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ABSTRACT 

1. 

M.Eng. Thesis 
July 1972 

The problem of coupled free vibrations of curved thin walled 

girders of asymmetric cross-section is examined in this thesis. The 

general governing differential equations are derived for quadruple 

coupling between the two flexural, tangential and torsional vibrations. 

An approximate solution for the case of triple coupling 

between the two flexural and the torsional vibrations is given for a 

simply supported girder, assuming non-deformable cross-sections and 

uniform specifie gravit y of the material of the box, accounting for 

warping but neglecting axial forces and rotary inertia. The frequency 

equation and eigenfunctions are given with the orthogonality condition 

satisfied. A parametric study is conducted to investigate the effect 

of various geometric parameters on the natural frequencies. 

An experimental investigation was carried out to compare the 
behavior of two curved box girder models with theory. The first model 

had a single cell cross-section symmetric with respect to the vertical 

axis. The second had an asymmetric two cell section. Reasonable 

agreement between experimental values of the first four natural frequencies 

and modal shapes and those predicted by theory was obtained. 
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1 

RESUME 

Le problème des vibrations libres couplées de poutres courbes 

à parois minces, et de section transversale asymétrique est examiné dans 

le présent ouvrage. Les équations différentielles du problème sont 

dérivées pour un couplage quadruple entre les deux vibrations de flexion, 

ainsi que celles de torsion et tangentielle. 

Une solution approchée est donnée dans le cas d'un couplage 

triple entre les deux vibrations de flexion et celle de torsion, pour 

le cas d'une poutre simplement appuyée, en supposant que les sections 

transversales sont indéformables. Il est tenu compte du voilement des 

sections transversales, mais les forces axiales et l'inertie de rotation 

ont été négligées. L'équation aux fréquences et les fonctions propres 

sont données et la condition d'orthagona1ité est satisfaite. Une étude 

a été r~alisée pour évaluer l'influence de divers paramètres g~ometriques 

sur les fréquences propres. 

Une étude expérimentale a également été conduite pour comparer 

à la théorie le comportement de deux modèles de poutres en caisson courbes. 

Le premier modèle consistait en un caisson unique, symétrique par rapport 

à un axe vertical. Le deuxième modèle consistait en un caisson double 
1 • et asymetrlque. 

, .' 1 Les resultats obtenus pour les quatre premleres frequences 

propres et les modes de vibration correspondants ont confirm~ raisonnab1e-

t 'd' 1 h' . men ceux pre lts par a t.eorle. 

"~ 
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CHAPTER 1 

1-1 Introduction 

In recent years thin walled curved beams and girders have been 

used extensively as structural members in bridges, ships and aircrafts. 

Thin walled box sections possess relatively high torsional and warping 

rigidities and as a result are suited for long spans, large curvatures, 

or where large torsional moments act on a girder. 

The theoretical and experimental investigation reported in 

this work deals with the free vibrations of simply supported curved 

girders with thin walled asymmetrical cross sections. Solutions to 

several special cases such as: 

i] curved box girders of symmetric cross section 
with respect to one or two axes, 

ii] curved bars of solid section, 

iii] curved girders of thin walled open cross section, 

iv] straight girders of box or open symmetric or 
asymmetric section, 

can be obtained from the general theory. Analytical solutions for these 

special cases have been obtained previously, but experimental verification 

was undertaken to check several simplifying assumptions. 

Asymmetry of the cross section with respect to the horizontal 

axis may arise in bridge design when the upper deck of the section is 

made wider than the bottom deck to allow for sufficient traffic lanes. 

If exterior webs are thicker than inner webs due to differences in span, 
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asymmetry with respect to the vertical axis is introduced. 

The free vibrations of a straight doubly symmetric girder in 

bending and torsion are uncoupled so that the girder may vibrate in 

either vertical or horizontal flexural modes without vibrating in the 

torsional mode. In this case the shear center coincides with the 

centroid of the cross section and in a bending mode inertia forces 

which are effectively applied at the centroid of the section do not 

cause twist. 

If there is only one axis of symmetry of the cross section 

then flexural vibrations in the direction of this axis will be independ

ent of other vibration~ and coupling will exist only between torsional 

vibrations an~ flexural vibrations in the other direction. Due to a 

shift in the position of the shear center along the axis of s~nmetry 

the bending inertia forces generate a torque as well as bending moments. 

If the cross section has no centroidal axes of symmetry, a 

case of triple coupling arises, i.e. flexural vibrations in one 

direction are coupled to those in the other direction and to torsional 

vibrations. In this case the shear center is shifted from the 

centroidal axes in two directions, and bending inertia forces in both 

directions cause a twisting moment about the shear center. 

It can be seen that coupling of vibrations in straight girders 

is dependent on the geometric properties of the cross-section. Any 

change in the properties of the girder along the axis may also result 

in coupling. 
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For girders curved in plan with doubly symmetrical cross

section, triple coupiing between vibrations normal to the plane of 

curvature, torsional vibrations and tangential vibrations occurs due to 

the curvature of the girder's axis. Flexural vibrations in the plane 

of curvature are independent of the others. 

If the cross-section of the curved girders has only one cen

troidal axis of symmetry normal to the plane of curvature, then a case 

of quadruple coupling prevails between the torsional, and tangential 

vibrations and the two flexural modes. Moreover if the cross-section 

has no centroidal axes of symmetry in any direction, quadruple coupling 

also occurs. However, coupling between tangential vibrations and com

ponents of vibration in other directions is weak for low frequencies and 

its effect on the lower modes may be negligible. For this reason many 

investigators do not consider coupling of the tangential vibrations wh en 

dealing with out of plane vibrations. 

1-2 Review of Previous Work 

Extensive research has been performed on the static behaviour 

* of thin walled girders. The work of Vlasov (40) on thin walled beams 

is substantial and widely recognized. Of particular interest to the 

present work are the elastostatical relationships for curved girders 

which were developed by Vlasov. However Dabrowski (9) showed that 

several terms were omitted in Vlasov's derivation which might be signi

ficant in sorne cases. Dabrowski (10, 11) later extended his work to 

include open and closed thin walled girders and obtained solutions for 

* Numbers in brackets refer to References. 

\ 
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different loading conditions. 

Several authors have investigated the dynamic response of thin 

walled girders. Only those dealing with free vibrations of solid or 

thin walled straight or curved girders are reviewed here. 

(a) Straight thin walled girders - The first attempt to examine 

the coupled flexural-torsional vibrations of a simply supported beam was 

by Timoshenko (37), who solved the case of double coupling of a straight 

thin walled beam with one axis of symmetry. Federhofer (13) derived 

and discussed differential equations for the general case of asymmetric 

cross-section. Vlasov (40) obtained a solution for the case of triple 

coupling in a simply supported girder with asymmetrical cross-section. 

Gere and Lin (18) also solved the general case of triple coupling of a 

straight thin walled girder having an asymmetrical cross-section and 

determined the natural frequencies of simply supported, fixed end and 

cantilever beams. An exact solution of the general governing different

ial equations was given for the case of a simply supported girder only. 

The Rayleigh-Ritz method was used to derive approximate expressions for 

other end conditions. 

(b) Curved solid girders and rings - The problem of free vibrations 

of curved bars and rings has been studied extensively and only a few 

major developments are mentioned here. Lamb determined the frequency 

equation of unconstrained complete elastic rings using the inextensional 

deflection theory. Love (27) quoted Lamb's work and extended it to 

find the eigenvalues and eigenfunctions corresponding to torsional and 

flexural vibrations in and out of the plane of curvature. 
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Lang (25) derived the eigenva1ues and eigenfunctions for free 

in-plane vibrations of complete and incomp1ete e1astic rings, consider

ing both extensiona1 and inextensiona1 deformation theories. He veri

fied the inextensiona1 theoryexperimenta11y. Volterra (41, 42,43) 

in a series of paper~formu1ated and solved the equations of motion of 

a curved solid e1astic bar using the so-ca11ed "Method of Interna1 

Constraints". Shear deformations and rotary inertia were considered 

for doub1y symmetric cross-sections. Later, Volterra and More11 (44, 45) 

used the Ray1eigh-Ritz method to determine the lowest natura1 frequency 

for fixed e1astic arcs vibrating out of their plane of curvature. Arcs 

of various centroida1 1ayouts (circ1e, cycloid, catenary, and parabola) 

were analyzed. Reddy (34) used the flexibility matrix method assuming 

1umped masses to solve the problem of free vibrations of any combination 

of straight and curved bars. 

(c) Thin walled curved girders - Yonezawa (47) analyzed the free 

vibrations of curved simply supported fan-shaped plates and under static 

uniform loads. Using the theory of orthotropic plates he formulated 

the differential equations, gave the exact and an approximate solution, 

and investigated the effect of several geometric parameters on natural 

frequencies. 

Cul ver (8) obtained the exact solution for the problem of free 

vibrations of a simply supported curved girder having doubly symmetric 

cross-section. He also used the Rayleigh-Ritz method to obtain approxi

mate solutions for the cases of fixed-fixed or fixed-simply supported 

ends. Tan and Shore (36) investigated the dynamic response of curved 

.\ 
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girders of doub1y symmetric cross-section under constant moving 10ads, 

and examined the case of free vibrations assuming f1exura1 damping. 

Christiano (6, 7) investigated the dynamic response of a 

curved, simp1y-supported thin wa11ed girder, having a vertical axis of 

symmetry under sprung moving 10ad. He a1so solved the prob1em of free 

vibrations and examined the effect of sorne geometric parameters. 

Oeste1 (31) obtained a solution to the prob1em of free and forced 

vibrations of a two-span curved girder having a doub1y symmetric cross

section. Lagrangels equations were used together with Lagrange mu1ti

p1iers to account for constraints at the intermediate support. Komatsu 

and Nakai (23) solved the genera1 case of triple coup1ing for a curved 

girder of asymmetric cross-section. Coordinates were transformed to 

the principal axes of the cross-section to simp1ify the e1astostatica1 

equations. Field tests on two bridges excited by a 20-ton truck 

travelling at various speeds, another bridge excited by a shaker and 

1aboratory tests on a mode1 showed reasonab1e agreement between theory 

and experiment according to the authors. 

1-3 Scope of the Work 

The investigation reported in this work is divided into two 

parts theoretica1 and experimenta1. 

The theoretica1 ana1ysis examines the free vibrations (natura1 

frequencies and modal functions) of simp1y supported curved girders, 

having thin wa11ed geometrica11y asymmetrica1 cross-section. Solutions 

for severa1 special cases such as straight or curved girders of thin 
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walled or solid, open or closed, uni or doubly syrnrnetrical cross-section, 

can be obtained from the general case. It is assumed that both supports 

allow warping and that one support permits tangential displacements. 

Damping, rotary inertia and shear deformations are neglected. The 

cross-section is assumed to be non-deformable and the center of gravit y 

coincides with the centroid. Local free vibrations of the constituent 

members or of a part of the span (upper deck, lower deck, torsional 

vibrations between the diaphragms) are not considered in this study. 

In the experimental investigation two curved box girder models 

were tested under a concentrated dynamic load. The first model was a 

single box section uni-symmetrical with respect to the vertical centroidal 

axis, the second model was a two cell section of asymmetric cross-section. 

Resonant frequencies were isolated by a trial and error procedure based 

on frequency sweep tests and a series of shaker positions. 

-. 

.~ 
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CHAPTER 2 

THEORETICAL ANALVSIS 

2-1 Mathematica1 Mode1 

The structure under consideration is a single span simp1y 

supported circu1ar curved girder having a constant asymmetrica1 cross

section (Fig.2.1), which can be a mu1tice11 box, single ce11 box, open 

or sol id. The geometry of the cross-section affects only the cross

sectional properties but not the derivations given hereafter. 

The cross-section is assumed to be non-deformable, which 

implies that there is a sufficient number of diaphragms, infinite1y 

rigid in their own plane but flexible out of their plane. The girder 

is assumed to be supported at two point supports, the left one is a 

hinge and the right one is a roller. The materia1 is assumed e1astic 

and homogeneous. Damping is neg1ected since its effect on natural 

frequencies and modal shapes is generally sma11. 

The notation adopted is that of Christiano (6) while the sign 

conventions are identical to those of Dabrowski (11). The position of 

any point in the girder is defined with respect to an orthogonal set of 

axes, x, y, z as shown on Fig.2.1, with the origin of the z axis at 

the centroid of the 1efthand support. Axes x and y are sliding 

axes with origin at the z axis, in plane and normal to the plane of 

curvature respectively. 

The hinge at the left support will a1low warping of the cross

section and rotation about the x and y axes, but prevents movement 

( 

, 
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in the x, y and z directions at the shear center or twist ~ of 

the whole cross-section. The roller at the right support provides 

similar constraints except that movement in the z direction is per

mitted. 

