
INFORMAnON TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, sorne thesis and

dissertation copies are in typewriter face, white 0Ihers may be from any type of

computer ponter.

The quality of thi. ntproduction i. dependent upon the q.,.lity of the

copy submitted. Broken or indistinct prim, coIored or poor quality iHustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages. these will be notec::l. Also. if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps. drawings, chara) are reproduced by

sectioning the original. begiming at the upper Ieft-h&nd corner and continuing

from left to right in equal sections with small overlaps.

Photographs induded in the original manuscripl have been reproduced

xerographically in this copy. Higher quality 6- x 9- black and white

photographie prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contad UMI diredly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

800-521-0600

•

•

Detection of Faulty Components in

Object-Oriented Systems using Design Metrics and a

Machine Learning Algorithm

Stefan V. Ikonomovski

School of Computer Science

McGill University, Montréal

November, 1998

A THESIS SUBMITED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULALLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright © 1998 by Stefan V. Ikonomovski

1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
Ottawa ON K1 A 0N4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
OftawaON K1A~
Canada

Your'" Var,.~

Our _ Hof,.,.'*-'a

The author bas granted a oon­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis Dor substantial extracts from it
may be printed or otherwise
reproduced without the author's
penmSSIOD.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur fonnat
électronique.

L"auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-..ei ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-50796-3

Canada

•

•

To Montréal,

a city with a Lovely Sky,

and a Lust for Life.

À Montréal,

une ville au superbe ciel,

et où il fait bon vivre.

•

•

Abstract

Object-Oriented (00) technology daims faster development and higher quality of

software than the procedural paradigm. The quality of the product is the single most

important reason that determines its acceptance and success. The basic project

management problem is "delivery of a product with targeted quality. within the budget.

and on schedule". We propose a state-of-the-an approach that gets doser to the solution

by improving the software development process used. An important objective in aH

software development is to ensure that the delivered product is as fault-free as possible.

We proposed three hypotheses that relate the 00 design properties-inheritance.

cohesion. and coupling-and the fault-proneness as software's quality indicator. We built

classification models that predict which components are Iikely to he faulty, based on an

appropriate suite of 00 design measures. The models represent empirical evidence that

the aforementioned relationships exist. We used the C4.5 machine learning algorithm as a

predictive modeling technique. because it is robust. reHable, and allows intelligible

interpretation of the results. We defined three new rneasures that quantify the specifie

contribution of each of the metrics selected by the rnodel(s), and also provide a deeper

insight into the design structure of the product. We evaluated the quality of the predictive

models using an objective set of standards. The models built have high quality.

ii

•

•

Résumé

La technologie Orientée Objet (00) apporte une rapidité de développement et une qualité

du logiciel supérieures à ce qu'elles étaient dans le paradigme procédural. Aujourd'hui, à

fonctionnalités égales, la qualité d'un produit logiciel est le critère majeur pour son

acceptation et son succès. Le problème de base en gestion de projets est de «fournir un

produit logiciel en respectant le budget, les échéances et un certain degré de qualité».

Nous proposons une méthodologie pertinente afin d'atteindre ces objectifs, en se basant

sur un objectif important sous-jacent: que le produit soit exempt d'erreurs.

Nous proposons trois hypothèses faisant le lien entre des propriétés conceptuelles 00 que

sont, héritage, cohésion et couplage - et la propension d'avoir des erreurs, considérée

comme un indicateur de qualité du logiciel. Nous générons à partir des mesures des

propriétés conceptuelles, des modèles de classification prédisant quels composants sont

susceptibles d'êtres erronés. Ces modèles prouvent empiriquement la relation précitée.

Pour ce faire, nous avons exploité C4.5, un algorithme d'apprentissage robuste, fiable et

produisant des modèles prédictifs intelligibles. D'autre part, nous avons défini trois

nouvelles mesures pour quantifier la contribution de chacune des métriques retenues par

le modèle, donnant ainsi un éclairage nouveau sur la structure du produit. Enfin, nous

avons évalué les modèles produits à partir de grandeurs standards reconnues. Il en ressort

que nos modèles sont de grande qualité .

iii

•

•

Acknowledgements

This thesis research is dedicated to the city of Montréal. With a reason~ and without any

reason at aH. Montréal is the city where 1 was rebom. It helped me recuperate my energy

after sleepless nights engaged with a research. Montréal is jazz~ Place Des Arts, the World

Film Festival. McGili University, Mont Royal. the old port. Basilique Notre-Dame... It is

the smell of the coffee on the streets, the after-hours, and the fashion. But above ail, it is

the Spirit. Joie de vivre. A basic mixture of the two dominant cultures-French and

English-f1avored with people from allover the world. The planet Earth on a small scale.

[t brought to me people that do not have a "best before" date. 1 pay my deepest respect to

it, and 1 love il. Montréal, c'est toi ma ville.

During my studies 1 have been financially supported by Ontario Student Aid Program

loan. 1 was also, partiaIly supported for my thesis research by a grant from CRIM.

Many people contributed in numerous ways to the quality of this work.

Chronologically, evefY{hing started with Professor Nazim Madhavji, with whom 1decided

to take my multitenn~ special topic in computer science course, in the area of software

process engineering. Ileamed a lot from his inquisitive and straight to the point approach,

in those rare brainstonning occasions. 1 expect to continue the collaboration with him in

the field of our mutual interesl.

My deepest thanks go to Saïda Benlarbi. She defined the initial framework of the joint

project between CRIM and IESE, and offered me the execution of its largest part. She

also, provided me with a very pleasant working environment.

iv

•

•

Hervé MarchaI, the LALO team leader, helped me to understand the structure of LALO,

and the design decisions behind it. He always found the time to satisfy my curiosity, and

provided me with an access to the strategie parts of the system. He is a friend.

Jean-François Rizand helped me to collect the 00 design measures by translating the

LALO source code into its AT&T C++ compiler counterpart. By doing 50, he reduced the

time for that part of my thesis research and its cost, so 1 couId concentrate mostly on the

quality aspect.

Sébastien Émard from the technical support at CRIM, was the healer whenever 1

experienced severe technical problems.

Houari Sahraoui, senior researcher at CRIM, was a valuable source of information during

the several brainstonning sessions that we had.

Vida Mao. my colleague and friend, workcd with me on various aspects regarding

software process engineering. We had long discussions that were mutually stimulating.

Hakim Lounis, my thesis co-supervisor at CRIM, provided me with a guidance that was

both easygoing and very pleasant. throughout the milestones of the CRIM-ŒSE joint

effort. and later. the parts of my thesis research. The discussions that we had, generated

many ideas in my mind and made the completion of this thesis easier. He gave me prompt

responses to my aIl inquires. and always had enough time for me. He also assisted me by

translating the abstract. We plan to continue our fmitful collaboration.

People have always inspired me. Professor Gerald Ratzer. my thesis supervisor. whom 1

address as ··dear Sir", is a very inspiring and tmly deserving individual. He is a model

mentor, a model teacher-which rounds up to a model professor-and a model person. A

founding member of McGill's School of Computer Science, he is still full of curiosity and

enthusiasm while trying to improve the educational process. He pays wonderful attention

to people, and he was always prompt when reviewing my thesis writing. He does the

things just for the sake of good things happening. 1 am fortunate to have him in my life.

v

•

•

Finally. 1 would like to acknowledge the support 1 have been receiving from my friends

throughout my studies. They are my hidden source of energy and power. The Apostolov

family-Aleksandar. Snezana, and Mark-aIways provided me with a pleasant after­

hours surrounding. Maxim Andreev was a wonderful companion, as weIl as Ashkan

Pourafzal-who was aIso, a very pleasant target of my management-related discussions

and ideas. Carleen Joseph, Vesna Trajkov, Daniela Orso. and Senami Apithy, provided

me with various aspects of support. that helped me to "survive" more easily. Dionis

Hristov. Robin De Lorey, and Vida Dujmovic. were my roommates during the first. and

the second year of my studies, and the latest while. respectively. We discussed various

aspects of life. 1 would also Iike to acknowledge the support of the rest of my friends

whom 1did not mention here.

The School of Computer Science at McGill University was a valuable source of a world

class research. as weIl as party time.

1would like to thank all of you mentioned. and not mentioned here. You have wanned my

heart, and the heart never forgets.

At the end-which is just a new beginning, existentially speaking-I thank God for

letting aH of this happen.

Montréal. November 1I. 1998

VI

•
Contents

Abstract ii

RésulDé iii

Acknowledgements iv

List or Figures x

List or Tables xii

1 Introouction 1

1.1 The Big Picture 2

1.1.1 Software Development Process 3

1.2 General Problem Statement.. 6

1.2.1 Motivation and Aim 6

•

1.3 Thesis Organization 9

2 Fault-proneness as a Quality Indicator 10

2.1 Software Process Improvement. 11

2.1.1 Benefits of Process Improvement 12

2.2 Object-Orïented Paradigm 15

3 Specifie Problem Statement 17

3.1 Solution Strategy 19

VII

•

•

4 Background and Related Work 20

4.1 Sorne Object-Oriented Design Metrics 20

4.1.1 Terminology and Fonnalisrn 22

4.1.2 Inheritance 26

4. 1.3 Cohesion 30

4.1.4 Coupling 34

4.2 Predictive Modeling 41

4.2.1 Various Modeling Techniques 42

4.2.2 Machine Learning Algorithms .46

5 C4.5 Machine Leaming AlgorithOl 48

5.1 Divide and Conquer Method 50

5.2 Decision Tree 51

5.2.1 Pruning Decision Trees 52

5.3 Production Rules 57

5.4 Conducting Experiments-Modeling 60

5.4.1 Windowing (-t) 60

504.2 Grouping Attribute Values (-s} 62

504.3 Weight Option (-m) 62

504.5 Confidence Factor (-c) 63

5.4.6 Cross-validation 63

5.4.7 Building the Best Model 64

6 Case Study Framework 67

6.1 The C++ System 67

6.2 Hypotheses " 68

6.2. 1 Inheritance vs. Fault-proneness 68

6.2.2 Cohesion vs. Fault-proneness 70

6.2.3 Coupling vs. Fault-proneness 70

viii

•

•

6.3 Data Collection 72

6.3.1 Seleeted 00 Design Metries 72

6.3.2 Defeet Data _ 75

6.4 Dependent and Independent Variables 76

6.5 Evaluation and Validation of the Models 78

6.6 C4.5 Input Files 81

7 ExperiDlental Results 83

7.1 Seleeting the Best Model Building Option _ 83

7.2 The Predictive ModeIs 87

7.2.1 Hypothesis 1 87

7.2.2 Hypothesis 2 _ _ _ 91

7.2.3 Hypothesis 3 92

7.2.4 Multivariate Models 94

7.3 Evaluation and Validation of the ModeIs 95

7.4 Usefulness Degree of a Metrie 1DO

8 Epilogue, or Lessons Learned 107

8.1 Conclusions 107

8.2 Future Works III

8.3 Closing Word 112

Bibliography 113

Appendix A 119

Appendix B 120

ix

•

•

List of Figures

Figure 1.1. Software engineering layers 2

Figure 1.2. The waterfall model 5

Figure 2.1. Raytheon's three phase process improvement paradigm (clockwise) 13

Figure 5.1. Original decision tree before pruning .55

Figure 5.2. A path and a leaf-associated with the number (N / E) .55

Figure 5.3. A decision tree after pruning with estimated error rates 56

Figure 5.4. Production mies for the decision tree from Figure 5.1 .58

Figure 5.5. Simple decision tree for F=G=1 or J=K=l. 58

Figure 6.1. Defining fault-proneness (a histogram of faults in LALO) 77

Figure 6.2. A names file (classes, attributes, and attribute values) for hypothesis 1 82

Figure 6.3. A portion of data file, that corresponds to Table 6.2 and Figure 6.2 82

Figure 7.1. Two-group predictive model for hypothesis 1 87

Figure 7.2. Three-group predictive model for hypothesis 1 90

Figure 7.3. Two-group predictive model for hypothesis 2 91

Figure 7.4. Three-group predictive model for hypothesis 2 92

Figure 7.5. Two-group predictive model for hypothesis 3 93

Figure 7.6. Three-group predictive model for hypothesis 3 93

Figure 7.7. Two-group multivariate predictive mode!. 94

Figure 7.8. Three-group multivariate predictive model. 95

•

•

Figure B.l. Defining defect-density A 120

Figure B.2. Defining defect-density B 121

Figure B.3. Defining defect-density C 121

Figure B.4. Two-group hypothesis l, defect-density A mode!. 122

Figure B.5. Two-group hypothesis 1, defect-density B mode!. 122

Figure B.6. Three-group hypothesis l, defect-density B mode!. 123

Figure B.7. Two-group hypothesis 2, defect-density C mode!. 123

Figure B.8. Three-group hypothesis 2. defect-density C mode!. 124

Figure 8.9. Two-group hypothesis 3. defect-density A model.. 124

Figure B.lO. Two-group hypothesis 3. defect-density B mode!. 125

Figure B.ll. Three-group hypothesis 3. defect-density A model.. 125

Figure B.12. Three-group hypothesis 3. defect-density C mode!. 125

Figure B.13. Two-group multivariate. defect-density A mode!. 126

Figure B.14. Three-group multivariate. defect-density C model.. 126

xi

•

•

List of Tables

Table 5.1. Options for constructing the best predictive models 65

Table 5.2. A form for evaluation and comparison of model construction results 66

Table 6.1. Three-group classification model. 79

Table 6.2. Independent. and dependent variables 8 L

Table 7. L. Two-group model building options for hypothesis 1 84

Table 7.2. Three-group model building options for hypothesis 1 84

Table 7.3. Two-group model building options for hypothesis 2 85

Table 7.4. Three-group model building options for hypothesis 2 85

Table 7.5. Two-group model building options for hypothesis 3 86

Table 7.6. Three-group model building options for hypothesis 3 86

Table 7.7. Descriptive statistics for selected 00 design metrics , 88

Table 7.8. Evaluation of the two-group predictive model for hypothesis 1 95

Table 7.9. Evaluation of the three-group predictive model for hypothesis 1 96

Table 7.10. Evaluation of the two-group predictive model for hypothesis 2 96

Table 7.11. Evaluation of the three-group predictive model for hypothesis 2 96

Table 7.12. Evaluation of the two-group predictive model for hypothesis 3 97

Table 7.13. Evaluation of the three-group predictive model for hypothesis 3 97

Table 7.14. Evaluation of the two-group multivariate predictive modeI.. 97

Table 7.15. Evaluation of the three-group multivariate predictive model.. 98

Table 7.16. Comparison of our work with other research studies 99

Table 7.17. Hypothesis 1 models and the contribution of each metric 102

XII

•

•

Table 7.18. Hypothesis 2 models and the contribution of each metric 102

Table 7.19. Hypothesis 3 models and the contribution ofeach metric 103

Table 7.20. Multivariate models and the contribution of each metric l0S

Table B.l. Evaluation of the two-group hypothesis 1, defect-density A mode!. 127

Table B.2. Evaluation of the two-group hypothesis 1, defect-density B mode!. 127

Table B.3. Evaluation of the tbree-group hypothesis 1, defect-density B model. 128

Table B.4. Evaluation of the two-group hypothesis 2. defect-density C mode!. 128

Table B.S. Evaluation of the tbree-group hypothesis 2, defect-density C model. 129

Table B.6. Evaluation of the two-group hypothesis 3, defect-density A mode!. 129

Table B.7. Evaluation of the two-group hypothesis 3, defect-density B model. 130

Table B.8. Evaluation of the three-group hypothesis 3, defect-density C model. 130

Table B.9. Evaluation of the two-group multivariate, defect-density A model. 131

Table B.l O. Evaluation of the three-group multivariate, defect-density C model. 131

Table B.ll. Hypothesis 1 defect-density models and the contribution of each metric 132

Table B.12. Hypothesis 2 defect-density models and the contribution ofeach metric 132

Table B.13. Hypothesis 3 defect-density models and the contribution of each metric 133

Table 8.14. Multivariate defect-density models and the contribution of each metric 134

xiii

•

•

Chapter 1

Introduction

The production of high quality, low cost software has become a fixation for many

software development organizations [46]. Many of the current applications involve use of

software in safety critical systems, where the high quality of the product is essential to the

success of the mission [2], [34]. Furthermore, in a highly competitive market for software

products with comparable feature sets and cost, within today's production environment

where reducing the time to market has become prerequisite for survival, the quality of the

product becomes the single most important reason that determines its acceptance and

success [5], [6], [45].

Software engineering involves the study of the means of producing high quality software

products with predictable costs and schedules [36]. The tenn was coined by Friedrich

Bauer in 1967 at a NATO pre-conference meeting in Germany on issues in developing

large-scale software systems [47, p.17]. According to his definition:

Software engineering is the establishment and lise ofsOllnd engineering principles

in order to obtain economically software that is reliable and ..",orks efftcielltly on

real machines.

• 1.1 The Big Picture

Pressman in [47, p.30) describes software engineering as a layered technology. Referring

to Figure 1.1. any engineering approach must rest on an organizational commitment to

quality. Total quality management fosters a continuous process improvement culture, and

it is this culture that ultimately leads to the development of increasingly more mature

approaches to software engineering. The bedrock that supports software engineering is a

qualitylocus.

/
/

/ ~Is \

methods \

proeess \

a quality Cocus \

•

Figure 1. 1. Software engineering layers

Process layer is the foundation for software engineering. It is the glue that holds

technology layers together and enables rational and timely development of computer

software. The key process areas fonn the basis for management control of software

projects, and establish the context in which technicaI methods are applied, deliverables

(models. documents, data reports, fonns. etc.) are produced, milestones are established.

quaIity is ensured, and change is properly managed.

2

•

•

Software engineering methods provide the technical "how to's •• for building software.

Methods encompass a broad array of tasks that inc1ude requirement analysis, design,

program construction, testing. and maintenance. Software engineering methods rely on a

set of basic principles that govem each area of the technology and inc1ude modeling

activities, and other descriptive techniques.

Software engineering tools provide automated or semi-automated support for the process

and the methods. When tools are integrated so that information created by one tool can be

used by another, a system for the support of software development. called computer-aided

software engineering (CASE), is established.

1.1.1 Software Development Process

The software developmellt process comprises software engineering activities. inc1uding

technical and managerial ones. that are carried out in the production of software. The

scope of these activities inc1udes determination and specification of system and software

requirements; analysis and management of risk; software prototyping: design:

implementation; verification and validation; software quality control and assurance;

integration of components; documentation; management of software configurations and

versions: management of data; evolution of software; project management: software

evaluation; software comracting; software acquisition etc. [38].

Software engineering incorporates a development strategy that encompass the process,

methods, and tools layers described in the previous section. This strategy is often referred

to as a process model or a software engineering paradigm [47, p.3l]. A process model for

software engineering is chosen based on the nature of the project and application, the

methods and tools to be used, and the controls and deliverables that are required. SeveraJ

classes of process models have been widely discussed and debated, such as:

3

• Waterfall model• • incrementai model

• Evolutionary model

• Prototyping model

• Spiral model

• Concurrent model

Just as a human life cycle model (for example~ infant, child, adolescent, adult, senior

citizen) helps us understand the basic activities and characteristics of humans as they

progress, the process mode!. aJso known as the softu:are life cycle model, helps us

understand the basic activities and characteristics of software as it develops [47. p.l05]. li

is a view of the activities that oceur during software development. The discussion about

the pros and cons regarding different classes of process models is beyond the scope of this

work. However, in order to identify the most important phases of software development

process we will describe brietly the waterfall model, Figure 1.2.

•

The waterfall model-sometimes called the classic life cycle, or linear sequential

model-was originally documented for software in 1970 by Royce. It is the most basic of

aH life cycle models, and in faet serves as the building block for most other life cycle

models. The waterfall view of software development is very simple; it says that software

development can be thought of as a sequence of phases. Eaeh phase has a set of well­

defined goals, and the activities within any phase contribute to the satisfaction of that

phase' s goals or perhaps a subsequent phase' s goals. The forward arrows show the normal

tlow of information among the phases; the backward arrows represent feedback. As Davis

describes in [47, p.l06], Royce did not say "only requirements activities may oceur during

the requirement phase" nor that "only design activities may occur during the design

phase", and so forth.

4

Maintenance

Tcsting

1mplementation

Design

Requirerncnts•

Figure 1.2. The waterfall model

There is nothing sacred about the names of the phases. The requirements phase has been

called elicitation, system anaIysis, requirements analysis, or requirements specification;

the preliminary design phase has been called high-leveI design, top-level design, software

architecturaI definition, design specification or just design; the detailed design phase is

often called program design, module design, lower level design, algorithmic design, or

just design, and so on.

•
One of the most important contributions of the waterfall model is for management. Il

enables managers to track development progress, although on a very gross seale.

5

•

•

1.2 General Problem Statement

It has been widely recognized that an important component of process improvemellt is the

ability to measure the process. Software metrics provide a quantitative means to control

the software development process and the quality of software products [36J. Metrics can

help address the most critical issues in software development and provide support for

planning, predicting, monitoring, controlling. and evaluating the quality of both software

processes and products (21 J. Moreover. the development of a large software system is a

time- and resource-consuming activity. Even with the increasing automation of software

development activities. resources are still scarce. Therefore. we need to he able to provide

accurate infonnation and guidelines to managers to help them make decisions. plan and

schedule activities, and allocate resources for the different activities that take place during

the software development. Software metrics are, thus. necessary to identify where the

resources are needed, and are a crucial source of information for decision-making [8].

1.2.1 Motivation and Aim

Briand et al. point out in [20] that the production of better specifications and better

designs reduces the need for extensive review. modification, and rewriting not only of

code, but of specifications and designs as weil. As a result, this allows the software

organization to save tïme. eut production costs. and raise the final product' s quality. Early

availability of metrics is a key factor to a successful management of software

development, since it allows for:

• early detection of problems in the artifacts produced in the initial phases of the

life-cycle (specification and design documents) and. therefore. reduction of the

6

•
•

•

•

cost of change-laie identification and correction of problems are much more

costly than early ones;

better software quality monitoring from the early phases of the life-cycle;

quantitative comparison of techniques and empirical refinement of the

processes to which they are applied;

more accurate planning of resource allocation. based upon predicted error­

proneness of the system and ils constituent parts.

•

Software maintenance is generally recognized to consume the majority of resources in

many software organizations [7]. It is one of the most difficult and costly tasks in the

software development process [36]. Numerous factors cao affect software maintenance

quality and productivity, e.g., the maintenance personnel experience profile and training,

the way knowledge about the maintained systems is managed and conveyed to the

maintainers and users. the maintenance organization. processes and standards in use. the

initial quality of the software source code and its documentation [16]. We must be able to

characterize. asses, and improve the maintainability of software products in order to

decrease maintenance costs [4]. Maintenance involves activities such as: correcting errors,

functional enhancement. migrating software to new technologies and adapting software to

deal with new environmental requirements [4]. [7].

Corrective maintenance is the part of software maintenance devoted to correcting errors.

Mostly. when software maintainers have to correct a faulty software component. they rely

aImost exclusively on their previous experience in order to estimate the effort they will

spend to do il. Even though highly experienced software maintainers may make accurate

predictions, the estimation process remains informaI. error-prone, and poorly documented,

making it difficult to replicate and spread throughout the organization [4] .

7

•

•

As Rombach describes in his measurement experience based study [44], design measures

can he used in order to predict maintainability. There are two different design steps:

architectural, or high-Ievel design, and algorithmic, or low-level design. Architectural

design involves identifying software components and their interconnection; algorithmic

design involves identifying data structures and the control tlow within the architectural

components. Rombach also supports the belief that the architectural design infonnation

has more influence on maintainability than algorithmic design information.

Testing of a large system is an example of a time- and resource-consuming activity.

Applying equal testing and verification effort to all parts of a software system has become

cast-prohibitive [8]. Therefore. we must buiJd predictive models able to identify fault­

prone components. The fault-proneness predictive models will help project managers to

accurately allocate the testing and verification resources. as weil as to concentrate the

testing and verification effort on the parts of the system Iikely to he faulty. These models

will also help software maintainers hetter assess the maintainability of software products

[4]. For instance. estimation models cao help maintainers optimize the allocation of

resources ta corrective maintenance activities. Evaluation models can help developers

make decisions about when to re-structure or re-engineer a software component in order

to make it more maintainable. Understanding models can help maintainers know better

the underlying reasons about the difficulty of correcting specitic kinds of errors.

The overall software process improvement will actually reduce the cost and time

associated with the development of the product, thus, enabling the project management

achieve its ultimate goal-delivery of a software product with the targeted quality within

the budget and on schedule.

8

•

•

1.3 Thesis Organization

The rest of the thesis is organized as follows. In the next chapter we present fault­

proneness as a software product's quality indicator. Theo we define the specifie problem

with respect to 00 metrics and predictive modeling. Chapter 3 describes the solution

strategy. In Chapter 4 we present the related work in two domains: 00 metrics. and

predictive modeling. Chapter 5 presents the concepts behiod the predictive power of C4.5

machine learning algorithm. We describe the experimental framework in Chapter 6 with

respect to the investigated C++ system. selected suite of 00 metrics. and method used.

The results are presented and discussed in Chapter 7. Finally, Chapter 8 gives the

conclusion of the thesis and points to the future works.

9

•

•

Chapter 2

Fault-proneness as a Quality Indicator

It is often noted that a small number of software components are responsible for a

disproportionately large number of faults during software development [33]. [34]. [39],

[15]. [22]. A major research effort is underway to try to determine. a priori. which

modules are likely to contain a significant number of errors so that the testing and

verification process might he focused in the most productive direction. This allows us to

optimize the reliability of the system with minimum cost. In order to meet this goal. we

build quanritative models that predict which components are likely to contain the highest

concentration of faults. Once these JzigJz-risk components have been identified. the

software development process cao he optimized to reduce risk. There are two different

aspects Lo be trealed when one builds a risk model [15], [22]. [33]. [46]:

1. Metrics that are good predictors of risk should he identified and validated.

2. A suitable (in terms of underlying assumptions) modeling technique should he

used so that the prediction is accurate and interpretation possible.

Risk reduction analysis cao he performed from various perspectives of risk. e.g.• numher

of errors. error density. associated cost of change during either testing or maintenance. For

10

•

•

example. additional testing cao he applied to those comPOnents that have been determined

to be likely to contain a high density of defects [22]. However. building fault-proneness

predictive models is a difficult task: it is often the case in software engineering that the

data which is collected are minimal. incomplete, and heterogeneous [15J. This presents

severa! problems for model construction and interpretation (e.g., small data sets,

inaccurate models, etc.). Therefore. we need a modeling process that is robust to these

problems. allows for reliable classification of high-risk components. and aids in the

understanding of the causes of this high risk. This understanding is important because it

can give us insight into the software development process, aIlowing us to take remedial

actions and make better process decisions in the future.

2.1 Software Process Improvement

Process improvement in terms of prediction of defects in the de livered product is one area

that has received a significant amount of attention [39J, [22], [29]. Recent studies have

focused on the identification of problem areas during the design phase, noting that the

software architecture is a major factor in the number of eITors and effort rework found in

later phases [44], [3], [29]. Decisions made during design can affect software reliability.

maintainability, flexibility, and other quality factors. A shortcoming of most large-scale

software development projects is the lack of information conceming the consequences of

these design decisions until much Iater in the development process [3]. For example. it

may become clear that a system is not flexible in adapting to changing requirements only

after extensive investment of time and effort to implement the design, and to integrate.

test, and use the system.

