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Abstract

Musicians and audio producers like vintage audio gear and for good reasons. The most
beloved songs and sounds of the past were made on gear that now has become vintage.
Examples of such gear are guitar pedals and amplifiers used by Jimi Hendrix (e.g., the Ar-
biter Fuzz Face) and the Mini-Moog synthesizer used by numerous artists since its debut
in 1969. Unfortunately vintage gear is often expensive, hard to come by, impractical to
transport and difficult to maintain.

In order to replicate audio circuits that produce the sounds that vintage gear is famous
for, multiple techniques from both industry and academia exist. Most techniques result in
a model derived from the audio circuit. The field centered around modeling analog audio
gear, in particular audio circuits, is called virtual analog.

Simulating audio circuits tends to have further constraints than the generic simulation
of electronic circuits. Constraints include the need for real-time user input and simulation.
Wave digital filters, originally intended for the design of digital filters, have received grow-
ing attention by the virtual analog research community because they deal elegantly with
the aforementioned design restrictions.

A brief overview of the state of the art in virtual analog research is provided along
with context on wave digital filters as applied to virtual analog modeling. Behavior of
wave digital filters under time-varying conditions is studied and three nonlinear compo-
nents commonly found in audio circuits are introduced into the formalism. By modeling
larger, nontrivial audio circuits the newly derived models are applied in a realistic context.
Simulations are compared to tried-and-true generic circuit simulation software.
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Résumé

Les musiciens et les producteurs audio aiment le matériel audio vintage pour de bonnes
raisons. Les chansons et les sons les plus appréciés du passé ont été réalisés sur des appareils
qui sont devenus des pièces de musée. Des exemples de ces dispositifs sont les pédales de
guitare et les amplificateurs utilisés par Jimi Hendrix (par exemple, l’Arbiter Fuzz Face)
et le synthétiseur Mini-Moog utilisé par de nombreux artistes depuis ses débuts en 1969.
Malheureusement, les appareils d’époque sont souvent coûteux, difficiles à trouver, peu
pratiques à transporter et difficiles à entretenir.

Afin de simuler les circuits audio qui produisent les sons réputés des dispositifs ‘vintage’
de nombreuses techniques de l’industrie et du milieu universitaire existent. La plupart de
ces techniques produisent un modèle dérivé du circuit audio. Le champ d’étude centré au-
tour de la modélisation d’équipements audio analogiques, en particulier des circuits audio,
est appelé “analogique virtuel”.

La simulation de circuits audio tend à obeir à d’autres contraintes que la simulation
générique de circuits électroniques. Les contraintes incluent la nécessité d’une entrée utilisa-
teur en ligne et d’une simulation en temps réel. Le WDF (Wave Digital Filter), initialement
destiné à la conception de filtres numériques, a reçu l’attention croissante de la communauté
virtuelle de recherche analogique parce qu’il traite élégamment les restrictions conceptuelles
susmentionnées.

Un bref aperçu de l’état de l’art en recherche analogique virtuelle est fourni avec une mise
en contexte des WDF appliqués à la modélisation analogique virtuelle. Le comportement
des WDF dans des conditions variant dans le temps est étudié et trois composants non
linéaires généralement présents dans les circuits audio sont introduits dans le formalisme.
En modélisant des circuits audio non triviaux plus grands, les modèles nouvellement établis
sont appliqués dans un contexte réaliste. Les simulations sont comparées à celles du logiciel
de simulation de circuit générique SPICE.
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Chapter 1

Introduction

1.1 Context

The most beloved songs and sounds of the past were made on gear that now has become
vintage. Vintage gear tends not only to be expensive and hard to come by, but also imprac-
tical to transport, difficult to maintain and does not fit into a modern workflow. Recent
years have seen a sustained interest from musicians and producers to have access to tools
that produce similar sounds to the ones vintage gear is famous for. In order to replicate
the sounds, multiple techniques, from both industry and academia, have been proposed.

The end result is most often a piece of software that is portable, inexpensive to maintain
and becoming progressively capable of producing sounds that are similar or identical to the
gear it attempts to replicate. The field centered around modeling analog audio gear, in
particular audio circuits, is termed Virtual Analog (VA). Example of research carried out
by VA researchers include the modeling of guitar effect pedals [1–9], guitar pickups [10],
guitar amplifiers [11–15], synthesizer filters [16–19], source signal generators [20, 21] and
electro-mechanical systems [22, 23]. Further examples can be found in recent review arti-
cles on the topic [24–27].

In this thesis we focus our attention on audio circuits and how to model and simulate
them accurately. Audio circuits are simply electronic circuits where the information being
processed is sound. Electronic circuits, as viewed from the perspective of circuit theory,
encode one-dimensional algebraic nonlinear integro-differential equations. As no general-
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izable closed-form solutions exist for such grouped equations, electronic circuits have been
used in the past to solve them. Devices that consist of circuits used to solve equations with
no direct analytical solution are commonly known as “analog computers” [28].

There is a large body of knowledge on how to derive dynamical analogies between
electronic circuits and other lumped physical systems, such as acoustic or mechanical
ones [29, 30]. The theory of electrical circuits, circuit theory, is quite mature [31] and
so transforming other lumped physical systems into electric circuits may yield valuable
insight. Once in the electronic circuit domain, the system may be analyzed using the
advanced theoretical tools that have been developed in circuit theory. Furthermore, the
process of modeling a multiphysics system, such as a loudspeaker can be simplified if a
system is modeled in its entirety within a single domain [32].

The numerical simulation of electronic circuits has been in active research since at least
the early 1970s [33]. Owing to the importance of interactive user control and real-time
performance, the simulation of audio circuits by use of numerical methods poses further
restrictions on the generic method of circuit simulation [34]. A crucial part of most generic
circuit solvers, such as SPICE, is the varying time-step mechanism that in and of itself
hinders real-time deterministic simulations of audio circuits.

Because it deals elegantly with the aforementioned complexities and restrictions, the
wave digital filter (WDF) formalism [35] has received growing attention by the VA research
community, e.g., [12, 25, 36–47]. WDFs were however not intended for the modeling of
audio circuits and several restrictions in applying the formalism to general audio circuits
have previously been identified [25]. The most inhibiting ones were the inability to model
circuits whose topology is not separable into series and/or parallel connections, e.g., the
Sallen-Key filter [48] or the Fender Bassman tonestack [49], and the lack of generalized
techniques to model circuits containing multiple nonlinearities. Nonlinear components are
widely regarded as pieces within audio circuits that form the distinctive sound they pro-
duce [50]. The practical usefulness of a circuit modeling framework that is unable to handle
multiple nonlinearities is thus limited.

By incorporating modified nodal analysis (MNA) from circuit theory [51] recent work
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has made simulating linear circuits of arbitrary topologies using WDF techniques possi-
ble [44]. Leveraging results from that work, a systematized method for handling multiple
multi-port nonlinearities has been proposed as well [43]. Collectively these two theoretical
advancements allow us to consider the proposed research.

1.2 Contributions

An overview of VA research is presented with an emphasis on current research trends in
WDFs and nonlinear system identification (NSI) [52]. NSI belongs to a family of signal
processing techniques that formulate a representation of systems (e.g., guitar pedal) given
only input–output signal pairs and no direct physical description. This family of techniques
is adequate for modeling audio gear when it is composed of a large number of elements or
if the equations describing the underlying physics are not readily available. NSI has been
applied to a wide variety of virtual analog modeling problems, such as loudspeaker emula-
tion [53], audio circuit emulation [18, 50, 54] and guitar pickup modeling [10]. Comparing
WDF and NSI provides us with a broader understanding of the different techniques used
to model analog audio equipment.

The original contributions of this thesis can be broadly separated into three parts.
Namely we study the modeling and simulation of time-varying systems using WDFs. What
follows is an introduction of nonlinear components commonly found in audio circuits into
the formalism. Building upon these developments we derive WDF structures for three
circuits that contain nonlinear component hitherto not simulated using the formalism.

1.2.1 Simulating Time-Varying Systems using Wave Digital Filters

Similar to classical network theory [55], traditional WDF theory assumes that the system
being modeled (circuit) is studied under linear time-invariant (LTI) conditions. Since mu-
sicians frequently interact with their devices, for example by turning knobs and switches,
the LTI assumption is almost never met when modeling audio circuits.

To stimulate the discussion a WDF simulation of a trivial RC circuit, with varying resis-
tance, is carried out. It is shown that the simulation becomes highly inaccurate if standard
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WDF theory is followed blindly. Modeling linear circuits under time-varying conditions fol-
lows with an emphasis on concepts such as passivity, stability, WDF-specific design choices
and discretization of lumped systems with highly-damped poles [56].

1.2.2 Common Nonlinearities

Three nonlinear components commonly found in audio circuits are reviewed, and details on
how to incorporate them within the WDF formalism provided. The nonlinear components
include the Zener diode (§4.1) and a family of field-effect transistors (FETs) (§4.2). Linear
behavioral models of the operational transconductance amplifier (OTA) are provided along
with a nonlinear extension in order to model the characteristic clipping of OTAs (§4.3).

1.2.3 Case Studies

By using the WDFs formalism to model larger, nontrivial audio circuits we get an op-
portunity to apply the derived nonlinear models in a realistic context. The FET Booster
in §5.1 acts as our first foray into modeling audio circuits using WDFs. The circuit con-
tains a JFET transistor, a three-terminal nonlinear device which we model as a two-port
component within the resulting WDF structure [45]. The auto-wah/temporal envelope fil-
ter in §5.2 contains multiple nonlinearities, such as OTAs, operational amplifiers, diodes
and bipolar junction transistors (BJTs). The importance of choosing a suitable numerical
discretization scheme becomes apparent when modeling the section of the circuit that im-
plements the temporal envelope tracking. In that section two diodes operate as switches.
That configuration is known to cause highly inaccurate simulations when discretized using
the standard discretization scheme employed in WDFs [56]. In the third and final case
study we model the filter circuit of the venerable Korg MS-20 synthesizer [57] (§5.3). The
circuit contains multiple nonlinearities, including operational amplifiers, OTAs and diodes.
For all the case studies we compare simulations of the derived WDFs to results obtained
from the ubiquitous circuit simulation software SPICE (Appendix C).
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1.3 Structure of the Thesis

Chapter 2 presents a review of the relevant background literature, current trends in VA
research and provides a brief overview of the theory behind WDFs and its recent devel-
opments. In Chapter 3 time-variant conditions are discussed in the context of WDFs.
Chapter 4 proposes models of a Zener diode, the FET family of transistors and a nonlinear
behavioral model of an OTA. Several case studies are conducted in Chapter 5 and Chap-
ter 6 discusses potential research directions and concludes.

In Appendix §A we derive Kirchoff’s voltage and current laws, discuss similarities be-
tween lumped dynamical systems and outline popular numerical schemes and s-to-z-plane
mappings. Classic WDF building blocks, required to simulate common audio circuits, such
as the ones modeled in this thesis, are listed in Appendix §B. The essential algorithm be-
hind the ubiquitous circuit simulation software SPICE is briefly discussed in Appendix §C
while Appendix §D provides links to calculations related to Chapter 5.



6

Chapter 2

State of the Art

2.1 Virtual Analog

Recent years have seen sustained interest by musicians, producers and artists in digital
models of analog music equipment and instruments. This interest is partly driven by the
desire to have tools that fit into a modern workflow and at the same time replicate the
sought after sounds of expensive analog audio equipment.

Released in 1994 by the Swedish music technology company Clavia, Nord Lead was the
first commercial product to advertise virtual analog synthesis [58]. Ever since then virtual
analog, or VA, has been a key selling point for many commercial products, as well as an
active area of research within the field of music technology.

2.1.1 Goals of Virtual Analog Research

In [23] Parker proposed that VA research can be thought of as addressing three main goals

1. Emulation – to produce exact digital copies of particular analog systems.

2. Artifact reduction – to produce digital sound processing or generation blocks that
behave like their ideal continuous-time equivalents. This is achieved by reducing or
eliminating the undesirable side-effects of digital signal processing, such as aliasing
or frequency warping in s-to-z-plane mappings (§A.3).
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3. Analog feel – to produce techniques or structures that bring some complexity, unpre-
dictability and emergence of behaviors from the analog realm into digital systems.

In this thesis we concentrate on emulating audio circuits. Electronic circuits are commonly
represented by (circuit) schematics. Schematics indicate how components are intercon-
nected and provide information regarding the operating conditions a circuit is subject to.
The networks that indicate how components are connected together are also known as the
topology of the circuit. When analyzing schematics, components are commonly idealized
as lumped element models (§A.1). While nonlinear components, such as diodes and transis-
tors, are known to heavily influence the characteristic sounds produced by audio devices,
nonidealities (linear and/or nonlinear) in real-world devices have also been shown to affect
their resulting sound [50].

In order to evaluate the quality of the derived digital model, comparing simulations to
an actual analog device should be carried out whenever possible. Accurately modeling all
nonidealities and nonlinearities of real-world audio circuits requires access to the original
audio device, which may be difficult and/or expensive to obtain. Given that researchers
have access to a particular device, the comparison itself is no easy task. To limit the com-
plexity in the comparison phase VA researchers generally assess the quality of their models
by comparing simulations to the tried-and-true circuit simulation software SPICE (§C).

We compare simulations of derived WDF models to the same circuits simulated us-
ing SPICE. In practice, further treatment, such as measurement of individual components
and/or listening tests are often necessary to accurately model individual audio circuits.

2.1.2 Methods of Virtual Analog Research

Most real-world audio gear is made up of highly-coupled nonlinear systems. Forming an
accurate mathematical model of such systems poses substantial research challenges. Vir-
tual analog engineers use a plethora of ad hoc and systematic modeling techniques that
can be separated into two broad groups. “Black box” modeling aims to mimic the behavior
of a reference system without making assumptions about its behavior while “white box”
modeling approaches form mathematical models by directly exploiting the structure and
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physics of a given system. “Grey box” approaches also exist, which as the name suggests,
combine the two [9, 12].

2.1.3 Black Box Modeling

Methods that belong to the class of black box approaches in VA modeling aim to mimic
the behavior of a reference system, such as an analog circuit as closely as possible without
making any assumptions on its inner workings. Among the approaches that have been
proposed in the literature include amplitude-dependent convolution methods [59, 60], ef-
ficient, accurate and alias-free source signal generators [16, 61, 62] and nonlinear system
identification.

Nonlinear System Identification

Linear time-invariant (LTI) systems are completely characterized by a single impulse re-
sponse h. The output of the system is then obtained by convolving the impulse response
with a given input x

y(t) = (h ∗ x)(t) =
∫ +∞

−∞
h(τ)x(t− τ)dτ (2.1)

To completely characterize systems that are nonlinear time-invariant one needs an infinite
series of multi-dimensional impulse responses

y(t) =

+∞∑
m=0

Fm[x](t) (2.2)

where Fm are functionals (functions of functions) defined as

F0[x](t) = h0, (2.3)

Fi[x](t) =

∫

τ1

· · ·
∫

τi

hi(τ1, . . . , τi) x(t− τ1) · · · x(t− τi) dτ1 · · · dτi i > 0. (2.4)

hm : (τ1, . . . , τm) �→ (τ1, . . . , τm) is a m-variable function called the mth-order Volterra
kernel [50]. First approaches of nonlinear system modeling were derived from the work of
Vito Volterra in the 19th century who proved that equation (2.2) indeed fully characterizes
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Figure 2.1 Example of Block-Based Models

a nonlinear time-invariant system.

Models based directly on the Volterra series are not common in practice. Not only do
they contain prohibitively many parameters to describe a reference system but the compu-
tational complexity due to the multi-dimensional nature of the impulse responses increases
exponentially with number of kernels. Common simplifications include truncating the infi-
nite series to a finite length and having the memory of the kernels (length in time) finite.

Today, most nonlinear system identification problems reduce to (a) choose appropriate
discrete model of a simplified Volterra series and (b) employ some model identification
method to extract the Volterra kernels/system parameters.

Block-Based Models

Various truncated versions of the Volterra series have been proposed in the literature. These
truncated versions have been collectively termed “block-based models”. Such models are
constructed by using some combination of LTI filters (memory linear blocks) and nonlinear
algebraic functions (memoryless nonlinear blocks). Research into nonlinear system model-
ing has been ongoing since the 1950s. Norbert Wiener was one of the first to specifically
study the problem of parameter estimation of nonlinear systems as applied to the Volterra
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Figure 2.2 Generalized Hammerstein Model

series [63]. Wiener approximated the Volterra series as a cascade of a memoryless nonlinear
block and a LTI filter (Fig 2.1a).

