The Structure of Knowledge Reuse
in Open Innovation Communities

Mahmood Shafeie Zargar

Desautels Faculty of Management

McGill University, Montreal

April, 2018

A thesis submitted to McGill University

in partial fulfilment of the requirements of the degree of Doctor of Philosophy

© Mahmood Shafeie Zargar 2017

Blessed be the gambler who lost all but the desire to gamble again...

Rumi

All chapters of this work are original contributions of its author. No other individual or entity has

been directly involved in the composition of this dissertation.

Abstract

This thesis examines the dynamics and the interactions of knowledge collaboration and reuse in
open innovation communities. Open communities facilitate the exchange of expert knowledge and
are often cited as the primary driver of peer production and collective innovation. Yet, current re-
search provides little insight into knowledge reuse practices in these communities and the way those
practices are tied into the communal mode of collaboration. Extending the knowledge networks
literature on one hand, and the online communities literature on the other hand, this thesis studies
conjointly the creation and the dissolution of knowledge reuse as well as collaboration ties, in form
of developer mobility across projects, in the open source community of Ruby language.

The analyses show a significant impact from the social mobility of contributors across projects
on knowledge reuse, as predicted by the existing literature on knowledge networks. Also in line with
the expectations, the effect of social mobility on knowledge reuse is found to be more pronounced
when deep knowledge reuse is at stake, backing the argument that the direct social ties provide a high
bandwidth suiting complex exchanges. But more interestingly, the results show an impact in reverse
order. Knowledge reuse leads to an increase in the likelihood of subsequent creation of collaboration
ties across projects. The results also provide anecdotal evidence that shallow knowledge reuse may
be a more important driver for subsequent collaborations across projects, acting as a socializing
force. Moreover, I find that intellectual property protection mechanisms negatively impact the
creation of both collaboration ties and knowledge reuse ties across projects, as they give rise to
license compatibility issues.

The findings offer an interactive view of the dependency between the social networks and the
knowledge networks, in which none of the two networks can be given primacy over the other. This
is in contrast with the prior work on knowledge networks that largely assumes knowledge networks
as embedded within social networks. On the other hand, the findings provide an account of how
the reuse of intellectual capital can drive the creation of social capital, confirming a rarely tested
assumption of the theory of social capital. The study also provides preliminary evidence about the

generative social mechanisms that allow the adaptive deployment of production resources under the

community model.
I used a dataset covering the entire population of 61, 921 reusable Ruby projects contributed to
RubyGems.org within a period of ten years from the advent of the Ruby language (2003-2013) as

the input for the analyses.

vi

Résumé

Cette theése examine la dynamique de la collaboration et de la réutilisation des connaissances dans les
communautés d'innovation ouverte. Les communautés d’'innovation facilitent [¢change des connais-
sances spécialisées et sont souvent citées comme le principal moteur de 'innovation collective. Or, la
recherche actuelle sur les communautés ne met pas les pratiques de réutilisation des connaissances
en avant, ni la fagon par laquelle ces pratiques sont entre-nouées avec le mode de collaboration com-
munautaire. En se basant sur la littérature de réseaux de connaissances d’'une part et la littérature
de communautés en ligne d’autre part, cette thése étudie conjointement la création et la dissolution
des liens de réutilisation de connaissances ainsi que les liens de collaboration entre les projets de la
communauté open source de Ruby. Pour tester les hypotheses, jutilise les données de lensemble de
la population (61, 921) des projets Ruby réutilisables domiciliés sur RubyGems.org dans une période
de dix ans a compter de 'avénement du langage Ruby (2003-2013).

Comme prévu par la littérature existante sur les réseaux de connaissances, les analyses démon-
trent I'impact significatif de la mobilité sociale des développeurs entre les projets sur la réutilisation
des connaissances. Leffet de la mobilité sociale sur la réutilisation des connaissances saccentue
lorsque la réutilisation de connaissances complexes est en jeu, soutenant I'argument selon lequel les
liens sociaux directs fournissent une bande passante élevée convenant aux échanges complexes. Plus
important, les résultats montrent un impact dans lordre inverse. La réutilisation des connaissances
entraine une augmentation de la probabilité de création de liens de collaboration entre les projets.
Les résultats fournissent également des preuves anecdotiques du role important de la réutilisation
superficielle des connaissances pour les collaborations ultérieures entre les projets, agissant comme
une force de socialisation. De plus, je démontre que les mécanismes de protection de la propriété in-
tellectuelle ont un impact négatif sur la création des liens de collaboration et des liens de réutilisation
entre les projets, car ils générent des problemes de compatibilité entre les licences.

Les résultats offrent une vision interactive de la dépendance entre les réseaux sociaux et les
réseaux de connaissances, dans laquelle aucun des deux réseaux ne gagne la primauté et la domi-

nation sur lautre. Cela contraste avec les travaux antérieurs sur les réseaux de connaissances qui

vii

supposent que les réseaux de connaissances sont encastrés dans les réseaux sociaux. D’autre part, les
résultats fournissent un compte rendu de la fagon dont la réutilisation du capital intellectuel peut
conduire a la création du capital social, confirmant une hypothese rarement testée de la théorie du
capital social. Cette étude fournit également des preuves préliminaires pour expliquer les mécan-
ismes sociaux générateurs qui permettent le déploiement adaptatif des ressources de production

dans le modéle communautaire.

viii

Acknowledgements

Most people give or get back to their schools but because of a teacher that changed their life. I am
no exception. If I am here today, it is to the credit of the teachers who raised my curiousity, sparked
my interest, taught me how to formulate questions and showed me how to persevere until I obtain
the answer. I am grateful to the late Dr. Mohammad Ayoubi for teaching me the virtues of critical
thinking, Prof. Marie-Laure Salles-Djelic for teaching me what to think about, and Prof. Samer Faraj
for teaching me how to think about it. I am also deeply indebted to my brother and coach Dr. Hojjat
Hosseini who taught me peseverance in the face of adversity. I would not have made it this far had I
been relegated to my own limited reserve of patience.

During the course of my dissertation work I have benefited from the inputs of several faculty
members, colleagues and friends in McGill and HEC communities. The courses I have attended in
the joint PhD program are too many to mention here, but they have for sure left their mark on me as
a researcher. The core idea of my thesis was first developed in a course led by Dr. Animesh Animesh
and Dr. Kunsoo Han. Later on the feedback and support from Dr. Corey Phelps were crucial for
finding the right tools and methods, as well as for refining my theoretical perpective. Most crucially,
Prof. Samer Faraj, chair, was always there with the right questions and the right hints to guide me
through the intricacies of the academic process.

Among my colleagues, Karla Sayegh has had an important influence on my work. Since her
arrival at McGill, Karla has been both a research buddy and an older sister to me. We have spent
numerous hours discussing ideas and rehearsing presentations. It is not difficult to find her traces
here and there, on or in-between the lines, in this thesis.

During my doctoral studies I have recieved financial support from Fonds québécois de la
recherche sur la société et la culture (FQRSC), The Rathlyn Foundation, and Mr. Hian Siang Chan.
I have also relied often on McGill’s excellent HPC services at the data crunching stage. I would like
to thank all of the above individuals and institutions for their generous support.

This long journey would not have been possible without the extreme patience and the unwaver-

ing support of my wife and teammate for life, Agata. She is not only a great mother and a loving wife,

ix

but also a capable copy editor. She has kept my mind at peace, my stomach happy and my writing
error-free so that I can focus and thrive. She could claim the rights to a significant portion of this
work — such has been her contribution.

In the end, I would like to thank my parents, Aziz and Vahideh, not only for their support during
my doctoral studies, but for their unshakeable faith in me combined with their selfless support at all

the stages of my studies. I can only aspire to be a parent like them one day.

Table of Contents

Introduction

Theoretical Framework

Open Source Communities as Open Innovation Communities

Participation & Collaboration in

Open Source Communities

Development of Intellectual Capital Under The Cumulative Regime
Knowledge Reuse Networks

Measuring Knowledge Exchange

Social Networks vs. Knowledge Networks
The Theory of Social Capital
Social Capital as A Driver of Knowledge Reuse

Knowledge Reuse as A Driver of

Social Capital

Code Reuse as Knowledge Reuse
Typesof CodeReuse
Reuse in Open Source Communities 0 L.

Theory Development

The Effect of Social Ties on Knowledge Reuse
Software Licenses as A BarriertoReuse
The Effect of Knowledge Reuse on Social Ties
Software Licenses as A Barrier to Collaboration

Methods

General Approach
Research Site o o e
Data Gathering e
Data Transformation e
Measures e e e e e

Dyad-level Measures

Node-level Measures o i i e
Analysis

Sub-sampling
Models
Results
Knowledge Reuse
Coaffiliation

Discussion

An Interactive View of Knowledge in Networks
Communities as Spaces for Knowledge Collaboration

Communities as Adaptive Networks

Implications

xi

10
10
10
11
14
15
17
17
18
24
27
29
32

34
34
40
41
44

46
46
46
48
52
60
60
67
71
71
74
8o
80
82

91
91
94
96

99

Contributions e 99
Methodological Contributions

............................... 99
Theoretical Contributions 100
Limitations e 101
Future Research 102
Bibliography 104
Appendix A: Glossary of Open Source and Ruby-related Terms 117
Appendix B: Overview of the Gathered Network Data 119

xii

O CcoNN ANV N W -

I e T e T e T S e S
coN oAV N W N H O

O OoN VM AW N+

e e
E‘UWNHO

List of Tables

The Facets of Social Capital vs. The Elementsof Reuse 20
Data items and theirsources 52
Top license families, sample licenses and corresponding categories 65
Sub-sample descriptions 72
Descriptive statistics for the Hia sub-sample (DV: Blackbox Reuse) 75
Pearson correlations for the Hia sub-sample (DV: Blackbox Reuse) 75
Descriptive statistics for the Hib sub-sample (DV: Whitebox Reuse) 76
Pearson correlations for the Hib sub-sample (DV: Whitebox Reuse) 76
Descriptive statistics for the H2 sub-sample (DV: Reuse Type) 77
Pearson correlations for the H2 sub-sample (DV: Reuse Type) 77
Descriptive statistics for the H4 sub-sample (DV: Coaffiliation) 78
Pearson correlations for the H4 sub-sample (DV: Coaffiliatione) 78

Logit and relogit regressions with blackbox reuse as dependent variable (Hia & H3a) 83
Logit and relogit regressions with whitebox reuse as dependent variable (Hib & H3b) 84

Multinomial logistic regressions with reuse type as output variable (H2a & H2b) . . 85
Logit and relogit regressions with coaffiliation as dependent variable (H4a & H6) . 88
Logit and relogit regressions with coaffiliation as dependent variable (H4b & H6) . 89
Logit and relogit regressions with coaffiliation as dependent variable (Hs) 90
List of Figures
A RubyGems ProfilePage 50
Data gathering and transformation flowchart 54
Network of blackbox reuse (functionalreuse) 55
Network of whitebox reuse (code clonenetwork) 57
Bipartite network of developer-project affiliations 58
Projecting the bipartite network of developer-project affiliations 59
Evolution of license adoption in Ruby community (2003-2013) 64
Functional reuse in Ruby community (2003-2013) 68
Log-Log degree distribution plot for the reuse network 69
Log-Log degree distribution plot for the coaffiliation network 70
Observation timeline for the sub-samplingstep 72
Functional reuse in Ruby community 73
Comparative density plot for coefficients 86
The diagram of the network data gathered for the thesis 119

xiii

Introduction

This thesis examines the dynamics of knowledge collaboration and reuse in community forms
of organizing. It follows in the steps of the vast body of research that investigates the association
between social capital and the creation of intellectual capital. Intellectual capital, whether in the form
of innovation, novel ideas or knowledge stocks, is a much sought-after source of economic value-
added and competitive advantage in contemporary knowledge economies (Argote & Ingram, 2000;
Boisot, 1998; Drucker, 1969; Fleming, 2001; Nelson & Winter, 1982; Schumpeter, 1934). Knowledge
reuse and recombination are key in the creation of intellectual capital, a social game in which the non-
redundant knowledge required to achieve novel thinking and the social influence needed to establish
and deploy innovative outcomes are attained through social engagement (J. Singh & Fleming, 2010).
By studying knowledge collaboration and reuse in community forms, this thesis seeks to shed light
on some of the processes that build up the innovative capacities of those communities.

Organization studies have long inquired into the organizational life of knowledge: knowledge
reuse and recombination, as well as knowledge collaboration and co-creation. In the last four decades,
the knowledge perspective (i.e., broadly defined) has fully permeated the mainstream in organization
studies, increasingly informing our perception of how modern organizations operate and create value
in the knowledge economy (Grant, 1996; Spender, 1996). Starting from 1970s, the word knowledge has
increasingly appeared in the titles of the articles published in the 20 leading journals in management,
economics, psychology and sociology. The number of network studies with a focus on knowledge
has also multiplied (Phelps, Heidl, & Wadhwa, 2012).

The work on the knowledge perspective covers topics from organizational learning (Brown &
Duguid, 1991; Nonaka, 1994; Wenger, 2000) to innovation adoption (Burt, 1987; Coleman, Katz, &
Menzel, 1957; Rogers, 1962), with a wide range of findings. One of the most important takeaways
of the knowledge perspective is that knowledge, despite its immaterial nature, is both socially and
geographically embedded. The focus on the capacity of the social actors to transfer and reuse knowl-
edge has given rise to a distinct body of research on knowledge networks (Phelps et al., 2012). The

studies from this line of research are unequivocal about the significance of the relationship between

the social structure and interactions, seen through the prism of social networks, and the patterns of
emergence, mutation and resurgence of ideas, as reflected in knowledge networks (Inkpen & Tsang,
2005).

For instance, the social network studies of innovation diffusion and adoption have found a
link between social network patterns such as cohesion and social equivalence and the trajectory
of information diffusion and adoption of innovations (Burt, 1987; Coleman et al., 1957; Rogers,
1962). Studies of corporate knowledge spillovers have contributed to our understanding of firm-
level knowledge localization and de-localization by demonstrating how the social mobility of the
individuals across firms and loci allows the firms to curb their knowledge search limitations (Almeida
& Kogut, 1999; Jaffe, Trajtenberg, & Henderson, 1993; Rosenkopf & Almeida, 2003) Finally, the
studies of intra-organizational social and knowledge exchange networks have demonstrated that the
relations between organizational units promote knowledge exchange, conditioned by the type of
relationship and the type of knowledge sought (Hansen, 2002; Hansen, Mors, & Lovas, 2005). Put
shortly, the effect of social networks on knowledge networks is well-documented, often justified by
the way the different facets of social capital inhabit social networks (Nahapiet & Ghoshal, 1998).

The relationship between intellectual and social capital is not, however, uni-directional. Indeed,
Nahapiet and Ghoshal (1998), as well as Brown and Duguid (1991), characterize the relation between
the two forms of capital as an interrelation, or a coevolution, of knowledge and relationships, citing
the importance of collective forms of knowledge in sustaining collaboration. But can one deduce
that social networks are embedded in knowledge networks in the same way knowledge networks
are embedded in social networks? In other words, are there good arguments to support the effect
of knowledge networks on social ties and structures? While the empirical evidence is heavily tilted
towards the effect of social networks on knowledge networks, I argue that it makes intuitive sense to
assume the existence of a reverse relationship, given that knowledge networks define our exposure
to knowledge, including knowledge about the others, their expertise and possible beneficial rela-
tionships. The empirical evidence is still modest (e.g., Phene & Tallman, 2014; Rosenkopf & Nerkar,

2001), what leaves ample room for further investigation.

But for all the research done on the knowledge perspective in the formal organizations, the mere
subject of the knowledge perspective, the development of novel ideas, has been slowly but steadily
slipping away from this context. The lowering of barriers to access knowledge, technology and
communication has brought about a shift in the locus of innovation, or where the novel ideas see the
light of day and where they are incubated and brought to fruition (von Hippel, 1994). Recognizing this
shift, Chesbrough’s popular book (2006) and the follow-up research on open innovation have made a
case for opening up the innovation processes of the firm by highlighting the increasingly distributed
forms these processes can take and advocating an innovation model in which the firm boundaries
are more permeable to the exchange of knowledge and ideas (Boudreau, 2010, 2011; Chesbrough &
Crowther, 2006; Laursen & Salter, 2006). Yet, with a few exceptions, the learnings of this body of
research remain confined to the corporate context and therefore to the formal organizations, rarely
discussing the emerging and unconventional forms of organizing.

Some authors, however, have taken a step further and conjectured that communities, and not
formal organisations, are quickly becoming the main platforms for knowledge creation and there-
fore for innovation (Adler & Kwon, 2002; Demil & Lecocq, 2006; von Krogh & von Hippel, 2006).
Communities are “collectivities of people who share a common experience, interest, or conviction;
who experience a positive regard for other members; and who contribute to member welfare and
collective welfare” (Sproull & Arriaga, 2007, p. 898). Communities have seemingly existed through-
out the history, but the advent of electronic communication technologies has ushered into a new
era where the online variant of communities can serve as a viable organizational form for scalable
knowledge sharing and collaboration (Faraj, Jarvenpaa, & Majchrzak, 2011; Faraj, von Krogh, Mon-
teiro, & Lakhani, 2016; O'Mahony & Ferraro, 2007; Wasko & Faraj, 2005). The community form,
thus, is a renewed form of organizing, emergent in its contemporary form. Communities, the argu-
ment goes, carry less formal structures impinging on the exchange of ideas, and their trust-based
social contract is ultimately better suited to host the collective processes of melding and recasting of
ideas (Adler & Kwon, 2002; von Krogh & von Hippel, 2006). Some of the best-known technological

achievements and social accomplishments of our time bear testimony to that. Linux, Wikipedia,

Apache and the other well-known products of community work have not garnered their reputation
as merely working solutions coming out of ad-hoc organizations. They rather became known as
they evolved into dominant solutions, with a seemingly inexhaustible degree of adaptive innovation,
surpassing that of the commercial competitors. Many of the underpinnings of the global information
infrastructure that supports our knowledge collaborations have their roots in the community work,
and more specifically in open innovation communities (Fleming & Waguespack, 2007).

Open innovation communities are electronically mediated communities composed of “volun-
teers who work informally, attempt to keep their processes of innovation public and available to
any qualified contributor, and seek to distribute their work at no charge” (Fleming & Waguespack,
2007). They provide a knowledge ecosystem with an alternative governance mechanisms relying on
incentives, legal frameworks and social structures not directly comparable to those of the formal
organizations. (Lerner & Tirole, 2002; Murray & O’Mahony, 2007; O’Mahony & Ferraro, 2007).
Openness, loosely-knit social fabric, ad-hoc trust-based control structure, and weakness of direct
incentives in communities have all prompted the scholars to speculate about the capacity of commu-
nities to host knowledge ecosystems and constitute a third mode of governance beside markets and
hierarchies (Adler & Kwon, 2002; Demil & Lecocq, 2006; von Krogh & von Hippel, 2006). Nonethe-
less, despite the strong track record of research on open innovation communities, few studies to date
have directly addressed the questions regarding knowledge creation and reuse in open innovation
communities (Faraj et al., 2016; Haefliger, von Krogh, & Spaeth, 2008; Kyriakou, Nickerson, & Sabnis,
2017; Murray & O’Mahony, 2007; P. V. Singh & Phelps, 2013; Sojer & Henkel, 2010).

The early research on open innovation communities was characterized by a fascination about
the possibility of highly skilled individuals working for free on publicly available projects, and thus
mainly focused on the labour supply dimension of communities. Motivations, participation and
contributions by individual community members to the community outcomes (e.g., forum posts,
code donation, bug reports, etc.) where among the topics most frequently explored (Benbya &
Belbaly, 2010; Hertel, Niedner, & Herrmann, 2003; Lerner & Tirole, 2002; Mockus, Fielding, &

Herbsleb, 2002; Shah, 2006; von Krogh, Haefliger, Spaeth, & Wallin, 2012). This body of work has

shed light on an array of social, psychological and economic motives that underpin the participation
of individuals in community activities. These include, but are not limited to, self-interest (Lerner &
Tirole, 2002; von Krogh & von Hippel, 2006), social exchange (Faraj & Johnson, 2011; Wasko & Faraj,
2005), identification (R. P. Bagozzi & Dholakia, 2006; Hertel et al., 2003), self-enjoyment (Franke &
Shah, 2003; Shah, 2006) and altruism (Hars & Ou, 2002).

The interest later shifted to a macro perspective with the study of a variety of social and struc-
tural factors that shape the participation of individuals and guarantee the sustainability and the
viability of the communities. These include, though ares not limited to, community size, critical
mass, and social structure (Baldwin & Clark, 2006; Butler, 2001; Peddibhotla & Subramani, 2007),
community governance (Dahlander & O’Mahony, 2011; O’Mahony & Ferraro, 2007), project success
(Grewal, Lilien, & Mallapragada, 2006; P. V. Singh, Tan, & Mookerjee, 2011) and corporate relations
(Bonaccorsi, Giannangeli, & Rossi, 2006; Economides & Katsamakas, 2006; Fosfuri, Giarratana, &
Luzzi, 2008; West & Gallagher, 2006).

This extensive focus on participation, viability and their antecedents in the published research
about open innovation communities has been deemed rooted in a historically informed lack of trust
among organization scholars in the viability of communal forms of organizing due to the absence of
reliable mechanisms to align the individual and collective interests (O’Mahony & Ferraro, 2007). But
that has detracted from addressing some of the more interesting questions about the substance of
work in open innovation communities; or the dynamics of knowledge collaboration and reuse that
build up the capacity of these online communities to create intellectual capital (Faraj et al., 2011; Faraj
et al., 2016). Notably, little has been done to explore what gained the open innovation communities
their reputation — their capacity for fomenting new ideas and incubating innovation.

Taking the knowledge perspective to the study of open innovation communities seems like a
logical sequel to the extant research on online communities. This work takes a step in that direction by
bringing the study of the interplay between social capital and intellectual capital to the communities.
This is in line with the recent calls to cover the dynamics of knowledge collaboration (Faraj et al.,

2011) and knowledge reuse (Faraj et al., 2016) in online communities, as well as with an emerging

stream of empirical work that explores the community processes that support knowledge remix and
recombination as vectors of open innovation (e.g., Flath, Friesike, Wirth, & Thiesse, 2017; Kyriakou
et al., 2017).

By studying online communities of innovation from a knowledge perspective, my effort is to
transcend the habitual existential questions about the online community phenomenon and focus
instead on the processes and the outcomes of the phenomenon. I depart from the assumption that
online communities, like other institutions, are self-perpetuating and self-legitimizing, capable of
carrying on with their own institutional inertia and with the objective of maintaining the excellence
of their practices (von Krogh et al., 2012). Community activities can be considered self-motivating
practices that ultimately grant online communities their viability as social and organizational forms.
As such, I de-emphasize the questions about the way online communities obtain their resources in
favour of questions about the way online communities regulate and deploy their social and intellectual
resources.

With this focus, I raise several inter-related research questions. Together, the questions are
intended to draw a broad picture of knowledge work in open innovation communities: How can
one measure the reuse of knowledge outcomes in open innovation communities? How do community
participants reuse each others work within the context of community projects? How do the social
structure of knowledge reuse and that of collaboration interact with each other in these communities?
And finally, how do the specificities of open innovation communities relate to those patterns of knowledge
reuse and collaboration?

By asking, and subsequently trying to answer these questions, I pursue three objectives.

The first is to extend the line of study on knowledge networks to the new context and confirm
or revisit the earlier findings to establish a baseline for the relevance of the knowledge perspective in
this setting. That entails testing whether the existence of links in the social network of collaborations
has an impact on the creation of new links in the networks of knowledge reuse. But how do the
previous findings regarding the relation between social capital and intellectual capital hold in the

community settings? Do social ties have an equal bearing on the way knowledge is reused in open

innovation communities given that the barriers to knowledge exposure, exchange and reuse are
lower or at least different in these communities?

The second objective of this study is to serve as an empirical probe into the less studied aspect
of the relation between social and intellectual capital, namely the impact of knowledge networks
on social networks. I do so by testing whether the existence of links in the network of knowledge
reuse has a discernible impact on the creation of new links in the social network of collaboration.
Empirically demonstrating this point is key to the main thesis defended in this work, which is an
interactive view of knowledge in newtorks, referring to the co-evolving nature of the two types of
capital.

Third, this study aims to contribute to the ongoing effort to theorize knowledge work in on-
line communities by offering a mid-range theory of knowledge reuse practices in open innovation
communities.

I subscribe to the view that studying community forms offers a unique opportunity to tran-
scend our views beyond the limited context of formal organizations and contributes to our broader
understanding of collaboration in organizations at large (Faraj et al., 2011). Yet, the particulars of
the social phenomena often far outweigh what can be directly deduced from general theories, and
the only way to inform our general theories with original substance is by attending to the specifics
of the social phenomena and developing middle-range theories (Merton, 1968a).

Therefore, although this study clearly aims at universality and generalizability in its proposi-
tions, it also partially tells the tale of how online communities function by revealing the interactive
dynamics that tie the two forms of capital together in this setting. As such, the study’s propositions
may at times be phenomenon-driven, although theoretically informed, and certain findings are ex-
pected to be phenomenon-dependent. By investigating the phenomenon-specific issues the hope is
to learn more about the way open collaborations operate in general, but also about the mechanisms
that give open innovation communities their competitive and innovative edge.

In this thesis, I particularly focus on open source communities as the empirical site. Open

source communities are open innovation communities whose principal objective of activity is soft-

ware development. The work done in open source communities is, by definition, knowledge work
and no phenomenon represents both collaborative and innovative aspects of online communities
better than open source communities. Open source community members are composed of core and
occasional developers, participating users and by-standers. They cover a range of activities, includ-
ing software design, development, testing, bug reporting and documenting, as well as member-to-
member help and sometimes aesthetic design (Hars & Ou, 2002).

Open source communities present a data advantage that makes them particularly suitable for
the kind of questions being raised in this thesis. Most open source communities provide detailed
information on projects and contributors, consecutive snapshots of project data including both
the original code and the specification metadata, and a systematically compiled log of individual
contributions to different projects across time. This makes it possible to respond to questions that
require whole-network and dynamic samples. But apart from the scale of the data, the scope of the
data is also impressive in open source communities. Most organizational studies resort to proxy
variables, self-reported data or communication data in order to document collaboration. The fact
that the substance of work, the contributions and the work process in open source communities are
all public and in digital domain provides the unique opportunity that the work itself can be measured
with no need for proxy or secondary sources.

The reuse of knowledge commonly occurs in open source communities (Haefliger et al., 2008;
Sojer & Henkel, 2010). However, our knowledge of reuse behaviour, its antecedents, and its con-
sequences in open communities remains limited. The dearth of theoretically-motivated studies in
this area leaves the venue open for investigation. In this dissertation, I draw on the theory of social
capital, the literature on knowledge networks, and the literature on online collaboration and online
communities to formulate propositions with regard to reuse and collaboration behaviours in open
innovation communities. Subsequently, I proceed to test those propositions, borrowing methods
from fields as far apart as political science and computer science.

In the following pages I start by laying out the theoretical framework supporting the study.

Next, I bring together the perspectives covered in the framework section to develop propositions

that I formulate as testable hypotheses. The following methods section describes the data gathering,
treatment and analysis methods used in the study, as well as the findings of the analysis. In the two

final sections I will discuss the findings and their implications.

