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Abstract

Robust network design takes the very successful framework of robust
optimization and applies it to the area of network design, motivated
by applications in communication networks. The main premise is that
demands across the network are not fixed, but are variable or uncertain.
However, they are known to fall within a prescribed uncertainty set. Our
solution must have sufficient capacity to route any demand in this set;
moreover, the routing must be oblivious, meaning it must be fixed up
front, and not depend on the particular choice of demand from within
the uncertainty set.

A particular choice of uncertainty set within this framework yields
the “hose model”, which has received particular attention due to ap-
plications to virtual private networks. A 2-approximation was known
for the problem, using a solution template in the form of a tree. It
was conjectured that this tree solution is actually always optimal; this
became known as the vpn Conjecture. As one of the central results
of this thesis, we prove this conjecture in full generality. In addition,
we demonstrate a counterexample to a stronger multipath (fractional
routing) version of the conjecture which had also been proposed.

We initiate a study of the robust network design problem more
generally, with a focus on approximability. In the general model, where
the uncertainty set is given by an arbitrary separable polyhedron, we
give a strong inapproximability result. We then consider a new and
natural model generalizing the symmetric hose model, based on demands
routable on a given tree, and provide a constant factor approximation
algorithm.

Lastly, we compare oblivious routing with the much more flexible
(but also less practical) dynamic routing scheme where the routing may
vary depending on the demand pattern. We show that in the worst
case, the cost of an optimal oblivious routing solution can be much more
expensive than the dynamic optimum, by up to a logarithmic factor.
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Résumé

Motivé par les applications concernantes les réseaux de communica-
tion, le dessein des réseaux robustes applique les méthodes très réusies
provenant de l’optimisation robuste. La prémisse principale est que les
demandes sur le réseau ne sont pas fixes, mais variables ou incertaines.
Cependant, nous savons qu’elles sont tirées d’un ensemble d’incertitude
prescrit. Il faut que la solution ait une capacité suffisante pour pouvoir
router toute demande appartenant à cet ensemble. En outre, il faut que
le routage soit oublieux, ce qui signifie qu’il peut être fixé à l’avance,
et ne dépends pas du choix particulier de la demande appartenant de
l’ensemble d’incertitude.

Dans ce cadre, il existe un choix particulier d’ensemble d’incertitude
qui mène au « modèle de tuyau ». Ce modèle a reçu une attention
particulière à causede ses applications aux réseaux privés virtuels. On
connaissait un 2-rapprochement utilisant une solution en forme d’arbre.
La Conjecture de vpn énonce que cette solution en forme d’arbre est
toujours optimale. L’un des résultats principaux de cette thèse démontre
cette conjecture en toute généralité. En outre, nous donnons un contre-
exemple à une version plus forte de la conjecture concernant les chemins
multiples (le routage étant fractionnel) qui avait également été proposée.

Nous initions l’étude du problème de la conception de réseaux ro-
bustes dans une plus grande généralité, en insistant sur l’approximabilité.
Dans le modèle général, où l’ensemble d’incertitude est un polyèdre
séparable arbitraire, nous donnons un résultat fort d’inapproximabilité.
Nous considérons ensuite un nouveau modèle naturel généralisant le
modèle de tuyau symétrique, qui est basé sur des demandes qui peuvent
être routées sur un arbre donné, et nous fournissons un algorithme ayant
un facteur de rapprochement constant.

Finalement, nous comparons le routage oublieux avec le schéma
beaucoup plus flexible (mais moins pratique) du routage dynamique, où
le routage peut varier en fonction de la structure des demandes. Nous
montrons que dans le pire des cas, une solution optimale de routage ou-
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blieux peut être beaucoup plus chère que l’optimum dynamique, jusqu’à
un facteur logarithmique.
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Chapter 1

Introduction

1.1 The topic

Robust network design is essentially the study of network design in the face of
variable or uncertain demands. The main motivations (discussed in Chapter 2)
come from the design of communication networks, but for now we keep the dis-
cussion somewhat broad, and define, in a general form, the central optimization
problem that will concern us in this thesis.

The problem was first defined in this generality by Ben-Ameur and Kerivin
[21, 22]. Imagine we are tasked with building a private network between some
set of “terminals” (which are simply the entities—computers or otherwise—we
need to connect), by buying capacity on some underlying network. We wish to
do this in order to ensure a certain level of service; by reserving the bandwidth,
we ensure that the private network is not adversely affected by traffic from the
rest of the network. Reserving this bandwidth is expensive, and we want to
spend as little as possible.

We represent the underlying network with an undirected graph G, with
node set V and edge set E. A directed graph might also be appropriate, but
we consider only undirected graphs, and in fact throughout this thesis. Each
edge e ∈ E has an associated nonnegative cost c(e), representing the cost per
unit of bandwidth on that edge, so we are assuming a simple linear cost model
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2 Chapter 1. Introduction

here. There are no capacity constraints—as much bandwidth as needed can be
bought on each edge. The terminals are specified by some subset W ⊂ V ; let
k = |W | denote the number of terminals. We will identify W with {1, 2, . . . , k},
in order to conveniently index by terminals.

We must specify the requirements of our private network: to set the scene,
we begin with a very simple problem. Suppose we know exactly the amount
of bandwidth required for each pair of terminals. In other words, for every
i, j ∈ W , i 6= j, the rate at which data needs to be sent from terminal i to
terminal j. We call this the demand from i to j, and denote it by Dij . We can
package the entire pattern of demands into a single matrix D, indexed by the
terminals, known as the demand matrix or traffic matrix.

We wish to find a capacity reservation of least cost which can support
the demand matrix D—in other words, there should be enough capacity to
simultaneously route the required demand between each pair. This is extremely
simple, essentially because there is no sharing of capacity between different
routing pairs. Compute a shortest path between every pair of terminals; say Pij
is a shortest path between i and j. We then reserve, cumulatively, an amount
Dij on path Pij, for every i 6= j ∈ W . It is clear that this is optimal.

Uncertain demands However, the traffic pattern of a real-world network is
typically not fixed; rather, it varies over time. Moreover, it is often difficult to
measure or estimate traffic patterns reliably in large networks, even if these
traffic patterns are roughly static. Robust network design deals with this
uncertainty in traffic patterns via the methodology of robust optimization. We
assume that the demand, while not fixed, comes from some prescribed universe
of possible demands. The solution we give must be able to route any demand
matrix in this universe.

So let U , the universe, be some given subset of Rk×k
+ . In fact, it will turn

out that the problem we will consider is unaffected by replacing U with its
convex hull, so we may assume that U is a convex set.
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Routing strategies An important issue that needs to be considered is the
routing strategy. Conceivably, one might allow the routing to depend on the
current demand—the specific (feasible) demand pattern across the network at
the current moment. Such a flexible approach turns out to be rather impractical,
and so we will be primarily interested in oblivious routings. This means that
the routing used for a particular pair of terminals must be fixed in advance,
and cannot depend on the current traffic pattern.

Thus a solution to a robust network design instance is given by a routing
template, as well as a capacity reservation (but we will see shortly that this is
easily computed given the routing template). A routing template must specify,
for every pair i, j ∈ W , a routing between this pair; this is the routing that will
be used irrespective of the current demand matrix. The two most important
oblivious routing variants are:

• Multipath routing (mpr): the solution is specified by a unit i-j flow
fij, for each pair i, j ∈ W . The routing template P is defined by P :=
{fij : i, j ∈ W}. Given a demand matrix D in the universe, the flow from
i to j will be routed proportionally according to this template. In other
words, the amount of flow on an edge e will be Dijfij(e).

• Single-path routing (spr): the flows in the routing template are re-
stricted to be integral, i.e., each pair i,j routes along a single path Pij.

It is also often useful to consider

• Tree routing (tr): the flow template is again integral, but with the
additional restriction that the union of all the routing paths must form a
tree.

Cost and capacity reservations Once the routing template is specified,
a capacity reservation u(e) must be made on every edge e ∈ E. The cost of
the solution is then given by C(P) := ∑

e∈E c(e)u(e). The capacity reservation
must be valid, given the routings that we’ve picked; for any feasible demand,
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the total load on any edge must not exceed its capacity. Thus the exact minimal
required capacity on edge e is simply

u(e) := max
D∈U

∑
i,j∈W

fij(e)Dij. (1.1)

Altogether, this defines the robust network design problem (rnd). In
summary:

Given: Graph G = (V,E) with costs c : E → R+, terminals W ⊂ V , universe
U .

Solution: A routing template P = {fij : i, j ∈ W}, where each fij is a unit
i-j-flow, either fractional or integral depending on the routing scheme
required.

Minimize: The total cost C(P) = ∑
e∈E c(e)u(e), where u(e) is given by (1.1).

Symmetric vs. asymmetric We have considered flow from i to j (corre-
sponding to entry Dij in the demand matrix) to be distinct from flow from j to
i (corresponding to entry Dji). In some situations, it makes sense to consider
demand to be undirected, making these two demands indistinguishable. In this
case, we say that the problem is symmetric.

This is most simply embedded within the above framework by considering
a universe consisting only of lower-triangular demand matrices; the undirected
demand between a pair {i, j} is then given by Dij if i < j, or Dji if i > j.
However, it will be more convenient notationally for us to take D to be
symmetric, so that Dij = Dji and refers to the same demand. The flow
template must also be symmetric, with the only change being a reversal of
direction: for mpr, fij = −fji, and for spr, Pij = Pji, for all i, j ∈ W . The
correct form of (1.1) in the symmetric case is then

u(e) := max
D∈U

∑
i<j∈W

fij(e)Dij; (1.2)
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only the lower triangular part of the demand is used. We will thus consider
demand universes in the symmetric case to be subsets of R(k2)

+ .
We will see later that the robust design problem with multipath routing is

solvable in polynomial time with linear programming methods. This is not the
case for single-path routing, which is in general NP-hard. Different forms of
the universe lead to different combinatorial optimization problems. Various
well-studied network design problems, for example Steiner tree and single-sink
rent-or-buy (even multicommodity buy-at-bulk, as we will see in Chapter 5)
can be found as special cases by choosing the universe suitably.

The hose model An important class of universes is defined by the so-called
hose model. It has received a lot of interest in the networks community as a way
of specifying requirements for a virtual private network; this will be discussed
in detail in the next chapter. Each terminal i ∈ W has an associated incoming
capacity b−i and outgoing capacity b+i . For any feasible demand pattern, the
total demand from all other terminals to terminal i cannot exceed b−i , and
similarly the total demand from i to the other terminals cannot exceed b+i .
This defines a universe, called a hose polytope:

H(b+, b−) := {D ∈ Rk×k
+ : ∑j Dij ≤ b−i and ∑

j Dji ≤ b+i ∀ i ∈ W}. (1.3)

We write simply H when there is no ambiguity.
There is also a symmetric version. Since demands are undirected, there is

only a single capacity bi for each terminal i:

H(b) := {D ∈ R(k2)
+ : ∑j Dij ≤ bi ∀ i ∈ W}; (1.4)

note that D is necessarily symmetric in the above.
For reasons that will be made clear in the next chapter, the robust network

design problem with universe given by a hose polytope is called the vpn problem.
This can be symmetric or asymmetric, with single-path or multipath routing;
when not specified, we will assume single-path routing.
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1.2 Contribution of this thesis

Chapter 2 gives the background on the topic of robust network design, and
various areas leading up to it. Robust optimization is discussed first; it provides
the general framework. Robust network design is discussed next, followed by
the distinct but related work on oblivious routing, and finally a discussion of
some more theoretical work on network design. The material in this chapter is
not necessary for an understanding of the technical results in the remainder of
the thesis.

Chapter 3 considers the symmetric hose model with single-path routing.
It had been conjectured by a number of authors that this problem has the
property that there is always an optimal solution in the form of a tree; this
became known as the “vpn Conjecture”. One reason for its importance is that
the complexity status of the problem was open, and since it was known how to
find an optimal tree solution, a positive resolution of this conjecture would also
imply that the symmetric vpn problem is polynomially solvable. In Chapter 3,
we give a proof of the conjecture, in full generality.

Chapter 4 compares multipath and single-path routing for the symmet-
ric hose model. We demonstrate a counterexample to a stronger multipath
version of the vpn Conjecture, by showing that in some cases the optimal
multipath solution is cheaper than the best single-path routing. We also begin
an investigation into the worst-case gap between the mpr and spr optima.

A fundamental problem regarding the approximability of the general robust
network design is considered in Chapter 5. It is shown that the problem is
in general hard to approximate within polylogarithmic factors, even when
reasonable constraints are put on the complexity of the demand universe. The
proof proceeds by showing that the uniform buy-at-bulk problem, which is
known to be hard to approximate, can in fact be encoded as a special case of
robust network design.

Given this negative result, it is interesting to ask for broader classes of
universes where we can approximate to within a constant factor. In Chapter 6,
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we consider a natural generalization of the symmetric hose model, the tree
demand model. Here, the universe is specified by a given edge-capacitated
tree, which need bear no relation to the network graph except that the leaves
of the tree correspond exactly to the terminals in the network. A demand is
considered feasible if it can be routed on the tree without violating the edge
capacities. We give an algorithm for spr with this demand universe, and show
that it gives a constant factor approximation.

In Chapter 7, different routing schemes are compared. Primarily, we are
interested in the question of how much better dynamic routing can be, compared
to its oblivious counterpart. We give a construction showing that oblivious
routing (even multipath) can in general be a logarithmic factor worse; the
universe used for this construction is an asymmetric hose universe (1.3).

In the concluding chapter, we discuss some avenues for further work in this
area. Many of these questions are motivated by the work in this thesis.

The results of Chapter 3, and some of Chapter 4, were published in [69].
The work in Chapter 5 and Chapter 6 appeared as [110]. The work in Chapter 7
was published as [70].

1.3 Notation and conventions

Here we give some definitions and notations that will be used throughout; most
are standard in combinatorial optimization.

The reals are denoted by R, the nonnegative reals by R+, the integers by Z
and the nonnegative integers by N.

Vectors will be notated using boldface: v is a vector, and vi is one of its
components. Generally we think of vectors as column vectors, which we may
write explicitly as, e.g.,

v =


v1

v2

v3

 .
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If u and v are two vectors, then
(
u
v

)
refers to the vector obtained from their

concatenation. The transpose of a vector v is denoted vT .

The notation 1 refers to an “indicator function”, but will be used slightly
more generally. Given any Boolean condition P , 1P is defined to be 1 if P is
true, and 0 if P is false. So for example, the characteristic function of a set
could be written χA(v) = 1v∈A.

A vector written ei is zero everywhere, except at index i where it takes the
value 1. In other words, (ei)j = 1i=j.

Uppercase calligraphic script such as P and H will usually denote sets (in
particular, sets of routings, and sets of possible demand matrices).

An undirected graph G = (V,E) consists of a node set V and edge set
E. Each edge e ∈ E consists of a pair of elements of V ; we will sometimes
use the notation uv as shorthand for the edge {u, v}. In this thesis, if not
specified graphs are taken to be undirected and simple, with no self loops. The
bidirection of G is the directed graph (V,A), where each edge e = uv ∈ E

becomes a pair of arcs (u, v), (v, u) ∈ A. An arc (u, v) has tail u and head v.

For any subset S of nodes in a graph G, we denote by δG(S) the set of
edges with exactly one endpoint in S; if the context is clear we simply write
δ(S). On a directed graph, we denote by δ+(S) the set of arcs with tail in S
and head in V \ S; similarly δ−(S) denotes the set of arcs with tail in V \ S
and head in S. If the graph G is undirected, we use, e.g., δ+(S) to refer to the
outgoing arcs in the bidirection of G.

A single-commodity flow on G is a function f : A→ R+ on the bidirection
of G. The supply of a flow f at a node v ∈ V is supplyf (v) := ∑

a∈δ+(v) f(a)−∑
a∈δ−(v) f(a). We can also talk about the demand at v, which is just the

negative of the supply. Given a vector b ∈ RV , a b-flow is a flow f with
supplyf(v) = bv for all v ∈ V . An i-j-flow is a unit flow from i to j, i.e., a
(ei−ej)-flow. Similarly an i-j-path is a simple path from i to j. Sometimes it is
convenient to use an alternative formulation of flows via a path decomposition:
then f(P ) refers to the weight of flow f along path P . Such a decomposition
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is not unique for a given arcwise defined flow however. The addition and
subtraction of flows on a bidirected instance is defined in the natural way, with
flow in opposing directions along a digon pair cancelling. Given two flows f
and g,

(f + g)(a) = max{0, f(a) + g(a)− f(a−)− g(a−)},

where a is any arc in the bidirected instance and a− is its reverse arc. Note
that with this definition, only one of (f + g)(a) and (f + g)(a−) can be nonzero.
We may also define f(e) on a bidirected instance to be the quantity of flow on
edge e, irrespective of its direction; this is always nonnegative.

A multicommodity flow f on G consists of a vector of flows fr for r in some
index set, which could for example be the set of pairs of terminals.





Chapter 2

Background

2.1 Robust optimization

2.1.1 The basic paradigm of robust optimization

Robust optimization is primarily a tool for optimizing under uncertainty.
Suppose we are given some real-world optimization problem—for now, say a
large LP,

min cTx s.t. Ax ≥ b.

An LP solver can determine an optimal solution x∗ to this program quite
efficiently. However, there is a potential problem: some of the coefficients in
our LP—elements of A and b in particular—are not exactly known quantities,
but rather estimates. So in fact, the “real” optimization problem is

min c̃Tx s.t. Ãx ≥ b̃,

where Ã, b̃ and c̃ are unknown, but “close” to our estimates A, b, c.
The difficulty that may then arise is that our computed optimum x∗ might

not even be a feasible solution to the “real” LP! If the constraints are hard,
meaning that no violation can be tolerated, this is a serious problem. Moreover,
even small perturbations in the uncertain data can cause these violations to be
very large. In [27], the authors considered random perturbations on problems

11
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in the netlib family of test problems, and found that in many of them, even
perturbations of the order of 0.01% could lead to large constraint violations.

One approach to this problem is stochastic optimization (see, e.g., [119]),
and in particular chance-constrained optimization [40]. This approach assumes
knowledge of the distribution of the uncertainties, and asks for the best solution
which is feasible with probability at least 1− ε, for some specified tolerance ε.
This is a very reasonable goal, but a problem with this approach is that we
often do not have a good handle on the distribution of the uncertain coefficients.
The problems obtained from chance-constrained optimization are also most
often intractable ([96], cf. [23]).

Robust optimization is a newer paradigm for dealing with uncertainty, and
it has been extremely successful to date. This method proposes to handle
uncertainty by computing a solution x that is feasible for a whole set of possible
values for the uncertain data. On first glance, this is just a very conservative
version of stochastic optimization—a special case where the tolerance is set
to zero, and we must ensure feasibility for all possibilities in the support of
the distribution. However, there is a lot of flexibility hidden in the choice of
uncertainty set, and there is a huge gain in the tractability of the optimization
problems, as we will see shortly. Indeed, somewhat backwardly, it turns out that
robust optimization gives a useful attack on chance-constrained optimization
problems!

Let us now define the underlying optimization problem, and the robust
approach to it, formally in the general setting.

Definition 2.1 ([25]). An uncertain optimization problem is a family of deter-
ministic optimization problems P (ζ), where ζ ∈ RM represents the uncertain
data. For any fixed ζ, the optimization problem can be specified as

min
x∈Rn

f(x, ζ)

s.t. F (x, ζ) ∈ K
(2.1)

for some choices of f , F and K ⊂ Rm.
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Given some uncertainty set U , the robust counterpart to the above uncertain
program is

min
x∈Rn

{
sup
ζ∈U

f(x, ζ) : F (x, ζ) ∈ K ∀ ζ ∈ U
}

; (2.2)

the optimum choice of x to this robust counterpart is called the robust optimum.

So the robust optimum is the solution to a min-max type problem, mini-
mizing the worst possible outcome over all data in some set, while ensuring
feasibility. In fact, we can simplify things slightly and assume without any loss
of generality that the objective does not depend on the uncertain data. This
follows by rewriting (2.1) as the following equivalent program:

min t

s.t. f(x, ζ) ≤ t

F (x, ζ) ∈ K

(2.3)

Various special cases of the above are of interest from an optimization
standpoint: linear programs (which we will see next), conic programs, quadratic
programs, semidefinite programs etc. For each, one can ask questions about
the tractability of the robust version of the optimization problem. We will be
almost exclusively interested in robust linear programs, such as the example at
the start of this section. Here is the definition, similar to Definition 2.1 but
with a linear program as the uncertain optimization problem; following the
above comment, we also assume that the objective is certain.

Definition 2.2. An uncertain linear program is a family of linear programs
P (A, b) given by

min
x∈Rn

cTx

s.t. Ax ≥ b.
(2.4)

Given an uncertainty set U , the robust counterpart to this uncertain LP is

min
x∈Rn
{cTx : Ax ≥ b ∀ (A, b) ∈ U}; (2.5)
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2.1.2 Tractability of robust optimization

Perhaps the central question in robust optimization is that of computational
tractability. The approach is only useful if we can in fact solve robust optimiza-
tion problems of interest. As we are coming from a theoretical perspective, we
will mostly equate tractability with polynomial solvability. For cases where the
optimization problem is NP-hard, we will also be interested in good approxi-
mation algorithms—polynomial time algorithms with a specified performance
guarantee. From a more applied perspective, often theoretically difficult prob-
lems do need to be attacked, in which case various heuristics need to be
evaluated to determine if the problem at hand is amenable to computation.
Fortunately, there is a large class of such problems that are both interesting
and tractable. In particular, robust linear programming is solvable under very
reasonable assumptions. We need the following definition:

Definition 2.3. Let P be a polytope in Rn, and let ϕ be the size complexity1

of P .
Given a point z /∈ P , a separating hyperplane is a vector y ∈ Rn such that

yTz > 0 and yTx ≤ 0 for all x ∈ P .
A separation algorithm for P is an algorithm which given any z ∈ Rn, in

time polynomial in n, ϕ and the size complexity of z, determines whether
z ∈ P , and if not, returns a separating hyperplane.

If there exists a separation algorithm for P , we call it separable.

The polytopes we consider will all have size complexity polynomial in n,
and we may ignore this technicality. The above definition can be extended
to non-polyhedral convex sets via the notion of weak separation; see [72] for
details. The results below can then be extended to this setting; we prefer to
constrain ourselves to polytopes in order to simplify the presentation.

1This is essentially an upper bound on the number of digits needed to describe any
component of any extreme point of P as a rational number; see [72])
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Theorem 2.4 (Robust LP separation [26]). If U is separable, and the uncertain
LP is compact, then the feasible set {x : Ax ≥ b ∀ (A, b) ∈ U} for the robust
counterpart is separable.

Proof. It is sufficient to determine, for a given i, whether the i’th row of the
system Ax ≥ b is always feasible. Let Ui be the projection of U onto the
coordinates corresponding to ai and bi. Now we clearly have that aTi x ≥ bi for
all

(
ai
bi

)
∈ Ui if and only if the optimal solution to the system

min (xT −1)
(
ai
bi

)
s.t.

(
ai
bi

)
∈ Ui (2.6)

is nonnegative. Write α :=
(
ai

bi

)
, and for ease of notation, suppose that the

coordinates corresponding to Ui come first in the space of the full universe, so
that we can write

α ∈ Ui iff
α
γ

 ∈ U for some γ.

Then we may rewrite (2.6) as

min (xT −1)α s.t.
(
α

γ

)
∈ U

Since U is separable, by the equivalence of separation and optimization [72] we
can determine the optimal value of this program.

Using the ellipsoid method, we are thus able to solve the robust counterpart
in polynomial time.

If U can be defined by a compact system, we can do even better than the
above result. Ben-Tal and Nemirovski [26] also showed that if both the universe
and the robust LP are specified in a compact form, then the robust counterpart
itself can be made into a compact LP.2 To obtain maximum generality, we need
the concept of an extended formulation:

2The result is hidden away slightly in the appendix of the paper—see [26, Remark 4.1].
In the main text, they consider more general ellipsoidal uncertainty sets, where the same
technique yields a conic program.
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Definition 2.5. Let P be a polytope in Rn. An extended formulation for P is
a system Px ≤ q, where x ∈ Rn+m, q ∈ Rr and P is an r × (n+m) matrix,
for some nonnegative integers m and r, such that

P = {z ∈ Rn : ∃u ∈ Rm with P
(
z
u

)
≤ q}.