Greater capability is needed during the design phase to assess the design itself for

indications that. when implemented. the resulting system will have particular quality

characteristics. Rombach observes that h ••• most of the important structural decisions had

Il

•

•

been made irreversibly by the end of architectural design" [44]. Computer industry related

organizations have an especially strong need for such early design assessment capabilities

because they expect delivered systems to he reliable and supportable over long

operationallifetimes.

Traditional approaches to design assessment-for example. through attending design

reviews and inspecting design documents-are highly subjective and don't scale up weIl

to large, complex systems [3]. Thus, a strong motivation exists to develop a more

analyticaI and repeatable technology to enhance design assessment capabilities. If

potential problem areas regarding software product development can be detected during

the design, as opposed to during the phases of implementation and testing, the

development organization may have more options to mitigate the risk [22]. For example.

rather than intensively testing the ~~problem components". one might restructure the

system to avoid potential problems entirely. WhiIe this may he an option during the

design phase, it is very unlikely scenario late in the implementation phase.

Thus our goal is to use measures of the design phase to determine potential problem areas

in the delivered product. and allow for a wide range of preventive/corrective actions to be

taken. Examples of these types of actions include increasing testing. providing additional

documentation. re-designing a part of the system, and providing additional training.

2.1.1 Benefits of Process Improvement

A key requirement for the success of a new software deveIopment process is the accurate

evaluation of how effective it is in reducing the bottom-line cost of getting the job done.

Dion described in [29] how Raytheon-a diversified, international, technology based

company, one of the largest COrPOrations in the USA-approached measuring how

changes in its software process resulted in reduced development costs.

12

• As Figure 2.1 illustrates~ Raytheon' s process improvement paradigm is based on a three

phase cycle of stabilization, controt and change, which applies the principles of W. E.

Deming and Joseph Juran-the real process improvement must follow a sequence of

steps, staning with making the process visible, then repeatable, and then measurable.

Process Stabilization

document

disseminate

institutionalize

Process Change

adjust

confinn

automate

Projects Process Control

instrument

measure

analyze

•

Figure 2.1. Raytheon' s three phase process improvement paradigm (c1ockwise).

In the process stabilization phase, the emphasis is on distilling the elements of the process

actually being used (achieving visibility) and progressively institutionalizing it across aIl

projects (providing repeatability). In the process control phase, the emphasis shifts to

instrument projects to gather significant data (measurement) and anaJyze the data to

understand how to control the process. In the process c/wnge phase, the emphasis is on

determining how to adjust the process as a result of measurement and analysis. and how to

diffuse the new methods among practitioners (technology transition). [mprovement IS

continuous, thus, completion of the third phase signais a beginning of the first [29].

At Raytheon, the staff used Philip Crosby Associates' approach [26] to quantify the

benetit of improvements made to ongoing projects. Crosby's approach differentiates the

cost of doing if right the firsl lime from the cost of rework and categorizes the costs

associated with any process as:

13

•

•

• Perfonnance. The costs associated with doing il riglrr the firsr rime, including

elements such as developing the design and generating the code.

• Appraisal. The costs associated with testing the product to detennine if it is

faulry.

• Rework (Ilonconfonnance). The costs associated withfixing defects in the code

or design.

• Prevention. The costs incurred in attempting to prevent the faliit from geuing

into the code.

The sum of appraisal, rework, and prevention costs is what Crosby caUs ··the cost of

quality". The total project cost is simply the perfonnance cost plus the cost of quality.

It is now obvious that the fault-proneness is built in the very foundation of the cost of

quality. That is perhaps, the main motivation for assessment of Iikely to be faulty

components using predictive modeling techniques, based on the metrics obtained in the

phase of design, thus early in the software development process. One of the side benefits.

according to Dion is that ·•...individual engineers when made aware of eeror-data

categorization. tend to be more careful in areas with the highest frequency of eeroes".

At the time the Raytheon's process improvement initiative started. rework costs averaged

about 41 percent of total project cost. By reducing the rework its costs have shrunk to

about one fonh of the original value (from 41 to Il percent) [29]. Rework savings are

often achieved at the expense of a small increase in the cost of other process stages. ln

Raytheon' s case, the cost of design and coding rose slightly because formai inspections

replaced infonnal reviews. However. that change enabled rework savings in uncovering

source code problems before software integration and eliminating unnecessary re-testing.

The attention paid to uncovering errors up front is guaranteed to save money in the end.

The cost associated with fixing source code problems found during integration has been

identified as the largest contributor to rework costs. The integration cost has decreased to

14

•

•

about 20 percent of its original value. Raytheon' s staff believes that the savings cao he

credited to the design and code inspections, training, and requirements stability. The

greater gain by making the integration phase more efficient is due to the fact that fixing

problems this late in the process costs so much more. The cost of re-testing decreased to

about half of its original value. The saving indicates that far fewer problems were found

during the first test (ail the software is tested at least once), a direct effect of removing

design and coding errors found in inspections [29].

2.2 Object-Oriented Paradigm

Object-oriented technology is a common practice for many software development

companies. Given the potential of object-oriented programming (OOP) to systematically

facilitate the reuse of code, we observe OOP rising in popularity as the industrial

programming methodology of the next century [46]. The object-oriented paradigm daims

a faster development pace and higher quality of software than the procedural paradigm

[36]. 00 programming, 00 analysis/design methods. 00 languages. and 00

development envir0r:tments are currently popular worldwide in both small and large

software organizations. The study of the 00 paradigm results in 00 concepts such as

[14J:

• Objecte 00 programming uses abjects, not algorithms. as its fundamental

logical building blacks.

• Class. Each object is an instance of sorne class.

• lnheritance. Classes are related to one another via inheritance relationship (the

'"kind of' hierarchy).

The 00 programming style is based on its own conceptual framework-the abject model.

There are four major elements of this model: (1) abstraction. (2) encapsulation, (3)

modularity. and (4) hierarchy.

15

•

•

The programming behaviors exhibited in the 00 paradigm differ from those of the

procedural paradigm. For example. the creation of classes in the 00 programming

languages is a programming behavior distinguished from the creation of

procedures/functions in the procedurallanguages [36]. The insertion of 00 technology in

the software industry has created new challenges for companies which use product

metrics as a tool for monitoring, controlling, and improving the way they develop and

maintain software [8]. So, it is not surprising that researchers have begun to explore

software measures unique to the 00 paradigm and their application to software quality

engineering [46]. Sorne studies have concluded that "traditional" product metries are not

sufficient for charaeterizing, assessing, and predicting the quality of 00 software systems,

as reported in [1].

To address this issue, 00 metrics have been proposed in the Iiterature [24], [2], [17],

[10], [11]. [37], [40]. Metrics proposed in [10] and [Il] are code based measures and

hence cannot he considered early in the software life cycle. However, Chidamber and

Kemerer have proposed a set of metrics which cao be evaluated from the design

documents [24], [25], [32]. The Chidamber and Kemerer metrics have been empiricaIly

valîdated by Basili et al. in [8]. Briand et aI. have proposed and empirically validated a set

of class eoupling metrics in [27). Abreu et al have defined MOOO metrics that were

empirically validated by Abreu and Melo in [2]. All of these empirieal validation have

been condueted in laboratory on a small sized projects. We will investigate the empirical

validation of sorne of these metries on an industrial produet.

Empirical validation aims at demonstrating the usefulness of a measure in practice. and is,

therefore. a crucial activity to establish the overaIl validity of a measure [8]. A measure

may be correct from a measurement theory perspective but of no practical relevance to the

problem at hand. On the other side, a measure may not be entirely satisfactory from a

theoretical perspective but can he a good enough approximation and work fine in praetice.

We will investigate the usefulness of selected 00 design metrics to predict fault­

proneness as a quaIity indicator.

16

•

•

Chapter 3

Specifie Problem Statement

An important objective in aH software development is to ensure that the delivered product

is as fault-free as possible. One way to achieve this is to utilize a metric suite that can he

applied to the design phase, early in the life cycle, to identify which modules are likely to

be fault prone. These modules can then he redesigned hefore the produet is implemented.

Metries of this kind have a second use. as weil. [f a product has already been eonstrueted,

these metries ean he utilized to prediet future maintenance effort. That is, beeause they

can detect fault-prone eomponents. they can identify which components are likely to

require corrective maintenance in the future [18].

• Whieh 00 design produer measures are good predierors of ftlllit-prolleness as a

software produe!'s qllality indieator? What are the desirable properties of the 00

system that need to he measured? Couplilzg is one of the design properties that

characterize the quality of software products. Stevens, Myers, and Constantine define

coupling as "'the measure of the strength of association by a conneetion from one

module to another. Strong coupling eomplicates a system since a module is harder to

understand, change. or correct by itself if it is highly interrelated with other modules.

Complexity cao he reduced by designing systems with the weakest possible coupling

between modules". Coupling with regard to modules is applicable to 00 design, but

17

•

•

•

•

coupling with regard to classes is equally important [14J. However, there is a tension

between the concepts of coupling and inheritance. On the one hand, weakly coupIed

classes are desirable; on the other hand, inheritance-which tightly couples

superclasses and their subclasses-helps us to exploit the commonality among

abstractions. Cohesion is another design property that cornes from structured design.

Cohesion measures the degree of connectivity among the elements of a single module

(and for 00 design, a single cIass or object). The least desirable form of cohesion is

coincidental cohesion (i.e .• cIass comprising the abstractions of dogs and spacecraft,

whose behavior are quite unrelated). The most desirable forro of cohesion is

functionaI cohesion, in which the elements of a cIass or module all work together to

provide sorne weII-bounded behavior [14J.

What is a suitable technique for predictive modeling and empirical validation of the

selected 00 design 11letrics? SeveraI different modeling techniques are commonly

cited in the literature. Linear regression has been used in [7]. [2], [27]. [33]. logistic

regression in [2], [8J, [15], [20], [22]. discriminant analysis in [39], [46]. optimized

set reduction in [15], [22]. machine learning algorithms in [4L [9], [37]. The

prediction models, though. are based on the assumption that the 00 design metrics are

potential predictors for the fault-proneness of classes in 00 systems.

Wlwr are the objective criteria againsr wlziclz tlze models built slzould he evaluated

witlz respect to their predictive qualit), ? In other words, how to validate the models

and daim research success?

18

• 3.1 Solution Strategy

•

In order to provide adequate answers on the questions from the previous section we will

take the following steps:

1. Fault-proneness hypotlzeses proposai. We propose hypotheses that relate

design properties of 00 components and fault-proneness as their quality

indicator. The properties quantified with the corresponding product measures

are coupling, cohesion, and inheritance.

2. Metrics selection. We select and empirically validate an appropriate suite of

metrics with respect to the hypothesis from the previous step. Adequate

candidates are those metrics that capture the 00 design properties stated in the

hypothesis. We also provide suitable definition(s) for fault-proneness as a

dependent variable.

3. Predictive modeling. We build predictive models that capture different

dependency forms in an 00 design and allow relating them to the number of

defects detected. We use these models as a means for empirical validation of

the metncs set used. We selected the C4.5 machine learning algorithm [43] as

a modeling technique. ln order to choose the best models, we investigate

different options of C4.5 algorithm during the model construction process.

4. Evaluation and verification. The predictive quality of the constructed models

is evaluated against the objective set of standards-correctness. completeness.

accuracy, and goodness of fit of data. Predicted fault-proneness is compared

with the actual fault proneness extracted as defect data.

19

•

•

Chapter 4

Background and Related Work

In this chapter we describe where the inspiration for our work came from ? We organize

the information presented in two sections~ corresponding to two different dornains

essential for our research. In the first section~ we define sorne of the 00 design rnetrics

available in the software engineering community using the terminology and formalisrn

introduced by Briand et al. in [18] and [19]. In the first part of the second section we

discuss sorne of the works regarding various predictive rnodeling techniques for various

software quality related dependent variables. The second part of the second section is

dedicated to the research work that relates software product measures and software quality

indicators with respect to machine learning algorithms as predictive modeling technique.

4.1 Some Object-Oriented Design Metrics

Autornated tools supporting 00 metrics data collection and analysis are essential for the

use of product metrics on a regular basis in order to monitor and improve software [6].

For metrics to be actively used in the real world~ the support in terms of simple and easy

to use tools is a must. The use of metrics collection tools can significantly help in

20

•

•

improving a practitioner's ability to identify. analyze. fix. and improve quality

characteristics of software design and implemenlations.

ln order to meet those objectives. such a tool. M-System [40), has been designed and

developed al Fraunhofer ŒSEl. M-System supports the collection of 49 plus 00 design

product metrics. The definitions of the measures come from [24], [17), [20). [25), [36).

[12), [31], [30], [35]. M-System itself, is based on AT&T Gen++ [27] which is a language

tool that processes C++ source code. Firstly, the source code of the investigated C++

system needs to he anaJyzed by Gen++. Then, M-System uses the Gen++ Query Results

as an input in order to compute the 00 design metrics in question. Further discussion

about M-System or Gen++ is beyond the scope of this work. For any additional

information refer to [40] and [27] accordingly. We decided to use M-System in our

research work, since it provides automated data collection support for the measures of

targeted design properties as required by steps 1 and 2 in the section 3.1 Solution Strategy.

Typically. the 00 approach to software development is iterative in nature and the phases

of the development process highly overlap. While the basic set of objects, operations,

attributes, and relationships that fulfill given requirements are identified in the analysis

phase, the details of a class' s methods, parameters. data declarations. relationships. and

algorithms are resolved during the design. The results of an analysis and design process

are hierarchies of weil defined classes that represent a blueprint for an implementation

[6].

Metrics assess the internai and external structure, relationships, and functionality of

software components. The most basic components of an 00 system are its classes. 00

systems are built around classes and their interrelationships. The interdcpendence of

classes upon each other defines the extemal structure of the system. Relationships among

classes define the paths of communication between objects of classes. Organization of

classes using relationships such as "is-a" and "consists-of' allows for the sharing of

1 Fraunhofer lESE (the [nstÏlute for Experimental Software Engineering). Kaiserslautern. Gerrnany.

21

•

•

functionality and attributes. The member functions of a c1ass define the services a c1ass

supports, and its interactions with other objects. while the member data of a c1ass define

the internai structure of the class' objects.

In the pasto research within the area of software measurement has suffered from a lack of

(i) standardized terminology and (ii) a formalism for defining rneasures in an

unambiguous and fully operational manner (that is. a manner in which no additional

interpretation is required on behalf of the user of the measure) [18], [19J. As a

consequence, development of consistent. understandable. and meaningful software quality

predictors has been severely hampered. To remedy this situation it is necessary to reach a

consensus on the terminology, define a fonnalism for expressing software measures. and.

most importantly, to use this terminology and formalism.

To express the 00 design metrics extracted by M-System consistently and

unambiguously the following terminology and formalism based on set and graph theory

are presented.

4.1.1 Terminology and Formalism

a) System, classes, inheritance relationships

An 00 system S consists of a set of classes C. There can exist inheritance relationships

between classes such that for each class CEe let

• Parents(c) c C he the set of parent classes of class c

• Clzildren(c) c C he the set of children classes of class c

• Ancestors(c) c C he the set of ancestor classes of c1ass c

• Descendants(c) c C he the set of children classes of class c

22

• In C++. a c1ass c can declare a c1ass dits friend. which means that d is thus granted access

to non-public elements of c. We must he able to specify for a c1ass c. which are its

friends. and which classes declare class c their friend. Therefore, let

• Friends(c) c C he the set of friend classes of class c

• Friends'(c) ce he the set of classes that declare class c their friend

• Others(c) c C he the set of other classes to c1ass c,

where

Otlzers(c) = C \ (Anceslors(c) v Descendants(c) u Friends(c) u Friends'(c) u {c})

b) Methods

A c1ass c has a set of methods M(c). A method can be either virtual or non-virtual. and

either inherited. overridden, or newly defined. Thus. M(c) cao be decomposed into the set

of methods declared and set of methods implemented in c. For each class CEe let

• M D(C) C M(c) be the set of methods dec/ared in c. Le.. methods that c

inherits, but does Dot override or virtual methods of c

• MI (c) c M(c) he the set of methods implemented in c. i.e.. methods that c

inherits. but overrides or non-virtual non-inherited methods of c.

where

M (c) = M D (c) u MI (c) and M D (c) n MI (c) = 0 .

Furthermore, for each class CEe let

where

M(c) = M1NII(C) U M OVR(C) v M,vElv(c).•

• M !NU(c) C M(c)

• M OVR(C) c M(c)

• M,vEIV(C) C M(c)

methods of c,

he the set of inherited methods of

be the set of overridillg methods of c

he the set of new, or, non-inherited. non-overriding

23

•

•

The access specification of the different methods can he taken into consideration to split

up M(c) into the set of public and private methods. Since in C++, foJlowing 00 notation,

there are public, protected and private methods, M(c) is split up into public, and not

public methods

For each method of a cIass there exist a set of parameters Par(m).

To measure the cohesion, and coupling of a class, c. it is necessary to define the set of

methods that me M(c) invokes and the frequency of these invocations. Method

invocations can he either statie or dynamic,. Consequently, for each method me M(c)

the following sets are defined:

• SIM(m) the set of staticaJly invoked methods of m.

Let cee. me Ml (c) and m'E i\1(C). Then m'e SIM(m) ~ 3 dE C such that

m'E M(d) and the body of 111 has a method invocation where m' is invoked for

an object of statie type class d.

• N51(m. m') the number of statie invocations of m' by m.

Let ceC, me M{(c) and m'ESIM(m). NSl(m, ni') is the number of method

invocations in m where ni' is invoked for an object of statÎC type class d and

m'E M(d).

• PIM(m) the set of polymorphicaJly invoked methods of m.

Let CEe, ni E M {(c) and ni' E M(c). Then m'E PIM(m) (:::) .3 d E C such that

m' E M (d) and the body of ni has a method invocation where ln' may, because of

polyrnarphism, he invoked for an abject of dynamic type class d .

24

•

•

• NPl(m. m') the number of polymorphie invocations of m' by m.

Let CEe. mE M, (c) and nt' E PlM(m). NPl(m, m') is the number of method

invocations in m where m' cao be invoked for an object of dynamic type class d

and m'E M(d). As a result of polymorphism. one method invocation can

contribute to the NPl count of severa! methods.

c) Attributes

Classes have attributes whieh are either inherited or newly defined. For each class CEe

let A(c) be the set of attributes of c1ass c.

A(c) = AD (c) uA, (c). where

• AD (c) is the set of attributes declared in class c (i.e.• inherited attributes).

• A, (c) is the set of attributes implernented in class c (i.e.. non-inherited

attributes).

Methods may reference attributes. It is sufficient to consider the statie type of the object

for which an attribute is referenced because attribute references are not determined

dynamically. We define:

• AR(m) as the set of attributes referenced by method m, where mE M(c)

• NAR(m, (1) as the number of references of method m to attribute a. where

a E A (d) for sorne d E C .

d) Predicates, interactions, derived sets

To account for coupling of classes c. d E C we define the predicate

uses(c.d) ~ (3m E M, (c): 3m' E M, (d): 3m' E SlM(m»)

v (3m E M, (c) : 3a E A, (d) : 3a E AR("'»)

25

• To account for certain interactions between classes c, dE C we define:

• ACA(c, d) as the number of actual c[ass-attribute interactions

from server c to client d

• ACM(c, d) as the number of actual class-method interactions

from server c to client d

• AMM(c, d) as the number of actual metlzod-method interactions

from server c to client d

For the sets of methods SIM(m) and PIM(nr), mentioned previously, we also define the

sets of indirect method invocations

SIM "(m) and

•

that are transitive closures of SIM(m) and PIM(m).

In the continuation, we present definitions of 00 design metrics grouped around

properties of the 00 system which (hey measure-inheritance, cohesion. and coupling.

4.1.2 Inheritance

Let CE C. We define:

1. Depth of inheritance tree DIT(c)

{

O' if Parellts(c) =0
DIT(c) = ,

1+ max{DIT(c'):c E Parents(c)}, else.

26

•

•

2. Average inheritance depth AID(c)

1
0. if Parellts(c) =°

AID(c) = Lc-ePIITC/lU(Cl (l + AID(c'»

1 1
. else.

Parellts(c)

3. CIass to Ieaf depth CLD(c)

{

O. if Descendallts(c) =0
CW(e) = { }

max DIT(c') - DIT(c): c' e Descendants(c) • else.

4. Number of children NOC(c)

NOC(e) = IChildren(c)/

5. Number of parents NOP(e)

NOP(e) = IParents(e)!

6. Number of descendants NOD(c)

NOD(e) = /Descendants(e)1

7. Number of ancestors NOA(c)

NOA(c) = /Aneestors(c)/

8. Number of methods ovenidden NMO(c)

NMO(c) =1M OVR (C)I

27

•

•

9. Numher of methods inherited NMI(e)

NMI(c) =1M fNH (c)1

10. Number ofmethods added. new methods NMA(e)

NMA(c) = 1M NElV Cc)1

Il. Specialization index SIX(c)

N,WO(e) . DIT(c)
SlX(c) = 1 1M(e)

The development of 00 system can he analyzed at two levels: class level. and system

level. We present the definitions of the following system level metrics:

12. AveragelMaximum class depth of system ACD(S) / MCD(S)

~ DIT(c)
ACD(S) = ~<-Eclcl

MCD(S) = max{ DIT(c'): e E C}

13. System's average inheritance depth SAID(S)

~ AID(c)
SAID(S) = ~ceclcl

14. Total base classes of system TBC(S)

TBC(S) = I{c: cE C /\ Parenls(c) = O}I

28

•

•

15. Maximum breadth of inheritance tree in system MBIT(S)

MBIT(S) :::;: max{l{c : C E C 1\ DIT(c) = n li :n = 1, 2, 3, ...}

16. Maximum number of children in system MNOC(S)

MNOC(S) :::;: max{IChildrell(c)/: C E C}

17. Number of inheritance links in system NIL(S)

NIL(S) = IHc,d] : c,d E C 1\ d E Clzildrell(c)}1

18. Reuse ratio of system U(S)

I{c : Children(c) ~ O}I
U(S) = Ici

19. Specialization ratio of system SR(S)

I{c: Parellts(c) ~ O}j
SR(S) =.,..:....------....:".

[{c: Childrell(c) :1= o}l

20. Total/maximum overload count of system TOC(S) 1 MOC(S)

TOC(S) =L NMO(c)
L-EC

MOC(S) = max{NMO(c): C E C}

21. Method inheritance factor in system MIF(S)

L NMI(c)
MIF(S) = -=(~-eC~_~

LcEcIM(c)!

29

•

•

22. Attribute inheritance factor in system AIFCS)

~ lA (e)1
AIF(S) = ~CEC D

~cec IACe)1

23. Polymorphism factor of system POF(S)

2, NMO(e)
PF(S) = ceC

~ NMA(e) . 1Deseendants(e)1
~CEC

4.1.3 Cohesion

Let cee. We define:

1. Lack of cohesion in methods LCOM1(e)

Note that this definition only considers methods implemented in class e. and that only

references to attributes implemented in class e are counted. LCONI is an inverse cohesion

measure. A high value of LCOM indicates low cohesion and vice versa. ft can be

interpreted [30] as the number of pairs of methods in class e having no common attribute

reference.

2. Lack of cohesion in methods LCOM2 (e)

Let G(_ = (Vc ' E c) he an undirected graph with vertices Vc = MI (c) and edges

E c (c) ={[ml ,nl2] : ml'~ E Vc AAR(m,) n AR(ln!) (l AI (c) :#: o} .Then

LCOM2 (e) is the number of connected components of Ge'

30

• 3. Lack of cohesion in methods LCOM:; (c) . Like LCOM:! (c) • but using the following

definition of edges

E,. (c) =([ml ."'-!. J:ml .m2 E Ve 1\ AR(ml) (1 AR(Tnz) (1 AI (c) * 0

v ml E SIM (In2) v I~ E SIM(m l)}

In the case where Ge consists of only one connected component (LCOM 3 (c) = 1), the

number of edges /Eel ranges between IVcl-1 (minimum cohesion) and /V,./.(JVcl-1)/2
(maximum cohesion). Hitz and Montazeri [31] define a measure Co "connectivity" which

further discriminates classes having LCOM 3(c) = 1 by taking into account the number

of edges of the connected component (entry 6, on our list).

4. Lack of cohesion in methods LCOM~ (c) . Let

{
o if AR(m) = 0 'V m E MI (c)

P = condition from LCOM I (c), else.

Q = E c from LCOMz(c)

Then. we define

{
D. if /pi < IQI

LCOM~(c) =
IPI-IQI. efse.

This measure was originally defined by Chidamber and Kemerer in [24] as the number of

pairs of methods in a c1ass having no common attribute references, 1pl , minus the number

of pairs of similar methods. 101 .

5. Lack of cohesion in methods LCOMs(c)

IM I (c)l- 1 ~ I{m: mE Ml (c) /\ li E AR(m)}1
AI (c) ~llE",/c)

LCOMs(c) = 1 1
MI(c)-l

•
31

•

•

This measure was originally defined by Henderson-Sellers [30] in order to satisfy the

following properties:

• The measure yields O. if each method of the class references every attribute of the

class ("perfect cohesion" according to Henderson-Sellers).

• The measure yields 1. if each method of the class references only a single attribute.

• Values hetween 0 and 1 are to he interpreted as percentages of the perfect value.

6. Lack of cohesion in methods Coh(e)-a variation on LCOM s(e)

~ Hm: mE M,(c) /\ a E AR(m)ll
ColI(e) =_~_UE_A..;.,.'(_C_I_~__...,.....- lJ

lM, (e)l· A, (c)

7. Connectivity Co(c)

where Vc and E c are from LCOM.1(c) .

The original name of this measure in [HM95] is C. not Co. Briand et al. use Co in order to

avoid the name conflict with the set C of ail classes in the system S.

8. Tight c1ass cohesion TCC(c)

IHmI .m2]: ml ,m2 E M, (c) n M puh (c) /\ ml *- ml /\ call(11l. ,"'2)JI
TCC(c) =2.:......----------~-------~-----'-

IM,(c) n MpIlJ,(C)1 (IM,(c) n Mpllh(c)l- 1)

The predicate cau(m1 , ml) • common attribute usage, is true, if m. ''''2 E M, (c) directly

or indirectly use an attribute of class e in common.

eau(m1• m2) =(U AR(m)] n (U AR(m)] n A, (c) *- 0
mE {ml IvS'''''· (ntl) mE {m:: }vS',~(· (IPI: 1

32

•

•

This definition reflects the approach by Bieman and Kang [12] to measure cohesion. They

aIso consider pairs of methods which use common attribute. A method m uses an

attribute a directly, if a E AR(In) . Method muses attribute a indirectly, if m directly

or indirectly invokes a method m' which uses attribute a: 3m' E SIM· (m) : a E AR(m') .

Two methods are called ··connected", if they directly or indirectly use a common attribute.

The measure TeC is defined as the percentage of pairs of public methods of the class.

with common attribute usage.

9. Loose class cohesion LCC(c)

I{[m, .111~]: m, .m! E Ml (c) n M pub (e) /\ mi '#"'2 /\ cau' (m, .11l~) JI
LCC(e) =2-=---------------------------=-

1Ml (c) n M pub (c)1 (1 Ml (c) n M pub (e)/- 1)

where the predicate cau· (ml' "'2) is the transitive closure of calt("", ml) defined at

TCC(e).