For an asymmetrical cross-section, the shear center has 

coordinates xo' Yo measured from the center of gravit y of the cross

section (Fig. 2.2). The centroid and center of gravit y of any section 

are assumed coincidental. The displacements of the shear center are 

defined as u, v, w in the x, -y, zl directions respectively. 

An angle of twist ~ measured clockwise from the y axis is also 

defined. The center of twist is assumed coincident with the shear 

'center. 

The external distributed loads are Px' Py' Pz' in the 

x, y, z directions plus a distributed torque p~, all applied along 

the axis of the shear centers zl' The internal stress resultants are 

the shear forces Qx' Qy' and twisting moment H applied along the 

axis zl' as well as a normal force N and bending moments Mx' My 

applied along the centroidal z axis. Forces acting on an infinitesimal 

element dz of radius of curvature Rare shown in Fig. 2.2. The 

bimoment B which is statically equivalent to zero is not shown. 

The cross-section which is generally asymmetric has moments 

of inertia lx' Iy with respect to the x and y axes, a product of 

inertia Ixy ' a polar moment of inertia Ip with respect to the centroid, 

cross-sectional area A, a St.Venantls torsion constant Kt' and a 

warping constant Iw' 
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2-2 Equilibrium Equations 

Consider the equilibrium of an infinitesimal element of 

length dz = Rda, with sin da -: ~z. 

Summation of forces in the x, y and z directions yields: 

1 N 
Q +-R+P =0 X X (l-a) 

(l-b) 

1 Qx 
N - lf + Pz = 0 (l-c) 

respectively, where primes imply differentation with respect to z. 

Summation of moments about the x, y and z axes give: 

(l-d) 

1 

M - Q + P x = 0 y x z 0 
(l-e) 

(l-f) 

respectively. Only quantities of the first order are included in 

Eqs. (1). 

\ 
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From Eq. (l-e) : 

(l-g) 

Oifferentiation of Eq.{l-d) yields: 

(l-h) 

Eqs.(l-a) and (l-b) lead to: 

1 -N 
Q = - - p x R x 

1 

Q =-p y y 

which when substituted into Eq.(l-h) yields: 

Mxll+MRH
I 

_~y _py)+p _ply =0 R 0 x 0 y Z 0 

Substituting Qx from Eq.{l-g) into Eqs.(l-a), (l-c) and (l-f): 

1 Il N 
P x + M + -R + P = 0 

Z 0 y x 

1 Mx N 
H - R + if Yo + P<j> = 0 

Fina11y the six basic equilibrium equations are reduced to the fo11owing 

four equations: 
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1 

1 M Xo 
N - J.. + p (1 - -R) = 0 R z (2-a) 

(2-b) 

Mil + -RN + p; x + P = 0 
y z 0 x (2-c) 

(2-d) 

This set of four differentia1 equations describes the equi1i

brium of an e1ement dz. Eq.{2-a) represents equi1ibrium in the 

z-direction. 

2-3 E1asto-Statica1 Re1ationships 

Dabrowski (11) gives the fo11owing force-deformation relation

ships for a curved girder of asymmetric section: 

M = -E [1 (v" - 1R) - 1 (u" + JL) + {I Y - fy2 x dA)i-] x x xy 2 xy a 2 
R A R 

M = -E[I (u" +JL) - 1 (VII _1R) - (I Y -fi YdA)i-] Y Y R2 xy Y a A R2 

1 U - $Yo i-
N = EA{w - R ) - EIXYR2 

1 III 1 
H = ~ EIw f - llGKt f ) 

B = -El f w 
Il 

(3-a) 

(3-b) 

(3-c) 

(3-d) 

(3-e) 

.. ~ 
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,,, 
The warping function f = fez) is defined by Ws = -f w 

where Ws is the longitudinal displacement of a point on the wall 's 
" center-line and w is the sectorial coordinate of the point considered. 

By definition: 

lJ = 1 - (K /1 ) 
t P 

(4-a) 

As measures of the asymmetry of cross-section, the parameters 

rx and ry can be defined as: 

(4-b) 

(4-c) 

where rx = 0 in case of symmetry about the y-axis and ry = 0 in case of 

symmetry about the x-axis. 

Substituting Eqs.{3-a), (3-b), (3-c), (3-d) and Eqs.{4-b}, 

(4-c) into Eqs.{2-a), (2-b), {2-c}, {2-d} yields: 
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~ ~ --u _:..:.:9... v"""+ (E~-EI~+EI....l)CP 
[
EIV Ulll + Elu u 1 EA 1] El 0'" [y y r 1] 
R R3 R R R YR 3 YR s 

(S-a) 

y 0 Y~] [1 i v Il] Y 0 1 Y 0 +(EI - - E~) 4> - -(El f - llGK f) - EA-w - p -
xY Ra. R3 llR W t ri x R 

1 

- p y + P = 0 
Z 0 y 

(S-b) 

El (u iv + ~) + EA u - El v iv + El L - ~l Y - r 1 )cp" [ Il] [II 
Y R2 R2 xY xY R R~ Y 0 Y Y 

EIXY y 0 1 EA 1 1 

+ ( - EA-HJ - -w - p x - p = 0 
R3 R2 R Z 0 x 

(S-c) 

y r ][1' Il] YI + El ~ - El ~\CP - MEl flV - llGK f) + E~w + P = 0 
xy R 3 X R ~ II W R cp 

(S-d) 

Eqs.(5) are the governing differentia1 equations of equilibrium 

of a genera1 curved thin wa11ed girder e1ement subjected to any loading 

. j 
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system acting along the axis of the shear center. 

2-4 Inertia Forces 

When the girder undergoes free vibrations, the external loads 

are equal to the inertia forces resulting from accelerations ü , v , $ , 
and ü . * The inertia forces Px' Py' Pz act through the section's 

centroid, giving rise to a twisting moment about the shear center axis 

zl as shown in Fig.2.3-a. 

Using D'Alembert's principle one can write: 

p = -pA a2 (u - y 4» 
x at2 0 

(6-a) 

p = -pA 2L (v - x 4» (6-b) 
Y at2 0 

p = -pA a2w (6-c) 
z at2 

where p - is the mass per unit volume of the material used. 

Ip - is the polar moment of inertia about the centroid. 

* If rotary inertia is to be considered for a more refined analysis, 
then it should be included at this stage. 

, J 
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Substituting Eqs.(6) into Eqs.(5): 

~ u + ~ u - - u - -D... v + (EA--.Q. - El --.Q. + El --lJ4> [
El Il' El , EA ,] El Il, ~ Y Y r ,] 
R R

3 
R R R Y R3 Y R 

r. ] 
Il X •• 

+lEAW - PA(1 - ilw = 0 (7-a) 

El (u 1V + !L) + EA--.Q. u - El v v + {~+ El ..!. - El --.Q.)4> 
[ 

• n y J i [ El r y Il 

xy R2 R 3 X R X R2 xy R2 

Yo y~] [1 iv Il ] Y , + {El - - E~~4> - -(EJ f - llGK f ) - EA--.Q.w 
. xy R4 R llR w t R2 

(7-b) 

[ 
iv u Il EA] iv [ Elxv Il Elv Il El (u + -) + - U - El v + -~ 4> - ---L (y - r )4> 

y R 2 R 2 xy R R 2 
0 Y 

+ (~ - E~)4> - -w + PAx ~ + PA(ü - y (fi) = 0 El y] EA 'a" .. 
R3 rf R 0 az 0 

(7-c) 

2 

[
-EIxy Il u Yo] EIx Il [-EIx Yo rx] (u +,.) - EA-i- u + -v + ( -2- + EA- - El -~4> 

R R R R R R
2 

R 

(7-d) 

where the dot superscript (.) represents partial derivative with respect 

to time t, and 10 = Ip + A(x~ + y~) is the polar moment of inertia 

about the shear center. 
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2-5 The Warping Function f 

The warping function f = f(z) as defined by Dabrowski (11) 

is given in section 2-3. In the general case of restrained warping, 

f can be assumed to have the form f = au + bv + c~ + dw, where 

a, b, c, d are operators. However, Dabrowski (11) has shown that in 

the case of unrestrained warping, f will have the form: 

f = * + ~ (7-e) 

Eq.(7-e) was assumed by Christiano (6, 7) in the analysis of dynamic 

response of curved girders of open thin walled sections (where warping 

is more important) and is adopted here. 

Substituting Eq.{7-e) into Eqs.(7-a), (7-b), (7-c), (7-d): 

-.l( u + -) - - u - --...:& v + (EA- - El - + El 1J~ [
El III u

l 
EA 1] EIx III [Yo Yo r 1] 

R R2 R R R Y R 3 Y R 

[
II Xo •• ] + EAw - PA(l - ïf)w = 0 (8-a) 

El (u lV + !L) + EA~ u + - El v lV - ~ V lV + - V 
[ 

• Il Y·1 [ . El . GKt IIJ 
xy R2 R 3 J X l1R2 R2 

[ 
EIw iv EIx GKt rx Yo Il Yo y2

] 
+ - - ~ + (- + - + El - - El -)~ + (El - - EA R03)~ 

l1R R R x R 2 xy R 2 xy R" 

Yo 1 Yo .. dW" •• 
EA-w + PA~ü - y ~) + PAy - - PA(v - xo~) = 0 

R2 R 0 oaz 
(8-b) 
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+ ( - EA--)~ - -- w + PAx -- + PA(u - y ~) = 0 
El xy y 0 1 EA 1 aw .. .. 
R3 ri R 0 az 0 

(8-c) 

-:..:.:9... (u +~) - EA~ u + -~ v' v + ---.!. v + - v + -~ ~ 1V 
[

El Il Y ] [El . El Il GKt Il] [El . 

R R rf 1-IR R R 1-1 

.. _ EIx Y~ r x] y 0 1 •• 

+ GKt~ + ( - + EA- - El -3) ~ + EA-- w - P 1 ~ + PAy ü + PAx V = 0 
R2 R2 

X R R 0 0 0 

These four coupled partial differential equations with con

stant coefficients are of order 4 in u, v, ~ and order 2 in w 

for the variable z, and of order 2 in u, v, ~ and w for the 

va-riable t. 

If coupling due to axial vibrations in the z-direction is to 

be considered, Eqs.(8) must be solved. However', coupling between 

axial vibrations in the w-direction and those in the u, v, and ~ is 

weak, as can be witnessed from Eq.(5) where the terms containing 
1 

Pz' Pz are of second order. On the other hand, the uncoupled axial 

natural frequencies of an equiva1ent straight girder are much larger 

th an those of flexural and torsional vibrations. Hence it can be 

concluded that the coupling effect of axial vibrations on the lower 
1 

modes will be small and one can neglect terms containing n ::Ind p t'z ...... z' 

and assume that the normal force N at any section is negligible. 

(8-d) 
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W1th this assumption Eq.{8-a), which represents equi1ibrium of 

axial forces in the z-direction is uncoup1ed from the other three equat

ions. With the assumption of N = 0, Eq.(3-c} reduces to: 

1 u Ixv Yo 
w = - + {~- -)<1> 

R AR2 R 
(g-a) 

The axial displacement w of a point on the shear center 

located at a distance z from the origin is: 

1 z 1 y z 
w = - J u dz + (~ - .J!) f <1> dz 

R 0 AR2 R 0 
(9-b) 

Substituting Eq.(9-a) into Eqs.(8-b), (8-c), (8-d) and rearranging one 

obtains: 

El (u lV + L) + PA.J!u + - (El +..-.!:!.) v lV + -v - PA v 
[ 

. " y .i [ El. GKt " .. ] 
xy R2 R X 11R2 R2 

+ - -1!.<I> lV + (-.Ji + _ + El 2.. - El .J!) <1> - (_y2 - PAx )<1> = 0 (lO-a) 
[

El. El GKt r y" PA 'j 
11 R . R R X R2 xy R2 R 0 0 

(1 O-b) 

- ~(u +~) + PAy u + --.!"!v 1V + (-.Ji + -) v + PAx v 
[

El" .. ] [El. El GKt " "j 
R R 0 11R R R 0 

(1 O-c) 



- 20-

It can be seen that the assumption of N = 0 was used to 

uncouple the axial displacement w from u, v, and~. Eqs.(lO) are 

three coupled partial differential equations with three unknown dis

placement functions u, v, and ~ of the fourth and second order 

differentials with respect to the variables z and t. 

2-6 Displacement Functions and Boundary Conditions 

To permit a separation of variables in solving Eqs.(lO), the 

displacement functions can be separated into two functions, a function 

of location z and a function of time t. In the general case of 

vibration, the displacement function can be taken as a Fourier Series 

over an infinite number of natural modes, i.e.: 

u{z, t) Qg - (t) - (z) = l u· u. , , (ll-a) 
i=1 

vez, t) 
00 _ 

(t) (z) = l y. vi , (11-b) 
i=l 

~(z, t) 
00 _ 

(t) (z) = i: ~i ~i (ll-c) 
i=l 

For the particular case of free vibrations, only one mode is 

excited and there is no need to sum all components of other modes. 

