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ABSTRACT

Thi§ thesis investigates the effect of randomly varying added
mass on the dypamics of a flexible cylinder in an external axial two-phase

flow, bounded a rigid immobile channel. ) |

aviour of a cylinder in two-dpase flow has been found to
and Tess predictable than in single-phase flow. Experi-
ments have shown \ at damping is significantly higher in simulated two-phase
flows, depending om the flow regime, and that the hydrodynamic or added mass
decreases with increysing void fraction, but at a higher rate than that of

The b
be very differen

the mixture density.

The hypothesys is made that these effects might arise from random

fluctuations of the hydyodynamic mass.

" After an attempt to find a theoretical formulation of thi§ proba-
bilistic problem, based on a model of the fluid-structure interaction at the
molecular level, a numerical approach is adopted. This simulation consists
in applying random perturbations on the added mass coefficient of a one-.
degree-of-freedom system, and investigating their effect on the response

frequency and damping.

A first digital analysis of the free vibrations of this system is
conducted in the time domain. A second digital anq]ysis of the free vibra-
tions is also undertaken, but this time in the frequency domain. Finally,
an analog simulation of both free and forced vibrations of the system is
carrieé out by means of an analog computer and a FFT electronic frequency
analyser. o

A1l three studies exhibit & behaviour in agreement with the effects
sought, but occurring with a magnitude much lower than expected.
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L'EFFET DE FLUCTUATIONS ALEATOIRES
DE LA MASSE AJOUTEE SUR LE
COMPORTEMENT D%NAMIQUE D'UN hYLINDRE
FLEXIBLE DANS UN ECOULEMENT

FLUIDE DIPHASIQUE ET AXIAL

Cetter thése traite de 1'effet de fluctuations aléatoires de la
masse ajoutée sur le comportement dynamique d'un cylindre flexible soumis

a un écoulement externe, axial et diphasique, 1imité par ur/ conduit rigide

et immobile. —

~

IT a été établi que le comportement d'un cylindre dans un o

écoulement diphasique est trés différent et moins prévisible que dans un
écoulement monophasique. Des expériences ont montré que 1'amortissement

est nettement plus élevé dans des écoulements diphasiques simulés, suivant
le régime d'écoulement, et que 15 masse hydrodynamique, ou masse ajoutée,
décroft lorsque Te pourcentage de vapeur s'accroft, mais ceci plus rapidement

B

que ne le fait la densité du mélange.
) On émet 1‘'hypothése que ces effets proviendraient de fluctuations
aléatoires affectant la masse hydrodynaquue.

Apras une tentative de formulation théorique de ce probleme proba-
biliste basée sur un modele a 1'échelle moléculaire de 1'interaction entre
fluide et solide, on a choisi une approche numérique. Cette simulation con-
siste a appliquer des perturbations aléatoires sur le coefficient de masse
ajoutée d'un systeéme & un degré de’liberté, et a étudier leur action sur la

fréquence et 1'amortissement de la réponse.
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On entreprend une premi2re analyse digitale des vibrations libres
de ce systéme, dans le domaine temporel. Puis;on entreprend une seconde
analyse digitale, €galement des vibrations libres, mais cette fois i1 s'agit
d'une étude fréquentielle. Finalement on mene & bien une analyse analogue,
a la fois des vibrations 1ibres et forcéés du systeéme, au moyen d'un calcu~-

lateur ana]oéique et d'un analyseur de fréquences FFT électronique.

v

Ces é€tudes aboutissent toutes trois & 1a mise en évidence
des effets recherchés, mais avec une amplitude beaucoup plus faible que

souhaitée.
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CHAPTER .
INTRODUCTION

The study of flow-induced vibrations of structural components' has
been greatly intensified in recent years [1].
-/ Some spectacu]ér failures come indeed to mind to point out how
important these vibrations may become in some cases. One exciting example-
is the famous -oscillation bin Novembe; 1940 of the Tacoma Narrows Bridge in
Washington State; four months after its opening, the fine suspension Bridge
swayed violently in aos;ceady wjnd of about 42 miles per hour and was ulti-
mately d"estroyed. But the worst accident to be quoted here occurred on
March 27, 1980 in the North Sea, when the Alexaﬁder L. Keilland semi-sub-
mersible 0il platform capsized in heavy seas, after one of its five suppor-
ting legs had buckled aﬁd then fractured; a total of ‘i23 0il workers and
engineers perishéd in the disaster, most of them trapped in near—freezir{g

waters 80 metres deep.

-~

& Undoubtedly the greatest amount of research has been performed
in the aeroelasticity field, since the criterion of minimizing the deag-,
weight compared to vehicle performance characteristics is of utmost impor-
tance in the aerospace industry. Some useful information on’ plafe and shell
problems can be found in Refs. [2-4].

Other problems have also been investigated as for instance the
behaviour of urban winds between high skyscrapers or, especially {in Canada,
the galloping of ice-coated transmission 1ines in a steady wind. In the
early 1960's-it has also been attempted to transport oil cheaply by sea in

a nylon-rubber oﬂ‘ barge or "dracone"4 although this was a commercially

acceptable proposition, Hawthorne [5] dnd Paidoussis [6] showed that rigid
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body oscillations occur at low towing speeds, whilst flexural instabilities
of buckling and flutter type occur at higher towing speeds.

Our interest in this thesis is in the dynamics of flexible *slender
cylinders immersed in external tWo-phase axially flowing fluid.

The topic of flow-induced vibrations of cylinders has received
growiﬁé attention fro& researchers because of repeated and sometimes very
costly equipment failures in the power generating industry, having even led
to some complete plant stoppages. As.a matter of fact, such devices as

d;bo{1ers, heat exchangers, steam genergtors and nuc]par reactors have prima-
rily been designed for heat transfer or other specific purposes, whereas
flow-induced vibrations used to be considered, not so long ago, as a secon-
dary design paramete;i

Unlike the case of cross-flow-induced vibrations where large
amplitude oscillations develop even at moderate flow velocities, the sub- ) 3

' Jject of parallel-fiow-induced v;brations is rather new. The first experi-
mental stu&y was reported by Burgreen et al. [7] in the late 1950'5: Later
Paidoussis [8] formulated an equation of motion and performéd the first
stability analysis of a solitary cylinder in unconfined steady incompressible
axial flow. He shgwed that small flow velocities damp free motions of the
cy]}ader and dimin%;h its natural fréquencies, whereas increasing flow velo-
cities eventually destabilize the system, first by buckling (divergence)
and finally by flutter. It is these instgbi1ities which have been given
'the name of fluidelastic instabilities - fluidelastic being a generic word
for both aeroelastic and hydroelastic. A number of refinements were included

in subsequent work [9,10] and, among others, the study was expgﬁﬁed to the :

case of several cylinders arranged in a cluster [10]. At thfs stage, the . é
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exg&é§sion of, the hydrodynamic or "added" mass was refined in order to
tak; into account the effect of confinement of the flow either by a narrow
chanqs] or by surrounding but still immobile cylinders. The next important
step was to include the fact that adjacent cylinders do not remain passive,
but on the contrary underg&“comh1ex hydrodynamically coupled motions; this
was first achieved by Chen?[11] and has since then been extended and also
verified by a whole set of experiments [12]. 6ne of the main effects of
flow channel confinement and of hydrodynamic couping to neighbouring
cylinders is to severely Tower the stability sthreshold. It was also observed

that, once the system becomes unstable, it is subjected to a succession of

Y
buckling and flutter instabilities with increasing flow, of progressively

more complex modal shape.

Nevertheless, the critical .flow speeds ledding to fluidelastic
instabilities remain still higher than the flow velocity ranges usually
encountered in industrial applications, that is why only the small-amplitude

or "sub-critical" vibrations are of current interest; Normally such small

vibrations, typically 10'3 to 107 cm, would belneg]ected, were it not for

inter-

the often extremely close spacing of the cy]inders'in the array, wizy’
cylinder gap-to-radius ratios of the order of 107!

. [A bundle of nticlear-

reactor fuel elements is reproduced in Fig. 1]. Hence, although very small,

these vibrations may cause intercylinder impact, which may result in fret-

ting-wear damage. Several mechanisms of sub-critical vibrations have been .

proposed and they have been reviewed in Refs. [13,14]; it is now wide]y'
accepted that these vibrations are a random regponse to the random fluid

pressure forces developed in the flow field. . , "
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On the whole, several review papers are available in the litera-
ture on vibrations of cylinders induced by axial (and cross) flow [15-19,
21,22]. ) )

A new classification of these vibrations has been proposed very
Fecent]y by Paidoussis [21],'distinguishingﬁﬁépween three main types of
behaviour: (i) response to pressure f]uctuatiéns in the flow at a1l flow
velocities; (i1) parametric resonances at specific flow speeds or excitation
frequencies; (iiij fluidelastic instabilities for very high flow velocities
[see Fig. 2].

Unfortunaté]y most studies deal with single-phase flows, and

relatively little has been done on two-phase flows [22]. Moreover, no sub-

stantial research has yet been conducted on one of the key issues of the

problem, namely the quite complex fluid-structure interaction in two-phase
flows [22,23,26]. Generally speaking, the presence of the second phase ™
indutes a randomly varying fluid density and introduces two major aspects

to the problem: (i) a much altered pressure field exhibiting a drastic
shift, depending on the flow regime, of the frequency distribution of the
pressure force, and also bringing a highér susceptibility to subcritical
vibration; (ii) parametric excitation due to the periodicity existing in

the distribution of the virtual mass and which has been studied‘extenéively
by Héra [24-26]. Actual systgms often involve high temperature and high
pressure stream-water mixtures, with the steam quality varying along the rods
due to surface boiling; Pettigrew and Gorman [27] report the only experiment
with such a heated system. As a matter of fact, simulations invo]vihg boil-
ing systems are costly and difficult to }nstrument, hence simulation experi-

ments using non-condensable gases have commonly been conducted - the most
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popular mixture being the air-water mixture [28-33]. In these experiments,
various parameter% have been found to be of,ﬁnterest. such as void fraction,
fluid deﬁéity, average flow velocity, etc. Paidoussis and Pettigrew [31] .
have conducted some experiments on confined cylinders in both {1quid and
two-phase flows, to test the validity of the aforementioned theory, e.g. .
[12] or [21], predicting the onset of fluidelastic instabilities and the
succession, wjth increasing flow, of buckling and flutter instabilities of °
progressively more complex modal shape. In the case of liquid flow, agree-
ment between theory and experiment was found to be qualitatively good and
quantitatively fair — taking the experimental difficulties into account.
But as far as the two-phase flow is concerned, theory completely failed to
predict the lack of noticeable instabilities which has been observed in h
the experiments.
: More recently Carlucci [32,33] has investigated experimentally
the behaviour of fluid damping and hydrod;namic mass of a cylinder in
simulated two-phase flow (also an air-water mixture). He has found that
damping in two-phase flow is significantly higher than in single-phase flow,
whereas the hydrodynamic mass decreases with increasing void fraction,but
at a h1gher rate than that of the mixture density.

A first attempt has been made by Ostoja-Starzewski [34 35] to f1nd
out whether these discoveries can be attributed to the compressibility of
the two-pqase fluid stream. Of course, two-phase flow is anything but incom-
préssib1e3 hence the motivation for that investigation. Another starting
point of that stud& was the fact that theKSpeed of sound in two-phase mix-

tures can be much lower than in either of its two constituents (easily one

tenth, and even 1/50th at low pressures: cf, Fig. 3), which allows the

e
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Mach number-M to reach values close to‘1  for operational values of the flow
velocity. Using a homogeneous-flow model of the two-ﬁhase flow, Ostoja-
Starzewski found, by means of three different mathematical models, that the
effect of compressibi]ity is in qualitative agreement with Carlucci's results,
but nevertheless quantitatively seriously underestimates the observed be-
havidur. D
Even more recently Schumann [36] conducted a theoretical research
on a somewhat related problem: the fact that the effective density of a
two-phase mixture of solid particles and inviscid compressible fluid differs
from the average density, due to relative accg]erations between the phases.
His study on virtual density and speed of sound in a fluid-solid mixture
is based on Hamilton's principle %nq.a general homogenization method.

This research represents in fact a second attempt to discover the
underlying mechanism of the two effects observed«by Car]uccif? The basic
hypothesis made here is that these effects could be attributed to random
fluctuations of the hydrodynamic mass of the cylinder, this randomness
arising from the highly non-homogeneous nature of twé-phase flow. A funda-
mental approach was first envisaged, which would have led to a completely
probabilistic description of the fluid-structure interaction. The principle ]
of such an approach would be to first consider the coupled motion of the
structure and the two-phase flowing fluid from a microdynamic point of view, ‘

[d
i.e. at the molecular level, and then to develop a statistical method by

which a transition to the global hydrodynamic formulation could be achieved.

Mobd ot s

(Some elements of this approach will be found in Appendix B.) But such a’

task being beyond the scope of a M.Eng. thesis, it was decided to limit the

.

A
~

4

*This arises since M=U/c, where U is the flow velocity and ¢ the sonic
speed [34].
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(Tl wdrg to a bure1y numerical simulation, with the aim of studying mainly the

) effect of a randomly varying virtual mass on the response of a one-degree-of-
freedom oscillatgr. A digital study of the free vibrations of this system
is first conducted in the time domain and is givén in Chapter I1II. A second
digital analysis of the same free vibrations is also undertaken, but this
time in the frequency domain, and is presented in Chapter IV. Finally, an

Y analog simulation of both free and forced vibrations of this system is
carried out, in the frequency domain, by means of an analog computer; this

last analysis is fhe topic of Chapter V.,
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CHAPTER II
PROBLEM FORMULATION .

2.1 Fluid Damping and Hydrodynamic Mass in Two-Phase Flow

As the random pressure fluctuations in the turbulent boundary
layer are considered to be the main forcing mechanism exciting the struc-
tural component vibrations, it may be worthwhile to see under which condi-
tions the pressure disturbances are transmitted in two-phase flow. Phase
distribution (flow regime) has for instance been shown to strongly influ=-
ence the frequency distribution of the pressu}e force [22].

Modelling of two-phase flow and of the continuous heat and mass
transfer occurring between the phases is an extremely important subject
for the design of many major items of equipment found in chemical and
power plants. But due to the continuous variation of all the thermal and
hydraulic properties of the flowing fluid, the mechanisms of phase changes
in channel flow remaig a poorly understood phenomenon; this is so despite

the efforts of many investigators for more than a century, which have
{

-3

A general revigy on convective boiling and condensation, i.e. in the pre-
sence of a forced flow, has been given by Collier [37], mostly for single-
component s}stems, i.e. a pure liquid and its vapour, and more particularly
the water/steam system. The methods used to analyse a two-phase flow are
based on those already validated for single-phase flows, and the general
procedure consists in writing down the basic equations governing the con-

servation of mass, energy and momentum, and then in seeking to solve them

resulted in more than 10,000 papers published on bdilgng and two-phase flow.
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by means of varijous simplifying assumptions. Three main types of assump-
tjons have been made, as fo]]ows.

(i) The "homogeneous" flow model, in which the two-phase flow is assumed

to be a single-phase flow having pseudo-properties obtained by suitably
averaging the properties of the individual phases. This is the simplest
model and has for instance been adopted by Ostoja-Starzewski [34].

(ii) The "separated" flow model, in which the two phases are artificially
separated, and two sets of basic equations are written, one for each phase.
(iii) The "flow pattern” models, which represent the most sophisticated
approach and in which the two phases are considered to be arranged in one of
several prescribed geometries. These geometries are based on the various configu-
rations or flow patterns observed when a gas and a liquid flow together

in a channel. Commonly, six‘main flow regimes are distinguished in verti-
cal flow: (1) bubbly flow, (2) slug flow, (3) churn flow, (4) wispy-annular
flow, (5) annular flow, and (6) drop or mist flow. Churn and wispy-annular
flows are included by some authors, respectively, into the categories of
slug and annular flows [cf. Fig. 4]. Transitional flows are also noted
[Fig. 5] and often exact characterization is quite difficult.

Fig. 6 shows the flow pattern map of Hewitt and Roberts [38] as |

given by Collier [37], on which the range of test conQitiods investigated

by Car]ucci'[3%;mhave been superimposed. This map has been obtained [38]
from observations on low-pressure air-water and high-pressure-steam-water
flow in small diameter vertical tubes, and should be‘regarded no more than

a rough guide. )

It should also be mentioned here that in horizontal flow, the flow

patterns are complicated by asymmetry of the phases resulting from the
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{i influence of gravity. The different flow<patterns are illustrated in Fig. 7
and a map of them by IBaker [39] is also given. . }

v
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With the vertical flow pattern map [Fig. 6] in mind, Tet us now
review Carlucci's results [33] in more detail. His visual observation of
‘ the slug, churn and low velocity bubbly flow patterns coincided reasonably
well with those indicated on the map, but at higher mixture velocities the
true flow pattern became increasingly more difficult to be visually identi-
fied. In particular the distinction b;tween high velocity bubbly flow and
annular or wispy annular flow was not possible, all three flow patterns
appearing frothy or foamy on the flow tube surface. ;
Fig. 8 gives typical résults showing the variation of the com-
pliance magnitude with void fraction, and indicates the respective changes
in damping and resonance frequency. Fig. 9 gives more information on the
variation of the total fluid damping ratio Tt with void fraction, and for
different values of the mass flux.- From both Figs. 8 and 9, it may be seen
that maximum values of ¢, are obtained for void fractions ranging from 30
/// to 60 percent, whereas Tt becomes minimal at void fractions of zero value
and between 80 and 100 percent. Comparison between Figs. 9(a) and 9(b)
shows that Ly is higher in the smaller diameter flow tube, indicating a ,
confinement effect. But, on the contrary, the mass flux does not appear to |
greatly affect the magnitude of Tys however,'because of the wide range of
mass flux studied, the functional dependance of Zy on void fraction is
affected by the various flow patterns encountered [Fig. 6]. Total fluid

damping ratio ¢, can be decompdsed in three different components: a viscous
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damping ratio Ly 8 flow-dependent damping ratio Tes and a two-phase damping

ratio Cep Thus we have

Ct = CV + Cf + Ctp . > (2'1)

Their variation with void fraction is given in Fig. 10. To sum up, fluid
damping has been found to be significantly higher in two-phase flow than ip,
single-phase flow, and a maximum or maxima have been exhibited at void |
fractions of 30% to 60%.

The variation of hydrodynamic mass with void fraction is shown in

Fig. 11. Clearly, the hydrodynamic mass appears to decrease linearly with .

3!

. . I{

void fraction but at a greater rate than the mixture density Tine. It /
can also be noticed that it approaches a value of essentially zero at void %ﬁg

fraetions of 70% to 80%. This illustrates the fact that in annular flow

the cy]fnder is dynamically decoupled from the flow tube wall since, in this
flow pattern, most of the liquid flows as a thin film on the flow tube and
cylinder surfaces. It might be useful to recall here the origin of the
concépt of hydrodynamic mass: when a structure vibrates in a fluid, the
fluid gives rise to a two-part'fluid-reaction force, oﬁe part of which may
be interpreted as a flow-induced damping, whereas éhe other part is an
acceleration-dependent, inertial force which may be thought to be associ-

ated with an "added" mass, as far as the d}namic response of the structure

. is concerned. Generally the hydrodynamic, or added, mass of a cylindrical

rod is assumed to be equal to the mass of fluid displaced by the rod [40].