Other examples of block-based models include the Hammerstein model which swaps
the LTI filter and nonlinear analytic function (Figure 2.1b) and the Wiener-Hammerstein
model which is a Wiener model cascaded with an additional LTI filter (Figure 2.1c). The
generalized (polynomial) Hammerstein is a block-based model that is a summation of sev-
eral parallel Hammerstein models (Figure 2.2). Block-based models with feedback have
also been studied in the literature [52]. A mathematical treatment on the type of systems
one can expect to accurately approximate using finite Volterra series (and simplifications)
is vigorously studied by Boyd and Chua in [64].

Identification Methods

Once a suitable nonlinear model based on the Volterra kernels or block-based representation
has been chosen, the problem reduces to estimating the kernels/parameters of the nonlin-
ear system. This is traditionally done by exciting the system using some known excitation
signal, such as an impulse train [52], chirp [65] or random signals [66]. The corresponding
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output is recorded and an adequate mathematical framework is employed to derive the
kernels/system parameters from the input–output pair.

Nowadays the most widespread identification methods are based on correlation [52].
These methods have been extended to multiple-input, multiple-output systems. Draw-
backs related to the estimation of power and cross-spectral densities limit their accuracy
in practice [50].

A promising method that sidesteps the issues related to the estimation of power den-
sities has been proposed by Farina and his collaborators [65, 67]. The method is based
on a logarithmic swept-sine excitation and deconvolution to extract higher-order impulse
responses of each distortion order. The nonlinear model used is the generalized/polynomial
Hammerstein block-based model. The swept-sine identification method has been explored
in more detail by Novak and others [68–70].

Nonlinear System Identification in Virtual Analog Modeling

Nonlinear system identification has been applied widely in a musical setting such as in
the modeling of weakly nonlinear audio systems [71], the modeling of loudspeakers [53],
the simulation of synthesizer filter circuits [18, 50, 54], guitar effects [1, 72, 73], guitar pick-
ups [10] and guitar amplifiers [12, 74]. Custom algorithms based on block-based models
with a dedicated adaptable nonlinear section have also been proposed [7, 75].

NSI methods can be very powerful when modeling audio systems that have no obvious
physical model available or they are considered too complex. Virtually all nonlinear time-
invariant systems can be modeled if sufficient orders of distortion coefficients (number of
Volterra kernels) are chosen. The block-based models are well suited for modeling systems
whose nonlinear subsystems can be identified and separated from the linear part.

Notwithstanding the prospects of being able to fully characterize a dynamic nonlinear
system using mere input–output signal pairs, characterizing time-varying systems using
NSI is largely an unsolved problem. Since the vast majority of audio circuits are in fact
time-varying, NSI techniques are only truly applicable in cases where time-invariance is an
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accurate assumption, e.g., when emulating a guitar pickup [10]. Limiting the computational
complexity is also an enduring problem since the number of parameters grows exponentially
with distortion terms [50].

2.1.4 White Box Modeling

White box modeling is a set of techniques that aim to exploit the structure and physics of
a system when deriving a digital model. Because such methods result in models that are
based on the physics of a given reference system, white box modeling is also referred to as
“physical modeling”.

The most trivial white box modeling technique is based on the direct discretization of
a transfer function [49,76,77]. As is well known in engineering, the transfer function repre-
sentation assumes LTI and zero initial states [78] (§A.2) and merely encapsulates a global
view from input to output. After a transfer function is digitized the conservation of energy
and stability of the resulting digital filter is not generally guaranteed in the time-varying
case [79,80]. Since most audio gear has to be modeled as time-varying systems, the intrinsic
limitations of transfer function based approaches have inspired the research community to
look for novel methods.

Today, various frameworks and paradigms exist to deal with the solution of the derived
algebraic differential equations. The state space formalism from control engineering [81] is
currently the most prominent systematic modeling paradigm within VA modeling.

State-space Modeling

First attempts to apply the state space formalism from control theory in a musical setting
came from early sound synthesis work [82]. In that work the authors understood the po-
tential physical modeling approaches have when applied in sound synthesis applications.
Namely robustness under time-variance and improved simulation accuracy when compared
to other methods. Examples of the state-space approach as applied in a musical context
include applications to wind instruments [83] and guitar effects [3, 12, 84]
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The nodal DK is a systematic method to derive nonlinear state-space systems from
circuit schematics [85, 86]. The method applies time-discretization to reactive elements
after which a state-space system is populated using modified nodal analysis (MNA) [51].
Nonlinearities are treated as dependent current sources. The nodal DK method has been
applied, with some extensions, to the simulation of a time-varying guitar effect pedals [4,87]
and guitar preamp [5].

In [88] Holters and Zölzer pointed out the intrinsic limitations of the nodal DK ap-
proach. Specifically that every node in the circuit has to be connected, nodes cannot
connect to nonlinearities alone and that not all electrical elements may be represented as
current sources. They proposed a generalized modeling framework that sidesteps the lim-
itations of the nodal DK method. Instead of the MNA an analysis technique similar to
the sparse tableau approach is applied [89], after which the derived system equations are
discretized. The caveat is an increase in matrix size/computational cost compared to the
nodal DK method. As is often the case in engineering, the nonlinear part of the state-space
representation is either solved using iterative solvers or table lookup.

Port-Hamiltonian Approach

Another versatile framework for virtual analog modeling is the port-Hamiltonian approach.
It offers a systematic way of analysis, control and simulation of complex physical sys-
tems [90].

The approach is centered around the modeling of source components, energy storage
components, dissipative components and their interconnections. Differential algebraic equa-
tions are commonly represented by a port-Hamiltonian system, a state-space like represen-
tation of a physical system according to its internal energy flow. Due to the emphasis on
flow of energy and its conservation, the port-Hamiltonian formalism (if applied properly)
insures power balance and thus passivity in continuous-time. The continuous-time port-
Hamiltonian system can be discretized using either explicit or implicit numerical schemes
that guarantee passivity and thus stability in the digital realm. Recent publication explores
the use of an ad hoc second-order numerical scheme that digitizes the Hamiltonian gradient
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and results in an accurate, guaranteed-passive simulation [91].

In the context of VA modeling, Falaize and his collaborators have used the port-
Hamiltonian approach to model parts of electro-mechanical pianos [92, 93], guitar effect
pedals [94,95] and loudspeakers [96–98].

The port-Hamiltonian approach holds great promise when applied to the modeling of
a combination of lumped and distributed multiphysics systems under a unified framework.
The caveat is that each system must be derived by hand as no systematized method cur-
rently exists.

2.2 Wave Digital Filters

Wave digital filters are another white box modeling framework that has gained increased
attention by the virtual analog research community. Notable merits of WDFs include
their inherent modularity, excellent numerical and energetic properties [22] and systematic
derivation.

2.2.1 History

WDFs were developed out of the scattering formalism as applied to classical circuit the-
ory [31]. In classical circuit theory the description of the network is given by Kirchoff
variables (voltage and current) along with the interconnection of components as expressed
by impedance and admittance matrices. Conversely the scattering formalism uses incident-
and reflected waves as signal variables while impedance and admittance matrices are re-
placed by the so called scattering matrix. The scattering formalism was independently
developed in microwave applications where it is used still to this day [99].

WDFs were first publicly mentioned in a German patent filed by Alfred Fettweis in
1970 as a way to translate an analog filter design into a digital filter [100]. During the early
days, researchers, with Fettweis the most active among them, were mostly interested in
establishing the basic theory. For example by studying the digital equivalent of passivity
and energetic properties [101], looking at the effects of roundoff noise and attenuation on
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the filters [102] and properly formulating how to deal with topologies and the adaptation
of ports, a central topic in WDFs [103]. By 1986 when the landmark article “Wave digi-
tal filters: Theory and practice” was published [35], WDFs were already a mature field of
research, having found a wide field of application well beyond their original scope [104–106].

WDFs were first recognized in the music technology community as early as 1986 [107]
when Smith recognized their connection to Digital Waveguides [108]. Since then WDFs
have been applied in the simulation of piano hammers [109,110] and other lumped acousto-
mechanical systems [22, 36, 111]. Recently, they have been increasingly applied in the
simulation of audio circuits [13,14,41,45,112–114] which is the focus point of this thesis.

2.2.2 Fundamental Principles

To every WDF there is a corresponding lumped analog reference system traditionally rep-
resented by a circuit schematic. Similarly to electrical circuits as studied in circuit theory,
WDFs contain electrical components and networks that connect them together. A criti-
cal part of the WDF approach is that the energetic properties of a given reference circuit
are preserved throughout the discretization. In other words, the topology of the reference
circuit is always inherited by the resulting digital filter structure. Furthermore an energy-
preserving spectral transform is commonly used to digitize reactive components [22]. The
versatile energy-conservation law from circuit theory, Tellegen’s theorem, is consequently
inherited as well [115].

When modeled under the lumped matter discipline (§A.1), electrical components and
their interconnections can be fully characterized by the behavior at their ports [55]. Each
port has two terminals as shown in Figure 2.3. One of the terminals is traditionally labeled
to have positive potential while the remaining one is negative. In the Kirchoff domain,
ports are characterized by a port voltage that is measured as the potential difference be-
tween the positive and negative terminals and a port current that flows into the positive
and out of the negative terminal (Figure 2.3a).

Ports in the wave domain are similarly characterized by an incident and reflected wave
as well as a port resistance R0 as shown in Figure 2.3b. The port resistance determines the
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Figure 2.3 Generic One-Port

reflectance and transmittance at each port and collectively port resistances determine the
transfer of energy inside the structure. In practice the port resistances can be set to any
nonzero value, although traditionally the values are assumed to be positive real.

Complications arise when the behavior of reactive components, i.e., that of capacitors, is
numerically estimated to be processed by a computer. Although it has been shown that mul-
tiple s-to-z mappings (§A.3) can be used to digitize reactive components in WDFs [56,116],
WDF theory has traditionally favored the standard bilinear transform [35].

When Kirchoff variables are used as signal variables, the resulting signal processing
blocks are known to contain directed delay-free loops (signal flow paths that form loops
without passing through a delay). A filter structure containing delay-free loops will not
be recursively computable and result in a computer program with potentially expensive
matrix inversion routines.

At each port in the wave domain we have an additional free parameter at our disposal,
the port resistance. Fettweis recognized this fact and by choosing adequate values for each
port resistance, directed delay-free loops could be split-up, making the resulting structure
computable in a recursive manner [35].

Wave Variables

Wave variables are obtained through a linear transformation from a voltage–current pair to
a wave incident and reflected at the port. The wave formulation is analogous to that of trav-
eling waves as used in other areas of music technology, such as digital waveguides [108,117].
In the theory of digital waveguides the sampling period has a physical interpretability re-
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lated to the speed of sound and the length of the waveguide.

Virtually infinite wave variable representations exist, with voltage, current and power-
normalized waves being the most common. The parametric wave definition is useful tool
that was introduced recently [116]. By varying the positive real parameter ρ, a family of
transforms that include the standard voltage, powerful-normalized and current waves may
be obtained

ρ �





1 for voltage waves
1
2

for power-normalized waves

0 for current waves

. (2.5)

At port 0 in a circuit a linear transformation from the Kirchoff domain K to the Wave-
domain W is defined as

[
a0

b0

]
= Rρ

0

[
R−1

0 1

R−1
0 −1

][
v0

i0

]
= ΦKW

[
v0

i0

]
. (2.6)

Given that det (ΦKW) = −2R2ρ−1
0 �= 0 or R0 �= 0, the inverse transform becomes

[
v0

i0

]
=

1

2
R−ρ

0

[
R0 R0

1 −1

][
a0

b0

]
= ΦWK

[
a0

b0

]
. (2.7)

When the inverse transform exist we always have ΦWK ΦKW = ΦKW ΦWK = I, irrespective
of the value of ρ.

Reflectance is a concept used to describe how a wave is reflected back and transmitted
through a given port. It can also be thought of as the wave domain transfer function. At
a given port 0 the instantaneous and steady state reflectances are defined as

s0(t) �
b0(t)

a0(t)
=

v0(t)
i0(t)

−R0

v0(t)
i0(t)

+R0

, (2.8)

S0(s) �
B0(s)

A0(s)
=

V0(s)
I0(s)

−R0

V0(s)
I0(s)

+R0

=
Z0(s)−R0

Z0(s) +R0

, (2.9)
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where Z0(s) is known as impedance in circuit theory. The reflectance can be seen as a
Möbius transform [118] from the complex Kirchoff s-plane to the complex wave s-plane.

Example of a Delay-Free Loop

Discretizing a capacitor using standard methods provides us with an opportunity to see
first hand how a delay-free loop arises and the way in which wave-variables can be used to
split it up. A LTI capacitor with capacitance C is fully characterized at a port 0 by

i0(t) = C
dv0
dt

(2.10)

and is described in the Laplace domain as

I0(s) = CsV0(s), (2.11)

Z0(s) =
V0(s)

I0(s)
=

1

sC
. (2.12)

Applying the bilinear transform, s = fBT (z) (§A.3) to (2.11) we obtain

v0[n] = v0[n− 1] +
1

µ0C
(i0[n] + i0[n− 1]) (2.13)

where µ0 is a free parameter associated with the bilinear transform (A.3) that can be set
to any nonnegative value. It becomes apparent when viewing (2.13) that the output signal
(voltage/current) of the capacitor is dependent on its input signal (current/voltage) [119].
Computing this difference-equation recursively is thus impossible. If we describe the same
capacitor in the wave domain we obtain the following reflectance relationship

S0(s) =
1−R0Cs

1 +R0Cs
, (2.14)

S0(fBT (z)) =
(1− µ0R0C) + (1 + µ0R0C)z−1

(1 + µ0R0C) + (1− µ0R0C)z−1
. (2.15)

Choosing R0 =
1

µ0C
, the reflectance becomes

S0(fBT (z)) = z−1 (2.16)
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and the difference equation
b0[n] = a0[n− 1]. (2.17)

Finding a suitable expression for a port resistance such that the reflected wave is completely
determined by the incident wave from the previous timestep is called adapting a port. Any
port of a connection, such as a series connection, can also be adapted. An adapted port
of a given connection is also known as reflection-free and in the WDF nomenclature the
connection is known as an adaptor.

2.2.3 Connection Trees

WDFs, with properly chosen port resistances, result in recursively computable algorithms.
As such they have found a natural representation by means of tree structures [44,120–122].
Visualizing a WDF as a tree structure, also known as a connection tree, begins by choosing
a suitable component or adaptor as the root of the tree. The remaining structure is allowed
to organize itself into subtrees and branches that hang below the root. A connection tree
contains leaves (components) and adaptors (connections), i.e., series adaptors, noted by S
and parallel adaptors, noted by P .

The port of the root that faces the remainder of the tree is often unadaptable. In that
case, the ports of every leaf and adaptor facing-up towards the root of the tree are adapted.
This, in turn, will force the port of the root to become adapted.

A single computational cycle may be visualized as gathering the inputs from leaves (i.e.,
sources and reactive elements) and advancing them towards the root through the respective
adaptors. The incident wave at the root is processed by the root element, after which a
reflected wave is fed back down the tree.

Example of Connection Trees

In order to explain how we derive connection trees from schematics we study the simple
passive circuit shown in Figure 2.4. We glance at the schematics and look for ways to sep-
arate the circuit into individual components connected in series and parallel connections.
For this simple circuit we see that components Z3 and Z4 are connected in series. This



2 State of the Art 20

−+ vin

Z1

+ −

Z3

+ −

Z4

+

−

Z2

+

−

(a) Schematics

vin

I1

S1

Z1 P1

Z2 I2

S2

Z3 Z4

root:

(b) Connection Tree

Figure 2.4 Example Circuit

component pair is connected in parallel with Z2. The component subset Z2 ‖ (Z3 + Z4) is
connected in series with Z1, that is connected in series with the ideal voltage source vin.
This description of the circuit is encoded in the connection tree in Figure 2.4b. We have the
inverter adaptors I1 and I2 such that polarities in the circuit match in both the Kirchoff-
and wave-domains, as defined in Figure 2.3 and §B.1.

It is interesting to compare WDF connection trees to state-spaces, in particular with
respect to computational complexity. It is well known that the dimension of a state-space
transition-matrix grows linearly with the number of reactive elements M . Matrix inversion,
an integral part of the state-space formalism, may be achieved at O(M2) complexity. It is
thus rather expensive to add reactive elements to a state-space model. Conversely adding
an algebraic component incurs no added computational cost as no new state is added to
the state-vector. The cost is independent on a circuit’s topology.