10. Information f10w based cohesion ICH(e)

fCH e (m) = 2,(1 +IPar(m')1) NPI(m,m')
m·E"'f.w:14' (c)v,\f(/\"R le)

ICH(e) = L ICH" (m)
mE.\f,ld

fCH(U) = 2,/CH (m). U cC
CEU

This set of cohesion measures is based on information flow through method invocations

within a class [35]. For a method m implemented in class e, the cohesion of m is the

number of invocations to other methods implemented in class e, weighted by the number

of parameters of invoked methods. The more parameters an invoked method has, the more

information is passed, the stronger the link between the invoking and invoked method.

The cohesion of a c1ass is the sum of the cohesion of its methods. The cohesion of a set of

classes simply is the sum of the cohesion of the classes in the set.

33

•

•

4.1.4 Coupling

Let CE C. We define:

1. Coupling between abject classes CBO(c)

CBO(c) =I{d E C \ {cl : lIses(c,d) v llses(d ,C)}I

This measure was originally detined by Chidamber and Kemerer in [24] as the number of

classes ta which class c is coupled. CBO(c) takes a binary approach to coupling between

classes: two classes are either coupied or not and the number of such Hclass couples" is

counted.

2. Coupling between object classes CBO'(c)

CBO'(c) =I{d E C\ {{cl u Ancestors(c)} : llses(c.d) v lIses(d .C)}I

CBO'(c) measures non-inheritance based coupling.

3. Response for cla"is RFC(c)

RFC(c) = RFC. (c)

RFC counts the number of methods invoked by the class. Originally. it represents the size

of the response set of a class, defined as the set of methods in the class together with the

set of methods called by the class's methods [24].

4. Response for class RFC'(c)

RFC'(c) :;; RFC"" (c)

RFC'(c) is the number of methods that cao possibly be iovoked by sending a message to

a class c. This includes methods of c, methods invoked by the methods of c. and sa 00 .

34

•

•

5. Response for class RFCa(e)

Ro(e) =M(e) and Ri+1(e) = UP1M(m)
meR,le)

RFCa(e) counts nested method invocations, those that RFC'(e) stands for, up to a

specificd level a.

6. Message passing coupling MPC(e)

MPC(e) = L L NS1(m,m')
me"', (c) m'eSr.\f(mIIM,k)

Originally defined by Li and Henry in [36] as a number of send statements in a class. this

measure counts the number of methods invocations.

7. Data abstraction coupling DAC(e)

DAC(e) = L ACA(e,d)
JeC
Je,·

Originally defined by Li and Henry in [36J as a number of abstrllet data types defined in a

class. this measure counts the number of attributes and parameters having a class type.

8. Data abstraction coupling DAC'(e)

DAC'(e) = 2:(ACA(e,d) > 0)
JeC
JE"

This measure counts the number of classes used as a type for an attribUle.

35

• Briand et al. observe in [18] that there is an important difference between the "number of

attributes" having a class as its type and the "number of classes" used as types for

auributes. If a class chas 10 attributes of type class d, DAC(c) =10 whereas DAC'(c) =1

is quite possible.

9. Information flow based coupling ICP(c)

ICP" (m) = I,(1+!Par(m'>1) NPI(m,m')
m'e PIM(ml(M.o;cwl ..Iv .I,'m·R (c»)

ICP(c) = L ICpc (m)
me.\(, (cl

ICP(U) = LICP(c), U cC
ceU

ICP measures, introduced by Lee et al. in [35], aim at measuring the amount of

infonnation tlow between methods. Infonnation flow occurs between a method m and

any method m that is possibly invoked by method 111 which includes methods

•

m'E PIM(m) . Lee et al. acknowledge the need to differentiate between inheritance-based

and non-inheritance-based coupling by proposing corresponding measures: NIH-ICP and

IH-ICP. ICP is simply the SUffi of both types of coupling,

10. Information flow based non-inheritance coupling NIH-ICP(c)

NIH -ICpC(m) = L (l+/Par(m')/) NPI(m,m')
m'ePlM(mlr.(U. , MIC'»)

... to"1k-rJlufl' ('.

NIH -ICP(c) = L NIH -ICpc (m)
nleM,(c)

NIH -ICP(U) = L NIH -ICP(c). U cC
ceU

36

•

•

11. Infonnation f10w based inheritance coupling /H-/CP(c)

/H-/CPC(m) = ~ (l+IPar(m')1) NP/(m.m')
m·ePIM(ml~(U. ~((1 ._- 1MIC")

• \ t" (... ' C '_,_"lIonlcI

/H - /CP(c) = L /H _/Cpc (m)
me.\!t(c,

/H -/CP(U) =~/H -/CP(c). U cC
l'eU

Briand et al. created a metrics suite [17] designated to investigate the quality impact of the

different design mechanisms in C++ (i.e.. specialization. generalization. aggregation. and

friendship). There are three different facets, or modalities. of coupling between classes in

00 systems developed in C++. They are referred as: locus, type, and relationship:

• Relationship refers to the type of relationship: inheritance. friendship. or other

(neither). Clearly. a cIass c is most closely coupled with ils descendants,

ancestors. friends.

• Locus refers to expected locus of impact; i.e.. whether the impact of change

tlows towards a class (import) or away from a class (export). Thus changes to

an ancestor flows towards a class (import) and changes to a class tlows

towards its descendants (export). During import class c acts as a client. while

during export class c acts as a server.

• Type refers to the type of interactions between classes (or their elements). ft

may he:

a) C/ass-Auribute interaction: there is a cJass-attribute interaction between

classes c and d. if class c is the type of an attribute of cIass d.

b) Class-Method interaction: there is a class-method interaction between

classes c and d. if cJass c is the type of a parameter of method nid; or

if cJass c is the retum type of method mJ •

37

• c) Method-IWethod interaction: let me and mJ he methods of class c and

class d respectively. There is a method-method interaction between

classes c and d, if mJ directly invokes me' or lnJ receives via

parameter a pointer to me thereby invoking me indirectly.

Coupling between classes in C++ can he due to any combination of these facets. Using

measures that cao account for all different types of interactions, we cao evaluate the actual

impact of each coupling dimension on the quaJity of the resuiting artifact. There are three

types of relationships, two loci, and three types of interactions described in [17}, that

cornes to 18 different possible coupling measures. They are listed in the continuation.

12. Inverse friends class-attribute import coupling IFCAlC(c)

lFCAlC(c) = 2, ACA(c,d)
JeFrÙ"nJ.ç-1 ('")

13. Ancestors class-attribute import coupling ACAIC(c)

ACAIC(c) = ACA(c,d)

14. Others c1ass-attribute import coupling DCAlC(c)

OCAlCCc) = L
JeO,hcrs(c)

ACA(c,d)

•

15. Friends c1ass-attribute export coupling FCAEC(c)

FCAEC(c) = L ACA(d,c)
JEFnt:"J_f(,-j

16. Descendants c1ass-attribute export coupling DCAEC(c)

DCAEC(c) = L ACA(d,c)
JEDcsecnJuntf (c)

38

• 17. Others class-attribute export coupling OCAEC(c)

OCAEC(c) = L ACA(d,c)
JeOthcr:r(c)

18. Inverse friends class-method import coupling lFCMIC(c)

IFCM1C(c) = L ACM(c.d)
JeFncndJ-I(c)

19. Ancestors class-method import coupling ACM1C(c)

ACM1C(c) = L ACM(c,d)
JeAnCC.fttJrf(c)

•

20. Others class-method import coupling OCM1C(c)

OCMIC(c) = 2, ACM(c.d)
deOt/ru,(C 1

21. Friends c1ass-method export coupling FCMEC(c)

FCMEC(c) = 2, ACM(d.c)
dE FncnJ.f Cc 1

22. Descendants c1ass-method export coupling DCMEC(c)

DCMEC(c) = L ACM(d.c)
dEDc.I<"cnJ,.ml.Ilc 1

23. Others c1ass-method export coupling OCMEC(c)

OCMEC(c) = L ACM(d,c)
J eOtlluf(cl

39

• 24. Inverse friends method-method impon coupling IFMMIC(c)

IFMMIC(c) = L AMM(c,d)
deFri~nJ.~-1(c)

25. Ancestors method-method impon coupling AMMIC(c)

AMMIC(c) = L AMM(c,d)
deAna5W~(C)

•

26. Others method-method import coupling OMMIC(c)

OMMIC(c) = L AMM(c,d)
JEOrh~n(c)

27. Friends method-method export coupling FMMEC(c)

FMMEC(c) = L AMM(d,c)
JEFn~nJ.~(c)

28. Descendants method-method export coupling DMMEC(c)

DMMEC(c) = L AMM(d,c)
JED...~cttnJunr.« c,

29. Others method-method export coupling OMMEC(c)

OMMEC(c) = L AMAtI(d,c)
JEO,JI~n(c)

The usefulness of the selected 00 design metrics, with respect to their ability to predict

likely to be faulty components through appropriate modeling technique, is discussed in

Chapter 7 where we present the experimental results of our study.

40

•

•

4.2 Predictive Modeling

According to the Webster's dictionary, a model is a system of postulates. data, and

inferences presented as a (mathematicaI) description of an entity or state of affairs. From

that perspective, predictive model is a model where one to few important Y-variables are

predicted from sorne number of X-variables that cao be obtained (easily) from standard

maps or standard monitoring programs. We caU the Y-variables depende1lt. or predicted

variables. a~ opposed to the X-variables, which are independent, or predictor variables.

Statistical models are derived from purely statistical considerations about the pararneters

in the system and their relationships. It is often very difficult to establish causal

relationships among the factors and the effect variables, over certain range of conditions.

DetenllùlÎstic models are based not solely on statistical analysis of the available data. but

aIso on the presuppositions of the model designer. This often means that the model

designer decides how the model should behave.

Step-by-step predictive models predict a desired Y-variable in several steps in such a way

that one or more of the mode1 variables X used to predict Y are themselves predicted

variables.

Models can be described by:

• mathematicallinks among the parameters of the system. or

• decision trees or rules based on heuristic data analysis. or a knowledge of

human experts.

41

•

•

4.2.1 Various Modeling Techniques

a) Linear Regression Analysis

Khoshgoftaar and Munson used linear regression analysis as a modeIing technique in

order to predict software development errors based on their assumed relationship with

software complexity metrics [33J. The generaJ notion of linear regression is to select from

a set of independent variables a subset of these variables. which will explain the most

amount of variance in a dependent variable. The key to model development is to choose

the subset of independent variables in such a manner as to not introduce more variance (or

noise) in the model than might he contributed by the independent variable itself. A major

problem in the development of linear regression model centers around multicollinearity.

The basic regression model is based on the assumption that the independent variables of

the analysis are not linear compounds of each other nor do they share an element of

common variance. Two variables sharing an element of variance are said to be collinear.

To meet this assumption of nonmulticollinearity. another statistical procedure called

factor analysis has been used. The specific vaJue of factor anaJysis is the reduction of the

complexity metric space to a set of orthogonal complexity dimensions. that are. in fact.

noncollinear. Khoshgoftaar and Munson demonstrated with their models that there is a

relationship between program errors and complexity domains of program structure and

size.

Li and Henry [36] used the same linear regression analysis in order to build predictive

models that relate 00 metrics and maintainability. They have analyzed two commercial

systems built in Classic-Ada. using Chidamber and Kemerer's metric suite [24]. as weil as

several new1y developed metrics. Their models proved Rombach' s indication [44] that

software metrics can predict maintainability. Basili et al. [7] though. developed predictive

cost model for maintenance releases that were primarily composed of enhancements. They

have analyzed 25 complete releases from 10 different projects at Flight Dynamics

Division of the NASA Goddard Space Right Center. Their linear regression model related

42

•

•

total release effort with total lines of code added, changed, and deleted. Finally, Abreu

and Melo [2] validated a suite of 00 design metrics called MOOD by developing linear

regression models that predict defect and failure density (reliability measures). and

normalized rework (maintainability measure). They have used data from a C++ controlled

study performed by graduate and senior level students at the University of Maryland.

b) Logistic Regression Analysis

Agresti and Evanco [3] used log-linear regression analysis as a predictive modeling

technique in order to relate design complexity metrics with the defect density in Ada

programming language. Data has been obtained on three Ada projects consisting of 16

subsystems and 149K SLOC2
, from the NASA Goddard Space Flight Center. Ada

systems have been viewed as being composed of design units ('·parts·'). and design

relations ("·connections"). Agresti and Evanco have shown that. of the five possible

connections. the context coupling has been the most related to defect density_ Briand et

al.• used two different modeling techniques in [15J, Optimized Set Reduction (OSR), and

logistic regression analysis-usually used when the dependent variable is binary in nature.

OSR. developed at the University of Maryland, is based on bath sLatistical and machine

learning principles. Given a historical data set, OSR automatically generates a collection

of 10giCal expressions referred to as ··patterns" which characterize the trends observable in

the data set. The goal of the study was to relate design complexity and system architecture

with high/low fault freqltency components. The data set has been created using data from

146 components of a 260 KLOC Ada system. The components have been classified in

two groups, high-risk and low-risk, using two-group predictive models based on each of

the modeling techniques. Logistic regression has been used by Briand et al. [20] in

another study with similar goal. Several high level design metrics have been defined and

then used as predictors of highllow fault frequency components. The data used in the

studyare based on three NASA projects developed in Ada, with average of 100 KLOC

each. In another study based on OSR and logistic regression as modeling techniques [22],

Briand et al. defined a notion of a high risk component based on a combination of

software quality factors. They defined two classes, high isolation cost, and /zig/z

43

•

•

completion cost, and built models for each. From change report fonn data. a component

would he placed in the high isolation cost class if there is a defect in the component that

requires more than certain amount of time to isolate an understand. Similarly, a

component would he placed in the high completion cost class if there is a defect

associaled with it that would required more than certain amount of lime to complete the

error correction, once it had been isolated. The reason for the use of these two models has

been to better understand the major influences in error isolation difficulty and error

completion difficulty, which were likely to he different. The data in the study have come

from the NASA Goddard Space Flight Center F1ight Dynamics Division. Characteristics

of the design have been used as explanatory variables in order to build classification

models of 150 Ada components from three different systems. Both modeling techniques,

OSR and logistic regression, have been evaluated with respect to the accuracy of the

models, and ease of interpretation. Basili et al. [8J performed an empirical validation of

the 00 metrics defined in [24J with regard to their ability to identify fault-prone classes,

as opposed to maintainability in the study by Li and Henry [36]. Data have been collected

from eight university related projects developed in C++ programming language. Two two­

group classification models have been built using logistic regression anaJysis, one based

on 00 metrics and the other one on c1assical code metrics. The results have shawn that

Chidamber and Kemerer' s [24] 00 metrics were better predictors than the best set of

'1raditionaJ" code metrics, which can only he collected during later phases of the software

development process. Finally. logistic regression has been used as a modeling technique

in a study performed by Devanbu et al. [28], with a goal to relate reuse oriented measures

with quaJity factors of productivity and defect density. The data in the study has been

collected from seven C++ projects from the University of Maryland. The results indicate

that different reuse metrics cao he used as predictors of different quality attributes.

b) Discriminant Analysis

Munson and Khoshgoftaar [39] used another statistical modeling technique called

discriminant anaJysis. It is basically a classification procedure. The underlying principle of

1 SLOC stands for source lines of code.

44

•

•

the technique is that an operational hypothesis is fonnulated that there exists an a priori

classification of multivariate observations ioto two or more groups or sets of observations.

Further, the membership in one of these supposed groups is mutually exclusive. A

criterion variable will be used for this group assignment. Thus a program, for example,

might he classified with a code of 0 if it has been found to have no faults, or with a code

of 1 if it has more than one fauit. In the application of discriminant analysis in their study,

Munson and Khoshgoftaar used non-correlated measures of program complexity (domain

metrics) as independent variables in an attempt to classify programs into a group whose

programs contain relatively few faults. or to a group whose programs contain relatively

large number of faults. The data for the study have been collected from two commercial

systems, one developed in Pascal and fORTRAN with approximately 40 KLOC, and the

other one developed in Ada. Built predictive models have shown accuracy of 75% and

62% respectively. The authors concluded that discriminant analysis as a modeling

technique did show promise for use in the circumstances of noise and certainly non­

normally distributed data. In another study, Szabo and Khoshgoftaar [46] applied

discriminant analysis to build a model that classifies program modules as either high.

medium, or low risk. The quantitative measurements upon which classification has been

based (independent variables) were principle components derived from a set of software

product measures extracted from the source code. The classification (dependent) variable.

Jaults, was a measure of the number of eITors detected at the end of a specifie

development phase. The modules were divided into three groups based on the cutoff

values. The cutoff values clearly determine the size of each group and will vary from

environment to environment. Typically, cutoff values are determined based on the past

history of projects developed in similar environment. The data in the study has been

collected from a commercial system which contained 68 program modules (files)

developed in C++. The software metrics used were divided into two groups, procedural

metrics (apply equally to procedural and 00 languages), and 00 metrics (apply only to

00 paradigm). Two tbree-group predictive models have been developed with achieved

accuracy of 64.7% and 69.1% respectively.

45

•

•

4.2.2 Machine Learning Aigorithms

Almeida et al. [4J perfonned an empirical study in which they investigated different

machine leaming (ML) algorithms with regard to their capabilities to generate accurate

corrective maintenance estimation/evaJuation models. In generaI. ML algorithms use an

attribute-value representation language that allows the use of statisticaJ properties on the

leaming set. Nevertheless, others use the first order language that pennits the expression

of relations between objects, thus having better expressive capabilities than the attribute­

value language. In their study, Almeida et al. used four very weil known. public-domain

ML algorithms (NewID, CN2, C4.5, FOn...) belonging to three different families of ML

techniques (divide and conquer, covering family, inductive logic programming). Data

used in the study have been collected from the a library of reusable components, known

as, Generalized Support Software (GSS) reuse asset library, located at the Flight

Dynamics Division of the NASA Goddard Space Flight Center. The asset library

consisted of 1K AdaS3 components totaling approximately 515 KSLOC. The results have

shawn that the predictive models generated by FOn.... and C4.5 were far better than the

models produced by NewID, CN2, and multivariate logistic regression combined with

principle component analysis.

Another study has been performed by Basili et al. [9] approximately on the same data.

They have analyzed GSS library of reusabIe components in order to construct a model for

predicting the cost of rework. The C4.5 ML aIgorithm, has been used as a modeling

technique. This Iogical classification technique has been chosen "because the models are

straight fOlWard to build and are also easy to interpret" [9]. The C4.5 algorithm partitions

continuous attributes, in this case the internai product metrics, finding the best threshold

among the set of training cases in order to classify them on the dependent variable, in this

case costly to rework / not costly 10 rework classes. As weil as being usefui for prediction,

the generated decision tree provides production rules characterizing components that fall

into each one of the rework cast categories. Basili et al. evaluated the constructed two-

46

•

•

group model with respect to its correctness (69% costly 10 rework c1ass) and completeness

(71 % costly to rework class).

A suite of 24 coupling measures have been proposed by Lounis et al. in [37], to quantify

the level of coupling in modular software systems. The metrics then have been

empirically validated through fault-proneness predictive modeling based on C4.5 ML

algorithm. The data for the study have been collected from a medium size. industrial 00

system written in C++, with approximately 47 KSLOC. The quality of the model built has

been evaluated with respect to the overall accuracy, correctness. and completeness of the

predictions. Evaluation of the model's accuracy points out how good the model is

expected to he as a predictor. The achieved accuracy of the mode! is 78.82%, while the

correctness and completeness for the fault-prone classes are 74% and 64% respectively.

The research works in [37], [9], and [4], mentioned in this subsection have mostly

inspired our work. We compare our findings with the results from these three studies in

Chapter 7. A summary of the background and related work in a table format can he found

in the Appendix A. The foundations and intrinsic characteristics of C4.5 are described in

more details in the next chapter.

47

•

•

Chapter 5

C4.5 Machine Learning Aigorithm

Most applications of artificial intelligence to tasks of practical importance are based on

constructing a model of the knowledge used by a human expert. In sorne cases. the task

that an expert performs can he thought of as classification-assigning things to categories

or classes determined by their properties. In a classification mode!, the connection

between classes and properties can be defined by something as simple as a tlowchart or as

complex and unstructured as a procedures manual. There are two very different ways in

which executable models-those that can be represented as computer programs-ean be

constructed. The model might be obtained by intervicwing the relevant expert(s): most

knowledge-based systems have been built this way. Alternatively, numerous recorded

classifications might be examined and a model constructed inductively, by generalizing

from specifie examples.

C4.5 [43] is a set of computer programs based on a machine leaming a1gorithm that

constructs classification models of the second kind, i.e., by discovering and analyzing

patterns found in records of heuristic data. The key requirements of the particular

induction methods embodied in C4.5 program(s) are:

48

•

•

• Attribute-value description: The data to be anaIyzed must be what is

sometimes called a flat file-ail infonnation about one object or case must be

expressible in tenns of a fixed collection of properties or attriblltes. Each

anribute may have either discrete or numeric values~ but the attributes used to

describe a case must not vary from one case to another.

• Predeftned classes: The categories to which cases are to he assigned must have

been established beforehand. [n the terminology of machine learning~ this is

supervised learning, as contrasted with unsupervised learning in which

appropriate groupings ofcases are found by analysis.

• Discrete classes: The classes must he sharply delineated-a case either does or

does not belong to a particular c1ass-and there must he far more cases than

classes.

• SlIJficiellt data: Inductive generaIization proceeds by identifying patterns in

data. Sometimes, robust patterns cannot he distinguished from chance

coincidences. As this differentiation usually depends on statistical tests of one

kind or another. there must he sufficient cases to allow these tests to be

effective. The amount of data required is affected by factors such as the

numbers of properties and classes. and the complexity of the classification

models; as these increase, more data will he needed to construct a reliable

mode1.

• Logical classification models: C4.5 constructs only c1assifiers that can be

expressed as decision trees or sets of production rules. These forros essentially

restrict the description of a c1ass to a logical expression whose primitives are

statements about the values of particular attributes.

49

• 5.1 Divide and Conquer Method

Most of the works done in machine learning have focused on supervised ML algorithms

[4]. In general, these a1gorithms use an attribute-value representation language. One of

these attributes represents the c1ass of the case. Two algorithm methods emerge in the

attribute-value based family: the divide and conquer method, and the covering method.

C4.5 belongs to the family of algorithms that use divide and conquer method. In this

family, the induced knowledge is, generally, represented by a decision tree. It is the case

of algorithms like ID3 [42] (the direct ancestor of C4.5), ASSISTA.1\1T [23], etc. The

principle of this approach, can be summarized by the following a1gorithm:

If

Then

Eise

Endif.

aIl the examples are of the same class

- create a leaf labeled by the c1ass name;

- select a test based on one attribute,

- divide the training set into subsets, each associated to

one of the possible vaIues of the tested attribute.

- apply the same procedure to each subset;

•

The key step of the algorithm above is the selection of the "besf' attribute to obtain

compact trees with high predictive accuracy. Information-based heuristics have provided

effective guidance for the division process.

C4.5 induces classification models, also called decisioll trees, from data. ID3, C4.5's

ancestor, works with a set of examples where each example has the same structure,

consisting of number of attribute/value pairs. The problem is to detennine a decision tree

that on the basis of answers to questions about the non-class attributes correctly predicts

the value of the class attribute. Usually, the c1ass attribute takes only the vaIues {true,

faIse), or {success, faiIure}, or something equivalent.

50

•

•

5.2 Decision Tree

A decision tree represents a slructure that is either

• a leaf, indicating a class, or

• a decision node that specifies sorne test to he carried out on a single attribute

value, with one branch and sub-tree for each possible outcome of the test.

A decision tree cao be used to classify a case by starting at the root of the tree and moving

through it until a leaf is encountered. At each nonleaf decision node. the case' s outcome

for the test at the node is determined and attention shifts to the root of the subtree

corresponding to this outcome. When this process finally (and inevitably) leads to a leaf.

the class of the case is predicted to he that recorded at the leaf.

A measure of entropy is used to measure how informative anode is [4]. In general. if we

are given a probability distribution P = (Pl' P2' ... , Pn). then the bzfonnatioll conveyed by

this distribution. also called the Entropy ofP, is:

This notion is exploited to rank attributes and to build decision trces where at each node

the attribute with greatest gain is located-not yet considered in the path frorn the root.

C4.5 introduces a number of extensions of the original ID3 algorithm. C4.5 accounts for

unavailable values, continuous attribute value ranges. pruning of decision trees. rule

derivation. and 50 on.

When building a decision tree, we cao deal with training sets that have cases with

unknown attribute values by evaluating the gain for an attribute by considering only the

51

•

•

cases where that attribute is defined. When using a decision tree, cases that have unknown

attribute values are classified by estimating the probability of the various possible results.

If there is an attribute, say Ai' with continuous range, C4.5 proceeds as follows. Firstly, it

examines the values for this attribute in the training set. Say, they are in increasing order,

VI' V2 • ••• , Vm • Then, for each value VJ' j = l, ... ,m. the a1gorithm partitions the cases into

thase that have Ai values up to and including Vi' and those that have values greater than

VJ. For each of these partitions, C4.5 computes the gain, and chooses the partition that

maximizes the gain.

5.2.1 Pruning Decision Trees

The recursive partitioning method of constructing decision trees described in sections 5.1

and 5.2 will continue to subdivide the set of training cases until each subset in the

partition contains cases of a single class, or until no test offers any improvement. The

result is often a very complex tree that ··overfits the data" by inferring more structure than

is justified by the training cases. These complex trees are not only hard to comprehend.

but also can actually have a higher ereor rate than simpler trees. Namely. when the

training set has been split many times sa that tests are selected from examination of a

small subset of cases, several tests may appear equally promising and choosing a

particular one of them has elements of randomness.

A decision tree is not usually simplified by deleting the whole tree in favor of a leaf.

Instead. the idea is to remove parts of the tree that do not contribute ta classification

accuracy on unseen cases, producing something less complex and thus more

comprehensible.

52

•

•

There are basically two ways in which the recursive partitioning method can he modified

to produce simpler trees:

• deciding not to divide the training set any further~ or

• removing retrospectively sorne of the structure built up by recursive partitioning.

The former approach, called sropping or preprllning. does not waste time assembling

structure that is not used in the final simplified tree. The typical approach is to look at the

best way of splitting a subset and to assess the split from the point of view of statistical

significance, information gain, error reduction. or whatever. If this assessment faIls below

sorne threshold. the division is rejected and the tree for the subset is just the most

appropriate leaf. However. such stopping rules are not easy to get write-too high a

threshold can terminate division before the benefits of subsequent splits becorne evident.

while too Iowa value resuits in little simplification. C4.5 follows the second approach in

which an overfitted tree is pruned after it is grown.

Decision trees are usually simplified by discarding one or more subtrees and replacing

them with leaves; as when building trees. the class associated with a leaf is found by

examining the training cases covered by the leaf and choosing the most frequent class. ln

addition, C4.5 a1lows replacement of a subtree by one of its branches. Suppose that it was

possible to predict the error rate of a tree and of its subtrees (including leaves). We can

trim the tree using the following method: stan from the bottom of the tree and examine

each nonleaf subtree. If replacement of this subtree with a leaf, or with its most frequently

used branch, would lead to a lower predicted error rate. then prune the tree accordingly,

remembering that the predicted error rate for aIl trees that include this one will be

affected. Since the error rate for the whole tree dccreases as the error rate of any of its

suhtrees is reduced., this process will lead to a tree whose predicted error rate is minimal

with respect to the allowable forms of pruning.

