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ABSTRACT

The problem of coupled free vibrations of curved thin walled
girders of asymmetric cross-section is examined in this thesis. The
general governing differential equations are derived for quadruple

coupling between the two flexural, tangential and torsional vibrations.

An approximate solution for the case of triple coupling
between the two flexural and the torsional vibrations is given for a
simply supported girder, assuming non-deformable cross-sections and
uniform specific gravity of the material of the box, accounting for
warping but neglecting axial forces and rotary inertia. The frequency
equation and eigenfunctions are given with the orthogonality condition
satisfied. A parametric study is conducted to investigate the effect
of various geometric parameters on the natural frequencies.

An experimental investigation was carried out to compare the
behavior of two curved box girder models with theory. The first model
had a single cell cross-section symmetric with respect to the vertical
axis. The second had an asymmetric two cell section. Reasonable
agreement between experimental values of the first four natural frequencies

and modal shapes and those predicted by theory was obtained.
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VIBRATIONS LIBRES DE POUTRES EN CAISSON COURBES
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RESUME

Le probléme des vibrations libres couplées de poutres courbes
a parois minces, et de section transversale asymetrique est examiné dans
le présent ouvrage. Les éhuations différentielles du probleme sont
dérivées pour un couplage quadruple entre les deux vibrations de flexion,
ainsi que celles de torsion et tangentielle.

Une solution approchée est donnée dans le cas d'un couplage
triple entre les deux vibrations de flexion et celle de torsion, pour
le cas d'une poutre simplement appuyée, en supposant que les sections
transversales sont indéformables. 11 est tenu compte du voilement des
sections fransversa]es, mais les forces axiales et 1'inertie de rotation
ont eté négligees. L'dquation aux fréquences et les fonctions propres
sont données et la condition d'orthagonalité est satisfaite. Une étude
a eté réalisée pour évaluer 1'influence de divers parametres géometriques
sur les fréquences propres.

Une étude expérimentale a également &té conduite pour comparer
a la théorie le comportement de deux modeles de poutres en caisson courbes.
Le premier modéle consistait en un caisson unique, symétrique par rapport
3 un axe vertical. Le deuxieme modéle consistait en un caisson double
et asymétrique.

Les resultats obtenus pour les quatre premieres fréquences
propres et les modes de vibration correspondants ont confirmé raisonnable-

ment ceux prédits par la théorie.
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A Area of the cross-section (material only)
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E Modulus of elasticity
Ec Modulus of elasticity when creep terminates
Ed Dynamic modulus of elasticity
f Warping function
G Shear moduius
H Twisting moment
I0 Polar moment of inertia with respect to the shear
center
Ip Polar moment of inertia with respect to the centroid
Iw Warping constant (sectorial moment of inertia)
Ix’ Iy Moments of inertia about the x and y axes
respectively
Ixy Product of inertia about the x and y axes
Kt St.Venant's torsion constant
L Length of the curved girder along the centroidal
axis
Mx’My Bending moments with respect to the x and y
axes respectively
N

Normal force acting through the centroid
px 9py ’pz ’pq)

moment

Uniformiy distributed external loads in the x, vy,
z, directions and uniformly distributed twisting



viii,

State vector of any point on the girder vibrating
in the i th mode.

Indeterminate shear flow in the box

Base vectors mutually orthogonal and parallel to
the x, y, z axes respectively.

Shear forces acting at the shear center in the x
and y directions

o+ [y xdA
X
1 f 2
N x* y dA
y

Radius of curvature of the girder

Time

Displacements of the shear center in the x, -y
and z, directions respectively

Amplitudes of the i th modal displacements in the
x and -~y directions respectively

Longitudinal displacement of a point on the wall's
centerline

Sectorial coordinate of a point on the wall's center-
Tine

Amplitude of axial (tangential) displacement of a
point located at section z and vibrating in the
i th mode

Orthogonal centroidal axes, radial in-plane of
curvature aad normal to the plane of curvature
respectively

Coordinates of the shear center
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Curved axes with origin at the left support, mutually
orthogonal to the x and y axes and passing through
the centroids and shear centers respectively

Correction factor of the calculated frequency to account
for the dynamic modulus of elasticity

Central angle

Ixy/Ix
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Wall's thickness
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yo/R

Horizontal and vertical displacements of any point

located on the wall of the girder's cross-section due
to an angle of twist ¢i in the i th mode

The Kronecker delta

1 1

Mode - Curvature Index
zZ 2

R ei
Angle of twist of the cross-section measured clockwise

from the 4y direction

Amplitude of angle of twist of a cross-section vibrating
in the i th mode

1 - Kt/Ip
The 1 th coupled natural frequency of the curved girder

Natural frequencies of the 1 th mode of vibration in

the u, v and ¢ directions of an equivalent straight



girder of length 2 and whose cross-section is
doubly symmetric

Area enclosed by the wall's center-line of the j th
cell.

I .2
1-By=1- #%)— Synmetry Index
Xy
Mass per unit volume of the material used
rx/R
ry/R
im
2 where i is the mode number
Differentiation with respect to =z

Differentiation with respect to t




CHAPTER 1

1-1  Introduction

In recent years thin walled curved beams and girders have been
used extensively as structural members in bridges, ships and aircrafts.
Thin walled box sections possess relatively high torsional and warping
rigidities and as a result are suited for long spans, large curvatures,

or where large torsional momenis act on a girder,

The theoretical and experimental investigation reported in
this work deals with the free vibrations of simply supported curved
girders with thin walled asymmetrical cross sections. Solutions to
several special cases such as:

i] curved box girders of symmetric cross section
with respect to one or two axes,

ii] curved bars of solid section,
iii] curved girders of thin walled open cross section,

iv] straight girders of box or open symmetric or
asymmetric section,

can be obtained from the general theory. Analytical solutions for these
special cases have been obtained previously, but experimental verification

was undertaken to check several simplifying assumptions.

Asymmetry of the cross section with respect to the horizontal
axis may arise in bridge design when the upper deck of the section is
made wider than the bottom deck to allow for sufficient traffic lanes.

If exterior webs are thicker than inner webs due to differences in span,
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asymmetry with respect to the vertical axis is introduced.

The free vibrations of a straight doubly symmetric girder in
bending and torsion are uncoupled so that the girder may vibrate in
either vertical or horizontal flexural modes without vibrating in the
torsional mode. In this case the shear center coincides with the
centroid of the cross section and in a bending mode inertia forces
which are effectively applied at the centroid of the section do not

cause twist.

If there is only one axis of symmetry of the cross section
then flexural vibrations in the direction of this axis will be independ-
ent of other vibrations, and coupling will exist only between torsional
vibrations and flexural vibrations in the other direction. Due to a
shift in the position of the shear center along the axis of symmetry

the bending inertia forces generate a torque as well as bending moments.

If the cross section has no centroidal axes of symmetry, a
case of triple coupling arises, i.e. flexural vibrations in one
direction are coupled to those in the other direction and to torsional
vibrations. In this case the shear center is shifted from the
centroidal axes in two directions, and bending inertia forces in both

directions cause a twisting moment about the shear center.

It can be seen that coupling of vibrations in straight girders
is dependent on the geometric properties of the cross-section. Any
change in the properties of the girder along the axis may also result

in coupling.



For girders curved in plan with doubly symmetrical cross-
section, triple coupiing between vibrations normal to the plane of
curvature, torsional vibrations and tangential vibrations occurs due to
the curvature of the girder's axis. Flexural vibrations in the plane
of curvature are independent of the others.

If the cross-section of the curved girders has only one cen-
troidal axis of symmetry normal to the plane of curvature, then a case
of quadruple coupling prevails between the torsional, and tangential
vibrations and the two flexural modes. Moreover if the cross-section
has no centroidal axes of symmetry in any direction, quadruple coupling
also occurs. However, coupling between tangential vibrations and com-
ponents of vibration in other directions is weak for low frequencies and
its effect on the Tower modes may be negligible. For this reason many
investigators do not consider coupling of the tangential vibrations when

dealing with out of plane vibrations.

1-2 Review of Previous Work

Extensive research has beer. performed on the static behaviour
of thin walled girders. The work of Vlasov (40)* on thin walled beams
is substantial and widely recognized. Of particular interest to the
present work are the elastostatical relationships for curved girders
which were developed by Vlasov. However Dabrowski (9) showed that
several terms were omitted in Vlasov's derivation which might be signi-'
ficant in some cases. Dabrowski (10, 11) later extended his work to

include open and closed thin walled girders and obtained solutions for

Numbers in brackets refer to References.

i



different loading conditions.

Several authors have investigated the dynamic response of thin
walled girders. Only those dealing with free vibrations of solid or
thin walled straight or curved girders are reviewed here.

(a) Straight thin walled girders - The first attempt to examine

the coupled flexural-torsional vibrations of a simply supported beam was
by Timoshenko (37), who solved the case of double coupling of a straight
thin walled beam with one axis of symmetry. Federhofer (13) derived
and discussed differential equations for the general case of asymmetric
cross-section. Vlasov (40) obtained a solution for the case of triple
coupling in a simply supported girder with asymmetrical cross-section.
Gere and Lin (18) also solved the general case of triple coupling of a
straight thin walled girder having an asymmetrical cross-section and
determined the natural frequencies of simply supported, fixed gnd and
cantilever beams. An exact solution of the general governing different-
ial equations was given for the case of a simply supported girder only.
The Rayleigh-Ritz method was used to derive approximate expressions for

other end conditions.

(b) Curved solid girders and rings - The problem of free vibrations

of curved bars and rings has been studied extensively and only a few
major developments are mentioned here. Lamb determined the frequency
equation of unconstrained complete elastic rings using the inextensional
deflection theory. Love (27) quoted Lamb's work and extended it to
find the eigenvalues and eigenfunctions corresponding to torsional and

flexural vibrations in and out of the plane of curvature.



Lang (25) derived the eigenvalues and eigenfunctions for free
in-plane vibrations of complete and incomplete elastic rings, consider-
ing both extensional and inextensional deformation theories. He veri-
fied the inextensional theory experimentally. Volterra (41, 42, 43)
in a series of papers, formulated and solved the equations of motion of
a curved solid elastic bar using the so-called "Method of Internal
Constraints". Shear deformations and rotary inertia were considered
for doubly symmetric cross-sections. Later, Volterra and Morell (44, 45)
used the Rayleigh-Ritz method to determine the lowest natural frequency
for fixed elastic arcs vibrating out of their plane of curvature. Arcs
of various centroidal layouts (circle, cycloid, catenary, and parabola)
were analyzed. Reddy (34) used the flexibility matrix method assuming
Tumped masses to solve the problem of free vibrations of any combination

of straight and curved bars.

(c) Thin walled curved girders - Yonezawa (47) analyzed the free

vibrations of curved simply supported fan-shaped plates and under static
uniform loads. Using the theory of orthotropic plates he formulated
the differential equations, gave the exact and an approximate solution,
and investigated the effect of several geometric parameters on natural

frequencies.

Culver (8) obtained the exact solution for the problem of free
vibrations of a simply supported curved girder having doubly symmetric
cross-section. He also used the Rayleigh-Ritz method to obtain approxi-
mate solutions for the cases of fixed-fixed or fixed-simply supported

ends. Tan and Shore (36) investigated the dynamic response of curved



girders of doubly symmetric cross-section under constant moving loads,

and examined the case of free vibrations assuming flexural damping.

Christiano (6, 7) investigated the dynamic response of a
curved, simply-supported thin walled girder, having a vertical axis of
symmetry under sprung moving load. He also solved the problem of free
vibrations and examined the effect of some geometric parameters.

Oestel (31) obtained a solution to the problem of free and forced
vibrations of a two-span curved girder having a doubly symmetric cross-
section. Lagrange's equations were used together with Lagrange muiti-
pliers to account for constraints at the intermediate support. Komatsu
and Nakai (23) solved the general case of triple coupling for a curved
girder of asymmetric cross-section. Coordinates were transformed to
the principal axes of the cross-section to simplify the elastostatical
equations. Field tests on two bridges excited by a 20-ton truck
travelling at various speeds, another bridge excited by a shaker and
laboratory tests on a model showed reasonable agreement between theory

and experiment according to the authors.

1-3 Scope of the Work

The investigation reported in this work is divided into two

parts theoretical and experimental.