Hence in any pure modal vibration: 
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u; (z, t) - (t) u; (z) (12-a) = u; 

-
v; (z, t) = v. 

l 
(t) v; (z) (12-b) 

~; (Z, t) = ~1 (t) 4; (z) (12-c) 

In accordance w;th the conventiona1 procedure for finding 

natura1 frequencies the time functions are taken in the form: 

- (t) = sin wit u· l (13-a) 

Vi (t) = sin wi t (13-b) 

~i (t) = sin wit (13-c) 

Since Eqs.(10) contain derivatives of u, v and ~ wtth 

respect to z of the fourth order, four boundary conditions on each 

displacement function are required. Under the assumed support con

ditions, transverse displacements u, v and twist ~ are prevented 

at both supports, i.e.: 
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u{o, t) = u{t, t) = 0 or Ui(o) = ui(t) = 0 (14-a) 

v(o, t) = v(t, t) = 0 or v.(o) = v.(t) = 0 , , (14-b) 

~(o, t) = ~(t, t) = 0 or ~i(o) = ~;(t) = 0 (14-c) 

Since bending moments Mx' My vanish at both supports: 

Il'' ..... 11_11 

U (0, t) = u (1, t) = 0 or ui(o) = U;(1) = 0 (14-d) 

Il Il _'1_11 

V (0, t) = v (1, t) = 0 or ViCo) = v;{t) = 0 (14-e) 

From Eqs.(3-a), (3-b). 

The cross-sections at both supports are free to warp and so the axial 

stress cr due to bimoment B 

(14-f) 

must vanish. Eq.{14-f) implies that B must vanish as wellat the 

supports. From (3-e) and (7-e) 

Il 

Il V 
B = - El (~ + - ) w R 

Recalling (14-e), it can be concluded that 

\ 
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Il Il _"_" 

~ CO, t) = ~ (t, t) = 0 or ~i{o) = ~i{t) = 0 (14-g) 

Disp1acement w in the axial direction is prevented at Z = 0 and per

mitted at z = t 

1 

w{o, t) = w (t, t) = 0 (14-h) 

A11 of conditions (14-a), (14-b), (14-c), (14-d), (14-e), (14-g), (14-h) 

together with Eq.(9~b) can be met by se1ecting 

where 

~.(z) = U. sin 8,.z , , 

v.(z) = v. sin8,.z , , 

i7r 
= T 

(14-;) 

(14-j) 

(14-k) 

(14-t) 

~., are amplitudes of vibration of the i th mode in the , 
x, -y and ~ directions respectively. 

Substituting Eqs.(13) and (14-i), (14-j), (14-k) into Eqs.(12) 

(15-a) 

(15-b) 
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Substituting Eqs.(15) into Eqs.(10) one obtains 

[ 
2 1 2 Yo 2] El (e. - """2) a. - PA----w. U. xy l R l Rl l + El 4 GKt 2 

(EIx + ~) e. - - a. 
l1R l R2 l 

+ PAw.V. + -~e. - {-+-+ El -- El -)a. 1 [El 4 EIx GKt r x y 0 2 

l l 11 R l R R X R2 xy R2 
1 

2 

+ (y 0 
- x ) PA W~] cp. = 0 

R 0 1 l 

- PAy w ~ 1 cp. = 0 o 1 1 

rEIXY{e~ __ 1 ) _ PAy w~l U. _rElw e~ + (El + GKt)a~ + PAx w~l V. l R 1 R2 0 1 1 Ll1R 1 x R 0 1 l 

[
_EIwa. 2 _EIx rx Yo . 2] 

+ -8. - GKta. + ( -2- - El -3 + El -3) + PI w. CP.: = 0 
1.I l 1 R x R xy R 0 1 ; 

2-7 The Freguency Eguation 

(15-c) 

(16-a) 

(16-b) 

(16-c) 

Let us now introduce the expressions of natural frequencies 

wui ' wvi ' w~i of an equivalent straight girder of length 1 whose 
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geometry does not lead to modal coupling. Gere and Lin (19) give the 

following expressions, which are valid for any boundary conditions: 

R- d2U. 
2 El J {-----')2dz - y C dz 2 

wu; = R- -2 
pA J u;dz 

0 

d2V. 
2 El JR-{-' }2dz - x C dz2 

wvi = 
pA JR- v~dz 

0 

R- d2~. d~. 
2 

El f· {--' Fdz + llGK fR-{-' }2dz - w 0 dz2 t 0 dz 
wcpi = fR- _2 

~Plo CP'jdz 
0 

Substituting Eqs.{14-i}, {14-j}, (14-k), {14-R-} into the previous 

expressions yields: 

_2 ~~ wui = pA 8i {17-a} 

'- EIx ~ -wvi = T 8 . p , {17-b} 

~ 2 
_2 El 8. + llGKt 8i w , 
wcpi = llp10 

(17-c) 
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Let us introduce the dimension1ess quantit;es S and y: 

(18 ) 

Equations (16) can be written in matrix form as: 

L L L Ui 0 
Il 12 13 

L L L Vi = 0 21 22 23 (19) 

L L L <1>; 0 31 32 33 

Where L;j can be written after substituting (17-a), (17-b), (17-c) 

and (18) as: 

L 13(1 1 _ Yo t i }2 = --) 
Il R2 2 R w. 

ai V1 

l 5li 2 (W; ) 2 L = -1 - 4 ( 1) + 12 AR wvi wvi 

l W r SYo y2 W. 2 
L = ---E. (=:1)2 __ 1_ (1 + R

X
) +---r-T+ (--E. _ X )(_1_) 

13 AR wv.. Ra~ Ra· R 0 wvi 1 1 1 

L = (1 __ 1_) t Ui ) 2 (wi ) 2 
2 l R2 2 W. W • 

ai V1 V1 

L = - y t Ui )2 
22 wvi 
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y r W. 2 W. 2 
L = (.:..y. + _0_ _ -L) (--'!l.) + y (-' ) 

23 Ra: R2a: R2a: wvi o W . v, , , , 
(20) 

L (1 l w. 2 
L = --) - y (-' ) 31 Ra: R2 2 o W . , ai v, 

1 w. l w. 
L = - 0 { -</iL )2 _ --x {_' )2 

32 AR W . Ra~ 0 wvi v, 

1 w. 1 w. l rx Yo 
L = - 0(~)2 + 0(_')2 --(1 + R - f3 R ) 33 Aw. AWvi R2 4 v, ai 

For a non-trivial solution of Eq.(19), the determinant of [L] must vanish, 

or: 

det.[L] = 0 

A symmetry index ~ can be defined by: 

1
2 

~ = , - f3 y = , -~ 
Ix Iy 

(21) 

(22-a) 

and ;s a measure of symmetry of the moments of ;nertia w;th respect to 

the x and y axes. Obviously ~ = l in the case of single or double 

symmetry of the cross-section. Another useful measure, a mode-curvature 

index n can be defined by: 

n = , _ -'-
R

2 2 
8. , 

(22-b) 

The mode-curvature index n is dependent upon the mode number i and 

radius of curvature R, with n = l for straight girders. To non

dimensionalize the frequency equation the parameters Px' Py' &x' and 

~~ 
Jj .1 
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Ôy ' can be defined by: 

r r 
p = ~ Py =1 (22-c) x R R 

x y 
Ô =-.Q. Ô =-.Q. (22-d) x R y R 

Substituting Lij from Eq.(20) into Eq.(21) and taking into account 

(22-a), (22-b), (22-c), (22-d) the frequency equation becomes: 

W • 2 W. 2 1 ~P ap n ] W • 2 W,j,' 2 ( :l!.) (_'_) + -.Q. n ~ - ':.:..L _ n 2 1jJ (....!!l.) (_'1'_1) = 0 
W. W 1 2 2 R2 2 W. W. 

V1 vi P R 8i 8i V1 V1 
(23) 

· " 
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Eq.(23} is the frequency equation. 
2 

It is cubic in the unknown wi 

and can be solved to furnish a set of three positive roots correspond

ing to a given mode number i. A set of three such roots represent 

different coupling patterns between Ui , Vi' and ~i' but they all 

have the same longitudinal distribution, which is sinusoidal as given 

by Eqs.(15}. 

A computer program for solving Eq.(23) is given in Appendix 

II. Further details and numerical examples are given in Chapter 4. 

2-8 Eigen Functions 

Having found the eigenvalues wi ' from the roots of the 

frequency Equation {23}, one can obtain the relative values of the 

amplitudes of vibration Ui , Vi' and ~i from Eq.(19}. Since 

Eq.(19} represents a set of three homogeneous dependent linear 

equations, it is only possible to get relative values of modal dis

placements. For ease of computations unit amplitude can be assigned 

to one modal amplitude such as Vi' and the amplitudes of Ui , and 

~i computed. 

From the first and second rows in Eq.(19}, one can write: 

L L - L L 
</li = f Il 22 12 21~ Vi L L - L L 

21 13 Il 23 

(24) 

L V. + L ~i} 
Ui 

- { 22 l 23 = L (25) 
21 

Recalling that the axial displacement w of a point on the shear 

~ 1 
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center located at a distance z from the origin is given by Eq.(9-b): 

1 z 1 y z 
w = -R f u dz + (~- .-Q.) f <1> dz 

o AR2 R 0 
(9-b) 

and substituting for u, <1> from Eqs.(15): 

U. 1. 1 Y z 
o w = -R' sin w,' t J sin 8,'Z dz + (~ - .-Q.)<I>. sin w,' tJ sin 8,'Z dz (26) 

o AR2 R, 0 

At the R-H support z = R., cos 8;R, = 1 

w = R, 
--' + (~ - .-Q.) 

[ 

U. 1 y 

R AR2 R 

re-wr;ting w in the form: 

(27) 

then 

where (28) 
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Eq.(28) describes the tangentia1 vibration of the right support which 

is in phase with other components of vibration of the i th mode, and 

has an amplitude of Wi~. 

2-9 Orthogona1ity of Eigenfunctions 

Any point M of coordinates (x, y) 10cated on the wall of 

the cross-section will undergo horizontal and vertical disp1acements 

~ui' aV i with respect to the shear center (xo' Yo) as the cross

section rotates by an angle of twist $i around the shear center, 

Fig.2.3-b. 

The values of oUi' av i , are: 

However, since ana1ysis is limited to small vibrations only, 

then one can assume cos CPi = l, sin CPi = CPi hence: 

(29-a) 

(29-b) 

{he position of any point M on the wall of the girder 

vibrating in mode i at any section z with respect to the oxyz axes 

",1 
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can be obtained from the state vector: 

Pl' =u. +v. +w. 
-1 -1 -1 

= (u. + ôu.) ëj + (v. + ôv.) r + W. S 
1 1 1 1 1 

(30) 

where ui ' vi' wi ' are the displacements of the shear center at the 

- -same longitudinal location z as that of point M. q, r, sare 

three base vectors mutually orthogonal and parallel to the x, y, and 

z axes respectively. 

The orthogonality condition of modes and j can be 

written as: 

J P. f. Q dD = cô.. (31) 
1 J lJ 

where the integral is ta ken over a domain D, Q is a weighting 

function, Q .. is the Kronecker delta and c is a constant. 
lJ 

Substituting Pi' Pj' from Eq.(30) into Eq.(3l) one obtains: 

f Pi Pj Q dZ = f [(U i + ôu;l q+ (v; + ôvll r+ w;s] 

[
(u. + ôu.) ëj + (v. + ôv.) r + w.S]Q dZ (32) 

J J J J J 

~ ............. ~ 
The mixed terms containing q.r, q.S, or r.s will vanish because 

base vectors are orthogonal. Then Eq.(32) will reduce to the product 
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of like terms of base vectors, q.q, 
..a. .... 

r.r, s.s, or: 

!Pl· PJ. Q dz = ! [[ (u 1· + ôu. Hu. + ôu.) + (v. + ôv.)( v· + ôv.) 
1 J J 1 1 J J 

+ Wi Wj ] Q dz (33) 

Recalling Eq.(15), Eqs.{29-a), (29-b) and Eq.(27), and substituting 

back into Eq.(33): 

{P. P. Q dz = [U.U. + (y - y )U.4!. + {y - y )U.4!. + {y - .Y
O

}2 
lJ lJ 01J OJl 

4!.4!.]+[V.V. + (x - x )V.~. + (x - x )V.~. + (x - x )241.41.] 
lJ lJ 01J OJl 01J 

(34) 

it can be seen that the righthand side of Eqs.{3l) and {34} are identical. 