On the other hand inserting any component, algebraic or reactive, into a WDF simula-
tion incurs the same cost, depending on the topology of the reference circuit. Inserting the
component is less expensive if it is tied via series or parallel connection to other components,
as opposed to a more complex topology.

2.2.4 Adaptors for Arbitrary Topologies

While the scattering behavior of multiport series and parallel adaptors has been known in
the WDF literature since the 1970s [103], the issue with deriving the scattering matrix of
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more complicated topologies was first recognized by Martens and Meerkötter [123]. They
used a graph-theoretic approach to find the scattering matrix of an adaptor with compli-
cated topology, relying on the orthogonality of the reference circuit for their derivation.
Although their method was a step in the right direction, it could not be used to derive
scattering matrices for circuits containing common audio circuit devices, such as op amps,
OTAs, or controlled sources. Most audio circuits could thus not be modeled using standard
WDF techniques.

The derivation of a scattering matrix for an arbitrary topology was outlined by Werner
et al. in [44] and explained in further detail in [116]. The method is based around MNA,
which is a systematic way to keep track of physical quantities in a circuit [51]. The method
becomes automatable by stamping components into a MNA matrix. MNA component
stamps also work with the nodal DK-method for deriving nonlinear state-space systems [86].

To derive an arbitrary scattering matrix, Thévenin sources are placed at each port of a
R-type (rigid) adaptor and a MNA matrix [51] is populated. Details on how to populate
a MNA matrix are readily available in the literature [14, 44, 45, 51]. By treating incident
and reflected waves at the same time by grouping them together as vectors b and a, a
scattering matrix S describing the relationship between all waves, b = Sa, given by

S = I+ 2Rρ [0 I 0]X−1 [0 I 0]ᵀ R1−ρ (2.18)

where R is a diagonal matrix containing the port resistances, X is the fully populated
MNA matrix and ρ is a parameter used to distinguish between wave variables (2.5).

An important detail of this approach is that controlled sources are absorbed into the
scattering matrix itself. Absorbing sources into matrices is common practice when popu-
lating MNA matrices [51]. In classical WDF theory, absorbing algebraic components (e.g.,
sources, resistors) into adaptors is also common practice [35]. Doing so yields scattering
matrices with ports that can be adapted and placed in a connection tree. Absorbing sources
into larger scattering matrices is what enables the modeling of linear circuits of arbitrary
topologies.



2 State of the Art 22

−

+

−
+ vin

Z1 Z2

Z4

vout

Z3

(a) Schematics

vin

R1

Z1 Z2 Z3 Z4

root:

(b) Connection Tree

Figure 2.5 Generic Sallen-Key Filter

An example of a circuit with a topology that cannot be separated into series and/or
parallel connection is the generic Sallen-Key filter circuit (Figure 2.5). First we make the
simplification that the op amp is modeled as ideal (nullor) B.1.2. Looking at the schematics
we notice that it is in fact impossible to separate most of the circuit into series or parallel
connections. Instead we must place a rigid-adaptor R1 between the circuit elements. We
choose the unadaptable ideal voltage source vin as the root of the tree. Note that if we
assume that Z1 is a resistor we could also group vin and Z1 together to form a resistive
voltage source. The resistive voltage source could then be placed at the root of a different
4-port rigid adaptor.

2.2.5 Nonlinearities

The theory of simulating circuits containing up to one nonlinearity began with the work of
Meerkötter and Scholz [124]. Researchers have been able to go beyond this limitation in
special cases by exploiting topologies of reference circuits [40, 46, 125, 126] or adding ficti-
tious unit delays to yield computable structures [11,112].

Methods on how to handle multiple nonlinearities in WDFs have been proposed in the
past. Some have involved the introduction of ad-hoc unit delays [46, 126, 127], simplifica-
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tion of nonlinear devices [40, 114], or ad-hoc [19] or systematic [128] global iteration. A
systematized method, sidestepping the aforementioned limitations, was proposed in [43].
The method works by grouping nonlinearities into a single vector that is interfaced with the
rest of the circuit by use of an R-type adaptor (2.18). The method is completely general
and accommodates circuits of all topologies. An implicit relationship between a vector of
nonlinearities and the remaining structure is resolved using the so called K method [83],
table lookup or a Newton-Raphson iterative solver [14,129].

The problem framework can be written as

ai = g(bi), (2.19)[
bi

be

]
=

[
S11 S12

S21 S22

][
ai

ae

]
(2.20)

where g is a static nonlinear function that operates on the wave variables. ai and bi are
the waves internal to the nonlinearities vector, ae and be are waves that connect to the
remaining (external) structure. S is the scattering matrix of the R-type adaptor. By using
wave variables the dimension of the zero-finding function is made linear with respect to the
number of ports of nonlinear components [22]. This is generally not the case for Kirchoff-
variables.

However, the above formulation has one major flaw. Most nonlinear components are
described in the Kirchoff domain and so (2.19) would be more convenient in practice if it
were written in terms of voltages and currents rather than wave-variables. Fortunately wave
variables are related to Kirchoff variables by a linear transformation (B.1). Rewriting it in
vector form we have the voltage–reflected-wave pair written in terms of current–incident-
wave pair

[
v

b

]
=

[
C11 C12

C21 C22

][
i

a

]
. (2.21)

Now imagine that we have a voltage–current relation at each nonlinear component port,
denoted with a subscript c. The remaining ports of the scattering matrix S are said to be
external to the nonlinear components, denoted with a subscript e. Referring the interested
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reader to the full derivation in the literature [43] we express the derived problem statement
in terms of auxiliary matrices E,F,M,N (defined in terms of C and S)





ic = f(vc)

vc = Eae + Fic

be = Mae +Nic

, (2.22)

where the auxiliary matrices, connecting internal and external wave-variables are defined
as

H = (I−C22S11)
−1, (2.23)

E = C12(I+ S11HC22)S12, (2.24)

F = C12S11HC21 +C11, (2.25)

M = S21HC22S12 + S22, (2.26)

N = S21HC21. (2.27)

The structure is still not recursively computable due to the directed delay-free loop that
originates in ic = f(vc). The loop can be resolved using the K method [83], table lookup
or Newton-Raphson iterative solver.

Newton-Raphson Iterative Solver

In the remainder of this thesis we employ a Newton-Raphson iterative solver to resolve
directed delay-free loops whenever we encounter them. Further details on the Newton-
Raphson iterative solver can be found in a number of references, for example [129, 130].
The real valued function h for which we would like to find the root of is given by

h(vc) = Eae + Fic − vc (2.28)
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The initial guess v(0)
c [n] at sample n must be chosen depending on the situation at hand.

Two possible initial guesses were proposed in [129]

v(0)
c [n] = Eae[n− 1] + Ff(vc[n− 1]), (2.29)

v(0)
c [n] = Eae[n] + Ff(vc[n− 1]). (2.30)

2.2.6 Simulating Time-Varying Systems

WDFs were traditionally used to digitize LTI systems, in particular passive circuits. Given
that most audio circuits cannot accurately be modeled as time-invariant systems the LTI
assumption should limit the usefulness of the paradigm. Despite that, the WDF literature
is quite sparse on the topic while results obtained in practice suggest that WDFs are in
certain cases able to simulate time-varying system at least as accurately as SPICE [116,131].

Earliest remarks on simulating time-varying systems in the WDF literature can be found
in a set of papers by Strube in 1982 [132,133]. Strube was interested in modeling the time-
varying vocal-tract, that has traditionally been modeled as a collection of coaxial cylinders
of varying length and radii. Strube extended the formalism to model systems under time-
varying conditions in both space and time. This meant that the underlying structure of
reactive elements and transmission lines were severely altered. Strube concluded that by
extending the framework in this manner, stability could no longer be guaranteed when
standard WDF theory is applied (e.g., voltage waves, LTI components, series/parallel con-
nections).

Three years later, Kubin [134, 135] formulated a proof of stability under time-varying
conditions using traditional WDF blocks. The caveat was that power-normalized waves had
to be employed as wave variables. In 2005 Bilbao [136] gave a time-varying generalization
of all-pass filters built using WDF principles. A first-order all-pass filter was formulated
in the wave domain as an ideal voltage source connected in series with a capacitor. The
time-varying parameter of the filter was the capacitance. It was proven that the derived
DSP structure remained stable if and only if power-normalized waves are used. Proof of
stability of a second-order all-pass filter structure, composed of a capacitor/inductor con-
nected in series/parallel, was also provided. This time both reactances were varied. Again
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the stability of the abstract DSP algorithm hinged on the choice of wave variables used.

An inherent property of power-normalized wave variables is the guarantee that instan-
taneous power at each port is independent of the port resistance. That is the instantaneous
power at a given port 0 with port resistance R0(t)

p0(t) = v0(t) i0(t) =
1

4
R1−2ρ

0 (t) (a20(t)− b20(t)). (2.31)

If we choose ρ = 1/2 (power-normalized waves) the instantaneous power indeed becomes
independent of the port resistance. This in conjunction with the fact that series/parallel
adaptors (or other passive connections [135]) are unitary when power-normalized waves are
used (§B.2.4) are the key elements that are involved in the proof of stability. It should be
noted that stability is a feature of the abstract DSP structure and does not guarantee, in
and of itself, that the algorithm accurately simulates a real-world physical device.

In the following chapter we will explore the inherent limitations of the paradigm fur-
ther with respect to time-varying conditions. We show why adequate simulation results
have been obtained in practice and present novel design strategies that allow an algorithm
designer to make better design choices when modeling time-varying systems using WDFs.

2.3 Summary

In this chapter we have reviewed the state of the art in virtual analog modeling, paying
special attention to methods that are currently being used to model and digitize audio
circuits. Examples of “black-box” and “white-box” modeling techniques were provided with
a special emphasis on nonlinear system identification and wave digital filters. The funda-
mental theory of wave digital filters was reviewed and the ways in which the formalism has
recently been extended to model almost all audio circuits. Finally the topic of simulating
time-varying systems within the formalism was briefly reviewed.

Later in this thesis we will directly apply the theory when we model several real-world
audio circuits using the wave digital filter formalism.
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Chapter 3

Time-Varying Conditions and Wave
Digital Filters

Being able to accurately simulate time-varying systems is essential if one wishes to model
audio circuits using WDFs. In this chapter we explore relevant topics to simulating time-
varying systems. In particular we explain why following the traditional WDF paradigm
blindly may result in inaccurate simulation when time-varying systems are emulated. We
concentrate on the effects of choosing wave-variables and connection trees, followed by a
discussion on selecting a suitable discretization method and a discussion on time-varying
reactive components.

We begin with a case study; a clear example where following the traditional WDF
paradigm results in an inaccurate simulation.

3.1 A Simple Case Study

In this example we look at a passive RC filter circuit (see Figure 3.1a). For the sake of
simplicity, let’s assume that the input is a unit-step and all components are ideal ones. After
some time the capacitor has fully charged up, no current flows and the circuit has converged
to a pseudo-DC solution. At that time changing the value of the resistance R should have
no influence on the output voltage vout. This particular RC circuit implements a lowpass
filter. If we choose R = 1Ω and C = 0.01F we get a time constant of τ = RC = 0.01 s.
The unit-step responses in voltage and current are displayed in Figure 3.2. Now we would
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Figure 3.2 Unit-Step Responses. vout [V] and iout [A]

like to change the resistance R and observe how our WDF algorithm fares. In order to
keep things simple we define the resistance to evolve as a step function so that it changes
values after sufficient time, chosen here arbitrarily as 10τ , has passed

R(t) =



1Ω, t < 10 τ

10Ω, t ≥ 10 τ
. (3.1)

Although R(t) is indeed discontinuous at 10τ when we discretize it we shouldn’t have
aliasing if 10τ is assumed an integer number of the sampling period. Next we derive a
connection tree for the circuit schematic shown in Figure 3.1a. We combine the resistor
and ideal voltage source into a resistive voltage source and notice that it is connected in
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series with the capacitor. We then create a simple connection tree, discretize the capacitor
using the standard bilinear transform and choose it as the root of the connection tree.

We carry out a simulation of the circuit using the unit-step function as an input signal
while the value of the resistor is varied in accordance with (3.1). The output is taken to
be vout and it is simulated for the three most common wave variables: current, voltage and
power-normalized waves. It is compared to a SPICE simulation of the same circuit and
time-varying resistor (Figures 3.3-3.5).
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Figure 3.3 Unit-Step Response vout

Glancing at Figure 3.3 we notice that the initial responses of the system are iden-
tical up to numerical errors. When the resistor’s value is changed (t = 10τ = 0.1 s) we
notice that there is a spike in the voltage. A zoom-in of the response is shown in Figure 3.4.

Both current- and power-normalized waves exhibit the same damped sinusoidal behavior
while the SPICE simulation as well as the voltage wave WDF simulation remain constant
regardless of the change in resistance. For the current iout we even get a more dramatic
behavior from both simulations employing current or power-normalized waves (Figure 3.5).
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From this simple example we have seen that following traditional WDF theory blindly
may have unforeseen side effects under time-varying conditions. It should be noted that
the resistance is discontinuous and so the negative effects may be amplified.

3.2 s-to-z Mappings and Proper Numerical Schemes

In traditional WDF theory reactances are discretized using the standard bilinear s-to-z
mapping (Table A.2). The underlying assumptions of virtually all s-to-z transforms is that
the system being modeled is LTI and in steady-state. In WDF theory discretization is
done locally, meaning that each component of the system is discretized separately. In the
above example the capacitor is the only reactive element. If we use the bilinear transform,
where µ0 is a tunable parameter (§A.3), to obtain the difference equation for an unadapted
capacitor we get (B.10)

b[n] = −1− µ0R0C

1 + µ0R0C
b[n− 1] +

1− µ0R0C

1 + µ0R0C
a[n] + a[n− 1] (3.2)

In the previous example the capacitor is placed at the root of a connection tree and so
its port resistance becomes dependent on time R0[n] = R[n]. We arrive at the following
difference equation.

b[n] = −1− µ0R[n]C

1 + µ0R[n]C
b[n− 1] +

1− µ0R[n]C

1 + µ0R[n]C
a[n] + a[n− 1] (3.3)

It is a well known fact that the bilinear transform is in fact derived from the trapezoidal
rule for numerically estimating definite integrals [137, 138]. In the derivation LTI condi-
tions is assumed as parameters are varied with time, similar to what happened in the above
example.

It is simple to apply the trapezoidal rule in order to discretize an ideal capacitor with
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a constant capacitance C, but time varying port resistance R0(t) at a given port 0.

i0(t) = C
dv0
dt

, (3.4)

i0(t)

C
=

dv0
dt

, (3.5)

1

2
R−ρ

0 (t) C−1(a0(t)− b0(t)) =
d

dt

(
1

2
R1−ρ

0 (t)a0(t) +
1

2
R1−ρ

0 (t)b0(t)

)
. (3.6)

Now we can use the trapezoidal rule to approximate the expression on the left

∫ Tn

T(n−1)

1

2
R−ρ

0 (t)C−1(a0(t)− b0(t)) dt ≈
T

2

(
a0[n]− b0[n]

2Rρ
0[n]C

+
a0[n− 1]− b0[n− 1]

2Rρ
0[n− 1]C

)
(3.7)

and the fundamental theorem of calculus to calculate the expression on the right.

∫ Tn

T(n−1)

d

dt

(
1

2
R1−ρ

0 (t)(a0(t) + b0(t))

)
dt =

a0[n] + b0[n]

2Rρ−1
0 [n]

− a0[n− 1] + b0[n− 1]

2Rρ−1
0 [n− 1]

(3.8)

Combining the two expressions gives us the following difference equation

b0[n] =− b0[n− 1]
1− µ0CR0[n− 1]

1 + µ0CR0[n− 1]

(
R0[n]

R0[n− 1]

)ρ

+ a0[n]
1− µ0CR0[n]

1 + µ0CR0[n]

+ a0[n− 1]
1 + µ0CR0[n− 1]

1 + µ0CR0[n− 1]

(
R0[n]

R0[n− 1]

)ρ

(3.9)

We assume that µ0 = 2
T as is the case for the standard bilinear transform (Table A.2). If

we now replace the standard difference equation for an unadapted capacitor with (3.9) and
repeat the simulations above, what results is a simulation with no inaccurate response at
t = 10τ like before.

