 + C1) = Mo(p1, ¥0), (5.8)

for all ¢g, 1,92 € Hy, and all Cy, Cy € R. By the above properties, we know that
My (or Vg, ) can also be defined on the space Ky X Ky (Kuy)-

We say the K-energy functional Vg, is proper if

lim sup Vp o, (pi) = +00 whenever lim J,, (¢;) = +oo,
i—to00 1—+00
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where ¢; € H,,, and J,, is the Aubin’s functional (see (1.26)).

By using Tian’s method in [71], we can prove that the existence of generalized
Kahler-Einstein metric is closely related to the properness of the twisted K-energy
functional. Moreover, we also follow the discussion in Phong-Song-Sturm-Weinkove’s
([63]) to deduce a Moser-Trudinger type inequality. In fact, we obtain the following

theorem.

Theorem 5.1.1 ([84]). Let (M,wy) be a compact Kihler manifold, and 6 € [a] =
2me (M) — klw,) is a real closed semipositive (1,1)-form, where k > 0. If Vo, is
proper then there must exists a generalized Kdhler-Einstein metric waxp € Ky, -
Furthermore, assuming that the twisting form 6 is strictly positive at a point
or M admits no nontrivial Hamiltonian holomorphic vector field, if there exists a
generalized Kdhler-Einstein metric in wokp € Ky, then Vy,, must be proper.
In fact, there exist uniform positive constants Csy, Cs depending only on k and

the geometry of (M, wy), such that

Voo (9) = Caduy () — Cs, (5.9)

for all p € H,,.

5.2 Generalized Kahler-Einstein metric

In this section, we prove some properties for the twisted K—energy functional
defined in [66] and show the relation between the properness of this functional and

the existence of generalized Kahler-Einstein metric.
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5.2.1 Twisted K-energy functional
Let (M,wp) be a Kihler manifold, and [o] € HY'(M,C) N H*(M, R). Fixed a

real closed (1,1) form 6 € [a], the twisted K-energy functional can be expressed by
1 [ % , i
Mo(o, 1) = _V/M D (1 = @o)(plwg) = 0) Awl AwZ 7t (5.10)
§=0
T SRS
(m+ 1)V g M $0 P1

1 wl
= oo e ,m
+V/]\4 ng%ww,

and
1 [ % : .
Vow () = _V/]\/[ Z @(p(wo) —0) Nwy Awg™ 1 (5.11)
1 W S | |
+— | log—%= Yo, / owh AWl
V o Bapte (m—l—l)V; mo 0¥

for all ¢, po, Y1 € Hy,. Let’s recall the Aubin’s functionals

L) = 3 [ el = @)™} (5.12)
Jum(@) = /0 Slwo(5¢)d

Let ¢, be a smooth curve in H,,,, by direct calculation, we have

d oy | )

ds = —/ 905 wo w«ps) _W/Mwsﬂ%gos(w%) , (5_13)
it )_l/ o)™ = (we)"} (5.14)
ds wolPs) = Vv M(,Os wWo W, , .
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and then

(00 = T} = =55 [ obup )™ (5.15)

Moreover, we also have the following properties for I and .J, the proof can be found

in [5]. Let C' be a constant, then

]w0(90 + O) = L, (30)7 Juwo (90 + O) = on((p)7 (516)

and

0< IWO<90) < (m + 1>{]w0<90) - on(go)} < m]wo (@)7 (517)

for all ¢ € H,,. Let &’ be an another Kéhler form in [wp], and assume that w’ =

wo + v/—100¢ for some function ¢. It is easy to check that

L (p = &) = Ly ()] < (m +1)Osc(9) (5.18)

for all ¢ € H,,. If 01 — 03 = V/—100f, then we have
1 m—1 4
Vorwo (9) = Vorwo(9) = 3 /M D b —b2) Awh AWl (5.19)
§=0
m—1
1 = . i
= V/N[Zw\/—lﬁaf/\w{] ANwy™ !
=0
1 m—1 . A
= v/M Z; flwy —wo) Awh Awl 71
]:

= 7 [ s -
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Lemma 5.2.1. Let 0, — 6, = /—100f, then

Vor.0 (9) = Vo (9)| < Ose(f) (5.20)

for all ¢ € Hy,-

Now, we suppose that 6 € [a] = 27¢; (M) —k|w,]. Let hy, is the smooth function

which satisfies

p(wo) — 0 = kwo + v/ —100h,,, and /

M

exp () (w0) ™ = / (wo)™ = V.

M

Let’s recall the Ding-Tian’s functional

Fo) = Jn) =5 [ ol (5.21)

Fule) = FL(0) =K log(y; [ ehabo(an))

Denote ¢, to be a smooth path in H,,,, then

d 1

— O = _— ; m 22

dS wO(gp‘S) V/J‘MQPS(MQOS) ) (5 )

and
d 1
—F = —— ’ m 2
dS WO(QPS) V/J‘w(‘ps(wﬂos) (5 3)
+( / o™ (wo)™) ! / Boc!0 ™R (wo) ™
M M

From (5.23), it is easy to check that the critical points of F,, are generalized Kahler-

Einstein metrics. As that in [69], one can easily check that F,, satisfies the following
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cocycle property, i.e.