2-10 Special Cases 

Governing frequency equation for the following special cases 

can be determined from the general case of Eq.(23). 

{a} Curved girder with cross-section having single symmetry with 
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respect te the y axis. Christiane (6, 7). 

r = x = 0 x e 

s = y = p = ô = 0 x x 1jJ = l 

Triple coupling between u, v, and ~ exists under such 

conditions. 

(b) Curved girder with cross-section having single symmetry with 

respect to the x axis. 

1 - 0 r = y = 0 xy - y 0 

B = y = p = ô = 0 1jJ = l 
Y Y 

Double coupling between v and ~ exists but u is 

independent. 

(c) Curved girder with cross-section doubly symmetric with 

respect to x and y. Culver (8) 

1 = 0 xy = 0 

B = y = p = p = ô = ô = 0 1jJ = l x y x y 

Double coupling between v and ~ exists, u is independent. 

1 ; 
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(d) Straight girder with asymmetrica1 cross-section. Gere and 

Lin (18), V1asov (40) and Federhofer (13). 

R- co n=l 

Triple coup1ing between u, v and $ prevai1s. 

(e) Straight girder with cross-section having single symmetry 

with respect to x. Timoshenko (37). 

1 = 0 xy 

a = y = p = ê = 0 y y 

r = y = 0 y 0 

n = 1 1/1 = 1 

Double coupling exists between v and ~ but u is 

independent. 

(f) Straight girder with cross-section doubly symmetric with 

respect to x and y. 

1 = 0 xy 

s = y = p = p = ê = ê = 0 x y x y n = 1 1/1 = 1 

No coupling exists and the girder can vibrate in either the 

u or v or ~ directions independently. 
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2-11 Parametric Study 

It can be seen from Eq.(23) that the following non-dimensional 

parameters define the required frequencies of coupled vibrations: 

1 y=~ r r 
13 = ~ p = ~ Py =...1.. 

lx Iy x R R 

v _ Yo AR
2 

" (\ _ 0 
ô -T y -T -ç 

R2 2 (i 7TCX
l 

)2 
W • 2 1 

t</>i)2 = (.JU.) = :1 ai wvi lx wvi 

All the other non-dimensional parameters in Eq.(23) can be obtained from 

a proper combination of these parameters. These parameters are not 

absolutely independent but r~lated through the geometry of the cross-

section. A number of cases were examined, with uni-symmetrical, doubly-

symmetrical, and asymmetrical sections with both positive and negative 

asymmetry included. Only high asymmetry was considered to clarify its 

effect on natural frequency. The basic parameters used in analysis are 

shown in Table 2-1. 

2 

The ratio AR was assumed to take on one of the following 
Ip 

W 

values (100, 500, 1000, 5000, 10000). A range of values for ~ from 
Wv 

o to 5 was chosen. Given a set of the parameters from Table 2-1, a 
2 W 

value of 8B- and another for ;tv were selected and three roots for 
Ip 

each of the ratios wl and w2 were calculated from Eq.(23). 
Wv Wv l 2 

. ,-
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By repeating the procedure for other comb inations of ~R2,~, 
P v 

w;th one set of parameters from Table 2-1, plots of the variation of 

W1 w2 w AR 2 
-, - wi th J.. and were ob ta i ned . These plots are 
Wv Wv Wv r--p 

1 2 
shown in Figs.2.4, 2.5, . . .,2.13. 

al 

450 

900 

Wu 

Table 2-1 
Values of Various Parameters for Cases 

examined in the Parametric Study 

r-- a y Px Py ô ôy Wv x 

5 a a a a a a 

a a a a a a 

a a a 0.001 a 0.01 
la 

0.05 0.0005 0.001 0.001 O. 01 0.01 

-0.05 -0.0005 -o. 001 0.001 -0.01 O. 01 

a a 0 a a a 
5 

-0.05 -0.002 -o. 001 0.001 -0.01 0.01 

a a a a a a 
la 0.05 0.0005 0.001 0.001 0.01 0.01 
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Upon examining these Figures the following observations can 

be made: 

(a) In comparison to an equivalent straight girder, coupling 
between three (or less) different frequencies decreases 
the lowest and increases the highest of these frequencies, 
(Figs.2.4, ..•.. 2.13), while the intermediate fre
quency might increase or decrease depending upon the 
geometry (Fig.2.10(a». The effects of coupling decrease 
as the mode number increases (Figs.2.11(a) and (b». 

2 

(b) When ~R increases with Œl fixed (i.e. the length of 
p 

the girder increases) the upper and lower roots of the 
coupled frequencies diverge. Figs.2.5(a) and (b). 

(c) For doubly symmetric sections, the horizontal frequency 
will be uncoupled (Figs.2.4, 2.5,2.9 and 2.11). This 
frequency is always less than the uncoupled frequency of 
an equivalent straight girder, and will converge to it 

AR 2 

when the central angle Œl approaches zero and --1--
P 

becomes very large. 

(d) For sections uni-symmetrical with respect to the vertical 
axis, triple coupling arises. The effect on the first 
and second modes as com~ared to the case of.double 
coupling is to couple the horizontal vibration and 
slightly decrease coupling (i.e. to increase the lower 
and decrease the higher frequencies) between the previous
ly coupled vertical and torsional vibrations. Figs.2.5 
and 2.6. 

(e) The effect of increasing the lateral moment of inertia 
with respect to the vertical one is to cause a slight 
diversion of the upper and lower roots of the coupled 
frequencies. Figs.2.4 and 2.5(a). The diversion will 

-j 



(f) 

- 39 -

2 

be greater for small values of ~R. 
P 

The effect on the first mode of positive asymmetry of 
the cross-section compared to the doubly symmetrical 
one is to couple the horizontal vibration and decrease 
coupling slightly between the previously coupled verti
cal and torsional vibrations. Figs.2.5(a) and 2.7(a), 
also Figs.2.ll(a) and 2.12(a). 

(g) The effect on the second mode of positive asymmetry of 
the cross-section compared to the doubly symmetrical 
one is to couple the horizontal vibration and increase 
coupling (i.e. increase the higher and decrease the 
lower frequencies) slightly between the previously 
coupled vertical and torsic~~l vibrations. Figs.2.ll(b) 
and 2.l2(b), also Figs.2.5(b) and 2.7(b). 

(h) The effect on the first mode of negative asymmetry of 
the cross-section compared to the doubly symmetrical 
one is to couple the horizontal vibration and decrease 
coupling - more than in (f) - between the previously 
coupled vertical and torsional vibrations. Figs.2.5(a) 
and 2.8(a), also Figs.2.ll(a) and 2.l3(a). 

(i) The effect on the second mode of negative asymmetry of 
the cross-section compared to the doubly symmetric one 
is to couple the horizontal vibration and decrease 
coupling between the previously coupled vertical and 
torsional vibrations for all or low w~/wv ratios and 

increase coupling between the same two components for 
higher w~/wv values. Figs.2.5(b) and 2.8(b), also 

Figs.2.11(b) and 2.l3(b). 

(j) For asymmetrical cross-sections the increase in the 
highest frequency for any modal number can be very 

; -;,l 
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large, particularly for higher values of AR while 
Ip 

the decrease of the lowest value is less sensitive. 
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CHAPTER 3 

EXPERIMENTAL PROGRAM 

Laboratory tests were conducted to obtain the natural fre

quencies and estimate the modal shapes of the first few modes of two 

plexiglas models. The first model was a simply supported curved 

girder of single cell section symmetric with respect to the vertical 

centroidal axis,and the second model was also a simply supported 

curved girder but had a two cell asymmetric section. 

The models were excited by a single shaker with a controllable 

frequency. Response was measured at different points in the vertical 

direction by six displacement transducers. A trial and error procedure 

was used to converge to the optimum position and orientation of the 

shaker. A set of resonance criteria was used to identify the modes 

sought. 

3-1 Design, Description and Fabrication of Models 

Two models denoted A and B were designed to meet the 

requirements of both static and dynamic tests. Both models were con

structed of plexiglas with a central angle al of 900
, and a length 

along the center line of the upper deck i of 80.2 inch. Model A 

had a symmetric cross-section with respect to the vertical axis, while 

Model B had an asymmetric cross-section. Model B was obtained by 

adding an eccentric web to model A. Plan and cross-sectional dimen-



- 42 -

sions of models A and 8 are given in Figs.3.1, 3.2 respectively. 

A general view of model 8 is shown in Fig.3.3. 

3-1-1 Description of the models 

80th models were simply supported, with the whole section 

extended l inch beyond the line of supports on each end. The line 

of supports consisted of two or three point supports for models A 

and 8 respectively. Point supports were located on a radial line 

directly under the webs. 

The left-hand support was essentially a hinge since it 

prevented twist $, vertical displacement v or horizontal displace

ments, u, w, but allowed rotation with respect to the x and y 

axes and warping of the cross-section. This was achieved by using 

one fixed point support and one or two roller point supports. 

(Fig. 3.4). The right-hand support was essentially a roller, since 

it prevented twist $, vertical displacements v or horizontal dis

placement u, but allowed rotation with respect to the x and y 

axes, and warping of the cross-section as well as horizontal axial 

displacement w. (Fig.3.5). 

The roiier point support consisted of a plexiglas cap 

machined from a l inch thick block to a spherical surface to provide 

point support to the model. A soft piece of rubber was placed on 

top of the cap to prevent vibration of the support. The lower face 

of the cap was machined to a concave surface to accommodate a 1/4 inch 

hard nylon ball. The ball itself was mounted on top of a concave 

~ 1 
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surface machined into a supporting cy1indrica1 bar 1 inch in diameter. 

(Fig.3.7). The bar was 3.25 inch long and made of plexiglas. The 

10wer 3/4 inch was threaded and screwed into another plexiglas b10ck 

1 inch thick. These threads allow for relative adjustment of point 

support e1evation and inclination. The 10wer b10ck rested on two 

sma1l cy1indrica1 plexiglas bars 1/8 inch diameter to a110w for motion 

in the direction desired. A concentric ho1e of 1/8 inch was dri1led 

to accommoda te a prestressing wire which was a flexible high strength 

steel wire, 1/12 inch soldered on top to a penny. A rubber pad was 

p1aced between the penny and mode1. The lower end of the prestressing 

wire was hooked to a 15 lb. hanging weight. The fixed point support 

was simi1ar to the rol1er type except that the ro11ers were omitted 

and the bottom b10ck fixed to the supporting beam, and a cantilever 

bar fixed to the supporting beam was p1aced in contact with the end 

section of the girder to restrain warping at the desired point. (Fig.3.8). 

Both mode1s had a curvature t of 0.0196, a central angle of 

900, a width of upper deck of 18 inch, a ratio of upper deck width to 

radius of 18/51 = 0.353, and a width of 10wer deck of 12 inch. A11 

webs are 2.5 inch deep. Mode1 A was provided with two webs 10cated 

symmetrica11y on the cross-section at radii r1 = 45.125 inch, 

r2 = 56.875 inch as shown in Fig.3.1. Four diaphragms 1/4 inch 

thick were 10cated symmetrica11y a10ng the span. Mode1 B was 

obtained from Mode1 A by adding an extra web 10cated at a radius 

of r3 = 52.00 inch. Six diaphragms 1/4 inch thick were 10cated at 

sections 00, 150, 350, 550,750 and 900 as shown in Fig.3.2. 
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In order to facilitate modification of the cross-section, the 

two webs of Model A were glued to the upper deck, while screws were 

used to attach the lower deck. This design permitted addition of new 

webs and new diaphragms. In both models machine screws #4-40, 0.5 inch 

long were used to connect the diaphragms to the decks and webs. 

3-1-2 Material properties 

Plexiglas G of Rohm and Haas Co. was used in both models. 

It is wel1 known that plastics creep under sustained loads due to their 

molecular structure. Moreover, the modulus of elasticity of plastics 

under dynamic loads is frequency dependent. 

Three series of tests were performed to measure material 

properties. The first test was a standard tension coupon test. Eight 

coupons were eut from different points of the plexiglas sheets used and 

tested at a low strain rate of 3000 ~ strains/min. up to failure. Test 

resu1ts are summarized in Table 3-1. The average value of Young's 

modulus was E = 421 Ksi. 

1 !" 
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Table (3-1) 
Test Results of Tension Coupons 

No. Thickness Ultimate Initial E Average Tangent 
Stress E at = 2.2 Ksi 

inch Ksi Ksi 

l 0.248 8.7 474 425 
2 0.249 8.2 450 385 
3 0.249 8.6 433 422 
4 0.249 8.77 455 406 
5 0.194 8.35 467 414 
6 0.193 8.45 438 368 
7 0.196 8.28 470 423 
8 0.194 8.72 407 315 

Average 449 394 
1 

The second test was a static creep test under sustained 10ads. 