Theoretical Framework
Open Source Communities as Open Innovation Communities

Participation & Collaboration in Open Source Communities. Each open source commu-
nity is composed of a large number of projects, and the individual developers are usually free to
contribute to the projects of their choice. Community membership and activity are based on free
voluntary participation. The vast majority of open source projects are single-developer, which is,
their permanent members are not more than one. To these one-man projects, collaboration means
attracting temporary contributors or accepting occasional contributions from community members.
While these smaller projects are typically managed by their founders, the larger projects often in-
corporate meritocratic and democratic elements in their governance model (Kogut & Metiu, 2001;
O’Mahony & Ferraro, 2007). Collaboration also takes fuller dimensions in large projects, as different
sections of the collective work fall under the supervision of different contributors and large-scale
changes require several interested parties to fall in line.

Achieving this latter is not a certainty. Whether the administrators of a project keep a tight
grip on its management or adhere to a participatory mode of governance, disagreement about the
future of a given project, a specific feature or the mode of participation may arise from time to time.
Disagreements and conflicts in the governance of such projects are not always resolved uneventfully
and sometimes end up provoking hostile project forks, whereby two groups of developers start
working on two diverging and competing versions of the code with no intention to re-merge. Project
forks have often been pointed out in the literature as a peril for open projects and a cautionary tale
about the potentially wasteful allocation of resources in community forms (Fleming & Waguespack,
2007; Kogut & Metiu, 2001).

The free, voluntary participation in open projects has often been misinterpreted as being synony-
mous to unpaid work. Project member surveys have drawn a different picture of what the voluntary
work is composed of. Between one and two-thirds of the contributors to the large community-
managed projects have sponsors and are allowed to work on the projects as a part of their employ-

ment (Lakhani & Wolf, 2005; O’Mahony, 2003). The participation is, however, free and voluntary

10

in the sense that there is no pecuniary compensation mechanism nor binding contract controlled
through the governance structure of the projects. The decision to move in, out or between projects
is only constrained by the tacit consent among individuals, as well as by the social and cultural
considerations such as communal norms.

There are strong norms of reciprocity in open source communities that appear in form of a
generalized gift culture (Raymond, 2001), free peer-to-peer assistance (Franke & Shah, 2003; Lakhani
& von Hippel, 2003), and a pressure to contribute to the commons (O’Mahony, 2003). These norms
are rooted in the programming culture and enshrined in the open licenses (Williams, 2011). They
are regularly enacted and enforced in the online interactions and the discussion forums (O’Mahony,
2003). That explains to some extent the developers’ urge to give back to the community by means of
getting involved in community projects (Wasko & Faraj, 2000).

Open source projects have been often described as layered collectivities with concentric circles
of core members, peripheral members, inactive members and simple users (Dahlander & O’Mahony,
2011). Progression within the projects has been described in terms very similar to that in communi-
ties of practice; a move from the periphery to the core driven by contributions and leading to gradual
gains in legitimacy (Dahlander & O’Mahony, 2011; Wenger, 2000). This process of legitimate pe-
ripheral participation allows the newcomers to observe and the novices to improve their knowledge
through practice, until they are fully socialized within the community (Wenger, 2000). A developer
can be simultaneously core to some projects while peripheral to others.

Development of Intellectual Capital Under The Cumulative Regime. Most human achieve-
ments in the domains of technology and innovation are based on the accumulation and combination
of relevant and original ideas.

This accumulation can only occur if the prior art is disclosed and accessible to each new gener-
ation of creators, that is, they must know about the existence of such prior art as well as having the
possibility to explore and reuse it in derivative work. Furthermore, there must exist a reward mecha-
nism, either remunerative or reputation-based, that encourages the creators to disclose their work

and make it accessible to the future generations. Intellectual property regimes that secure access,

11

disclosure and rewards can be considered as favourable to cumulative innovation and continuity in
the creation of intellectual capital (Murray & O’Mahony, 2007).

The relative importance of each of these antecedents is the subject of debates. The conventional
economic theories emphasize disclosure and rewards as the most notable antecedents to the accumu-
lation of knowledge (e.g., Dasgupta & David, 1994). From the vantage point of IP prospect theory,
strong IP protection facilitates the creation and maintenance of knowledge through licensing (Gallini
& Scotchmer, 2002; Kitch, 1977), and this is all the more true in the digital age given the declining
cost of reproduction. Others have taken a more liberal approach to IP protection, noting that with
the diminishing cost of access due to digitization, reuse is now mainly hindered by copyright laws
(Benkler, 2002; Lemley, 2004; Lessig, 2004). These latter have argued that only when disclosure is
complemented with the possibility to access knowledge for reuse and recombination, it may lead to
accumulation, while copyright mainly restricts the access (Adler, Kwon, & Heckscher, 2008; Lessig,
2008).

One distinguishing factor about the open innovation communities is their approach to intel-
lectual property protection, which relies on alternative assumptions about the three antecedents of
cumulative innovation. While the mainstream intellectual property protection regimes have histori-
cally given primacy to remunerative rewards for the creators at the expense of access to knowledge,
open innovation communities are built on the promise of free and unlimited access to knowledge
for reuse, along with wide permissions for recombination. The intellectual property generated in
open innovation communities is governed by open licenses.

Open licenses come in different types and flavours, with the main differences rooted in the
stance the licenses take towards derivative works — whether derivative works are allowed, whether
they can be commercialized, and under what terms. Common among open licenses is their support
for unhindered access to knowledge for reuse. With the exception of a few minor or special-purpose
licences (e.g., CC BY-ND & CC BY-NC), the large majority of open licenses also allow for modifica-
tion and creation of derivative work for both commercial and non-commercial purposes. The factor

that divides the range of existing licenses into two broad categories is the terms of distribution for

12

the derivative works, or more precisely the requirement for reciprocal licensing. Reciprocal licensing
is the practice of preserving distribution rights in derivative works down the line, and thus requiring
the same or similar license as the original for the copies and the adaptations (“CC v.4,” 2013). Licenses
with reciprocal licensing stipulations are labelled as Share Alike or Copyleft, while those without are
commonly referred to as permissive licenses.

Apart from cementing the values of openness and free revealing within the community, licenses
are one of the most important mechanisms the open innovation communities have put in place to
guard their intellectual commons (O’Mahony, 2003). Reciprocal licensing requirements not only
guarantee the accessibility of the commons to the general public, but also guarantee the maintenance
of accessibility by turning the future derivative works into commons. Although the copyleft licenses
do not restrict the commercial use, in effect they curb commercial appropriation of the commons
by turning over the copyright law to prevent behaviour that might threaten the public availability of
the commons (Stallman, 1999). One can take from the commons as much as needed, as long as one
does not take away from the commons.

The promise of open innovation communities is that, all else equal, open access translates into
lower effort needed for knowledge acquisition and generally a more efficient knowledge exchange pro-
cess as compared to the proprietary contexts. This, it is argued, allows those who are best positioned
to identify the issues to have access to the required knowledge to enter the process of problem-solving.
The shift in the locus of problem-solving has been reported as one of the distinct features of the open
innovation communities, and has been credited with distributing and democratizing innovation
(Von Hippel, 2001; von Hippel, 1994, 2005).

Nevertheless, the flip side of giving primacy to access in the open access model is the lack of cer-
tainty about the reward mechanisms, and thus about the supply of workforce. As mentioned above,
free voluntary contribution in open innovation communities means that there is no remunerative
reward mechanisms tied into the governance structure of the community projects. In absence of
those, the communities rely on reputation effects, and strong reciprocity norms to regulate the be-

haviours and align the individual and community interests. But no matter how strong the reputation

13

effects and the normative pressures, they can not entirely replace remunerative rewards. Certain
open source initiatives secure the inflow of rewards by adopting dual licensing for commercial uses,
by engaging into freemium economics using a razor-and-blades strategy, or by asking for donations
(Fosturi et al., 2008). Yet, the path to monetization of open source projects is not always clear, and
micromanaging community participation is more likely to backfire than to improve collective perfor-
mance (West, 2003; West & Gallagher, 2006). Ultimately, the community-managed projects operate
as a dynamic nexus of social, economic and technical interests, and their sustenance is a function of
equally dynamic renovation of this nexus.

Focusing specifically on open source communities, Haefliger et al. (2008), as well as Sojer and
Henkel (2010), have noted several behavioural patterns in community-managed projects related to
the expected limitations in access to human capital. The two studies have found important links
between the mode of provision of human capital and the reuse practices in the communities. I will
further discuss these findings under the section Reuse in Open Source Communities.

However, before narrowing down to the topic of reuse in open innovation communities, I will
provide an overview of knowledge reuse and its entanglement with the different facets of social

capital as presented in the extant research.

Knowledge Reuse Networks

Knowledge exchange and reuse are essential to the production of intellectual capital. To pro-
duce means “to combine materials and forces within our reach” and development is thus “defined by
the carrying out of new combinations” (Schumpeter, 1934, pp. 65-66). Intellectual capital is similarly
developed through the recombination of the previously known (Moran & Ghoshal, 1999). Novelty
lies, therefore, in devising new assortments of the existing ideas arranged into unprecedented config-
urations (Fleming, 2001; Nelson & Winter, 1982). Where knowledge is distributed among different
parties, exchange fast becomes a prerequisite for reuse and recombination. Since novel ideas often
draw upon the expertise of different parties, their development relies on the exchanges between the

parties, as well as the ability to reuse the gained knowledge.

14

If we conceptualize social networks as consisting of nodes and relationships among nodes
(Wasserman & Faust, 1994), then knowledge exchange can be defined as observing the flow or the
diffusion of knowledge from one location in the network to the other loci. Since individuals are both
vehicles of knowledge and the driving force behind knowledge creation, the social movements of
individuals, the social ties between them, as well as the social structure in which they are embedded,
are instrumental in both knowledge exchange and knowledge creation (Abrahamson & Rosenkopf,
1997; Susarla, Oh, & Tan, 2012). For instance, social ties can bring the interested parties together and
act as a conduit for knowledge exchange. The same holds at the more aggregate levels of analysis.
Networks of human collaboration that connect collectivities of human actors show similar properties
and equally interact with the knowledge creation capacities of these collectivities (Inkpen & Tsang,
2005).

There is an expanding body of literature on knowledge networks that examines the social struc-
ture of knowledge outcomes (Phelps et al., 2012). Knowledge networks and the knowledge flows
they incarnate intervene at several stages of knowledge creation, including access to knowledge,
knowledge transfer, knowledge reuse, and recombination. The research findings are unequivocal in
their support for the positive effect of knowledge sharing on problem solving and innovative capac-
ity. At the team level, the studies report that the development of shared mental models improves
mutual learning and ultimately improves the capacity of the teams to solve complex problems in
innovative ways (Akgiin, Byrne, Keskin, Lynn, & Imamoglu, 2005; Austin, 2003). At the corporate
level evidence is accumulating that improved interaction between firms and organizational units
increases the likelihood of value creation through product innovation when it promotes resource
exchange and combination (Tsai, 2001; Tsai & Ghoshal, 1998). The relationship between knowledge
exchange and knowledge creation has turned out to be stable in the contexts it has been studied. The
approaches to quantifying knowledge exchange are, however, multiple.

Measuring Knowledge Exchange. The literature on knowledge networks has employed a
variety of different measures to quantify or qualify knowledge exchange. The choice of measures is

not merely an operational issue when it comes to knowledge exchange. It is important to distinguish

15

between these measures as they have often been referred to interchangeably, while they correspond
to phenomena that are not necessarily analogous, although partially overlapping.

The most straightforward measure of knowledge exchange can be obtained by recording the
act of expressing or carrying the knowledge to the recipient. Measures such as electronic or direct
exchange count (Bouty, 2000; Centola & Macy, 2007; Reagans & McEvily, 2003) or direct knowledge
contribution (Faraj, Kudaravalli, & Wasko, 2015) belong to this group. Communications between
network members or contributions to discussions do not always translate into knowledge exchange
and even less often bring in relevant knowledge, yet communication records remain one of the best
proxy measures for knowledge exchange intensity. I refer to this category of measures as “knowledge
transfer” measures.

Another well-established measure for knowledge exchange can be obtained by tracking down
the traces of knowledge coming from a known origin in the knowledge outcomes of a focal recipient.
Measures like patent citations (Mowery, Oxley, & Silverman, 1996; Rosenkopf & Almeida, 2003;
Wang, Rodan, Fruin, & Xu, 2014) and academic citations (Acedo, Barroso, Casanueva, & Galan,
2006; Taylor, Dillon, & Van Wingen, 2010) are of this kind. I refer to this category of measures as
“knowledge reuse” measures because they primarily indicate whether the acquired knowledge has
played a formative role in the creation of new knowledge. While knowledge reuse occurs only in a
subset of knowledge exchange cases, it is safe to assume that where there is knowledge reuse, there
is direct or indirect knowledge exchange.

Knowledge reuse measures are not empirically tied to communication and knowledge flows in
social networks and are conceptually independent from the relational properties of social networks.
The phenomenon they measure falls midway between knowledge transfer and knowledge recombi-
nation, what can be labelled as “effective knowledge transfer” — knowledge transfer that has left a
tangible effect on the knowledge outcomes.

Knowledge reuse measures are not measures of knowledge recombination neither, as they do
not quantify the variety of sources knowledge outcomes draw on, nor the proportion of knowledge

drawn from elsewhere. An ideal measure of recombination would have to provide information on

16

the diversity of the combined sources and their proportional contribution to final outcomes as well.
The reuse measures, however, are only one causal link away from knowledge recombination and
are well suited to the study of innovative capacities. A comprehensive knowledge reuse dataset can
potentially be transformed to measure recombination as well.

There are other measures related to knowledge exchange that have been operationalized in the
literature. For instance there are measures of innovation adoption (Coleman et al., 1957; P. V. Singh
etal,, 2011). These are not knowledge exchange measures per se, although they do testify the diffusion
of some type of knowledge or knowledge artefact. But given the non-rival nature of knowledge as a
good, any knowledge transmission can be considered diffusion as well, and it is hard to draw a line
between the two concepts. Adoption measures are different from reuse measures in that they do not
focus on the innovation process, neither on innovative outcomes. Nonetheless, they are effective
measures when it comes to the study of innovation diffusion.

Lastly, learning measures can be adapted to the study of knowledge exchange (Uzzi & Lancaster,
2003). The concept of learning, both at the individual and the organization level, has much overlap
with the concept of knowledge exchange (Brown & Duguid, 2000), whereas learning often involves
the internalization of some type of knowledge by social actors and thus goes beyond the linear process
of resource exchange between the actors (Argyris, 1976).

Given the motivations and the objectives of this thesis, I mainly focuses on the reuse-type
networks. The term “Knowledge Network” has been used interchangeably with the term “Knowledge

Reuse Network” throughout.

Social Networks vs. Knowledge Networks

The Theory of Social Capital. The study of different patterns of social connectedness and the
value that can be derived from them has given rise to the theory of social capital. Central to the
theory of social capital is the thesis that “networks of relationships constitute a valuable resource for
the conduct of social affairs” (Nahapiet & Ghoshal, 1998, p. 243).

The concept of social capital is inclusive of social ties as well as the structure of social networks

17

and the resources that can be mobilized through them (Bourdieu, 1986b; Burt, 1992; Putnam, 2001).
This endows social capital with two main dimensions or facets: (1) The “relational facet” that refers
to the properties of interpersonal relationships and what derives from them, and (2) the “structural
facet” that refers to structural features of the network at abstraction levels above interpersonal level,
including but not limited to overall network structure, local network structure, and network position
(Phelps et al., 2012).

In addition to the two original facets of social capital, Nahapiet and Ghoshal (1998) have pro-
posed a third facet of social capital referring to those resources providing shared representations and
understandings among network members. Shared understandings emerge across social networks
and are critical to expert collaboration and knowledge creation (Bechky, 2003; Carlile, 2004). All
the facets of social capital ultimately facilitate social action.

While most authors would agree on the facets of social capital, that it may emerge at micro, meso
or nano levels, opinions differ on what would be an appropriate measure for social capital that would
allow us to distinguish social capital when observing a social network. This is not entirely surprising
considering the teleological definition of the notion of social capital that ties the recognition of
the phenomenon to the “conduct of social affairs”. Inevitably, what one considers as “capital” is
tied to what one considers a desirable “social affair” As a consequence, different social network
concepts, sometimes of opposing nature, are often discussed under the umbrella term “social capital”
(e.g., network closure vs. structural holes, or the strength of weak ties vs. the strength of strong ties).

It is this broader interpretation of the notion of social capital that I adopt when discussing the
relationship between social capital and knowledge reuse. I use the term as an overarching concept
to discuss a variety of structural and relational social network findings that can be consequential to
knowledge reuse, and vice versa.

Social Capital as A Driver of Knowledge Reuse. There are four distinguishable elements
involved in knowledge reuse: The content, the creator, the reuser and the context. Social capital,
embodied in social networks, interacts in all its facets with the elements of knowledge reuse (See

Table 1). These elements draw the limits of possible when it comes to reuse opportunities and

18

decisions, and delimit the structure of knowledge reuse networks. Each of the elements of reuse

interacts with all the three, or at least the two original facets of social capital.

The Content. 'The concept of knowledge spans a continuum ranging from our individual
understanding of the phenomena (Simon, 1991) to the written representation of the more codifiable
aspects of our understanding (Polanyi, 1967). The way knowledge is transformed, exchanged and
reused in the social context is closely related to the form in which it resides (Spender, 1996).

Knowledge can be conveyed directly through regular lines of communication only to the extent
that it can be codified and made explicit, and only the more explicit knowledge is ready for efficient
reuse and recombination. Sharing tacit knowledge often requires deeper social involvement and
shared experiences (Nonaka, 1994). Therefore, certain ideas that are more amenable to codification
can travel further away in social networks and are more likely to be drawn upon by potential recipients
of diverse backgrounds. Otherwise, knowledge that is hard to express in explicit terms, that is
difficult to teach, or that is highly system-dependent or complex may not travel far across social
networks (Hansen, 1999; Zander & Kogut, 1995) and its beneficiaries will be more localized around
the knowledge source where they can maintain high-bandwidth information channels (Aral & Van
Alstyne, 2011).

But while strong local connectedness promises efficient knowledge exchange and improved
reuse through information advantages, it has been suggested that only structurally diverse links
can provide effective knowledge search and broadcasting opportunities (Granovetter, 1973). In
an environment where solutions are exchanged between knowledge holders, matching the right
problem with the fitting solution requires highly diverse connections, even though it comes at the
cost of reduced bandwidth. Weak ties and strong ties both have their strengths, and achieving the
right trade-off between the two depends on the information needs of the knowledge recipients (Aral,
2016; Aral & Van Alstyne, 2011).

Therefore, the content of knowledge reuse, or the characteristics of the knowledge being reused,
interact with both relational and structural aspects of social capital. While strong ties and denser

social fabrics are better suited to mitigating the costs related to complex knowledge transfer, efficient

19

asnay Jo SJUdW[H YT, A [e3rde)) [e100g Jo s3a0eq YT, T 298],

(¢ooz ‘Kuoye,0 3 Aeny)

(¢ooz ‘Kuoye,0 3 Aeain|y)

95NaJ 0} SJ3LIeQ DIWOU0ID pue [eba] 95NaJ 0} SJ3l4leq JIWOU0DD pue [eba] 1X2]U0) 3Y |

(o661 (1asnay ayy)

‘leyauina 3 uayod) Audeded aandiosqy (8861 ‘urWS|0D) I1SNJ] |BINIDNAS (9661 ‘|e1zsi|N) 1snu| [euosiadiaiu| juaidiay ayy
(q896L ‘UOLIBIN ‘TOOT “|e 13 ISeqeleq)

1uswiyoeny |enuaialald /12943 maynep (9661 “19|531Y 73 ‘||noads (101pai)ay])

(1oot ‘weuind) A1poudiday pazijesausn ueisuo) ‘r96L ‘nejg) Audoadiday 13311q 224n0S 3y |
(c66L

14ng) [ende) |eId0S se S9|OH |eJnIdNIIS (6661 ‘udsuel) aNnss| Jojsuel|-ydiesas ay |

(LLOT ‘DUAIS|Y UBA (€61 (abpajmouyy jo adA])

13 |ely) Jo-apei] yipimpueg-AUsIsAlq oYL 19119A0URID) $31] YeIAN JO Yy1buans syl Ju23U0) Y|

aaubod |einidnis |euone|ay 95naYy JO syudwd|3

|exde) [e1dos jo s3ade4

20

knowledge search thrives on weaker ties and sparser social structures which are better suited to
bringing in thinner but non-redundant knowledge.

The Creator. 'The creator can facilitate knowledge reuse by transforming knowledge into a
format suitable for conveying or direct consultation (Nonaka, 1994). Thus, the incentives, interests
and motivations of the source ultimately impacts the propensity of knowledge reuse. But codifying
knowledge and making knowledge artefacts involve high costs, and the creators may not have the
motivation to bear those costs (Haefliger et al., 2008; Hansen, 2002).

Legal provisions such as copyright and other similar intellectual property protection mecha-
nisms that give creators exclusive rights over their ideas were originally designed to provide incentives
and preserve the motivations of creators to bring their creations to the public (Lessig, 2001). But
not all the motivations of creators are pecuniary. The creators may very well be motivated by the
other by-products of their creation, from the hedonistic pleasures associated with the process of
knowledge creation to the reputation accrued by the social recognition of their work among the
peers (Lakhani & Wolf, 2005; Lerner & Tirole, 2002).

Knowledge production networks are characterized by preferential attachment tendencies that
lead to a rich-gets-richer situation or a Matthew Effect in favour of those with outstanding reputation
(Barabasi et al., 2002; Merton, 1968b). This often favours the active creators and indirectly rewards
them, through mechanisms such as attracting talented collaborators or bringing about sources of
revenue tied to their position in the network. Such rewards constitute an incentive to share.

Social proximity may as well overcome the unwillingness of knowledge producers to expend the
additional effort required for producing a reusable knowledge artefact, given that individuals tend
to invest more time and resources in their close social ties (Coleman, 1988). From social exchange
theory perspective, individuals are likely to engage in social action when they perceive personal
benefit, and this increases the chances of acting in direct reciprocity towards close social ties (Blau,
1964; Constant, Sproull, & Kiesler, 1996). That’s one of the main reasons why social proximity has
been considered to determine the ease of information transfer between the individuals (Coleman et

al., 1957), and strong social ties have been found particularly effective in acquiring tacit and complex

21

knowledge (Barabasi et al., 2002; Granovetter, 1973; Hansen, 1999).

A structural outcome of proximity of groups of people is social cohesion. Cohesive social
networks with a higher degree of closure lend credibility to collective sanctions and uphold trustwor-
thiness. They also offer the sort of social closure that is required for reputation effects to arise (Burt,
2000; Coleman, 1988). Where reputation effects are combined with effective sanctioning, social
networks successfully regulate members’ behaviours (Burt, 2001). Social networks may effectively
instil pro-social normative behaviours such as generalized reciprocity in their members (Putnam,
2001).

The Reuser. 'The reuser or the recipient of knowledge is the person who appropriates the
knowledge created by the others and includes it in their work. Since the reusers carry the responsibil-
ity of the outcomes of their work, the decision to reuse must be interpreted as accepting vulnerability
to the work of a third party. Therefore, the reusers need to ensure the quality of work they combine
with or rely on. Given that quality assurance is costly by nature and requires information about the
production process that is not always accessible, both trust and reputation become defining factors
for the reusers.

Trust is the belief that “results of somebody’s intended action will be appropriate from our point
of view” (Misztal, 1996, pp. 6-10) and has both relational and structural dimensions. Those networks
that are good at enforcing generalized norms of cooperation (e.g., high degree of closure), are better
at fostering trustworthiness as well (Putnam, 1993). But personal relationships also create obliga-
tions and expectations between the individuals that go beyond the generalized norms in controlling
behaviour (Bourdieu, 1986a). The existence of one of these two as a short-cut quality indicator eases
the choice and the task of reuse.

A palpable example for the two kinds of trust emanating from two dimensions of social capital
is the choice of citations in academic publications. We generally rely on the peer review system as
well as the professional norms to weed out the weaker links in the academic works, but also give
particular importance to the works published or recommended by the individuals we personally

know. The rich social cues we have about the individuals close to us allow us to put their choices

22

in perspective in a way that it reduces our uncertainty in a significant way. Similar considerations
drive the reuse choices in other communities dealing with knowledge creation on a daily basis. Both
structural and relational dimensions of social capital affect the reuse choices of the reusers.

Successful reuse also depends on the capacity of the reuser to appropriate the other party’s
knowledge outcomes. Knowledge reuse cannot be accomplished unless the recipient has the absorp-
tive capacity to decode, make sense of, evaluate, assimilate, and exploit the knowledge. Absorptive
capacity is a function of the prior relevant knowledge, as well as the general experience of the recipi-
ent (Cohen & Levinthal, 1990). A part of the social capital a person holds is the shared understanding
and shared context the person develops over time throughout her exchanges and collaborations with
groups (Wegner, Erber, & Raymond, 1991). This shared understanding may act as a primer for the
individuals to develop their absorptive capacity on topics relevant to their exchanges, and are thus
conducive to more successful reuse efforts.

The Context. 'The context consists of “the surroundings associated with phenomena which
help to illuminate that phenomena, typically factors associated with units of analysis above those
expressly under investigation” (Cappelli & Sherer, 1991, p. 56). The powerful impact of contextual
factors on cause-and-effect relationship are often non-trivial, yet frequently ignored (Johns, 2006).
Our current understanding of knowledge reuse and recombination practices is deeply tied to the
corporate setting in which these phenomena have been studied. These settings are very particular
in that they severely constrict the possibilities for knowledge exchange and reuse. It is possible to
hypothesize about the potential effects of this particular context on the relationship between the
variables of interest. These effects are non-trivial and the relationships uncovered in this context are
susceptible to change in other contexts.

The corporate context has an effect on the development of social capital by drawing clear-cut
lines between insiders and outsiders, and limiting social exchanges between in-groups and out-
groups. Moreover, corporations traditionally rely on proprietary intellectual property regimes and
corporate secrets to protect their knowledge resources from imitation and to ensure that the pecu-

niary rewards stemming from their innovations flow back to them (Nickerson & Zenger, 2004). This

23

involves ensuring that the social boundaries and the knowledge boundaries of the formal organiza-
tion of the firm coincide, and thus altering the knowledge exchange paths and the knowledge reuse
practices.

In an environment where collaboration and reuse are not primarily affected by concerns for
formality and direct appropriation of rewards, the relationship between social capital and knowledge
reuse, and ultimately the creation of intellectual capital, could be different (Murray & O’Mahony,
2007). For instance, the flow of human capital could be less hindered by the tedium of organiza-
tional affiliation, and the barriers to knowledge flows could be less of a function of organizational
boundaries. In such a context, knowing an expert in another organization would not mean the same
in terms of exceptional access and exposure to the knowledge resources of that organization.

I conclude that one may legitimately expect the legal and economic context to play at least a
moderating role, if not a direct one, in the interaction between social networks and knowledge reuse.

Knowledge Reuse as A Driver of Social Capital. The literature on knowledge perspective has
maintained that the relation between social capital and intellectual capital is potentially bi-directional
(Brown & Duguid, 2000; Nahapiet & Ghoshal, 1998). Yet, the way the different facets of intellectual
capital can drive the emergence of social capital is seldom explored. There are at least three lines of
argument that testify knowledge exchange and reuse have a bearing on social capital by promoting
rapprochement between the creators and reusers for further collaboration.

The first line of argument is rooted in the empirical research on firm alliances. Research in this
area, mostly stemming from business economics and strategy, has viewed knowledge spillovers, or
the unintentional and uncompensated exchanges of knowledge, as potential signals for convergence.
Knowledge spillovers can reveal resource complementarities and as such signal opportunities for
closer collaboration ties to both the originator and the recipient (Malmberg & Maskell, 2002; Phene &
Tallman, 2014; Yang, Phelps, & Steensma, 2010). For instance, Rosenkopf, Metiu, and George (2001)
have shown that deep knowledge exchanges among company representatives within the framework
of a technical committee paves the way for subsequent alliances. And in a more recent work, Phene

and Tallman (2014) have demonstrated that patent citations between firms in the biotechnology

24

industry increase the chance of subsequent alliance formation.