FOJO(w) +FW’(¢_17D> = Fwo(¢)> (5'24)

and

Fuo () = —Fu (=) (5.25)

for all ¢, € Hy, and W' = wy + v/—1909¢. Moreover, Fgo also has the same cocycle
condition.

By the definitions and direct calculation, we have

m
Vil = L) == [+ = [ ngwo/\wm i (5.20)

and

m—1
/M ho (W' — W) = — /M hay (V=1000) N>~ w) Awl ™! (5.27)
7=0

m—1
= —/ ©(v/—100hy,) A Z Wi A w97
M =

m—1

= —/ o(p(wo) — 0 + kwpy) A Z wh A wf;_j_l
M s
Noting that Sy = km, by (5.11), it’s easy to check that
Ve,wo (90) = _k([wo - on)(SO) (528)

+V/th0(w0 —ww)—l—v/Mlog(w—z)ww.
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We also have the following relation between the Ding-Tian’s functional and the

twisted Mabuchi K-energy functional.

Lemma 5.2.2. Let (M,wy) be a Kdhler manifold, and 0 € o] = 2mey (M) — klw,),

then
1 m 1 m
Vo wo (90) - kao(‘p) =15 P (WO) — 17 hw¢> (th) (5'29)
V' Jwm V- Ju
for any ¢ € H,,,, where h, is the smooth function which satisfies
p(w) — 0 = kw ++/—190h,,
and the normalized condition [, exp(hy)(w)™ = V. Further more, we have
1 m
VG,UJO(QO) > kao (90) + V hwo (w()) : (530)
M
Proof of Lemma 5.2.2:
By the definition of h,,, it is easy to check that
—log —— (W)™ ko +cp = hy, — h, (5.31)
(wo)™
for all ¢ € H.,, where the constant ¢, = —log( [;, €"“0 ™" wy). Then, by (5.28)
and (5.31), we have
Voo (#) (5.32)

k
- ka0(¢)_kIwo(90>_V/M§0w<p +C<P V/ hwowo ——/ weW @

1 —
= k?(on<90)_V/A/IQDWS’L+k C‘P) V/ hUJOWO __/ w(p <p
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So, (5.32) implies (5.29). By the normalized condition of h,,,, we known that

/ hy,wy <0,
M

then we have (5.30). O

5.2.2 Existence result for the generalized Kahler-Einstein met-
rics

Let (M,wp) be a Kédhler manifold, and 6 € [a] = 27¢i(M) — k[wp]. Finding
generalized Kahler-Einstein metric can be reduced to solving the complex Monge-
Ampere equation (5.3). As in Kéhler-Einstein case, we consider a family of complex

Monge-Ampere equation

(wo + v=100¢p)™

m
Wo

= exp(hy, — tky), (5.33)
and set
S ={tel0,1] | (5.33) is solvable for t}. (5.34)

By [81], we know that (5.33) is solvable for ¢ = 0, and then S is not empty. If we can
prove that S is open and closed, then we must have S = [0, 1], and so the complex
Monge-Ampere equation (5.3) can be solved.

In the proof of the openness and closeness of S, we need the assumption that 6
is semipositive. The key point is that the semipositivity of 8 will lead a lower bound
of the Ricci curvature by a positive constant, then we can use the implicity function

theorem to prove the openness and obtain a lower bound of the Green’s function
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which is very important to get C° estimate. We follow Aubin’s discussion ([2]) in
the proof of the openness and follow Tian’s method ([71]) to prove the closeness. We

first obtain the following proposition and the proof is similar as that in [5].

Proposition 5.2.1. Let (M,wy) be a compact Kdihler manifold and 0 € [a] =
2mey (M) — k[wo| is a real closed semipositive (1,1)-form, where k > 0.

Let 0 < 7 < 1, and suppose that (5.33) has a solution ¢, att=71. If0 <1 <1,
then there exists some € > 0 such that ¢, uniquely extends to a smooth family of
solution {¢:} of (5.33) fort € (0,1)N (T — €, 7 +€). S is also open near t =0, i.e.
there exists a small positive number € such that there is a smooth family solution of
(5.33) fort € (0,¢€).

Furthermore, if M admits no nontrivial Hamiltonian holomorphic vector field
or the twisting form 6 is strictly positive at a point, w1 can also be extended uniquely

to a smooth family of solution {p} of (5.33) fort € (1 —¢,1].