In other words, P is the projection onto the first n coordinates of the feasible
polytope for the system. If the extended formulation is of size polynomial in n,
we say it is a compact extended formulation for P .

Theorem 2.6 (Robust LP formulation [26]). If U is polyhedral, and is specified
explicitly via a compact extended formulation, and if the robust LP is compact,
then the robust counterpart has a description as a compact LP.

Proof. Let us assume for now that our uncertain LP has only a single constraint,
aTx ≥ b. We will see at the end how the full result easily follows.

Let P and q define the compact extended formulation for U , so that

U = {
(
a

b

)
: ∃u where P


a

b

u

 ≤ q}.

Given a fixed x, the requirement aTx ≥ b for all
(
a
b

)
∈ U is equivalent to

asking whether the optimum of the following linear program is nonnegative:

min (xT −1)
(
a

b

)

s.t. P


a

b

u

 ≤ q.

By weak LP duality, if the dual LP has a nonnegative solution, this provides
a certificate that the above optimum is nonnegative. Thus feasibility of x is
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equivalent to feasibility of the following system:

qT z ≥ 0

P Tz =


x

−1
0


z ≥ 0

We thus have the following LP formulation of the robust problem:

min cTx

s.t. qT z ≥ 0

P Tz =


x

−1
0


z ≥ 0

This was for only a single constraint. It is clear however how to generalize
this to a system Ax ≥ b with multiple constraints. Each row ai

Tx ≥ bi in
the system has an associated uncertainty set Ui obtained from U by projecting
onto the relevant coordinates. Each Ui necessarily has an extended compact
formulation, since U does. Thus for each i, we have a dual system

q(i)
Tz(i) ≥ 0, P(i)z(i) ≥


x

−1
0

 , z(i) ≥ 0.

Since each row must separately be feasible, we simply combine all these con-
straints into a single larger system.

Theorems 2.4 and 2.6 are very useful, and we will see later that important re-
sults in robust network design and oblivious routing in congestion minimization
can be seen as consequences of these results.



18 Chapter 2. Background

We end this section with a caveat. While the class of robust linear programs
is already large and useful, it is somewhat more restrictive than we might
think given our experience with (non-robust) LPs. When modelling without
robustness, we have the flexibility of adding new variables to our system, and
these need not have any “real” meaning. For example, consider the convex
program

min cTx s.t. ‖x− p‖1 ≤ 1. (2.7)

The constraint ‖x− p‖1 ≤ 1 can be represented by the system

xi − pi ≤ ui, pi − xi ≤ ui,
∑
i

ui ≤ 1,

and so the convex program can be represented easily as a linear program.
However, if p is uncertain, we cannot apply the same transformation. The
difficulty is that the new variables ui must be specified as part of our feasible
solution, and may not vary as a function of the uncertain coefficients. This
is completely different from asking for a solution to (2.7) which is feasible for
all p ∈ U . Indeed, it is observed in [23] that Eq. (2.7), with p uncertain in
a given polyhedral uncertainty set, is in general NP-hard. Given the earlier
positive results for robust LPs, it follows that it is impossible to represent
this robust convex program as a robust LP. It also follows that there can be
no general tractable extension of the robust LP concept to one that allows
“scenario-dependent” variables.

2.1.3 Choices of uncertainty set, and relations to
stochastic optimization

In this thesis, we will be concerned only with various polyhedral uncertainty
sets, as per the discussion above. It is interesting to briefly discuss some other
important cases.

One of the original motivations for robust optimization was as a more
tractable alternative to stochastic optimization. Since robust optimization uses
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a very conservative notion of feasibility—the solution must be feasible for every
possible choice of data within the uncertainty set—it is not at first clear that
there is a close connection.

In a stochastic optimization problem, our uncertain data is assumed to be
governed by some given probability measure µ, and we are required to find
a solution so that the probability of failure is at most some tolerance ε. To
obtain a robust optimization problem, the idea is to pick as the uncertainty set
some subset U of the support of the measure, such that µ(U) ≥ 1− ε. Clearly,
a solution to the robust problem with this uncertainty set will be feasible for
the stochastic optimization problem, though it need not be optimal (note that
there are many possible choices for U). Such a robust problem is called a safe
tractable approximation [25, 23] to the chance-constrained problem.

Ben-Tal and Nemirovski [25, 27] showed that for a wide range of natural
probability distributions, a safe tractable approximation can be found with
an ellipsoidal uncertainty set (we define this next). This class of distributions
includes, for example, the case where each piece of data is independently
random and Gaussian, or independent and bounded.

Define an ellipsoid in Rn to be a set of the form

{Pu+ r : u ∈ Rm, ‖Qu‖2 ≤ 1},

where Q is an m×m matrix, P is a n×m matrix, and r ∈ Rn. This is slightly
different to the usual definition of an ellipsoid, due to the introduction of Q,
which may be singular; it includes degenerate cases such as half-planes and
cylinders, which are very useful in this setting. An ellipsoidal uncertainty set
is then defined as one which can be expressed as the intersection of ellipsoids.

This class is particularly convenient, because it is shown in [26] that the
robust counterpart of an uncertain linear program with an ellipsoidal uncertainty
set can be cast as a conic program. Conic programs can be solved efficiently
via interior point methods; see, e.g., [34] for details.

Although conic programs are tractable (especially by the theoretically mo-
tivated use of the term in this thesis), they are still more computationally
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demanding to solve than similarly sized linear programs. Perhaps more im-
portantly, integer or mixed-integer versions of linear programs, while NP-hard,
are much easier to deal with in practice than conic programs with integral
constraints, as there are many tools and heuristics designed to handle them.
This is one motivation for an alternative safe tractable approximation to cer-
tain chance-constrained problems introduced by Bertsimas and Sim [29]. They
consider robust LPs of the form (2.5). Each entry of A and b has a nominal
value, as well as upper and lower bounds. An extra parameter Γ is introduced,
and it governs the maximum number of rows in the system where coefficients
may differ from their nominal values. The heuristic motivation is that in some
settings, it is “unlikely” that many coefficients vary from their nominal values,
and Γ can be chosen larger or smaller depending on how conservative a solution
is required.

In addition to this qualitative motivation, they show in [29] that this choice
also yields a safe tractable approximation to certain kinds of chance-constrained
problems (essentially the same as discussed in the previous paragraph). The
tolerance ε depends on the choice Γ; in fact, ε ∝ exp(−Γ2/C) for some problem-
dependant constant C, so a small increase in Γ dramatically reduces the
tolerance. Their uncertainty set (after taking the convex hull) can be shown
to have a compact linear description, and hence falls within the framework of
the previous section; thus an efficient linear program solver can be used. The
linearity also aids in the tractability of discrete robust optimization variants;
in [28] it is shown that certain network flow and design problems are tractable
under this uncertainty model.

2.1.4 Other work

There is a large body of work on robust optimization, and we have touched
only on the part most relevant to this thesis. See [23, 30] for more. We briefly
mention some of the other broad directions.

In robust conic optimization, the linear constraints Ax ≥ b are replaced
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with Ax− b ∈ K, where K is some convex cone. Cases of particular interest
are conic quadratic optimization, where K is a Lorentz cone, and semidefinite
programs, where K is the cone of positive semidefinite matrices of the appro-
priate dimension. These problems are no longer tractable for general separable
uncertainty sets, but some special cases of interest are solvable [26, 52].

In adjustable robust optimization, some variables in the solution may have
some flexibility to be changed depending on the actual values of the uncertain
parameters. This is a robust analogue of 2-stage or multistage stochastic
optimization. While very useful for modelling, this version is highly intractable
except for certain special cases [24].

2.1.5 Historical notes

The roots of robust optimization stretch back to Soyster [127] in 1973. Sig-
nificant advances were than made independently by three different groups:
Ben-Tal and Nemirovsky, El-Ghouai and Lebret, and Kouvelis and Yu.

The discussion above follows most closely the work of Ben-Tal and Ne-
mirovski, in particular their first two papers on the subject [26, 25]. El Ghaoui
et al. arrived at essentially the same formulation; their original motivation was
slightly different. In [51], they considered an overdetermined linear system
Ax = b. The standard solution of minimizing ‖Ax − b‖2 is very sensitive;
they consider instead a solution minimizing this under bounded uncertainty
over A and b. In [52], they considered robust semidefinite programs under
norm-bounded uncertainty sets.

Both of these groups primarily take the perspective of continuous opti-
mization, and the problems they consider are very much influenced by this.
Kouvelis and Yu [100] consider discrete robust optimization problems (as we
will, primarily, in this thesis). As operations researchers, they also spend
considerably more effort on modelling issues, especially in considering how
uncertainty sets might be determined. Most of the problems they consider
are NP-hard however: as usual, discrete optimization is more difficult than its
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continuous counterpart.

In this thesis, we will encounter only robust linear programs, and typically
the universes we consider will be separable polytopes. The main difficulty
is that we will be be most interested in integral solutions; since these are in
general intractable, we will need to understand the combinatorial structure of
the specific problems we are dealing with to make progress.

2.2 Robust optimization for network
problems

Having discussed robust optimization in its general form, it is now time to turn
to more specific problems in network design.

Interestingly, from the perspective of this thesis, Kouvelis and Yu [100]
appear to be the first to coin the term “robust network design”. They consider
a number of standard network design problems from a robustness perspective.
The uncertainty in the problems they consider are in the costs (typically edge
weights) of the instance. For example, consider perhaps the simplest of all
network design problems, minimum spanning tree. Given uncertainties in the
edge weight, and indeed an uncertainty set describing all possible combinations
of edge weights, one may ask for a robust solution to the problem—i.e., a
spanning tree that minimizes the worst possible cost. This problem is already
NP-hard [136]. They also consider other important network design problems,
e.g., the 1-median problem.

In this thesis, however, we will be concerned with a completely different kind
of robust network design problem. Namely, we will be interested in demand
uncertainty. The pattern of demands across the network will be uncertain and
time-varying, and we will need a solution that is robust to these changes.

The early work on the hose model (which we will see next) coincided with the
initial work on robust optimization. Work on robust network design (although
not under that name) continued for quite some time without any connection
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to robust optimization; Altın et al. [2] appear to be the first to mention the
connection.

2.2.1 ATMs and VPNs: the hose model

The hose model, already introduced in Chapter 1, has received a lot of attention
in the networking community. Here we describe the motivations for this model,
and survey the relevant literature.

This model was introduced independently in two different papers, first in
1997 by Fingerhut, Suri and Turner [58] in relation to broadband networks,
and then in 1999 by Duffield et al. [46]3 in relation to the design of virtual
private networks. Since the motivation of the second paper is somewhat closer
to the discussion in this thesis, we reverse chronology and discuss it first.

Virtual private networks Duffield et al. consider the problem of specifying
a virtual private network (vpn). The customer, perhaps a large corporation,
wants to set up a private network connecting (say) various branches across the
world. Building a completely separate physical network for this task would
be extremely expensive and inefficient; rather, the goal is to build on top
of existing communication networks (probably the internet). However, the
customer has certain specific requirements from the vpn; the network must
always be available and have sufficient bandwidth to meet the customer’s needs.
These service requirements imply that the network operator(s) will have to
essentially reserve some capacity on the underlying network for the exclusive
use of this customer. The amount and distribution of this reserved bandwidth
depends on the exact customer requirements, and these need to be specified
up front in some fashion. The simplest (at least from the network operator’s
perspective) way for this specification to be provided is via “point-to-point”
demands. The customer specifies the bandwidth requirement for each pair of
terminals in the vpn (different pairs may have different requirements), and

3The term “hose model” originates from this paper.
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the network must be able to route all these demands simultaneously. This is
known as the pipe model—the vpn can be thought of as a collection of pipes
between the different terminals, and the specification is the capacity of each of
these pipes.

While the pipe model is convenient for the network operator (it is very
easy to determine what bandwidth needs to be allocated to the customer to
guarantee their service requirements; see §1.1), it is not so convenient from
the perspective of the customer. It may be difficult for the customer to obtain
good estimates on each pairwise demand. Moreover, it is rather unlikely that
the bandwidth demand between some given pair of terminals is really constant;
more likely, demands will fluctuate over time. In order for the customer to
give a specification in the pipe model which covers all likely circumstances, the
worst-case demand between every pair would have to be used. But this could
be very expensive. Imagine a situation where a vpn is used for a company’s
voice (telephone) network, or perhaps for more bandwidth-intensive video
calls. Potentially any pair of terminals in the network might be involved in a
telephone call; thus, bandwidth is required between every pair. However, an
individual terminal will be involved in at most one call at any given time; thus
only a fraction of the total bandwidth guaranteed by the pipe specification
would be used at any particular moment.

In the hose model, a different and more flexible description of the customer’s
requirements is given. Rather than specifying the exact demand between each
pair of terminals, only a maximal aggregate demand at each terminal needs to
be specified. More precisely, the customer must specify, for each terminal in the
vpn, upper bounds on the both the total incoming and total outgoing demand
at that terminal. The service guarantee provided by the network operator is
that any pattern of demands across the network must be routable, as long as
they respect these upper bounds.

ATM broadband networks Now we come to the second motivation, consid-
ered by Fingerhut et al. [58]. The Asynchronous Transfer Mode (atm) protocol
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has become an important standard in communication networks. Unlike packet
switching networks like tcp/ip, the atm protocol is specifically designed to
handle real-time applications such as voice and video. For typical data ap-
plications, occasional variability in the available bandwidth and transmission
latency is acceptable. But for voice and video, even very short delays cause
problems. The atm protocol has a number of features designed to ensure
“quality of service” (QoS) guarantees.

While even the basics of the protocol are too complicated to describe here,
there is a particular feature of atm networks which is relevant to our discussion,
namely the concept of virtual circuits. A virtual circuit (between some source
and destination) provides guarantees on bandwidth for communications between
this pair; in addition, all traffic on this circuit is routed along exactly the same
path in the network, ensuring in-order transmission. Thus (simplistically
speaking) a virtual circuit, once set up, gives the illusion of a private direct
connection between its endpoints. This virtual circuit will remain until it is no
longer needed (e.g., the video chat is completed), after which its bandwidth
resources will be released.

For the network operator, providing these service guarantees causes extra
complications compared to “best-effort” networks. When a request for a virtual
circuit between two particular terminals is made, there is the possibility that
insufficient bandwidth is available, given the current state of the network where
other virtual circuits are already in place. If this happens, the virtual circuit
is said to have been blocked. Of course no matter how much bandwidth the
network provides, these resources will be limited, and it will not be possible to
route an arbitrary collection of demands without blocking. Some constraints on
what traffic patterns the network needs to be able to support must be provided.
Fingerhut et al. proposed using hose constraints for this purpose, again as an
improvement over the pipe model.

As well as introducing the model, the Fingerhut et al. paper proves a number
of important theoretical results, discussed later in this chapter. Unfortunately,
the paper remained unnoticed for some time, and some of the results it contained
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were subsequently rediscovered.

Symmetric and asymmetric As mentioned in Chapter 1, there is both
a symmetric and asymmetric variant of the vpn problem. In the symmetric
version, demands are considered to be undirected, and so there is only a single
hose capacity bi for each terminal i; in the asymmetric version, incoming and
outgoing demands have separate bounds b−i , b+i .

Capacity reservations and costs The cost of a solution depends on how
much capacity is required on each link. In the case of broadband atm networks,
the costs might relate to the costs of building the physical network, in the
form of switches and high-bandwidth connections. In the case of vpn design,
the network operator will charge the customer based on how much capacity is
reserved for the vpn.

A reasonable cost model for both cases is to give each link e an associated
cost function fe(u), which defines the cost to reserve u units of capacity on this
link. This does not allow for specifying costs for switches—although it may
be possible to roughly handle this by spreading the cost of a switch among its
incident links, assuming that the cost of a switch increases with the amount of
traffic it needs to route [58].

The simplest choice is to choose this cost function to be linear for all edges,
and this is the case considered in the majority of the literature. The case where
the cost function is arbitrary but concave—corresponding to “economies of
scale” has also been recently considered [60, 120]. Altın et al. [5, 4] investigate
a mixed-integer formulation of a robust version of the network loading problem,
where capacity is packaged in price/capacity bundles, and the total capacity
on an edge must be provided by purchasing some integral combination of these
bundles.4

Another issue that can be considered is upper bounds on capacity reserva-

4This is exactly the cost model of the cable-type formulation of the buy-at-bulk problem,
discussed in §2.4.
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tions. In much of the literature (and in this thesis) it is assumed that there
are no such bounds. The robust network design problem, even with the hose
model, is NP-hard if there are capacity constraints [77]. Capacity constraints
will play a much larger role in the theoretical results on oblivious routing that
will be discussed in §2.3.

2.2.2 Routing strategies

An important issue that needs to be considered is the routing strategy. Conceiv-
ably, one might allow the routing to vary, depending on the current demand
pattern. This is refered to as dynamic routing. This method, while the most
flexible, and potentially the least costly (more on this in Chapter 7), suffers
from being simply impractical to implement.

One reason for this is that information required to make a routing deci-
sion is distributed throughout the network; this information would have to
be communicated via the network, in addition to the actual data. Very often,
this overhead would be prohibitive in a fully adaptive scheme. Moreover, com-
putational resources are limited in network switching equipment, particularly
as routing decisions must be made very quickly in high throughput networks.
Solving a multicommodity flow problem, while polynomially tractable, is not a
simple computation. For atm networks, it is not possible to change the routing
of a virtual circuit during its lifetime. While a different virtual circuit could be
used each time one is requested between a certain pair of terminals, this would
mean that the state of the network (in terms of what capacity is available after
taking into account the reservations of currently active virtual circuits) would
depend on the history of requests in a complicated way. This would make it
much more difficult to guarantee that the network is nonblocking; using a fixed
path for virtual circuits between any specific pair, as is done by Fingerhut et
al. [58], simplifies the situation dramatically.

It is also in fact hard to determine the optimal capacity allocation for
dynamic routing, as shown by Chekuri et al. [42] (and earlier by Gupta et
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al. [77] for directed graphs); the approximability of this problem is still open.
Much more practical is a routing strategy which is oblivious (sometimes

referred to as “static” or “stable”), meaning that it is fixed up front, and does
not depend on the specific demand being routed. This is, essentially, how
current network protocols work (changes to the routing templates can be made,
but only very slowly compared to the functioning of the network). In addition
to being much simpler to implement, this also helps ensure the stability of the
network. The routing between two particular terminals will not be affected by
changes in other parts of the network; since different paths may have different
latency characteristics, this kind of stability can be important for real-time
applications such as video streaming.

Oblivious routing strategies can be further subdivided into fractional and
integral variants. In the integral variant, which we refer to as single-path
routing, all flow for a given pair must follow a single path (and since the routing
is oblivious, this must be fixed in advance). The fractional variant, multipath
routing, allows the demand for a given pair to be split amongst a number of
paths. Since the routing must still be oblivious, a template must be given that
describes what fraction of the flow takes each path. The particular application
and network protocol determines whether multipath routing is an option or
not; certainly single-path routing is simpler to implement. In packet switching
networks, the fractional nature of a multipath template might be implemented
via randomization (although there are obstacles in practice). At each node,
the next link for a packet is picked randomly, with probabilities proportional
to the weights of the outgoing arcs in the template. The fraction of packets
taking a particular edge will then be as specified by the flow template.

Some more restrictive models are also considered. In the more restrictive
tree routing scheme, it is required that the path used for every pair is induced
by the unique such path on a fixed tree (the same tree for all pairs) [46, 101].
Tree routing has some advantages over arbitrary single-path routings when the
mpls protocol is used [101]. The tcp/ip protocol uses a shortest-path routing
strategy; each link in the network is given an associated weight, and the route
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taken between two terminals is simply the shortest path according to these
weights. This more restrictive scheme in the context of robust network design
is discussed in Altın et al. [3] and Chu et al. [44].

2.2.3 The polyhedral model

Given the discussion of robust optimization in §2.1, the following generalization
of the hose model will come as no surprise. The connection with robust
optimization had not yet been made however, and it was Ben-Ameur and
Kerivin in 2003 [21, 22] that first introduced the concept of a polyhedral
uncertainty set in this context. In their model, the customer specifies their
service requirements by an arbitrary polytope. This polytope could be obtained
in a number of ways; for example, traffic patterns could be monitored for some
time; the convex hull (or a relaxation thereof) then defines a potential polytope.
Of course, the hose model is a special case of this more general model; see (1.3).

2.2.4 Work on robust network design

There has been a large body of work on robust network design since these
models were defined, particularly on the hose model. The literature spans a
spectrum from the applied to the theoretical, and the discussion here emphasizes
the theoretical work.

Tractability of multipath routing In the paper where they introduce the
polyhedral model, Ben-Ameur and Kerivin [22] show that the multipath version
of this problem is polynomially solvable. 5 Their approach is quite complicated
however, and involves iteratively solving many linear programs in turn.

Not long after, and independently, Erlebach and Rüegg [54] consider multi-
path routing for the vpn problem, also showing that it is polynomially solvable.
They show this by demonstrating a separation oracle for the problem; by the

5The paper was only published in 2005, but was apparently widely distributed as a
technical report as early as 2002.
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ellipsoid method, this then implies that the optimization problem is polynomial.
Their proof method is easily seen to generalize to the full polyhedral model.
Subsequently Altın et al. [2] and Hurkens et al. [86] independently demonstrated
a compact LP formulation for the hose model. These two results also show that
for multipath routing, capacity constraints can be added without any difficulty.

Knowing the connection with robust optimization, we can now see that the
results follow as special cases of Theorem 2.4 and Theorem 2.6, respectively.
The connection with robust optimization had not yet been made however.

Tree routing With single-path routing, we have a combinatorial optimization
problem. Robust network design with the asymmetric hose model is APX-hard,
as is seen by a reduction from the Steiner tree problem [58]. Kumar et al. [101]
show that even finding the cheapest tree solution is hard. They also give
a 10-approximation using LP rounding (see both [101] and [77]), and give
computational evidence that their approach gives good solutions.

Single-path routing In [2], Altın et al. consider computational (branch-and-
bound) approaches to the compact mixed-integer program formulation they
define there. From the theoretical side, the first constant factor approximation
algorithm for the asymmetric hose model was given by Gupta et al. [81, 79].
The constant was improved by Eisenbrand and Grandoni [47], and then again
by Eisenbrand et al. [48] to its current best value. Because of the connections
to other important network design problems, more details are deferred to §2.4.

The balanced case For a vpn instance, let B+ = ∑
i∈W b+i and B− =∑

i∈W b−i . If B+ = B−, the instance is called balanced. Fingerhut et al. [58]
gave a 3-approximation for single-path routing in this case. Italiano et al. [87],
unaware of their work, also gave a 3-approximation. The factor was improved
to 2 by Eisenbrand et al. [48]. The complexity of the vpn problem restricted
to balanced instances was open for some time; Rothvoß and Sanità [120] finally
showed that it is NP-hard.
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The VPN Conjecture Fingerhut et al. [58] showed that for the symmetric
hose model, a 2-approximation is obtained by picking the cheapest shortest
path tree solution; this refers to a solution where there is a specific hub node,
and the routing between any pair of terminals is via this hub. In [101, 77], it
is shown that in fact the cheapest vpn solution using tree routing is of this
form. Unaware of the result by Fingerhut et al., Gupta et al. [77] replicated
the factor 2 result.

Several researchers [2, 54, 78, 87] noticed at around the same time that
the cheapest shortest path tree solution seemed to always be optimal, and not
just within a factor of 2. This prompted them to independently formulate the
so-called vpn Conjecture, which states simply that for every symmetric vpn
problem instance, there is an optimal solution in the form of a tree.

Fingerhut et al. [58] observed that this is true if the network is a complete
graph with uniform edge weights. Important progress was made by Hurkens,
Keĳsper and Stougie [86], who proved that the result is true if G is a cycle (and
some other cases too). Grandoni et al. [71] later gave a much simplified proof
on ring networks. These results are discussed in more details in Chapter 3
(particularly this last paper, which is crucial to our result), where we resolve
the conjecture.