This is only true when the rod is submerged in an infinite fluid; however,, —

for a confined cylinder, or one belonging to a fuel bundle, the added mass

is affected by the duct wall and, for the cluster, by adjacent rods. Chen

b
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and Wambsganss [9] and Paidoussis [10] have used an expression of the

form

Mh = XM » , (2-2)
where m, and me are respectively the hydrodynamic mass and the mass of
fluid disptaced by unit length of the cylinder, and x is an expression

equal to 1 for unconfined flow and greater than 1 otherwise, increasing

" when the flow channel decreases. Carlucci [33] uses the same expressioﬁ

and in his case x depends on the ratio of the flow tube inside diameter Di
to the cylinder diameter D:

_(Dy/D)2 + 1

Bt Ut A 2-3)
T oumZ - (#-3)

This expression which has been derived for homogeneous inviscid flow may not be
well suited to describe the complex reality hidden behind the notion of

hydrodynamic mass in two-phase flow.

2.2 Equation of Small Lateral Motions

Qur very first approach to the problem intended to start from
the formulations obtained by Paidoussis and other investigators for the
motion of a cylinder immersed in single-phase axially flowing fluid. We
then hoped to be able to extend it to two-phase flow while incorporating a
randomly varying added mass.

The system under consideration consists of a solitary f]éxib]e

slender cylinder in external axial two-phase flow contained by a rigid

channel, as depicted in Fig., 12. The cylinder, considered to be an Euler-



w2

e
s,
Iy

IR

. R e e,

[P

7

Bernoulli beam, is of finite length L, mass m per unit lengfh, uniform

cy]1ﬁder crosr section of diameter D and area ﬂ, flexural rigidity EI and

internal dampﬁng of the Kelvin-Voigt type. Moreover, the cylinder is sup-
posed to be piﬁned-pinned with the downstream éhd free to slide axially.

As far as the two-phase fluid flow|is concerned, it is modelled

by a macroscopically homogeneous flow, of mean flow velotity U and of fluid

. £ L] ’ 3 . hy
density p. Dy is the hydraulic diameter and is equal to 4Acﬁystot' Ach

being the channel flow area and Siot being the total surface area

channel,
per-unit length. It is also assumed that the flow over the beam is no
affected by the supports, as if the finite Tength cylinder were a portion
of an infinitely long beam, the remainder of which is perfectly rigid.
The derivation of the equation of small lateral motions for a
cylinder in exterﬁ;] axial flow is not presented here and may be found in
[10]. To obtain it, a force balance was taken for a small element of the
“cylinder, considering the various\fgtces applied to this element.
Since we chose the homogenéﬁug\flow model, there is no difference
between vertical and horizontal flow, exeépt\that for the latter confi-

°

~
. guration gravity effects may be neglected. AN
~.
The equation of motion of a horizontal cyTﬁnger in @ single plane

[(x,y)-plane of Fig. 12] immersed in axial flow then reads .

)

%y Y LBy 2 (Y g 2
Lo wap +ED oo+ g+ U 5dmy (G + U 5501

2
- % pDUZ{C(1 +5Q£)(L -x) + 00y} T vy pnuch(—u%) u

) ) 3%y _
% oUCe(5E+ U ) +m 2L =0, (2;:4)
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where y = y(x,t), C¢ is the frictional coefficient and C, is the form drag

coefficient at the end x=L. The boundary conditions may be taken as
e

*

y(O,t) = iLg_)((lLt)— = y(L’t) = E.Y.(_lé_;_tl = 0. (2_5)
pp
For a two-phase flow, this equation will have some stochasgic

coefficients. We assume that EI, ul, L, D, Dps Cf, Cb and m will remain

constant, and express m, as

= xPA. ; (2-2')

M
We then identify the stochastically -varying quantities as p, U, and com-

binations of these terms (such as oU, pU?,...), as well as their derivatives.

Expressing p and U as

p = p(x,t), U= U(x,t),

we obtain
.B_S.Y__.g.EIa_ul.pr[p_z_X gpu_..Y__ ]
X at? Ixat ax2

2
< 5 pDUZ{C(1 +5°—)(L -x) +0eyt 44

+ oar2ol + y 203 4y pourc (14 o &

R , 2
+ {xA[—B £y ] + % pDUC, } %} = 0. (2-6)

| This equation is then rendered nondimensiopal,since nondimensional- quantities

are familiar to all researchers in the field and allow comparison between

PSRN PSP



»y

AN

~ i o

15.

4 >
LN //” -
various systems. )
This is carried out by setting ‘
=X = < [—EL %t
g - L’ n L: T [m+ﬁA] L2 s
‘ - D _ (BAVE & , I %y
__BA 4 4. L
B *Sprm Wl BTl £ (2-7)
We also introduce the mean values of p, U, pU and pU?
. " p=ps,, U=1{s,, pU=oplsy, pU? = pls,. (2-8)

. Having done all this, and assuming, moreover, that n{£,t) = 0(¢),

and sj(E,t) = 0(5) for a1l i, we finally end up with an equation of the

form:
‘ nfE,1) . p 3'n(E,T) a%n(e,T n
N 4 2 ag*aT A & As Sf'(E’T.) aE?
. ) .
4 A s(ET) __gégizl s.fbffol.+ A, s, (6 T)] ,niéi_l
+[A, __JffL;EZ A, _IEEL;EL +[A, * Ay, 5, (E,1)] ___KEL__L 0,
.’ ‘ - I . (2-9)

where A, to A,, are constants. The expressions of these constants will be

found in Appendix A. The boundary conditions may be taken as

o

n(0,1) = Qﬂéngl =0, n(l,7) = n ] . . (2-10)
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Several solution schemes were then considered to find some statis-
tical solution to this equation. The most elaborate of these will be
found in Appendix A. It consisted first in expreésing all the stochasti-
‘iéa11y varyin§ quantities in terms of only one of them, chosen to be the
principal-random variable. Then the goal was to transform the equation of

motion into an equation of the tyﬁe}f )

-

() o B Ly (0) = (D), (2-11)

where X is a cons}ant and weis a function of time to be foqgﬂj on ‘'which a
Fokker-Planck formulation should be tried out, following Mo}ton and Corrsin
[41]. Obtaiaing such a type of equation was attempted by means of the
Galerkin discretization method. Unfortunately we had to realize that we
could not obtain, by this method, a solution in the form of a probability
distribution of the fluid density or of its velocity. Moreover, the whole
procedure seemed contradictory since it was hoped to obtain a probab11isti:
solution of an equation which is basically deterministic. It was fherefore
decided £o trj a new approach and look inéo a purely probabilistic formula-

tion of .the fluid-structure interaction. i

2.3 Probabilistic Formulation Attempt

The'yshal phenomenological laws of matter, like equations of i
-state or transport equations, are deterministic laws. They are also aver- ' Z
age laws since they deal in macroscopic variables like pressure, tempera-
ture and electrical current, which represent the aggregate effect of mil-

lions of molecular interactions. But in many cases, even a simplified
} “
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(‘ deterministic model becomes intractable, either because the equations
) governing the system are too complex, or because they cannot even be derived.

This occurs for a rolling die or for thermal agitation of molecules in a
gas. Hence comes the need for a theory of stochastic processes, based on
the mathematical tools developed by the probability theory. These tools
have first been widely used by engineers in the field of telecommunications,
sinc? very often the signals to be dealt with are actually of random nature.
In t%f same way, a control systems enginé;r can no longer neglect th; sta-
tistfcal properties of the perturbations applied to the system he is optimi-
zing. But in the past decades, the theory bf stochastic processes has //zf
played an increasingly important role in nearly all the fields of science:
physics, biology, medicine, economics, etc. In the physical sciences, this

- theory arose out of the study initiated by Einstein [42] in 1905 on the

) erratic movement (Brownian motion) of small particles suspended in a 1liquid.

Major contributions to the problem of Brownian motion have been givgn by
Uhlenbeck and Ornstein [43], Chandrasékhar [44], and Wang and Uhienﬁeck [45].
A more recent mathematical critical review on the subject may also be found
in Ref.\[47]. More generally speaking, a great amount of literature has
already been published on stochastic processes, and two fundamental books ~€'
by Doob [48] and Feller [49] should bé cited here. Other pieces of work :
might also be mentioned here, such as these of Papoulis [50], Stern et al.[51],
Yaglom [52] more precisely on stationary random functions, Beran [53] and
~ Samuels [54] on statistical continuum theories, Bharucha - Reid [55] mainly

on Markov processes, and more recently Montroll and Lebowitz [56] on fluctua-

tion phenomena (selected papers), and Axelrad [57] on micromechanics of
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To come back to the problem of a flexible slender cylinder im-
mersed in axially flowing two-phase fluid, let us attempt to approach the
coupled motion of the structure and the fluid from a local point of Qiew,
i.e. molecular level. By a correspondihg\statistica] method, a transition
to the global hydrodynamic formulation can be achieved.
With this aim in mind, a model is adopted, according to which
the individual fluid particles moving along the boundary of the structure‘

(see Appendix B and Figs. 13) have a behaviour. represented by a "generalized

Langevin equation" expressed by

d2r dr

E Y R Y (O N (2-12)
where ¥ denotes the random position vector of the molecule: T= ?(x,y)
and in which:
m is the fluid partié]e mass; .
B is the Stokes' drag denoting the interactio# between
the fluid particle and the surface of the soaid body .

(this friction exists in the x-direction only);

'“;F is a harmonic-type attraction between the considered
particle and its neighbours;

R(t) is the random loading force (eqyivalent to the random

pressure on the structural member).
This equation may be split into a set of two equations accounting
for the longitudinal and transverse components in the velocity f%e]d u=u(r,t)
(see Appendix B). This model incorporates the friction effects in the longi-
tudinal direction only, whilst the transverse force is coupled to the local

jnertia of the structure in the unstable mode of motion.

1

Hence the dynamics
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of the system js assumed, for simplieity, to be two-dimensional.

The solution of the generalized Langevin equation in terms of

the excitation force K(t) accounts for the perturbation of the otherwise

undistufbed lattice — structure of the fluid flow. Furthermove, this solu-

tioq;Téads to a velocity distribution P(U) at a given instant of time for

a b{escribed mode of surface motion of the solid in the flow field.

At this stage of invesfigation,uone can consider two different
studies, namely: \

a) If the velocity distribution P(E) or the 1inear momentum distribution
P(pﬁ) only, is sought, one can define the respective probability d{s-
tribution and obtain its evolution with time in form of a set of Fokker-
Planck equations. Their solutions have to satisfy the given boundary
and initial conditions, which also serve to determine the constants in
the evolution equations.

b) If, however, the density fluctuations in the fluid are of main interest,
it wouldbe better to use the Chapman-Kolmogorov evolutien relation for
the probability of the density distribution functions, for example

d P(p) _
—r = @ Plo), (2-13) 7

where Qp is the probability transition matrix (two-dimensional).

More information on the whole procedure up gg(ﬁhe &erivation of
the set of the two zoupled Fokker-Planck equations (c;. point a) above)
can be found in Appendix B. But completing the whole probabilistic *study
described above has proved to belﬁeyond the scope of a M.Eng. thesis, even

though from this first attempt, it is strongly felt that, in order to

achieve a proper formulation with respect to the random pressure and/or
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density fields, one has to use the molecular-hydrodynamic approach as pro-.

posed, for example, by Hansen and McDonald [58], Boon and Yip [59] and

others.
AY ¢

é\
2.4 One-Degree-of-Freedom Model Finally Adopted

It was finally decided to dwell on a numerical simulation of a
one-degree-of-freedom system, in wh{ch d”> randomly-varying added mass is
incorporated. The purpose of this study is to investigate the effects of
these rand?m Ffluctuations of the hydrodynamic mass on the response of
the systemi More particularly, our attention is focused on the comparison
between the caszg‘with and ‘without these fluctuations, in order to see
whether our results are in agreement with the ones obtained by Carlucci
[33] and presented above in Section 2.1.2. If this is the case, then a
good chance exists that the key of the mechanism, affecting the damping
and the hydrodynamic mass in two-phase flow, lies actually in the hypo-
thesis made, namely that the observed behaviour is due to random variations
affecting the added mass: It is also supposed that our system is rather
"static" in the sense that it is assumed that, with this model, we are
placed at a given void fraction which remains constant all over the experi-
ments (the void fracfion is not taken into account explicitly in the model,
but. it is supposed to be somewhere in the "interesting" range, i.e. beéween
30 and 60 percent). Hence the only parameter investigated here will be the

random fluctuations of the hydrodynamic mass. It is finally supposed that,

*
However, not all the investigators in the field agree on whether analysis

of the fluid-structure interaction should be studied by the probabilistic
approach. For instance Schlechtendahl argues against this direction, as
quoted on page 193 of Ref. [23].
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.at this stage, it is sufficient to investigate a one-degree-of-freedom

system, and that, if the desired effects do not prove to be significant,

there is relatively little chance to see them occur for a higher degree-

.

of-freedom system.

The system studied is

M+ mh(t)]Si + CX + Kx = {2 (t) ° i (2-14)
0

in which x is the response of the structural system and M, C, K are res-
pectively its mass, coefficient of viscous damping and spring constant.
mh(t) is its hydrodynamic mass and is composed of two terms, viz.

4

m (t) =m +u(t), (2-15)

'

] whereﬁh is the mean value and is assumed to be constant and u(t) are the

fluctuations of m, (t) about T, .

[ N
Hence, the total mass appearing in equation (2-14), sometimes
called “virtual mass" by some authors (e.g. [§] or [16]), reads
\
\f' M j'} mh(t) =M+ mh + U(t):
in which M+Tn—h is constant.
Dividing all the terms of equation (2-14) by M +Fh, we obtain
. . 2o _ J 0
( / [1 +d(t)]x + ZCmnx + (.UnX = {f(t) s (2"]6)
\ ' .
where k\\ ’ :
. ) c | |
B (2-16',a)
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is the circular (yndamped) natural frequency, including FE;

c C

P72 m ), T 2/k(M+m)

" is the viscous damping factor;

is the forcing function (if considered); and

u(t)
(I(t) = M+-I'_ﬂ-;‘

i

“

(2-16',b)

(2-16',c)

. (2-16',d)

is the dimensionless fluctuating part of the hydrodynamic mass which is the

parameter of interest in this study.

When a(t) = 0, the treatment of this equation is classical and

the analytical solution is easily obtained. Let(us seize here the oppor-

tunity to mention two good textbooks on vibration analysis by Meirovitch

[60] and Thomson [61].

For the unforced case, for an underdamped system, the solution

is
fwpt

x B e cos(wgt + @),

(2-17)

in which B and & are constants depending on the initial conditions, and

wy = Wy, 1-¢2 .

For the forced case, the general solution is a superposition

(2-18).

of a transient response (general solution of the equation without forcing
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, . 7
{T function) and of a steady-state response (particular solution-of the com-
" plete equation). If the forcing function is
f(t) = F cos wet, g
where We is hence the circular forcing frequency, then’éhe general solu-

-~ \ tion reads

F (- w})coswst + 2cuwpwnsinust

x = Be~"¥nt cos(wgt + @) + o=
> M+m 2 2y2 2
h (w? -uf)” + (2w )

. (2-19)

-

After a certain time, the transient response (first term) damps out and

¥ e St

there remains only the steady state response (second term).
For a(t) # O, the equation can hardly be solved analytically

if at all; that is why we resort to numerical methods to achieve this pur-

R

' pose. A Runge-Kutta iteration method is used in the case of the digital

computation (Chapters III and IV), whereas the equation is solved directly L0
- on the analog computer in the case of the analog computation (Chapter V).

Various schemes are considered for"generating both deterministic

and random a(t), the main interest relating, of course, to the latter case.

This random o(t) should more properly be denoted as "pseudo-random" since

in the digital simulation, the series of random variates are obtained by

means of a Monte-Carlo random number generating technique, while in the ana]&g
y " simulation, at) is produced by a noise generator incorporated to the fre-
quency analyser available for the study. Having generated a(t), the res-

ponse of the system is then investigated as will be described in detail in

the chapters that follow.

—~
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CHAPTER III

DIGITAL ANALYSIS b% THE FREE
VIBRATIONS IN THE TIME DOMAIN

3.1 Method of Analysis

/

The first numerical analysis undertaken was performed in the
<y

time domain, $ince it was the easiest to implement. As a matter of fact,

. it simply consists in plotting the so]utibn of equation (2-16), obtained

by means of thé Runge-Kutta scheme (presented in detail in Appendix C.1),
versus time, which is one of the variables of the scheme, the variates of
which are separated by a constaﬁt step-size h. |

This digital analysis is conducted on the Amdahl V7 digital com-
puter of McGi111University. In the beginning of the study, the digital
solution obtained is pfotted directly by theaﬁrinter at the same time as
the numerical output is released. These plots are obtained by using a
subroutine from the International Mathematical and Statistical Libraries*
(IMSL), namely the subroutine USPLTD. These printer plots are discrete,
and the characters used for each data point are nuﬁera]s, each specific to
each function plotted (up to ten functions can thus be superimposed upon:
the same p1bt). For multiple plots, the character M is used in the event
of’coincidence by two or more functions. A typical plot is shown in Fig. 14.
More complete information on the USPLTD and all other IMSL subroutines that
will be used later on may be found in Ref. [62]. The use of IMSL subroutines
allows the whole program to be written in Fortran WATFIY language, and more-w

over in double precision since all those subroutines at McGill University

N .
An extensive collection of mathematical and statistical subroutines writ-
ten in Fortran. ‘ /

fe
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are available in that precision. - Later in the study, the functions will
be plotted in a smooth and nicer form by using a Calcomp 663 digital incre-
mental plotter (for more information, see Ref. [63]). ~In this case, the
program will undergo minor changes in order to be run in Fortran IV language
(compiler H) and the points to be plotted will have to be given in single
precision. The programs considered here could therefore also be rup on
the IBM 360/370 Series computers. b

Nevertheless, the results discussed in this chapter are those
obtained from the discrete USPLTD plots. Four different solutions are
calculated and printed out. The numbers 1, 2, 3, 4 appearing on the plots
(cf. Fig. 14) — to be referred to as Curves 1, 2, 3, 4 — are identified
below.

Curve 1 is the control curve corresponding to the analytical
solution of equation (2-16) with a(t) =0 and without forcing function, i.e.
this solution is simply given by equation (2-17) for free motions of a
damped oscillator.

Curve 2 corresponds exactly to the same equation, but this time
the numerical solution (obtained by the Runge-Kutta method) is considered,

Curve 3 denotes the numerical solution to equation (2-16) still
without forcing function but with a deterministic a(t) # 0; this determinis-

tic a(t) is chosen to be equal to

5
alt) = £ a; sin(ugt + ¢4). ' (3-1)
=]

The values of the parameters ay, Wy and ;s as well as these of w, and ¢ *
will be specified in the second part of this chapter, when the results are

discussed. Let us just indicate here that in all cases we finally took
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*i =0 for all i,
and
a,=a,=a; =a, =a; =g, . ’ (3-2)
the parameter
o i 5 ) .
6= I a. (3-3)

being thus introduced.