Proof of Proposition 5.2.1:

Let H"® be the set of all function ¢ € C7"*(M) such that wy + /—199y is

positive definite, where 2 <~ € Z* and 0 < o < 1. Consider the operator
E:H"™ x R— C72*(M)

defined by

(wo + v=109p)™

(o)™

Z(p,t) :=log + thp — hy,- (5.35)
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The linearized operator is
(5.36)

1
D,E(¢) = §A@w + tky,

By the implicit function theorem, it is sufficiently to prove

where ¢ € CT*(M).
that D,= is invertible. For further consideration, let’s recall the Bochner-Kodaira

formula,
(5.37)

) /M VO (VL) 2™ — /M (Bot)? = 2p(@) (Vott, J(Vo))u™

for any u € C*(M).
In the case of 7 € (0,1). Since ¢, is a solution of (5.33), we have
(5.38)

Po. = 0+ kwy + Tk =100, > Thw,, .

If ¢ € kerD, Z, the Bochner-Kodaira formula (5.37) implies V1 = 0, and then

¢ = 0. This shows that D, = is invertible.
When 7 = 0, we consider the following operator

E(p,1)

where $ > 0 is a constant. Its linearized operator is given by
= 1 m
DE(Y) = 5000 + thy + ﬁ/ P (wo)™. (5.40)
M

It’s easy to check that Dwé is invertible at ¢ = 0. By the implicit function theorem,

there is a smooth one parameter family

{pe[te(0,6)}
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such that Z(¢;,t) = 0. Then

P = Spt—i_tﬂk/ @i (wo)™ (5.41)

is a family solution of (5.33) for ¢ € (0,¢€). So, S is open near ¢ = 0.
When 7 = 1. Let ¢, be a solution of (5.33) for t =1, and ¢ € ker D, =, i.e.

Doy 0 = =2k,

Replacing w and w in (5.37) by w,, and 1, we have

/|V10 vj}fl |w1 o= /vawlw J (Ve 1))wi, (5.42)

If 6 is positive at some point, then V1 = 0 on some open domains. Since the
Laplace-Beltrami operator A, is real, Aronszajin’s unique continuation theorem
implies V9 = 0. If M admits no nontrivial Hamiltonian holomorphic vector field,

since 6 is semi positive, (5.42) implies that V% 0@/} = 0. So, D,, = is invertible.
g

Using the generalized Aubin’s equations and discussing as that in Bando-Mabuchi’s
paper [5], we can obtain the uniqueness of the solution of equation (5.3) (i.e. the
uniqueness of generalized Kéhler-Einstein metric). So, we omit the proof of the

following lemma.

Lemma 5.2.3. Let (M,wy) be a Kdihler manifold, and 6 € [a] = 2mey (M) — klw,)
is a real closed semipositive (1,1)-form, where k > 0. If M admits no nontrivial
Hamiltonian holomorphic vector field or the twisting form 0 is strictly positive at a

point, then there exists at most one solution of (5.3).
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Let {¢;} be a smooth family of solution of (5.33) for ¢t € (0,1]. Differentiating

(5.33) with respect to ¢, we have
r, . .
§At4pt = —t(m+1)ps — (m+ 1)g;. (5.43)

Using (5.37) and (5.43), by the same discussion as in [5] we have the following lemma.

Lemma 5.2.4. Let {¢;} be a smooth family of solution of (5.33) for t € (0,1], then

d

%(Iwo - on)(gpt) > 0. (5'44)

Now, we consider the existence problem of generalized Kéhler-Einstein metrics.
The following theorem gives the proof of the first part of our main result Theorem

5.1.1.

Theorem 5.2.1. Let (M, wq) be a Kihler manifold, and 0 € [a] = 27y (M) — k[w,)
is a real closed semipositive (1,1)-form, where k > 0. If Vg, (or F.,) is proper then

there exists a generalized Kdhler-Einstein metric w € K, .

Proof of Theorem 5.2.1:

From inequality (5.30) in Lemma 5.2.2, we only need to prove the case when
KC-energy is proper.

By Proposition 5.2.1, we can suppose that there exists a smooth family of so-
lution {¢;} of (5.33) for t € (0,7) with some 7 € (0,1). From equation (5.33), we
know that

Ny <2mand p(wy,) > thw,, .
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Using the Green’s formula and the lower bound of the Green’s function by Bando-

Mabuchi [5], we have

1 m o e1(m)
V/MSDt(wcpz) <infipr == (5.45)

where positive constant €;(m) depends only on m. Using the fact A, > —2m and

the Green’s formula, we have

1
sup ¢y < V/ oi(wo)™ + €2 (5.46)
M M

where €, is a positive constant depends only on the geometry of (M, wp). By the

normalization condition, it’s easy to see that

supy; > 0 and inf ¢, < 0.
M M

Then
l¢illco < sup ey — inf (5.47)
M M
e1(m
S ]wo(spt) + 1?Ek ) ‘|’€2~

By (5.17) and (5.44), it follows that

Lo (1) < (M + 1)Ly = Juop) (912 (5.48)

for any 0 < t; <ty < 7. Combining (5.47) and (5.48), we get

tHSOtHC'O < to(m + 1>(Iw0 - on)(cpto) + €3 (549)
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for any 0 < t <ty < 7, where €3 is a positive constant depends only on k£ and the

geometry of (M, wp). Thus, we obtain an uniform bound on

(wo + V—=100p,)™
(wo)™

for 0 < t <ty < 7. By Yau’s C° estimate ([81]) for complex Monge-Ampere

equations, there exists a uniform constant €4 such that

[¢ellco < € (5.50)

forO<t<ty<r.