Two families of techniques cao he used in order to predict the error rate. The first family

predicts the error rate of the tree using a new set of cases that is distinct from the training

53

•

•

set. Since these cases were not examined at the time the tree was constructed, the

estirnates obtained from them are clearly unbiased and, if there are enough of them,

reliable. The drawback associated with this family of techniques is that sorne of the

available data must he reserved for the separate set, so the original tree must be

constructed from a smaJler training set. This may not he a disadvantage when the data are

abundant, but can lead 10 inferior trees when data are scarce.

The approach taken in C4.5 belongs to the second family of techniques thal use only the

training set from which the tree was built. The raw resubstitution estimate of error rate is

adjusted to reflect this estirnate's bias. When a leaf covers N training cases, E of them

incorrectly, the resubstitution error rate for this leaf is E/N. We couId look al this as

"observing E events in N trials". If we look at this set of N training cases as a sample, we

could ask what this result tells us about the probability of an event (error) over the entire

population of cases covered by this leaf. The probability error cannot he determined

exactly, but has itself a posterior probability distribution. For a given confidence level CF,

the upper limit on this probability can he found from the confidence limits for the

binomial distribution; here written as U CF (E, N). Then, C4.5 simply equates the

predicted error rate at a leaf with this upper limit, on the argument that the tree has been

constructed to minimize the observed error rate. To simplify the accounting, error

estimates for leaves and subtrees are computed assuming they were used to classify a set

of unseen cases of the same size as the training set. 50, a leaf covering N training cases

with a predicted error rate of U CF (E, N) would give rise to predicted N xU CF (E. N)

errors. Similarly, the numher of predicted errors associated with a (sub)tree is just the sum

of the predicted errors of its branches.

Figure 5.1 shows a decision tree3 derived from congressional voting data~ before pruning.

3 This example is included in the sample data directory of the original C4.5 software package.
~ This set of data. collected by Jeff Schlimmer. records the VOles of ail United States congressmen on 16 key
issues sefecled by the COllgressional QlIarter/y Almallac for lhe second session of 1984.

54

Decision Tree:

n: democrat (5.0/2.0)
y: republican (13.0/2.0)
u: democrat (1.0)

(151.0)
(1.0)

resolution = y: dernocrat
resolution = U: democrat
resolution = n:

n: democrat (6.0)
= y: dernocrat (9.0)
= u: republican (1.0)

physician fee freeze = n:
1 adoption of the budget
1 adoption of the budget
1 adoption of the budget
1 1 education spending
1 1 education spending
1 1 education spending
physician fee freeze = y:
1 synfuels corporation cutback n: republican (97.0/3.0)
1 synfuels corporation cutback = u: republican (4.0)
1 synfuels corporation cutback = y:
1 1 duty free exports = y: democrat (2.0)
1 1 duty free exports = u; republican (1.0)
1 1 duty free exports = n:
1 1 1 education spending
1 [1 education spending
1 1 1 education spending
physician fee freeze = u:
1 water project cost sharing = n: democrat (0.0)
1 water project cost sharing y: democrat (4.0)
1 water project cost sharing u:
1 mx missile = n: republican (0.0)
1 mx missile y: democrat (3.0/1.0)
1 mx missile u: republican (2.0)

•

Figure 5.1. Original decision tree before pruning

The original decision tree consists of 25 branches and 17 leaves. The number (N 1 E)

appearing after a leaf indicates that the leaf covers N training cases, E erroneously. For

example, the following path:

physician fee freeze = y:
synfuels corporation cutback = y:
1 duty free exports = n:
1 1 education spending = n: democrat (5.0/2.0)

Figure 5.2. A path and a leaf-associated with the number (N 1 E)

covers 5 training cases to the final feaf, of which 2 has been c1assified wrongly,

repub/ican instead of democrat.

•
The pruned decision tree, presented in Figure 5.3 has only 7 branches and 5 leaves. The

number (N / E) appearing after a leaf indicates, as before, that the leaf covers N training

55

• cases. but E is not the exact number of erroneousJy c1assified cases. E is rather est;mated

pessimistic error rate caJcuJated during the pruning process. As can he seen. most of the

values of E are tloat numbers.

Simplified Decision Tree:

physician fee freeze = n: democrat (168.0/2.6)
physician fee freeze = y: republican (123.0/13.9)
physician fee freeze = u:
1 mx missile n: democrat (3.0/1.1)
1 mx missile y: democrat (4.0/2.2)
1 mx missile = U: republican (2.0/1.0)

Evaluation on training data (300 items):

Before Pruning After Pruning

Size

25

Errors

8(2.7%)

Size

7

Errors

13(4.3%)

Estimate

(6.9%) «

Evaluation on test data (135 items):

Before Pruning After Pruning

Size

25

Errors

7 (5.2%)

Size

7

Errors

4(3.0%)

Estimat.e

(6.9%) «

•

Figure 5.3. A decision tree after pruning with estimated error rates

The summary of the results for both training and test data is also presented in Figure 5.3.

The Error is simply a number of wrongly classified cases~ the percentage regarding

overalI population is included in the brackets. The sum of the predicted errors at the

leaves. divided by the number of cases in the training set. provides an immediate estimate

of the error rate of the pruned tree on unseen cases. For this tree. the sum of the predicted

eITors at the leaves is 20.8 for a training set of 300. By this estimate. then. the pruned tree

will misclassify 6.9% of unseen cases. For this particuJar set of data. the error rate of the

pruned tree is higher than that of the original tree for the training data. but. as hoped. the

pruned tree has lower error rate than the original tree on the unseen cases (test data) .

56

•

•

S.3 Production Rules

The development of accurate predictors-although is certainly a key concem-is not the

only purpose of constructing classification models. Another principle aim is that the

model shouid he intelligible to human heings.

As we saw in the previous section, il is often possible to prune a decision tree so that it is

bath simpler and more accurate. The simplified decision tree in Figure 5.3 is so compact

that it can he readily understood. However, when classification tasks become more

intricate, even simplified trees can grow to unwieldy proportions. Large trees are difficult

to understand because each node has a specific context established by the outcomes of

tests at antecedent nodes. Consider the leaf in the path of Figure 5.2. which is derived

from the last node of the second subtree of Figure 5.1. That node tests education

spending, giving c1ass democrat if the answer is Il. but it does not suggest if this test is

self sufficient to decide the outcome of the answer. This test makes sense only when read

in conjunction with the outcomes of eacHer tests along the path. Every test in the tree has a

unique context that is crucial to its understanding and it can he very difficult to keep track

of the cantinually changing context while scanning a large tree.

C4.5 avaids this comprehension barrier by re-expressing a classification model as

production ru/es. a format that appears ta be more intelligible than decision trees. In any

decision tree, the conditions that must he satisfied when a case is classified by a leaf can

be found by tracing ail the test outcomes aiong the path from the root to the leaf. In the

Figure 5.2 the democrat leaf is associated with the outcomes physicüm fee freeze = y.

synfue/s corporation clItback = y, duty free exports = n, and education spending = Il.

Therefore, we can write the rule:

If physician fee freeze = y
synfuels corporation cutback =y
duty free exporls = n
education spending =n

Then c1ass democral

57

•

•

with the understanding that the conditions making up the mIe antecedent are to he

considered as a conjunction. We say that a rule covers a case if the case satisfies the rule's

antecedent conditions.

Rule 1:
physician fee freeze = n
-> class democrat [98.4%J

Rule 2:
synfuels corporation cutback y
duty free exports = y
-> class democrat [97.5%J

Rule 3:
water project cost sharing = y
physician fee freeze = u
-> class democrat [70.7%J

Rule 4:
physician fee freeze = y
-> class republican [88.7%J

Rule 5:
physician fee freeze = u
mx missile == u
-> c1ass republican [50.0%]

Default class: democrat

Figure 5.4. Production mies for the decision tree from Figure 5.1

Rewriting the tree to a collection of mIes. one for each Ieaf in the tree. would not rcsuJt in

anything much simpler than the tree. since there would be one rule for every leaf.

However. the antecedents of individual mIes may contain irrelevant conditions.

F = 0:
j J 0: no
1 J 1:
1 1 K = 0: no
1 1 K == 1 : yes
F 1 :
1 G 0: no
1 G = 1 :
1 1 J 0: no
1 1 J 1 :

1 1 1 K = 0: no
1 1 1 K == 1 : yes

Figure 5.5. Simple decision tree for F=G=I or J=K=1

58

•

•

In the tree of Figure 5.5 the deepest yes leaf is associated with the outcomes F=I. G=O•

1=1. and K=l; any case that satisfies these conditions will he mapped to that yes leaf. So.

we can write the rule:

If F=I
G=O
J =1
K= 1

Then class yes

In the mie above-taking the tree of Figure 5.5 into consideration-the conclusion is

unaffected by the values of F and G. The mie can he generalized by deleting these

supertluous conditions without affecting its accuracy. Ieaving the more appeaIing and

understandable mie

If J = 1
K=I

Then c1ass yeso

Let mie R be:

ifA t/zen class C.

and a more general rule R-:

if A - t/zen class C

where A - is obtained by deleting one condition X from the set of conditions A. [n section

5.2.1 we descrihed how C4.5 prunes decision trees and estimates the pessimistic error

rate. The same approach is used for simplification of production rules. If the pessimistic

error rate of rule R- is not greater than that of the original rule R, then it makes sense to

delete condition X. Rather then looking at ail possible subsets of conditions that could he

deleted, the system carries out a straightforward greedy elimination: the condition whose

removal produces the lowest pessimistic error rate is deleted first. As with aH greedy

searches. there is no guarantee that minimizing pessimistic error rate at each step will lead

to global minimum. However. this technique works reasonably weIl in practice. and is

relatively fast [43].

59

•

•

Let us summarize, it is easy to derive a mie set from a decision tree by writing a rule for

each path in the decision tree from the root to a leaf. The left-hand side (LHS) of the rule

contains ail the conditions (nodes) established by the path. aod the right-hand side

specifies the c1ass at the leaf. The resulting rule set can be simplified: let LHS' he

obtained from LHS by eliminating sorne of its conditions. LHS' cao certainly replace LHS

of the rule if the subsets of the training set that satisfy LHS and LHS' respectively, are

equal [4]. The Figure 5.4 presents the production rules set for the decision tree of Figure

5.1. The system chooses as the default that c1ass which contains the most training cases

not covered by any rule. resolving ties in favor of the cIass with the higher absolute

frequency.

5.4 Conducting Experiments-Modeling

C4.5 programs come with several options that cao enhance not only the process of model

construction, but aIso the predictive power of the model. The question: ··What is the best

combination of options that fine tune the predictive modelsT' is rather subtle. For what

kinds of tasks are decision tree methods in generaI. and C4.5 system in particular, likely ta

be appropriate? The answer is related to the application domain. Of course, a trial and

error method never hurts. However. a better understanding of the relationships between

tasks and rnethods cao reduce the time for model construction and refine model' s

predictability.

5.4.1 Windowing (-t)

A subset of the training set called a window cao he selected randomly in order to grow a

decision tree. This tree cao then he used ta c1assify the training cases that have not been

included in the window, usually sorne of them would be rniscIassified. A selection of

60

•

•

these exceptions would he added to the initial window, and a second tree, constmcted

from the enlarged training set, would be tested on the remaining cases. This cycle is

repeated until a tree built from the current window, correctly classifies aIl the training

cases outside the window.

C4.5 improves the windowing strategy described above--originally applied in ID3-in

several ways. Firstly, C4.5 biases the choice of training cases for the initial window so

that the distribution of classes is as uniform as possible. This type of sampling leads to

better initiaI trees when the distribution of classes is unbalanced. Secondly. C4.5 includes

at least half of the exceptions in the next window. thereby speeding the convergence on a

final tree. Thirdly, the program stops before the tree correctly classifies all cases outside

the window if the sequence of trees is not becorning more accurate.

The principle benefit of the windowing option is that it cao lead to more accurate trees.

Recall that the initial window is still selected randomly. although subject to making the

cIass distributions as uniform as possible. Different initial windows generally lead to

different initial trees. 50. even though the training set is not changed. windowing allows

different final trees to he constructed. This provides the foIIowing two features:

• Growing several trees and selecting as "the" tree the one with the lowest

predicted error rate. and

• Generating production rules for each of the trees grown, then constructing a

single production mIe classifier from ail the available rules.

The final classifier obtained in this way is oflen more accurate than one obtained via a

single tree. The downside is that growing n trees requires n times as long as developing

one of them~ same for production rules.

61

•

•

5.4.2 Grouping Attribute Values (-s}

When the divide-and-eonquer method discussed in section 5.1 chooses to split the training

set on a discrete value attribute. it generates a separate branch and subtree for each

possible value of that attribute. In order to reduce the number of outcomes from testing a

multivalued attribute. one or more outcomes must he associated with a collection of

attribute values rather than a single value. Collections of attribute values associated with a

single branch will he referred to as value groups, not to he confused with subsets of

training cases. In sorne domains. appropriate groups of attribute values can he determined

from domain knowledge. Consider the case of an attribute denoting an employee:

• Grouped by title; employees can he adminisrrarors, analysts. managers,

directors. and so on.

• Sorne employees have a masculine gender. the others have the jemillille one.

• Employees can workfull rime, parr rime, on a cOlltract. etc.

Any or all of these groupings of elements can he relevant to the classification task at hand.

Where such well-established groupings are known beforehand, it makes sense to provide

this information to the system by way of additional attributes. one for each potentially

relevant grouping. So, in this case, we might add a muitivalued attribute to indicate the

title of the employee, another true-false attribute to indicate hislher gender. another

muitivalued attribute to indicate job status. etc.

5.4.3 Weight Option (-m)

Near-trivial tests in which almost all the training cases have the same outcome cao lead to

odd trees with littie predictive power. To avoid this situation, C4.5 requires that any test

used in the tcee must have at least two outcomes with a minimum number of cases. The

default minimum is 2; higher value shouid be tried where there is a lot of noisy data.

62

•

•

5.4.5 Confidence Factor (-c)

The confidence factor (CF) value affects decision tree pruning. The default vaIue (25%)

works weil for many tasks [42]. but should be changed to a lower vaIue if the actual error

rate of pruned trees on test cases is much higher than the estimated pessimistic error

rate-indicative of underpruning. Small values cause heavier pruning. with a higher effect

on small sets of data.

5.4.6 Cross-validation

The obvious method for estimating the reliability of a classification model is to divide the

data into a training and test set. build the model using only the training set. and examine

its performance on the unseen test cases. This is satisfactory when there are plemy of data,

but in the more common circumstance of having less data than we would like5
• two

problems arise. First, in order to get a reasonably accurate fix on error rate, the test set

must be large. so the classification power of the training set becomes worse. Second,

when the amount of data available is moderate. different divisions of the data into training

and test sets can produce surprisingly large variations in error rates on unseen cases.

A more robust estimate of accuracy on unseen cases can be obtained by cross-validation.

In this procedure. the available data is divided into N blacks so as to make each block's

number of cases and class distribution as uniform as possible. N different classification

models are than built. in each of which one black is omitted from the training data, and

the resulting model is tested on the cases in that omitted block. This way. each case

appears in exactly one test set. Provided that N is not tao smali-IO is a common

:; Our research is bascd on a sel of 83 cases, classes from the investigaled C++ 00 system.

63

•

•

number-the average error rate over the N unseen test sets is a good predictor of the error

rate of a model built from ail the data6
•

5.4.7 Building the Best Model

ft is necessary to conduct a lot of experiments in order to find the combination of options

that eventually leads toward the best predictive mode!. As mentioned before. the best

models are strongly related with the application' s domain. A combination of options that

builds the best model for application A could lead toward the worst model for application

B. We investigate the results of both decision trees and production rule classifiers for each

of the system's runs. The quality of the model construction process is captured with the

following measures:

a) Decision Tree

• Size of the decision tree; denoted with two values:

i) before: number of branches in the tree before the pruning, and

ii) after: number of branches in the tree after the pruning

• Error rate: number of cases that were misclassified. Three types of errors are

considered:

i) Train set error rate: is the average error rate of the training set.

ii) Unseen error rate: is the average (observed) error rate of the test set.

iii) Predicted error rate: is the estimated pessimistic error rate for the

unseen cases.

(} This gives a slight overestimate of the crror rate. since each of the N models is constructed l'rom a subsct of
the data.

64

•

•

b) Production Rules

• Error raIe: number of cases that were misclassified. Two types of errors are

considered:

i) Train set error raIe: is the average error rate of the training set.

ii) UnseeTl error raIe: is the average error rate of the test set.

We are interested in the model with the lowest error rates, both observed and predicted.

We have applied the following 4-step procedure while searching for the best models

related to our work:

1. Use ten-way cross-validation with ail default options in the first run of the

system, as a sighting shot.

2. Evaluate the quality of the constructed model with respect to the above criteria.

3. Run the system with options based on specific knowledge domain for the

application and/or your intuition. We used the options in Table 5. 1.

4. Repeat steps 2 and 3 untiI satisfied. Then build the actual production rule

classifier by running the system with the selected best combination of options.

Option Meamng

default
5 Attribute value arouoina ootion.
mS Weiaht option. Any test used in the trae must have at least 5 outcomes.
c15 Confidence Factor option. CF values affect decision tree pruning, small values

cause heavier prunina. The default value is 25%.
c10 CF ootion.
c15 mS A combination of crunina (CF) and weight ootions.
t10 Windowing option. The best tree will be chosen from 10 previously grown

decision trees.
t15 Windowina ootion.
t5 Windowing option.
t5 c15 A combination of windowing and prunina (CF) ootions.
t15 c10 A combination of windowing and pruning (CF) ootions.
m10 Weiaht option.
m15 Weiaht option.

Table 5.1. Options for constructing the best predictive models

65

•

•

ln order to evaluate and compare the results from each system run we use Table 5.2. The

columns present the measures needed to identify the quality of the model construction

process, while the rows present the results regarding the options from Table 5.1.

Options Decision Tr... Rules
Size Size after Train set Unseen Predicted Train set Unseen
before Error Rate Error Rate Error Rate Error Rate Error Rate

Table 5.2. A form for evaluation and comparison of model construction results

We explain the data preparation and the format of C4.5 input tiles in the next chapter

within the context of the experimental framework for our research.

66

•

•

Chapter 6

Case Study Framework

6.1 The C++ System

In our study we have used the data from a medium sized. industrial, open multi-agent

system development environment, called LAL07
• The system has been developed and

maintained since 1993 at CRIM8
. It contains 90 C++ components/c1asses totaling

approximately 57K source lines of code (SLOC). So far, the system had five releases. The

Iast one-Release 1.3-has been delivered on July 1997. At the time of this thesis

writing, LALO had more than 100 registered users in 21 countries worIdwide.

The developers of the investigated system were very experienced programmers. Each one

of them had already worked on large industrial software development projects, had had

significant experience regarding 00 analysis/design methods, and had been very famifiar

with C/C++ programming language.

7 Langage d'Agenrs Logiciel Objet (Agent Orienled Programming Language). Atlhe time of the writing,
further information couId be round atlhe URL: hnp://www.crim.calsbclenglishllalo.
& Centre de recherche informatique de Montréal (Compuler Science Research InstÏlule of Montreal).
Montréal, Québec. Canada.

67

•

•

6.2 Hypotheses

Fault-proneness is a software quality attribute that is domain dependent. It can he, also,

heavily influenced by numerous factors such as corporate environment, experience of the

developers, processes, methods, and tools used. and training [7]. Unfortunately, the

complexity of the phenomena frequently obscures the identity and impact of such factors

in any given software development organization. The resulting uncertainty about

productivity and quality in the next software release gives rise to unreliable cost and

schedule estimates.

The aim of our research is not to reveal a general method that universally relates all the

software development process aspects with fault-proneness as the final product's quality

attribute. Our goal is to investigate how much fault-proneness is influenced by internaI

(e.g. cohesion) and external (e.g., coupling, inheritance) design characteristics of 00

classes, developed in C++ programming language. Do these (assumed) relationships have

a practical meaning? Can we use them as a forecasting means in order to improve the

overall software development process? In the continuation, we propose three hypotheses

that relate 00 design properties-inheritance, cohesion, and coupling-with fault­

proneness as a software quality indicator.

6.2.1 Inheritance vs. Fault-proneness

In section 2.2 00 Paradigm. we pointed out, that the four major elements of the abject

model-the conceptual framework for the 00 programming style-are (1) abstraction, (2)

encapsulation. (3) modularity, and (4) hierarchy. Hoare suggests that "abstraction arises

from a recognition of similarities hetween certain objects, situations, or processes in the

real world, and the decision to concentrate upon these similarities and to ignore for the

68

•

•

time being the differences" [14]. Encapsulation helps manage the complexity captured by

the abstractions, by hiding their inside views. Modularity helps also, by giving us a way to

cluster logically related abstractions. A set of abstractions oflen fonns a hierarchy, and by

identifying these hierarchies in our design we greatly simplify our understanding of the

problem. The two most important hierarchies in a complex 00 system are its class

structure (the "kind of' hierarchy) and ils object structure (the "part of' hierarchy).

Inheritance is the most important "kind of' hierarchy. and it is an essential element of 00

systems. Inheritance defines a relationship among classes, wherein one class shares the

structure or behavior defined in one or more classes (single i1Zheritance and multiple

ênheritance respectively). Inheritance represents a hierarchy of abstractions. in which a

subclass inherits from one or more superclasses. As we evolve our inheritance hierarchy.

the structure and behavior that are the same for different classes will tend to migrate to

common superclasses. Superclasses are generalized abstractions, and subclasses represent

speciaJizations in which fields and methods from the superclass are added. modified. or

even hidden.

It seems logical that the lower a class is in the inheritance tree. the more superclass

properties this class may access because of its inheritance. thus more opportunities a fault

to be introduced in the class. On the other hand. the more children. or descendants a class

hast the more (other) classes it may potentially affect because of inheritance. For example.

if there are many subclasses of the class that are dependent on sorne methods or instance

variables defined in the superclass, any changes to lhese methods or variables may affect

the subclasses. Thus it becomes harder to maintain the class [36]. We propose the

following hypothesis:

Hypothesis 1: The position of the component in the class Izierarchy of the 00 system

affects itsfault-pronelless.

69

•

•

6.2.2 Cohesion vs. Fault-proneness

High quality software design~ among many other principles~ should obey the principle of

high cohesion [24]~ [19]. Stevens~ Myers and Constantine~ who first introduced cohesion

in the context of structured development techniques~define cohesion as ""a measure of the

degree to which the elements of a module belong together". Cohesion refers to the

internaI consistency within parts of the design. The higher the cohesion of a module, the

easier the module is to develop, maintain. and reuse, and the less fault-prone it is [19],

[20]. Cohesion captures the extent to which. in a software part. each group of data

declarations and subroutines that are conceptually related belong to the same module. A

high degree of cohesion is desirable because information related to declaration and

subroutine dependencies should not be scattered across the system and among irrelevant

information [20]. Data declarations and subroutines~ which are not related to each other.

should be encapsulated to the extent possible into different modules. With such a strategy.

we expect the software components to be less fault-prone. We propose the following

hypothesis:

Hypothesis 2: The degree to which the component is cohesive affects ils fau/t-prollelless.

6.2.3 Coupling vs. Fault-proneness

Coupling refers to the degree of interdependence between parts of the design [24].

Originally, Stevens, Myersand Constantine have defined it as "a measure of the strength

of association established by a connection from one module to another~'. High quality

software design should obey the principle oflow coupling [14], [24], [18], [17], [37]. The

stronger the coupling between modules, i.e., the more inter-related they are, the more

70

•

•

difficult these modules are to understand, change and correct, and thus the more complex

the resulting software system.

In order to improve modularity and promote encapsulation, inter-object class couples

should be kept to a minimum [24]. The larger the number of couples, the higher the

sensitivity to changes in other parts of the design, and therefore the class is likely to he

more fault-prone.

If a large number of methods of a class can he invoked in response to a message received

by object of that class, the understanding of that class becomes more complicated. This,

also, implies greater complexity of the class thus the class is more likely to he fault-prone.

The higher the export coupling of class c, the greater the impact of a change to c on other

classes [17]. Many classes depend critica11y on the design of c, thus there is greater

likelihood of failures being traced back to faults in c. The higher the import coupling of a

class c, the greater the impact of change in other classes on c itself. Thus class c depends

critically on many other classes, and therefore: (1) understanding c may be more difficult

hence more fault-prone, (2) coupled classes are more likely to be misunderstood and

therefore rnisused by c. We propose the following hypothesis:

Hypothesis 3: The degree of illterdependence between the compollellt and the

environment within .."..hiclz it is defined affects ifs fault-pronelless.

71

•

•

6.3 Data Collection

The actuaJ data required for our study were collected directly frorn the source code. The

data preparation has consisted of the extraction of the selected suite of measures related to

inheritance. cohesion, and coupling 00 design propel1ies, as weil as, the extraction of

various defect data attributes. Note that the measures were derived purely by statie

analysis of the investigated C++ system. Only the classes developed by the LALO team,

have been utilized (83 components). Classes generated by software tools (seven

components) have not been used in the study due to the impact that software reuse and

code generators have on software quaJity [8].

6.3.1 Selected 00 Design Metrics

We have already discussed the 00 design metrics whose extraction is supported by M­

System automated tool (section 4.1 ··Sorne 00 Design Metrics"). Therefore. herein we

only enumerate those metrics selected as suitable for the evaluation of our hypotheses.

Hypothesis 1: The position of the component in tlze class Jzierarchy of the 00 system

affects its fallit-proneness. Ail the class level, inheritance metrics-defined in the

subsection 4.1.2-have been selected.

• DIT(c), depth of inheritance tree.

• AID(c), average inheritance depth.

• CW(c), class to leaf depth.

• NOC(c), number of children.

• NOP(c), number of parents•

72

•

•

• NOD(c), number of descendants•

• NOA(c), number of ancestors.

• NMO(c), number of methods overridden.

• NMl(c), number of methods inherited.

• NMA(c), number ofmethods added, new methods.

• SIX(c), specialization index.

Hypothesis 2: The degree to which the compollent is cohesive affects its fallit-proneness.

AlI metrics related to cohesion -defined in the subsection 4.1.3-have been selected.

• LCOMt(c) ,Iack of cohesion in methods.

• LCOM'2 (c) ,Iack of cohesion in methods.

• LCOM3 (c) ,Iack of cohesion in methods.

• LCOM~ (c) .Iack of cohesion in methods.

• LCOM5 (c) , lack of cohesion in methods.

• Co(c), connectivity.

• TCC(c), tight class cohesion.

• LCC(c). loose class cohesion.

• rCH(c), information Dow based cohesion.

Hypothesis 3: The degree of illterdependence between the component and the

envÎronment within whiclz il is defined affects ils fault-proneness. AIl coupling related

metrics-defined in the subsection 4.1.4-have been selected.

• CBO(c), coupling between object classes.

• CBO'(c) , coupling between object classes.

• RFCt (c), response for class.

• RFC_(c), response for class.

• MPC(c), message passing coupling.

• DAC(c), data abstraction coupling.

