
Optimization of neural networks by reducing

floating-point precision of weights during

training

Dipanjan Dutta, School of Computer Science

McGill University, Montreal

September, 2020

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Computer Science

c©Dipanjan Dutta, 2020

Abstract

Deep learning is an iterative process with many tunable parameters. Repeated and long run-

ning executions benefit from optimizations that improve learning and testing performance,

both in terms of time and power consumption. A popular approach to optimization focuses

on faster learning by clipping weight values to a range (quantization) and converting them

to fixed point precision. Quantization, however, results in significant loss of accuracy and

requires further optimization to reach performance of full precision models, or use other

resources, such as a lookup table [23] to compensate for the information loss. In this work

we focus on reducing precision more within the spirit of the native IEEE 754 standard for

the representation of float values. We propose a hierarchy of approaches that reduce the

number of mantissa bits of a neural network weights based on the actual values at the end

of every batch of training, as simulated through a manual mantissa reduction. At a coarse

level we experiment with this approach applied to an entire learning network, extending the

approach to a level-by-level precision adjustment to better adapt to the internal precision

needs of different layers. We further propose a novel fine-grain approach, applying precision

adjustment to groups of individual weights, dynamically clustered into “buckets,” each hav-

ing different precision. The approach performs almost as good as a full precision network in

terms of training accuracy, but allowing for reduced space requirements, and a significantly

lower prediction time.

i

Abrégé

L’apprentissage en profondeur est un processus itératif avec de nombreux paramètres réglables.

Les exécutions répétées et de longue durée bénéficient d’optimisations qui améliorent les

performances d’apprentissage et de test, à la fois en termes de temps et de consomma-

tion d’énergie. Une approche populaire de l’optimisation se concentre sur un apprentissage

plus rapide en découpant les valeurs de poids dans une plage (quantification) et en les con-

vertissant en précision en virgule fixe. Cependant, la quantification entrâıne une perte de

précision significative et nécessite une optimisation supplémentaire pour atteindre les perfor-

mances des modèles de précision totale, ou utiliser d’autres ressources, telles qu’une table de

recherche [23] pour compenser la perte d’informations. Dans ce travail, nous nous concen-

trons sur la réduction de la précision davantage dans l’esprit de la norme native IEEE 754

pour la représentation des valeurs flottantes. Nous proposons une hiérarchie d’approches qui

réduisent le nombre de bits de mantisse d’un poids de réseau neuronal basé sur les valeurs

réelles à la fin de chaque lot d’entrâınement, comme simulé par une réduction manuelle

de la mantisse. À un niveau grossier, nous expérimentons cette approche appliquée à tout

un réseau d’apprentissage, en étendant l’approche à un ajustement de précision niveau par

niveau pour mieux s’adapter aux besoins de précision internes des différentes couches. Nous

proposons en outre une nouvelle approche à grain fin, appliquant un ajustement de précision

à des groupes de poids individuels, regroupés dynamiquement en “ seaux ”, chacun ayant

une précision différente. L’approche fonctionne presque aussi bien qu’un réseau de précision

complète en termes de précision d’entrâınement, mais permet des besoins d’espace réduits

et un temps de prédiction nettement plus court.

ii

Acknowledgements

I would like to offer my sincere gratitude to my supervisor, Professor Clark Verbrugge, for

the continuous support of my research, advice, mentorship, patience and time. His guidance

helped me throughout the duration of my research and in writing this thesis. I could not

have asked for a better supervisor for my Master’s thesis than him.

I would like to thank the Department of Computer Science, NSERC and the COHESA

research network for their funding support during my studies.

I would like to thank my lab mates: Ivan Miloslavov, Adrian Koretski and Wael Al Enezi,

for the stimulating discussions, debates and for all the fun we had over the years.

I would like to thank my friends, especially Mr. Ajinkya Vaidya, for their support, words

of encouragement, and memories that made this journey easier.

Finally, I would like to thank my family and my significant other, Ms. Ena Ghosh, for

having faith and patience over these three years and believing in me every step of the way.

iii

Table of Contents

Abstract . i

Abrégé . ii

Acknowledgements . iii

List of Figures . vii

List of Tables . viii

1 Introduction 1

1.1 Motivation . 1

1.2 Methodology and experiments . 2

1.3 Contributions . 3

1.4 Road map . 4

2 Background and Related Work 6

2.1 Artificial Neural Networks . 6

2.1.1 Learning in neural networks . 7

2.1.2 Multi-layer perceptron . 9

2.2 Convolutional Neural Networks . 11

2.2.1 Linear Image filter . 11

2.2.2 Layers in a CNN . 12

2.3 AlexNet . 13

2.4 IEEE 754 Standard for Floating Point Arithmetic 14

2.5 Related work . 16

2.5.1 Quantization . 16

2.5.2 Hardware optimization . 18

2.5.3 Floating point optimization of weights 20

iv

3 Experimental Setup 22

3.1 Data sets . 22

3.1.1 MNIST Database . 22

3.1.2 Fashion-MNIST database . 24

3.1.3 CIFAR10 Database . 25

3.2 Networks . 25

3.2.1 Dense network . 26

3.2.2 Convolutional Neural Network . 28

3.2.3 Modified AlexNet . 28

3.3 System configuration and hyperparameter selection 30

4 Methodology 31

4.1 Floating point reduction of weights . 31

4.1.1 The Lambda callback function . 32

4.1.2 The bitstring Python package . 34

4.1.3 Reduction of mantissa bits in Python 38

4.2 Mantissa bit reduction strategy . 41

4.2.1 Whole network precision reduction 43

4.2.2 Layerwise precision reduction . 44

4.2.3 Increasing bucket reduction . 44

4.2.4 Decreasing bucket reduction . 47

4.2.5 Other algorithms for benchmarks . 50

5 Results 52

5.1 Whole network precision reduction . 52

5.2 Variance analysis . 56

5.3 Layerwise precision reduction strategy . 58

5.4 Increasing bucket reduction . 61

5.5 Decreasing bucket reduction . 66

5.6 Prediction on test data . 67

6 Conclusion and Future Work 74

v

List of Figures

2.1 Example of a multilayer perceptron network. It includes different types of

layer, such as the input (flatten) layer, the hidden dense layer, a dropout

layer for regularization and an output layer. Each node is connected to all the

node in the next layer. 10

2.2 Diagram of a sample convolutional neural network 11

2.3 Diagram of the AlexNet neural network architecture [34] 14

2.4 64 and 32 bit representations of IEEE-754 standard for floating points 15

3.1 Sample images from the MNIST dataset . 23

3.2 Sample images from the Fashion-MNIST dataset 24

3.3 Sample images from the CIFAR10 dataset with labels 25

3.4 Structure of the dense network . 26

3.5 Structure of the convolutional neural network 28

5.1 Whole network precision reduction of dense network on the MNIST data set 53

5.2 Whole network precision reduction on all the different datasets and networks 55

5.3 Whole network precision reduction on all the different datasets and networks 56

5.4 Training curves of one layer-wise precision reduction strategy of the CNN on

the MNIST dataset . 57

5.5 Layerwise precision reduction on all the different datasets and networks . . . 59

5.6 Layerwise precision reduction on all the different datasets and networks . . . 60

5.7 In-layer forward bucketing precision reduction on all the different datasets and

networks . 62

5.8 In-layer forward bucketing precision reduction on all the different datasets and

networks . 63

5.9 Distribution of weights in the first convolution layer of the CNN during train-

ing of forward bucketing precision reduction on the Fashion MNIST dataset . 64

vi

5.10 Distribution of weights in the first convolution layer of the CNN after training

of forward bucketing precision reduction on the Fashion MNIST dataset . . . 65

5.11 In-layer reverse bucketing precision reduction on all the different datasets and

networks . 67

5.12 In-layer reverse bucketing precision reduction on all the different datasets and

networks . 68

vii

List of Tables

2.1 Examples of Activation Functions . 7

2.2 IEEE-754 standards for 16, 32 and 64 bit representations 15

3.1 System configuration and software versions 30

3.2 Model and environment hyperparameters . 30

4.1 Arguments for calling the LambdaCallback function 34

4.2 List of format specifier tokens for packing . 37

4.3 List of endianness (left) and format (right) characters 37

5.1 Explanation of legends in the graphs . 54

5.2 Prediction accuracy (in percentage) on the test data1 69

5.3 Prediction time (in seconds) on the test data1 70

5.4 Total number of trainable weights in the network 70

5.5 Total number of weights in each bucket of the CNN post training on Fashion

MNIST dataset . 70

5.6 Total number of weights in each bucket of the CNN post training on Fashion

MNIST dataset . 71

viii

Chapter 1

Introduction

In this thesis, we study and research the optimization of neural networks by reducing floating-

point precision of weights during the training phase. In section 1.1 we discuss our motivations

for the research. In section 1.2 we list and briefly describe our methodology and experiments,

along with our results and contributions. In section 1.3 we present a road map of the chapters

composing this thesis.

1.1 Motivation

Neural networks are a popular and powerful tool and a cornerstone for solving modern day

problems using machine learning. However, with the increase in volume and quality of data,

machine learning algorithms become more complex and training them requires greater time.

Thus, there is a need for optimization of these algorithms. Extensive research has been done

into creating optimization techniques that involve the reduction in the amount of memory

used to store the parameters of neural networks to reduce storage space occupied by the

network and arithmetic computation time. This has led to development of ideas in both

software and hardware domains. Software optimizations such as quantization has been ap-

plied to reduce the weights of neural networks to reduce computation and save memory by

converting the weights into fixed-point representation of float values. Quantization, in some

cases, has been aggressively implemented to reduce the weights of a network even down to

binary values [26]. These quantization techniques, although effective in reducing computa-

tion time of arithmetic operations, require further optimization techniques and fine-tuning

to be accurate and perform as well as a full precision model [11, 21, 54]. In the hardware

domain, improvements to general-purpose GPUs and CPUs have been developed by leading

1

companies like NVIDIA [47] and Google [30] respectively. Dedicated hardware for machine

learning purposes are also developed using Field Programmable Gate Arrays (FPGAs) to

improve of neural network [19,45].

Because of the IEEE 754 standard of floating-point representation being already imple-

mented by most processors for float operations, we decided to research into a possibility of

creating an optimization technique that would leverage the standard, while keeping the al-

gorithm simple and allowing for flexibility of precision in the network. Such an optimization

technique can also serve as a theoretical simulation for further exploring hardware techniques

to optimize floating-point operations during the training of neural networks [31]. Thus, in

our research, we explore the possibility of reducing the weights in a neural network while

maintaining use of floating-point representation, aiming to achieve results comparable to

networks trained with full precision.

1.2 Methodology and experiments

Our search for an optimization strategy began with the handling and manipulation of float

values in the IEEE 754 standard inside the environment of Python, since Python has sim-

ple, concise and readable code with an extensive framework of libraries for machine learning

(Tensorflow, Keras etc.). Python, however, does not provide an easy in-built method of

manipulating bits or setting bit-widths of floats. It does support 16-bit, 32-bit and 64-bit

floating-point precision and allows the programmer to switch between the precisions, but

it does not allow any other form of bit manipulation and handling. We leverage a module

developed in Python, “bitstring” that converts a float to its IEEE 754 format and allows

for manipulation of the bits. Using this module, we decided to develop strategies to reduce

precision of weights in neural network during training, while maintaining a floating-point

representation, by pruning the trailing bits of mantissa in the weights to a certain number

of bits and converting it back to the float value.

We decided to explore possible strategies of precision reduction. Inspired from the general

strategies of precision reduction implemented in quantization, we created two strategies to

provide a general baseline and point of comparison. The first strategy involved reducing the

precision of the entire network to a common precision for the mantissa of the weights. The

second strategy involved selecting a different precision for every layer of the network. Since

the possibilities of network configurations are large, we decided to experiment this strategy

by selecting a certain precision for each type of layer in the network that has learnable pa-

2

rameters.

Having designed two preliminary approaches of precision reduction, we explored further

to try and reduce the precision of the weights on a finer granularity than that of a layer. Real-

izing that selecting precision for each individual weight is cumbersome and time-consuming,

we decided for a trade-off. We developed a method that involves classifying the weights

of every layer into clusters, or “buckets”, and selecting a precision for the bucket. All the

weights in a bucket get reduced to the precision chosen for that bucket. This method al-

lows for a greater flexibility of precision reduction than that of a layer, while not being as

intensive in computational requirements as that of weight-by-weight basis. As mentioned in

the previous paragraph, because of the multitude of possibilities of selecting a precision for

a bucket, we decided to select three different values of precision and train the models.

Training the models with the same network configuration as the previous methods and

averaged over multiple iterations to reduce the effect of random initial weights and dataset

sampling, we found an interesting result, which showed that the bucket approach trained

quite well, with the choice of increasing the precision by 5 bits every bucket performing on

par with the full precision model. Surprisingly, while performing predictions on the test

data, the bucketing approach had an improved result, with some settings of the strategy

having prediction accuracy similar to that of the full precision network, taking significantly

less time to predict, while reducing the precision of the weights in the network by over 70kb

in some cases. The strategy to classify weights into buckets based on value for precision

reduction shows significant promise and is almost as accurate as the full precision model,

while taking less time to predict and reducing precision to save memory and computational

time.

1.3 Contributions

This experimental work provides a few major contributions towards further exploration of

floating-point precision reduction of weights.

• We provide a means of using a floating-point representation in line with IEEE-754

for precision reduction in neural networks. Almost all modern-day CPUs (Intel x86,

AMD, PowerPC and other RISC processors) use IEEE 754 as their floating-point arith-

metic standard. Floating-point representation is more flexible and has a larger range

of values. Using floating-point representation for weights does not require additional

3

conversion to fixed-point precision in the software level, or other optimization for pre-

venting information loss. This opens up avenues of developing hardware compliant

with modern processors for custom precision.

• We propose an unique algorithm to reduce precision of weights in a neural network

while maintaining the spirit of the IEEE 754 floating point standard. We develop

algorithms by going step-by-step into a finer level of abstraction, starting with reducing

the precision of all the weights in the entire network, then investigating the effect

of different precision in different layers, up to our technique of bucketing individual

weights based on their values and reducing the weights in a bucket to an assigned level

of precision for that bucket. The latter approach is aimed at associating each weight

with the precision that matches the weight significance. This novel algorithm is not as

generalized as a whole network precision reduction, while being not as computationally

intensive as determining and setting the precision of every single weight. It is more

robust and more tolerant to information loss due to reduction of precision. Using this

algorithm, we create a simulation to successfully reduce precision of weights during

training that would hopefully facilitate the development and design of hardware to

support custom precision.

• We experimented on the designed strategy of precision reduction mentioned above,

which trains with an accuracy at par with, or in some cases better than networks trained

with full precision. Although our software-simulated precision reduction magnifies

training time, during prediction, the network trained on the designed strategy takes

significantly less time to predict, while reducing a greater number of bits over the other

strategies developed for comparison. Given that our experiments were a simulation, the

results seem to indicate that the greater number of bit reduction by the “bucketing”

would translate to a greater amount of memory saved on a hardware with custom

precision.

1.4 Road map

We present a total of 6 chapters in this thesis. Each of the chapters have been briefly

explained in the following list.

4

• Chapter 1 (the current chapter) provides an introduction to our research, the moti-

vation behind the research and exploration of floating-point precision reduction, the

methodology and experimentation performed for our research and a road map of the

chapters of the thesis.

• Chapter 2 encompasses a brief discussion about neural networks used in the experi-

mentation of our research, floating-point precision standards and an overview of the

related work in the field of our research.

• Chapter 3 presents a brief explanation of the datasets and networks used in our ex-

periments, along with the system information and hyperparameter settings for our

experiments.

• Chapter 4 is a discussion of the Python packages used to implement the different parts

of our experiments, an explanation the strategy developed for floating-point precision

reduction, benchmarks and pseudo codes of these strategies.

• Chapter 5 is a presentation and discussion of the results obtained upon performing the

experiments designed in the previous chapter, along with an analysis of variance in our

experiments and prediction performance of the various strategies.

• Chapter 6 offers our concluding remarks, summarizing our research work and results,

and possible avenues of future work that can potentially be promising to the extension

of this research.

5

Chapter 2

Background and Related Work

This chapter explains the fundamentals of a neural network. This includes the different types

of neural networks used in our experiments - the multilayer perceptron, a simple convolutional

neural network and a larger AlexNet network, the different types of layers that comprise a

neural network, how a neural network learns and the backpropagation algorithm. We also

discuss the IEEE 754 floating point convention and provide a detailed discussion of previous

work done on optimization of weights in a neural network layer.

2.1 Artificial Neural Networks

Neural networks, as the name suggests, are composed of a several neurons. Artificial neural

networks are derived from the structure and composition of the nervous systems in biological

organisms. Artificial Neural Networks are composed of artificial neurons (also referred to as

nodes). These neurons are connected and organised in different ways to perform different

tasks such as image recognition and synthesis, object detection, language translation, pre-

dictive modelling, medical diagnosis, computer vision, etc.

A neuron in an artificial neural network is very similar to a biological neuron. Every

neuron has one or more inputs and one or more outputs. Every input to a neuron is mul-

tiplied by a floating-point number (or ”weight”) to create a weighted signal. The weight

signifies the relative importance of that input. These weighted signals are then used as input

to an output function that creates the output of the neuron. Sometimes there is an optional

activation function, which can be something like the weighted sum of all the signals to the

neuron, the result of which is compared to a threshold. If the activation function value is

more than the threshold, then the result of the output function is generated and propagated

6

to following neurons, otherwise the neuron does not generate any results.