On the other hand, it is easy to see that along the solutions ¢; of (5.33), we

have
1—-1
S(we,) = k(m — ( 5 )Aw% 1) + A, 0, (5.51)
and
1 . Lk m
V9,w0(90t) = _k([wo - on)((pt) + hwowﬂ DY (pt(wgot) : (552)
VI Viu
Then, by (5.15) and (5.51), one obtain
d m
Pnale) = =5 [ @) = A, 0= km) () (5.53)

1 — t
_ / CD AL puwn)
d

= k?(t - 1)%((%10 - on)(@t))'
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From (5.52) and (5.53), we have

GG | o)™ 0 = L)) = (L = L)1) (5.54)

By the uniform estimate (5.50) near ¢ = 0, it is easy to check that

t
v /Mgot(w%)m +t(1yy — Juy) () = 0, as t — 0.

In turn, the identity (5.54) implies that

1
7 | o)™+ oy = L)) 2 0 (5.5%)
and
1
Vrale) < b=l = Tl + 3 [ hul (550)
M

—k(1

1
S v /J\/[ thwgl.
Then the properness of Vy,,, implies that J,,(¢:) and I, (¢:) is uniformly bounded.
Using (5.47), we obtain a uniform C? estimate on o, for t € [, 7).

Again, by Yau’s estimates ([81]) for complex Monge-Ampere equations, the C°-
estimate implies the C*®-estimate, and the elliptic Schauder estimates give higher

order estimates. Therefore, equation (5.3) can be solved, i.e. there is a generalized

Kahler-Einstein metric in £y, . U
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5.3 A Moser-Trudinger type inequality

In this section, we will establish a Moser-Trudinger type inequality on the gen-
eralized Kéahler-Einstein manifolds which will finish the proof for the rest part of our
main result Theorem 5.1.1.

First, we consider the following generalized Kéahler-Ricci flow

Owg
s

= —(p(ws) — 0 — kwy) (5.57)

with wsls—o = @y € [wp]. Solving the above equation is equivalent to solve the

following parabolic version of complex Mong-Ampere equation

A e et L) A (5.58)
0s wy’

with v|;—g = 0. It is well known that the long-time existence of the above parabolic
equation follows from Cao’s result [27].
Let v, be a smooth solution of (5.58), and @, = @y + v/—190v,. By direct

calculation, we have

0 1

550 = 5 0a,0s + i, (5.59)
0 .12 1 .12 .12 .12
£| s (:)5 = §Aa}s deSL:}‘5 ‘I’ k|dv5|d)b - ‘V@des’@é (560)

—0(V,0s, J(V,05)),
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0o 1 . :
(5 = 30600 + sldinf2) (5.61)

= 2k02 + sk|dvs|Z, — s|Via,dvs|2, — s0(Ve, b5, J(Va,bs))

< 2k(07 + sldusl3,),

and

0o 1 _
(55 ~ 502)(Da,0s) = kg0 — 0003, (5.62)
where 04 = %vs. Note that we have used the semi-positivity of # in (5.61). Applying
the maximum principle to the above equalities and discussing as that in [4] (or

Lemma 4 in [63]), we have the following lemmas.

Lemma 5.3.1. The following inequalities

0v,
0s

leo < €™l hayleo, (5.63)

S}\l})(\hws!Q + sldha,[3,) < 4 || hay |2, (5.64)

eikSA@Sh@S Z Aaoh@m (565)

hold for all s > 0.

Lemma 5.3.2. Suppose there exists a generalized Kdhler-Einstein metric woxg €

[wo]. Let vy s be a solution of (5.58) with @y = w,,. Let

- 1 .
hzh@l_V/J\/[h‘:’l(wl)
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and assume that

1 .
SWGKE < w1 < WGKE- (5.66)

Then for any p > 2m, there exist positive constant Cy depending only on p, k and

(M,wgkE) such that

- - 1 =2
1Allco < C1(1 = )7 || hus,, [l (5.67)

Proof of Lemma 5.3.2:

By the condition wy = w,,, we have

p(@0) = 0 + kwy + thy/—100¢; > 6 + tkdy (5.68)

and

Aalohdlo Z 2mk(t — 1)

Thus, it follows from (5.65) that
—Ng hg, < 2mkeF(1 —1t). (5.69)
Integrating by parts, we have

[ = = [ hoah@) (5.70)

< /M(B — inf fz) S&p(—ﬂalh)(@)m

Co(1 — 1) Alleo,

IN

where Cy depends only on k, m and the volume V.
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On the other hand, (5.64) implies that