These works have articulated the mechanism behind this relationship as one related to pursuing
knowledge acquisition and organizational learning. They suggest that there is always tacit knowledge
associated with what is revealed through spillovers and that the best way to get access to that tacit
knowledge is through close collaboration, what justifies the creation of explicit social links above
and beyond benefiting from the spillovers. Moreover, the argument goes, the reuse of the revealed
knowledge stock can create a shared tacit understanding of the applications of the technologies and
the similarity or complementarity of knowledge stock between the actors, positively affecting the
cognitive facet of social capital.

Although this literature explicitly positions co-creation and collaboration as the next stage in
knowledge sharing, it seldom discusses the kind of knowledge being shared (with a few exceptions,
e.g., Kogut & Zander, 1992). The focus, thus, is exclusively on know-how as the most important
knowledge asset in the firms and the move from relying on spillovers to alliances is viewed as a
part of the quest for tacit knowledge. The terms knowledge and know-how are often treated as
synonyms and often what is intended by knowledge spillover, exchange, or reuse is actually the
spillover, exchange or reuse of know-how.

However, the actionable organizational knowledge has multiple facets, only one being know-
how (Cross, Sproull, Constant, & Kiesler, 2004). The second line of argument for the plausibility of
a causal relationship between knowledge reuse and social capital stems from the theoretical work on
the facets of organizational knowledge in the context of technological systems. Garud (1997, p. 83)
identifies three facets to knowledge in this context: (1) “understanding of the principles that underlie
their functioning’, (2) “process employed to create them”, and (3) “the uses that these technological
systems serve”. He calls these three facets know-why, know-how, and know-what respectively. Ac-
cording to Garud, these three facets have different lifecycles and properties, and must be acquired
and managed differently.

Of particular interest to creation of social capital is know-what. While know-how is the result of

the process of “learning-by-doing” (Arrow, 1962) and thus an outcome of the internal organizational

25

functions, know-what is a result of the process of “learning-by-using” (von Hippel, 1988) and attained
through user-creator interactions. Know-how is often generated through the production process
and can be sourced from creators in a similar or complementary area of expertise. Know-what is
generated at the interface between the creators and the reusers, and as such depends on the existence
of such a relationship (Garud, 1997). The knowledge of what to reuse on the side of the reuser and
the knowledge of what course of development to pursue on the side of the producer can be brought
as examples of what has been labelled know-what by Garud. The concept partially overlaps with the
notion of “sticky information” that has been cited as the source of advantage in user innovation (von
Hippel, 1994, 1998). The “sticky information” are insights about possible courses of improvement
that one attains only with repetitive use of a product.

The third line of argument for the possible effects of knowledge reuse on the emergence of
social capital comes from the literature on transactive memory systems in social and organizational
psychology. This body of work has developed the case for a fourth facet of organizational knowledge
representing the knowledge of who is good at what, that is, know-who (Austin, 2003). Know-who
has been studied in different streams of research under various names, such as transactive memory
(Wegner et al., 1991), referrals (Cross et al., 2004), or simply information (Kogut & Zander, 1992).
Know-who is often considered an outcome of prior collaboration, since it develops among the in-
dividuals as they gain experience working with each other. The research on expertise recognition
has shown that the emergence of know-who facilitates collaboration and improves the outcomes of
collaboration (Libby, Trotman, & Zimmer, 1987; Littlepage & Silbiger, 1992).

But reusing the product of knowledge work of the others can also help developing certain as-
pects of know-who, even when direct collaboration is not in order, (1) by establishing a common
perception of the expertise of the different actors and establishing roles, as well as (2) by promoting
problem solving approaches that share assumptions and are consonant across the collective (Cross
et al,, 2004). As such, knowledge revealing and the subsequent reuse do promote dynamics that are
favourable to emergence of the different facets of social capital, whether in form of social connected-

ness and collaboration (relational), social closure and groupiness (structural) or creation of shared

26

understanding (cognitive).

In short, I argued in this section that social networks interact with the knowledge networks,
and that the different facets of the social capital embedded in social networks both affect and are
affected by knowledge reuse. Social capital sets the opportunities, the incentives and the constraints
for the actors, and is instrumental in revealing, exchange and reuse of knowledge. On the other
hand, knowledge revealing and reuse can enhance social capital, including in forms that pave the
way for collaboration. This is either through offering a “preview” of the explanatory and procedural
knowledge (know-why and know-how) that can be attained through collaboration, or by enhancing
the indexical knowledge about the available knowledge components, possible solution (know-what)
and their creators (know-who).

It is this interactive view of the conditions underlying the two forms of capital, social and in-
tellectual, that constitutes the gist of the current thesis. The context of the study, open innovation
communities, provides facilities for data gathering and test of such bi-directional relationships. How-
ever, in order to achieve such a result, one needs to find an appropriate method to track and trace

knowledge reuse in this context. The next section explores and structures this issue.

Code Reuse as Knowledge Reuse

One challenge of studying knowledge networks in open innovation communities is measuring
knowledge exchange, as there are no pre-established measures of knowledge exchange adapted to the
specificities of the context. Developing and justifying such a measure is among the objectives of this
dissertation. One possible proxy for tracking knowledge exchange in open innovation communities
is the commonalities between knowledge outcomes. In the case of open source communities, this
can be realized by measuring code reuse. The different types of code reuse can serve as measures for
different aspects of knowledge reuse. That said, the transition from code reuse to knowledge reuse
warrants some theoretical justification.

Code has both functional and expressive qualities (Lessig, 2001; Mackenzie, 2006). Software

code consists of instructions that are read, interpreted and executed by machines, what confers

27

functional quality on software. But code is also text. Programmers can read and understand code,
and do often use code as a means for the exchange of ideas. Therefore, code fulfils an informative
and expressive role in parallel to its functional role. The expressive quality of code becomes all the
more apparent as we take note of programmers boasting with zeal about the art of coding (Ford, 2015;
Mackenzie, 2006; Raymond, 2001) and courts ruling that code is protected as free speech (“Bernstein
v. US Dept. of Justice,” 1999; “Junger v. Daley,” 2000).

Harbouring both functional and expressive qualities, software may act as an open book for some,
while appearing as a sharp pencil to the others. Software’s dual nature means that its functional or
expressive qualities are brought to the fore by the social role it is situated in (Star & Griesemer, 1989).
One may run a software utility with or without understanding how it works, and one may understand
software code with or without running it. So the answer to the question “is software like a can-opener
or a recipe?” (Kaplan, 1998), is often “it depends” The exception is when software is distributed in
machine-readable binary form with the objective of concealing its internal logic, in which case it
takes a pure functional form.

Software code is a knowledge artefact that captures and preserves our knowledge about a topic,
what would be otherwise transient. Programming is the process of structuring models of the physical
world, people, information or processes, and embedding them within a software system (Sutcliffe &
Sutcliffe, 2002, pp. 17-24). Once captured and embedded in a software, knowledge becomes more
easily and cheaply reusable. Reusing a piece of code or a software component is, therefore, a case of
knowledge reuse.

The transition from software reuse to knowledge reuse is a contentious one however, as it
constitutes a departure from our day-to-day experience as software users. To accept software reuse
as a form of knowledge reuse is to give primacy to the expressive nature of software code, while
for most of us software is simply a tool that performs. It is important, however, to emphasize that
the role software source code plays within a community of software developers is fundamentally
different from the role of software as an opaque and mundane tool. Our everyday perception of

software tools must not prevent us from studying software as a form of knowledge representation

28

when the source code is provided and given primacy in action.

Of course, it would not be appropriate to claim that each instance of code reuse implies the flow
of the entire knowledge embedded within the source code from the original developer to the reuser.
Yet, tracking down code reuse allows us to observe the overall patterns of knowledge flow (Rosenkopf
& Almeida, 2003). All reuse is bound to start with acquisition of knowledge (Sutcliffe & Sutcliffe,
2002, pp. 17-24) about reuse and reuse methods, and often continues with deeper investigation into
the inner workings of the reused code. It is in this perspective, and with complete awareness of
the limitations of such a postulate, that I suggest code reuse as a measure of knowledge reuse and
recombination among software projects. The extent and the type of code reuse can signal the breadth
and the depth of knowledge reuse. The empirical evidence testifies that code reuse occurs at least
as extensively in open source software projects as it does in proprietary software projects (Haefliger
et al., 2008).

Types of Code Reuse. Code reuse consists of either grafting or calling upon code from a pre-
existing software, and it can be characterized along several dimensions. The literature on software
development methodologies is replete with reuse metrics and models based on the different facets of
code reuse. In their hunt for an effective organizational software reuse model, Frakes and Terry (1996)
identified no less than 50 types of code reuse cited in the literature. Here I focus on a dimension of

code reuse that is ostensibly most closely tied to the costs of code reuse.

Whitebox Code Reuse. In its simplest form, code reuse is copying and pasting code, either
snippets or entire files. This is the traditional approach to code reuse, and is referred to as whitebox
code reuse to denote that the text of the code is reused with no abstraction. Whitebox reuse is often
practised when the source code has not been designed with reusability in mind, it does not provide
the appropriate reuse interfaces or it does not strictly conform to the current needs, and thus it has
to be modified and adapted to fit the purpose.

Moditying code, though, requires a high degree of familiarity with the code base, and as such
it can only be convenient and cost-effective when the code is already known to the developers or

when the developers have access to resources that allow them to navigate quickly through the code.

29

In absence of good documentation or access to the original creators, the task of integrating existing
code into own code can rapidly become daunting.

Despite the potential difficulties in the way of whitebox reuse, its flexibility and relative sim-
plicity makes it a widespread practice in open source communities. Mockus (2007) estimates the
percentage of identical source files appearing in more than one open source project at above 50%
of the entire code base of open source communities. Nonetheless, whitebox reuse is nowhere as
pervasive as blackbox reuse in open source communities. The bulk of code reuse occurs in the form
of object and function calls to software modules pre-packaged for reuse (Heinemann, Deissenboeck,

Gleirscher, Hummel, & Irlbeck, 2011).

Blackbox Code Reuse. The gold standard of code reuse is modularity. “A complex system
is said to exhibit modularity in design if its parts can be designed independently but will work
together to support the whole” (Baldwin & Clark, 2006, p. 1117). Modularity is considered one of the
triumphs of open source software design, and it has been found to incite developers to join and stay
active in open source projects (Baldwin & Clark, 2006; MacCormack, Rusnak, & Baldwin, 2006).
Modular architectures facilitate the management of interdependencies across functions by breaking
down software into self-contained functional entities or modules. These modules are then said to be
reusable in a blackbox manner. When the software is blackboxed, little attention needs to be given to
its internal complexities as the time of reuse and thus one can focus on the input and output streams
to and from the software instead (Latour, 1999, p. 304).

Blackbox reuse is achieved by creating cross-code references in the form of function calls to the
interfaces and instantiating objects provided by the focal module for the specific purpose of reuse.
Knowing about the inner workings of the reused modules may be useful for troubleshooting when
resorting to blackbox reuse but is not necessary, as long as the reuse interfaces are well-documented
and the focal modules produce consistent and predictable responses (Prieto-Diaz, 1993).

Blackbox reuse presents a number of advantages over whitebox reuse for the reuser. Primarily,
it reduces the burden of code adaptation from the shoulders of the reuser. Moreover, the reusers

won't have to deal with several modified versions of a module if they have the chance of reusing a

30

single standardized version. At a larger level, the widespread availability of self-contained modules
ready for blackbox reuse streamlines and encourages the practice of code reuse as it reduces the
barriers to reuse (Ravichandran & Rothenberger, 2003). This makes blackbox reuse the preferred
method of reuse among the developers, and more recurrent compared to whitebox reuse.

There are disadvantages to blackbox reuse as well. Given that blackbox reuse relies on prefabri-
cated interfaces, it is less versatile in nature than whitebox code reuse. Also, the design of the reused
code, including the robustness and the flexibility of its interfaces, becomes a critical factor to the
success of the blackbox reuse. This puts a disproportionally large burden on the shoulders of those
who intend to share software solutions in the form of modules. Reusability under a blackbox reuse
paradigm is proportional to the costs incurred by the originator for the specific purpose of making
the modules more prone to reuse (Prieto-Diaz, 1993). This is a non-negligible category of costs and
in some cases it may amount to twice as much as the development costs (Tracz, 1995).

Although blackbox and whitebox reuse are operationally distinguishable from each other, the
two concepts are not mutually exclusive and there is a continuum of reuse practices falling between
the two. Particularly in open source communities, the leap from one to type of reuse to the other is
particularly narrow. Blackboxing in open source communities never amounts to total opacity, given
that the source code is publicly available. On the other hans, if a module’s public interface does not
satisfy the requirements, there are always means to contribute to the focal project in order to bake
into it a more inclusive interface, or otherwise to branch out and specialize the focal module for own
use.

Blackbox and whitebox code reuse are interesting indicators of knowledge reuse, as they both
demonstrate the ways in which a software project may draw on the know-how developed in a focal
project by building functional dependency over the focal project’s source code. Whitebox reuse
illustrates a case closer to rich knowledge transfer, as it implies a certain degree of mastery of the
code being reused, while blackbox reuse describes a mix-and-match behaviour based on the public
information and public interfaces of the project, what necessitates thorough search. Therefore, I

would argue that the richness of whitebox reuse necessitates more bandwidth than that needed for

31

blackbox reuse.

Reuse in Open Source Communities. Two previous studies have particularly focused on the
question of reuse in open source communities, both finding a direct link between the limitation
in the supply of human capital in the communities and the reuse practices. Haefliger et al. (2008)
combine a limited-sample code analysis with contributor interviews to study the pull-side forces
behind code reuse. Sojer and Henkel (2010) is a more recent survey-based study of SourceForge
project contributors and their self-reported reuse practices. The findings of the two papers widely
converge despite their orthogonal approaches.

First, the contributors were found to be patently aware of the limited supply of workforce and
therefore employed strategies to tackle the resource limitations. For instance, they saw the reuse of
the existing solutions as a time and effort-saving measure that allowed them to maximize the time
spent on the core problems they intended to tackle. The individuals, in other words, were faced
with the equivalent of a make or buy choice. The reuse decisions occurred starting from day one of
the projects. The long-time contributors, those active in several projects and those who reported a
larger social networks tended to reuse more than their less experienced, less active and less socialized
counterparts. The authors attributed this tendency to possibly lower local search costs when looking
for reusable artefacts, although none of the two studies had the luxury of actually using network data
to study the origin of the artefacts or the social networks of the individuals.

Second, the contributors showed a tendency to overly focus on what they perceived as core
issues — those particularly challenging and technically interesting tasks that allowed them to signal
their abilities. That, combined with the scarcity of supplementary aids that could lift the burden of
the grunt work, brought about a tragedy of the boring whereby mundane and uninteresting tasks
remained unattended. The authors noted that, given the high cost of making code reusable that can
attain twice the cost of initial development, and the tedious nature of documenting and interface
development tasks, a crisis of reusability in open source would be unavoidable.

Finally, the authors found that the ad-hoc mode of contribution and the ebb-and-flow of re-

sources led to a high variability in the code quality across projects and in the absence of objective

32

quality assessments, the developers had to rely on the limited existing information to judge the use-
fulness of a piece of code. As a consequence, personal trust and reputation became prevalent factors
in the decision to reuse.

The recent debates in software development around technical debt, code smells, and code refac-
torability, widely echoed across the open source communities, confirm the above findings and demon-
strate the ongoing efforts of the developers to pre-empt the impending crisis of reusability and to
devise objective code quality assessment measures across various dimensions (Allman, 2012; Fowler
& Beck, 1999; Tufano et al., 2015).

On a related note, P. V. Singh and Phelps (2013)’s study of software license choices among Source-
Forge project initiators, although not directly on the topic of knowledge reuse, is deeply inspired by
the literature on knowledge networks and, for the first time, provides empirical evidence about the
localization of knowledge in open source communities. The authors reveal that project initiators opt
for licenses they have learned about through their prior social relations and collaborations. In short,

the knowledge about licenses propagates from project to project through developer mobility.

33

Theory Development
The Effect of Social Ties on Knowledge Reuse

Two groups that have members in common can be deemed close to each other in a social
network. The notion of social proximity can be simply defined as the opposite to the social network
distance that separates two nodes, although the strength, the frequency and the multiplicity of the
ties are also indicators of how close two actors are in a network.

Social proximity may be viewed in a static way, incorporating only the currently existing social
ties, or otherwise in a dynamic way, by aggregating ties over time and including actor mobility as
well as tie creation and dissolution as hints of social proximity. In the dynamic perspective, the
evolving affiliations of individuals with different groups over time can be considered an indicator of
the social proximity of those groups. In open innovation communities, where the only meaningful
unit of analysis in between the individual and the community is the project team, we may see the
mobility of individual members between projects, i.e., the project coaffiliations of the members, as a
measure of social proximity between projects.

The studies of knowledge networks have drawn a direct link between network proximity and
knowledge outcomes. The facilitating role of network proximity in knowledge transfer has been
noted at the individual level as well as the collective level — that is, within teams, organizational
units and firms (e.g., Hansen, 1999; Rosenkopf & Almeida, 2003).

The literature has pointed out several mechanisms to justify this facilitating role. Social proxim-
ity is essential in mitigating knowledge reuse costs and uncertainties, including knowledge search
and transfer costs (Hansen, 1999; Rosenkopf & Nerkar, 2001; Rosenkopf & Padula, 2008). From
a strict information-processing perspective, the social proximity between the actors determines
the ease of information transfer between them and defines the chances of exposure to knowledge
(Coleman et al., 1957).

When there are barriers driving up the costs associated with access to knowledge and transfer
of knowledge, close relationships can help mitigating those costs by allowing direct access to the

actors at the source or close to the source of knowledge. This becomes particularly important when

34

knowledge exposure is incomplete or access to knowledge is restricted, e.g., through secrecy or legal
means. Streamlined knowledge transfer will in turn increase the chances of knowledge reuse.

Although the explicit monetary cost of knowledge acquisition is zero in the context of open
innovation communities, I argue there are implicit costs to knowledge reuse that persist in this
context and can be mitigated through the advantages brought by social proximity. For instance, the
cost of finding the right solution, learning about it, and adapting it remains a valid concern despite
the zero price tag of the open solutions. Therefore, even where the dominant intellectual property
regime is rather permissive, social proximity must retain its facilitating role for knowledge transfer,
albeit for alternative reasons.

But, more importantly, network proximity between two social groups gives members access to
social capital across their groups’ boundaries, what explains much of the cost-mitigating qualities
of social proximity. Since the social network of the open innovation communities hinges on the
participation of the individual across various projects, social proximity between project teams can
be also seen as having a shared history of direct collaboration.

Social proximity and propinquity bring about mutual expectations and obligations, promoting
direct reciprocity (Bourdieu, 1986a; Feldman & Newcomb, 1969; Newcomb, 1961). This is all the
more true in the case of professional collaboration, where personal commitments often go beyond
the contractual obligations, self interest, and professional tact (Fairtlough, 1994). This is also of
particular importance in open innovation communities where the individuals do not have much
of a direct pecuniary incentive to make their contributions reusable to the others (Haefliger et al.,
2008). As such, they may not always be willing to go the extra mile and incur the related costs,
unless compelled by their personal obligations. Having collaborators in common, thus, can cultivate
favourable conditions for reuse between projects.

Moreover, given the previous findings regarding the lack of transparent quality indicators in
open source communities and the role of trust as a surrogate for quality assessment in reuse decisions
(Haefliger et al., 2008; Lerner & Tirole, 2002), one may reasonably expect members to rely on inter-

personal trust as a form of quality assurance to direct reuse choices. There is a direct relationship

35

between trust and collaboration. Collaboration begets trust, and trust, in turn, breeds exchange
(Putnam, 2001). The collaboration of members with different projects can be seen as establishing
trust across project boundaries, paving the way for reuse.

Apart from the relational facet of social capital, the cognitive facet of social capital can also
affect reuse. Proximity and collaborative work have both been associated with indirect and vicarious
learning that can in turn help achieving a shared language and common codes (Bresman, 2010).
Having a common language or sharing communication codes constitutes a vehicle for knowledge
exchange and provides a common conceptual framework to evaluate the benefits of exchange and
reuse, and thus makes reuse a more likely case.

In summary, for reasons related to relational and cognitive social capital and their effect on the
implicit costs of reuse, it is likely that social proximity between projects drives the reuse decisions
of their developers in open source communities. This must hold true in open innovation commu-
nities, although the the motivating mechanisms may not be identical with those under proprietary

intellectual property regimes.

Hypothesis 1a Projects with coaffiliated collaborators are more likely to establish new blackbox reuse

ties than those without direct social ties.

Hypothesis 1b Projects with coaffiliated collaborators are more likely to establish new whitebox reuse

ties than those without direct social ties.

The effect of coaffiliation ties on the two types of reuse is not equal, though. The arguments are
multiple, and they have to do both with the nature of the coaffiliation ties as well as the nature of the
two reuse ties.

Social network studies have shown that the strong social ties are particularly good at embed-
ding durable relationships, promoting trust, upholding important obligations and providing high
bandwidth for knowledge transfer. On the other hand, weak ties have been seen as representing
another sort of social capital, promising information diversity and novelty of resources. The strength

of a tie has been defined in a variety of ways. Some scholars have interpreted strength as a synonym

36

for directness of the tie, defining a weak tie as a mediated tie (e.g., friends of friends) (Boissevain,
1974), while others have seen tie strength as a function of mutuality, relationship intensity and the
frequency of interaction (Granovetter, 1973; Uzzi, 1997).

But apart from the technical definition, what constitutes the main difference between the strong
and the weak ties is in fact the amount of time and resources being invested in the tie, subsequently
offering the advantages often attributed to the strong ties (Aral & Van Alstyne, 2011; Granovetter,
1973; Hansen, 1999). The homogeneity and the high level of vested interests among strongly tied
entities makes strong ties better suited to transfer of complex and system-dependent knowledge,
as they ensure both the willingness and the ability to go through an exchange process that is likely
to require deliberate effort (Hansen, 1999). Strong ties are also useful in instilling a sense of social
closure and maintaining trust (Burt, 2001). But due the intensity of interaction between strongly tied
entities and the large proportion of resources they share with each other, the knowledge embedded
in strongly tied entities tends to homogenize over time and become increasingly redundant (Burt,
2000; Granovetter, 1973).

On the contrary, the weak ties represent a low-involvement or remote relationship that can
be had in scores and provide search advantages given the diversity of the resources and the low-
redundancy information they bring within reach (Aral & Van Alstyne, 2011; Burt, 2000; Granovetter,
1985; Hansen, 1999). It is of note that the strong ties do offer search advantages as well, but often only
at the local level, as their social reach remains limited (Rosenkopf & Almeida, 2003).

In the network of open source projects a coaffiliation between two projects is a collaboration
tie, and it is recorded when at least one developer contributes to both projects. In order to contribute
successfully to the projects, the contributor must have used both pieces of software and spent time
understanding the inner functioning of both systems, which denotes significant time investment.
Developers have to be selective in their allocation of resources, and are able to contribute only to a
limited number of projects simultaneously. As a consequence each project can be coafhiliated to only
a few other projects. In all likelihood project coaffiliations can be considered strong ties between

projects.

37

A first argument for the differential effects of coaffiliation on whitebox versus blackbox reuse
stems from the fact that coaffiliations being strong ties, they are likely better adapted to deep knowl-
edge reuse as strong ties tend to reduce the high processing costs typical to deep knowledge reuse.

Whitebox reuse is a case of deep knowledge reuse, as unlike blackbox reuse it requires awareness
of the content of the reused code, along with a certain degree of mastery of the code and its technical
environment. The intellectual assets needed for whitebox reuse may at times be more costly to
acquire than rewriting the code from the scratch. Therefore, developers that have prior experience
dealing with a body of code have great advantage over those with limited exposure when it comes
to transplanting parts of the code into other projects. By proxy, projects that employ developers
with prior experience or current involvement in other projects will find it less onerous to carry over
some code from those projects. The same can not be said about blackbox reuse which relies on pubic
interfaces and publicly available metadata about project APIs.

A second line of argument for the differential effect of coaffiliation ties on the two types of reuse
comes from the search capacities offered by the coaffiliations.

Whitebox reuse is a way of internalizing the functionalities coming from other code bases. This
is a more complex and less streamlined task as compared to blackbox reuse. Since the objective in
whitebox reuse is to include the logics of the needed functionalities within the source code of the
project, the developers are likely to opt for whitebox reuse only when the needed functionalities
draw on domains of expertise close to theirs. Under such circumstances the local search capacities
of coaffiliation ties can be particularly helpful in finding the right content (Rosenkopf & Almeida,
2003). This code content can not be easily advertised nor can be efficiently searched, yet the con-
tributing developers deal with it on a daily basis and are aware of its intricacies as well as its purpose.
Coaffiliation ties, thus, constitute a golden opportunity for the open source project teams to discover
eventual alignments and complementarities with code content of the other projects.

Blackbox reuse, on the other hand, is a way of externalizing the functions that are needed in
the software but that the developers do not want to directly include in their code. This means the

developers are able to draw on code coming from more remote areas of expertise when practising

38

blackbox reuse. Therefore blackbox reuse hinges on remote search capacities that may not be as
efficiently accommodated by the coafiliation ties. Moreover, the public interfaces of the projects,
what blackbox reuse builds on, can be easily documented, publicised, and thus searched using regular
search engines. That reduces the dependence of the knowledge discovery process on diffusion
through social networks.

Finally, whitebox reuse involves modifying one’s own code and adapting it to the newly grafted
code, over and above the adaptation needed when resorting to blackbox reuse. This interdependency
necessitates a certain degree of trust in the quality of the grafted code (Haefliger et al., 2008). Such a
trust can be gained either by controlling the quality of the actual work, or via relational or structural
trust in its creators (Das & Teng, 1998). Once again, the contributors who have experience with a
project are best placed to judge the worth of the code, either based on their first-hand experience
with the code or relying on the social capital they have developed while working on the project.

Given the three arguments above, I propose the following hypothesis:

Hypothesis 2a Project coaffiliation is more strongly related to creation of new reuse ties in form of

whitebox reuse rather than blackbox reuse.

The literature on the social networks has seen tie strength as a linear variable, whereby the
qualities enabled by tie strength will yield more as the strength of the ties increases (Marsden &
Campbell, 1984). Applying the same view to the differential effect of project coaffiliation on the two
types of reuse results in the understanding that the stronger the coaffiliation tie between two projects,
the higher the likelihood of emergence of whitebox reuse ties.

Yet, for reasons related to the nature of the two types of reuse I argue that the differential effect of
coaffiliation on the two types of reuse should wane or tilt in favour of blackbox reuse as the strength of
project coaffiliation, characterized by regular and balanced contributions of one or more developers
to two projects, increases.

As it was mentioned before, the gold standard of code reuse is blackbox reuse, as it prevents
redundancy and minimizes rework. Yet, in many cases whitebox reuse is the appropriate choice,

given that the public interface of the reused code may not always be adapted to the use case and

39

the cost of development and coordination for transforming it may be too high. Whitebox reuse
is also useful when the developers need to avoid external dependencies in order to prevent future
uncertainties, even at the cost of generating some redundant work.

When two projects share a significant amount of their human resources, though, it is unlikely
that their interfaces develops far apart from each other, not is it likely that there is an aversion to
develop dependencies across project boundaries. The stronger the coaffiliation between two projects,
the better their resource allocation and objectives will be synced, as little to no coordination will be
needed to arrange for adaptation. With little to modify in order to attain compatibility and little to
worry in case of dependency it is hard to justify the cost of rework and redundancy that whitebox
reuse entails. Two very strongly coaffiliated projects, thus, must be more likely to opt for blackbox

reuse rather than whitebox reuse.