Curve 4 represents the random éase, i.e. a random a(t) is used,
and is the case of main interest here. The equation considered is the
same as for Curve 3, except that a(t) is now obtained by a Monte-Carlo
pseudo-random algorithm, assuming a normal,i.e. %?ussian, probability den-
sity distribution. The method used to generate the random variates of
aft) is explained in Appendix C.2. Moreover, the mean u and variance o?
of the pseudo-random o(t) are assumed to be the same as those of the deter-
ministic a(t) described by equation (3-1) [on this, see Appendix C.3]. To
give an idea on the signal genérated, Figs. 15(a),(b) and 16(a),(b) show
respectively time records and histograms of the random perturbation a(t)

obtained. t

|
-

’Initia1 sets of results were obtained by using 300 calculatio

points per 3 cycles of oscillation, which corresponds to the time length

chosen to be printed on one page of USPLTD plot. A study of converge ce,-
which may be found in Appendix C.4, indicated that 500 points is mor
accurate and this value has thus been adopted for subsequent runs. This study.

of convergence is mainly based on analysing the discrepancies between the
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‘two reference curves (i.e., those obtained for a(t) =0), namely Curve 1
(analytical solution) and Curve 2 (numerical solution), Comparison between
these two solutions gives a measure of the lack of ‘precision originating
from the use of the numerical integration scheme. One interesting item to
note is that there seems to be a very gﬁight systematic shift towards lower
frequencies. By using 500 calculation points per 3 cycles, the frequency of
Curve 1 was found to be exactly the~value chosen,i.e. fn= 15 Hz, whereas the

B friquency of Curve 2 was 14.97 Hz*‘ If the hypothesis is made that this
systematic shift is nearly constant, then all the frequencies that will be
obtained from the USPLTD plots should be all increased by 0.03 Hz.

Finally, a 1isting of the whole program may be found in Appendix
C.5.

3.2 Results and Discussion

~

The ranges of the parameters of practical inter:ii—izz}ﬁEQuatioqs :
(2-16) and (3-1), (3-2), (3-3)] are taken to be as follows_— a¢ recommended ‘

by CRNLT who sponsored part of this work:

(i) natural frequency: f, = 15 to 60 Hz; . (3-4,a)
(i1) perturbation frequencies: f; = wj/2m = 5 to 25 Hz; (3-4,b)
(111) damping factor: ¢ = 0.005 to 0.1; (3-4,c)
(iv) perturbation amplitudes: $0.01 < a < D.2. (3-4,d)

Thesecondit}onswi]] henceforth, for convenience, be referred to )

as "realistic".

*These two frequencies (of Curves 1 and 2) were found by three measurements,
over 15, 30 and 45 cyplés of oscillation, which gave the same results.

+Chalk/River Nuclear Laboratories — more specifically by Messrs L.N. Carlucci
and M.J. Pettigrew of CRNL. ‘ ‘
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it: In most cases, for convenience,. the ratio of f, and f_was taken
/.;4

to be an integer. Also, in all cases, the initial conditions are taken to

-

be

- L]

x(0) = 1, x(0) = 0. (3-5)

e

However, as rather "uninterestinéh results are obtained for para-
meters in the ranges as defined by (i) - (iv) above, other ranges are also
investigated, which give more "interesting" results, albeit of possibly
limited practical value. One of the main changes introduced is to look
into higher values of a, up to a = 1, in order to allow clearer identifi-
cation of the weak effect observed for a small a.

Eight series of calculations have been conducted, each consisting
in three or four computer runs. To recognize them, they have been denoted
by the letters A to H and are presented in Appendix C.6. In fact, two
main catégories are to be distinguished.

- The first one (Series A, B and C) considers the ranges of parameters
descrfﬁéd in (i)i?(iv) aBove (except for higher a in some cases) and is
discussed in Section 3.2.3 below.

- The second one (Series D to H) considers also the ranges of parameters

(i), (iii) and (iv) above (also higher a in some cases), but replaces

the perturbation frequencies range (ii) mostly by: €

(ii)': f; = w;/2m = 30, 150, 240, 300, 450 Hz. " (3-6)

This case is more concerned with the occurrence of a parametric reson-

ance, and it is discussed in Section 3.2.4 below.
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But first is discussed, in Section 3.2.1, the numerical importance

of the two effects observed by Carlucci. Then are given, in Section 3.2.2

the results concerning Curve 4, since they are of main interest. .As a matter
of fact, Curve 4 does not differ between the two categories distinguished \
above (and discussed in Sections 3.2.3 and 3.2.4). This is so because, due

to the method adopted to generate the random variates (given in Appendix C.2),
Curve 4 does nat depend on the pérturbation frequencies fj, but only on the
value of the mean u and the variance o? of the distribution considered. It

is shown in Appendix C.3 that

p =0, . — (3'7:3)
g = —a_- ; = (3-7’b)
Y10 )
n

hence Curve 4 depend§ on & only.

The results discussed below are obtained from the series which
have been run with 500 points of calculation per 3 cycles and with £ =0.005
(Series B, C, G) or =0 (Series H). These series are also those which

have been run over the largest number of cycles.
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‘i:‘l 3.2.1 Numerical Importance of_the Hydrodynamic_Mass and Damping Effects
| observed by carlucci

’ Before giving our own rgsqlts, it is 3f interest to. indicate the
v order of magnitude of the twoleffééts shown by Carlucci's experiments, and
which it is intended to verify on the one-degree-of-freedom model.

Let us first show how a frequency increase can be interpreted in .
terms of a hydrodynamic mass ngrease. For this, the system is considered
to stay at a given void fraction of v percent, for which the mean value of

- the adged mass is denoted by'ﬁ;’v. It is about this m;an value that the
fluctuations u(t) are considered; according to equation (2-15). The cir-

cular natural frequency w for the homogeneous model (with the hydro-

hom,v’
dynamic mass proportional to the mixture density), is obtained from equa-

tion (2-16',a) as

g . (3-8,a)
“hom, v M+m, . :

°

)
v“\

In case the added mass perturbations are iﬁc1uded, we obtain a new circular

natural frequency wresp,v given by -

~ J K , (38.b)

w —
resp.y M+mpy vt SMms
’

in which §=+1 or -1, accérding to whether a hydrodynamic mass increase

| or decrease is considered.

‘ If we observe a frequency increase, i.e., .
. E >
_ “resp,v 7 “hom,v *_
K .
(‘ ) this implies that - - C C
J )
\ ! é}/_‘/‘\//lj ~
Al ) i / / .
& . . ) =
eyt m":" TAv v s ¥ R : .\: .. ..4___.—-/5’__..?_?: i- e it AT ShE. . B oan G b mde
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?
[
( . Yresp,v _ MAmp v 51
v . ——
“hom, v Mtmy o+ e
ory “j",,‘r ﬁ\ ;
hence ‘ /
— — s , !
M+mh’v > M+ mh’v+ ur-ms .
from which we finaf]y get
AN
Shims < 0
Urms being always a positive quantity, this implies that §=-1 has t¢ be

taken.

We effective]y see that, according to the one-degree-of-freedom model, a e
) frequency increase is equivalent to a hydrodynamif mass decrease, if all ~\§/‘
other barameters are kept constant.
Let us now qdantify the clear hydrodynamic mass decrease appearing on
Fig. 11, with the aim in mind to express it in terms of a frequency increase.
As already stressed, the hydrodyn;mic mass decreases with increasing void

fraction, but at a higher rate than that of the mixture density. The:hydro-

dynamic mass line proportional to the mixture density appears on Fig. 11 in

=1
»0 !

/ﬁ; , =0 for a void fraction of 100%.

form of a straight line (rather a dashed line) extending from'ﬁ; o/ﬁ;

for a zero void fraction to m,
h,100

The experimental values of the added mass lie below this line, and gn experi-

e e e e

mental straight line can also be -drawn according to these points (it is not
shown on Fig. 11). The experimental values (divided by”ﬁ; o) thus decrease’
! 1]

from 1 for a zero wvoid fraction and approach a value of zero at a void

~

( ~ fraction of about 66 to 70%. we intend to place ourselves at a given void

e

ISy ac A x Mo g e et Tt kgl Ak 4 A o % o o A = . R R
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fraction range exten

- “ fraction that we ass;:7fto remain constant. Since the interesting void
b

ereen 30 and 60%, we adopt the value of 50%.
At this void fraction are obtained the values ﬁ;’so/ﬁ;’o = 0.50 (from
the dashed line proportional to the mixture density) and (ﬁ;’so'fu)/ﬁ;’o
~ 0.28 (from the experimental line).
It is now necessary to translate this hydrodynamic mass decrease
in terms of a frequency increase. Let us first start from Fig. 8. At
a zero void fraction, fhom,o is equal to 32 Hz*, whereas for a void frac-
tion of 100%, we read fhom,loo = 40 HzZ", Fromigbjs. using also equation

‘\
(3-8,a), we obtain the following relations:

2 1 K - -
thlﬂ,O = 7 Mt = 32 (3-9,3)
V hyo : -
1 K
f = o — = 40. (3'9 b)
h » 2 '
om,100 ™ |,M+mh,1uo O

We also know k%rom consideratﬁonsabove'@Ljﬁé- 1) thét'ﬁ; 100 = 0, hence
, ,

=

™o

40/32 = M

Squaring this equation, we obtain

2 M+-m—h,0
(5/4)2 = —g22

from which we finally get

FE 0 - [(5/4)% - 1]M = 0.5625 M.

*
These experimental values of the oscillation frequency are between twice

and thrice the numerical values used in the following sections and chgg;ers.
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{f’ Coming back to our point at 50% void fraction, we have'ﬁ; so/ﬁ; 0
» [ ]

From this, we easily obtain [using equation (3-8,a)]

fhom,so

Ll
2n

] K \
b2 \/Mxo.sxo.sqzm :

From (3-9,b), using'ﬁg’loo = 0, we get

N J—E— = 80w

hence

/K = 80w/ .

From this,

fhom- 50

We finally obtain

~

!;hom,so

This is

- 80w M
2r {{M(1+0.5x0.5625)

.

0 1 '
T+0.5x0.5625

= 35.3 Hz.

@

C

the value calculated for the homogeneous mixture.

it W
M +

R GO A ARRE TMERITIRAG o NI s R AR T O

-

= 0.50.

(3-10,a)

For

the actual two-phase flow, we can extrapolate the two .compliance curve

plots of Fig. 8 closest to the void fraction of 50% (those for void frac-

( tions of 40 and 54%), and thus we approximate the value of f
.37.4 Hz.

resp,so

to

33.

-+ 'a?},ﬁ'\

r
i hied

f



U

Bt ————

R

e = ——

34,

11

" We could equally use the result obtained from Fig. 11, namely

q—

mh’5° + u=0.28 mh,o;
a g it into equation (3-8,b), which gives us

K <

; LI T
resp,so 2T M+m_h ot

- 1 i
=40 \/1 ¥0.28%0.5625

37.2 Hz.

We ‘thus have the following estimation:

"fresp,so =‘37.3 Hz. - ) (3-10,b)

From (3-10,a) and (3-10,b), we obtain the relative amplitude of the hydro-
dynamic mass decrease effect, at a 50% void fraction, expressed in terms

of a frequency increase. It is \

¢

fresp,s0 ~ hom,so - 37.3-35.3 _ 5 99

35.3

) fhom,so
I'4
Thus the frequency increase effect we wish to observe should be of the

order of about 6%.

i
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As far as the second effect found by Carlucci is concerned, namely

the important increase in damping, an examination of Figs. 8 and 9 shows

us that, at a void fraction of 50%, damping is at least 100% higher than

its value at a zero void fraction.

It is these two effects that we now wish to verify on our one-

degree-of-freedom system.

This response is obtained for four different values of a, namely:
0.25, 0.50, 0.75 and 1. Curve 4 is best examined
- on run Gl* for a = 0.25, and this over 60 cycles of oscillation;
- on runs CZ* and C3*, respectively for a = 0.50 and o = 0.75, over 30
cycles only (as a\méfié} of fact Curve 4 cannot be observed with accuracy

over more than 30‘cyc1es on runs G2 and G3, because of the parametric

4

*See Appendix C.6.

3
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resonance affecting Curve 3, which renders Curve 4 indistinguishable.on

the USPLTD plots used’); i

't

- on run G4 for a=1, again over 60 éycles of oscillation (in G4, Curve 4?

exhibits higher values than Curve 3, hence this plot can be used here).
As far as the general behaviour of Curve 4 is concerned, Curve 4

be?aves almost like the "control" Curve 1 for the three first values a=0.25,

0.50 and 0.75, that is to say it shows vibration with about the same, if

not slightly higher amplitude, as may be seen on the Xvms values below

(éee also Figs. 17, 18 and 19). It nevertheless exhibits a certain shift

towards higher frequencies. However, when a =1, the behaviour of Curve 4

deviates from the typical oscillation of a sinusoid, i.e. it begins to dis-

th

play some random excursions starting from the 20" cycle, and finally becomes

unbounded (unstable), reaching a value of about 11 after 60 cycles (see
Figs. 20 or 21); it is recalled here that the initial conditions are given
by equation (3-5).

To illustrate more completely what has just been said above, we

shall give the values of both X s and the effective frequency of oscil-

values are given: ‘(1) has been

lation. Actually, two sets of Xy, X rms

ms
calculated over 30 cycles of oscillation with =0 (Series H) and should be

/

e

+This is due to a property of the USPLTD plots which has not yet been men-

tioned here. The range of the y-axis is indeed constant on the output
page (51 print positions) and adjusts automatically in order to extend .
fully from the minimum value ypi, to the maximum value yp,, of the func-
tion y to be plotted. In our program, we have specified (on the "control"
Curve 1) a maximum of +1 and a minimum of -1, so that the plots of the
decaying cases have all their y-axis of the same scale. However, when
Curves 3 or 4-hecome unbounded, the range of the y-axis is determined

by the extremum va]ue(s)iyén%r such as lyextrl > 1.

N
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compared to xrmS(Curve 1)=0.7d$ obtained with exactly the same condition, .

whereas x___{2) has been calculated over 60 cycles with ¢z =0.005 (Series G)

rms

and should be compared with x

rms

(Curve 1) =0.360.

As far as the effective

frequency of Curve 4 is concerned, the number of cycles chosen for the

measurement is divided by the corresponding total time of oscillation. A
!

mean value of the frequency is thus obtained, and it can be added that,

qualitatively, this frequency seems to be constant; hence, it is believed

that the mean values below are given to a good approximation.

For a=0.25, -

the number of cycles considered is 60 (run G1), for a=0.50 and 0.75, it

is 30 (runs C2 and C3), whereas for =1 it is only 20 (runs C4 or G4) since,

asﬁ;ﬂready mentioned, the sinusoidal behaviour is disturbed just after that,

hence a measurement over more cycles would be meaningless.

The results obtained are given in the table below.

a o xrms(])g xrms(z)§ feff(Hz)
0.25 0.079 0.715 .. 0.364 15.02*
0.50  0.188  0:75%27  0.377 15.18*
0.75 0.237 0.743 10.362 15.47"
1.00  0.316 0.980" 2.22 16.16%

8

It is recalled that the xppg(1) values are obtained over 30

£ =0 (compare to x,,c(Curve 1) =0.707), whereas the Xpms (2)
culated over 60 cycles with £ =0.005 (compare to xrmS(Curve

fThis will become much Targer if x.,

S

(see for instance xppg(2)).

*If the hypothesis is made that the very slight shift to lower frequencies

cycles with

values are cal-
1) =0.360).

were taken over more than 30 cycles

due to the use of the Runge-Kutta scheme (cf. the remarks on the study of

convergence, made at the end of Section 3.1 or in Appendix C.4), is constant,

then all the frequencies obtained should be increased by 0.03 Hz and the

actual frequencies would respectively read: 15.05, 15,21, 15.50 and 16.19 Hz. E
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- The results of x indicate that, unless a is large (1.00),

rms(])
the x.. . 1ie in the vicinity of Y2/2 which is the classical value for a

sinusoid, as obtained by Curve 1. The results of xrms(z)'show more Sig-
nificantly the fact that Curve 4 becomes essentially unbounded for a=1,

From all considerations on amplitude and X values of the response, it

S
is deduced that a critical standard deviation Tepit exists for instability

and lies somewhere between 0.237 < ¢ < 0.316.

crit
But the most interesting item to be discussed here is the effec~
tive (or average) freguency, in viéw of its importance vis-a-vis the ob-
served added mass coefficients in two-phase flow; these were found to be
lower than those catculated on the basis of homogeneous models of the two-
phase medium. We observe indeed a clear shift to higher effective fre-
quencies as the amplitude of perturbations increases. This translates, of
course, to lower added mass coefficients (as compared to homogeneous model,
where effectively mh(t) = FE is taken, i.e. a(t)=0); this agrees qualita-

tively with the observations made by Carlucci (see Section 2.1.2). However

by examining our values§ given in the table above, we obtain a frequency

’

shift of (15.05-15)/15 = 0.3% for the upper suggested "realistic" value

of a (i.e., a=0.25). This is undoﬁbted]y a very weak effect, when com-

> pared to the experimentally observed 6% frequency shift (see previous:

Section 3.2.1). For the higher "unrealistic" values, we obtain of c&urse
a more significant frequency shift, albeit of only 1.4% fqr a=0.50

and 3.3% for @=0.75. It is only for the highly unrealistic value of

§We use the corrected values, obtained by addition of 0.03 Hz— see last
footnote on p.37.
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a=1 that we obtain a shift of 7.9%.
As far as ddhping is conce;ned,'unfortunately no important damp-

ing effect could be found in this attempt.

In this section, Curve 3 is examined as the response of the sys-
tem to a deterministic perturbation a(t) defined by equation (3-1) and

characterized by the "realistic" range of perturbation frequencies

f; = 5, 10, 15, 20, 25 Hz. (3-11)

-

This ﬁéans that the computer runs to be investigated here belong to
Series A, B, C (see Appendix C.6). )

For a small a (a=0.25), it is seen in Fig, 17 thaE'for f, (f,=
15 Hz) lying within the range of the f. (run Bl or C1), Curve 3 is essen-
tially coincident with Curve 1; i.e. the deterministic case for "small"
pe#turbation amplitudes is little different from the deterministic case

J
with zero mass perturbation. Moreover, x s for Curve 3 is very little

rm
different than that of Curve 1 (it is smaller by 2%).

In Fig. 22 is shown a case with the same a (a=0.25) but with‘fn
(fn==60 Hz) higher than any of the fi (run B3). The results of Curve 3 are
somewhat different from those obtained above. Even if the amplitude is about

-

the same, with a x S of Curve 3 also 1ittle different than that of Curve 1

rm
(larger by 1%), on the contrary, for the first few cycles of oscillation,
the effective frequency diminishes to about 58 Hz, rather than remaining

at 60 Hz, bqt later this effect appears to diminish, even though the fre- .

JRp— o~ ar = . 5 S R ML L e g g . T it i



40.

3
quency continues to fluctuate slightly about 60" Hz. When f, =30 Hz (run B2),

this effect (lower frequency) is not yet noticeable and the response is
similar to that obtained for fn= 15 Hz. It could be mentioned here that,
as far as Curve 4 is concerned in the three runs of Series B, its behaviour
‘s not affected+ by the relative position of fn compared to the fi’ and
that is why this question was not examined in Section 3.2.2. The reason
for this lies naturally in the method (presented in Appendix C.2) used for
generating the pseudo-random variates of a(t), which does not take the per-
turbation frequencies fi into account. Since the same number of discreti-
zation points is used per 3 cycles (500), exactly the same random variates
are used at the respective stages of integration; this accounts for the
identical results.
Let us now come back to the other cases (Series C) cémputed for
-ﬁ1=15 Hz, and stick to this value for the rest of this chapter. The cases
with added mass perturbations of larger amplitudes are considered, namely
a=0.50, 0.75 and 1 (respectively runs C2, C3 and C4). Figs. 19 and 20
show.ihe response for a=0.75 and a=1, respectively. Curve 3 displays an
.~ unusual beating phenomenon (especially in Fig. 20), its amplitude being
sometimes higher and sometimes lower than that of "control" Curve 1. Curve
3 also displays an increased frequency of oscillation, which nevertheless
remains smaller than the frequency shift observed for Curve 4 (see Section
3.2.2).