73

•

•

• DAC'(c) 9 data abstraction coupling•

• lCP(c), information now based coupling.

• NIH-lCP(c), information now based non-inheritance coupling.

• IH-ICP(c), information now based inheritance coupling.

• lFCAlC(c), inverse friends class-attribute import coupling.

• ACAlC(c), ancestors class-attribute import coupling.

• OCAlC(c), others class-attribute import coupling.

• FCAEC(c), friends class-attribute export coupling.

• DCAEC(c), descendants class-attribute export coupling.

• OCAEC(c), others class-attribute export coupling.

• 1FCMlC(c), inverse friends class-method import coupling.

• ACMlC(c), ancestors class-method import coupling.

• OCMlC(c), others class-method import coupling.

• FCMEC(c), friends class-method export coupling.

• DCMEC(c), descendants class-method export coupling.

• OCMEC(c), others class-method export coupling.

• IFMMlC(c), inverse friends method-method import coupling.

• AMMlC(c), ancestors method-method import coupling.

• OMMlC(c), others method-method import coupling.

• FMMEC(c), Criends method-method export coupling.

• DMMEC(c), descendants method-method export coupling.

• OMMEC(c), others method-method export coupling•

74

•

•

6.3.2 Defect Data

In our study we collected error and fault data about the investigated C++ system. An error

is a human action that results in a software product that contains afault. Errors are defects

in the thought process made while trying to solve a problem. based on the understanding

of the given infonnation and persona! level of expertise. Faults are concrete

manifestations of errors within the product. As a consequence of one or more failures of

the software, a fault would he discovered and a physical change in one or more defective

system components would be made. In order to document the error and effect the change

the developers would fill a single software Change Request Fonn (CRF).

The CRF was used to gather data on: (1) error identification-including short description

about the nature of the problem, (2) the names and version numbers of the C++ faulty

components affected by the change. (3) type, location and the origin of the maintenance

change. (4) actual parts of the components' source code modified. and (5) the overall

effort taken to repair them.

Each CRF has been registered via Microsoft Visual Source Safe program. We built our

own set of 10015 in order to c1assify the defect data on the component level as weil as to

generate corresponding size and effort metrics. The following development/maintenance

change types have been considered [15]:

• Error correction: correct faults in developed/delivered system.

• Enhancement: improve performance or other system attributes. or add new

functionaJity.

• Adaptation: adapt system to a new environment, such as new operating system.

Given the fact that we are interested in building predictive models that will identify which

components are Iikely to have faults. we defined our dependent variable fault-proneness

as Ha number of corrective type of changes".

75

•

•

6.4 Dependent and Independent Variables

The tenns dependent and independent variable apply mostly to experimental research

where sorne variables are registeredlrnanipulated (selected 00 design metrics), and in this

sense they are "independenf~ from the initial reaction patterns, features, etc. of the cases.

Sorne other variables are expected to he ""dependenf' (fault-proneness) on the

manipulation or experirnental conditions. These terms are aIso used in studies where the

researcher does not literaIly manipulate independent variables. but only assign cases to

··experimental groups" based on sorne preexisting properties of the cases.

We built two types of predictive classification models-two-group and three-group

models-in order to satisfy step 3 of the section 3.1 ""Solution Strategy". To build two­

group classification model(s) we had to dichotomize the components regarding their fault­

proneness into two categories:

• llon-faulty-there was not any change of corrective type for the component. and

• faulty-there were one or more changes of corrective type during the

development/maintenance phase.

Similarly, to build three-group classification model(s) we dichotomized the components

regarding their fault-proneness into three categories:

• non-faulty-there was not any change of corrective type for the component.

• low-risk-there were at least one, but less than four changes of corrective type

during the developmentlmaintenance phase, and

• Iziglz-risk-there were more than four changes of corrective type during the

development/maintenance phase

Our decisions, with respect to the dichotomies rnentioned above, have been guided by the

distribution of faults (corrective type of changes) in the investigated C++ system,

presented in Figure 6.1.

76

• Sin
o

1.222222
2.444444
3.666667
4.888889
6.111111
7.333333
8.555556
9.777778

More

of cases

Fre .
30
14
15
11
o
7
2
o
3
1

83

Histogram

35 r----- ----....,
30

25
:>0­
U
c 20
!
f 15
.t

10

5

OLAioA~~ôIL..I-I.......~................................;;LI

DFrequency

•

Figure 6.1. Detïning fault-proneness (a histogram of faults in LALO).

We constructed eight predictive classification models regarding fault-proneness of the

components. We built two types of models (two-group and three-group>. related to three

design properties of 00 systems (inheritance. cohesion, and coupling) on their own. and

finally, we built multivariate models combining all three design properties together.

The models that we developed identify C++ components that are likely to be faulty, rather

than trying to predict the exact number of faults i!l the components.

In our research we, also, built predictive classification models for another dependent

variable-defect density. Generally, defect density can be defined as a number of changes

in the component divided by the number of lines of code in the component. We will not

analyze and comment the results regarding the defect density, since our thesis is devoted

to fault-proneness. However, in order to provide the software engineering community

with additional empirical evidence regarding the modeling technique we have chosen,

selected 00 design metrics and dependent variables, we will incorporate the results

related to defect density in the Appendix B.

77

•

•

We defined defect density in three different ways:

• Defect density A: a number of changes in the component divided by the total

number of source Hnes of code in the component.

• Defect density B: a number of changes in the component divided by the

number of statements9 and the number of comments in the component, and

• Defect density C: a number of changes in the component divided by number of

statements in the component.

We constructed 24 defect density predictive models. based on: two dichotomy types, three

definitions of defect density. and three 00 design properties and their combination.

6.5 Evaluation and Validation of the Models

In order to evaluate the quality of the classification models built. we need formai

mealiures that comprise objective set of standards. EvaJuating model accuracy tells us how

good the model is expected to be as a predictor [4]. The high accuracy of the predictive

model means that the selected 00 design measures have been useful for identification of

likely to be faulty components. In such a case. the model serves as a means for empirical

validation of the selected metncs as independent (predictor) variables. Two criteria for

evaluating the accuracy of predictions are the measures of correc1lless and compfeteness.

• Correctness: is defined as the percentage of components that were predicted as

belonging to certain classification group (Le., non-faulty, low-risk. high-risk)

and actually did belong to that classification group. We want to rnaximize the

correctness because if correctness is low, the model is identifying. for example,

9 The term statcrncnt denotcs the executable lincs of code.

78

•
•

more components as being non-fauIty when they really are faulty (or low-risk,

high-risk) [9].

Completeness: is defined as the percentage of those components that belonged

to certain classification group (Le., non-fauIty, low-risk, high-risk) and were

identified by the mode!. We want to maximize the completeness because if

completeness is low, then more components that were likely to be faulty will

not be identified.

•

Predicted

class 1 c1ass 2 c1ass 3 Completeness

class 1 n ll "11 nu ~3n ll / FI ni i

Real class 2 n 21 Il 22 ":.' Il.,., /~3 n .. ,- ,=1-

class 3 n 31 n32 "33 1' 33 /~:=ln3'

Correctness
n11 / L~=, nil n'!1 / L:=t lli2 "33 / ~~I n,3

Table 6.1. Three-group classification model.

On the other hand, the overall accuracy of the model measures how correct is the mode!.

Il can be calculated by the following formula:

±"Ii
Accuracy =;..i--'-~I__

!. nii
'.i=1

Another measure that cao he used to evaluate the overall appropriateness of the model is a

goodness-of-fit of data. This measure cao he obtained via a Chi-square test. This test

evaIuates whether the expected cell frequencies under the respective model are

79

•

•

significantly different from the observed cell frequencies. We have used 2x 2 tables lO

under "Nonparametric Statistics" menu of STATISTICA Il software package in order to

perform the test. The higher the value of Chi-square test the beuer the fit of data and the

mode!. The corresponding p-value points out to the statistical significance of the test. The

statistical significance of the result is an estimated measure of the degree to which it is

·'true". in the sense of "representative of the population". The p-value represents a

decreasing index of the reliability of the result. The smaller the p-Value the more

significant the test-the more you cao believe that the observed relation between variables

in the sample is a reliable indicator of the relation between the respective variables in the

population.

[n order to calculate the values for the objective set of standards in question-eorrectness

and completeness (described in Table 6.1), accuracy, and goodness-of-fit of data-we

used a V-foid cross-validation procedure [37]. [9], [4], [15], [46]. This validation

procedure is commonly used when the data sets are small. In our study, we have used 10­

way cross validation procedure, as it was described in the subsection 5.4.6. Furthermore,

each of the predictive models has been built with the windowing option selected, as it was

described in the subsection 5.4.1. Il appeared that, growing 15 different decision trees in

order to generate production rules for each of them, then constructing the final. single

production rule classifier from all the available ruIes, was the best option for predictive

modeling regarding our data set12
• This way. each of the predictive modeis presented in

the next chapter, is a resuit of 150 corresponding models.

10 This option is often used as an alternative to correlation when the variables of intcrcst are dichotomous.
Il STATISTICA is a trade mark of StatSoft Inc.
l.! Empirical cvidence for lhis statcmcnt can be round in the next chapter.

80

•

•

6.6 C4.S Input Files

The Table 6.2 presents a portion of the input data regarding hypothesis 1. needed for the

process of predictive model construction.

Inheritance Design Metries Fault-proneness

class DIT AlD ~LD NOe NOP ,.00 NOA NUO NUI NUA SIX 2X2 3X3
Action 0 0 0 0 0 0 0 0 0 7 0 1 2
ActionsList 0 0 0 0 0 0 0 0 0 8 0 1 2
Agenda 0 0 0 0 0 0 0 0 0 12 0 1 2
ArgsSet 0 0 0 0 0 0 0 0 0 15 0 0 1
BasicAgent 0 0 2 1 0 2 0 0 0 37 0 1 3
Belief 0 0 0 0 0 0 0 0 0 19 0 1 3
BeliefAction 1 1 0 0 1 0 1 4 3 11 0.2222 0 1
BeliefCond 2 2 0 0 1 0 2 4 4 9 0.4706 1 2

'"

Table 6.2. Independent. and dependent variables.

ln arder to he meaningful to the C4.5 system. this information has to be converted into

two files-1Iames and data. The names file provides names for classes 13
• attributesl~. and

attribute values. It consists of a series of entries. each starting on a ncw line and ending

with a periode The vertical bar character (1) appearing anywhere on a line causes the rest of

that line to be ignored (useful for comments). The first entry in the !lames file gives the

c1ass names, separated by commas. There must he at least two class names (classes). and

their arder is not important. The rest of the file consists of a single entry for each attribute.

An attribute entcy begins with the attribute name followed by a colon and then a

specification of the values that the attribute can take [43]. Four specifications are possible:

• Ignore: causes the value of the attribute to he disregarded.

• Cont;nllOIlS: indicates that the attribute has numeric values (integer. or float) .

13 Groups. or categories (depcndent variable). Not 10 be mislaken with the lenn c1ass uscd in 00 systems.
1-1 An attributc rcfcrs 10 an indepcndent variable.

81

• • Discrele N, where N is a positive integer: specifies that the attribute has

discrete values. and there is no more than N of them.

• A List of names separated by commas: also indicates that the attribute has

discrete values, and specifies them explicitJy (Le., cold. moderate. warm. hot,

etc.).

1,2,3. 1 Fault-proneness 3x3

DIT: continuous.
AID: continuous.
CLD: continuous.
NOC: continuous.
NOP: continuous.
NOD: continuous.
NOA: continuous.
NMO: continuous.
NMI: continuous.
NMA: continuous.
SIX: continuous.

Depth of Inheritance Tree
Height of Inheritance Tree
Class-to-Leaf Depth
Number of Children
Number of Parents
Number of Descendants
Number of Ancestors
Number of Methods Overridden
Number of Methods Inherited
Number of Methods Added
Specialization Index

•

Figure 6.2. A names file (classes, attributes. and attribute values) for hypothesis 1.

The corresponding data file is used to describe the training cases from which the decision

trees and/or production rules are to he constructed. Each line describes one case.

providing the values for all the attributes (i.e.• inheritance design metrics) and then the

c1ass of the case (Le., fault-proneness), separated by commas, Figure 6.3. The attribute

values must appear in the same order that the attributes were given in the naInes file. The

order of the cases does not matter.

0,0,0,0,0,0,0,0,0,7,0,2
0,0,0,0,0,0,0,0,0,8,0,2
0,0,0,0,0,0,0,0,0,12,0,2
0,0,0,0,0,0,0,0,0,15,0,1
0,0,2,1,0,2,0,0,0,37,0,3
0,0,0,0,0,0,0,0,0,19,0,3
1,1,0,0,1,0,1,4,3,11,0.222222,1
2,2,0,0,1,0,2,4,4,9,0.470588,2

Figure 6.3. A ponion of data file, that corresponds to Table 6.2 and Figure 6.2.

82

•

•

Chapter 7

Experimental Results

In this chapter we present three types of experimental results. The first type of results is

related to the search for the combinations of options that eventually lead towards the best

predictive models, as it is discussed in the subsection 5.4.7. The second type of results

presents actual predictive models (the C4.5 production mie classifiers). We discuss the

relationships between the fault-proneness as software's quality indicator and each of the

investigated 00 design properties-inheritance. cohesion, and coupling. Finally. the third

type of results helps us to evaluate, and to validate the quality of the constructed models,

using the approach described in section 6.5. We also present the discovery, which we run

across. while searching for the appropriate interpretation of the production rule classifiers.

Namely, we found a way to quantify the contribution of each metric within certain model,

and MLA, regarding its power to discriminate/classify the case on the dependent variable.

7.1 Selecting the Best Model Building Option

We constructed our predictive models after we selected the best model building options,

by comparing the results of each system run presented in a fonnat proposed in Table 5.2.

The subsequent pairs of tables Table 7.1, 7.2, 7.3, 7.4, 7.5, and 7.6, record data for the

two-group and the three-group models regarding hypotheses l, 2, and 3, respectively.

83

•

•

Options Decision Trees Aules
Size Size Train set Unseen Predicted Train set Unseen
before after Error Rate Error Rate Error Rate Error Rate Errer Rate

default 20.8 16.4 9.3(12.50/0 1.91'22.9%) 27.900/0 14.60% 24.00%
s 20.8 16.4 9.3 12.5% 1.9 '22.9%) 27.90% 14.60% 24.00%
m5 11.8 8.6 14.9 19.9%

) 2.8 34.0°./01 30.60% 20.900/0 33.90%
c15 20.8 11.4 12.1 16.2% 2.2 26.8°./0 32.80% 15.40°./0 27.60%
c10 20.8 7.4 15.2 20.3% 2.4 29.0% 35.50% 15.80°./0 28.90%
c15 m5 11.8 7.8 15.3 20.5%) 2.8 34.2°./0 34.500k 20.60% 35.10%
t10 20.8 16 8.2 11.0%) 2.0 24.2°./0 26.20% 12.20% 27.60%
t15 20.4 15.4 8.5 11.4% 2.1 25.3% 26.20% 11.90% 25.10%
t5 21.2 16.2 8.4 11.2°./0 2.1 25.4°./0 26.50% 13.00% 26.50%
t5 c15 19.4 12.8 10.9 14.6% 2.2 26.80/0 32.40% 13.10% 24.00%
t15 c10 19.8 12 10.9 14.6% 2.5 30.1 % 34.60% 12.50% 27.80%
m10 6.2 4.4 19.1 25.6% 2.9 35.3%) 33.100/0 25.30% 36.40%
m15 5 3.6 21.6(28.9%) 3.1(37.6%) 35.900/0 28.500/0 31.80%

Table 7.1. Two-group model building options for hypothesis 1.

Options Decision Trees Rules
Size Size Train set Unseen Predicted Train set Unseen
befere after Error Rate Error Rate Errer Rate Error Rate Errer Rate

default 28.4 22.2 15.8 21.1%) 3.7 44.30/0. 40.700/0 24.90% 44.40%
s 28.4 22.2 15.8 21.1% 3.7 44.3°./0 40.70% 24.90% 44.40%
mS 14.6 7.4 26.0 34.8% 4.3 51.5% 45.10% 34.90% 53.80%
c15 28.4 16.2 18.7 25.0% 3.3(39.4% 46.00% 25.60% 44.30%
c10 28.4 14.8 19.5 26.1 % 3.3 39.4% 49.20% 25.60% 44.30%
c15 mS 14.6 6.4 26.8 35.9% 4.3 51.5% 49.20% 34.90% 52.60%
t10 28.2 24.8 12.9 17.3% 3.6 43.6%

) 38.60% 21.40% 45.60%
t15 27.& 24.8 12.9 17.3% 3.41 41.10/.t 38.500k 20.500/. 41.1004
t5 28.4 23.8 13.7 18.3°k 4.0 48.2%

• 39.00% 22.60% 43.30%
t5 c15 28 15.8 17.9 24.0% 3.5 42.2% 44.80% 22.00% 43.00%
t15 c10 28 16.6 17.3 23.1% 3.6 43.50/0 47.70% 22.20% 47.10%
m10 6.2 5.6 28.2 37.7% 3.8 45.6% 46.80% 37.70% 45.60%
m15 5.2 4.4 29.9(40.0%) 4.0(48.2%

) 48.10% 39.80% 48.20%

Table 7.2. Three-group model building options for hypothesis 1.

The grouping option S obviously does not have any influence on building better models

than the default models, for our data set. The weighting option m[n] produced even worse

models. which leads to the conclusion that our data set has not been disposed ta noise.

The pruning (CF) options c[n] performed better than the weighting options, but still worse

than the default. For example, in hypothesis 1 three-group model the CF options c 15 and

84

•

•

cJO have the best decision tree unseen error rate, but are worse than the default models

taking other parameters into account. The combination of the CF, and the weighting

option c / 5m5 gives better results than the weighting option aJone, yet worse than the CF

option. The clear winner is the windowing option t[n). Obviously, growing n trees in

order to produce the best production rule classifier is a weIl justified decision.

Options Decision Trees Rules
Size Size Train set Unseen Predicted Train set Unseen
before alter Errar Rate Errar Rate Error Rate Errar Rate Errar Rate

default 13.6 12.2 12.5 16.8% 3.3 39.9% 28.800k 18.20% 43.30%
s 13.6 12.2 12.5 16.8% 3.3 39.9% 28.80% 18.20% 43.300/0
mS 7.8 6.4 16.8 22.5% 3.6 43.3% 31.30% 23.40% 42.10%
c15 13.6 8.8 14.2 19.0% 3.3 39.9% 32.80% 17.90% 42.10%
cl0 13.6 814.7 19.7% 3.3 39.9% 35.300/0 17.90% 42.10%
c15 m5 7.8 6.4 16.8 22.5% 3.6 43.30/0 34.80% 23.40% 42.10%
tl0 15.4 13.6 10.0 13.4% 3.1 37.6% 26.60% 15.00% 38.70%
t1S 15.8 14.4 9.4(12.&%} 3.2 38.8% 26.30% 14.50% 36.40%
t5 14.8 13 10.4 13.9% 3.0 36.4%) 26.800k 16.20% 38.60%
t5 c15 14.6 10.4 11.8 15.8% 3.4 41.0% 31.30% 15.70% 34.70%
t15 cl0 12.6 9.2 12.3 16.5% 3.6 43.5% 33.400k 14.80% 36.00%
ml0 6.2 5.2 18.1 24.2% 3.2 38.9% 32.40% 23.70% 42.10%
m15 4.4 4 19.0(25.4%) 2.8(33.8%) 32.80% 25.20% 33.80%

Table 7.3. Two-group model building options for hypothesis 2.

Options Decision Trees Rules
Size Size Train set Unseen Predicted Train set Unseen
before after Errar Rate Errar Rate Errar Rate Error Rate Error Rate

default 28.2 25 10.8 14.5% 4.1 49.4% 35.500/0 24.50% 48.30%
5 28.2 25 10.8 14.5% 4.1 49.4% 35.50% 24.50% 48.30%
mS 15.8 10 21.0 28.1% 4.4 53.1% 40.10% 28.30% 54.60%
c15 28.2 16.4 15.3 20.5% 4.2 51.0% 41.20% 24.90% 49.60%
cl0 28.2 14.6 16.5 22.10/0 4.2 51.0% 44.40% 25.10% 49.60%
c15 m5 15.8 7.4 22.7 30.4% 3.8 45.8% 44.60°1ca 29.60% 52.10%
tl0 30.2 26.4 8.8(11.8% 4.0 48.1% 33.50% 15.90% 51.80%
t1S 28.8 25.2 8.9(11.9% 4.2 50.6% 33.00% 14.600/. 49.S00!ct
t5 30.6 27 8.6{11.5%J 4.1 49.3% 33.70% 18.60% 48.20%
t5 c15 28.8 21 11.2 15.00k 4.1 49.2% 39.500/0 17.60% 43.50%
t15 cl0 27.6 18.6 12.0 16.1% 4.31 51.5%) 42.00% 15.40% 48.20%
ml0 5.2 3.6 26.2 35.1% 3.71 44.7%) 42.50% 34.20% 48.30%
m15 3.8 3.6 26.2(35.1%) 3. 7(44. 7%) 42.50°1ca 34.90% 44.70%

Table 7.4. Three-group model building options for hypothesis 2.

85

•

•

Although. in sorne of the models for different hypothesis. rIO or r5 values might perfonn

better than r15 for sorne of the parameters. it can be easily concluded that the windowing

option with 15 trees gives the best results overall. The values for this option throughout

the tables appear in boldo while the minimal error rates in each column are italicized.

Options Decision Trees Aules
Size Size Train set Unseen Predicted Train set Unseen
befere after Errer Rate Errer Rate Errer Rate Error Rate Errer Rate

default 24.8 15.4 9.7(13.0%) 3.1(37.6% 27.80% 16.40% 30.10%
s 24.8 15.4 9.7(13.0%) 3.1 (37.60/0 27.80% 16.40%_ 30.10%
m5 14 9.4 13.3 17.8% 2.9 35.0% 29.00% 17.80% 32.20%
c15 24.8 14 10.3 13.8% 3.2 38.7% 32.80% 16.800/0 36.40%

cl0 24.8 10 13.1 17.6% 3.1 37.6% 35.90% 16.80cro 36.40%
c15 m5 14 9.4 13.3 17.8% 2.9 35.0%) 33.40% 18.20% 31.00%
tl0 23.8 16.6 6.0 8.0% 3.3 39.9% 23.40% 9.60% 36.20%
U5 24.6 16.8 5.•[7.8% 3.34 39.9% 23.20% 9.80% 33.90%
t5 23.8 17.4 6.1 8.2% 3.6 43.6% J 24.10% 11.40°/0 36.40%
t5 c15 25.8 12.8 8.7 11.7%) 3.2 39.0% 29.60% 10.20°,fa 34.00%
t15 cl0 24.4 12 8.5 11.4%) 3.4 41.2°./0 31.40% 9.90°,fa 36.40%
ml0 8 6.6 15.1 (20.2%) 3.0 36.2% 29.60% 20.10% 37.50%
m15 5 5 20.3(27.2%) 2.8(33.9%

) 35.50% 27.20cro 33.90%

Table 7.5. Two-group model building options for hypothesis 3.

Options Decision Tree. Rules
Size Size Train set Unseen Predicted Train set Unseen
befere after Errer Rate Errer Rate Errer Rate Errer Rate Error Rate

default 32.8 24.8 9.4(12.6% 4.5(53.9% 33.70% 21.50% 58.80%
s 32.8 24.8 9.4(12.6%) 4.5(53.9% 33.70% 21.50% 58.80%
mS 17.4 13.4 17.6 23.6% 4.047.6%) 38.10% 28.00% 48.20%
c15 32.8 17.6 13.3 17.8% 5.11 61.1% 40.00% 22.10% 56.40%
cl0 32.8 17.2 13.6 18.2% 5.1 61.1% 43.50% 21.70% 55.10%
c15 mS 17.4 13.2 17.7 23.7% 4.0 47.6%) 43.50% 27.30% 48.10%
tl0 33.8 26.6 8.0 10.7% 4.7 56.1% 32.90% 16.50cro 53.90%
n5 34 27.4 7.5 10.0% 4.& 55.&% 32.700k 13.400/0 52.&00/.
t5 33.8 26 8.7 11.6% 4.4 52.5%} 33.50% 18.50% 55.00%
t5 c15 33.6 18.6 12.1 16.2% 4.0 48.2%) 39.60% 16.70% 51.30%
t15 cl0 33.2 17.8 12.5 16.7% 4.7 56.1%1 42.90% 14.70°./0 47.80%
ml0 8.6 7.4 24.5 32.8% 4.2 50.1% 43.30% 33.10% 53.80%
m15 4.6 4.4 28.1 (37.6%) 4.2(50.6%

) 45.80% 37.50% 50.60%

Table 7.6. Three-group mode! building options for hypothesis 3.

86

•

•

7.2 The Predictive Models

The ultimate motivation for our thesis research was the assumed contribution toward

software development process improvement-which helps solving the basic project

management problem "delivery of a software product with targeted quality, within the

budget and on schedule". An investigation of the relationships among 00 design

properties and fault-proneness per se, although noble from the scientific point of view,

was not an option. We wanted to build predictive models of practical value/use: more

accurate allocation of testing and verification resources during the development. and/or

better maintainability while managing the change during the maintenance phase. The

following predictive models represent an empirical evidence of our success.

7.2.1 Hypothesis 1

A production mie classifier consists of a collection of rules that discriminates/classifies a

case on a dependent variable with certain confidence factor. We will comment sorne of

those mies.

Rule 1: Rule 2: Rule 3: Rule 4:
NMO> 1 NOC> 1 DIT> 1 NMI> 10
NMI <= 22 NOD <=8 NMA<=7 NMI <= 22
SIX <= 0.222222 -> c1ass 0 [72.2%

] -> class 0 [70.0%] -> class 0 [63.0%]
-> class 0 [75.8%

]

RuleS: Rule 6: Rule?:
CLD <= 0 NOC <= 1 NMI >22 Detault class: 1
NMA>7 NMO <=0 -> c1ass 1 [75.8%]
SIX> 0.222222 NMI<=6
-> class 1 [91.2°,10] -> c1ass 1 [79.9%]

Figure 7.1. Two-group predictive model for hypothesis 1.