The theoretical analysis examines the free vibrations (natural
frequencies and modal functions) of simply supported curved girders,
having thin walled geometrically asymmetrical cross-section. Solutions

for several special cases such as straight or curved girders of thin



walled or solid, open or closed, uni or doubly symmetrical cross-section,
can be obtained from the general case. It is assumed that both supports
allow warping and that one support permits tangential displacements.
Damping, rotary inertia and shear deformations are neglected. The
cross-section is assumed to be non-deformable and the center of gravity
coincides with the centroid. Local free vibrations of the constituent
members or of a part of the span (upper deck, lower deck, torsional
vibrations between the diaphragms) are not considered in this study.

In the experimental investigation two curved box girder models
were tested under a concentrated dynamic load. The first model was a
single box section uni-symmetrical with respect to the vertical centroidal
axis, the second model was a two cell section of asymmetric cross-section.
Resonant frequencies were isolated by a trial and error procedure based

on frequency sweep tests and a series of shaker positions.



CHAPTER 2

THEORETICAL ANALYSIS

2-1 Mathematical Model

The structure under consideration is a single span simply
supported circular curved girder having a constant asymmetrical cross-
section (Fig.2.1), which can be a multicell bbx, single cell box, open
or solid. The geometry of the cross-section affects only the cross-

sectional properties but not the derivations given hereafter.

The cross-section is assumed to be non-deformable, which
implies that there is a sufficient number of diaphragms, infinitely
rigid in their own plane but flexible out of their plane. The girder
is assumed to be supported at two point supports, the 1eft one is a
hinge and the right one is a roller. The material is assumed elastic
and homogeneous. Damping is neg]ectéd since its effect on natural

frequencies and modal shapes is generally small.

The notation adopted is that of Christiano (6) while the sign
conventions are identical to those of Dabrowski (11). The position of
any point in the girder is defined with respect to an orthogonal set of
axes, X, ¥, z as shown on Fig.2.1, with the origin of the 2z axis at
the centroid of the lefthand support. Axes x and y are sliding
axes with origin at the 2z axis, in plane and normal to the plane of
curvature respectively.

The hinge at the left support will allow warping of the cross-

section and rotation about the x and y axes, but prevents movement



in the x, y and z directions at the shear center or twist ¢ of
the whole cross-section. The roller at the right support provides
similar constraints except that movement in the 2z direction is per-

mitted.

For an asymmetrical cross-section, the shear center has

coordinates Xgo ¥ measured from the center of gravity of the cross-

o
section (Fig. 2.2). The centroid and center of gravity of any section
are assumed coincidental. The displacements of the shear center are
defined as u, v, w 1in the x, -y, z, directions respectively.

An angle of twist ¢ measured clockwise from the y axis is also
defined. The center of twist is assumed coincident with the shear

‘center.

The external distributed loads are Py py, Pys in the

X, Y, 2z directions plus a distributed torque p¢, all applied along
the axis of the shear centers z;. The internal stress resultants are
the shear forces Qx’ Qy, and twisting moment H applied along the

axis 2y, as well as a normal force N and bending moments Mx’ My

applied along the centroidal z axis. Forces acting on an infinitesimal
element dz of radius of curvature R are shown in Fig. 2.2. The

bimoment B which is statically equivalent to zero is not shown.

The cross-section which is generally asymmetric has moments

of inertia Ix’ I with respect to the x and y axes, a product of

y

inertia I a polar moment of inertia Ip with respect to the centroid,

xy?
cross-sectional area A, a St.Venant's torsion constant Kt’ and a

warping constant Iw’
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2-2 Equilibrium Equations

Consider the equilibrium of an infinitesimal element of

length dz = R da, with sindo = de

Summation of forces in the x, y and z directions yields:

QX + %-+ Py = 0 (1-a)

Q, + Py = 0 (1-b)
.

N -T+pz=0 (1-c)

respectively, where primes imply differentation with respect to z.

Summation of moments about the x, y and z axes give:

]
1 _
Mo+ R+ Qyp) - Q- P, ¥ = 0 (1-d)
My - Q *+p,x,=0 (1-e)
M
[}
H 'Tx"%yo+p¢=° (1-f)

respectively. Only quantities of the first order are included in

Egs.(1).
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From Eq.(1-e):

QX = pz XO + M‘; (1-9)

Differentiation of Eq.(1-d) yields:

] ] ' ' _ -
M ¥ qUH + 0 ¥,) - Q- P, ¥, =0 (1-h)

Egs.(1-a) and (1-b) lead to:

1

1 N . =
M, +glH - ﬁ'yo - pxyo) TPy =P Yo " 0
Substituting Q, from Eq.(1-g) into Eqs.(1-a), (1-c) and (1-f):

] n N _
Py Xo * My FRYP=O

N -

;EL_'

P, X * My) +p,= 0

' M
X . N -
Ho-Rg*rY*P=0

Finally the six basic equilibrium equations are reduced to the following

four equations:
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N -+ pz(1 - TTJ =0 (2-a)
Mo+ -Ny _p oy y-p oy +p, =0 (2-b)
x = RV RYo “PxYo! " Pz Y% " Py
M"+-N-+ p; x +p =0 (2-c)
Yy R z" X
M
' X 4 N -

This set of four differential equations describes the equili-
brium of an element dz. Eq.(2-a) represents equilibrium in the

z-direction.

2-3 Elasto-Statical Relationships

Dabrowski (11) gives the following force-deformation relation-

ships for a curved girder of asymmetric section:

M= <E[Lv -8 - L+ ) 1y, - [ X dA)—‘Pz—} (3-a)
i R A R
_ ] [} u [{]
M= -EL(u +20) - L (v - & - (1, ¥, -}{x"‘ y dA)-%] (3-b)
' u - ¢y0 _9_
N = EA(w - R ) - EIxsz (3-c)
Ho= ZHer, £ - uek, f) (3-d)

_ " (3-6)
B = -EIw f

i
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The warping function f = f(z) 1is defined by ws = -fw
where ws is the longitudinal displacement of a point on the wall's

center-l1ine and w 1is the sectorial coordinate of the point considered.

By definition:
u=1 - (Kt/Ip) (4-a)

As measures of the asymmetry of cross-section, the parameters

ry and ry can be defined as:

-
n

TIy? x dA (4-b)
X

-
"

TIx y da (4-c)
y

where ry = 0 in case of symmetry about the y-axis and ry = 0 in case of

symmetry about the x-axis.

Substituting Eqs.(3-a), (3-b), (3-¢c), (3-d) and Egs.(4-b),
(4-c) into Eqs.(2-a), (2-b), (2-c), (2-d) yields:



EI, w EI, . ' El w y y r.o
—Ly +—-§u LY [ S ARV (EA—°-EI—-2—+EI—-Z—)¢
R R R R R R YR
n xo
+EAW +p (1-2)=0 (5-a)
. " ¥ . El r y "
Bl (u'V + %) + Ay |- EI vV #| (—2 + EI-X - EI. -2)¢
Xy R R X R XR* TXE
yo ytz) 1 iv " Yo ! yo
+ — . - | = - - 2 - 2
(EIxy : EAES-) 4;] [UR(Ewa MK f ) | - EA sz pxR
" PYo Py = 0 (5-b)

1] n
iv u,y,EA | iv $ _E ) "
[Ely(u + Rz) + u] EIxy v+ [EI —(1 Yo = Ty Iy)d)

R2 ¥ R® Y
EIX _Yo 1 EA ! ' _ (5 )
+ (—lRa - EA-;z)qu- ?w - P, X =P, =0 -C
El " y EI, EI y y2
[_ X (u o+ ) - nl u]+ Xy +[(- —= - Bl -2+ EAS
R R R R R XY R R
y r : " Yy '
0 X 1 iv 0 - -
+ Elxy?a - EIX?S)fb]-[-ﬁ(Ewa - WGK f )] + Ek?w +py=0 (5-d)

Eqs.(5) are the governing differential equations of equilibrium

of a general curved thin walled girder element subjected to any loading
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system acting along the axis of the shear center.

2-4 Inertia Forces

When the girder undergoes free vibrations, the external loads
are equal to the inertia forces resulting from accelerations u , v , ¢ ,

and Ui . * The inertia forces Py py, P, act through the section's
centroid, giving rise to a twisting moment about the shear center axis

z; as shown in Fig.2.3-a.

Using D'Alembert's principle one can write:

= oA 82 (y - -
P, = -PA > (u-y, o) (6-a)
= -op 32 (y - -
Py oA v (v - x,9) (6-b)
2w
p. = 'DA - (G-C)
z at?
Py = -1 320 32 o . 32 (v . -
¢ olpatz + pAy, atz(u Yob) + pr°_a_§(v ) (6-d)
where p -~ is the mass per unit volume of the material used.
Ip - s the polar moment of inertia about the centroid.

*

If rotary inertia is to be considered for a more refined analysis,
then it should be included at this stage.
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Substituting Eqs.(6) into Egs.(5):

EI El El " y y |

[—lutll+_1u' -'EAU']'_&V +[(EA_0- EI-—°-+ EIy_.la)q):I
R R R

R R® R YR?

[ " X .
+[EAw - PA(1 - -g)w] =0

n
. y EI r Yo  »
iv . u 0 .l. iv X X _ 0
[Elxy(u + R2) + EAR3 u] Eva +[( - + EIx e EIxy R2)¢

2
y y 1 1 y ]
T WY P L w_ - EA2
ARG EA?)cb] LR(EIN £V - uaK,f )] A v

Yo,.. .“ ow “ .
+ OATT{U - y°¢) + pAyogf - PA(v - x0¢) =0

. " . EI EI
iv , u EA iv Xy 4" y "
4+ —) + =2 - - - -
[Ely(u Rz) Rz u} EIxyV + [ " ¢ R2 (‘yo ry)q)

EI Yy w -
¢ (__xR;( - EA—°)¢}' ELW’ 4 oe 3+ oAl - y3) = 0

ﬁ R 092
El EI EI ’
- n .Y 1] - y r
2 (u o+ ) - A ulr 2y o+ (K A2 - BT Ko
R R R R R R R

ANEr £V - ek f) |+ EALC W'~ 016 + Ay i + PAXV = O
W HaRe R o Yo 0

(7-a)

(7-b)

(7-c)

(7-d)

where the dot superscript (°) represents partial derivative with respect

to time t, and Io = Ip

about the shear center.

+ A(xg + yé) is the polar moment of inertia
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2-5 The Warping Function f

The warping function f = f(z) as defined by Dabrowski (11)
is given in section 2-3. In the general case of restrained warping,
f can be assumed to have the form f = au + bv + c¢ + dw, where
a, b, c, d are operators. However, Dabrowski (11) has shown that in

the case of unrestrained warping, f will have the form:

f=g+d¢ , (7-e)

ul<

Eq.(7-e) was assumed by Christiano (6, 7) in the analysis of dynamic
response of curved girders of open thin walled sections (where warping

is more important) and is adopted here.
Substituting Eq.(7-e) into Eqs.(7-a), (7-b), (7-c), (7-d):

EI [ ! ] EI n .y
{——-Y-(u v Uy A ] Xy +[(EA—°- EI
R R

y oo
I AL
R R R YR

YR

+{EAw" - PA(1 - %Q)W} = 0 (8-a)

i " Y, . Bl .. GK, .
[Elxy(u“’ + %—;) + EAS uL[— er v’ - —2 Ve E VJ

R® J KR R
EI. . EI. 6K r Yo u y y?
dlo M V(X T e X 29" 4 (b1 20 - EA D),
HR R R XR? Xg? WR' R
Yo o« Y » -
o O oW , _ )
- ERSw ¢ OA—R—(u - Yob) + PRy = - PA(V - xB) = O (8-b)
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r n 1]

. . El
iv u_ EA |_ iv o _ "y _ "
[Ely(u + Rz) + o2 u] EIxyv +[ElxyR =z (_yo ry)q)

EI y ) . " .
b o B o, B o o)

3 , Il . EL . 6K Bl .
e 2SR TRl Y N "W\ e SV A L "R
R R R R R R "

" -EIX \yg rx yo 1 . o o
+6Keo + ( =z + EA—R—2 - EIX?)‘» + EA?w - PI ¢ + PAy i + PAx V =0 (8-d)

These four coupled partial differential equations with con-
stant coefficients are of order 4 in u, v, ¢ and order 2 inw
for the variable 2z, and of order 2 inu, v, ¢ and w for the

variable t.

If coupling due to axial vibrations in the z-direction is to
be considered, Eqs.(8) must be solved. However, coupiing between
axial vibrations in the w-direction and those in the u, v, and ¢ is

weak, as can be witnessed from Eq.(5) where the terms containing

p,» P, are of second order. On the other hand, the uncoupled axial

natural frequencies of an equivalent straight girder are much larger
than those of flexural and torsional vibrations. Hence it can be
concluded that the coupling effect of axial vibrations on the lower

]
modes will be small and one can neglect terms containing P, and P,

and assume that the normal force N at any section is negligible.