If we take (3.9) and adapt it by placing R0[n] =
1

µ0C
, we obtain

b0[n] = a0[n− 1] (3.10)

which is the same equation as the commonly used adapted capacitor equation (B.11). In
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Figure 3.6 Unit-Step Response vout. Capacitor Discretized using Trapezoidal
Rule

other words the equations for the adapted capacitor is the same when its dynamics are
discretized using the standard bilinear transform and trapezoidal rule. They are not equal
for the unadapted capacitor. This explains the fact that inaccurate simulations have not
been reported in the literature for time-varying systems [131]

3.3 Time-Variant Conditions and Highly-Damped Poles

It is well known fact that the standard bilinear transform warps the frequency axis [139].
Frequency warping methods exist that may be used to compensate for the frequency dis-
tortion, but this generally overlooks pole distortion in the general case [137]. There have
been reports in the numerical analysis literature where using the trapezoidal rule to dis-
cretize systems with highly-damped poles causes high-frequency oscillations in the numeri-
cal simulation [140,141]. This tends to happen when the system is in transient-mode (e.g.,
time-varying).
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In [56] Germain and Werner studied the effects of s-to-z-plane mappings in more detail
to include distortion effects on the general location of poles, not only frequency warping.
They did so by realizing that the the well known spectral-mappings, forward- and backward
Euler and bilinear transform (Table A.2) belong to a set of Möbius transforms that map
from the s to z-plane.

A pole location in the s-plane is commonly decomposed as s = σ+jΩ where σ is defined
as the damping and Ω is the frequency. A pole location in the z-plane is similarly decom-
posed as z = rejω, r ≥ 0, ω ∈ ]−π, π], where log(r)/T is defined as the normalized damping
and ω/T is the normalized frequency. A spectral mapping from s-to-z-plane can thus be
seen as a mapping between points s → z or their decompositions (σ,Ω) → (log(r)/T, ω/T ).

The α-transform is a spectral mapping that contains both Euler transforms and the
bilinear transform as special cases. It is defined as

z = f−1
α (s) � −

αs+ 1+α
T

s− 1+α
T

(3.11)

By tuning α, each of the aforementioned spectral transform may be obtained (e.g., α = 1

for the standard bilinear transform). The relation between the quantities (σ,Ω) and r,
assuming that the upper s-plane maps to the upper z-plane, becomes [56]

r2(σ,Ω) =
(1 + α + αTσ)2 + (αTΩ)2

(1 + α− Tσ)2 + (TΩ)2
(3.12)

The normalized damping log(r)/T depends on both the continuous damping σ and fre-
quency Ω. This is a direct result of the fact that the α-transform is a special-case of
Möbius transforms, a family of transforms that are all angle-preserving. That is they map
every straight line to a line or a circle, and map every circle to a line or a circle.

Spurious high-frequency oscillations of systems with highly-damped poles discretized us-
ing the trapezoidal method has been reported in the numerical analysis literature [140,141].
These observations can be explained by the fact that the mapping of pole contours with
identical damping in the s-plane, while still circles, are not centered around the origin [56].
In other words, the normalized damping is dependent on continuous-time frequency.
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From (3.12) it is simple to see that there is no guarantee that there exists a monotonic
relationship between the continuous damping σ and normalized damping log(r)/T . Given
that we have knowledge about the operating range of a particular circuit we may know
the region in the s-plane where all the poles of the system are located. This information
can be put to good use as we can select a value of α > 0 such that for all pole locations
we can ensure a monotonic relationship between the continuous and normalized damping
given that Ω is constant.

The damping monotonicity criterion guarantees a monotonic relationship between nor-
malized and continuous damping. It is guaranteed if and only if [56]

(
σ − α2 − 1

2αT

)2

− Ω2 ≤
(
(α + 1)2

2αT

)2

(3.13)

holds for all values of (σ,Ω). We can tune the value of α in such a way that the above
condition is always met.

When continuous poles are purely real (Ω ≡ 0) the damping monotonicity criterion
simplifies to finding a value of α > 0 such that

α ≥ −1

Tσ + 1
(3.14)

is guaranteed for all values of σ. In §5.2.3 we study a nonlinear circuit that contains highly-
damped poles. In that case the damping monotonicity criterion is a very useful theoretical
tool to have when simulating common audio circuits.

Under time-varying conditions the equivalence between spectral mappings and numer-
ical schemes is lost. Spectral mappings can provide us with valuable information about
the system, but become inaccurate under time-varying conditions. The dynamics of the
system must be studied first, if possible using spectral mappings, in order to ensure that
some design requirements are met (e.g., stability, damping monotonicity). Then a proper
numerical scheme should finally be applied to discretize the system [56].
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3.4 Time-Varying Reactances

In the preceding discussion we have assumed that although the system as a whole contains
reactive components, the time-varying component itself has been purely algebraic and as
such memoryless. The WDF literature is rather sparse on the topic of accurately simulating
systems where reactances vary with time. One possible explanation for that is that when
reactances are allowed to vary with time, the link to the underlying physics is lost under
the lumped matter discipline §A.1.

Ambiguity in the lumped matter discipline becomes apparent when capacitances are
varied. Let us assume that we are changing a given capacitance from C1 to C2, where
C1 < C2. Under the lumped matter discipline there are virtually infinite ways to get from
C1 to C2. Namely, we could have (a) capacitor of C1 in the circuit and then add a ca-
pacitor of (C2 − C1) in parallel to it (b) two series capacitors Ca, Cb that in total make
up C1 = Ca ‖ Cb. We then remove either one of them (say Ca) such that C2 = Cb (c)
add/remove dielectric between the plates of a capacitor (d) some combination of previous
steps. From this trivial though-experiment it is apparent that guaranteeing general pas-
sivity/stability when performing the C1 → C2 transformation under the lumped matter
discipline is infeasible.

In [142] Fettweis proposed lossless (no energy dissipated) time-varying models

i =
√
C(t)

d

dt

(√
C(t) v(t)

)
, (3.15)

v =
√
L(t)

d

dt

(√
L(t) i(t)

)
(3.16)

of the capacitor and inductor respectively. For some passive functions C(t) and L(t), the
lossless guarantee becomes apparent when the above equation is multiplied by v and i
respectively to obtain the instantaneous power [22]

p = v · i =
√
C(t) · v(t) d

dt

(√
C(t) v(t)

)
=

d

dt

(
1

2
C(t) v(t)2

)
, (3.17)

p = v · i =
√

L(t) · i(t) d
dt

(√
L(t) i(t)

)
=

d

dt

(
1

2
L(t) i(t)2

)
. (3.18)
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The instantaneous power is the time derivative of the energy, which for the two cases above
is 1

2
L(t) i(t)2 ≥ 0 and 1

2
C(t) v(t)2 ≥ 0. The energy is non-negative and the components

thus lossless.

Discretization must be performed by applying of trapezoidal rule. Furthermore power-
normalized wave variables need be employed in order to guarantee lossless behavior after
discretization. Following the same steps as in 3.2 we obtain the following unadapted dif-
ference equations for the lossless reactive elements

b0[n] =− b0[n− 1]
T/2− C[n− 1]R0[n− 1]

T/2 + C[n]R0[n]

(
R0[n]

R0[n− 1]

)ρ
√

C[n]

C[n− 1]

+ a0[n]
T/2− C[n]R0[n]

T/2 + C[n]R0[n]

+ a0[n− 1]
T/2 + C[n− 1]R0[n− 1]

T/2 + C[n]R0[n]

(
R0[n]

R0[n− 1]

)ρ
√

C[n]

C[n− 1]
(3.19)

which reduces to the familiar adapted capacitor equation if ρ = 1/2 (power-normalized
waves) and R0[n] =

T
2 C[n]

b0[n] = a0[n− 1]. (3.20)

Similar results are obtainable for the inductor and will be left as an exercise for the reader.

Modeling time-varying reactive elements as lossless means that they are stable by def-
inition. The models however only accurately describe reactive elements if the change of
reactance varies slowly.

3.5 Summary

In this chapter we explored the topic of time-variance when simulating lumped physical
models using the WDF formalism. We saw that the choice of connection tree and port
resistances inherently influence the resulting numerical scheme. We provided an example
where utilizing power-normalized waves resulted in an inaccurate simulation depending on
the connection tree chosen.
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The topic of spectral mappings and numerical schemes was briefly discussed. It was
shown that in the case of a standard capacitor both bilinear transform and the trapezoidal
rule result in the same abstract DSP block when its port is adapted. Similar results can
be obtained for the inductor. We reviewed the topic of Möbius transforms as applied
to discretizations of lumped element models. For a family of mappings, including both
Euler methods and the bilinear methods, the normalized damping is dependent not only
on the continuous damping but also frequency. The damping monotonicity criterion was
presented as a way to maintain a monotonic relationship between the continuous and nor-
malized damping for a constant continuous frequency.

Finally the topic of time-varying reactances within the lumped model assumption was
discussed. Recommendations for implementing time-varying reactances was given with an
emphasis on the difference between lossless reactive element as presented by Fettweis, and
reactive elements that maintain some link to the physical device they attempt to replicate.
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Chapter 4

Common Nonlinear Components

Most audio circuits contain at least one nonlinear component. These components are known
to directly influence the characteristic sounds of many audio circuits [50]. Examples of non-
linear components include the diodes responsible for the clipping behavior within the Korg
MS-20 filter [57] and transistors used in literally all guitar distortion pedals. Consequently,
mathematical models of nonlinear components are essential to the accurate simulation of
audio circuits.

Wave Digital Filters were not originally intended for modeling nonlinear circuits. Con-
sequently most nonlinear components have not been introduced into the formalism yet.
Nonlinear components that have been handled so far include single diodes [124], any num-
ber of diodes in parallel/antiparallel configurations [129,143], BJTs [43,116] and tube mod-
els [14, 126,144].

In the following chapter we introduce models of three nonlinear components, commonly
found in audio circuits, into the WDF framework.

4.1 Zener Diode

Diodes are the simplest yet most commonly found nonlinear devices in audio circuits. They
are widely used as switches and waveform clippers in audio filters [57, 145, 146] and guitar
effects [77]. Diodes have three major regions of operation.
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• Forward bias When the voltage over a diode is high enough (around ≈ 0.5V for
silicon diodes) the diode starts conducting. In this region its behavior is often modeled
by the Shockley diode model (4.1).

• Reverse bias If the voltage over the diode is not high enough the diode will let
almost no current through it.

• Breakdown If the voltage over a diode becomes sufficiently negative the voltage
may reach a point where the diode will start conducting again, only this time in the
opposite direction. This occurs when the voltage over the diode exceeds the so called
breakdown voltage −VBD and vD < −VBD is known as the breakdown region.

The physics of how diodes conduct in the breakdown region are explained by two separate
phenomena. Avalanche breakdown occurs in mildly doped pn-junctions [147]. When
current carriers in the junction are accelerated to high energy levels they collide and free
up otherwise immobile/bound current carriers. The freed current carriers result in a net
increase in current flowing through the diode due to drifting of electrons. The higher energy
levels of the accelerated current carriers and increased net current can damage the diode
if external circuitry is not put into place. Zener breakdown occurs in heavily doped
junctions under a strong electric field produced by a reverse voltage [147]. The electric
field may push electrons to tunnel across the junction, resulting in the repulsion of bound
electrons which causes a net current to flow across the terminals of the diode.
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Diode Models in the WDF literature

In 2012 Paiva et al. proposed an expression of a single diode by providing an explicit wave-
domain formulation of the ideal Shockley equation. The explicit solution was put forward
by introducing the Lambert W function [148]. Recent work improved upon and extended
their model to any number of diodes in parallel/antiparallel configuration [143]. Both pro-
posed methods make the assumption that no other nonlinearity is present in the circuit.
The generality of the proposed models is thus limited.

In order to circumvent the aforementioned limitations we propose models of diodes,
and other nonlinear components, in the Kirchoff domain. That way we can use the method
described in §2.2.5 to handle arbitrary number of nonlinearities in any configuration within
the WDF formalism.

The proposed methods model individual diodes using the Shockley diode model [149]

i = Is(e
v

µVT − 1) (4.1)

where Is is the saturation current of the diode, µ is the emission coefficient/ideality factor
and VT is the thermal voltage. The model proposed by Pavia et al. does not model the
breakdown region of the diode. Neglecting the reverse bias region in this way may be
accurate for diodes that are not designed to operate there. However for a large family of
diodes this is not the case and more elaborate models are needed.

Diodes in the Breakdown Region

Contrary to most diodes that may get destroyed due to overheating if operated for too long
in the breakdown region, Zener diodes are designed to operate there. After the breakdown
voltage is reached, the voltage does not vary substantially with increasing current and so
Zener diodes are most commonly used as voltage regulators and/or limiters.

Even though Zener diodes are made up of a single pn-junction, forming an accurate
model of real-world devices is an overwhelming task. Indeed multiple models exist with
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the aim of capturing some of the complex behavior of Zener diodes. Models run the
gamut from simpler ones that idealize the diode as a current source, to others that involve
multiple tunable parameters. The parameters are used to match static, dynamic and/or
temperature-dependent characteristics of individual diodes [150,151].

We propose a simple model that aims to replicate the static behavior of diodes in all
regions of operation. This model is loosely based on the three-step nonlinear diode found
in SPICE [34]. The model we propose imitates the static behavior of a real-world diode by
forming a two-step nonlinear model.

Table 4.1 Zener Model—Parameters
Parameter Description Typical value

Is Saturation current 1 fA

VT Thermal voltage 25.85mV (at T = 300K)
Gmin Minimum conductance 1 nS

VBD Breakdown voltage 3.3V

IBD Current at breakdown region 1mA

µ Emission coefficient 1.5

The proposed model describes current through a diode as a function of voltage vD.

iD =



Is(e

vD
µVT − 1) + vD Gmin for vD ≥ −VBD

−Is(e
−VBD+vD

µVT − 1)− IBD for vD < −VBD

, (4.2)

its derivative is
diD
dvD

=



Is

1
µVT

e
vD
µVT +Gmin for vD ≥ −VBD

Is
1

µVT
e
−VBD+vD

µVT for vD < −VBD

. (4.3)

The parameters of the model (see Table 4.1) can be tuned to match the static behavior
of the diodes being modeled. The voltage-current relationship assuming the default values
in Table 4.1 is shown in Figure 4.2 with the dashed line indicating the breakdown voltage
(vD = −VBD).

In order to make the above functions continuous at each point we propose that IBD and
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Figure 4.2 Zener Diode—Voltage/Current Relationship

Gmin are fixed depending on other model parameters, namely.

IBD = −Is(e
−VBD

µVT − 1) + VBD Gmin, (4.4)

Gmin =
Is
µVT

(1− e
−VBD

µVT ). (4.5)

By fixing IBD and Gmin we certainly loose degrees of freedom that could be used to better
match a real-world device. On the other hand this simplification ensures the continuity of
current and its first derivative with respect to voltage. That in turn results in less spectral
distortion (aliasing) in our discrete-time simulation. A further detail refers to our choice of
using a Newton-Raphson iterative solver. The solver may become unstable if the nonlinear
functions or their derivatives are discontinuous. Having the nonlinear function continuous
is thus a desirable trait within the framework we propose.

Obtaining model parameters that accurately match real-world devices can either be
done by reading values off datasheets or by performing measurements and tuning parame-
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ters accordingly. The proposed model can also be used to model other types of diodes that
operate in the breakdown region, such as avalanche diodes [147].

As all diode models based off the Schokley diode model (4.1), the proposed model makes
the assumption that the diode is operating in low-level injection. This assumption is known
to be inaccurate in power semiconductors [34]. Since most audio circuits are low-power the
Shockley model is generally good enough for the purposes of audio circuit simulation.

Incorporating proposed model inside a WDF

Incorporating the proposed model into a WDF simulation becomes simple. Each diode is
represented by the iD = f(vD) relationship in (4.2) and included into the vector of nonlin-
earities to be placed at the root of a WDF connection tree. Equation (4.3) is placed inside
the Jacobian matrix of the Newton-Raphson iterative solver.

In circuit theory elements are often defined in terms of behavior at their terminals (i.e.,
current, voltage). The WDF formalism however emphasizes the behavior of elements in
terms of ports (i.e., waves). The Zener diode has only two terminals and thus only needs
one port to be properly defined in the WDF domain.

4.2 Field Effect Transistor

A field-effect transistor is a four-terminal semiconductor device, the terminals being gate
(G), source (S), drain (D) and body. The body terminal is however not often made avail-
able to the circuit designer but rather set internally to bias the device into operation. FETs
can be utilized both in amplification and switching and have been applied to a wide range
of audio circuits, such as phaser/flanger audio effects [87, 152], amplifiers [153] and audio
filters [154].

While BJTs are bipolar semiconductor devices, meaning that they operate by the move-
ment of both electrons and holes (lack of electrons), FETs are unipolar and operate by a
single current carrier. FETs that operate using the movement of free electrons are called
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n-channel while those that operate by hole movement are p-channel FETs.