A simply supported plexiglas beam of span 11.00 inch, width 0.84 and 

height 0.252 was cut from the same sheet and tested under two equa1 

concentrated 10ads 10cated at 3.5 inch from the supports. Strains in 

the longitudinal and transverse directions on the compression face were 

measured at midspan by a TML-Rosette type pc-10. Def1ections and 

strains were measured 0, 1, 2, 5, 10, 20, 25, 30, 35, 40 minutes after 

load application. The 10ads were then removed and the beam a110wed to 

recover for 3-4 hours, another set of loads were applied and the pro

cedure repeated. A stress-strain diagram after 0, 5, 15 and 40 minutes 

of 10ad application is given in Fig.3.9. 

This graph shows that the materia1 exhibits slight non-linearity. 

Resu1ts can be approximated by two linear regions with the second region 

i 
'J 
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beginning at a stress level of 800 psi. Creep effectively termin

ates after applying the load for 40 minutes i.e. Ec = E40 regardless 

of the stress level. Poissonls ratio was calculated using the trans

verse strain and found to increase slightly with creep from 0.358 to 

0.373 after 40 minutes for all stress levels. 

The objective of the third series of tests was to establish 

the relationship between the dynamic modulus of elasticity Ed and 

the loading frequency w. Since in dynamic loading of polymers, creep 

does not occur, a value of Ed higher than Ec is to be expected. 

Robinson (35) utilized the resonance properties of a canti

lever beam to study the dynamic mechanical properties of polymers over 

a wide temperature range. The same concept was used for a simply 

supported beam without variation in temperature. The frequency 

range examined was 10 - 110 cps at a temperature of approximately 700 F. 

The n th resonant angular frequency of a simply supported 

beam is given by: 

wn = An ~ EI~ rad/sec. 
\ pAt 

where 

p = mass per unit volume of the material used. 

A = cross-sectional area. 

t = span of the beam. 

An = coefficient of the n th mode. 

Al = 9.87, A2 = 39.5, A3 = 88.9 
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If wnc is the n th resonant angular frequency with E = Ec' then: 

Jy 
W = A --

nc n pAR,4 
(35) 

If W is the n th resonant angular frequency assuming E = Ed, the 

dynamic modulus of elasticity then: 

(36) 

from Eqs. (35) and (36) 

wnd E 
= (~) 1/2 

wnc Ec 
(37) 

Ed Wnd 2 

Cl = 
Ec 

= (-) wnc 
(-38) 

If wnd is measured experimentally, and wnc evaluated from Eq.(35), 

Cl can be calculated directly from Eq.(38). Eq.(37) implies that 

theoretical frequencies calculated from E = Ec should be adjusted to 

account for the difference between -Ec and Ed at that frequency. 

The adjusted frequency can be obtained directly fram Eq.(37) as: 

{39} 

Ta evaluate Cl for the plexiglas used, a simply supported 

beam of width 0.73 inch and depth = 0.195 inch was tested with different 

spans {7,8,9,10,12,14,16,18,20,22,24 inch}. The same testing procedure 

__ 1 

\. 
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used for models A and Band described in Section 3-2-5 was used to 

determine the natural frequencies of these beams. The values of the 

correction factor a were calculated as described above and are shown 

in Fig.3.10 plotted against frequency. 

The (a, w) curve is a characteristic of the material and indi

cates that a decreases rapidly as the frequency w increases from 10 

to 30 cps, and then decreases very slowly up to w = 110 cps. 

3-1-3 Fabrication of the models 

The upper deck and the webs were cut from a 4 x 8 ft. plexi

glas sheet 1/4 inch thick and the bttom deck was cut from another 

4 x 8 ft. sheet 3/16 inch thick. The webs were mounted on a mold hav

ing the required curvature and heated in a special oyen up to 3500 F 

until they deflected under their own weight and assumed the required 

curvature. They were then clamped to the mold and cooled gradually. 

Forming of the webs was performed by Hickey Plastics Company of Montreal. 

Special aluminum frameworks were prepared to hold the webs 

and give them the required curvature. (Fig.3.11.) Flat wooden studs 

were glued to the lower facë of the upper deck along the line of the 

webs, to permit accurate alignment of the webs. The masking paper was 

then stripped and ta ken off along the line of the webs. (Fig.3.12.) 

Glue Jaybond GC-18, a polymerizable cement consisting of a base, a 

catalyst and a promoter purchased from Johnstcn Industrial Plastics of 

Montreal, was brushed on the contact area of the upper deck and the 

webs, the framework of the webs was separated and the webs clamped to 

· ~. { 
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the deck. The clamps were loosened slowly after setting. The dia

phragms were then attached to the webs and upper deck by screws. 

The lower deck was then clamped to the upper deck and the 

webs, and holes (drill #39) were drilled through the lower deck and 

the webs manually, 4 inch apart, and threaded. Machine screws 

(#4-40) 0.5 inch long were installed. The 4 inch spacing provided 

satisfactory binding and stiffness for the whole model, and prevented 

crackling during dynamic tests. The actual diameter of screws 

#4-40 is .108 inch, thus leaving a coyer of 0.142 inch in the 1/4 inch 

webs. Since the shearing capacity of these screws is approximately 

90 lb., they can sustain a shearing stress at the joint of approxi

mately 100 psi. A similar procedure was used in static tests of box 

bridge models by Macias and Van Horn (28), who reported reliable 

experimental results. 

3-2 Dynamic Model Tests 

A continuum has an infinite number of degrees of freedom 

and hence an infinite number of natural frequencies and modal shapes. 

At resonance the response of any complicated structure can be simul

ated by a single degree of freedom system (16). 

Consider a damped single degree of freedom system, subjected 

to a harmonic excitation F sin wt . 

.. . 
mu + cu + Ku = F sin wt (40) 

1 
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As w approaches the natural frequency wi ' the particular solution 

of Eq.(40) (i.e. the natural mode) dominates. Gauzy (16) showed that 

in this case there is balance between the terms of Eq.(40) such that: 

mü + Ku = 0 

cu - F sin wi t = 0 

which implies that the exciting force F sinwt will be in balance with 

the damping force cu, and the system behaves exactly like a conservat

ive system, i.e. it oscillates under inertia force mu and a restoring 

spring force Ku. 

Recalling the case of a continuum, one can draw a parallel 

with a one degree of freedom system and say that to excite a natural 

mode one needs an infinite number of synchronized exciters oscillating 

at the natural frequency and oriented such as to coincide with the modal 

displacement and having amplitudes large enough to feed energy at each 

point of the system equal to that dissipated by damping. 

However, practical experience shows that satisfactory results 

can be obtained using a relatively small number of exciters {16}, 

arranged such that they are: 

(a) placed at points where there are important sources 
of energy dissipation, 

(b) placed so as to feed a maximum amount of energy into 
the modal shape desired, and a minimum amount of 
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energy into the neighbouring modes. This is 
usually accomplished by installing the exciters 
at peak points of the modal shape sought and the 
nodes of the neighbouring modes, 

(c) directed in space in such a way as to produce all 
components of the desired modal shape with the 
right proportion, and not to hinder any such com
ponent. 

It ;s worth mentioning that the circuitry and equipment 

necessary to opera te and control a large number of shakers is extremely 

complicated. Lewis and Wrisley (26) in 1950 developed a system able 

to opera te and control 24 shakers, which was used for ground vibration 

testing of aircrafts. 

Due to equipment limitations, only one shaker was used in 

the experiment reported here. Or.~ shaker is sufficient to excite the 

first few modes (21) but this sufficiency decreases as the mode 

number increases. Hence discrepancies from pure modal shapes are to 

be expected in the higher modes. 

The experimenta1 setup consists of an exciting system, pick

ups system and a disp1ay system. Fig.3.13 shows a b10ck diagram of 

the experimenta1 setup. 

3-2-1 The exciting system 

The single shaker used in the experiment was an e1ectromagnet 

of low impedance, manufactured by Ling E1ectronics, special model V50 

Mk.1. It can provide a peak thrust of 48 lb. when loaded by 2.5 lb. 
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at 100 cps and coo1ed with an air b1ower. The maximum stroke is 0.7 

inch. The shaker was mountedon a rigid base and can rotate with 

respect to a horizontal axis. (Fig.3.14). 

The circuitry consisted of a function generator (osci11ator), 

mode1 HP-200 CD, which generates a sinusoida1 wave of frequency range 

5-600000 cps with gain control. The sinusoida1 signal is amp1ified 

by a power amplifier manufactured by Ling E1ectronics, Mode1 TP-300 

which a1so has a gain control. The output signal of the amplifier 

drives the shaker, the frequency being contro11ed by the osci11ator 

and the amplitude by the gain of the osci11ator and of the amplifier. 

The moving part of the shaker was connected to the mode1 

through a special attachment consisting of a load cell and a two-piece 

core and socket connected to a 1ight frame surrounding the cross-section 

of the mode1. (Fig.3.6). 

A description of the load cel1 is given in Section 3-2-2. 

The load ce11 was screwed ante the moving part of the shaker and the 

core of the a1uminum ~cket tightened to the top of the load ce11. This 

core fitted into a ho11ow aluminum socket, the upper part of which was 

solid and provided with a deep groove. (Fig.3.14). This socket was 

a1so provided with two sets of screws to tighten the core to the socket. 

The groove in the upper part of the socket would accommodate an aluminum 

blade 1/8 inch thick. A hole was also drilled in this part of the 

socket to match with several holes drilled in the blade at different 

lateral positions. A connecting screw was tightened between the socket 

and the blade forming a hinge-like connection. The blade was fastened 
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to a 1ight a1uminum framework by severa1 screws. The framework is 

made of 1/2 x 1/2 aluminium angles connected together with screws, and 

wrap the cross-section tight in the radial direction. 

3-2-2 Pickup system 

Three kinds of pickups were used - disp1acement transducers 

to measure disp1acements of the mode1, an acce1erometer to control 

disp1acement of the shaker, and a 10ad ce11 attached to the shaker 

head to measure the force supplied by the shaker. 

Six HP 7COCT - 1000 displacement transducers denoted by 

T-1, T-2, . , T-6 were used. They were held in place by clamps 

mounted on magnetic stands. Given a certain input OC voltage the 

transducers produce a signal 1inearly proportiona1 te the displacement 

of the core, due to change of electric flux around the core. The 

transducers are able to measure disp1acements in the range of ±1.00 inch 

with input voltage 4-6 volts and a maximum frequency of linear response 

of 114 cps. These transducers were calibrated together with the 

oscilloscope and the UV recorder. A typical calibration graph is 

shown in Fig.3.16. Calibration graphs were nearly linear for all 

input voltages. 

One accelerometer manufactured by Clevite - Model 25021 was 

mounted on a screw attached to the load cell as in Fig.3.14. A 

charge amplifier - Model 566 (Kistler Instrument Corp.) was used to 

provide the necessary signal amplification. 

The aluminum load cell was designed te measure sma11 dynamic 
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loads from 1-2 lb. up to 25 lb. The sensitive central part of the 

ce11 was 1.0 inch in 1ength, 0.35 inch in diameter and with a wall 

thickness of approximate1y 0.02 inch. The end sections were 0.5 inch 

in diamet~r, 0.75 inch in 1ength and threaded from within to fit end 

connections. Two dynamic strain gages, type ED-DV-500 BH-350 of 

MicroMeasurement were attached to the wall of the central section and 

connected to a bridge circuit as shown in Fig.3.15. The load ce11 

was ca1ibrated with the oscilloscope as shown in Fig.3.17. 

3-2-3 Disp1ay system 

The disp1ay system, Figs.3.18, 19, consisted of two oscillo

scopes used for mode probing and a U.V. Recorder to record the signal 

when resonance was reached. One HP-140A Scope and another HP-141A 

Memoscope were used to disp1ay the signa1s and compare their phase 

angles. The U.V. Recorder mode1 S.E. 2800 is provided with 12 channe1s, 

8 inch wide recording paper, paper speed range of 1.25 - 2000 mm./sec., 

and time signa1s for grid 1ines at 0.01 - 10 sec. The Ga1vanometers 

used have a 1imit of 1inear response of 160 cps. The usefu1 frequency 

range of the entire experimenta1 setup is 1imited by the maximum fre

quency of 1inear response of the transducers which was 114 cps. 

3-2-4 The resonance criteria 

Reca11ing the single degree of freedom system (section 3-2), 

if a frequency sweep test is performed then it can be shown (15, 16, 

21,26) that the response at a natura1 frequency will be marked by the 
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following phenomena: 

(a) The amplitude of response per unit exciting 
force will reach a maximum compared to 
neighboring frequencies. 

(b) The phase angle between the exciting force and the 
response will be ± ~/2. 