Ut
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With this assumption Eq.(8-a), which represents equilibrium of
axial forces in the z-direction is uncoupled from the other three equat-
ions. With the assumption of N = 0, Eq.(3-c) reduces to:

' I y
wos gt (- (9-a)
AR R

The axial displacement w of a point on the shear center

located at a distance z from the origin is:
]IZ dz + (b‘l Yo, [zcb d (9-b)
W=%f{udz - = z -
Ro AR2 R 0

Substituting Eq.(9-a) into Eqs.(8-b), (8-c), (8-d) and rearranging one

obtains:

[ "
. y. ] EI, .. GK_ .
EIx (v + 9-5-) + Pp-Ly {- (EIx + ——‘;) viVe -—}v -PA vV
Y R R uR R

L

El . El GK r y " .
- "W iv X t X 0 PA . > -

—¢  + (—+—+EIl -=-EI_—)¢ - (—y?-PAx )p|=0 (10-a)
[ WR R R Xp: XYg? RO °

" . o [E Y
v u v X
EL(u' + E?) + pAu]- ELy v +[(——-‘i - Bl + E —'Y—)cb

R
] pAyo;,;} .0 (10-)
EI " . EI . El GK " .
--—Z(l(u +%—) + PAy ul+ — WV (—-’S-+--—t—)v + PAX vV
R R ° R R R °

EI EI,
[___.¢ + thcp + (" —,-- EI ——+——"Iy£)¢ - I 4 . (10-c)
u
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It can be seen that the assumption of N = 0 was used to
uncouple the axial displacement w from u, v, and ¢. Eqs.(10) are
three coupled partial differential equations with three unknown dis-
placement functions u, v, and ¢ of the fourth and second order

differentials with respect to the variables z and t.

2-6 Displacement Functions and Boundary Conditions

To permit a separation of variables in solving Eqs.(10), the
displacement functions can be separated into two functions, a function
of location z and a function of time t. In the general case of
vibration, the displacement function can be taken as a Fourier Series

over an infinite number of natural modes, i.e.:

u(z, t) = T gy (t) U; (2) (11-a)
i=1

v(z, t) = L ¥, (t) v, (2) (11-b)
i=1

8z, t) = T 35 (t) o5 (2) (11-c)
i=1

For the particular case of free vibrations, only one mode is
excited and there is no need to sum all components of other modes.

Hence in any pure modal vibration:
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uy (2, t) =y (t) v (2) (12-a)
vi (2, t) = ¥y (t) 31. (2) (12-b)
65 (2, t) = oy (t) ¢, (2) (12-c)

In accordance with the conventional procedure for finding

natural frequencies the time functions are taken in the form:

\71. (t) = sinu;t (13-b)
$; (t) = sinw;t (13-c)

Since Eqs.(10) contain derivatives of u, v and ¢ with
respect to z of the fourth order, four boundary conditions on each
displacement function are required. Under the assumed support con-
ditions, transverse displacements u, v and twist ¢ are prevented

at both supports, i.e.: o .
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u(o, t) = u(g, t) =0 or Gi(o) = Gi(z) =0

.(2) =0

v(o, t) = v(R, t) =0 or ;i(o) = §1

80, t) = 6(2, t) =0 or ;(0) = $;(2) = 0

Since bending moments Mx’ My vanish at both supports:

~ 1t ~

u"(o, t) = u"(z, t) =0 or ui(o) = ui(z) =0

" " N H
v, t)=v (2, t)=0 or vi(o) = vi(z) =0
from Eqs.(3-a), (3-b).
The cross-sections at both supports are free to warp and so the

stress o due to bimoment B

B A
o= W
IW

(14-a)

(14-b)

(14-c)

(14-d)

(14-e)

axial

(14-f)

must vanich. Eq.(14-f) implies that B must vanish as wellat the

supports. From (3-e) and (7-e)

- "y
B=-EI (¢ + 7)

Recalling (14-e), it can be concluded that
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6 (0, t) =6 (2, t) =0 or §;(0) = 4;(2) = 0 (14-g)

Displacement w 1in the axial direction is prevented at z = 0 and per-

mjitted at z = 2
wo, t) =w (2, t) =0 (14-h)

A11 of conditions (14-a), (14-b), (14-c), (14-d), (14-e), (14-g), (14-h)
together with Eq.(9-b) can be met by selecting

u;(z) = U, sine,z (14-1)
vi(z) =V, sine.z (14-3)
¢1.(z) =9, sin 62 (14-k)
where .
' _dm

and Ui’ Vi. 4)1, are amplitudes of vibration of the it—h- mode in the

X, -y and ¢ directions respectively.

Substituting Eqs.(13) and (14-i), (14-j), (14-k) into Eqgs.(12)
u_i(z, t) = U; sinw;t sine.z (15-a)

v1.(z, t) =V,

; s1nw1.t sin 6,z (15-b)
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¢i(z, t) = L2 sinw;t sineiz (15-¢)

Substituting Eqs.(15) into Eqs.(10) one obtains

2 EI, 6K, 2
EL,(8; - )e-PA—wu+-(EI +—)e - — 6,
y R R " R
2 _EI [N EI GK r y 2
+ F)A(,.).i V_I + _ﬂei - (__X_ + —t + E1 _Xz - EIX _02)91
uR R R xR YR
2
y 2
0 - -
+ (];-- xo) DAuH} 0, =0 (16-a)
EI y
2 2 'I 2 L X 0 _l
{EIyei (6.i - -R—z) - pAuo_i]Ui - EIxyei -[(——-Z - EI > T EI )6
- Py, o, }@; 0 (16-b)

2

El 2 2 EI & 05 2
[—Rxl(ei -2 - PRy wi] U -[——‘”ei + (EL + 6K )+ PAx_ u)_ijl Vs

uR R ‘

EI 2 EI r Y. 2 l
W - X X 0 - - i
{_u_ei - GK,O; + ( s EIX..R_3+ EIxy_R—a) + pIowi]¢_; =0 (16-c) I

2-7 The Frequency Equation

Let us now introduce the expressions of natural frequencies

W.s W w of an equivalent straight girder of length £ whose

ui vi® T¢i
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geometry does not lead to modal coupling. Gere and Lin (19) give the

following expressions, which are valid for any boundary conditions:

er, > (dzui)Zd
z
-2 ~ Y5 dz?
i 2 ~2
oA [ udz
o
dav,
2 1,2
2 EI, £ (552 dz
vi pA fl V?dz
o
d2¢. dé.
2 Ty2 2 Ty2
EI ——)“dz + 16K —)“dz
2. M £ (d22 ) Pt g (dz )
i ~2
¢ wel | [* §idz

o]

Substituting Egs.(14-i), (14-3j), (14-k), (14-2) into the previous

expressions yields:

- = Y " -

W5 A 6, (17-a)
2 EI

- = _ X" -
Vi oA &5 (17-b)

EL 6, + uGK, 6

B, = 1 t 1 (17-¢c)

91 wpl
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Let us introduce the dimensionless quantities B and 1v:

I . I
X y

11 12 13

L L L V.} =40} (19)

21 22 23 1

31 32 33

Where Lij can be written after substituting (17-a), (17-b), (17-c)
and (18) as:

1 Yo Yi 2 ]
L= - - )
11 RZG: R Wy
I w., W: o
Lo=-1- %)+ ()
12 R vi vi
I w r By y2 W,
=0 6y _ 1 Xy 4 0, 0 _ _i 2
L13 AR (mv) Rez (1 + R)+ 22+(R xo)(wv_i)
Y i i
Ty Puiyz %2
L =( - =) - (=)
21 R 03 “vi Wy
Wi 2
L2 =_-Y(§_
2 vi
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Yy : ws 2 (20)
L= (=L + 2 ) () + y (=)
23 Re; R'0;  R'6% “vi 07Wy4
B 1 )2
L = = (O ) -y, (=—)
R Rze: 074
- =0y FARY 1 - iy
b AR\“Vi) Re> ﬁéwvi)
I w,. I w, r y
= - O/ ¢iy2 0/ 1.2 1 X )
L = (=) + ()% - 5= + &= - B5)
s Ray TRt T %y T ROUR

For a non-trivial solution of Eq.(19), the determinant of [L] must vanish,
or:

det.[L] = 0 (21)
A symmetry index ¢ can be defined by:

po= 1-8 vy = 1 -2 (22-a)

Xy

and is a measure of symmetry of the moments of inertia with respect to
the x and y axes. Obviously ¢ =1 in the case of single or double

symmetry of the cross-section. Another useful measure, a mode-curvature

index n can be defined by:

n = 1 - 1 (22-b)

2 2

R ei
The mode-curvature index n 1is dependent upon the mode number i and
radius of curvature R, with n =1 for straight girders. To non-

dimensionalize the frequency equation the parameters Pys py, 8y and
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can be defined by:

8

X

rx r
-3 oy ¥ (2
X y
=0 = -0 -
"R Gy R (22-d)

Substituting L . from Eq.(20) into Eq.(21) and taking into account

(22-&) >

(22-—b), (22-¢), (22-d) the frequency equation becomes:

wj e Io  mR? ARZ 1 AR?
() +rvo (2 - sy + Bos e+ L) - g
W4 y Ip Ip p X'y Rze? Ip X"y
px Ay A Io AR
(6y - )+ Gy — 5y(5y - Oy) -nly -1 Gx)
R 6,i Ipe Ipe_i p p
Wiz Wi v g I 2| i, 2%\t AR?
o) G ST MM Sy G TSy
vi vi p AR Y| Wyj Vi p
-(I—o-ﬁiaz)-—ﬂ-—-&s + 28 4 +p (8 + 1 )]
Ip Ip y Ipe? y X Rze: X" X Rzez J

Wes 4 I
(=) +|5>np+ —ZA_z'(San +8y) + Lzvﬂp - ——fnp
Vi p I6 y 16

A
.Y 1o y
P i pi P1

(6 + 55) - —Aasi(l 4 mp o Lt vg) + L 00 (14 )
ei lpe.i e1. pe'i e1.
I
+ By + B on(s, + 22ﬂ(“)(‘> +{°nﬂ-*%ﬁ
IpR ) p61 R e1 P
I Tw.: 2 we 2 I I I W .
__0 71 ( _ 91 1 0 2 0 0 ul,2
p, - B8 )|(==) (—) +|==n(28 - 82) - =n(—+ 1)|(—)
D R2 : X y Wy § Wy 5 Ip X y Ip ARZ w5
Wes 2 We 2 I o Bo, N W 2 W 2
L e . ] (Lo I L R (23)
[7V [IVI o .
vi Vi p |R 6]. R 61. vi vi
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Eq.(23) is the frequency equation. It is cubic in the unknown w?

and can be solved to furnish a set of three positive roots correspond-
ing to a given mode number 1i. A set of three such roots represent

different coupling patterns between Ui’ Vi’
have the same longitudinal distribution, which is sinusoidal as given

by Egs.(15).

and Qi’ but they all

A computer program for solving Eq.(23) is given in Appendix

II. Further details and numerical examples are given in Chapter 4.

2-8 Eigen Functions

Having found the eigenvalues Ws s from the roots of the
frequency Equation (23), one can obtain the relative values of the

amplitudes of vibration Ui’ V.

i and o, from Eq.(19). Since

Eq.(19) represents a set of three homogeneous dependent linear
equations, it is only possible to get relative values of modal dis-
placements. For ease of computations unit amplitude can be assigned

to one modal amplitude such as V.,

i and the amplitudes of Ui’ and

@i computed.

From the first and second rows in Eq.(19), one can write:

b byt b, b
LT (N = S ey B (24)
21 13 11 23
L V. + L o)
= - (Cap i 3 )
U C (25)

Recalling that the axial displacement w of a point on the shear
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center located at a distance 2z from the origin is given by Eq.(9-b):
1 2 k_y_ Yo, (2
w=ﬁfudz+(2-——R——)f¢dz (9-b)
) AR )
and substituting for u, ¢ from Eqs.(15):

Ui z Ix Yo z
= g sinw;t [ sinezdz + (2L - D)o, sinw,tf sine.z dz (26)
ity i ARZ R771 LA i

=
1

AR2 R

U, I y 1 sinw;t
i

(XY q)iJ ———-—e’ cos 6:2

At the R-H support z = &, cos 61.2. =1

. '—l:zi+(§(l-ng)¢>. s1nwit
. AR? i %
re-writing w in the form:
w =W, sinwt cose.z (27) {
then i
W, = wm sin wit
where , (28)
U. I y. o,
-7 X 0y 1
Wig = lem* 2 1) e
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Eq.(28) describes the tangential vibration of the right'support which
is in phase with other components of vibration of the i th mode, and

has an amplitude of wiz.