Every neuron performs the following actions:

• The neuron receives n signals as input that represents information about the data

[X1, X2, ...Xn]. It then produces a linear combination of the input data and the weights

of the corresponding connections and adds the results together.

S =
n∑

i=1

Xiwi (2.1)

• The neuron then implements an activation function on the result of Equation (2.1)

Y = σ(S) (2.2)

and generates the final output. The activation functions introduce non-linearity into

the neuron. Without the activation functions, the end result of the entire network will

be a combination of linear transformations, which is the equivalent of having a single

neuron [12]. Some of the common activation functions are listed in Table 2.1

Function Equation Range
Linear σ(S) = aS, a ∈ R (−∞,∞)

Sigmoid σ(S) = 1
1+e−S (0, 1)

Tanh σ(S) = 2
1+e−2x − 1 (−1, 1)

Rectified Linear Unit (ReLU) σ(S) = max(0, S) (0, S)
Exponential σ(S) = e−S (0,∞)

Table 2.1: Examples of Activation Functions

The arrangement of these neurons and the connections between them are different for dif-

ferent neural network architectures. The network architecture is designed to learn the most

from data while reducing the prediction error of the network.

2.1.1 Learning in neural networks

Learning in an artificial neural network involves the recalibration of the weights, biases and

activations of the nodes in the network. There are several steps that are followed to create

a network and train it.

7

The first step is the determination of the network architecture. That includes decisions

like the number of hidden layers, number of nodes in each layer and the number of nodes

in the output layer (depending on the number of output classes). The number of nodes in

the input layer also follows from the context of the dimension of input data. However, there

is no deterministic approach to ascertain the ideal number of nodes in the hidden layer(s),

although there has been some discussions about the ideal number of nodes in the hidden

layers [6, 36,49,57].

Once the network architecture is determined, the process of adjusting the weights of a

neural network is done by the gradient descent optimization algorithm [7]. The gradient

descent approach is utilised by the supervised learning algorithm called backpropagation.

The steps involved in the training of neural networks are as follows (in order):

• Initialization. Weights and biases are randomly initialized across the network.

• Forward pass. Each item in the training data set is fed into the network one after

the other. Let us assume the training data consists of D data points, each of which

has an input vector xi and the expected output vector yi. Then the forward pass

computations are performed as:

yj = σ

(
n∑

i=1

xiwji + bj

)
(2.3)

where yj is the output of the jth layer, σ is the activation function, xi is the output

from the ith node of previous layer (or the input if it is the first layer), wji is the weight

of the connection from the ith node of previous layer to the jth node of current layer

and bj is the bias of the current layer.

• Backward pass. For each of the input-output pair (xi,yi), we compute the backward

phase by computing ∂C
∂wk

ij
, starting from the output layer and proceeding to the first

layer, where C is the individual error term or value of the cost function and wk
ij is the

weight of the connection between node i in layer k − 1 and node j in layer k. The

backward pass is mainly composed of three steps:

1. First, we evaluate the error for the final/output layer δout using the equation:

δoutj =
∂C

∂aoutj

σ′(zoutj), (2.4)

8

where δoutj is the error by the weights of the jth neuron in the output layer,
∂C

∂aoutj
just measures how fast the cost is changing as a function of the jth output

activation value. The equivalent matrix-based equation is:

δout = ∇aC � σ′(zoutj), (2.5)

which essentially transforms equation 2.4 to a dot product.

2. We propagate the error backwards through the layers. For every layer l = m −
1,m− 2, ..., 3, 2, we calculate the loss δl using the formula:

δl = ((wl+1)T δl+1)� σ′(zl), (2.6)

where (wl+1)T is the transpose of the weight matrix wl+1 for the (l+ 1)th layer. If

we know the error δl+1 at the (l+ 1)th layer, applying the transpose of the weight

matrix gives us a measure of the error at the output of the lth layer. Then taking

the dot product of the activation function of that layer moves the error through

the activation function of layer l, giving us the error δl for layer l.

Combining equations 2.5 and 2.6, we can calculate the errors of all the layers,

starting from the output layer.

3. Finally, we calculate the gradients and update the weights and biases of the net-

work. The gradient of the cost function with respect to the weights and biases,

respectively, are as follows:
∂C

∂wl
ij

= al−1j δli (2.7)

∂C

∂bli
= δli (2.8)

This process repeats over and over until we stop training, or the error is below the tolerance

specified for the network.

2.1.2 Multi-layer perceptron

This section explains in detail the most fundamental type of artificial neural network - the

multilayer perceptron (or MLP).

Multilayer perceptrons contain three types of neurons:

9

• Input neurons: These neurons form the first layer of the network (also called the input

layer). These take vector encoding of the data and pass on to the subsequent layers

without any computation.

• Output neurons: These neurons form the final layer of the network (also called the

output layer). These neurons receive input from the previous layer in the network

and using equations (2.1) and (2.2), generate the final output of the entire network.

• Hidden neurons: These neurons are arranged in layers (called hidden layers) that

form the backbone of the MLP network. They can be arrange in one or several layers

between the input and output layers of neurons. These neurons receive input (from

the input layer or previous hidden layers) and using equations (2.1) and (2.2), process

and generate results that are passed on to subsequent layers.

An example of such a network is shown in Figure 2.1.

28 x 28
Image

Flatten layer
784 nodes

Dense layer
512 nodes

Dropout layer
Rate=0.2

Output layer
10 nodes

Final decisionInput image

Figure 2.1: Example of a multilayer perceptron network. It includes different types of layer,

such as the input (flatten) layer, the hidden dense layer, a dropout layer for regularization

and an output layer. Each node is connected to all the node in the next layer.

10

2.2 Convolutional Neural Networks

Convolutional Neural Networks (or ConvNets or CNNs) are massively and successfully used

in image classification tasks such as speech recognition [24]. However, the inner workings

and theoretical understanding of how a CNN performs so well in solving these problems is

not clear. The most reliable and standard form of evidence is statistics and performance

evaluation metrics. In this section, we discuss the idea of a linear image filter, which forms

the basis of a CNN architecture, followed by a brief discussion of the different types of layers

in a CNN architecture.

2.2.1 Linear Image filter

A linear filter for images is an element E ∈ Rfw×fh×c, where fw is the width of the filter, fh

is the height of the filter, and c are the number of channels in the filter, which are same as

the number of channels in the input image. The filter E is convolved with the image I with

dimensions w × h × c to create the result Ī that is composed of just a single channel. The

convolution operation creates each pixel of the resultant channel by performing multiplying

each filter element, point-wise, to an element of the original image I. So even though it is

technically called a convolution, it is essentially a sliding dot product.

Figure 2.2: Diagram of a sample convolutional neural network

11

2.2.2 Layers in a CNN

Convolutional neural networks are designed with the premise of spatial correlation and trans-

lational invariance. Spatial correlation means that parts or segments of an image hold some

correlation between them in terms of relative location from one another. For example, one

eye of a dog will be within a very short distance of another eye of the dog. Translational

invariance states that an object can still be recognised irrespective of its location in the im-

age. Combining these two, it is thus ideal to develop and capture high-level features (edges,

curves etc.) in the early layers of the network and finer features (faces, eyes etc.) in later

stages of the network. The most common convolutional networks have the following different

types of layers:

• Convolutional layers: These layers convolve the inputs to these layers and pass it on

to the next layer. The input to this layer is a tensor of size n× w × h× c where n is

the number of images, w and h are the dimensions of the images and c is the number

of channels of the image (RGB etc.) Then after passing through a convolutional layer,

the image becomes abstracted to a feature map, with shape fn × fw × fh × fc where

fn is the number of images in the filter, fw and fh are the feature map dimensions and

fc are the feature map channels. A convolutional layer within a neural network should

have the following attributes:

– Convolutional kernels defined by a width and height

– The number of input channels and output channels

– The depth of the convolution filter (the input channels) must be equal to the

number channels (depth) of the input feature map

• Pooling layers: Pooling layers reduce the dimensions of the data by combining the

outputs of neuron clusters at one layer into a single neuron in the next layer. Local

pooling combines small clusters, typically 2 x 2. Global pooling acts on all the neurons

of the convolutional layer. In addition, pooling may compute a max or an average.

Max pooling uses the maximum value from each of a cluster of neurons at the prior

layer. Average pooling uses the average value from each of a cluster of neurons at the

prior layer.

• Fully connected layers: Fully connected layers connect every neuron in one layer to

every neuron in another layer. It is in principle the same as the traditional multi-layer

12

perceptron neural network (MLP). The flattened matrix goes through a fully connected

layer to classify the images.

2.3 AlexNet

AlexNet is the name of a convolutional neural network (CNN), designed by Alex Krizhevsky,

and published with Ilya Sutskever and Krizhevsky’s doctoral advisor Geoffrey Hinton [34].

AlexNet is considered one of the most influential papers published in computer vision, having

spurred many more papers published employing CNNs and GPUs to accelerate deep learning.

AlexNet was the winning entry in ILSVRC 2012. It solves the problem of image classification

where the input is an image of one of 1000 different classes (e.g. cats, dogs etc.) and the

output is a vector of 1000 numbers. It is essentially a very large convolutional neural network.

According to the paper, the net contains eight layers with weights; the first five are

convolutional and the remaining three are fully connected. The output of the last fully-

connected layer is fed to a 1000-way output layer with softmax activation, which produces

a distribution over the 1000 class labels.

• The first convolutional layer filters the 224 × 224 × 3 input image with 96 kernels of

size 11× 11× 3 with a stride of 4 pixels.

• The second convolutional layer takes as input the (response-normalized and pooled)

output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.

• The third convolutional layer has 384 kernels of size 3 × 3 × 256 connected to the

(normalized, pooled) outputs of the second convolutional layer.

• The fourth convolutional layer has 384 kernels of size 3× 3× 192

• The fifth convolutional layer has 256 kernels of size 3× 3× 192

• The third, fourth, and fifth convolutional layers are connected to one another without

any intervening pooling or normalization layers

• The fully-connected layers have 4096 neurons each

13

Figure 2.3: Diagram of the AlexNet neural network architecture [34]

2.4 IEEE 754 Standard for Floating Point Arithmetic

The IEEE 754 is a standard of floating point arithmetic that was established by the Institute

of Electrical and Electronics Engineers (IEEE) in 1985 (recently revised in 2008). The

standard addressed many problems found in the diverse floating-point implementations that

made them difficult to use reliably and while being portable. In the current world, many

hardware floating-point units use the IEEE 754 standard.

A floating-point format is specified by:

• a base (also called radix) b, which is either 2 (binary) or 10 (decimal) in IEEE 754;

• a precision p;

• an exponent range from emin to emax, with emin = 1− emax for all IEEE 754 formats.

The IEEE 754 format can specify the following:

• Finite numbers, which can be described by three integers: s = a sign (zero or one), m

is a significand (or coefficient or mantissa) having no more than p digits when written

in base b (i.e., an integer in the range through 0 to bp − 1), and q is an exponent such

that emin ≤ q+ p− 1 ≤ emax. Moreover, there are two zero values, called signed zeros:

the sign bit specifies whether a zero is +0 (positive zero) or −0 (negative zero).

• Two infinities: +∞ and −∞

• Two kinds of NaN (not-a-number): a quiet NaN (qNaN) and a signaling NaN (sNaN).

14

Figure 2.4: 64 and 32 bit representations of IEEE-754 standard for floating points

The numerical value of such a finite number is (−1)s × c × bq, whece c is the signifi-

cand or the mantissa. For example, if the base is 10, the sign is 1 (indicating nega-

tive), the mantissa is 12345, and the exponent is −3, then the value of the number is

(−1)1 × 12345× 10−3 = −1× 12345× 0.001 = −12.345.

Name Common Name Base Significand bits Exponent bits Exponent bias Min. exponent Max. exponent
binary16 Half precision 2 11 5 24 − 1 = 15 −14 +15
binary32 Single precision 2 24 8 27 − 1 = 127 −126 +127
binary64 Double precision 2 53 11 210− 1 = 1023 −1022 +1023

Table 2.2: IEEE-754 standards for 16, 32 and 64 bit representations

Since the floating point numbers are stored in binary as bits inside a computer memory,

the IEEE 754 encoding and representation in binary format is also specified separately. For

the binary formats, the exponent is not represented directly, but a bias is added so that

the smallest representable exponent is represented as 1, with 0 used for subnormal num-

bers(numbers greater than zero but smaller than the smallest number that ca be represented

using the the IEEE-754 standard of chosen precision, that is 0 < subnormal < 1.0× 2emin).

For numbers with an exponent in the normal range (the exponent field being not all ones

or all zeros), the leading bit of the significand will always be 1. Thus, in most hardware

representations, a leading 1 is usually implied rather than explicitly present in the memory

encoding, and under the standard the explicitly represented part of the significand will lie

between 0 and 1. This is known as hidden bit convention. This rule allows the binary format

to have an extra bit of precision. However, the hidden bit convention cannot be used for

the subnormal numbers as they have an exponent outside the normal exponent range and

15

scale by the smallest represented exponent as used for the smallest normal numbers. Table

2.2 shows the configurations of all the IEEE-754 standards, namely, single precision, double

precision and half precision.

2.5 Related work

There has been tremendous development in the reduction of bit-width of weights and gra-

dients in a neural network during training in order to reduce computational workload and

storage requirements for the models. Since the amount of data and complexity of problems

increases over time exponentially, researchers work to find ways to reduce the computational

workload, while trying to maintain similar levels of performance, to make neural networks

effective [2]. Some domains of precision reduction in neural networks are quantization, mod-

ifications in hardware used for training machine learning models and even reducing floating

point precision for weights and activations in a neural networks, which is our objective for

the experiment. In the following subsections, we discuss each of the above in details.

2.5.1 Quantization

Quantization essentially means the reduction of the number of bits used to represent a

number. In terms of deep learning, the weights and activations are mostly computed and

stored using 32-bit floating point representation (more commonly known as FP32). What

quantization tries to do is reduce the reduce the precision of the weights and activations of

a neural network to lower bit representations, or even to a fixed point representation [27].

This has three main advantages:

• The amount of space required to store the trained model reduces significantly.

• Memory bandwidth required for performing computations like multiplications will be

less.

• Power consumption for those computations, in turn, will be lower.

Quantization can be done quite aggressively, even reducing weights in a network to bi-

nary [11, 26, 40] or ternary [1, 37] values. This increases the computational efficiency of the

network, reducing complex multiplications to simple additions and subtractions. We can go

even farther by making activations as binary, thus removing additions altogether in favor of

16

simple bit-wise operations, as implemented in XNOR-Net [53].

There are two main approaches for quantizing neural networks. The first approach is

to train the entire network at a reduced precision. All the weights, activations and gradi-

ents are reduced to a lower precision during training. This results in a decrease in training

time and prediction time [64]. The issue that arises with this approach is that the back-

propagation algorithm is not well-defined for discrete or reduced-precision weights and ac-

tivations [9]. There have been suggested techniques on the backpropagation mechanisms in

reduced-precision training of neural networks. One such mechanism is to use a “straight-

through estimator”. Basically, during backpropagation, the network will not learn anything

if the threshold function’s derivative is zero. With this technique, the threshold unit acts

normally during the forward pass and behaves as an identity function during the backward

pass [4]. This approach is used in the design of “BinaryConnect” network by Courbariaux

et. al. [11] and the “Binary Neural Network” proposed by Hubara et. al. [26]. Courbariaux

et. al. also proposes using random rounding off to perform stochastic quantization, that

acts as a regularizing noise for the network during training This acts similarly to a dropout

layer that tries to prevent overfitting by randomly reducing the precision of weights, instead

of omitting them [11]. This is studied by Gupta et. al. extensively in their work [20]. Since

quantization discretizes the weights of a neural network, the derivative for the distribution

of the parameters must be identified. so that the model can learn during backpropaga-

tion. If the approximation function is not differnetiable, the backpropagation would fail,

and the model cannot be trained effectively. Asanovic et. al. and Holt et. al. analyzed and

tried to determine the ideal precision requirement for a network during the backpropagation

phase [3, 25]. Shayer et. al. repurposed the “local reparameterization trick” for continuous

functions proposed by Kingma and Welling [32] and assumed that parameters have defined

gradients by smooth approximation [54]. Gong et. al. has used vector quantization in

deep convolutional neural networks for non-uniform quantization of parameters, after using

k-means algorithm to cluster the weights and creating a lookup table in [16]. There have

been proposals for a more complex quantization scheme as well, where the residual of the

approximation is refined for full precision input [39]. Some other approaches to backpropa-

gation for quantized training include discretization of weights with the assumption of inputs

with a large fan-in, hence follow a Gaussian distribution [55], trying to find a “good” ap-

proximation. Others have developed “mixed precision” training of neural networks, using

dynamic fixed point precision scaling [13,43].

Another school of thought thus began developing, that involves targeting direct quantiza-

17

tion of a network that is already trained with FP32 precision and converting the parameters

to lower precision without full training. Even with a simple approach such as uniform quanti-

zation, INT8 quantization seems perform fairly well and is quite robust towards quantization

noise [29]. Another approach proposed was to improve training generalization by using re-

training with backpropagation and alternating optimization to reduce L2 error [28]. Another

proposal was to reformalize quantization of parameters as a “Minimum Mean Squared Error

(MMSE)” problem that allowed for training in low precision without retraining [9]. Lai et.

al. experimented on a different approach, changing the activations to fixed-point precision

while keeping the floating-point precision for the weights [35].