The voltage difference between gate and source terminals induces an electric field. The
strength of this electric field directly modulates the conductive channel that forms between
the source and drain terminals and in turn the amount of current that flows through it.
FETs control the flow of current by voltage rather than current as is the case with BJTs
and thus have high input impedances.

Depending on the FET, it may be in one of two modes.

• Depletion mode or normally-on devices will conduct if the gate-source voltage is
small. By increasing the voltage difference the conductive channel begins to get
depleted of carriers, effectively making it less conductive.

• Enhancement mode or normally-off devices work inversely to the depletion mode
devices. That is to say the conductive channel is closed (no current flowing) when
the gate and source are at the same potential but starts to open as voltage is applied.

The majority carriers in the conductive channel determine the polarity of the gate-source
voltage in order to enhance or deplete the conductive channel of carriers.

While a great number of FET devices exist, in this thesis we concentrate on the two
most commonly used FETs in audio circuits. Namely the junction field effect transistor
(JFET) and the metal-oxide-semiconductor field-effect transistor (MOSFET).

The Shichman-Hodges family of FET models is the most widespread and first-order
version of it can be used to capture behaviors of both JFETs and MOSFETs [155]. For the
purposes of simulating audio circuits we propose a slightly modified first-order Shichman-
Hodges model. The current from drain to source (iDS) is given as a function of the voltage
drop between gate and source (vGS). For a n-channel FET this current is given as

iDS =




Gmin vGS for vGS < VTh

β(vGS − VTh)
2(1 + λvDS) for VTh < vGS ≤ vDS + VTh

βvDS(2(vGS − VTh)− vDS)(1 + λvDS) for VTh < vDS < vGS

(4.6)
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Table 4.2 FET Model—Parameters
Parameter Description Typical value

β Transconductance factor 1AV� 2

λ Output conductance (saturation) 1V� 1

VTh Threshold voltage −2.5V

Gmin Minimum conductance 1 nS

KP Transconductance parameter 20 mAV� 2

Leff Effective channel length 1m

W Channel width 1m

The three cases correspond to the different modes/regions of operation: Cutoff region,
ohmic region and saturation region respectively.

In order to accommodate the three-terminal device in a WDF simulation we assume
that there is some tiny current flowing from gate to source

iGS = Gmin vGS. (4.7)

Note that the first-order Shichman-Hodges model is accurate only when vDS > 0. In the
case of audio circuits this is a safe assumption as FETs are commonly biased into operation.
For p-channel devices, the voltage polarities and direction of current flow is inverted.

4.2.1 JFET

As the name suggests, the junction field effect transistor contains a pn-junction. The junc-
tion lies between the gate and drain/source terminals. The junction is most commonly
reverse-biased and the voltage over it is used to control the size of a depletion layer that
modulates the conductive channel and in turn the source-drain current. All JFETs are
depletion mode devices. The circuit symbols for the n-channel (pn-junction from gate to
source/drain) and p-channel (pn-junction from source/drain to gate) are shown in Fig-
ure 4.3.

The three model parameters in Table 4.2 {λ, β, VTh} can be read from datasheets sup-
plied by vendors or estimated by measuring individual devices.
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Figure 4.3 JFET Symbols

4.2.2 MOSFET

The metal-oxide-semiconductor field-effect transistor, also known as the insulated-gate
field-effect transistor (IGFET) can be seen as a JFET with an additional layer of insu-
lating oxide (or similar material) placed over its gate. The large majority of MOSFETs
found in audio circuits are enhancement-mode devices. In the first-order Shichman-Hodges
model for the MOSFET, β is expressed in terms of other MOSFET specific device-level
parameters (see Table 4.2)

β =
KP

2

W

Leff
. (4.8)

Incorporating Proposed FET Models Inside a WDF

FETs are three-terminal devices and incorporating them as one-port device is unfeasible.
Instead we must model them using two ports, with one terminal of each port wired together.
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Any choice of terminal currents (gate, drain or source) may be treated as port currents
(gate-drain, gate–source, drain–gate, drain-source etc). We arbitrarily choose [ iDS iGS ]

ᵀ

to be our port currents. They are defined in terms of the port voltages [ vDS vGS ]
ᵀ. The

two-port FET element (see e.g. Figure 4.4c has port 0 current defined as iDS and port 1
current defined as iGS. The two-port FET is then included at the root of a WDF connection
tree as outlined in §2.2.5.

4.3 Operational Transconductance Amplifier

Operational Transconductance Amplifiers, or OTAs for short, are active, tunable, high-gain
devices, that take differential voltage as input and output current1. The simple external
tuning of the gain, called transconductance, have made OTAs an essential building block
for audio circuit designers. By modifying the transconductance, OTAs are most commonly
used to decouple control from audio circuitry, as is done in the filter of the Korg MS-20
synthesizer [57] discussed in §5.3, or in the envelope filter discussed in §5.2.

1Contents of this section have been adapted from a paper presented at DAFx17 in Edinburgh [131]
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OTAs may be built using bipolar or CMOS transistor technology [156]. CMOS OTAs
are widespread in high-frequency applications [147] but are less common in audio circuits
where bipolar OTAs are ubiquitous.

On the device level modern OTAs can be quite complex, containing multiple transistors
and other nonlinear components in complicated topologies. To simplify circuit design, anal-
ysis, and simulation, the behavior of OTAs is often idealized completely or approximated,
as is often done with traditional op amps [45]. Such approximations include linear [157] or
nonlinear macromodels [158].

The most commonly used OTA symbol in the research community is the VCCS symbol
augmented with an additional bias current port as shown in Figure 4.5a. The OTA symbol
widely found in circuit schematics is shown in Figure 4.5b.

4.3.1 Ideal VCCS Model

An ideal OTA is a voltage dependent current source, with an adjustable gain, called
transconductance gm [156]. The output current iout equals the product of the differen-
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tial voltage input vin = v+ − v- and gm

iout = gm vin. (4.9)

The conductance between the input terminals is assumed zero as is the case with tradi-
tional op amps [45]. The output on the other hand is assumed to be a current source and
so the output impedance is large. This is not the case for the standard op amp which ex-
hibits low impedance at its output terminal. Low output impedance is often desirable when
designing audio circuits and so modern bipolar-based OTAs, such as the LM13700 [159],
include controlled impedance buffers, such as a Darlington-pair [147], on device. In this
thesis we will idealize each Darlington-pair as an ideal buffer through the circuit theoretic
steps shown in Figure 4.7.

The transconductance of a real world device is a multivariate dynamic nonlinear func-
tion, dependent on temperature, device geometry, manufacturing process, etc. [158, 160].
In the ideal case it is a simple function on temperature and a bias current, which the device
sinks through a dedicated input terminal. This bias current is often referred to as the
Amplifier Bias Current (ABC) iABC. For an OTA based on a bipolar transistor differential
pair, the output current and transconductance are given by [156,161]

iout = iABC tanh
vin
2VT

, (4.10)

gm =
diout
dvin

=
iABC
2VT

sech2 vin
2VT

. (4.11)

In this equation the transconductance depends instantaneously on the differential input
voltage. It is however desirable for circuit designers that the transconductance is indepen-
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dent of the differential voltage input as discussed in §4.3. Assuming that |vin| � 2VT the
transconductance becomes

gm ≈ iABC
2VT

. (4.12)

VT, the thermal voltage, is usually on the scale of tens of millivolts and so making this
assumption limits the dynamic range of the input. However, modern OTAs, such as the
LM13700 [159], include linearizing diodes that increase the input range of the differential
voltage input while keeping the transconductance gain linear with respect to iABC [161].

The ABC terminal of a bipolar-based OTA can be idealized as an ideal voltage source
with constant voltage of VABC = 0.7V. This idealization is based on the fact that a cathode
terminal of a silicone diode is often connected internally to the ABC terminal of a bipolar-
based OTA [162]. Note that placing the ideal voltage source outside the circuit containing
the OTA in order may reduce complexity.

In §2.2.4 we have described how to transfer a populated MNA matrix from the Kirchoff
domain to the wave domain [44]. An ideal OTA is shown in Figure 4.6 while a MNA ele-
ment stamp is given by (4.13).




α β n

γ 1

δ −1

next −gm gm −1


 (4.13)

Nodes shown in Figure 4.6 are α = v+, β = v-, γ = vout, δ = ground.

4.3.2 Linear Macromodel

Real-world OTAs exhibit multiple nonidealities. Some of which may lead to audible effects
and need to be taken into account when designing or analyzing audio circuits. Similar to
the nonidealities exhibited by standard opamps [45], real-world OTAs have finite input and
output conductances and capacitances, input offset voltage, input bias currents, input off-
set current, differential and common mode gain and also other OTA-specific nonidealities
such as frequency dependent transconductance gain [157].
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Choosing which effects to include in a macromodel is a trade-off between complexity and
accuracy. Complex nonlinear macromodels for CMOS OTAs exist in the literature [158]
and can be adapted to bipolar OTAs by tuning the model parameters. Here we balance
complexity and accuracy by proposing a linear macromodel which models input and output
capacitances Ci+, Ci− and Co as well as a finite output conductance Ro.

Incorporating this macromodel into a WDF structure is simple. The procedure outlined
in §2.2.4 is followed as before and the MNA stamp shown in (4.13) is applied for each OTA
in the circuit schematic. Depending on the circuit being modeled, the current source may
or may not be incorporated inside a R-type adaptor.

4.3.3 Nonlinear Clipping

In the past two subsections we have assumed that |vin| � 2VT so that the transconductance
becomes independent of the input voltage gm ≈ iABC

2VT
. Including the saturating effects

from (4.11) into a simulation will result in a more accurate, refined model of the real
behavior. Furthermore it may also be sonically interesting. The nonlinear transconductance
is defined as (4.11)

gm =
iABC
2VT

sech2 vin
2VT

. (4.14)

Incorporating Proposed OTA Models into WDF

In order to include the nonlinear transconductance into the proposed models we place an
additional resistor Ri (Figure 4.9a) across the input terminals so that the Newton-Raphson
solver may have an easier time converging. The ports of the input terminals and nonlinear
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current source are treated as a single two-port nonlinear device. The input vector is thus
defined by [ vin vout ]

ᵀ and output vector [ iin iout ]
ᵀ.

The capacitors are to be placed in the tree that grows below the nonlinearities placed
at the root. iABC is sourced externally and the scattering behavior of the adaptor or root
element that contains the VCCS must be updated when iABC varies. Finally the steps
indicated in §2.2.5 may be followed to derive the nonlinear WDF.

An example of incorporating the proposed linear and nonlinear OTA models to a WDF
simulation is given as a case study in §5.2.

4.4 Summary

In this chapter we elaborated on the importance of being able to model the behavior of
nonlinear components in audio circuits simulation. We then proceeded to introduce models
of nonlinear components commonly found in audio circuits into the WDF formalism. For
each proposed model we outlined the steps necessary to incorporate the models in a WDF
simulation.

Now that we have reviewed the relevant theory we can continue to model audio circuits
that contain Zener diodes, FET transistors and operational transconductance amplifiers
using the WDF approach to circuit modeling.
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Chapter 5

Nonlinear components in WDFs—Case
Studies

In this chapter we put the theory introduced in previous chapters to good use. We simulate
three audio devices that contain nonlinear devices introduced into the WDF formalism in
Chapter 4.

To assess the accuracy of the derived WDF models we compare various simulations to
that of SPICE. We utilize test signals of varying complexity in both frequency- and time
domain to make sure our algorithms are at least as accurate as a corresponding simulation
obtained from SPICE.

5.1 FET Booster Circuit

The circuit we study first is a FET booster guitar pedal1. A booster effect is commonly
used to amplify an input signal without distorting it heavily. The amount of amplification
is configurable via the potentiometer Rg made available to the user on the front of the
device.

The circuit that implements the FET Booster is built around a single N-channel JFET
transistor (Figure 5.1a). The JFET is biased to operate in its linear region and does not

1Circuit adapted from http://www.muzique.com/lab/boost.htm

http://www.muzique.com/lab/boost.htm
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Figure 5.1 FET Booster

introduce substantial overtones to the input signal.

Deriving a WDF model of the FET booster circuit begins, as always, by looking at the
schematic (Figure 5.1a). In order to minimize computational complexity each rigid adaptor
should have as few ports connected to it as possible. We look for opportunities to separate
its topology up into individual components connected in parallel and/or series connections,
resigning to rigid connections only if necessary. At the same time we must be careful that
the two ports belonging to the FET are not separated as they need to be available as a
pair at the root of the connection tree [43].

The topology of the FET Booster circuit is rather simple and it is trivial to perform
decomposition of its topology by looking at the schematic. For more complex circuits,
a graph-theoretic approach has been proposed in the literature that handles arbitrarily
complex linear topologies [120, 121]. It has recently been extended to arbitrarily complex
nonlinear ones [43]. The fully decomposed circuit is visualized as a connection tree in Fig-
ure 5.1b. J10 corresponds to the vDS port of the JFET while J11 corresponds to the vGS
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Table 5.1 FET Booster—Component Values

Component Value

R1 1 kΩ

R2 1MΩ

R3 4.4 kΩ

R4, R5 10 kΩ

Rg [1 kΩ, 5 kΩ]
C1, C2 10 µF
VCC 9V

port. Note that this particular connection tree is only one of multiple possibilities.

3-port series and parallel adaptors have well known scattering matrices. The scatter-
ing matrix for each rigid adaptor must however be computed on an ad hoc basis. The
connection tree contains a single rigid adaptor R1 and so its scattering matrix must be
computed. Scattering matrices for arbitrary rigid adaptors are determined by transforming
a populated MNA matrix derived from the circuit after its topology has been decomposed
into parallel, series and rigid connections.

The process by which a MNA matrix is populated is described in detail in [44]. For each
of the five ports connected to R1 we place a resistive voltage source, defining one terminal
to be positive. Each node in this circuit is identified by a unique integer. Each port of
the circuit is given a unique letter and port resistance in such a way that the ports facing
up towards R1 are adapted. Ports connected to nonlinear elements, such as the JFET,
are given some arbitrary port resistance that won’t affect the simulation. With all nodes
and ports uniquely identified the MNA matrix is populated using MNA element stamps as
shown in [51].

Once the MNA matrix is populated, the scattering matrix is computed using (2.18),
see §D for a script that calculates the scattering matrix. Special attention must be paid
to the polarity of the sub-trees that hang off R1, such that they are correct with respect
to the component and adaptors as defined in Appendix B.1. Incorrect polarity may have
disastrous effects on the simulation of circuits that contain nonlinear devices [42]. Once
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the scattering matrix is computed the matrices E,F,M,N are computed using (2.23) to
(2.27) such that the nonlinear equations of the JFET transistor may be solved locally.

The FET model derived in Chapter 4 is placed at the root of the connection tree and the
capacitor is discretized using the standard bilinear transform. We extended the RT-WDF
C++ library [144] with the FET nonlinear model and implemented a Newton-Raphson
iterative solver with backtracking to improve the chances of convergence [6].

5.1.1 Comparison to SPICE

To assess the accuracy of the derived WDF model we compare it to the same exact model
in SPICE. The first input is a 440Hz sine wave with constant amplitude of 0.5V. Next we
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Figure 5.2 FET Booster—Amplitude Boosting. 440Hz Sine Input, Rg =
1kΩ, 5 kΩ. 16x Oversampling.

fix Rg = 2kΩ. The amplitude of the partials from the SPICE simulation are marked with
a circle. In Figure 5.3 we see the processed signal with 16x oversampling. The simulation
matches that of SPICE nicely.

We next compare the derived WDF algorithm to SPICE when the input is a multi-
partial signal. We use the same antialiased 440Hz sawtooth wave (Figure 5.4) and place



5 Nonlinear components in WDFs—Case Studies 58

5 10 15 20

Frequency (kHz)

-100

-90

-80

-70

-60

-50

-40

-30

-20

M
a
g
n
it
u
d
e
 (

d
B

)

SPICE

WDF

Figure 5.3 FET Booster—440Hz Sine Input, Rg = 1kΩ. 16x Oversampling.
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Rg = 1kΩ, 5 kΩ. We see that the WDF simulation compares nicely to that of SPICE, as
seen in Figure 5.5 and Figure 5.6 respectively. Since the FET is operating in its linear
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Figure 5.5 FET Booster—440Hz Antialiased Sawtooth Input, Rg = 1kΩ.
16x Oversampling.

region we do not expect a substantial effect on the spectrum when tuning Rg, other than
(almost) linear amplification. This is precisely what we see in Figures 5.5–5.6.
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Figure 5.6 FET Booster—440Hz Antialiased Sawtooth Input, Rg = 5kΩ.
16x Oversampling.