Other work Eisenbrand and Happ [50] consider a variation on the sym-
metric hose model where in addition to the hose constraints, the terminals
are partitioned into groups, and communication occurs only between termi-
nals in different groups. Despite the use of symmetric demands, this actually
generalizes the asymmetric hose model, which corresponds to bipartitioning
the terminals into a set of senders and a set of receivers. The authors give a
constant factor approximation algorithm for the problem.

Altın et al. [4] consider a “hybrid” model which combines the hose model and
pipe model. In addition to hose constraints, each pairwise demand is constrained
to lie in a given interval. They investigate a mixed-integer formulation for the
problem.
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Italiano et al. [88] consider the problem of restoring the private network
(given by a vpn tree) in the event of a link failure. Their goal is to provision
backup capacity that can be used if any single link of the vpn tree fails. Jüttner
et al. [91] compare the hose model with the pipe model (i.e., where a single
conservative demand matrix is specified) from a more practical side. Poo
and Wang [113] compare tree routing and multipath routing, again from a
more practical perspective than is the treatment in this thesis. Meddeb [108]
considers the problem of allocating multiple vpns.

Oriolo [111] gives a pleasing result connecting routability of different traffic
matrices. Fix a graph G, which we take to be complete, and say that a traffic
matrix D(1) dominates traffic matrix D(2) if for every capacity reservation for
which D(1) is routable, D(2) is routable too. Oriolo shows that D(1) dominates
D(2) iff D(1) (thought of as defining a capacity reservation on G) supports D(2).

2.3 Routing and congestion

Contrary to robust network design as we have discussed it, where we may buy
as much capacity as we wish on the edges of the network, this section will
be about routing on capacitated graphs. Typically the aim will be to find
routings which avoid overloading any edge too much—the cost measure will be
the largest congestion of any link, rather than the total cost of buying capacity.

Metric embedding techniques play a central role in the proofs of most of
these results, and that is where we begin the discussion.

2.3.1 Metric embedding

Metric embedding is concerned with “how well” a certain metric space can be
embedded in some other metric space. Of particular interest will be embedding
into normed spaces:
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Definition 2.7. For p ∈ [1,∞], The normed space `p is defined on the space
of all infinite sequences of reals x = (x1, x2, . . .), with norm ‖ · ‖p, where

‖x‖p :=
( ∞∑
i=1
|xi|p

)1/p

for p ∈ [1,∞), and
‖x‖∞ := max

i
|xi|.

The normed spaces `dp for d ∈ N are defined in the same way, except the
underlying space is Rd.

The metrics we will be interested in embedding will be finite, since they
will correspond to shortest path metrics on graphs. A finite metric space on a
set of size n is called an n-point metric space.

A metric space (X, d) is said to be isometrically embeddable in a metric
space (Y, σ) if there exists a map f : X → Y which preserves distances, i.e.,
for all x, y ∈ X, d(x, y) = σ(f(x), f(y)). It is straightforward to show that any
n-point metric space can be isometrically embedded into `n∞. However, this is
false if `n∞ is replaced by `p for p ∈ [1,∞)—even without any bound on the
dimension. This motivates a study of approximate embedding. The crucial
concept is as follows:

Definition 2.8. A metric space (X, d) is said to be α-embeddable into a metric
space (Y, σ) if there exists c > 0 and a map f : X → Y such that

c · d(x, y) ≤ σ(f(x), f(y)) ≤ α · c · d(x, y).

The map f is then called an α-embedding.
The infimum over all α such that f is an α-embedding is called the distortion

of f .

Two fundamental results in the area are the Johnson-Lindenstrauss Lemma
[90] (which says that any n-point `2 metric can be well embedded into `O(logn)

2 )
and Bourgain’s Theorem [33] (which says that any n-point metric can be
embedded into `2 with O(log n) distortion).
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Embedding into `1 The space `1 will have a starring role in what follows:
the reason for this is its close connection with cuts in graphs. Consider a
groundset V of size n, and some nontrivial cut S ⊂ V . The cut semimetric
χS defined by S is defined simply by χS(u, v) = 1 if S separates u and v, and
χS(u, v) = 0 otherwise. Now consider some nonnegative combination of cut
semimetrics:

d(u, v) =
∑
S⊂V

αSχS(u, v),

where αS ≥ 0 for all S ⊂ V . This defines a metric, and in particular, an `1
metric: simply index the dimensions by 2V , and let f(u)S := αS1u∈S. It is easily
seen that ‖f(u)− f(v)‖1 = d(u, v). In fact the converse is also true, and any
finite `1-metric is induced by a nonnegative combination of cut semimetrics [13]
(cf. [45, Chapter 4]).

Note that any tree metric, i.e., a metric induced by the shortest-path metric
on a tree, is an `1-metric. Each edge in the tree defines a cut, and the entire
metric can be written as a sum over edges of the cut semimetric induced by
that edge.

2.3.2 Multicommodity flow and sparsest cut

Consider the multicommodity flow problem on an undirected graph G = (V,E),
with edge capacities u(e). We are given k commodities, each with a source si,
a sink ti, and a demand requirement Di. The problem is to fractionally route
all the demands, while respecting the capacity constraints.

The maximum concurrent flow problem variant asks for the largest possible
λ ∈ R such that it is possible to simultaneously route λDi units of flow for
each 1 ≤ i ≤ k. This problem can be described as a separable LP, and so is
polynomially solvable (even in strongly polynomial time [131]).

For any cut S ⊂ V , let cap(S) = ∑
e∈δ(S) u(e) be the capacity across the

cut, and dem(S) be the total demand crossing between S and V \ S. Then for
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any S ⊂ V with dem(S) > 0 we obviously get the upper bound

λ ≤ cap(S)
dem(S) . (2.8)

In the single commodity case (k = 1), the celebrated Ford-Fulkerson max-flow
min-cut theorem [62] says that the maximum flow is equal to the minimum
capacity of a cut separating the source and the sink. In other words, if k = 1
then there is some S ⊂ V where (2.8) holds with equality. Unfortunately, this
result is no longer true in the multicommodity setting.

A breakthrough was made by Leighton and Rao [103]. They considered the
special case of uniform multicommodity flow, where there is a unit of demand
between every pair of terminals. In this case, the upper bound one obtains on
λ from some cut S ⊂ V is exactly the sparsity of the cut:

λ ≤ cap(S)
|S| · |V \ S|

.

The cut of minimum sparsity, which gives the best upper bound of this form,
is known as the sparsest cut. They showed that the flow-cut gap—the ratio
between the size of the sparsest cut and the max flow—is O(log k).

This result had a number of immediate important applications, to sparsest
cut and other partioning problems, VLSI layout, scheduling, and many others;
see [103] for details.

Aumann and Rabani [14] and Linial, London and Rabinovich [105] indepen-
dently extended the Leighton-Rao result to arbitrary multicommodity flows.
Both use an important metric embedding result of Linial et al:

Theorem 2.9 ([106]). Any n-point metric can be O(log n)-embedded into `1
(in fact, into `O(logn)

1 ).

The full multicommodity max-flow min-cut result is obtained by applying
this embedding theorem to the dual of the multicommodity flow problem. This
dual essentially tells us that λ can also be written as

λ = min
d

∑
e∈E u(e)d(e)∑k
i=1Did(si, ti)

, (2.9)
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where d ranges over all metrics that can be obtained as shortest-path metrics
on G with some choice of edge lengths. Let d∗ be a length function that
achieves the minimum in (2.9). Suppose it were an `1 metric. Then it is
possible to write it as a nonnegative linear combination of cut semimetrics:
d∗(u, v) = ∑

S⊂V αSχS(u, v). But then

λ =
∑
S⊂V

∑
e∈E u(e)αSχS(e)∑

S⊂V
∑k
i=1DiαSχS(si, ti)

≥ min
S⊂V :αS>0

∑
e∈E u(e)χS(e)∑k
i=1DiχS(si, ti)

= min
S⊂V :αS>0

cap(S)
dem(S) .

Of course, d∗ will not in general be an `1-metric, but by Theorem 2.9, we can
embed it into `1 with O(log n) distortion, and the above goes through with this
extra factor. (A slight variation on Theorem 2.9 is needed to prove O(log k).)

The connection of the Leighton-Rao result with the topic of thesis is perhaps
made clearer with the following reinterpretation. Recall that a graph G = (V,E)
is a c-expander for some constant c > 0 if for every S ⊂ V with |S| ≤ |V |/2,
we have |δ(S)| ≥ c|S|. The existence of expanders is trivial (consider just a
complete graph), but much more surprising is the existence of constant degree
expanders. In fact, a uniformly random d-regular graph is an expander with
high probability, and explicit constructions also exist; see, e.g., [85] for a survey.

We immediately see that a c-expander, with all edges having unit capacity,
does not have any sparse cuts. For any S ⊂ V with |S| ≤ n/2,

|δ(S)|
|S| · |V \ S|

≥ 2
n

|δ(S)|
|S|

≥ 2c
n
.

Thus by Leighton-Rao, it is possible to route demand 1/n between every
pair simultaneously, with congestion O(log n). It follows from this also that
the expander acts as a fractional crossbar, i.e., any matching betwen the
terminals can be routed with low congestion. To route a given matching
{(si, ti) : 1 ≤ i ≤ k}, route 1/n from si to each terminal, and from there to ti.
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This is just a combination of two uniform multicomodity flow routings, and
hence can be routed with logarithmic congestion. This is also the the key idea
used in Valiant’s load balancing scheme, discussed in §2.3.4.

We will revisit expanders in Chapter 7, where we will make use of the fact
that expanders route effectively.

2.3.3 Tree embeddings

Many problems are much simpler on trees than on general graphs, and in
particular the technique of dynamic programming is often available when solving
problems on trees. For this reason, it would be very useful to approximate a
given finite metric by a tree metric. Unfortunately, this cannot be done with
sublinear distortion—consider just a single cycle.

Bartal [17] demonstrated how to overcome this problem by considering a
random embedding into tree metrics.

Definition 2.10 ([17]). An α-probabilistic embedding of an n-point metric
(X, d) is a distribution of metrics, each on the same groundset X, so that
(i) no metric assigned positive probability by the distribution shrinks any

distance compared to d, and
(ii) if ρ is a random metric chosen according to the distribution, E(ρ(x, y)) ≤

αd(x, y) for any x, y ∈ X.

Bartal showed that there exists an O(log2 n)-probabilistic embedding over
tree metrics. Moreover, Bartal showed how to sample from such a distribution
in polynomial time. For many problems, this result almost automatically
yields randomized polynomial algorithms with polylogarithmic approximation
factor, by sampling a tree metric from this distribution and solving the problem
optimally on the tree.

Subsequently, Bartal improved his result to achieve an O(log n log log n)-
probabilistic embedding [18]. Charikar et al. [39] showed that the distribution
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can be chosen to have only O(n log n) tree metrics, which allows for approxi-
mation algorithms based on this method to be derandomized.

Finally, Fakcharoenpohl, Rao and Talwar [57], using ideas from [37] and [55],
showed how to obtain an O(log n)-probabilistically approximate embedding:

Theorem 2.11 ([57]). For any n-point metric, an O(log n)-probabilistic em-
bedding into tree metrics, with only O(n log n) metrics in the distribution, exists
and can be found in polynomial time.

This is tight up to constant factors [17]. See also Fakcharoenpohl et al. [56]
for a high level sketch of this result, and some more details on previous work.

Notice that the result by Fakcharoenpohl et al. is in fact a strengthening of
the `1 embedding result of Linial et al., since tree metrics (and hence convex
combinations of tree metrics) are `1.

2.3.4 Oblivious routing

Oblivious routing, and some motivations for considering it, have already been
discussed in §2.2.2. We now consider oblivious routing in a slightly different
setting. We are given a undirected graph G = (V,E), but in addition, capacities
u(e) for all edges. Unlike for the robust network design problems considered
earlier, we have no control over the capacities in the network. Rather, the goal
is to choose a routing that minimizes congestion, the maximum over all edges
of the ratio between load and capacity.

As before, a routing is specified by a routing template, which gives a unit
flow fij between each pair of terminals i, j. For a specific demand matrix
D, The congestion of a routing is defined as the maximum over all e ∈ E of
`(e)/u(e), where `(e) is the total load put on an edge by the routing, and is
given by

`(e) =
∑
i,j

fij(e)Dij.

The reason for considering the maximum load, rather than some form of average,
is that it gives a good proxy for the throughput of the network; if a single



2.3. Routing and congestion 39

edge is highly congested, all packets sent through that link will experience long
delays. Other performance measures are discussed below.

For a fixed demand matrix, a fractional routing of minimal congestion can
be found in strongly polynomial time [131]. However, as already discussed,
often adaptive routing schemes are difficult or impossible to implement in
practice. It would be very useful to be able to set up the routing in advance,
independent of the specific demand that must be routed. Of course, we cannot
expect to do as well as an adaptive scheme, but how well can we do?

One of the earliest results is due to Valiant [132]. Motivated by applications
to parallel computing, Valiant considers a network with the topology of a
hypercube, with unit capacities, and considers the problem of routing an
arbitrary permutation π; each node i must send a packet to destination π(i).
Notice the similarity to the hose model—here we must be able to route any
integral demand matrix where the total incoming demand and the total outgoing
demand at any node is at most 1. He suggests the following two-stage scheme
for routing a packet from a source u to destination v. First, pick a random
intermediate node w uniformly at random, and route the packet from u to w
along a shortest path, also chosen at random from the set of all shortest u-w
paths. Then route from w to v along a random shortest w-v path.

When considering the aggregate of many packets sent from si to ti via such
a randomized scheme, we can define a unit flow fi by taking fi(e) to be the
fraction of packets that uses edge e (more formally, the expected fraction of
packets). Valiant’s scheme can thus be interpreted as describing a particular
multipath flow template.

Valiant showed that his scheme has congestion O(log n) for routing any
permutation. The result was quickly improved and simplified by Valiant and
Brebner [133]. Valiant’s two-stage method has prompted a variety of work in
the networking community on similar approaches, e.g., [109, 38, 99, 98, 137].

Valiant’s scheme is randomized; Borodin and Hopcroft [32] showed that
this was a necessary feature. They proved that any deterministic (i.e., single-
path) oblivious routing scheme, on any graph, will have worst-case congestion
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Ω(
√
n/∆3/2) for routing all permutations, where ∆ is the maximum degree.

The bound was improved to Ω(
√
n/∆) by Kaklamanis et al. [92].

The above dealt with routing all possible permutations. A more general
framework is to consider routing any demand—but using the minimum conges-
tion routing possible for that demand as the benchmark. More formally: think
of G as a capacitated graph with capacities given by u, and define λf (D) to be
the congestion incurred when routing demand D via routing f . Then define
the optimal congestion λ∗(D) for a demand D as the minimum congestion
attainable by any routing. The competitive ratio of routing f is the value

Λ(f) := max
D

λf (D)
λ∗(D) , (2.10)

where D ranges over all demand matrices where λ∗(D) is nonzero. The optimal
oblivious routing is the routing with minimum competitive ratio.

A close connection to robust network design can be made via the following
equivalent formulation [41]. Let G be the universe of demands that are routable
in G with edge capacities given by u (assume u(e) > 0 for all e ∈ E). Notice
that Λ(f) = maxD∈G λf(D). Writing out the definition of λf(D), finding an
optimal oblivious routing f is equivalent to solving

min
f

max
e∈E

u(e)−1 max
D∈G

∑
i,j∈W

Dijfij(e). (2.11)

Compare this to a robust network design problem with edge costs c(e) = u(e)−1,
and universe G:

min
f

∑
e∈E

u(e)−1 max
D∈G

∑
i,j∈W

Dijfij(e). (2.12)

The only difference is that a sum over edges has been replaced by a maximum.
Note, however, that this does not mean that robust network design is equivalent
to oblivious routing with cost measure given by the sum of edge congestions,
since this also affects the denominator in (2.10); see the section below on other
cost measures.

Polylog-competitive oblivious routing schemes were demonstrated for various
different network topologies (see [116] for details). A breakthrough came in



2.3. Routing and congestion 41

2002 when Räcke demonstrated that an oblivious routing with polylogarithmic
congestion is possible for arbitrary undirected graphs [114]. The basic scheme
used by Räcke, first introduced by Maggs et al. [107], is based on a decomposition
tree. A decomposition tree for a graph G = (V,E) corresponds to a laminar
family on V , with leaves of the tree corresponding to individual nodes and
the root corresponding to all of V . Edge capacities for the tree are chosen
so that any demand supported in G is supported by TG also. By choosing a
very particular decomposition tree TG, Räcke showed that then any demand
routable in this special TG could be routed in G, with congestion only a
O(log3 n)-factor larger. Each edge in TG is essentially mapped to a carefully
chosen multicommodity flow; the concatenation of these flows on all the edges
of TG between a particular pair of terminals yields the flow template for that
pair in G. The full multicommodity max-flow min-cut result is an important
ingredient in the proof.

Räcke’s original result was existential, and did not provide an efficient way
of constructing the oblivious routing. This was rectified by Azar et al. [16], who
showed how to find an optimal oblivious routing in polynomial time. Applegate
and Cohen [12] gave a compact LP formulation for the problem. We note
that the problem of finding a minimum congestion oblivious routing can be
phrased as a robust LP over a polyhedral universe G, by virtue of (2.11). So
these results, analagous to the results on robust network design with multipath
routing, can also be seen as consequences of Theorem 2.4 and Theorem 2.6.

Harrelson et al. [83] improved the approximation ratio to O(log2 n log log n).
Finally, Räcke [115] demonstrated an oblivious routing with O(log n) congestion,
which is asymptotically tight. The technique in this paper is different from the
earlier ones in that a distribution of decomposition trees is used; the routing
used for each tree is much simpler though. Each tree T in the distribution is
endowed with a mapping φT : V (T )→ V of its nodes into the graph, with each
leaf being mapped to its associated terminal. An edge in the tree is mapped to
a shortest path between the image of its endpoints. (See §6.2, where we also
use this kind of routing description.)
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The embedding result of Fakcharoenpohl, Rao and Talwar plays a crucial role
in Räcke’s proof, and there is a close analogy between this result and the proof
of Leighton-Rao by London et al. via `1 metric embedding. Note that just as
the tree embedding result is a strengthening of the `1 embedding result, Räcke’s
result is a strengthening of the multicommodity max-flow min-cut theorem.
Andersen and Feige [6] give a beautiful condensation and generalization of
Räcke’s result. They set up a quite general framework for which both distance-
based mappings (i.e., metric embeddings) and capacity-based mappings can
be defined. They then demonstrate a short duality argument that shows that
results on distributions of distance-based mappings and results on distributions
of capacity-based mappings are equivalent.

2.3.5 Other cost measures

Other cost measures besides congestion are possible. A particularly important
one for packet networks is the sum of the congestion and the dilation, which
is the average path length in the routing. This is important because in many
packet routing protocols, this sum is a good estimate of the average time taken
for a packet to traverse from origin to destination. In fact, a result of Leighton,
Maggs and Rao [102] says that for any specified routing, there always exists a
scheduling of packets that takes time O(congestion+ dilation). This result was
nonconstructive, but almost as good a bound can be obtained with an online
algorithm [112]. Bounds obtained for this model are of course stronger than
for congestion only: Valiant’s result, and some others, apply in this stronger
model.

Assume unit edge weights for the remainder of this section. Gupta et
al. [76] consider a quite general class of cost measures. A given function
` : Rk

+ → R+ gives the “load” for an edge as a function of the flow: Le :=
`(f1(e), f2(e), . . . , fk(e)). The cost measure is then given either as the maximum
load maxe Le, generalizing the congestion measure, or as the total (equivalently
average) load ∑e Le. They give polylog-competitive oblivious algorithms for
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the maximum load case when ` is a norm, and for the total load case when ` is
monotone and subadditive.

Englert and Räcke [53] generalize this result to a larger class of aggregation
functions. In the above, the maximum load measure is exactly ‖L‖∞, and
the total load measure just ‖L‖1. Englert and Räcke allow cost measures
of the form ‖L‖p for any p ∈ [1,∞] (and the load function ` any monotonic
norm). They show the existence of an oblivious routing with logarithmic
competitiveness with respect to this measure; their routing scheme is again
describable via a convex combination of trees. Their result can be seen as an
interpolation between tree embeddings and oblivious routing; the case p =∞
is clearly exactly oblivious routing with the maximum congestion measure,
and the case p = 1 can be shown to be equivalent to the tree embedding
theorem of Fakcharoenpohl et al. The Englert-Räcke result is nonconstructive
however (except for the Euclidean norm p = 2, and the previously studied cases
p ∈ {1,∞}). This was recently rectified by Bhaskara and Vĳayaraghavan [31].

Harsha et al. [84] consider the average latency measure. This corresponds
to the sum over edges of the square of the load. This does not fall in the
framework of the two papers discussed above, since it is a convex function of
the load; instead, connections with electrical networks are used to deduce an
O(log n) competitive oblivious algorithm for the single-sink case. The question
for the multicommodity case remains open.

A more detailed survey of the results in oblivious routing is given in
Räcke [116].

2.4 Network design without side constraints

Robust network design problems (especially the asymmetric vpn problem)
have connections with other important network design problems. The problems
we will discuss here all have a similar flavour; the goal is to satisfy some
form of connectivity requirement, and there are no hard constraints except
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for these connectivity requirements. We will not consider problems where
potential solutions are impacted by upper bounds on edge capacities. Nor will
we consider “survivable” network design problems, where solutions must be
resilient to various kinds of failures in the network (e.g., a link failure). Such
problems are of course important and relevant to communication networks; for a
survey, see [73], and the more recent [95] which also covers some more practical
aspects. Also see [123] for a discussion of various types of side constraints
encountered in the setting of telecommunication networks.

2.4.1 Some problem definitions

First we define the problems under consideration, and note some connections
between them (see Figure 2.1).

The Steiner tree problem is one of the most fundamental network design
problems. Given a (possibly weighted) graph G = (V,E) and some set of
terminals W ⊂ V , it asks for a set of edges that connects all the terminals, at
minimal cost.

In the multicommodity rent-or-buy problem (mcrob), we are given a graph
G = (V,E) with edge costs c : E → R+, a set of k source-sink pairs (si, ti),
1 ≤ i ≤ k, and a parameter M ≥ 1. A solution must have enough capacity
to concurrently route (integrally) one unit of demand between each si-ti pair
(more generally, one might specify a demand for each pair; this does not make
the problem any more difficult however). Capacity may either be rented or
bought on each edge. If capacity on edge e is rented, an amount c(e) must be
paid for each unit of capacity needed on the edge. If it is bought, an amount
M · c(e) must be paid, but as much capacity as required may then be used. As
usual, the goal is to find a solution of minimum cost.

A special case of this problem is the single-sink rent-or-buy problem (ssrob).
Here, ti = t for all 1 ≤ i ≤ k, where t ∈ V is referred to as the sink. This
special case already includes the Steiner tree problem, by considering the case
M = 1; then every edge should be bought, and a solution must simply connect
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Steiner tree

Connected facility
location (cfl)

Single-sink
rent-or-buy

(ssrob)

Asymmetric
vpn

Symmetric vpn

Multicommodity
rent-or-buy
(mcrob)

Single-sink
buy-at-bulk

(ssbab)

Multicommodity
buy-at-bulk (bab)

General robust
network design

(rnd)

(Chapter 5 )

Metric facility
location

Figure 2.1: The main network design problems considered, with an arrow
indicating that a problem is a special case of another.
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all the sources si to the sink. ssrob is also a special case of the asymmetric
vpn problem. To simulate an instance of ssrob with the asymmetric vpn
problem, make each source si a terminal with hose marginals b+si = 1, b−si = 0,
and make the sink node a terminal with b+t = 0, b−t = M . Then a solution
to this vpn instance must be able to support routing any subset of M source
terminals concurrently to the sink. In particular, the capacity required on any
edge never exceeds M , and so the capacity requirement for the vpn instance
exhibits the cutoff property of rent-or-buy. See Lemma 7.5 for more formality.

Single-sink rent-or-buy is also related to the well-studied class of facility
location problems. There are far too many variants to even mention here
(see [125] for a compact survey), and we describe just two. In the metric
uncapacitated facility location problem, we are given a graph G = (V,E), edge
costs c : E → R+, a set of clients W ⊂ V and a set of facilities F ⊂ V . Each
facility j ∈ F has an opening cost ϕj ∈ R+. A solution to the problem involves
opening a subset of the facilities (incurring opening costs), and connecting
each client i to some open facility j (assumedly the closest one), incurring a
connection cost d(i, j) (with the metric determined by the edge costs c). The
goal is to find a solution of minimum cost.