Hypothesis 2b The stronger the coaffiliation between projects, the more it is likely that the reuse ties

between them occur in form of blackbox reuse rather than whitebox reuse.

Software Licenses as A Barrier to Reuse

Open and copyleft licenses are means used effectively by the open communities to guard their
commons while maintaining the result of their work open for modification and reuse (Lessig, 2006;
O’Mahony, 2003). Open licenses are often much more permissive than their proprietary counter-
parts, but they nonetheless restrict certain aspects of modification and reuse to protect the commons
(Lessig, 2001). The famous viral clause in GNU General Public License (GPL) that requires any
derivative work of a GPL-Licensed code to carry the same license is one of those protection mea-
sures (“GPL v.3,” 2007).

There are important differences in the terms of open licenses, and some are clearly not cross-
compatible. This has to do with the differences in the ideals and the objectives behind each license
that seek to promote a different notion of the commons which shows up in the rules of access to the
intellectual capital (Lessig, 2001). While the permissive vs. share-alike dichotomy and the resulting

restrictions on derivative work makes up for the bulk of the incompatibilities, other issues such as

40

the modalities of attribution, distribution and use can also degrade compatibility between licenses
or license groups. It is a less discussed reality of the open source communities that rarely an entire
community adheres to the same license. This can potentially create license fault lines within the same
community affecting whether and how reuse can be achieved. Previous studies of digital content
reuse have shown the mitigating effect of copyright restrictions on content reuse practices (Nagaraj,
2017).

It is interesting to trace the effect of possible legal barriers to the reuse practices within the
open source communities. But more importantly, it is vital to clarify to what extent the knowledge
localization effects are due to reuse restrictions imposed by licenses.

I posit that license dissimilarities have an effect on knowledge reuse across the community, as
specific clauses in certain licenses may be incompatible with other licenses and may thus prevent
certain projects from building on the work of the projects that are released under dissimilar licenses.
This holds true for both types of reuse, but the effect on whitebox reuse will likely be more pronounces
because the main source of license incompatibility, the share-alike clauses, mainly affect modification

and the creation of derivative work rather than use or distribution.

Hypothesis 3a Projects with similar licenses are more likely to draw on each other’s knowledge through

blackbox code reuse.

Hypothesis 3b Projects with similar licenses are more likely to draw on each other’s knowledge through

whitebox code reuse.

The Effect of Knowledge Reuse on Social Ties

Participation in open source project has been described as a process similar to what Lave and
Wenger (1991) have labelled legitimate peripheral participation. The new entrants always start at the
periphery of the projects, as lurkers or simple users, and they advance as they gain a better under-
standing of the projects, demonstrate their proficiency with their contributions and gain legitimacy
among the project members (Dahlander & O’Mahony, 2011). Although this literature does not dis-

cuss a causality link between use and participation, it definitely showcases an ordered correlation

41

between the two notions under the community settings. There is no reason to think that code reuse is
dispensed from this rule. On the contrary, there are various arguments in support of a link between
code reuse and subsequent project coaffiliations, which is, mutual developer participation.

First, over time code reuse will lead to the emergence of a common stock of know-how shared
by the reusing and the reused projects. The members of a project that has been drawing on another
project’s work gradually grow their capacity to absorb information about the inner workings and
the internal logic of the reused project. Legitimacy accrues to them as they file bug reports, open
discussions on features and development roadmap and seek help from the developers of the focal
project on non-trivial highly technical issues. One can see this information exchange as a form
of signalling the competencies and the convergent interests (Malmberg & Maskell, 2002; Phene &
Tallman, 2014; Stuart, 1998; Stuart & Podolny, 1996; Yang et al., 2010). Given that they are themselves
developers and well-initiated to the social organization of open projects, it is only natural that at
some point the advanced reusers realize they are better off submitting their own patches to improve
the project they reuse. It is not uncommon for developers to move upstream in this way to a project
they used to be a user of.

Second, knowledge reuse allows the creation of a dictionary of who knows what (know-who),
when the source is annotated with authorship information. Literature on teamwork has often em-
phasized prior collaboration experience as a precondition for the emergence of know-who in form
of transactive memory (Lewis, 2004). Transactive memory allows the emergence of a self-managed
division of labour that is vital for efficient teamwork (Hollingshead, 2000). But some studies have
shown that the existence and the accessibility of know-who information can stimulate collaboration
at a distance, even in absence of prior shared experiences (T. A. Finholt, Sproull, & Kiesler, 2002;
Hollingshead, Fulk, & Monge, 2002). Software code usually contains authorship metadata as a means
of contribution and blame attribution. This means the reusers get to know who has developed what
and gradually build an expertise directory. Moreover, the exchanges between the developers and
the reusers (e.g., troubleshooting) augment this directory with rich social cues that will become

particularly useful in case of collaboration.

42

Finally, the knowledge reuse that ensues subsequent to knowledge spillovers in the corporate
context and free revealing in the online communities have a major role in creation of know-what
by advertising the existing solutions to the wider public and actively shaping their sphere of choice
for solutions, as well as attracting feedback from the recipients (Garud, 1997). Know-what, generally
“represents an appreciation of the kinds of phenomena worth pursuing” (p. 81 Garud, 1997), and is
often generated through a process of learning by using (von Hippel, 1988). For instance, the role
of user feedback in setting the course of open source projects has been recognized since the first
publications on the topic (Raymond, 2001). The importance of user feedback is partially due to the
fact that the use of technology often diverges from what is intended by the designer and as such the
users develop a unique perspective on it that can be conveyed in the interactions with the creator
(Orlikowski, 2002; von Hippel, 1994). Depending on the context and the degree of permeability of
the organizational boundaries, such user-creator interactions at the interface can lead to creation of
additional social ties in form of collaboration or other co-constructive engagements.

Thus, I suggest that knowledge reuse can stimulate creation of social ties in form of member

coaffiliation between projects.

Hypothesis 4a The existence of prior reuse ties between projects in form of blackbox reuse increases

the likelihood of creation of new social ties between those projects through developer coaffiliation.

Hypothesis 4b The existence of prior reuse ties between projects in form of whitebox reuse increases

the likelihood of creation of new social ties between those projects through developer coaffiliation.

Apart from the factors mentioned above, the reusers also have a vested interest in what they
reuse in a continuous manner, as the future of their work is tied to it. But this vested interest is of
different grades in the two types of reuse.

One way of characterizing the difference between whitebox and blackbox reuse is to picture
blackbox reuse as a live link between two software projects, as compared to whitebox reuse which
denotes a static link between a project and a snapshot of an other project, frozen in time. In other

terms, blackbox reuse is dependency-creating while whitebox reuse is dependency-dissolving. An

43

instance of blackbox reuse is tied to the evolutions of the reused and has to adapt to them, whether it
is for the good or for the bad, but it will also benefit from the progress in the code-base of the reused
project. On the other hand, although whitebox reuse generally signifies a deeper, more extensive
integration between two code bases, it also symbolizes the cutting of the umbilical cord that ties the
reusing to the reused. Once a body of code is grafted into a new project, the future developments of
the project of origin matter to a much lesser extent.

Therefore, I suggest that project teams maintain a higher degree of interest in the development
of those projects they reuse in a blackbox manner as compared to those they reuse in the whitebox
manner. This sustained interest is likely to serve as an additional motive for future contributions of

the reusing project’s team to the reused project.

Hypothesis 5 Blackbox reuse is likely to be more strongly related to creation of new social ties in form

of developer coaffiliation, compared to whitebox reuse.

Software Licenses as A Barrier to Collaboration

In their study of open source licence adoption, P. V. Singh and Phelps (2013) found that the
choice of license in open source projects is socially influenced and thus path dependent. The most
influential factor determining a project’s license, the authors argued, is the license chosen by the
other projects in its social proximity. Project initiators tended to adopt licenses that they already
knew from prior collaborations. This path dependency in license choices can lead in long term to a
relative separation between the spheres of collaboration around different licenses.

Moreover, open source contributors have been found ideologically motivated and their collabo-
ration organized around collective beliefs and common norms (Stewart & Gosain, 2006). Given the
ideological roots of open source licenses, and their role in keeping outsiders at bay (O’Mahony, 2003),
one may expect to observe social stratification around licenses in open source communities. In other
words, license dissimilarities won't only affect code reuse across projects, but also the patterns of
collaboration and affiliation with projects: It is likely to observe more collaboration between projects

that share a license as compared to those who don't.

44

Hypothesis 6 Projects with similar licenses are more likely to develop coaffiliations by sharing and

exchanging developers.

45

Methods
General Approach

There is a wealth of open data available on online communities and the activities of their mem-
bers. Open source communities are no exception in this regard. Individuals leave rich digital traces
behind as they participate in community activities. In many communities both live and archival
activity data are open to the public. The current study relies on openly available archives of digital
trace data from online communities. The data is retrieved in raw format and subsequently refor-
matted or reduced to analytically digestible datasets. In order to accommodate a whole-network
study, the entirety of available data about the population of interest is gathered in its entirety at the
data gathering stage. Sampling is thus relayed to the data manipulation stage and is conducted with
regard to the requirements of the statistical methods of choice.

This study also relies in part on two categories of secondary data generated from the raw digital
traces data: (1) Graph data obtained by cross-linking and triangulating raw data from multiple
primary sources, and (2) simplified or classified data obtained by applying dimensionality reduction
methods such as similarity hashing and topic modelling to vast amounts of unstructured text coming
from primary sources.

This study uses quantitative methods, more specifically inferential statistics combined with
network measures, for data analysis. Analysing large datasets begets new issues not typical when
dealing with conventional datasets, and often requires adapted tools and techniques. The current
study aims to be innovative in its application of research methods, yet does not come with any
pretence of methodological inventions. When confronted with limitations in the mainstream econo-
metric methods I use statistical corrections, power analysis, sensitivity analysis or a combination of

those to tackle the issues engendered by the sheer size of the data or other specificities.

Research Site

Defining the boundaries of a social network is a non-obvious choice faced by the students

of social network analysis, particularly when designing whole-network studies. Given that in real

46

world social actors and structures are rarely found in a state of disconnect, identifying a meaningful
collection of social links that can be isolated and analysed as a stand-alone network necessitates a
decision criteria (Marsden, 2009).

I used an event-based criteria and focused on project participation to delineate the social net-
work of programmers that actively contribute to the development of the open source libraries of
Ruby programming language. These interdependent software projects, along with the Ruby language
itself, constitute the intellectual commons that hold together what is commonly referred to as the
Ruby community. There are precedents in the literature for considering programming in a common
language and submitting code to the same foundry reason enough to recognize the existence of
a community. One can assume that the these project contributors are more likely to collaborate,
communicate, establish social ties, draw on each other’s work and reuse each other’s code (Grewal
et al,, 2006; P. V. Singh & Phelps, 2013; P. V. Singh et al., 2011).

The community of Ruby language programmers is a naturally bound collective with boundaries
that designate the limits of both social and knowledge exchanges, and as such is a good candidate as
the target population for a whole-network social network analysis.” Ruby community strikes a fine
balance between internal homogeneity and external heterogeneity. Reliance on the knowledge of the
Ruby programming language alone already acts as a barrier defining the scope of both collaborative
and knowledge sharing activities.

Ruby is an interpreted programming language similar to Python and is the 10th most popular
programming languages on the Internet (TIOBE Software, 2016). But unlike Python whose use
cases span a variety of fields from scientific research to special effects, Ruby’s developer base is rather
homogeneous and narrowly focused on agile web application development and deployment. Given
the relative homogeneity of use cases and users, it is less likely to find social fault-lines and large
isolated components within Ruby community, allowing to assume Ruby community boundaries as
valid markers for defining the outer limits of a social exchange network.

The Ruby language has exceptionally strong ties to the open source movement. GitHub, the

"For a glossary of open source and Ruby-related terms see Appendix A

47

most popular open source code repository, has been programmed in Ruby language and is an im-
portant driving force behind Ruby community and the development of Ruby language itself. Ruby
community is an open-source pure-player. Virtually all available reusable Ruby libraries (i.e., Gems
in Ruby lingo) either use an open source license or are unlicensed, that is, the large majority of
the knowledge artefacts the community produces and draws on are accessible through community
outlets.

Ruby community is among the more centralized open source communities. Apart from a hand-
ful of exceptions, the entirety of 60,000+ reusable Ruby gems are centrally hosted in separate bundles
on a single software repository called RubyGems. Gems uploaded to RubyGems are directly acces-
sible for installation through Ruby’s internal package manager, also called RubyGems. RubyGems
package manager and website endow the community with a mechanism to ensure that Ruby software

packages are exposed to and accessible for community members and Ruby developers in general.

Data Gathering

I used RubyGems’ gem database as the starting point of my data gathering. For practical pur-
poses I limit my conception of ruby community to all the individuals that have contributed to Ruby
commons by way of contributing to the gems hosted on RubyGems. RubyGems is a software package
repository where the developers upload their work only if they deem it useful for the community as
a stand-alone package and in its current form. This makes RubyGems different from source code
repositories (e.g., SourceForge, GitHub, etc.) where the development versions of projects are hosted.
By analogy RubyGems can be considered the AppStore of Ruby community.

Earlier studies of open source communities have noted difficulties in establishing cut-off thresh-
olds for data gathering due to the high degree of skewness in member participation and project
activity within and across communities (Dahlander & O’Mahony, 2011; Hars & Ou, 2002; Mockus et
al., 2002). Old questions such as the role of lurkers in computer-mediated interactions and whether
they can be counted in as participants (Eveland & Bikson, 1987; T. Finholt & Sproull, 1990; Pickering

& King, 1995) are still subject of debates and a source of inconsistency among social studies of online

48

communities.

Using contributions to the community’s software repository as the criterion for inclusion in
the community solves several practical issues in the data gathering process by filtering out much of
the contentious data with no need to tackle the above questions. The RubyGems repository only
provides data on reusable projects and their developers, and therefore it effectively eliminates wide
swaths of inactive and non-functional developers, lurkers and early stage learners, underdeveloped
and unripe projects, abandoned project forks, unmodified duplicates and one-time trials and tests.
This data gathering strategy provides a non-arbitrary and effective way of focusing data on those
participants and projects who have made at least one notable contribution to the commons of the
community. I contend that the strategy taken here is superior to the habitual method of starting
from code repositories and discussion forums, and then devising ways to eliminate the irrelevant
data points from the dataset.

I fetched the data regarding 361,482 distinct versions of 61,921 Ruby gems submitted or migrated
to the RubyGems repository over the ten-year lifespan of the community (pre-2003 to 2013). I
continued gathering data on project activity until August 2013, but stopped taking in the new projects
at the beginning to 2013. I also gathered data about the 50,303 identifiable developers involved in
the projects as well as their contributions over time (about 2.9 millions). This data came from three

different sources:

RubyGems. Eachrelease ofagem (i.e., a package in Rubylingo) has a profile page on RubyGems
website that links to the downloadable bundle of that specific release (See Figure 1). Each download-
able package contains a specification file with metadata about the gem, its technical dependencies
and its developers. The package bundles downloaded from RubyGems also include the source code

for that specific version of the software, and some times a license file.

The specification file is compiled by the developers of the package using a semi-automatic
package deployment tool and it provides two categories of information: (1) The spec file includes
some general data about the package including the title, the version, the release date, and the license.

It also often includes a link back to the source code repository of the project on GitHub and a list

49

®
mail - -

A really Ruby Mail handler.

VERSIONS:

2.6.4.rc1 - December 17,2015 (344 KB)
2.6.3 - November 3, 2014 (329 KB)
2.6.1 - June 8, 2014 (328 KB)

2.6.0 - June 2, 2014 (328 KB)
2.5.4 - May 14, 2013 (266 KB)

RUNTIME DEPENDENCIES:

mime-types < 3, >= 1.16

DEVELOPMENT DEPENDENCIES:

bundler >= 1.0.3
rake > 0.8.7
rdoc >= 0

rspec ~> 3.0.0

AUTHORS:

Mikel Lindsaar

OWNERS:

€0

SHA 256 CHECKSUM:

d7feelec4e4ea9bb38b77de5baf53c17004133efcdff030bd1de5e3620306fd9

Figure 1. A RubyGems Profile Page

50

of contributors involved in that version of the gem. These data items are self-reposted and thus not
always reliable. (2) The specs also describe the runtime and development time requirements of the
package, including a list of all other packages it directly depends on in order to function properly.
This data is highly reliable since Ruby’s own package manager uses it during the installation process
to ensure that the technical requirements of the package are met.

Scraping RubyGems constituted the first round of data gathering for this project.

GitHub. GitHub is a web-based code repository hosting platform build on Git version control
system, and as such provides a complete log of the development of each project, including the chronol-
ogy of contributions. Under Git the unit of contribution is commit. Each commit is supposed to
make a meaningful and self-contained modification to the code, and the developers are discouraged
from committing unfinished changes or breaking down one unit of change across several commits.
The second round of data gathering consisted of following the links back to the code repositories of
the projects on GitHub in order to obtain detailed information about the development activities of
the projects.

The close ties between Ruby language and GitHub shows itself also in the Ruby community’s
choice of code repository. Apart from a handful of projects, almost all the other projects that declare
their source code repository are hosted and developed on GitHub. Yet, not all project specifications
identify a code repository, and about half of gems could be linked back to their source code. Manual
searches and error correction marginally improved the access rate, and ultimately 38,799 gems could
be linked back to 38,339 unique source code repositories. In cases where several gems were hosted
on the same repository, they were considered parts of the same project and their data were merged.

I obtained the Git versioning database of each project, including the source code, along with
project, contributor and commit metadata from GitHub. GitHub also tracks project forks and can
indicate whether a project is a derivative of another project. I also gathered these data points while

scraping the GitHub project data.

Git. Finally, I scraped the full commit authoring logs from the Git database of each project.

While the Git database provides its own version of the contributor metadata, the uniqueness of

51

contributor profiles across projects can be assured only when the contributor metadata from Git
can be linked to those from GitHub, where the users need a universal GitHub account to submit
their code. Out of 2,907,546 commits in the database, 2,439,059 of them could be linked to GitHub’s
unique author IDs and therefore be used to construct a project affiliation dataset.

Table 2 summarizes the data items gathered through the three data gathering stages of this

project, along with the corresponding data sources.

Data Source Data ltem

RubyGems Functional Dependencies
License Information
Package Authorship Information
Package Release Dates
Complete Package Source Codes
Link to Source Code Repository (GitHub)

GitHub Project Ownership Information
Fork and Branch Information
GitHub User Information for Authors and Committers

Full Source Code Evolution Log in Form of Git Repository

Git The Content of Each Commit (Code and Message)
Modifications Introduced in Each Commit
Author Information
Committer Information

Commit and Authoring Dates

Table 2. Data items and their sources

Data Transformation

The raw data from online digital traces is not necessarily structured in an analysis-friendly
format upon gathering, and often considerable transformation is required to bring the data to a
stage where it can be fed into conventional data analysis processes. Transformation, juxtaposition,
integration and triangulation of the data from these three sources allowed creating the three graph

datasets needed to test the hypotheses. In the following paragraphs I give a brief description of

52

these datasets, and the steps taken to produce them. For an overview of the data gathering and

transformation process see Figure 2.

The network of blackbox reuse between projects (functional reuse network). I used the func-
tional dependency data from package specifications to construct the technical network of functional
reuse for the Ruby community. Functional dependence occurs when a project calls a function de-
veloped in another project, thus requiring the other package for proper functioning. Functional
dependences change as a project’s codebase and functionalities evolve. I considered direct func-
tional dependence of two packages, or the existence of function calls between packages, as a code
reuse tie between the packages. This yielded a dynamic and directed network of functional reuse

ties between projects (See Figure 3).

The network of whitebox reuse between projects (code clone network). I constructed a second
network of reuse based on a different measure and a different conceptualization of the notion of reuse.
Earlier in this essay I made a theoretical distinction between blackbox and whitebox reuse. This
second network of reuse is intended to capture that theoretical difference. Apart from theoretical
justification, though, developing an alternative measure of reuse serves a methodological double-
purpose as well. Quantifying the notions of knowledge reuse and transfer is a contentious task, and
any potential indicator can be argued to be a proxy variable at best. The best empirical solution
to ascertain that the observed empirical patterns are rooted in the measured construct and not the
measurement, is to rely on more than one measurement. Given the central place of the notion of
reuse in this study, it seemed natural to develop a parallel reuse measure as a way of ascertaining the
construct validity of the proposed models.

This second reuse measure quantifies the amount of code cloning or duplication between the
code bases of different projects, in other words keeping track of the copy-and-pastes of the developers.
The measure is calculated using similarity hashing and matching methods adopted from computer
science literature. Like cryptographic hashing functions, the similarity hashing algorithms are dimen-

sionality reduction techniques — they increase the comparability of complex data by representing it

53

1esereq
asnay
XOQaUUM

19se1e(
asnay
Xogjoe|g

aseqeleq

ydein

18se1eq
uonelye
IOO

JIeYOMO[J UoTjewIIOjSURI) pue Jurioyyed ejeq ‘¢ a4ndL]

SNSAdM
swanhgny
Buideiog

1opo oidoj suonduosag
109l01d
Buiyoyepy asusol uonew.ou|
N " asua9l
s607 49 wouy saLoysodey sovoysodey mm_%ﬁ__.ﬂmmi
ejeq bunoesxy pue sfo7 U anHuo Buidesog 01505 I
buvorew | Buxepy || BuuseH | s8p0QSdinog

Aejwig

abexoed

54

Figure 3. Network of blackbox reuse (functional reuse)

in less dimensional spaces. But while cryptographic hashes are sensitive to the slightest of changes
in the data they represent, and can only be used for detecting exact matches, similarity hashes (or
simhashes) allow detection of partial matches between chunks of data as they retain the information
order and sequence within the structure of the hash. Simhashes are widely used in the domains where
the amount of data generated necessitates mechanized ways to perform comparisons. Some major
applications of simhashing are in computer forensics, copyright enforcement and anti-plagiarism
software, spam detection, and image recognition (Gayoso Martinez, Herndndez Alvarez, & Herndn-
dez Encinas, 2014). Software source code is a type of text, therefore one can make use of simhashing
methods to detect partial cloning and similarities between source codes.

Since none of the off-the-shelf programs for clone detection could provide the accuracy and
the speed required for the purpose of this study, I developed my own clone detection software. The
program hinges on two well-known and widely used text-processing algorithms: (1) I used the Spam-
Sum simhashing algorithm, a context triggered piecewise hash (CTPH) method originally proposed
by Andrew Tridgell as a spam detection technique, to fold large bodies of code into short and com-
parable hashes with partial matching possibility (Kornblum, 2006). (2) The subsequent matching of
hashes was carried out using a customized Levenshtein edit distance calculation algorithm. Leven-

shtein distance is a string metric that measures the differences between two character sequences by

55

quantifying the minimum number of single-character edits needed to transform one string to the
other (Levenshtein, 1966; Navarro, 2001).

The program first transforms the Ruby code into an Abstract Syntax Tree composed of inter-
mediary S-expressions (a.k.a., sexprs or sexps) in order to eliminate notational differences in coding
such as line wrapping and indentation styles, space characters and punctuation, identifier names,
and alternative but equivalent control structures (Baxter, Yahin, Moura, SantAnna, & Bier, 1998).
Then it extracts the nested code structures within a body of code based on the syntax tree, and uses
SpamSum to hash the corresponding S-expressions whenever the structure contains more than a
certain threshold of instructions. These hashes are then loaded in an in-memory b-tree structure for
fast search and retrieval (Bayer & McCreight, 1972). Then the program does a pairwise comparison
of all the hashes belonging to code structures of comparable sizes and kinds (i.e., loops versus loops
and functions versus functions) by calculating a similarity ratio based on the edit distance of pairs of
hashes. Hashes with a similarity score above 70% are retained as cloning matches. Once the search
step is over, the matches are compared and all but the largest match between each pair of files are
filtered out. The matching score and the size of the matched code are then retained for use as the
basis for constructing the network of whitebox reuse.

There are different types of cloning, referring to the degree of faithfulness to the original code.
The simplest case of code cloning is copy and paste of source code with minor layout modifications
(Type-1 clone). In other cases the reuser may decide to bring non-syntactic changes to the code,
adapting the identifiers (e.g., variable names) and literals (e.g., UI messages) to their liking (Type-
2). A reuser may also decide to remove or add syntactic elements to the code in order to adapt it
to the new context of reuse (Type-3). Finally, the original code may serve only as an inspiration,
while the adopter completely changes the implementation (Type-4) (Roy, Cordy, & Koschke, 2009).
The similarity hashing method used here allows for detecting the bulk of type-1 to type-3 clones
(Kornblum, 2006).

Marking code cloned across projects yielded a dynamic, directed, and weighted network as it is

possible to track down the amount and the direction of cloning (See Figure 4). The dynamic aspect

56

of the clone network is limited, though, in that one cannot be sure when a project stopped using the
code copied from another project, given that code modifications disfigure the cloned code over time
and make it impossible to detect them. In other words, the edges of this network are timestamped

with a creation date, but no dissolution date can be identified.

Figure 4. Network of whitebox reuse (code clone network)

The network of developer-project affiliations (co-affiliation network). ~Since open source projects
are open for contribution, the emergence of an affiliation network is expected (Grewal et al., 2006).
Affiliation networks are bipartite networks depicting participation of actors in common events (Bor-
gatti & Halgin, 2011). I reconstructed the network of community collaborations by marking project
affiliations of developers based on their involvement in projects. In this case each developer is an

actor and each project can be considered an event (See Figure 5).

I constructed this network by integrating all project contributions with identified developers,
based on the project commit logs of Git and GitHub. The resulting network provides granular
edge properties for developer-project affiliations (e.g., the exact dates, the volume of contribution,
etc.). Once more, this network is both dynamic and directed, as we can track down the time and
infer the direction of movements of the developers between the projects based on the timing of the

movements.

57

&

N

o
&8

Figure 5. Bipartite network of developer-project affiliations
I also made an effort to complement this dataset using the self-reported package authorship
information available from RubyGems spec files, but the data turned out to be highly censored, as
well as being much less granular.
Afhliation networks like the one described here are often projected as single-mode networks for
analysis purposes. A two-mode network can be projected into two distinct single-mode networks:
(1) a network of actors, and (2) a network of events . Given that social network studies often focus on

ties between individuals, it is customary to project two-mode networks into an inter-actor network

(Borgatti & Halgin, 2011).

Nonetheless in the current study, the focus is on project-level ties, making the inter-project
network depicting project-developer coaffiliations the more suitable of the two possible projections.
The simplest projection results in a network of projects with binary edges (See Figure 6). Given that
in the second stage of data gathering I have obtained several edge properties for developer-project

affiliations (i.e., frequency of contribution, volume of contribution, etc.), T had to resort to customized

58

Bipartite Network of Co-affiliations Projected as a

Developer-Project Affiliations Single-Mode Network

S

"IN

"o

a b ¢ d e
Xx|lo 1 1 o o a b c d e
ylo o 1 0o 1 alo o o 1 o
zZ|1 o o 1 o blo o 1 1 o
alo o o 1 o clo 1 0o 1 1
Blo o o o 1 d|1 1 1 0o o
ylo 1 o o o 0O 0 1 0 O
6/lo o 1 o o

Figure 6. Projecting the bipartite network of developer-project affiliations
as a single-mode network of coaffiliations

59

projection methods so as to preserve and aggregate the data from the original bipartite network.