2.5.2 Hardware optimization

The need for optimization comes form the fact that the training of deep neural networks

is constrained by hardware limitations. Primary approaches to this issue are addressed by

improving the exploitation of general-purpose hardware, such as CPU clusters [10] as well as

GPUs [34]. To fully utilize these general-purpose hardware to improve performance in deep

learning, several frameworks have also been developed. NVIDIA and Google have hardware

accelerators that can benefit the performance. NVIDIA’s Volta’s FP16 Tensor Cores [47] and

in Google’s Tensor Processing Unit [30] both leverage the ability to separate dot products,

which are the most computationally intensive operation during training, and other opera-

tions during the training process.

Large feed forward neural networks, if designed to work with floating point precision, per-

form a high number of additions and multiplications using floating point precision. Without

dedicated hardware for floating point computations, it can negatively affect the performance

and training of the network, making it difficult to apply such algorithms in real-time so-

lutions. For this reason, Field Programmable Gate Arrays (FPGAs) are now designed to

improve training of neural networks. Compared to a microcontroller implementation (based

on the sequential execution of instructions by the CPU) the nature of an FPGA design

exploits the concepts of customization and parallelization to enhance the throughput of a

computational system [42, 58]. Customization is very flexible using Hardware Description

Language (HDL) that allows the designer to design right up to the register level, defining

as a matter of fact a flexible Application Specific Integrated Circuit (ASIC). Parallelization

separates modular and sequential portions of algorithms, improving the efficiency and per-

formance of complex algorithms by several times.

18

There have been several specialised applications of FPGAs in training and implementing

neural networks. Farabet et al. [15] created a face detection system with three convolutional

layers and five fully connected layers on FPGA architecture with a performance of 10 frames

per second. Zhang et al. [63] proposed a new description algorithm for CNNs and Qiu et

al. [51] proposed a deeper and more complex VGG model on an FPGA architecture. Gysel

introduced an anutomated framework, “Ristretto”, that simulates a custom hardware accel-

erator for training CNNs [21].

FPGA neural network accelerators can also benefit from optimization. Over the last few

years, several hardware-level techniques have been proposed for FPGA-based neural net-

work accelerator design to achieve high performance [38,41]. Several of them are focused on

computation unit design. Computation unit level design is important as it affects the per-

formance of a neural network accelerator. The resources on an FPGA chip are limited and

a well-designed computation unit can improve peak performance. Reducing the bit-width

of computation can greatly reduce the size of the computation unit and make the FPGA

chip more efficient. The feasibility of reduced bit-width is realized from the quantization

techniques discussed in section 2.5.1. However, most research on FPGA design improve-

ment is focused on replacing 32-bit floating point numbers with fixed-point units - Podili

et al. [50] shows an implementation of 32-bit fixed-point units on FPGA, and research has

also shown implementations of 16-bit fixed-point designs [18, 38, 51]. Han et al. proposed

the ESE framework [22] that adopts 12-bit fixed-point weights and 16-bit design. Guo et

al. [19] used 8-bit weights design for their FPGA design. A comprehensive report is also

published by Nurvitadhi et al. [46] that shows the improvement in performance of binarized

neural networks in an FPGA over CPUs and GPUs.

Modern FPGAs are composed of embedded Digital Signal Processing (DSP) units, which

implement a hard multiplier, pre-adder and accumulator core. This fits into a neural network

design, whose basic computations are multiplication and summation. Fixed-point data with

16-or-less-bit fixed-point precision are well fit into 1 DSP unit on a modern Xilinx or Altera

FPGA. Because a DSP unit is the computational core of these FPGAs, they hardly benefit

from reduced precision, such as 8-bit or 4-bit, since these units are embedded with a rigid

bit width, so even if it is working on a 8-bit value, it blocks the remaining 8 bits from use by

other threads. The wide multipliers and adders in DSP units are underutilized in these cases.

To overcome this, some workarounds on design are proposed. Nguyen et al. [45] proposed

the design to implement two narrow bit-width fixed-point multiplication with a single wide

bit-width fixed-point multiplier. Similar methods can be used in other DSPs and bit-widths.

19

The objective of our experiments in this thesis work is to improve or retain the same

level of accuracy using floating-point precision. Since DSPs in FPGAs like Altera natively

supports floating-point precision, this simulation can, in theory, leverage the native hard-

ware without any further optimization to get the maximum performance in a neural network

without compromising on accuracy.

2.5.3 Floating point optimization of weights

In the previous sections, we have discussed fixed-point optimization using quantization of

weights and hardware optimizations for improved training. However, because fixed-point

optimization techniques have a significant reduction of training time and with fine-tuning

of the algorithms can overcome the loss of accuracy, most research is now focused on quan-

tization and fixed-point reduction of weights and activations in a neural network. In our

thesis, we intend to explore the possibility of floating-point precision reduction of weights in

a simulated environment because of the following two reasons.

• The IEEE 754 standard for floating point representation is used by almost all modern

computers and trying to leverage that standard while optimizing weights in a neural

network incorporates a simplicity in the design of the system, where we do not need to

define a new algorithm for computers to interpret floating-point numbers differently.

The standardization motivates simplicity of the algorithm.

• Another reason is the flexibility floating-point precision offers. Floating-point repre-

sentation is more versatile and can represent various levels of precision, which is useful

for creating a more flexible and adaptive network that might require higher precision

in some levels and lower precision in others.

There has been some research related to floating-point reduction of weights in neural net-

work. Drumond et al. [14] proposed a design for training deep neural networks using a

hybrid version of the “block floating point (BFP)” representation. Block floating points

have been historically used in signal processing [48, 52, 56, 60], where exponents are shared

across tensors, and this facilitates dense fixed-point logic for hardware accumulators and

multipliers. Thus block floating-point essentially implements floating-point representation

into a fixed-point quantized representation for the algorithms. Some modifications of BFP

are also used condense radar data without inherent assumptions about the distribution of

the data [44]. Microsoft has also acquired a patent for the application of block floating-point

20

for implementation in neural networks [5].

However, block floating-point still has a few drawbacks. First, BFP dot-products are

very efficient, but the same cannot be said for other types of operations. Second, if the

exponent values in a tensor are varied from too high to too low, it might lead to data loss

and significant inaccuracies. Drumond et al. [14] proposed a hybrid version where BFP is

used for dot products and other operations in floating-point.

Our thesis experiments on the other part of floating-point representation, the mantissa.

We try to reduce the number of mantissa bits while maintaining a similar level of training

and prediction accuracy of the network. This was motivated because of two reasons.

• In an IEEE 754 standard for floating-point representation, the mantissa consists of

more bits (24 and 53 mantissa bits compared to 8 and 11 exponent bits in 32 and

64 bit standards respective), hence the possibility of reducing more bits, and in turn

operations, without incurring too much error is more for mantissa reduction than

exponent reduction.

• It is still possible to use exponent reduction techniques, such as BFP, in conjunction

with the mantissa reduction.

Thus, we decided to experiment on the reduction of mantissa bits as a simulation in Python

to find if the accuracy is similar to a network trained with full precision.

21

Chapter 3

Experimental Setup

This chapter explains in detail the four datasets the experiments are performed on. It is

followed by a description and explanation of the three different types of networks on which

the experiments are performed.

3.1 Data sets

There are four datasets used for running experiments. All of them are image datasets. The

four datasets used are :

• Modified National Institute of Standards and Technology (MNIST) [62]

• Fashion Modified National Institute of Standards and Technology (Fashion-MNIST)

[61]

• Canadian Institute For Advanced Research - 10 (CIFAR10) [33]

Both the MNIST and Fashion-MNIST datasets are relatively small and easier to learn,

whereas the CIFAR datasets are large and for difficult to learn for algorithms. We chose two

different types of datasets to compare the performance in simple, easy-to-learn datasets as

well as complex datasets.

3.1.1 MNIST Database

The MNIST database was created from the original NIST database. It is the most common

database used to train and benchmark image classification neural networks. The MNIST

22

dataset consists of images of handwritten digits. It has 60,000 training samples and 10,000

test samples. All the images are in grayscale format.

The MNIST database is created from the binary black-and-white handwritten digit im-

ages of the NIST database (specifically Special Database 3 and Special Database 1). The

original NIST images are normalized and resized to fit in a 20x20 pixel area, preserving the

aspect ratio. Due to the anti-aliasing technique used to normalize the images, the resulting

images are in grayscale format, as seen in figure 3.1. Then, the center of mass of the pixels

are computed and the images are translated to position the center point of the images in a

larger 28x28 image area, to position the image centrally on the center of mass of the image.

Figure 3.1: Sample images from the MNIST dataset

23

3.1.2 Fashion-MNIST database

Fashion-MNIST is a database composed of fashion articles from Zalando - an online platform

of fashion designers. The dataset has 60,000 training samples and 10,000 test samples. It

serves a “drop-in replacement” for the MNIST dataset. The Fashion-MNIST database

was created because MNIST dataset is very popular and is often used by AL/ML researchers

as a benchmark. However, the MNIST dataset can be learnt very easily (convolutional nets

can achieve 99.7% on MNIST, and classic machine learning algorithms can also achieve 97%

easily).

Each image in a Fashion-MNIST dataset is a 28x28 grayscale image. There are 10

classification labels, from 0 to 9, each label indicative of a type of clothing. A sample of the

dataset is shown in figure 3.2.

Figure 3.2: Sample images from the Fashion-MNIST dataset

24

3.1.3 CIFAR10 Database

The CIFAR10 dataset is a collection of images that is very popular for training image clas-

sification algorithms. Unlike the previous 2 datasets, the CIFAR10 database contains RGB

images. There are a total of 60,000 images: 50,000 training images and 10,000 test images.

Each image is of size 32x32 pixels. The database images are classified into 10 classes:

airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. The database contains

6,000 images of each class. The test set has exactly 1,000 randomly chosen images of each

class. The training data has 5 batches of 10,000 images each, which are randomly assorted.

A sample of the dataset is shown in figure 3.3

Figure 3.3: Sample images from the CIFAR10 dataset with labels

3.2 Networks

For our experiments, we designed three different types of networks to analyze the performance

across varying complexities of neural networks. The three different types of networks we chose

are:

• A Simple Dense Neural Network with one fully connected layer hidden layer

25

• A Convolutional Neural Network with two convolutional layers and one fully connected

hidden layer

• A modification of the AlexNet network with three convolutional layers and two fully

connected hidden layers

In this section, we briefly discuss each type of network.

3.2.1 Dense network

m x n
Image

Flatten layer
mxn nodes

Hidden layer
32 nodes

Dropout layer
Rate=0.2

Output Layer
10 nodes

Final
DecisionInput image

Figure 3.4: Structure of the dense network

26

Figure 3.4 shows the complete structure of the dense network used to train and predict

on the MNIST dataset. It has the following layers:

• Input image : The input image is a 28 x 28 grayscale image for MNIST and Fashion-

MNIST data sets. For CIFAR10 the input image is a 32 x 32 colour image.

• Flatten layer : The purpose of the flatten layer is to convert the image matrix into

a vector. In the case of MNIST data set, the 28 x 28 is converted to a vector of 784

values, hence the flatten layer has 784 nodes. For CIFAR10 dataset, since the images

are of size 32 x 32, there are 1024 nodes in the flatten layer.

• Hidden layer : This is a fully connected layer that performs a linear operation on the

input and has a non-linear “ReLU” (Rectified Linear Unit) activation function. All

the nodes of the previous layer are connected to all the nodes of the fully connected

layer, hence the name “fully connected”. For our experiments, this layer is defined to

have 32 nodes, since initial experimentation with 32 nodes yielded high accuracy for

MNIST and Fashion MNIST datasets. The increase in number of nodes did not have

any major effect on the performance of CIFAR10 dataset, and did not train effectively

overall.

• Dropout layer : The dropout layer is used for regularization and to tackle overfitting.

This layer randomly drops neurons with a probability set during the modelling of the

network. This layer does not have any trainable parameters and does not learn during

backpropagation. For all our experiments with this network, the dropout probability

is set at 0.2.

• Output layer : This layer is responsible for the final prediction of a test sample. For

our experiments, the output layer is activated by a non-linear function (“softmax”).

For a classification problem, the number of nodes in the output layer is equal to the

number of classes. Thus for MNIST, Fashion-MNIST and CIFAR10, the number of

nodes in the output layer is 10.

This is the simplest of the three networks. The reason for choosing to run experiments on

a simple network is the idea that if optimization can be possible on a simple network with

one fully-connected layer, then a more complex network can be optimized on a fundamental

level as well.

27

3.2.2 Convolutional Neural Network

This network is slightly more complex than the previous one. This network has two convolu-

tional layers followed by a fully connected hidden layer. The layer structure of the network

is shown in Figure 3.5 As you can see in the figure, there are two new types of layers that

m x n
Image

Input image
Convolutional Layer

8 filters
3 x 3 kernel size

Convolutional Layer
16 filters

3 x 3 kernel size
Pooling Layer
Pool size 2 x2

Dropout Layer
Dropout rate 0.25 Flatten Layer Hidden Layer

32 nodes

Dropout Layer
Dropout Rate 0.5

Output Layer
10 nodes

Final decision

Figure 3.5: Structure of the convolutional neural network

are being used in this network. The following is a discussion of the new layer types:

• Conv2D layer : There are two consecutive 2D convolutional layers. The structure is:

– Convolution layer 1 : 8 output filters, kernel size 3x3. strides of one pixel, ReLU

activation function. For the first layer, the input shape is defined for the layer

to identify the shape of the input image. For MNIST and Fashion-MNIST, the

input image shape is 28x28, for the CIFAR data sets, it is 32x32.

– Convolution layer 2 : 16 output filters, kernel size 3x3, strides of one pixel and

ReLU activation function.

• Pooling layer : The pooling layer is used to reduce the spatial size, and in turn the

number of parameters of the CNN. For our network, the pool size is 2x2 with strides

of 2 and it performs the MAX operation. This reduces the number of activations by

75%.

3.2.3 Modified AlexNet

AlexNet is a modified convolutional neural network that performs fast training on large

datasets [34]. The original network was created with the ImageNet dataset in mind, which

has RGB images of dimension 224 x 224. Since all three of our datasets are considerably

28

smaller in dimension than the ImageNet dataset, we decided to scale down the network. We

experimented and chose a configuration that performs almost as good, somethimes slightly

better than the CNN we designed in section 3.2.2. Moreover, the original network has over

60 million learnable parameters, which posed a problem for an enormous training time on

our available hardware resource. We implemented a network similar to the AlexNet network,

containing 3 convolutional layers and 2 hidden layers. We also changed the number of filters

for the convolutional layers and the number of nodes for the dense layer. We reduced the

number of parameters from over 60 million to 49, 354. The network contains the following

layers:

• Convolutional layer 1 : 16 output filters, kernel size 3x3. strides of one pixel, ReLU

activation function.

• Pooling layer 1 : Pooling filter size 2x2, strides of 2 pixels.

• Convolutional layer 2 : 32 output filters, kernel size 3x3. strides of one pixel, ReLU

activation function.

• Pooling layer 2 : Pooling filter size 2x2, strides of 2 pixels.

• Convolutional layer 3 : 64 output filters, kernel size 3x3. strides of one pixel, ReLU

activation function.

• Pooling layer 3 : Pooling filter size 2x2, strides of 2 pixels.

• Dropout layer 1 : Dropout probability 0.25

• Flatten layer : Converts the 64 2x2 filters in the previous pooling layer into a vector

of 256 nodes.

• Dense layer 1 : Fully connected layer of 64 nodes. tanh activation function.

• Dropout layer 2 : Dropout probability 0.4.

• Dense layer 2 : Fully connected layer of 128 nodes. tanh activation function.

• Dropout layer 3 : Dropout probability 0.4.

• Output layer : Softmax activation function. The number of nodes for MNIST,

Fashion-MNIST and CIFAR10 data sets are 10 nodes.

29

3.3 System configuration and hyperparameter selec-

tion

For the purposes of clarity and reproducibility, tables 3.1 and 3.2 list the system configura-

tion, along with verisons of softwares and frameworks used, and the hyperparameter values

chosen for the experiments.

CPU 8-core 1.7 GHz AMD A10-7850K APU
Memory 16 Gb 1600 MHz RAM
GPU NVIDIA GeForce 1080Ti 11 Gb
Operating System and
version

Ubuntu 16.04.5 LTS

Anaconda version 4.6.8
Python version 3.7.1
TensorFlow version 1.12.0
Keras version 2.2.4

Table 3.1: System configuration and software versions

Batch Size 2000
Number of Epochs 3
Optimizer adam

Loss function Sparse categorical cross-entropy
Performance metric Accuracy

Python environment
options

gpu_options.allow_growth = True

log_device_placement = True

Table 3.2: Model and environment hyperparameters

The TensorFlow option config.gpu_options.allow_growth=True allows for the dy-

namic growth of allocated memory in the GPU with training. log_device_placement = True

keeps a system log of which process ran on which device, for traceback if needed.

30

Chapter 4

Methodology

This chapter is a discussion of the strategy to reduce the floating-point precision of weights

for our experiments. In support of the strategy, a discussion of the two Python resources

used in our design is given. They are the callback function and the “bitstring” package.

We also provide a discussion of how we used these two packages to reduce the mantissa

of the weights. Finally, we also provide a detailed description and algorithm of the four

different types of the bit reduction strategies what we experimented with, starting from the

broad reduction of the weights of the entire network to a common precision, to a fine grained

reduction of mantissa precision based on the value of each weight.

4.1 Floating point reduction of weights

The premise of the experiment is to reduce the number of bits used to store the weights of

every layer in a neural network. Most computers natively store real numbers in a floating

point format. The floating point representation, as discussed in chapter 2, provides more

range and precision than fixed point representation of real numbers, which is advantageous

for a lot of applications.