(c) The rate of change of this phase angle is rapid 
near the natural frequency. 

The effect of damping is to reduce the amplitude of response in (a) 

and to reduce the rate of change of the phase angle in (c). 

A continuum behaves like a single D.O.F. system near 

resonance with the generalization that the response of all points of 

the continuum will be exactly in or out of phase and orthogonal to 

the exciting force. However, in a complicated structure such as a 

box girder, secondary vibrations will arise, which in effect are local 

vibrations and resonances of parts of the structure such as the upper 

or lower deck. 

Although such secondary vibrations were observed, they are 

beyond the scope of the present work. The use of a light frame 

around the cross-section of the model at the excitation station, 

reduced local vibrations in the vicinity of the frame. Moreover the 

response was measured at the junction of the webs and the upper deck 

since such points are nodal points in a mode of local upper deck 

vibrations. 

t i 
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3-2-5 Experimental procedure 

A trial and error procedure was followed to isolate the 

natural frequencies of the models in the light of the resonance 

criteria given in section 3-2-4. The procedure began with a probe 

for the natural modes. If there was evidence of a natural mode, an 

attempt was made to purify the modal shape until a modal shape was . 

isolated as much as possible. 

The probing of natural modes began by selecting a position 

and orientation of the exciting force guided by the theoretical modal 

shape. Knowing the amplitudes of vibrations at all points the angle 

to the vertical of the exciting force could be calculated from simple 

geometry for a given transverse point of application. The longitud

inal location of the point of application of the load was taken as 

the station of peak amplitudes as mentioned in section 3-2. 

A frequency sweep test was performed for a varie~of 

positions of the shaker. The frequency was increased gradually from 

5 to 120 cps while the force signal and a displacement signal {from 

one of the transducers mounted on the model to measure vertical dis

placements at various locations} were displayed on the oscilloscope. 

The chop position on the oscilloscope permitted display of two simultan

eous signals and a measure of their relative phase angle. The signal 

of the exciting force was taken as reference and signals from all the 

displacement transducers were compared with it simultaneously all over 

the range of frequency sweep. Fig.3.20b shows two signals perfectly 

in phase. 

~. 1 
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Another method of displaying the relative phase angle of two 

signals (of the same frequency) on the scope is to use Lissajous figures 

{3}, which are the loci of the motion of a particle subjected to two 

orthogonal harmonie motions of the same frequency but different ampli

tudes and phase angles. These figures can be seen easily on the scope 

in the chop position by plugging one signal in the horizontal axis, and 

the other one in the vertical axis. Fig.3.20a shows Lissajous' figure 

in the general case where amplitudes and phase angles are unequal. 

The frequencies at which there is a ± w/2 phase difference 

between the exciting force and the displacements were recorded. Records 

for all the transducers for a single load position provided bands of 

frequencies which might include a natural frequency. A record on the 

U.V. recorder was taken within each frequency range to examine the 

shape of the dynamic response. 

It is very important to note that if the excitation is not 

correct the criteria of section 3-2-4 do not apply for all points of 

the structure at the same frequency, i.e. it will not be possible to 

get a phase difference of ± w between responses of various points and 

a phase difference of ± w/2 between the exciting force and response 

of different points. 

Examination of these records provided a clue as to what the 

modal shape is likely to be. The next step was then to move the 

shaker to a new position and give it an orientation in space guided by 

the previous modal shapes obtained, and by the rules given in section 

3-2. In general the band of frequencies was narrower in the second 
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trial frequency sweep. This trial and error procedure was repeated 

until the band-width of the frequency scatter was narrow enough to 

enable expedient usage of the amplitude criterion of resonance. A 

very careful frequency sweep was then carried out in that narrow range 

and the amplitudes of response were measured. Whenever the natural 

frequency was reached, the amplitude of responses increased rapidly 

for a constant exciting force. If all the resonance criteria of 

section 3-2-4 were satisfied at this frequency, a correct natural 

frequency and pure modal shape is obtained. 

The preceding procedure can be used with no knowledge of 

the modal shapes, which be the case for complicated multi-element 

structures such as aircrafts. However, in the present case analytical 

results could be used as a guide. For example, it is clear that the 

optimum position to excite the first mode (which is approximately a 

half sine wave) is located somewhere along the midspan cross-section, 

but the orientation of the force is unknown due to coupling. However 

the modal shapes obtained from the theoretical analysis served as a 

check on the appropriate load position and orientation. 

It was found experimentally that pure modes other than the 

first could not be isolated and a unique natural frequency could not 

be obtained with the limited facilities used. However sharply defined 

regions around the natural frequencies were obtained. 

The displacement transducers were used to measure only the 

vertical amplitudes of vibration of the upper deck since measuring the 

horizontal amplitudes of vibration proved to be experimentally awkward 
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due to the coupled vertical vibrations which are perpendicular to the 

core of the transducers. The measurement of vertical amplitudes of 

two points located on the same radius of the curved girder permits a 

comparison of the combined vertical and torsional displacements with 

those predicted by the analysis given in Chapter 2, as will be seen in 

section 4-2. 

3-2-6 Experimental results 

The technique described in section 3-2-5 was used to measure 

the first four natural frequencies of mode1s A and B. These 

frequencies fa11 in the range of 5-115 cps as shown in Table 3-2. 

Table 3-2 

Measured Natura1 Frequencies of the 
First Four Modes of Models A and B. 

Natura1 Frequency (cps) of Mode No. 
Mode1 

1 2 3 4 

A 12.7 59.7 63.0 114.0 

B 12.5 58.65 60.50 115.0 

In Table 3-2 the modes were numbered such that the lower mode 

has a lower frequency but not necessari1y 1ess halfsine waves of vibrat

ion. For examp1e modes 1, 2 and 4 correspond to one ha1fsine wave, 

whi1e mode 3 has two ha1fsine waves. 

.-" [. 
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The simple procedure of dropping a mass on the structure to 

excite the first mode was attempted with a mass of 1/2 lb. dropped 

from one inch at the midspan section of model B. The measured 

frequency was 12.7 cps. 

A typica1 record of the forced vibration taken on the U-V 

recorder near the fourth mode is shawn in Fig.3.20.c. Amplitudes of 

modal shapes measured experimenta11y are given in section 4-2. 

- 1: 
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CHAPTER 4 

ANALVSIS OF TEST RESULTS 

4-1-1 Geometrie properties of mode1s 

It can be c1ear1y seen that solving Eq.(23) and finding the 

modal shapes is an easy task provided that a11 geometric and cross

sectiona1 properties are known. However, it is known that ca1cu1-

ating some of these parameters (Kt' Iw' Xo' Vo) for asymmetric box 

sections is tedious and usua11y do ne 10nghand. It is unfortunate 

that there are no pub1ished empirica1 formu1ae to ca1cu1ate the se 

parameters exp1icit1y for most asyrnmetric cross-sectiona1 shapes 

[B1eich (4) gives some such formu1ae for angles, channe1s, tees, z, 

and uni-symmetric I-section]. The basic definition formu1ae will 

be given here, and References (22, 24, 30, 40, 48) can be consu1ted 

for more detai1s. 

For a sing1e-ce11 box with n fan-1ike extensions, the 

fo110wing formu1ae can be used: 

2 n 
!JL+l L 3 

Kt = bi Ôi ~ ~s 3 i=l 

or 

n 3 

Kt = 4Qq+} L b. Ô. 

i=l l l 

(41-a) 

(41-b) 

, . 
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where n = the area enclosed by the centerline of the 
boxes walls. 

Ôi = thickness of segment i of the boxes wall 
or of the extension. 

bi = length of extension i of the wall. 

q = indeterminate shear flow in the box. 

the first term of Eqs.(4l-a), (4l-b) represents the contribution of 

the box type of behavior to the torsional constant, while the second 

term represents the contribution of ordinary type of torsion in the 

extensions. In case of an open section,only the second term is 

applicable. 

The coordinates of the shear center (xo' yo) and the 

warping moment of inertia Iw can be calculated from the following 

formulae: 

where w 

f w x dA = 0 
A 

I w y dA = 0 

A 

Iw 

2 
" = f w dA 

= the sectorial coordinate of any point on the 
cross-section as defined by Vlasov (40). The 
origin of the sectorial coordinates can be 
obtained from the follo\'ling condition: 

(42-a) 

(42-b) 

(42-c) 

". 
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'" w can be expressed genera11y as: 

w = 
s s 

f h ds - LlL. f ds = 
o ~ d~S 0 ~ 

s 
f h ds 
o 

s 
2q f ds 

o ~ 

(43) 

(44) 

where h = offset of the tangent to the wall at point s, measured 
from sectoria1 pole (shear center). 

The first term in Eq.(44) represents warping at point s relative to 

that of the origin of sectoria1 coordinates, the second term represents 

the reduction of warping caused by the indeterminate shear f10w q in 

the box. In the case of an open thin-wa11ed section on1y the first 

term app1ies. 

Figs.3.1 and 3.2 give the average cross-sectiona1 dimensions 

and thicknesses for mode1s A and B respectively. The physica1 

properties of both models were calcu1ated as described before and 

1isted in Table 4-1. The warping displacement diagram (sectorial 

coordinates) for cross-sections of mode1s A and B is given in Fig.4.1 

as obtained from Eq.(44). A discussion of warping in the overhangs is 

given in Appendix 1. 

4-1-2 Mechanical properties 

It was shown in section 3-1-2 that the value Ec is different 

for pure tension and flexure. On the other hand, the box behavior 

under loads resu1ts in a combination of in-plane stresses and f1exura1 



Pro pert y Model A 

A 8.01409 in~ 

Ix 12.330796 in~ 
4 

Iy 188.845212 in. 

Ixy 0 

rx 0 

ry 0.49292 in. 

Ip 201.176008 in~ 

+'" 

Table 4-1 

Properties of Models A and B 

Model B Pro pert y Model A 

8.61620 in~ Xo 0 

12.747827 in~ Yo -0.26594 in. 

4 4 

190.736361 in. Kt 31.699226 in. 

4 6 
0.232158 in. Iw 67.727584 in. 

0.039188 in. R 51.00 in. 

0.400655 in. al 900 

2 

203.484188 in~ p 0.000114 lb:S~c. 
ln. 

Model B 

0.02515 in. 

-0.24039 in. 

4 
31.708682 in. 

6 
60.701714 in. 

51.075 in. 

900 

2 

o . 000114 1 b: s~c . 
ln. 

0\ 
.,::. 

.1 
"'1. 
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stresses, hence it can be concluded that the chosen Ec value should 

be somewhere in between. 

Static analysis of curved boxes under various loading con

ditions (12) indicate that the ratio between major in-plane stresses 

and flexural stresses varies appreciably with the location and with 

the loading condition. It seemed logical to compare with the case 

of distributed loads and take the average of the in-plane modulus of 

elasticity (421 KSI) and the flexure one (460 KSI) hence Ec = 440 KSI. 

Poisson's ratio v = 0.36 is taken as an average of the 

experimental values obtained in section 3-1-2. 

4-2 Natural Freguencies and Modal Shapes 

Natural frequencies can be calculated directly from Eq.(23}, 

given the numerical data of section 4-1. The relative amplitudes of 

modal shapes can be calculated from Eqs.(24}, (25) and {28} in terms of 

the vertical amplitude, which is assigned a unit value. 

The program given in Appendix II was used to calculate the 

coupled natural frequencies of the curved girder and the natural fre

quencies of an equivalent straight girder with no coupling. The 

relative amplitudes of modal functions in the u, v and ~ directions 

and the tangential movement of the roller support are given in Tables 

4-2, A and B for models A and B respectively. Since the modulus 

ûf elasticity after creep Ec was used in calculating the frequencies 

of Tables 4-2, these values must be corrected to account for the 
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Table 4-2, A 

ANALVSIS OF MU~EL A 

THE ~UUPLED NATURAL FReQUENCIES AND IIMPL. ITlID!:S OF MODAL FUNC 'f II)'~S 

MODt: FREQUENCV CPS VERT. AMPLI HnRl. AMPL. TORS. AMPL. R.S AXIAL OISPL. 

