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~1 Abstract 

Motivated by the physiological phenomena of collapse and flow limitation for a seriai 

pulmonary artery stenosis, we investigated the three-dimensional influence of spatial 

configuration on the wall motion and hemodynamic. Our numerical study focused on the 

effect of two geometrical parameters: the relative distance and the angular orientation 

between the two stenoses. The collapse of a compliant arterial stenosis may cause flow 

choking, which would limit the flow reserve to major vital vascular beds such as the 

lungs, potentially leading to a lethal ventilation-perfusion mismatch. Flow through a 

stenotic vessel is known to produce flow separation downstream of the throat. The 

eccentricity of a stenosis leads to asymmetric flow where the high velocity jets impinge 

on the sidewall, thereby inducing significant dissipation. The additional viscous 

dissipation causes a higher pressure drop for a flow through a stenotic vessel, than in a 

straight compliant vessel. It is likely that sorne particular morphology would have a 

higher vulnerability to the fluid induced instability ofbuckling (divergence), under 

physiological pulsatile flow. It was found that fluid pressure distribution have substantial 

implication for the downstream wall motion, under conditions of strong coup ling between 

nonlinear vessel geometries, and their corresponding asymmetric flow. The three­

dimensional fluid structure interaction problem is solved numerically by a finite element 

method based on the Arbitrary Lagrangian Eulerian formulation, a natural approach to 

deal with the moving interface between the flow and vessel. The findings of this 

investigation reveal that the closeness between stenoses is a substantial indication of wall 

collapse at the downstream end. Moreover, the results suggest a close link between the 

initial angular orientation of the distal steno sis (i.e. the constriction direction) and the 

subsequent wall motion at the downstream end. For cases showing evidence of 

preferential direction of wall motion, it was found that the constricted si de underwent 

greater cumulative displacement than the straight side, suggestive of significant wall 

collapse. 
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Résumé 

Motivé par les phénomènes physiologiques de collabage des vaisseaux sanguins et de 

l'arrêt de l'écoulement sanguin pour des sténoses artérielles pulmonaire en série, nous en 

étudions l'influence de la configuration spatiale tridimensionnelle sur les mouvements des 

parois du vaisseau sanguin et l'hémodynamique. Notre étude se concentre sur l'effet de 

deux paramètres géométriques: la distance et l'orientation angulaire relative entre les 

deux sténoses. L'effondrement d'une sténose artérielle pulmonaire peut provoquer l'arrêt 

de l'écoulement, menant à une limitation du flux de réserve aux lits vasculaires vitaux tels 

que les poumons, causant ainsi un problème de ventilation et de perfusion, ceci étant 

potentiellement mortel. Il est connu que l'écoulement à travers un vaisseau atteint par une 

sténose produit une séparation d'écoulement en aval du rétrécissement. L'excentricité 

d'une sténose cause un écoulement de nature asymétrique, où des jets de haute vélocité 

peuvent impacter sur la paroi du vaisseau sanguin, provocant ainsi des dissipations 

importantes. Ces dissipations visqueuses supplémentaires provoquent une chute de 

pression plus élevé pour un écoulement à travers une sténose artérielle pulmonaire, 

comparé à un vaisseau droit. Il est probable que certaines morphologies possèderaient un 

potentiel plus élevé à l'effondrement des vaisseaux sanguins, sous un écoulement 

pulsatile physiologique. Il a été constaté que les distributions de pressions du fluide ont 

une influence particulière sur les mouvements des parois du vaisseau sanguin situés en 

aval, spécialement lorsque le couplage entre les géométries non linéaires des vaisseaux et 

leurs écoulements de nature asymétrique correspondant est considéré. Le problème 

d'interaction entre le fluide et la structure tridimensionnelle est numériquement résolu par 

une méthode d'éléments finis basée sur la formulation "Arbitrary Lagrangian Eulerian", 

une approche naturelle pour traiter le mouvement de l'interface entre l'écoulement et le 

vaisseau. Les conclusions de cette étude révèlent que la proximité entre les sténoses est 

une cause importante d'effondrement des parois du vaisseau sanguin situé en aval. Les 

résultats suggèrent aussi un rapport entre l'orientation angulaire initiale de la sténose en 

aval (c'est-à-dire dans la direction du rétrécissement) et les mouvements des parois du 
. . 

vatsseau sangum. 

v 



r. Contents 

List of Figures ................................................................................................................... viii 

List of Symbols ................................................................................................................. xii 

Chapter 1. Clinical Perspective ........................................................................................... 1 

1.1 Physiology of the Pulmonary Artery ............................................................................ 1 

1.1.1 The Pulmonary Circulation .................................................................................... 1 

1.1.2 Distensibility of Pulmonary Blood V es sel. ............................................................ 3 

1.2 Pulmonary Artery Steno sis ........................................................................................... 4 

1.2.1 Percutaneous Sten ting of a Pulmonary Artery Stenosis ........................................ 5 

1.2.2 Complications Associated with Percutaneous Stenting ......................................... 7 

1.3 Fluid Structure Interaction of Arterial Stenosis .......................................................... 12 

1.4 Thesis Objectives ........................................................................................................ 20 

Chapter 2. Computational Perspective .............................................................................. 21 

2.1 Arbitrary Lagrangian Eulerian Formulation ............................................................... 21 

2.1.1 Basic Concepts ..................................................................................................... 21 

2.1.2 Key Mapping Relations of the ALE Domains ..................................................... 23 

2.1.3 Goveming Partial Differentiai Equations ............................................................ 28 

2.1.4 Smoothing Algorithms ......................................................................................... 33 

2.1.5 Advection Schemes .............................................................................................. 39 

2.1.6 Explicit Time Integration and Conditional Stability ............................................ 41 

Vl 



2.2 Numerical Implementation ......................................................................................... 44 

2.2.1 Geometry Model .................................................................................................. 44 

2.2.2 Vessel Model ....................................................................................................... 49 

2.2.3 Fluid Model. ......................................................................................................... 50 

Chapter 3. Numerical Results ........................................................................................... 54 

3.1 Three-Dimensional Wall Deformation ....................................................................... 54 

3.1.1 Temporal Evolution of Wall Displacement ......................................................... 54 

3.1.2 Quantifying Wall Collapse .................................................................................. 65 

3.1.2.1 EffectofLength on Wall Collapse ................................................................ 67 

3.1.2.2 Effect of Angular Orientation on Wall Collapse ........................................... 74 

3 .1.3 Observations of Wall Displacement .................................................................... 81 

3.2 Three-Dimensional Velocity Field ............................................................................. 86 

3 .2.1 Brief Review on Three-Dimensional Flow Field in Stenotic Vessels ................. 86 

3.2.2 Effect ofLength on the Flow Field ...................................................................... 88 

3.2.3 Effect of Angular Orientation on the Flow Field ................................................. 90 

Chapter 4. Conclusion ....................................................................................................... 93 

4.1 Concluding Remarks ................................................................................................... 93 

4.2 Future Work ................................................................................................................ 95 

4.3 Acknowledgements ..................................................................................................... 97 

References ......................................................................................................................... 98 

vii 



List of Figures 

Figure 1.1 Right pulmonary artery angiogram ................................................................... 2 

Figure 1.2 Total lumen occlusion by platelet-rich thrombus (Th) ...................................... 8 

Figure 1.3 Percutaneous sten ting of right pulmonary artery stenosis ............................... 11 

Figure 1.4 Pulmonary artery stenosis angiography ........................................................... 13 

Figure 1.5 Typical Star ling resistor chamber setup .......................................................... 15 

Figure 1.6 The shape of a buckled tube in the mode n=4 ................................................. 15 

Figure 2.1 Arbitrary Lagrangian Eulerian coordinate systems ......................................... 24 

Figure 2.2 Case 1, geometrical parameters ....................................................................... 45 

Figure 2.3 Case 2, geometrical parameters ....................................................................... 45 

Figure 2.4 Case 3, geometrical parameters ....................................................................... 46 

Figure 2.5 Case 4, geometrical parameters ....................................................................... 46 

Figure 2.6 Case 5; geometrical parameters ....................................................................... 47 

Figure 2. 7 Example geometry of a seriai pulmonary artery stenoses ............................... 49 

Figure 2.8 Magnetic-resonance-imaging velocity-mapping curve ................................... 52 

Figure 2.9 Normalized magnetic-resonance-imaging velocity-mapping curve ................ 53 

Figure 3.1 Fluid structure interaction simulation for a straight tube ................................ 56 

Figure 3.2 Case 1: wall deformation at t/T = 0 ................................................................. 56 

Figure 3.3 Case 1: wall deformation at t/T = 0.70 ............................................................ 57 

Figure 3.4 Case 1: wall deformation at t/T = 0.81 ............................................................ 57 

Figure 3.5 Case 1: wall deformation at t/T = 0.92 ............................................................ 57 

Figure 3.6 Case 1: wall deformation at t/T = 1 ................................................................. 58 

.~·· Figure 3.7 Case 2: wall deformation at t/T = 0 ................................................................. 58 

Vlll 



Figure 3.8 Case 2: wall deformation at t/T = 0.71 ............................................................ 58 

Figure 3.9 Case 2: wall deformation at t/T = 0.80 ............................................................ 59 

Figure 3.10 Case 2: wall deformation at t/T = 0.91 .......................................................... 59 

Figure 3.11 Case 2: wall deformation at t/T = 1 ............................................................... 59 

Figure 3.12 Case 3: wall deformation at t/T = 0 ............................................................... 60 

Figure 3.13 Case 3: wall deformation at t/T = O. 70 .......................................................... 60 

Figure 3.14 Case 3: wall deformation at t/T = 0.79 .......................................................... 60 

Figure 3.15 Case 3: wall deformation at t/T = 0.91 .......................................................... 61 

Figure 3.16 Case 3: wall deformation at t/T = 1 ............................................................... 61 

Figure 3.17 Case 4: wall deformation at t/T = 0 ............................................................... 61 

Figure 3.18 Case 4: wall deformation at t/T = 0.71 .......................................................... 62 

Figure 3.19 Case 4: wall deformation at t/T = 0.80 .......................................................... 62 

Figure 3.20 Case 4: wall deformation at t/T = 0.91 .......................................................... 62 

Figure 3.21 Case 4: wall deformation at t/T = 1 ............................................................... 63 

Figure 3.22 Case 5: wall deformation at t/T = 0 ............................................................... 63 

Figure 3.23 Case 5: wall deformation at t/T = 0.71 .......................................................... 63 

Figure 3.24 Case 5: wall deformation at t/T = 0.80 .......................................................... 64 

Figure 3.25 Case 5: wall deformation at t/T = 0.92 .......................................................... 64 

Figure 3.26 Case 5: wall deformation at t/T = 1 ............................................................... 64 

Figure 3.27 Metrics: change in length (~L): pt.1-pt.2 (left), pt.3-pt.4 (right) .................. 66 

Figure 3.28 Sample cross-sectional planes: for cases (1, 3 & 5) where the distance 

between stenoses is 25% of tube length L (1.667 x D) ..................................................... 66 

lX 



Figure 3.29 Sample cross-sectional planes: for cases (2 & 4) where the distance between 

stenoses is 50% oftube length L (3.333 x D) ................................................................... 67 

Figure 3.30 Case 1: effect oflength on wall collapse, 8L pt.1-pt.2 ................................. 68 

Figure 3.31 Case 1: effect oflength on wall collapse, 8L pt.3-pt.4 ................................. 68 

Figure 3.32 Case 2: effect oflength on wall collapse, 8L pt.1-pt.2 ................................. 69 

Figure 3.33 Case 2: effect oflength on wall collapse, 8L pt.3-pt.4 ................................. 69 

Figure 3.34 Case 3: effect oflength on wall collapse, 8L pt.1-pt.2 ................................. 70 

Figure 3.35 Case 3: effect oflength on wall collapse, 8L pt.3-pt4 .................................. 70 

Figure 3.36 Case 4: effect oflength on wall collapse, 8L pt.l-pt.2 ................................. 71 

Figure 3.37 Case 4: effect oflength on wall collapse, 8L pt.3-pt.4 ................................. 71 

Figure 3.38 Case 5: effect oflength on wall collapse, 8L pt.1-pt.2 ................................. 72 

Figure 3.39 Case 5: effect oflength on wall collapse, 8L pt.3-pt.4 ................................. 72 

Figure 3.40 Effect of angular offset on wall collapse, 8L pt.1-pt.2, zJL = 0.625 ............. 75 

Figure 3.41 Effect ofangular offset on wall collapse, 8L pt.1-pt.2, z/L = 0.75 ............... 75 

Figure 3.42 Effect ofangular offset on wall collapse, 8L pt.1-pt.2, z/L = 0.875 ............. 76 

Figure 3.43 Effect of angular offset on wall collapse, 8L pt.l-pt.2, z/L = ! .................... 76 

Figure 3.44 Effect of angular offset on wall collapse, 8L pt.3-pt.4, z/L = 0.625 ............. 77 

Figure 3.45 Effect of angular offset on wall collapse, 8L pt.3-pt.4, z/L = O. 75 ............... 77 

Figure 3.46 Effect of angular offset on wall collapse, 8L pt.3-pt.4, zJL = 0.875 ............. 78 

Figure 3.47 Effect of angular offset on wall collapse, 8L pt.3-pt.4, zJL = 1 .................... 78 

Figure 3.48 Case 5: illustrating upstream propagation, 8L pt.3-pt.4, ziL = 1 .................. 80 

Figure 3.49 Case 5: illustrating upstream propagation, 8L pt.3-pt.4, ziL = 0.75 ............. 80 

Figure 3.50 Case 1: sampling locations on the straight side, z/L = 1, t/T = 0.92 ............. 82 

x 



0 Figure 3.51 Case 1: nodal x-displacement v nondimensional time, straight side ............. 82 

Figure 3.52 Case 1: sampling locations on the constricted side, z/L = 1, t/T = 0.92 ........ 83 

Figure 3.53 Case 1: nodal x-displacement v nondimensional time, constricted side ....... 83 

Figure 3.54 Case 3: sampling locations on the straight side, ziL = 1, t/T = 0.86 ............. 84 

Figure 3.55 Case 3: nodal y-displacement v nondimensional time, straight side ............. 84 

Figure 3.56 Case 3: sampling locations on the constricted side, z/L = 1, tiT = 0.86 ........ 85 

Figure 3.57 Case 3: nodal y-displacement v nondimensional time, constricted side ....... 85 

Figure 3.58 Fluid dynamic diffuser flow separation ......................................................... 87 

Figure 3.59 Case 5: flow field xz plane viewpoint at t/T = 0.52, 0.59, 0.80, 1 ................ 88 

Figure 3.60 Case 5: flow field yz viewpoint at t/T = 0.46, 0.50, 0.73, 0.91 ..................... 89 

Figure 3.61 Case 3: flow field xz (left), xy (right) viewpoints at t/T = 0.33 (top), 0.39 

(bottom) ............................................................................................................................. 91 

Xl 



0 List of Sym bols 

Latin Symbols 

E Internai energy per initial volume 

G Elastic shear modulus 

K Bulk modulus 

M Mass matrix 

sij Deviatoric Cauchy stress tensor 

v Relative volume 

b; Body force per unit mass 

Ce Current wave speed in element e 

C; Convective velocity 

d Nodal displacement 

e Internai energy per unit mass 

/nt Internai nodal force 

/xt External nodal force 

le Characteristic length of element e 

p Pressure 

V; V elocity of a material particle 

xii 



Greek Symbols 

QF Spatial domain where the fluid motion is described 

Ds Lagrangian description of the domain where the structural motion is described 

rFs Moving interface between nF and ns 

T1 Inlet surface boundary 

T2 Outlet surface boundary 

a Courant number 

diJ Kronecker delta 

p, Dynamic viscosity 

p Fluid density 

(JiJ Cauchy stress tensor 

X111 



Chapter 1. 