87

•

•

INHERITANCE Descrlpnve statistlcs
variable mean medlan minimum maximum std.dev.
DIT 0.838 1.0 0 3.00 0.8634
AID 0.838 1.0 0 3.00 0.8634
CLO 0.288 0.0 0 3.00 0.6202
NOC 0.613 0.0 0 9.00 1.4364
NOP 0.588 1.0 0 1.00 0.4954
NOD 0.863 0.0 0 12.00 2.2711
NOA 0.838 1.0 0 3.00 0.8634
NMO 2.563 0.0 0 13.00 3.6208
NMI 6.563 2.5 0 127.00 16.2620
NMA 12.638 9.0 1 104.00 12.2962
SIX 0.172 0.0 0 1.18 0.2584

COHESiON Descriptive stallstlcs
variable mean medlan minimum maximum std.dev.
LCOMl 143.500 OOסס.45 0 5437.00 609.1501
LCOM2 6.050 5.0000 1 58.00 6.5948
LCOM3 5.850 OOסס.5 1 51.00 5.8528
LCOM4 103.100 24.0000 0 4988.00 557.7284
LCOM5 0.626 0.6250 0 1.25 0.2592
Coh 0.424 0.4330 0 1.00 0.2330
Co 0.106 0.0962 -1 0.50 0.1992
LCC 0.474 0.5000 0 1.00 0.2975
TeC 0.373 0.3258 0 1.00 0.2484
ICH 9.675 0.0000 0 343.00 43.3046

COUPLING Descriptive Statlstlcs
variable mean medlan minimum maximum std.dev.
cao 7.388 5.0 0 31 6.6950
cao' 6.825 4.0 0 31 6.6804
RFC_l 49.175 33.0 3 358 58.7032
RFC_oo 109.075 43.0 3 669 145.0171
MPC 16.788 5.0 0 274 38.0272
ICP 51.038 13.5 0 769 114.8645
IHICP 7.688 2.0 0 190 22.7037
NIHICP 43.350 10.0 0 579 99.8522
DAC 1.150 1.0 0 8 1.4764
DAC' 0.950 1.0 0 7 1.2002
ACAIC 0.025 0.0 0 2 0.2236
OCAIC 1.125 1.0 0 8 1.4788
OCAEC 0.025 0.0 0 2 0.2236
OCAEC 1.213 0.0 0 16 2.6419
ACMIC 0.838 0.0 0 8 1.4964
OCMIC 8.450 4.0 0 205 23.1746
DCMEC 0.838 0.0 0 38 4.5128
OCMEC 9.738 1.0 0 135 23.6112
AMMIC 2.163 1.0 0 24 4.0890
OMMIC 14.625 4.0 0 250 35.8994
DMMEC 2.188 0.0 0 69 8.6786
OMMEC 14.350 4.0 0 124 24.1132

Table 7.7. Descriptive statistics for selected 00 design metrics.

88

•

•

Rule 7 in Figure 7.1 reads '"if the number of inherited methods in the component is greater

(han 22. then that component is likely to he faultyl5 (with confidence factor of 75.8%)".

Not surprisingly, NMI > 22 implies that the component is in a lowerl6 portion of the tree,

so, higher the possibility a fault to be introduced through inheritance. In addition. rule 5

reads "if the component does not have descendents. and the numher of rnethods added

Cnot inherited. nor overridden) is greater than 7. and the specialization index of the

component is greater than 0.222222. then the component is likely to he faulty {with a

confidence factor of 9I.2%!)". It means that even small numbers of new methods, and

overridden methods (SIX is a function of NMO and DIT, refer to subsection 4.1.2) cao

provoke faults. The possible explanation lies in the experience of the developers. Namely,

inheritance implies code reuse. Of course, nobody wants to reuse a superclass that is

fauIty. 50. the developers would inherit from a component that is safe to the best of their

knowledge. But, even with such an approach. the possibility of an error introduction

remains "in the air"-and il is higher if the position of the component which inherits is

lower in the tree. This finding confirms our hypothesis 1, again. Finally. rule 2 reads "'if

the number of children is greater than l, and the numher of descendents is lesser or equal

to 8. then the component is not faulty {with a confidence factor of 72.2%)". The meaning

of rule 2 cornes somewhat unexpected, comparatively to the results of the related studies

(refer to the section 4.2) based upon student/university settings. And again. the

explanation depends on the experience of the programmers. The second rule is mostly

about the components in the upper portion of the tree. The value of NOD = 8 is very close

to the maximum which is 12 (refer to Table 7.7). while the corresponding mean and the

median values (0.863 and O. respectively) infer that the component is indeed in the upper

part of the tree, so it is more reusable through inheritance. We confirmed this finding by

checking the actual data.

Rule 7 in Figure 7.2 is the same as the second rule in Figure 7. 1. The first rule in the

three-group model is more related to the complexity of the component than an inheritance.

15 Class 0 and c1ass 1 deno(c non-faulty and fauhy components. respectively.
16 Closer look on the data confirms mal. the lower the position of thc component within the tree the higher
the number of the methods inheritcd.

89

•

•

Namely. it is about those components at the root level, which are (obviously) not reusable.

The faults there are introduced through the methods implemented. The value of NMA > 17

is greater than the corresponding mean and median values (12.638 and 9, respectively).

This mIe yields a high-risk l7 fault-prone component.

Rule 1: Rule 2: Rule 3: Rule 4:
NOe <= 1 DIT> 1 NMO>5 Noe <= 1
NOP <=0 DIT <= 2 NMI>O NMA<=5
NMA> 17 NMI>8 SIX <= 0.380952 -> class 3 [31.4%]
-> class 3 [63.0%] -> class 3 [63.0°,'0] -> class 3 [54.6%]
Rule 5: Rule 6: Rule 7: Rule 8:
NMO>l DIT> 1 NOC>l DIT <= 1
NMO <=3 NMA<=7 NOD <=8 ClD <= 0
-> class 1 [82.0%] SIX> 0.421053 -> class 1 [72.2%] NMI>6

-> class 1 [82.00/oJ NMI <=28
-> class 1 [61.2%]

Rule 9:
eLD <=0 Default c1ass: 2
NMI <=6
-> class 2 [58.6%J

Figure 7.2. Three-group predictive modei for hypothesis 1.

Finally, mie 9 implies that the component is low-risk fault-prone, if the inheritance

relation with the superclass is rather weak. and it does not have any descendants. Namely,

those components do not inherit a lot of methods (the value of NMI = 6 is lesser than the

corresponding mean value), in a sense, Ha sort of' complexity measure.

Our findings justify the hypothesis 1.

17 Class 1. c1ass 2. and cJass 3 denote non-faulty. low-risk, and high-risk fault-prone componcnts.
rcspcclivcly.

90

•

•

7.2.2 Hypothesis 2

Rule 1 in Figure 7.3 can he interpreted as ""if the connectivity within the component is low

and the loose class cohesion is greater than medium. then the component is likely to he

faulty (with a confidence factor of 95.2% !Y'. If we take the mean and the median values

for the connectivity (Co) measure into consideration (0.1 and 0.09, respectively), then we

can interpret Rule 3 as ""if the connectivity is ralher high, as weIl as. the loose class

cohesion. then the component is not fauIty."

Rule 1: Rule 2: Rule 3: Rule 4:
Co <= 0.28758 lCOMl <=8 Co> 0.28758 lCOM3 >3
LCe > 0.52381 .> class 1 [82.0%] Co <= 0.41818 LeC <= 0.52381
-> c1ass 1 [95.2%] LCe > 0.82251 -> class 0 [54.7%]

-> class 0 [66.2'%]

Default class: 1

Figure 7.3. Two-group predictive model for hypothesis 2.

Rule 2 in Figure 7.3 reads "if the number of pairs of methods in the component having no

common attribute reference IS lesser or equal to eight. then the component is likely to he

fauIty". LCOM. (c) is an inverse measure-the higher the value the lower the cohesion.

The corresponding mean and median values (Table 7.7) are 143.5 and 45, respectively.

So, the second mie is unexpected regarding the hypothesis 2, for it points to the

components with high cohesion. The explanation about this finding came from the data

set. Namely, there are very few components (within aIready rather small data set of 83

cases) with such a low value for LCOMI (c) . The C4.5 system. while trying to produce

the most elegant mies. has picked up the most appearing measure, and biased its dccision.

Rule 5 in Figure 7.4 reads ""if LCOM 3 (c) is greater than three. and LCC is lesser or egual

to 0.52 (approximately, haif of the population>. and there is no information flow based

91

•

•

cohesion. then the componenl is nol faulty (with a confidence factor of 63.3%)n. The [CH

metric though. has a median value of O. which means that it can he hardly useful as a

predictor. Rule 6 reads '-if LCC is greater lhan 0.52381 then the component is low-risk

likely to he faulty {with a confidence factor of 64.3%)". Finally. mIe 1 says that if the

connectivity increases and the tight class cohesion is lesser than 0.27 (which is already a

small value). then the component is high-risk fault-prone.

Rule 1: Rule 2: Rule 3: Rule 4:
Co:> 0.06593 LCOM3:> 2 LeOM5 <= 0.625 Co> 0.35714
TCC <= 0.27272 LCe:> 0.75483 Co <= 0.02222 Co <= 0.41818
-:> class 3 (70.7%

] -> class 3 [63.0%] LeC <=0.183 -> class 1 [75.80/0]
-:> class 3 [63.0%]

Rule 5: Rule 6:
LCOM3:> 3 LCe:> 0.52381 Default class: 2
LCC <= 0.52381 -:> c1ass 2 [64.3%]
ICH <=0
-:> c1ass 1 [63.3°.10]

Figure 7.4. Three-group predictive model for hypothesis 2.

Our findings. generally, confinn the hypothesis 2.

7.2.3 Hypothesis 3

Not surprisingly, the production rule c1assifiers based on coupling measures produced the

best modelsl~ of the three 00 design properties in question. Coupling has been proven to

be the most useful software product property as a predictor of its quaJity (refer to the

related works) .

18 Sec the model evaluation and validation results in the ncxt section (7.3).

92

•

•

Rule 1: Rule 2: Rule 3: Rule 4:
ceo> 14 IH-ICP> 16 DAC' <=2 aCAIC<=O
-> class 1 [88.20/0] -> cJass 1 [87.1%] aCAIC >0 DMMEC <=0

OMMEC>9 -> class 1 [81.9°.!o]
-> class 1 [83.3%]

Rule 5: Rule 6: Aule7:
MPC <=6 ceo <= 14 ICP <= 31 Default class: 1
DAC>O DMMEC>O IH-ICP > 9
OMMEC <= 15 -> class 0 (70.0%] -> class 0 [63.0%

]

-> class 0 (77.0%]

Figure 7.5. Two-group predictive model for hypothesis 3.

Rule 1 in Figure 7.5 reads "if the coupling between the objects is greater than 14. then the

component is likely to be faulty (with a confidence factor of 88.2!)". The mIe confirms

that high coupling means high fault-proneness. On the other hand. rule 7 reads ··if

information fIow based coupling is lesser or egual to 3 1. and its inheritance based

counterpart is greater than 9, then the component is non-faulty (with certainty of 63%)".

This means that although low coupling fosters a healthy component. sorne forros of

inheritance based coupling are desirable. The previous statement cornes as no surprise,

since the inheritance is the most significant property in any truly 00 system.

Rule 1: Rule 2: Rule 3: Rule 4:
ACMIC <= 1 ceo> 14 ICP > 59 cao <= 14
OCMIC > 4 ceo' <= 17 OMMIC <= 16 aCAIC<=O
OMMEC <=0 -> class 3 [61.2%] -> class 3 [50.0%] DCMEC <=0
-> class 3 [63.0%] OMMEC > 0

-> class 2 [82.3%]
Rule 5: Aule6: Aule7:
ceo' > 17 MPC <=7 ICP <= 31 Default class: 2
-> c1ass 2 (75.8%J OCAIC >0 IH-ICP > 5

OMMEC <= 15 -> c1ass 1 [70.0%]
-> class 1 (77.0%]

Figure 7.6. Three-group predictive model for hypothesis 3.

Rule7 in Figure7.6 is aImost the same as the corresponding mIe in Figure 7.5. Rule 5 says

that if the non-inheritance balied coupling belongs to the upper portion of the

corresponding vaIue domain, then the component is low-risk fault-prone.

93

•

•

We may conclude that the models have confirmed the hypothesis 3.

7.2.4 Multivariate19 Models

In arder to build models with the highest accuracy-thus practical value-possible, we

combined ail 00 design metrics in a same model (two-group and/or three-group). As

expected, the results obtained are indeed the best. We will not comment the rules upon

which these c1assifiers are based. However, we point to the selected metrics and their

corresponding usefulness degrees in the section 7.4.

Rule 1: Rule 2: Rule 3: Rule 4:
NOC> 1 LCOM2 <=6 NMI>9 OCAIC > 0
NOD <=8 LCOM4 > 22 ICP <= 31 ACMIC> 1
LCC <= 0.52381 ACMIC>O -> class 0 [75.8%] OMMEC <= 9
-> class 0 [87.1 %] -> class 0 [75.8%] -> class 0 [75.8%]
Rule 5: Rule 6: Rule 7: Rule 8:
Co> 0.28758 Co <= 0.28758 CLD <= 0 CLD <= 0
DAC> 1 LCC > 0.52381 NMI <= 3 OMMEC> 15
-> class 0 [75.8%] -> class 1 [95.2%] DAC <=0 -> c1ass 1 [90.6%]

-> c1ass 1 [93.0%]
Rule 9: Rule 10: Rule 11: Rule 12:
IH-ICP> 16 cao' > 14 MPC>7 RFC_1 <= 11
-> class 1 [87.1 %] -> c1ass 1 [85.7%] DAC' <= 1 -> class 1 [80.9%J

AMMIC <=3
-> class 1 [85.7%]

Default c1ass: 1

Figure 7.7. Two-group multivariate predictive mode!.

19 The tcrm multivarialC hcrc points to modcls bascd on a combination of ail three 00 design propcrtics.

94

•

•

Rule 1: Rule 2: Rule 3: Rule 4:
LCC >0.52381 cao'> 17 NOC <= 1 NMO <=9
OCAIC <= 1 .> class 2 [75.8%] ceo' <= 17 Co> 0.06593
-> c1ass 2 [89.8%] ICP > 59 OCMEC>7

OCAIC>O -> class 3 [75.8%]
-> class 3 [79.40/0]

Rule 5: Rule 6: Rule 7: Rule 8:
NOC <= 1 NOC>l Co> 0.35714 LCC <= 0.52381
LCC <= 0.18181 CBO<= 14 Co <= 0.41818 ICP <= 59
ACMIC <= 1 RFC_1 > 11 -> class 1 [75.8%] OAC'>O
-> class 3 [61.2%] -> class 1 [88.2%] OCMEC <=4

-> class 1 [70.4%)

Oefault class: 2

Figure 7.8. Three-group multivariate predictive mode!.

7.3 Evaluation and Validation of the Models

The following eight tables present the empiricaJ evidence of the quality of the models

built. Their mutuaI characteristics are:

• High overaJl accuracy achieved. The average value (excluding the two,

multivariate modeIs) is 85.74% across the six models.

• Very high values for the Chi-square (X-sqr) tests. The average value across the

models is 40.73, with perfect statistical significance (p-value <= 0.00(0).

Tested 83, errors 9 (10.80/0)

oredicted 0 predicted 1 Completeness
realO 24 6 80.00%
real1 3 50 94.34%
Correctness 88.89% 89.290/.

Accuracy= 89.160/.

X-sqr= 48.2352
p<= 0.0000

Table 7.8. Evaluation of the two-group predictive model for hyPOthesis 1.

95

•

•

Tested 83. errors 12 (14.5%)

predicted 1 predicted 2 predicted 3 Completeness
real1 25 5 83.33%
real2 3 35 2 87.50%
real3 2 11 84.62%
Correctness 89.29% 83.33% 84.62%

Accuracy: 85.54%

Model Average 1 <->2 1 <->3 2 <-> 3
X·sQr= 37.8501 46.1791 36.00 31.3711

p<= 0.0000 0.0000 0.0000 0.0000

Table 7.9. Evaluation of the tbree-group predictive model for hypothesis 1.

Tested 83. errors 16 (19.3%)

predicted 0 predicted 1 Completeness
realO 30 100.00%
real1 16 37 69.81%
Correctness 65.22% 100.0001.

Accuracy= 80.72%

X-sqr= 37.7892
p <= 0.0000

Table 7.10. Evaluation of the two-group predictive model for hypothesis 2.

Tested 83. errors 13 (15.7%)

predicted 1 predicted 2 predicted 3 Completeness
real1 25 5 83.33%
real2 5 35 87.500/.
real3 1 2 10 76.92%
Correctness 80.65% 83.330/. 100.000/.

Accuracy= 84.34%

Model Average 1 <-> 2 1 <->3 2 <-> 3
X-sQr= 34.5465 35.1215 31.4685 37.0495

p<= 0.0000 0.0000 0.0000 0.0000

Table 7.11. Evaluation of the tbree-group predictive model for hypothesis 2.

96

•

•

Tested 83, errors 8 (9.60/0)

predicted 0 predicted 1 ComDleteness
realO 26 4 86.67%
real1 4 49 92.45%
Correctness 86.6rY. 92.45%

Accuracy= 90.3&%

X-sqr= 51.9571
p<= 0.0000

Table 7.12. Evaluation of the two-group predictive model for hypothesis 3.

Tested 83, errors 13 (15.7%)

oredicted 1 predicted 2 predicted 3 Comoleteness
reall 23 7 76.67%
real2 2 37 1 92.50%
real3 3 10 76.920/.
Correctness 92.00% 78.720/. 90.91%

Accuracy= 84.34%

Model Average 1 <-> 2 1 <->3 2 <-> 3
X-sar= 34.0541 37.5596 33.00 31.6026

p<= 0.0000 0.0000 0.0000 0.0000

Table 7.13. Evaluation of the tbree-group predictive model for hypothesis 3.

Tested 83, errors 2 (2.4%)

oredicted 0 predicted 1 Comoleteness
realO 28 2 93.33%
reall 53 100.00%
Correctness 100.00% 96.36%

Accuracy= 97.59%

X-sqr= 74.6497
p<= 0.0000

Table 7.14. Evaluation of the two-group multivariate predictive model.

97

•

•

Tested 83. errors 5 (6.0%)

predicted 1 predicted 2 predicted 3 Completeness
reall 28 2 93.33%
real2 2 37 1 92.5m'.
real3 13 100.00%
Correctness 93.33% 94.87% 92.86%

Accuracy= 93.98%

Model Average 1 <-> 2 1 <->3 2 <-> 3
X-sQr= 46.9313 53.683 41.00 46.1109

p<= 0.0000 0.0000 0.0000 0.0000

Table 7.15. Evaluation of the three-group multivariate predictive model.

There are two types of misclassification errors in two-group models. If we take a closer

look at the Table 7.8, we cao see that six non-faulty components have been predicted as

faulty. while three faulty components have been classified as non-faulty. Taking the

project management' s point of view into account. the la1er type of error is much more

severe than the former. It does no hann20 to test a component as if it was faulty while it

was not. But. it would be definitely a mistake on behalf of the project manager. if she

decides ta deliver the product to the market without testing the components 1hat are

actuaIly faulty. but have been c1assified as healthy.

One possible remedy for this situation is to test aIl the components that are on the

boundary as if they were part of the group with a higher risk. This discussion can be

generalized to accommodate N X N predictive rnodels. The final quality of the product. as

weIl as the reduction of the cost, and the time to market. will still be highly significant.

comparatively with the software development processes that are "ignorant" regarding the

faul t-proneness.

In the remainder of this section, as weil as the Appendix A, we compare the quality of our

predictive models with the quality of those models built by other professionaJs within the

software engineering community.

~o Adding a few componcnts more for rigorous tesling and verification will nol significantly affect the lime
to market. or the final COSl, of a producl.

98

•

•

Predictive Model•

Who Almeida et al. [4] Basili et al. [9] Lounis et al. [39] Ourwork

Technique MLA (NewID, C4.5 C4.S C4.5
CN2, C4.5, Foil),
Log.R.

Independent complexity complexity 00 Design 00 Design metrics
var. metrics metrics metrics

Dependent var. Correction Costs Correction Costs Fault-Proneness Fault-Proneness

Madel Type 2x2 2x2 2x2 2 x2,
3x3

Accuracy [52%,54%,68%, 66.37% 78.82%, 97.59%,
71%], 61% 85.88°;'0, 93.98%

69.41% avg. w/o multivar. modo
85.74%

Correctness [(53%, 50%), (62.5%,69%) (81 %, 74%), (100%, 96.360/0),
(56%,53%), (86% ,85%), (93.33%, 94.87%,
(74%,64%), (72°;'0,60%) 92.86%)
(80%, 65°;'0)],
(61%,39%)

Completeness [(55%, 48%), (60%,71%) (87%, 64%), (93.33%,100%),
(58%, 51 %), (92%,74%), (93.33%, 92.50%

,

(59%, n%), (83% ,45%) 100%)
(61%,82%)],
(690/0,48°;'0)

Goodness-of-fit [0.19 11.2690 24.1487 74.6497 (p<= 0.0000),
Chi-square (p<= 0.66), (p<= 0.0008) (p<= 0.0000), 46.9313 (p<= 0.0000)
(p-value) 1.13 40.5280

(p<= 0.29), (p<= 0.0000),
21.91 8.1018
(p<= 0.0000), (p<= 0.0044)
30.39
(p<= 0.0000)],
7.70
(p<= 0.005)

Validation V-fold V-faId V-faId V-faId cross-validation
cross-validation cross-validation cross-validation

Table 7.16. Comparison of our work with other research studies.

It is not easy to compare the quality of predictive models built in different environments

(from both technical and human aspects). However. we conclude that our predictive

models are superior than those described in the literature. We believe that this finding

heavily depends on the experience of the LALO development tcarn members. The effect is

even magnified if we compare our resuits with those related to statistical analysis

techniques (refer to the Appendix A).

99

•

•

7.4 Usefulness Degree of a Metric

We need to define a new measure in order to quantify the contribution of each metric in a

predictive model based on the C4.5 machine learning algorithm. This new measure will.

somehow, represent a ratio of the differentiation common in the independent and the

dependent variables, to the overall differentiation of those variables. This ratio is usually

called21 a ratio of explained22 variation to total variation. For example. the ratio of the part

of the overaJl differentiation of the fault-proneness scores that can he accounted for by

NMI measure to the overall differentiation of the fault-proneness scores, in the two-group

model for hypothesis 1 is 38.10% (Table 7.17).

[n arder to define the new measure(s) consistentIy and in an unambiguous manner. we

propose the following formalism.

Let M denotes the suite of metrics (the dependent variables) whose assumed relationships

with the fault-proneness (the independent variable) we would like to investigate. Let PM

represents the predictive model built. Let:

• PM = {M s' R, Ms H R}. where Ms c M is the set of metrics selected by

the model. R is the set of mIes in the model, and M s ~ R denotes the

mapping from the set of metrics seIected (by the model) ta the set of rules.

Acc(PM) denotes the overall accuracy of the predictive modeI in question.

• R = {Ms' o}. where 0 ={<. ~. =. ~, >, and} is a set of operands that are

allowed in the C4.5 machine learning algorithm. Let 'i he the ;-th rule of the

model. such that 'i ER: i =1, ·..,IRI.

21 Thcrc are many measures of the magnitude of relationships among variables developcd by statisticians.
Howcvcr. wc bclieve that the mixture of statistical analysis and MLA. rcgarding the predictive modeling. is
not the happiest choicc.
22 The term ··cxplained variation" does not necessarily implies that we "conccptually undcrstand" iL Il only
denotes the common variation in the variables in question-the pan of variation in onc variable that is
cxplaincd by the spccifie values of the other variablc.

100

•

•

• M NS cM he the set of metrics not selected by the predictive model. such that

M =Ms uMNS' and Ms (")M NS =0.

• MI C M S represents the set of metrics~lementsof the mIe r" such that.

We define:

1. Usefulness degree of the mies in the model RUD(PM)

1
RUD(PM) = IRI = const.

2. Usefulness degree of a metric MUD(m)

IRI •

MUD(m) =RUD(PM) .~ I~il '

where

. {1. if mE MI
J=

0, else.

3. Usefulness degree of a metric MUD'(nl)

MUD'(m) = Acc(PM) . MUD(m) .

With the newly defined measures MUD(m). and MUD'(m). we can analyze the impact

that each of the selected metrics (by the model) has on the fault-proneness in much easier,

and more appropriate manner, than just by backtracking the model induced mies. Clearly,

those metrics that have not been selected by the model (m E M NS; MUD(m)= 0) can be

and should be avoided in the same type of future experiments. However. we cannot

recommend further reduction of the metric set on the bases of a low usefulness degree.

101

•

•

Namelyy in MLA even the lack of infonnation is an infonnation. It means that even a

small contribution towards the better predictive quality serves building the best model(s).

Hypothesia 1: Modela
2x2 3x3 Average

Measur. MUO MUD' MUO MUD' MUO MUO'
DIT 7.14% 6.37°t'o 12.96% 11.090/0 10.050/0 8.78%
AlD 0.00% O.OO°t'o 0.00% 0.00% O.OO°t'o 0.00%
CLD 4.76% 4.25°t'o 9.26% 7.92% 7.01°t'o 6.12%
NOC 11.90% 10.61% 14.81% 12.67% 13.36°t'o 11.67%
NOP 0.00% O.OO°t'o 3.70% 3.170/0 1.85°t'o 1.62%
NOD 7.14% 6.37% 5.56% 4.75% 6.35% 5.55%
NOA 0.00% 0.00% 0.00% 0.00% O.OO°t'o 0.00%
NUO 9.52% 8.490/0 14.81% 12.670/0 12.17% 10.63%
NMI 38.10% 33.97% 18.52% 15.84% 28.31% 24.73%
NMA 11.900/0 10.61°t'o 12.96% 11.09% 12.43% 10.86%
SIX 9.52% 8.49°t'o 7.41% 6.34% 8.470/0 7.39%

total: 100.00% 89.16°t'o 100.00% 85.54% 100.00% 87.35%

RUD 14.29% 11.11% 12.70%
Ace 89.16% 85.54% 87.35°t'o

Table 7.17. Hypothesis 1 models and the contribution of each metric.

HYDothe.i. 2: Model.
2x2 3x3 AveraGe

Macawe MI) MI)' MJD MI)' MJD MJD'
LCOM1 25.00% 22.290/0 8.33% 7.13% 16.67% 13.60%
LCOM2 0.00% 0.000/0 0.00% 0.00% 0.000/0 0.00%
LCOM3 12.50% 11.15% 13.89% 11.88% 13.19% 10.90%
LCOM4 0.00% 0.000/0 0.00% 0.00% O.OO°t'o 0.00%
LCOM5 0.00% 0.00% 5.56% 4.75% 2.78% 2.34%
Coh 0.000/0 0.00% 0.00% 0.00% 0.00% 0.00%
Co 25.00% 22.29% 30.56% 26.14% 27.78% 22.98%
LCC 37.50% 33.44% 27.78% 23.76% 32.640/0 26.85%
TCC 0.00% 0.00% 8.33% 7.13% 4.17% 3.51%
ICH 0.00% 0.000/0 5.56% 4.75% 2.78% 2.34%

total: 100.00% 89.160/0 100.00% 85.54% 100.00% 82.53%

RUD 14.29% 11.11% 20.83%
Ace 89.16% 85.54% 82.53%

Table 7.18. Hypothesis 2 models and the contribution of each metric.

102

•

•

Note that the usefulness degree measures do not make attempt to point the directions of

the relationships arnong the independent variables and the dependent variable. Whether

the direction is positive23 or negative has lesser importance than the mere fact that the

impact is high or low.