In the connected facility location problem (cfl), an extra requirement is
that the opened facilities themselves must be connected. Moreover, connecting
facilities is more expensive; a parameter M > 1 is given, and using an edge
e for this purpose incurs a cost M · c(e). Clearly, in the optimal solution the
open facilities would be connected via a minimum cost Steiner tree. This
problem includes single-sink rent-or-buy as a special case. For some given
ssrob instance, we construct a corresponding cfl instance as follows. Each
terminals becomes a client, and every node in the network becomes a potential
facility; all opening costs are zero. We also tweak the instance to ensure that
the facility at the root will be opened (this could be done for instance by
introducing a large number of new terminals adjacent to the root, on zero cost
edges). A solution to this connected facility location instance yields a solution
to the original ssrob instance of equal cost: buy all edges used to connect
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opened facilities, and rent all edges used to route from a terminal to an open
facility. Moreover, it can be shown (Proposition 7.6) that there is always an
optimal solution to ssrob where the bought edges form a tree rooted at r,
completing the equivalence.

The uniform multicommodity buy-at-bulk problem (bab) generalizes rent-or-
buy. Here, in addition to the weighted graph G and k source-sink pairs (si, ti),
we are given a cost function f : N → N, which must be increasing, concave,
and satisfy f(0) = 0. The value of f(x) represents the cost per unit distance of
reserving x units of capacity on an edge (where the edge weights c(·) represent
length). This network design problem represents a situation with economies of
scale; since f is concave, reserving 2 units of capacity on a single edge may be
less expensive then reserving a single unit on two separate edges. And again
we may define a single-sink version of buy-at-bulk, where for some node t ∈ V ,
ti = t for all i ≤ k.

There is a second alternative definition of the buy-at-bulk problem which is
also used in the literature. Instead of a concave cost function f , a sequence of
K “cable types” is given, each having an associated cost per unit length σi, and
capacity ui. As many cables as required, of any type, may be bought on an edge;
however, they must be purchased integrally. It is easily seen that the definition
of buy-at-bulk that we use is a special case of the cable-type definition; simply
provide, for each i ∈ N, a cable of capacity i and cost f(i). The reverse is not
true, since the cable types can introduce additional knapsack-like complications.
However the problems are easily seen to be related within a factor of 2 [81], and
in [60] it is shown that in the single-sink case, there is a randomized reduction
from the cable type version to the concave function version which does not lose
any factor.

The non-uniform buy-at-bulk problem is similar, except that the cost
function may vary depending on the edge. We will not discuss this further here,
and “buy-at-bulk” will always refer to the uniform version.

We will see in Chapter 5 that buy-at-bulk is a special case of the general
robust network design problem, making it a common generalization of all the
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problems shown in Figure 2.1, except for the two facility location problems.

2.4.2 A survey

Steiner tree The Steiner tree problem is APX-hard, and cannot be approxi-
mated within a factor 96/95 unless P = NP [43]. It is a fundamental problem,
and the approximation factors for many other network design problems depend
on the approximability of this problem. Let ρst denote the best possible ap-
proximation ratio for the problem. Until very recently, the best bound was
ρst ≤ 1 + (ln 3)/2 < 1.55, due to Robins and Zelikovsky [118]. With some
interesting new techniques, this has now been improved to ρst ≤ ln 4 + ε < 1.39
by Byrka et al. [36]. Their approach involves using a much stronger LP formu-
lation, and a novel combination of iterated rounding and randomized rounding
methods. The result of Byrka et al. immediately implies an improvement in
the approximation guarantees claimed in many of the references discussed here;
in most cases, we will state the approximation guarantees in terms of ρst.

Three closely related problems The “filtering method” of Lin and Vit-
ter [104], which they first applied to obtain an approximation algorithm for
the s-median problem (another facility location variant), has proven to be
very useful. The filtering refers to a massaging of the fractional LP optimum
to a more suitable form, at only a small increase in cost, before rounding.
Shmoys, Tardos and Aardel [126] used this filtering technique to obtain the first
constant-factor approximation algorithm for the metric uncapacitated facility
location problem. The constant has been improved in a sequence of papers to
the current best of slightly under 1.5 by Byrka [35].

Ravi and Salman [117] considered a slight variation on connected facility
location, where the open facilities must be connected with a tour. Their result
implies a constant-factor approximation algorithm for the problem. Karger
and Minkoff [93] were the first to propose the exact connected facility location
problem, and gave a purely combinatorial approximation algorithm. In the
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2001 paper by Gupta et al. considering the vpn problem [77], they encounter
the connected facility location by reducing from the asymmetric vpn problem
with tree routing. Using the filtering approach, they give a much improved
factor 12 approximation algorithm for cfl, which is improved to 10 in the case
where opening facilities is free (hence in particular, ssrob).

Swamy and Kumar [129] give a primal-dual algorithm for connected facility
location, and achieve an approximation factor of 7 + ρst. For the special case
of single-sink rent-or-buy, their analysis yields a factor 3 + ρst.

Gupta et al. [81, 79] used a randomized sampling approach to obtain
improved (and also simpler) algorithms for ssrob and asymmetric vpn, high-
lighting again the close connections between these problems. Their algorithms
are quite simple, and their “sample-augment” framework has formed the basis
for most of the subsequent work on these problems. We describe their algorithm
for the asymmetric vpn problem. First, assume that the terminals have been
divided into a set of senders S with b+i = 1, b−i = 0, and a set of receivers R
with b−i = 1, b+i = 0 (this can be done without any loss of generality), and
assume |R| ≥ |S|.

Sample-augment algorithm for asymmetric vpn [81]

• Pick a sender s ∈ S uniformly at random.

• Sample: mark each receiver independently at random with probability
1/|S|; let R′ be the set of marked receivers.

• Steiner: Construct a ρst-approximate Steiner tree T on R′ ∪ {s}, and
install |S| units of capacity on the edges of this tree.

• Augment: Connect all terminals to the closest node of T via shortest
paths, installing one unit of capacity cumulatively for each path.
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The expected costs of the “Steiner” and “augment” parts of the solution
can be calculated separately, and Gupta et al. show that the total expected
cost is within a factor 4 + ρst of optimal. A similar scheme for ssrob yields
a randomized (2 + ρst)-algorithm; in fact, their algorithm works for any cfl
instance where opening costs are zero.

Eisenbrand and Grandoni [47] improved the algorithm and analysis to
obtain a factor 4.74 randomized algorithm (better if the current best value of
ρst is used in their analysis). Their sampling scheme is slightly different: unlike
the algorithm above, the returned solution is not necessarily a tree routing.
By exploiting Hu’s 2-commodity flow theorem, Eisenbrand et al. [48] obtain a
much stronger lower bound, and their tighter analysis yields a factor 2 + ρst

randomized algorithm. Another interesting feature of their approach is that
an exact, but exponential time, algorithm for Steiner tree is used to improve
the constant, by trading off between various different algorithms, and using an
exact Steiner tree algorithm when the number of terminals is sufficiently small.

Connected facility location and single-sink rent-or-buy get some more
attention from Eisenbrand et al. [49]. Their technique of “core detouring” uses
the unknown optimal solution as a tool in their analysis. This allows them to
consider a modification of the basic sampling algorithm where the probability
of marking a node is larger than in the original Gupta et al. scheme. They
obtain a 4.00 approximation factor for cfl and a 2.92 factor for ssrob; these
bounds can be improved using the recent ρst < 1.39 of Byrka et al. [36] as well
as the recent uncapacitated facility location result of Byrka [35].

Williamson and Van Zuylen [135] and Van Zuylen [134] provide a method of
derandomizing (via the method of conditional expectation) the sampling-based
algorithms for single-sink problems (including asymmetric vpn), with some
loss in the constant.

Rothvoß and Sanità [120] gave, for any ε > 0, a 2 + ε |R||S| approximation
algorithm for the asymmetric vpn problem, where |R| ≥ |S| refer to the number
of receivers and senders, respectively. In addition, they gave a constant factor
approximation for the problem with a concave cost function.
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Single-sink buy-at-bulk Andrews and Zhang [9] obtained an O(K) (where
K is the number of cable types) approximation algorithm for a special case
of the problem they called access network design. Garg et al. [64] obtained
the same factor for the full ssbab problem using LP based methods. The
first constant approximation factor was obtained by Guha, Meyerson and
Munagala [74]. Talwar [130] showed that the natural LP formulation for the
problem has a constant integrality gap, building very closely on the work by
Garg et al. [64]; the analysis yields another algorithm, with a much better
constant of 216.

The sample-augment framework of Gupta et al. [81, 79], applied in a
heirarchical fashion, works here too and gives a signficant improvement, both
in simplicity and in the constant; they obtain 16(3 + ρst). A slight variation
of the algorithm and a tighter analysis yield a factor 24.92 (better using the
improved bound on ρst).

Multicommodity rent-or-buy and buy-at-bulk The first approxima-
tion algorithms for multicommodity buy-at-bulk (and hence also rent-or-buy)
were given by Awerbuch and Azar [15]. Using Bartal’s result on tree embed-
dings, they gave an O(log2 n) factor approximation algorithm (and using the
Fakcharoenpohl et al. result, this immediately improves to O(log n)).

Gupta et al. [80] showed that in fact an O(1) approximation factor can be
obtained for mcrob, again via their sample-augment framework. A simpli-
fication and improvement is given in [79]. Becchetti et al. [20] improved the
algorithm and analysis to obtain a 4+2

√
2 factor. Fleischer et al. [61] obtained

the current best ratio of 5.
In contrast to the situation for rent-or-buy, Andrews [7] gave a strong

negative result for multicommodity buy-at-bulk. He showed that under be-
lieved complexity assumptions, the uniform buy-at-bulk problem cannot be
approximated to within a polylogarithmic factor. The paper is important
for introducing techniques from probabilistically checkable proofs (PCPs) for
proving hardness in undirected network design problems. See for example
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[10, 11] for more hardness results based on these methods. This result will be
important for the contents of Chapter 5, and will be discussed further there.

Simultaneously good approximations Khuller et al. [97] showed that for
any graph, and set of terminals with a specified root, there always exists a
tree which simultaneously well-approximates both the optimal Steiner tree on
these terminals, and a shortest path tree from the terminals to the selected
root. More exactly, they show that for any instance, there exists a tree with
cost within a factor 1 +

√
2 of the optimal Steiner tree, and such that the path

between any terminal and the root in this tree is at most 1 +
√

2 times the
shortest-path distance. This simultaneous approximation result has proven to
be very useful as a subroutine in other algorithms (e.g., some of the algorithms
for ssbab [130]).

Goel and Estrin [65] consider the following generalization. We are given
an instance of single-sink buy-at-bulk, but we are not told the concave cost
function f . The goal is to find a single solution which is good, irrespective of
the actual function f ; in other words, for any choice of f , the ratio of the cost
of our solution (which depends on f , even though our solution does not) to the
minimal cost solution tailored to this choice of f , should be as small as possible.
Goel and Estrin showed that in polynomial time, a tree can be found for which
this ratio is at most 1 + log k, where k is the number of source terminals. The
result of Khuller et al. interpreted in this setting shows that if f is unknown,
but restricted to be either a constant function or a linear function, then a tree
exists (and can be found) for which this ratio is constant.

Goel and Post [67] very recently showed that, rather surprisingly, there
always exists a tree which exhibits a constant ratio over all choices of valid
cost functions (and such a tree can be found in polynomial time). This builds
on their earlier result [66] showing how to construct a distribution of trees so
that the expected cost is always within a constant factor of optimal.

The previously mentioned work by Gupta et al. [76], when considering
the total cost measure, is also relevant to this line of work. In this context,
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Gupta et al. give a routing which is polylog competitive when both the concave
cost function and the demand requirements for each source are unknown
(see also Srinivasagopalan et al. [128]).6 Their result also applies to the
multicommodity case. See also Jia et al. [89] for a general framework on
“universal” approximation schemes.

6Our discussion has assumed unit demands throughout, but the generalization to arbitrary
but fixed demands is obvious.





Chapter 3

The VPN Conjecture

3.1 Introduction

We begin by refreshing the definition of the vpn problem and vpn Conjecture,
and discuss previous and related work. In §3.2 we discuss the “pyramidal routing”
of Grandoni et al. [71], a crucial component of our proof. Our resolution of the
Pyramidal Routing Conjecture (and hence the vpn Conjecture) is given in §3.3.
Finally, in §3.4 we briefly discuss a slightly different definition of the symmetric
hose model which is sometimes used, and observe that the conjecture holds
there also.

3.1.1 The VPN problem

The problem under consideration in this chapter is robust network design
under the symmetric hose model, with single-path routing. This is defined
in Chapter 1, and motivated and discussed thoroughly in §2.2.1. Here, we give
a very brief self-contained description of the problem.

We are given an undirected graph G = (V,E). Each edge e ∈ E has an
associated nonnegative cost c(e), representing the cost per unit of bandwidth
on that edge. We will use d(·, ·) to denote the shortest-path metric induced
by these weights. In addition, a subset W ⊂ V of terminals is given; these are
the entities which the vpn must connect. Let k = |W |. Each terminal i ∈ W

55
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has an associated marginal or hose capacity bi. By scaling if necessary, we will
assume that bi ∈ N from now on (see [86]). The universe of feasible demands is
defined as

H = {D ∈ R(k2)
+ : ∑j Dij ≤ bi ∀ i ∈ W}.

This information defines the vpn problem instance; we may use the shorthand
(G,W, b) to describe a particular instance.

A solution is given by a routing template P. Since we are considering
single-path routing, this is given as P = {Pij : i, j ∈ W}, where Pij is an
i-j-path for every i, j ∈ W , and Pij = Pji.

The cost of the solution, which we seek to minimize, is given by Cvpn(P) :=∑
e∈E c(e)u(e), where

u(e) := max
D∈H

∑
i<j∈W :e∈Pij

Dij.

3.1.2 The VPN Conjecture

Fingerhut et al. [58] in 1997 proposed the following simple algorithm, and
demonstrated that it is a 2-approximation. It was rediscovered by Gupta et
al. [77] in 2001. The proof of the approximation ratio is deferred to the next
chapter, since details of the proof will be important there.

Definition 3.1. A shortest path tree solution (or vpn tree solution) with root
r ∈ V has routing template Rr = {Rr

ij : i, j ∈ W}, where Rr
ij consists of a

shortest path from i to r, followed by a shortest path from r to j.

Note that in the above definition, Rr
ij could be a walk rather than a simple

path. If preferred, the obvious shortcutting procedure can be used to obtain
simple paths (which no longer necessarily pass through r). This will not
decrease the cost of the solution however, and in some applications it may
be useful to route all flow through a single hub node; in particular, routing
decisions need only be made at r (see also §6.2.1).
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The algorithm simply returns Rt, where t ∈ V is chosen such that C(Rt) is
minimal. This is clearly computable in polynomial time, with nk shortest path
calculations.

Theorem 3.2 ([58, 77]). This algorithm is a 2-approximation algorithm. More-
over, it returns a solution of cost at most twice that of the optimal solution
with dynamic routing.

Proof. Note that the cost of solution Rt is at most ∑i∈W d(i, t)bi, since the
required capacity on the edges of the path from any terminal i to t is at most
bi.

Let B := ∑
i∈W bi. Let opt be the cost of the optimal solution; it will in

fact not matter whether single-path, multipath or dynamic routing is used.
Consider the single demand matrix D̄ defined by

D̄ij =


bibj
B

if i 6= j

0 otherwise
.

We have that for any i ∈ W ,∑
j∈W

D̄ij = bi
B

∑
j 6=i

bj = bi
B − bi
B

≤ bi. (3.1)

Hence D̄ ∈ H, and so opt ≥ C∗(D̄), the cost to optimally route just the
single demand matrix D̄; note that this is true even when dynamic routing is
allowed. So we have

opt ≥
∑

i<j∈W
d(i, j)D̄ij = 1

2

∑
i∈W

∑
j∈W

d(i, j)bibj
B
. (3.2)

Now consider the following weighted average over the costs of shortest path
tree solutions, with roots in W :

1
B

∑
j∈W

bjC(Rj) ≤ 1
B

∑
j∈W

bj
∑
i∈W

d(i, j)bi

≤ 2 · opt by (3.2).

Since the cheapest Rj for j ∈ W is at most this average, the result follows.
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The proof can be easily modified to give the slightly stronger bound 2(1−
b/B), where b = mini bi and B = maxi bi. Simply replace D̄ throughout by the
matrix D̂ = (1−b/B)−1D̄; we will still have by (3.1) that D̂ ∈ H. In particular,
if bi = 1 for all i ∈ W , it shows that the algorithm is a 2(1− 1

k
)-approximation

algorithm.
As shown in [101, 77], this algorithm in fact returns the optimal solution

using tree routing. The following conjecture then says that this algorithm is
optimal even for single-path routing, making the vpn problem polynomially
solvable:

VPN Conjecture ([2, 54, 78, 87]). For any symmetric vpn problem instance,
there exists an optimal single-path routing solution in the form of a tree.

Before this work, the conjecture had been established only for the following
cases:
(i) when the graph is a tree (this is trivial),

(ii) on a complete graph with all edge lengths equal [58, 86],

(iii) on a graph with at most 4 nodes [86],

(iv) when the graph is a ring network, i.e., a single cycle [86], and

(v) on graphs built up from the above via taking 1-sums [86]; this is simply the
gluing together of two graphs by taking the disjoint union, but identifying
one node from each.

Hurkens et al. actually proved thiat in all of the above cases, a stronger result
holds; even if multipath routing is allowed, there is always an optimal tree
solution in any of the above cases.1 They do this by explicitly constructing an
LP solution, and a matching dual solution certifying its optimality.

Simultaneously with this work, Fiorini et al. [59] proved (via completely
different methods) that the conjecture holds for outerplanar graphs.2

1They also conjectured this to be true in general; cf. [54].
2An outerplanar graph is one that can be embedded as a planar map with all nodes

adjacent to the outer face.
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Grandoni, Kaibel, Oriolo and Skutella [71] gave a much shorter proof of the
vpn Conjecture on ring networks. Their method is to define a new problem,
pyramidal routing, and reduce the vpn Conjecture to a new one involving
this routing scheme. They then give a proof of this new Pyramidal Routing
Conjecture for ring networks. Their result is crucial for our proof, since we
proceed by solving the Pyramidal Routing Conjecture on general networks. (In
fact, the Pyramidal Routing Conjecture is equivalent to the vpn Conjecture,
as we show in §3.2.) We describe their results as part of §3.2.

We prove that the vpn Conjecture is true for arbitrary instances:

Theorem 3.3. For any symmetric vpn problem instance, there exists an
optimal single-path routing solution in the form of a tree.

This result also settles the complexity of the single path vpn problem, since
the optimal vpn tree can easily be computed in polynomial time.

Making use of our results, Fiorini et al. [60] proved that tree routing remains
optimal if costs are not linear, but given by an increasing concave cost function
(as in the uniform buy-at-bulk problem).

3.1.3 Reducing to unit marginals

As was noted in [58, 86], it is sufficient to consider unit marginals. We reproduce
the proof here.

Lemma 3.4 ([58, 86]). If the vpn Conjecture holds for instances with unit
marginals (bi = 1 for all i ∈ W ), then it holds for all instances.

Proof. Begin with an arbitrary vpn instance (G,W, b). We now construct a
new graph G′ as follows. For each terminal i ∈ W , we add bi pendant nodes
adjacent to i (see Figure 3.1); the added edges have zero cost. We say that
these new nodes are copied from i. The set of terminals W ′ in the new instance
consists of exactly the new nodes we added, and each of these has marginal 1
in the new instance.
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Let P = {Pij : i, j ∈ W} be any solution template to the original instance.
This induces a solution template Q = {Qi′j′ : i′, j′ ∈ W ′} to the new instance in
the obvious way: for any i′, j′ ∈ W ′, which are copies of i, j ∈ W respectively,
let Qi′j′ = {i′, i} ∪ Pij ∪ {j, j′}. Then notice that the cost of routing Q in the
new instance is the same as the cost of routing P in the old one. For take any
edge e ∈ E(G), and any demand matrix D that respects the hose constraints
induced by b. Then define the demand matrix D′ between terminals in W ′

by Di′j′ = Dij/(bibj) for each pair i′, j′ ∈ W ′ with i′ a copy of i, j′ a copy of
j, and i 6= j; all other entries of D′ are zero. Then D′ is feasible for the new
instance, and puts the same load on edge e. Conversely, given a feasible D′ for
the new instance, we may define D by

Dij =
∑

i′ copy of i

∑
j′ copy of j

Di′j′ .

Then D is feasible for the original instance, and again puts the same load on e.

Assuming the vpn Conjecture for the unit marginal case, it follows that
there exists an optimal solution Q∗ = {Qi′j′ : i′, j′ ∈ W ′} to the new instance
in the form of a tree. Let T ∗ be such an optimal tree (so Qi′j′ is exactly the
unique path between i′ and j′ in T ∗). But consider any i, j ∈ W . For any
copies i′ of i and j′ of j, the route between i′ and j′ in the solution template
to the new instance will be the same. This follows since the solution paths all
pass through i and j, and there must be a unique path in T ∗ between i and j.
Thus we can unambiguously define a solution template to the original instance
based on T ∗ (see Figure 3.1). This has the same cost as solution Q∗ for the
new instance, and so must be optimal: for if there was a cheaper solution to
the original instance, it would induce a cheaper solution to the new instance,
contradicting the optimality of Q∗.

We will assume unit marginals from this point forward.
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bi = 3

Figure 3.1: Reducing to the case of unit marginals.

3.2 Pyramidal routing
A pyramidal routing (pr) problem instance, as introduced in [71], is also defined
by an undirected graph G with costs, and a set of terminals W ; in addition,
one node t ∈ W is specified as the root. A routing template consists of a set
Pt of simple i-t paths Pit, one for each i ∈ W \ {t}. Define `(e,Pt) to be the
total flow through edge e, i.e., `(e,Pt) := |{i ∈ W : e ∈ Pit}|. The bandwidth
requirement y(e,Pt) is instead given by the function

y(e,Pt) := min{`(e,Pt), k − `(e,Pt)},

where recall k = |W |. When it is clear from the context, we may omit the
routing template and just write, e.g., y(e). Note that the function y(e) can be
viewed as a concave function of `(e); the pyramidal shape of this dependence
gives this problem its name (see Figure 3.2). The total cost is then

Cpr(Pt) :=
∑
e∈E

c(e)y(e,Pt).

The non-monotone nature of this cost is quite unusual; an edge which is used
very heavily, by most of the terminals, is quite cheap!

We can also define an analogous fractional version of the pyramidal problem,
where instead of paths Pit, the routing template consists of a set of unit i-t
flows fit.

Grandoni et al. [71] show that the vpn Conjecture is implied by the following
conjecture:
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y(e)

k/2 k
`(e)

k/2

Figure 3.2: Non-monotone dependence of y(e) on the load `(e).

Pyramidal Routing Conjecture. For every integral pyramidal routing in-
stance, there exists a minimal cost solution where the associated routing template
is a tree.

A crucial part of their argument is the following lemma, the proof of which
we reproduce below. Their proof is a slight extension of one given by Gupta et
al.; cf. [77, Theorem 3.1].

Lemma 3.5 ([71]). Given an spr instance, and a routing template P = {Pij :
i 6= j ∈ W}, there exists a terminal t ∈ W so that Cvpn(P) ≥ Cpr(Pt), where
Pt = {Pit : i ∈ W \ {t}}.

Proof. The strategy of the proof is to derive a lower bound for u(e) for each
e in the instance by judiciously selecting a demand matrix, which will then
give us the desired lower bound on Cvpn(P). Fix an edge e. The choice De of
demand matrix for e is given by

De
ij :=


1
k

(
y(e,Pi)
`(e,Pi) + y(e,Pj)

`(e,Pj)

)
if e ∈ Pij,

0 otherwise.
(3.3)

Claim 3.6. For all edges e, De is a valid hose demand matrix.
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Proof. We need to show that ∑j∈W De
ij ≤ 1 for all i ∈ W . We have

∑
j∈W

De
ij =

∑
j∈W :e∈Pij

1
k

(
y(e,Pi)
`(e,Pi)

+ y(e,Pj)
`(e,Pj)

)

≤
∑

j∈W :e∈Pij

1
k

(
k − `(e,Pi)
`(e,Pi)

+ `(e,Pj)
`(e,Pj)

)

=
∑

j∈W :e∈Pij

1
k
· k

`(e,Pi)

= 1.