5.2 Envelope Filter

Figure 5.7 Envelope Filter—DOD FX25 Clone Schematic
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In this section the OTA models proposed in Chapter 4 are utilized to model an envelope
filter guitar/bass effect. The schematic we study [163] is based on the DOD FX-25 guitar
pedal2.

In general an envelope filter tracks the temporal envelope of an input signal. The enve-
lope directly modulates the critical (e.g., resonant or cutoff) frequency of a filter, that in
turn filters the input. This self-modulation can create some very interesting sonic effects,
envelope filters are also referred to as auto-wah effects. The critical frequency of the filter
is swept automatically up and down depending on the strength of a player’s picking and
not by the movement of his foot on a rocking pedal as is the case with traditional wah-wah
pedals. Some are even controlled by an arm that is directly attached to a guitar.

The envelope filter we study has two parameters to be configured by the user. The
sensitivity parameter influences how intensely the envelope follower reacts to a given input,
thus influencing the maximum critical frequency the filter can be swept to. The range
parameter is used to determine characteristics of the filter, such as the gain (5.11), critical
frequency (5.12) and Q-factor (5.13).

Input
Buffer

Filter
Output
Buffer

Envelope
Follower

in

envelope

out

Figure 5.8 Envelope Filter—Block Diagram

The complete circuit diagram in Figure 5.7 is quite complex and would pose a formidable
challenge if no simplifications were made. In the rest of this thesis we model operational
amplifiers as nullors [45,164]. From a circuit-theoretic standpoint the output of the norator
connected in series to a load is equivalent to a norator and an ideal voltage source [164]
connected in series to the same load. That is the load does not influence the output of the
norator at all. By modeling each op-amp using a norator we are able to split the complete

2Figure 5.7 is displayed with approval from the author.
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Figure 5.9 Envelope Filter—Input Buffer

Table 5.2 Envelope Filter—Input Buffer Component Values

Component Value

R4 10 kΩ

R5 470 kΩ

C3 10 nF

VBias 4.5V

circuit up into smaller subsections. The general abstract block diagram of the effect is
shown in Figure 5.8.

5.2.1 Input Buffer

The input buffer is a simple 1st-order high pass filter with C3 acting as a coupling capacitor.
R1 and R2 bias the input signal to the operating voltage. The op-amp in a non-inverting
buffer configuration that furthermore provides high input-impedance, a desirable trait of
real-world audio effects. In the digital realm there is no effective coupling at this stage, due
to the way we model the op amp, and so we can skip the op amp modeling and take the
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Figure 5.10 Envelope Filter—Output Buffer

Table 5.3 Envelope Filter—Output Buffer Component Values

Component Value

R21 1 kΩ

R22 100 kΩ

C11 1 µF

voltage over R5 + VBias as the output voltage. The transfer function from vin to vbuffer is

H(s) =
Vbuffer(s)

Vin(s)
=

s R5

R4+R5

s+ R5

C3(R4+R5)

(5.1)

One possible connection tree for the input buffer is shown in Figure 5.9b. Deriving the
rigid adaptor is done as described in §5.1 and will be omitted here for sake of brevity.

5.2.2 Output Buffer

The output buffer (Figure 5.10a) decouples the processed signal from the internal operating
voltage and supplies it to the outside world. Similar to the input buffer, the output buffer
is also a 1st-order high-pass filter, with a similar linear transfer function, but different
component values. One connection tree for the output buffer is shown in Figure 5.10b.
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Figure 5.11 Envelope Filter—Envelope Follower Schematic

5.2.3 Envelope Follower

The circuit that implements the envelope tracking/following is centered around two diodes,
D2 and D3. Since the voltage over the diodes won’t enter their respective breakdown region
for the range of operating voltages of the circuit, we model them using the ideal Shockley
diode equation (4.1). Ideal voltage sources VABC = 0.6V are placed in series with R12 and
R13 to model the circuit inside the ABC terminal (§4.3).

As before we model the op-amp as a nullor. A norator (output port of the nullor) in
series with some load is simply a norator [164]. From a circuit-theoretic point of view the
left terminal of C6 in Figure 5.11 is connected to an ideal voltage source that sources/sinks
the voltage supplied by the op-amp. Having the circuit split up into two separate sections,
linear (see Figure 5.12a) and nonlinear (see Figure 5.13a), means that we have two WDF
trees running side-by-side. This results in smaller R-type adaptors that reduce complexity.
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Table 5.4 Envelope Filter—Envelope Follower Component Values

Component Value

R6 150 kΩ

R7 4.7 kΩ

R8, R9 1MΩ

P1 100 kΩ

C4 1 µF
C5 100 nF

C6 4.7 µF
C7 22 µF
D2, D3 1N4148
VBias 4.5V

VCC 9V

Envelope Follower—Linear Section

The linear section implements a cascade of a 1-st order high-pass filter composed of C4 and
R6 that is cascaded to a 1-st order high-frequency shelving filter that is made up of the
remaining components.

H(s) =
Vlinear(s)

Vbuffer(s)
= HHP(s) ·HSHELF(s) =

s

s+ 1
R6C4

sP1+R7+R8

P1+R7
+ 1

C5(P1+R7)

s+ 1
C5(P1+R7)

(5.2)

In order to simplify the resulting connection tree we add an ideal resistor Rbuffer in series
with vbuffer. As every voltage source has some intrinsic resistance, inserting Rbuffer will not
affect the accuracy of our simulation. We assume that its value is small enough so that
effects from it can be neglected from calculations.

Envelope Follower—Nonlinear Section

The nonlinear section of the circuit implements the envelope tracking (Figure 5.13). A
resistor of some small resistance Rlinear is included so that it can form a resistive voltage
source with vlinear. In order to get an intuitive understanding of what is going on within
the nonlinear section we imagine that a step function is supplied as input via vlinear. If
the voltage over D3 is higher than its forward voltage, it is switched on and will start to
conduct. At that point in time C7 will begin charging up. Simultaneously C6 also begins
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Figure 5.12 Envelope Filter—Envelope Follower (Linear Section)

charging up, eventually reaching a point where the voltage over D3 is less than its forward
voltage and it stops conducting, effectively entering a switched off state.

Some of the current that is fed through D3 will flow directly through resistors R12 and
R13, as amplifier bias current, into the filter section. Once the input goes down again the
polarity over D2 may become greater than its forward voltage and current will flow through
D2 and C6 to the ideal voltage source.

The fact that the diodes are operated as switches means that the damping of the in-
stantaneous poles of the circuit will vary greatly in a short amount of time. To accurately
discretize this subsection we must resort to the use of an α-transform and the damping
monotonicity criterion as discussed in §3.2. First we need to figure out the locations of
poles in the system.
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Figure 5.13 Envelope Filter—Envelope Follower (Nonlinear Section)

In order to do so we must first linearize the circuit around a given operating point and
derive transfer functions from the input, over the two diodes. We use a small-signal model
for each of the diodes [147]. This model assumes that the voltage over a diode D may be
split up into a DC and AC parts vD(t) = VD + vd(t). Plugging this into the Shockley diode
equation gives us

iD(t) = Is(e
vD(t)

µVT − 1) ≈ Ise
vD(t)

µVT (5.3)

= Ise
VD
µVT e

vd(t)

µVT = IDe
vd(t)

µVT (5.4)

We now perform the first Taylor expansion of e
vd(t)

µVT around vd(t) = 0V

e
vd(t)

µVT ≈ 1 +
vd(t)

µVT

(5.5)

thus recovering the diode current split into DC and AC parts

iD(t) ≈ ID +
ID
µVT

vd(t) = ID +
1

rD
vd(t). (5.6)

rD is known as the small-signal resistance and must be calculated based on the operational
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conditions of the circuit. Using the small-signal approximation, diodes D2 and D3 can be

−+vlinear

C6

rD2

rD3

C7 R9 R12 R13

Figure 5.14 Envelope Filter—Envelope Follower (Nonlinear Section) Small
Signal Approximation

replaced by their small-signal equivalences rD2 and rD3. Assuming that other DC sources
are placed at zero we obtain the small-signal equivalent circuit in Figure 5.14. Now we
can derive a transfer functions by using MNA-based techniques described in [165]. Placing
Rpar = R7 ‖R8 ‖R9, the transfer function from vlinear over rD2 becomes.

HD2(s) =
C4rD3s(C5rD2Rpars+ rD2 +Rpar)

C4C5rD3rD2Rpars2 + (C4rD3(rD2 +Rpar) + C5Rpar(rD2 + rD3))s+ rD3 + rD2 +Rpar
(5.7)

Now we can use it to find the instantaneous poles for the component values and possible
operating voltages we have. The poles of the transfer function from vlinear over rD3 has the
same poles. Finding the exact minimum pole location requires some nonlinear optimization
methods which are beyond the scope of this thesis. Instead we use the intuition gained from
describing the circuit and make the assumption that at least one pole is highly-damped
when either diode is switched-on while the other one is switched-off.

In order to get a rough estimate of the pole location we simulate the full nonlinear circuit
shown in Figure 5.11 using SPICE. SPICE itself uses a modified version of the trapezoidal
integration rule with varying sample-rate [34]. We use the values obtained there as rough
estimates.

We feed the SPICE simulation an input of amplitude of 0.2V which should give us a
rough picture of the range of voltages that we may expect. The sensitivity parameter is
varied over its full range. We obtain two data points where one diode is conducting while the
other is not. The points are vD1, vD2 = 0.8512,−1.6248 V and vD1, vD2 = −1.6485, 0.8622 V.
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Figure 5.15 Envelope Follower (Nonlinear Section)—Larger α

The pole with the maximum damping is located at σmin = −2.24 · 106 and for a sample
rate of 44.1 kHz (T ≈ 22.676 µs) we get (3.14)

α ≤ 0.0201 (5.8)

It should be noted that damping monotonicity is intrinsically guaranteed if backwards Eu-
ler (α = 0) is used as the discretization method of choice. We can now feed the derived
WDF model with a 0.2V step function and observe the effect of varying α.

It is apparent from Figures 5.15–5.16 that choosing a proper value for α is crucial
if accurate simulations are to be obtained. Applying the standard bilinear transform,
without considering the damped poles, will result in a simulation that overshoots the SPICE
comparison substantially. α values that are closer to the damping monotonicity criterion
result in much more accurate responses when compared to SPICE. One way to get even more
accurate responses is to oversample the algorithm. Oversampling effectively increases the
allowable bandwidth a processed signal can have without being subjected to aliasing [78].
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Figure 5.16 Envelope Follower (Nonlinear Section)—Smaller α
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Figure 5.18 Envelope Filter—Filter Connection Tree

Table 5.5 Envelope Filter—Filter Component Values

Component Value

R23 10 kΩ

R10, R11, R17, R18 1 kΩ

R14, R15, R16, R19, R20 22 kΩ

P2 100 kΩ

C8 1 µF
C9, C10 10 nF

VBias 4.5V

VCC 9V

5.2.4 Filter Section

The filter section of the envelope filter is shown in Figure 5.17 and corresponding com-
ponent values shown in Table 5.5. Idealizing the Darlington pair using the steps shown
in §4.3 and replacing C8 with R23 (simplifies our algorithm) we end up with the connection
tree shown in Figure 5.18. This linear transformation will not change the positive input
terminal at O1 as the values of all components are assumed constant [131]. The calculation
of the scattering matrix is shown in a script in §D.

To gain insight into which kind of filter the circuit is realizing we derive its transfer
function. We replace the OTA with our ideal VCCS model and assume that iABC and
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the range parameter are constants, i.e., we study the system under LTI conditions. We
continue to derive the transfer function using MNA (and the newly derived OTA MNA
element stamps).

H(s) = H0

︸︷︷︸
Gain

s

s+ ωc

︸ ︷︷ ︸
Highpass section

ω0

Q∞
s

s2 +
ω0

Q∞
s+ ω2

0

︸ ︷︷ ︸
Bandpass filter

(5.9)

The transfer function this circuit realizes is essentially a 1st order highpass filter, com-
posed of components C8, R10, R23, cascaded with a 2nd order bandpass filter. To simplify
the expression of the transfer function, components with identical values are grouped to-
gether, Ra = R23, Rb = R10, R11, R14, R17, R18, R19, Rc = R15, R16, R20, Rd = P2, Ca = C8

and Cb = C9, C10. We define Rq = Rc + rRd, where r ∈ ]0, 1] determines the range.

ωc =
1

Ca (Ra +Rb)
(5.10)

H0 =

RbRc
Rq

+Rb +Rc

3 (Ra +Rb)
(5.11)

ω2
0 =

R2
b g

2
m

C2
b (Rb +Rc) (

RbRc
Rq

+Rb +Rc)
(5.12)

Q∞ =
Rq

Rc

√√√√RbRc
Rq

+Rb +Rc

Rb +Rc
. (5.13)

Interestingly Rq, controlled by the range, influences all parameters of the transfer func-
tion except ωc. The transconductance, gm, whose highest value can be set by the sensitivity
knob in the envelope follower section, only influences the center frequency. That means
that the filter is a constant-Q filter with respect to the transconductance, surely a desirable
trait when sweeping the frequency spectrum.

Comparison of Bode plots with three amplifier bias currents iABC = {6, 60, 600} µA and
four range settings r = {0.01, 0.22, 0.6, 1.0} are shown in Figure 5.19. The input is supplied
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via the ideal voltage source, vbp, and output is taken at vout in Figure 5.17.

The ideal OTA based circuit shows excellent results when compared to the transfer
function. The only visible difference between the two happens as the frequency approaches
the Nyquist frequency where the warping effects from the bilinear transform become no-
ticeable. The plot of the macromodel is in good accordance with a component-level SPICE
model where the magnitude spectrum matches almost exactly throughout the range of
amplifier bias currents and range controls. There are minor differences in the location of
critical frequencies and bandwidth between the two plots in Figure 5.19.

We briefly study the circuit’s behavior under time-varying conditions. The input is a
440Hz sawtooth, r, the parameter controlling the range, is set to 0.01 and iABC is increased
linearly over time as indicated in the first row of Figure 5.20. In the second row of the
same figure a comparison of a SPICE simulation of the filter circuit composed of an ideal
OTA simulated using SPICE is compared to the ideal OTA WDF. The third row compares
the ideal and macromodel WDFs to a component-level model of the LM13700 OTA as
simulated in SPICE. Despite the assumptions of (4.12) and idealizing Darlington pairs as
ideal buffers, good results are obtained. The clipping behavior of the OTA (4.11) will have
a more pronounced effect as the amplitude of the input is increased. This will cause the
differences between the simulations from the component-level SPICE model and the WDFs
to deviate more at higher amplitudes than at lower ones.

The input signal to the envelope filter circuit is meant to be a guitar pickup and so the
clipping behavior of the OTAs is almost never reached. For the next circuit we study, this
is not the case and we will show how the saturated OTA model compares to the ideal OTA
model and how it influences the resulting timbre.

5.3 Korg MS-20 Filter

The filter of the Korg MS-20 synthesizer [57] is renowned for its gritty characteristics. Here
we study the circuitry that realizes the filter and derive a WDF model of it.
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Figure 5.19 Bode plot comparison of magnitude (blue) and phase (orange)
spectra. Upper plot compares the ideal OTA transfer function (dashed lines) and
WDF model (dotted lines). Lower plot compares the component-level SPICE
model of the LM13700 (dashed lines) with a macromodel-based model (dotted
lines).

The filter section of the Korg MS-20 can be seen in Figure 5.21. It’s inner work-
ings has already been studied by Stinchcombe [154]. Stinchcombe derives an approximate
transfer function of the filter by idealizing the behavior of the OTA, op-amps and Dar-
lington pairs QD1 and QD2 and removing the antiparallel diodes APD. He also makes
several approximations, such as neglecting influence from C7 and assuming that C4 = C5,
R19 = R22 = R24 = R27, R19 � R21 and R24 � R26. Under these assumptions the transfer
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Figure 5.20 Envelope Filter—Simulation Under Time-Varying iABC

function becomes a simple 2nd-order lowpass filter

H(s) =
Vout(s)

Vin(s)
=

ω2
c

s2 + ωc

Q∞
s+ ω2

c

(5.14)

where

ω2
c =

gm

(2 + R19

R21
)C1

(5.15)

Q∞ =
1

2− (1 + R30

R31
)R29+qRq

qRq

(5.16)

where q ∈ ]0, 1] is used to determine the quality factor of the filter. The filter may thus be
approximated as having individual control over both the cutoff frequency and quality factor.