Clinical Perspective 

In this chapter, we introduce the clinical backdrop where the fluid structure interaction 

involving a pulsatile blood flow with its surrounding vessel takes place for each heart 

beat. The journey begins by portraying the physiological and anatomical features of the 

pulmonary circulation, followed by stressing the role played by the pulmonary vessel in 

the cardiac cycle. In the next section, we describe the pathology of pulmonary artery 

stenosis and several related inbom defects. We proceed with a discourse on the clinical 

success and peril associated with percutaneous stenting as a possible surgical 

intervention. A non-exhaustive literature review on fluid structure interaction of arterial 

stenosis and collapsible tubes ensues. This course naturally steers us to the formalization 

of the the sis objectives. 

1.1 Physiology of the Pulmonary Artery 

1.1.1 The Pulmonary Circulation 

The pulmonary artery is an essential component of the pulmonary circulation. In this low 

pressure system (8 -25 mm Hg), the pulmonary circulation system carries blood from the 

right ventricle to the left atrium of the heart. Blood flows from the right ventricle to the 

pulmonary arterial trunk which is divided into the main right and le ft pulmonary artery, 

entering the lungs, with further ramifications into smaller branches akin to a tree, the lung 

finally terminating in the capillary sheets [1] (Figure 1.1). In these reside air sacs called 

pulmonary alveoli, where blood acquires oxygen and releases carbon dioxide. Then the 

blood flows from the capillary sheets into a venous tree, terminating in the left atrium of 

the heart. It is worthwhile to mention that the pulmonary circulation is able to convey an 

equivalent amount of flow with respect to its systemic arterial counterpart ( 80-120 mm 

Hg), at substantially lower levels of pressure (i.e. mean arterial pressure is about one­

sixth of systemic) [2, 3]. The pulsatile nature of ventricular ejection and the homeostatic 
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/"'""\ requirement for an equivalent amount of blood ejected per beat from each ventricle, place 

unique constraints upon the right ventricle and the opposition to forward flow in the 

pulmonary artery [2]. Namely, the steady resistive term of its opposition to flow is 

significantly lower than the systemic vascular resistance, at about one-sixth of the latter 

[3]. In addition, vascular distensibility is greater in the pulmonary circulation. Thus, the 

flow wave in the main pulmonary artery is usually of lower amplitude with a longer 

duration of forward flow when compared to the ascending aorta flow wave. Furthermore, 

both pressure and flow wave are more rounded due to the minimal effect of wave 

reflection. The pressure-flow relations of the pulmonary circulation are important for the 

understanding of lung and heart diseases, such as pulmonary hypertension, cardiac 

hypertension, tissue hypertrophy, edema, and various respiratory disorders and diabetes 

[1]. However, the study of the pressure-flow relations is complicated by the location of 

the right main pulmonary artery, extending beyond the hilum of the lung. This causes 

difficulties for conducting in vivo measurements or surgical corrections [4]. In order to 

circumvent these hurdles, one may rely on the principles of continuum mechanics. The 

continuum approach is especially suitable to the study of pulmonary blood flow, given 

that the basic laws of conservation of mass, momentum and energy will shed a new light 

on the pressure-flow relationships in the context of a pulmonary artery stenosis. 

Figure 1.1 Right pulmonary artery angiogram, from [5]. 
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0 1.1.2 Distensibility ofPulmonary Blood Vesse/ 

Vascular elasticity, or distensibility, is a mechanical property of blood vessel which 

determines the changes in the diameter of blood vessel as a result of changes in blood 

pressure [1]. The distensibility ofpulmonary blood vessel directly influences the 

distribution of pulmonary blood pressure, regional distribution of pulmonary blood 

volume, transit time distribution ofblood in the lung, and pulse wave attenuation through 

the lung. A distinctive characteristic of the pulmonary artery is the degree of extensions 

induced by blood pressure. It averages 8% in the pulmonary artery, whereas in the other 

artery it is typically on the order of 1-2%. Changes in diameter during the cardiac cycle 

usually reach 10-15% in the pulmonary artery, 6-10% in the carotids, and 2-5% in the 

aorta [6]. The inherent distensibility of the pulmonary artery versus other artery manifests 

itself in the following clinical observations: pulmonary hypertension is considered severe 

for a 400 percent increase in mean pressure, whereas for systemic hypertension, the 

threshold is 25 percent increase in mean pressure [3]. Thus, prudence is required for the 

interpretation of data obtained from the pulmonary circulation, especially for the purpose 

of clinical intervention decision. 

Larger vessels located close to the heart, such as the pulmonary artery, are classified as 

elastic artery. It is worthwhile to mention that the pulmonary artery is the only artery in 

the circulatory system conveying deoxygenated blood. The remarkable distensibility of 

the pulmonary artery is dependent on its composition, structure and microstructure. The 

elastic pulmonary artery show a specifie concentric pattern of elastic fiber and smooth 

muscle cell that predominate in the media, which may account for 10 percent of the 

extemal diameter of the vessel in a healthy person [7]. The adventitia makes up 

approximately 10 percent of the wall thickness in an elastic artery [8]. The collagen fibers 

in the adventitia are longitudinally oriented. These two layers provide the arterial wall the 

structural support to prevent over dilatation under physiologie loads. The compliance or 

elasticity of an artery is central to its functionality as a local blood pressure reservoir. It is 

vital since the heart ejects blood for one-third of the cardiac cycle, while the artery supply 
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(""" blood for the remaining two-thirds of the cycle via energy stored in their stretched walls 

[9]. 

1.2 Pulmonary Artery Stenosis 

Pulmonary Artery Stenosis is a congenital heart defect, generally occurring in 

conjunction with other inbom defects such as: 

• Tetralogy ofF allot - a congenital heart anomal y which consists of pulmonary 

stenosis, ventricular septal defect (i.e. abnormal opening in the ventricular 

septum, whereby high pressure blood from the left ventricle flows through the 

defect into the right ventricle ), dextroposition of the aorta (i.e. aorta on the right 

side instead ofthe left) and hypertrophy (i.e. enlargement or overgrowth) of the 

right ventricle. This condition results in a blue baby at birth due to inadequate 

oxygenation. Surgical correction is emergent [10]. 

• Pulmonary Atresia- a congenital absence of the normal valvular orifice into the 

pulmonary artery. This condition is characterized by cardiomegaly (i.e. 

enlargement of the heart), reduced pulmonary vascularity, and right ventricular 

atrophy (i.e. a size diminution) [1 0]. 

• Truncus Arteriosus -the formation of only one combined artery instead of the 

normal two outlets (i.e. aorta and main pulmonary artery) from the heart [11]. 

• Patent Ductus Arteriosus - a condition where the normal channel between the 

pulmonary artery and the aorta fails to close at birth. In normal fetal circulation, 

the blood bypasses the pulmonary circuit since oxygen and nutriments are 

acquired through the placenta. After birth, this channel normally closes in 

response to ventilation of the lungs. Those who are affected may demonstrate 

poor growth, shortness ofbreath and rapid respiratory rate [10]. 
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Pulmonary Artery Steno sis may occasionally arise after placement of systemic to 

pulmonary shunts (i.e. a surgically created bypass) [12] or after the arterial switch 

operation (i.e. a complete transposition of the aorta and pulmonary artery) [13, 14]. For 

patients with congenital or post-operative pulmonary artery stenoses, the elevated right 

ventricular pressure is associated with right ventricle failure, arrhythmias (i.e. abnormal 

heart rhythms) and sudden death [15-17]. Within the venous system, significant stenoses, 

including cavopulmonary anastomoses (i.e. a surgically created shunt between the right 

pulmonary artery and the superior vena cava, which is the major venous channel draining 

the thorax and head, ending in the right atrium [10]), can contribute to superior vena cava 

syndrome (i.e. a narrowing or obstruction of this channel), poor passive flow with poor 

cardiac output and atrial arrhythmias. Elevated central venous pressures in these patients 

are a risk factor associated with higher mortality [ 17, 18]. 

1.2.1 Percutaneous Stenting of a Pulmonary Artery Stenosis 

The term stent, considered as having been defined in dental reconstruction practice at the 

start of the 20th century, now commonly denotes a short metal or plastic filamentous tube 

that is inserted into the lumen of a vessel, especially to keep a formerly blocked passage 

open [19, 20]. More specifically, its main function is to provide radial support to the 

vascular wall to maintain luminal patency under various conditions [20]. In addition to 

mechanical support, novel delivery systems are built around the stent technology, which 

serves as a platform for local drug or gene therapy de li very. Stents can be delivered to 

distal branches not accessible surgically or within previously scarred areas of stenosis 

"from the inside", obviating the need for repeat operations and their associated 

complications [17]. The technique for stent delivery and implantation has been 

extensively described previously and can be found in [21-25]. Briefly, balloon­

expandable metal stents are mounted on low pressure angioplasty balloons sized not to 

exceed the diameter of the vessel adjacent to the stenosis [20]. A thin flexible guide wire 

is used as a rail to direct a balloon-tipped catheter to the vessel target site with the aid of 

fluoroscopic imaging (e.g. via the femoral route for a pulmonary artery stenosis [26]). 

~. Once straddled over the obstruction site, inflation of the balloon results in the expansion 
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r" of the stent, usually in a single deployment maneuver. The expanded stent dimensions 

depend on the balloon characteristics and applied pressure, usually inflated to 8-12 atm 

depending on the waist of the stent, although occasionally pressures as high as 17 atm 

may be required to achieve full stent expansion [20, 27]. The balloon is then deflated and 

withdrawn so that blood can once again flow freely through the expanded and stented 

vessel. Self-expanding metal stents employ shape memory allo y, which allows expansion 

upon mild temperature change (i.e. cold and hot saline techniques) or release from a 

compressing sheath. Whether balloon-expandable or self-expandable shape memory 

alloy, bare metal or polymer coated, stents are available in a variety of designs ( e.g. 

slotted tubular, helical coil, staggered backbone), lengths and diameters to accommodate 

differing applications and anatomies. 

The first documented use of balloon-expandable intra-vascular stents in pulmonary artery 

and systemic vein in the late 1980s is attributed to Mullins et al [22]. The results from 

the FDA clinical trial data during the early 1990s indicate that intra-vascular stents are an 

effective and safe therapy for the treatment of vascular steno sis in patients with 

congenital heart disease [23-25, 28-30]. Medium and longer term follow-up studies have 

reinforced the findings from previous clinical studies [17, 21, 31-33]. As a result, 

endovascular stents are now commonly implanted in the pulmonary circulation to treat 

pulmonary arterial stenoses with generally excellent results. However, there are a number 

of potential complications associated with their use, namely restenosis (i.e. decreased 

vessel patency from reduction in lumen size ), thrombosis, neointimal proliferation, 

vascular injury inflicted during deployment, patient size (age and weight) limitation, and 

mortality risks. 
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1.2.2 Complications Associated with Percutaneous Stenting 

Restenosis after stent implantation is a potential clinical problem for sorne patients. In­

stent restenosis has histological properties that may relate to a local tissue reaction on the 

presence of foreign material [20]. Uncoated metal stents are known to initiate an 

inflammatory process and a neointimal proliferation. The initial biological response is 

thrombus formation on the stent surface which peaks within the first week post­

implantation [34]. The thrombus is then gradually replaced with a fibrous structure. The 

inflammatory response begins within a few days post-implantation and may last more 

than a month. This stage is characterized by large leukocyte and platelet deposition to the 

luminal aspect of the stent. Growth and proliferation of vascular smooth muscle cell into 

the media and neointima occur in conjunction with the inflammatory response, possibly 

lasting more than a month. Both the inflammation and proliferation phases peak near the 

first week as the neointima becomes weil established with abundant macrophage and 

spindle cell [35]. In a follow-up study of 4500 patients whose coronary stent 

implantations were initially successful, binary restenosis (i.e. more than 50 percent 

reduction in diameter at 6 months as determined by angiography) was shown to vary 

from 20 percent in sorne stents to over 40 percent in others [36]. One to two millimeters 

of neointimal growth is a very significant problem in stented coronary artery given their 

small size (Figure 1.2), but it is not usually considered an important factor for the much 

larger pulmonary artery. A study of 200 patients reveals only three cases ( 1.5%) with 

significant stenosis due to neointimal proliferation caused by pulmonary artery stenting 

[17]. 