2-9 Orthogonality of Eigenfunctions

Any point M of coordinates (x, y) located on the wall of
the cross-section will undergo horizontal and vertical displacements
Gui, 6vi with respect to the shear center (xo, yo) as the cross-
section rotates by an angle of twist ¢i around the shear center,

Fig.2.3-b.

The values of Gui, Gvi, are:

Su (x - xo)(cos¢i<- 1) + (y - yo) sin¢;

Sv (x - xo) sin¢H + (y - yo)(1 - cos¢i)

However, since analysis is limited to small vibrations only,

then one can assume cos ¢y = 1, sin ¢1==¢1 hence:

Su; = (¥ - ¥g)o; (29-a)

Sv (x - x0)¢i (29-b)

the position of any point M on the wall of the girder

vibrating in mode 1 at any section z with respect to the oxyz axes
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can be obtained from the state vector:

P1 N gi * vi * Y
= (u,i + Gui) q + (vi + Gvi) r+w, s (30)

where Ujs Vys Wy, are the displacements of the shear center at the
same longitudinal location z as that of point M. q, r, s are
three base vectors mutually orthogonal and parallel to the x, y, and

Zz axes respectively.

The orthogonality condition of modes i and Jj can be

written as:

where the integral is taken over a domain D, Q 1is a weighting

function, 6ij is the Kronecker delta and ¢ 1is a constant.

Substituting Pi’ Pj’ from Eq.(30) into Eq.(31) one obtains:

[P, P.Qdz / ("i + 6ui) q + (Vi + 6vi) ro+ wis]

. Ja+ (v. + 8v.) r +w.s
(uJ + GuJ) q (vJ GVJ) r st]Q dz (32)

—_ = .

3 - - - - -
The mixed terms containing g.r, g.s, or r.s will vanish because

base vectors are orthogonal. Then Eq.(32) will reduce to the product



L

2

- 33 -

el

of like terms of base vectors, .4, r.r, 8.5, oOr:

-

/P, Py Qdz = f[[(ui + 6“1)(uj + auj) + (v, + svi)(vj + ij)

+ W wj] Q dz (33)

Recalling Eq.(15), Eqs.(29-a), (29-b) and Eq.(27), and substituting
back into Eq.(33):

- - - _ _ _ \2

/P, P; Q dz [U,-UJ- + (y y(,)U1-<I>~.i + (y yo)chb_i +{y -y,

LN

- - - 2
¢i¢jJ+ vivj + (x xo)vioj + (x xo)vjoi + (x xo) <I>.<I>.]

sinwgt sinwst [sin6;z sin 652 Q dz + W Wy sinwt sinw,t

[cos 8.z cos ejz Q dz (34)
it can be seen that the righthand side of Eqs.(31) and (34) are identical.

2-10 Special Cases

Governing frequency equation for the following special cases

can be determined from the general case of Eq.(23).

(a) Curved girder with cross-section having single symmetry with



(b)

(c)
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respect to the y axis. Christiano (6, 7).

Triple coupling between u, v, and ¢ exists under such

conditions.

Curved girder with cross-section having single symmetry with

respect to the x axis.

Double coupling between v and ¢ exists but u is

independent.

Curved girder with cross-section doubly symmetric with

respect to x and y. Culver (8)

Double coupling between v and ¢ exists, u 1is independent.



(d)

(e)

(f)
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Straight girder with asymmetrical cross-section. Gere and

Lin (18), Viasov (40) and Federhofer (13).

Triple coupling between u, v and ¢ prevails.

Straight girder with cross-section having single symmetry

with respect to x. Timoshenko (37).

Double coupling exists between v and ¢ but u is

independent.

Straight girder with cross-section doubly symmetric with

respect to x and y.

R —» Ixy =0 ry © ry =Xy T Y, T 0
B=Y=pxzpy=5X=6y=0 n:] w:]

No coupling exists and the girder can vibrate in either the

u or v or ¢ directions independently.
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2-11 Parametric Study

It can be seen from Eq.(23) that the following non-dimensional

parameters define the required frequencies of coupled vibrations:

I I r r

B:.—& Y:.ﬂ p=—)£ p'—'—l
I I x - R v = R

X y
6 =.X_0 6 =¥£ A_'ﬁ.

R R I

X y b

2 2 2 Bui I Wig .2
R®02 = (ima, ) (—21f =X (2L
! 1 Dy I Wy 4

A11 the other non-dimensional parameters in Eq.(23) can be obtained from
a proper combination of these parameters. These parameters are not
absolutely independent but related through the geometry of the cross-
section. A number of cases were examined, with uni-symmetrical, doubly-
symmetrical, and asymmetrical sections with both positive and negative
asymmetry inciuded. Only high asymmetry was considered to clarify its
effect on natural frequency. The basic parameters used in analysis are

shown in Table 2-1.

2
The ratio %B— was assumed to take on one of the following
P w
values (100, 500, 1000, 5000, 10000). A range of values for 59- from
\
0 to 5 was chosen. Given a set of the parameters from Table 2-1, a
2 w
value of £¥L- and another for Gg were selected and three roots for
P w w. v

each of the ratios El and Bg' were calculated from Eq.(23).
v v
1 2
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, o ARZ %4
By repeating the procedure for other comb inations of T o>
p v

with one set of parameters from Table 2-1, plots of the variation of

w w w 2
-l—a 2 with 9 and ARZ were obtained. These plots are
w w, W, I
vy vy v p
shown in Figs.2.4, 2.5, . . . . . , 2.13.
Table 2-1
Values of Various Parameters for Cases
examined in the Parametric Study
w,
U Symm-| Plot on
* W, B Y Px Py ax Gy etry | Figure
5] 0O 0 0 0 0 0 DS 2.4
0 0 0 0 0 0 DS 2.5
o 0 0 0 {0.001 010.01] USY 2.6
457 110
0.05! 0.0005] 0.001)/0.001} 0.01] 0.01] ASP 2.7
-0.05}-0.0005(-0.001}0.001(-0.01{ 0.07| ASN 2.8
0 0 0 0 0 0 DS 2.9
5
-0.05}-0.002 {-0.001{0.001{-0.01|{ 0.07{ ASN 2.10
0 0 0 0 0 0 DS 2.1
90° (10| 0.05| 0.0005| 0.001{0.001| 0.01] 0.01] AsP 2.12
-0.05]-0.0005|-0.001| 0.001|-0.01) 0.01] ASN 2.13

DS - Doubly Symmetric section; USY - Unisymmetric with
respect to y-axis; ASP - Positively Asymmetric Section;
ASN - Negatively Asymmetric Section (x-direction only)
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(a)
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(e)
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Upon examining these Figures the following observations can

In comparison to an equivalent straight girder, coupling
between three (or less) different frequencies decreases
the lowest and increases the highest of these frequencies,
(Figs.2.4, . . . .. 2.13), while the intermediate fre-
quency might increase or decrease depending upon the
geometry (Fig.2.10(a)). The effects of coupling decrease
as the mode number increases (Figs.2.11(a) and (b)).

2
When %B—- increases with oy fixed (i.e. the length of

the girder increases) the upper and lower roots of the
coupled frequencies diverge. Figs.2.5(a) and (b).

For doubly symmetric sections, the horizontal frequency
will be uncoupled (Figs.2.4, 2.5, 2.9 and 2.11). This
frequency is always less than the uncoupied frequency of
an equivalent straight girder, and will converge tozit

when the central angle oy approaches zero and %5—

p
becomes very large.

For sections uni-symmetrical with respect to the vertical
axis, triple coupling arises. The effect on the first
and second modes as compared to the case of double
coupling is to couple the horizontal vibration and
slightly decrease coupling (i.e. to increase the lower

and decrease the higher frequencies) between the previous-
1y coupled vertical and torsional vibrations. Figs.2.5
and 2.6.

The effect of increasing the lateral moment of inertia
with respect to the vertical one is to cause a slight
diversion of the upper and lower roots of the coupled
frequencies. Figs.2.4 and 2.5(a). The diversion will
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AR
be greater for small values of T

The effect on the first mode of pgsitive asymmetry of
the cross-section compared to the doubly symmetrical
one is to couple the horizontal vibration and decrease
coupling slightly between the previously coupled verti-
cal and torsional vibrations. Figs.2.5(a) and 2.7(a),
also Figs.2.11(a) and 2.12(a).

The effect on the second mode of positive asymmetry of
the cross-section compared to the doubly symmetrical

one is to couple the horizontal vibration and increase
coupling (i.e. increase the higher and decrease the
lower frequencies) slightly between the previously
coupled vertical and torsic=3l vibrations. Figs.2.11(b)
and 2.12(b), also Figs.2.5(b) and 2.7(b).

The effect on the first mode of negative asymmetry of
the cross-section compared to the doubly symmetrical

one is to couple the horizontal vibration and decrease
coupling - more than in (f) - between the previously
coupled vertical and torsional vibrations. Figs.2.5(a)
and 2.8(a), also Figs.2.11(a) and 2.13(a).

The effect on the second mode of negative asymmetry of
the cross-section compared to the doubly symmetric one
is to couple the horizontal vibration and decrease
coupling between the previously coupled vertical and
torsional vibrations for all or Tow w /wv ratios and

¢
increase coupling between the same two components for

higher w¢/wv values. Figs.2.5(b) and 2.8(b), also
Figs.2.11(b) and 2.13(b).

For asymmetrical cross-sections the increase in the
highest frequency for any modal number can be very
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2
large, particularly for higher values of %R—- while

the decrease of the lowest value is less sensitive.
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CHAPTER 3

EXPERIMENTAL PROGRAM

Laboratory tests were conducted to obtain the natural fre-
quencies and estimate the modal shapes of the first few modes of two
plexiglas models. The first model was a simply supported curved
girder of single cell section symmetric with respect to the vertical
centroidal axis,and the second model was also a simply supported

curved girder but had a two cell asymmetric section.

The models were excited by a single shaker with a controllable
frequency. Response was measured at different points in the vertical
direction by six displacement transducers. A trial and error procedure
was used to converge to the optimum position and orientation of the
shaker. A set of resonance criteria was used to identify the modes

sought.

3-1 Design, Description and Fabrication of Models

Two models denoted A and B were designed to meet the
requirements of both static and dynamic tests. Both models were con-
structed of plexiglas with a central angle o of 90°, and a length
along the center line of the upper deck % of 80.2 inch. Model A
had a symmetric cross-section with respect to the vertical axis, while
Model B had an asymmetric cross-section. Model B was obtained by

adding an eccentric web to model A. Plan and cross-sectional dimen-
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sions of models A and B are given in Figs.3.1, 3.2 respectively.

A general view of model B 1is shown in Fig.3.3.

3-1-1 Description of the models

Both models were simply supported, with the whole section
extended 1 inch beyond the line of supports on each end. The line
of supports consisted of two or three point supports for models A
and B respectively. Point supports were located on a radial line

directly under the webs.

The left-hand suppcrt was esséntia]]y a hinge since it
prevented twist ¢, vertical displacement v or horizontal displace-
ments, u, w, but allowed rotation with respect to the x and y
axes and warping of the cross-section. This was achieved by using
one fixed point support and one or two roller boint supports.

(Fige 3.4). The right-hand support was essentially a roller, since
it prevented twist ¢, vertical displacements v or horizontal dis-
placement u, but allowed rotation with respect to the x and y
axes, and warping of the cross-section as well as horizontal axial

displacement w. (Fig.3.5).