To conclude this section, let us give the x values of Curve 3:

rms

(which should be compared with xrms(Curve 1) =0.474) and its effective

fﬁequency, both calculated over 30 cycles of oscillation, with £ =0.005.

+Except that its frequency will be 15, 30 or 60 Hz according to fn.

‘
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AN
- ‘ +
o Xrms fers(Hz)
0.25 0.465 15.01
0.50 0.502 15.08 .
0.75 0.541 15.23 \
1.00 0.494 © =15.60 . e

We can see very clearly that, as far as the effective frequency
is concerned, the deterministic effect is in the same direction as the
random effect (it indicates a decrease of the added mass), but its magni-

tude is smaller.

®

- e b - o e o 0 G - - - - A D - - S -

-

‘ The perturbation frequencieslnost]y:consideredin this last section

of Chapter III are given by equation (3-6)f

f; = 30, 150, 240, 300, 450 Hz.

2

They are beyond the recommended "realistic" Fange for two-phase flow as
measured by Carlucci et al. and given by equation (3-4,b). Neverthe]ess,“”?~
we shall examine this case for it gives rise to the fundamentally interes-
ting phenomenon of parametric resonance. Series D to'H are considered for
that purpose (see Apﬁéndix C.6).-

Whenever harmonic perturbations are present in the axial flow

about cylindrical structures, there exists the distinct possibility that

they may cause parametric resonances, otherwise known as parametric insta-

+The same remark given in footnote *» concerning the frequencies of the pre-
vious table (in Section 3.2.2) also applies to the freguencies given in
this table. . ‘
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bilities [64]. It has been shown that such resonantes may occur if the

circular frequency of the periodic flow component, w_, lies in the vicinity

p’
of a fractional multiple of one of the natural frequencies of the cylinder,
w, i.e. if w, = 20! /K, where K=1,2,3.... The most important of these
resonances, the so;called principal primary parametric resonance, Occurs

when K=1, so that v, = Zw; — a well-established result from the aﬁa]ogous

p
problem of a column subjected to a harhonica]]y perturbed axial load [65].
In cases where f, =2fn, irrespective to the other frequencies fi’
parametric resonance oscillations were observed (Curve 3) for all o tested,
however with an unusual.behaviour occurring for a=1. A typical case is
shown in Fig. 18, for o =0.50 (run G2). It is fnteresting to note that
Curvé 3, in the first few cycles, is diminished in amplitude vis-a-vis
Curve 1 and then, after Nmin cycles, reaches a minimum characterized by the
ratio Rm_in = [amplitude Curve 3]/ [amplitude Curve 1]. Then Curve 3 in-

creases again, equals Curve 1 in amplitude after N, cycles, and finally

continues to increase steadily (the system is highly unstable, in the sense

that is displays amplified os§i1]ations). The va]ges of Nuine Ruin and N
are given in the table in the next page.
It is also noted that the frequency- f, in the first few-

initial
cycles becomes larger, but later this effect evaporates after a sufficient

«number of cycles (after the amplitude has "taken off"). The values of

f .are calculated over N cycles of oscillation and are also given

initial min

in the next page.
It is most interesting to notice that if a=1 (run’G4), i.e. the

higher parametric amplitude envisaged here, Curve 3 is no longer unbounded!

Instead, it displays some kind of amplitude and frequency gquasi-periodic

\
|
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-

variations, similar to beating (see Fig. 21). This does not follow the

-

conventional pattern for parametric resonance oscillations, }
The table giving the parameters described above is now presented,

with an addition of two sets of x values, exactly the same as for Curve 4

-

1) has been calculated over 30 cycles of oscillation

rms

in Section 3.2.2. xrms(

rms(Curve 1) =0.707, whereas

’fréZ(Z) has been calculated over 60 cycles with £=0.005 (Series G) and

should be compared with xrmS(Curve 1) = 0.360. .

a N_. R_. N ers(]) X

\\\_0.25 27 0.29 45 0.336 0.244 15l09
'0.50 - b 0.-48 12 3.93 39.79 15.32
0.75 -3 0.55 6 22.2 516.6 15.66
1.00 1% 0.58 3 1.52 0.679 16.25

The frequency shift observed is higher than any other observed
before, i.e. of Curve 3 (in Section 3.2.3) and even of Curve 4 (in Section
3.2.2). But it should not be forgotten that this is only an initial fre-

quency measured over a small number of cycles (N . ) and that after, let

min
us say, N, cycles, the frequency remains sensibly constant at about 15 Hz.

The results for the sets of x o values are indicative of the

peculiar behaviour relating to parametric resonance instabifities described

earlier in this section. Thus, for a=0.25, one obtains xrms(]) < v2/2, .
which is the c]éssica] value for a sinusoid as obtained by Curve 1; this
disp]éys the initial reduction in amplitude referred to earlier; if more

cycles had been taken, then x,_ (1) > v/2/2 would have been obtained. For .

rms
a=0.50 and 0.75, we note that xrms(l) is very large, reflecting parametric ‘

T
i
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rms(]) 13 obtggned, reflgc@ing

{:} resonances, but for a=1, a much smaller x
t@g beating phenomenon described earlier, rather than a monotonic increase

\ (and.also of a=0.25 if a large enough number of cycles were invest{gated).
’ The casds tested in Series F, where fn= fis at’ least for the ¢
and a involved, displayed no parametric resonance. Hence, within the

ranges tested, it is obvious that principal primary resonant oscillations

do occur, but secondary resonances do not (see Refs. [64] and [65]).
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of amplitude (after an inittal decrease) characteristic of a = 0.50 and 0.75
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CHAPTER 1V

DIGITAL ANALYSIS OF THE FREE
VIBRATIONS IN THE FREQUENCY DOMAIN

<

4.1 Introduction .

The results obtained in Chapter III (for Curve 4) agree quali-
tatively with Carlucci's observations, at least as far as the shift towards
higher frequencies is concerned. This shift means indeed that the observed
added mass is lower than that calculated on the basis of the ﬁomogeneous
model of two-phase flow, for which mh(t) = FE is taken. However, quanti-
tatively speaking, the effect that we observed remains weak, compared to
what Carlucci reported. On the other hand, damping has not been found to
be higher, and on the contrary it even seemedtobe a little lower, as the
Xrms values given in Sec;jon 3.2.2 indicate it (for a=0.25, these values
are higher by 1% than those found for a=0). This obviously does not accord
with the observation of a significdantly higherrdamping reported by Carlucci.
Thus, the study in the time domain conducted ié’Chapter IIT has proven not
to be quite conclusive.

:// One reason for this relative failure is thought to lie ia the way
the pseudo-random added mass perturbationg;’i.e. a(t), are geZeraEed (cf.
Appendix C.2). As a matter 6( fact, no restriction on frequency content
was included in the Monte&@ar]b method used to generate the random variates
of a(t), as has a]rﬁggyﬂbggi.mentioﬁed in Section 3.2.3 when Series B were
examined. In Fig. 23, the power spéctrum of this pseudo-random a(t) is

shown, and it may be seen that|it efféctive]y contains all frequencies and

could be considered as an approxjhate white noise. This is by far not the
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case of the deterministic a(t), used for Curve 3 of Chapter III, Which includes
specifically five freqeenc1es f., thus favouring certain predominant fre-
quencies to perturb the added mass. Studies being conducted by AECL , Sub-
sequent to Carlucci's work, sugggstathgp‘the random perturbations a(t) should
actually be of narrow frequency band. Hence two new aspects must be added

to the presenf analysis. On the one hand, new schemes for generating random
perturbations of the hydrodynamic mass have to be developed, capable of pro-
ducing a narrow-banded o(t), or rather a(f) where f stands for the freq&ency.
On the other hand, to enable such a study in the frequency domain, the fre-
quencies themselves must appear explicitly in the ana]ysis; The whole study
must therefore be transferred from the time domain into the frequency domain.
Since we have already implemented the Monte-Carlo method (for generating

the random perturbations) and the Runge-Kutta scheme (for solving the dif-
ferential equation), it was decided to undertake this frequency anﬁTyQi% on
the same digital computer used before (Amdahl V7 of Mch]l Unive;sity).

To carry out the study in the frequency domain, we want to calculate
the power spectra of both the added mass perturbations o(t) and the system
response x(t). This leads us to introduce the Fourier transform, since the
power spectrum Gy, (f) of a ‘time function x(t) is defined as the Fourier

transform of its autocorrelation Ryx(t), i.e. jk
: ~

A

b (F) = 1 ei2nf Rey (1) dr. C o (8-1)

- 00

The autocorrelation function itself is a time average (for an ergodic process)

defined by

-

*Atomic Energy of Canadd Limited.
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o

.
Ree(T) = 1im o £ x(t) x(t+1) dt. : (4-2)
T-o0 -T ‘

Much has been written on the Fourier trans¥orm, but we shall only quote

the book by Brac;;ell [66].‘ However, calculating numerically a Fourier

transform, as the one given by equat1on(4 1) for instance, is not an easy

task, and, anyway, the Four1er transform cannot be integrated in its con-

tinuous form, but has to be discretized and truncated. Fortunately, a

very efficient algorithm for calculating this discrete Fourier transform

(DFT) d;s "rediscovered" in 1965 by Cooley and Tukey [67], after the results

of the mathematicians C.C. Danielson and Corneljus Lanczos which were "tost"

in 1942, This powerful algorithm igpca11ed fast Fourier transform (FFT)

and reduces significantly computing time and cost, making thus possible
rapid transformations between time and frequency gomains. Calculations
_that once took minutes and cost dollars can now be done in seconds for a

fgi cents. The Cooley-Tukey algorithm takes'advantage of the redundanty

in the nested multiplications to reduce the number of transform operations
to Nppp log, (NDFT) rather than the traditional NDFT operations of the discrete
Fourier transform in order to realize this speed-up; NDFT depotes the number of
- samples of the time function used for the DFT. More informafion may be

found in Brigham [68], in Berg]and [69] and also in Appendix D.1, on the

DFT and on the FFT a]gor1thm, as well as on three prob]ems or "pitfalis"
encountered in using them, namely aliasing, leakage and the pjcket—fence
effect. A program for computing the FFT algorithm is given on page 164 of
Ref. [68] and another one on page 164 of Ref. [70], but in this study we
shall use a subroutine taken from the IMSL Library [62]. This subprogram

computes directly the power spectrum and is therefore called FTFPS (Fast




R
- A sol

O

R e N

o e N Y —— i e

.
¥ VI o [T - [S— e = . . T A g1 S i S 1S R g A T o 4t o, Rmemde

Il

Fourier transform estimates of power spectra and cross spectra of time

\\series). During its run, the FTFPS subroutine calls the FFTRC subroutine

(also taken from the IMSL: Library) which computes the fast Fourier trans-
form of a real valued sequence. But before calling FFTRC, the FTFPS routine
uses a symmetric data window which is approximately the Parzep spectral
window. Let Nt be the number of input samples of the time domain (i.e. the
number of data to be transformed). We also introduce L, which is an input
péra@eter used to segment the time series. L must be a power of two, and

Nt must be evenly divisible by L. The number Nﬁ§.9¥/§amp1éd iisquencies !

obtained by calling FTFPS is equal to Ny = (L/2)+1. Those spectral esti-

mates are taken at frequencies

~

ps _ i-1 ’ -
o 1A e (4-3)

where i=1,2,...,(L}2)4-1 and At is the period of sqmp]fné of the time series.
As a final remark on the FTFPS sub-program, let us mention that the output
(power spectrum) is returned into units which are the square of the input‘?
data.

To come back to the }andom perturbations of the added mass, two
main ranges of FTFPS parameters have been chosen, and they ﬁelp to distin-
duish the two following sections. In Section 4.2, the frequency range.(O—

160 Hz)”" with Nos = 1025 (i.e "L =2048) and £ =0.005 is mainly considered,

_ whereas in Section 4.3 this range is reduced to (0-40 Hz) with Nps= 513

(i.e. L=1024) and ¢£=0:02. As for the various schemes of a(t) generated

in this chapter, they are classified in Appendix D.2. For the sake.of

* .
It might be wondered why such a large range is adopted for studying a much
smaller range: (5-25 Hz). This is merely to make sure that we will not
miss any effect below 160 Hz.

L‘w T S— ¢ eatie




|

N T AP e g e e e

e —— o e e i

o nppmaie

o e
’ B R e L SR L R L L o g vy PR TR Y

49.

NN
/"(
’

comp]eteness,_the cases stqdied in Chapter III are also mentioned, and on
the whole e]evgn schemes are distinguished. Each particular scheme has
been denoteq by a small letter from a to k given in bragkets (e.g. [a],
[b],...). To indicate whether the scheme is considered in Section 4.2 or
4,3, this small letter within brackets is preceded respectively by the
capital letter A or B (e.g. Afa] stands for schemei[a] considered in Sec-
tion 4.2, and B[i] denotes scheme [i] of Section 4.3).

In the previous chapter, the deterministic a(t) (scheme [b] lead-
ing to formér Curve 3) was taken as a sum of five sine functions. In this
chapter, it will be a function of N sine functions, with nevertheless mostly
N=5 in Section 4.2, but with mostly N=33 in Section 4.3. Hence o is

defined more generally than in equation (3-3) by
- N
’ o= I a; = Nas. (4-4)

The results are both printed on the computer output and plotted
by}means of the Calcomp 663 digital incremental plotter. On the legend
of fhese plots may be read the parameters ALPHA and SIGMA which stand res-
pectively for o and o. Finally, a typical listing of the program used may

be found in Appendix D.3.

4.2 Results Obtained in the Frequency Range (0 - 160 Hz)

Most of the results given here are indeed obtained, unless pther-
wise specified, in the frequency range (0 - 160 Hz) with the number of power
spectral estimates Nps'equal to 1025. Using these va]uesrmeans that 6.4

spectral samples are obtained per Hertz or, said in an equivalent way, that

+
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the resolution obtained is Af=0.156 Hz (frequency interval between two

consecutive spectral estimates).

In this section, damping is generally taken as =0.005, as it

was suggested and chosen in Chapter III. The natural frequency of the sys-

tem is typically taken as 12, 13, 14 or 15 Hz.

Moreover, the number Nt of

samples of the time function is chosen to be 4096 (at least when the fre-

quency range and N ¢ are those indicated above). Ny is thus effectively +

evenly divisible by L as it should, since L =2048 (see at the end of the pre-

yious section). On the other hand, the step-size h=At, which i$ the per-

iod of sampling of the time function, is determined by using equation (4-3).

We have
fps = Os
1

ps
f LAT

Nps

/

RS _ ¢PS = pp,
Nps ~ 1

where FR stands for the frequency range. Hence -

Ly
Nps = 1 _
tat — = FRs
.
from which we get
_ _Ns']
mﬁ‘h bt = e

(4-5)

.
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bt = gyt = ks = 3.125 ms. (4-6)

The total sampling time Ty is then ‘

Te = No» At = 4096/320 = 12.8s.
Hence the total number of cycles Nc(%) investigated for a signal of fre-
quency f is ) '

Ne(f) = %£-= LIPS - ~ (4-7)
where T = 1/f. . .

We thus notice, since the natqra] frequency fn lies between 12
and 15 Hz, that the time signal will be ana]yseduover qpproximate]y its
170 first cyc]esf. This is about two and half times the highest number of
cycles considered in the time domain study conducted in Chapter III.

This also means that a signal of frequency 5 Hz will be considered
over 64 cycles, whereas over 320 cycles for a frequency of 25 Hz. Hence
we obtain 64 time s;ﬁp]es over one period of a signal of frequency 5 Hz,
about 24 samples for a signal of frequency fn’ and 12.8 samples when the
frequency is 25 Hz (5 and 25 Hz are respectively the lower and upper limits
of the frequency band desired for the pseudo-random a(t)).

We will now discuss the results obtained, first for. the deter-

ministic perturbations ao(t) (Schemes [b] and [a]) in Section 4.2.1, and

then for the pseudo-random a(t) (Schemes [c], [d], [e] and [f]) in Sec-
tion 4.2.2. l

+Over 150 cycles if fn =12 Hz, and 190 cycles if fn==15 Hz.

/!
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Parametric_Resonance
Only considered with N=5, Case A[b]* has been run for two values
of a: 0=0.25 and & =0.75. For a=0.25, the natural frequencies fn; 12 Hz
and fp =15 Hz were considered (in Cﬁapter II1, only fn =15 Hz was envisaged).
For o =0.75, the study was.extended to five values of fn: 11, 12, 13, 14

and 15 Hz. Let us now give the numerical results of the runs in which fn=

12 Hz and fn= 15 Hz.

S 411§ S Results ______ i
Scheme - s
of a(t) o fpliz)  [ale)]p,, frasp  2Fupp  Aresp
[a] 0 - 12 0 "12.03  0.125 20.69
[b] 0.25 - 12 0.96 12.03 Q.12 24.19
[b] 0.75 - 12 ' 8.65: 12,5  0.254  7.9x10*°
[a] 0 - 15 0 15.0 0.12 - 13.63
[b] 0.25 - 15 0.96 15.0  0.125 14.41
[b] 0.76 - 15 8.65 15.31 0.12 13.7
=Main table=

In this tagje as well as in the next ones, [a(w)]m is the amplitude of

ax

the highest peak in the power spectrum of a(t), f is the frequency at

resp

which the peak in the power spect;%% of system response occurred, Af&pp
H

is the frequency interval at the half-power point, and A is the ampli-

resp
tude of the response peak. .
y
It is seen, especially when a=0.75, that parametric resonance
occurs when fn= 12 Hz, but does not occur when fn= 15 Hz. The other runs

done for a=0.75 show that for the other values of fns this parametric

*See Appendix D.2.
LN

e

b
R



% it % e h e v m v
s
5

.
3 - e~ R SRR

B =1

53.

7

a

resonance does not odéur, as can be seen in the additional table below.

i f Af

n resp }spp Aresp ‘e
11 11.25 0.13 , 26,98

13 13.125 0.12 13.67
14 14.22 0.154 8.915

=Additional table=

In common: Scheme [b]; &=0.75; [oc(w)]max=8.65.

In fact, the result for fn=12 Hzgénd a=0.75 is very clear since
it indicates that the frequency at which the yesonance occurs is ac%ua]]y
JZ.S Hz. This proves that we are dealing with the primary resonance asso-
ciated to the frequency f_=25 Hz (sinte 25/12.5=2). Actually, the power
spectrum of the system response for fn= 12 Hz and a=0.75 disp]a;g even
more interesting features as far as parametr{; resonance is concerned (see
Fig. 24). Four smalleereaks~can be seen, but in reality they are not so
small, since the scale éf the‘y—axis is determined by the peak at 12.5 Hz
with an amplitude of nearly 102°. The next peak in importance after the
one at 12.5 Hz is found for a frequency of 7.5 Hz. Visibly this is the pri-
mary parametric resonance due to f,=15 Hz (15/7.5=2). The third interest-

ing peak is found for a frequency of 2.5 Hz and is the primary resonance

associated to f1= 5 Hz'(5/2.5==2). Hence three primary parametric resonances

have been displayed. The two smaller remaining peaks occur at frequencies
of 17.5 Hz and 22.5 Hz, but it is not exactly known to which combination
of perturbation frequencies fi they are theresponse. It is however felt

that they represent secondary parametric resonances responding respectively

to frequencies of 17.5Hz(17.5/17.5=1) and22.5 Hz (22.5/22.5=1). These two

e it o o
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fr‘eduencies of 17.5 Hz and 22.5 Hz can possibly be present in o(t) by some
[

addition of certain frequencies fi according to the trigonometrical for-

mula -
sin p + sinq = 2 sin E;q “tos péq
(we have ]0;25 = ]5;20 = 17.5 and gg_%_zg = 22.5).