Irrespective of anatomicallocation, the induced perturbations in intra-stent flows are 

known to consist of low shear rate in the recirculation zones [3 7]. Regions of local intra 

vascular (arterial or venous) or intra cardiac flow separation and stasis are pro-thrombotic 

[38-45]. Early thrombus may serve as a scaffold for subsequent cell proliferation and 

intimai hyperplasia [ 46-48]. In the low wall shear stress regions exposed to flow reversai, 

endothelial cell modulate gene expressions, resulting in random cell structures, a decrease 

of nitric oxide (NO) production, an increase of monocyte adhesion and migration, and an 
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~"""'· increase of permeability to macromolecules [ 49-56]. The prolonged residence time in the 

recirculation area allows for an increase of interaction between the cellular components 

and the vessel wall, specifically at the end of the diastole cycle [53]. Low wall shear 

stress regions have been shown to correlate with the built-up of endothelial cell mediated 

neointimal proliferation on the inner wall of the vascular system [57-62]. 

Figure 1.2 Total lumen occlusion by platelet-rich thrombus (Th), from (63]. 

From a structural standpoint, the vascular injury inflicted during the deployment phase of 

stent placement is a cri ti cal determinant of the biological events that ensue. Stent 

deployment causes partial denudation of the endothelium in a pattern unique to each stent 

configuration, suggesting balloon related injury [64]. In addition to the deep vascular 

trauma imposed by stent struts [65, 66], inter strut injury occurs during stent expansion 

from balloon artery interaction. While denudation of endothelial cell alone produces mild 

neointimal thickening [67], more substantial neointimal hyperplasia requires direct injury 

to medial smooth muscle cell underlying the endothelial cell [68, 69]. In stented artery, a 

correlation exists between the depth of arterial in jury and the extent of intimai thickening 

[65, 66, 70]. Current clinical stent deployment techniques include balloon pre-dilatation, 

stent expansion at moderate balloon pressures, and post-dilatation at significantly higher 

balloon pressure to ensure that ali stent struts are fully expanded and abutting the arterial 

wall [71]. The associated post-dilatation high pressures may be correlated with greater 

restenosis [72]. Higher inflation pressures and larger balloon sizes may also cause greater 

neointimal hyperplasia [72-75]. Hence, choosing the most suitable stent and treatment 
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/"'"', procedure for a given stenosis is al ways a trade-off between lumen gain and locally 

induced arterial injury [76]. 

Furthermore, a relative patient size (age and weight) limitation exists for pediatrie 

deployments, because the sizes of pulmonary artery and systemic vein increase as the 

patient grows. The use of stents may hinder further developments of the pulmonary artery 

[77]. Th us, a smaller stent, limited to 8-10 mm maximal diameter, is usually avoided in 

proximal or central vessels in infants or small children, since it would create a fixed non­

dilatable stenosis that would require surgical opening or removal as the patient grows 

[17]. 

Lastly, stent implantation as an alternative to balloon angioplasty does not eliminate the 

possibility of mortality. The risk of death directly attributed to the stent procedure has 

been documented. In one patient with unusual familial congenital pulmonary artery 

branch stenosis and supra-systemic (i.e. higher than usual) pulmonary pressure, dilatation 

and stent implantation into two small distal pulmonary segments were successful. After 

the procedure, the increase in flow to the stented lung segments became so great that 

severe segmentai pulmonary edema (i.e. abnormal accumulation of excessive fluid in the 

intercellular tissue spaces [1 0]) developed with a progressive and lethal ventilation­

perfusion mismatch [17]. The second death was in a small child seven weeks post­

Tetralogy of Fallot repair with severe residual bilateral branch pulmonary artery stenosis. 

He had intractable right heart failure and was not considered a candidate for re-operation. 

During stent dilatation, there was a main pulmonary artery tear resulting in a massive 

hemothorax (i.e. an effusion of blood into the cavity of the pleura, the serous membranes 

covering the lungs [10]), resulting in death [17]. Mortality related to rupture of the 

pulmonary artery proximal to the stent site was reported in [24, 25, 27]. It is plausible 

that such a rupture is caused by the elevation in pulmonary artery pressure due to relief of 

the stenosis, which was further elevated by coughing. 

Currently, surgical intervention decisions for the stenting procedure are based on severa! 

ratios used in the clinical setting to assess stenosis severity: 
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Percent Area Occlusion 

(1- As/ Ao)x 100% 

where Ao and As denote the lumen areas in the straight and at the throat section 

respectively. 

Nominal Eccentricity of the Steno sis 

e 
Ecc = x lOO% 

(D- Ds)/2 

(1.1) 

(1.2) 

where D and Ds denote the lumen diameters in the straight and at the throat section 

respectively, and e is the distance between the centroid of the two areas. Real stenoses are 

normally eccentric. 

Flow Reserve, FR, is defined as the ratio of flow during maximal vasodilatation to flow 

during control; this ratio is lowered with a stenosis present than in the normal bed. 

FR= Qmax/Qc (1.3) 

Fractional Flow Reserve, FFR, is the ratio of the maximal flow with the stenosis present 

to the maximal flow in the unaffected bed. 

FFR = Qmax,s/ Qmax,n 

In addition to the above-mentioned ratios, several clinical indications for stent 

implantation include right ventricular pressure above 60 percent of systemic level; 

angiographie appearance of significant narrowing in one or both branches, usually 

(1.4) 
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(\ associated with reduced pulmonary blood flow to the involved lung on nuclear lung 

perfusion scan; or a combination of the above [27]. For the purpose offollow-up, success 

of the procedure may be judged by one of the following criteria established by Rothman 

et al. [78]: 

• >50% increase in stented vessel diameter 

• >20% increase in flow to the lung by lung perfusion scan 

• >20% reduction in the ratio ofright ventricular to systemic pressure 

• >50% reduction in the systolic gradient across the stented vessel 

Fulfillment of any of the above criteria is usually adequate for the procedure to be judged 

successful (Figure 1. 3). 

Figure 1.3 Percutaneous stenting of right pulmonary artery stenosis, from [4]. 
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,~ 1.3 Fluid Structure Interaction of Arterial Stenosis 

Stenosis is derived from the Greek term for 'narrowing'. In medical terminology, arterial 

stenosis refers to a localized narrowing or constriction in the arteriallumen [79] (Figure 

1.4). A stenosis may be initiated by an event such as vessel damage, or by a dysfunctional 

endothelium. Its development consists of three stages: the intimai thickening, the growth 

stage, and the final stage when the severity affects blood supply [80]. Late phase flow 

limitation is characterized by losses produced by flow separation and turbulence 

downstream of the stenosis [81], which provide a favorable environment for platelet 

aggregation, thrombus formation, cell adhesion, and for prolonging cell residence time 

[82-84]. There has been increasing evidence that hemodynamic is closely related to 

intimai thickening [85], thrombus development [82, 86], and the adhesion, elongation and 

adaptation of cell [87, 88]. Blood pressure and wall shear stress have considerable effects 

on artery remodeling [89-92]. High wall shear stress may damage normal endothelium 

[93], and it may also activate platelet and cause platelet aggregation and thrombus 

formation [94]. The combination of a stenosis with flow pulsatility can result in periodic 

generation ofturbulence, despite the relatively low Reynolds numbers ofsuch flows [95]. 

Turbulence is normally observed when stenosis severity by area exceeds 80 percent [96], 

but has been noticed for a 40 percent stenosis with irregular geometry [97]. 

The fact that the vessels possess compliant wall affects flow stability and the generation 

of turbulence. Almost all vessels carrying fluids within the body are flexible, and 

interaction between an internai flow and the wall deformation often underlie a vessel' s 

biological function or dysfunction [98]. The cardiovascular system provides abundant 

examples of sites where the fluid structure interaction are of major biological importance. 

Most obviously, pulse propagation in artery is fundamental for transporting blood from 

heart to tissues and organs throughout the body. Artery in the pulmonary circulation 

operate under lower transmural (i.e. internai minus external) pressure so that hydrostatic 

pressure variations can be sufficient to induce collapse (i.e. a significant reduction in 

cross-sectional area, but without complete occlusion), which can limit the flow of blood 

retuming to the heart or passing through major organs such as the lungs. 
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Figure 1.4 Pulmonary artery stenosis angiography, from [4]. 

Various experimental, mathematical and numerical models have been developed to study 

flow in elastic tubes. The interaction between an internai flow and the wall deformation 

in volve a rich range of fluid mechanical phenomena. Flow limitation, flow choking, 

pressure drop limitation, nonlinear pressure drop or flow rate relations, wave propagation 

and reflection, flow induced instabilities (i.e. wall collapse or buckling, self-excited 

oscillations or flutter) have been identified and analyzed [98-1 08]. One may distinguish 

between self-excited oscillations (i.e. relatively low-frequency oscillations for which 

membrane inertia is not a critical factor) and flutter (i.e. high-frequency oscillations for 

which membrane inertia is generally significant) [98], although this distinction is 

sometimes blurred. Furthermore, experimental studies show that flow limitation is a 

necessary but not sufficient condition for the onset of self-excited oscillations or flutter 

[109, 110]. Flow limitation refers to a flow rate which has become independent of the 

pressure drop along the tube, possibly decreasing as the pressure drop increases [111]. 

Collapsible conduits set up on the laboratory bench reveal that self-excited oscillations 

often accompany the flow limitation behavior, as long as the threshold Reynolds number 

is exceeded (i.e. at about 300) [112], which is well within the physiological range for 

severallarge artery such as the carotid, and the pulmonary artery. Simplified one- or two­

dimensional theoretical models have established that a source of energy dissipation is 

necessary for oscillations [112]. The phase lag between the events in the tube that initiate 
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0 collapse and the retardation of the downstream flow seems to be an essential part of the 

process whereby the oscillations extract energy from the steady component of the flow 

through the tube. The oscillatory part of a pulsatile flow may be thought of as an 'added 

expense' that reduces the efficiency of the flow, since any power expenditure on it does 

not produce net forward flow [ 113]. 

Flow through a collapsible tube has been extensively studied in the laboratory for well 

over half a century [ 114]. Experimental investigation on the collapse of vein and other 

thin-walled tubes using Starling's resistor chambers may be found in [102, 107, 115-

117]. The typical experimental setup involves a length of flexible, collapsible tubing 

mounted at either end on a rigid support [118] (Figure 1.5). Upstream and downstream 

fluid reservoirs are provided to drive flow through the tube and to regulate the upstream 

and downstream pressures [119]. The flexible tube is immersed in air or water in such a 

manner that the external pressure can be monitored and controlled. In the presence of an 

external pressure gradient, the tube collapse process consists ofthree phases: the initial 

transient phase, the quasi-steady phase, and the viscous drainage phase [102]. The initial 

transient is identified as a period of flow acceleration giving the initial peak observed in 

the output flow [119]. The quasi-steady emptying is the period where the output flow 

drops from its initial peak and where there is the establishment of a quasi-steady throat in 

the region of minimum cross-sectional area. Viscous drainage occurs as the region of 

collapse increases and the remaining fluid in the tube is forced out as a new equilibrium 

configuration is approached. If a flow is driven through a Starling Resistor, then as Pext is 

increased, a constriction typically forms first toward the collapsible tube's downstream 

end where internai pressure is lowest [98]. Various experimental protocols can then be 

followed. Increasing the pressure drop along the tube, Pup-Pdown, while keeping the 

upstream transmural pressure, Pup-Pexb fixed 1eads to flow limitation. Increasing the flow 

rate while keeping the downstream transmural pressure, Pdown-Pext. fixed leads to 

pressure drop limitation, i.e. a restriction on the largest value ofpup-Pdown· As the 

transmural pressure is lowered below a critical value, the circular cross-section buckles, 

becoming at first elliptical and then more significantly deformed [120]. During this 
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phase, the thin-walled tube is very compliant (i.e. large area change for small pressure 

change) because only wall bending is required for a change of shape, and hence area. At 

this stage, the small pressure changes associated with flow through the tube (viscous or 

inertial) may be sufficient to cause collapse. Post-buckling behavior of elastic tubes was 

numerically investigated by [121]. It was found that an elastic tube of circular cross­

section can buckle in a mode with n-fold symmetry (112:2) for a transmural pressure below 

the critical buckling pressure ofthat mode (Figure 1.6). 

A B 
' ' 
' ' ! Pe).·t ! 

L 

Figure 1.5 Typical Starling resistor chamber setup, from [122]. 

Figure 1.6 The shape of a buckled tube in the mode n=4, from [121]. 
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0, Primarily interested in the flutter instability of cylindrical shells, Païdoussis and Denise 

[123] used Flügge's linear shell equations coupled to an inviscid potential flow to 

determine the growth rate oftraveling-wave disturbance to the shell. They found that 

clamped-clamped shells lose their stability by divergence (buckling), followed by flutter 

(via Hopf bifurcation) at a slightly higher flow rate. For cylindrical shells with both ends 

clamped, the increasing flow initially neither damps nor destabilizes the system, but 

merely reduces the natural frequencies of its modes; at sufficiently high flow velocity, 

each frequency vanishes, which signifies the onset of buckling (divergence) in that mode. 

For a particular circumferential wave number, however, two axial modes may coalesce, 

at a flow velocity just above that for which the second one loses stability by buckling, 

giving rise to coupled-mode flutter. This led to the proposition that the large displacement 

self-excited oscillations observed in the experiments could be flutter instabilities or 

periodic divergence with the antinodes snapping through altematively between the 

positive and negative extremes of the modal form involved [124]. 