The roiler point support consisted of a plexiglas cap
machined from a 1 inch thick block to a spherical surface to provide
point support to the model. A soft piece of rubber was placed on
top of the cap to prevent vibration of the support. The lower face
of the cap was machined to a concave surface to accommodate a 1/4 inch

hard nylon ball. The ball itself was mounted on top of a concave
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surface machinad into a supporting cylindrical bar 1 inch in diameter.
(Fig.3.7). The bar was 3.25 inch long and made of plexiglas. The
lower 3/4 inch was threaded and screwed into another plexiglas block

1 inch thick. These threads allow for relative adjustment of point
support elevation and inclination. The Tower block rested on two
small cylindrical plexiglas bars 1/8 inch diameter to allow for motion
in the direction desired. A concentric hole of 1/8 inch was drilled
to accommodate a prestressing wire which was a flexible high strength
steel wire, 1/12 inch soldered on top to a penny. A rubber pad was
placed between the penny and model. The lower end of the prestressing
wire was hooked to a 15 1b. hanging weight. The fixed point support
was similar to the roller type except that the rollers were omitted

and the bottom block fixed to the supporting beam, and a cantilever

bar fixed to the supporting beam was placed in contact with the end
section of the girder to restrain warping at the desired point. (Fig.3.8).

Both models had a curvature %-of 0.0196, a central angle of

90°, a width of upper deck of 18 inch, a ratio of upper deck width to
radius of 18/51 = 0.353, and a width of lower deck of 12 inch. All
webs are 2.5 inch deep. Model A was provided with two webs located
symmetrically on the cross-section at radii ro= 45.125 inch,

ro = 56.875 inch as shown in Fig.3.1. Four diaphragms 1/4 inch

thick were located symmetrically along the span. Model B was
obtained from Model A by adding an extra web located at a radius

of ry = 52.00 inch. Six diaphragms 1/4 inch thick were located at

sections 0°, 15°, 35°, 55°, 752 and 90° as shown in Fig.3.2.
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In order to facilitate modification of the cross-section, the
two webs of Model A were glued to the upper deck, while screws were
used to attach the lower dack. This design permitted addition of new
webs and new diaphragms. In both models machine screws #4-40, 0.5 inch

long were used to connect the diaphragms to the decks and webs.

3-1-2 Material properties

Plexiglas G of Rohm and Haas Co. was used in both models.
It is well known that plastics creep under sustained loads due to their
molecular structure. Moreover, the modulus of elasticity of plastics

under dynamic loads is frequency dependent.

Three series of tests were performed to measure material
properties. The first test was a standard tension coupon test. Eight
coupons were cut from different points of the plexiglas sheets used and
tested at a low strain rate of 3000 u strains/min. up to failure. Test
results are summarized in Table 3-1. The average value of Young's

modulus was E = 421 Ksi.
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Table (3-1)
Test Results of Tension Coupons
No. |Thickness|{ Ultimate | Initial E | Average Tangent
Stress Eat = 2.2 Ksi
inch Ksi Ksi
1 0.248 8.7 474 425
2 0.249 8.2 450 385
3 0.249 8.6 433 422
4 0.249 8.77 455 406
5 0.194 8.35 467 414
6 0.193 8.45 438 368
7 0.196 8.28 470 423
8 0.194 8.72 407 315
Average 449 394

The second test was a static creep test under sustained loads.
A simply supported plexiglas beam cf span 11.00 inch, width 0.84 and
height 0.252 was cut from the same sheet and tested under two equal
concentrated loads located at 3.5 inch from the supports. Strains in
the longitudinal and transverse directions on the compression face were
measured at midspan by a TML-Rosette type pc-10. Deflections and
strains were measured 0, 1, 2, 5, 10, 20, 25, 30, 35, 40 minutes after
load application. The loads were then removed and the beam allowed to
recover for 3-4 hours, another set of loads were applied and the pro-
cedure repeated. A stress-strain diagram after 0, 5, 15 and 40 minutes

of load application is given in Fig.3.9.

This graph shows that the material exhibits slight non-linearity.

Results can be approximated by two Tinear regions with the second region
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beginning at a stress level of 800 psi. Creep effectively termin-
ates after applying the load for 40 minutes i.e. Ec = E40 regardless
of the stress level. Poisson's ratio was calculated using the trans-
verse strain and found to incfease slightly with creep from 0.358 to

0.373 after 40 minutes for all stress levels.

The objective of the third series of tests was to establish
the relationship between the dynamic modulus of elasticity Ed and
the loading frequency w. Since in dynamic loading of polymers, creep

does not occur, a value of Ed higher than Ec is to be expected.

Robinson (35) utilized the resonance properties of a canti-
lever beam to study the dynamic mechanical properties of polymers over
a wide temperature range. The same concept was used for a simply
supported beam without variation in temperature. The frequency

range examined was 10 - 110 cps at a temperature of approximately 70° F.

The n th resonant angular frequency of a simply supported

beam is given by:

W, An EI“ rad/sec.
V pAg
where
p = mass per unit volume of the material used.
A = cross-sectional area.
2 = span of the beam.
An = coefficient of the n th mode.
A = 9.87, A, = 39.5, A, = 88.9

2 3
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If w is the n th resonant angular frequency with E = Ec’ then:

nc
/ECI (35)
w = A 35

If w 1is the n th resonant angular frequency assuming E = Ed, the

dynamic modulus of elasticity then:

(ﬂnd = A e e (36)

from Egs. (35) and (36)

W E
nd d
o = e (37)
“ne Ec
E w 2
d nd
o = = = (—) (38)
E Wne

If W is measured experimentally, and Wne evaluated from Eq.(35),
a can be calculated directly from Eq.(38). Eq.(37) implies that
theoretical frequencies calculated from E = Ec should be adjusted to
account for the difference between ’EC and Ed at that frequency.

The adjusted frequency can be obtained directly from Eq.(37) as:

= 1/2
W g a Woe (39)
To evaluate o for the plexiglas used, a simply supported

beam of width 0.73 inch and depth = 0.195 inch was tested with different

spans (7,8,9,10,12,14,16,18,20,22,24 inch). The same testing procedure
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used for models A and B and described in Section 3-2-5 was used to
determine the natural frequencies of these beams. The values of the
correction factor o were calculated as described above and are shown

in Fig.3.10 plotted against frequency.

The (@, w) curve is a characteristic of the material and indi-
cates that o decreases rapidly as the frequency w increases from 10

to 30 cps, and then decreases very slowly up to w = 110 ¢ps.

3-1-3 Fabrication of the models

The upper deck and the webs were cut froma 4 x 8 ft. plexi-
glas sheet 1/4 inch thick and the bttom deck was cut from another
4 x 8 ft. sheet 3/16 inch thick. The webs were mounted on a mold hav-
ing the required curvature and heated in a special oven up to 3500 F
until they deflected under their own weight and assumed the required
curvature. They were then clamped to the mold and cooled gradually.

Forming of the webs was performed by Hickey Plastics Company of Montreal.

Special aluminum frameworks were prepared to hold the webs
and give them the required curvature. (Fig.3.11.) Flat wooden studs
were glued to the lower face of the upper deck along the line of the
webs, to permit accurate alignment of the webs. The masking paper was
then stripped and taken off along the line of the webs. (Fig.3.12.)
Glue Jaybond GC-18, a polymerizable cement consisting of a base, a
catalyst and a promoter purchased from Johnsten Industrial Plastics of
Montreal, was brushed on the contact area of the upper deck and the

webs, the framework of the webs was separated and the webs clamped to
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the deck. The clamps were loosened slowly after setting. The dia-

phragms were then attached to the wgbs and upper deck by screws.

The lower deck was then clamped to the upper deck and the
webs, and holes (drill #39) were drilled through the lower deck and
the webs manually, 4 inch apart, and threaded. Machine screws
(#4-40) 0.5 inch long were installed. The 4 inch spacing provided
satisfactory binding and stiffness for the whole model, and prevented
crackling during dynamic tests. The actual diameter of screws
#4-40 is ,108 inch, thus leaving a cover of 0.142 inch in the 1/4 inch
webs. Since the shearing capacity of these screws is approximately
90 1b., they can sustain a shearing stress at the joint of approxi-
mately 100 psi. A similar procedure was used in static tests of box
bridge models by Macias and Van Horn (28), who reported reliable

experimental results.

3-2 Dynamic Model Tests

A continuum has an infinite number of degrees of freedom
and hence an infinite number of natural frequencies and modal shapes.
At resonance the response of any complicated structure can be simul-

ated by a single degree of freedom system (16).

Consider a damped single degree of freedom system, subjected

to a harmonic excitation F sinwt.

mu+cu+ Ku=F sinwt (40)
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As w approaches the natural frequency w5 s the particular solution
of Eq.(40) (i.e. the natural mode) dominates. Gauzy (16) showed that

in this case there is balance between the terms of Eq.(40) such that:
mi + Ku =0
cu - F sinwst =0

which implies that the exciting force F sinwt will be in balance with
the damping force cu, and the system behaves exactly like a conservat-
ive system, i.e. it oscillates under inertia force mu and a restoring

spring force Ku.

Recalling the case of a continuum, one can draw a parallel
with a one degree of freedom system and say that to excite a natural
mode one needs an infinite number of synchronized exciters oscillating
at the natural frequency and oriented such as to coincide with the modal
displacement and having amplitudes large enough to feed energy at each

point of the system equal to that dissipated by damping.

However, practical experience shows that satisfactory results
can be obtained using a relatively small number of exciters (16),
arranged such that they are:
(a) placed at points where there are important sources
of energy dissipation,

(b) placed so as to feed a maximum amount of energy into
the modal shape desired, and a minimum amount of



- 51 -

energy into the neighbouring modes. This is
usually accomplished by installing the exciters
at peak points of the modal shape sought and the
nodes of the neighbouring modes,

(c) directed in space in such a way as to produce all
components of the desired modal shape with the
right proportion, and not to hinder any such com-
ponent.

It is worth mentioning that the circuitry and equipment
necessary to operate and control a large number of shakers is extremely
complicated. Lewis and Wrisley (26) in 1950 developed a system able
to operate and control 24 shakers, which was used for ground vibration

testing of aircrafts.

Due to equipment limitations, only one shaker was used in
the experiment reported here. One shaker is sufficient to excite the
first few modes (21) but this sufficiency decreases as the mode
number increases. Hence discrepancies from pure modal shapes are to

be expected in the higher modes.

The experimental setup consists of an exciting system, pick-
ups system and a display system. Fig.3.13 shows a block diagram of

the experimental setup.

3-2-1 The exciting system

The single shaker used in the experiment was an electromagnet
of low impedance, manufactured by Ling Electronics, special model V50

Mk.1. It can provide a peak thrust of 48 1b. when loaded by 2.5 1b.
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at 100 cps and cooled with an air blower. The maximum stroke is 0.7
inch. The shaker was mounted on a rigid base and can rotate with

respect to a horizontal axis. (Fig.3.14).

The circuitry consisted of a function generator (oscillator),
model HP-200 CD, which generates a sinusoidal wave of frequency range
5-600000 cps with gain control. The sinusoidal signal is amplified
by a power amplifier manufactured by Ling Electronics, Model TP-300
which also has a gain control. The output signal of the amplifier
drives the shaker, the frequency being controlled by the oscillator

and the amplitude by the gain of the oscillator and of the amplifier.

The moving part of the shaker was connected to the model
through a special attachment consisting of a load cell and a two-piece
core and socket connected to a light frame surrounding the cross-section

of the model. (Fig.3.6).

A description of the load cell is given in Section 3-2-2.
The load cell was screwed onto the moving part of the shaker and the
core of the aluminum wocket tightened to the top of the load cell. This
core fitted into a hollow aluminum socket, the upper part of which was
solid and provided with a deep groove. (Fig.3.14). This socket was
also provided with two sets of screws to tighten the core to the socket.
The groove in the upper part of the socket would accommodate an aluminum
blade 1/8 inch thick. A hole was also drilled in this part of the
socket to match with several holes drilled in the blade at different
Tateral positions. A connecting screw was tightened between the socket

and the blade forming a hinge-like connection. The blade was fastened
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to a 1ight aluminum framework by several screws. The framework is
made of 1/2 x 1/2 aluminium angles connected together with screws, and

wrap the cross-section tight in the radial direction.

3-2-2 Pickup system

Three kinds of pickups were used - displacement transducers
to measure displacements of the model, an accelerometer to control
displacement of the shaker, and a load cell attached to the shaker

head to measure the force supplied by the shaker.

Six HP 7CDCT - 1000 displacement transducers denoted by
T-1, T-2, . . . , T-6 were used. They were held in place by clamps
mounted on magnetic stands. Given a certain input DC voltage the
transducers produce a signal linearly proportional to the displacement
of the core, due to change of electric flux around the core. The
transducers are able to measure displacements in the range of £1.00 inch
with input voltage 4-6 volts and a maximum frequency of linear response
of 114 cps. These transducers were calibrated together with the
oscilloscope and the UV recorder. A typical calibration graph is
shown in Fig.3.16. Calibration graphs were nearly linear for all

input voltages.