It is recalled that in Chapter II1 (Section 3.2.4), only one
principal parametric resonance (for fn= 15 Hz: 30/15=2) and no secondary
resonance were found. Buf fn= 12 Hz was not envisaged at that time.

Coming back to the main table above, it is seen that, contrary

to intuition, the absolute value of the response when fn= 12 Hz is higher

" than when fn= 15 Hz. However, this is not a conventional forced-vibration

system; hence, this should not be interpreted as an ordinary resonance

effect.

The results concerning Af%pp are not significant, but as for the
frequency, it is seen that for f =15 Hz and a=0.75, we have fresp=15._31 Hz,
whereas in Chapter III (end of Section 3.2.3) it was found to be 15.23 Hz,
all the input parameters being the same. Taking the resolution of the
spectral solution into consideration (Af=0.156 Hz), this is a good result.

Another observation is that even in this dete‘rministic case, there
are variations in Aresp
effect is not systematic.

- 1
as a changes, as seen when fn=/’ 15 Hz; however, the

}
v %

1

Finally to illustrate these resualts, the power spectra for a=0.25
are shown in Figs. 25(a), (b) and {c¢). In Fig. 25(a) may be seen the five
deterministic peaks, exactly equal; next(“‘\to the ordinate showing the relative

amplitude is indicated the absolute value — in this example 0.96. The sharp

N
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peak of the system response is shown in Figs. 25(b) and (c) for o= 15 Hz

and 12 Hz, respectively. When fn==12 Hz, a very small peak appears justto the

right of the main peak and denotes the impending rise’of the parametric

resonance.

e L e e o o Ko e Ay e - e oy S e S D W e e G Cm Sy e

The purpose of this set of calculations, as already explained
in the introdugzion to this chapter, is to studx the effect of random added
mass perturbations a(t) of narrow frequency band. It is for this reason
that various models have been developed fon a(t), starting from the less
elaborate scheme [c] which was investigatedlin Chapter III and is completely

pseudo-random. With scheme [d] the effect of having pseudo-random ampli-

tudes is- of interest, whereas schemes [e] and [f] consider pseudo-random

frequencies, in the hope that one might thus be able to "broaden" the N

sharp response peaks obtained for the deterministic scheme [b] (cf. Fig.
25(a)). Finally it is hoped that if we can "broaden" these deterministic
peaks enough, they will "join" and form one quasi-continuous frequency
band (eventually the number N of peaks will have to be increased within
the range considered — between 5 Hz and 25 Hz — in order to "help" them
to "join" up more easily).
Quantitative comparisons of the results are also made, in order
fo examine the following specific quest{ons:
(i) how do the actual frequencies of oscillation compare to the natural
frequencies of the system; A
(i) whether the width of the response peak broadens wiéh more random per-
turbations in the added mass; ,
(iii) whether the wvibration amplitude changes systematically with increasing

randomness in the added mass. .
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It is reaéonab]e to expect that if the hydrodynamic mass should
decrease aﬁd the effective dambing should increase with increasing random-
ness in the added mass, one would expect to see (a) an increase of the effec-
tive oscillation frequency, (b) a broadening of the vibration amplitude peak
in the power spectrum of the system response, and (c) a reduced amplitude
of the vibration peak.

We shall now examine the results obtained with these different
models.

Scheme [c]: This is the random scheme which has been adopted in the previous
chapter (Section 3.2.2), and on which all the random discussion was con-

ducted. The values of & and o are related by
g = &/»/Z_I‘T . - (4"8’b)

and we also have

.

u=0, (4-8,a)

as may be seen in Appendix D.2.
As for Case A[b] 1in the previous Section 4.2.1, Case A[c]*

has only been run for N=5, and for &=0.25 and 0.75 (hence o=0.25//10

e

and 0.75/V10, respectively).

4

Fig. 23 shows the power spectrum of oft) for a=0.25 (and o=

0.25//10). As may be seen, the forf of a(t) is really wide-band random,

'the energy being distributed on all frequencies {and this probably goes

far beyond 160 Hz). However, the response of the system is of narrow band,

‘ displaying a sharp peak at f=‘fn exactly as on Fig. 25(b). For fn= 12 Hz,

'*See Appendix D.2.
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the parametric resonance which appeared in Case A[b] does not occur at all.
In this sense, the random a(t) actually has a damping effect.

Let us now view the -results obtained.
______ Inpui: Results
Scheme - '
of a(t) © o faliz) " [o(w) ],y fresp  Presp
[a] 0 - 12 0 12.03  20.69 .
[c] 0.25 0.25//70 12 0.0326  12.03 20.66 |
[c] 0.75 0.75//10 12 0.2938 12.34  17.79
[al] o - 15 0 150 13.63 =4
[c] 0.25 0.254710 15 0.0326 _15.0 12.60 )
[c] 0.75 0.75//10 15 0.2938 15.47 9.22
.1‘
|
We see that the freguency of the response increases with a, which goesin
the direction sought and agrees with what waspf/o/nd in Chapter III. 1
Section 3.2.2, we found indeed that,for a=0.75 (and fn=15 HZ)’fresp=
15.47 Hz, and here we get the same value, which proves that there is gpod
agreement between the two methods. However, we obtain also an interesting
result that we could not get previously, i.e., we see that Aresp decreases
when o increases, both for\‘Fn =12 Hz and fn= 15 Hz. Hence, 'a certain [damping
effect appears here. j’ \
As in the previous Case A[b], the amplitude when fn =12 Hz is
higher than when fn='15 Hz.
Scheme [d]: In this case, pseudo-random amplitudes are considered. irg. 26
shows the power spectrum of o{t) for N=5 and 0=0.25. The five-peaks still

appear very distinctly, and the power spectra of the response, which were

-

obtained for the same parameters (fn= 12 and 15 Hz; &{= 0.25 and 0.75)] dis-
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play, as might have béen foreseen, the same behaviour as for the determin-
istic case A[b]. No "broadening" of the deterministic peaks can be obtained
with scheme [d]. This is clearly not a useful model.

Scheme [e]: A great deal of work has been done with this model, for which
the deterministic‘frequencies fi are perturbed by a random fluctuater.

Now, the two parameters o and o can be chosen to vary independently; hencé,
in Figs. 27(a) - (c) is shown the ﬁbwer spectrum of a(t) for a given o (&=
0.?5) but for increasing o (0=0.25, 0.50 and 1). As may be seen, we

are still considering the value N=5. It is seen that when o is small

(Fig. 27(a)) the dominant frequencies stand out clearly, in a background of
"noise". However, with increasing o, the "noise" becomes more pronounced,
so that in Fig. 27(c) it is difficult to pick out the predominént frequen-
cies —-aithodgh, on closer examination, it may be established that they are
still there. Actually, thegamplitudes of Figs. 27(a) - (c) indicate that it
is not the hnoise" which increases in such a'proportion, but tha; rather the
amplitudes of the deterministic peaks progressively decrease, until they are
"swallowed" by the "noise". Unfortunately, the establishment of this fact
quicafes that the desired effect of.a btggyening of the peaks is much

lé;s important than thelogéerved effect of the peaks vanishing in the gener-
al "noise"/ | ' "

As far as the response is concerned, it cannot be said to change
very much when the system is subjected to any of the a(t) considered above
and seen in Figs. 27(a) - (c). It consists of one sharp peak at f= f simi-
lar to the one shown in Fig. 25(b). Never%hg]ess, it should be mentioned
‘tha§ for 0.=0.75 and fn= 12 Hz the parametric resonance, which was observed

in Case A[b] at a frequency of 12.5 Hz, still appears but at a much reduced
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level (since with scheme [e], an amplitude of the order of only 107 to 10% —

decreasing when o increases — is obtained, whereas for scheme [b], it reached .

11029), | ]
Let us now give the quantitative results obtained for a=0.25,

fn= 14 Hz and N=5 (these are the.gguns for which a(f&qis shown .in Figs. L

27(a)-(c)).

ety & o f) (e, fresp Ay A .
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It is noted that with increasing o, [a(w)] decreases (what has already

max
been é}p]ained by the vanishing of the five deterministic peaks), and so

does Aresp' . However, there is no significant broadening of the pfsponse, ﬁ::\

nor a significant frequency shift.

&, ey

Although promising; the desired goal of achieving}narrow banded

a(t) has really not been achieved. Therefore, two further attempts were
undertaken. The first consists in increasing the numﬁéf\gf,predominant i
frequencies from N=5 to N=17. Fig. 28 shows the power spectrum of a(t) i
for this new value of N, and for &==df25 and 0=0.50. As it may be noticed, 2
increésing N has not changed things very much. (The value of {a(m)]max < \%//,
is 0.0133 in Fig. 28, which is smaller than 0,0782 in Fig. 27(b), also é
obtained for 6 =0.25 and o=0.50, but with N=5. This is due to the fact X
- . g
#

that the amplitude %3 common to all sine functions of\scheme [e], is now

1
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f% instead of %;previously [cf. equation (4-4)]. The other parameters
obtained ére: fresp==14.06 Hz, Af%pp==0.177 Hz, and Aresp= 13.47.)

The second attempt made amounts to decreasing the discrimina-"®
tion of the calculation — which means reducing the resolution Af in the
power spectrum calculations. It should be stressed that this is the only

part of Section 4.2 in which the range (0 - 160 Hz):and N__=1025 are not

ps

@

- adopted. In fact we consider here the range {0-80 Hz) and Nps= 129, which

gives us 1.6 spectral samples per Hertz,or a resolution of Af=0.625 Hz.
Decreasing the discrimination of the calculation makes actually things

"Took" a great deal more successful [Figs. 29(a) and (b)]; the response

displays also a broader peak [Fig. 29(c)]. But we know that in fact this '{/
is artificial and that things are not really better. We now indicate the
quantitative results obtained with these range and value ole $? and for
N=17 and f =13 Hz. / N r
J 1 < "\6”
e Ut e Results
Scheme - }
of a(t) o fn(Hz) [a(w)]max fresp Aflapp Aresp

[e] 0.25 0.25 13 0.0111  13.12 0.50  14.45
[e] 0.75 0.25 13 0.10 13.12  0.46  13.76
[e] 0.25 0.50 13 0.0072  13.12 0.51  14.50
[e]Y 0.75 0.50 13 0.0646  13.12. 0.47  13.36

Range = (0, 80 Hz) and Nps =129,
<
It is seen that, as o increases, Aresp decreases very slightly and Af%pp

remains almost the same. However, these results are not very reliable,-

~

because of the small number of points in the spectrum.
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Scheme [f]: The results of this case are very similar to those obtained
with scheme [e]; as a matter of fact, both scﬁeme§:c9nsider pseudo-random )
perturbations on the é}equencies. It was noted,nevertheless, that for a
given o the "broad-banded" form of a(t) emerges at higher values of o than
was the case with scheme [e]. Also, for &=0.75 and f, =12 Hz, the remain-
ing effect of parametric resonance displays higher amplitudes (from 10!?

to 10%, decreasing with increasing o) than it did with scheme [e]. Hence

61.

schemes [e] and [f] display the same qualitative results, but the effective

damping is lower for the latter scheme.

o
4,3 Results Obtained in the Frequency Range (0-40 Hz)

The first part of the frequency domain analysis (Section 4.2)
has proved to be ;gre1ative success, since good agreement with the time
domain resu]tﬁ (Chapter III) could be reached for the common schemes [b]
and [c], especially as far as the effective frequency of oscillation is
concerned. Moreover, it was possible to observe a more conclusive damping
effect due to the random added mass perturbations, in the caselwhere para-
metric resonance* occurs (what was already found in Chapter III), as well
as in the case of the completely pseydo-random scheme [c] (what could not
have been displayed previously). - a

Nevertheless, the desired goal of generating a narrow-banded

pseudo-random a(t) could not be achijeved with any of the three new schemes

introduced, namely scheme [d] (with randomly perturbed amplitudes ai) and

P

*When Fn =12 Hz and with large amplitudes of a(t). This was observed for
schemes [e] and [f], where = 12 Hz displays a much reduced parametric
resonance compared to scheme [b].

o Nt b o v
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[e] and [f] (with randomly perturbed frequencies fi)' In fact, instead of

observing a broadening of the sharp peaks corresponding to the N frequen- '
cies f., with increasing o [cf. Figs. 27(a)- (c)], it was noticed that
the*pe&ks —~ still very sharp — decrease in amplitude until they become no
longer distinguishable from the surrounding "noise"., Increasing the num-
ber N of perturbation frequencies fi did not alter this pattern of behaviour.

In this section, another digital attempt will be undertaken to
come closer to the aim or producing such an a(t) of narrow frequency band.
Therefore two improvements are introduced; the first one consists in choos-
ing certain better system and analysis ‘parameters, and the second one in
testing more sophisticated models of the added mass perturbations a(t).

The parameter improvements are the following:

(1) we increase the value of ¢ from 0.005 to 0.02, in order to obtain a
broader peaE‘%or the system response, which will make it easier to
measure Af%pp;

(i1) we choose the value f =14 Hz for the natural frequency of the system,

| to avoid any effect of the parametric resonance observed at fn= 12 Hz
(this pérametric resonance occurringactually at 12.5 Hz); we also
discard fn= 13 Hz for thewsame reason, even though no really impor-
tant effect of this parametric resonance has been observed at that

- frequency; furthermore, we do not choose = 15 Hz, since 15 Hz is

precisely one of the deterministic frequencies involved in a(é);

(iii) we reduce the frequency range studied from (0- 160 Hz) down to (0-40
Hz), and this is sufficient since we want the frequency band of a(@)

to spread between 5 and 25 Hz, and also since we have not discovered

any unsuspected effect above 40 Hz affecting the system response (in.

Section 4.2); . \:j>

P aoa a et s

B S USRI T e (L A

v bt o g s s e e — e e e ¥



Lt

R e AP SR PGIET L, 2

=

63.

(iv}we also reduce the number N__ of points used to calculate the power

ps
spectra of a(f)* and x(f)* from 1025 down to 5137 (hence L =1024);
this is possible since we reduce the frequency range by four times.
Thanks to all this, our :Zsu1ts on the three parameters of inter-
est (response frequency, frequency interval at the half-power point, and
amplitude of the response peak) will be of much better comparative value.
Having chosen these frequency ranges (1i1) and number of calcula-
ti&% points (iv), we obtain 12.8 calculated points per Hertzor, in other words,
the width of one calculated frequency interval or resolution Af is equal
to 0.078 Hz approximately. This means that the accuracy of the power
spectra obtained is twice better as it was in Section 4.2.

Having done (i), (iii) and (iv), we notice on the output data
that, since the response peak is broader, we obtain about 20 significant
points to plot this peak, whereas only 3 such points were available for
the very sharp peaks of Section 4.2. This is quite an appreciable improve-
ment.

However, one question might give some trouble and stems from the

choice of Nps, L and N; (here Ny = 2048). In fact, equation (4-5) gives a

. period of sampling of:the time record At equal to

sz 1
At~m—80-12.5ms.

The value is four ‘times bigger thanbefore. Hence there will be four times

*Wherﬁ“f stands for the frequency. ’

TWith 513 points, the computing time is half of what it would be with 1025
points; moreover the program can be run +in CLASS 2, whilst a 1025 points
program requires CLASS 3, )
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1esssamp1in§ points per cycle of oscillation, i.e. 16_samp1es per cycle
if f=5 Hz, about 6 samples if f= fn, and only 3.2 samples if f =25 Hz.
AS\Afcan see it, there exists a conflict between éccuracy in the time
domain of the input anq accuracy in the frequency domain of the output.

The total sampling tijf;;f

T, =N

¢ At = 2048/80 = 25.6 s.

t

This is twice the time length covered before, hence the number of cycles
cons{aered will also double, Which represents about 340 cycles of the res-
ponse (128 cycles of a signal of 5 Hz and 640 cycles if f=25 Hz)."

As for the models of a(t) to be tested, they include three former
ones, namely schemes [a] (reference with a(t)=0), [b] (deterministic refer-
ence=sum of N sine functions) and [e] (pseudo-random perturbations of the
frequencies fi)' The new schemes introduced here are denoted from [g] to
[k], and consist mainly of more refined deterministic vériations of the
frequencies'fi (schemes [g], [h] and [j]) on which pseudo-random pertur-
bations may also be added (schemes [i} and [k]). For further information
on these schemes, see Appendix D.2.

Let us finally note  that in every run with non-null a(t),
the value a=0.25 is used. Also, in every run in which pseudo-random R01+
sequences are generated and used, the mean My =0 and staqdard deviation
0 =(0.25 are used.

We now review the different schemes and examine the power spectrum
of a(f),as well as the results concerning the response x(f).

Scheme [a]: This is the reference case with a(t)=0. Two runs are con-

o

ducted, the first one being the only run of this Section 4.3 which is not

+R0i is defined in Appendix D.2.
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considering NpS =513, The results obtained are given below.
\L Input Results
Scheme Frequency  # points| fpe Afy, A
of a(t) Nps Range (Hz) / Hz (Hz?p (Hégp xr?ggh
[a] 1025 0-40 25.6 13.87 0.520 1.81 ‘
[a] 513 0-40 12.8 | 13.9  0.524 14.36
a(t)=0

This Case B[a] is interesting mostly because it allows comparison of

the results for the two different values of Nps'

important now (z=0.02), the response x(t) will decay rapidly and we notice

The damping being more

actually that the response amplitude of the first run (1.81 x 107*%;

for N - 1025) is eight times smaller than for the second run (14.36x 107%;

P
for Nps==513). This exa pte shows us one limitation of the FTFPS methodi
sifce we are 1imi}éH/E§/The time span studied, and maybe in Section 4.2
we did not go far enough in time to obtain some expected results. We also
understand that this method would not be well suited for the study of the
forced vibrations of the system, since in that case a much bigger number
of cycles should be investigated. ’

Another}]imitation Ties in the discreteness of the method itself,
andvthis is illustrated by the re§u1ts concerning the effective Fesponse
frequency.' For the first run the response peak, or more exactly the maximum
frequency estimate obtained, is located at the discrete frequency abscissa
fr] = 13,8671875 Hz, whilst for the second run, this frequency point is not

present and the peak is obtained for flp=13.90625 Hz (see Fig. 30). But

this problem is inherent to any digita]imethod, and the results have to be

~
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given with an indication of the resolution of the method. One thing is sure
from both runs, it is that the response frequency ig smallér than the nat-
ural frequency of the system (14 Hz), but it is not known exactly whe;:

it occurs. (There might however exist a very slight difference between

f‘r‘1 and frz’ due to the Runge-Kutta method used oyer,different time‘lengths.)
The unexpected lower frequency found may be due partially to the hiéher
damping used (z = 0.02 instead of 0.005). y ‘

From now on, all subsequent runs will have in common: “ps==513,

range = (0,40 Hz), fn= 14 Hz, £=0.02 and a=0.25. Moreover, for all pseudo-
random runs, the value 0=0.25 is adopted (only the “realistic" value is
considered).

Scheme [b]: This is the deterministic refereqce case and consists simply

of a sum of N sine functions. In Case B[b], four values of N are considered:

N=5, 9, 17, 33. The perturbation frequencies fi stretch between 5 and 25

Hz and their respective values may be found in Appendix D.2.

Let us give the results right now. ’
: i
Input Results

Scheme, ’ Ares
of aft) N Lalw) dpax fresp By pp y 108u

[b] 5 0%4809 13.9 0.531 13.63

[b] 9 (0.1484 13.8 0.529 14.39

(bl 17 0.0416 13.9 0.520 14.43

[b] 33 0.01104 13.9 0.524 14.44 [Fig. 31]

«=0.25 and 0=0 .