Three-dimensional fluid structure interaction models of flow in stenotic collapsible tubes 

under physiological conditions are stilllacking in the literature for the following reasons: 

(i) The mechanical properties of the artery under compressions are not readily 

available [125]. Most existing linear or nonlinear arterial wall model only 

apply to normal positive pressure conditions. As such, they are no longer 

valid for instances where the artery is under compression, i.e. for negative 

transmural pressures. [89, 126]. 

(ii) The dynamic stenotic artery wall behavior under pulsatile pressure 

involves large strain and deformation, cyclic tube collapse and expansion. 

The fluid structure interaction model is best described as a free moving 

boundary problem where a small change in one field causes a large 

response in the other [125]. Free moving boundary problems are 

numerically difficult to handle. 
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(iii) The geometrical nonlinearities of a severe stenosis and the associated 

critical flow conditions (i.e. high velocities and large pressure gradients 

across the throat) are numerically difficult to handle [125]. 

Experimental evidence suggests that artery with high-grade stenoses may collapse and be 

subjected to cyclic bending and compression under unsteady pressure conditions [103, 

127-133]. The high flow velocities at the throat of a severe stenosis may be sufficient to 

cause negative transmural pressures (i.e. below the critical value) in the tube [134], 

possibly inducing tube compression or even collapse. Many investigators (see e.g. [121, 

132, 135-142]) have examined the effects of pressure conditions, longitudinal tension, 

wall compliance, stenosis severity, stenosis eccentricity, and stiffness on the wall 

deformation and flow characteristics. 

In study [143], the focus was on the effects of stenosis severity on the wall deformation, 

and on the effect of eccentricity of the steno sis on the velocity field. For instance, it was 

found that stenosis severity greatly affects wall compression, with the highest 

compression for the steep front si de of the stenosis facing the flow. It was reported that in 

addition to the large flow separation just distal to an eccentric stenosis, the flow was 

observed to be asymmetric. It was reasoned that the viscous draw from the flow attracts 

the jet flow to one si de of the tube, which gives an asymmetric flow. Furthermore, it was 

found that the flow asymmetry is accompanied by non-axisymmetric tube deformation. It 

was argued that the higher flow resistance of an eccentric stenosis leads to reduced flow 

in comparison to the symmetric case. 

A numerical study, based on the fini te difference scheme, of unsteady viscous flow in 

stenotic collapsible tubes may be found in [134]. The tube wall was treated as a free 

moving boundary whose elastic properties are determined experimentally using a 

Polyvinyl Alcohol hydrogel artery stenosis model. Tube compression was observed about 

one diameter distal to the stenosis, consistent with experimental observations. Minimum 

pressure occurred at the throat, and maximum wall compression was identified at a distal 

location. It was argued that the increased stiffness of the tube at the stenosis makes 
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("""\. buckling less likely to materialize at this location. Agreement for the pre-buckling stage 

was found for the experimental and numerical flow rates under steady flow conditions. 

The disagreement for the post-buckling stage was believed to be linked to the limitation 

of the axisymmetric model which becomes invalid when the tube collapses. Furthermore, 

the observed phase shift between the computational and experimental data for the flow 

rate may be an indication of viscoelasticity of the tube. Although wall collapse could not 

be directly simulated owing to the limitation of the axisymmetric model, the observed 

cyclic tube compression was treated as a clear indication of wall collapse. 

!~ 

A refinement of the previous study may be found in [125], where a thin shell model is 

used for the tube wall. It is claimed by Tang et al., that the thin shell theory provides a 

better interpretation of the tube law under both expansion and collapsed conditions. As 

such, the thin shell model would provide more accurate information about wall 

deformation, wall collapse, and the flow velocity or pressure field, yielding more 

accurate predictions about collapse conditions. However, it was not possible to gather 

detailed stress distribution in the tube wall, owing to the thin-wall assumptions. Thus, the 

extent of compressive stress was inferred from wall compression and collapse. The 

findings also reinforce the validity of the observations from earlier investigations [138, 

143], namely, cyclic tube compression and collapse, negative transmural pressure and 

high shear stress at the throat of the steno sis, flow recirculation and low shear stress just 

distal to the stenoses were observed under physiological conditions. These critical flow 

and mechanical conditions are believed to be related to platelet aggregation, thrombus 

formation, and excessive artery fatigue. Maximum axial velocity was noticed at the throat 

of the steno sis. It was concluded that tube geometry is one of the most important factors 

affecting flow and wall behavior. Stenosis severity and pressure conditions were found to 

be the dominant factors affecting wall compression and collapse. Post-buckling behavior 

was speculated on as follows: if the upstream pressure was high enough and downstream 

pressure low enough, the tube would collapse and might remain in this configuration, 

even for a further drop in upstream pressure. Once the flow choked, fluttering would 

ensue, with noticeable clinical symptoms for the patient. 
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(' Collapse in high-grade stenosis during pulsatile flow experiments was investigated in 

[81]. In this study, an improved model ofarterial stenosis (i.e. thick-wall in the stenotic 

region) was created using an elastomer with an incrementai modulus of elasticity 

matched to a bovine carotid artery in the relevant range of collapse. Pulsatile flow 

experiments with this model characterized the range of conditions under which flow 

choking occurs. The dynamic stenosis severity through the pulse cycle was found to be 

significantly greater than the nominal value. The results indicated that flow choking and 

stenotic compression may be significant in thick-walled stenoses subjected to pulsatile 

flow conditions. The upstream and downstream phase difference of flow rate and 

pressure was attributed to the compliance of the straight tube portion and to the resistance 

of the steno sis model. It was noted that the throat of the stenosis does not collapse easily, 

because of the structural stiffening from the thicker wall and smaller diameter at this 

location, than elsewhere in the tube. In agreement with previous work [144, 145], this 

experiment showed that the collapse phenomenon does not depend strongly on upstream 

pulsatility. The average downstream pressure during collapse is similar to steady flow 

conditions. The steady flow observation that stenosis severity is the most dominant factor 

for flow choking [146, 147] still applies for pulsatile flow conditions. However, the flow 

rate reduction by the high stenosis severity is compounded by the frequency effect. 

r-"·. 
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0 1.4 Thesis Objectives 

The focus of this thesis is to numerically investigate the three-dimensional effects of 

spatial configuration on the wall motion and hemodynamic of the pulmonary artery, 

taking into account fluid structure interaction. The hvoothesis ofthis studv is that some 

configurations o(serial pulmonary artery stenoses are more susceptible to collapse 

under physiological conditions. The collapse of a compliant arterial stenosis may cause 

flow choking, which would limit the flow reserve to major vital vascular beds such as the 

lungs, potentially leading to a lethal ventilation-perfusion mismatch. It is probable that 

sorne particular morphology would have a higher vulnerability to compromise the blood 

transportation biological function of a healthy artery, by producing identifiable regions of 

retrograde flow. In addition to energy losses, these are believed to affect the progression 

of arterial dysfunction by providing an auspicious environment for platelet aggregation, 

thrombus formation, cell adhesion, and for prolonging the cell residence time. Thus, the 

primary aim of this study is to characterize the macroscopic behavior of wall motion 

distal to the second steno sis. The secondary intent is to examine the details of the three­

dimensional velocity field. The broader goal is to generate relevant morphological and 

functional information on which surgical intervention decisions may be based. 
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Chapter 2. 

Computational Perspective 

This chapter will present the Arbitrary Lagrangian Eulerian (ALE) formulation in the 

following manner: basic concepts, key mapping relationships, goveming partial 

differentiai equations, smoothing algorithms, advection schemes, and the conditional 

stability of explicit time integration. The aim is to reveal the underlying concepts, theory 

and intrinsic limitations behind the ALE formulation. This will naturally lead to a more 

substantial discussion about the implementation phase. 

2.1 Arbitrary Lagrangian Eulerian Formulation 

2.1.1 Basic Concepts 

An early version of the ALE method was formulated by Hirt et al. [148]. The general 

kinematical theory supporting the ALE framework was later added by Hugues et al. 

[149]. As the name suggests, ALE description are arbitrary combination of the 

Lagrangian and Eulerian methods. The term arbitrary refers to the fact that the 

combination is specified by the user through the selection ofmesh motion [150]. The 

Lagrangian and Eulerian viewpoints have complementary virtues, and the aim of the ALE 

formulation is to capture the best ofboth [151]. The Lagrangian finite element 

calculations are characterized by a coordinate system that moves with the material, i.e. 

nodal trajectories and element quadrature points remain coïncident with material point 

trajectories [152]. Accordingly, each computational element always contains the same 

material elements. This facilitates the treatment of complicated boundaries: (i) material 

interfaces can be specifically delineated and precisely followed, (ii) free-surface 

boundary conditions are easily applied, and (iii) curved rigid boundaries of arbitrary 

shape can be present. Thus, history-dependent materials can be treated accurately because 

of the ability to follow material points. However, when the material is severely deformed, 

Lagrangian elements become similarly distorted since they deform with the material 
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/"'""'\ [150]. The approximation accuracy of the elements then deteriorates, particularly for 

higher-order elements. Furthermore, the Jaco bian determinants may become negative at 

quadrature points, aborting the calculations or causing severe local inaccuracies. In 

addition, the conditioning of the linearized Newton equations deteriorates and explicit 

stable time steps decrease markedly. Remeshing severely distorted Lagrangian meshes is 

burdensome and introduces errors due to projections. 

For the Eulerian fini te elements method, the elements are fixed in space and material 

convects through the elements, i.e. the nodes are coïncident with spatial points, and the 

material point at a given quadrature point changes with time [150]. The convection of 

material through the elements complicates the treatment of boundary conditions, 

constitutive equations and updates. It may also introduce accounting details associated 

with advecting mixed elements so that an element does not donate more of a material 

than it originally contained [ 151]. However, the advantage of Eulerian fini te elements is 

that they undergo no distortion due to material motion (i.e. element lengths remain 

constant in time. Therefore, no degradation in accuracy occurs because of material 

deformation). Thus, Eulerian meshes are most appealing for modeling problems with 

very large deformation. 

As a mixed viewpoint, the ALE approach is most suited to the problem of concem in this 

thesis. It provides a framework to effectively deal with the moving interface between the 

fluid and the structure (i.e. between the pulsatile blood flow and the compliant vascular 

wall). To summarize, the salient feature of the ALE formulation is the capability to 

control mesh geometry independently from material geometry. Moving vertices can: (i) 

flow with the material as in Lagrangian computing, (ii) remain fixed as in Eulerian 

computing, or (iii) move in an arbitrarily prescribed way yielding a continuous rezoning 

capability. The ALE formulation is a natural approach in dealing with moving boundaries, 

free surfaces, large deformation and interface contact problems [153]. 
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2.1.2 Key Mapping Relations of the ALE Domains 

The ALE approach is based on the arbitrary movement of a referential domain, introduced 

in addition to the material and spatial domains (Figure 2.1). The fluid mechanics problem 

is posed on the spatial domain, which is generally in motion because of the moving 

interface to the adjoining structures [154]. The material domain (also generally in 

motion) is thought of as the domain occupied at time t = 0 by the material particles which 

occupy the spatial domain at time t. The referential domain is fixed throughout, and its 

image at time t under a prescribed mapping is the spatial domain (i.e. the spatial domain 

is a moving mesh and the referential domain is a reference state of the moving mesh). 

The Eulerian description is regarded as a special case in which the spatial domain is fixed 

throughout (i.e. it always coïncides with the referential domain). The Lagrangian 

description is another special case of the ALE concept in which the material domain 

coïncides with the spatial domain (i.e. nodes move with material particles). 
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Spatial Domain 

Mat.erial Domain 

Referential Dom~in 
x, 

Figure 2.1 Arbitrary Lagrangian Eulerian coordinate systems, from [152]. 

The material points of a continuous medium at time t = 0 occupy the initial region lying 

in the material domain. The position vector of a material point P in this region is given 

by: 

(2.1) 

The coordinates Xi are called material coordinates [152]. In the deformed configuration 

the particle originally at P is located at the point p and has the position vector: 

(2.2) 
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0 The coordinates x; which give the current position of the particle, are called spatial 

coordinates [152]. In the Lagrangian description the motion of the body carries various 

material particles through various spatial positions, which is mathematically expressed by 

the relation: 

(2.3) 

This relation may be interpreted as a mapping of the initial configuration into the current 

configuration [152]. Furthermore, this mapping should be continuous, single-valued and 

possess a unique inverse for the Eulerian description as: 

(2.4) 

The necessary and sufficient condition for the inverse function (2.4) to exist is that the 

Jacobian determinant should not vanish [152]. 

ax. 
J=det-1 

ax1 

In addition, a referential coordinate system is defined [152], which is independently 

prescribed as a function of space and time by: 

(2.5) 

(2.6) 
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r'· By analogy to (2.5), one may define the Jacobian for the transformation between the 

referential and spatial coordinates [152]: 

- ax. 
J=det-1 

axj 
(2.7) 

With the above concepts in mind, we now introduce the tensor material derivatives of 

velocity and acceleration. In fluid mechanics, the rate of change of various kinematical 

quantities is generally more important than the quantities themselves. Letfbe any 

physical quantity which is a continuous function of the spatial variables x; and time t. 

Then, in the case of the Lagrangian description, the material derivative is defined by 

[152]: 

at 
t,f[X] ==-

at x. 
(2.8) 

l 

where the parti cie time derivative Bj!Bt is taken with x; held constant. 

Similarly, the spatial derivative is given by [152]: 

at 
t,t[x] ==-

at x. 
l 

where the particle time derivative Bj!Bt is taken with x; held constant. 

The referential derivative is [152]: 

aj 
f,t[xl ==-

at xi 
where the parti cie time derivative Bj!Bt is taken with X; held constant. 