7llco < 4e*[[hg,|lco-

Let p > 2m+1, by the Sobolev imbedding theorem (Lemma 2.22 of [3]), the Poincaré

inequality, (5.64) and the condition (5.66), we have

1A][Eo

<
<

<

<

03/ |E|p+|d’~l|ZGKE(wGKE)m (5.71)
M

Callhan |22 /M B2+ R, (wars)"

Cillhay 177 /M i, (wexe)"

Collhan |52 / dh 2, (@)™,
M

where constants C; depends only on p, m and the geometry of (M,wgkg). Then

(5.70) and (5.71) imply (5.67). 0

Lemma 5.3.3. Let v, 5 be a solution of (5.58) with initial data &y = wy,, and u, =

ve.1. We have the inequality

1
llut|lco < EethWtHCo, for all t €10,1]. (5.72)

Moreover, assume that

2

—WeKE < Wotu, < wWekp for all te [ty 1],
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where t; € [0,1). Then for any p > 2m and 0 < 6 < 1, there exists a constant C

depending only on p, k and (M, wakg) such that
1Py |0t iy < Cr(1 =01+ [, [l o)

for allt € [t1,1], where 5 = 4’%.

Proof of Lemma 5.3.3:

Inequality (5.72) can be easily deduced from (5.63).

By the condition %wGKE < Weytue < WakE > we have

’dhwcpt+ut "UGKE S ﬂ’dhwwt+ut |Wapt+ut :

(5.73)

In the following, let d(z,y) be the distance between z and y with respect to the

metric wakEk.

Ifd(z,y) < (1-— t)P%l(l + [| e, ||Co)7p%l, by (5.64) in lemma 4.1, we have

’hw<pt+uz (x) - hwcpt-!—ut (y)‘ S d(ﬂj, y) S}\bp |dh’w<pt+ut |WGKE

< \/id(l’, y) sup |dh‘*’¢t+"t |w%9t+“t
M
< AV2etd(z,y)(1+ |y, llco)

< AV = 1)1 (14 b, lo0) T d(z,y)’.
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Ifd(z,y) > (1— t)v%l(l + [| o, ||Co)7p%1, then the estimate (5.67) in lemma 4.2
implies

Py () = Py, ()] < 2[R 0 (5.75)

p—2

< 2C1(1 = )7 (||, lloo) =1

[un
59

p+

6—2
(L + sy, llco) 7= d(, y)°.

.U‘ ‘
s

< 20y(1—1t)

On the other hand, the integral normalization [, e prtun (Weytu,)™ =V implies

h

wep 1, ChANEE SigNS, SO We have

Py, s, llco < Osc(h ) = Osc(h) < 2||h||co (5.76)

Wi tug

p—2

= 1 p=2
< 2C1(1 = )77 (A, llco) =T
It is easy to see that (5.74), (5.75) and (5.76) imply the estimate (5.73). U

Set ( :=1— ﬁ > % and define the function f,, by

fuo (1) = (1= )" (k7" + 2(1 = t)l|pell o) (5.77)

Discussing as that in [69] (or lemma 1 in [63]), we have the following proposition.

We write out the proof just for reader’s convenience.

Proposition 5.3.1. Let ¢, be a smooth family of solutions of equation (5.33) for
t € (0,1], and wexp = wo+ V—100p,. There exist a constant D > 0 depending only

on k and (M,wekE) such that

le1 = ellco < AL = B)[[erllco + 1 (5.78)
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for all t € [to,1], where ty € [0,1) satisfies fu,(to) = maxp,1) fu, = D and A

depending only on m and k.

Proof of Proposition 5.3.1:

Let’s rewrite (5.33) as the following complex Monge-Ampere equation with wgk g as

reference metric

(wore + V—100(0r — ¢1))™

(WekE)™

= exp(—k(pr — 1) + (1 — t)kepy). (5.79)

It is easy to see that hw% = (t — 1)k + ¢, for some constant ¢;. The integrate

normalization of the potential function A, implies
|cel < k(1 —=1)lptllco, (5.80)

and

1, [lco < 2k(1 = 1) co. (5.81)
Then, Lemma 5.3.3 implies that

lusllco < 2¢"(1 — )|l co. (5.82)

Note that
W tur = Wo + V—=100(p; + ur) = ware + V—100(¢; + u — 1),

and then

(WekE + V —135(% +ur—1))"

(WekE)™

= exp(—k(pr +ur — 1) = hy,, 1, — C) (5.83)
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for some constant ¢;. Let ¢ = ¢ + uy — 1 + <, from (5.83), (5.79) and (5.82), we

have
J T L e ek (5.84)
M M
—_ / e*k(@gﬁ»ﬂﬂ@f*]ﬂpl (w¢t)m
M
— / e(t—l)k@t—kut—ét (W(pt)m,
M
and then

el < (T=t)kl[ellco + kllu|co (5.85)

< (1 =)k +2¢") @il o
Recall that ¢; — p1 = @ — u, — &, it follows from (5.82) and (5.85) that
lee = @rlleo = ll@elleo + (1 =) (4e” + 1)lpillco. (5.86)
From above estimates, it will suffice to show that

[@rllco < 1.