One accelerometer manufactured by Clevite - Model 25D21 was
mounted on a screw attached to the load cell as in Fig.3.14. A
charge amplifier - Model 566 (Kistler Instrument Corp.) was used to

provide the necessary signal amplification.

The aluminum load cell was designed to measure small dynamic
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loads from 1-2 1b. up to 25 1b. The sensitive central part of the
cell was 1.0 inch in length, 0.35 inch in diameter and with a wall
thickness of approximately 0.02 inch. The end sections were 0.5 inch
in diameter, 0.75 inch in length and threaded from within to fit end
connections. Two dynamic strain gages, type ED-DY-500 BH-350 of
MicroMeasurement were attached to the wall of the central section and
connected to a bridge circuit as shown in Fig.3.15. The load cell

was calibrated with the oscilloscope as shown in Fig.3.17.

3-2-3 Display system

The display system, Figs.3.18, 19, consisted of two oscillo-
scopes used for mode probing and a U.V. Recorder to record the signal
when resonance was reached. One HP-140A Scope and another HP-141A
Memoscope were used to display the signals and compare their phase
angles. The U.V. Recorder model S.E. 2800 is provided with 12 channels,
8 inch wide recording paper, paper speed range of 1.25 - 2000 mm./sec.,
and time signals for grid 1ines at 0.01 - 10 sec. The Galvanometers
used have a 1imit of linear response of 160 cps. The useful frequency
range of the entire experimental setup is limited by the maximum fre-

quency of linear response of the transducers which was 114 cps.

3-2-4 The resonance criteria

Recalling the single degree of freedom system (section 3-2),
if a frequency sweep test is performed then it can be shown (15, 16,

21, 26) that the response at a natural frequency wiil be marked by the
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following phenomena:

(a) The amplitude of response per unit exciting
force will reach a maximum compared to
neighboring frequencies.

(b) The phase angle between the exciting force and the
response will be + w/2.

(c) The rate of change of this phase angle is rapid
near the natural frequency.

The effect of damping is to reduce the amplitude of response in (a)

and to reduce the rate of change of the phase angle in (c).

A continuum behaves like a single D.Q.F. system near
resonance with the generalization that the response of all points of
the continuum will be exactly in or out of phase and orthogonal to
the exciting force. However, in a complicated structure such as a
box girder, secondary vibrations will arisé, which in effect are local
vibrations and resonances of parts of the structure such as the upper

or lower deck.

Although such secondary vibrations were observed, they are
beyond the scope of the present work. The use of a light frame
around the cross-section of the model at the excitation station,
reduced local vibrations in the vicinity of the frame. Moreover the
response was measured at the junction of the webs and the upper deck
since such points are nodal points in a mode of local upper deck

vibrations.
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3-2-5 Experimental procedure

A trial and error procedure was followed to isolate the
natural frequencies of the models in the light of the resonance
criteria given in section 3-2-4. The procedure began with a probe
for the natural modes. If there was evidence of a natural mode, an
attempt was made to purify the modal shape until a modal shape was -

isolated as much as possible.

The probing of natural modes began by selecting a position
and orientation of the exciting force guided by the theoretical modal
shape. Knowing the amplitudes of vibrations at all points the angle
to the vertical of the exciting force could be calculated from simple
geometry for a given transverse point of application. The longitud-
inal location of the point of application of the load was taken as

the station of peak amplitudes as mentioned in section 3-2.

A frequency sweep test was performed for a varietyof
positions of the shaker. The frequency was increased gradually from
5 to 120 cps while the force signal and a displacement signal (from
one of the transducers mounted on the model to measure vertical dis-
placements at various locations) were displayed on the oscilloscope.
The chop position on the oscilloscope permitted display of two simultan-
eous signals and a measure of their relative phase angle. The signal
of the exciting force was taken as reference and signals from all the
displacement transducers were compared with it simultaneously all over
the range of frequency sweep. Fig.3.20b shows two signals perfectly

in phase.
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Another method of displaying the relative phase angle of two
signals (of the same frequency) on the scope is to use Lissajous figures
(3), which are the Toci of the motion of a particle subjected to two
orthogonal harmonic motions of the same frequency but different ampli-
tudes and phase angles. These figures can be seen easily on the scope
in the chop position by plugging one signal in the horizontal axis, and
the other one in the vertical axis. Fig.3.20a shows Lissajous' figure

in the general case where amplitudes and phase angles are unequal.

The frequencies at which there is a + ©/2 phase difference
between the exciting force and the displacements were recorded. Records
for all the transducers for a single load position provided bands of
frequencies which might include a natural frequency. A record on the
U.V. recorder was taken within each frequency range to examine the

shape of the dynamic response.

It is very important to note that if the excitation is not
correct the criteria of section 3-2-4 do not apply for all points of
the structure at the same frequency, i.e. it will not be possible to
get a phase difference of + m between responses of various points and
a phase difference of +* m/2 between the exciting force and response

of different points.

Examination of these records provided a clue as to what the
modal shape is 1ikely to be. The next step was then to move the
shaker to a new position and give it an orientation in space guided by
the previous modal shapes obtained, and by the rules given in section

3-2. In general the band of frequencies was narrower in the second
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trial frequency sweep. This trial and error procedure was repeated
until the band-width of the frequency scatter was narrow enough to
enable expedient usage of the amplitude criterion of resonance. A
very careful frequency sweep was then carried out in that narrow range
and the amplitudes of response were measured. Whenever the natural
frequency was reached, the amplitude of responses increased rapidly
for a constant exciting force. If all the resonance criteria of
section 3-2-4 were satisfied at this frequency, a correct naturai

frequency and pure modal shape is obtained.

The preceding procedure can be used with no knowledge of
the modal shapes, which be the case for complicated multi-element
structures such as aircrafts. However, in the present case analytical
results could be used as a guide. For examplie, it is clear that the
optimum position to excite the first mode (which is approximately a
half sine wave) is located somewhere along the midspan cross-section,
but the orientation of the force is unknown due to coupling. However
the modal shapes obtained from the theoretical analysis served as a

check on the appropriate load position and orientation.

It was found experimentally that pure modes other than the
first could not be isolated and a unique natural frequency could not
be obtained with the 1imited facilities used. However sharply defined

regions around the natural frequencies were obtained.

The displacement transducers were used to measure only the
vertical amplitudes of vibration of the upper deck since measuring the

horizontal amplitudes of vibration proved to be experimentally awkward
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due to the coupled vertical vibrations which are perpendicular to the
core of the transducers. The measurement of vertical amplitudes of
two points Tocated on the same radius of the curved girder permits a
comparison of the combined vertical and torsional displacements with
those predicted by the analysis given in Chapter 2, as will be seen in

section 4-2.

3-2-6 Experimental results

The technique described in section 3-2-5 was used to measure
the first four natural frequencies of models A and B. These

frequencies fall in the range of 5-115 cps as shown in Table 3-2.

Table 3-2

Measured Natural Frequencies of the
First Four Modes of Models A and B.

Natural Frequency (cps) of Mode No.
Model
1 2 3 4
A 12.7 59.7 63.0 114.0
B 12.5 58.65 60.50 115.0

In Table 3-2 the modes were numbered such that the lower mode
has a lower frequency but not necessarily less halfsine waves of vibrat-
ion. For example modes 1, 2 and 4 correspond to one halfsine wave,

while mode 3 has two halfsine waves.



- 60 -

The simple procedure of dropping a mass on the structure to
excite the first mode was attempted with a mass of 1/2 1b. dropped
from one inch at the midspan section of model B. The measured

frequency was 12.7 cps.

A typical record of the forced vibration taken on the U-V
recorder near the fourth mode is shown in Fig.3.20.c. Amplitudes of

modal shapes measured experimentally are given in section 4-2.
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CHAPTER 4

ANALYSIS OF TEST RESULTS

4-1-1 Geometric properties of models

It can be clearly seen that solving Eq.(23) and finding the
modal shapes is an easy task provided that all geometric and cross-
sectional properties are known. However, it is known that calcul-

ating some of these parameters (Kt’ I X, Yo) for asymmetric box

w> "o

sections is tedious and usually done longhand. It is unfortunate
that there are no published empirical formulae to calculate these
parameters explicitly for most asymmetric cross-sectional shapes
[Bleich (4) gives some such formulae for angles, channels, tees, z,
and uni-symmetric I-section]. The basic definition formulae will

be given here, and References (22, 24, 30, 40, 48) can be consulted

for more details.

For a single-cell box with n fan-1ike extensions, the

following formulae can be used:

4 .1 1% 3 )
Ky = ; s * 3-.21 by &, (41-a)
§ =
or
10 3
Kt'49q+3—2b.6. (41-b)
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where Q = the area enclosed by the centerline of the
box's walls.
6; = thickness of segment i of the box's wall
or of the extension.
bi = Tlength of extension i of the wall.
q = indeterminate shear flow in the box.

the first term of Eqs.(41-a), (41-b) represents the contribution of
the box type of behavior to the torsional constant, while the second
term represents the contribution of ordinary type of torsion in the
extensions. In case of an open section,only the second term is

applicable.

The coordinates of the shear center (xo, yo) and the

warping moment of inertia I can be calculated from the following

W
formulae:
[wxdh = 0 (42-a)
A
[wydh = 0 (42-b)
A
Az
1, = [waA (42-c)
where y = the sectorial coordinate of any point on the

cross-section as defined by Vlasov (40). The
origin of the sectorial coordinates can be
obtained from the following condition:

£
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{ w.dAi= 1) (43)

W can be expressed generally as:

s s s s
wo= [hds -2 745 o fhgsopq) & (44)
0 § 5o 0 0

offset of the tangent to the wall at point s, measured
from sectorial pole (shear center).

where h

The first term in Eq.(44) represents warping at point s relative to
that of the origin of sectorial coordinates, the second term represents
the reduction of warping caused by the indeterminate shear flow q in
the box. In the case of an open thin-walled section only the first

term applies.

Figs.3.1 and 3.2 give the average cross-sectional dimensions
and thicknesses for models A and B respectively. The physical
properties of both models were calculated as described before and
listed in Table 4-1. The warping displacement diégram (sectorial
coordinates) for cross-sections of models A and B is given in Fig.4.1
as obtained from Eq.(44). A discussion of warping in the overhangs is

given in Appendix I.

4-1-2 Mechanical properties

It was shown in section 3-1-2 that the value Ec is different
for pure tension and flexure. On the other hand, the box behavior

under loads results in a combination of in-plane stresses and flexural



Table 4-1

Properties of Models A and B

Property Model A Model B Property Model A Model B
A 8.01409 in?| 8.61620 in?| x_ 0 0.02515 in.
I 12.330796 in! | 12.747827 in. | 'y, |-0.26504 in.  |-0.24039 in.
1, |18s.8s5212 in. |190.736361 in. K, | 31.699226 in.  [31.708682 in.
Ly 0 0.232158 in. | 1 |67.727884 in.  [60.701714 in.
ry 0 0.039188 in. | R 51.00  in.  |51.075  in.
ry 0.49292 in. | 0.400655 in. o 90° 90°
2 2
1, |201.176008 in' | 203.484188 in' | o 0.000114 lk?igs; 0.000114 lE?iﬁﬁL

_vg_
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stresses, hence it can be concluded that the chosen Ec value should

be somewhere in between.

Static analysis of curved boxes under various loading con-
ditions (12) indicate that the ratio between major in-plane stresses
and flexural stresses varies appreciably with the location and with
the loading condition. It seemed logical to compare with the case
of distributed loads and take the average of the in-plane modulus of

elasticity (421 KSI) and the flexure one (460 KSI) hence Ec = 440 KSI.

Poisson's ratio v = 0.36 is taken as an average of the

experimental values obtained in section 3-1-2.

4-2 Natural Frequencies and Modal Shapes

Natural frequencies can be calculated directly from Eq.(23),
given the numerical data of section 4-1. The relative amplitudes of
modal shapes can be calculated from Eqgs.(24), (25) and (28) in terms of

the vertical amplitude, which is assigned a unit value.