Neural networks, however, do not always need 32 bits of precision for good learning and

accuracy. As seen in the works discussed in chapter 2, reduced bit precision can still achieve

good prediction accuracy while reducing the size of the model.

In our optimization strategy, we explore reduced floating point precision to reduce the

size of the model. This has the additional advantage of reducing the prediction time for

the models, since the lesser amount of mantissa bits allow for quicker multiplication and

addition.

31

Now, as we discussed in chapter 2, floating point numbers are stored in the hardware

following the IEEE 754 protocol. So it has a sign bit, some exponent bits and mantissa bits.

In our strategy, we focus on reducing the number of mantissa bits used to store the weights;

for a 32-bit floating point number, the number of mantissa bits is 23, so this approach

addresses the largest part of floating point representation. Moreover, a higher number of

mantissa bits increase the precision of the float after the radix. Thus, we can reduce the

number of mantissa bits without radically changing the number that is stored.

The main objective of our experiments is to show that with a reduction in floating point

precision of weights we can achieve a similar, or sometimes even better, prediction accuracy.

We have created a simple strategy that gives the desired performance. However, before

we explain our strategy, we should discuss two Python resources that have been used to

implement floating-point precision reduction. They are the Lambda callback function and

the “bitstring” package.

4.1.1 The Lambda callback function

Callback functions are part of the Keras neural network API. A callback (or callback func-

tion) is a set of of functions that are executed at certain stages of the training of the neural

network. The callback function invocation time can be defined by the programmer, depend-

ing on which point of the training the callback should be executed. Callbacks are mainly

used to view the internal representations and values at certain stages during the training

process. They can also be used to control the training process and check for aberrant values.

For example, the callback function:

keras.callbacks.callbacks.TerminateOnNaN()

is used to terminate the training of a neural network when the loss function generates a NaN.

Callbacks can also be used to implement a certain level of control over the training process.

Such types of control are often useful and improve the efficiency of the training process or

safeguard it from irregular behaviour. For example, the following callback saves the model

to disk periodically after every epoch:

keras.callbacks.callbacks.ModelCheckpoint(filepath, monitor=’val_loss’,

verbose=0, save_best_only=False, save_weights_only=False, mode=’auto’,

period=1)

32

and the next callback monitors a certain metric (“val loss”) and stops the training process

if the observed metric has stopped improving at the minimum improvement rate desired:

keras.callbacks.callbacks.EarlyStopping(monitor=’val_loss’, min_delta=0,

patience=0, verbose=0, mode=’auto’, baseline=None, restore_best_weights=

False)

Thus, we can see that the callback functions are a powerful tool for improving the training

of neural networks which provides some level of control over the training process. Callback

functions can, however, do more than that. The most powerful callback, the one we have

used to reduce the floating-point precision, is the LambdaCallback.

The LambdaCallback function is a callback that is used to create and implement custom

callbacks on the network during training. According to the Keras documentation, “This

callback is constructed with anonymous functions that will be called at the appropriate

time.” The time of call can be defined by arguments described in table 4.1. Here are two

examples of using the LambdaCallback function, where the first one prints the epoch number

at the beginning of every epoch and the second one cleans up the run-time by terminating

processes after training is complete:

Print the epoch number at the beginning of every epoch.

epoch_print_callback = LambdaCallback(

on_epoch_begin=lambda epoch,logs: print(batch))

Terminate some processes after having finished model training.

processes = ...

cleanup_callback = LambdaCallback(

on_train_end=lambda logs: [

p.terminate() for p in processes if p.is_alive()])

model.fit(...,

callbacks=[batch_print_callback,

json_logging_callback,

cleanup_callback])

33

on_epoch_begin The callback is called at the beginning of every epoch
on_epoch_end The callback is called at the end of every epoch

on_batch_begin The callback is called at the beginning of every batch
on_batch_end The callback is called at the end of every batch

on_train_begin The callback is called at the beginning of the training of the model
on_train_end The callback is called at the end of the training of the model

Table 4.1: Arguments for calling the LambdaCallback function

Thus, LambdaCallback gives us a provision to call and execute custom functions during

certain stages of the training. The next thing we will discuss is a Python package that helps

us perform the actual mathematical computations for reducing the precision of floating-point

numbers.

4.1.2 The bitstring Python package

Python does not natively provide an easy way of manipulation of floating point representation

at the bit level. Thus, a separate package is used to achieve the level of bit manipulation we

require for this experiment. The bitstring package is a pure Python module that useful for

conversion of any data to strings of binary values, to enable understanding, modifying and

tweaking the data in a simple and intuitive manner. Bitstrings are a special type of data

type that can be created from converting other data types like integers, hexadecimals, octals,

binary, strings or files. Bitstrings can convert both big-endian and little-endian integers as

well.

The purpose of bitstring is to provide a broad spectrum of operations on binary values

that, although possible, can be implemented in Python using struct and array modules,

reduces the time, complexity and lack of efficiency in programming these operations on

generic data structures. Some of these operations are:

• Slicing binary values

• Joining two binary numbers

• Reversing binary numbers

• Inserting into a binary number

34

The above functions are some of the functions that can be performed by the objects of the

BitArray class defined in the bitstring package. There are three other classes defined in

the bitstring package. They are:

• BitStream

• ConstBitStream

• Bits

For the purposes of our experiments, we have used objects of the BitStream class to “pack”

or convert the float values of the weights to a stream of binary digits. BitStream objects

behave similar to a file stream, so operation that are possible on a file stream, such as reading

the stream, searching in the stream and navigating to a certain point in the stream, can be

performed on a BitStream object.

BitString objects are can be considered as a simple representation of list of binary dig-

its. However, the storage of bitstring is very efficient - only the data is stored bytewise.

No additional metadata or information about the objects are stored. All generated outputs

are computed and returned as the methods are invoked, and are not stored along with the

objects.

Below are some examples of creating some BitArray objects and performing some stan-

dard operations on them:

from bitstring import BitArray

#Creating bitstrings using the BitArray class

from a binary string

a = BitArray(’0b001’)

from a hexadecimal string

b = BitArray(’0xff470001’)

straight from a file

c = BitArray(filename=’somefile.ext’)

from an integer

d = BitArray(int=540, length=11)

#Standard operations on the bitstring objects

5 copies of ’a’ followed by two new bytes

35

e = 5*a + ’0xcdcd’

put a single bit on the front

e.prepend(’0b1’)

take a slice of the first 7 bits

f = e[7:]

replace 3 bits with 9 bits from octal string

f[1:4] = ’0o775’

find and replace 2 bit string with 16 bit string

f.replace(’0b01’, ’0xee34’)

Displaying the bitstrings is very easy and flexible as well. Here are a few examples:

>>> print(e.hex)

’9249cdcd’

>>> print(e.int)

-1840656947

>>> print(e.uint)

2454310349

The BitStream class is derived from the BitArray class. It is a “mutable container of bits

with methods and properties that allow it to be parsed as a stream of bits” [17].

One way of creating a BitStream object is by invoking the pack function. The signature

of the pack function is:

bitstring.pack(format, *values, **kwargs)

where the format is specified by a string with comma-separated tokens. The list of tokens

that be used as format specifiers is shown in Table 4.2.

Format can also be specified in a shorter fashion. The shorter version specifies the format

using two characters: the first character to denote the endianness of the BitStream and the

second character provides the format. Table 4.3 list the supported characters for specifying

the format of BitStream objects.

In the following subsection, we will discuss how we can leverage the bitstring package

to reduce the floating point precision of a number.

36

int:n n bits as a signed integer
uint:n n bits as an unsigned integer

intbe:n n bits as a big-endian whole byte signed integer
uintbe:n n bits as a big-endian whole byte unsigned integer

intle:n n bits as a little-endian whole byte signed integer
uintle:n n bits as a little-endian whole byte unsigned integer
intne:n n bits as a native-endian whole byte signed integer

uintne:n n bits as a native-endian whole byte unsigned integer
float:n n bits as a big-endian floating point number (same as floatbe)

floatbe:n n bits as a big-endian floating point number (same as float)
floatle:n n bits as a little-endian floating point number
floatne:n n bits as a native-endian floating point number

hex[:n] [n bits as] a hexadecimal string
oct[:n] [n bits as] an octal string
bin[:n] [n bits as] a binary string
bits[:n] [n bits as] a new bitstring

bool single bit as a boolean (True or False)
ue an unsigned integer as an exponential-Golomb code
se a signed integer as an exponential-Golomb code

uie an unsigned integer as an interleaved exponential-Golomb code
sie a signed integer as an interleaved exponential-Golomb code

Table 4.2: List of format specifier tokens for packing

> Big-endian
< Little-endian
@ Native-endian

b 8 bit signed integer
B 8 bit unsigned integer
h 16 bit signed integer
H 16 bit unsigned integer
l 32 bit signed integer

L 32 bit unsigned integer
q 64 bit signed integer
Q 64 bit unsigned integer
f 32 bit floating point number
d 64 bit floating point number

Table 4.3: List of endianness (left) and format (right) characters

37

4.1.3 Reduction of mantissa bits in Python

As we have discussed in the section 2.4, we know how IEEE 754 notation defines floats and

how they are stored in the system. We use the utility provided by the bitstring package,

more specifically BitStream objects, to manipulate floating point numbers and reduce the

mantissa bits of each value.

The way we do the precision reduction can be described in the following steps:

1. We use the pack function to create the BitStream object for each weight. The format

specifier is ‘>f’, which means the BitStream is formatted in big-endian manner and

the converted number is a 32-bit floating point number.

2. Next we slice the BitStream object and retrieve the first bit for the sign, the next 8

bits for exponent and the remaining bits for mantissa.

3. The sign bit is converted into an unsigned integer.

4. The exponent stored in the system is the biased exponent. To get the actual exponent,

we subtract 2(w -1) - 1 from the unsigned integer value of the biased exponent, where w

is the number of bits used to represent the exponent, which in our case is 8.

5. For the mantissa, a zero before the radix is implied in the notation specified in IEEE-

754. So one significand bit is used to represent the leading 1. The remaining 23 bits

are used to represent the value after the radix. We remove bits from the end of the

mantissa. Bit removal from the mantissa and creating the new mantissa is done by the

following steps:

(a) The mantissa is sliced and the specified number of bits are kept.

(b) The mantissa is then converted to an unsigned integer

(c) Since the mantissa is the part after the radix, it is then divided by 2p where p is

the number of bits retained in the mantissa.

(d) Finally, we add 1 to the mantissa value to bring the implicit significand bit, as

specified in IEEE 754 representation.

6. The new reduced-bit number is then constructed raising 2 to the power of the exponent

value and multiplying the result with the mantissa. So the new value is calculated by:

newvalue = mantissa× 2exponent

38

7. If the sign bit is 1, we multiply the result from the previous step by −1.

A pseudo code version of the above procedure of reduction of mantissa bits is presented

in Algorithm 1.

Algorithm 1: Reduction of mantissa bits for a float value.

input : Full-precision floating point value
output: Same value with reduced precision (fewer mantissa bits)
def Reduce Mantissa Bits(float number, bits to retain):
begin

bitstring := pack(number := float number, endian := big, format := ‘float32’);
sign bit := bitstring[1];
exponent bits := bitstring[2 to 9];
mantissa bits := bitstring[10 to 32];
sign := unsigned integer(sign bit);
/* a� b indicates left bitshift operation on a by b bits */

exponent := unsigned integer(exponent bits) −(1� 7) + 1;
reduced mantissa := 1+

unsigned integer(mantissa bits[1 to bits to retain]) / (1� bits to retain);
reduced precision float number := reduced mantissa × 2exponent;
if sign equals 1:
begin

reduced precision float number := (−1)∗ reduced precision float number
end
return reduced precision float number;

end

The following is a demonstration of the conversion of a 32-bit floating-point value to a

BitStream object of binary digits and the integer values of the sign, exponent and mantissa.

First we import the package and use the pack method to convert the float value to a

BitStream object

>>> import bitstring as bstr

>>> x = 12.43567

>>> b = bstr.pack(’>f’,x)

We can see the value of the BitStream object in any format. The default format is the

hexadecimal format.

>>> b

BitStream(’0x4146f881’)

>>> b.bin

39

’01000001010001101111100010000001’

Now we can slice the binary representation of the number into the sign, exponent and

mantissa portions.

>>> sign,exp,mant = b[:1],b[1:9],b[9:]

The sign bit should be zero as it is a positive number

>>> sign.uint

0

The actual exponent value is created by subtracting the exponent bias from the exponent.

>>> actual_exp = exp.uint - (1<<7) + 1

>>> actual_exp

3

Finally, 1 is added to the actual mantissa value of the BitStream representation, divided by

2p where p is the number of bits in the mantissa.

>>> actual_mant = 1 + mant.uint/(1<<23)

>>> actual_mant

1.554458737373352

So, the number should be mantissa * 2exponent

>>> actual_value = actual_mant * (2 ** actual_exp)

>>> actual_value

12.435669898986816

Thus the recreated value is similar to the actual value stored by Python. The difference

appears after four places after the radix, so the recreated number is 0.000008% off the original

number. This change of value while recreating can be attributed to representation error,

where a float value cannot be exactly represented by the IEEE 754 32-bit representation,

hence Python stores the number in its original form but displays a rounded-off version of

it. After we convert the number using bitstring and then convert it back, the float value

stored back is not the value we entered, but the calculated value from the mantissa and

exponent, which is computed by operations on IEEE 754 standards, thus printing out the

actual number represented in the IEEE 754 notation. However, for the purposes of our

40

experiments and research, the change of value is insignificant and we choose to ignore it.

It is possible to reduce the number of bits in the mantissa before converting it into an

unsigned integer. For example, the number of bits can be reduced to 15 bits for the mantissa.

>>> reduced_mant = 1 + mant[:15].uint/(1<<15)

The recreated value in that case can be created in the same manner.

>>> reduced_value = reduced_mant * (2 ** actual_exp)

>>> reduced_value

12.435546875

The new value is 0.001% off the actual value. Thus, even after reducing the number of

mantissa bits, the change in the value is about 10−5 times the original value.

The concern that can arise out of this is that Python does not natively operate on reduced

precision values: after the reduction of mantissa bits, the value is created by mathematical

operations on unsigned integer values. Thus, Python will use 32 bits to store the data. The

mathematical operations can, therefore, generate the result in 32 bits. However, the following

piece of code verifies that the resultant value from the operations have constrained number

of mantissa bits followed by zeros as placeholders to maintain the IEEE-754 notation.

>>> r = bstr.pack(’>f’,reduced_value)

>>> r.bin

’01000001010001101111100000000000’

Thus the trailing bits in the mantissa are zeros and can be dropped if the system specifies

the exact number of bits for mantissa.

4.2 Mantissa bit reduction strategy

Now that the different Python resources used for bit reduction are defined, this section en-

compasses the details of the various strategies implemented to reduce the number of mantissa

bits for every weight in the neural network.

For our experiments we decided to perform three different strategies for the reduction

of mantissa bits for every weight in the network, with increasing levels of granularity and

fine-tuning, with respect to the weights. The precision reduction strategies are as follows:

41

1. Whole network precision reduction. Our first approach is is a broad, blanket

approach of reducing the precision of all weights in a neural network, across all the

layers, to a certain precision level. This approach is inspired from the quantization

technique of reducing the precision of the entire network to a common precision [11,

26, 59], but in our case we use floating-point precision to do so. We essentially reduce

the number of mantissa bits of the whole network by the same value.

2. Layer-wise precision reduction. The next strategy goes one step further in terms

of granularity, and sets a layer-by-layer level of precision. We set a precision for each

layer of the network with weights, and then reduce the number of mantissa bits of every

layer by the set value. In this strategy, each layer can have a different level of precision.

This was also inspired from a fixed-point precision reduction technique by Judd et. al.,

where they experimented on different precision on each layer of a Convnet [31].

3. In-layer precision reduction. The next objective was to create a finer level of

granularity by trying to introduce different levels of precision within the same network

layer. The motivation for this stems from the assumption of varying values of weights

of the networks and varying degrees of activity, and significance of these weights in

the actual prediction by the model. In-layer precision reduction also brings flexibility

in the model training and should reduce computational need due to requirement of

lesser precision. Moreover, testing and prediction takes less time, since mathematical

calculations require less precision to be evaluated, without losing information as much

in quantization or either of the precision reduction strategies mentioned above. One

difficulty in doing this is to determine the significance of weights, specifically which

weights merit high versus low precision. We perform in-layer precision reduction using

two different strategies.

• Increasing bucket reduction. Reducing the number of mantissa bits of every

weight based on its value, with higher value weights having higher precision.

• Decreasing bucket reduction. Reducing the number of mantissa bits of every

weight based on its value, with lower value weights having higher precision.

The following subsections briefly discuss each strategy and provide pseudo code for each

strategy.

42

4.2.1 Whole network precision reduction

In this strategy, we reduce the mantissa of all the weights in the network to a common

precision. We decide upon a bit-width beforehand and reduce the precision of the mantissa

of all the weights to the chosen value. At the end of every batch, we perform the following

steps:

1. First, we retrieve the layers from the neural network object.

2. Then, for every layer we retrieve the array of weights.

3. We pass each weight and the chosen precision value to the Reduce Mantissa Bits

method defined in Algorithm 1.

4. We replace the full precision weight with the reduced precision weight returned by

Algorithm 1.

5. We replace the full precision weight array in the network layers with the reduced

precision weight array.

The pseudo code for the above described algorithm is presented in Algorithm 2.