Let’s consider the following complex Monge-Ampere equation

(WekE + J—_l&%)m

(Wake)™

log{ b+ kap = 4. (5.87)
The linearization of the left side of (5.87) at ¢ = 0 is

1
5% = 5 B0 + kY. (5.88)
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If M doesn’t have non-trivial Hamiltonian holomorphic vector fields or € is strictly

positive at a point, by (5.42), we know that
1
ker(EAUJGKE +k)=0,

then the operator (30u., + k) : CP2¢(M) — C**2<(M) is invertible. Applying
the implicit function theorem, there exist positive constants ¢(waxr) and C*(wakk)

which depend only on ¢ and the geometry of (M, wakr), so that
it [ dllcos < e(worr)  then  [[]eas < C*(warn) ¢l (5.89)
Let

ek=¢
b= 2(C7 +1)(C*+ D) (e + 1)

where € = e(wekg), C* = C*(wgkr) are chosen as in (5.89), ¢ =1 — -, Cr is

defined as in Lemma 5.3.3 (by choosing § = 5 and p = 2m + 1). Let ¢, € [0,1)

satisfies f., (to) = maxy, 1) fu, = D. Now, we only need to prove the following claim:

Claim For all ¢ € [ty, 1], we have

, (5.90)

N | —

||¢t||02,% <

We assume the contrary. Since ¢, = 0, there exists t; € [to, 1) such that

if th<t<l. (5.91)

~ _ 1 d > 1
ngtlHCQ’%(wGKE) = 57 an ngtucz,%(wGKE) < 5
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In particular —}leKE < \/—105@ < inKE, and then

3 5

JWOKE S Wortu, S JWGKE (5.92)

for all ¢ € [t1,1]. By applying (5.73) in Lemma 5.3.3 (by choosing p = 2m + 1) and
(5.81), we have

Hh‘%ﬁut ||CO’%(UJGKE) < 07(1 o t)l_g(l + Hh‘*’% HCO)C (5'93)
< Gr(1 =171+ 2(1 = t)klgelleo)
< k(1= 201 = 1) [lpefleo)
< C:/k‘D
C_Y7€
2(C7 + 1)(C*+ 1) (e + 1)
for all t € [t1, 1]. Using (5.89) again, we get
||(’5t1||02’%(d775E) S C*||hd77<pt+ut ||CO’%(WGKE) (594)
0*676 1
< = < —.
= G A D(C +1)(er1) "2

This gives a contradiction and complete the proof of the claim. Thus, the proof of

the proposition is complete. U

Using Proposition 5.3.1 and discussing as that in [63] (Theorem 1), we establish

a Moser-Trudinger type inequality for functional F, In fact, we obtain the

WGKE"*

following theorem. We write out the proof in details just for reader’s convenience.

Theorem 5.3.1. Let (M,wy) be a Kdhler manifold, and 6 € [a] = 2mey (M) —k|wo] is

a real closed semipositive (1,1)-form, where k > 0. Assuming that the twisting form
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0 s strictly positive at a point or M admits no nontrivial Hamiltonian holomorphic
vector field. If there exists a generalized Kahler-Einstein metric wexp € Ky, then
there exist uniform positive constants Cy, Cy depending only on k and the geometry

of (M,wgkE), such that

WGKE (90) > éleGKE (90) - 027 (595)

for all ¢ € Hegpe-

Proof of Theorem 5.3.1:

Fix a function ¢ € He,,p,, and set wy = werp + v/ —109¢. We consider the complex

Monge-Ampere equation (5.33). Since M admits no nontrivial Hamiltonian holo-
morphic vector fields or the twisting form 6 is strictly positive at a point , by the
uniqueness of generalized Kéhler-Einstein structure (Lemma 5.2.3) and Proposition
5.3.1, a unique solution ¢; exists for all ¢ € (0,1] and w,, = wekpe. In particular ¢;
and —¢ differ by a constant.

For further consideration, we give the following estimates for functionals F', T

and J. From (5.12), (5.14) and (5.43), we have

= L)) =~ [ @™ =5 [ w690

The uniform C estimate (5.50) of ¢, implies that

1
3—/ s(wp,)™ =0, as s —=0. (5.97)
V. Jm
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By integrating on [0, t], we get

o = T)(20 = [ (o = Tapls == [ o)™, (699
and then
Fo(e) =~ =)o) =3 [ o) (5.99)
-1 rt

- 7 (Luy — Jup) (i05)ds.