The most visible, and also expected affect is the strong decrease

of [oa(w)]max as N increases. This comes simply from the choice of a; as

[

34 e
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for all i (equation (4-4)), hence since we want o to be constant, a;

=21

N
»

~decreases as N increases.

We also notice a slight increase of A , which is only certain

resp
,when passing from N=5 to N=9. To be complete, we should compare these

amplitude values with the one obtained from the second run of Case B[a],

and then we see that thgé conclusion does not hold since Aresp of Case

"

B[a] is even smaller than Are of the second run of this case (14.36 <

Sp

14.39). The imprecision on A does not allow us to conclude anything

resp

else but that A is constant. The same conclusion can be made about fre

resp sp

€ e s e

and Af, .
Lpp
’ From this point on, we could continue to give in a similar way
the results for the other schemes considered, since in fact schemes [e]
i and [g] have also be run for the same four values of N. But it is believed

that a comparative discussion is more interesting, and for this purpose,

? we shall only consiahr the runs for which N =33 has been adopted. As a

matter of fact, it is with this highest value of N that the chance is .the

kel

biggest to obtain a narrow-banded o(t).
But before giving the results for N=33, let us have a qualita-

 tive review of the power spectrum of a(t) obtained with the different schemes

T o — . .

(also for N=33). In Fig. 31(a) are seen the 33 deterministic peaks charac-

teristic of the reference case [b] (already discussed above), whereas Eig.

31(b) displays the associate system response. This will be the only res-_

\ ponse peak shown in this section, since for all the other schemes investi-
gated, the shape of the response peak was found to be similar.

In Fig. 32 is given the power spectrum of a(t),corresponding to

i scheme [e]. It exhibits a wide-band spectrum, very different from the sharp

. /

&
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peaks obtained for N=5 in Section 4.2.2 [cf. Fig. 27(a)]. It is more simi-
lar to what is obtained for the completely pseudo-random scheme [c] (cf. Fig.
. 23). Unfortunately, the same kind of behaviour is observed in Figs. 33,
34, 35 (scheme [g]) and in Fig. 36 (scheme [h]).
However, a better result 1is achieved in Fig., 37, actua]]y\the
first good result up to now, as far as the aim of generating a narro“-banded
a(t) is concerned. This relative success is found for scheme [h] with
“i=’0‘2 for allﬁg~and A=2 (cf. Appendix D.2), which means that the exagt

scheme considered: is

3

alt) = §

sin{wi(1+-0.2 sin(20mt))t],
i .

&’Ql

1

for which the values of w; may also be found in Appendix D.Z2.
This result is considered to be a success because the "bel1"-

" shape of a narrow frequency band appears, but this success is only relative
since the broadening of the ougstanding-peaks (corresponding to the fre-
quencies fi) is not sufficient to give us a real frequency band. )

We have mentioned before that this is the first case displaying ‘ '
a good result, but unfortunately it is also the last. Another problem

seen indeed in Fig. 37 is that the potential narrow frequency band does not

spread exactly between 5 and 25 Hz, but rather between 12 and 28 Hz, which

is a little too far from the suggested "realistic" conditions desired [cf.

or g i e

equation (3-4,b)]. To obtain the same kind of spectrum, but shifted to the
"left" on the frequency abscissa, we proceed to a systematic shift of the
perturbation frequencies fi and therefore reduce all of them by 3 Hz. In

other words, we replace the frehuencies (5, 5.625, ..., 25 Hz) by (2, 2.625,

(It S BRI B Ko R s Sl o iabe Bt

...y 22 Hz). However, this does not produce the expected result as we may

*
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notice it in Fig. 38 (schgme [i]) and in Fig. 39 {scheme [k]). The desired
shape of Fig. 37 has actually disappeared, and there only remains a wide
band specfrum,as found in Figs. 32 to 36. We are tpus forced to recognize
that there is little hope in obtaining a narrow-banded a(t) by means of

such a digital method. !

However, it may still be interesting to give the quantitative
results obtained for all these runs, conducted with N=233 (except for scheme

[a], of course, since a(t)=0).

Input Results
Scheme Nature” TP N Euggzgmax Fresp Af%pp ﬁ¥8§ Figure
[a] d - - - - 13.9 0.524 14.36 -
[b] d - - - 110.4 13.9 0.524 14.44 Figs. 31
[e] pr - - 0.25{ 38.62 13.9 0.520 14.54 Fig. 32
[g] d 0.2 § - 41.89  13.9 0.533 12.75 Fig. 33
(9] d 0.2 2 - 79.97  13.9 0.519 13.60 Fig. 34
(] d 01 5 - 45.28  13.9 0.513 13.37 Fig. 35
[h] d 0.2 5 - 41.71  13.9 0.533 14.34 Fig. 36
[h] d 0.2 2 - 77.55 13.9 0.525 12.94 Fig. 37
. [3] d 0.2 1 - 64.18  13.9 0.519 14.57 Fig. 38
[k] pr 0.2 1 0.25( 33.25 13.9 0.512 14.51 Fig. 39

The general observation is that, as well as being unable to obtain”
good results from the qualitative point of view, these results are also not
very en]ightening§‘ It is true that most of these schemes are deterministic

and that the deterministic scheme [b] has been found in Chapter III, for

* . .
Nature: d denotes a deterministic scheme, and pr a pseudo-random one.

§The results of f » which seems to be constant, are a good example of

resp
this.

-
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i:} . instance, to display less important effects (e.g. effective frequency) than
the pseudo-random scheme [c]. Another reason is that here we took o =0.25,

which is the lowest'value of o studied, and the effects have always proved

to remain weak for such a Tow a. )
v It could be mentioned here that the two lowest vatues of [a(m)]max
! are found precisely for the two pseudo-random cases (schemes [e] and [k]). -

: Comparison between schemes [j] and [k] is also interesting, since the latter

—e

is the pseudo-random perturbed version of the former. According to Aresp’

damping seems to be higher (14.51 x10"* < 14.57 x 10~*) but not according -
to Af%pp (0.512<0.519) since for higher damping, Af%pp would increase.

. Another reason for the lack of significant results of "this section
may be fhe small number per cycle of discrete data taken from the time domain

signal, at Teast for the highest frequencies considered.
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CHAPTER V

ANALOG ANALYSIS OF THE FREE AND
FORCED VIBRATIONS IN THE FREQUENCY DOMAIN

: J

5.1 Description of Equipment and Method

5.1.1 Digital Signal Analyser and Anafog Computer .

-

The motivation for this last analysis lies in the failure of the
digital methods to generate pseudo-random added mass perturbations of nar-
row frequency band. Of course, we could still improve these methods by
introducing digiia] filters. But this is considered to be too complicated,
especially when considering a certain rigidity inherent in the FTFPS

power spectrum sub-program as for the choice of the parameters of interest.
High computer times (up to $160.CPU charge occurred for certain‘digital
runs) are also a factor to be taken into account against the digital
methods.’ .

This is why we decided to switch throm the Amdhal V7 computer to
our Hewlett-Packard vibration analysis equipment. The main piece of this
equipment consists of a HP 5420A Digital Signal Analyser. This electronic
device performs a variety of time domain and frequency domain measurements.
133 link the time domain to the frequency domain, it also makes use &f the
FFT algorithm, described in Appepdix D.1 and used in Chapter IV. One
valuable advantage of the analyser is the possibility of processing not
only one ensemble of Nt time domain samples — as it was done previously
with the FTFPS sub-program — but on the contrary a whole series of them.

A very important number of these ensemS]es (up to 32,767) can be processed

. ]
one éfter the other, as soon as Nt time data have been sampled. The

< ~——proeess. used to obtain the final result is a signal averaging—wh’rch;i

in this case, is an overlapped processing. Although time windowing of

measured data records is a necessity when using digital processors — and

e e R LIME
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this is in order to avoid éj%asing (cf. Appendix D.1) — one of the dele-
terious effects of windowing is the loss of the informatiqn contained in
the original data. Much of the coherent information buried in noise can

“ thus be recerred by using time records that overlap one another, resulting
in variance reduction that depends upon the window shape. Hence over 1000
osci]fﬁtion cycles can be analysed-which is very interesting for the forced
case. Several windowing functions are available according to the nature

+ * of the dnput signal. CWe choose to enter a randomly varying signal, hence R

the Hanning window is selected and tﬁe result obtained is actually a power
spectral density (p.s.d.) which is given in volts?/Hz. Additional informa-

- tion on the measurement characteristics of this fééquency analyser may be

Q

_ found in Appendix E.1, and even more in Chapter 5 of the analyser manual [71].

’ Paradoxiha]]y, this digital signal analyser accépts only analog
signals as input. As a matter of fact, since we have already solved the
differential equation (2-16) on the digital computer, it would be desirable
" to %na]yse these digital solution data on thesHP 5420A analyser. But this %s
| not possible because, even though the analyser processes digital numbers,
it is not designed f@ accept digital input. The sé]ution of storing the ﬁﬂﬁg
s digital response obtained previously, and transforming it into an analog ’
'signal was first considered, but could not be implemented because of both
hardware apd software incomﬁatibi]ities between the IBM and HP systems.

5

For this:reason, it is decided to solve equafibn (2-16) on an | 3
analog computer, namely the EAI 1000 Analog Computer. More information
on this computer may be found in Appendix E.2, as we]i as in its reference
and maintenance manual [72]. More general {nformatién on analog computers
may also be found {n.Refs. [73] and [74]. A practical advantage of using

an analog computer lies in the fact that, once the equation has been

scaled and plugged on the EAI fOOb, it becomes much easier to change the

B A
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!mrameters of interest than in a dick of computer cards.

In this approach, we no longer use a Monte-Carlo method to
generate the pseudo-random o(w), but simply pick up the signal obtained
from the Noise Source incorporated in the ADC element of the analyser
(Analog/Digital Converter HP 54470A). Then thzs noise, whose spectrum
is flat (wide-band) in the frequency range considered for analysis, is
filtered to the desired frequency band by means of the Krohn-Hite filter
model 3323. In Figs. 40(a)-(c) is shown the power spectral density of
‘a(w) for th;ée different values of averages obtained by overlapped process-
ing (this number of averages is noted #A on the display of the analyser).

Egn only one'éverage taken [Fig. 40(a)], the narrowxband is not yet very
good, still exhibiting sharp peaks as was found in the digital analysis
of Chapter IV.H However, when the number of averages is increased, the
narrow band is much more marked, as may be seen in Fig. 40(b) [#A=100]

and especially in Fig. 40(c) [#A=1000]. This is in agreement with what

was stressed earlier, namely that overlapped processing recovers coherent

signals buried in noise. As far as the forcing function is concerned,
it is obtained, when considered, from the HP 3300A. Function Generator.

In Fig. 41 may be found the schematic description of the experifpent.

5.1.2 Machine Equation _on Analog Computer \

L 2 S A L e p ™)

In actual magnitude and time scales, equation (2-16) may be

1

written

' (3 2'= 0 -
[1+a(t)]X + 2cw X + WAX ~{ wﬁf°sinwft . (5-1)

in which f° is constant.
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This equation must undergo some changes in order to fit the
analog computer requirements (maximum voltage = 5 volts), as described
below.

a) Magnitude scaling !
. (

The maxima are calculated in the unforced case with no damgjng.
This means that the solution given by equation (2-17) now reads

x(t) = B cos(%nt + ). » )

Its first and second-®lerivatives with respect to time are
x(t) = -w, B s1n(wnt + ¢), 1 )
{(t) = -wﬁ B cos(wnt +9).
* ("; .
By intraducing the initial conditions , x(0) = Xp¢ and x(0) = 0, we find
tha\t B=xIC and ¢=0,

Hence, |

N x(t) = x; cos(w,t) ‘ L '/I -

x(t) = -X1¢%, Sin(wnt)

x(t) = —xICw; cos (wt) ’ ‘E ~

from where we get
x(t) | nax = X1c o B (5-2,a)

*Slightly different from initial cogditions (3-5).
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1) - 2
|x(t”max = X1c%p-
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(S'Z:C)

For the forced case, it is just necessary to lower the initial

va]ueofoC in order to avoid overflow when increasing f°.

. e .
Let us now introduce ‘the machine varijables:

Actual variable Expected maximum

/\

Computer variable

. X
X X [—=]
IC ] XIC

x4

X
w. X [ -]
. IC wanC

w2x X
n"IC wiX1c

becomes

X,

(1+a(t))‘[w2;’f 1 +2¢ [——L] + X1 - 0

e “nX1c

~where

X .
IC Fesinuct

Having done this and dividing by w:XIC’ equation (5-1)

The typical value that we choose for the natural frequency of

5y

our system is f_ =14 Hz for reasons previ&us]y explained (cf. Section 4.3).

With the magnitude-scaled equation above, we have to set two

. \ X
potentiometers at the value w_, one to pass from [~Q;——J to[
.o WnX1C

X

“n*1C

], another

, (573$'i

R B vy



e ARy

e T RN LI TV oot sy e e . 8 et iy

T RAREACU | G ket e o e et s e 3 7 S SeonE g ¥ PR .- i e Sttt e ok S T
.

\

r

-

76.

X
wnX1C

W

to pass from [ 1 to [;%EJ; or we could at least use the value ]8 since

’

the integrators are equipped with one input of gain 10.

Calculating w, we find

,fn=14 Hz + w, = 2wfn = 87.965 rad/s,

(4]

hence

Wn
10 ° 8.796 =~ 8,80 rad/s.

But it is impossible to set any potentiometer to the latter

value 8.80, even more to the value 88, since potentiometers can only

¥

== vary between 0 and +1. Hence we have to reduce the gain around the pro-

gram loops (which remained constant in the magnitude sca]ihg).\\By chang-
ing the gain of all integrators by the same amount, we do what is called ' A
time scaling.

For reasons of convenience, we adopt a time scaling coefficient

of 10. Hence the machine time will be

T = 10t, (5-4)

“which means that everything occurs ten times slower, and so all the fre-

quencies are ten times smaller, as’ shown below on a given problem fre- - :

quency f_ and machine frequency F,. f 3

Problem frequency: fa = wa/2n

]

Computer frequency: F_ = Qa/zTr Ter o s
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We have )

f, = 1/t, and - ffa =1/1,,

.

fa and Ea'

“According to equation (5-4), we obtain

—~

T.a = 10ta,

from which we get

so we actually proved that the computer frequencies are 10
than the problem frequencies.

Hence our new natural frequency is

an = 1.4 Hz,

«
P s O L RN e

“in which ty and T, are obviously the periéds associated respectively to

» (5-5)

times smaller

(5-6)

and the values of the two potentiometers placed before the two integrators

are 0.880° The advantage of studying ten times slower motions is the

fact that they can be followed much easier on the oscilloscope and, more- -

over, their time records can be plotted directly by an analog plotter

(a frequency of 14 Hz would be too fast to be followed by such a plotter).

This\possibi1ity allows time record comparison between the reference

solutions obtained for a(t)=0. Thus the comparison between Curve T'Of

o]

Chapter III and the analog solution (for a(t)=0), carried out for the

same natural frequency and value of z, gave a very good result.
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However, there is a disadvantage in working with such low fre-
quencies namely, along with the fact of encountering some drifts in the
electronic components of the analog computer, the long time necessary téw o
conduct the measurements. Tﬁus it takes, for example, about twelve hours
to obtain one complete resonance curve for the forced vibrations.

Finally, the magnitude- and time-scaled equation reads

Rr) o o o K1) g | pxln)y %(1) 0 i
Gterg) = 28 gt - Gpd = o0 Gl + o (5-7)
f

in which it is remembered that
(.On f

T=10t; ° Qn =10 and Qf = 10 *

) The ¢circuit diagram finally adopted may be found in Fig. 42.

5.2 Free Vibration Results .,

?

In this case, we examine the response frequency as a function of

the magnitude of « The study is conducted for different values of Xrce

rms *
namely x, = 0.8, 0.7, 0.6, 0.5, 0.4 and 0.3 (in machine~units, which means
that actual voltages are obtained by multiplying these figures by 5).

For each value of X1eo different values of o(t) are applied and
the response frequency is measured. For each such point, a set of 10 or
more measurements is cénducted over different lengths of time (#A=1 and
#A =250 or 300) in order to take the randomness of a(t) into account.

The system is "restarted" every tim; it damps out (or, quite seldom, when

N

it overflows too much), then averages of « s and f are calculated,

response

L

rim




"seems quite Logica] (by imposing equality of

and in the case of s * they are transformed jhto "a equivalents", which

mean§‘§2?t the given o(t) has the same r.m.s. value as a deterministic

a(t), typically o(t) = a sinqr. - In fact, |

1 sy N o= | :
a equiv. Oms ¥ 2 xscale factor depending on X1ce

The results are then given in the form|of rectangles of uncertainty,

in terms of "a equiv." aﬁd f The average value is roughly in the

resp’
center of the rectangle, the bounds of which are|obtained from the maximum

and minimum values measured. These results are plotted in Fig. 43. It

is quite interesting to notice that a general trend appears from data which
primarily seem to be rather unexploitable. /

The shift whicH is observed betweén tpe curves corresponding to
different values of X1c is thought to be due ?d a 10Qer accuracy of the
analog computer when operating within sma]]ert oltage ranges™, which

actually occurs when Xic~is decreased.

It could be that our method of calcylation of "a equiv.", which
seudo~-random and determinis-

tic r.m.s. values), is not valid, in which case a s should be calculated

rm
as it is done for the forced cases (see Sectfion 5.3 below).

The preceding remarks deal with the relative position of the

{curves corresponding to different values of X1c: Nevertheless, the general

effect is clear and consists of an increase|of the oscillation frequency, \

corresponding to an increase in o

S TQ]S effect, which is evident and

is in agreement with our.previous results, |remains however low:

\

J
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(1.402 - 1.4)/1.4 = 0.15% for o 0.1, and

0.5% for o = 0.2,

fr—

For the higher "unrealistic" values of o_ ., one finds about 1.5% for

rms

s = 0.5 and about 3.5% for a ¢ =08 (or more than 3.5%, since the

%rm rm
curves are interrup?ed due\to'overflow).

This is the same behaviour pattern that we observed previously
with the digital computer approaches of Chapters III and IV. ’

Let us finally mention that all free vioration experiments have

been conducted with the usual small value of ¢, i.e. z=0.005.

5.3 Forced Vibration Results

¥

These runs are some of the most interesting in this thesis, since
the forced vibration response curve gives direct access to the resonance
frequency, as well as to the response damping which can be m%:igjed at

3 fa/a,)

have been plotted and one of them may be found in Fig. 44, Each such plot

the”han-powen”points. On the whole, ten response curves x/F

;consists of about fifteen measurement points, calculated for a number of
Eavérages #A equal to 360, in order to take the random fluctuations of the
response fnto account, Working on the frequepcy range (0 -4 Hz) and

Qith this value of #A, it takes more than ten minutes to obtain one res-
bonse meashrement. In fact, the whole procedure to obtain one point in-
;ludes (a) a measurement of the forcing function (with #A=j]), (b) for the
fﬁake of comparison, a measurement of théHetermfﬁ{iticﬁresponse with a(1)=0
(Elso‘w}th #A=1), (c) the measurement of the pseudo-random response (with

#A=300), (d) again’a deterministic measurement (#A= 1) in order to check

eventual drifts in the analog computer, and finally (e) a measurement of

P
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the forcing function (#A=1) in order to check eventual drifts in the func-
tion generator. The whole procedure, including handling and reading the
resonance frequency and r.m.s. value (POWER k%y), takes about forty min-

utes to obtain one measurement point.