Measures

All hypotheses in this proposal investigate project-level or project-network-level phenomena
with the majority of the dependent, independent and control variables pointing to dyadic measures
such as ties, tie properties and node similarity scores. Some project-level variables, such as centrality,
age and size also enter the analysis. Since all the analyses are done at the project or project-dyad level,
all network data at lower levels of analysis (e.g., individuals) has to be aggregated into project-level

prior to running the analyses.

Dyad-level Measures.

Reuse Ties (Blackbox and Whitebox). 1 have gathered data on two types of reuse tie between
projects: (1) Functional Reuse, derived from the network of blackbox reuse. (2) Code Clone, derived
from the network of whitebox reuse. Reuse ties are directed, that is, project a reusing project b (i.e.,
a e b) is distinguishable from project b reusing project a (i.e., b > a). Reuse ties are also dynamic,
that is, they come into existence when a project starts reusing another project, and they dissolve
when the developers decide to forego that instance of reuse, whether by internally developing the
functionality, removing the functionality or relying on a third project to provide the functionality.

The Blackbox Reuse variable is of binary nature, referring to the existence of a functional depen-
dency or lack thereof, between two projects. This limitation has to do with the data source I use to
generate the blackbox reuse variable. The RubyGems spec files only mention if a dependency exists,
and have no statistics on the number of cross-project function calls. The direction of functional
reuse ties can be known with certainty as it clearly appears in the project metadata. It is also rather
easy to infer when a functional reuse tie comes into existence and when it dissolves by comparing
the dependency lists of the different versions of a project.

The Whitebox Reuse variable can be quantified in a more fine-grained manner using information
on the amount of reuse obtained from the clone detection algorithm (e.g., lines of code). Yet, for

several practical reasons, including accuracy issues, I use the dichotomized version of the variable,

60

simply indicating whether the source code of a project contains instructions copied from another
project or not. The direction of the code clone ties had to be inferred by identifying the first instance,
or the origin, of a code snippet, and then considering the other, posterior instances as clones of the
original. While given this formulation it is easy to estimate the time of creation of a code clone tie,
there is no reasonable way to estimate the dissolution of a code clone tie.

The reuse tie variables are pivotal to all the hypotheses of this study, constituting either the
dependent variable or the main independent variable. When using the reuse measures as dependent
variables, I have preserved the direction of the tie. But when using them as independent variables,
I have treated them as undirected (i.e., a e b). A combination of theoretical and operational
concerns have brought about this special setup. As far as the theoretical arguments are concerned,
all the hypotheses of this study can be tested using an undirected operationalization of the reuse ties.
Yet, many of the important control variables require a directed operationalization of the dependent
dyadic variable (i.e., controlling whether the centrality of the target project has an effect on reuse).

This special treatment of the reuse variables must be assumed throughout the analysis section.

Project Coaffiliation. 'The project coaffiliation variable derives from the network of project
coaffiliations. As detailed in the previous section, the project coaffiliation network is a project-level
projection of the developer-project affiliation network. The project affiliations, in turn, are calculated
based on the individual contributions to the projects. The developers are considered as affiliated
with a project only as long as they contribute to the project. Project Coafhiliation ties, therefore, can
potentially be weighted ties. They are also dynamic, and potentially directed (i.e., Did developer x
start on project a and then moved to project b or vice versa?). The projection from developer-project
affiliation to project coaffiliation is not a simple projection of a binary network then.

For the purpose of this projection one has to define and delimit the construct of project coaffili-
ation. For instance, a coafliliation may be seen as simultaneous affiliation in two or more projects for
a minimal period of time (strict definition) or having contributions to two or more projects during
a specific window of observation (relaxed definition). At its simplest, the coaffiliation variable may

take binary values indicating whether there has been any overlap between the body of developers of

61

two projects. At a more advanced level, the coaffiliation variable may also incorporate a score based
on the number of coaffiliated developers, the instances of contribution or the amount of contribution
to the coaffiliated projects. Project coaffiliation is also a time-dependant phenomenon and has to be
treated as such when included in the analysis.

I used the number of instances of code contribution to a project (i.e., code commits) as the
weight for the developer-project affiliations. Commit count has often been used in the literature
as an indicator of the degree of involvement of the developers in the projects. The weight of the
coaffiliation between the two projects — the projection of two developer-project affiliations — has
to signal the degree of contribution to each project, but also the equality of contribution to the two
projects. A coaffiliation tie based on a highly asymmetric contribution record in two projects must
be scored down.

I calculate the coaffiliation weight for each project dyad with a commonly affiliated developer as
the inequality-adjusted mean of the developer’s contribution to the two projects. I opted for a simple
yet effective Atkinson inequality measure (Atkinson, 1970), widely used in the economics literature,
to adjust for inequality. first developed his measure to tackle the insufficiencies of some summary
inequality measures such as Gini. The Atkinson measure includes a parameter (¢) indicating the
degree of inequality-aversion. I use the common parameter value of 1, in which case the the Atkinson
measure can be simplified:

- (+xX y“)l/(l_s) foro<e#1

AP yn) = -

1- (HiZlyi)l/N fore =1,

1
“

I used the Atkinson measure to adjust the mean contribution to each coaffiliated project dyad.
When more than one developer was simultaneously involved in the two projects I combined the
contributions before calculating the weight. The same procedure was repeated for each project dyad

with common developers. I allowed a maximum one-year lag between two affiliations to count as

the basis for a coaffiliation tie.

62

The coafhiliation tie variable is also pivotal to all the hypotheses in this study. I include the
coaffiliation tie both as a continuous variable (with tie weight) and a binary variable in Hypothesis
2b. I use the natural logarithm of the weight calculated above given that its values tend to be over-
dispersed. I use a dichotomized version of the variable in the rest of the hypotheses, as they do not
make claims about the strength of the coaffiliation ties.

I take the order of contribution in the projects as an indicator of the direction of movement
across projects. Just like for the reuse variables, I consider coaffiliation as directed when it is a

dependent variable in the analysis, and as undirected when it is an independent variable.

License Similarity. The question of reuse goes hand in hand with the right to reuse. The
majority of open source software projects are not in public domain, and are released under one or
more licenses with specific constraints. Any research looking into reuse practices is thus expected
to take the effect of these licences into account.

During the last few years the MIT License has grown to become the dominant license adopted
by the new projects in the Ruby community (See Figure 7), but there is still enough variability in the
license choices to justify seeking a possible effect when it comes to accessing and adopting intellectual

property commons.

Fewer than a quarter of gems publicize their software license within the package specification file.
For the others, the licensing information has to be found in the project source files. I used a dedicated
license detection tool called ScanCode to detect the project licensing information (Ombredanne,
Yang, Balusa, et al., 2017). ScanCode includes the signature for more than 2,000 open source licenses
and is able to detect them duly.

I ran ScanCode both the on the RubyGems sources and the GitHub sources of all the projects,
and then weeded out the false positives manually (e.g., The license of an included font taken for the
license of the whole package). ScanCode identified 150 licenses in use in the Ruby libraries belonging
to 77 different license families. Whenever a project was released under more than one license, I
retained all the licenses. License changes across project versions were marginal and negligible.

ScanCode also includes the license category of each detected license, referring to the reuse lim-

63

€10¢

paypadsun ——

9suadI7 uadQ ISIN ——
asuadi7 Agny

ulewoqigqnd ——

e|[iZoN ——

LIN e

1dD 19SS ———

74D
l|v-3Jeys 2D
uonnqumnyv 3O

ASY m—

ETVpI=o |V—

1dD OJ_j)y ——

13k 343 JO syIuOW JYSI3 81 Y} UO paseq aIe saIngy €10,

MRy Y} UI PIPN[IUT U dABY SISUIDI] UMOWY-[[PM A[UQ

1, (€10T-€007) Ayrunuwrwod 4quy ut uondope asuad| Jo uonn[oAy £ 2Ny

(A4

110¢

010¢

asea|ay 1sJ14 Jo aleq

600¢C

800¢

L00¢

900¢ S00¢

~

700¢C

0T

00T

0007

0T

(8125 J1wyaeso) 3uno) 193fold

64

itations of that license, and mainly based on Linux Foundation’s SPDX license matching guidelines’.

Family Category Licenses (examples) Count
MIT Permissive mit, x11, fsf-mit, x11-fsf, mit-modern, x11-lucent, etc. 27,393
GPL Copyleft gpl, gpl-1.0, gpl-2.0, gpl-3.0, agpl-3.0, gpl-1.0-plus, etc. 1,926
BSD Permissive bsd-new, bsd-intel, bsd-original, bsd-simplified, etc. 1,354
Apache Permissive apache-1.1, apache-2.0, apache-due-credit 1,345
GPL Copyleft Limited Igpl, Igpl-2.0, Igpl-2.1, Igpl-3.0, gpl-2.0-font, gpl-2.0-bison, etc. 826
Public Domain Public Domain cc-pd, sax-pd, cco-1.0, json-pd, fsf-free, unlicense, wtfpl-2.0, etc. 629
Ruby Copyleft Limited ruby, ruby-2011 264
ISC Permissive isc 18
Artistic Copyleft Limited artistic-1.0, artistic-2.0, artistic-perl-1.0 70
Creative Commons Copyleft Limited cc-by-sa-2.0, cc-by-sa-2.5, cc-by-sa-3.0 61
Creative Commons Permissive cc-by-2.0, cc-by-2.5, cc-by-3.0, cc-by-2.0-uk 57
Mozilla Copyleft Limited mpl, mpl-1.0, mpl-1.1, mpl-2.0 45
zlib Permissive zlib 38
Creative Commons Free Restricted cc-by-nc-3.0, cc-by-nd-3.0, cc-by-nc-nd-2.0, cc-by-nc-nd-3.0, etc. 30
Eclipse Copyleft Limited epl-1.0 24

Table 3. Top license families, sample licenses and corresponding categories

It is important to note that discrepancy in both license family and license category can affect
code reusability. While the licenses within a certain category are often deemed more compatible
with each other (e.g., permissive licenses), this is not always the case (e.g., copyleft licenses). And
although the licenses of the same family are often deemed more compatible with each other (e.g., all
BSD licenses), certain license families do not follow the rule, as they have members across different
categories (e.g., Creative Commons or GPL).

I created a license similarity matrix for dyads of projects by marking the project dyads published
with licenses of the same family and the same category as having similar licenses (See Table 3). The Li-
cense Similarity variable, which is a static dyad-level variable is extracted from this matrix. Although
license family and license category could enter the analysis as separate variables, the potential added
value would be submerged by the high degree of collinearity between the two variables (r = .85).

License similarity enters the analysis as a control variable in all the hypotheses, and constitutes

"See https://spdx.org/

65

https://spdx.org/

the dependent variable in Hypotheses 3a, 3b, and 6.

Description Similarity. 'The reuse choice is ultimately a subjective choice, revolving around
the actual needs of a project and its developers. One may argue that not all projects are equally
exposed to the risk of reuse at each decision point, and that the risk of reuse hinges on the content
and the functionalities of the reusing project and the reuse candidates. Software projects within
the same semantic sphere, targeting neighbouring functionalities, platforms, or audiences, may
potentially be more prone to drawing on each other. The same argument holds for the developer
affiliations of the projects: Projects with close topics are more likely to attract the same developers.

Prior studies of open source communities have controlled this unobserved source of heterogene-
ity either by restricting their dataset to a localized set of closely interrelated projects (e.g., Grewal
et al., 2006) or have used project categories, as defined by foundries like SourceForge, as a control
variable (e.g., Hahn, Moon, & Zhang, 2008). But these categories often do not reflect the content and
functionalities of the software as much as they reflect the choices of convenience of the distribution
platforms (Faraj & Azad, 2012).

An alternative approach would be to use the topic modelling techniques with the project de-
scriptions and allow the categories emerge from the descriptive text composed by the developers of
the program. An appropriate method for this purpose would be Latent Semantic Analysis (LSA).
LSA refers to a set of topic modelling and text classification methods that is gaining popularity in
social sciences, from social psychology to information systems (Deerwester et al., 1990). Extensions
of LSA have been used for document similarity detection and clustering, but also to understand the
latent structure of a corpus of texts (Evangelopoulos, Zhang, & Prybutok, 2010).

LSA assumes that the meaning of a text is related to the patterns of inclusion and exclusion
of terms from it, and that the terms with similar meaning will occur in the same texts. The algo-
rithm uses a factorization method called singular value decomposition (SVD) to find a lower-ranked
approximation of the original term occurrence matrix of the documents (document-term matrix),
identifying and quantifying term similarities in the process. LSA can be combined with the cosine

similarity method to obtain a measure of document similarity.

66

Cosine similarity is a measure of similarity between two vectors. If A; and B; are components

of the vectors A and B, the cosine similarity of the vectors can calculated as:

S AB,
cos(0) = A

B _ i=1
|A[LIB]. " "
XA [LB

One can calculate a simple measure of similarity between two documents by setting A and B as the

term frequency vectors of the two documents, but using the LSA vectors offers a superior solution,
given that LSA mitigates the issues of synonymy and polysemy in similarity detection (Deerwester
et al,, 1990).

In order to obtain a measure of similarity of the project descriptions, I ran the cleaned and stop-
worded project descriptions through a Latent Semantic Analysis package called “gensim” (Rehtifek &
Sojka, 2010). I refrained from stubbing and stemming the terms as in technical documents derivative
words tend to have specialized meanings. I set the number of topics to the recommended number
of 300, optimal for cases in which the number of topics is not previously known (Bradford, 2008).
Then I used the resulting LSI matrix to calculate the pairwise cosine similarity score of all the project
descriptions. This yields a number within the range of -1 to 1 for each pair of projects.

Description Similarity is used as a control variable in all hypotheses.

Node-level Measures.

Project Indegree Centrality. 'The patterns of reuse in the Ruby community show great levels
of inequality, revealing itself through richly connected hubs in the network diagram (See Figure 8).
The degree distribution plot of the reuse network shows a power law distribution (See Figure 9)
that in turn signals the scale-free nature of the reuse network (Barabasi & Albert, 1999). Therefore,
there might be a “Matthew effect”, or “preferential attachment” at work in project reuse, whereby
those projects that are more recurrently reused, are more likely to gain new reusers as well (Albert

& Barabasi, 2001).

I use the natural logarithm of the indegree centrality of the reuse target in the blackbox reuse

67

J(grot

Ayanoe Juswdoaasp jo Aep suo ueyy 10w Yim sydafoxd 105

€007) AJyrunwitiod AQMy UT 9snal [euonoun, g a4ns]

68

10°

107!
>
S _
$= 107
oca
[
fre

107

107 =

10° 10! 102 10°
Kk
Indegree

Figure 9. Log-Log degree distribution plot for the reuse network

network as a control variable to capture the potential effects of such preferences on the reuse choices.

The variable is used in all models whose dependant variable is a reuse measure (Hypotheses 1-3).

Project Contributors. Although the project coafhliation network of the Ruby community can-
not be easily described as scale-free (See Figure 10), it is still characterized by a high degree of
inequality. Time is a scarce resource for the developers and each developer can only work on a few
projects simultaneously. It is conceivable that the developers show a tendency towards contributing

to the projects that already attract a considerable amount of participation.

The Contributors variable is supposed to control for this effect where coaffiliation is the depen-
dent variable (Hypotheses 4-6). The measure pertains to the destination project of the coaffiliation
link — or the project that the developer joined the second. Contributors is the number of contributors

that have contributed to the project so far, and it is logged to control the over-dispersion.

69

1072
g
< —_—
3=
oca
[
fre
107
107

10t 102 10° 10*

k
Indegree

Figure 10. Log-Log degree distribution plot for the coaffiliation network

Project Activity. Recent Activity is calculated as the natural logarithm of the total number of
contributions during the twelve months prior to the point of measurement. It is included as a control
variable in all the regressions for all hypotheses to control for the activity state of the project. The
developers have a preference for active projects when it comes to decisions about reusing the project

(i.e., updated code) or contributing to it (i.e., usefulness and continuity).

Project Size and Age. Project age and size enter the analysis as proxy variables for project
maturity. They are control variables in all the hypotheses. They relate to the reused project when
reuse is the dependent variable, and to the destination in the coaffiliation link when coaffiliation is
the dependent variable. Project Size is the natural logarithm of the size of the project in kilobytes.

Project Age is the age of the project in years.

70

Analysis

All the hypothesis in this study intend to infer the effect of one type of edge on another in
networks composed of tens of thousands of nodes and tens or hundreds of thousands of edges.
These are very sparse networks with extremely low density and a considerable number of structural
zeros (i.e., a few billions). The ideal method to test the hypotheses in the current study would be
either binomial and/or multinomial logistic regressions. But there is a well-known downward bias
in coeflicient and probability estimations of logistic regressions when dealing with finite sample or
rare event data — the phenomena in which non-events far outnumber the events. While the number
of observations is sufficiently large in this study, the sparsity of events versus non-events condemns
the conventional logistic regressions to suffer from this known bias.

Moreover, Including all the structural zeros in the regression analysis is not operationally feasi-
ble with the current resource constraints of the statistics software packages. Most of those structural
zeros contain little surplus information as they refer to isolate projects that never enter in a reuse or
coaffiliation relation with the other projects.

G. King and Zeng (2001b) propose a combination of case-control stratified sampling design
(i.e., downsampling) and penalized logistic regression in order to alleviate the above concerns. The
first step consists of selective sampling based on the value of the dependent variable, sampling all
the ones and one or more equally-sized samples of the zeros. Next, they suggest a logistic regression
method, called Rare Event Logit, to obtain corrected estimates and robust standard errors based
on the sampled data. The authors themselves have used the method to analyse network data from
international conflicts (G. King & Zeng, 2001a).

Sub-sampling. Given that King’s method calls for sampling based on the values of the depen-
dent variable, each different dependent variable necessitated drawing a separate sub-sample from the
data. As such, Hypotheses 1a and 3a use one sub-sample (H1a sub-sample), Hypotheses 1b and 3b rely
on another sub-sample (Hib sub-sample) Hypotheses 2a and 2b make use of yet another sub-sample

(H2 sub-sample) while Hypotheses 4a to 6 share a separate sub-sample (H4 sub-sample).

71

Sample DV Hypotheses o Multiplier Size

H1a Blackbox Reuse H1a & H3a 50X 948,705
H1ib Whitebox Reuse H1b & H3b 200X 586,538
H2 Reuse Type (Multinomial) H2a & H2b 50X 1,095,893
Hg Coaffiliation H4a, H4b, H5 & H6 80x 4,239,665

Table 4. Sub-sample descriptions

In order to get as close as possible to the notion of causality, and to remain faithful to the
spirit of the hypotheses, I have conducted the sub-sampling with embedded time-ordering. For
each hypothesis I take the year 2012 as the observation period in which to seek variability on the

dependent variables.

Window of observation

for independent variables

Window of observation

for dependent variables

7
2010 201 2012 2013 2014

-

Point of observation

for control variables

Figure 11. Observation timeline for the sub-sampling step

I also define a window of observation of one year for the independent variables (See Figure 11).
For instance, for Hia I made a sample of zero and ones for new functional reuse ties during the
DV observation period (Jan. 2012-Dec. 2012). Then I looked for cases of coaffiliation within the
twelve months prior to the date of functional reuse. As a result, the longest possible interval between

coaffiliation (IV) and reuse (DV) is less than or equal to twelve months.

I focused on this specific period for sampling, because it is the period for which the data contains
the highest number of reuse observations. The occurrences of reuse are more scarce than those of

coaffiliation in the data, and therefore it is a priority to obtain a large enough sample that prevents

72

9000

6000

Blackbox Reuse (Functional Calls)

3000

2007 2008 2009 2010 2011 2012 2013

Date

Figure 12. Functional reuse in Ruby community

instability or total separation in the regressions. The reuse observations start to drop at the beginning
of 2013, because the data does not include projects created after that date (See Figure 12).

I measured the control variables at the cut-off point between the IV and DV observation win-
dows. I have also set a one-year limit for the lifespan of developer-project affiliations. This means I
consider the afhliation as dissolved if it does not get reactivated through a new contribution within
the space of one year. To the best of my knowledge this is a more stringent criterion than the con-
vention in the field, whereby the social ties are assumed to linger on for a span of four years after the
last contact (P. V. Singh & Phelps, 2013; Uzzi & Spiro, 2005).

Finally, I made “zero” samples several times the size of “one” samples in the stratified sampling
process. According to G. King and Zeng (2001a) a five-fold “zero” sample constitutes the sweet spot
for information gain versus the hassle of additional data gathering or analysis. But given that in this
study I deal with sparse variables both in IV and DV roles, I observed significant improvements in

estimation stability as I increased the sample sizes. Therefore I retained the large samples, specially

73

since zero samples came at near-zero cost (See Table 4).

In all samples I had to discard the Rails project. Rails is the flagship project of the Ruby commu-
nity and is foundational to most use cases of the Ruby language. This makes Rails highly central to
many cases of collaboration and reuse in the community, but at a level of magnitude disproportional
to the other projects. Rails is an outlier in every aspect, with reuse and coaffiliation figures tens of
times those of the other leading projects. This destabilized or biased the estimates, what warranted
discarding the project from the samples.

The descriptive statistics and the correlation tables for the four sub-samples are included in

tables 5 to 12.

Models. I used Rare Events Logistic regressions (relogit), as suggested by G. King and Zeng
(2001b) to estimate the models proposed in all the hypotheses, save for 2a and 2b. The relogit
estimates are more resistant to the potential biases introduced by the sparsity of the events as well as
the DV-based sampling.

The relogit regression resembles the standard logistic regression in both its stochastic and
systematic components:

Y; ~ Bernoulli(7;)

1

1+ exp(—x;f3)

Relogit, though, offers two methods for correcting the bias in the constant term that selecting

on the dependent variable may introduce.

o The prior correction method makes adjustments directly to the intercept term, by taking into
consideration the difference between the fraction of events in the sample and the fraction of
events in the population. If 7 is the true fraction of events in the population, y the sample’s

fraction of events, ﬁAO the uncorrected intercept term and f3, the corrected intercept:

Bo =ﬁo—ln[(¥)(1—yy)]

74

(asnay xoqyoe[g A() d[dures-qns eI} 9Y) J0J SUONB[I1I0D UOSIEd] 9 QU

L °6T'0 Jdkale} 79¢€'0 gLo'0 SLo'o gvo'o 8sc'o (pasnay) as1bapu|
L 6ST°0 LoL'0— 8L0°0 o g8€o'o €80°0 (pasnay) AuAndY
L (VAN 6L0'0 oLo'0 gLo'o 9500 (pasnay) azis
L 600°0 600°0 0L0'0 €90°0 (pasnay) by
L 0z0'0 ¥zoo 9€0'0 Awieiwis uondussaqg
L LLO'O LLO'0 Aulejiwig asuadi
L [4ANo] uonel|yjeod
L asnay xogype|g
(pasnay) (pasnay) Aepuis Awejuig asnay
(pasnay) azis (pashay) aby uoliel|yjeo)
2a1bapu| Aunnoy uondudsag asuadI xoqype|g

(asnoy xoqoe[g :A() d[dwres-qns eI ay3 10§ sonsiyels aandrosaq S 9jquy,

LS£'9 000°0 0000 000°0 000°0 669°0 sz o (pasnay) a2163pu|
gLy'g 6€9'C €690 000°0 000°0 oL So€°L (pasnay) AuAndy
LOL’LL L60°E 86¢'C or6°L 660°L 6€€°L 08T (pasnay) azis
66T'L £6S'T 068°L (4Tl 8000 €Tl €oc (pasnay) aby
000°L 000°0 000°'0 000°'0 oo€'o— z/o'o 9L0°0 Aejiwis uondudsag
L L (o] o o 6610 |74 e} AJe|iwig 9suadi

L o o o [o) €€0'0 L00'0 uonel|yjeod

L o) o o [o) £50°0 €00°0 asnay xogyde|g
Xe (84n>d uelpsy (s9n2d UlN ‘ARQ 1S uesiy ansnels

75

(asnay X0gaNYM ‘A[) d[dures-qns qrH a3 10J SUOTIR[21I0D UOSIed] '8]qU],

L €g8T0 LLz'o vseo oLo'o 2L0°0 9€0'0 120’0 (pasnay) aa41b6apu|
L vsco 60L'0— g8LO'0 o 9£0'0 6200 (pasnay) A1ADY
L ziLo L2o'0 800°0 SL0'0 Szo'o (pasnay) azig
L S00°0 600°0 £00O"0 SL0'0— (pasnay) by
L 120’0 ovo'o gLL'o Aejiwis uondudsag
L SL0°0 €L0'0 AyJejiwig asuadi
L Teeo uonel|yjeod
L 9snay Xogauym
(pasnay) (pasnay) Aejwig Kepuis asnay
(pasnay) azis (pasnay) aby uonel|yjeod
2a163pu| KuAnoy uondusag asuadI XOQaUYyM

(asnay x0qaNyM AQ) o[dures-qns qIH 9y} 10§ sonsneys aandriosaq £ ajquy,

LS£'9 000°0 0000 000°0 000°0 v/.9'0 LET0O (pasnay) a2163pu|

gLy'g el d €690 000°0 000°0 8¢€9°L 95€°L (pasnay) AuAndy
LOL’LL L60°E 86¢'C or6°L 660°L SeeL €08'C (pasnay) azis

66T'L §6S'C 068°L (4Tl S00'0 ozL'L LEO'T (pasnay) aby
000°L 000°0 000°'0 000°'0 ooz'o— €00 9L0°0 Aejiwis uondudsag
L L (o] o o 6610 174 e} AJe|iwig 9suadi

L o o o (o) €00 L00'0 uonel|yjeod

L o) o] o o) S€0°0 L00’0 95NaYy XOgaUYM

XeW (SOPdd UeIpS (S9Pdd WIW ASQS Uespy onsnels

76

(2d47, asnay :A(Q) d[dwres-qns TH 9Y) 10J SUONB[ALIOD UOSIEI] 0T 9]qu],

L °6T'0 gLz'o L9€'0 100 SLo'0 Lvo'o 6vo'o (pasnay) a94b3pu|
L LST'0 zoL'0— 120’0 €00°0— oto'o Lv0'0 (pasnay) ANAndY
L L ZAN¢) Lco'0 600°0 gLo'0 LL0'0 (pasnay) azis
L 900°0 LLo'0 €000 £000 (pasnay) aby
L 0T0'0 9€0°0 ve€oo Auejiwis uondudssg
L yL00 yLo00 Auejiwis asuadi
L LL6'0 (pa1yb19) uoneljyjeod
L (A1euiq) uonel|yyeod
(pasnay) (pasnay) Awepuis Auejiwis (Pa1ybiam) (Kseuiq)
(pasnay) 9zis (pasnay) aby
EEIGET o] Aandy uondudsag 3suadI uoneljyjeod uoneljyjeod

(2dA7, asnay :A() o1dwres-qns <[9y 10§ sonysTIeIs 2ANdLIdSIT 6 9)qu],

19’9 000°0 000°0 000°0 0000 869°0 sz o (pasnay) aa1b63pu|
gLy'g 6€9°C €690 0000 000°0 rro'L L9€°L (pasnay) ANAIDY
LOL’LL L60°€ 86¢€'T ov6L 660°L 6€€°L 608'C (pasnay) azis
66T, L6S'T 068°L 6veL S00°0 Tl €eoc (pasnay) aby
000°L 000°'0 000°0 000°'0 00T'0— TlO'0 9L0'0 Awaejiwis uondudssqg
L L o o o 6670 €0 AJe|iwis 95uddI
(8T’ 000°0 000°0 000°'0 000°'0 g80oL'0 €00°0 (pa1yb1apn) uoneljyjeod
L o [o) [o) o €o'o LOO'0 (K1euiq) uoneljyjeod
Xew (84p>d UBIpSN (s2)n2d UIN ‘A9Q 1S Uesiy ansiels

77

(auoneryeo) :A() d[dures-qns ¥H 9y} 10J SUOIR[OII0D UOSIRd] ‘TT 2JqU],

L 620 8LT'0 L9€0 [10'0 SL0°0 Lvo'0 6v0°0 (pasnay) a2163pu|
L L5T°0 zoL'0— Lzo'o €00°0— oto'o 10’0 (pasnay) ANAndy
L 74N Lzo'0 600°0 9L0'0 £10'0 (pasnay) azIs
L 900°0 LLO'O €00°0 £00°'0 (pasnay) aby
L 0T0'0 9€0°0 €00 Awejiwis uondudssq
L 100 100 A)eJ|IWIS 9sUdIT
L LL6°0 (pa1ybi1ap) uoneljyjeod
L (A1euiq) uoneljyjeod
(pasnay) (pasnay) Aepuis Aneajius (pa1yb1a) (K1euiq)
(pasnay) 3zIs (pashay) aby
93a163pu| Auanoy uondunsag ENIER]N| uoleljyjeo) uoliel|yjeod

(uoneryeo) :AQ) a[dures-qns ¥ oy 10§ sonsnels aandriosaq ‘11 9jquJ,

(474 0000 000°0 000°0 000°'0 990 €95T°0 (uoneunssQ) si01nqLIUOD
gLy'g SEL'E 6L0°C 000°0 000°'0 €L5°L L96°L (uoneunsaq) ANADY
LOL'LL €lLLT LST'C TgL 660°L 9lT'L €€9'C (uoneunssq) azis
662, (4T SLL'0 gLE'o €00°0 690 €980 (uoneunssq) aby
000°L 000°0 000°0 000°0 0og'0— Tlo'0 9LO'0 Aejiwis uondudsag
L L (o) (o) [o) 6610 VLo A1Jejiwig asuadi]

L [o) o (o) [o) 900°0 €0000°0 asnay Xogauym

L [¢) o o [o) €L0'0 T000°0 asnay xoqgpe|g

L [o o [o) 7900 too'o (A1euiq) uoneljyjeod
Xew (84)p>d Uelpsy (S9n>d U N IS uesiy Jnsniels

78

« The weighting method corrects for the case control design by attributing weights to the o
and 1 cases and then performing a weighted logistic regression. If the 1 subscript denotes
observations for which the dependent variable is 1, and the o subscript denotes observations

for which the dependent variable is o, then the the vector of weights w; is obtained by:

T

w, = -
Y

(1-7)

wi= wY; +w,(1-Y;)

This corrects the biases in the estimates of the the coefficients 3 due to finite sample or rare events
bias. In addition, relogit corrects the other quantities of interest, such as the predicted probabilities
(Choirat et al., 2017).