Algorithm 2: Reduction of mantissa bits for the whole network to a single precision
value.

input : A neural network
output: A neural network with reduced precision
new precision := new precision of the network ;
def Whole Network Precision Reduction(neural network, new precision):
begin

layers := get layers(neural network);
for layer in range(layers):
begin

weight matrix := get weights(layer);
for weight in range(weight matrix):
begin

new weight := Reduce Mantissa Bits(weight, new precision);
weight := new weight;

end
set weights(weight matrix)

end
set layers(layer)

end

The pseudo code for the above described algorithm is presented in Algorithm 2.

43

4.2.2 Layerwise precision reduction

In this strategy, we choose a different precision for every layer in the network and store it

in a list. Mapping precisions to layers, we reduce the precision of the mantissa bits of the

weights of every layer to the precision value determined for that layer. At the end of every

batch:

1. We retrieve the layers from the neural network object.

2. For every layer we perform the following steps:

(a) We retrieve the array of weights, along with the precision value determined for

that layer, from the list.

(b) We pass each weight and the precision value to the Reduce Mantissa Bits method

defined in Algorithm 1.

(c) We replace the full precision weight with the reduced precision weight returned

by Algorithm 1.

(d) We replace the full precision weight array in the network layer with the reduced

precision weight array.

The pseudo code for the above described algorithm is presented in Algorithm 3.

4.2.3 Increasing bucket reduction

The objective of this experiment is to create multiple levels of floating point precision for

weights in a single layer. Initially we experimented on individual weights and tried to design

a network that would be able to set the precision of each individual weight. The approach

was too cumbersome and intensive, taking too long to train simple networks. We decided to

design a more macro-level approach that is still more selective than a layer-wise approach.

Thus, we decided to use the value of the weights to classify them for precision groups, or

groups whose weights will have same precision. We tried to simulate an algorithm that would

classify the weights into “buckets” based on their values, with each bucket having a specified

precision for mantissa bits. The precision of the buckets increase with increasing value of

the weights. So, lower valued weights in a layer will have lower number of mantissa bits and

higher value weights will have a higher number of mantissa bits. During comparison, we

consider the absolute unsigned value of weights. This approach seemed a trade-off between

44

Algorithm 3: Reduction of mantissa bits for every layer in a network to a different
precision value.

input : A neural network
output: A neural network with reduced precision
precision list :=list of precisions for every layer ;
def Layerwise Network Precision Reduction(neural network, precision list):
begin

layers := get layers(neural network);
for layeri in range(layers):
begin

new precision := precision list[i];
weight matrix := get weights(layeri);
for weight in range(weight matrix):
begin

new weight := Reduce Mantissa Bits(weight, new precision);
weight := new weight;

end
set weights(weight matrix);
set layers(layeri);

end
end

Algorithm 4: Finding the maximum and minimum value in an array.

input : An array of weights
output: Two integer values - the maximum and minimum value in the array
def Find Max Min Values(weight matrix):
begin

min := a very large positive value, say +∞;
max := 0 ;
for weight in range(weight matrix):
begin

if absolute value(weight) < absolute value(min):
begin

min := absolute value(weight);
end
if absolute value(weight) > absolute value(min):
begin

max := absolute value(weight);
end

end
return max, min;

end

45

the layer-wise approach and the weight-by-weight precision tuning, which we decided to

develop and experiment on.

We have two inputs:

• A neural network

• The increment of bits for successive buckets, as a value. For example, a value of 2

signifies that the precision will increase by 2 bits for every successive bucket. So, the

weights in the first bucket will have a floating point precision of 2 bits for its mantissa,

the weights in the second bucket will have 4 mantissa bits and so on. The final bucket

will have the full precision for the mantissa bits.

At the end of every batch:

1. We retrieve the layers from the neural network object.

2. For every layer we perform the following steps:

(a) We retrieve the array of weights.

(b) We find the maximum and minimum absolute values of weights in the weight

array, using Algorithm 4.

(c) We calculate the number of “buckets”, dividing the number of mantissa bits of

the full precision by bit increment value per “bucket”, which is explained above.

We perform all our experiments with the 32 bit floating point standard, which

has 23 actual mantissa bits. Since none of the increment values apart from 1 and

23 divides the total mantissa bits perfectly, the last bucket for all such increment

bits are set as full precision of 23 bits.

(d) We calculate boundary values of every bucket.

(e) For every weight,

i. We try to find out the bucket they belong to, by comparing the value to the

bucket boundaries, starting with the second boundary and moving towards

the maximum value bucket boundary. The first boundary is the minimum

weight value for that layer, so we ignore it, since no weight is smaller than

the minimum weight.

46

ii. When we find the bucket the weight belongs to (a weight belongs to a cer-

tain bucket if its absolute value is within the lower and upper ranges of the

bucket), we pass the weight along with the precision value for the bucket

to the Reduce Mantissa Bits method defined in Algorithm 1. The precision

value of the bucket is easily determined by multiplying the bucket number

with the bucket increment value.

iii. If the weight belongs to the final bucket, we do not perform any precision

reduction, as the final bucket weights have full precision.

iv. We replace the full precision weight with the reduced precision weight re-

turned by Algorithm 1.

3. We replace the full precision weight array in the network layer with the reduced pre-

cision weight array.

The pseudo code for the above described algorithm is presented in Algorithm 5.

4.2.4 Decreasing bucket reduction

This strategy is exactly similar to the previous one, except for one change. The ordering

of precision in the buckets is reversed. Hence, the first bucket (containing the smallest

weights) will have full precision for its mantissa bits, and the highest value weights will have

the lowest number of mantissa bits. The reason for simulating this strategy is because even

though smaller-valued weights might have a lesser impact on the evaluation phase of a model,

the mantissa of smaller-value weights would contain more information and “value” than the

larger value weights.

The above thought can be easily explained with an example. If a weight changes from

0.051 to 0.05 due to precision reduction, its value is changed by 2%, whereas a larger weight,

say 128.051, gets reduced by the same mantissa precision reduction to, say, 128, then the

loss/change of value is 0.3%, which has a significantly lower impact compared to the smaller

weights. Thus, this thought justified the planning and simulation of this strategy.

Similar to the previous strategy, we have identical inputs:

• A neural network

• The number of bits reduced per bucket

47

Algorithm 5: Reduction of mantissa bits using bucketing with increasing number of
bits for increasing value of weights.

input : A neural network
output: A neural network with reduced precision
bits per bucket := difference/increase of bits between consecutive buckets ;
def Bucketed Weights Increasing Precision(neural network, bits per bucket):
begin

layers := get layers(neural network);
for layeri in range(layers):
begin

weight matrix := get weights(layeri);
max, min := Find Max Min Values(weight matrix);
number of buckets := ceiling(23÷ bits per bucket);
increment := (max−min)÷ number of buckets;
bucket boundaries[1] := min;
for i = 2 to (number of buckets + 1):
begin

bucket boundaries[i] = min + ((i− 1)× increment)
end
for weight in range(weight matrix):
begin

for bucket = 2 to (number of buckets + 1):
begin

if absolute value(weight) ≤ bucket boundaries[bucket]:
begin

if bucket equals (number of buckets + 1):
begin

continue;
end
else:
begin

new weight := Reduce Mantissa Bits(weight,
(bucket− 1)× bits per bucket);

weight := new weight;
end

end
end

end
set weights(weight matrix);
set layers(layeri);

end
end

48

Note that in this case the value for bits for successive buckets is a reduction instead of an

increment. So, a value of 2 signifies that the precision will decrease by 2 bits for every

successive bucket. Thus, the weights in the last bucket will have a floating point precision of

2 bits for its mantissa, the weights in the penultimate bucket will have 4 mantissa bits and

so on. The first bucket will have the full precision for the mantissa bits.

The algorithm works in a similar fashion as the previous one. At the end of every batch:

1. We retrieve the layers from the neural network object.

2. For every layer we perform the following steps:

(a) We retrieve the array of weights

(b) We find the maximum and minimum absolute values of weights in the weight

array, using Algorithm 4.

(c) We calculate the number of “buckets”, dividing the number of mantissa bits of

the full precision by bit increment value per “bucket”, which is explained above.

We perform all our experiments with the 32 bit floating point standard, which

has 23 actual mantissa bits.

(d) We calculate boundary values of every bucket.

(e) For every weight,

i. We try to find out the bucket they belong to, by comparing the value to the

bucket boundaries, starting with the second boundary and moving towards

the maximum value bucket boundary. The first boundary is the minimum

weight value for that layer, so we ignore it, since no weight is smaller than

the minimum weight.

ii. If the weight belongs to the first bucket, we do not perform any precision

reduction, as the first bucket weights have full precision.

iii. When we find the bucket the weight belongs to (a weight belongs to a cer-

tain bucket if its absolute value is less than the upper boundary of the

bucket), we pass the weight along with the precision value for the bucket

to the Reduce Mantissa Bits method defined in Algorithm 1. The precision

value of the bucket is determined by multiplying the bucket number with

(total buckets+ 1)− bucket number.

49

iv. We replace the full precision weight with the reduced precision weight re-

turned by Algorithm 1.

3. We replace the full precision weight array in the network layer with the reduced pre-

cision weight array.

The pseudo code for the above described algorithm is presented in Algorithm 6.

4.2.5 Other algorithms for benchmarks

As a benchmark to compare the four strategies mentioned above, we used two other model

training algorithms.

The first one is the training of the neural network at full precision without any optimiza-

tion.

The second one is to randomly select the number of mantissa bits to keep for every weight

in the network. This helps us compare our results with random floating point precision and

to validate whether the result of the other strategies is similar to pure chance or not. The

random strategy works exactly the same way as the bucketing strategy, but instead of segre-

gating weights into buckets, we randomly generate a number between 1 and the full precision

value, and pass that as the precision, along with the weight, to Reduce Mantissa Bits.

50

Algorithm 6: Reduction of mantissa bits using bucketing with increasing number of
bits for decreasing value of weights.

input : A neural network
output: A neural network with reduced precision
bits per bucket := difference/increase of bits between consecutive buckets ;
def Bucketed Weights Increasing Precision(neural network, bits per bucket):
begin

layers := get layers(neural network);
for layeri in range(layers):
begin

weight matrix := get weights(layeri);
max, min := Find Max Min Values(weight matrix);
number of buckets := ceiling(23÷ bits per bucket);
increment := (max−min)÷ number of buckets;
bucket boundaries[1] := min;
for i = 2 to (number of buckets + 1):
begin

bucket boundaries[i] = min + ((i− 1)× increment)
end
for weight in range(weight matrix):
begin

for bucket = 2 to (number of buckets + 1):
begin

if absolute value(weight) ≤ bucket boundaries[bucket]:
begin

if bucket equals 2:
begin

continue;
end
else:
begin

new weight := Reduce Mantissa Bits(weight,
((number of buckets + 2)− bucket)× bits per bucket);

weight := new weight;
end

end
end

end
set weights(weight matrix);
set layers(layeri);

end
end

51

Chapter 5

Results

This chapter displays the results obtained from the experiments in the previous chapter,

and provides an analytical interpretation of those results. The results are sectioned by

precision reduction strategy, with each section presenting the results of every data set and

network. The results are presented as plots. Finally, the observations are analyzed and a

brief discussion of the results is provided at the end of the chapter.

5.1 Whole network precision reduction

At first, we trained the simple dense network explained in section 3.2.1, on the MNIST

dataset. Since there are 23 bits in the mantissa, running experiments for every variation

in mantissa size was not feasible. We selected three values: 5, 10 and 20 mantissa bits

to retain after precision reduction and report the results. Figure 5.1 shows the training

accuracy of the whole network precision reduction of the dense network on the MNIST data

set. The training curve of the unoptimized (full precision) and random precision reduction,

both explained briefly in section 4.2.5, are provided in the same graph for comparison and

benchmarking purposes. Running the experiment, a few things are noticeable from the

graph:

• The results of the graph show what was expected: the training accuracy of the network

increases overall with a greater number of bits preserved. In particular, we observe that

the network with 20 bits has a higher training accuracy than the 5-bit network.

• The 5-bit model is very close to the randomly reduced precision model.

52

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

Dense network: Whole network precision reduction on MNIST dataset

Unoptimized Random WN 5bit WN 10bit WN 20bit

Figure 5.1: Whole network precision reduction of dense network on the MNIST data set

• The 5-bit precision network is notably less smooth than the 10-bit or 20-bit models.

This tells us that the model is losing too much information from precision reduction

at the end of every batch.

• The 20-bit precision model training is very close to the full precision model training.

This is in line with our idea that mantissa bits can be reduced to achieve similar

accuracy to full precision models.

One thing to note from the result in figure 5.1 is that the simple dense network learns the

MNIST dataset very efficiently. Thus, the MNIST dataset being too simple to provide a

challenge to the neural network, we experiment on two more datasets: the Fashion MNIST

dataset and the CIFAR10 dataset, both of which are described in detail in chapter 3. We also

create two more neural network models: the ConvNet and the modified AlexNet, to train and

experiment on. Again, the details of the networks are discussed in chapter 3. Figure 5.2 and

53

5.3 show the training accuracy of the models on the three datasets over three epochs. The

training accuracy is calculated at the end of every batch after precision reduction. Each of

the graphs have the unoptimized full-precision training accuracy and the randomly selected

precision training accuracy for benchmarking and comparison.

We did not report our results obtained on training the multilayer perceptron dense net-

work on the CIFAR10 dataset because even the full precision accuracy reached only a maxi-

mum of 15%, which was too low for any meaningful analysis and interpretation. The reason

for such a low training accuracy score is that the model is too simple to learn from the

CIFAR10 dataset efficiently. Thus we omitted those results from our findings.

Table 5.1 provides a short explanation of all the legends that are used in the graph.

Legend entry Explanation

WN xbit
Whole network precision reduction explained in section 4.2.1 where x is
the number of bits retained in the mantissa of the weights

LN xHyO

Layerwise precision reduction, explained in section 4.2.2, for the multilayer
perceptron dense network, where x is the number of bits retained in the
mantissa of the weights in the hidden layer and y is the number of bits
retained in the mantissa of the weights in the output layer

LN xCyD

Layerwise precision reduction, explained in section 4.2.2, for the CNN,
where x is the number of bits retained in the mantissa of the weights
in the convolutional layers and y is the number of bits retained in the
mantissa of the weights in the dense layers

BUCKF xbit

In-layer increasing bucketing precision reduction, explained in section 4.2.3
where x is the increase in the number of bits for every bucket, starting
from x bits in the first bucket to a maximum precision of 23 bits (full
precision) in the final bucket

BUCKR xbit

In-layer decreasing bucketing precision reduction, explained in section
4.2.4 where x is the decrease in the number of bits for every bucket,
starting from 23 bits (full precision) in the first bucket to a minimum
precision of x bits in the final bucket

Unoptimized Full precision network, without any reduction of mantissa bits

Random
Randomly selected precision reduction, explained in section 4.2.5, where
the precision of every weight is randomly selected between 1 and 23 bits.

Table 5.1: Explanation of legends in the graphs

We notice from these other experiments that there are a few key trends that can be

observed in all of these experiments:

54

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

CNN: Whole network precision reduction on MNIST dataset

Unoptimized WN 10bit WN 20bit Random WN 5bit

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
A

cc
u

ra
cy

Batch
Epoch

AlexNet: Whole network precision reduction on MNIST dataset

Unoptimized Random WN 5bit WN 10bit WN 20bit

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

Dense network: Whole network precision reduction on Fashion MNIST dataset

Unoptimized Random WN 5bit WN 10bit WN 20bit

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
A

cc
u

ra
cy

Batch
Epoch

CNN: Whole network precision reduction on Fashion MNIST dataset

Unoptimized Random WN 5bit WN 10bit WN 20bit

Figure 5.2: Whole network precision reduction on all the different datasets and networks

• The model with 5 bits of precision for all its weights perform very poorly and is very

close to randomly selecting precision for the weights. Thus, significant information is

lost by reducing the precision of the weights too much.

• Moreover, the jagged nature of the learning curve tells us that information retained

after precision reduction for these models is inconsistent and prevents the model from

learning effectively.

• The 10-bit and 20-bit precision models seem to perform much better than the 5-bit

one. The learning curves of these models are very close to the actual full-precision

ones in most cases. The 20-bit precision model has a slightly higher accuracy than the

10-bit model at the end of training in almost all of the cases.

• The 10-bit and 20-bit model learning curves are also smoother than the 5-bit precision

model. This shows that the training accuracy of the models at the end of every batch is

55

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

AlexNet: Whole network precision reduction on Fashion MNIST dataset

Unoptimized Random WN 5bit WN 10bit WN 20bit

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7 10 13 16 19 22 251 4 7 10 13 16 19 22 251 4 7 10 13 16 19 22 25

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

CNN: Whole network precision reduction on CIFAR10 dataset

Unoptimized Random WN 5bit WN 10bit WN 20bit

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7 10 13 16 19 22 251 4 7 10 13 16 19 22 251 4 7 10 13 16 19 22 25

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

AlexNet: Whole network precision reduction on CIFAR10 dataset

Unoptimized Random WN 5bit WN 10bit WN 20bit

Figure 5.3: Whole network precision reduction on all the different datasets and networks

more consistent and does not lose too much information to reduce the training accuracy

significantly.

5.2 Variance analysis

One major concern that can arise out of these results is that whether these results are a

matter of chance and coincidence of good training dataset sampling, proper initial random-

ization of weights and batch split of the training data. In order to mitigate the effect of

chance in our experiments, we ran each of the experiment three times on three different

samplings of the training dataset and reported the average of the three results. There are

a total number of 8 “network-dataset” combinations on which we ran our experiments. On

each of these combinations, considering the different settings of hyperparameters, we ran

17 different experiments, each three times. Thus, a total of 120 individual sets of data are

56

generated for variance analysis. Upon observing the results, we did not see any significant

variation between runs. Because of the high volume of data and visualizations, and the fact

that these plots of individual passes for every strategy on every network and model provides

no new information, we do not report them in our results.