Claim 3.7. For every edge e we have

u(e) ≥ 1
k

∑
i∈W

y(e,Pi). (3.4)

Proof. The claim follows from the definitions of De
ij and `(e,Pi) = |{j ∈ W :

e ∈ Pij}|.

u(e) ≥
∑

i<j∈W :e∈Pij

1
k

(
y(e,Pi)
`(e,Pi)

+ y(e,Pj)
`(e,Pj)

)

=
∑

i<j∈W
1e∈Pij ·

1
k
· y(e,Pi)
`(e,Pi)

+
∑

i>j∈W
1e∈Pji ·

1
k
· y(e,Pi)
`(e,Pi)

=
∑
i∈W

∑
j∈W

1e∈Pij ·
1
k
· y(e,Pi)
`(e,Pi)

= 1
k

∑
i∈W

y(e,Pi).

The lemma now follows by multiplying the inequality in (3.4) by c(e) and
summing over all e ∈ E:∑

e∈E
c(e)u(e) ≥

∑
e∈E

c(e)1
k

∑
i∈W

y(e,Pi)

= 1
k

∑
i∈W

∑
e∈E

c(e)y(e,Pi)

≥ min
i∈W

∑
e∈E

c(e)y(e,Pi).
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The pyramidal routing problem has some interesting features that often
make it more pleasant to work with. One such is the following.

Lemma 3.8. There exists an optimal solution to a fractional pyramidal routing
instance that is integral, i.e., fit is an i-t-path for all i ∈ W \ {t}.

Proof. We show this by proving that the problem consists of minimizing a
concave function over a 0-1 polytope B. A routing template Pt = {fit : i ∈ W}
induces a vector xPt in Rk×|E|, by setting xPti,e = fi(e). Let the polytope
B ⊂ Rk×|E| be the set of vectors induced by feasible solution templates. By the
max-flow min-cut theorem, the extreme points of B are 0-1 vectors.

The objective function is Cpr(P) = ∑
e∈E c(e)y(e,Pt). As noted before,

y(e,Pt) is a concave function in the load on e. Since the load is a linear
function of the routing template (thought of as a vector f = (fit)i∈W of flows),
y(e,Pt) is concave over B; since the sum of concave functions remains concave,
Cpr(P) is too. It is well known that a minimizer of a concave objective always
exists at a vertex of the polytope, which corresponds to an integral routing
template.

We have seen that the vpn cost is lower bounded by some pyramidal routing
cost. In fact, a converse result holds too; the cost of optimal spr solutions can
also be upper bounded by the cost of an associated pyramidal routing problem.
To do this, for each solution Pt to a pr problem instance with root t, we define
an oblivious routing template, called the truncated hub template associated
with Pt. This is defined as the template Q = {Qij : i, j ∈ W}, where Qij is any
i-j-path in the component of Pit4 Pjt (where 4 denotes symmetric difference)
containing i and j. Note that since i and j are the only odd-degree nodes in
Pit4 Pjt, they will indeed be in the same component.

Lemma 3.9. Given a solution Pt to a pr problem instance with root t, the
capacity on any edge e required by its truncated hub template Q is at most
y(e,Pt). In particular, Cvpn(Q) ≤ Cpr(Pt).
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Proof. Let D ∈ H be any valid demand matrix. Consider any edge e and define
the set of nodes which route through e by Re := {i ∈ W : e ∈ Pit}. Note that
`(e,Pt) = |Re|.

Now notice that if we have a pair i, j ∈ W where e ∈ Qij, then exactly one
of i and j is in Re, because of the symmetric difference construction. So we
have ∑

{i,j}:e∈Qij

Dij =
∑
i∈Re

∑
j /∈Re

Dij

≤
∑
i∈Re

∑
j∈W

Dij

≤
∑
i∈Re

1

= |Re|.

Similarly, ∑
{i,j}:e∈Qij

Dij =
∑
j /∈Re

∑
i∈Re

Dij ≤
∑
j /∈Re

1 = |W \Re|.

Thus we have that∑
{i,j}:e∈Qij

Dij ≤ min{`(e,Pt), k − `(e,Pt)} = y(e,Pt).

But then the required capacity on edge e is

u(e) = max
D∈H

∑
{i,j}:e∈Qij

Dij ≤ y(e,Pt),

as required.

Note that by Lemma 3.5 the optimal spr cost is at least a convex combina-
tion of costs Cpr(Pt). Lemma 3.9 shows that it is also at most the cost of any
given optimal pr solution. Thus we have the following.

Theorem 3.10. For any pair t, t′ ∈ W , the optimal solutions to the pr
problems with root t and t′ are the same, and have the same value as the
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optimal solution of the associated spr problem. Hence, the pr Conjecture and
the vpn Conjecture are equivalent.

It should be noted, however, that no such correspondence holds between
the mpr problem and the fractional pr problem.

3.3 Proof of the Pyramidal Routing
Conjecture

In this section, we give a proof of the Pyramidal Routing Conjecture, thus
proving Theorem 3.3. The first step will be a reduction, via a certain cost-
sharing scheme, to a problem involving T -joins:

Definition 3.11. Given a graph G = (V,E) and any subset T ⊆ V of even
cardinality, a T -join of G is a set J ⊂ E of edges such that the odd degree
nodes in the subgraph defined by J is precisely T . A T -cut is a subset S ⊂ V

such that |S ∩ T | is odd.

T -joins are very well understood combinatorial objects, and we are able
to resolve this question in §3.3.2 using some uncrossing techniques. András
Sebő [122] subsequently gave a nice shorter proof of this T -join result, which
we include in §3.3.3.

3.3.1 A reduction to T -joins

Begin with an instance of the pyramidal routing problem, with root t. Let Pt
be a routing template for this instance.

Definition 3.12. Call an edge e ∈ E heavy if `(e) ≥ k/2.

Let H be the set of heavy edges determined by Pt. Note that

y(e) =

`(e) if e /∈ H

k − `(e) if e ∈ H.
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Let T ′ be the set of odd degree vertices in the subgraph induced by H. Now
define T = T ′4 {t}, and Tu := T 4 {u} for all u ∈ W . Note that |T ′| is even,
so |T | is odd, and so |Tu| is even for all u ∈ W .

Let Mu be the minimum cost Tu-join on G. C(Mu) := ∑
e∈Mu c(e) is defined

to be the cost of Mu.
Define C ′(u) := C(Put4H). This we think of as being u’s contribution to

the total cost of the pyramidal routing. Notice that u pays for light edges on
its path, and heavy edges not on its path. We also have

∑
u∈W

C ′(u) =
∑
u∈W

∑
e∈Put4H

c(e)

=
∑

e∈E\H
`(e) · c(e) +

∑
e∈H

(k − `(e))c(e)

= Cpr(Pt).

So this really is a division of the total cost between the terminals.

Theorem 3.13. A lowerbound for the cost Cpr(Pt) of solution template Pt is∑
u∈W C(Mu).

Proof. We want to show C ′(u) ≥ C(Mu) for all u ∈ W . Consider the symmetric
difference Hu := Put 4H. Since Put has even degree at every node except u
and t, and H is a T ′-join, it follows that Hu is a Tu-join. So C(Hu) ≥ C(Mu).
But by definition, C ′(u) = C(Hu). Thus

Cpr(Pt) =
∑
u∈W

C ′(u) =
∑
u∈W

C(Hu) ≥
∑
u∈W

C(Mu).

Note that the right hand side of this inequality depends on H only via
T . We also have the following pleasant result. Define the truncated template
Q = {Quv : u, v ∈ W}, where Quv is any u-v path contained within the
component of Mu 4Mv containing u and v. Such a component must exist,
because u and v are the only odd-degree nodes in Mu4Mv. Then:
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Theorem 3.14. The truncated template Q satisfies

Cvpn(Q) ≤
∑
u∈W

C(Mu).

Proof. The proof is very similar to the proof of Lemma 3.9. Consider any edge
e. Let Re = {u : e ∈ Mu}. If e ∈ Quv, exactly one of u and v must be in Re.
Consider any feasible demand matrix D. Then∑

{u,v}:e∈Quv
Duv ≤

∑
u∈Re

∑
v∈W\Re

Duv ≤
∑
u∈Re

∑
v∈W

Duv ≤ |Re|.

Thus uQ(e) ≤ |Re|, and so the total cost satisfies∑
e∈E

uQ(e)c(e) ≤
∑
e∈E
|Re|c(e)

=
∑
e∈E

∑
u:e∈Mu

c(e)

=
∑
u∈W

∑
e∈Mu

c(e)

=
∑
u∈W

C(Mu)

Note that if we had T = {t}, then Mu is a shortest path from u to t. So if
t is the centre of the minimum cost vpn tree, ∑u∈W C(Mu) is exactly the cost
of the optimal tree solution. In the next section, we show that no other choice
of T improves upon this.

3.3.2 A T -join inequality

For each node v in G, define Csp(v) to be the cost of the vpn tree from the
terminals to v, i.e.,

Csp(v) =
∑
u∈W

d(u, v),

where d(u, v) is the shortest path distance between u and v according to edge
weights c.
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We prove the following inequality, which in turn proves the Pyramidal
Routing Conjecture by the reduction in the previous section:

Theorem 3.15. There exists a node v ∈ V so that
∑
u∈W

C(Mu) ≥ Csp(v).

In fact, we prove the following slightly stronger theorem:

Theorem 3.16. Let F be the multigraph obtained by taking the disjoint union
of the Mu’s. Then there exists a node v ∈ V so that there are edge-disjoint
paths in F from all the vertices in W to v.

Let T be an arbitrary subset of V of odd cardinality, induced by some routing
template as in the previous section. Call a set S ⊆ V T -even (respectively
T -odd) if |S ∩ T | is even (respectively odd). Note that since |T | is odd, exactly
one of S and V \ S is T -even for any S ⊆ V .

We will need the following lemma:

Lemma 3.17. For any set S ⊆ V which is T -even, |δF (S)| ≥ |S ∩W |.

Proof. Consider any u ∈ S ∩W . Since S is T -even, it is Tu-odd, and so Mu

must intersect δF (S).

Proof of Theorem 3.16. Construct the graph F ′ from F by adding an extra
node s, and edges su for all u ∈ W . The statement of the theorem is equivalent
to showing that there exists a node v so that there is an s-v flow of size k on
F ′, taking all the edges to have unit capacity.

For z ∈ V , define Dz to be the side of a minimum s-z cut containing z.
Suppose for a contradiction that |δF ′(Dz)| < k for all z ∈ V , since otherwise
we have a valid routing by the max-flow min-cut theorem. Since |δF ′(Dz)| =
|δF (Dz)|+ |Dz ∩W |, this gives

|δF (Dz)| < k − |Dz ∩W | ∀z ∈ V. (3.5)
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Note that Dz is T -even, since otherwise V \Dz would be T -even, which, by
Lemma 3.17, would imply

|δF (Dz)| = |δF (V \Dz)| ≥ |W \Dz| = k − |Dz ∩W |,

contradicting (3.5).
Suppose inductively that all intersections of less than l sets, each of type

Dz for some z ∈ V are T -even. This is true for l = 2, since Dz is T -even for
all z ∈ V . Now suppose for a contradiction that for some arbitrary collection
D1, . . . , Dl, the set D1 ∩ D2 · · · ∩ Dl is T -odd. Let D′i = Di \ (∪j 6=iDj). It
follows from the inclusion-exclusion principle, and our inductive assumption,
that

Claim 3.18. Under the assumptions in the preceding paragraph, D′i is T -odd
for all i.

Proof. Note that D′i = Di \ (∪j 6=i(Dj ∩Di)). Now by the inclusion-exclusion
principle, we have

∣∣∣ ⋃
j 6=i

(Dj ∩Di) ∩ T
∣∣∣ = ∑

j 6=i

∣∣∣(Dj ∩Di) ∩ T
∣∣∣

−
∑

j1<j2:j1,j2 6=i

∣∣∣(Dj1 ∩Dj2 ∩Di) ∩ T
∣∣∣+ · · ·

· · ·+ (−1)l−1
∣∣∣(D1 ∩D2 ∩ . . . Dl) ∩ T

∣∣∣.
The last term on the right is odd and the rest are even by our assumptions,

and thus ∪j 6=i(Dj ∩ Di) is T -odd; since Di is T -even, it follows that D′i is
T -odd.

Claim 3.19.
l∑

i=1
|δF (Di)| ≥

l∑
i=1
|δF (D′i)|
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Proof. Consider any edge e that contributes to the right hand side. If it has
endpoints in D′i and D′j for some i 6= j, then it will contribute twice to the
right hand side; such an edge will also contribute at least twice to the left hand
side, in δF (Di) and δF (Dj). If e has an endpoint in D′i only, and not in any
other D′j, then it is counted once on the right hand side, and at least once on
the left hand side.

Now we have

l∑
i=1
|δF (Di)| ≥

l∑
i=1
|δF (D′i)| by Claim 3.19

=
l∑

i=1
|δF (V \D′i)|

≥
l∑

i=1
(k − |D′i ∩W |) by Lemma 3.17, as V \D′i is T -even

≥
l∑

i=1
(k − |Di ∩W |) as D′i ⊆ Di.

But this is a contradiction because (3.5) implies
l∑

i=1
|δF (Di)| <

l∑
i=1

(k − |Di ∩W |).

So our assumption thatD1∩· · ·∩Dl is T -odd was incorrect. Thus inductively,
arbitrary intersections of the Du’s are T -even. It follows that ∪u∈VDu is T -even,
again by the inclusion-exclusion principle. But u ∈ Du, so ∪u∈VDu = V , which
is T -odd. This contradiction implies the result.

3.3.3 A simpler proof for the final step

The following alternative proof of Theorem 3.16 is due to András Sebő, which
he found after hearing our result. We include it here for completeness, since it
is substantially shorter. Sebő in fact proved the following:
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Theorem 3.20 ([122]). Let G = (V,E) be a connected multigraph, and T ⊆ V

a vertex set of even size. Let H be the disjoint union of k T -joins in G.
Then for any node s ∈ T , there is another node v ∈ V such that there are k
edge-disjoint s-v-paths in H.

Let us first see how this implies Theorem 3.16. First, construct F ′ as
described in the earlier proof of Theorem 3.16, by adding a new node s

connected to all the terminals; Theorem 3.16 asserts that there is a node v ∈ V
such that there are |W | edge-disjoint s-v-paths in F ′. Let M ′

u := Mu ∪ {(u, s)}
for all u ∈ W . By construction, F ′ is the disjoint union of all the Mu’s. But
M ′

u is a Ts-join, since Mu is a Tu-cut and

Tu4 {u, s} = T ′4 {u, t} 4 {u, s} = Ts.

Thus F ′ is disjoint union of k different Ts-joins. Now applying Theorem 3.20
to the multigraph F ′ and the set Ts gives the conclusion of Theorem 3.16.

Proof of Theorem 3.20. By the max-flow min-cut theorem it suffices to prove
that there is a node v such that the minimum s-v cut in H has size at least
k. A basic property of T -cuts and T -joins is that every T -cut intersects every
T -join. It follows that since H is the disjoint union of k T -joins, |δH(S)| ≥ k

for any T -cut S.
Consider a tree R with node set V (H) (edges of R need not be edges of H).

Any edge a ∈ E(R) induces a natural cut δ(Ua) in the graph, by taking Ua to
be one of the components of R− a. R is a Gomory-Hu tree of H if for any pair
of distinct nodes u, v ∈ V , there is an edge a ∈ E(R) on the unique u-v path in
R so that δ(Ua) is a minimum u-v-cut in H. In particular, if uv ∈ E(R) then
δ(Uuv) is a minimum u-v-cut. A Gomory-Hu tree exists for any graph [68].

Removing s from the Gomory-Hu tree R leaves several connected compo-
nents. At least one of these connected components must have odd intersection
with T ; call this component C. Let sv be the edge in H connecting s to C.
Then the cut defined by the edge sv in R is a T -cut and hence has size at least
k. But since R is a Gomory-Hu tree, it is also a minimum s-v cut. Thus we
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have shown that the minimum cut between s and v has size at least k, and so
there are k edge-disjoint s-v-paths, as required.

3.4 On another definition of the symmetric
VPN problem

There is another, slightly different, definition of the symmetric model which
is ocassionally used. The authors of [58] and [101] call an instance of the
asymmetric vpn problem symmetric if b+i = b−i for all terminals i. In other
words, there is still a differentiation between demand from i to j and demand
from j to i, it is just the hose capacities that are symmetric. Thus in a single-
path routing, a different route might be used from i to j than from j to i—we
do not require that Pij = Pji. Another (less important) difference is a matter
of scaling; assume that b+i = b−i = 1 for all i ∈ W . Then the total incoming
demand at a terminal i can be as large as 1, and the same for the outgoing
demand, so the “total” demand terminating at the terminal is 2. Thus if we
take a solution template with Pij = Pji for all pairs i, j ∈ W , a solution to
this half-symmetric problem will require exactly twice the capacity as for the
symmetric vpn problem with bi = 1 for all i ∈ W .

In this section, we demonstrate that this slight extra flexibility does not
help, by using a slight variation of Lemma 3.5 of Grandoni et al. [71].

Theorem 3.21. For an instance of the asymmetric vpn problem with symmet-
ric hose capacities, the cheapest solutions still take the form of a truncated hub
template Q = {Qij : i, j ∈ W}, which is in particular symmetric: Qij = Qji

for all i, j ∈ W .

It is sufficient to prove this for unit marginals; b+i = b−i = 1 for all i ∈ W .
The naturally corresponding symmetric vpn instance then has bi = 1 for all
i ∈ W . Note that a solution to such an instance using a symmetric routing
template will cost twice as much when used as the solution template for the
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corresponding symmetric instance, since flow from i to j and from j to i will
both require capacity.

The proof now follows immediately from Lemma 3.23 below, combined with
Lemma 3.9. Of course, combined with the resolution of the pr conjecture, this
implies the optimal solution still has the form of a tree.

First we need the following asymmetric analogues of the load and pyramidal
cost:

Definition 3.22. Let

`+(e,Pt) := |{j ∈ W : e ∈ Ptj}|,

`−(e,Pt) := |{i ∈ W : e ∈ Pit}|,

y+(e,Pt) := min{`+(e,Pt), k − `+(e,Pt)},

y−(e,Pt) := min{`−(e,Pt), k − `−(e,Pt)}.

Lemma 3.23. Given an instance of the asymmetric vpn problem (G,W, b+, b−)
with b+i = b−i = 1 for all i ∈ W , and a routing template P = {Pij : i, j ∈ W},
there exists a terminal t ∈ W so that Cvpn(P) ≥ 2 min{Cpr(P+

t ), Cpr(P−t )},
where P+

t = {Ptj : j ∈ W} and P−t = {Pit : i ∈ W}.

Proof. The proof is completely analagous to the proof of Lemma 3.5, with some
slight changes to handle the extra asymmetry. For any edge e ∈ E, we define

De
ij :=


1
k

(
y+(e,Pi)
`+(e,Pi) + y−(e,Pj)

`−(e,Pj)

)
if e ∈ Pij,

0 otherwise.
(3.6)

Note that this matrix is no longer necessarily symmetric.

Claim 3.24. De is a valid hose demand matrix for all edges.

Proof. We need to show that ∑j∈W De
ij ≤ 1 for all i ∈ W , and also that∑

i∈W De
ij ≤ 1 for all j ∈ W . The calculation is essentially the same as before:
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∑
j∈W

De
ij =

∑
j∈W :e∈Pij

1
k

(
y+(e,Pi)
`+(e,Pi)

+ y−(e,Pj)
`−(e,Pj)

)

≤
∑

j∈W :e∈Pij

1
k

(
k − `+(e,Pi)
`+(e,Pi)

+ `−(e,Pj)
`−(e,Pj)

)

=
∑

j∈W :e∈Pij

1
k
· k

`+(e,Pi)

= 1.

The calculation for ∑i∈W De
ij is similar.

Claim 3.25. For every edge e we have

u(e) ≥ 1
k

(∑
i∈W

y+(e,Pi) +
∑
i∈W

y−(e,Pi)
)
. (3.7)

Proof.

u(e) ≥
∑

i,j∈W :e∈Pij

1
k

(
y+(e,Pi)
`+(e,Pi)

+ y−(e,Pj)
`−(e,Pj)

)

= 1
k

∑
i∈W

y+(e,Pi)
`+(e,Pi)

∑
j∈W

1e∈Pij + 1
k

∑
j∈W

y−(e,Pj)
`−(e,Pj)

∑
i∈W

1e∈Pij

= 1
k

∑
i∈W

y+(e,Pi)
`+(e,Pi)

· `+(e,Pi) + 1
k

∑
j∈W

y−(e,Pj)
`−(e,Pj)

· `−(e,Pj)

= 1
k

(∑
i∈W

y+(e,Pi) +
∑
i∈W

y−(e,Pi)
)
.

The lemma now follows as before, by multiplying (3.7) by c(e) and summing
over all e ∈ E, and using that the minimum is no more than the sum.

We also observe that with multipath routing, we also do not gain anything
by allowing asymmetric routing templates. The argument is much more direct:
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Lemma 3.26. Any asymmetric vpn instance with symmetric hose constraints
has an optimal solution where the routing template is symmetric.

Proof. Let P = {fij : i, j ∈ W} be an arbitrary solution template. Now define
Q = {gij : i, j ∈ W}, where gij is the reverse of the flow fji, for all i, j ∈ W .
Clearly C(P) = C(P; also, the template R = {1

2(fij + gij) : i, j ∈ W} is
symmetric. But C(R) ≤ 1

2(C(P) + C(Q)) by convexity: for any edge e,

uR(e) = max
D∈H

∑
i,j∈W

1
2(fij(e) + gij(e))Dij

≤ 1
2

max
D∈H

∑
i,j∈W

fij(e)Dij + max
D∈H

∑
i,j∈W

gij(e)Dij


= uP(e) + uQ(e).



Chapter 4

The multipath VPN Conjecture

It has been conjectured [86] (cf. [54]) that the multipath version of the vpn
problem, where routing templates may be fractional, also has an optimal
solution in the form of a tree. In this chapter we show that this conjecture is
false, by demonstrating some small examples where the multipath optimum
is cheaper than the cheapest tree solution (and hence, by the result of the
previous chapter, the cheapest single-path solution).

We also commence an investigation into the worst-case gap between mul-
tipath and single-path routing. One of the examples in §4.2 yields a gap of
optspr/optmpr = 9/8. Theorem 3.2 actually shows that the optimal tree
routing is in fact within a factor 2 of the optimal dynamic routing, not just
the optimal single-path routing (this is implicit in [58] and explicit in [77]).
Comparisons with dynamic routing will be discussed in Chapter 7; for now, we
are more interested in the weaker implication, that the gap between multipath
routing and single-path routing is at most 2. We do not improve this bound
here, but we give some results in §4.4 that may be useful towards this goal.

We in fact give two quite different forms of counterexample. The examples
in §4.2 are both simpler and have a larger gap than the construction of §4.3.
The latter construction is included for completeness (this construction was
used in the published version [69]). Perhaps the ideas in these two forms of
counterexample can be combined to obtain a construction with a larger gap.

77
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4.1 The compact LP formulation
Before describing the counterexamples, it will be useful to introduce the compact
LP formulation, as defined by [86, 2]. This can also be obtained by applying
Theorem 2.6 to the robust linear program that defines multipath routing in
the hose model.

The formulation is:

min
∑
e∈E

∑
i∈W

c(e)yi(e)

s.t. yi(e) + yj(e) ≥ fij(e) ∀e ∈ E, i < j ∈ W,

fij is a unit i-j-flow ∀i < j ∈ W

yi(e) ≥ 0 ∀i ∈ W, e ∈ E

The flows fij are defined on the bidirection of G, and we use fij(e) to refer to
the amount of flow on edge e, irrespective of direction. We also define fij for
i > j in a symmetric fashion: fij is the reverse of the flow fji.