G. King and Zeng (2001b) recommend the weighting method over the prior correction method
when the finite sample constraints do not apply and there is a chance that the model is misspecified.
The novelty of some of the measures that I juxtapose, means that model misspecification is a possi-
bility in this study. Therefore, given that I can raise the size of the samples to the required level to
achieve estimate stability when using the weighting method, I opted for this latter.

Hypotheses 2a and 2b propose a comparison between the relative effect size of a covariate
(i.e., coaffiliation) on two different outcome variables (i.e., blackbox and whitebox reuse). This
requires estimating the two corresponding regressions in a single system that allows covariance
between the two outcome variables, either using Zellner’s (1962) seemingly unrelated regressions
method (SUR) or through structural equation modelling (SEM). But a binomial logistic SEM is
equivalent to a multinomial logistic regression when the separation between the outcome variables
is complete. Given the minimal overlap — of only two cases — between the blackbox and whitebox
reuse instances, I randomly assign the two cases to one of the two types of reuse and I run the
estimation as a conventional multinomial logit. Unfortunately there is no widely accepted method

to extend the correction and penalization performed by rare events logistic models to multinomial

79

logit or logistic SEM, therefore I will suffice to running the standard estimation algorithms in this

case.

Results

The results are, overall, supportive of the picture of reuse and collaboration practices in open
source communities offered in the theory development section. Since the hypotheses cover two
different sets of dependent variables, knowledge reuse and coaffiliation, I have divided the results
section into two subsections.

Knowledge Reuse. Hypotheses 1a to 3b explore the drivers of knowledge reuse between the
open source projects. The results of the corresponding analyses are presented in tables 13, 14 and 15.

Hypotheses 1a and 1b suggested that developer coaffiliations between projects would have a
positive effect on the subsequent creation of reuse ties between the projects. The results firmly
support these core hypotheses.

The unadjusted logit estimates indicate that two projects coaffiliated through developers are
78 times more likely to create function calls to each other (Table 13 — Model 3). All else equal,
this translates into a rise in the predicted probability of functional reuse from 0.07% to 5.4% where
coaffiliation ties are present. The odds are estimated at 11 times for the adjusted relogit model (Table 13
— Model 4). Given that the relogit method includes prior correction in order to take into account
the rarity of the outcome event, it provides much more conservative probability estimates, which is
0.0025% for non-coaffiliated project dyads versus 0.0281% for coaffiliated dyads.

Similarly, the unadjusted odds are put at 141 times for the reuse of code through cloning the
instructions and algorithms subsequent to coaffiliation (Table 14 — Model 3). That points to an
increase in the risk of establishing code clone ties from 0.03% to 4.51% for the coaffiliated project
dyads. The adjusted relogit estimates put the odds of clone reuse further to coaffiliation at 78 times
(Table 14 — Model 4). This latter figure translates into a predicted probability of 0.0004% for cloning
in absence of coaffiliation, as compared to 0.0318% for cloning where the dyad is coaffiliated.

The above estimates also offer a hint about the results for Hypothesis 2a, as the relationship

8o

between coaffiliation and whitebox reuse seems to be much stronger than that of coafhliation and
blackbox reuse. In order to make sure that the difference between the coeflicient estimates for
coaffiliation in the two models is significant, I recoded the types of reuse as a multinomial variable
and entered it in a multinomial logistic regression (See Table 15). Model 3, just like the previous
regressions, includes coaffiliation only as a binary variable. The effect of the coaffiliation variable on
whitebox reuse is, as expected, noticeably larger than on blackbox reuse: The coefficients are 4.78 for
whitebox versus 4.26 for blackbox. The coefficients are comparable to the uncorrected logit estimates
in tables 13 and 14 (Model 3). A Wald test of the equality of the coefficients firmly rejects the null
hypothesis, and thus the difference of the two coeflicients is significant (x> = 13.87, p = 0.0002).

On a side-note, the coefficient estimates for the effect of description similarity on creation of
reuse ties are significantly different for the two types of reuse — 6.269 for whitebox reuse versus 3.736
for blackbox reuse. Description similarity seems to be an important predictor of type of reuse beside
coaffiliation. This provides additional support for H2a by confirming the local search argument put
forward to justify the differential effect of coaffiliation ties on the two types of reuse. Indeed, project
dyads with whitebox reuse ties seem to be semantically closer to each other as compared to the dyads
with blackbox reuse ties.

Hypothesis 2b provides that despite the stronger effect of the existence of coaffiliations on
whitebox reuse, stronger coaffiliations between projects must favour blackbox reuse. I put this
proposition to test with Model 4 by entering both a binomial and a continuous (weighted) version of
the coaffiliation variable in the regression so that we can delineate the effect of existence of coaffiliation
from the effect of its strength. Adding the weighted coaffiliation variable to the equation renders the
coefficients of the binary variable non-significant in the model with the control variables (the two
variables are 0.94 correlated). But the Wald test shows that the difference between the coefficients
of the binary coaffiliation remains highly significant in Model 4, thus the effect on whitebox reuse is
still stronger (¥ = 8.98, p = 0.0027). The difference of the coefficients for the weighted coaffiliation,
a proxy for the strength of the tie, is significant at 0.01level in the same model (y* = 7.52, p = 0.0061),

denoting a stronger effect on blackbox reuse.

81

Although at the surface level the results seem to fully support Hypothesis 2b, the high degree of
collinearity between the two coaffiliation variables puts the reliability of the results in doubt. In order
to obtain additional assurance, I ran the same regression, keeping only the weighted coaffiliation
variable and the subset of the data with coaffiliation links. The results still show a slightly larger
coefficient for blackbox reuse, but the difference in the coefficients is far from significant (y*> =
0.1263, p = 0.7223). The mean of the coaffiliation weight for the project dyads with whitebox reuse
ties is not significantly different from that of the dyads with blackbox reuse ties (= 1.1788, p = 0.2394).
Therefore, I conclude that the apparent support for H2b must be taken with caution.

As far as Hypotheses 3a and 3b are concerned, the relogit corrected estimates for the effect of
license similarity on reuse are significant for both types of reuse (See tables 13 and 14 — Model 4). The
effect is both stronger and more significant for whitebox reuse, what corresponds to the expectation,
since the license restrictions mainly apply to the modification and the creation of derivative work,
while the case of co-deployment or combined distribution is rarely targeted by the licenses. It is of
note that technically every case of whitebox reuse is also a case of creating derivative work, while

the same cannot be said for blackbox reuse.

Coaffiliation. Hypotheses 4a to 6 explore the drivers of developer coaffiliation between the
open source projects. The results of the corresponding analyses are included in tables 16, 17 and 18.
The content of table 18 is enough to follow the analysis below, but for the sake of completeness I have
included the similar estimations in independent regressions for the two types of reuse in tables 16
and 17.

Hypothesis 4a and 4b suggested that the existence of knowledge reuse ties between projects,
whether of blackbox or whitebox type, would have positive effect on the subsequent creation of
coaffiliations between the projects. Hypothesis 5 suggested that this effect would be stronger for
blackbox reuse ties. The results support the two core hypotheses unambiguously, while lending only
mixed support to Hs.

All else equal, the relogit adjusted estimates indicate a project that draws on the functionalities

82

(e€H X BT d[qerrea juapuadop se asnax Xoqyoe[q YIIM suolssaI3ax 3130721 pue 31307 €1 219y,

"S10113 pJepuels 31snqou sasnh 316ojay
"309(04d pasnai ay3 01 ulenad sa|qelIeA [9AS]-9POU ||
"PaJ3luUdI-URdW e SI|qeLIeA ||
ooo>d_ 'oo>d !So0>d,

210N

005°06L 005°06L 0LEV6T'VT 0/8'088'g€ 089°'zTi'6€ 1D Ju| ey
0ST'/8— oS /88— ogL6EL'cL— ovvoev'6L— ove60L'6L— pooyiay1] 6o
SoL'gv6 SoL'gv6 SoL'gv6 SoL'gv6 SoL'gv6 suoneAIasqo
(00000°0) (o¥0°0) (1ro0) (8z0°0) (6L0°0)
€0000°0 ey TOSOL— s 0CTL— ey lTO9— enEC85— 1ueISUO)
(zS0°0) (£10°0) (PL0°0)
SLLE e JELL ey 0CT L 9a163pu| 123foid
(£L0°0) (PLo"0) (cLo0)
6SL'L 870 VL0 A1AIDY 133f0ud
(ozor0) (zzor0) (910°0)
126°0 en E80°0— 289070~ 9z1S 13foid
(gLo'0) (Lzo0) (5L0"0)
980 eanlVLO— ey IOLO— aby 103foid
(¢65°S) (06L°0) (o¥L0) (€z1'0)
g6t wen78EE ean OEE e O8LE Awejiwis uondudssQ
(950°0) (050°0) (Lror0) (££0°0)
vz Lo we77LO s ELEO A1Jejiwig asuadi
(8¥02) (€8L°0) (660°0) (VLo0) (L£0"0)
iz AL a4 e 5E T 0087 s E667 (A1euiq) uoneljyjeod
s
PPO (+) © @ (v
onsiboy
SIEVEEY)] o1s1boj

asnay xogyde|g

:2]qQLLIDA Juapuadaqg

83

(Q€H 8 qTH) 2[qerrea Juapuadap se asnaI X0qaIIYM YIIm suorssa1dar ydoax pue 80T #1 99y,

'SI0113 plepuels 1sngod sasn 1BojaYy
"129f01d pasnai ay3 03 urenad sa|qelieA [9AS]-DPOoU ||y
"PaJajudd-UBSW de SI|geLIRA ||y

too'o>d_ 'to'o>d !50'0>d, 90N
6LzE 6L1TE TSL'L00'g TLL8S's 096°0000L 1D U] ey
6£T'8— 6€T'g— 9/8'566'¢€— 90/'98T'V— ogy'g866'7— pooyia1] 6o
8€5'98S 8€5'985 8€5'985 8€5'08S 8€5'98S SUOIeAISSqO
(00000°0) (£60°0) (0g0°0) (oL0"0) (1¥o0)
000000 wen 80 TL— 10008~ s 0957 L— s 868°9— 1ueISUO)
(Por-o) (£90°0) (¥¥0°0)
SSL e P70 wenl €70 9a163pu| 133foid
(g€o0) (P€o0) (bzoo)
oLL'L W OLLO OO A1Anoy 133foid
(8z0'0) (Lzo0) (Lzo0)
oveL ey LOTO s C8CO 9z1§ 103foid
(o¥0°0) (£80°0) (8¥0°0)
LoV"0 eyl 9L O sl 89°0— 9by 109foid
(LLT1L6) (807°0) (8€L°0) (€€1'0)
[agaliiag s 3809 enC8E9 wenE 7O Awepwis uondudssq
(8¥L0) (880°0) (€80°0) (zg0°0)
8/9'L s 8LS0 s 3550 s €SO0 AuJejiwig asuadi
(V€9°61) (zSz0) (obL-0) (Lz10) (vor-o)
8L LL wenVSET WA e 0OV'S s 008G (A1euiq) uoneljyjeod
S
PPO (+) (©) © v
onsiboy
SUEVEEY)] o1s1boj

95Ny XOgaHYyM

:2]qQLLIDA Juapuadaqg

84

(qeH @ eeH) 9[qerrea ndino se ad4Ay asnax yym suorssaadar onsido] [erawroun[niy St 2jquy,

"}p3foid pasnal ay3 0} urepsad sa|qelIeA [9AS]-9POU ||

‘PoJalusd-Uesall ok so|qeleA ||y

ooo>d_ ‘o'o>d !So0>d, 310N
06t°€og'ee 061°€0g'€E 068°68T'v¢E 068'68C'VE 00T'96605 00T'966'05 0/£0°88T'LS 0/0°88T'LS D Ul ey
ov/€gg'oL- ov/€gg'oL- ov6'geL'/L- ov6'geL'/L- oolLz6V'Se- ooLc6l'Se- geoor9’ae- geoo9'Se- pooyia17] 6o
€68'560°L €68'560°L £€68'560°L €68'560'L £68'560°L €68'560°L €68'560°L €68'560'L Suol1eAISSqO
(1roo) (£L070) (troo) (£Lo70) (6L0°0) (Lro'0) (6L0°0) (X9
s OLE L= xst958— e LVEL— xs 8958~ xs 79075~ exa SIS~ s s L9605~ N AYAY jueIsuod
(PLo"0) (tFo'o) (PL0"0) (tFor0)
e 7TTL eanELS0 e LOTL wes 870 2a163pu| 123foid
(zL0°0) (€zo'0) (zLo0) (€zo'0)
eenCELO e ICLO L SELO eanJELO KAy 133foud
(9L00) (Lzo0) (9L0°0) (Lzo0)
SLo'0— LlTo ¢/00— 6.0 9z1S 19foud
kokk *kk *kk *kk
(SLo°0) (Proro) (5Lo°0) (Proro)
ey d5L0— s 899°0— ey O9L0— ey IL5O— by 103foid
(6€1°0) (o€L0) (£€10) (LEL'O)
e ELE 4x09C9 il VLE +xs00L9 Aejiwis uondudsag
(tro0) (zgo'0) (tFo'0) (zg00)
eLo 7550 144X €450 A1Je|iwig asuadi
*%k *kkk *kk *kkk
(8£0°0) (soL0) (P90°0) (Lgo0)
eaclLIL ealVTL «xs 8780 3y 0700 (pa1yb1am) uoneljyeod
(S9T0) (L6€0) (960°0) (Se1o) (ozz0) (€o€°0) (oLo"0) (660°0)
S0€0— r8go x0TV wel8LY i 9TVT e 7687T A a4 e CL8S (A1euiq) uoneljyjeod
¥ (® (] (1)
9snay asnay asnay asnay 9snay asnay asnay asnay
xoqg3de|g XOg=HYM xog3de|g XOqaHYM xogxoe|g XOg=2HYM xog3doe|g XOQg=HYM

:3|QbLIDA Juapuadag

85

of another is 40 times more likely to subsequently share a developer with the same project, compared
to 70 times according to the unadjusted logit estimates (See Table 18 — Model 4). This corresponds
to a predicted probability of 0.33% for coaffiliation between project dyads with functional reuse ties
versus 0.008% for project dyads with no prior reuse ties. The unadjusted probability figures are
8.62% and 0.13% respectively. The odds stand at 17 (49 unadjusted) for two projects that share code.
Having prior clone reuse ties brings up the predicted probability of coaffiliation to 0.14% from the
baseline of 0.008%.

Comparing the size of the coeflicients for the two types of reuse confirms the claim put forward
in Hypothesis 5; that blackbox reuse must have a stronger effect on coaffiliation than whitebox reuse
(Table 18 — Model 4). But in order to verify the significance of this difference, a Wald test of the
equality of estimates is due. The result of the test can not reject the null hypothesis, which is equality
of the two coefficients (¥ = 2.03, p = 0.1543). This is mainly due to the wide confidence intervals for

the estimates of the very sparse whitebox reuse variable.

|_|__| Blackbox Reuse |_|__| Whitebox Reuse

1
1
|
|
0.9 I
l

0.6

Density

0.3

0.0

1.5 2.0 2.5 3.0 3.5 4.0

Coefficient

Figure 13. Comparative density plot for f3 coeflicients

86

But given that acquiring new samples for this test comes at no cost, there is no need to remain
confined within the limitations of this specific sample. Therefore, I drew 100 samples with similar
specifications from the data, put them through the same regressions, and recorded the corrected
relogit coefficient estimates for the two variables of interest — whitebox reuse and blackbox reuse.
Welch’s unequal variance t-test indicates that the mean of coefficient estimates for blackbox reuse
(x = 3.16,s = 0.34) is larger than that of whitebox reuse (x = 2.95,s = 0.59), rejecting the null
hypothesis of equality at a high level of significance (¢ = 3.04, p = 0.0014). The difference between
the two means indicates that the odds of blackbox reuse preceding coaffiliation is 1.2 times that of
whitebox reuse (See Figure 13).

Finally, Hypothesis 6 posits that projects with similar licenses are more likely to share developers.
The variable License Similarity is significant in this regression, indicating that the projects with similar
licenses are 1.6 times more likely to have developers in common (See Table 18 — Model 4). The

results, therefore, support the final hypothesis.

87

(9H % BYH) 9[qeLrea Juopuadap se uoneI[jeod yim suoissaidal 130721 pue 307 ‘91 298],

"S101J3 piepuels 1snqoJ sasn 316ojay
"123(0.4d uoIeUNSIP BY3 0} UlRLId SI|qeLIRA [9AD|-9POU ||V
"PaJ9ludI-uRdW e SI|qeLIeA ||
roo.ovq*** 10°0>d . wmo.ovg*

210N

LLTYhL'e LLThhL'e 009'088'99L 009°'669°teC 005°6£9'52C D Ul Yiey
6€L'790'L— 6€L'790'L— ozezey'eg— 008'SVeLLL— 00/LE8'TLL— pooyiay17 6o
S99'6€T'Y S99'6€T'Y S99'6€T'Y $599'6€T'Y 599'6€T'Y suoneAlasqo
(00000°0) (9L0"0) (SL0°0) (€L0°0) (800°0)
L0000 wxnSL76— e 91979~ xs G085~ 28075~ 1ueIsuo)
(€co'0) (600°0) (600°0)
Vka a4 29880 L2 8E6°0 sl01nquuo) 133foid
(800°0) (900°0) (900°0)
STl s ICTO e E0TO A1A1DY 133(01d
(900°0) (900°0) (900°0)
€00°'L €000 LLO'O 9z1S 129(0ld
(£z00) (zL0°0) (600°0)
Tiee s 8E8°0 ATAY 9by 103foid
(0L9°0) (6£0°0) (¢Loo) (z90°0)
6cl L e I70T 0L L OVET Auejiwis uondudssg
(620°0) (8L0°0) (£10°0) (9L00)
vezoL e 2870 20870 exx 90 A1Jejiwig asuadi
(€€L°L) (oL10) (zor'0) (580°0) (€800)
€SSy AR £ e BLEY oSSV 7ot asnay xogyde|g
s
PPO) (©) © (v
onsiboy
SUEVEEY)] 13s160]

(Kreuiq) uoneljyyeo)

:3|QblIDA JUapUadag

88

(9H % qPH) 2[qeLrea juspuadap se uonerijeod yum suoissaidal jido1 pue 3307 L1919y,

"S101J3 piepuels 3snqoJ sasn 31602y
"123(0.4d uoIeUNSIP BY3 0} UlRLId SI|qeLIRA [9AD|-9POU ||V
"PaJ91uUdI-URdW e SI|qeLIeA ||
roo.ovq*** 10°0>d . wmo.ovg*

210N

T86°LL'T T°S6°LhL'T oo/Lot9’LoL ootrees’eee 009°gLS‘9ze D Ul ey
9£6°590'L— 9/6°S90'L— 09€£CL8'eg— 00£29/L'LLL— 00€'LST'ELL— pooyiayi] 6o
599'6€T'Y S99'6€T'Y $599'6€T'Y S599'6€T'Y S99'6€T'Y suoneAlasqo
(00000°0) (9L0°0) (S5L0°0) (€L0°0) (800°0)
L0000 ey EL76— xx L0979~ xs 1885~ 2s 0075~ jueIsuo)
(€Tor0) (600°0) (600°0)
oth'e +4:98870 e si03nquu0) 13f0ud
(g8000) (900°0) (900°0)
STl 24 s 50TO A1A1dY 133(01d
(900°0) (900°0) (900°0)
zo0'L 000 LLO'O 9z1S 129(o0ld
(£z00) (zcLo0) (600°0)
Tuee s 8€8°0 NATAY 9by 103foid
(£19°0) (6£0°0) (¢Loo) (z90°0)
6LL°L s t90C s LT s CIET Aejiwis uondudsag
(620°0) (8L0°0) (£10°0) (910°0)
oL e ,esl8V0 eanL90 A1Jejiwig asuadi
(66£91) (€95°0) (SLz0) (9£10) (99L°0)
86¢0¢ sV E sl g ELOS AR 9sNay Xoga Iy
S
PPO) (©) @ (v
o1s1boj
IEVEEY)] o1s1boj

(Kreuiq) uoneljyyeo)

:3|QblIDA JUapUadag

89

(SH) a[qetrea Juspuadap se UOTIRI[eOD YIIM SuOIssaIdal J1oa1 pue 31307 "1 219V,

*$10113 pJepue)s 3snqos sasn 60|y

*}03f04d UoIRUIISIP BY) 0} UleIIad SI|gRIIRA [9AS]-9POU ||y

"PaJ91UdI-URdW DI SI|qeLIeA ||
L0O ovq*** 10 ovn_** ‘So ova*

210N

JAVAS {7 d JAVA i d 00€°'L99'99L 005°5€€'zee 00€°5€T'STT D Ul ey
85€'590'L— 859€'990'L— 0€9°'LTE'Eg— 008'T9L'LLL— 009'vL9'cLL— pooyiay17 bo
$599'6€C'y $99'6€T'Y $599'6€C'y $99'6€T'Y 599'6€T'y suoneAlasqo
(00000°0) (9L0°0) (SLo°0) (€L0°0) (800°0)

L000'0 easLLV6— x99~ 5xC08'S— 20095~ 1uelsuo)
(€200) (600°0) (600°0)

6cie 44,8880 4 8E6°0 s103nquu0)) 1d3f0ud
(go0°0) (900°0) (900°0)

LST'L wxaVTTO xa7OTO 1AV 133f0ud
(900°0) (900°0) (900°0)

zo0o'L 200°0 600°0 9215 133f0ud
(£zor0) (zL0°0) (600°0)

So€T s IEBO s 9540 aby 103foid
(209°0) (6£0°0) (€L£0°0) (€90°0)

¥65L s LTOT 5 090°C xs0OCT Aejiwis uondudsag
(620°0) (gLo'0) (£L0°0) (9L0°0)

STo'L 3870 724 15289970 AJejiwig asuadi
(€9€°6) (0SS°0) (LgT0) (s6L°0) (zgLo)

LLO°LL sV EST 5s000°€ 744 s JELS asnay Xogauym
(8eLs) (9£1°0) (9oL°0) (680°0) (£80r0)

€Yoy LA T4 4 wenlVEY A3 4 asnay xogyde|g
S

PPO (t) © @ (v
o1s160j
SJU3A3 2401 o1s1boj

(Kreuiq) uonerjyyeo)

:3|qblibA Juapuadag

90

Discussion

This thesis was motivated by two specific gaps in the literature. First, the extant body ofliterature
on knowledge perspective has predominantly examined the effect of social capital on the creation
of intellectual capital, with limited attention to the reverse effect of the development of the stock of
intellectual capital on social capital. Second, the large majority of studies on knowledge networks
have focused on formal organizations. To the best of my knowledge, no theory-driven study has yet
looked into the antecedents and the outcomes of knowledge reuse in open innovation communities.

In addressing these gaps, I examined the interplay between the mobility of developers across
projects, or project-developer coaffiliation, and knowledge reuse practices of projects in the Ruby
community. The results are generally supportive of the hypotheses. I discuss the findings of the
study further in the following section. The findings addressing the first gap have been organized
under the section “An Interactive View of Knowledge in Networks” Those addressing the second
gap are presented under the section “Communities as Spaces for Knowledge Collaboration”. Finally,
in the section entitled “Communities as Adaptive Networks”, I seek to link the findings to another

body of research that has recently shown interest in the qualities of social networks.

An Interactive View of Knowledge in Networks

Since the seminal work by Jaffe et al. (1993), researchers have used patent data to track knowl-
edge flows and study how they are affected by social and geographical distance. Two sorts of relation-
ship between social ties and knowledge reuse can be envisaged: (1) Existing social ties may facilitate
subsequent reuse of the knowledge spawned across those specific ties, as compared to the otherwise
readily available knowledge stocks; (2) On the other hand, reuse of knowledge artefacts originated
elsewhere may signal the potential or prepare the context for mutually beneficial social ties, and
eventually lead to direct contact between originating and reusing entities..

The extant theories lead us to expect to observe a co-evolutionary relationship between social
ties and knowledge reuse whereby each is sustained by the other. Nahapiet and Ghoshal (1998), for

instance, recognize that intellectual capital may as well facilitate the creation of social capital, and that

91

the evolution of these two forms of capital may lead to organizational advantage, notably facilitating
the creation of economic capital. Recent simulations have also demonstrated the possibility that
the interactions between knowledge exchange and social exchange follow co-evolutionary dynamics
(Luo, Du, Liu, Xuan, & Wang, 2015). Yet, the vast majority of the extant literature on knowledge
networks has given primacy to social ties, designating them as one of the various determinants of
knowledge reuse and recombination (Phelps et al., 2012).

This thesis brings strong evidence that, at least in a context where the reuse possibilities are
not curtailed by restrictive intellectual property terms, there is a two-sided relationship between
the social network of collaboration and the network of knowledge reuse. The effects persist after
controlling for several important variables, including one marking the similarity of licenses. This
suggests a dialectical relationship between the two forms of capital, a virtuous generative cycle in
which social capital and intellectual capital feed into each other. The findings associate the relational
facet of social capital with new possibilities for creation of intellectual capital through reuse, as well
as establishing reuse of intellectual capital as a factor affecting subsequent creation of social capital.