In order to further verify Stinchcombe’s findings we derive the transfer function using
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Figure 5.21 Korg MS-20 Filter—Schematic

MNA that does not make the same simplifying assumptions. We then compare the two re-
spective derivations for four values of iABC = {0.4, 4, 40, 400} µA and q = 1. For frequencies
higher than around 10Hz, Stinchcombe’s derived transfer function is in pretty good agree-
ment with the MNA based derivation for the given ABC currents (Figures 5.22-Figure 5.23).
One possible reason is that Stinchcombe disregards the effects from the output coupling
capacitor C7.
Recently another synthesizer filter in the MS synthesizer series by Korg, the Korg MS-50,
was studied in the WDF domain by Rest et al. [166]. The MS-50 features a Sallen-Key filter
topology built around a voltage controllable diode bridge while the MS-20 does not have
a pure Sallen-Key filter topology due to the buffers (Darlington-pairs) in its feed-forward
path.
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Figure 5.22 Korg MS-20 Filter—Bode Plot Comparison

Deriving a WDF model of this circuit follows. We begin by making simplifications to
the circuit schematics. Darlington buffers QD1, QD2 are made into ideal buffers (Figure 4.7)
and the operational amplifier OP1 is idealized as a nullor. First we idealize the behavior of
the OTA, only later including the clipping/saturation effects.

We glance at the schematic for ways to divide the topology of the circuit down to known
connections and components. One connection tree is shown in Figure 5.24. Deriving the
scattering matrices is done as before (§§2.2.4–2.2.5), see §D for a script that calculates the
scattering matrix.

5.3.1 Comparison to SPICE

To access the accuracy of the derived model we first simulate it with a single-partial audio
signal (Figure 5.25) where it is easy to see the effects of the anti-parallel didoes in the
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Figure 5.23 Korg MS-20 Filter—Bode Plot Comparison (Zoom)

feedback path; the odd harmonics are much more dominant than the even ones. Next we
simulate a multi-partial audio signal (Figures 5.26–5.27). In all cases the WDF simulation
compares well to that of SPICE.

Ideal OTA vs Saturation Model OTA

Next we compare a simulation using the ideal OTA model with that of the saturation
model. In Figure 5.28 the input signal is a 1V peak antialiased sawtooth wave and we
see that there is not a substantial effect by including the saturation OTA model (circle
markers show peaks of the ideal OTA model). However when the input signal is a 4.5V

peak antialiased sawtooth wave the spectrum changes substantially when the saturation
OTA model is included (Figure 5.29)
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Table 5.6 Korg MS-20 Audio Circuit—Component Values

Component Value

R8 2.2 kΩ

R19, R22, R24, R27, R30, Rq 10 kΩ

R20, R21, R25, R26 220Ω

R29 8.2 kΩ

R31 3.3 kΩ

C4, C5 2.2 nF

C7 33 µF
VCC 15V

VEE −15V

5.4 Summary

In this chapter we applied the theory reviewed and developed in the previous chapters to de-
rive WDF algorithms of three nonlinear audio circuits. Simulations were in good agreement
tried-and-true circuit simulation software SPICE, both in the frequency- and time-domains.

The issue of discretization under time-varying conditions was discussed, most notably
in the context of an envelope filter circuit as well as a nonlinear envelope follower circuit.

In this chapter we have used SPICE as a ground-truth for comparison. As we saw we
obtained results that most certainly compare to SPICE. However, the algorithm behind
SPICE §C is not possible to extend to real-time since the operations needed can not be
bounded beforehand [34]. This we can do with our current WDF framework. Additionally,
in our simulations we noticed that for similar parameters we found that simulations from
the WDF algorithm resulted in a lower noise-floor for all simulations we ran.
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Figure 5.24 Korg MS-20 Filter—Connection Tree
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Figure 5.25 Korg MS-20 Filter—440Hz Sine Input, iABC = 100 µA, q =
0.5. 16x Oversampling.
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Figure 5.26 Korg MS-20 Filter—440Hz Antialiased Sawtooth Input, iABC =
100 µA, q = 0.5. 16x Oversampling.
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Figure 5.27 Korg MS-20 Filter—440Hz Antialiased Sawtooth Input, iABC =
100 µA, q = 0.15. 16x Oversampling.
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Figure 5.28 Korg MS-20 Filter—440Hz Antialiased Sawtooth Input, iABC =
100 µA, q = 0.15. Comparing Ideal OTA vs Saturated. 16x Oversampling.

5 10 15 20

Frequency (kHz)

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

M
a

g
n

it
u

d
e

 (
d

B
)

Ideal OTA

Saturation OTA

Figure 5.29 Korg MS-20 Filter—440Hz Antialiased Sawtooth Input, iABC =
100 µA, q = 0.15. Comparing Ideal OTA vs Saturated. 16x Oversampling.
High-level input signal.
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Chapter 6

Conclusion

6.1 Summary

In this thesis our main goal was to study the modeling and simulation of nonlinear circuits
using the wave digital filter (WDF) formalism. We began our study by reviewing current
research trends within the field of Virtual Analog. Special emphasis was placed on WDFs,
their historical developments and recent advances that have opened the formalism up to
model almost any audio circuits (complex topologies, arbitrary number of nonlinear ele-
ments).

We studied WDFs under time varying conditions. The WDF literature is sparse on
this topic. While stability is guaranteed for passive circuits, it was shown that blindly fol-
lowing the WDF literature [22, 134, 135] may result in inaccurate simulations. The choice
of connection tree, wave variable and discretization method were pointed out as essential
pieces when developing a WDF algorithm of a time-varying circuit. Furthermore the is-
sue of time-varying reactances and their inherent ambiguity under time-varying conditions
was addressed. Models of guaranteed-passive time-varying reactive elements were also pre-
sented.

The Zener diode, FET transistor and operational transconductance amplifier, all non-
linear components ubiquitous in audio circuits were introduced into the WDF formalism to
circuit modeling. Methods on how to incorporate them into WDF structures were given.
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The newly derived models of the nonlinear components were put into use in the last
chapter of this thesis. Three audio circuits, containing the nonlinear components, were
modeled using the WDF formalism. This resulted in the first simulation of these audio
circuits by use of the WDF paradigm. Simulations were shown to be in good agreement
with tried-and-true circuit simulation software SPICE, both in frequency and time domains.

6.2 Future Work

There are several topics that were touched upon in this thesis that would be interesting to
cover in greater depth in the future:

Time-Varying Reactive Elements As pointed out in §3.4 there is an inherent ambigu-
ity when simulating reactive elements. This seems to arise from the derivation as
achieved through the assumptions made by circuit theory §A.1. Since reactances de-
pend on spatial dimensions it is unclear whether accurate simulations may be achieved
in the lumped case.

s-to-z Plane Mappings versus Numerical Schemes s-to-z plane mappings are only
valid under LTI conditions in which case they can be shown to be equivalent to proper
numerical schemes. Accuracy and stability analysis done on numerical schemes (§A.2)
also assumes LTI.

Comparison to Actual Hardware Although we did not have the chance to do so in this
thesis, we hope to further verify the accuracy of our derived models by comparing
them to the hardware they set to model.

Plugin Development The software developed during the writing of this thesis may be
easily extended to an audio plugin so that musicians can use it in real time.
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Appendix A

Lumped Element Models and Their
Discretization

A.1 Approximating Field Equations

In order to faithfully emulate vintage audio gear we must understand the limitations of the
models we choose to use. By outlining their derivation we get a chance to understand the
assumptions that go into their design 1. Circuit theory is based on the lumped element
assumption/lumped matter discipline of the Maxwell equations [99]. The fundamental laws
that must hold for every electric circuit are Kirchoff’s current and voltage laws (KCL and
KVL).

Kirchoff’s Voltage Law

It is straightforward to derive Kirchoff’s current law from Faraday’s law which states that
the voltage induced in a closed loop is proportional to the rate of change of magnetic flux
that the loop encloses. In integral form Faraday’s law reads

∮

∂A

�E · d�r + d

dt

∫

A

�B · d �A = 0. (A.1)

1The derivation was adapted from an explanation provided on Stack Exchange

https://physics.stackexchange.com/questions/102458/how-can-kvl-kcl-be-derived-from-maxwell-equations
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Where �E is the electric field, �B is the magnetic field, A is some surface and ∂A is its
boundary which can be split up into partial paths

⋃
k Ck = ∂A. Taking this notation into

account we obtain ∑
k

∫

Ck

�E · d�r + d

dt

∫

A

�B · d �A = 0. (A.2)

Voltage drops are defined as Vk �
∫
Ck

�E · d�r and magnetic flux as Φ �
∫
A
�B · d �A

∑
k

Vk = − d

dt
Φ. (A.3)

If − d
dt
Φ ≡ 0 we obtain Kirchoff’s voltage law

∑
k

Vk ≡ 0. (A.4)

That is voltage drops within a closed loop must always sum to zero.

Kirchoff’s Current Law

Kirchoff’s current law is derived from Ampere’s law which states that the magnetic field
induced around a closed loop is proportional to the electric current plus displacement
current (rate of change of electric field) that the loop encloses. In integral form we have

∮

∂A

�H · d�r =
∫

A

�J · d �A+

∫

A

d

dt
�D · d �A. (A.5)

Where �H is the magnetic field strength, �D is the electric displacement and �J is the current
density. If we choose a closed surface A, the boundary ∂A becomes empty

∮

∂A

�H · d�r ≡ 0. (A.6)

Ampere’s law for the closed surface then becomes
∮

A

�J · d �A+

∮

A

d

dt
�D · d �A = 0. (A.7)
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If we now dissect the surface into two partial surfaces, Ak conductor cross-sections and
Ai insulator partial boundary. The current through Ak is defined by Ik :=

∫
Ak

�J · d �A.
Additionally we define charge transfer currents from both the conductor cross-sections
ICk

�
∫
Ak

d
dt
�D · d �A and insulator cross-sections Ii �

∫
Ai

d
dt
�D · d �A. Ampere’s law for the

bound surface is then ∑
k

Ik +
∑
k

ICk
+ Ii = 0. (A.8)

If we now assume that there are no charge transfer currents
∑

k ICk
≡ 0, Ii ≡ 0 we obtain

the familiar Kirchoff current law ∑
k

Ik ≡ 0. (A.9)

Discussion

The underlying assumptions of Kirchoffs’ laws are equivalent to the ones of the lumped
element model. That is to say that the electric field in a circuit is stored in its entirety
within capacitors while the total magnetic field is stored within inductors. This suggests
that the lumped element model assumes that no energy is lost in electromagnetic radiation.

A.1.1 Dynamical Systems Analogies

Lumped dynamical systems are characterized by variable pairs known as across/through
or effort/flow pairs. In the electrical context these variables are voltage/current. Examples
of other types of systems that can be modeled as lumped systems include acoustical and
mechanical rotational ones [30].

Equivalences among these domains can be drawn using two different kinds of analogies:
the conventional analogy [30], or the Firestone analogy [29] (maintains topology). An
example of a common analogy made between lumped systems is in the study and design
of loudspeakers (electro-acoustic transducers) as equivalent electrical circuits [32].

A.2 Numerical Discretization Schemes

In WDF theory components are discretized locally, one component at a time. By retaining
a circuit’s topology through the discretization phase, energy conservation laws are inherited.
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Below we will give stability and accuracy analysis for well known numerical discretiza-
tion schemes, assumed to be applied locally. The notation and general procedure of [137]
is adapted here. Given a differential equation

dy

dt
= f(y, t) (A.10)

we linearize it around a given operating point (t0, y0) and perform a two-dimensional Taylor
series expansion

f(y, t) = f(y0, t0) + (t− t0)
∂f

∂t
(y0, t0) + (y − y0)

∂f

∂y
(y0, t0) + · · · (A.11)

The model problem is a simplification of the Taylor series expansion where constants, non-
linear terms, and terms related to the implicit time derivative are discarded. What results
is a much simpler and malleable equation

dy

dt
=

∂f

∂y
(y0, t0) y(t) = λy(t). (A.12)

This equation is arguably the simplest differential equation there is, with a solution in the
form of y(t) = y0e

λt, that leads to a discretized version that reads

y(tn) = y0(e
λT )n = y0 (1 + λT +

λ2T 2

2!
+

λ3T 3

3!
+ · · · )n = y0 σ

n (A.13)

where y(0) = y0, T is the sampling interval and σ is known as the amplification constant.
λ is assumed complex with a non-positive real part. The phase error is defined as the dif-
ference between the phase of the exact solution (A.13) and that of a particular numerical
scheme [137].

When determining the phase error, λ is assumed purely imaginary λ = i ω and y(0) = 1.
In that special case when the amplitude of the exact solution is |y(t)| = 1 the phase be-
comes Arg(y(t)) = ωT .
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Table A.1 Numerical Schemes

Scheme Stability σ Phase Error

Exact Solution N/A eλT = 1 + λT + λ2T 2

2! + λ3T 3

3! + λ4T 4

4! + · · · N/A

Forward Euler Cond. stable 1 + λT (ωT )3

3 + · · ·

Backward Euler Stable 1
1� λT = 1 + λT + λ2T 2 ++λ3T 3 + · · · (ωT )3

3 + · · ·

Trapezoidal Method Stable 1+λT/2
1� λT/2 = 1 + λT + λ2T 2

2 + λ3T 3

4 + · · · (ωT )3

12 + · · ·

2nd-order Runge-Kutta Cond. stable 1 + λT + λ2T 2

2! − (ωT )3

3! + · · ·

4th-order Runge-Kutta Cond. stable 1 + λT + λ2T 2

2! + λ3T 3

3! + λ4T 4

4!
(ωT )5

5! + · · ·

A.2.1 Stability

Explicit methods, such as the forward Euler method are known to be conditionally stable
or not stable at all. For a numerical method to be conditionally stable means that their
stability hinges on properties of the differential equation itself. In general one can derive a
stability region where |σ| ≤ 1 which means that the solution to (A.12) remains bounded.
The resulting region of stability usually depends on the sampling interval and λ. Stability
of the Forward Euler method is for example guaranteed only if T ≤ 2/|λ| and λ is not
purely imaginary.

A.2.2 Accuracy

Numerical schemes are generally classified by their order of accuracy. A method is said to
be of α-order if its amplification factor matches all terms up to and including the λαT α/α!

in A.12. Comparing the amplification factors in Table A.1 to (A.13) we see that the Euler
methods are 1st-order accurate, the trapezoidal method and 2nd-order Runge-Kutta are
2nd-order accurate while the 4th-order Runge-Kutta is considered 4th-order accurate. Or-
der of accuracy gives an upper bound on the accuracy of the numerical scheme.

The 4th-order Runga-Kutta is the most accurate numerical scheme listed here. This
increase in accuracy is a result of the four function evaluations it does per time step, as
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Mapping z �→ s = f(z) s �→ z = f � 1(s)

Forward Euler s = fFE(z) =
1� z� 1

Tz� 1 z = f � 1
FE (s) =

1+Ts
1

Backward Euler s = fBE(z) =
1� z� 1

T z = f � 1
BE(s) =

1
1� Ts

Bilinear Transform s = fBT(z) = µ 1� z� 1

1+z� 1 z = f � 1
BT(s) =

1+sµ� 1

1� sµ� 1

α Transform s = fα(z) =
1+α
T � 1+α

T z� 1

1+αz� 1 z = f � 1
α (s) = −αs+ 1+α

T

s� 1+α
T

Möbius Transform s = fM(z) = a+bz� 1

c+dz� 1 z = f � 1
M (s) = − ds� b

cs� a

Table A.2 s-Plane to z-Plane Spectral Mappings

opposed to two as the trapezoidal and 2nd-order Runge-Kutta methods do.

A.3 s-Plane to z-Plane Mappings

In engineering, the (unilateral) Laplace transform is an useful tool for solving systems that
are described by linear ordinary differential equations (ODE) with constant coefficients [78].
The Laplace transform is defined for a given function f(t) by the integral

F (s) = L {f(t)} =

∫ ∞

0−
f(t)e−stdt (A.14)

where s = σ+ jΩ is the complex frequency. Using the Laplace transform on a single-input
single-output (SISO) LTI system will result in the transfer function

H(s) =
Y (s)

U(s)
=

∑M
m=1 bms

m

∑N
n=1 ans

n
(A.15)

where Y (s) and U(s) are Laplace transforms of the output and input respectively. A
transfer function uniquely describes the relationship between the input and output of a
LTI system in the special case when the input and its derivatives are taken to be zero at
t < 0.

In the LTI case the Forward Euler, Backward Euler and Bilinear transforms are equiv-
alent to the Forward Euler, Backward Euler and trapezoidal numerical schemes. Where
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µ is a tunable parameter for the bilinear transform (µ = T/2 for the canonical bilinear
transform). α is similarly the tunable parameter for the α Transform [56]. As the Laplace
transform is not defined for nonlinear time-variant systems the s-to-z mappings are not
defined for such systems.