This formulation yields a convenient description of the capacity reservation
of a solution as a cost sharing between the terminals. We think of yi as the
capacity paid for by terminal i. We see that y := {yi : i ∈ W} is a valid
capacity reservation if and only if for every pair i 6= j ∈ W , yi + yj supports a
unit i-j-flow. Thus we may think of y as specifying a mpr solution, of cost

C(y) =
∑
i∈W

C(yi) =
∑
e∈E

∑
i∈W

c(e)yi(e).

4.2 Two simple counterexamples
We begin with the smallest counterexample we know of (which is likely the
smallest possible). It consists of only 7 nodes, and is shown in Figure 4.1;
edge lengths are indicated. Half a unit of capacity is bought on each edge;
the colours (and numbers) show which terminal pays for each edge, with the
edges paid for by terminal 1 shown in bold. Since yi + yj has enough capacity
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Figure 4.1: An instance where optmpr is cheaper than optspr. Edges paid for
by terminal 1 (red) are shown in bold.

for a unit i-j flow for every i, j ∈ W , this is indeed a feasible mpr solution of
cost 15/2. The cheapest shortest path tree on the other hand (found just by
checking all possible choices of root) has cost 8. By Theorem 3.3, this is the
cost of the optimal spr solution, and so we have a counterexample. The ratio
between optspr and optmpr in this example is 16/15.

This example also shows that the multipath vpn Conjecture is false even
for planar graphs.

We can obtain a slightly larger gap with a slightly larger construction, using
the same idea. In Figure 4.2, all edges have cost 1. For the mpr solution,
1/3 capacity is bought on each edge; the edges paid for by terminal 1 (red)
are shown in bold, and the rest are symmetric. This is again a feasible mpr
solution, of cost 16/3. The cheapest tree solution on the other hand costs 6;
this gives a ratio optspr/optmpr = 9/8.

The natural extensions of this construction to larger graphs do not yield
any improvement to the gap.
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1

2

3

4

Figure 4.2: An instance with a larger gap. Edges paid for by terminal 1 (red)
are shown in bold.

4.3 A construction based on combinatorial
designs

Recall that a projective plane of order n is a (n2 + n+ 1, n+ 1, 1) block design.
It consists of a set W of n2 + n + 1 points, and a collection L of subsets of
points (the lines). Every line contains exactly n+ 1 points, every point is in
exactly n + 1 lines, every pair of lines determines a unique point, and every
pair of points lies on a unique line. It is well known that projective planes exist
for all orders that are powers of primes.

The complement (W,B) of a projective plane (W,L) is obtained by replacing
each line with its complement: B = {W \ L : L ∈ L}. Call the sets in B blocks.
This is an (n2 + n+ 1, n2, n2 − n) design: every block contains n2 points, every
point is in n2 blocks, every pair of blocks have exactly n2−n points in common,
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W

U
r

Figure 4.3: The construction for n = 2; the incidence graph of the complement
of the Fano plane. (Note that this is not itself a counterexample; n ≥ 3 is
needed). The bold edges indicate a typical tree solution, rooted at r.

and every pair of points is contained in exactly n2 − n blocks.
We now construct the bipartite graph G = (W ∪U,E) from the complement

(W,B) of a projective plane of order n as follows. The nodes in W correspond
to points, and the nodes in U correspond to the blocks. An edge (w,B) exists if
and only if w is contained in block B. Our construction implies that |δ(v)| = n2

for all v ∈ W ∪ U , and |δ(v) ∩ δ(w)| = n2 − n for v, w ∈ W and v, w ∈ U . We
also have |W | = |U | = n2 + n+ 1.

We now consider the mpr instance on this graph, where all edges have unit
cost, and W is the set of terminals. Figure 4.3 shows the instance for the case
n = 2. Notice that for n ≥ 2, the optimal shortesst path tree solution has cost

optspr = n2 + 3(n+ 1),

by rooting at any node in U ; a vpn tree routed on a node in W has cost
2(n2 + n), which is larger. But consider the solution where terminal i pays for
only edges in δ({i}), buying capacity 1/(n2 − n) on each. Then since every
i, j ∈ W have n2 − n common neighbours, it follows that yi + yj supports a
unit i-j-flow, and so y is a feasible mpr solution, of cost

C(y) = 1
n2 − n

· (n2 + n+ 1) · n2 = n(n2 + n+ 1)
n− 1 .



82 Chapter 4. The multipath VPN Conjecture

A quick calculation shows that C(y) < optspr for n ≥ 3, thus giving another
class of counterexamples. The gaps are smaller than the examples of the
previous section however.

The same technique yields a counterexample for any (v, l, λ) block design
satisfying

v(v − 1)
l − 1 < 3v − 2l.

Some examples are the complements of Steiner triple systems, and the unique
(9, 6, 5) design.

4.4 Towards a tighter bound on the gap

In this section, we consider the upper bound on the gap. We first note that in
investigating this gap, it is sufficient to consider unit marginals. This follows by
considering again the transformation given in §3.1.3. From the discussion there,
any multipath routing for the original instance also gives a multipath routing
in the transformed instance with the same cost; thus the optimal multipath
routing can only get cheaper. By Theorem 3.3, it follows that the optimal
single-path routing, being a tree, is unaffected by the transformation. Hence
the gap in the transformed instance must be at least as large as in the original,
and we consider only unit marginals from now on.

Can the upper bound of 2 be improved? In other words, does there exist an
ε > 0 so that optspr/optmpr ≤ 2− ε for all vpn instances? We don’t answer
this question here, but we show that it in order to answer it, attention can be
restricted to solutions of a particular form:

Definition 4.1. For any vector b indexed by nodes of G, and satisfying∑
v bv = 1, an mpr solution y is called a b-pleasant solution if for all j ∈ W , yj

supports a flow with demands given by b− ej. A solution which is b-pleasant
for some b is called just a pleasant solution.
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There is an analogy with the T -join solutions of the previous chapter. There,
we came across solutions defined by a subset T of the nodes, with terminal i
paying for a Ti-join, where Ti = T 4 {i}. Pleasant instances are much like a
fractional analogue of this. The vector b takes the place of T , and the Ti-join
becomes a (b− ei)-flow.

We will prove the following:

Theorem 4.2. For any γ > 0, If there exists an instance of the symmetric
vpn problem where the ratio between single-path and multipath routing is at
least 2− γ, then there exists a pleasant solution to this instance where this ratio
is at least (2− γ)/(1 + 2γ).

This shows that if no upper bound better than 2 is possible, i.e., there exist
instances where γ is arbitrarily small, then this can be demonstrated using
pleasant solutions. In other words, for any ε > 0 there would exist instances
where the ratio between the optimal spr solution and some pleasant solution
is at least 2− ε. These solutions seem much easier to deal with, so this could
aid the search for such a construction. Conversely, to show an upper bound of
some constant less than 2, it is sufficient to prove such a bound for all pleasant
solutions.

Proof of Theorem 4.2. Let y be the optimal mpr solution. Let Yi := supp(yi);
without loss of generality, we may assume that the Yi’s are disjoint, by making
parallel copies of edges if necessary.

Let f̄ := 1
k−1

∑
i 6=r fri. Define the mpr solution y′ by y′r = yr, and for j 6= r,

y′j(e) =

|frj(e)− f̄(e)| e ∈ Yr
yj(e) e /∈ Yr

.

We prove the following two lemmas:

Lemma 4.3. The solution y′ is a b-pleasant solution, where

bv := 1r=v +
∑

a∈δ+(v)∩Yr

f̄(a)−
∑

a∈δ−(v)∩Yr
f̄(a) ∀v ∈ V.
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Lemma 4.4. The additional cost of solution y′ compared to y is at most

C(y′)− C(y) ≤ 2
∑
j 6=r

(C(yr) + C(yj)− d(r, j)). (4.1)

Once these lemmas are proven, the theorem is completed as follows. The
above augmentation can be done for any choice of r ∈ W ; in particular, we can
choose r∗ that minimizes (4.1). The additional cost of augmentation for this
choice is then certainly not more than the average of (4.1) over all r ∈ W :

C(y′)− C(y) ≤ 2
k

∑
r∈W

∑
j 6=r

(C(yr) + C(yj)− d(r, j))

≤ 2
k

∑
j,r∈W

(C(yr) + C(yj)− d(r, j))

= 4C(y)− 2
k

∑
r∈W

C(Rr)

≤ 4C(y)− 2optspr,

where recall that Rr is the shortest path solution rooted at r, which nec-
essarily costs at least as much as the optimal spr solution. But now since
optspr/C(y) = 2− γ, we have 2C(y)− optspr = γC(y), and so

C(y′) ≤ C(y + 2γC(y)

= (1 + 2γ)C(y)

= 1 + 2γ
2− γ optspr.

Thus
optspr

C(y′) ≥
2− γ
1 + 2γ ,

as required.

Proof of Lemma 4.3. Let f̂j be the portion of frj on Yj only (i.e., excluding
the portion on Yr). This is a bj-flow, where

bjv = 1v=r − 1v=j +
∑

a∈δ+(v)∩Yr

frj(a)−
∑

a∈δ−(v)∩Yr
frj(a).
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Now define hj by hj(a) = frj(a) − f̄(a) for all a ∈ Yr, and hj(a) = 0 for all
a /∈ Yr. Then the total demand at any node v satisfied by f̂j + hj is

bjv −
∑

a∈δ+(v)∩Yr

(frj(a)− f̄(a)) +
∑

a∈δ−(v)∩Yr
(frj(a)− f̄(a)) (4.2)

= 1r=v − 1j=v +
∑

a∈δ+(v)∩Yr

f̄(a)−
∑

a∈δ−(v)∩Yr
f̄(a) (4.3)

= bv − 1j=v. (4.4)

Hence f̂j + hj is a (b− ej)-flow. Since y′j supports f̂j + hj for each j, it is a
b-pleasant solution.

Before calculating the cost of our augmentation, we note the following
simple observation:

Claim 4.5. If x1, x2, . . . , xN are real numbers with |xi| ≤ R for all i, then∑
i |xi − x̄| ≤ 2N(R− x̄), where x̄ is the average of the xi’s.

Proof.

∑
i

|xi − x̄| =
∑
i:xi≥x̄

(xi − x̄) +
∑
i:xi<x̄

(x̄− xi)

≤
∑
i:xi≥x̄

(R− x̄) +
∑
i:xi<x̄

(R− xi)

≤
∑
i

(R− x̄) +
∑
i

(R− xi)

= 2N(R− x̄).

Proof of Lemma 4.4. The extra cost of y′ is

C(y′)− C(y) =
∑
e∈Yr

c(e)
∑
j 6=r

(frj − f̄)(e).

Consider a term corresponding to a fixed e ∈ Yr in the above. Let xj = frj(e)
if frj uses edge e in the same direction as f̄ , and let xj = −frj(e) otherwise;
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so |xj| ≤ yr(e). Then the average over all j 6= r of xj is x̄ = f̄(e), and
|xj − x̄| = (frj − f̄)(e). Thus by Claim 4.5,

∑
j 6=r

(frj − f̄)(e) ≤ 2(k − 1)(yr(e)− f̄(e)).

So

C(y′)− C(y) ≤ 2(k − 1)
∑
e∈Yr

c(e)(yr(e)− f̄(e))

= 2
∑
e∈Yr

c(e)
∑
j 6=r

yj(e) + (k − 1)(yr(e)− f̄(e))
 ,

since yj(e) = 0 for j 6= r, e ∈ Yr. Now for any e /∈ Yr and j 6= r, yj(e) ≥ frj(e),
implying ∑j 6=r yj(e) ≥ (k − 1)f̄(e). Thus including terms for e /∈ Yr only
increases the above sum, and we obtain

C(y′)− C(y) ≤ 2
∑
e∈E

c(e)
(k − 1)(yr(e)− f̄(e)) +

∑
j 6=r

yj(e)
 .

Note that the flow (k− 1)f̄ = ∑
j 6=r frj routes 1 unit of flow from each terminal

to r, and hence
(k − 1)

∑
e∈E

c(e)f̄(e) ≥
∑
j 6=r

d(r, j).

Finally,
C(y′)− C(y) ≤ 2

∑
j 6=r

(C(yr) + C(yj)− d(r, j)).

This completes the proof of the theorem.



Chapter 5

The inapproximability of robust
network design

5.1 Introduction

In the survey of Chekuri [41], one of the main open problems asked is the
approximability status of the general robust network design problem with single-
path routing, as defined in Chapter 1, where the demand universe is essentially
arbitrary. Of course, it cannot be completely arbitrary, else a negative result is
trivial; the universe could be too complicated to even have a polynomial-size
description. It is sensible to consider the problem for “reasonable” universes—in
particular, universes described as convex sets or polytopes that can be separated
in polynomial time. Recall that a set X is separable if there is a polynomial
time algorithm which for any x, determines whether or not x belongs to X ,
and if not, returns a separating hyperplane. Slightly more restrictive, another
possible definition for a “reasonable” universe is one that has an extended
formulation, i.e., is the projection of a polytope with a compact LP formulation.

The general rnd problem with single-path routing is of course APX-hard,
since it includes Steiner tree (see §2.4). On the positive side, it was observed by
Gupta in 2004 (see [41]) that there is an O(log n) approximation using metric
embedding techniques. The question is to close this gap; is there in fact a

87
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constant factor approximation for any reasonable polytope, or is the problem
much harder to approximate than the special cases considered thus far?

In this chapter, we give a negative result to this question. We show that
the uniform buy-at-bulk network design problem can be simulated by a robust
network design problem with a separable polytope (which also has an extended
formulation). This immediately gives us a strong inapproximability result,
since by the seminal work of Andrews [7], this problem is hard to approximate
within a polylogarithmic factor (under suitable complexity assumptions).

For completeness, we begin with Gupta’s proof that the problem is approx-
imable within a logarithmic factor. We then define and discuss the uniform
buy-at-bulk problem, before finally describing our reduction from it.

5.2 A logarithmic approximation algorithm
via metric embeddings

Theorem 5.1 ([75]). Given an instance of robust network design on a weighted
graph G = (V,E), with |V | = n, terminal set W , and separable universe U ,
there is an O(log n)-approximation algorithm for the spr problem, and the cost
ratio between the optimal spr and fr solutions is O(log n).

Proof. Let c(e) refer to the edge weight of e ∈ E, and let d(·, ·) be the shortest
path metric according to these weights. Now take KG to be the metric com-
pletion of G, so that e = vw ∈ E(KG) has weight d(v, w). There is a direct
correspondence between solutions on KG and solutions on G, by replacing an
edge vw ∈ E(KG) with any shortest v-w-path in G.

From Theorem 2.11 of Fakcharoenphol et al. [57], we can find (in polynomial
time) a distribution D over tree metrics such that for every ρ in the support
of D, ρ(v, w) ≥ d(v, w) for all v, w ∈ V and Eρ∈D(ρ(v, w)) ≤ αd(v, w), where
α = O(log n). Moreover, D can be taken to contain only O(n log n) tree metrics.
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The cost of a capacity reservation u is C(u) := ∑
v,w∈V d(v, w)u(vw). We

can also define the cost of this reservation with respect to another metric ρ
by Cρ(u) := ∑

v,w∈V ρ(v, w)u(vw). Let u∗ be the optimal capacity reservation
using the dynamic routing model, so C(u∗) = optfr. We have by linearity of
expectation that

Eρ∈DCρ(u∗) ≤ αC(u∗).

So there exists a τ ∈ D such that Cτ (u∗) ≤ αC(u∗); since D contains so few
trees, we can in polynomial time find this τ . Let T be the tree associated with
τ . On a tree, there is a unique simple path between every pair of terminals,
and so all routing schemes coincide (and hence have the same optimum).
Let QT := {Qij : i, j ∈ W} be the routing template induced by T , and
let u∗T : E(T ) → R+ be the corresponding optimal capacity vector. Since
d(v, w) ≤ τ(v, w) for all v, w ∈ V , it follows that C(QT ) ≤ Cτ (QT ). We also
have C(QT ) = Cτ (u∗T ) ≤ Cτ (u∗) by optimality of u∗T . So finally,

C(QT ) ≤ αC(u∗) = O(log n)optfr,

as required.

5.3 The uniform buy-at-bulk problem
Recall the definition of the (multicommodity) uniform buy-at-bulk problem
given in §2.4. We are given an undirected graph G with nonnegative edge
lengths c : E → R+, as well as a single nonnegative, increasing and concave
cost function f , with f(0) = 0. A number of demand pairs s1t1, s2t2, . . . , sktk

are also given. A solution must reserve enough capacity on each edge so that
all the demand pairs may route simultaneously along selected paths Pi between
si and ti. The cost of an edge e in the solution, however, is given by c(e)f(xe),
where xe is the load on edge e, i.e., the number of demand pairs using edge e
in their routing path. Since f is concave, buying a large capacity on a single
edge may be much cheaper than buying small capacities on many edges.
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Andrews [7] showed that even on undirected graphs, this uniform buy-at-
bulk problem is hard to approximate; in particular, it cannot be approximated
within a ratio of Ω(log1/4−ε n) for any ε > 0, unless NP ⊂ ZPTIME(npolylogn).
(This is in fact true even if f is restricted to be of the form f(x) = L+ x, for
some suitable L.)

5.4 A reduction from buy-at-bulk

We begin with an instance of uniform buy-at-bulk. From this, we construct an
instance of robust network design with a polytope that can be described very
simply, and separated in polynomial time.

Let Π be the set of permutation of the integers 1 through k, and let
π = (π1, π2, . . . , πk) be any such permutation. For notational convenience, we
also define π0 = 0. Define the demand matrix Dπ by

Dπ
uv =

f(πi)− f(πi − 1) if {u, v} = {si, ti} for some 1 ≤ i ≤ k

0 otherwise
. (5.1)

Now define the polytope B as

B := conv{Dπ : π ∈ Π}. (5.2)

Theorem 5.2. The buy-at-bulk problem on graph G = (V,E) with lengths
c : E → R+ and cost function f(·), has the same optimum as the robust
network design problem on the same instance where B is used for the demand
polytope. In addition, the optimal routings are the same.

Proof. Consider an arbitrary solution template given by siti paths Pi for each
1 ≤ i ≤ k. Let `(e) be the number of demand pairs which use edge e on their
path. Then for any edge e, the cost of this edge in the buy-at-bulk instance is
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cef(`e). In the robust instance, the required capacity ue is

u(e) := max
D∈B

∑
i:e∈Pi

Dsiti

= max
π∈Π

k∑
i=1

1e∈Pi(f(πi)− f(πi − 1)),

since the maximum occurs at a vertex of the polytope B. But since f is concave,
the differences f(j)− f(j − 1) decrease as j increases. So we have that

k∑
i=1

1e∈Pi(f(πi)− f(πi − 1)) ≤
`(e)∑
i=1

f(i)− f(i− 1)

= f(`(e)).

In fact we have equality, from any permutation π that maps {i : e ∈ Pi}
to {1, 2, . . . , `(e)}. Thus the amount paid for the reservation of edge e is
c(e)u(e) = c(e)f(`(e)), exactly the cost in the buy-at-bulk instance.

It remains to show that this choice of B can be separated. In fact, we show:

Claim 5.3. The polytope B defined in (5.2) has a compact extended formulation.

Proof. Let I = {{si, ti} : 1 ≤ i ≤ k}. Any D ∈ B must satisfy Duv = 0 for any
pair {u, v} /∈ I. This gives us the first set of linear constraints; from now on,
we consider only demand matrices satisfying these constraints. We index the
remaining entries of D with a vector d, defined as di = Dsiti for all i. Also
define δπ by δπi = Dπ

siti
; note that these are fixed vectors.

A matrix D is in B if and only if D = ∑
π∈ΠwπD

π, for some nonnegative
weights wπ that sum to 1, or equivalently,

d =
∑
π∈Π

wπδ
π.

But δπ = P πδ1, where P π is the permutation matrix associated with π, and
δ1 is the demand vector associated with the identity permutation. Hence
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D ∈ B if and only if d is a convex combination of elements in {P πδ1 : π ∈ Π};
equivalently, there is some doubly stochastic matrix1 M so that

d = Mδ1.

This is clearly a linear system in the unknowns M and d. The complete
formulation is:

Duv = 0 ∀ {u, v} /∈ I

Dsiti = di ∀ 1 ≤ i ≤ k

d−Mδ1 = 0∑
jMij = 1 ∀ 1 ≤ i ≤ k∑
iMij = 1 ∀ 1 ≤ j ≤ k

0 ≤Mij ≤ 1 ∀ 1 ≤ i, j ≤ k.

1A doubly stochastic matrix is a square matrix of nonnegative entries, such that every
row and column sum is 1.



Chapter 6

Tree demands: generalizing the
hose model

6.1 Motivation and definitions
As we have seen in the previous chapter, the general robust network design
problem, with single-path routing, is hard to even approximate; specifically,
under some complexity assumptions, it cannot be approximated to within
polylogarithmic factors. As such, it is interesting to ask for relevant special
cases or classes where the situation is better.

Positive results in robust network design have been given for relatively
few demand matrix universes. The hose model, in both its symmetric and
asymmetric forms, has received most of the attention. From the results in
Chapter 3, the symmetric vpn problem is polynomially solvable. From Gupta
et al. [81], the asymmetric vpn problem is approximable within a constant
factor. Eisenbrand and Happ [50] considered the following generalization of
the symmetric hose model. The terminals W are partitioned into groups
W1,W2, . . . ,Wm. The demand universe is defined similarly to the hose model,
except that there is no demand between terminals within the same group. In
other words, the universe is

H′ := H ∩ {D ∈ R(|W |2 )
+ : for all r,Dij = 0 ∀ i, j ∈ Wr},
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where H is the usual symmetric hose universe. In fact, this is also a general-
ization of the asymmetric hose model. We may think of the asymmetric hose
as a symmetric model, but where terminals are partitioned into senders and
receivers; this is exactly the Eisenbrand-Happ model with 2 groups. They show
a constant factor algorithm for this model.

In this chapter, we consider another natural generalization of the symmetric
hose model, which we call the tree demand model.

Definition 6.1. Let T be any capacitated tree whose leaves are indexed by
the terminals W . There are no other restrictions on the tree; it need not be a
subgraph of the network, and the internal nodes of the tree do not correspond
to nodes in the network. A symmetric demand matrix Dij whose rows and
columns are indexed by W is called a T -demand if it can be routed on T

without violating the capacities on the edges of T . The set of T -demands
defines a polytope that we denote by UT .

The tree demand problem (for a given T ) is defined as the robust network
design problem induced by G and the universe UT . Thus, we seek an oblivious
routing for the terminals which minimizes the total capacity cost required to
support all T -demands.

The usual symmetric hose model corresponds to the case where the tree is
simply a star. For in this case, a symmetric demand D is feasible if for every
i ∈ W , the leaf edge ir ∈ E(T ) (taking r to be the root of T ) is not overloaded;
in other words, ∑j Dij ≤ bir. This is exactly the symmetric hose model with
hose capacities b′ given by b′i = bir. Note however that the tree demand model
and the asymmetric hose model are incomparable.

This appears to be a very natural definition, but there is some further
motivation for this choice. Any demand matrix D can be alternatively specified
by a weighted complete graph on the terminals, with edge uv having weight
Duv; we call this the demand graph. The vpn model can be interpreted as
imposing singleton cut constraints on this graph: we must be able to route
all demands such that for any u ∈ W , the weight of the cut δ({u}) in the
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Figure 6.1: A laminar family of cut constraints, and associated tree demand.

demand graph does not exceed its marginal bu. It is natural to study universes
defined by more general cut families; each cut in a given family has a maximum
capacity, and a demand is valid as long as it does not violate any of these “cut
constraints”. In other words, we are given a family S of nontrivial subsets of
W ; for each S ∈ S, an upper bound bS ∈ N is prescribed, and any symmetric
feasible demand D must satisfy

∑
i∈S,j /∈S

Dij ≤ bS ∀S ∈ S.

These extra cut constraints could be used to more accurately define the re-
quirements of a vpn, possibly yielding a cheaper final network. Tree demands
correspond exactly to the case where the sets in S form a nested family; the
demand tree corresponds exactly to the nesting structure of the sets in S (see
Figure 6.1).