(2.9) 

(2.10) 
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(", The velocity of a material particle is given by [152]: 

(2.11) 

and the mesh velocity is defined as [152]: 

axi 
W.=-

1 at 
Xi 

(2.12) 

The difference between these two velocities is called the convective velocity [152], as 

denoted by c;: 

In the case of the ALE representation, the material derivative is defined by [152]: 

Df Bf + Bf axi 
Dt at xi axi at 

with the velocity of a material particle given by [152]: 

or 

ax. axj 
v. =w.+--~--

1 1 axj at 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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,/""""\ From (2.16), the following equation can be obtained: 

axj =(v. -w.)axj 
at l l ax. 

l 

Introducing (2.17) into (2.14) yields: 

Df 

Dt 

at at +-(v. -w.) 
at xi axi 1 1 

(2.17) 

(2.18) 

The acceleration components ai in the case of the ALE description are given by [152]: 

av. 
a. =--1 +c.v .. 

1 at 1 1,] 

xi 
(2.19) 

2.1.3 Governing Partial Differentiai Equations 

The goveming equations for an incompressible N ewtonian fluid in the ALE formulation 

are the conservation of mass, momentum and energy equations. In this section, we shall 

make explicit and justify the applicable simplifications and assumptions. For the problem 

at hand, we define the following domains: Qp(t) shall represent the moving spatial 

domain upon which the fluid motion is described (i.e. the ALE description), Qs(t) will 

denote the domain occupied by the moving structural body (i.e. the Lagrangian 

description), and FFS(t) corresponds to the moving interface between QF(t) and Q8(t), i.e. 

rFs(t) = Qp(t) n Qs(t). Lastly, ri describes. the inlet surface boundary, while r2 expresses 

the outlet surface boundary, where both are fixed in space (i.e. the Eulerian description). 

p denotes the fluid density, ci symbolizes the convective velocity as defined in (2.13). 
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!"""' (i) The conservation ofmass equations [150] 

(2.20) 

which may be reduced to: 

p,t[xJ + cip i = 0, in QF(t) 
' 

(2.21) 

under the incompressibility condition: 

(2.22) 

(ii) The momentum equations [150] 

The classical form of the problem goveming Newtonian fluid flow in a fixed domain 

consists of the goveming equations (ALE description of the Navier-Stokes equations) and 

suitable initial and boundary conditions [150]. 

pv. = p( v. tl 1 +v .. c.) = a .. . +pb., in QF(t) 
l l' x l ,j J lj ,] l 

(2.23) 

where O"iJis the stress tensor (typically Cauchy), and b;is the ith component of the body 

force per unit mass. The body force may arise from gravitational field. As argued by 

[113], in physiological flow problems and flow in tubes in general, the main driving force 

is usually pressure. Thus, the body force may be neglected as it does not affect the nature 

of a pulsatile flow. 

Neglecting the body force, (2.23) may be reduced to: 

(2.24) 
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(', The stress tensor (JiJ can be written as: 

(2.25) 

where pis the pressure, pis the dynamic viscosity and JiJ is the Kronecker's delta [150]. 

The following boundary conditions and initial condition apply: 

vi = /;<x,t), onrl 

where fi is a prescribed function of space and time, and 

aijnj = 0' onr2 

where nj is the unit outward normal vector to T2• 

Since T1 and T2 are fixed in space, this leads to: 

The no-slip condition applies on rFS(t): 

or 

In other words, we have the Lagrangian description on rFs(t). 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

30 



,~ The velocity field is assumed to be known at t = 0 in the who le domain Q; only one 

initial condition is needed since the momentum equation is first-order intime: 

(iii) The energy equations [150] 

These must be included when coupling with heat transfer or other energy transfer. 

pë = (et[ 1 + e .c.) = a .. v . . +pb. v., in Qp(t) ' x ,l l lJ l,j l l 

where e is the internai energy per unit mass [150]. 

Again, neglecting the body force: 

pë =(et[ 1 + e .c.) = a .. v . . , in!lp(t) ' x J l lJ lJ 

(2.31) 

(2.32) 

(2.33) 

The term associated with the convective velocity is usually referred to as the "advective" 

or "convective" term, and accounts for the transport ofmaterial past the mesh [151]. It is 

the additional term in the above equations that makes solving the ALE equations much 

more difficult numerically than the Lagrangian equations. The cost of an advection step is 

typically two to five times the cost of the Lagrangian time step [155]. 

We conclude this segment by describing the key steps involved in the execution of an 

ALE time step [ 151]. There are actually two ways to implement the ALE equations. The 

first method solves the fully coupled equations for computational fluid mechanics. 

However, this approach can only handle a single material in an element. The alternative 

approach is referred to as an operator split in the literature, where the calculation is 

divided into two phases for each time steps. First a Lagrangian phase is performed, in 

which the mesh moves with the material. In this phase, the changes in velocity and 

internai energy due to the internai and external forces are calculated. Then, the advection 
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phase ensues. Transport of mass, internai energy and momentum across cell boundaries 

are computed. Put more formally, an operator split breaks one set of partial differentiai 

equations into two or more sets which are solved sequentially. An operator split 

decouples the various physical phenomena in the goveming equations, and therefore the 

potential accuracy of the solution is somewhat reduced [156]. The advantage of the 

operator split over the fully coupled approach is that it breaks very complicated equations 

into simpler equations that are more easily solved. Algorithms that rely on this method 

are therefore usually more robust than fully coupled algorithms. For an ALE formulation, 

the use of an opera tor split is therefore natural because the Lagrangian step remains 

unchanged and only a separate, independent remap algorithm needs to be added for the 

Eulerian step. The decoupling of the Lagrangian and Eulerian steps allows for the use of 

a simple and efficient remap algorithm. However, it is conceded that the operator split 

places an intrinsic limit on accuracy, and that advection algorithms tend to smooth sharp 

solution gradients. For many practical problems, advection algorithms are perfectly 

adequate. The accuracy of second-order advection algorithms is superior to the manual 

rezoning which is only first-order accurate. 

The breakdown of an Eulerian step consists of five smaller steps [ 151]. The first step is 

the choice of which mesh sections to remap. One key strate gy is to selectively remap 

sections with highly distorted meshes that are likely to control the time step size. 

Remapping the entire mesh at every step is prohibitively expensive. Another key idea is 

that the Eulerian step need not be performed at every time step. In most cases, it is 

possible to perform the Eulerian step only every ten to twenty time steps. The overall cost 

of the Eulerian step may be reduced by a factor of ten to twenty while maintaining the 

benefit of large time steps. Furthermore, accuracy of the calculation is usually unaffected 

by the frequency of the Eulerian step. The second step involves the decision of where to 

move the nodes. This step is the most difficult from the standpoint of implementation, 

and is problem dependent. Smoothing algorithms or relaxation stencils are used for mesh 

generation in this step. The third step is mass advection. Calculated mass fluxes are used 

in the momentum advection, the fourth step. Momentum is advected instead of velocities 

to ensure the conservation of momentum. The final step is the advection of the stress 
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tensor and the history variables associated with the constitutive models. The next two 

sections will highlight the salient features that characterize a robust smoothing algorithm 

and advections scheme, while disclosing sorne innate drawbacks. 

2.1.4 Smoothing Algorithms 

One of the oldest relaxation stencils was proposed by Winslow [157, 158]. His 

equipotential stencil is still widely used because of its stability for a broad range of 

problems. Stability for mesh relaxation methods means that the method will not distort a 

mesh any more than its current distortion [151]. The Laplace's equation is inverted, and 

the stencil is devised such that the mesh forms lines of equal potential on a logically 

regular mesh. When a solution for Laplace's equation exists, the maximum principle 

guarantees that the resulting mesh does not overlap itself. The priee to pay for this 

certainty is the following drawbacks. Equipotential relaxation stencils are known to invert 

elements that are near an indented boundary with a small radius of curvature. Laplace's 

equation attracts elements to indented boundaries. When the radius is small enough, the 

lines of equipotential pile up on top of each other, thus resulting in elements with zero 

volume. Another undesirable response is that the stencil can start to converge from the 

wrong side of the solution and put a few nodes on the wrong side of the boundary. In 

spi te of these limitations, Winslow' s stencil is part of a general class of algorithms called 

finite difference mesh relaxation stencils. This category is best described as any general 

algorithm inherently local in nature, given that only regions of a mesh will be moved 

during a time step, and that the regions flagged for remapping may change from time step 

to time step. Finite difference mesh relaxation stencils are created by trying to minimize a 

functional [159] or by inverting the solution to a partial differentiai equation [157]. The 

Laplace's equation can be restated as a minimization of the mesh density gradient by 

using variational calcul us. The gradient is a measure of the smoothness of the mesh, and 

by minimizing it, the elements will tend to be of equal size away from the boundary. This 

smoothness property is desirable most of the time. 
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0 The derivation of the three-dimensional equipotential zoning equations is as follows: 

~·. 

In three dimensions, we define curvilinear coordinates ( (i=l, 2, 3) which satisfy 

Laplace's equation [155]: 

For a scalar function A(x, y, z), the transformation of its Laplacian from rectangular 

Cartesian to curvilinear coordinates is given by [155]: 

(2.34) 

(2.35) 

where a variable subscript indicates differentiation with respect to that variable. Since the 

curvilinear coordinates are each assumed to satisfy Laplace' s equation, the second 

summation vanishes [155] and we have: 

(2.36) 

Letting A =x, y, z successively, the left hand side of (2.36) vanishes in each case and we 

get three equations [155], which can be written in vector form: 

(2.37) 
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For the purpose of clarity and convenience, we introduce the rule of transformation 

distinguishing the contravariant (2.38) from the covariant (2.39) component of a vector 

(or equivalently called tensor of rank one, see e.g. [160]): 

A'.= axj A. 
l 8x'i J 

(2.38) 

(2.39) 

The components of the contravariant metric tensor gij in three dimensions are defined to 

be [155]: 

(2.40) 

where the contravariant base vectors of the transformation from (x,y,z) to (Ç1
, f, çJ) are 

given by (i,j, kcyclic) [155]: 

(2.41) 

where the JacobianJ must be positive to ensure a nonsingular transformation [155]: 

>Ü (2.42) 
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The covariant base vectors are given by [155]: 

...... ...... 
a. =r. 

1 Ç' 
(2.43) 

where: 

r=xf + y}+zk (2.44) 

The covariant metric tensor gij is given by [155]: 

(2.45) 

Substituting (2.41) into (2.40), and making use of the vector identity [155]: 

( â x b) . ( ë x J) = ( â . ë) ( b . J) - ( â . J) ( b . ë) (2.46) 

we obtain: 

(2.47) 

(2.48) 

Substituting (2.43) into (2.47) and (2.48) and simplifying the notation to [155]: 

(2.49) 
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r" We get the three diagonal components [155]: 

(2.50) 

and the three off diagonal components of this symmetric tensor [155]: 

(2.51) 

Renee, we may rewrite (2.37) in the form [155]: 

or in terms of the Cartesian coordinates [155]: 
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where: 

al = ( XqYç- Xç y17 r + ( XqZç- XçZq r + (yqzç- YçZq r 
a2 =(x,y4 -x4yÇ r +(x,z4 -x4zÇ r +(YçZç- YçZç r 
a 3 = ( x4y17 - x77 y4 f + ( x4z17 - x17 z4 f + (y4z17 - y17 z4 f 
pl = ( X4XÇ + YçYç + ZçZç )( XqXç + YqYç + ZqZç) 

-( XçXq + Y;Yq + ZçZq )( Xç 2 + Yç 2 + Zç 2) 

P2 = ( x77 x4 + y 17 y4 + z17 z4 )( x4xç + y4yç + z4zç) 

-(x,x17 + YçY11 +zçz11 )(x/ +Y/ +z/) 
p3 = ( XqXç + YqYç + ZqZç )( XçXq + y4y17 + ZçZq) 

-( XçXq + YçYq + zçzq )( x17 z + y17 z + z17 z) (2.54) 

Finally, central differencing is then applied on (2.53) in a cube in the rectangular (Ç, ,, Q 

space with unit spacing between the coordinate surfaces. The subscript i represents the Ç 

direction,j the 11 direction and k the Ç direction. The following finite difference 

approximations for the coordinate derivatives may be obtained [155]: 
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~ = ( ~+1 - ~-1 ) 

~ = ( ~+1 - ~-1 ) 
~ = ( ~+1 - ~-1 ) 

~; = ( ~+1 - 2r + ~-1 ) 

~" = ( ~+1 - 2r + ~-1 ) 
rs-s- = ( ~+1 - 2r + ~-1 ) 

~. = : [ ( r,+l,j+l + il-l,j-1 ) - ( r,+ l,j-1 + il-l,j+l ) J 

~ç = : [ ( 0+1,k+l + 0-l,k-1 ) - ( 0+1,k-l + 0-l,k+l ) J 

i'çç = : [ ( r,+l,k+ 1 + il-l ,k-1 ) - ( r,+l,k-1 + r,_, ,k +1 ) J 
where for brevity we have omitted subscripts i,j, k (e.g., k+ 1 stands for i,j, k+ 1). 

2.1. 5 Advection Schemes 

(2.55) 

For the purpose of clarity, it will be useful to introduce the following definitions [ 151]. A 

"remap" is the process of mapping the original mesh into another mesh, whether or not 

the new mesh is an arbitrary mesh or a small perturbation away from the old mesh. 

"Rezoning" maps one mesh to another arbitrary mesh by interpolating values for the new 

mesh from the old mesh. An "advective" or "Eulerian" remap calculates the transport of 

material between adjacent elements as a mesh is moved. For elements that are modeled 

with an equation of state, the total number of solution variables to be transported is six 

[155]. These are the density, internai energy, viscosity and the three components of 

velocity. The nodal velocities add an extra three solution variables that must be 

transported, and they must be advected separately from the other solution variables 

because they are centered at the nades and not in the elements. In addition, momentum is 

~, used as an advection variable to guarantee the conservation of momentum, and it is a 
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0 product of the node-centered velocity and the element-centered density. Thus, the 

necessity of using very simple and efficient advection algorithms becomes apparent. 

There are a number offundamental properties that remap algorithms should have [151]. 

For obvious reasons, remap algorithms should be accurate. Traditional error analysis 

gives the order of the algorithm, indicating the degree of the polynomial that is advected 

without error. First-order accurate algorithms are too diffusive for most applications. 