The program given in Appendix II was used to calculate the
coupled natural frequencies of the curved girder and the natural fre-
quencies of an equivalent straight girder with no coupling. The
relative amplitudes of modal functions in the u, v and ¢ directions
and the tangential movement of the roliler support are given in Tables
4-2, A and B for models A and B respectively. Since the modulus
of elasticity after creep Ec was used in calculating the frequencies

of Tables 4-2, these values must be corrected to account for the
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Table 4-2, A

ANALYSTS OF MUPEL A

THE CUUPLED NATURAL FREQUENCIES AND AMPLITUDES OF MODAL FUNCTINWS

MODE FREQUENCY CPS  VERT, AMPL, HDRZ. AMPL,  TORS, AMPL, RS AXIAL DJISPL,
1 63,82949 1.00000 122.26070 0.7041} 61,03673
1 106,77052 100000 -0.68661 123520 »0.50755
1 12,43012 1+00000 ~0.,00883 ~0,03229 «0,00012
2 198,64483 1.,00000 0.32415 0493661 0,01877
2 286,79655 1,00000 ~66,36014 1433777 wl6.67898
2 67,23980 1.,00000 -0,00293 ~0404239 0,00209
3 300,13468 1,00000 0.07247 0473861 0,02066
3 656,208884 1.00000 -120.,57751 1459966 ~20,16717
3 158478449 1.00000 -0,00213 -0,05382 0.00203
4 4li.62312 1.00000 0.02637 0.51525 -0,01383
4 1173471697 1.00000 ~143.59556 1,71838 ~18,00657
4 284,71107 1.00000 =0.00228 =0,07717 0,00228
5 541,86423 1.00000 0.00966 028618 ~0,00664
S 1838,99027 1.00000 =~155,20311 1477940 m15,56763
5 437.53220 1,00000 «0,00335 -0,13897 0,00336

THE UNCOUPLED NATURAL FREQUENCIES OF AN EQUIVALENT STRAIGHT BRINGE
MOOE HOR1Z, FREQ, CPS VERT, FREQ. CPS TORS. FREQ. CPS

1 0.738140 02 0.188620 02 0.935460 02
2 0,293260 03 Ne75447L Q2 0.189180 03
3 0,664330 03 0.169760 03 0.,28890D0 03
4 0,11810D 04 0.301790 03 00394600 03
5 04184540 0O« N.4T71560 03 0.5Q0794D 03
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Table 4-2, B

ANALYSIS DF MODEL ]

THE COUPLED NATURAL FREQUENCIES AND AMPLITUDES OF MODAL FUNCTIOMS

MODE # FREQUENCY CPS VERT, AMPL, HORZ, AMPL, TORS, AMPL, R,S AXIAL DISPiL,
1 61,69741 1.,00000 146,95978 0475470 73.38416
1 106,37042 1.00000 ~0,60848 1426058 ~-0,45609
1 12.10491 1.00000 =0,00656 -0,03257 0,00064
2 197,28017 1.00000 0433461 0,96011 0,02583
2 277,10761 1.00000 =59,45863 1.23338 ~14,93925
2 65,64276 1,00000 -0,00138 ~0,04296 0,00224
3 297.,38043 1,00000 0,07301 N.7607T4 =0.,01838
3 634,10730 1.60000 «106,47690 1.38855 -17.80191
3 155,09860 1.00000 ~0,000067 =0,05457 0.00208
4 406,77876 !cOOOOO 0,02737 0,53571 ~0,01271
4 1134,05745 1.00000 =124,73648 1645132 -15,63577
4 278,18146 1.00000 ~0.,00081 ~0,07799 0,00225
5 533,70744 1.,00000 0.01095 0+30268 =~0,00620
5 1776,8594) 1.,00000 ~133,58063 1.48253 =13,39378
5 427,76370 1.00000 ~0,00181 ~0413907 0,00317

THE UNCOUPLED NATURAL FREQUENCIES OF AN EQUIVALENT STRAIGHT BRINGE

MODE HORIZ, FREQ. CPS VERT, FREQ. CPS TORS, FREQ: CPS

1 0.713340 02 04184420 02 0,92870D0 02
2 0,285340 03 0,73766D 02 0,187600 03
3 0.,642010 03 0,165970 03 0.,28598D0 03
4 04114130 04 0.295060 03 04389690 03
5 0.17833D 04 0:46104D 03 0.500270 03
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dynamic modulus of elasticity Ed.

Recalling Eqs.(17) for natural frequencies of a straight
simply supported beam with uncoupled vibrations, it can be seen that
the frequency w is proportional to the square root of E. However,
in the general case of coupled vibrations, this relationship is not
identical as can be seen from Eq.(23). Nevertheless, the preceding
approximation is probably adequate for the relatively sﬁaIl corrections
involved. EQ.(39) is used, with o taken from Fig.3.10, to correct
the frequencies of Tables 4-2, A and B.

Table 4-3

Corrected Theoretical Natural Frequencies
vs. Experimental Values

Model Mode|Calculated 1/2 Freauency cps. Error
No. [Freguency |a Theoretical |Experimental %

1 12.43 [1.107 13.55 12.7 -5.53

2 63.83 [1.025 65.20 59.7 -8.42
’ 3 67.24 [1.023 68.90 63.0 -8.6

4 106.77 [J1.020; 108.8 114.0 +4.78

1 12.10 .10 13.3 12.5 -6.02

2 61.70 [1.026 63.20 58.65 -7.20

’ 3 65.64 [1.024 67.10 60.50 -9.85

4 106.37 }.02 108.30 115.0 +6.18

Table 4-3 shows the calculated frequencies obtained from

Tables 4-2, A and B, the corresponding correction factors, the corrected
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theoretical frequencies, the corresponding experimental values and the

percentage of error.

Figs.4.1, 4.2, 4.3 and 4.4 show a perspective view of the
first four modal shapes for the upper deck of model B as predicted by
Egs.(24), (25) and (28) with the amplitudes taken from Table 4-2, B.
Vertical component of the modal shape of the exterior edge V1 and
interior edge V2 of the upper deck are also shown with the correspond-
ing experimental results. These Figures also show two positions of
the cross-section at maximum amplitudes and the optimum location and

orientation of the exciting force.
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CHAPTER 5

DISCUSSION, SUMMARY AND CONCLUSIONS

5-1 Limitations of the Results

Experimental frequencies are within a margin of +5-9%

calculated values. Some possible sources of error can be identifie

as f611ows:

(a) Theoretical solutions

(1)

(ii)

(ii1)

(iv)

The value of Ec used in calculating the natural
frequencies, though reasonable, is not necessarily
correct. The exact Ec value for plexiglas is
hard to predict as was shown in section 3-1-2.

The theoretical values obtained from Eq.(23) were
based on the assumption of a beam-1ike behavior

and thin walled cross-sectional dimensions. In
fact the width/diameter ratio of the model (18/51),
and the width/span ratio (18/80) are both relatively
large for a reliable application of thin walled beam
theory.

The curvature of both models (1/51) is relatively
high compared to real curved highway bridges. For
very large curvatures the shift in the position of
the neutral axis of the beam towards the center of
curvature should be considered.

The effects of diaphragms used in both models are
not accounted for in the thin walled beam theory.
Such diaphragms change the torsional stiffness of

of
d
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the box, and so the natural frequencies.

(b) Experimental results

(i) As mentioned previously (section 3-2) an
infinite number of synchronized shakers is
needed to excite a pure mode of a continuum.
The smaller the number of shakers used the
more error can be expected in natural fre-
quencies and modal shapes.

(i1) For a given number of shakers (one in our
case),discrepancies from the correct modes
will increase as the number of halfsine waves
of the mode increases. This was experienced
in the test results. For mode 3. which con-
sists of two halfsine waves, it was found that
there is a small amplitude of vibration at the
theoretical nodal 1ine located at midspan
(Fig.4.3) in addition to incomplete symmetry of
the modal shapes.

(ii1) Force orientation was considered taking into
account the u, v and ¢ but not the w dis-
placements. For mode 2 where the axial or tan-
gential vibrations are significant, one might
expect more error than in modes 1 and 4.

5-2 Summary

The objectives of this work were to obtain a solution to the
general case of coupled free vibrations of curved simply-supported box
girders of any cross-section, and to carry out laboratory tests to com-

pare with theoretical natural frequencies and modal shapes.
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An idealized model was developed in Chapter 2. The basic
differential equations of motion of a curved thin walled beam element
were derived for quadruple coupling between the radial, vertical,
torsional and tangential vibrations. The croﬁs-section was assumed
non-deformable while damping, rotary inertia and shear deformations
were neglected. It is important to state that this analysis cannot
predict local vibrations of various parts of the girder. By
neglecting axial inertia forces and assuming the axial force equal to
zero, quadruple coupling was reduced to triple coupling between radial,
vertical and torsional vibrations. The case of a simply-supported
curved girder was solved assuming sinusoidal modal functions. Ampii-
tudes of modal functions were determined relative to the vertical one
and the amplitude of tangential motion of the roller support was cal-
culated. The orthogonality condition of the coupled modal functions
was established and satisfied for small amplitudes of vibration. A
parametric study was performed to investigate the effect of various
geometric parameters on coupled natural frequencies. The results of

the parameter study are given in section 2-11.

Two simply-supported curved box girder models made of plexi-
glas were tested experimentally. The first model had a single cell
section symmetric with respect to the vertical axis. The second model
had a two-cell asymmetric cross-section. Both models have a central
angle of 90°, radius of 51 inches, upper deck width of 18 inches, depth

of 2.7 inches.



- 73 -

The models were excited by one concentrated dynamic force
whose position, orientation, freguency and amplitude can be controlled.
Probing of natural modes was done by a trial and error procedure until
a nearly pure modal shape satisfying resonance criteria involving phase
and amplitude was obtained. Vertical response at several points on
the upper deck were measured for the first four modes. Reasonable
agreement between the theoretical and experimental frequencies and

modal shapes was obtained.

5-3 Conclusions

It can be concluded that thin walled beam theory, which is
the basis of the given theoretical analysis, together with the other
simplifying assumptions, can be used to estimate the natural modes and
frequencies of a curved simply-supported girder of asymmetric muiti-
cell section, even in cases of high curvature, width/radius, width/span

ratios.

~i
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Fig. 21 curved asymmetric box girder

Fig.2.2 Forces acting on an element of a
curved girder
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su = (x - xo)(cos¢- 1) + (y -yo) sin¢
v = (x - xo) sing + (y - yo)(1 - cos ¢)

(b) Net displacement of a point on the wall
M due to an angle of twist ¢ only.

Fig.2.3
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Fig.2.11(b)

Second Mode Natural Frequencies of Curved Girders
of a .symmetric Cross-Section
(Double Coupling between v and ¢)
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Fig.2.13(a)
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Fig.2.13(b) Second Mode Natural Frequencies of Curved Girders
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(Triple Coupling between u, v and ¢)
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Fig.3.3 General View of Model B

Fig.3.4 Left support of Model B.

Two Roller Point Support and
One Hinge Point Support.
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Fig.3.3 General View of Model B

Fig.3.4 Left support of Model B.

Two Roller Point Support and
One Hinge Point Support.



Fig.3.5 Right Support of Model B.
Three Roller Point Support.

Fig.3.6 Shaker Head and Attachment to the Model.
Showing also Accelerometer and Load Cell
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Fig.3.5 Right Support of Model B.
Three Roller Point Support.

Fig.3.6  Shaker Head and Attachment to the Model.
Showing also Accelerometer and Load Cell
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Fig.3.10 Correction factor o of the modulus of elasticity vs. frequency for plexiglas.
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Fig.3.11  Curved Webs mounted on Special
Aluminum Frameworks

Fig.3.12 Curved Webs glued to the Upper Deck.
Wooden Studs used for Web Alignment
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Fig.3.11  Curved Webs mounted on Special
Aluminum Frameworks

Fig.3.12 Curved Webs glued to the Upper Deck.
Wooden Studs used for Web Alignment
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Fig.3.18 Top left to right, Oscillator, DC Power Supply,
Shaker's Power Amplifier, Oscilloscope,
Load Cell's Bridge and Amplifier.

Fig.3.19 Display System U.V. Recorder and Memoscope
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Fig.3.18 Top left to right, Oscillator, DC Power Supply,
Shaker's Power Pmplifier, Oscilloscope,
Load Cell's Bridge and Amplifier.