It is interesting to compare this model with the Eisenbrand-Happ model.
In their model, terminals within the same group do not communicate. In
our model, if we think of a tree of two levels, this gives a natural grouping
of terminals according to their parent node. But now the communication
requirements between different groups will in general be smaller than between
terminals in the same group.
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Results We will describe an algorithm which computes a routing template
that induces a network whose cost is at most 8 times the optimal robust design
for UT ; this is improved to a factor 2 for the unit capacity case. In fact, the
proofs imply something stronger: given the optimal network that supports each
tree demand via dynamic routing, we can find an oblivious routing which costs
no more than 8 times as much, or twice as much for unit capacities.

We do not, however, show that these bounds are tight; it is possible that
the algorithm described is in fact optimal. This is the case if the tree is a star,
by the result of Chapter 3.

6.2 A hierarchical hubbing algorithm
In this section, we describe an exact algorithm for the following hierarchical
hubbing problem which is very similar to the zero-extension problem [94, 37] on
a tree.

Given our tree T with edge capacities b, consider any mapping h : V (T )→
V (G) such that h(v) = v for each leaf v ∈ W . We think of an edge uv ∈ E(T )
as being mapped to some shortest path between h(u) and h(v) in G. Call this
a hierarchical hubbing solution. The hierarchical hubbing problem asks for the
hierarchical hubbing solution that minimizes

∑
uv∈E(T )

buvdG(h(u), h(v)).

Recall that in the zero-extension problem we are given a set of terminals
W within a weighted graph H and a metric ρ on W . We consider mappings h
from V (H) to W ; we wish to find the mapping that minimizes the weighted
sum ∑

uv∈E(H) ρ(h(u), h(v)). Thus in the case W = V (G), the hubbing problem
is just the zero-extension on the tree T using the metric from G.

The hubbing problem is also a natural extension of the algorithm for the
vpn problem. In the case where T is a star the mapping yields the cheapest
shortest path tree solution for the instance.
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Figure 6.2: An example of a hierarchical hubbing.

Given a mapping for the hubbing problem, we obtain a natural oblivious
routing template. For any pair i, j ∈ W , look at the path in T between the leaf
nodes i and j. This path i = x1, x2, . . . , xt = j can now be mapped into a (not
necessarily simple) path between i and j in G, by concatenating the shortest
paths between h(xi) and h(xi+1) for each 1 ≤ i ≤ t − 1. This motivates the
name “hierarchical hubbing”.

Lemma 6.2. An optimal hierarchical hubbing solution can be found in polyno-
mial time.

Proof. It is clear that the solution should map an edge uv ∈ E(T ) to a
shortest path between h(u) and h(v). So the optimal hierarchical hub routing
is determined by the map h on the nodes of T , i.e., by the positions of the
hierarchical hubs. For any subtree S of T , and any node v ∈ V , let C(S, v)
be the cost of an optimal hierarchical hubbing solution for S, but with the
root of S mapped to node v. For S = {i} a leaf of T , define C({i}, i) = 0 and
C({i}, v) =∞ if v 6= i, i.e., mapping i to v is not valid.

We calculate these costs using dynamic programming. Let s be a node
of T , and S the subtree rooted at s. Label the children of s as s1, s2, . . . , sk,
and let Si be the subtree rooted at si. Let ei denote the edge from s to si.
Suppose we know C(Si, w) for 1 ≤ i ≤ k and all nodes w ∈ V . We wish
to calculate C(S, v) for some v ∈ V . But the optimal location of the hub
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represented by si is clearly the vertex wi that minimizes C(Si, wi) + beid(v, wi).
Then C(S, v) = ∑k

i=1C(Si, wi) + beid(v, wi). This clearly yields a polynomial
time algorithm.

6.2.1 Another application of hierarchical hubbing

Shepherd and Winzer [124] describe an application of robust network design to
optical networking. They first remark that the shortest path tree solution for
the vpn problem, as given by Definition 3.1, has enough edge capacity to route
all the hose matrices via the root node r without shortcutting. In other words,
the solution template may be defined by taking Pij as the union of a shortest
i-r path combined with a shortest r-j path, possibly yielding a nonsimple path,
but always passing through r. The advantage of this is that it avoids the
need for expensive routing equipment at every node as used in the standard
hop-by-hop architecture: instead, only the node r needs to do ip lookups. One
problem with this approach is the single point of failure at r. To handle this,
Shepherd and Winzer propose load balancing across multiple hubs, and hence
multiple trees (called selective randomized load balancing). In the extreme case,
where one balances across all possible hubs, we essentially have the classical
Valiant randomized load balancing scheme (rlb) discussed in §2.3.4. Proposals
to use randomized load balancing to minimize network performance measures
such as congestion had been proposed around the same time [99]. In [124], the
cost of hop-by-hop routing and hub routing via multiple hubs was empirically
compared; costs included both optical and data (router) costs. They found
that while the hop-by-hop ip routing architecture was cheaper than using rlb,
it was considerably more expensive then using selective rlb across a limited
number of hubs.

In [124] it is left open to compare the costs of routing architectures based
on some form of “hierarchical hubbing”. One possible algorithm needed for
such a comparison is a simple extension of the hierarchical hubbing subroutine
described above. We define two extensions of the problem, hub-constrained
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and leaf-constrained hierarchical hubbing. In the hub-constrained version, each
edge uv ∈ E(T ) has an associated bound R(u, v) which gives the maximum
allowed distance between h(u) and h(v). In the leaf-constrained version, we
think of T as being rooted at some node r, and for each leaf i and node v on
the path from i to r, we require that d(h(i), h(v)) ≤ R(i, v). The algorithm
described above can be easily modified to find the optimal solution subject
to these extra constraints. By enforcing these constraints, we may arrive at a
solution which is more expensive, but with much better latency properties.

6.3 Analysis

The high level view of the analysis is as follows. We define a class of demand
matrices D`; the index ` will be a so-called connected labelling of T . Each `,
and hence D`, will in turn be associated with a particular oblivious routing
template P`. The important property of every D` is that it “dominates” the
universe T , in the sense that any capacity reservation on G that is sufficient
to route D`, is sufficient to route all demand matrices in T obliviously, using
the template P`. However, each D` will not be a valid T -demand. Instead, we
define a distribution over all the D`’s such that D̄ := E(D`) lies in the scaled
up polytope α · UT , for some constant α. It follows that for some `, the cost of
routing D` is within a factor α of the optimal robust network cost. Finding
such a D` may not be so easy, so instead, we show that the cost of routing any
D` is at least the cost of the optimal hierarchical hub routing; we have seen
that this can be found in polynomial time. The hierarchical hub routing is thus
a feasible solution to the tree demand problem that gives an α approximation.
We will demonstrate a distribution that yields α = 8; for the case where the
capacities on T are all unit, we obtain α = 2.
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Figure 6.3: A connected labelling, and the associated T ` obtained by contract-
ing.

6.3.1 Connected labellings and hub routings

Definition 6.3. A connected labelling of a tree T is a function ` : V (T )→ W ,
satisfying

(i) `(w) = w for all w ∈ W ,

(ii) `−1(w) is connected for all w ∈ W .

A connected labelling ` induces a demand matrix D` in a very natural way.
Simply contract each set `−1(w) to obtain a new tree T `, with V (T `) = W (see
Figure 6.3). The edges of T ` determine the nonzero demands—if uv /∈ T `, then
D`
uv = 0. Now consider uv ∈ T `; there is a unique edge e ∈ T that connects

the components `−1(u) and `−1(v). Define D`
uv = be.

The optimal solution to route just the single demand matrix D` sim-
ply consists of routing on shortest paths. This has a cost of C∗(D`) =∑
u,v∈W D`

uvd(u, v). This has an alternative interpretation that connects to
hierarchical hubbing. Recall that the hierarchical hubbing algorithm found a
mapping h : V (T )→ V (G), taking leaves to respective terminals, and minimiz-
ing the cost ∑uv∈E(T ) buvd(h(u), h(v)). This means that the optimal solution
for the single matrix D` is exactly a hierarchical hubbing solution where we
enforce h(u) = `(u) for each node u ∈ V (T ). It follows that:

Lemma 6.4. For any connected labelling `, the hierarchical hubbing solution
for T costs no more than the optimal routing for D`.
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Let Q be any routing of D` (although we could assume a shortest path
routing) and let uQ : E → R+ be the capacity reservation associated with this
static routing. We define a routing template as follows. For any given pair
u, v of terminals, consider the path between u and v in T `; let it be v0v1 · · · vm,
where v0 = u and vm = v. Then for each edge vivi+1 of this path, there is an
associated route Qvivi+1 in Q. We define Puv to be a simple u-v path contained
in the union Qvv1 ∪Qv1v2 ∪· · ·∪Qvm−1v, and take P` to be the routing template
given by the Puv’s.

Lemma 6.5. The capacity reservation uQ is enough to support the routing of
any D ∈ UT via P`.

Proof. Let D be any T -demand, and let f be any edge of G. Let E ′ be the set
of edges e ∈ E(T `) such that Qe contains f . Note that since T ` was obtained
from T by contracting edges, we can think of an edge in E ′ as an edge in T also.
A pair u, v uses path Qe as part of their routing Puv if e separates u and v in
T ; let S(e) denote the set of such terminal pairs. Then the total load induced
on edge f by demand D via P` is at most ∑e∈E′

∑
uv∈S(e)Duv ≤

∑
e∈E′ be. The

last inequality follows by definition of a tree demand: the total demand from
D across any edge e ∈ T cannot exceed be. Since D`

ij = bij for each edge
ij ∈ E(T `), the total load does not exceed ∑ij∈E′ D

`
ij ≤ uQ(f) as required.

6.3.2 Distributions over connected labellings

For any connected labelling `, D` induces a load on edges in the original T . For
edge e = uv ∈ T , this is ∑uv∈S(e)D

`
uv, where recall S(e) is the set of terminal

pairs separated by e in T . If e ∈ T `, the only pair in S(e) with nonzero demand
in D` is between `−1(u) and `−1(v), and this gives a load of be. For other
edges, the load may generally exceed the edge’s capacity be, and so D` may
not be a valid T -demand. But suppose we manage to find a distribution so
that the expected load across on any edge of T exceeds its capacity only by a
constant factor α. Then consider the demand matrix D̄ obtained by averaging



102 Chapter 6. Tree demands: generalizing the hose model

the demand matrices D` over this distribution, i.e., the demand matrix given
by D̄uv = E(D`

uv) for all u, v ∈ W . The demand D̄/α does not exceed any edge
capacity, and so is a feasible T -demand. Thus the cost to optimally route the
single matrix D̄/α (which we denote by C∗(D̄/α)) is a lower bound on the cost
of optspr, i.e.,

C∗(D̄) ≤ α · optspr.

Since static routings are on shortest paths, we have a simple formula for C∗(D̄):

Claim 6.6. C∗(D̄) = E(C∗(D`)).

Proof. We know that the optimal solution to route the fixed demand matrix
D consists of adding together shortest paths between each pair, weighted by
the appropriate entry of the demand matrix.

C∗(D̄) =
∑

u,v∈W
D̄uvd(u, v). (6.1)

The same is true for any of the D`’s:

C∗(D`) =
∑

u,v∈W
D`
uvd(u, v).

Taking expectations of both sides, and then using (6.1), we have

E(C∗(D`)) =
∑

u,v∈W
E(D`

uv)d(u, v)

=
∑

u,v∈W
D̄uvd(u, v) = C∗(D̄).

It follows from this claim that there must be some ` s.t. C∗(D`) ≤ C∗(D).
By Lemma 6.4, the cost of a solution to the hierarchical hubbing algorithm
is at most the cost of routing any fixed D`. Since any hierarchical hubbing
solution yields an oblivious template whose cost to support demands in UT is
the same as the hierarchical hubbing cost, we would thus obtain a factor α
approximation for the tree demand problem.
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6.3.3 Expected loads for a distribution

We will now define a distribution over connected labellings of T with the desired
properties. We must first consider the loads induced by a fixed D`.

Consider an arbitrary edge e = uv ∈ E(T ). Let L(e) and R(e) be the
leaf sets of the two components of T \ {e}, with u in the same component
as L(e) and v in the same component as R(e). It is useful for us to give an
orientation to the edges. Orient e from u to v, and orient all other edges to be
consistent with this. In other words, for each edge f in the component L(e),
orient f towards e, and for f in R(e), orient away from e. Call the arcs in this
orientation A(e).

First, we need to calculate the load for a fixed connected labelling `. Consider
the contracted tree T ` defined earlier, which in turn defines D`. Edges in T `

correspond to nonzero demands between the terminals of the labels of the
endpoints. Every edge f in T ` which has one endpoint x labelled with a terminal
in L(e) and the other endpoint y labelled by a terminal in R(e), contributes to
the load of e. These are the only demands in D` that do. The contribution of
f is exactly the capacity of the unique edge between the components `−1(x)
and `−1(y) in T .

So the total contribution is

∑
f∈E(T )

bf · 1(one endpoint of f has label in L(e), the other in R(e))

=
∑

(x,y)∈Ae(T )
bxy · 1`(x)∈L(e)∧`(y)∈R(e).

The last line follows by the connectedness of the labellings, and our choice of
orientation; it is not possible for `(x) to be in R(e) and `(y) to be in L(e).

Now consider any distribution over the labellings. We’re interested in the
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Figure 6.4: Calculating the expected load on edge e.

expected load on edges of T . By linearity of expectations, this is

∑
(x,y)∈A(e)

bxyP(`(x) ∈ L(e) ∧ `(y) ∈ R(e))

=
∑

(x,y)∈A(e)
bxy
(
P(`(y) ∈ R(e))− P(`(x) ∈ R(e))

)
. (6.2)

This follows since there are only three possible events for the pair x, y (see
Figure 6.4):
(i) `(x), `(y) ∈ L(e),
(ii) `(x) ∈ L(e), `(y) ∈ R(e), or
(iii) `(x), `(y) ∈ R(e).

We now describe a particular distribution of connected labellings. We show
that in the case where be = 1 for all e ∈ E(T ), this produces an expected load
of 2, and hence the hierarchical hubbing algorithm is a 2-approximation. For
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Figure 6.5: A choice of arrows leading to the connected labelling shown in
Figure 6.3.

general capacities, this distribution does not yield a constant expected load;
however, it is the starting point for constructing a distribution that does.

Define the random labelling ` using a coupled random walk scheme as
follows. First, pick an arbitrary non-leaf node of T to be the root; call it r.
For every non-leaf node s, pick one of its children at random, weighting the
choices according to the edge capacities, and draw an arrow to it from s (see
Figure 6.5). Now for any node s of T , define `(s) to be the terminal reached by
following the arrows from s. This clearly gives a (random) connected labelling.

Fix an edge e ∈ E(T ). We must compute the expected load on e, as given
in Equation (6.2). Let us choose to orient e away from the root, so that R(e)
is the component of T \ {e} below e, i.e., not containing the root. It is clear
that any edges below e do not contribute to the sum, since walks from x and y
definitely end up in R(e) (the walks can’t go up the tree). Likewise, any edge
that is not on, or touching, the path from e to the root cannot contribute—x

and y would both have to end up in L(e).

Now label the nodes on the path from e to the root by x0 = y, x1 =
x, . . . , xt = r. Let Bi be the sum of the capacities of the downward edges from
xi, and write bi := bxixi−1 (see again Figure 6.4). There are two types of edges
to consider:
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• An edge of the form xixi−1 contributes

bi
(
P(`(xi−1) ∈ R(e))− P(`(xi) ∈ R(e))

)
= bi

(
Bi/bi · P(`(xi) ∈ R(e))− P(`(xi) ∈ R(e))

)
= (Bi − bi)P(`(xi) ∈ R(e)).

• An edge of the form g = zxi, where z is a child of xi, not equal to xi−1.
Then g contributes

bg
(
P(`(xi) ∈ R(e))− P(`(z) ∈ R(e))

)
= bgP(`(xi) ∈ R(e)),

since `(z) ∈ L(e). If we sum the contributions of all the edges (other
than xixi−1) hanging from xi, we thus obtain

(Bi − bi)P(`(xi) ∈ R(e)).

Summing the contributions of all these edges, we find that the expected load
on edge e is exactly

t∑
i=1

2(Bi − bi)P(`(xi) ∈ R(e))

= 2
t∑
i=1

(Bi − bi)
i∏

j=1

bj
Bj

. (6.3)

6.3.4 Trees with unit capacities

If be = 1 for all e ∈ E(T ), then we have from Eq. (6.3) that the expected load
on any edge is at most

2
t∑
i=1

(Bi − 1)
i∏

j=1
1/Bj

= 2
t∑
i=1

i−1∏
j=1

1/Bj − 2
t∑
i=1

i∏
j=1

1/Bj

= 2− 2
t∏

j=1
1/Bj ≤ 2.
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So D̄/2 ∈ UT , as claimed.

6.3.5 Trees with arbitrary capacities

The same distribution does not work for arbitrary capacities. Consider a
complete binary tree of height h, with all edges at height i having capacity 2i.
Then the expected load of an edge e adjacent to a leaf node is, by (6.3),

2
h−1∑
i=1

(2i+1 − 2i)
i∏

j=1

2j
2j+1 = 2

h−1∑
i=1

2i2−i = 2(h− 1).

So the expected load of this edge is Θ(log n).
Instead we proceed as follows. Consider any edge e = xy in T with x higher

in T (with respect to the root) than y. If

be ≥
∑

e′∈δT (y)\{e}
be′ , (6.4)

then UT is not changed even if we work with the tree T ′ obtained by contracting
e. Thus we may assume that no such edges exist at the outset. We look at an
approximate form of this inequality to eliminate problematic edges in T . Call
an edge e ∈ T wide if it satisfies be ≥ 1

2
∑
e′∈δT (y)\{e} be′ . Find a lowest level

wide edge and contract it. Note that since (6.4) does not occur for any such
edge, we have that this contraction will not create any new wide edges. Repeat
this process until we have a new tree T̂ , with associated demand polytope
UT̂ . Since we only contracted wide edges of T , one easily checks that for any
D ∈ UT̂ , D/2 ∈ UT . Thus the optimal solution to route all T̂ -demands costs at
most twice the optimal solution routing all T -demands.

We now return to the analysis for the expected load with the additional
assumption that there are no wide edges. In this case, we have bi ≤ Bi−1/2 for
all i ≥ 2 and so

i∏
j=1

bj
Bj

≤ b1
B1

B1/2
B2

B2/2
B3
· · · Bi−1/2

Bi

= b1
2i−1Bi

.
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Thus the total expected load on edge e is

2
t∑
i=1

(Bi − bi)2−(i−1) b1
Bi

≤ 4b1 = 4be,

and so the congestion of e is at most a factor of 4. Thus we achieve a factor of
4 with respect to the optimal routing for UT̂ , giving a factor 8 approximation
to the T -demand problem.

Almost certainly, the constant 8 can be improved by a better choice of
distribution. (We do not believe this argument can be extended to obtain a
factor 2 in the general case however, and unlike for the hose model, there is no
reduction to the unit capacity case).



Chapter 7

Comparing routing schemes:
oblivious vs. dynamic routing

7.1 Introduction

Different possible routing strategies have already been mentioned in Chapter 1
and §2.3. This chapter is concerned with comparing the efficiency of different
routing strategies.

Recall that the main dichotomy is between dynamic routing schemes, and
oblivious routing schemes. In a dynamic scheme, the routing may adapt to the
particular demand pattern currently being experienced by the network. The
major disadvantage of this approach, as discussed in §2.2.2, is the difficulty of
implementing it in practice. With oblivious routing on the other hand, the
routing for a particular pair is fixed and can be set up in advance.

We restate the four routing schemes that will concern us in this chapter.

• Dynamic routing (fr): no solution template is specified; rather, the
capacity reservation u must be sufficient so that for any demand matrix D
in the universe, the fractional multicommodity flow problem for routing
D with capacities u is feasible.

• Multipath routing (mpr): the solution is specified by a unit i-j flow

109
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fij, for each pair i, j ∈ W ; any demand between i and j is then routed
according to these proportions. The routing template P is defined by
P := {fij : i, j ∈ W}.

• Single-path routing (spr): the flows in the routing template are re-
stricted to be integral, i.e., each pair i,j routes along a single path Pij.

• Tree routing (tr): the flow template is again integral, but is also
restricted to having support in the form of a tree.

We define again the general robust network design problem discussed already
in Chapter 1, but with more emphasis on the role of the routing scheme.

Definition 7.1. Given a weighted graph G = (V,E) on n nodes with edge
costs c : E → R+, a separable polytope U of demand matrices, and a routing
model (fr, spr, mpr or tr), the robust network design problem is:

Find a minimum cost capacity installation u : E → R+ so that all
demand matrices in U can be routed according to the given routing
model.

For a given instance of robust network design (G,W,U), we use the notation
optfr(G,W,U), optmpr(G,W,U), optspr(G,W,U) and opttr(G,W,U) to de-
note the corresponding cost of an optimally designed robust network for the
four routing models. If the context is clear, we may simply write, for instance,
optfr.

We clearly have

optfr ≤ optmpr ≤ optspr ≤ opttr, (7.1)

since the requirements on the routing scheme become stricter as we go from
left to right. It was already known that the gap between optfr and optspr

is O(log n) [75], via tree embedding methods; this was discussed and proven
in Chapter 5 as Theorem 5.1. A very similar argument, but using a theorem
of Abraham et al. [1] which gives a probabilistic embedding of spanning trees,
yields opttr = Õ(log n)optfr, where Õ hides an O(poly log log n) factor.
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Our Results In this chapter, our goal is to understand to what extent these
gaps are realizable; in other words, for any pair of routing methods, what is
the maximum possible gap between the costs of their optimal solution? In
particular: how much do we lose by using oblivious routing rather than dynamic
routing for robust design problems?

In short, the answer is that except for the pair {optmpr,optspr}, the
gap between any pair in (7.1) can be as large as Ω(log n); this is essentially
tight. The exception, the gap between optmpr and optspr, we show is at least
polylogarithmically large.

We begin with the gap between single-path and tree routing in §7.2. We
show that this gap can be logarithmically large by reducing to a well-known
negative result on metric embeddings.

In §7.3, we consider multipath and single-path routing. This result will
essentially be a corollary of the inapproximability result of Chapter 5, combined
with an integrality gap obtained from the hard instances of uniform buy-at-bulk
demonstrated by Andrews [7, 8].

The bulk of the content in this chapter will be demonstrating the gap
between optfr and optmpr; this is given in §7.4.

Discussion It is implicit in Fingerhut et al. [58] and explicit in Gupta et
al. [77] that in the symmetric hose model, optmpr ≤ optspr ≤ 2 · optfr. This
is given with a proof as Theorem 3.2. This says nothing about the asymmetric
hose model however; in fact, the gap instance between optmpr and optfr that
we demonstrate is an instance of the asymmetric vpn problem, thus giving a
logarithmic gap for this important case.1

This result shows that for at least some robust network design problems
of practical interest, the routing model used may have a serious impact on
the solution cost. While completely dynamic routing is typically infeasible for
reasons mentioned previously, perhaps some tradeoff between the two extremes

1This rectifies an earlier assertion (cf. Theorem 4.6 in [41]).
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of dynamic and oblivious routing could produce significantly better results
while remaining practical: see Chapter 8 for a brief discussion.

It turns out that the problem of designing an spr routing template for our
gap instance corresponds to the rent-or-buy problem. In this problem (see §2.4)
there is only one demand matrix instead of a polytope of demands, but the cost
function is concave; it is truncated at some maximum value M . We sketch the
lower bound argument for optspr separately in §7.4.3 since it is much simpler;
it proceeds by showing that the optimal spr templates may be assumed to be
tree templates for our gap instance.

The lower bound for optmpr is more involved. We show that the cost
of an mpr template for our gap instance can be characterized by a network
design problem that we call buy-and-rent. Again there is only one demand to
be satisfied, but the cost function is more complex. The buy-and-rent cost
function seems to be new and natural: briefly, instead of asking that each edge
be either rented or bought, it allows that capacity may be partially bought
and the rest rented. This new cost function is more amenable to analysis, and
leads to our lower bound for optmpr.