Sorne algorithms are second-order when the solution is smooth, but degrade to first-order 

around discontinuities to preserve their stability. The se generate good solutions when 

used with lower-order elements, such as four-node quadrilaterals. A useful test is the 

propagation of a single wave over long distances. This test demonstrates how weil an 

advection algorithm will maintain steep gradients in the solution. The second requirement 

is that remap algorithms should be conservative, that is, the integral of any quantity over 

the material domain should remain unchanged by the remap. Variables before and after 

the remap at time tare superscripted with- and+ respectively: 

<t>(t+) = <I>(r) = J<t>( x )dn (2.56) 

n 

The third property is that a remap algorithm should be consistent in the sense that if the 

new mesh is identical to the original mesh, then ali quantities should remain unchanged 

by the remap. Last but not least, we are naturally concemed with stability of the 

advection scheme. However, unconditional stability is not a necessity because the 

Lagrangian step is only conditionally stable. This will be made clear in the next section, 

which deals with the conditional stability of explicit time integration. 
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2.1.6 Explicit Time Integration and Conditional Stability 

Explicit finite element programs are more efficient than implicit programs for solving 

transient, large deformation problems that require a high-resolution of the spatial domain 

[ 151]. The cost of an implicit time step is ten to a thousand times more expensive than an 

explicit one, owing to the need to solve the linear equations [161]. The central difference 

method is among the most popular of the explicit methods in computational mechanics 

and physics. The central difference method is developed from the central difference 

formulas for the velocity and acceleration [162]. The value of the derivative at the center 

of a time interval is obtained from the difference of the function values at the ends of the 

interval, hence the name central difference formulas. Most algorithms utilize a variable 

time step. This is essential for practical calculations since the stable time step size 

changes as the mesh deforms and the wave speed changes due to stress. 

The time increments are defined by: 

(2.57) 

The velocities are approximated by: 

d n+l dn 1 
vn+l/2- - (dn+l dn) (2.58) 

fn+l _ fn fl.fn+l/2 

where d denotes the nodal displacement. As can be seen, the velocities are defined at the 

midpoints of the time intervals, also called half steps or midpoint steps. 

Rearranging (2.58) gives: 

(2.59) 
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The acceleration is approximated by: 

n+l/2 n-l/2 v -v n ______ _ 

a - tn+l/2- (-1/2 

Rearranging (2.60) yields: 

n+l/2 _ n-112 + Atn n v -v L.l a 

By substituting (2.58) and its counterpart for the previous time step into (2.60), the 

acceleration can be expressed directly in terms of the displacement: 

n _ ~~n-112 ( dn+l _ dn) _ ~~n+l/2 ( dn _ dn-l) 

a -

(2.60) 

(2.61) 

(2.62) 

Consider the time integration of the following equation of motions, which arises from the 

discretization of the momentum equations for a Lagrangian mesh: 

(2.63) 

where/nt are the internai nodal forces and/xt are the external nodal forces. Nodal forces 

are always de:fined so that they are conjugate to the nodal displacements in the sense of 

work (i.e. the scalar product of an increment of nodal displacement with the nodal force 

gives an increment ofwork). (2.63) is also called the semi-discrete momentum equations 

because of the lack of discretization oftime [162]. 

Substituting (2.63) into (2.61) gives: 

(2.64) 

At any time step n, the displacement if are known. The nodal forces f can be determined 

by sequentially evaluating the strain-displacement equations, constitutive equations, and 

the nodal external forces [162]. Once the right hand side of (2.63) is evaluated, vn+J/2 may 
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be used in (2.59) to obtain il'+ 1• Thus, update of the nodal velocities and nodal 

displacements can be accomplished without solving any equations provided the mass 

matrix Mis diagonal (i.e. in an explicit method, the time integration of the discrete 

momentum equations does not require the solution of any equations). One caveat is that 

the avoidance of solution of equations hinges critically on the use of a lurnped mass 

matrix (i.e. diagonal). For a consistent mass matrix (i.e. non-diagonal), the update 

involves the solution of ordinary differentiai equations of second-order in time. 

Despite the ease of implementation and robustness of the nurnerical algorithrn, explicit 

time integration is only conditionally stable. The time step size of explicit prograrns is 

Iimited by the Courant stability criterion which says that the largest stable time step is the 

minimum time necessary for a sound wave to cross the smallest element in the mesh 

[151]. This is mathematically expressed as [162]: 

11t = al1tcrit' 11tcrit = min!.:._ 
Ce 

(2.65) 

where le is the characteristic length of element e, Ce is the current wave speed in element 

e, and a is a reduction factor that accounts for the destabilizing effects of nonlinearities. 

The ratio of the time step to the cri ti cal time step, a, is called the Courant number. It was 

first proposed by Courant, Friedrichs and Lewy [162]. The implication is that the critical 

time step decreases with mesh refinement and increasing material stiffness. As the 

analysis proceeds, Lagrangian elements stretch in length and shrink in width, and the size 

of the time step decreases [151]. When the size of the time step becomes too small, 

continuing the analysis becomes prohibitively expensive. On the other extreme, if the 

time step exceeds the critical value, the solution will grow unboundedly [162]. To 

surnrnarize, the cost of an explicit simulation is independent of the frequency range of 

interest and depends only on the size of the model and the nurnber of time steps. This 

leads us to the next section where the nurnerical implementation is discussed. 

43 



/'\ 2.2 Numerical Implementation 

2.2.1 Geometry Mode! 

The central objective of this thesis is to numerically investigate the three-dimensional 

effects of spatial configuration on the wall motion and hemodynamic of the pulmonary 

artery, taking into account fluid structure interaction. Motivated by the physiological 

phenomena of collapse and flow limitation for a seriai pulmonary artery stenosis, we are 

interested in investigating the effect of two geometrical parameters: the relative distance 

and the angular orientation between the two stenoses. For clinical relevance, each 

stenosis is characterized by a 'mi/d' nominal area occlusion of 50 percent and a nominal 

eccentricity of 100 percent (asper section 1.2.2, refer to Figures 2.2-2.6 for the specifie 

characteristics of each case). From a plaque rupture viewpoint, stiffer stenoses are less 

dangerous than softer ones, which is consistent with clinical observations [143]. In 

addition, an eccentric stenosis is more unstable than a concentric one. It has been 

experimentally demonstrated that the required buckling pressure to collapse artery with 

eccentric cross-sections is 30 percent lower than for an axisymmetric tube [127]. 
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x 

Figure 2.2 Case 1; distance between stenoses: 25% of tube length L (1.667 x D), 
angular offset between stenoses: 0°. 

z z 

x y 

Figure 2.3 Case 2; distance between stenoses: 50% of tube length L (3.333 x D), 
angular offset between stenoses: 0°. 
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Figure 2.4 Case 3; distance between stenoses: 25% of tube length L (1.667 x D), 
angular offset between stenoses: 90°. 

z z 

x 

Figure 2.5 Case 4; distance between stenoses: 50% of tube length L (3.333 x D), 
angular offset between stenoses: 90°. 
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z z 
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Figure 2.6 Case 5; distance between stenoses: 25% of tube length L (1.667 x D), 
angular offset between stenoses: 180°. 

Cases ( 1, 3 & 5) will permit us to study the effect of the closeness between the 

constrictions. This set will also enable us to examine the influence of angular orientation. 

Conversely, cases (2 & 4) will allow us to determine the impact ofpositioning the distal 

stenosis near the outlet. 

Since the bulk of the literature on tube collapse considers circular cross-section, we shaH 

assume this undeformed reference state for ease of comparison. In the context of a 

pediatrie pulmonary artery, we are selecting a 6 mm nominal diameter, which lies on the 

lower end of the pub li shed angiocardiographie diameter data, for infants ranging from 1 

month to 14.5 years [163]. It has been documented that one of the loads bearing layer, the 

media, may account for up to 1 0 percent of the extemal diameter of the vessel [7]. In 

view of this observation, we select a thickness of 0.3 mm. Re garding our choice of cross­

section, it should be emphasized that the major pulmonary artery are actually elliptical in 

cross-section rather than circu1ar [9]. An opening angle experiment is a convenient way 

to demonstrate that the arterial wall is not axisymmetric since the zero-stress state of an 

artery is not a tube [ 164]. The implication of an elliptical cross-section or any non­

circular cross-section is that it produces a less efficient flow [165, 166]. Flow inefficiency 

in a tube of non-circular cross-section manifests itself in terms of lower flow rate for a 
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0, given pressure gradient (or equivalently, higher pressure gradient for a given flow rate) 

[113]. For the same pressure gradient and perimeter, the flow rate for an elliptical cross­

section tube for a major to minor axis ratio of 2 is lower by a factor of 64/125 when 

compared with the circular cross-section tube. Although the above remarks strictly apply 

to a steady flow, the reduction in efficiency for a pulsatile flow will be compounded by 

the effect offrequency [167]. 

/~ 
' ' 

With the above in mind, the spatial coordinates of the geometry are generated using the 

commercial package Matlab® (MathWorks, Inc.). Adopting the methodology developed 

by Tang et al. [143], we move the cross-sections to one side such that all remain circular, 

with a resulting straight side for each stenotic section. The surfaces are lofted with the use 

of the mode ling software Rhinoceros® (McNeel). Meshing is performed with the pre­

processor module of ANSYS® (Ansys). The simplified ALE formulation is implemented 

using the commercial package LS-DYNA ® (Livermore Software Technology 

Corporation). The reference coordinate system is Cartesian (x,y,z), with the z coordinate 

aligned in the direction of the tube axis, while x and y are the transverse coordinates. The 

origin is located at the centre of the tube inlet (Figure 2. 7). 
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Figure 2. 7 Example geometry of a seriai pulmonary artery stenosis. 

2.2.2 VesselA!odel 

The vessel' s wall is mode led with Lagrangian brick elements with a constant stress solid 

element formulation. Most hydrocodes use one-point integration, resulting in all 

quantities except for the velocities being constant over an element [151]. In addition, the 

choice of one-point integration over full y integrated elements is justified because the 

latter tends to lock up in the constant volume bending modes for near incompressibility 

cases [155]. The tube wallis assumed to be elastic, homogeneous, isotropie and nearly 

incompressible. For this elastic material, the co-rotational rate of the deviatoric Cauchy 

stress tensor [155] is computed as: 

n+l/ 2 • f n+l/2 
sij = 2Gsij (2.66) 
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0 and the pressure as: 

pn+t = - K ln vn+t (2.67) 

where G and K are the elastic shear and bulk moduli respectively, and Vis the relative 

volume (i.e. the ratio of the current volume to the initial volume). 

A Young's modulus of 10 KPa is selected, in agreement with values used in [168-170]. 

Near incompressibility is enforced with a Poisson's ratio of 0.45. The density of the 

structure is set to 1000 kg/m3
, matching in vitro experimental set-up data [132, 134, 143]. 

For boundary conditions, the inlet and outlet of the tube are restrained in the longitudinal 

direction. The extemal pressure is set to zero. Conceding that an elastic, homogeneous 

and isotropie vessel model is a very crude first approximation, it is nevertheless adopted 

for robustness of the solution. Given the numerical difficulties of coupling the non-linear 

Navier-Stokes equations for fluid behavior with a non-linear geometry of the vessel wall 

in the context of a moving interface, computational stability becomes a key concern. 

Additional simulations using Invariant-based hyperelastic models ( e.g. Mooney-Rivlin, 

Odgen) and principal-stretch-ratio based strain-energy functions (e.g. Fung's exponential 

form [ 1 71]) were performed, but numerical instabilities were encountered at the onset for 

our considered three-dimensional geometries. 

2.2.3 Fluid Mode/ 

The flow is assumed to be laminar, Newtonian, viscous and incompressible. A no-slip 

boundary condition is imposed, that is, the fluid in contact with the wall has zero velocity 

relative to the wall. Furthermore, no penetration of the fluid through the tube wall is 

allowed. A flow-reservoir attached to the inlet supplies the physiologically relevant flow 

rate boundary condition to the fluid domain. A fully developed flow with a paraboloidal 

Poiseuille distribution is assumed at the inlet. A magnetic-resonance-imaging velocity­

mapping based curve for the main pulmonary artery is adapted from [172] (Figure 2.8). 

However, in our analysis, we will refer toits normalized (i.e. by maximum value 

f\ applicable to both axes) counterpart for simplicity (Figure 2.9). The rational for this 
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0 approach is better control of the flow distribution and flow rate for consistent comparison 

between differing morphological configurations. An alternative is to drive the simulation 

with a pressure-reservoir based approach. However, this entails a cumbersome 

recalibration of the upstream and downstream pressure fields to maintain a given flow 

rate for each configuration. The fluid control volume surrounding the Lagrangian 

structure is assembled with Eulerian brick elements with the following element 

formulation: one-point integration with single material and void. For computational 

efficiency, one-point integration is preferred over a full y integrated element formulation. 

The computational time savings show up in the volume integration via Gaussian 

quadrature (i.e. numerical integration based on the Gauss rule, see e.g. [173]), and 

extends to strain, stress and element nodal force calculations [155]. The major drawback 

of one-point integration is the possibility of oscillatory hourglass (zero-energy) modes 

with much shorter periods than the structure response. However, these modes may be 

stabilized with the use ofhourglass viscosity (i.e. viscous damping capable of stopping 

the formation of anomalous modes but having a negligible effect on the stable global 

modes) [151]. In addition, the Eulerian fluid elements are linked to the Gruneisen 

equation of state [155], which defines pressure for compressed material as: 

p = [ J + (ro + a0p )E (2.68) 
fl2 fl3 

1-(S -1)p-S -S 
1 2 fi+ 1 3 (Il+ 1 )2 

where E is the internai energy per initial volume, C is the intercept of the shock velocity 

(see e.g. [155, 174]) vs particle velocity curve, S1,S2,S3 are the coefficients of the slope of 

this curve, y0 is the Gruneisen gamma, and ao is the first-order volume correction to yo. 