The results also include evidence showing that compatibility in the terms of licenses is a signifi-
cant predictor of reuse — that is, restrictive measures in intellectual property protection that may lead
to incompatibilities in terms of reuse bear a negative effect on reuse. This corroborates the findings
of the recent empirical research on copyright restrictions (Nagaraj, 2017). The results also show that,
apart from restricting reuse, differences in licensing terms compartmentalize social spheres along
legal fault lines and weaken collaboration ties in-between spheres corroborating previous findings
by (J. Singh, 2005).

It is a well-established fact and an assumption of many sociological and economic theories
that better information circulation leads to the emergence of the trust needed for collaborative
activities (Fisman & Khanna, 1999). What the combination of the results above additionally shows
is that barriers to knowledge transfer can affect collaboration through two different mechanisms:
(1) Directly, and through the carry-over effect identified by J. Singh (2005), given that individuals

tend to attach themselves to social and organizational regimes they already know about; (2) Indirectly,

92

and by reducing the chances of knowledge reuse.

Another implication of these findings is that restrictive intellectual property protection terms
can potentially limit or outright hinder the generative cycle of interaction between the two forms of
capital. The knowledge perspective has epitomized knowledge as the most important and strategic
factor of production (Brown & Duguid, 2001; Nahapiet & Ghoshal, 1998; Nonaka, 1994; Spender,
1996). Any social system interested in its own welfare must be interested in promoting knowledge
creation and knowledge collaboration processes. Thus, it is safe to assume that a social system would
want to enhance the generative interaction between social capital and intellectual capital, and allow
the mutual reinforcement mechanism run its course on its own inertia. The role of intellectual
property protection regimes is, therefore, to regulate and balance the conversion rate between the
two types of capital when needed — for instance in case of excess reuse as compared to the degree
of contribution. This reopens an old debate about the origins of intellectual property protection by
raising questions about the restrictions imposed by these regimes.

Specific to the context of software development is the possibility of measuring reuse in two
distinct ways, representing shallow and deep knowledge reuse. The two measures of knowledge reuse
used in this thesis were initially included as much for theoretical as redundancy reasons. While both
measures broadly point towards the same concept, they measure slightly different reuse behaviours
that by extension may have partially different antecedents and outcomes. The difference in the size
of the effects of coaffiliation on the two types of reuse testifies the importance of relying on more
than one measure of knowledge reuse in research.

For instance, one minor but interesting finding of this study is that the above conversion rate is
significantly different for the two types of reuse. Strong collaboration ties in the form of developer
coaffiliation across projects were found to be more strongly related to whitebox code reuse, which
constitutes a deeper integration of code and requires a better mastery of the reuse target. The results
partially mirror the previous findings of the literature on knowledge networks (e.g., Hansen, 1999).
Yielding a similar result as the previous studies validates once more the comparability of the concepts

across contexts and also credibility to the chosen proxy measures (i.e whitebox and blackbox code

93

reuse).

Conversely, the results also suggest that blackbox reuse is more likely to lead to future social ties,
as it effectively entangles the future development of the reuser and the reused. In other words, the
shallower type of knowledge reuse more significantly drives the collaborative ties between projects.
The dual nature of code, harbouring both functionality and expression, is of note here. The reusers
may be primarily motivated by the functionality of the reused code, while they graduate as potential
collaborators as they deepen their understanding of the reused code to the point of contributing to
it. The generative cycle of reuse and collaboration, thus, would not be as readily attainable without

the possibility of shallow reuse.

Communities as Spaces for Knowledge Collaboration

A second objective of this thesis was to shed light on the knowledge collaboration and reuse
practices in open innovation communities. There is no shortage of editorials in research outlets call-
ing for the study of this new organizational fabric, including the knowledge flows and the dynamics
of collaboration as they occur in this context (Faraj et al., 2011; Faraj et al., 2016; Zammuto, Griffith,
Majchrzak, Dougherty, & Faraj, 2007). Open intellectual property regime, communal normative
control, and the tendency to self-assign tasks and organically assemble with related others have been
pointed out as factors that can potentially shape the way knowledge collaboration unfolds in the
communities (Benkler, 2002; Faraj et al., 2016; Lerner & Tirole, 2002).

In response to those calls, one set of this study’s hypotheses sought to confirm in the community
context some well-known patterns of reuse and collaboration that the previous studies in knowledge
networks have shown to hold in or in-between formal organizations. Another set of hypotheses
tested new and potentially context-specific propositions.

The first finding of this thesis with regard to the reuse practices in the communities points to a
similarity with the reuse practices previously studied in other contexts. Social ties have often been
characterized as conduits for knowledge, minimizing the frictions and the costs associated with

knowledge acquisition and the subsequent reuse. This indicates that the localization of knowledge,

94

the condition in which knowledge remains constrained by social distance and embedded within
social networks, continues to hold in communities.

Open innovation communities, however, operate based on open access principles and do not
impose explicit charges for knowledge transfer. The localization of knowledge in open communities,
thus, occurs despite the absence of the explicit knowledge acquisition and reuse costs. This can be
explained by the fact that only a part of the reuse costs are explicit and expressed in monetary terms,
while many implicit search and processing costs associated with knowledge acquisition and reuse
remain in place in open contexts. Search costs may even be exacerbated in an open context where
content generation and diffusion outpace the community’s capacity to structure and quality-control
the content, leading to a sustainable state of information overload. Therefore, relational social capital
remains an important factor for mitigating such costs.

The results also show that the effect of social ties on reuse is significant, over and above the effect
of license-related restrictions. In other terms, there are factors beyond context-related restrictions
that lead to localization of knowledge. For all the freedom of action that the open licenses provide to
the potential reusers, they don’t seem to completely detach the invisible string between the creators
and their work, nor do they undermine the centrality of the creators in the reuse process. Creators,
as well as their close ties in the network of collaboration, remain the ones who resort the most to the
reuse of the created knowledge artefacts. That is testimony to the laboriousness of the knowledge
transfer and reuse process even in absence of explicit barriers, downplaying the importance of legal
mechanisms in protecting intellectual capital.

What sets the social conditions of reuse in open innovation communities apart, I argue, is the
way reuse and collaboration processes reciprocate and feed into each other in a manner that may
not be readily possible in other contexts. That is, in this context, not only knowledge networks
are socially embedded, but the social networks are as well structured by the network of knowledge
reuse. This is a possibility hinted at in simulation studies of knowledge networks (Luo et al., 2015),
pending demonstration in empirical research. The evidence provided in this thesis is clear. It hints

at a generative cycle and an interactive relationship between social and intellectual capital in open

95

innovation communities, potentially generating the drive towards cumulative innovation. The find-
ings demonstrate that, in open innovation communities, not only those who reuse contribute, but
also those who contribute reuse.

In his seminal work on user innovation, von Hippel (1994) suggests that the users are best
placed to innovate as their knowledge of their problems is situated and sticky, and thus costly to
transfer. This is the type of knowledge that Garud (1997) has called know-what, or the knowledge
of what is worth pursuing, often an exchange token between the creators and the users. On the
same line, Benkler (2002) has argued that markets and hierarchies suffer from a type of information
loss in decision processes that the open innovation communities mitigate by allowing individuals
to self-select into tasks based on their own understanding of their expertise and the impact of their
participation.

The main observation of this study, that there is a narrow alignment of the acts of collective
creation and reuse, pushes that line of argument one step further towards an empirical validation
of the processes underlying this view. Such an alignment has the potential to minimize the cost of
knowledge transfer between the creators and the reusers. Given the high degree of permeability
of the boundaries of open projects as compared to the other varieties of collaborative structures
(e.g., formal organizations), the reciprocal relationship between collaboration and reuse may be a

characteristic feature of open communities, or at least one that is primarily visible in this context.

Communities as Adaptive Networks

Knowledge networks can ultimately be characterized as social networks, as there cannot be
any knowledge network — or any knowledge for that matter — in the absence of human actors.
But knowledge networks and collaboration networks each represent the coordinates, as well as the
movements, of a different type of socially-acquired resource. This study makes a genuine and original
contribution to the literature on knowledge networks through its main outcome, demonstrating that
the relationship between two layers of a multiplex social network (i.e., collaboration and reuse),

as well as the relationship between the stock of capital that each carries, are reciprocal and not

96

unidirectional. Yet, this finding can not be considered unexpected or surprising.

Several other studies have demonstrated the interactive nature of the relationships between
different layers of multiplex social networks (e.g., Gould, 1991; Lazega, 2001; Padgett & Ansell,
1993). Putnam (1993) observes that social capital tends to be self-reinforcing, cumulative, and often
transferable from one context to the other. I argue that the study of the relationship between the
network of social relations and the network of knowledge exchange or reuse can immensely benefit
from pursuing an interactive view. The advantage of adopting the interactive view as the baseline is
by no means merely methodological, but rather one that gives access to novel ways of theorizing the
phenomenon.

The self-organizing nature of online communities, their dynamic resource allocation and their
generative responses to innate tensions are sources of questions for the scholars (Faraj et al., 2011).
One plausible explanation for the organizational continuity and the social sustenance of community
forms is the deliberate interventions of human agency in the form of organized action, governance
practices and leadership (e.g., as shown in Faraj et al., 2015; O’Mahony & Ferraro, 2007). The out-
comes of this study point at a second plausible path for explaining the almost serendipitous success of
the online communities in allocation of resources and organization of activities, through an adaptive
framework.

Adaptive or co-evolutionary networks are networks that exhibit a mutual interaction between
their local state dynamics and their network-level topological changes (Gross & Blasius, 2008), often
leading to a highly robust global self-organization (Bornholdt & Réhl, 2003; Bornholdt & Rohlf,
2000). Viewing social networks as adaptive networks is a relatively new research direction in social
network studies. The findings of this thesis provide anecdotal evidence about the adaptive nature
of social networks in open innovation communities. Empirically demonstrating the reciprocal re-
lationship between the network of knowledge reuse and the social network of collaboration is a
modest first step towards establishing online communities as adaptive social networks. For instance,
different conversion rates between these two networks would potentially lead to different global or-

ganizations in the online community. Slowing down one of the two sides of this mutual relationship

97

would break the generative cycle between them by under-supplying one resource or the other. Such
situations would come across as what has been called ebb and flow of resources (Faraj et al., 2011) in

communities, when observed from a bird’s eye view.

98

Implications

This thesis started with the promise of studying knowledge collaboration and reuse in open
innovation communities, and used a variety of methods imported from computer science and polit-
ical science to test two groups of hypotheses about the relationship between networks of reuse and
collaboration. The results demonstrated strong support for all of the core hypotheses and most of the
peripheral hypotheses, while three of them were only weekly supported. The findings establish that
the relationship between knowledge reuse and collaboration is reciprocal — that is, the reuse ties
between projects are highly likely to bring about new collaboration ties in form of developer-project
coaffiliations, and the existence of project coaffiliation ties is likely to lead to reuse ties between the
focal projects.

In the following sections I first describe the contributions and the limitations of this study. I
proceed to briefly discuss the generalizability of the findings. Finally, I outline some possible future

directions in this line of research.

Contributions

Methodological Contributions. This study made novel use of several measures and analysis
tools, what can be considered a methodological contribution to the field.

The extant research on knowledge transfer and reuse has mainly focused on self-reported mea-
sures (e.g., advice networks), as well as patent citation data, to trace knowledge flows. Self-reported
data are by nature prone to bias, and the patent citation data has often been criticized for its flaws
(Alcacer & Gittelman, 2006).The limitations of these measures, specially the limitations in their
context of application, show the importance of adding new measures for knowledge reuse to the
toolbox.

The research on knowledge exchange and diffusion in online communities has often used
logs of the email conversations, as well as newsgroup and forum posts, as evidence for knowledge
flows. While communication records constitute valid measures for knowledge exchange, they are

not particularly adapted for measuring reuse.

99

The use of whitebox and blackbox code reuse indicators as measures of knowledge reuse adopted
in this study constitutes a first successful implementation of its kind. The blackbox reuse measure re-
lies on function call information from each software project’s metadata. The whitebox reuse measure,
on the other hand, was calculated using a purpose-built clone detection tool based on the SpamSum
hashing algorithm. The tool is composed of more than ten thousand lines of code and will be made
public in the future.

The study also makes use of the commit history of software projects to identify project affiliations
of the community members. This is a more accurate measure than the often-used project metadata,
asitindicates the periods in which a developer has been truly active on a project, rather than counting
on the veracity of official membership records.

There are two main advantages associated with the above measures. First, they make possible
the study of knowledge reuse in software projects in general, and in online communities focused on
software development in particular. Second, they all refer to the work outcomes and the real work-
related activities of the actors, rather than relying on self-reported measures or communication
records. This is ideal because knowledge reuse is best measured in the act of reusing, not in what
leads up to it.

Theoretical Contributions. To the best of my knowledge, no study has yet tried to jointly
examine social networks and knowledge networks in the online community context. While various
studies have covered one or the other, this is likely the first study to consider both at the same time.
Moreover, and regardless of the context, no study has been able to establish the reciprocal effect of
the two networks on each other. Considered separately, most of the evidence supports the effect
of social networks on knowledge networks; only a few of studies have tried to demonstrate the
effect of the knowledge networks on social networks, and none has focused on the context of online
communities.

The main theoretical contribution of this study is to show the co-evolutionary nature of the
relationship between intellectual capital and relational social capital in open innovation communities.

More precisely, it demonstrated the reciprocal effect of collaboration ties and knowledge reuse ties on

100

each other within the context of open innovation communities. This can be considered a contribution
both to the literature on knowledge networks and the literature on open innovation communities.
Moreover, this study contributes to the literature on open innovation communities by showing
the differential effect of the collaboration ties on the two types of reuse and the differential effect
of the two types of reuse on the collaboration ties. Additionally, the study shows that the software
license differences between two focal projects can directly and negatively affect the likelihood of
collaboration and knowledge reuse between projects. These findings shed light on the social and

work processes under the community forms.

Limitations

The main limitation of this study is that it is uniquely focused on testing and validating the
probable outcomes of the mechanisms it investigates, but not the mechanisms per se.

The other limitations of this study are of methodological order:

1. The current license similarity measure is simply a boolean flag indicating whether the license
and the license group used by a project in a dyad is the same as that of the other project in the
dyad. It would be more accurate to construct this measure by comparing the actual provisions

of the licenses.

2. Despite the sizeable dataset used in this study, the networks used to generate the network-
based measures remain extremely sparse. This reduces the stability of the regression analyses
even when using the appropriate penalized models, and therefore increases the size of the
standard errors, preventing a refined analysis of the coeflicient estimates and the effect sizes.
This alone explains why the results from Hypotheses 2b are not significant enough. It would
be desirable to either find larger samples, or to devise methods that prevent the loss of the

incomplete data records, such as triangulating the data from different sources.

3. Finally, for lack of a better choice, a simple multinomial logic was used to test Hs. However, in

such a sparse dataset a penalized multinomial logistic model or a zero-inflated multinomial

101

model would be the method of choice. Although there have been some efforts to implement
such models (e.g., B. E. Bagozzi, 2015), by the time of this writing there was no publicly available

implementation to use.
Future Research

One important factor that has contributed to the long-held one-sided view of the interplay be-
tween social networks and knowledge networks is the availability of data. Many studies of knowledge
networks have relied on sampling and data gathering based on their dependent variable (Rosenkopf
& Almeida, 2003, e.g., all patent-holding firms in the semi-conductor industry founded in a ten-year
period). Therefore, switching the dependent variable would essentially cost them a second round of
data gathering. As such, the reverse relationship between knowledge networks and social networks
remains largely unexplored.

One way to remove the necessity for re-sampling based on research questions is to obtain a
whole-network sample. A whole-network sample consists of complete network and node informa-
tion on a reasonably self-contained bounded population. Despite obvious merits of a whole-network
sampling strategy, including the possibility to distinguish between local versus whole-network influ-
ences, relatively few studies of knowledge networks have relied on whole-network samples (Phelps
et al,, 2012).

In order to better tackle the type of question posed in this study, the future research on knowl-
edge networks needs to move towards whole-network samples, specially given the wide availability
of digital trace data. This is the only way the main finding of the current study can be replicated in
other contexts. Having evidence from more than one context will allow for comparisons between
the effect sizes across contexts, with important policy repercussions.

For all the cautionary tales about the perils of collective action and tragedy of the commons
occurring in the community forms, it does not seem near-enough attention has been paid to the
contrary issues of information loss and the tragedy of anti-commons in markets and hierarchical
organizations (Kogut & Metiu, 2001). More research is needed to find out whether the same genera-

tive cycle between knowledge reuse and collaboration occurs in contexts other than communities,

102

and under which conditions. But at this stage one can already conclude that the contexts in which
such interactive social processes can not take on, not only impede the innovation processes, but also
possibly hinder effective collaboration.

Finally, the literature on online communities and open innovation communities, on the other
hand, needs to consider more carefully the possibility of researching adaptive social processes in the
context of online communities. This study only found anecdotal evidence of such processes at work.
Deeper investigation of the adaptive processes will not only require whole-network samples, but also
multiplex network data. Special attention must be paid to the relations between the different layers
and the occurrence of certain local dynamics in conjunction with global equilibriums to unveil the

adaptive processes.

103

Bibliography

About The Licenses - Creative Commons. (2013). Version 4. Creative Commons. Retrieved from
https://creativecommons.org/licenses

Abrahamson, E. & Rosenkopf, L. (1997). Social network effects on the extent of innovation diffusion:
A computer simulation. Organization Science, 8(3), 289-309.

Acedo, E. J., Barroso, C., Casanueva, C., & Galan, J. L. (2006). Co-Authorship in management and
organizational studies: An empirical and network analysis*. Journal of Management Studies,
43(5), 957-983.

Adler, P. S. & Kwon, S.-W. (2002). Social capital: Prospects for a new concept. Academy of Manage-
ment Review, 27(1), 17—-40.

Adler, P. S., Kwon, S.-W., & Heckscher, C. (2008). Perspective—Professional work: The emergence
of collaborative community. Organization Science, 19(2), 359-376.

Akgiin, A. E., Byrne, J., Keskin, H., Lynn, G. S., & Imamoglu, S. Z. (2005). Knowledge networks
in new product development projects: A transactive memory perspective. Information &
Management, 42(8), 1105-1120.

Albert, R. & Barabasi, A.-L. (2001). Statistical mechanics of complex networks. Reviews of Modern
Physics, 74(1), 47-97.

Alcacer, J. & Gittelman, M. (2006). Patent Citations as a Measure of Knowledge Flows: The Influence
of Examiner Citations. The Review of Economics and Statistics, 88(4), 774-779.

Allman, E. (2012). Managing technical debt. Communications of the ACM, 55(5), 50-55.

Almeida, P. & Kogut, B. (1999). Localization of knowledge and the mobility of engineers in regional
networks. Management Science, 45(7), 905-917.

Aral, S. (2016). The future of weak ties. American Journal of Sociology, 121(6), 1931-1939.

Aral, S. & Van Alstyne, M. (2011). The Diversity-Bandwidth trade-off. American Journal of Sociology,
117(1), 90-171.

Argote, L. & Ingram, P. (2000). Knowledge transfer: A basis for competitive advantage in firms.
Organizational behavior and human decision processes, 82(1), 150-169.

Argyris, C. (1976). Single-Loop and Double-Loop models in research on decision making. Adminis-
trative Science Quarterly, 21(3), 363-375.

Arrow, K. J. (1962). Economic welfare and the allocation of resources for invention. In The rate and
direction of inventive activity: Economic and social factors (pp. 609-626). Princeton University
Press.

Atkinson, A. B. (1970). On the Measurement of Inequality. Journal of economic theory, 2(3), 244-263.

Austin, J. R. (2003). Transactive memory in organizational groups: The effects of content, consensus,
specialization, and accuracy on group performance. The Journal of Applied Psychology, 88(5),
866-878.

104

https://creativecommons.org/licenses

Bagozzi, B. E. (2015). The baseline-inflated multinomial logit model for international relations
research. Conflict Management and Peace Science, 33(2), 174-197.

Bagozzi, R. P. & Dholakia, U. M. (2006). Open source software user communities: A study of
participation in linux user groups. Management Science, 52(7), 1099-1115.

Baldwin, C. Y. & Clark, K. B. (2006). The architecture of participation: Does code architecture
mitigate free riding in the open source development model? Management Science, 52(7), 1116-
1127.

Barabasi, A.-L. & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439),
509-512.

Barabasi, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the
social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications,
311(3-4), 590-614.

Baxter, I. D., Yahin, A., Moura, L., SantAnna, M., & Bier, L. (1998). Clone detection using abstract
syntax trees. In Proceedings of International Conference on Software Maintenance (pp. 368-
377).

Bayer, R. & McCreight, E. M. (1972). Organization and maintenance of large ordered indexes. Acta
Informatica, 1(3), 173-189.

Bechky, B. A. (2003). Sharing meaning across occupational communities: The transformation of
understanding on a production floor. Organization Science, 14(3), 312-330.

Benbya, H. & Belbaly, N. (2010). Understanding developers’ motives in open source projects: A
multi-theoretical framework. Communications of the AIS, 2010(27), 586—-610.

Benkler, Y. (2002). Coase’s Penguin, or, Linux and The Nature of the Firm. The Yale Law Journal,
112(3), 369-446.

Bernstein v. US Dept. of Justice. (1999). Court of Appeals, 9th Circuit.

Blau, P. M. (1964). Exchange and power in social life. Wiley.

Boisot, M. H. (1998). Knowledge assets: Securing competitive advantage in the information economy.
Oxford University Press.

Boissevain, J. (1974). Friends of friends: Networks, manipulators and coalitions. Basil Blackwell.

Bonaccorsi, A., Giannangeli, S., & Rossi, C. (2006). Entry strategies under competing standards:
Hybrid business models in the open source software industry. Management Science, 52(7),
1085-1098.

Borgatti, S. P. & Halgin, D. S. (2011). Analyzing affiliation networks. In J. Scott & P. J. Carrington
(Eds.), The SAGE handbook of social network analysis (pp. 417-433). SAGE Publications.

Bornholdt, S. & Rohl, T. (2003). Self-organized critical neural networks. Physical Review E, 67(6),
066118.

105

Bornholdt, S. & Rohlf, T. (2000). Topological Evolution of Dynamical Networks: Global Criticality
from Local Dynamics. Physical Review Letters, 84(26), 6114-6117.

Boudreau, K. J. (2010). Open platform strategies and innovation: Granting access vs. devolving
control. Management Science, 56(10), 1849-1872.

Boudreau, K. J. (2011). Let a thousand flowers bloom? an early look at large numbers of software
app developers and patterns of innovation. Organization Science.

Bourdieu, P. (1986a). The Forms of Capital. In J. G. Richardson (Ed.), Handbook of Theory and
Research for the Sociology of Education (Chap. 9). Greenwood Press.

Bourdieu, P. (1986b). The forms of capital. In J. G. Richardson (Ed.), Handbook of theory and
research for the sociology of education (pp. 241-258). Greenwood Press.

Bouty, I. (2000). Interpersonal and interaction influences on informal resource exchanges between
R&D researchers across organizational boundaries. Academy of Management Journal, 43, 50—
65.

Bradford, R. B. (2008). An Empirical Study of Required Dimensionality for Large-scale Latent
Semantic Indexing Applications. In Proceedings of the 17th ACM Conference on Information
and Knowledge Management (pp. 153-162).

Bresman, H. (2010). External learning activities and team performance: A multimethod field study.
Organization Science, 21(1), 81-96.

Brown, J. S. & Duguid, P. (1991). Organizational learning and Communities-of-Practice: Toward a
unified view of working, learning, and innovation. Organization Science, 2(1), 40-57.

Brown, J. S. & Duguid, P. (2000). The social life of information. Harvard Business School Press.

Brown, J. S. & Duguid, P. (2001). Knowledge and organization: A Social-Practice perspective.
Organization Science, 12(2), 198-213.

Burt, R. S. (1987). Social contagion and innovation: Cohesion versus structural equivalence. Ameri-
can Journal of Sociology, 92(6), 1287-1335.

Burt, R. S. (1992). Structural holes: The social structure of competition. Harvard University Press.

Burt, R. S. (2000). The network structure of social capital. Research in Organizational Behavior, 22,
345-423.

Burt, R. S. (2001). Structural Holes vs. Network Closure as Social Capital. In Nan Lin, Karen S. Cook,
Ronald S. Burt (Ed.), Social Capital: Theory and Research (pp. 31-55). Transaction Publishers.

Butler, B. S. (2001). Membership size, communication activity, and sustainability: A Resource-Based
model of online social structures. Information Systems Research, 12(4), 346-362.

Cappelli, P. & Sherer, P. D. (1991). The missing role of context in OB - the need for a meso-level
approach. In B. M. Staw & L. L. Cummings (Eds.), Research in organizational behavior (Vol. 13,
pp- 55-110). JAI Press.

106

Carlile, P. R. (2004). Transferring, translating, and transforming: An integrative framework for
managing knowledge across boundaries. Organization Science, 15(5), 555-568.

Centola, D. & Macy, M. (2007). Complex contagions and the weakness of long ties. American
Journal of Sociology, 113, 702-734.

Chesbrough, H. W. (2006). Open innovation: The new imperative for creating and profiting from
technology. Harvard Business School Press.

Chesbrough, H. W. & Crowther, A. K. (2006). Beyond high tech: Early adopters of open innovation
in other industries. R&»D Management, 36(3), 229-236.

Choirat, C., Gandrud, C., Honaker, J., Imai, K., King, G., & Lau, O. (2017). Rare Events Logistic.
Accessed: 2017-8-3. Retrieved from http://docs.zeligproject.org/articles/zelig_relogit.html

Cohen, W. M. & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and
innovation. Administrative Science Quarterly, 35(1), 128-152.

Coleman, J. S. (1988). Social capital in the creation of human capital. American Journal of Sociology,
94, 95-120.

Coleman, J. S., Katz, E., & Menzel, H. (1957). The diffusion of an innovation among physicians.
Sociometry, 20(4), 253—270.

Constant, D., Sproull, L. S., & Kiesler, S. (1996). The kindness of strangers: The usefulness of
electronic weak ties for technical advice. Organization Science, 7(2), 119-135.

Cross, R., Sproull, L. S., Constant, D., & Kiesler, S. (2004). More Than an Answer: Information
Relationships for Actionable Knowledge. Organization Science, 15(4), 446—-462.

Dahlander, L. & O’Mahony, S. C. (2011). Progressing to the center: Coordinating project work.
Organization Science, 22(4), 961-979.

Das, T. K. & Teng, B.-S. (1998). Between Trust and Control: Developing Confidence in Partner
Cooperation in Alliances. Academy of Management Review, 23(3), 491-512.

Dasgupta, P. & David, P. M. (1994). Toward a new economics of science. Research Policy, 23(5),
487-521.

Deerwester, S., Scott, D., Dumais, S. T., Furnas, G. W,, Landauer, T. K., & Harshman, R. (1990).
Indexing by latent semantic analysis. Journal of The American Society For Information Science,
41(6), 391-407.

Demil, B. & Lecocq, X. (2006). Neither market nor hierarchy nor network: The emergence of bazaar
governance. Organization Studies, 27(10), 1447-1466.

Drucker, P. F. (1969). The age of discontinuity: Guidelines to our changing economy. Harper & Row.

Economides, N. & Katsamakas, E. (2006). Two-Sided competition of proprietary vs. open source

technology platforms and the implications for the software industry. Management Science,

52(7), 1057-1071.

107

http://docs.zeligproject.org/articles/zelig_relogit.html

Evangelopoulos, N., Zhang, X., & Prybutok, V. R. (2010). Latent semantic analysis: Five method-
ological recommendations. European Journal of Information Systems, 21(1), 70-86.