HYDOthesia 3: Modela
2x2 3x3 Averaae

Measure MUO MUO" MUD MUO' MUD MUD'
cao 21.43% 19.36% 10.71% 9.04% 16.07% 14.20%
cao' 0.00% 0.00% 21.43% 18.07% 10.71% 9.04%
RFC 1 0.00% 0.00% 0.00°,/0 0.00% 0.00% 0.00%
RFC 00 0.00% 0.000/0 0.00°;'0 0.00% 0.00°,/0 0.00%
MPC 4.76% 4.30°;'0 4.76% 4.02% 4.76% 4.16%
ICP 7.14% 6.45°;'0 14.29% 12.05% 10.71°,/0 9.25%
IH·ICP 21.43% 19.36°;'0 7.14% 6.02% 14.29°;'0 12.69%
NIH·ICP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
DAC 4.76% 4.30% 0.00% 0.00% 2.38°;'0 2.15%
DAC' 4.76% 4.30% 0.00% 0.00% 2.38°;'0 2.15%
1FCAlC 0.00% 0.000/0 0.00% 0.00% 0.00°,/0 0.00%
ACAIC 0.00% 0.00% 0.00°,/0 0.00% 0.00°,/0 0.00%
OCAIC 11.90% 10.76% 8.33% 7.03% 10.12% 8.89%
fCAEC 0.00% 0.00°;'0 0.00°;'0 0.00% 0.00°,/0 0.00%
DCAEC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
OCAEC 0.00% 0.00% 0.00% 0.00% 0.00°;'0 0.00%
IFCMIC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ACMIC 0.00% 0.00% 4.76% 4.02% 2.380/0 2.01%
OCMIC 0.00% 0.00% 4.76% 4.02% 2.38% 2.01%
FCMEC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
DCMEC 0.00% 0.00% 3.57% 3.01% 1.79% 1.51%
OCMEC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
IFMMIC 0.00% 0.00°;'0 0.000/0 0.00% 0.00% 0.00%
AMMIC 0.00% 0.00°;'0 0.00% 0.00% 0.00% 0.00%
OMMIC 0.00% 0.00% 7.14% 6.02% 3.570/0 3.01%
FMMEC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
DMMEC 14.29% 12.91% 0.00% 0.00% 7.140/0 6.45%
OMMEC 9.52% 8.61% 13.100/0 11.04% 11.31% 9.83%

lotal: 100.00% 90.36% 100.00% 84.34% 100.00% 87.35%

RUD 14.29% 14.29% 14.29%
Ace 90.36% 84.34% 87.35%

Table 7.19. Hypothesis 3 models and the contribution ofeach metric.

D The direction of a rclationship bctween two variables is positive if an increase/decrcase of the value of the
first variable provokes an increase/decrease of the value of the second variable. The ncgative direction is
dcfined as the opposite.

103

•

•

We will not comment the obtained resuJts in atomic details. However, we feel free to

conclude that they funher confirm the validity of the hypotheses 1. 2~ and 3. We treat all

of the selected metrics mE Ms: MUD(m) ~ 0 as being empirically validated and useful

predictors of fault-proneness. Moreover, we would like to emphasize that a model might

reject a metric under the following two circumstances:

• Truly not useful merrie: MUD(m)= 0, and there is no variance among the

values of the metric, the most trivial case being-aJl of the metric values are

equal to o.

• lLlbeled as not useful metrie: MUD(m)= O. although the metric has enough

variance. This may easily happen if two or more metrics have the same values

throughout the sample population. It rnay also happent if aIl metrics have

distinctive values, but they cannot further irnprove the (predictive) quality of

the model (sorne of the measures are outperformed by the others). The C4.5

MLA, logically, tries to avoid redundancy by cutting out excessive metric data.

For example~ two measures in the hypothesis 1 models (Table 7.17}-AID and NOA­

have been rejected because of redundancy. A multiple inheritance has not been really used

in LALO. Therefore, AID and NOA are equal to DIT (with an average MUD(Dln=

10.05%). It would be erroneous to conclude, a priori. that these two measures would not

be valid in other systems/environments.

Probably, the most important property of the usefulness degree measures is that they

provide deeper insight in the design habits of the software product development team. as

weIl as the structure of the final product. The high values for NMI, NMA. NMO, and SIX,

witness the complexity of the system, as weil as the reguJar use of inheritance. Together

with NOe, DIT~ CLD. and NOD. and the rules analysis they justify the hypothesis 1.

In the hypothesis 2 models (Table 7.18) the most important measures are Lee. Co,

LCOMr(c) ~ and LCOM 3 (e). LCOM~(c), and LCOM~(c) have not been selected by

the models. However. both measures have been validated in the models where the

dependent variable is a defect density (Appendix B).

104

•

•

Multlvarlate Model•
2x2 3x3 Average

Measur. MUD MUD' MUD MUD' MUD MUD'
DIT 0.00% 0.00% 0.00% 0.000/0 0.00°.10 0.00%
AlD 0.00°.10 0.000/0 0.00% 0.00°.10 0.00% 0.00%
CLD 6.94% 6.78% 0.00% 0.00°.10 3.47% 3.33%
NOC 2.78°.10 2.71°.10 11.46% 10.nok 7.12% 6.82%
NOP 0.00°.10 0.00% O.oook 0.00% 0.00% 0.00%
NOD 2.78% 2.71% 0.00% 0.00% 1.390/0 1.33%
NOA 0.00% 0.00% 0.000/0 0.00% 0.00% 0.00%
NMO 0.00% 0.00% 4.170/0 3.92% 2.08% 2.00%
NMI 6.94% 6.78% 0.000/0 0.00% 3.47% 3.33%
NMA 0.00% 0.00% 0.00°.10 0.000/0 0.00% 0.00%
SIX 0.00% 0.00% 0.000/0 0.000/0 0.00°.10 0.00°./0
LCOM1 0.00% 0.00% 0.00% 0.000/0 0.00% 0.00%
LCOM2 2.78% 2.71% 0.00% 0.00°.10 1.39% 1.33%
LCOM3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LCOM4 2.78°.10 2.71% 0.00% 0.000/0 1.39% 1.33%
LCOM5 0.00% 0.00% 0.000/0 0.00% 0.00% 0.00%
Co 8.33% 8.13% 16.67% 15.66% 12.50% 11.97%
LCC 6.94°.10 6.78% 13.54% 12.73% 10.24% 9.81%
TCC 0.00% 0.00% 0.00% 0.00% 0.00% 0.000/0
ICH 0.00% 0.00% 0.00°.10 0.00% 0.00% 0.00%
cao 0.00% 0.00% 4.17% 3.92% 2.08% 2.00%
cao' 8.330/0 8.130/0 15.63% 14.68% 11.98°/0 11.47%
RFC 1 8.33% 8.13% 4.17% 3.92% 6.25% 5.99%
RFC 00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
MPC 2.78°.10 2.71% 0.000/0 0.00% 1.39% 1.33%
ICP 4.17% 4.07% 6.25% 5.87% 5.21% 4.99%
IH-ICP 8.33% 8.13% 0.00% 0.00% 4.17% 3.99%
NIH-ICP 0.00% 0.00% 0.000/0 0.00% 0.00% 0.00%
DAC 6.94% 6.78% 0.00°./0 0.00% 3.47% 3.33%
DAC' 2.78% 2.71% 3.130/0 2.94% 2.95% 2.83%
ACAIC 0.00% 0.00% 0.00°.10 0.00% 0.00°,10 0.00%
OCAIC 2.78% 2.71% 9.380/0 8.81% 6.08% 5.82%
DCAec 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
OCAEC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ACMIC 5.56% 5.42% 4.17% 3.92% 4.86% 4.66%
OCMIC 0.00% 0.00% 0.000/0 0.00% 0.00% 0.00%
DCMec 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
OCMec 0.00% 0.00% 7.290/0 6.85% 3.65% 3.49%
AMMIC 2.78% 2.71% 0.00°,10 0.00% 1.390/0 1.33%
OMMIC 0.00% 0.00% 0.000/0 0.00% 0.00% 0.00%
DMMEC 0.000/0 0.00% 0.00% 0.00% 0.000/0 0.00%
OMMEC 6.94% 6.78% 0.000/0 0.00% 3.47% 3.33%

100.00% 97.59°.10 100.00°.10 93.98% 100.00% 95.79%

RUD 8.33% 12.500/0 10.42%
Ace 97.59% 93.98% 95.79%

Table 7.20. Multivariate models and the contribution of each metric.

105

•

•

The most important measures in the hypothesis 3 models (Table 7.19) are CBO, IH-/CP,

OMMEC, CBO', ICP, and OCAIC. Due to the design characteristics2~of the investigated

system six measures are not applicable (ail of the friendship-based metrics). ACA/C and

DCAEC have not been validated by any of the models.

Finally, we present the results for the multivariate models (Table 7.20). Most of the

measures with high values for the MUD in the multivariate models are those with high

values in the models around the specifie design properties. The most important (average)

measures regarding fault-proneness in our multivariate models are Co. CBO', LeC.

NOC. RFC1 , OCA/C, ICP, ACMIC, lB-lep, OCMEC, CLD, NM1, DAC, and OMMEC.

2-' LALO dcvclopcrs have nol uscd a fricndship mechanism in C++, on purpose.

106

•

•

Chapter 8

Epilogue, or Lessons Learned

"Everything should be made as simple as possible, but not simpler".

Albert Einstein

In this chapter we present the conclusions with respect to our thesis research, based on the

lessons learned, as weil as our previous projeet management experienee. We also, point

out to the future works that, we expect will further improve the overall understanding that

the practitioners in the eomputer-related business have about software development

processes and project management.

8.1 Conclusions

Have we answered the questions from Chapter 3 "Specifie Problem Statement" that

triggered our thesis research? Have the problem solving approach-knotted throughout

this writing and proposed in the section 3.1 "Solution Strategy"-delivered satisfactory

result? Can we daim research success?

The short answer on aIl the questions from the last paragraph is-yes. The longer follows.

107

• • Which 00 design product measures are good predictors of fault-proneness as a

software product 's quality indicator?

i. Steps 1 and 2 of the "Solution Strategyt9 represented a good starting point. The

proposed hypotheses were investigated using the measures extracted by the M­

System automated tool (supports the collection of 49 plus 00 design metrics).

However, there is no direct and precise answer to the above aforementioned

question. Many 00 metrics have already been empirically validated (in various

projects) in the software engineering community. Many more have been defined

and are still waiting for an appropriate validation. Which of them should he

selected as potential software' s quality predictors, depends on the application

domaine Common sense-regarding project management-suggests that only

those measures that have already been proven as useful in sorne applications, and

whose collection is supported by automated tools, should be selected. A project

manager will not he interested in the investigation of the fault-proneness if it does

not reduce the time to market and/or the final cost, and/or does not raise the

quality of the product. It is important to note, that an initial investment in a

software development process improvemem, always tums out to be a huge profit

at the bottom line (refer to Raytheon's experience. section 2.1.1).

Il. Whether certain metrics will he more or less usefui depends not only on the

application, but also on the overall environment housing the project. Why is the

development team so important? Because, it is the team that will make ail the

design decisions, implement the code, and introduce the faults in the product. The

more experienced the team, the better the design decisions, the better the

implememation, the higher the quality of the product.

•
iii. Even in the same environment, within the same application domain, sorne of the

metrics will he more or less important regarding the choice of the dependent

variable. It is the case with, i.e., LCOM! (c) ,and LCOM ~ (c) as predictors, and

the fault-proneness and the defect density (refer to the Appendix B), as dependent

variables.

108

• • WJzat is a suitable technique for predictive modeling and empirical validation of the

selected 00 design metrics?

i. We proposed the C4.5 machine learning algorithm as a predictive modeling

technique (step 3, section 3.1). Why? Because~ somehow, it produces predictive

models with superior quality than models based on statistical analysis. It is fairly

easy to understand it, and then use il. But, perhaps the biggest advantage of

machine learning algorithms-as a modeling technique--over the statistical

analysis (SA) lies in the interpretation of the results. Instead of extracting principle

componellts and then searching for patterns in numbers that represent their

meaning (SA), the interpretation of the production rules is straightforward, and

much more intelligible to human beings (MLA).

Il. Another advantage of MLA over SA is that the latter tries to fit the data to the

model, while the former fits the model to the data. For example, MLA build

models by inducing rules that will accommodate ail cases in the sample

population. Conversely, in SA the mode1 designer will deliberately eut off the

cases (called olltliers) that do not get along with the rest of the cases from the

sample population, grouped around the ··fitting line". The real life models are non­

linear by nature. Sometimes, they cao be fairly approximated with mathematical

counterparts (1inear or non-linear), but sometimes that is not feasible. [t is exactly

the case of incomplete, inexact~ and imprecise knowledge, where we believe the

MLA provide much better solutions than the SA, with respect to the predictive

modeling.

• What are the objective criteria against wlzich tire models buitt slzould he evaluated

with respect to their predictive quality?

•
1. We proposed correctness, completeness, accuracy~ and goodness-of-fit of data as

an objective set of standards for mode1 evaluation (step 4, section 3.1). The

models built have high quality, and we would like to credit most of this finding to

the quaJity of the LALO development team.

109

• 11. The mode1s have been validated via IO-way cross-validation. It would have been

better if we could have validated them on different project data from the same

environment. but during our research study such data set was not available.

•

Hi. Our measures MUD. MUD'. and RUD, provide a deeper insight into the models

built. and the design structure of the product. They recognize the specific

contribution of each metric in the model and confirmlreject its POtential as a

predictor of the dependent variable. The use of these measures can be generalized

to serve other rule-based MLA. and with slight modifications it is applicable to

Fuzzy Logic.

Wc do not recommend verbatim reuse of our predictive models in other environments.

since they also depend on other factors that are beyond the scope of this study. However.

the 00 design metric suite that we have used should he involved in other research studies.

or business/industry related projects. We also recommend the replication of our approach.

which we believe is more important than the final quality of the predictive models, or

which metrics have been found as usefui predictors.

Automated tools are necessary for data collection. They can significantly reduce the time

required for data acquisition. and in the case of large systems. they provide the only way

that makes that process feafiiibie. The tools should he stand alone to the fullest extent

possible. M-System fUns only if put on top of Gen++. Gen++ recognizes AT&T C++

compiler only. On the other hand, the system that we have investigated has been

implemenred in Visual C++. It means. that the source code firstly had to be translated ioto

AT&T C++ source code, then analyzed by Gen++, and finally, the merrics needed have

been computed by M-System.

A very strong conclusion-based on our project management experience. contacts with

the industry, research conducted in the area of software process engineering, and

university activities-is that a synergy between the academia and the industry has to he

stimulated and lovingly cultivated. Unfortunately for the computer-related business, most

of the software development organizations still produce "gueri Ila" type of software, and

have a little understanding of the five process maturity Ievels defined as Capability

110

•

•

Maturity Model2S (CMM) at the SEI26 [41]. The academic research can help project

managers understand, and then leam, why the combination of a structured and rigorous

approach to software development and their intuition. is better than the exclusively

intuitive approach. Software development processes need to be made visible, then

repeatable, and then measurable-in order to he improved. And, a process improvement is

continuaI! Of course, the intuition remains one of the most important parts of the business

acumen a project manager might have when decisions have to he made within the

environment of uncertainty. On the other hand, the industry cao guide the scientific

research at the academia towards the solutions that are not only theoreticaI. but also have

practical values. Everybody wins with this type of synergetic endeavors-the business. the

educational system, and the society. The institutions like SEL27
, Carnegie Mellon

University. McGill University, CRIM, ŒSE, etc.. lead the way.

8.2 Future Works

There are maoy studies in the software engineering community devoted to the predictive

modeling. Yet. studies regarding the experience of the practical use of the models built.

practically, do not exist. We intend to engage such a type of study with the team

responsible for future releases of LALO.

We also intend to perform a comparative study that will point to the pros and cons among

MLA (C4.5, etc.) and various techniques based on statistical analysis. We will use the

same data set.

We intend to provide theoretical proof of the usefulness degree measures that we have

defined in this work, as weil as to generalize their applicability to any rule-based system.

25 The five process maturity levcls are (1) initial. (2) repeatable. (3) defined. (4) managed. and (5)
optimizing.
26 The Software Engineering Institute, Carnegie Mellon Universily, Pitsburgh.
27 The Software Engineering Laboratory-NASA Goddard Space Right Centre. University of Maryland.
and Computer Sciences Corporation.

III

•

•

The natura! extent of our research will he a study that will relate the cost of the error

correction with the design properties of the 00 system in question.

We plan to combine MLA, Fuzzy Logic [48], and neural networks and/or genetic

algorithms, in order to produce even more robust, more reliable, and more

comprehensible predictive modeling techniques.

8.3 Closing Word

ln this thesis research we have investigated the assumed relationships among 00 design

measures and the fault-proneness as software's quality indicator. The predictive models

built represent empirical evidence that such relationships exist.

Firstly, we have described the broader context of our problem, and the motivation hehind

il. Then, we led the research towards the problem definition, providing a deeper

understanding about it by locating ilS place on a gross software engineering scale. This

way. we enforced a system thinking approach to problem solving-a solution for the part

of the system is not supposed to provoke problems in the other parts of the system. We

insisted on a management point of view, because the knowledge regarding which

components in the system are Iikely to he faulty, does not make any sense whatsoever to

the project manager if it does not help to solve the basic project management problem

"delivery of a product with targeted quality, within the budget and on schedule".

So, finally, have we solved the project management problem with our thesis research?

The answer is-no. The problem is rather complex, and heavily depends on many other

factors that are beyond the scope of this study. However, we described a method that gets

doser to the solution by improving the software development process used. The quest for

the universal solution (if possible) is still open.

We will be very satisfied if the software engineering community and the computer­

business professionals recognize our study as a small contribution towards that goal.

112

•

•

Bibliography

[1] J. R. Abounader, and D. A. Lamb. A Data Model for Object-Oriented Design.

Technical Report ISSN-0836-0227-1997-409, Department of Computing and Information

Science, Queen's University, Kingston, Canada 1997.

[2] F. B. Abreu, and W. Melo. Evaillating the Impact of Object-Oriented Design on

Software QlIality. In Proceedings of lEEE Metrics'96, Berlin, Germany, March 1996.

[3 J W. W. Agresti, and W. M. Evanco. Projecting Software Defects from AnalYzlllg ADA

Designs. IEEE Transactions on Software Engineering, Vol. 18, No. Il, November 1992.

[4] M. A. D. Almeida, H. Lounis, and W. L. Melo. An Investigation on the Use of

Machine Leamed Models for Estimating Sofhf/are Correction Cosrs. In 20lh IEEE

Interna7tional Conference on Software Engineering, 1998.

[5] J. Bansiya, and C. Davis. Automated Metrics and Object-Oriented Development. Dr.

Dobb' s Journal, December 1997.

[6] J. Bansiya, and C. Davis. Using Alltomared Merrics (0 Track Object-Oriented

Development.

[7] V. Basili, L. Briand, S. Condon, Y. M. Kim, W. L. Melo, and J. D. Valett.

Undersranding and Predicting the Process of Software Maintenance Releases. In 18lh

IEEE International Conference on Software Engineering, Berlin, Germany, 1996.

113

•

•

[8] V. R. Basili, L. C. Briand, and W. L. Melo. A Validation of Object-Oriented Design

Metdes as QlIafiry Indicators. IEEE Transactions on Software Engineering, Vol. 22, No.

lO, October 1996.

[9] V. Basili, S. Condon, K. E. Emam, and W. L. Melo. Characterizing and Modeling the

Cost ofRework in a Library ofRellsable Software Components. (n 19lh IEEE International

Conference on Software Engineering, Boston, Massachusetts, May 1997.

[lO] S. Benlarbi. Object-Oriented Design Metrics for Early Quality Prediction. ln

Proceeding of ACM SIGPLAN OOPSLA~97 Workshop on Object-Oriented Design

Quality, Atlanta, Georgia (USA), October 5-9, 1997.

[Il] S. Benlarbi, and W. Melo. Polymorphism Measures for Design Quality Prediction.

Submitted to ISSRE'98.

[12] J. M. Bieman and B. -K. Kang. Cohesion and Relise in an Object-Oriellted System.

In Proceedings of ACM Symposium on Software Reusability (SSR '94>, pp.259-262,

1995.

[13] A. B. BinkJey, and S. R. Schach. Metrics for Predicting Maintenance Effort in

Object Oriented Software: A Java Case Study. Technical Report TR 97-06, Computer

Science Department, Vanderbilt University, 1997.

[14] G. Booch. Object-Oriented design n:ith Applications. BenjaminlCummings

Publishing Company Inc., Santa Clara, Califomia, 1994.

[15] L. C. Briand, V. R. Basili, and C. J. Hetmanski. Developing Interpretable Models

with Optimized Set reductioll for Identifying High-Risk Software Components. IEEE

Transactions on Software Engineering, Vol. 19, No. 11, November 1993.

[16] L. C. Briand, V. R. Basili, Y. M. Kim, and O. R. Squier. A Change Allalysis Process

to C/zllracterize Software Maintenance Projects. In Proceedings of the International

Conference on Software Maintenance 1994.

114

•

•

[17] L. C. Briand~ P. Devanbu. and W. L. Melo. An Investigation into COllpling

Measures for c++. In 19th IEEE International Conference on Software Engineering.

Boston~ Massachusetts, May1997.

[18] L. Briand~ J. DaJy and J. Wüst. A Unified Frameworkfor COllpling Measlirement in

Object-Oriented Systems. TechnicaI report ISERN 96-14. Fraunhofer Institute for

ExperimentaI Software Engineering, Gennany, 1996.

[19] L. Briand. J. Daly and J. Wüst. A Ullified Framelt/orkfor Cohesion Measlirement in

Object-Oriented Systems. Technical report ISERN 97-05. Fraunhofer Institute for

Experimental Software Engineering. Gennany, 1997.

[20] L. Briand. S. Morasca. and V. R. Basili. Defining and Validating H;gh-Leve/ design

Metr;cs. TechnicaJ Report CS-TR-330 1-1. Computer Science Department, University of

Maryland.

[21] L. Briand, S. Morasca~ and V. R. Basili. Goal Driven Definition of Prodllct Metrics

Based on Properties. TechnicaJ Report CS-TR-3346-1, Computer Science Department,

University of Maryland.

[22] L. C. Briand~ W. M. Thomas, and C. J. Hetmanski. Modeling and Mallaging Risk

Early in Software Deve/opme,u. In IEEE International Conference on Software

Engineering, 1993.

[23] B. Cestnik, L Bratko, and L Konenko. ASSISTANT 86: A Knowledge Elicirarion Tool

for Sophisticated Users. Sigma Press, 1987.

[24] S. Chidamber, and C. Kemerer. A Metrics Suite for Object Oriented Design. ŒEE

Transactions on Software Engineering, Vol. 20, No. 6, June 1994.

[25] N. L Churcher, and M. J. Shepperd. Commenrs on HA Metrics Suite for Object­

Oriellted Design". IEEE Transactions on Software Engineering, Vol. 21, No. 3. March

1995.

115

•

•

[26] P. B. Crosby. Quality Without Tears. McGraw-Hill, New York. 1984.

[27] P. Devanbu and L. E. Eves. How 10 Wrile a Gen++ Specification. AT&T, June 1994.

[28] P. Devanbu, S. Karstu. W. Melo, and W. Thomas. Analytical and Empirica/

Evaluation of Software Reuse Metrics. In 181h IEEE International Conference on

Software Engineering, Berlin, Germany, 1996.

[29] R. Dion. Process lmprovement and the Corporale Balance Sheet. IEEE Software,

Vol. ID, No. 4, July 1993.

[30] B. Henderson-Sellers. Software Metrics. Prentice Hall, Hemel Hempstaed, UK,

1996.

[31] M. Hitz and B. Montazeri. Measurillg Coupling and Cohesion in Object-Oriented

Systems. In Proceedings of International Symposium on Applied Corporate Computing,

Monterrey, Mexico, October 1995.

[32] M. Hitz. and B. Montazeri. Clzidamber and Kemerer's Metric Suite: A MeaSUrel71ent

Theory Perspective. IEEE Transactions on Software Engineering, Vol. 22. No. 4. April

1996.

[33] T. M. Khoshgoftaar, and J. C. Munson. Predicting Software Development Errors

Usùzg Software Complexity Metrics. IEEE Journal on Selected Areas in Comunications,

Vol. 8, No.2. February 1990.

[34] T. M. Khoshgoftaar, J. C. Munson. B. B. Bhattacharya. and G. D. Richardson.

Predictive Modeling Techniques of Sofll1!are Quality from Sofllvare Measures. IEEE

Transactions on Software Engineering, Vol. 18, No. II, November 1992.

[35] Y. -S. Lee, B. -S. Liang, S. -F. Wu, and F. -J. Wang. Measuring the COllp/ing and

Cohesion ofan Object-Oriented Program Based on lnfonnation Flow. In Proceedings of

International Conference on Software Quality, Maribor. Slovenia. 1995.

116

•

•

[36] W. Li. and S. Henry. Object Oriented Metrics that Predict Maùltainahi/ity. Journal

of Systems and Software. Vol. 23~ No. 2, 1993.

[37] H. Lounis. W. L. Melo, and H. Sahraoui. Identifying and Measuring Coupling in

Modular Systems. Centre de recherche infonnatique de Montréal. Montréal. Canada.

1997.

[38] N. H. Madhavji. The Process Cycle. IEElBCS Software Engineering Journal.

6(5):234-242. September 1991.

[39] J. C. Munson~ and T. M. Khoshgoftaar. The Detection of Faillt-Prone Programs.

IEEE Transactions on Software Engineering. Vol. 18. No. 5, May 1992.

[40] M. A. Ochs. M System: Calcillating Software Metricsfrom c++ Source Code. IESE

Fraunhofer Report No, 005.981E~ February 1998.

[41] M.C. Paulk. B. Curtis. M. B. Chrissis.and C. V. Weber. Capahi/ity Maturity Model.

Version J.J. IEEE Software. July 1993.

[42] J. R. Quinlan. Induction ofDecision Trees. Machine Learning Journal. Vol. 1. No. 1.

pp. 81-106. 1986.

[43] J. R. Quinlan. C4.5: Programsfor Machine LeamÎllg. Morgan Kaufman Publishers.

San Mateo, Califomia, 1993.

[44] H. D. Rombach. Design Measurement; Some Lessons Leamed. IEEE Software.

March 1990.

[45] J. Rubin. Handhook of Usabi/ity Testing. John Wiley and sons, 1994.

[46] R. M. Szabo, and T. M. Khoshgoftaar. An Assessment ofSoftware Quality in a C++

Environment. In 6lh International SYmposium on Software Reliability Engineering,

Toulouse~ France. October 1995.

117

•

•

[47] R. Thayer (editor). Software Engineering Project Management. IEEE Computer

Society Press, IEEE 1997.

(48] L. A. Zadeh. Fuzzy Logic. IEEE Computer, Vol. 22, No. 4, April 1988.

118

•

•

Appendix A

Predictive Modela
Who Technique Inclependent Dependent var. ModelType Accuracy

var.
Khoshgoftaar Lin. R. eomplexity Fault·Proneness linear function Rsq=
and Munson metries [0.69 - 0.81)
(33)

Li and Henry Lin. R. 00 Design Maintenance Effort linear function Rsq=
[36) metries [0.90. 0.87]

Basili et al. [7] Lin. R. SLOC (A,C,D) Productivity(Effort) linear function Asq= 0.75

Abreu and Lin. R. MOOD metries Defeet Density, linear functions
Melo [2] Failure Density,

Normalized Rework

Agresti and Log. R. some design Error Density logistic function Rsq= 0.74
Evanco (3) metries
Briand et al. OSA, eompexity, Fault·Proneness 2X2
[15] Log. R. system

architecture
Briand et al. Log. R. sorne design Fault-Proneness logistic function
[20] metries
Briand et al. OSA, eompexity, High Risk 2X2
[22J Log. R. system components

architecture (isolation cast. and
completion cost)

Basili et al. (8) Log. R. C&K metrics Fault-Proneness 2X2 76.60%

Devanbu et al. Log. R. reuse metries Productivity(Effort), logistic function Rsq=
[31 J Fault density [0.51, 0.71],

[0.491
Almeida et al. MLA eomplexity Correction Costs 2X2 [52%,54°./0,
[4J (NewlD, metries 68%, 71 %],

CN2, C4.5, 61%
Foil), Log.R.