The compression is defined in terms of the relative volume, V, as: 

1 
p=--1 

v 
(2.69) 
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0 For expanded materials, the pressure is defined by: 

(2.70) 

For practical reasons, most in vitro experimental set-ups use water or a water based 

mixture as the working fluid. The Gruneisen parameters for water are provided by [174]. 

The density of the fluid is set to 1000 kgim3
. Water is chosen in this simulation in view of 

facilitating possible future experimental validation of our results. This is done so despite 

the fact that blood is approximately four times more viscous than water, under the 

Newtonian approximation [84]. However, the lowered viscosity effect ofwater is 

somewhat compensated by the reduced opposition to flow from the steady resistive term 

in the pulmonary circulation, at about one-sixth of the systemic vascular resistance [3]. 

After disclosing the merits and drawbacks of the inherent assumptions of our model, we 

are now ready to proceed to the next chapter, the discussion of our numerical results. 
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Figure 2.8 Magnetic resonance imaging velocity mapping curve, adapted from [172]. 
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Chapter 3. 

N ume ri cal Results 

This chapter presents the main findings of our work in two main sections: three­

dimensional wall deformation and three-dimensional velocity field. The former focuses 

on the temporal evolution of wall displacement, on quantifying wall collapse, and on 

sorne observations of wall displacement. The latter be gins with a brief review on three­

dimensional flow field in stenotic vessels, and is followed by a discussion on the effect of 

length and of angular orientation on the flow field. 

3.1 Three-Dimensional Wall Deformation 

3.1.1 Temporal Evolution ofWall Displacement 

The mechanisms causing collapse at the downstream side of a straight compliant tube has 

been previously described in detail. Succinctly, a non-zero volume flux creates a viscous 

pressure drop in the fluid and thereby increases the compressive loads on the tube wall in 

the flow direction [124]. In other words, compressive loads and deformation on the tube 

wall increase with the axial distance from the upstream end. For a straight tube, the 

corresponding deformation reduces the tube's cross-sectional area, which increases the 

pressure drop even further. There exists a threshold of volume flux at which the critical 

value of compressive load is exceeded. Then, the tube's deformation becomes unstable. 

Buckling would be initiated at the downstream end, where the compressive loads possess 

the largest values. The increase in pressure drop, induced by the buckling, will then 

increase the compressive loads on the downstream end and accelerate the collapse [175]. 

Once the tube buckles, its resistance increases so rapidly that any further increase in the 

pressure drop may potentially reduce the volume flux through the tùbe, leading to flow 

limitation. The asymmetry of the fluid traction increases with the tube's collapse, driving 

the point of strongest collapse more downstream [122]. The distended upstream part of 
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the tube merely acts as a support for the downstream part which is under compression 

[124]. 

In addition to the viscous dissipation, flow through a stenotic vessel involves flow 

separation downstream of the throat. The extra dissipation may be the necessary 

ingredients to allow for the development of self-excited oscillations in collapsible tubes, a 

mechanism proposed by [176]. A three-dimensional study of a steady flow in collapsible 

tubes shows that fluid dissipation is greatest near the wall in the region of strongest 

collapse [177]. Moreover, eccentric stenosis may lead to asymmetric flow where the high 

velocity jets impinge on the sidewall. The location near the point of jet impingement on 

the sidewall would induce significant dissipation, particularly if it has buckled inwards. 

The aforementioned locations of additional dissipation result in a higher pressure drop for 

a flow through a stenotic vessel, than in a straight compliant tube. Thus, the presence of 

each additional stenosis may enhance the hazards of buckling to a differing degree, 

depending on their relative spatial locations and orientations. The above evidence 

suggests that flow through a stenotic vessel may lower the critical volume flux compared 

with a straight compliant tube, for the onset of the flow-induced buckling. As a check, we 

conducted additional simulation with straight tube of similar dimensions, which revealed 

that collapse does not materialize for the prescribed physiological volume flux used in 

our computations (Figure 3.1). The small-amplitude axisymmetric deformation validates 

a known fact for a straight tube: fluid pressure distribution have a weak effect on the wall 

motion, which is dominated by the spatially constant extemal pressures [122]. This gives 

us confidence that wall motion in our simulations is driven by the ongoing strong 

coupling and interaction between the non-linear vessel geometries, and their 

corresponding asymmetric flow. It leads us to assert that under these conditions, fluid 

pressure distribution have substantial implication for wall motion. This statement brings 

us to a cl oser qualitative visual inspection of the effect of spatial configuration on wall 

motion for the five cases considered in our study. For each case, we show the initial 

vessel geometry, along with a few selected time steps taken from the diastole phase, and 

finally, the last time step (see e.g. case 1 (Figures 3.2-3.6), case 2 (Figures 3. 7-3.11), 

case 3 (Figures 3.12-3.16), case 4 (Figures 3.17-3.21), case 5 (Figures 3.22-3.26)). 
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The examination of these figures leads us to be lieve that there exists a close relationship 

between the angular orientation of the distal stenosis (i.e. the constriction direction) and 

the direction of wall motion at the downstream end (e.g. see Figures 3.6, 3.11, 3.16, 3.21 

& 3.26). 

t/T = 1 

z 

y 

Figure 3.1 Fluid structure interaction simulation for a straight tube. 

FLOW DIRECTION 

z 

Figure 3.2 Case 1: wall deformation at t/T =O. 
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Figure 3.3 Case 1: wall deformation at t/T = O. 70. 

Figure 3.4 Case 1: wall deformation at t/T = 0.81. 

Figure 3.5 Case 1: wall deformation at t/T = 0.92. 
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FigUre ~.6 case 1: wall de{ormaûon at tri --1. 

-- ~· ... '/. Figure 3.7 case 2: wall defonnation at tf{-- o. 
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FLOW DIRECTION 

Figure 3.12 Case 3: wall deformation at t!T = O. 

Figure 3.13 Case 3: wall deformation at t/T = 0.70. 

Figure 3.14 Case 3: wall deformation at t!T = 0.79. 
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Figure 3.15 Case 3: wall deformation at t/T = 0.91. 

CONSTRICTION DIRECTION 

Figure 3.16 Case 3: wall deformation at t/T = 1. 

FLOW DIRECTION 

Figure 3.17 Case 4: wall deformation at t/T = O. 
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Figure 3.18 Case 4: wall deformation at t/T = O. 71. 

Figure 3.19 Case 4: wall deformation at t/T = 0.80. 

Figure 3.20 Case 4: wall deformation at t/T = 0.91. 
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/---._ 
! 

Figure 3.21 Case 4: wall deformation at t/T = 1. 

FLOW DIRECTION 

Figure 3.22 Case 5: wall deformation at t/T = O. 

Figure 3.23 Case 5: wall deformation at t/T = O. 71. 
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Figure 3.24 Case 5: wall deformation at t/T = 0.80. 

Figure 3.25 Case 5: wall deformation at t/T = 0.92. 

Figure 3.26 Case 5: wall deformation at t/T = 1. 
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0 3.1.2 Quantifying Wall Collapse 

Our qualitative visual observations seem to suggest that there exists a close link between 

the angular orientation of the distal stenosis and the direction of wall motion at the 

downstream end. We shall utilize this apparent relationship to devise a simple metric for 

consistent comparison across ali the cases. Our metric will serve as a proxy to measure 

wall collapse. We argue that the angular orientation of the distal stenosis is likely to have 

significant influence on the downstream wall behavior because its throat offers the path 

of least fluid resistance. Therefore, the flow will tend to evolve towards the Poiseuille 

flow in the direction set by the angular orientation of the distal stenosis. The large wall 

slope past the throat creates large adverse pressure gradient, causing the viscous layer to 

expand on the constricted side. This has the effect of drawing the core flow closer to the 

straight side. The strong coupling and interaction between fluid and structure lead us to 

believe that the predominant wall motion may be correlated with the direction in which 

the core flow evolves towards the ideal Poiseuille flow. 

In view of this, our metric will measure the change in length from the initial vessel's 

geometries in each of the two principal directions of constriction of the distal stenosis 

(Figure 3.27). The concept behind our methodology is to filter out the disturbances or 

fluctuation signais. We seek the extreme and median values of change in length 

throughout the cycle (the median is a more robust estimate of the center than an average, 

since outliers have little effect on it). We then plot the results as error bars; assuming that 

the median value is the center of the sample, we treat the maximum and minimum values 

as the respective upper and lower deviations. As such, we construe any significant 

asymmetry in the distance between the median and the extreme values as a strong 

indication of wall collapse in a preferential direction. To investigate the effect oflength 

on wall collapse, we will sample the cross-sectional planes shown in Figures 3.28 & 

3.29. We shall employ the same approach to assess the impact of angular orientation on 

wall collapse. 
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~L pt.3-pt.4 

pt.4 

Figure 3.27 Metrics: change in length (~L): pt.1-pt.2 (left), pt.3-pt.4 (right). 
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Figure 3.28 Sample cross-sectional planes: for cases (1, 3 & 5) where the distance 
between stenoses is 25% of tube length L (1.667 x D). 
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zJL = 1 

z/L = 0.875 ---... 

.,__ __ zJL = 0.75 

zJL = 0.625 ___ ... 

z 
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Figure 3.29 Sample cross-sectional planes: for cases (2 & 4) where the distance 
between stenoses is 50% of tube length L (3.333 x D). 

3.1. 2.1 Effect of Length on Wall Collapse 

The results for all the cases according to the methodology as proposed in the previous 

section are displayed in the following figures (see e.g. case 1 (Figures 3.30 & 3.31), case 

2 (Figures 3.32 & 3.33), case 3 (Figures 3.34 & 3.35), case 4 (Figures 3.36 & 3.37), case 

5 (Figures 3.38 & 3.39)). 
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Figure 3.30 Case 1: effect oflength on wall collapse, AL pt.1-pt.2. 
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Figure 3.31 Case 1: effect oflength on wall collapse, AL pt.3-pt.4. 
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Figure 3.32 Case 2: effect oflength on wall collapse, AL pt.l-pt.2. 
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Figure 3.33 Case 2: effect oflength on wall collapse, AL pt.3-pt.4. 
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Figure 3.34 Case 3: effect of length on wall collapse, AL pt.l-pt.2. 
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Figure 3.35 Case 3: effect of length on wall collapse, AL pt.3-pt.4. 
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Figure 3.36 Case 4: effect of length on wall collapse, AL pt.l-pt.2. 
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Figure 3.37 Case 4: effect of length on wall collapse, AL pt.3-pt.4. 
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Figure 3.38 Case 5: effect of length on wall collapse, AL pt.l-pt.2. 
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Figure 3.39 Case 5: effect of length on wall collapse, AL pt.3-pt.4. 
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('"""". We have previously stressed in section 3.1.1 that for a compliant tube, the compressive 

loads and deformation on the wall increase with the axial distance from the upstream end, 

in the flow direction. The increase in wall deformation (i.e. contraction or extension) 

manifests itself in our results for all cases, as shown by the lengthening of the bars (i.e. 

distance between the extreme values) as we progress towards the outlet. We have also 

underlined that the throat of the stenosis does not collapse easily because of its thicker 

wall and smaller diameter than elsewhere in the tube. For cases (2 & 4), this is revealed 

by the fact that the bars are narrowest at the location of the throat (i.e. z/L =O. 75 tick). 

Since these two physical requirements are reflected in the results, this increases our 

confidence level in both the fluid structure interaction model and our conceived 

methodology to quantify the degree of wall collapse. 

One trend we notice in the se plots is the strong influence of the closeness between the 

stenoses on wall motion at the downstream end. For all cases, this is illustrated by the 

increasing width of the bars as we move cl oser to the outlet. Furthermore, a noteworthy 

observation is that significant contraction in one direction may lead to extension in the 

perpendicular direction. In case 1 for example, the change in length between pt.1 & pt.2 

decreases and that between pt.3 & pt.4 increases, while the opposite is true for case 3. 

The fact that the contraction seems to be predominant! y aligned in the direction of the 

constriction suggests an important role of the initial angular orientation of the distal 

stenosis on the subsequent wall motion at the downstream end. We shaH explore this idea 

in greater detail in the next section. For now, we highlight the strong asymmetry, with the 

median skewed towards an extreme value, for cases (1 & 3). We interpreta significant 

distance of departure of an extreme value from the median as a strong indication of 

preferential direction of wall collapse. By this measure, case 1 is most susceptible to wall 

contraction in the pt.1 & pt.2 direction, while case 3 is most vulnerable in the pt.3 & pt.4 

direction. This yardstick also reveals that case 1 is most likely to undergo to wall 

extension in the pt.3 & pt.4 direction. These are consistent with our visual inspection 

from section 3.1.1. For cases (2 & 4), the fact that the median lies at approximately 

midway between the extreme values suggest that these configurations are not likely to 

experience wall motion in any preferential direction. This suggests that positioning the 
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0 distal stenosis cl oser to the outlet tends to diminish the influence of its initial angular 

orientation. This physically makes sense since wall motion in the proximity of the throat 

will somehow be dampened by its stiffness. 

Case 5 is particular in the sense that wall osculation has occurred, as shown in Figures 

3.25 & 3.26. It also brings to light a limitation of our primitive comparison tool, which is 

highly sensitive to the choice of sampling points. For case 5, our metrics would have 

revealed an alternative scenario had we selected different sampling points, for instance, at 

the location where the opposite-wall contact occurs. The most we can say is that our 

metric is unsuited to assess the behavior for cases where wall contact has occurred, or 

involving highly distorted shapes. Nevertheless, it is surprisingly predictive and 

satisfactory for cases where there exists a predominant direction or pattern of wall 

motion, as shown by cases (1 & 3). Despite its simplicity, it is also relatively successful 

for revealing cases where the wall motion lacks any preferential direction, such as in 

cases (2 & 4). 