However, just as an example of how varied each pass can be from the average, we report

one precision reduction strategy: the layer-wise precision reduction strategy of CNN on the

MNIST dataset in figure 5.4. Each of the colored lines show the training accuracies of an

individual pass, whereas the thicker grey line shows the average of the three passes. Refer

to table 5.1 for an explanation of the legend.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

CNN: Training accuracy curves of a layer-wise precision reduction on MNIST
dataset

LN 10C5D Pass 1 LN 10C5D Pass 2 LN 10C5D Pass 3 Average

Figure 5.4: Training curves of one layer-wise precision reduction strategy of the CNN on

the MNIST dataset

As we see from the plot, the each learning curve differs from one another. Sometimes

the difference is insignificant, whereas other times, it is quite large. This is because of the

initial values of the weights and the sampling of the dataset. Thus, to mitigate the variance

57

introduced by the randomness, we decided to run all experiments three times and consider

the average. Given the high number of repeated experiments, we decide not to run an ex-

periment more than three times, as it would be infeasible, given our resources and time.

This limits our ability to use statistical techniques that depend on having a large number

of experiments. However, our objective here is not to analyze the training accuracy and

learning of each strategy at every batch, but to analyse the overall training efficiency and

learning trend in relation to the full precision model. Thus, the overall trend and relativity

of the training curves to the full precision training is the focus of our results.

5.3 Layerwise precision reduction strategy

Following the results we observed on the whole network precision reduction, we ran our

experiments to reduce the layers of each network to different levels of precision. Similar to

what we mentioned in section 5.1, the permutations of precision for even a two layer dense

network is too large to run and report the results for. For this reason we chose the values

we selected for the whole network precision reduction: 5, 10 and 20 bits, and cycled around

those values as precision for the layers of the network. Figures 5.5 and 5.6 show the training

accuracy curves of the layerwise precision reduction of the datasets and networks we ran the

experiment on.

We note a few key observations from the results:

• The CNN and AlexNet models with 5 bits of precision in the dense layers train sig-

nificantly worse than the other precision values for these models, even when there are

20 bits of precision in the convolutional layers. It is similar, sometimes worse, in per-

formance to the random precision of weights. Moreover, as we saw in section 5.1, the

training accuracy is inconsistent and swings back and forth, implying that the loss

of information in the dense layers is significant to reduce the training capability and

performance of these models.

• The CNN and AlexNet models with 20-bit precision in the dense layers have the highest

training accuracy overall, and in most cases, is very similar to the training curve of the

full precision model.

58

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

Dense network: Layer-wise network precision reduction on MNIST dataset

Unoptimized Random LN 5H10O LN 10H5O LN 20H5O LN 5H20O LN 10H20O LN 20H10O

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

CNN: Layer-wise network precision reduction on MNIST dataset

Unoptimized LN 5C10D LN 5C20D LN 10C20D LN 20C10D Random LN 10C5D LN 20C5D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
A

cc
u

ra
cy

Batch
Epoch

AlexNet: Layer-wise network precision reduction on MNIST dataset

Unoptimized Random LN 5C10D LN 10C5D LN 20C5D LN 5C20D LN 10C20D LN 20C10D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

Dense network: Layer-wise network precision reduction on Fashion MNIST dataset

Unoptimized Random LN 5H10O LN 10H5O LN 20H5O LN 5H20O LN 10H20O LN 20H10O

Figure 5.5: Layerwise precision reduction on all the different datasets and networks

• The model with the highest overall training accuracy and learning closest to the full

precision one is the one with 20-bit precision dense layers and 10-bit precision convo-

lutional layers, followed by the one with 20-bit dense layers and 5-bit convolutional

layers. This further suggests that the precision of the dense layers is more significant,

in achieving better training accuracy, than the convolutional layers.

• The models with 10-bit precision dense layers had a higher training accuracy and

learning curve than the 5-bit precision dense layer models, but had a lower training

performance than the 20-bit precision dense layer models, with the 10-bit convolutional

layer model having a better training accuracy than the 5-bit precision convolutional

layer model. This suggests that the higher precision of convolutional layers impacts

the learning of the model, but not as much as the precision of the dense layers.

59

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
A

cc
u

ra
cy

Batch
Epoch

CNN: Layer-wise network precision reduction on Fashion MNIST dataset

Unoptimized Random LN 5C10D LN 10C5D LN 20C5D LN 5C20D LN 10C20D LN 20C10D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

AlexNet: Layer-wise network precision reduction on Fashion MNIST dataset

Unoptimized Random LN 5C10D LN 10C5D LN 20C5D LN 5C20D LN 10C20D LN 20C10D

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7 10 13 16 19 22 251 4 7 10 13 16 19 22 251 4 7 10 13 16 19 22 25

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

CNN: Layer-wise network precision reduction on CIFAR10 dataset

Unoptimized Random LN 5C10D LN 10C5D LN 20C5D LN 5C20D LN 10C20D LN 20C10D

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7 10 13 16 19 22 251 4 7 10 13 16 19 22 251 4 7 10 13 16 19 22 25

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

AlexNet: Layer-wise network precision reduction on CIFAR10 dataset

Unoptimized Random LN 5C10D LN 10C5D LN 20C5D LN 5C20D LN 10C20D LN 20C10D

Figure 5.6: Layerwise precision reduction on all the different datasets and networks

• The dense networks show similar trends to the CNN and AlexNet precision models,

although the effect of information loss due to reducing mantissa bits is more pronounced

due to the sharp ups and downs in the learning curves. Looking at the plots, it seems

that the effect of precision reduction in hidden layers impacts more than the output

layers. All the models with 5-bit precision hidden layers perform worse and have more

inconsistencies in learning than the 10-bit or higher precision hidden layer models. Also,

as expected, higher precision output layer models show better training accuracies and

learning.

• The MNIST dataset, as we speculated in section 5.1, seems to be easier to learn, as

the effect of precision reduction on the learning is less pronounced than the learning

on the Fashion MNIST or CIFAR10 dataset, as evident by the fact that the training

60

curves of the models are not as separated from each other than in the case of other

datasets.

We notice that the layerwise precision reduction strategy trains as well as the whole network

precision reduction strategy, while reducing a higher number of bits from the mantissa of

the weights. This strategy is fairly similar to the layerwise quantization techniques that are

developed recently [8], with the difference of this being a floating point precision standard.

Layerwise precision reduction can be implemented in most cases where there is a lack of

sufficient storage space (such as edge devices), or when there is identifiable gains for training

layers of a neural network at different precisions, such as training a network over distributed

systems with some nodes having less power or storage than others.

5.4 Increasing bucket reduction

After the layerwise precision reduction results, the same model configurations are trained

on the same datasets, with the bucketing strategies. First, we train with the increasing

(“forward”) precision with increasing weight value. The increasing bucket reduction strategy

is explained in detail in section 4.2.3. Since the permutations of the width of the bucket and

how many bits to keep in every bucket are too large for us to execute all the combinations

and report the results, we decided to experiment on three specified bucketing strategies:

• 5 bits: Precision in every bucket increases by 5 bits. Since the full precision is 23 bits

of mantissa, we have 5 buckets, with 5, 10, 15, 20 and 23 bits as precision for these

buckets.

• 2 bits: Precision in every bucket increases by 2 bits. Since the full precision is 23 bits

of mantissa, we have 12 buckets, with 2 bits for the first bucket, 4 for the second one,

up to 22 for the penultimate one. The final bucket has 23 bits of precision for the

mantissa.

• 1 bit: Precision in every bucket increases by 1 bit. Since the full precision is 23 bits of

mantissa, we have 23 buckets, with the first bucket having 1 bit of precision and the

final bucket having 23 bits of precision.

For the increasing precision reduction, the smallest weights are put in the first bucket with

the lowest precision and higher weights going in the next buckets with increasing precision.

61

Detailed explanation of the strategy of deciding buckets and boundaries of buckets are ex-

plained in section 4.2.3. One thing to note is that for comparison of weights and sorting

them into buckets, we considered the absolute unsigned value of the weights. Thus, a high

negative weight, say −12 is still considered a higher value weight than, say 0.5.

Figures 5.7 and 5.8 show the training accuracy curves for the increasing (forward) buck-

eting precision reduction strategies.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

Dense network: In-layer forward bucketing precision reduction on MNIST dataset

Unoptimized Random BUCKF 5BIT BUCKF 2BIT BUCKF 1BIT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

CNN: In-layer forward bucketing precision reduction on MNIST dataset

Unoptimized BUCKF 5BIT BUCKF 2BIT BUCKF 1BIT Random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
A

cc
u

ra
cy

Batch
Epoch

AlexNet: In-layer forward bucketing precision reduction on MNIST dataset

Unoptimized Random BUCKF 5BIT BUCKF 2BIT BUCKF 1BIT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

Dense Network: In-layer forward bucketing precision reduction on Fashion
MNIST dataset

Unoptimized Random BUCKF 5BIT BUCKF 2BIT BUCKF 1BIT

Figure 5.7: In-layer forward bucketing precision reduction on all the different datasets and

networks

One important thing of note here is that, over an average of 3 iterations, the 5 bit

forward bucketing strategy learned the best. It had a higher average overall training accuracy

than the other bucketing schemes, matching or surpassing the full precision model training

accuracy in some cases. This is perhaps because given the lesser number of buckets, the

higher valued weights had more precision than the 2 bit and 1 bit reduction strategies.

To better understand this, consider figure 5.9. The graphs display the percentage of

62

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
A

cc
u

ra
cy

Batch
Epoch

CNN: In-layer forward bucketing precision reduction on Fashion MNIST dataset

Unoptimized Random BUCKF 5BIT BUCKF 2BIT BUCKF 1BIT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

AlexNet: In-layer forward bucketing precision reduction on Fashion MNIST
dataset

Unoptimized Random BUCKF 5BIT BUCKF 2BIT BUCKF 1BIT

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7 10 13 16 19 22 251 4 7 10 13 16 19 22 251 4 7 10 13 16 19 22 25

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

CNN: In-layer forward bucketing precision reduction on CIFAR10 dataset

Unoptimized Random BUCKF 5BIT BUCKF 2BIT BUCKF 1BIT

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7 10 13 16 19 22 251 4 7 10 13 16 19 22 251 4 7 10 13 16 19 22 25

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

AlexNet: In-layer forward bucketing precision reduction on CIFAR10 dataset

Unoptimized Random BUCKF 5BIT BUCKF 2BIT BUCKF 1BIT

Figure 5.8: In-layer forward bucketing precision reduction on all the different datasets and

networks

weights in every bucket during one iteration of training of the AlexNet on Fashion MNIST

dataset, for both 5-bit and 2-bit increasing bucketing precision reduction. The colors of the

buckets are chosen appropriately such that the different shades of a similar color indicate

the approximate inclusion of a weight in that bucket for both 5-bit and 2-bit strategies. For

example, the orange in the 5-bit precision reduction indicates the bucket with 23 bits of

precision. The corresponding 2-bit buckets with similar weight values are the 22-bit and 23-

bit buckets (colored in different shades of orange). We observe that there is more precision

reduction in the 2-bit bucket strategy than the corresponding 5-bit bucket, since the weights

in the top bucket for 5-bit bucketing would have full precision, but the corresponding 2-bit

buckets has 22 bits of precision in one of them. Thus there is a reduction of precision already

in the 2-bit bucket for the similarly valued weight than the 5-bit bucket. This holds true for

all the buckets in both strategies. Obviously, because of different bucket boundaries and our

63

selection of bit-width for the bucketing strategies, the boundaries are not the same for both

strategies, but in most of the cases (apart from the bucket for 5 bits of precision in the 5-bit

forward bucketing strategy), the precision of a weight in a 5-bit reduction strategy will be

less than its corresponding position in the 2-bit reduction strategy.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 2830

1 2 3

St
ac

ke
d

 p
er

ce
n

ta
ge

 o
f

w
ei

gh
ts

Batch
Epoch

Distribution of weights in 2-bit forward buckets of the first Conv2D
layer of AlexNet on Fashion MNIST dataset

2 bits 4 bits 6 bits 8 bits 10 bits 12 bits 14 bits 16 bits 18 bits 20 bits 22 bits 23 bits

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 2830

1 2 3

St
ac

ke
d

 p
er

ce
n

ta
ge

 o
f

w
ei

gh
ts

Batch
Epoch

Distribution of weights in 5-bit forward buckets of the first Conv2D
layer of AlexNet on Fashion MNIST dataset

5 bits 10 bits 15 bits 20 bits 23 bits

Figure 5.9: Distribution of weights in the first convolution layer of the CNN during

training of forward bucketing precision reduction on the Fashion MNIST dataset

To further elaborate, we simply consider the final bucketing distribution of weights after

training of the network, as shown in figure 5.10. It is clear that most of the weights in a given

bucket in 2-bit forward bucketing precision reduction will have a lower precision in the 5-bit

forward bucketing strategy, since most of the buckets for the 5-bit strategy are overlapped

by a higher precision bucket in the 2-bit strategy, indicating that the weights will be lower

or, at worst, have the same precision in the 2-bit strategy as the 5-bit strategy in most cases.

If we compute the average number of bits saved over three iterations of experimentation, the

2-bit forward bucketing strategy reduces 722 bits from the mantissa of the weights of this

layer, whereas the 5-bit forward bucketing strategy reduces 575 bits. Hence, it is clear that

the 2-bit forward bucketing strategy reduces more bits than the 5-bit forward bucketing,

which is why it has a lower training accuracy than the 5-bit forward bucketing strategy.

Since the graphical display of weight distribution of weights during an iteration is mostly

similar, but with 23 buckets that makes it difficult to identify all the buckets properly, we

did not report the exact nature of the distribution of weights for the 1-bit forward bucketing

precision reduction strategy. However, the same concept holds for the precision of buckets in

that situation as well. The average number of bits reduced in this layer for the 1-bit forward

bucketing strategy is 787, higher than both the 5-bit and 2-bit bucketing.

64

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

St
ac

ke
d

 p
er

ce
n

ta
ge

 o
f

w
ei

gh
ts

2-bit forward bucketing

Post training distribution of weights in buckets for 2-bit forward bucketing
for the first Conv2D layer of AlexNet on Fashion MNIST dataset

2 bits 4 bits 6 bits 8 bits 10 bits 12 bits 14 bits 16 bits 18 bits 20 bits 22 bits 23 bits

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

St
ac

ke
d

 p
er

ce
n

ta
ge

 o
f

w
ei

gh
ts

5-bit forward bucketing

Post training distribution of weights in buckets for 5-bit forward bucketing
for the first Conv2D layer of AlexNet on Fashion MNIST dataset

5 bits 10 bits 15 bits 20 bits 23 bits

Figure 5.10: Distribution of weights in the first convolution layer of the CNN after

training of forward bucketing precision reduction on the Fashion MNIST dataset

Another thing we observed is that the effect of precision reduction in the MNIST dataset

is less pronounced than the other datasets, as seen in the previous strategies. This supports

our previous reasoning of the MNIST dataset being too simple and easier to learn, since

the loss of trailing mantissa bits does not have as much of an impact on training accuracy

as it does on the Fashion MNIST or CIFAR10 dataset. This is visibly more clear when we

compare the performance of the dense network on the two datasets for this strategy. For the

MNIST dataset, even after precision reduction, the training accuracy for all the different bit-

width bucketing strategies are very close to the full precision one. However, for the Fashion

MNIST dataset, the training curve for the 2-bit and 1-bit strategies are closer to the random

precision model accuracy. This indicates that the MNIST dataset can be learned efficiently

with less than full precision, even for a simple network as the multilayer perceptron.

Overall, the increasing bucket reduction strategy trains at a higher accuracy than the

layerwise precision reduction strategy, if the number of bits reduced across the network

are similar. As was the case for layerwise precision reduction, this strategy can be used

to train networks on low resource devices or nodes in a cluster. Moreover, because of the

differing precision of weights in a layer, storage space can be further optimized for every layer.

Since the precision reduction happens somewhat uniformly across the network, unlike the

layerwise strategy which has high or low precision based on layer, this strategy is somewhat

more robust and tolerant to information loss.

65

5.5 Decreasing bucket reduction

Finally, we train with the decreasing or “reverse” precision with increasing weight value.

The decreasing bucket reduction strategy is explained in detail in section 4.2.4. We choose

the same bucket bit-widths as we chose for the increasing bucket strategy:

• 5 bits: Precision in every bucket decreases by 5 bits. Since the full precision is 23 bits

of mantissa, we have 5 buckets, with 23, 20, 15, 10 and 5 bits as precision for these

buckets, in order of increasing weight values.

• 2 bits: Precision in every bucket decreases by 2 bits. Since the full precision is 23 bits

of mantissa, we have 12 buckets, with 2 bits for the final bucket, 4 for the penultimate

one, up to 22 for the second one. The first bucket has 23 bits of precision for the

mantissa.

• 1 bit: Precision in every bucket decreases by 1 bit. Since the full precision is 23 bits

of mantissa, we have 23 buckets, with the first bucket having 23 bits of precision and

the final bucket having 1 bit of precision.

For the decreasing (or reverse) precision reduction, the smallest weights are put in the first

bucket with highest precision and higher weights going in the next buckets with reducing

precision. Detailed explanation of the strategy of deciding buckets and boundaries of buckets

are explained in section 4.2.4. As in the case of the forward bucketing strategy, for comparison

of weights and sorting them into buckets, we considered the absolute unsigned value of the

weights.

Figures 5.11 and 5.12 show the training accuracy curves for the decreasing (reverse)

bucketing precision reduction strategies, averaged over three separate experiments.