63.82 Q49 1.00000 122.26010 0.10411 61.03673 

106.17053 1.00000 .. 0.6B661 1.23520 .. 0.50155 

1 12.43012 1.00000 -0.00883 "0.03229 -0.00012 

2 198.64483 1.00000 0.32415 0.93661 0.01 877 

2 2B6.79655 1.00000 .. 66.36014 1.33777 -16.67998 

2 67.23980 1.0000n -0.00293 -0.04239 0.00209 

3 300.13468 1.00000 (').07247 0.73861 .. 0.02066 

3 656.ZRAB4 1.00000 -120.577!il 1.599"6 ~20,16717 

3 158.78449 1.00ClOO -O.OC213 -0.05::.82 0.00203 

4 411.62312 1.00000 0.02637 0.51525 -0,01383 

4 U73.71697 1.00000 -143.59556 1.71838 .. 18.00657 

4 284.71107 1.00000 -0.00228 -0,077l7 0,0022A 

5 541.86423 1.00000 0.00966 0,28618 .. 0,00664 

5 1638.Q9C1Z7 1.00000 -155.203l1 1,77940 "'15,56763 

5 437.53220 1.0000(\ -0.00335 -0.13897 0,00336 

THE UNCOUPLEO NATURAL FREQUENCIES OF AN EQUIVALENT STRAIGHT SR tOGE 

MODE HORIZ. FREQ. CPS VERT. FREO. CPS TORS. FREQ, CPS 

1 0.738140 02 0.18a620 02 0.935460 02 
2 0.295260 03 o.7544'1LJ 02 0.189180 03 
3 0.664330 03 0.169760 03 0,288900 03 
4 0.118100 04 0.301791) 03 0,394600 03 
~ 0.18454C 04 0.47154U 03 0.501940 03 
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Table 4-2, B 

ANftLYSIS UF MonEL n 

THE ~OUPLED NATU~AL FREQUENCIES AND AMPLITUDES OF MODAL FUNCTIOI'iS 

MODE H FREQUHICV CPS VERT. AMrL. HORZ. AMPL. TORS. AMPL.. R,S AXlAL DISPI.. 

1 61.69741 1.00000 146,9'5978 0.79470 73.38416 

1 106,37042 1.00000 -0,60848 1,26n58 -0.45609 

1 12.10491 1,00000 -0,00656 -0,03257 0,00064 

2 197,28017 1,00000 0.33461 0,96011 0.02583 

2 271,101b1 1,00000 -5C1,45863 1.23i!38 .. 14,93925 

2 65,64276 1,ClOOOO -0,00138 -0,04296 0,00224 

3 291,38043 1,00000 0.07301 0.76074 -0.01838 

3 634,10730 1,r,OOOû -106,47690 1,38n55 .. 17 .80191 

3 155.09860 1,00000 .. 0,00061 -0.05451 0.00208 

4 406,77816 1.00000 0,02731 0,53511 .. 0.01271 

4 ll34.05745 1,00000 ... 124.13648 1.45132 -15,63577 

4 278.18146 1,00000 -0,00081 "0,(17799 0,00225 

5 533,70744 1.00000 0.01095 0.30268 .. 0,00620 

5 1776.B5941 1.00000 .. 133,58063 1.48?53 ... 13.39378 

5 427,76370 1.00000 .. 0,00181 -0.13907 0,00317 

THE UNCOUPL.EO NATURAL FREQUENCIES OF AN EQUIVALENT STRAIGHT BRli"lGE 

MODE HORIZ, FREQ, CPS VERT. FREQ. CPS TORS. FREQ, CPS 

l 0,713340 02 0,184420 02 0,928700 02 
2 0,2B5340 03 0,73'7660 02 0,18'7600 03 
3 0.64201[; 03 0.165970 03 0,285980 03 
It 0.114130 04 0,295060 03 0,389690 03 , 0,178330 04 0.461040 ~3 0.500270 03 
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dynamic modu1us of e1asticity Ed. 

Reca11ing Eqs.(17) for natural frequencies of a straight 

simply supported beam with uncoupled vibrations, it can be seen that 

the frequency w is proportional to the square root of E. However, 

in the general case of coupled vibrations, this relationship is not 

identica1 as can be seen from Eq.(23). Neverthe1ess, the preceding 

approximation is probab1y adequate for the relatively small corrections 

invo1ved. Eq.(39) is used, with a taken from Fig.3.10, to correct 

the frequencies of Tables 4-2, A and B. 

Model 

A 

B 

Table 4-3 
Corrected Theoretical Natural Frequencies 

vs. Experimental Values 

Mode Ca1culated 1/2 FreQuency cps. 
No. Frequency a Theoretical Experlmental 

1 12.43 ~ .107 13.55 12.7 

2 63.83 ~ .025 65.20 59.7 

3 67.24 ~.023 68.90 63.0 

4 106.77 ~.020 108.8 114.0 

1 12.10 ~ .10 13.3 12.5 

2 61.70 1.026 63.20 58.65 

3 65.64 ~.024 67.10 60.50 

4 106.37 ~ .02 108.30 115.0 

Error 
% 

-5.53 

-8.42 

-8.6 

+4.78 

-6.02 

-7.20 

-9.85 

+6.18 

Table 4-3 shows the ca1culated frequencies obtained from 

Tables 4-2, A and B, the corresponding correction factors, the corrected 
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theoretical frequencies, the corresponding experimental values and the 

percentage of error. 

Figs.4.l, 4.2, 4.3 and 4.4 show a perspective view of the 

first four modal shapes for the upper deck of model B as predicted by 

Eqs.(24), (25) and (28) with the amplitudes ta ken from Table 4-2, B. 

Vertical component of the modal shape of the exterior edge Vl and 

interior edge V2 of the upper deck are also shown with the correspond

ing experimental results. These Figures also show two positions of 

the cross-section at maximum amplitudes and the optimum location and 

orientation of the exciting force. 
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CHAPTER 5 

DISCUSSION, SUMMARY AND CONCLUSIONS 

5-1 Limitations of the Resu1ts 

Experimental frequencies are within a margin of ± 5 - 9% of 

ca1cu1ated values. Sorne possible sources of error can be identified 
", 

as fo110ws: 

(a) Theoretica1 solutions 

(i) The value of Ec used in ca1cu1ating the natura1 
frequencies, though reasonab1e, is not necessari1y 
correct. The exact Ec value for plexiglas is 
hard to predict as was shown in section 3-1-2. 

(ii) The theoretica1 values obtained from Eq.(23) were 
based on the assumption of a beam-1ike behavior 
and thin wa11ed cross-sectiona1 dimensions. In 
fact the width/diameter ratio of the mode1 (18/51), 
and the width/span ratio (18/80) are both re1ative1y 
large for a re1iab1e application of thin wa11ed beam 
theory. 

(iii) The curvature of both mode1s (1/51) is re1ative1y 
high compared to rea1 curved highway bridges. For 
very large curvatures the shift in the position of 
the neutra1 axis of the beam towards the center of 
curvature shou1d be considered. 

(iv) The effects of diaphragms used in both mode1s are 
not accounted for in the thin wa11ed beam theory. 
Sucn diaphragms change the torsiona1 stiffness of 
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the box, and so the natural frequencies. 

(b) Experimental results 

(i) As mentioned previously (section 3-2) an 
infinite number of synchronized shakers is 
needed to excite a pure mode of a continuum. 
The smaller the number of shakers used the 
more error can be expected in natural fre
qaencies and modal shapes. 

(ii) For a given number of shakers (one in our 
case),discrepancies from the correct modes 
will increase as the number of halfsine waves 
of the mode increases. 
in the test results. 

This was experienced 
For mode 3. which con-

sists of two halfsine waves, it was found that 
there is a small amplitude of vibration at the 
theoretical nodal line located at midspan 
(Fig.4.3) in addition to incomplete symmetry of 
the modal shapes. 

(iii) Force orientati~n was considered taking into 
account the u, v and ~ but not the w dis
placements. For mode 2 where the axial or tan
gential vibrations are significant, one might 
expect more error than in modes 1 and 4. 

5-2 Summary 

The objectiv~s of this work were to obtain a solution to the 

general case of coupled free vibrations of curved simply-supported box 

girders of any cross-section, and to carry out laboratory tests to com

pare with theoretical natural frequencies and modal shapes. 

· ' 



- 72 -

An idea1ized mode1 was deve10ped in Chapter 2. The basic 

differential equations of motion of a curved thin walled beam element 

were derived for quadruple coupling between the radial, vertical, 

torsiona1 and tangential vibrations. The cross-section was assumed 

non-deformable while damping, rotary inertia and shear deformations 

were neglected. It is important to state that this analysis cannot 

predict local vibrations of various parts of the girder. By 

neg1ecting axial inertia forces and assuming the axial force equa1 to 

zero, quadruple coup1ing was reduced to triple coupling between radial, 

vertical and torsional vibrations. The case of a simply-supported 

curved girder was solved assuming sinusoidal modal functions. Ampli

tudes of modal functions were determined relative to the vertical one 

and the amplitude of tangentia1 m~tion of the roller support was cal

culated. The orthogonality condition of the coupled modal functions 

was established and satisfied for small amplitudes of vibration. A 

parametric study was performed to investigate the effect of various 

geometric parameters on coup1ed natura1 frequencies. The resu1ts of 

the parameter study are given in section 2-11. 

Two simply-supported curved box girder models made of plexi

glas were tested experimental1y. The first model had a single ce11 

section symmetric with respect to the vertical axis. The second model 

had a two-cell asymmetric cross-section. Both models have a central 

angle of 900, radius of 51 inches, upper deck width of 18 inches, depth 

of 2.7 inches. 

~I 
1 
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The models were excited by one concentrated dynamic force 

whose position, orientation, frequency and amplitude can be controlled. 

Probing of natural modes was done by a trial and error procedure until 

a nearly pure modal shape satisfying resonance criteria involving phase 

and amplitude was obtained. Vertical response at several points on 

the upper deck were measured for the first four modes. Reasonable 

agreement between the theoretical and experimental frequencies and 

modal shapes was obtained. 

5-3 Conclusions 

It can be concluded that thin walled beam theory, which is 

the basis of the given theoretical analysis, together with the other 

simplifying assumption~ can be used to estimate the natural modes and 

frequencies of a curved simply-supported girder of asymmetric multi

cell section, even in cases of high curvature, width/radius, width/span 

ratios. 
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Idealized model of a simply supported 
F· 21 curved asymnetric bûx girdet Ig .. 

Fig.2.2 Forces acting on an element of a 
curved girder 
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Vertical (v - ~ xo) Horizontal (u - ~ Yo) 

y 

(a) Net centroida1 disp1acements 

cS u = (x - xo}(cos ~ - 1) + (y -Yo) sin </> 

cSv = (x-xo) sin</> +(Y-Yo}(1-cos</» 

(b) Net disp1acement of a point on the wall 
M due to an angle of twist </> on1y. 

Fig.2.3 

• . J' 
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Fig.3.3 General View of Model B 

Fig.3.4 Left support of Model B. 
Two Roller Point Support and 

One Hinge Point Support. 
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Fig.3.3 General View of Model B 

Fig.3.4 Left support of Model B. 
Two Roller Point Support and 

One Hinge Point Support. 
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Fig.3.5 Right Support of Model B. 
Three Roller Point Support. 

Fig.3.6 Shaker Head and Attachment to the Model. 
Showing also Accelerometer and Load Cell 
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Fig.3.5 Right Support of Madel B. 

Three Raller Point Support. 

V il 

" 

Fig.3.6 Shaker Head and Attachment ta the Madel. 
Showing also Accelerometer and Load Cell 
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Fig.3.1l Curved Webs mounted on Special 
Jl.luminum Frameworks 

Fig.3.12 Curved Webs glued to the Upper Deck. 
Wooden Studs used for Web Alignment 

1 
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Curved Webs maunted an Special 
Aluminum Framewarks 

Curved Webs glued ta the Upper Deck. 
Waaden Studs used for Web Alignment 
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Fig.3.l4 The shaker and it's 
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model. 
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Fig.3.18 Top left to right, Oscillator, OC Power Supply, 
Shakerls Power flmplifier, Oscilloscope, 

Load Cell IS Bridge and Amplifier. 

Fig.3.l9 Oisplay System U.V. Recorder and Memoscope 
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Fig.3.l8 Top left ta right, Oscillator, DC Power Supply, 

Shakerls Pm'/er ,lImplifier, Oscilloscope, 
Load Cell IS Bridge and Amplifier. 

Fig.3.l9 Display System U.V. Recorder and Memoscope 
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APPENDIX 1 

WARPING IN BOX GIRDERS WITH OVERHANGS 

Engineering beam theory assumes that plane sections remain 

plane when the beam deforms under loads. Although this assumption 

leads to reliab1e prediction of the behavior of solid girders, 

nevertheless, it is not adequate for thin wal1ed beams, (30, 40, 48). 

The longitudinal disp1acement in the x-direction (Fig.l.a) caused by 

a torque and/or (for cases where there is coup1ing between the bending 

and twisting moments) bending moments or bimoments is defined as the 

warping disp1acement. V1asov (40) introduced the concept of the bi

moment which consists of two parallel, equa1 and opposite moments 

about one axis acting a distance apart to describe the warping pheno

menon. The effects of such bimoments can be superimposed on the 

results of engineering beam theory to obtain the total behavior. 