Fig.3.19 Display System U.V. Recorder and Memoscope
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Fig.3.20 (a) Lissajous Figure, signals not in phase.
(b) Two signals perfectly in phase.
(c) Typical Forced Vibration record, near 4th mode of Model B
w =110 cps.
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Fig.3.20 (a) Lissajous Figure, signals not in phase.
(b) Two signals perfectly in phase.
(c) Typical Forced Vibration record, near 4t mode of Model B
w =110 cps.
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APPENDIX I

WARPING IN BOX GIRDERS WITH OQVERHANGS

Engineering beam theory assumes that plane sections remain
plane when the beam deforms under loads. Although this assumption
Teads to reliable prediction of the behavior of solid girders,
nevertheless, it is not adequate for thin walled beams, (30, 40, 48).
The longitudinal displacement in the x-direction (Fig.l.a) caused by
a torque and/or (for cases where there is coupling between the bending
and twisting moments) bending moments or bimoments is defined as the
warping displacement. Vlasov (40) introduced the concept of the bi-
moment which consists of two parallel, equal and opposite moments
about one axis acting a distance apart to describe the warping pheno-
menon. The effects of such bimoments can be superimposed on the

results of engineering beam theory to obtain the total behavior.

The distribution of warping displacements in the overhangs
as obtained from Eq.(44) and shown in Fig.4.1 is open to question.
Dabrowski (11) reported almost the same distribution for a single cell

box with two overhangs similar to the cross-section of model A. It

is rot obvious that the absolute value of warping displacement should
decrease in magnitude between the joint with the web and the free end
of the overhang. If the overhang is thought of as an extension fixed

to the upper deck, warping should increase as one proceeds away from
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the center of twist. It follows that one might expect an increase
of the absolute value of the warping displacement as one proceeds

towards the free end of the upper deck.

A three-dimensional finite element program (38) which
assumes six degrees of freedom at each node (three displacements
and three rotations) and takes into account both bending and in
plane stresses, was used to analyze the warping behavior of a box
with overhangs. A straight girder with cross-section similar to
that of model A was idealized as shown in Fig.Il.a. The end con-
ditions were such that sec-1 was completely free in all directions,
sec-3 was constrained at the nodes against x and z displacements,
and no rotations with respect to the y and z axes were permitted.
No relative movements along the sides connecting two adjacent nodes

were allowed.

Two loading conditions were used - the first a torque
applied at the free end 'sec-1' Fig.I.b, and the second a bimoment
idealized as four equal forces acting as shown in Fig.I.e at sec-1

as well.

Warping displacements in the x-direction obtained from the
program are shown for both loading conditions at two sections 1 and
2 in Figs.I.c, I-d, I-f, I-g. It can be seen that the absolute values
of warping displacements in the overhangs are always greater than
those at the joint with the box, for both sections under both loading

conditions.
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This difference in distribution of the warping displace-
ments in the overhangs should not significantly affect the girder's
natural frequencies and modal shapes, since the effect of warping in
boxes is generally small as compared to other effects. However, in
some cases such as restrained warping the inadequacy of the theory
might cause some undesirable results. It can be concluded that a

re-examination of thin walled beam theory as given by Viasov (40) is

indicated in this case.
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APPENDIX I

COMPUTER PROGRAM

e ol oo o O 0 e a3 o o 0 o o 0o oo oA o o o i o o o e o
FREE VlBRATIDNS DF CURVED THIN WALLED GIRDERS
Wk Rk b ook ok * ol ool ol o s o oo o ok e

PURPOSE~CALCULATES NATURAL FREQUENCIES AND AMPLITUDES OF MODAL
FUNCTJONS FOR A CIRCULARLY CURVED SIMPLY SUPPORTED GIRDER,
THE CROSS5 SECTION CAN BE SOLID OR THIN WALLED ASYMMETRICAL
UNISYMMETRICAL DR DOUBLY SYMMETRICAL W.R,T, CENTROJDAL
AXES X & Yo

ALPHABETICAL INDEX OF PARAMETERS
A ~CROSS SECTIONAL AREA

ALFA =CENTRAL, ANGLE IN DEGREES
DPRQD  =1BMIS SSP PACKAGE SUBROUTINEs FINDS ROOTS DF A POLYNOMIAL

E =MODULUS 0OF ELASTICITY

1 «MODE NUMBER DR NUMBER OF SINE WAVES LONGITUDINALLY

M ~NUMBER OF MODES DESJRED

o1 «POLAR MOMENT OF INERTIA W.R,T, SHEAR CENTER

PHI =TORSIONAL AMPLITUDE OF MODAL FUNCTION

PI =POLAR MOMENT OF INERTIA W,R.T, CENTROID

PIE =3,1415926535898

POIS -POISSUN S RATIO

R =RADIUS OF CURVATURE MEASURED TO CENTRUID

RO ~MASS PER UNIT VOLUME OF MATERIAL IN USE

RSW ~AMPLITUDE OF RIGHT SUPPDRT MOTION

RX «SX e (YR Y UDA/ X

RY wJy®(X%k2)RDA/Y]

T™® «ST=VENANT § TORSION CONSTANT

uu »HORJZONTAL AMPLITUDE OF MODAL FUNCTION

VE »VERTICAL AMPLITUDE OF MODAL FUNCTION

W(l,J) =ROOT J OF THE I~TH COUPLED MNATURAL FREQUENCIES IN CYCLES
PER .SECOND

Wi =WARPING MUMENT OF INERTIA

WT ~UNCOUPLED TORSIONAL NATURAL FREQUENCY OF AN EQUIVALENT
STRAGHT GIRDER

WU ~UNCOUPLED HORIZONTAL NATURAL FREQUENCY OF AN EQUIVALENT
STRAIGHT GIRDER

Wy ~UNCOUPLED VERTICAL NATURAL FREQUENCY OF AN EQUIVALENT
STRAIGHT GIRDER

X1 -MOMENT OF INERTIA W,R.T, A HORIZONTAL CENTROIDAL AXIS

X0 «X=CODRDINATE OF SHEAR CENTER

Xyl «PRODUCT OF INERTIA W R,Ts AXES XgY

Yi «-MOMENT OF INERTIA W,R,T, A VERTICAL CENTROIDAL AXIS

5] ~Y=CONRDINATE OF SHEAR CENTER

IMPLICIT REAL%B(A=H,0m2)

DIMENSION COF(4)sUS(4)2Z(4)sV(4)sW(503),WUS(5)2WYS(5)sWTS(5)
DATA PIE/3.1415926535898/

READ(S5,130)M

READ(5,140)E,RO,POIS

READ(S,140)R,ALFA

READ(5,140)A,XI,YIpXY]
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REAN(52140) %02 Y)RXsRY

REAN(5,140) Wl1sTK,P1

WRITE(6,136)E,R0,PULS

WRITE(6,137)RsALFA

WRITE(6,138)A,X1,YIsXY]

WRITE(6,139)X0s Y0, RXsRY

WRITE(6,141)WE,TK,PY

OPlE=2,%PLE

GeE/(24,%(1,+P0QIS))

SL=ALFAXPIE®R/(1804)

DI=pleAx(XOeXQ+YO%YN)

COml,=TK/P!

Clexyl/xl

C2=xyl/vl

C3sRX/R

C4sRY/R

C3=x0/R

C6mY0/R

C7=s(A%R®R)/P]

CBu] , 4CTR(C5%C5+CH%CH)

0D 40 I=l,M

WUS(Il)wo,

WVS(1)m0,.

WTS(1)=0,

DO 40 ys=1,3

W(ls,J)m0,

CONTINUE

PRINT 132

PRINT 200

DO 90 ImlsM

Co=( ((DFLODAT(1))%PIE)/SL)w¥2

C1021,/(R*R*®CS)

Cllsl,=Cl0

Cl2=]l,=~CLl%C2

C13aCT%Cl0

WUS ()= (CORCIMERY] )/ (RO*A)
WYS(I)m(CORCOMERXT)/ (RO*A)
WTS(I)sCOR(GRTK+COBCIRERW]) /(RO*DI)
RALaWUS(1)/WVS(])

RA2=WTS(1)/WVS(I)
COF(1)mCBRCLLIRCLIN(CINC10=CInC4*C10=C1wC12)%RALNRAZ
COF21mCBNCLIMC12¢02 % C L3R SHCLL%CL24C1INC2%C I INCINCOCLIIRCLIHCLL¥CH*
A(C54CL10)wClINCHXCOHBCLLI+CLORCLIRCLLIHCI2+C1IRCINCLLIH(CE+CLO)
COF22mCBNCL1BCL1% ()1 ,+C1%C6)=CBRCLOKCLLI¥(CI~C1%(6)
COF23uCB%C11%(2,%C5uCo¥Cb41,+(C8/CT))
COF(2)sCOF21%RAL+COF22%RA2+COF23MRALIHRA2
COF318C2HCOR(CEB~CTCONCEH) SCTHCERCOHRC2% (1 ,+CL0)=CTRCERCOHK(COH-CL*CLO
D )+CLIINCRACOmCLINCON(COnCA)~CLLI¥(CB=CI*RCS%CS)
COF328(C8%(1,+2.%(C5+(CB/C7)=C6%CH)
COF33aCTHCLACBRCO{CONCTRCOHXCE)aC13%(nC13CH42,%C5+C104C3%(C5+C10))
COF(3)=COF31%RAL~COF32%RA2+CF33

COF(4)ml,

CALL DPRQD(COF,4)US,2,Vs3,51ER)

DO 80 J=l1,3
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W(T,J)=(DSQRTEUS (J)%*WVS(1)))/DPIE
CALCULATINN OF AMPLITUDES OF MODAL FUNTTINNS

DIlsClCll=CoWUS(J)
D12m=) =({CB/CTIRRAZ4US(J)
D13uRiM((wCB/CT)IMRA2«CLOX®(1+C3)+CL¥CHRCI0+(CHEXCOHXCE)INUS(Y))
D21=Cl1%RAL=US(J)
D22s=~C24RAL
D23«RM(mC2+COmC4INCLORRALEYRUS(Y)
D31aR%(CleC10WCL1=COoMUS(J))
D32awRk((CB/CTI®RA2+CLO+CE5*US(J))
D33aRWRM( (CB/CT)*(wRA2+US(J))=C1O0%C10M(],+C3=CL%*C6))
VE=], ‘
PHI=VE®(D31%D22~D32%D21)/(D21%D33=D3]1%D23)
Vs (=D22%VE=-D23%PH1) /D21
Cl4a1,/(DSQRT(CO))
RSWaUUKC 14 /R=PHIRCLak(XYI/ (AMR®*R)=C6)
WRITE(6,210)1aW(1,J)2VEsUUsPHI,RSHW
80 CONTINUE
0D 85 K=lsé
COF(K)=0,
US({K)=o0,
Z(K)IO-
V(K)=0,
85 CONTINUE
90 CONTINUE
PRINT 220
DO 100 1=)loM
WUs (DSQRT(WUS(I)})Y/DPIE
WV= (DSQRT(WVS{I)))/DPIE
WTs(DSQRT(WTS(I)))/DPIE
WRITE(65250) 1sWU,WV,LWT
100 CONTINUE ’
130 FDRMAT(12)
132 FORMAT(1H1,»T20,'ANALYSIS OF MODEL At)
136 FORMAT(1HOM'E B1,F B,05"' PSI',2Xs 'DENSITYs 1,FB8,622X,'LB,SEC2/7ING!
? 22X 'P0ISm  1,F4,2)
137 FORMAT(1HO,'RADIUS OF CURVATURE= '»FT,3,5%Xs'CENTRAL ANGLE= ',F6,2,
2 ' DEGREES')
138 FORMAT(1HO»'A ®'y F8,5,6Xa'XI= 1,F10,603Xs'Y]a 1,Fl0,6,3XsXYI= 1)
3 Fd,.6)
139 FDRMAT{L1HOs 'XD* 1,FB.625Xp ¥ 1,FF,604Xs'RY3 'yFB.6,6X,1RYn '4F8,
8 6)
140 FORMAT(4F15,6)
141 FORMAT(1HO» 'WI® 1,F10,6,3Xs'TKa 1,F10,6,3X0'P1Is t,F10,6)
200 FORMAT(///1HO,'THE COUPLED NATURAL FREQUENCIES AND AMPLITUDES OF
AMNDAL FUNCTIONS',//2X, 'MODE #',3Xs 'FREQUENCY CPS1,3X,'VERT. AMPL,!
A 22X YHORZ, AMPL 193X, 'TORS, AMPL.!'22XstR,S AXIAL DISPL.V,//)
210 FORMAT(1HO0,»4Xp12,5X25(F10¢554X))
220 FORMAT(///1HO, 1%, 'THE UNCOUPLED NATURAL FREQUENCJES OF AN EQUIVALF
ANT STRAIGHT BRINGE '»//1X,"MODE',3X,'HORIZ, FREQ, CPS',2X,
AVVERT, FREQ, CPSt,4X,'TORS. FREQ, CPS'/)
250 FORMAT(2Xs12,8X,3(E13,.5,5X))
STOP
END