0

Taking t = 1 and considering F,, (¢1) = —F, (¢), so that

WGKE

FWGKE‘(¢) = /0 (Iwo - on)((ps>d5~ (5100)

By the definitions (5.21) and the cocycle property of FBO, it is easy to check

[ oo (1) = Juo (1)] < Osclpr = ) (5.101)

and

(Lo = T ) (1) = Loy = Jurg) (1) <m0 - Osc(pr = 1) (5.102)
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Using the relationship F,,,(¢1) = —Flep (@), we have
1 m
Ton(pr) = Fu(p) + 17 [ @r(wo) (5.103)
M

- P (@) + = / 1 (wo)™
= —Juarn( /(b{ were)" — (wo)™}

= ([wGKE - ‘]UJGKE)
1
> EJWGKE (¢)7

where we have used inequality (5.17). On the other hand, since (I, — Ju,)(pt) is
nondecreasing in ¢, (5.100) implies that
1—-1
FWGKE(¢) > (1 - t)(]wo - on)(gpt) > T‘]wo(wt)' (5104)
Combining this inequality with (5.103) and (5.101), we have

FwGKE (¢) > %chm@; (¢) - %OSC(% 901)- (5.105)

In the following, we choose t; as that in Proposition 5.3.1.

If 2(1 — to)||t, o < k71, by the definition of ¢y, we have
D < (1—t)' 792,
which gives

(1 —ty) >2 1=¢k1-<Di=<, (5.106)
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Similarly, if 2(1 — to)||¢t,||co > k™1, we have
D <451 to)illco.
then

(1—ty) > D

P (5.107)
41t 10

For the second case, we may assume that 1 —t; < ATfl, the inequality implies that

lowlles < 2l loo +2, (5.108)
then
D
1—ty) > . 5.109
=1 2 oo + 20 (5.100)

Again, since sup ¢ - inf ¢; < 0, we always have the following inequality

'’ S (o
(Ierllco +1)¢ ~ (Osc(e) +1)¢

(1—ty) > (5.110)

where C” is a positive constant depending only on k and (M, wgkg). On the other

hand, using Proposition 5.3.1 again, we have
1
(1= to)ller — @rlloo < (1 —to)* Allpgs lleo +1 < ADE +1. (5.111)

By inequalities (5.105), (5.110) and (5.111), we obtain

JL‘JGKE (¢)

Oseld) 11~ Cy, (5.112)

FwGKE ((b) > é3
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for all ¢ € Hopyp» Where C5 and C, are positive constants depending only on k and
the geometry of (M, wakEk).
Notice that ¢, — 1 € Huppp and p(w,,) > 0+tkw,,, we can use (5.47) to obtain

the following estimate

OSC(gOt - 901) < IwGKE (Spt - 901) + 65, (5.113)

for t € [3,1], where Cs is a constant depending only on on k and the geometry of

(M,wekE). By(5.17), (5.112) and (5.113), we have

JwGKE (‘Pt _ 901) o 614

FwGKE(SOt a SOI) 2 CG (JwGKE(SOt - 901) + 1)<

(5.114)

fort € [%, 1], where Cs is a positive constant depending only on k and the geometry

of (M, WGKE)-

Finally, by the cocycle property of the functional F, (5.98), (5.99), (5.47), non-

decreasing of (1,, — Ju,)(¢:) and the concavity of the log function, we have

Foors(pr — 1) = Fuolpr) — Fuo(1) (5.115)

C ~
< m(1 = O{m + Vg (00— 1) + 5 + Cs)

By a same discussion in [63] (Page 1083), we know that (5.105), (5.113), (5.114)

and (5.115) imply the Moser-Trudinger inequality (5.95). g

In view of the cocycle identity of F,, and properties of 1, J, (see (5.24), (5.18)
and (5.17)), inequality (5.9) holds for every Kéahler metric w which is cohomology to
wakE- Moreover, the relation (5.30) implies that the Moser-Trudinger type inequality

(5.95) also be valid for the IC-energy V.
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Corollary 5.3.1. Let (M,wq) be a Kdhler manifold, and 0 € [«] = 2me (M) —k[w,)] is
a real closed semipositive (1,1)-form, where k > 0. Assuming that the twisting form
0 s strictly positive at a point or M admits no nontrivial Hamiltonian holomorphic
vector field. If there exists a generalized Kahler-Einstein metric in K.,. Then, for
any Kahler metric w € K, there exist uniform positive constants {D;}-, depending

only on k and the geometry of (M,w), such that

F() > D1 Ju() — Do, (5.116)
and

Vou(p) = Ds () = Da, (5.117)

for all p € H,,.
Remark 5.3.1. Theorem 5.2.1 and Corollary 5.5.1 imply the main result Theorem
5.1.1.