From the figures, we observe that, similar to the forward bucketing precision reduction,

the 5-bit bucketing has a higher training accuracy than the 2-bit or 1-bit bucketing strategies.

This is because of the fact that the justification of precision in buckets that we discussed in

section 5.4 is valid for this situation as well.

However, it is observed that the reverse bucketing strategy learns worse than its forward

bucketing countrerpart in most cases. The training accuracies of any bit-width reverse

bucketing strategy is worse than its corresponding forward bucketing strategy. This implies

that unlike the assumption we had in section 4.2.4, the precision of higher valued weights is

more significant in predicting than the precision of lower valued weights.

66

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

Dense network: In-layer reverse bucketing precision reduction on MNIST dataset

Unoptimized Random BUCKR 5BIT BUCKR 2BIT BUCKR 1BIT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

CNN: In-layer reverse bucketing precision reduction on MNIST dataset

Unoptimized BUCKR 5BIT BUCKR 2BIT BUCKR 1BIT Random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
A

cc
u

ra
cy

Batch
Epoch

AlexNet: In-layer reverse bucketing precision reduction on MNIST dataset

Unoptimized Random BUCKR 5BIT BUCKR 2BIT BUCKR 1BIT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

Dense Network: In-layer reverse bucketing precision reduction on Fashion MNIST
dataset

Unoptimized Random BUCKR 5BIT BUCKR 2BIT BUCKR 1BIT

Figure 5.11: In-layer reverse bucketing precision reduction on all the different datasets and

networks

5.6 Prediction on test data

Training the models at reduced precision showed promising results on training accuracy. We

decided to analyze the learning of our models further by predicting on the test data on each

of them. Tables 5.2 and 5.3 show the average prediction accuracy and time taken to predict

on each of the test dataset over 3 iterations. Each of the datasets have 10000 images as test

data.

Looking at the tables, we do observe a few interesting features that need to be addressed.

The first thing we observe is that the unoptimized full precision strategy has the highest

test accuracy. This was expected as the full precision does improve prediction. However,

looking at the other values, it is clear that the bucketing strategies, even after sacrificing

some amount of precision, is not far from the prediction accuracy of the full precision model.

67

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
A

cc
u

ra
cy

Batch
Epoch

CNN: In-layer reverse bucketing precision reduction on Fashion MNIST dataset

Unoptimized Random BUCKR 5BIT BUCKR 2BIT BUCKR 1BIT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 1 4 7 10 13 16 19 22 25 28 30

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

AlexNet: In-layer reverse bucketing precision reduction on Fashion MNIST
dataset

Unoptimized Random BUCKR 5BIT BUCKR 2BIT BUCKR 1BIT

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7 10 13 16 19 22 251 4 7 10 13 16 19 22 251 4 7 10 13 16 19 22 25

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

CNN: In-layer reverse bucketing precision reduction on CIFAR10 dataset

Unoptimized Random BUCKR 5BIT BUCKR 2BIT BUCKR 1BIT

0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7 10 13 16 19 22 251 4 7 10 13 16 19 22 251 4 7 10 13 16 19 22 25

1 2 3

Tr
ai

n
in

g
ac

cu
ra

cy

Batch
Epoch

AlexNet: In-layer reverse bucketing precision reduction on CIFAR10 dataset

Unoptimized Random BUCKR 5BIT BUCKR 2BIT BUCKR 1BIT

Figure 5.12: In-layer reverse bucketing precision reduction on all the different datasets and

networks

Among the bucketing strategies, the forward bucketing strategy with a bit-width of 5 bits

is the most successful in predicting on the test data. The other strategies that are close to

the full precision model accuracy are models with 20 bit precision on the whole network and

with a layer-wise precision model of 10 bits in the convolutional layers and 20 bits in the

dense layer.

Of course, this brings us the question of whether the bucketing reduction is worth it,

given that the layer-wise reduction is equally successful. For this we consider a network that

we used, the CNN, as an example, and try to figure out the difference of bits reduced in

both these strategies: the forward bucketing strategy and the 10C20D layerwise precision

reduction strategy. Table 5.4 shows the total number of weights in each layer of the network.

Layers that do not contain learnable weights (weights learned during the training of the

network), such as the flatten or the dropout layers, are omitted.

68

MNIST Fashion MNIST CIFAR10
Dense CNN AlexNet Dense CNN AlexNet CNN AlexNet

Unoptimized 89.46 93.53 93.13 78.52 85.92 79.32 39.94 30.23
Random 78.85 79.24 75.96 52.34 68.93 55.56 32.26 19.37
WN 5bits 70.75 66.48 56.9 53.55 59.93 48.5 26.85 21.83
WN 10bits 78.03 79.1 89.68 72.94 77.71 68.73 31.72 30.37
WN 20bits 85.1 92.78 91.22 75.91 82.39 75.22 36.15 33.52
LN 5C10D2 75.44 90.87 83.06 55.81 76.7 66.28 30.43 25.56
LN 20C10D2 83.59 91.13 87.56 71.5 78.05 73.02 31.23 27.6
LN 10C5D2 80.77 71.35 69.47 70.14 72.59 48.24 27.82 23.3
LN 20C5D2 83.79 81.82 68.44 69.59 67.13 57.95 29.57 18.9
LN 5C20D2 75.67 91.58 85.54 72.92 77.59 67.62 36.45 23.43
LN 10C20D2 82.43 92.18 90.61 74.55 79.90 74.35 39.03 28.53
BUCKF 5bits 84.92 92.78 90.96 77.66 83.7 77.58 40.05 31.27
BUCKF 2bits 78.75 88.99 85.23 71.82 81.03 70.12 39.0 23.99
BUCKF 1bit 81.81 92.08 88.38 70.02 80 65.5 33.02 23.15
BUCKR 5bits 83.17 92.79 86.53 71.57 82.74 75.5 33.2 25.05
BUCKR 2bits 81.05 87.42 77.73 70.2 80.02 69.5 37.47 19.91
BUCKR 1bit 80.58 88.53 82.26 69.28 79.79 58.08 18.54 18.49

1 The highlighted numbers are the highest prediction accuracy for the models in each category of precision
reduction strategy
2 For dense networks, the characters ‘C’ and ‘D’ are substituted for ‘H’ and ‘O’ respectively. Refer to table
5.1 for details.

Table 5.2: Prediction accuracy (in percentage) on the test data1

For the full layer-wise precision reduction strategy, the weights in the convolutional layers

have a precision of 10 bits and the dense layers have precision of 20 bits. The convolutional

layer weights lose 13 bits of precision and the dense layer weights lose 3 bits of precision.

The total number of bits reduced from the full precision of 23 bits, during the training of

the network is 238, 056 bits, or 29kb.

Calculating the precision reduction for the bucketing strategy is not that simple, however.

Since it is dependant on the value of the weights, the total bits change for every training

iteration and the dataset on which it is trained. Moreover, since we recalculate buckets at

the end of every batch, the total weights per bucket change multiple times. For comparing

only the test results, we consider the bucket allocation of weights at the end of training.

We take one such training iteration on the Fashion MNIST dataset and look at the weight

allocation of the buckets. The total weights per bucket at the end of training is displayed in

Table 5.5.

69

MNIST Fashion MNIST CIFAR10
Dense CNN AlexNet Dense CNN AlexNet CNN AlexNet

Unoptimized 1.05 1.20 1.61 1.2 1.47 1.85 1.88 1.91
Random 0.71 0.70 0.96 0.70 0.77 0.86 0.99 1.07
WN 5bits 0.58 0.64 0.79 0.65 0.72 0.86 0.82 1.05
WN 10bits 0.76 0.85 0.92 0.90 0.92 1.18 1.19 1.47
WN 20bits 0.92 1.07 1.41 1.01 1.28 1.66 1.40 1.65
LN 5C10D2 0.71 0.81 0.90 0.88 0.87 1.09 1.16 1.32
LN 20C10D2 0.89 0.87 0.95 0.93 0.94 1.20 1.25 1.55
LN 10C5D2 0.67 0.71 0.82 0.78 0.79 0.92 0.96 1.08
LN 20C5D2 0.75 0.75 0.89 0.83 0.81 0.94 1.00 1.15
LN 5C20D2 0.83 0.97 1.28 0.94 1.19 1.33 1.30 1.57
LN 10C20D2 0.91 1.05 1.38 0.96 1.24 1.65 1.36 1.62
BUCKF 5bits 0.75 0.70 0.94 0.85 0.94 0.96 1.06 1.15
BUCKF 2bits 0.72 0.69 0.82 0.80 0.80 0.78 0.96 1.05
BUCKF 1bit 0.69 0.69 0.70 0.73 0.71 0.74 0.90 1.02
BUCKR 5bits 0.75 0.97 0.96 0.88 0.92 0.94 1.05 1.05
BUCKR 2bits 0.74 0.66 0.79 0.82 0.84 0.85 1.00 0.94
BUCKR 1bit 0.68 1.00 0.74 0.8 0.73 0.81 0.86 0.88

1 The highlighted numbers are the corresponding prediction times for the models with highest prediction
accuracy in Table 5.2
2 For dense networks, the characters ‘C’ and ‘D’ are substituted for ‘H’ and ‘O’ respectively. Refer to table
5.1 for details.

Table 5.3: Prediction time (in seconds) on the test data1

Conv. Layer 1 72
Conv. Layer 2 1152
Hidden Layer 73728
Output Layer 320

Total 75272

Table 5.4: Total number of trainable weights in the network

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5 Total
Conv. Layer 1 33 53 50 50 30 72
Conv. Layer 2 139 298 318 312 85 1152
Hidden Layer 1399 16283 36311 16602 4677 75272
Output Layer 28 84 68 30 110 320

Table 5.5: Total number of weights in each bucket of the CNN post training on Fashion

MNIST dataset

70

Since we know the number of bits retained per bucket, we can calculate the total number

of bits saved per bucket per layer. The results are shown in table 5.6.

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5 Total
Conv. Layer 1 198 221 128 54 0 601
Conv. Layer 2 2502 3874 2544 936 0 9856
Hidden Layer 25182 211679 290488 49806 0 577155
Output Layer 504 1092 544 90 0 2230

Table 5.6: Total number of weights in each bucket of the CNN post training on Fashion

MNIST dataset

The forward bucketing precision reduction strategy saves 589, 842 bits, or 72kb, in the

training of the network, almost three times that of the layer-wise network. Upon observing

across multiple passes, the total bits reduced increase or decrease by a maximum of 10, 000

bits approximately. Thus, the forward bucketing precision reduction strategy reduces more

precision, which reduces the storage space for the network models and facilitates faster and

less intensive floating point arithmetic operations.

The training of the neural networks in these precision reduction strategies do require

a significantly large amount of time compared to the full precision model. The training

of the CNN with no optimization strategy on the Fashion MNIST dataset takes about 3

minutes with the chosen hyperparameters on average. With the forward bucketing strategy,

the training takes up to 40 minutes to complete. This is a major downside of our technique.

This is majorly because of two main sections of the code:

• The creation and allocation of weights into buckets

• The actual reduction and pruning of mantissa bits

However, we set this experiment out as a simulation, with the expectation that specific

hardware can be designed that would not depend on software function calls and variable

information to determine the precision of a weight and manually reduce it at the end of

every batch. Computational units that can work on custom precision can be designed to

implement this effectively. Also, techniques can be considered to choose certain intervals for

precision reduction instead of the end of every batch. However, the cost of training data

is slightly offset by the fact that the prediction time of these strategies is less than the full

precision model.

We observe from table 5.3 that the average prediction time of the networks with precision

71

reduction is lesser than that of the unoptimized full precision model. The highlighted (bold)

times correspond to the times for the highest average accuracy in that precision reduction

strategy, as highlighted in table 5.2. Because of the lower number of bits in the mantissa of

the weights, the bucketing strategies take less time than the layer-wise and whole network

precision reduction strategies. On average, the bucketing strategy takes 42.5% less time

to predict than the full precision network. This indicates that the model trained with the

bucketing strategy takes less time to compute the prediction than the full precision model,

which validate our assumption that reducing precision bits would reduce the computation

time of neural networks.

One particular thing of note here is that as we discussed in section 4.1.3, the float value,

after reduction, is stored back into a 32 bit storage, with reduced bits replaced by zero.

This is done internally to maintain the standard of IEEE 754. Thus, it raised a question

of whether the reduction in prediction time is actually caused by the reduction of precision

or something else. We came to the conclusion that it is indeed because of the precision

reduction, and we base this on the following two statements:

• The only thing we changed in the network during the entire training process are the

weights, at the end of every batch. We did not not perform any post-training optimiza-

tion. Thus, the only difference between a full precision model and a reduced precision

model are the weights. Thus, any change in prediction time would be for the change

in weights. We trained both the unoptimized and the reduced precision models sev-

eral times, and for every iteration, the prediction time is always lower for the reduced

precision model. Moreover, we observed that in most cases the greater the number of

bits reduced, the less time is taken.

• Secondly, we assume another possible explanation to this could be on a hardware

level. Although the internal design of Intel and AMD CPUs is not public, CPUs can

include optimizations that shortcut or skip for operations on zero, which would allow

the CPUs to skip the trailing bits and the operations during the prediction phase. This

assumption, although not proven by our research, is not of importance to us because

our objective of this experiment is to create a simulation that would allow us to design

hardware that would support custom precision. In such a scenario, trailing bits would

not be used ideally to conform to the floating point standard, thus eliminating the

speculation of CPU shortcut for operations on zero.

72

Looking at the results, it seems indicative that the staggered precision reduction strategy

of allocating weights into buckets based on their values to determine their precision seems

to train models well enough to produce comparable prediction results to the full precision

strategy, while taking significantly less time and less storage space to do so.

73

Chapter 6

Conclusion and Future Work

In this work, we have tried to reduce the precision of weights in a neural network using

floating point representation of float values. Using the IEEE 754 standard of floating point

representation, we explored a technique of choosing precision of weights based on their

value and segregating them into clusters or “buckets”, and selecting a precision for every

bucket. We also compared the results to two other floating-point approaches to traditional

precision reduction techniques used in quantization, such as reducing the weights of an entire

network to a common precision and to reduce the precision of every layer to a different

value. The strategy is more fine-grained than a blanket of setting a common precision to

the whole network or a layer, while also not hand-picking the precision for every single

weight. We tried two different strategies of correlating weight values and precision, both of

which were effective. Upon running our experiments on three datasets with three different

types of networks, the results suggest that with the bucketing technique, it is possible to

reach training and prediction accuracy similar to the full precision model, while reducing a

significant number of mantissa bits. The bucket width of 5 bits with increasing precision for

increasing value of weights learned the best, with prediction accuracies almost as high as the

full precision network. Unlike quantization or other aggressive forms of precision reduction,

this method does not need to implement any other form of optimization to improve accuracy.

This facilitates the ability to implement other optimization algorithms in conjunction to our

technique on the network independently.

Overall, this research has been an interesting look into the floating-point representation

and manipulation of weights in a neural network, with an attempt at trying to reduce the

precision while retaining accuracy of the neural network. Having lower prediction time

encourages this strategy to be implemented in models running on low-power or handheld

74

devices, where a model once trained is used to predict on data large number of times. The

faster prediction starts to offset the cost of training time in those cases.

Future work

Since this is a preliminary work in this domain, there are several paths we plan to extend this

research. Our research direction was motivated by research being conducted in the NSERC

COHESA1 research network, which aims to develop custom hardware accelerators for ma-

chine learning. Research in this network has included various approaches, including floating

point optimizations. Hardware support for reducing mantissa precision, without simulation

or need to use zero bit-padding, would allow for direct reduction of precision of the weights

instead of invoking a software call to bucket weights at the end of every batch, thus reducing

training time overhead.

On the algorithm front, the precision reduction strategy we designed seems to be effective

in convolutional networks, since the convolutional layers learn abstract concepts early, such

as edges and curves, helping them retain the precision of these important features while

choosing to reduce the precision of other weights. Implementing this strategy on larger and

different types of networks, such as RNNs and autoencoders, and larger and different types

of datasets, such as audio or textual datasets, would provide more information on the per-

formance on this type of precision reduction. Although it is difficult to tell whether this

precision reduction technique will be efficient enough to optimize the neural networks dur-

ing training, our preliminary results show promise and bear implications that warrant the

research into other networks and datasets.

In later versions of this research, we plan to experiment and design new precision reduc-

tion strategies and compare results. Some examples of such new strategies are:

• Choosing precision of weights based on their learning rate, or rate of change.

• Trying to figure out the ideal bucketing strategy for every layer.

• Associating precision with an appropriate distribution that is similar to the learning

distribution of a weight.

• Determining precision based on sparsity of weights in a layer.

1https://cohesa.org

75

https://cohesa.org

• Identifying regions or clusters of weights for choosing precision.

There is also an unexplored path of tuning the exponents of the floating point representa-

tion, on top of our proposed approach of mantissa reduction, that can be used to further

optimize floating point precision during training. Approaches such as “Block Floating Point

(BFP)” [5,14] have been implemented to share common exponents and further reduce com-

putational speed and improve the efficiency of neural networks. Such approaches can be

applied on top of our mantissa reduction strategies for further optimization.

Another path of research that can be considered in the future is the optimization of the

training process used in our precision reduction strategies. There are numerous opportunities

for optimization. As we discussed in section 5.6, the long training time is an issue that we

plan to resolve. Several approaches can be considered, such as reducing precision intermit-

tently instead of every batch, deciding on a threshold accuracy to stop precision reduction,

developing a way to foreshadow the cluster a weight should belong to, or creating a custom

layer type of a neural network layer that learns to reduce precision of weights appropriately

by itself instead of requiring manual specification.