Relation to congestion lower bounds We remark that our lower bounds
for the total cost model also imply lower bounds for minimizing the maximum
congestion, since if every edge had congestion at most α times the dynamic
optimum, the total cost would also be at most a factor α away. Since the
polytope Hr we use is a subset of the single-sink demands routable in G, this
also implies a result in [82] which gives an Ω(log n) bound for congestion via
oblivious routing of single sink demands (although their analysis also extends
to the case of lower bounding performance of a general online algorithm). As
discussed in §2.3.4, congestion minimization problems can be seen as equivalent
to a robust optimization where one uses maximum edge congestion as a cost
function; simply take the polytope consisting of all single-sink demands which
are routable in G (this is a superset of our choice Hr). The construction in
[82] uses meshes (grids), building on work of [19, 107]. This construction does
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not seem to extend to the total cost model however, and we use instead a
construction based on expanders, extending and simplifying a connection shown
in earlier work [42].

7.2 Single-path routing vs. tree routing
As discussed in the introduction, for any robust network design problem we
have opttr = Õ(log n)optfr. We now show that this is essentially (up to
O(poly log log n) factors) best possible, by exhibiting a problem instance such
that opttr = Ω(log n)optspr, and so also opttr = Ω(log n)optfr.

We will consider a universe consisting of only a single demand matrix; the
gap has nothing to do with robustness at all. Rather, it is simply a consequence
of a negative result on metric embeddings.

Take any graph G = (V,E) on n nodes, pick c(e) = 1 for all e ∈ E, and
choose every node to be a terminal: W = V . Consider the demand matrix
where every pair of adjacent terminals routes one unit of demand between
them. Our universe consists of only this single demand, and so an optimal
spr template routes each communicating pair along a shortest path—in other
words, the edge between them. Thus the optimal spr template buys one unit
of capacity on each edge, for a total cost of |E|.

If we restrict ourselves to a tree routing on the other hand, we must pick
some spanning tree T of G, and route every pair via T . The total amount paid
for routing a pair u, v ∈ V is then dT (u, v), where dT is the metric induced by
T . The total cost is then ∑uv∈E dT (u, v), giving a ratio between single-path
and tree routing of

1
|E|

∑
uv∈E

dT (u, v),

or in other words, the average stretch over all edges of the metric induced by
T . But it is well known that there exist graphs where this average stretch is
Ω(log n) [17]; in particular, since tree metrics are `1-metrics, expander graphs
give such a lower bound [105].
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7.3 Multipath vs. single-path routing

In Chapter 5, we showed that (under suitable complexity assumptions), the
general robust network design problem is hard to approximate within a polylog
factor. We should thus expect a similar gap between single-path routing
and its fractional relaxation—i.e., multipath routing. Indeed, the hardness
construction of Andrews [7] for buy-at-bulk does also yield an integrality gap
of Ω(log1/4−ε n) [8], which translates into the same gap between mpr and spr
using the polytope B defined in Chapter 5.

One might expect that there should be examples demonstrating a stronger
Ω(log n) gap, but we do not know of any such examples.

7.4 Oblivious vs. dynamic routing

7.4.1 A robust network design instance

Let G = (V,E) be a graph on n nodes with constant degree d ≥ 3 and
edge expansion at least 1; in other words, we have that |δG(S)| ≥ |S| for all
S ⊆ V with |S| ≤ n/2. For d chosen large enough, expander graphs with these
parameters exist for all n (see, e.g., [85]). Now add a special sink node r to V to
obtain our instance Ḡ = (V̄ , Ē) = (V ∪ {r}, E ∪ {vr : v ∈ V }); see Figure 7.1.

Definition 7.2. The single-sink hose model with sink r is a special case of
the asymmetric hose model, where the marginals b satisfy b+r = 0, b−r > 0 (r
is a receiver) and for all v ∈ W \ {r}, b−v = 0, b+v > 0 (all other terminals
are senders). We will always take sender to have unit marginals: b+v = 1 for
all v ∈ W \ {r}; the value b−r we call the sink capacity. The associated rnd
problem we call a single-sink vpn problem.

The demand universe we use is given by a single-sink hose polytope (this
was also used in [42] for the hardness construction). All nodes are terminals, so
W = V̄ , and r is the sink. For some β < 1 yet to be specified, we set b−r = βn
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r

G = (V, E)

Figure 7.1: The gap instance. G is a d-regular expander

(and as stated, all the senders have unit marginals). We denote this universe
by Hr.

We assume throughout that b−r = βn is an integer; when we write, e.g.,
β = 1/ log n, this may be read as choosing β ≈ 1/ log n with βn integral.

Notice that:

Observation 7.3. If b−r is an integer, then our network is robust for Hr and a
given routing model if and only if for each subset X of b−r nodes in G, there is
enough capacity to route one unit from each node in X to r, using the prescribed
routing model.

We use this fact below. Finally, we also assign costs to the edges: each edge
of G has cost 1, and each edge in δḠ(r) has cost 1/β.

Our main result is the following theorem:

Theorem 7.4. For β = 1/ log n, there is a dynamic routing for the single-sink
hose model instance (defined above) of cost O(n), but every mpr solution (and
hence every spr solution) has cost Ω(n log n).
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The first assertion is proved in the next section. In §7.4.3, we see that
determining optspr for single-sink hose models is equivalent to the single-sink
rent-or-buy problem, and that this problem always has a tree solution that is
optimal. This can be used to show that optspr = Ω(n log n) for our instance
with β = 1/ log n. We give a sketch proof of this since it is considerably simpler
than (but implied by) the proof of the corresponding bound for mpr. This
mpr lower bound is demonstrated in §7.4.4.

We mention that if instead b−r is set to 1, there is no gap at all between
optmpr and optfr, since Frangioni et al. [63] showed that mpr and fr coincide
in the single-sink hose model when all marginals are 1.

7.4.2 A solution for the dynamic routing model

Put capacity β on each edge of δḠ(r), and capacity 1 on each edge of G. Clearly,
the cost of this reservation is O(n) independent of β. We show that this is a
valid fr capacity reservation. From Observation 7.3, it suffices to show that
for any subset of βn nodes X in G, all nodes in X can simultaneously route
a unit flow to r. To this end, we add a new node t to Ḡ and edges vt for
v ∈ X with unit capacity to form graph G′. We show that G′ supports a t-r
flow of size |X| = βn. By the max-flow min-cut theorem it suffices to show
that all r-t cuts in G′ have size at least βn, i.e., that for each S ⊆ V we have
|δG′(S ∪ {t})| ≥ βn.

We have

|δG′(S ∪ {t})| = β|S|+ |X \ S|+ |δG(S)|.

Now, if |S| ≤ n/2 then using the fact that for G we have |δG(S)| ≥ |S| we get

|δG′(S ∪ {t})| ≥ β|S|+ |X \ S|+ |S|

≥ β|S|+ |X|

≥ |X|.
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If on the other hand |S| > n/2, then since |δG(S)| ≥ n− |S| we get

|δG′(S ∪ {t})| ≥ β|S|+ |X \ S|+ n− |S|

≥ β|S|+ |X \ S|+ β(n− |S|)

= βn+ |X \ S|

≥ βn.

Hence the above capacity reservation can support the FR routing model and
costs O(n).

7.4.3 Rent-or-buy: lower bounds for SPR

Recall the single-sink rent-or-buy problem defined in §2.4. Given our undirected
graph G = (V,E) with edge weights c(e), a set of terminals W ⊂ V , and a
distinguished root node r ∈ W , the goal is to route all terminals unsplittably
to the sink. However, each edge may be either rented or bought; if rented, we
pay c(e) for each terminal using the edge in their path to r, and if bought, we
pay M · c(e), and all terminals may use the edge.

Lemma 7.5. Given an instance of the single-sink vpn problem with sink r,
the cost of routing any spr template P = {Pir : i ∈ W} is the same as the
cost of this same routing for a single-sink rent-or-buy instance with root r and
cutoff M = b−r .

Proof. Consider any edge e. With respect to the asymmetric vpn instance, the
capacity requirement u(e) is given by

u(e) = max
D∈Hr

∑
i∈W :e∈Pir

Dir.

Let `(e) := |{i : e ∈ Pir}|; if `(e) ≤ b−r , then we see that u(e) = `(e), by setting
Dir = 1e∈Pir for all i ∈ W . If `(e) > b−r , then clearly u(e) = b−r . Thus the total
cost is ∑

e∈E
c(e) min{`(e), b−r },
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exactly the ssrob cost of the same routing.

The following is immediate from the concavity of the rent-or-buy cost
function:

Proposition 7.6. Any ssrob problem has an optimal solution whose support
is a tree.

Proof. Let f be a flow giving an optimal solution to the rent-or-buy instance,
chosen so that supp(f) is setwise minimal. We show that then supp(f) must
form a tree.

Let us consider f as a directed flow, where each terminal sends flow to
the sink. If there is any directed cycle in the support of f , then we may
simply reduce flow on this cycle until some arc becomes zero; this does not
increase the cost since our cost function is nondecreasing. So we may assume
our support is acyclic in the directed sense. Suppose now that there is some
undirected cycle K in the support which by assumption corresponds to some
forward (traversing K in order) arcs F and some reverse arcs R. Let ε =
min{f(a) : a ∈ R ∪ F}. Define two solutions f+, f− by f±(a) = f(a) ± ε for
a ∈ F , and f±(a) = f(a) ∓ ε for a ∈ R. By concavity of the rent-or-buy cost
function, C(f) ≥ (C(f+) + C(f−))/2. Then since f was an optimal solution,
C(f+) = C(f−) = C(f). Hence both f+ and f− are optimal, and one of them
must have smaller support than f , a contradiction.

Note that the preceding result shows that in the case of single-sink hose
models, optspr = opttr. It is not the case that optmpr = opttr in this
setting however: if that were the case, ssrob would be polynomially solvable.
Because of this tree structure, arguing why the gap holds in the case of spr is
considerably simpler than for mpr. The argument contains some intuition as
to why the gap also holds for mpr, so we outline this approach now.

Suppose the optimal spr solution uses only one edge rv from δ(r). Then
in the spr solution, everyone must route to v in G; by Proposition 7.6, this
solution has the form of some tree T . Since G was bounded degree this means
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that a constant fraction of the terminals must use long paths to r, of length
logd(n). If these all had to pay one unit along their whole path then this
already costs Ω(n log n). But it is not as easy as that; if we have a subtree Tw
rooted at node w that contains at least b−r = βn nodes, then in fact we only
need to pay for b−r units on the edge out of w.

Imagine removing these “heavy” edges of T which are used by more than
βn terminals. This leaves a number of subtrees, each containing at most βn
terminals. If T is fairly balanced, there are around Θ(n/(βn)) = Θ(1/β) such
subtrees. (If T is very unbalanced on the other hand, there could be many
more—consider a caterpillar. For the full proof, one must use the increased
cost of the heavy edges to obtain the required bound.)

In each such subtree, a good fraction of the leaves are a distance roughly
log βn from the root of this subtree. Since there is no cost sharing within this
subtree, these nodes really do pay βn log(βn). Thus the subtrees combined pay

Ω (1/β · βn log(βn)) = Ω (n log(βn)) .

If we set β = 1
logn , this yields a cost of Ω(n log n).

To make the above argument precise, we would need to deal with possibly
multiple edges into r, as well as unbalanced solution trees. Since this does not
extend to establish the gap between mpr and fr, we instead turn to this latter
problem; this will immediately imply the gap between spr and fr.

7.4.4 Buy-and-rent: a logarithmic gap between FR
and MPR

Analyzing the mpr model is more difficult, partially because the analogue
of Proposition 7.6 does not hold; we cannot assume that the solution has a
convenient tree structure.

Let us first examine more closely the cost on edges induced by an mpr
routing template for a single-sink vpn problem. As in Observation 7.3, a
capacity allocation is feasible if it can support the routing of any βn terminals
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routing to r simultaneously, using the given routing template. If terminal i
routes according to an i-r-flow fi, then the capacity required for an edge e is

max
D∈Hr

∑
i∈V

Dirfi(e) = max
W⊆V :|W |=βn

∑
i∈W

fi(e), (7.2)

where recall that Hr is the set of single-sink hose matrices. In other words, the
capacity needed on edge e is just the sum of the βn largest values of fi(e).

We introduce a new routing cost model which we call (single-sink) buy-
and-rent (bar). This exactly models the mpr cost model defined above, but
is more manageable in terms of analysis. In the buy-and-rent problem, there
are costs on the edges, and unit demands from some subset W of terminal
nodes. Each terminal wishes to fractionally route one unit of demand to the
sink r. Apart from the costs c(·) on the edges, we also have a parameter M .
The difference from rent-or-buy is that we may now purchase some capacity
amount γ(e) ∈ [0, 1] (in rent-or-buy we would buy an infinite capacity link),
and the interpretation is that every terminal is allowed to use up to γ(e) units
of capacity on the edge. If a terminal chooses to route any more on that edge,
then it must pay for the additional rental cost. The cost of purchasing the γ(e)
capacity on an edge e is Mγ(e)c(e).

Buy-and-rent can be considered as an LP relaxation of single-sink rent-
or-buy. This formulation is in fact very similar to the LP relaxation used by
Swamy and Kumar [129] to give constant factor approximation algorithms for
connected facility location and single-sink rent-or-buy. Their formulation is
stronger however (in that the optimum for their LP lies between the bar and
spr optima), and so does not exactly model the mpr problem. In particular, in
buy-and-rent, solutions may conceivably use flow paths that alternate several
times between rented capacity and purchased capacity. In contrast, a solution to
the LP of Swamy and Kumar [129] always has a connected “core” of purchased
edges containing the sink node and terminals use rented capacity to route to
that core.
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Proposition 7.7. On a graph G with edge costs c(·), terminal set W and sink
r ∈ W , any multipath solution to the single-sink vpn problem with sink capacity
b−r = M has the same cost when considered as a solution to the buy-and-rent
problem with parameter M .

Proof. Let k = |W |, and label the terminals 1 through k. We may assume
M ≤ k. Let P = {fi : i ∈ W} be any mpr template for the single-sink vpn
problem. We construct a bar solution with parameter M using the same
routing template; so terminal i will use flow fi. For the bought capacity,
consider an arbitrary edge e, and let π be a permutation of {1, 2, . . . , k} so that

fπ(1)(e) ≥ fπ(2)(e) ≥ · · · ≥ fπ(k)(e). (7.3)

We then purchase γ(e) = fπ(M)(e) units of capacity on edge e. This guarantees
that for any edge, none of the terminals π(j) with j > M pays to route
on edge e, since we purchased enough capacity for them to travel for free.
Each terminal π(j) with j ≤M must pay the rental cost to route an amount
fπ(j)(e)− fπ(M)(e) ≥ 0. This costs

c(e)
∑
j≤M

(
fπ(j)(e)− fπ(M)(e)

)
= c(e)

∑
j≤k

fπ(j)(e) − Mfπ(M)(e)
 .

Since the purchased capacity costs Mc(e)fπ(M)(e), the total buy-and-rent cost
is

c(e)
∑
j≤M

fπ(j)(e),

which is the cost of edge e in the mpr template using (7.2).
Conversely, suppose that we have a minimum cost solution for bar, and

consider the robust design cost for using the same routing template. Again,
consider a fixed edge e and π satisfying (7.3).

We claim that we may assume γ(e) = fπ(M)(e). For suppose γ(e) were
larger than this, and consider the effect of reducing it by some sufficiently small
ε > 0. The purchase costs would decrease by εMc(e). The rental costs for
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terminals π(j) for j ≥M would be unaffected, and the rental costs of terminals
π(j) with j < M would increase by at most εc(e). Thus the total increase in
rental costs are at most Mεc(e), which is no more than the savings in purchase
costs. Similarly, if γ(e) < fπ(M)(e), then increasing the bought capacity γ(e)
by some small ε > 0 costs εMc(e). The reduction in rental costs is at least the
reduction in rental cost of the first M terminals, which is εMc(e), and thus the
overall cost does not increase as a result of increasing γ(e).

So assuming this, the total cost paid on edge e is just the purchase cost
Mc(e)fπ(M)(e) plus the rental cost c(e)∑j≤M(fπ(j)(e) − fπ(M)(e)). This is
identical to the robust design cost when using the same template P .

We again take β = 1/ log n, so M = βn = n/ log n. We now prove that
any solution to the bar problem on our expander instance is expensive; this
together with the preceding proposition implies our main result, Theorem 7.4.

Theorem 7.8. Any solution to the bar problem on the expander instance has
cost Ω(n log n).

Proof. Consider an arbitrary bar solution, determined by bought capacity γe
on each edge, and a flow template P = {fi : i ∈ W}.

Let γ(δ(r)) := ∑
v∈V γvr be the total bought capacity on the port edges

(these are the edges connecting r to the nodes in V ), and let γ(E) := ∑
e∈E γe

be the capacity bought in the expander. The cost of buying capacity in the
expander is then M · γ(E), so we may assume that γ(E) < log2 n, or else
the solution already costs Ω(n log n). A similar argument for port edges (but
recalling that these edges cost log n) allows us to assume that γ(δ(r)) < log n.

For a terminal v, let Bi(v) be the set of nodes (or sometimes, their induced
graph) in the expander that are a distance at most i from v. We are particularly
interested in balls of radius R := blogd

√
nc − 1 = blog n/(2 log d)c − 1; we use

B(v) as shorthand for BR(v). Note that since G is d-regular,

|B(v)| ≤
R∑
i=0

di ≤ dR+1 ≤ n1/2.
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Let γE(v) := ∑
e∈E:e⊂B(v) γ(e) and γP (v) := ∑

w∈B(v) γ(wr). A single γ(e)
for an edge e = u1u2 contributes to many γE(v)’s, but not too many:

|{v : e ⊂ B(v)}| ≤ |{v : u1 ∈ B(v)}| = |B(u1)| ≤ n1/2.

So we must have that∑
v∈V

γE(v) ≤ n1/2γ(E) ≤ n1/2 log2 n. (7.4)

Similarly, ∑
v∈V

γP (v) ≤ n1/2 log n. (7.5)

Consider an arbitrary terminal v. The unit of flow from v can be divided
up into three types depending on how the flow enters r:

• A fraction µrv of flow that rents on the port edge it uses.

• A fraction µbv of flow that uses bought port capacity, on a port within a
distance R from v.

• A fraction µtv representing all remaining flow; this flow must “travel” and
use port edges that are further than R from v.

Clearly µrv + µbv + µtv = 1.
We now aim to find a lower bound on the total rental cost paid by the

terminals. Flow that rents the port edge must pay log n just for this edge,
giving a cost of µrv log n. Now consider the µtv fraction of flow that travels
outside the ball B(v) in the expander before using a port edge. This flow must
cross each of the cuts Ki := δ(Bi(v)), for 0 ≤ i ≤ R.

The maximum amount of flow that can travel across cut Ki for free (using
the bought capacity) is γ(Ki), and so there is a rental cost of at least µtv−γ(Ki)
in crossing cut Ki. Summing over all the cuts, we find that the rental cost
associated with this travelling flow is at least

R−1∑
i=0

(µtv − γ(Ki)) ≥ Rµtv − γE(v).
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Thus the rental cost associated with terminal v is at least

log n · µrv +Rµtv − γE(v).

Summing this over all terminals v, we obtain a total rental cost of at least

Crent ≥
∑
v∈V

(log n · µrv +R · µtv)−
∑
v∈V

γE(v)

≥ R
∑
v∈V

(µrv + µtv)−
∑
v∈V

γE(v) since R ≤ log n

≥ R
∑
v∈V

(µrv + µtv)− n1/2 log2 n by (7.4).

Finally, note that

∑
v∈V

(µrv + µtv) =
∑
v∈V

(1− µbv) ≥
∑
v∈V

(1− γP (v))

≥ n− n1/2 log n by (7.5).

Thus

Crent ≥ R · (n− n1/2 log n)− n1/2 log2 n

= Ω(n log n),

since R = Θ(log n).
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Conclusion

We have made substantial progress on a number of questions related to robust
network design. In particular, we have:
• resolved the vpn Conjecture (positively), as well as its multipath gener-

alization (negatively),

• demonstrated that the general robust network design problem with a
separable universe is hard to approximate with polylogarithmic factors,

• investigated the “tree demand” model that generalizes the symmetric
hose model, obtaining positive approximation results, and

• compared dynamic and oblivious routing, to demonstrate a worst-case
logarithmic gap, even for the asymmetric hose model.

However, there are still many interesting unanswered questions. We survey
some of the most interesting ones here.

The gap between MPR and SPR in the symmetric hose model In
Chapter 4, we showed that the optimal mpr solution may be fractional. A gap
of 9/8 was demonstrated between the mpr and spr models. An upper bound
of 2 on this gap follows from the proofs of Fingerhut et al. and Gupta et al.
It would be interesting to close this gap. Another, possibly easier, question is
the following. Is there always an integral mpr optimum if the network is a
series-parallel graph?

125
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The approximability of single-sink robust network design Our inap-
proximability result for the general robust network design problem is via a
reduction from multicommodity buy-at-bulk. However, as we have seen the
single-sink buy-at-bulk problem is O(1)-approximable. It is then natural to ask:
does the single-sink robust network design problem, where all nonzero demand
terminates at a specified root node r, admit a constant-factor approximation
algorithm?

The complexity of the tree demand problem We showed that the hier-
archical hubbing algorithm proposed for the tree demand problem in Chapter 6
has a constant factor approximation ratio. This can be thought of as a general-
ization of the factor 2 result for the symmetric vpn problem [58, 77]. For the
special case where the demand tree is simply a star, the hierarchical hubbing
algorithm exactly finds the cheapest shortest path tree on the terminals; this is
precisely the optimal tree solution, and hence by the result of Chapter 3, is
optimal.

This raises the obvious question: is the hierarchical hubbing algorithm
always optimal, for any demand tree? This would be a very pleasing general-
ization of the vpn result.

Generalizations of the tree demand model There is a natural progres-
sion from the tree demand model discussed above: instead of taking the
polytope defined by demands routable on a given tree T , we consider demands
routable on a given graph G. We are then trying to essentially simulate G
with an oblivious routing on the network. Another possible generalization
comes from the cut interpretation of tree demands. A tree demand universe is
specified by a laminar family of cuts on the demand graph (i.e., a complete
graph on the terminals) with an upper bound associated to each cut in the
family. A feasible demand must not exceed any of these cut constraints. A
natural generalization allows for upper bounds to be specified on any family of
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cuts, not necessarily nested. Can these generalizations still be approximated
within a constant factor?

It may be sensible to define a directed version of tree demands, in corre-
spondence with the asymmetric hose model. One possible way to do this is to
simply orient the edges of the tree, while avoiding sinks or sources at interior
nodes. More precisely: pick a subset R of the leaves, and orient all edges
away from R. However, unlike with the asymmetric hose model, this model
would be incomparable with the undirected tree demand model; a common
generalization would be preferred.

Practical but competitive routing schemes We have seen that in some
situations, oblivious routing may be much more expensive than dynamic routing.
However, dynamic routing is not practical to implement. Is there any space
between these extremes for a routing scheme that is somewhat practical, but
competitive with dynamic routing in the worst case? This is a fairly ill-specified
question: what is a “practical” routing scheme? One might ask for a routing
where the information needed to determine the flow template for a particular
pair is small or localized in some sense, so that the communication overhead
required to implement the routing scheme is small.

This question falls within the framework of adaptive robust optimization;
given that these problems are in general highly intractable, there is perhaps
reason to be pessimistic. Żotkiewicz and Ben-Ameur [138] consider the possibil-
ity of partitioning the demand universe, and using different routing templates
in different parts; theoretical results are however scarce. Scutellà [121] defines
a model where two distinct routing templates can be supplied along with
the capacity reservation; the requirement is that any feasible demand can be
feasibly routed using at least one of the two templates. This kind of model
provides a spectrum between oblivious and dynamic routing, by allowing more
and more distinct routing templates. However, in [121] results are obtained
only for a rather restricted version of this model.
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Approximability of dynamic routing In [42], it is asked whether there
exists a constant factor approximation algorithm for dynamic routing in the
general rnd model. This question is open even for the asymmetric hose model;
currently, nothing better than an O(log n) factor is known. In particular, using
the mpr solution as an approximation for the dynamic routing optimum can
be a logarithmic factor off, as was shown in Chapter 7.

A 2-approximation for dynamic routing in the symmetric hose model follows
from [58, 77] as already discussed. It is still open as to whether this is even
NP-hard.
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