5.4 A result on Slope stability

In [67], Stoppa discussed the so called twisted cscK equation, i.e. finding a

metric w € [wp] such that
S(w) — A0 = Sy (5.118)

where 6 is a real closed semipositive (1, 1)-form. In particularly, if § € 27e (M) —
k[w,|, then the above twisted cscK equation is equivalent to the generalized Kahler-

Einstein equation (5.1). By the definition of the twisted KC-energy, it is easy to check

141



that the second derivative along a path ¢; € H,, is given by

&> Sol0 - A
Vo Ve (o) = 10V, 2ellg, + (0e A 9, 0), (5.119)

L1 : 5\ m
~ [ (=3I RIS — A, 0 Sahe

If either the twisting form 6 is strictly positive at a point or M admits no nontrivial
Hamiltonian holomorphic vector field, Vj is strictly convex along geodesics in H,,.
Then, the results of Chen and Tian [30] on the regularity of weak geodesics imply
uniqueness of solution of the twisted cscK equation (5.118) and that the twisted
KC-energy Vg, has a lower bound. The above facts were pointed out by Stoppa in
[67], where he used the lower bound of Vg, to get a slope stability condition.

Let D C M be an effective divisor. The Seshadri constant of D with respect to

the Kéahler class [wo] is given by
€(D, [wo]) = sup{z | [wo] — 227c1 (D) € K}, (5.120)

where K is the Kéhler cone. Stoppa also defined the twisted Ross-Thomas polynomial

of (M, [wy]) with respect to D and 6 by

Fon(\) = /0 () — 2)as(z)ds + %al(()) _ % /0 (O — ) (2)dz,  (5.121)
where
o (z) = ﬁ /M 2mer(D) U ([wo] — 2emer (D))", (5.122)
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() (5.123)
1y 2me1(D) U (2mey (M) — [4] — 2me1 (D)) U (Jwo] — #2mes (D)™
2(m — 2)! '

In [67], it was proved that if (5.118) is solvable in [wo] then Fy p(A) > 0 for all
effective divisors D C M and 0 < X\ < €(D, [wp]). In fact, see Theorem 3.1 in [67],

we can find a family of Kéahler metrics w, € [wp] with w,|.—1 = wp such that as e — 0
Voo (we) = —mFp(A) log(e) + 1 -0 t. (5.124)

By the calculation in [67] (Lemma 3.12, Lemma 3.15), we also have the following

asymptotic behavior of the Aubin’s functional

Jo (We) = _g/o (A — x)aq(x)dzlog(e) +1-0-t. (5.125)

By the above Moser-Trudinger inequality (5.9) in Theorem 5.1.1, we can obtain a

strictly slope stability. In fact, we have the following corollary.

Corollary 5.4.1. Let (M,wy) be a Kdhler manifold, and 0 € [a] = 2mey (M) —k|w,)] is
a real closed semipositive (1,1)-form, where k > 0. Assuming that the twisting form
0 s strictly positive at a point or M admits no nontrivial Hamiltonian holomorphic
vector field. If there exists a generalized Kdhler-Einstein metric in w € K,,,, then

there exists a uniform positive constant Cy such that
A
Fo.p(A) > 04/ (A —z)ay(z)dz >0 (5.126)
0

for all effective divisors D C M and 0 < A < €(D, [wo)).
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In a special case of the generalized Kéhler-Einstein equation (5.1), if
[o] = (1 = k)[wo],

where 0 < k < 1, we set § = (1 — k)wg. Then the generalized Kéahler-Einstein

equation (5.1) is just the Aubin’s equation
p(w) = (1 — k)wy + kw. (5.127)
The twisted K-energy Vii_p)wow, can be expressed by

Vi—kwowo (9) = Vo (0) + (1 = k) (Lug — Juig) (), (5.128)

for all ¢ € H,,, where V,, is the Mabuchi K-energy, 1,, and J,, are the Aubin’s

energy functionals. If there exists a Ké&hler metric w € [wg] such that
p(w) — kw > 0. (5.129)

Let 0 = (1 — k)w' = p(w) — kw > 0, we know that the generalized Kéhler-Einstein

equation (5.1) can be solved in |wy]. By Theorem 5.1.1, we know that
V(1-k)w'wo 1S ProOper.

In fact, it satisfies the Moser-Trudinger type inequality (5.9).
On other hand, by Lemma 5.2.1, the cocycle identity of My and properties of
L, J, (see (5.7), (5.18) and (5.17)), it is easy to see that the properness of the twisted

K-energy Vy, is independent on the choice of the twisting form 6 € [a] and Ké&hler
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metric w € [wp]. So, we have the following corollary which also was proved by G.

Székelyhidi in [68].

Corollary 5.4.2. Let (M,wy) be a Kdhler manifold with 2mwey (M) = [wy], and 0 <

k < 1. The following are equivalent.
(1) We can uniquely solve equation (5.127).
(2) There exists a Kdhler metric w € [wy| such that p(w) > kw.
(3) For any Kdhler metric w € [wo], Vu(p) + (1 — k)L, — Ju)(g) is proper.

(4) For any Kdhler metric w € |wy|, there exist uniform positive constants Cs

and Cg such that

V() + (1 = k) (L, — Ju) () > CsJu(p) — Cs, (5.130)

for all p € H,.
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