76

Bibliography

[1] Alemdar, H., Leroy, V., Prost-Boucle, A., and Pétrot, F. Ternary Neural

Networks for Resource-Efficient AI Applications. arXiv:1609.00222 [cs] (Feb. 2017).

arXiv: 1609.00222.

[2] Anwar, S., Hwang, K., and Sung, W. Fixed point optimization of deep convolu-

tional neural networks for object recognition. In 2015 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP) (Apr. 2015), pp. 1131–1135.

[3] Asanovic, K., and Morgan, N. Experimental determination of precision require-

ments for back-propagation training of artificial neural networks. International Com-

puter Science Institute, 1991.

[4] Bengio, Y., Léonard, N., and Courville, A. Estimating or Propagating Gradi-

ents Through Stochastic Neurons for Conditional Computation. arXiv:1308.3432 [cs]

(Aug. 2013). arXiv: 1308.3432.

[5] Bittner, R., and Forin, A. Block floating point for neural network implementations,

June 2018. Patent number US10528321B2, Filed May 10th., 2017, Issued June 7th.,

2018.

[6] Brightwell, G., Kenyon, C., and Paugam-Moisy, H. Multilayer neural net-

works: one or two hidden layers? In Advances in Neural Information Processing Systems

(1997), pp. 148–154.

[7] Cauchy, A. Méthode générale pour la résolution des systemes d’équations simultanées.

Comp. Makes. Sci. Paris 25, 1847 (1847).

[8] Chen, S., Wang, W., and Pan, S. J. Deep neural network quantization via layer-

wise optimization using limited training data. In Proceedings of the AAAI Conference

on Artificial Intelligence (2019), vol. 33, pp. 3329–3336.

77

[9] Choukroun, Y., Kravchik, E., Yang, F., and Kisilev, P. Low-bit Quantization

of Neural Networks for Efficient Inference. In 2019 IEEE/CVF International Conference

on Computer Vision Workshop (ICCVW) (2019), IEEE, pp. 3009–3018.

[10] Coates, A., Baumstarck, P., Le, Q., and Ng, A. Y. Scalable learning for

object detection with GPU hardware. In 2009 IEEE/RSJ International Conference on

Intelligent Robots and Systems (Oct. 2009), pp. 4287–4293. ISSN: 2153-0866.

[11] Courbariaux, M., Bengio, Y., and David, J.-P. BinaryConnect: Training Deep

Neural Networks with binary weights during propagations. In Advances in Neural In-

formation Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,

and R. Garnett, Eds. Curran Associates, Inc., 2015, pp. 3123–3131.

[12] Cybenko, G. Approximation by superpositions of a sigmoidal function. Mathematics

of Control, Signals and Systems 2, 4 (Dec. 1989), 303–314.

[13] Das, D., Mellempudi, N., Mudigere, D., Kalamkar, D., Avancha, S.,

Banerjee, K., Sridharan, S., Vaidyanathan, K., Kaul, B., and Georganas,

E. Mixed precision training of convolutional neural networks using integer operations.

arXiv preprint arXiv:1802.00930 (2018).

[14] Drumond, M., LIN, T., Jaggi, M., and Falsafi, B. Training DNNs with Hy-

brid Block Floating Point. In Advances in Neural Information Processing Systems 31,

S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,

Eds. Curran Associates, Inc., 2018, pp. 453–463.

[15] Farabet, C., Poulet, C., Han, J. Y., and LeCun, Y. CNP: An FPGA-based

processor for Convolutional Networks. In 2009 International Conference on Field Pro-

grammable Logic and Applications (Aug. 2009), pp. 32–37. ISSN: 1946-1488.

[16] Gong, Y., Liu, L., Yang, M., and Bourdev, L. Compressing Deep Convolu-

tional Networks using Vector Quantization. arXiv:1412.6115 [cs] (Dec. 2014). arXiv:

1412.6115.

[17] Griffiths, S. The BitStream class - bitstring documentation. https://bitstring.

readthedocs.io/en/latest/bitstream.html.

78

https://bitstring.readthedocs.io/en/latest/bitstream.html
https://bitstring.readthedocs.io/en/latest/bitstream.html

[18] Guan, Y., Liang, H., Xu, N., Wang, W., Shi, S., Chen, X., Sun, G., Zhang,

W., and Cong, J. FP-DNN: An Automated Framework for Mapping Deep Neural

Networks onto FPGAs with RTL-HLS Hybrid Templates. In 2017 IEEE 25th Annual In-

ternational Symposium on Field-Programmable Custom Computing Machines (FCCM)

(Apr. 2017), pp. 152–159.

[19] Guo, K., Sui, L., Qiu, J., Yu, J., Wang, J., Yao, S., Han, S., Wang, Y.,

and Yang, H. Angel-Eye: A Complete Design Flow for Mapping CNN Onto Embed-

ded FPGA. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 37, 1 (Jan. 2018), 35–47. Conference Name: IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems.

[20] Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. Deep

learning with limited numerical precision. In International Conference on Machine

Learning (2015), pp. 1737–1746.

[21] Gysel, P. Ristretto: Hardware-Oriented Approximation of Convolutional Neural Net-

works. arXiv:1605.06402 [cs] (May 2016). arXiv: 1605.06402.

[22] Han, S., Kang, J., Mao, H., Hu, Y., Li, X., Li, Y., Xie, D., Luo, H., Yao,

S., Wang, Y., Yang, H., and Dally, W. B. J. ESE: Efficient Speech Recognition

Engine with Sparse LSTM on FPGA. In Proceedings of the 2017 ACM/SIGDA Inter-

national Symposium on Field-Programmable Gate Arrays (Monterey, California, USA,

Feb. 2017), FPGA ’17, Association for Computing Machinery, pp. 75–84.

[23] Han, S., Mao, H., and Dally, W. J. Deep Compression: Compressing Deep Neural

Networks with Pruning, Trained Quantization and Huffman Coding. arXiv:1510.00149

[cs] (Oct. 2015). arXiv: 1510.00149.

[24] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N.,

Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T. N., and Kingsbury, B.

Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views

of Four Research Groups. IEEE Signal Processing Magazine 29, 6 (Nov. 2012), 82–97.

[25] Holt, J., and Baker, T. Back propagation simulations using limited precision

calculations. In IJCNN-91-Seattle International Joint Conference on Neural Networks

(Seattle, WA, USA, 1991), vol. ii, IEEE, pp. 121–126.

79

[26] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y.

Binarized Neural Networks. In Advances in Neural Information Processing Systems

29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran

Associates, Inc., 2016, pp. 4107–4115.

[27] Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y.

Quantized Neural Networks: Training Neural Networks with Low Precision Weights

and Activations. The Journal of Machine Learning Research 18, 1 (2017), 6869–6898.

[28] Hwang, K., and Sung, W. Fixed-point feedforward deep neural network design

using weights +1, 0, and −1. In 2014 IEEE Workshop on Signal Processing Systems

(SiPS) (Oct. 2014), pp. 1–6. ISSN: 2162-3570.

[29] Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H.,

and Kalenichenko, D. Quantization and Training of Neural Networks for Efficient

Integer-Arithmetic-Only Inference. arXiv:1712.05877 [cs, stat] (Dec. 2017). arXiv:

1712.05877.

[30] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa,

R., Bates, S., Bhatia, S., Boden, N., Borchers, A., Boyle, R., Cantin, P.-

l., Chao, C., Clark, C., Coriell, J., Daley, M., Dau, M., Dean, J., Gelb,

B., Ghaemmaghami, T. V., Gottipati, R., Gulland, W., Hagmann, R., Ho,

C. R., Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Ja-

worski, A., Kaplan, A., Khaitan, H., Killebrew, D., Koch, A., Kumar, N.,

Lacy, S., Laudon, J., Law, J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin,

A., MacKean, G., Maggiore, A., Mahony, M., Miller, K., Nagarajan, R.,

Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick, M., Penukonda,

N., Phelps, A., Ross, J., Ross, M., Salek, A., Samadiani, E., Severn, C.,

Sizikov, G., Snelham, M., Souter, J., Steinberg, D., Swing, A., Tan, M.,

Thorson, G., Tian, B., Toma, H., Tuttle, E., Vasudevan, V., Walter, R.,

Wang, W., Wilcox, E., and Yoon, D. H. In-Datacenter Performance Analysis of

a Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium

on Computer Architecture (Toronto, ON, Canada, June 2017), ISCA ’17, Association

for Computing Machinery, pp. 1–12.

80

[31] Judd, P., Albericio, J., Hetherington, T., Aamodt, T., Jerger, N. E.,

Urtasun, R., and Moshovos, A. Reduced-Precision Strategies for Bounded Memory

in Deep Neural Nets. arXiv:1511.05236 [cs] (Jan. 2016). arXiv: 1511.05236.

[32] Kingma, D. P., and Welling, M. Auto-Encoding Variational Bayes.

arXiv:1312.6114 [cs, stat] (May 2014). arXiv: 1312.6114.

[33] Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny

images. Tech. rep., University of Toronto, 2009.

[34] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet Classification with

Deep Convolutional Neural Networks. In Advances in Neural Information Processing

Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran

Associates, Inc., 2012, pp. 1097–1105.

[35] Lai, L., Suda, N., and Chandra, V. Deep Convolutional Neural Network Inference

with Floating-point Weights and Fixed-point Activations. arXiv:1703.03073 [cs] (Mar.

2017). arXiv: 1703.03073.

[36] Lawrence, S., Giles, C. L., and Tsoi, A. C. Lessons in neural network training:

Overfitting may be harder than expected. In AAAI/IAAI (1997), Citeseer, pp. 540–545.

[37] Li, F., Zhang, B., and Liu, B. Ternary Weight Networks. arXiv:1605.04711 [cs]

(Nov. 2016). arXiv: 1605.04711.

[38] Li, H., Fan, X., Jiao, L., Cao, W., Zhou, X., and Wang, L. A high performance

FPGA-based accelerator for large-scale convolutional neural networks. In 2016 26th

International Conference on Field Programmable Logic and Applications (FPL) (Aug.

2016), pp. 1–9. ISSN: 1946-1488.

[39] Li, Z., Ni, B., Zhang, W., Yang, X., and Gao, W. Performance Guaranteed

Network Acceleration via High-Order Residual Quantization. In Proceedings of the

IEEE International Conference on Computer Vision (2017), pp. 2584–2592.

[40] Liang, S., Yin, S., Liu, L., Luk, W., and Wei, S. FP-BNN: Binarized neural

network on FPGA. Neurocomputing 275 (Jan. 2018), 1072–1086.

[41] Lozito, G.-M., Laudani, A., Riganti Fulginei, F., and Salvini, A. FPGA

Implementations of Feed Forward Neural Network by using Floating Point Hardware

81

Accelerators. Advances in Electrical and Electronic Engineering 12, 1 (Mar. 2014), 30

– 39.

[42] Luo, C., Sit, M.-K., Fan, H., Liu, S., Luk, W., and Guo, C. Towards effi-

cient deep neural network training by FPGA-based batch-level parallelism. Journal of

Semiconductors 41, 2 (Feb. 2020), 022403. Publisher: IOP Publishing.

[43] Na, T., and Mukhopadhyay, S. Speeding Up Convolutional Neural Network Train-

ing with Dynamic Precision Scaling and Flexible Multiplier-Accumulator. In Proceedings

of the 2016 International Symposium on Low Power Electronics and Design (New York,

NY, USA, 2016), ISLPED ’16, ACM, pp. 58–63. event-place: San Francisco Airport,

CA, USA.

[44] Naftaly, U. The Modified BFPQ algorithm. In 7th European Conference on Synthetic

Aperture Radar (June 2008), pp. 1–4.

[45] Nguyen, D., Kim, D., and Lee, J. Double MAC: Doubling the performance of con-

volutional neural networks on modern FPGAs. In Design, Automation Test in Europe

Conference Exhibition (DATE), 2017 (Mar. 2017), pp. 890–893. ISSN: 1558-1101.

[46] Nurvitadhi, E., Sheffield, D., Sim, J., Mishra, A., Venkatesh, G., and

Marr, D. Accelerating Binarized Neural Networks: Comparison of FPGA, CPU,

GPU, and ASIC. In 2016 International Conference on Field-Programmable Technology

(FPT) (Dec. 2016), pp. 77–84.

[47] NVIDIA. NVIDIA Volta AI Architecture. https://www.nvidia.com/en-us/

data-center/volta-gpu-architecture/.

[48] Oppenheim, A. Realization of digital filters using block-floating-point arithmetic.

IEEE Transactions on Audio and Electroacoustics 18, 2 (June 1970), 130–136. Confer-

ence Name: IEEE Transactions on Audio and Electroacoustics.

[49] Panchal, G., Ganatra, A., Kosta, Y. P., and Panchal, D. Behaviour Analysis

of Multilayer Perceptronswith Multiple Hidden Neurons and Hidden Layers. Interna-

tional Journal of Computer Theory and Engineering (2011), 332–337.

[50] Podili, A., Zhang, C., and Prasanna, V. Fast and efficient implementation of

Convolutional Neural Networks on FPGA. In 2017 IEEE 28th International Confer-

82

https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/

ence on Application-specific Systems, Architectures and Processors (ASAP) (July 2017),

pp. 11–18. ISSN: 2160-052X.

[51] Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., Yu, J., Tang, T.,

Xu, N., Song, S., Wang, Y., and Yang, H. Going Deeper with Embedded FPGA

Platform for Convolutional Neural Network. In Proceedings of the 2016 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (Monterey, California,

USA, Feb. 2016), FPGA ’16, Association for Computing Machinery, pp. 26–35.

[52] Ralev, K., and Bauer, P. Realization of block floating-point digital filters and

application to block implementations. IEEE Transactions on Signal Processing 47, 4

(Apr. 1999), 1076–1086. Conference Name: IEEE Transactions on Signal Processing.

[53] Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. XNOR-Net: Ima-

geNet Classification Using Binary Convolutional Neural Networks. In Computer Vision

– ECCV 2016 (Cham, 2016), B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds., Lecture

Notes in Computer Science, Springer International Publishing, pp. 525–542.

[54] Shayer, O., Levi, D., and Fetaya, E. Learning Discrete Weights Using the Local

Reparameterization Trick. In International Conference on Learning Representations

(2018).

[55] Soudry, D., Hubara, I., and Meir, R. Expectation Backpropagation: Parameter-

Free Training of Multilayer Neural Networks with Continuous or Discrete Weights. In

Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling,

C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2014,

pp. 963–971.

[56] Sridharan, S., and Dickman, G. Block floating-point implementation of digital

filters using the DSP56000. Microprocessors and Microsystems 12, 6 (July 1988), 299–

308.

[57] Stathakis, D. How many hidden layers and nodes? International Journal of Remote

Sensing 30, 8 (Apr. 2009), 2133–2147.

[58] Underwood, K. FPGAs vs. CPUs: trends in peak floating-point performance. In Pro-

ceedings of the 2004 ACM/SIGDA 12th international symposium on Field programmable

83

gate arrays (Monterey, California, USA, Feb. 2004), FPGA ’04, Association for Com-

puting Machinery, pp. 171–180.

[59] Wang, N., Choi, J., Brand, D., Chen, C.-Y., and Gopalakrishnan, K. Train-

ing Deep Neural Networks with 8-bit Floating Point Numbers. In Advances in Neu-

ral Information Processing Systems 31 (2018), S. Bengio, H. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., Curran Associates, Inc., pp. 7675–

7684.

[60] Wegener, A. W. Block floating point compression of signal data, Oct. 2012. Patent

number US8301803B2, Filed October 23rd., 2009, Issued October 30th., 2012.

[61] Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a Novel Image

Dataset for Benchmarking Machine Learning Algorithms. https://github.com/

zalandoresearch/fashion-mnist, 2017.

[62] Yann LeCun, C. C. MNIST handwritten digit database, Yann LeCun, Corinna Cortes

and Chris Burges. http://yann.lecun.com/exdb/mnist/.

[63] Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., and Cong, J. Optimizing

FPGA-based Accelerator Design for Deep Convolutional Neural Networks. In Proceed-

ings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays (Monterey, California, USA, Feb. 2015), FPGA ’15, Association for Computing

Machinery, pp. 161–170.

[64] Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., and Zou, Y. DoReFa-Net:

Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients.

arXiv:1606.06160 [cs] (Feb. 2018). arXiv: 1606.06160.

84

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
http://yann.lecun.com/exdb/mnist/

	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Methodology and experiments
	Contributions
	Road map

	Background and Related Work
	Artificial Neural Networks
	Learning in neural networks
	Multi-layer perceptron

	Convolutional Neural Networks
	Linear Image filter
	Layers in a CNN

	AlexNet
	IEEE 754 Standard for Floating Point Arithmetic
	Related work
	Quantization
	Hardware optimization
	Floating point optimization of weights

	Experimental Setup
	Data sets
	MNIST Database
	Fashion-MNIST database
	CIFAR10 Database

	Networks
	Dense network
	Convolutional Neural Network
	Modified AlexNet

	System configuration and hyperparameter selection

	Methodology
	Floating point reduction of weights
	The Lambda callback function
	The bitstring Python package
	Reduction of mantissa bits in Python

	Mantissa bit reduction strategy
	Whole network precision reduction
	Layerwise precision reduction
	Increasing bucket reduction
	Decreasing bucket reduction
	Other algorithms for benchmarks

	Results
	Whole network precision reduction
	Variance analysis
	Layerwise precision reduction strategy
	Increasing bucket reduction
	Decreasing bucket reduction
	Prediction on test data

	Conclusion and Future Work