Eveland, J. D. & Bikson, T. K. (1987). Evolving electronic communication networks: An empirical
assessment. Office Technology and People, 3(2), 103-128.

Fairtlough, G. (1994). Creative compartments: A design for future organization. Adamantine Press.

Faraj, S. & Azad, B. (2012). The materiality of technology: An affordance perspective. In P. M.
Leonardi, B. A. Nardi, & J. Kallinikos (Eds.), Materiality and organizing (pp. 237-258). Oxford
University Press.

Faraj, S., Jarvenpaa, S. L., & Majchrzak, A. (2011). Knowledge collaboration in online communities.
Organization Science, 22(5), 1224-1239.

Faraj, S. & Johnson, S. L. (2011). Network exchange patterns in online communities. Organization
Science, 22(6), 1464-1480.

Faraj, S., Kudaravalli, S., & Wasko, M. M. (2015). Leading collaboration in online communities. MIS
Quarterly, 39(2), 393—-412.

Faraj, S., von Krogh, G., Monteiro, E., & Lakhani, K. R. (2016). Online Community as Space for
Knowledge Flows. Information Systems Research.

Feldman, K. A. & Newcomb, T. M. (1969). The impact of college on students. Transaction Publishers.

Finholt, T. A., Sproull, L., & Kiesler, S. (2002). Outsiders on the Inside: Sharing Know-How Across
Space and Time. In P. J. Hinds & S. Kiesler (Eds.), Distributed Work (Chap. 14, pp. 335-356).
MIT Press.

Finholt, T. & Sproull, L. S. (1990). Electronic groups at work. Organization Science, 1(1), 41-64.

Fisman, R. & Khanna, T. (1999). Is trust a historical residue? Information flows and trust levels.
Journal of economic behavior & organization, 38(1), 79-92.

Flath, C. M., Friesike, S., Wirth, M., & Thiesse, E. (2017). Copy, transform, combine: exploring the
remix as a form of innovation. Journal of Information Technology Impact, 1-20.

Fleming, L. (2001). Recombinant uncertainty in technological search. Management Science, 47(1),
117-132.

Fleming, L. & Waguespack, D. M. (2007). Brokerage, boundary spanning, and leadership in open
innovation communities. Organization Science, 18(2), 165-180.

Ford, P. (2015). What is code? Bloomberg Businessweek. Retrieved March 15, 2016, from http:
/Iwww.bloomberg.com/graphics/2015-paul-ford-what-is-code

Fosfuri, A., Giarratana, M. S., & Luzzi, A. (2008). The penguin has entered the building: The
commercialization of open source software products. Organization Science, 19(2), 292-305.

Fowler, M. & Beck, K. (1999). Refactoring: Improving the Design of Existing Code. Addison-Wesley

Professional.

108

http://www.bloomberg.com/graphics/2015-paul-ford-what-is-code
http://www.bloomberg.com/graphics/2015-paul-ford-what-is-code

Frakes, W. & Terry, C. (1996). Software reuse: Metrics and models. ACM Computing Surveys, 28(2),
415-435.

Franke, N. & Shah, S. K. (2003). How communities support innovative activities: An exploration of
assistance and sharing among end-users. Research Policy, 32(1), 157-178.

Gallini, N. & Scotchmer, S. (2002). Intellectual property: When is it the best incentive system?
In Jaffe, Adam B and Lerner, Josh and Stern, Scott (Ed.), Innovation Policy and the Economy
(Chap. 2, Vol. 2, pp. 51-78). MIT Press.

Garud, R. (1997). On the distinction between know-how, know-what, and know-why. Advances in
strategic management, 14, 81-102.

Gayoso Martinez, V., Hernandez Alvarez, F, & Herndndez Encinas, L. (2014). State of the art
in similarity preserving hashing functions. In Proceedings of the international conference on
security and management (SAM).

GNU General Public License. (2007). Version 3. Free Software Foundation. Retrieved from http:
/Iwww.gnu.org/licenses/gpl.html

Gould, R. V. (1991). Multiple Networks and Mobilization in the Paris Commune, 1871. American
Sociological Review, 56(6), 716-729.

Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360-1380.

Granovetter, M. S. (1985). Economic action and social structure: The problem of embeddedness.
American Journal of Sociology, 91(3), 481-510.

Grant, R. M. (1996). Toward a Knowledge-Based theory of the firm. Strategic Management Journal,
17,109-122.

Grewal, R,, Lilien, G. L., & Mallapragada, G. (2006). Location, location, location: How network
embeddedness affects project success in open source systems. Management Science, 52(7),
1043-1056.

Gross, T. & Blasius, B. (2008). Adaptive coevolutionary networks: A review. Journal of the Royal
Society, Interface / the Royal Society, 5(20), 259-271.

Haefliger, S., von Krogh, G., & Spaeth, S. (2008). Code reuse in open source software. Management
Science, 54(1), 180-193.

Hahn, J., Moon, J. Y., & Zhang, C. (2008). Emergence of new project teams from open source
software developer networks: Impact of prior collaboration ties. Information Systems Research,
19(3), 369-391.

Hansen, M. T. (1999). The Search-Transfer problem: The role of weak ties in sharing knowledge
across organization subunits. Administrative Science Quarterly, 44(1), 82—111.

Hansen, M. T. (2002). Knowledge networks: Explaining effective knowledge sharing in multiunit

companies. Organization Science, 13(3), 232—-248.

109

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

Hansen, M. T., Mors, M. L., & Lovas, B. (2005). Knowledge sharing in organizations: Multiple
networks, multiple phases. Academy of Management Journal, 48(5), 776-793.

Hars, A. & Ou, S. (2002). Working for free? motivations for participating in Open-Source projects.
International Journal of Electronic Commerce, 6(3), 25-39.

Heinemann, L., Deissenboeck, E., Gleirscher, M., Hummel, B., & Irlbeck, M. (2011). On the extent
and nature of software reuse in open source java projects. In Top productivity through software
reuse (pp. 207-222). Springer.

Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers in open source
projects: An internet-based survey of contributors to the linux kernel. Research Policy, 32(7),
1159-1177.

Hollingshead, A. B. (2000). Perceptions of Expertise and Transactive Memory in Work Relationships.
Group processes & intergroup relations: GPIR, 3(3), 257-267.

Hollingshead, A. B, Fulk, ., & Monge, P. (2002). Fostering Intranet Knowledge Sharing: An Integra-
tion of Transactive Memory and Public Goods Approaches. In P. . Hinds & S. Kiesler (Eds.),
Distributed Work (Chap. 14, pp. 335-356). MIT Press.

Inkpen, A. C. & Tsang, E. W. K. (2005). Social capital, networks, and knowledge transfer. Academy
of Management Review, 30(1), 146-165.

Jaffe, A. B., Trajtenberg, M., & Henderson, R. (1993). Geographic Localization of Knowledge
Spillovers as Evidenced by Patent Citations. The Quarterly Journal of Economics, 108(3), 577-
598.

Johns, G. (2006). The essential impact of context on organizational behavior. Academy of Manage-
ment Review, 31(2), 386-408.

Junger v. Daley. (2000). Court of Appeals, 6th Circuit.

Kaplan, C. (1998). Is software like a can opener or a recipe? The New York Times. Retrieved May 25,
2016, from http://www.nytimes.com/library/tech/98/07/cyber/cyberlaw/17law.html

King, G. & Zeng, L. (2001a). Explaining Rare Events in International Relations. International
organization, 55(03), 693-715.

King, G. & Zeng, L. (2001b). Logistic Regression in Rare Events Data. Political Analysis, 9(2), 137-
163.

Kitch, E. W. (1977). Nature and function of the patent system. The Journal of law & economics, 20(2),
265-290.

Kogut, B. & Metiu, A. (2001). Open-Source Software Development and Distributed Innovation.
Oxford Review of Economic Policy, 17(2), 248-264.

Kogut, B. & Zander, U. (1992). Knowledge of the Firm, Combinative Capabilities, and the Replication
of Technology. Organization Science, 3(3), 383-397.

110

http://www.nytimes.com/library/tech/98/07/cyber/cyberlaw/17law.html

Kornblum, J. (2006). Identifying almost identical files using context triggered piecewise hashing.
Digital Investigation, 3(Supplement), 91-97.

Kyriakou, H., Nickerson, J. V., & Sabnis, G. (2017). Knowledge Reuse for Customization: Metamodels
in an Open Design Community for 3D Printing. MIS Quarterly, 41(1), 315-322.

Lakhani, K. R. & von Hippel, E. (2003). How open source software works: “free” user-to-user
assistance. Research Policy, 32(6), 923-943.

Lakhani, K. R. & Wolf, R. G. (2005). Why hackers do what they do: Understanding motivation and
effort in Free/Open source software projects. In Perspectives on free and open source software
(pp. 3—22). MIT Press.

Latour, B. (1999). Pandora’s hope: Essays on the reality of science studies. Harvard University Press.

Laursen, K. & Salter, A. (2006). Open for innovation: The role of openness in explaining innovation
performance among U.K. manufacturing firms. Strategic Management Journal, 27(2), 131-150.

Lave,]. & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge
University Press.

Lazega, E. (2001). The Collegial Phenomenon: The Social Mechanisms of Cooperation Among Peers in
a Corporate Law Partnership. Oxford University Press.

Lemley, M. A. (2004). Ex-ante versus ex-post justifications for intellectual property. The University
of Chicago Law Review, 71, 129-149.

Lerner, J. & Tirole, J. (2002). Some simple economics of open source. The Journal of Industrial
Economics, 50(2), 197-234.

Lessig, L. (2001). The future of ideas: The fate of the commons in a connected world. Vintage Books.

Lessig, L. (2004). Free culture: The nature and future of creativity. Penguin.

Lessig, L. (2006). Code: Version 2.0. Self-published.

Lessig, L. (2008). Remix: Making art and commerce thrive in the hybrid economy. Penguin Press.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady, 10(8), 707-710.

Lewis, K. (2004). Knowledge and Performance in Knowledge-Worker Teams: A Longitudinal Study
of Transactive Memory Systems. Management science, 50(11), 1519-1533.

Libby, R., Trotman, K. T., & Zimmer, I. (1987). Member Variation, Recognition of Expertise, and
Group Performance. The Journal of Applied Psychology, 72(1), 81-87.

Littlepage, G. E. & Silbiger, H. (1992). Recognition of expertise in decision-making groups: Effects
of group size and participation patterns. Small Group Research, 23(3), 344-355.

Luo, S.,Du, Y, Liu, P, Xuan, Z., & Wang, Y. (2015). A study on coevolutionary dynamics of knowledge
diffusion and social network structure. Expert Systems With Applications, 42(7), 36q19-3633.

111

MacCormack, A., Rusnak, J., & Baldwin, C. Y. (2006). Exploring the structure of complex software
designs: An empirical study of open source and proprietary code. Management Science, 52(7),
1015-1030.

Mackenzie, A. (2006). Cutting code: Software and sociality. Peter Lang.

Malmberg, A. & Maskell, P. (2002). The Elusive Concept of Localization Economies: Towards a
Knowledge-Based Theory of Spatial Clustering. Environment & planning A, 34(3), 429-449.

Marsden, P. V. (2009). Recent developments in network measurement. In P. J. Carrington, J. Scott,
& S. Wasserman (Eds.), Models and methods in social network analysis (pp. 8-30). Cambridge
University Press.

Marsden, P. V. & Campbell, K. E. (1984). Measuring Tie Strength. Social forces; a scientific medium
of social study and interpretation, 63(2), 482-501.

Merton, R. K. (1968a). Social theory and social structure. Free Press.

Merton, R. K. (1968b). The matthew effect in science. Science, 159(3810), 56—63.

Misztal, B. (1996). Trust in modern society. Polity Press.

Mockus, A. (2007). Large-Scale code reuse in open source software. In First international workshop
on emerging trends in FLOSS research and development (pp. 7-7).

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of open source software devel-
opment: Apache and mozilla. ACM Transactions on Software Engineering and Methodology,
11(3), 309-346.

Moran, P. & Ghoshal, S. (1999). Markets, firms, and the process of economic development. Academy
of Management Review, 24(3), 390-412.

Mowery, D. C., Oxley, J. E., & Silverman, B. S. (1996). Strategic alliances and interfirm knowledge
transfer. Strategic Management Journal, 17(S2), 77-91.

Murray, F. & O’Mahony, S. C. (2007). Exploring the foundations of cumulative innovation: Implica-
tions for organization science. Organization Science, 18(6), 1006-1021.

Nagaraj, A. (2017). Does Copyright Affect Reuse? Evidence from Google Books and Wikipedia.
Management Science.

Nahapiet,]. & Ghoshal, S. (1998). Social capital, intellectual capital, and the organizational advantage.
Academy of Management Review, 23(2), 242—266.

Navarro, G. (2001). A Guided Tour to Approximate String Matching. ACM Computing Surveys,
33(1), 31-88.

Nelson, R. R. & Winter, S. G. (1982). An evolutionary theory of economic change. Belknap Press of
Harvard University Press.

Newcomb, T. M. (1961). The acquaintance process. Holt, Rinehart & Winston.

Nickerson, J. A. & Zenger, T. R. (2004). A Knowledge-Based theory of the Firm—The Problem-

Solving perspective. Organization Science, 15(6), 617-632.

112

Nonaka, I. (1994). A dynamic theory of organizational knowledge creation. Organization Science,
5(1),14-37.

O’Mahony, S. C. (2003). Guarding the commons: How community managed software projects
protect their work. Research Policy, 32(7), 1179-1198.

O’Mahony, S. C. & Ferraro, F. (2007). The emergence of governance in an open source community.
Academy of Management Journal, 50(5), 1079-1106.

Ombredanne, P, Yang, J., Balusa, R., et al. (2017). ScanCode toolkit. Retrieved from https://github.
com/nexB/scancode-toolkit

Orlikowski, W. J. (2002). Knowing in practice: Enacting a collective capability in distributed orga-
nizing. Organization Science, 13(3), 249-273.

Padgett,]. F. & Ansell, C. K. (1993). Robust Action and the Rise of the Medici, 1400-1434. American
Journal of Sociology, 98(6), 1259-1319.

Peddibhotla, N. B. & Subramani, M. R. (2007). Contributing to public document repositories: A
critical mass theory perspective. Organization Studies, 28(3), 327-346.

Phelps, C., Heidl, R., & Wadhwa, A. (2012). Knowledge, networks, and knowledge networks: A
review and research agenda. Journal of Management, 38(4), 1115-1166.

Phene, A. & Tallman, S. (2014). Knowledge spillovers and alliance formation. Journal of Management
Studies, 51(7), 1058-1090.

Pickering,]. M. & King, J. L. (1995). Hardwiring weak ties: Interorganizational Computer-Mediated
communication, occupational communities, and organizational change. Organization Science,
6(4), 479-486.

Polanyi, M. (1967). The tacit dimension. London, Routledge & K. Paul.

Prieto-Diaz, R. (1993). Status report: Software reusability. IEEE Software, 10(3), 61-66.

Putnam, R. D. (1993). The prosperous community: Social capital and public life. The American
Prospect, 13(13), 35-42.

Putnam, R. D. (2001). Bowling alone: The collapse and revival of american community. Simon and
Schuster.

Ravichandran, T. & Rothenberger, M. A. (2003). Software reuse strategies and component markets.
Communications of The ACM, 46(8), 109-114.

Raymond, E. S. (2001). The cathedral & the bazaar: Musings on linux and open source by an accidental
revolutionary. O’Reilly Media.

Reagans, R. & McEvily, B. (2003). Network structure and knowledge transfer: The effects of cohesion
and range. Administrative Science Quarterly, 48(2), 240.

Rehtifek, R. & Sojka, P. (2010). Software Framework for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks (pp. 45-50).

Rogers, E. M. (1962). Diffusion of innovations. Free Press of Glencoe.

113

https://github.com/nexB/scancode-toolkit
https://github.com/nexB/scancode-toolkit

Rosenkopf, L. & Almeida, P. (2003). Overcoming local search through alliances and mobility.
Management Science, 49(6), 751-766.

Rosenkopf, L., Metiu, A., & George, V. P. (2001). From the bottom up? technical committee activity
and alliance formation. Administrative Science Quarterly, 46(4), 748-772.

Rosenkopf, L. & Nerkar, A. (2001). Beyond local search: Boundary-spanning, exploration, and
impact in the optical disk industry. Strategic Management Journal, 22(4), 287-306.

Rosenkopf, L. & Padula, G. (2008). Investigating the microstructure of network evolution: Alliance
formation in the mobile communications industry. Organization Science, 19(5), 669-687.

Roy, C. K., Cordy, J. R., & Koschke, R. (2009). Comparison and evaluation of code clone detection
techniques and tools: A qualitative approach. Science of Computer Programming, 74(7), 470-
495.

Schumpeter, J. A. (1934). The theory of economic development: An inquiry into profits, capital, credit,
interest, and the business cycle. Transaction publishers.

Shah, S. K. (2006). Motivation, governance, and the viability of hybrid forms in open source software
development. Management Science, 52(7), 1000-1014.

Simon, H. A. (1991). Bounded rationality and organizational learning. Organization Science, 2(1),
125-134.

Singh, J. (2005). Collaborative networks as determinants of knowledge diffusion patterns. Manage-
ment Science, 51(5), 756-770.

Singh, J. & Fleming, L. (2010). Lone inventors as sources of breakthroughs: Myth or reality?
Management Science, 56(1), 41-56.

Singh, P. V. & Phelps, C. (2013). Networks, social influence, and the choice among competing
innovations: Insights from open source software licenses. Information Systems Research, 24(3),
539-560.

Singh, P. V,, Tan, Y., & Mookerjee, V. M. (2011). Network effects: The influence of structural capital
on open source project success. MIS Quarterly, 35(4), 813-829.

Sojer, M. & Henkel, J. (2010). Code reuse in open source software development: Quantitative
evidence, drivers, and impediments. Journal of The Association for Information Systems, 11(12),
868-901.

Spender, J.-C. (1996). Making knowledge the basis of a dynamic theory of the firm. Strategic
Management Journal, 17(S2), 45-62.

Sproull, L. S. & Arriaga, M. (2007). Online communities. In H. Bidgoli (Ed.), Handbook of computer
networks (pp. 898-914). John Wiley & Sons.

Stallman, R. (1999). The GNU Operating System and the Free Software Movement. In C. DiBona, S.
Ockman, & M. Stone (Eds.), Open sources: voices from the open source revolution (pp. 31-38).
O’Reilly Media.

114

Star, S. L. & Griesemer, J. R. (1989). Institutional ecology, ‘translations’ and boundary objects:
Amateurs and professionals in berkeley’s museum of vertebrate zoology, 1907-39. Social Studies
of Science, 19(3), 387-420.

Stewart, K. J. & Gosain, S. (2006). The impact of ideology on effectiveness in open source software
development teams. MIS Quarterly, 30(2), 291-314.

Stuart, T. E. (1998). Network Positions and Propensities to Collaborate: An Investigation of Strategic
Alliance Formation in a High-Technology Industry. Administrative Science Quarterly, 43(3),
668.

Stuart, T. E. & Podolny, J. M. (1996). Local search and the evolution of technological capabilities.
Strategic Management Journal, 17(S1), 21-38.

Susarla, A., Oh, J.-H., & Tan, Y. (2012). Social networks and the diffusion of User-Generated content:
Evidence from YouTube. Information Systems Research, 23(1), 23—41.

Sutcliffe, A. & Sutcliffe, A. G. (2002). The domain theory: Patterns for knowledge and software reuse.
CRC Press.

Taylor, H., Dillon, S., & Van Wingen, M. (2010). Focus and diversity in information systems research:
Meeting the dual demands of a healthy applied discipline. MIS Quarterly, 34(4), 647-667.

TIOBE Software. (2016). TIOBE Index. Retrieved March 25, 2016, from http://www.tiobe.com/
index.php/content/paperinfo/tpci/index.html

Tracz, W. (1995). Confessions of a used program salesman: Institutionalizing software reuse. Addison-
Wesley.

Tsai, W. (2001). Knowledge transfer in intraorganizational networks: Effects of network position and
absorptive capacity on business unit innovation and performance. Academy of Management
Journal, 44(5), 996-1004.

Tsai, W. & Ghoshal, S. (1998). Social capital and value creation: The role of intrafirm networks.
Academy of Management Journal, 41(4), 464-476.

Tufano, M., Palomba, E, Bavota, G., Oliveto, R., Penta, M. D., Lucia, A. D., & Poshyvanyk, D. (2015).
When and Why Your Code Starts to Smell Bad. In 37th IEEE International Conference on
Software Engineering (Vol. 1, pp. 403-414).

Uzzi, B. (1997). Social structure and competition in interfirm networks: The paradox of embedded-
ness. Administrative Science Quarterly, 42(1), 35-67.

Uzzi, B. & Lancaster, R. (2003). Relational embeddedness and learning: The case of bank loan
managers and their clients. Management Science, 49(4), 383-399.

Uzzi, B. & Spiro, J. (2005). Collaboration and creativity: The small world problem. American Journal
of Sociology, 111(2), 447-504.

Von Hippel, E. (2001). Innovation by User Communities: Learning from Open-Source Software.

MIT Sloan Management Review, 42(4), 82—-86.

115

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

von Hippel, E. (1988). The sources of innovation. Oxford University Press.

von Hippel, E. (1994). “Sticky Information” and the Locus of Problem Solving: Implications for
Innovation. Management Science, 40(4), 429-439.

von Hippel, E. (1998). Economics of product development by users: The impact of “sticky” local
information. Management Science, 44(5), 629—644.

von Hippel, E. (2005). Democratizing innovation. MIT Press.

von Krogh, G., Haefliger, S., Spaeth, S., & Wallin, M. W. (2012). Carrots and rainbows: Motivation
and social practice in open source software development. MIS Quarterly, 36(2), 649-676.

von Krogh, G. & von Hippel, E. (2006). The promise of research on open source software. Manage-
ment Science, 52(7), 975-983.

Wang, C., Rodan, S., Fruin, M., & Xu, X. (2014). Knowledge networks, collaboration networks, and
exploratory innovation. Academy of Management Journal, 57(2), 484-514.

Wasko, M. M. & Faraj, S. (2000). “It is what one does”: why people participate and help others in
electronic communities of practice. The Journal of Strategic Information Systems, 9(2), 155-173.

Wasko, M. M. & Faraj, S. (2005). Why should I share? examining social capital and knowledge
contribution in electronic networks of practice. MIS Quarterly, 29(1), 35-57.

Wasserman, S. & Faust, K. (1994). Social network analysis: Methods and applications. Structural
Analysis in the Social Sciences. Cambridge University Press.

Wegner, D. M., Erber, R., & Raymond, P. (1991). Transactive memory in close relationships. Journal
of Personality and Social Psychology, 61(6), 923-929.

Wenger, E. (2000). Communities of practice and social learning systems. Organization, 7(2), 225-
246.

West, J. (2003). How open is open enough?: Melding proprietary and open source platform strategies.
Research Policy, 32(7), 1259-1285.

West, J. & Gallagher, S. (2006). Challenges of open innovation: The paradox of firm investment in
open-source software. R&D Management, 36(3), 319-331.

Williams, S. (2011). Free as in Freedom: Richard Stallman’s Crusade for Free Software. O’Reilly Media.

Yang, H., Phelps, C., & Steensma, H. K. (2010). Learning from What Others Have Learned from You:
The Effects of Knowledge Spillovers on Originating Firms. Academy of Management Journal,
53(2), 371-389.

Zammuto, R. E, Griffith, T. L., Majchrzak, A., Dougherty, D. J., & Faraj, S. (2007). Information
Technology and the Changing Fabric of Organization. Organization Science, 18(5), 749-762.

Zander, U. & Kogut, B. (1995). Knowledge and the speed of the transfer and imitation of organiza-
tional capabilities: An empirical test. Organization Science, 6(1), 76-92.

Zellner, A. (1962). An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests
for Aggregation Bias. Journal of the American Statistical Association, 57(298), 348-368.

116

Appendix A
Glossary of Open Source and Ruby-related Terms

Gem A reusable software bundle for Ruby.
Package Each release (version) of a gem is a package.

RubyGems Ruby’s sophisticated package/dependency manager as well as the community’s reusable
software repository hosting Ruby gems. Virtually all gems are hosted on RubyGems and are
directly accessible through RubyGems’ command line program accompanying every Ruby

distribution: gem install [gem namel].

GitHub A source code repository with very close ties to Ruby community, offering a hosted version
of Git version control system. Apart from a handful of exceptions all gems with a declared

public source code repository are hosted on GitHub.

Git A distributed version control system initially designed by Linux kernel developers to tackle the
challenges of large scale software development efforts. Git allows developers to work on forks
of each others’ code and provides facilities for reintegration after forking. It also allows several
branches of a code to be developed concurrently. Git keeps a complete log of code authorship

and commit activity.

Fork A fork is a new copy of the entire code base and development history of a code repository.
Git requires developers to keep a fork of the projects they work on, with the objective of
synchronizing the forks at an ulterior stage. But forks can also be used to make a separate

development thread and part ways with the original project.

Commit A commit is the unit of code contribution to source code repositories. In a distributed
development environment like GitHub developers always work on their local forks and commit
their own repository. It is only after having finished at least one unit of work (e.g. completing
a feature, patching a bug, etc.) that they make a pull request to the original repository so that

their work can be integrated in the main code base.

117

https://rubygems.org
https://github.com

Pull Request It’s a facility on GitHub that allows the contributor to a fork requests the administrator
of the upstream project to integrate the downstream contributions to the fork into the original

code base.

118

Appendix B

Overview of the Gathered Network Data

SISY) 21} 10] paI1dy)ed eyep YIomlau Y} Jo weiderp ayJ, ‘Ig a4nsdt]

SMH0400

NOHH STIVH
OL_a3Nddvy

“ N

S3ANO10

e

SNIVINOO

a3doHL1Nv

fioysodey SMHO4 Q3LLINNOD

7

1V d31SoH //
nﬂwom._bm__m._.ZOo sl
SNMO
SNIVLNOO /

NO™a31vHOo8v1109

40 NOISHIA ™SI
S31volldna uoneziuebio
esn
anyin

<~

abexoed 10 y3awan

1880
‘anyuo
‘uosied

Sl
Sl
Q3HOHLNY
Jaurejure
:swabAgny
* uosied /
S|

Sl
Sl

Joyiny
:swabAgny
:uosiad

A

uosiedng

119

	Introduction
	Theoretical Framework
	Open Source Communities as Open Innovation Communities
	Participation & Collaboration in Open Source Communities
	Development of Intellectual Capital Under The Cumulative Regime

	Knowledge Reuse Networks
	Measuring Knowledge Exchange

	Social Networks vs. Knowledge Networks
	The Theory of Social Capital
	Social Capital as A Driver of Knowledge Reuse
	Knowledge Reuse as A Driver of Social Capital

	Code Reuse as Knowledge Reuse
	Types of Code Reuse
	Reuse in Open Source Communities

	Theory Development
	The Effect of Social Ties on Knowledge Reuse
	Software Licenses as A Barrier to Reuse
	The Effect of Knowledge Reuse on Social Ties
	Software Licenses as A Barrier to Collaboration

	Methods
	General Approach
	Research Site
	Data Gathering
	Data Transformation
	Measures
	Dyad-level Measures
	Node-level Measures

	Analysis
	Sub-sampling
	Models

	Results
	Knowledge Reuse
	Coaffiliation

	Discussion
	An Interactive View of Knowledge in Networks
	Communities as Spaces for Knowledge Collaboration
	Communities as Adaptive Networks

	Implications
	Contributions
	Methodological Contributions
	Theoretical Contributions

	Limitations
	Future Research

	Bibliography
	Appendix A: Glossary of Open Source and Ruby-related Terms
	Appendix B: Overview of the Gathered Network Data