The distribution of warping displacements in the overhangs 

as obtained from Eq.(44) and shown in Fig.4.l is open to question. 

Dabrowski (11) reported a1most the same distribution for a single cell 

box with two overhangs simi1ar to the cross-section of model A. It 

is not obvious that the absolute value of warping disp1acement shou1d 

decrease in magnitude between the joint with the web and the free end 

of the overhang. If the overhang is thought of as an extension fixed 

to the upper deck, warping shou1d increase as one proceeds away from 

, 
1 ~. 
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the center of twist. It follows that one might expect an increase 

of the absolute value of the warping displacement as one proceeds 

towards the free end of the upper deck. 

A three-dimensional finite element program (3a) which 

assumes six degrees of freedom at each node (three displacements 

and three rotations) and takes into account both bending and in 

plane stresses, was used to analyze the warping behavior of a box 

with overhangs. A straight girder with cross-section similar to 

that of model A was idealized as shown in Fig.I.a. The end con

ditions were such that sec-l was completely free in all directions, 

sec-3 was constrained at the nodes against x and z displacements, 

and no rotations with respect to the y and z axes were permitted. 

No relative movements along the sides connecting two adjacent nodes 

were allowed. 

Two loading conditions were used - the first a torque 

applied at the free end 'sec-l' Fig.l.b, and the second a bimoment 

idealized as four equal forces acting as shown in Fig.I.e at sec-l 

as welle 

Warping displacements in the x-direction obtained from the 

program are shown for both loading conditions at two sections 1 and 

2 in Figs.I.c, I-d, I-f, I-g. It can be seen that the absolute values 

of warping displacements in the overhangs are always greater than 

those at the joint with the box, for both sections under both loading 

conditions. 
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This difference in distribution of the warping displace

ments in the overhangs should not significantly affect the girder's 

natural frequencies and modal shapes, since the effect of warping in 

boxes is generally small as compared to other effects. However, in 

some cases such as restrained warping the inadequacy of the theory 

might cause some undesirable results. It can be concluded that a 

re-examination of thin walled beam theory as given by Vlasov (40) i"s 

indicated in this case. 

~: 1 

1 
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Finite Element Analysis of warping displacements (in the x
direction) in a box girder with overhangs. 
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APPENDIX II 

COMPUTER PROGRAM 

* ••••••• *.* •• *.** ••••••••••••••••• *** •••••• * •• * •••••• ** •• *.** ••••• 
FREE VIBRATIONS OF CURVED THIN WA~LED GIRDERS 
••• * •••• * ••• **.****.* ••••• * ••••••••• * ••• **.* •• *****.*****.** •••• ** 

PURPOSE-CALCULATES NATURAL FREQUENCEES AND AMPLITUDES OF MODAL 
FUNCTJONS FOR A CIRCULARLY CURVEO SIMPLV SUPPORTED GIROER. 
iHE C~OSS SÉCTION CAN BE SOLID OR THIN WALLEO ASVMMETRICAL 
UNISYHMETRICAL OR DOUBLV SVMM!TRICAL W.R,T~ CENTROIDAL 
AXES X ~ V, . " 

ALPHABETICAL INDEX OF PARAMETERS 

A 
ALFA 
OPRQO 
E 
1 
11 
01 
PHI 
Pt 
PIE 
POIS 
R 
RD 
RSW 
RX 
RY 
TI< 
UU 
VE 
WCI"J' 

WI 
WT 

WU 

WV 

Xt 
XO 
XVI 
VI 
VO 

~CROSS SECTIONAL AREA 
-CENTRAL ANGLE IN DEGREES 
-IBMI5 SSP PACKAGE SUBROUTINE, FINOS ROOTS OF A POLVNOMIAL 
-MODULUS oP ELASTICITV 
-MODE NUMBER OR NUMBER OF SINE WAVES LONGITUOINALLV 
-NUM!!R OF MODES DESIRED 
-POLA~ MOMENT OF ENERTIA W.R,T, SHEAR CENTER 
-TORSIONAL AMPLITUDE OF MODAL FUNCTIoN 
-POLAR MOMeNT OF INERTIA W.P.T. CENTROID 
-3.1415926535898 
-POISSON 5 RATIO 
.RAOIUS OF CURVATURE MEASUREO TO CENTRDID 
.MA5S PER UNIT VOLUME OF MATERIAL IN USE 
-AMPLITUDE OF RIGHT SUPPORT MOTION 
~X.CV·.Z'*OA/XI 
-JV*CX**Z'*OA/VI 
-ST-VENANT 5 TORSION CONSTANT 
~HORIIONTAL AMPLITUOE"OF MODAL FUNCTION 
.VERTICAL AMPLITUDE OF MODAL PUNCTION 
-ROOT J OF THE I~TH COUPLED NATURAL FRtQUENCIES IN CYCLES 

PER .SECOND 
-WARPING MOMENT OF INERTIA 
-UNCOUPLED TORSIONAL NATURAL FREQUENCV OF AN EQUIVALENT 

STRAGHT GIADER 
-UNCOUPLEO HORIZONTAL NATURAL FREQUENCY OF AN EQUIVALENT 

STRAIGHT GIRDER 
-UNCOUPLED VERTICAL NATURAL FREQUENCY OF AN EQUIVALENT 

STRAIGHT GrRDER 
-MOMENT OF INERTIA W.R.T. A HORIZONTAL CENTRorOAL AXIS 
-X-COORDINAtE OF SHEAR CENTER 
.PROOUCT OF INERTIA w,R.T, AXES X&V 
-MOMENT OF INERTIA W.R.T, A VERTICAL CENTROIDAL AXIS 
-V-COORDINATE OF SHEAR CENTER 

JMPLICIT REAL.8(A-H~O-Z' 
DIMENSION COF14',US(4)~Z(4),V(4),W(5'3),WUS(5',WVS(5'~WTS(S) 
OATA PIE/3.1415926S358981 
REAO C 5~ 130' M 
READCS,140)E,RO"POlS 
READC5,140'R,ALFA 
~EAD(S~140)A~XI"YI,XVI 



REAO(SI1~O'XO,VOIRXIRV 
MEAD(SI140, W!ITK,PI 
WRITEC6,1,6'E,RO,rUIS 
WRITEC611'7)R,ALFA 
WRITEC6,138,A,XIIVI,XVI 
WRITE(61139)XQIVO,RX,RV 
WRITEC6,141lWJ,TK,pr 
DPH:aZ.*PIE 
GaE/C2.*Cl.+PDIS" 
SL-ALFA*Ple*R/(180.) 
oraPI+A*CXO*XQ+VO*VO' 
CO-l.-TK/PI 
Cl-XVI/XI 
C2-XVI/VI 
C3-RX/R 
C4-RV/R 
CS-XO/R 
C6-VO/R 
t7- C A*R*R l/P 1 
C8-1.+C7*CC'*C~+C6*C6) 
DO 40 l-l,M 
Ir/US CI) -O. 
WVSCI)_O. 
WTS(l)aO. 
DCI 40 Jal,3 
WCI,J'.O. 

40 CONTINUE 
PRINT 132 
PUNT ZOO 
00 90 hl,M 
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C9 a C(CDFLDATCII'*PIE)/SLl**2 
Cl0-1./CR*R*C91 
CU-l,-ClO 
C12-1,-Cl*C2 
C13-C1*Cl0 
WUSCI)-CC9*C9.E*VI'/CRD*A) 
WVSCI)-CC9·C9*E*XI~/CRO*A' 
WTSCI)-C9*CG*TK+CO*C9*e*WI)/CRO*OI) 
RA1-WUSCl)/WVSCI) 
RA2-WTSCI)/WVSCI' 
COF(1)-C8*Cll*Cll*CC3*C10-Cl*C4*Cl0-Cl1*C1Z)*RA1*RAZ 
COF21.Ca*Cl1*C1Z.2.*C13*CS*Cl1*C1Z+C13*CZ*Cll*C3*C6-Cl3*C1*Cl1*C4* 

a(CS.C10)-C13*C4*C6*Cl1+Cl0*C13*Cll*C1Z+C13*C3*Cll*CC'+Cl0, 
COFZ2.ca*Cl1*Cl1*Cl.+Cl*(6)-CS*C10*Cl1*CC3-Cl*C6, 
COF23.C8*Cll*~2.*C'_C6*C6+1 •• CC8/(7» 
COFCZ)-COF21*RA1+CDF22*RA2+COF23.RA1*RA2 
COF31.CZ*C6*,CS-C7*C6*(6)+C7*C5*C6*CZ*Cl,+C1O)-CT*C'*C6*«(6-C4*Cl0 

a , +C13*C2*C6",.C 13*e6*, C6 .. C4) -c 11*' CS-C7*e'*C5' 
COF3z.ca*Cl.+2.*C5+(C8/C',-C6*C6) 
COF33.C7*Cl*C5*C6~(C8~C7*C6*C6).C13*'-Cl*C6+2.*CS+Cl0+C3*(C5+C10») 
toFC3'-COF31*RA1~COF32*RA2+COF33 
COFC4).1. 
CALL DPRQOCCOP,4,US,Z,V,3,IER) 
DO 80 J-l,3 



l 
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C 
C CALCULATION OF AM~LrTUOES OF MODAL FUNCTi~N~ 
C 

D1I-Cl*C11-C6*USCJ) 
012--1.-IC8/C1)*RAZ.USIJ) 
D13-R*IC-C8/C')*RAZ.CIO*Cl.+C3)+Cl*C6*ClO+CC6*C6-C')*USCJ)) 
021-Cll*RAl-USIJ) 
D22--ChRAl 
023_R*(-C2+C6-C41.CIO*RA1+YO*USIJ) 
D31-R*IC1*CIO*CI1-C6*USCJ» . 
032--R*ceC8/CT)*RA2+CIO+C5*USeJ» 
D33-R*R*CCC8/C7'*,wRA2+USeJ»-CIO*CIO*(l.+C3-Cl*C6») 
VEel. . 
PHI-ve*C031*022-D32*021)/CD2l*D33-031*023) 
~U-,-D22*VE-023*PHl)/D21 
C14-1./COSQRTCC9» 
RS~-UU*C14/R-PHl*C14*CXYI/CA*R*R).C6) 
WRITEC6,210)I,WCI,J),VE,UU,PHI,RSW 

80 CONTINUE 
DO 85 K-l,4 
COFCK)-O. 
US 0<)-0. 
ZCK)_O. 
V(K)_O. 

85 CONTINUE 
90 CDNTI~UE 

PRINT 220 
DO 100 I-l,l~ 
WU-eDSQRTeWUSCII»/DPIE 
WV-CDSQRTeWVSCI»'/DPIE 
WT-CDSQRTeWTSCll»/OPIE 
wRlTEe6,,250) I,~IU"WV,WT 

100 CCNTINUF. 
130 FnR:~ATCI2) 
132 FDRMATCIH1,T20,'ANALYSIS OF MODEL Ail 
136 FDRMAT(lHO,'E a',F AIO,' PSI',2X,IOENSITY- ',FB.6/~X,'LR.SECZ/IN4' 

~ ,2X,'POIS- ',F4i2) 
137 FORMATelHO,'RADIUS OF CURVATURE- ',F1.3,5X,'CENTRAL ANGLE- ',F6.Z, 

@' DEGREES' ) 
]38 FORI·IATelHO,,'A a', F9.S,,6X,'XI- '"FIO.6,,3X,'Yl- ',F10.6,3X,IXYI'" l, 

@ F8.6) 
139 FORHATIIHO"XO- I"FA.6"SX,'YO- ',F9.6,4X,'RX- ',FB.6,6X,IRY- '"F8. 

;" 6) 
140 FORMATC4F1S.6) 
141 FO~MAT(lHO" 'WI- ',F10.6,,3X,,'TK- I,F10.6,3X,,'PI- I,FlO.6) 
200 FClRMATC//IIHO,'THE COUPLED NATURAL FREQUENCIES AND AMPLITUDES OF 

@MnOAL FUNCTIONS',112X,'MODE N',,3X,,'FREQUENCY CPSI,3X,IVERT. AMPL,' 
~ ,,2x,'HORZ. AMPL,',,3X,'TORS. AMPL.I,2X,'R.S AXIAL DISPL.',,/I) 

210 FORMAT(lHO,4X,lZ,5X,SCFIO,S,4X)1 
220 FORMATe/IIIHo,lX, 'THE UNCOUPLED NATURAL FP.EQUENCIES OF AN EQUIVALF 

@NT STRAIGHT BRInGE ',1/1X,,'MODE',3X,IHORIZ. FREQ. (PS',2X, 
@'vERT. FREQ. epS',4X,'TORS. FREQ. CPS'I) 

250 FORMATe2x,Iz"5X,3(f13.5,,SX» 
STOP 
END 
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