The results obtained are shown below;-before discussing them, .
let us give just a few words on howvthe value of Qs is determined. Sinis
we take here xICf=O, we can no longer proceed as for free vibration, and
now Qe have to measure both a(T)[X/Q;XIC] depicted on Fig. 45(a) and [X/Q;xlc]
shown on Fig. 45(b). The ratio of‘their r.m.s. Vvalues gives us the value of
Qe Unfortunately a(r)[k/QﬁxIC] has some éower above 4 Hz, as may clearly
be deen on Fig., 45(a). The value of 4 Hz being our upper analysis limit,

the values of %ms indicated here are therefore minimum values. -

The results below have been obtained by using equation (5-7) —
which is equivalent to the circuit diégram given in Fig. 42 — of course

including the forcing function. It should also be mentioned that, in

" order to have a broader peak and not foo high a resonance peak, the value

~

of ¢ has been increased to 0.02 and also 0.05.

§
4 ?;Tzimum stfﬁg?:rsgwer (é%) resonan;e
value) po12t .

0.02 0 0.0205 1.0005

" 0.10 0.022 1.002
0.05 0 0.05 0.998

. 0.10 0.0515 0.998

" 0.32 0.059 1.032

' §Here "z measured" is calculated as £ =4AQ/2, where AQ is the fregquency

interval between the two points located at xmax/“?:
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Again, we obtain results which are'coinc{dent with those already
found in the free vibration cases. As a matter of fact, the shift towards
higher frequencies is very weak, only of 0.2% for arms:=0']o (when c=i0.02;
even less when ¢ = 0.05),'and of 3.2% for s = 0.32. It is simply recalled
that the effect sought is of the order of 6%, and should occur below
the upper "realistic" bound of arms==0.20. Nevertheless, the effect sought
appears and, moreover, occurs in the desired direction and this, by itself,
can be considered as a positive result.

Fortunately, this also occurs for damping, and it may be worth
mentioning that it is the first time that this effect appears so signifi-
cantly (in the previous free vibration studies it was never very evident).
However, we remain far from the desired effect of 100%, since for —
0.10 the effect is of 10% (when £=0.02) or only 3% (when z=0.05), and
only 18% (when £ =0.05) for o ne = 0-32.

Another finding can be presented here: mostly when (Q/Qn) > 1.3,
Vand even below when Qs = 0.32, the power spectral density of the response
exhibits not only the sharp peak at f=f; (forcing frequency), but also

a broader peak about the natural frequency fn==1.4 Hz [see Figs. 46(a)

- and (b), and equally Fig. 44 on which it clearly appears that the pseudo-

random response is above the deterministic response — i.e., when a(T) =0].
This, of course, does not occur for a classical oscillator. For s = .
0.32, this broad peak contains much more power than the sharp peak at the
forcing frequency. But nevertheless this unexpected effect is not important
as far as the determination of the damping is concerned, since it becomes

significant far enough from the resonance region, even though it already

appears with a very small peak when ff is below fn. o
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Finally, in the hope of discovering a more important effect, an

attempt is made to apply pseudo-random’ perturbations, not only on the mass

coefficient, but also on the damping coefficient. Equation (5-7) is thus

modified,

n*1c X1¢ 1T T anxge
%
- 2g6a, (1) [5££L~] + ﬁ°sinﬂf1. (5-8)
fnX1C
Two cases are distinguished:
§ =1 " Equation (5-8,a)
§ = -] Equation (5-8,b).

7

!

for the forced case of course, into equation (5-8):

4

S R T U N {0 RO &1
n"IC

The procedure is exactly similar to the one used previously (for §=0).

The results obtdined are shown in the table below.

§ E % rms %2 rms gtmﬁgigtEd (él) resonance
(minimum  (minimum ower point n
value) value) P P

+1 0.05 0.32 0.032 0.058 1.024

| " " 0.32 0.32 0.047 1.029

" " 0.032 0.32 0.049 0.997

-1 0.056 0.32 0.032 0.0565 1.03

" " 0.32 0.32 0.059 1.03

The effect of applying such random perturbations on the damping

coefficient ; is not very evident and, anyway, generates no important new

kind of behaviour of the system. Adding the perturbations az(r), however,

i
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ﬁ seems to lower the effective damping, whereas substracting it increases
4

coL the response damping.

We could also consider applying such pseudo-random perturba-
tions on the last coefficient of the second-o;der differential equation
envisaged, namely the stiffness coefficient, but no interesting effect is

. sﬁspected, at least from the hydrodynamic mass point of view. ‘
Therefore, the first results obtained in this Section 5.3 with
a2£10 =0 are the most significant found with the one-degree-of-freedom
model and agree, at least qualitatively, with Carlucci's experimental

“ ES

discoveries. -
</‘ N
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CONCLUSION

The behaviour of the hydrodynamic mass and damping of a flexible

cylinder immersed ip two-phase axial flow was investigated in this research.

It was in fact attempted to explain the two effects observed by Carlucci

in simulated two-phase flow, namely a significant increase of damping, .

+

QﬁPending on the flow regime, and a decrease of the hydrodynamic mass

occurring at a higher rate than that of the mixture density. The basic

hypothesis made is Fhat these two effects arise from random perturbations

/afféctﬁng the hydrodynamic mass. In fact this question brings us to the

very nature of the fluid-structure coupling, this interaction being

, P

essentially probabilistic due to the presence of two-phase flow.,

La

After a too involved theoretical attempt, aiming at obtaining

1

a general model of the fluid-structure interaction by starting from a

molecular level, it was decided to dwell on a numerical simulation of a

one-degree—of:?reedom system. The purpose was then to verify whether

the fact of applying pseudo-random perturbations (pseudo-random because °

they are generated artificially) can account for the two effects described

by Carlucci. With this model, three studies have been conducted in which

both the response frequency and damping were the parameters of interest.

The two first studies were digital, whereas the last was analog (the first

was conducted in the time domain, and the two others in tLe frequency

domain).

The results of these three apprgaches are consistent, the 1gst,;

however, being the most explicit.

Agreement is best, as Rar as the response

P -

- S N -
VR Te



frequency is.concerned. As a-matter of fact, a sﬁift towards higher fre-
quencies is exhibited in all three studies, and this is in agreement with
a decrease of the hydrodynamic mass. The magnitude of:this effect is,
however, found to remain weak, namely less than 1% for "realistic" values
of perturbation amplitudes. This is low, when compared te the 6% effect
found by Carlucci. (On the other hand, for highly "unrealistic" values
of the perturbation amplitudes, this value of 6% can be reached, but has
not much physical meaning and, morcover, already occurs in the region of
perturbation amplitudes which could give rise to instabilities.)

The damping effect does not appearvsignificant1y in the two
digital approaches, but in the last analog simulation (forced case) a
higher damping is exhibited, however, not exceeding 15% (for "realistic"

Ya]ues of the perturbation amplitudes). This is still small when compared
to the 100% expected, which cdrresponds to Carlucci's observations.

It is true thgt the model investigated is not very sophisf%cgzed, .
especially for such a complex system. This could explain why the expected
magnitudekfor the effects involved was not obtained. Néverthe]ess, the
fact of having obtained similar results by the three approaches implemented
can by itself be considered as a partial success.

It could also simply be that the two effects sought are not,or
are not mainly, the consequence of random fluctuations of the added mass,

/// but are due to another, still unknowq, cause.

o~ We do not think that one should expect much more from such a Lo

type of numerical simulation, for example by increasing th; number of ‘

dégrees—of-freedom. The only remaining aspect which could have been ’ ;N

interesting to investigate would have been the introduction of a time

[ R M 1t P 0 T Ly ML - " = o
fad e~ . T T W L~
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(: ' " delay between two pseude~random added mass perturbations.a(t) applied to ) °
the two mass coefficients of a two-degree-of-freedom system. This would
have modelled the propagation of the'flow disturbances on the surface of

/the cylinder, along the axis of the cylinder.

However, it will be very interesting to develop fundamental
- " research on the fluid-solid interaction, in the future, by startin% at
the molecular level and }mp]ementing the transition to the macroscopic :
level by use of the theory of stochast%c processes. Proper modelling of i
two-phase flow is in itself still a challenge for science. A good under-
standing of the fluid-structure interaction would finally provide a con-

tinuous passage between solid and fluid mechanics and a general theory of

flow-induced vibrations. :
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Fig.20(a). Time record of system response, for Run C4
with G=1 (see Appendix C.6). Considered for
cycles #1,2,3 of Curve 1.
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Fig.44. Forced vibrations results. The respofise curve X/F=f(Qf/Qn)
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APPENDIX A

Discretization of the Equation of Small
- Lateral Motions in an Attempt to Obtain
a Fokker-Planck Equation

Let us first give the values of the coefficients A, to A10 of

‘nequation (2-9):

A1=cxo

A =1
A, = u?x - Bec (1-€)(1+h)) - k¢, ]

S A, = 2xB

A, = X8, 0
Ag = 3uB “ece
’\‘ Ag = ] - BO
L
Ao = XBy = A, : (A-1)

The first question arising now is to decide which stochastically
varying quantity — U, p, or even the mo&entum pU — is to be chosen as the
principal random variable, We finally choose the density p (or*sl) as
the main randam input and express all the other random variables in terms

of s,. To do so, we assume that: ol = pU and 553 = 553 so -that

oy AN S SRR LU O P TR Y

S, =5;S, and s, = 5,87 . ‘ (A-2) -
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We also assume that continuity is preserved at every ¢ross-section at all
times, i.e.
pUA = constant. (A-3)
Since A is constant, this yields: pU = constant, hence pU = Bﬂ and
s, = s;”t. Finally we have
s, =S, =5} )
(A-4)
s, =13
s, = 1 implies that 3s,/3t = 0. If we furthermore assume that incompres-
sibility is also preserved at every cross-section at all timeés (a strong
assumption), we also have s, /97 =0.
The cylinder in axial flow may be subjected to an arbitrary
force field f(£,t); hénce, the dimensionless equation of small lateral
motions reads . v
3%n , 3'n, Ay 3% a%n , As oan an
A 2E" ot +_B-ET+ ?;‘3—5;74- Ay 9E9T +—S—1“3_E+ Ae ot
L
FIA, + A5, T 20 = f(e,) | (A-5)
P 9 751 —é-"l:—z"‘* sT). "

Qur goal now is to transform equatiog (A-5) into an equation of the type of
(2-11) 1in order to apply to it a procedure similar to that of Morton and
Corrsin [41].

This transformation is done by the Galerkin approximation tech-
nique, which means that our continuous system is approximated by a n-degree-

of-freedom discrete system, the accuracy of the method increasing with n.

b
i



To do this, we apply solutions of the type

=

n(EsT) = 'Z ¢1(§) qi(T)9 (A-S)

i=1

where qi(T) are the generalized coordinates and ¢1(5) are eigenfunctions

-~
(at zero-flow velocity) of a beam with the same boundary conditions as the

. cylinder,

Bue to £he boundary conditions, the eigenfunctions ¢i(£) are

orthonormal, i.e.

1
J, $;(8) ¢5(8) de = &y, (A-7)

where aij is the Kronecker symbol.

"

Substifuting (A-6) into (A-5), multiplying by ¢r(£), r=1,2,...,n,

and integrating over the domain (0,1) yields an equation of the type

(M + (1@} + [K1Ma} = (03, (A-8)
. o ,
in which dots denote differentiation with respect to r.
Here {7} stands for the vector of the generalized coordinates: ‘,f’,/;
{q} = {ql, Qs ones qn}T, T denoting the transpose. .
[Q] is also a column-matrix: [Q] = [Qi]’ whereas [M], [C] and
[K] are nxn square matrices: [M] = [mij] .
" el - [eyy]
067 = Ty 0.
We have

my5(8,0) = Adss + A, s (£,7) 9,(8) o4(e) de,

ciglEe) = A+ A6 + A, £lo2(6) o (8) di, \

AFer
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A4
ke (E) = A4 6., + A, f ¢3(€)o;(€) d
1J &1 i Tid 3% sllE,Ti 2
U 1 d)'-(E)d).i(E)
A & —JEITEj;j—- dg,
Q;(£,7) = £ F(£,T)0;(E) de. (A-9)

Ai are the beam eigenvalues corresponding to the eigenfunctions ¢1,and
primes denote differentiation with respect to &.
Unfortunately we are still far from being able to follow a pro-

cedure similar to that of Morton and Corrsin [41], even in the first-mode

approximation.

[79].

The same holds for the procedure followed by Parthasarathy
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' APPENDIX B

Some Elements on the Probabilistic .
Formulation of the Fluid-Structure Interaction

B.1 Membrane in planar turbulent flow

We could undertake this study by considering the structural‘
member to be a flexible cylinder, part of an infinitely long rigid beam,
as described in Section 2.2 of Chapter Il and as shown in Fig. 12. The
cylinder would then undergo lateral motions in the (x,y)-plane, as assumed
in Section 2.2, the equation of which would be

ML e 20 - pe,
in which v(x,t) is the cylinder deformation and M, EI and F(x,t) are, respec-
Egve}y, the mass of the cylinder, its flexural rigidity, and the hydrodynamic
force in the (x,y)-plane, per unit length.

But, for simplicity, Tet us assume that the member consists of a
membrane, or rather a strip of membrane, of width 8z and extending from x=10
to x =L [see Fig. 13(a)]. The membrane undergoes motion in the vertical
plane (x,y), and the fluid-solid interaction is assumed to be exactly
the same at-each instant in each plane parallel to the (x,y)-plane. This
means that we deal with a purely two-dimensional phenomenon. Moreover,
the whole system is assumed to extend laterally to infinity (-= < z < +w)
and the fluid flow is unbounded. Actually, due to this configuration,
we choose to work only on a strip of membrane, or even a string, by letting

§z - 0.
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As far as the fluid flow is concerned, we consider the flow above
this string, in the particular (x,y)-plane chosen as referencefr We regard the
fluid as a discrete medium made up of particles of same size, mass and all
other physical characteristics. Thus, we still deal with a homogeneous
model of the fluid. The fluid flow is supposed to enter the string region
and pass over it in the form of a lattice-like structure, with the velocity
U parallel to x [see Fig. 13(b)].

We focus our attention on a single fluid particle P, which
enters the string region sliding on the string, at the instant t=0. Its
initial position (xq,yg) is thence the origin (0,0) of the (x,y) reference
plane, whilst its initial velocity is (VXO’VYO) = (U,0). It is then
assumed that this particle will continue to slide on the surface of the
string during its entire passage over the string, and will not "take off"
from it. Our approach to the problem is inspired by the studies conducted
on the Brownian motion, a good selection of which may be found in Ref. [46].
The dynamics of this fluid particle is described by a "generalized Langevin

equation", expressed by equation (2-12). This two-dimensional Langevin

equation can also be written in matricial form, as

d | . B0 dM e 0 [XJ A (t) (1)

dat? 0 o] —dt 0wl |y A(t)
or explicitly,
2
in the x-direction: §E§-+ B g%~+ wézx = Ax(t) . (B-2,a)
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2

in the y-direction: SE¥- + m&& = Ay(t) . (B-2,b)

In the above, x and y are the co-ordinates of the fluid particle P considered,
whereas B is the Stokes' drag denoting the interaction between the particle
P and the string (membrane) surface. Usua11y58 is taken to be equal to
f/m where f is the friction coefficient and m is the mass of P (another
expression of g has been adopted by Chandrasekhar and may be found as
equation (133) of Ref. [44]). This friction exists here in the x-direction
only, i.e. along the string surface. K(x) = -wg x and K(y) = —wdzy are
the two components of a harmonic-type force denoting the attraction of
the particle P to its neighbours. Finally, Ax(t) andvAy(t) are the compo-
nents of a randomly fluctuating loading force representing the hydrodyna-
mic disturbing force due to the surrounding particles.

The motion of this particle P is coupled with the motion of

the string by the following two relations:

(i) the equation of lateral motions of the string

L T Ay(t)’ (8-3)

T

in which f(x,t) is the string deformation, T is the constant tension in
the string, whereas M and —Ay(t) are respectively the mass of the string
and the vertical hydrodynamic force per particle length dx; this last

term is identical with the loading in equation (B-2).

(ii1) the kinematic boundary condition

_ af (x,t) . af(x,t) '
Yy T V% Tax ot ’ (B-4)
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which arises from the assumption that the particle of co-ordinates (x,y)

s1ides continuously on the string. (Vx’vy) are the components of the

particle velocity and are equal to (%%, g%).

. e K e . e e o M B e v e o S i ) et e o e -

K(t), and in particular its component Ay(t), is the Tooked-for
solution to the problem. We cannot assume white noise for K(t), not even
for Ax(t), because we know from theoretical continuum studies, as well
as from experiments, that the system (beam + fluid) vibrates at certain i
discrete frequencies. These are macroscopic waves in the fluid, propaga-
ting radially as well as axially. It is therefore proposed to regard K(t)

as a superposition of two kinds of perturbation:

-5
(a) A™(t) stemming from molecular hydrodynamics. This part is white

noise since a Brownian particle under normal conditions in liquid

will suffer about 10%! collisions per second and its motion can be

assumed to be purely random on the macroscopic scale.

—
(b) AC(t) stemming from flow-elastic coupled motions, where ¢ stands for

coupling. This term is the unknown.

We hence have

At) = ﬁ(t) " A—%(t) , (B-5)

.

which can be written down more precisely by rendering explicit its

components,

in the x-direction: A (t) = A'Q(t) + Ai(t) (B-5',a)
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in the y-direction: Ay(t) = Ag(t) + A§(t). (B-5',b)

We now make some assumptions on the microscopic randomly fluctua-
ting components Ag(t) and A?(t), in a procedure similar to the one fol-
lowed by Wang and Uhlenbeck (equations (4la) and (41b) of Ref. [45]).

In the x-direction, we assume that
m -
< Ax(t) > = 0, (B-6,a)
<A™t ) AT(t,) > = 2D8(t, - t,) (B-6,b)
X'l X' 2 1 2/ s

where < > represents the average value and is defined as

B
T T
<u(t)> = Vim o Sou(t) dt, '
T =T "
o1 T
and < u(t) u(t+r) > = Tim 5/ u(t) u(t+r) dt
T-e0 =T
/

//
(thus < > denotes a long tive—average). § is the Dirac delta function,

and we also have

p - BT
m

in which k is the Boltzmann constant and T is the absolute temperature.

4

In the y-direction, we assume that

< Ay(t) > =0, (B-7,a)
< Az,](tl) A;‘(tz) > =0, (B-7,b)

since we have assumed there is no friction in the y-direction.

$
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B.3 Integration of the generalized Langevin equation over a specific

- . Sy S o . ot -

Having given these details on K(t), we are now able to integrate
the generalized Langevin equation over a specific time interval At which
first needs to be rendered more precise. It is the essence of Brownian
motion that there exist time intervals AT during which the physical para-
meters (such as position or velocity of the particle) change only by \
"infinitesimal" amounts, i.e. they remain nearly constant, whilst there *
occur a very large number of fluctuations of the two microscopic fluctua-
tors Az(t) and Ay(t). We can say furthermore that the variations of Ai(t)
and A;(t), which would be in synchronism with the vibrating string, will
be sTower than the variations of the position or velocity of P.