A.3.1 Discussion

It is clear that choosing a numerical scheme is a trade-off between accuracy, stability as
well as computational complexity (not discussed here). Although more accurate multi-step
methods do exist, their increased accuracy usually comes at the price of complexity and
stability.

The model problem assumes LTI and so the previous analysis is based on the assump-
tion that the differential equation we are working with are similarly LTI. This is generally
not true and the following stability and accuracy analysis should generally be thought of
as an upper bound. Moin [137] states that performing analysis on the model problem does
not substantially affect the result of the stability analysis.

Passivity, a central concept in WDF theory, can only be guaranteed unconditionally at
a global scale if the same applies locally. A recent paper explored the application of the
Möbius transform from the study of conformal mapping to numerical schemes [56]. It is
shown that the explicit Euler, trapezoidal method and α-transform are all edge cases of
the Möbius transform method. The authors also note that the trapezoidal method is the
most accurate single-step method that is absolutely stable (A-stable) and that passivity
cannot be guaranteed for multi-step methods above order 2 [167]. The Möbius transform is
a generalization of the highest order linear multi-step methods applied in the WDF context
that guarantee local passivity.
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Appendix B

Common WDF Building Blocks

Most of the linear components and connections that we need in order to simulate audio
circuits have been known in the wave-domain for a long time [35]. In this appendix we
aggregate important WDF elements to the simulation of audio circuits. The discussion
takes off with a presentation of one-port components followed by two-port components.
Finally we discuss common adaptors and some of their properties.

B.1 Common Components

B.1.1 One-Port Components

One-port components at an arbitrary port 0 are characterized in the Kirchoff-domain by
their port voltage v0 and port current i0. In the wave domain they are completely charac-

port 0

i0

i0

+

−

v0

(a) Kirchoff domain

port 0

b0

a0

R0

(b) Wave domain

Figure B.1 Generic One-Port

terized by an incident wave a0, reflected wave b0 and a port-resistance R0. Signal variables
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at some port 0 can be transformed from the Kirchoff domain into the wave domain using
[
a0

b0

]
= Rρ

0

[
R−1

0 1

R−1
0 −1

][
v0

i0

]
. (B.1)

Note that the common wave variables are proportional up to a given constant value R0.
This proportionality relationship has been termed quasi-equivalence [134, 135] and is the
reason why the parameter ρ does not show up in any of the one-port WDF components
outlined below (except for minor scalings of Kirchoff-domain input sources).

Ideal Voltage Source supplies a voltage v0(t) = v(t) over its terminal. The port current
i0(t) is sufficiently large such that the voltage over the terminals is correct. The unadapted
ideal voltage source in the wave domain is

b0[n] = 2Rρ−1
0 v[n]− a0[n]. (B.2)

The ideal voltage source cannot be adapted and must be placed at the root of a connection
tree.
Ideal Current Source supplies an arbitrary current i0(t) = i(t) over its terminal. The
unadapted wave domain equation is then

b0[n] = 2Rρ
0i[n]− a0[n]. (B.3)

The ideal current source cannot be adapted and is suitable to be included at the root of a
connection tree.
Resistor is characterized by Ohm’s law v0(t) = Ri0(t) where R is the resistance. The
unadapted wave domain equation is

b0[n] =
R−R0

R +R0

a0[n]. (B.4)

By placing R0 = R we can adapt the resistor which yields the equation for the adapted
resistor in the wave-domain

b0[n] = 0. (B.5)

Resistive Voltage Source is a series connection of an ideal voltage source supplying
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voltage v(t) and resistor with resistance R. It is described at its terminals by v0(t) =

v(t) +Ri0(t). The unadapted wave domain equation is then

b0[n] =
2Rρ

0

R +R0

v[n] +
R−R0

R +R0

a0[n]. (B.6)

By placing R0 = R we can adapt the resistive voltage source. The equation for the adapted
resistive voltage source in the wave-domain then becomes

b0[n] = Rρ−1v[n]. (B.7)

Resistive Current Source is a parallel connection of an ideal current source supplying
current i(t) and resistor which has a resistance R. It is completely described at its terminals
by i(t) + i0(t) = v0(t)/R and in the wave domain by

b0[n] =
2RRρ

0

R +R0

i[n] +
R−R0

R +R0

a0[n]. (B.8)

Choosing R0 = R we can adapt the resistive current source just as we did for the resistor
and resistive voltage source. The equation for the adapted resistive current source in the
wave-domain is then

b0[n] = Rρi[n]. (B.9)

Capacitor is described in the Kirchoff domain by the differential equation i0 = C dv0
dt

and
in the Laplace domain by I0(s) = CsV0(s). The reflectance in the Laplace domain is given
by S0(s) = 1−R0Cs

1+R0Cs
. The capacitor has traditionally been discretized using the canonical

bilinear transform (µ0 = 2/T , see Table A.2) which yields the unadapted wave domain
relation

b0[n] = −1− µ0R0C

1 + µ0R0C
b0[n− 1] +

1− µ0R0C

1 + µ0R0C
a0[n] + a0[n− 1]. (B.10)

Letting R0 =
1

µ0C
we obtain the adapted wave domain equation

b0[n] = a0[n− 1]. (B.11)

Inductor is described in the Kirchoff domain by the differential equation v0 = Ldi0
dt

and in
the Laplace domain by V0(s) = LsI0(s). The reflectance in the Laplace domain is given by
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(a) Kirchoff domain
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b0
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Figure B.2 Generic Two-Port

S0(s) =
Ls−R0

Ls+R0
. The inductor has traditionally been discretized using the canonical bilinear

transform (µ0 = 2/T , see Table A.2) which yields the unadapted wave domain relation

b0[n] =
µ0L−R0

µ0L+R0

b0[n− 1] +
µ0L−R0

µ0L+R0

a0[n]− a0[n− 1]. (B.12)

Choosing R0 = µ0L we obtain the adapted wave domain equation

b0[n] = −a0[n− 1]. (B.13)

Although the capacitor and inductor have been discretized using the canonical bilinear
transform in the past, it has been shown that any implicit s-to-z mapping can be used.
It has similarly been shown that fully explicit discretization schemes ruin the chance for
adaptation and cannot be used to digitize WDFs [116].

B.1.2 Two-Port Components

Two-Port components at an arbitrary port 0 and port 1 are completely characterized in
the Kirchoff-domain by their port voltages v0, v1 and port currents i0, i1.
Ideal Transformer is described in the Kirchoff domain as

[
v0

i1

]
=

[
m 0

0 −m

][
v1

i0

]
, (B.14)

where m is the ratio between windings in the first and second coil of the transformer. In
the wave domain they are described by

[
b0

b1

]
=

[
−R0−m2R1

R0+m2R1

2mRρ
0R

1−ρ
1

R0+m2R1

2mR1−ρ
0 Rρ

1

R0+m2R1

R0−m2R1

R0+m2R1

][
a0

a1

]
. (B.15)
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Letting R0 = m2R1 we can adapt port 0 and similarly choosing R1 = m−2R0 will adapt
port 1.

Nullor, also known as a universal amplifier, is a useful theoretical tool to model opera-
tional amplifiers [164]. The two port device can be seen as a combination of a nullator and
a norator [168]. A nullator is fully characterized at a port 0 by v0 = 0, i0 = 0, while a
norator places no restrictions on its port-current or voltage.

An ideal operational amplifier is modeled by the constraint that no current flows be-
tween its input terminals or equivalently that the potential difference is zero. The output
port sinks/sources enough current such that the constraints at the input port are met. By
replacing an operational amplifier with a nullator between its input ports and a norator
from its output terminal to ground, an ideal operational amplifier can be constructed from
the theoretical one-ports.

Neither nullators nor norators can be converted to the wave-domain. For nullors, the
wave-domain equations become a0 = b0 = 0, while norators place no restrictions on wave-
variables at its port.

B.2 Common Adaptors

B.2.1 Two-Port Adaptors

Two-Port Series Adaptor is fully described in the Kirchoff-domain by the following
equations

i0 = i1

v0 + v1 = 0
(B.16)
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which is simple to transfer to the wave domain

[
b0

b1

]
=

[
−R0−R1

R0+R1
−2Rρ

0R
1−ρ
1

R0+R1

−2R1−ρ
0 Rρ

1

R0+R1

R0−R1

R0+R1

][
a0

a1

]
(B.17)

b = ΦS2 a. (B.18)

Adapting port 0 is the same as adapting port 1 which can be achieved by R0 = R1,
which results in the following description

[
b0

b1

]
=

[
0 −1

−1 0

][
a0

a1

]
. (B.19)

An adapted series adaptor is very useful as a polarity inverter [42]. Incorrect polarities
are known to negatively alter the behavior of nonlinear circuits.
Two-Port Parallel Adaptor is fully described in the Kirchoff-domain by the following
equations

v0 = v1

i0 + i1 = 0
(B.20)

that is simple to transfer to the wave domain

[
b0

b1

]
=

[
−R0−R1

R0+R1

2Rρ
0R

1−ρ
1

R0+R1

2R1−ρ
0 Rρ

1

R0+R1

R0−R1

R0+R1

][
a0

a1

]
(B.21)

b = ΦP2 a. (B.22)

B.2.2 Three-Port Adaptors

Three-Port Series Adaptor is fully explained by the following constraint equations

v0 = v1 = v2

i0 + i1 + i2 = 0
. (B.23)
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In the wave domain a three-port series adaptor is characterized by the scattering matrix
ΦS3




b0

b1

b2



=




R1−R0+R2

R0+R1+R2
− 2Rρ

0 R1−ρ
1

R0+R1+R2
− 2Rρ

0 R1−ρ
2

R0+R1+R2

− 2R1−ρ
0 Rρ

1

R0+R1+R2

R0−R1+R2

R0+R1+R2
− 2Rρ

1 R1−ρ
2

R0+R1+R2

− 2R1−ρ
0 Rρ

2

R0+R1+R2
− 2R1−ρ

1 Rρ
2

R0+R1+R2

R0+R1−R2

R0+R1+R2







a0

a1

a2




(B.24)

b = ΦS3 a. (B.25)

The i -th port can be adapted setting the i -th port resistance as the sum of the other two.
Below is the scattering matrix with the 0-th port adapted.




b0

b1

b2



=




0 − R1−ρ
1

(R1+R2)ρ−1 − R1−ρ
2

(R1+R2)ρ−1

− Rρ
1

(R1+R2)ρ−1
R2

R1+R2
−Rρ

1 R1−ρ
2

R1+R2

− Rρ
2

(R1+R2)ρ−1 −R1−ρ
1 Rρ

2

R1+R2

R1

R1+R2







a0

a1

a2



. (B.26)

Three-Port Parallel Adaptor is fully explained by the duality of the three-port series
constraint equations, that is

i0 = i1 = i2

v0 + v1 + v2 = 0
. (B.27)

In the wave domain it is characterized by the scattering matrix ΦP3




b0

b1

b2



=




−R0 R1+R0 R2−R1 R2

R0 R1+R0 R2+R1 R2

2Rρ
0 R1−ρ

1 R2

R0 R1+R0 R2+R1 R2

2Rρ
0 R1 R

1−ρ
2

R0 R1+R0 R2+R1 R2

2R1−ρ
0 Rρ

1 R2

R0 R1+R0 R2+R1 R2
−R0 R1−R0 R2+R1 R2

R0 R1+R0 R2+R1 R2

2R0 R
ρ
1 R1−ρ

2

R0 R1+R0 R2+R1 R2

2R1−ρ
0 R1 R

ρ
2

R0 R1+R0 R2+R1 R2

2R0 R
1−ρ
1 Rρ

2

R0 R1+R0 R2+R1 R2
−R0 R2−R0 R1+R1 R2

R0 R1+R0 R2+R1 R2







a0

a1

a2




(B.28)

b = ΦP3 a. (B.29)

The i -th port can be adapted setting the i -th port conductance (inverse of port resistance)



B Common WDF Building Blocks 99

as the sum of the other two port conductances. Below is the scattering matrix with the
0-th port adapted with G0 = G1 +G2




b0

b1

b2



=




0
Rρ

2

(R1+R2)ρ
Rρ

1

(R1+R2)ρ

R1−ρ
2

(R1+R2)1−ρ − R1

R1+R2

Rρ
1 R1−ρ

2

R1+R2

R1−ρ
1

(R1+R2)1−ρ

R1−ρ
1 Rρ

2

R1+R2
− R2

R1+R2







a0

a1

a2



. (B.30)

B.2.3 N -Port Adaptors

N -port series or parallel adaptor can be split into N − 2 series or parallel adaptors. De-
composing larger adaptors into smaller ones has been shown to reduce computational com-
plexity [38].

B.2.4 Norm Preservation

It is easy to see that for valid 3-port adaptors, rank(ΦS3) = rank(ΦP3) = 3. Since the
matrices are square and nonsingular (of full rank), the columns of ΦS3 and ΦP3 form a
basis. When using normalized-power waves (ρ = 1

2
) Kubin [134] noticed that

ΦS3Φ
∗
S3

= ΦP3Φ
∗
P3

= I (B.31)

indicating that the scattering matrices are unitary. The column vectors form an orthonor-
mal basis. An important property of orthonormal bases is that they are norm preserv-
ing [78]. For values ρ �= 1

2
this no longer applies and instead

ΦS3Φ̃
∗
S3

= ΦP3Φ̃
∗
P3

= I (B.32)

where Φ̃S3 = (Φ∗
S3
)−1 and Φ̃P3 = (Φ∗

P3
)−1. The columns in ΦS3 form a basis and the

columns in Φ̃S3 form their dual. The same applies for the parallel adaptors. Together
these basis form a biorthogonal bases pair. Biorthogonal basis-pairs are not generally norm
preserving.
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Appendix C

SPICE

Simulation Program with Integrated Circuit Emphasis, or SPICE for short, is a general
purpose circuit simulation software developed at UC Berkley in the 1970s [33, 169]. It has
been in continual development since then [34,170] with various 3rd party implementations
available, such as LTspice1 or MacSpice2. SPICE is the de-facto software for doing circuit
simulation in both industry and academia.

The SPICE2 simulator describes circuits based on Modified Nodal Analysis [51]

[
Y A

B D

]

︸ ︷︷ ︸
MNA matrix X

[
vn

j

]
=

[
is

e

]
(C.1)

X defines the relationship between node voltages vn, voltage source branch currents j,
current sources values is and voltage source values e. The first row embodies Kirchoff’s
Current Law while the second row encode branch relationships, such that Kirchoff’s Volt-
age Law is fulfilled. The MNA matrix X is automatically derived from a given circuit
schematic which is written out in text form or drawn using a graphical user interface.

SPICE3, the circuit simulator employed in this thesis, works by using an implicit numer-
ical integration method to transform nonlinear dynamic differential equations into nonlinear

1http://linear.com/designtools/software
2http://www.macspice.com

http://linear.com/designtools/software
http://www.macspice.com
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algebraic equations. These equations are then linearized using a modified Newton-Raphson
iterative algorithm [171]. Finally a Gaussian elimination and sparse matrix techniques are
used to obtain a solution [34]. The solution algorithm as used in SPICE3 is shown in
Figure C.1.

Figure C.1 SPICE Solution Algorithm [34]
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Appendix D

Scattering Matrices in Case Study

Below is a table containing links to the Matlab scripts that were used to derive the scattering
matrices for each circuit in §5.

Table D.1 Case Studies—Scattering Matrices

Circuit Part Matlab script

FET Booster Link
Envelope Filter — Input Buffer Link
Envelope Filter — Envelope Follower (Linear Section) Link
Envelope Filter — Envelope Follower (Nonlinear Section) Link
Envelope Filter — Filter (Linear Version) Link
Envelope Filter — Filter (Nonlinear Version) Link
Korg MS-20 Filter Link

https://gist.github.com/multivac61/86dbaaa7e34d5b0057b1f2283343958b
https://gist.github.com/multivac61/8426d9dd48f50bfe745935670d2b05d6
https://gist.github.com/multivac61/70165832bfca4fe75fcaf63a489f38bc
https://gist.github.com/multivac61/c4fdb82b1cf2ad7592ff1e4af9cc0cee
https://gist.github.com/multivac61/1cf7f8bb827c80382a54314bb7b25532
https://gist.github.com/multivac61/3e9019d181ae649da9b235e7eb31a3fa
https://gist.github.com/multivac61/0a2eef7dbacecf1670171dfa6e0d688e
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