Basili et al. [9] C4.S complexity Correction Costs 2X2 66%
metrics

Lounis et al. C4.5 00 Design Fault·Proneness 2X2 78.8%
[37] metries
Munson and Discriminant eomplexity Fault·Proneness 2X2 75%,
Khoshgoftaar Analysis metries 62%
[39]

Szabo and Discriminant procedural, and Fault·Proneness 3X3 64.7%,
Khoshgoftaar Analysis 00 metries 69.1%
[46]

Table A.t. A background and related work.

119

•
Appendix B

In this appendix we present the experimental results regarding the 00 design properties

and the defect-density as dependent variable. We used the definitions rnentioned in the

section 6.4 "Dependent and Independent Variables". We selected the best two-group. and

three-group models per design property. as weIl as the best two-group and three-group

multivariate models. Three components of the investigated 00 system have not been

affected by any change during the (so far) life cycle of the product. Therefore , they were

not involved in our analysis.

Histogram

Figure B.1. Defining defect-density A.•

Sin Fre.
0.001285 1

0.00512 20
0.008955 16

0.01279 19
0.016624 10
0.020459 6
0.024294 3
0.028129 4

More 1

of cases 80

25

20 ;;
- !

15

10

DFrequency

120

•
Sin

0.001408
0.006148
0.010888
0.015627
0.020367
0.025107
0.029846
0.034586

More

of cases

Sin
0.001653
0.009459
0.017265
0.025072
0.032878
0.040684

0.04849
0.056296

More

of cases

Ffi .
1

17
17
17
14
5
3
2
4

80

Fre.
1

19
15
17
16
3
2
3
4

80

Histogram

18 ~~...,..,.....~~~::----~---,--.,.,......

16

14 r.~:',~:1111',.:

12 t 1:: ;"::1~ IIIT
10

8

6

4

2
OL&:.li.l-.l:l-....;ôLI;.Ir:a...~~..r..&;:Ia...&:......:i&J

~..... ~~ 0j0j ~rt;, ~ a> ~~ roo., ~0#. r§J ~'\ r:V~ ~~ #,"..tJi' tIb~ ~o
~~ t'é ~t§J....4' a,C)t'5 a,~~ ~~~

C)~C)~C)~ ~~ C)~ C)~ C)Ç) ~Ç)

Bln

FigureB.2. Defining defect-density B.

Histogram

20 ...------------,
18

16

14
12
10

8
6
4

2
OLLll..o..&ôa.....l;:a...J~~.....~L.;..A"......:.LI

r>Jft;, ~tl,. ~....0., rf!' ~ t/&ro_~~ ~0
~ ~Oj'" ~~~.....~~'_tI>o., ~.... rF' ~o

...,g,~~~ a,~~ #' ~...~ iPqJ
~cf'C)r;$S C). ~~ ~Ç) ~t:f~~r:;>

Bin

DFrequency

DFrequency

• Figure B.3. Defining defect-density C.

121

•

•

Rule 1: Rule 2: Rule 3: RlJe4:
NMI >22 DIT <= 1 NOP>O NOD>8
-> dass 2 [75.SO/o] ClD>O NMA<=3 -> dass 2 [SO.OO.lo]

NOC<=2 -> dass 2 [50.00.10]
NMO<=2
-> dass 2 (70.7'%]

AuleS:
NOD <= 8 Defautt dass: 1
NMI <;:22
-> dass 1 [72.4%]

Figure 8.4. Two-group hypothesis 1. defect-density A model.

Rule 1: Rule 2: Rule 3: RlJe4:
NMA<=3 NMI>6 DIT> 1 NOP<:=O
-> dass 3 [31.4%

] NMI <=22 NMA<= 12 NMA> 13
-> dass 1 [82.20/0] -> dass 1 [82.20/0] NMA <;: 18

-> dass 1 [70.()-%]
RuleS: Rule 6: Rule 7: RlJe8:
DIT<=1 NOC<=3 NOC<=2 DIT <= 1
NOC<=3 NOP<=O NMA> 18 CLO<=O
NMI>4 NMA<= 13 -> dass 2 [66.20.10] SIX> 0.222222
NMI <=6 -> dass 2 [67.30.10] -> dass 2 [57.SO/o]
-> dass 2 (70.70.10]
Rule 9:
NMI >22 Defautt dass: 1
-> dass 2 [54.6°.10]

Figure 8.5. Two-group hypothesis 1, defect-density B model.

122

•

•

Rule 1: Aule2: Rue 3: Rue 4:
NOO>8 NMA<=3 CLD<=O DIT> 1
-> dass 3 [SO.()%] -> dass 3 [31.4%] NMI>6 CLD<=O

NMI <=28 NMA<= 11
-> dass 1 [79.40/0] -> dass 1 [79.40;0]

Rule 5: Aule6: Aue 7: Rue 8:
NOP<=O NOC>2 NOO>3 NOD<=3
NMA> 13 NMA> 14 NOO<=8 NMI>4
NMA<=18 -> dass 1 [63.00,'0] -> dass 1 [so.(rVo] NMI <=6
-> dass 1 [70.00,'0] -> dass 2 [75.80/0]
RuJe9: Rule 10: Rule 11: Rue 12:
NOP<=O DIT<=: 1 CLD<=O ClD>O
NOD <=3 CLD<=O NMA> 17 NOC<= 1
NMA<= 13 SIX> 0.222222 -> dass 2 [54.SO/o] -> dass 2 [50.00/ca]
-> dass 2 [65.5%] -> dass 2 [57.g%]
Rule 13:
NMI >28 Default dass: 1
-> dass 2 [45.30,10]

Figure B.6. Three-group hypothesis 1. defect-density B mode!.

Rule 1: Rule 2: Rule 3: Rule 4:
LCOM4> 18 LCOMS <= 0.25 Coh <=0.05351 LCOMl > 17
LC0M4 <::= 24 -> dass 2 [56.6°,'0] -> dass 2 [56.6°,10] LC0M4<= 18
-> dass 2 [70.00/0] -> dass 1 [90.SO/ca]
Rule 5: Rule 6: Rute7:
LCOMS > 0.125 CO>O.12121 LC0M3<=10 Default dass: 2
LCC>O.6 LCC <= 0.54131 LC0M4>24
-> dass 1 [86.10/0] -> dass 1 [79.4%] ICH <= 1

-> dass 1 [74.1 0/0]

Figure B.7. Two-group hypothesis 2~ defect-density C model.

123

•

•

Rule 1: Rule 2: Rule 3: Rule 4:
LCOM1 <=40 LCOM1 >58 TCC > 0.86666 LCC <= 0.31818
Co>-o.l666 LCC <= 0.16666 -> dass 3 [SO.OO!cl] ICH>l
LCC <= 0.16666 -> dass 3 [50.00,'0] -> dass 3 [5C1OO!cl]
-> dass 3 (70.70,'0]
Rule 5: Aule6: Rule 7: Rule 8:
Coh <= 0.54545 LCOMl <=45 LC0M3>4 LCOM1 >6
Co> 0.23214 LC0M3>4 Co>0.12121 TCC > 0.77777
-> dass 1 [85.70/0] LCC > 0.16666 -> dass 1 (73.1°!cl] -> dass 1 [70.70!cl]

-> dass 1 [77.70,'0]
Rule 9: Rule 10: Rule 11: Rule 12:
Coh > 0.05351 LC0M3<=4 LC0M3<=4 TCC > 0.22222
LCC <= 0.15151 Coh > 0.54545 Co <= 0.23214 TCC <= 0.25591
-> dass 1 [70.70!cl] Co <= 0.35714 LCC > 0.16666 -> dass 2 [79.4%]

-> dass 2 (85.70/oJ -> dass 2 [83.:r%]
Rule 13: Rule 14:
LCC > 0.16666 LC0M3>5 DefaLjt dass: 1
TCC<=0.175 LC0M3<=7
-> dass 2 [61.2%] ICH>O

-> dass 2 [61.2<'/oJ

Figure 8.8. Three-group hypothesis 2, defect-density C model.

Rule 1: Aule2: Rule 3: Rule 4:
AFC_1 <=18 IH-ICP> 18 ACMIC<=O C80<=2
DAC' <= 1 ACMIC<=3 OCMEC>7 OMMEC<:=2
OCAEC<=O -> dass 2 [79.4°,'oJ -> dass 2 [75.5O!cl] -> dass 2 [75.50,'0]
-> dass 2 [82.0%J
Rule 5: Aule6: Rule 7:
IH-ICP<= 18 RFC_l > 15 ACMIC>O Default dass: 1
OCAEC>O IH-ICP<= 18 -> dass 1 [79.30/0]
OCMEC<=7 ACMIC<=O
OMMEC> 1 OCMEC<=7
-> dass 1 [93.0%J -> dass 1 [89.80/0]

Figure 8.9. Two-group hypothesis 3, defect-density A model.

124

•

•

Rule 1: Rule 2: Rule 3: Rule 4:
IH-fCP> 16 cao <= 1 RFC_l <= 15 RFC_l <= 15
ACMIC<=2 -> class 2 [70.7°k] OCMEC>3 OCAEC<=O
-> class 2 [84.1%] -> class 2 [70.7%

] -> class 2 [70.0%]
Rule 5: Rule 6: Rule 7: Rule 8:
RFC_l > 37 MPC<=6 RFC_oo> 16 ACMIC> 3
ACMIC<=2 ACMIC> 2 IH-ICP <= 16 -> class 1 (75.8%]
OCMEC>2 -> c1ass 2 [45.3%] -> class 1 [78.9%]
-> class 2 (61.2%] Default class: 1

Figure B.IO. Two-group hypothesis 3, defect-density B model.

Rule 1: Rule 2: Rule 3: Rule 4:
OCMIC<=O C80<= 1 RFC_l <= 15 IH-ICP> 16
OCMEC>49 -> dass 3 [45.30/0] QCMIC>O -> dass 2 [75.SO/0]
-> dass 3 [50.()Ok] -> dass 2 [80.9%]
AuleS: Rule 6:
DCMEC<=2 RFC_l>15 DefaUt dass: 1
OCMEC>7 IH-ICP<= 16
-> dass 2 [72.20kJ OCMEC<=7

-> dass 1 (77.JOk]

Figure B.Il. Three-group hypothesis 3. defect-density A mode!.

Rule 1: Rule 2: Rule 3: Rule 4:
NIH-ICP<=5 C80<= 1 CBO>S RFC_l <= 15
DCMEC>O -> dass 3 [45.30/0] ACMIC<=O OCMIC>O
-> dass 3 [70.JOk] OCMIC<=7 DCMEC<=O

DCMEC<=O -> dass 2 [79.4%]
-> dass 2 [82.00/0]

Aule5: Rule 6: Rule 7: Rule 8:
IH-ICP> 2 DAC >5 OCAEC>3 RFC_1 >44
IH-ICP<=S -> dass 2 [53.00k] -> dass 2 [54.60/0] IH-ICP<=20
OCAEC<=3 DAC<=S
DCMEC<=O -> dass 1 [84.30/0]
-> dass 2 [79.4%]
Aule9:
RFC_1 > 15 Default dass: 2
IH-ICP<=2
-> dass 1 [73.5%]

Figure B.L2. Three-group hypothesis 3. defect-density C mode!.

125

•

•

Rule 1: Rule 2: Rule 3: Rule 4:
LCOM4>3 NMI >22 CLO>O ceo <= 1
LCOM5 > 0.45454 -> class 1 [75.8%] RFC_1 <= 15 -> class 1 [70.7%]
Coh > 0.33333 -> class 1 [75.8%]
Co> 0.06593
-> class 1 [82.0%]
Rule 5: Rule 6: Rule 7: Rule 8:
LCOM5 <= 0.5147 NMO <=4 NMO>8 NMI <=22
IH-ICP <= 18 RFC_1 > 16 -> class 0 [85.7%] TCC <= 0.15151
OCMIC>O IH-ICP <= 18 OCMIC>O
-> c1ass 0 [93.6%] OCMEC<=O -> class 0 [85.7%]

-> class 0 [92.5%]

Default cfass: 1

Figure B.13. Two-group multivariate, defect-density A model.

Rule 1: Rule 2: Rule 3: Rule 4:
NMA> 13 NMA> 13 NMI <= 22 ICP<=9
LCOM4 <= 10 DAC <= 1 NMA <= 13 DCMEC >0
-> cfass 1 [87.1%] -> class 1 [85.7%] RFC_1 > 44 -> class 3 (70.7%]

-> class 1 [84.1 %]
Rule 5: Rule 6: Rule 7: Rule 8:
NMI > 28 cao <= 1 NMO<=9 NMI >22
LCOM3 > 5 -> class 3 [45.3%] NMI <= 8 Co>O
-> class 3 [50.0%) NMA <= 16 -> c1ass 2 [63.0%J

SIX <= 0.470588
LCOM3 <= 10
Co <= 0.35714
LCC > 0.183
MPC<=23
OCAEC <= 3
DCMEC<=O
-> class 2 [85.1°;'0]

Rule 9:
OCAEC > 3 Default class: 1
-> class 2 [54.6%]

Figure B.14. Three-group mu1tivariate, defect-density C model.

126

•

•

Tested 80, errors 11 (13.8°/ca)

predicted 0 predicted 1 Completeness
realO 56 100.0001.
real1 11 13 54.17%
Correctness 83.58% 100.0001.

Accuracy= 86.25%

X-sqr= 36.2189
p<= 0.0000

Table B.1. Evaluation of the two-group hypothesis 1. defect-density A model.

Tested 80, errors 12 (15.0%)

predicted a predicted 1 Completeness
realO 52 1OO.()O·/Ct
real1 12 16 57.14%
Correctness 81.25% 100.0004

Accuracy= 85.000.10

X-sqr= 37.1429
p<= 0.0000

Table B.2. Evaluation of the two-group hypothesis 1, defect-density B model.

127

•

•

Tested 80, errors 12 (15.0%)

predicted 1 predicted 2 predicted 3 Completeness
real1 31 3 1 88.57%
real2 3 33 91.67%
real3 1 4 4 44.44%
Correctness 88.57% 82.50010 80.00%

Accuracy= 85.00%

Model Average 1 <-> 2 1 <->3 2 <-> 3
X-sqr= 29.3969 48.0409 21.8661 18.2838

p<= 0.0000 0.0000 0.0000 0.0000

Table B.3. Evaluation of the three-group hypothesis 1. defect-density B model.

Tested 80, errors 8 (10.0%)

predicted 0 predicted 1 Completeness
reaf 0 49 3 94.23%
real1 5 23 82.14%
Correctness 90.74% 88.46°;"

Accuracy= 90.00%

X-sqr= 48.3917
p <= 0.0000

Table B.4. Evaluation of the two-group hypothesis 2. defect-density C model.

128

•

•

Tested 80, errors 6 (7.5%
)

predicted 1 predicted 2 predicted 3 Completeness
real1 34 1 97.14%
real2 3 30 90.91%
real3 1 1 10 83.33%
Correctness 89.47% 93.75% 100.00%

Accuracy= 92.50%

Model Average 1 <->2 1 <-> 3 2 <-> 3
X-sqr= 42.9666 53.0891 39.7403 36.0704

p<= 0.0000 0.0000 0.0000 0.0000

Table B.5. Evaluation of the tbree-group hypothesis 2. defect-density C model.

Tested 80, errors 4 (5.0%)

predicted 0 predicted 1 Completeness
realO 5& 0 100.0C)f%.
real1 4 20 83.33%
Correctness 93.33% 100.0001.

Accuracy= 9S.(H)ftA.

X-sqr= 62.2222
p<= 0.0000

Table B.6. Evaluation of the two-group hypothesis 3, defect-density A model.

129

•

•

Tested 80. errors 11 (13.8%)

predicted 0 predicted 1 Completeness
realO 49 3 94.23%
real1 1 27 96.43%
Correctness 98.00% 90.00%

Accuracy: 95.00%

X·sqr= 63.8242
p <:= 0.0000

Table B.7. Evaluation of the two-group hypo[hesis 3. defect-density B model.

Tested 80, errors 11 (13.80/0)

predicted 1 predicted 2 predicted 3 Completeness
reall 32 3 91.43%
real2 2 30 1 90.91%
real3 2 3 7 58.330/0
Correctness 88.89% 83.330/0 87.500./0

Accuracy= 86.25°./0

Model Average 1 <:-> 2 1 <:-> 3 2 <:-> 3
X·sQr= 33.3347 48.5245 30.0131 21.4664

P <:= 0.0000 0.0000 0.0000 0.0000

Table B.8. Evaluation of the three-group hypothesis 3, defect-density C model.

130

•

•

Tested 80. errors 1 (1.2%)

predicted 0 predicted 1 Completeness
realO 55 1 98.21%
real1 24 100.00%
Correctness 100.00% 96.00%

Accuracy= 98.75%

X-sqr= 75.4286
p <= 0.0000

Table B.9. Evaluation of the two-group multivariate. defect-density A mode!.

Tested 80, errors 9 (11.2%)

predicted 1 predicted 2 predicted 3 Completeness
real1 33 2 94.29%
real2 3 29 1 87.88%
real3 2 1 9 7S,()Oo;o
Correctness 86.84% 90.63% 90.00004

Accuracy= 88.75%

Madel Average 1 <-> 2 1 <-> 3 2 <-> 3
X-sQr= 37.4888 48.479 33.9429 30.0444

P <= 0.0000 0.0000 0.0000 0.0000

Table B.Io. Evaluation of the three-group multivariate, defect-density C model.

131

•

•

Hypotheaia 1: Model•
A: 2x2 B: 2x2 B: 3x3

Measur. MUD MUD' MUD MUD' MUD MUD'
DIT 5.00% 4.31 % 9.26°Aa 7.87% 5.130/0 4.36%

AID 0.000/0 0.00% 0.00% 0.00% 0.00% 0.00%
CLD 5.00% 4.31% O.OO°Aa 0.00% 16.67°Aa 14.17%
NOC 5.OO°Aa 4.31% 5.S6°Aa 4.72% 7.69% 6.54%
NOP 10.00% 8.63% 0.00% 0.00% 6.41% 5.45%
NOD 30.00% 25.880/0 13.89% 11.81% 21.79% 18.53%
NOA 0.000/0 0.000/0 0.00% 0.00% 0.000/0 0.00%

NMO 5.00% 4.310/0 26.850/0 22.82% 0.00% 0.00%
NMI 30.00% 25.88% 15.74% 13.38% 15.380/0 13.08%
NMA 10.00% 8.63°.10 25.00°Aa 21.25% 24.36% 20.71%
SIX 0.00% 0.000/0 3.70°Aa 3.15% 2.56% 2.18%

total: 100.00% 86.25% 100.00°./0 85.00% 100.00°,/0 85.00%

RUD 20.00% 11.11% 7.69%
Ace 86.25% 85.00% 85.00%

Table B.ll. Hypothesis 1 defect-density models and the contribution of each metric.

Hypothesia 2: Modela
C: 2x2 C: 3x3

Measur. MUD MUD' MUO MUO'
LCOM1 7.14% 6.43% 11.90% 11.01%
LCOM2 0.00% 0.00% 0.00% 0.00%
LCOM3 4.76% 4.290/0 14.29% 13.21%
LCOM4 26.19% 23.57% 0.00% 0.00%
LCOM5 21.43% 19.290/0 0.00% 0.00%
Coh 14.29% 12.86% 9.52% 8.81%
Co 7.14% 6.43% 14.29% 13.21%
LCC 14.29% 12.86% 21.43% 19.82%
TCe 0.00% 0.00% 14.29% 13.21%
ICH 4.76% 4.290/0 14.29% 13.21%

total: 100.00% 90.000/0 100.00% 92.50%

RUD 14.29% 7.14%
Acc 90.00% 92.50%

Table B.12. Hypothesis 2 defect-density models and the contribution of each metric.

132

•

•

Hypothesis 3: Model•
A: 2x2 B: 2x2 A: 3x3 C: 3x3

Measure MUO MUD" MUO MUO" MUO MUO" MUO MUD"
cao 1.14% 6.19% 12.500/0 11.88% 16.610/0 14.38% 13.89% 11.98%)
cao" 0.00% 0.00% 0.00°,'0 0.00% 0.00% 0.00% 0.00% 0.000/0
RFC 1 8.33% 7.92% 16.61% 15.83% 13.89°,'0 11.98% 12.96% 11.18°./0
RFC 00 0.00% 0.00% 6.25% 5.94% 0.00°,'0 0.00°,'0 0.00% 0.00°./0
MPC 0.00% 0.00% 6.25% 5.94% 0.00% 0.00% 0.00% 0.00°./0
ICP 0.000/0 0.00% 0.000/0 0.00% 0.00% 0.00% 0.00% 0.00%
IH-ICP 14.29% 13.57% 12.50% 11.88% 22.220/0 19.11% 12.96% 11.18°/0
NIH-ICP 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 5.56% 4.19°,/0
OAC 0.00% 0.00% 0.00% 0.00% O.ooc/o 0.00% 14.81% 12.18%
DAC" 4.76% 4.52% 0.00% 0.00% 0.00°,'0 0.00% 0.00% 0.00°,/0
1FCAIC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
ACAIC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00°,'0 0.00°,/0
OCAIC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
FCAEC 0.00% 0.00°,'0 0.00% 0.00% 0.00% 0.00% 0.000/0 0.000/0
DCAEC 0.00% 0.00% 0.000/0 0.00% 0.00% 0.00% 0.00% 0.00%
OCAEC 8.33°,'0 7.92% 6.25% 5.94% 0.00% 0.000/0 14.81% 12.18%
IFCMIC 0.00% 0.00% 0.000/0 0.00% 0.00% 0.00% 0.00% 0.00°,'0
ACMIC 32.14% 30.54% 29.17% 27.71% 0.00% 0.00% 2.78% 2.40%
OCMIC 0.00% 0.00% 0.00% 0.00% 16.67% 14.380/0 6.48% 5.59°,/0
FCMEC 0.00% 0.00% 0.00% 0.00% 0.00°,'0 0.00% 0.00% 0.00°,/0
OCMEC 0.00% 0.00% 0.00% 0.00% 8.33% 7.19% 15.74% 13.58%
OCMEC 14.29% 13.57% 10.42% 9.90% 22.22% 19.17% 0.000/0 0.00%
IFMMIC 0.00% 0.00% 0.00°,'0 0.00% 0.00% 0.00% 0.00% 0.00%
AMMIC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.000/0
OMMIC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
FMMEC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
DMMEC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
OMMEC 10.71% 10.18% 0.00% 0.00% 0.000/0 0.000/0 0.00% 0.00%

total: 100.00% 95.00% 100.00% 95.00% 100.00% 86.25% 100.00% 86.25%

RUD 14.29% 12.50% 16.67% 11.11%
Ace 95.00% 95.00% 86.25% 86.25%

Table B.13. Hypothesis 3 defect-density models and the contribution of each metric.

133

•

•

Multivariate Model•
2x2 3x3 Average

Measur. MUD MUD' MUD MUD" MUD MUD'
DIT 0.00% 0.00% 0.00% 0.000/0 0.00% O.OO°fc,
AlD 0.00°fc, 0.00% 0.00% 0.00% 0.000/0 0.00%
CLD 6.25% 6.17% 0.00% 0.00% 1.56% 1.43%

NOC 0.00% 0.00% 11.46°fc, 10.n% 0.00°fc, 0.00%
NOP 0.00% 0.00°fc, 0.00% 0.00% 0.00% 0.00°fc,
NOD 0.00% 0.00°fc, 0.00% 0.00% 0.00% 0.00°fc,
NOA 0.00% 0.00°fc, 0.00°fc, 0.00% 0.00% 0.00%
NMO 15.63% 15.43% 4.17°fc, 3.92% 13.69% 12.49%
NMI 16.67% 16.460/0 0.00°fc, 0.00% 5.43% 4.960/0
HMA 0.00% 0.00% 0.00°fc, 0.00% 2.650/0 2.42%
SIX 0.00% 0.00% 0.00% 0.00% 0.190/0 0.170/0
LCOM1 0.00% 0.000/0 0.00% 0.00% 1.67% 1.520/0
LCOM2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
LCOM3 0.00% 0.00% 0.00°fc, 0.00% 1.11% 1.01 %

LCOM4 3.13% 3.09°,10 0.00% 0.00% 7.38% 6.74%
LCOM5 7.290/0 7.200/0 O.DO°fc, 0.00% 1.22% 1.11%
Coh 3.13% 3.09% 0.00°fc, 0.00% 0.52% 0.480/0
Co 3.13% 3.09% 16.67°fc, 15.66% 2.67% 2.44%
LCC 0.00% 0.000/0 13.54% 12.73% 1.11°,10 1.01%
TCC 4.17% 4.11% 0.00% 0.00% 0.69% 0.63%

ICH 0.00% 0.000/0 0.000/0 0.00% 0.00% 0.00%

CBO 12.50% 12.340/0 4.17°fc, 3.92% 9.72% 8.87%
CBO' 0.00% 0.00% 15.63% 14.68% 0.00% 0.00%

RFC 1 9.38°fc, 9.260/0 4.17°fc, 3.92% 11.09% 10.12%
RFC 00 0.00% 0.00°,10 0.00% 0.00% 1.67°fc, 1.52%
MPC 0.00°fc, 0.00% 0.00% 0.00% 0.19% 0.17%
ICP 0.00% 0.000/0 6.25% 5.87% 0.93°fc, 0.840/0
IH-ICP 7.29% 7.20% 0.00% 0.00% 11.39°/0 10.39%
NIH-ICP 0.00% 0.000/0 0.000/0 0.00% 0.00% 0.00%
DAC 0.00% 0.00% 0.00°fc, 0.00% 0.93% 0.84%
DAC' 0.00% 0.00% 3.13% 2.94% 0.00% 0.00%
ACAIC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
OCAIC 0.000/0 0.00% 9.38% 8.81% 0.00% 0.00%
DCAEC 0.00% 0.00% 0.00% 0.00% 0.00% 0.000/0
OCAEC 0.00% 0.00% 0.00% 0.00% 2.040/0 1.860/0
ACMIC 0.00% 0.00% 4.170/0 3.92% 1.11 % 1.01%
OCMIC 8.33% 8.23% 0.000/0 0.00% 5.24% 4.780/0
DCMEC 3.13% 3.09% 0.00°fc, 0.00% 6.77% 6.18%
OCMEC 0.000/0 0.00% 7.29°fc, 6.85% 6.25% 5.70%
AMMIC 0.00°./0 0.00% 0.00% 0.00% 2.780/0 2.53%
OMMIC 0.000/0 0.00% 0.00% 0.00% 0.00% 0.000/0
DMMEC 0.00% 0.000/0 0.00% 0.00% 0.000/0 0.00%
OMMEC 0.00% 0.00% 0.000/0 0.00% 0.00% 0.000/0

100% 98.75% 1000/0 93.98% 100% 91.25%

RUD 12.50% 12.50% 15.46%
Ace 98.75% 93.98% 91.25%

Table 8.14. Multivariate defect-density models and the contribution of each metric.

134