Three time scales of vibration have thus been identified, and we

choose AT such that it be still very long compared to the Tongest charac-

B6

teristic times in A?(t) and A?(t), but very short compared with the shortest

characteristic times in x, vy, Vs vy

considered as essentially constant. The existence of such a doubly asymp-

R Ai(t) and A;(t), which can thus be

totic time interval is crucial to the standard Fokker-Planck formulation.
Let us now start the integration. In the x-direction, we obtain

from (B-2,a) and (B-5',a):

d?x dx 2 = pC m
el R AL(t) + A (t),

which can be written as

jaRgal
o+ X
H
<<

dvx

- 2 ¢ m
qE T B e X AL() + AL(E). 1
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Integrating over the afore-defined time interval AT, we get

Ax = v At (B-8,a)
, c t+at m
AV, = (-B¥, - wlx + AD)At + . A (E) dE, . (B-8,b)
cin which Ax = x(t+4t) - x(t), and £ is a dummy variable. -

Having done this, it is easy to obtain the coefficients of the

two-dimensional Fokker-Planck equation, following a procedure similar to

those of Wang and Uhlenbeck (page 334 of Ref.[45]), or Morton and Corrsin

[41].

This equation, in the x-direction, reads

BPX

at

1 ,9° X
* ?-(5;5 [BIIPX

_ 9 X
- "(ax [AIPX] *

£ X
A

32 X 52 X R
] ¥ BXBVX [Blgpx] + -a_VE [BZZPX])' (8—9)

To obtain the Fokker-Planck equation in the y-direction, one has to replace

X X . y y :
x by v, Vy by vy, the Ai and Bij coefficients by Ai and Bij respectively,

and Px by Py
. We have
AY = Tim B
At
A% = tim Vx>
At=0 At

are conditional probabiiities which will be specified Tater on.

(B-10,a)

(B-10,b)

(B-10,c)
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X <AxAvy>
BlZ = 1im T (B-]O,d)
At+0 ‘
<(AV )2> o
B = 1im — X (B-10,e)
22 At
At->0

The relations for obtaining the A¥ and B¥j are quite similar,
and one merely needs to replace the letter x by the letter y, as approqriate.

\
Let us now calculate these coefficients. , \

- From (B-8,a):

Ax = Vy At,
and
<Ax> = <vat> = vx<At> = Vg At
hence,
AY = 1im SAx> i (B-11,a)
boatsp AT X \
- From (B-8,b) ¥

, o t+At m
v, = (—Bvx-w0x4~Ax)At + . Ax(ﬁ) dg

Averaging and taking (B-6,a) into account,
_ 2 c .
<hv > = (-ev)< - wox + AX)At,

hence,

<Avy >
AY = Tim =

2 At

= -Bv. - w?x + AC, (8-11,b)
At>0 X (0] X
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- <(Ax)2> = <v;(At)2> = vi(At)Z;

hence,
2
8% = tin B2 - yin vt = 0 (B-11,c)
At0 At+0
]
) c , t+AL m
- <bxbv,> = v, (-Bv, - wix+A ) (At)? + VAt . . <Ax(£)> dg )

2 c A2
vx(—Bvx - wox+Ax)(At) .

because of (B-6,a); hence,

<AXAvV,>
BY, = Tim ——ﬁ—i‘— = 1im vx(-svx-ngm;)At =0 (B-11,d)
At-+0 At-+0
2. = 2 Cy2 2
- g(Avx) > = (-BVX—LUOX+AX) (at)
¢ c t+At m
+ 2(—Bvx-u%x-+AX)At . . <AX(E)> dg

thAt  Preat . ’
+ <A (t)) A (t,)> dt, dt,,
t t X X

where t, and t, are dummy variables. The limit of the first term is
zero because of the factor (At)?; the limit of the second term is also
zero, because of (B-6,a);hence, we are left with the third term which,

due to (B-6,b), becomes

\ t+AL t+AL
<(Avx) >=2D . . 6(t1 —tz) dt, dt,,

and finally - .

R

¥ sk
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<(Avx)2> _

X~ 13 - -
B, = l;TO — 2D. (B-11,e)

The same type of procedure can be pursued on the Langevin equation
in the y-direction (equation B-2,b), and we finally end up with a set of

two coupled Fokker-Planck (or Kramers) equations

r) BP BP aZp
_X oy X4 9 2, _ pC X )
o v, m t v, [(Bv, +wix - AZ)P,) + D w7 (B-12,a)
E—X- EEX_ d 2 . C |
st 0y [lugy - AP s , (B-12,b)
where

$
P, = P(x,v,t | Xo’VXo)

and

am
b
%

Py = Plysvyst [yosvy,) .

are conditional probability density functions, defined by the statement

that if the system is at x, and vy at time zero, then P(x,vx,t\xo,vxo)x

0
dx dvX is the probability that it will be between x and x+ dx and have a

velocity between v, and vki-dvx at time t. The definition of Py is quite

similar.
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APPENDIX C
Compiements to the Digital

Time Domain Analysis of Chapter III

C.T Runge-Kutta method /

- /

-

X The Runge-Kutta (4-point) scheme is used heré/to ;olve the differen-
tial equation (2-16) representing the system finally adopted. Actually, we
use form (2-14) of this equation, but this does not matter at all since
the two forms are equivalent. We also take equation (2-15) into account

and introduce CM which stands for the constant (tjme—inyariant) mass and

is equal to
M =M+m. - / (c-1)

By introducing the time derivative of x with respect to time,

_ o+ _ dx
.V‘X"‘a": ' .

equation (2-14), which is a second-order differential equation,can be

written as a set of two first-order differential equation as fo]]owsir

!

"dx

'aT = f(t,X,y) =Y / A(C-z’a)
| £ (t)

dy _ _ K C . (c-2,b)

&= ey = gy ¢ - e Yt e

To solve this, we then apply the Runge-Kutta iteration formulae,

l O —

x, = x, + glk *+ 2k 2k *k) (c-3,a)
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- c2
Yo=Y, tale v2e, vt L), . (C-3,b)

in which

kl = h f(to’ xo’ .yO) 'el = h g(t0’ XO, yo)

k uhf + + - + ) £ =h (t+h +kl +£l-)

2 (t*+7 X+ 5 ¥ty 2 T MO T X T YT

h ok 2
Ky = h Flt, 400 x 422 Yo +o2) £y = hoglt,+5, x 42, y, +-2)
k, =th Ft +h, x +k, y +£,) £, =hg{t+h, x +k, y,+2,),

f and g being respectively the functions defined in (C-2,a) and (C-2,b),
‘whereas h is the step-size chosen.
The very first pair (x,,y,) is obtained from the initial conditions

applied to the system.
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The perturbd??ons a(t) of the hydrodynamic mass are obtained
in two steps.
First pseudo-random numbers are generated according to the uni-

form probabitity distribution

-

p () =15 0<x<l. (c-a)

A

This is classically achieved by the following sub-program (given in Fortran):

Initial values (in main program): .

IR =1
J=5%13




Iteration scheme (in sub-program):

DO1 I=1,N
- IR = IRwJ v
IF (IR.LT.0) IR=IR+2*(“2;;30—1)+2 :
R = DFLOAT (IR)/2.DOx+31
1 RU(I)=R

RU(I) denotes the ith uniform random variate.

The next step is now to transform these numbers into another
set of random numbers according to another probability distribution p(x).
It may be mentioﬁed here that, according to exact terminology, we should
call p(x) a probability density rather than.a probability distributioen
since the latter is defined as F(x) = {If p(x) dx, but such a distinction
is not fundamental at thi; stage and the vocabulary confusion may be con-
sidered permissible.

If we call r; the ith random variate according to the uniform
distribution (C-4) generated by the subroutine above, then x;, the ith
variate according to the new distribution p(x), is obtained as solution

to the equation

X4q
jﬁ p(x) dx = rse (C-5)

a

In our case we consider the Gaussian distribution, i.e. we have
] - x-g (C-6)
= e N -
p(x) = 75 20

in which n and o? are respectively the rean and variance of the Gaussian
distribution (the square root o of the variance is called the standard

deviation).

:‘y/
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Hence, the pseudo-random number X4 % obtained by solving

! T Pxs (x-p)*?
J) Te” Toor dx=Zro rs . (C-5')
a

Before solving this equation, the constants a, p and o have to be known;

a can. be chosen to be equal to p - 30, and a few words on the determination
of u and o will be given in Appendix C.3. Having specified that, we can
now indicate the numerical method used to solve equation (C-5'). The
secant method is chosen tg solve it, whereas Simpson's method is adopted

to evaluate the numerous integrals required by the use of the secant
method. But such a procedure is obviously very long, requiring a great
number of calculations (and, hence computer time) to obtain merely one
random number X;. Moreover, when considering that only for one oscillation
cycle, we need 300 or 500 (cf. Appendix C.3) such random variates, it
becomes clear enough that a simpler procedure has to be found to generate

the normal (Gaussian) variates. Anyway, an approximately Gaussian a(t)

I
v
The new procedure which was actually adopted is a consequence

is sufficient for our purpose.

of the Central Limit Theorem [50], which states that

“if YisYar--sY, are independant random samples of a
stochastic event following a certain distribution

characterized by its mean p* and variance o*?, and

if we consider the change of variable

n
2= 1oy el 2 (c-7)

then z follows a standard normal distribution as

n -+ o',
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In our case, we start from the uniform distribution defined'By relation
(C-4) and intend to calculate its mean u, and variance oﬁ. But before
doing this, let us shortly vemind the definition o f the moment of a func-
tion H{x), in case of a continuous probability densit& f(x). This moment

is given by

a

b
<H(x)> = (Jj H(x) f(x) dx, (C-8)

where a and b are the limits of the domain of validity of H(x) and f(x).
We now apply this to .the calculation of My and oa, associated
to the uniform probability density (C-4). Here we have (a,b)=(0,1).

Hence,

o b, = <x> (C-9,a)

—
=4
il
o —
X
=}
=
—
>
~—
Q.
>
I
<@ —
pad
ju
>
{]
PO}t

L]
Q
i

<(x - <x>)?%>, “ (C-9,b)
By using the definition (C-8) and carrying out the calculation, we obtain

g2 = <x%> - <x>? (C-9,b")

fl
(an] —

x

N

(=N

>
i
A

o (c-10)
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A11 the details of the demonstration leading to the fast technique
of generation of a normal distribution will not be given here. Suffice

it to say that by introducing the change of variables

y = Ax + B . (c-11)
and
n
z= I y; . (C-12)

i=1 -
and using relations (C-10) and some consequences of the Central Limit

Theorem, we obtain

= n(A-{- B) (C']39a)

, = o, =A ‘/]—"— , (C-13,b)

) respectively denote the mean and standard

Q
it

in which (uy,oy) and (uZ,GZ
deviation associated to the distributions applied to y and z,ithe latter
being a normal (Gaussian) distribution. The greater n is taken, the better
the approximation of é normal distribution will be. For reasons of sim-
plicity in equation (C-13,b) and since such an approximation is sufficient

[see the histograms in Figs. 16(a) and (b)], the truncation to n=12 is

chosen. Equations (C-13,a) and (C-13,b) then become

6A + 128

=
H

Hence we can solve for A and B in terms of Hy and O, which gives
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2 (C-14‘a)
14 B

_Hz® Oz -
B =15 - £ (C-14,b)

P

These results allow us now to indicate the various ;teps of the
fast technique used in Chapters III and IV to generate pseudo-random num-
bers from a Gaussian distribution of mean u and variance o?.

(i) We first have to obtain u and ¢ — or u, and o, in equations (C-14,a)
and (C-14,b) — which stem from the deterministic a(t) given 1in
equation (3-1) adopted for Curve 3 (see Appendix C.3).

(ii) We then select a random number r, from the uniform distribution (C-4).

i
(ii1) This r; is then multiplied by o.
{(iv) To this product is then added the expression {%~— %-(or B, according
to equation (C-14,b)). This means that we have now obtained a
variate of the variable y, following equation (C-11).
(v) We finally add up twelve of these variates Yi» and obtain one variate
of the variable z which follows a normal distribution (equation
(C-12) inwhich n=12).
This procedure may still seem rather long, but it is nevertheless
mucﬁ more efficient than solving equation (C-5'). The output may be observed

in Figs. 15 and 16, the latter being a histogram obtained by means of the

IMSL subroutine USHIST.

According to the definition of the moment of a function H(x),

given bj)equation (C-8), and to equations (C-9,a) and (C-9,b'); we have

/ ) .
/) 4o
u o= <> = ap(a) da
-0
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. and
o'2 = <u2> - <c¢>2
+o0
= a’plo)de - p?,
) 1 in which a=a(t) and p(a) is the normal probability density given by
equation (C-6) . Making the hypothesis of ergodicity, we can identify
ensemble and time averages. Hence, we also have
1 T
p=lim 5= alt) dt (C-15,a)
2T
Toroo -T
and
1 T
g = lim 5T a?(t) dt - p? ) (C-15,b)
Treo -T

Iﬁ is now desired that the pseudo-random o(t) of Curve 4 and the
deterministic a{t) of Curve 3 have the same mean and variance, in order
to allow comparison between the two responses. The deterministic o(t) of
Curve 3 is given by equation (3-1) and since in all cases ¢i:=0’ it can be

written, taking also (3-2) and (3-3) into account,

ne~1on

1 a.i S.in((,l).it) =% )
i

H 1o

) a(t) =

_ sin(wit). (C-16)
1 .

1

® From (C-15,a) and (C-16), we have

B = s 1im = I sin{w:t) dt. ’
10 LI B S i

)
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T, = =, (C-17)

For a given i, we have \

Ts coslwit Ti
! sin(mit) dt = |- ———7g?l—z =0,
“T1 1 'T1
hence
u = 0. (3"7,6)

@ Let us now calculate the variance. From (C-15,b), (C-16) and

1 T 5
Tim T [z 'sin(wit)]2 dt.
-T  i=1

T-r00

(3-7,a),we have

N
I
Q1
N

Q
|
gl

Due to the periodicity of the sine function, this can also be written

~2 TITI 5
02 = Gw — [z
5T z

2
Sin(w]t)] dt9
m =T i=1

m
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in which Tm is a time duration defined as the least common multiple of

all the periods Ti’ T( and T( ) associated respectively to the

i+3) i-j
oscillations of circular frequencies Wy, wi-+uﬁ and Wy = w5 The need to 4

integrate over such a period Tm will become evident very soon. By con-

ducting the calculation, the variance becomes

&2 5 Tm 5 5 Tm
g? = 0T I sinzwit dt +2 I ¢ sinwit sinwjt dt
m 1i=) -Tn i=1 j=1 -T
. m
Afal
(c-18)
Let us analyse separately the two kinds of integrals appearfngrﬁﬁjfg
T : Tm
* sinw,t dt = 5 {1 -cos 2w,t) dt
i T i
"Tm T
1 sin_ 2L01t Tm . 19
= 7 t - ———2—[0‘1—“‘ e = Tm (C-19,a)
m
Tm . Tm
* sinw;t sinwjt dt = > [cos(wi-wj)t —cos(mi+wj)t] dt.
“Tn T

R

Due to the choice of T., it follows that



: . cth

oy
T
sin w;t sin w,t dt = 0. . (C-19,b)
J .
T
m
Plugging (C-19,a) and (C-19,b) into (C-18), we finally obtain
=2 5 5T =2
2 a ) m _ a
o2 = R =&
50T, oy 50T, 10 ,,
hence, 1
a
g = —‘/T]__—O- , (3-7|b)

Y o s o a5 o o o s g o S e e e e 6 o O . e T o -

This short study is mainly concerned with the comparison between
the two reference cases in which a(t) =0, i.e. Curves 1 and 2 of Chapter III.
Nevertheless, Curves 3 and 4 are also considered. The parameter of interest
here is n, the number of discretization points used to conduct the Runge-
Kutfa iteration scheme, or, what is equivalent, the size of the constant
step-size h. The number n envisaged is considered over one page of USPLTD
plot, which was chosen to be 3 cycles of the reference curve, i.e. Curve 1.
If T, is the natural period of equation (2-16) with a{t) =0 and without

forcing function, the step-size h is therefore equal to
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The study was conducted for the following values of n: 100, 200, 300, 400,
500, 600. The values of the responses were taken at thé following instants

of time: t=3T,, 6T 9Tn, i.e, after 3, 6 and 9 cycles.

n’

The case envisaged here is for parameters

1
Fo= =15 gz,
n Tn
f1=—;1—=3OHz, f =150 Hz, f. = 240 Hz, f = 300 Hz, f. =450 Hz,
m 2 3 i ‘ 5

r =001, ao-=1.

The results of the comparison between responses of Curves 1 and 2 are given

in the table below.

[B]

[x(Curve 2) - x(Curve 1)]/[x(Curve 1)]
at t=3T, at t=6T, at t=9T,

100 -3.42x107° -1.86 x 10~2 -7.32x107?
200 -1.00x107° -4.69 x 1073 -1.85x107%
300 -9.54 x107° -2.13x1073 -8.33x 107
400 -9.42 x107° -1.22 %1073 -4.76x107?
500 -9.42x107¢ -8.04 x10™" -3.10x107?
600 -9.42 x10°°® -5.73x10"" -2.19x10"?

It may be noticed here that a systematical error is introduced by the use
of the Runge-Kutta method, which is 9.42 x107% after 3 cycles (after 6 and
9 cycles, the limit is not yet reached for n = 600). Fortunately this error

remains small, at least as long as the number of cycles considered does not
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become too large. The first runs were conducted with n=300; after this
study of convergence, n =500 was preferred (an even higher value of n was
not envisaged because of increasing computer costs).

As far as the fréquency is concerned, there seems to occur a
very slight systematic shift towards lower frequencies, of the order of
0.2%. In fact, for fn==]5 Hz, the frequency of Curve 1 is effectively 15
Hz (which is expected from the analytical solution), whereas the frequency
of Curve 2, measured over 15, 30 or 45 cycles, is found to be only 14.97 Hz.
If this effect is supposed to occur for Curves 3 and 4 within the same order
of magnitude, then the frequencies measured from these curves (if they are
about 15 Hz) should all be increased by 0.03 Hz.

The results for Curves 3 and 4 were also obtained during this
study, but need not be given here. The response for n=0600 was compared
to the response’obtained for the other values of n. At least when starting
from n = 300, convergence was observed for Curve 3. To give an idea, at

t=9T , the ratio [x{Curve B)n=300 - x{Curve 3)n=600]/[x(Curve 3)n=600]

n!
. -1 -

is equal to 1.03x10"', whereas the ratio [x(Curve 3)n=500 - x{Curve 3)n=6OO]/
[x{Curve 3)n=600] is equal to 1.60x10"2. For Curve 4, no such convergence

is observed, which is expected. since using a different value of n actually
means that a different number of random numbers (which is precisely n, since

each integration point requires the generation of one pseudo-random number)

is wused in the scheme.

- T e 1 e s e

A typical Tisting of the program is given in the five following

pages. The case considered is Run 2 of Series E (see Appendix C.6).

or
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SWATF IV +TIME=99 +PAGES =40+ NOEXT
[MPLICIT REAL¥B(A~HsK=L,0-2)
CREREXBFR XX EXEXTRK IR K F XK R PART ONE OF PLOTIING PROGRAM

INTEGER I YoeNIM,INCL,ICPT »IMAG4(S5151), IER.ITITLE(144), ICHAR(10)
REAL RANGE(4)

DUUBLE PRECISION_ X(300)sY(300s4)
DAT ICHAR(1)/1H /+RANGE/4%0 .07/
CALL UGETIO(1sNINZNOQUT)
READ(NINS ) (ITITLE(I)s I = 14144 )

D3 FCOCRMAT{72A1)
PI = 3.1415926536D0

Chhkeskpkhkkhkkrhk ki khkhkxkikikx PARAMETERS TO BE CHANGED IN STUDY

FN = 15.0C
DZETA = 0 4010
Fl1 30.0D0
F2 150400
F3 240 D0
F a4 300.D0
F5 450400