3.1. 2. 2 Effect of Angular Orientation on Wall Collapse 

We shall be succinct for this section, since we are relying on the same methodology as in 

the previous section. The key difference is that we will present the results in terms of the 

angular offset between the stenoses instead of the length. Note that the angular offset is 

equivalent to the absolute angular orientation of the distal stenosis, as measured from the 

reference x-axis. This exercise of displaying the data from an alternative viewpoint will 

serve to reinforce our previous observations. The results may be found in the following 

figures, see e.g. (Figures 3.40-3.47). 
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Figure 3.40 Effect of angular offset on wall collapse, AL pt.l-pt.2, z!L = 0.625. 
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Figure 3.41 Effect of angular offset on wall collapse, AL pt.l-pt.2, z!L = O. 75. 
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Figure 3.42 Effect of angular offset on wall collapse, dL pt.l-pt.2, z!L = 0.875. 
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Figure 3.43 Effect of angular offset on wall collapse, dL pt.l-pt.2, z!L = 1. 

76 



change in length v angular offset 
0.4.-,-----------------------,-----------------------,--. 

on 
~ 0.2 

~ 
N 0 

@ 

I -0.2 
'<!" 

~ 
<"] -0.4 

,..J.P... 
<j 

.s -0.6 s 
!if :.a -0.8 

s 
~ -1 

-1.2 '----'-o-----------------------9-'-o-----------------------1-'-8-0--' 

angular offset [degrees] 

Figure 3.44 Effect of angular offset on wall collapse, AL pt.3-pt.4, z!L = 0.625. 
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Figure 3.45 Effect of angular offset on wall collapse, AL pt.3-pt.4, z!L = O. 75. 
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Figure 3.46 Effect of angular offset on wall collapse, AL pt.3-pt.4, ziL = 0.875. 

1.5 

1 ........ 

~ 0.5 N 

@ 
........ 0 i 
~ -0.5 
~ 
"' ~a -1 

--<1 
.s -1.5 s 
~~ 

:.a -2 
(!) 

s -2.5 g 
-3 

change in length v angular offset 

-3 · 5 L_~o----------------------~9Lo----------------------~1~8o~ 

angular offset [degrees] 

Figure 3.47 Effect of angular offset on wall collapse, AL pt.3-pt.4, ziL = 1. 

78 



Our previous observation on the strong influence of the closeness between the stenoses 

on the wall motion at the downstream end reveals itself from the increase in the ordinate 

scale of our plots as we progress towards the outlet. For cases where a clear contraction 

may be observed, it seems to be predominantly aligned in the direction of the 

constriction. This is a key indication of the influence of the initial angular orientation of 

the distal stenosis on the subsequent wall motion at the downstream end. For instance, the 

0 degree case is most susceptible to wall contraction in the pt.l & pt.2 direction. It also 

has a strong tendency to extend in the pt.3 & pt.4 direction, supporting our earlier 

comment that significant contraction in one direction may lead to extension in its 

perpendicular one. The 90 degree case adds weight to the validity of a close link between 

initial angular orientation of the distal steno sis and the direction of predominant wall 

motion at the downstream end. As shown by (Figures 3.45-3.47), it is at most risk for 

wall collapse in the pt.3 & pt.4 direction. These trends are firmly established slightly past 

the throat (i.e. atz/L =O. 75). In the cases (1, 3 & 5) involving close constrictions, it was 

observed that once collapse is initiated at the outlet, the information propagates upstream. 

It is most visible for case 5, as shown in (Figures 3.48 & 3.49). Whether this holds for 

cases (2 & 4) will require further investigations. 
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Figure 3.48 Case 5: illustrating upstream propagation, AL pt.3-pt.4, ziL = 1. 
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Figure 3.49 Case 5: illustrating upstream propagation, AL pt.3-pt.4, ziL = O. 75. 
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~. We notice in (Figure 3.48) that maximum wall contraction occurs at the outlet (i.e. z/L = 

1) near t!T =O. 7. This information is propagated upstream to z!L =O. 75 (Figure 3.49) 

near t/T = 0.8. Thus, in this case, transmission involves a phase lag of approximately t!T 

= 0.1. 

3.1.3 Observations ofWall Displacement 

The previous section has demonstrated that preferential direction for wall motion occurs 

for cases (1 & 3). In this section, we shall examine in detail which side experiences 

greater displacement. The approach taken in this section is to sample a few points on the 

straight side and on the constricted side. We then plot the nodal displacement in the 

predominant direction of wall collapse as a function oftime (normalized). This will 

provide evidence about which side experiences greater wall motion, as assessed by the 

amplitude of nodal displacement. The sampling locations and associated results for case 1 

may be found in (Figures 3.50 & 3.51) for the straight side, and in (Figures 3.52 & 3.53) 

for the constricted side. Similarly, for case 5, we may look at (Figures 3.54 & 3.55) for 

the straight side, and at (Figures 3.56 & 3.57) for the constricted side. 
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Figure 3.50 Case 1: sampling locations on the straight side, ziL = 1, t/T = 0.92. 
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Figure 3.51 Case 1: nodal x-displacement v nondimensional time, straight side. 
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Figure 3.52 Case 1: sampling locations on the constricted side, z/L = 1, t/T = 0.92. 
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Figure 3.53 Case 1: nodal x-displacement v nondimensional time, constricted side. 
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Figure 3.54 Case 3: sampling locations on the straight side, ziL = 1, t/T = 0.86. 
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Figure 3.55 Case 3: nodal y-displacement v nondimensional time, straight side. 
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Figure 3.56 Case 3: sampling locations on the constricted side, z/L = 1, t/T = 0.86. 
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Figure 3.57 Case 3: nodal y-displacement v nondimensional time, constricted side. 
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l' As suggested by the plots, the total amplitudes of nodal displacement on the constricted 

side are higher than the ones on the straight side. This asymmetry in the cumulative nodal 

displacement in the preferential direction is a strong indication of wall collapse. At this 

point, we argue that wall motion at the downstream end of cases involving close 

constrictions are greatly influenced by the flow evolution and behavior. Thus, it may be 

instructive to carefully examine the flow field, which is the topic of the next section. 

3.2 Three-Dimensional Velocity Field 

In this section, we present a brief review of three-dimensional flow field in stenotic 

vessels. We emphasize the three-dimensional nature of the flow field, and as such we will 

reexamine sorne of the assumptions from the fluid dynamic diffuser flow viewpoint. This 

leads to a discussion on the effect of length on the flow field, as well as the influence of 

the angular orientation from the initial geometries. 

3. 2.1 Brief Review on Three-Dimensional Flow Field in Steno tic Vessels 

Recent models of three-dimensional flow in stenotic vessels remain bound by a view of a 

collapsible tube as a two-dimensional channel. As argued by [111], this perspective treats 

the separation as it would occur in a fluid dynamic diffuser. The cross-section narrows 

then widens, leading to flow separation at one or both side wall. Recent reviews [178] on 

flow in stenotic vessels still subscribe to this simplification (Figure 3.58). To make 

matters worse, sorne experiments have been deliberately setup as quasi two-dimensional 

channels in which to investigate unsteady separation [179, 180]. 
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Figure 3.58 Fluid dynamic diffuser flow separation, from [178]. 

In view of this, it rnight be useful to review sorne of the concepts from the fluid dynarnic 

diffuser flow viewpoint. The first point is that there is an inherent difficulty in defining 

flow separation unarnbiguously for unsteady three-dirnensional flow. It was contended by 

[111] that a genuinely "separated" region ofrecirculating flow with closed strearnlines 

does not usually exist in a three-dirnensional flow; there may be retrograde flow behind 

an obstruction, but fluid elements may spiral through the region. In other words, the idea 

of separation loses sorne of its relevance since the fluid in the 'separated' eddies is no 

longer isolated from the rest [112]. Moreover, in unsteady flow, the locations where 

recirculating flow deflects the oncorning flow away from the wall may differ 

substantially from the locations where the wall shear itself changes sign. Thus, it may be 

more conservative to think of regions of forward and retrograde flow, when our results 

are interpreted. 

Hazel mentions that for rnoderately collapsed tubes, the flow field are not dissirnilar to 

those found in two-dirnensional collapsible channel flow in the sense that fluid may 

locally recirculate inside a 'separation hubble' [177]. However, this sernblance breaks 

down once the tube collapses yet further, causing the height of the separation hubble to 

fill the entire tube. This phenornenon is not possible in two-dirnensional channel flow 

since the reversed flow region is closed; occupying the entire tube would irnply violating 

conservation of rnass. The important difference for a three-dirnensional flow is that the 

reversed flow region is open and can extend to fill the entire plane, without violating 

conservation of rnass. This brief review brings awareness of sorne of the intricacies of the 

three-dirnensional nature of the flow field through a steno tic vessel. We may now 
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r' proceed to the examination of the effect of length and angular orientation on the 

downstream flow field. We stress that the original contribution of this work lies in 

accounting for the fluid structure interaction of a pulsatile flow through a seriai 

pulmonary artery steno sis. We will carefully reexamine sorne of the assumptions from 

the fluid dynamic diffuser flow viewpoint, and expose any departure whenever possible. 

3. 2. 2 Fjfect of Length on the Flow Field 

Prior to the discussion, it will be helpful to introduce the figures showing the evolution of 

the flow field (i.e. vectors ofvelocities). For simplicity, we omit the fringe scale, where it 

is understood that red corresponds to a high level while blue represents a low level. We 

show case 5 because the noticeable wall osculation best illustrates the ongoing fluid 

structure interaction taking place. Figure 3.59 shows a cross-section in the xz plane, 

while Figure 3. 60 gives a cross-section in the yz plane. 

Figure 3.59 Case 5: flow field xz plane viewpoint at t/T = 0.52, 0.59, 0.80, 1 (left to 
right). 
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Figure 3.60 Case 5: flow field yz viewpoint at t/T = 0.46, 0.50, O. 73, 0.91 (left to 
right). 

The effect of closely spaced constrictions on the flow field is most visible past the distal 

stenosis. The bulk of the flow is drawn cl oser to the straight si de since the throat offers 

the path of least flow resistance. On the constricted si de, the large wall slope from the 

widening section past the throat creates a strong adverse pressure gradient, which 

introduces significant flow resistance. This repels the bulk flow away, and at the same 

time it provides a favorable environment for viscous dissipation layer expansion on the 

constricted side. As the axial momentum from the upstream flow builds up on the straight 

side, next to the enlargement of the viscous layer on the constricted side, a flow induced 

instability sets in. This precipitates the visible wall collapse on the constricted side at the 

outlet. For cases involving close constrictions, we have previously observed that this 

information propagates upstream (see e.g. section 3.1.2.2). This has the effect ofpushing 

the viscous layer upstream, thereby choking the core flow as seen in (Figure 3. 60). 
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("""'. 3.2.3 Effect of Angular Orientation on the Flow Field 

In this section, we select case 3 to illustrate the influence of angular orientation on the 

flow field. The three-dimensional nature of the flow field is best demonstrated in Figure 

3. 61. The most striking feature is the appearance of a "half ring" jet, impinging on the 

wall, enclosing a "core" of insignificant or zero flow. This marks a significant departure 

from the fluid dynamic diffuser flow model (i.e. it would be impossible to capture this 

flow phenomenon from any lower order model). This flow configuration turns out to be 

unstable. It may be argued that, initially, the spreading of the jets into a ring shape is 

supported by fluid inertia, away from the strong adverse pressure gradient caused by the 

large wall slope on the constricted si de. The accumulation of both volume flux and 

growth of viscous layer, at the wall where impingement occurs, compel the half ring to 

coalesce into a core flow closer to the centerline, as it attempts to transition towards a 

Poiseuille profile. Recall that significant dissipation occur near the point of jet 

impingement on the wall, especially if it has buckled inwards. Hazel argues that, since 

the fluid pressure in the region of impingement is approximately uniform across the tube, 

this is evidence that the spreading of the jets is driven by a balance between fluid inertia 

and viscous dissipation, rather than by transverse pressure gradient [177]. 
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Figure 3.61 Case 3: flow field xz (left), xy (right) viewpoints at t/T = 0.33 (top), 0.39 

(bottom). 
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{\ The flow evolution described above suggests that the angular orientation of the distal 

stenosis has great influence on the direction in which the Poiseuille flow develops, i.e. it 

is skewed towards the wall where impingement initially happens. We finish this section 

by mentioning that in all cases we observed the "half ring" jet profile. However, this 

phenomenon is most visible in the 90 degrees cases (3 & 4). 

~·. 
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r\ Chapter 4. 

Conclusion 

4.1 Concluding Remarks 

Motivated by the physiological phenomena of collapse and flow limitation for a seriai 

pulmonary artery stenosis, we investigated the three-dimensional influence of spatial 

configuration on the wall motion and hemodynamic. Our numerical study focused on the 

effect oftwo geometrical parameters: the relative distance and the angular orientation 

between the two stenoses. Observation of the macroscopic behavior at the downstream 

end revealed an apparent relationship between the angular orientation of the distal 

stenosis and the preferential direction of wall motion. This insight led us to devise a 

simple metric, serving as a proxy for quantifying the degree of wall collapse. Our method 

consisted ofmeasuring the change in length from the initial vessel's geometries in each 

of the two principal directions of constriction of the distal steno sis. U sing error bars, we 

plotted the extreme and median values, construing any large distance above or below the 

median (i.e. an important asymmetry), as a strong indication of wall collapse in a 

preferential direction. The findings of this investigation reveal that the closeness between 

stenoses is a substantial indication of wall collapse at the downstream end. Moreover, the 

results suggest a close link: between the initial angular orientation of the distal stenosis 

(i.e. the constriction direction) and the subsequent wall motion at the downstream end. 

For cases showing evidence ofpreferential direction of wall motion, it was found that the 

constricted side underwent greater cumulative displacement than the straight side, 

suggestive of significant wall collapse. 

The summary from the fluid perspective is as follows: the effect of a close spacing 

between the stenoses is to increases the vulnerability of the downstream end to buckling 

(divergence). The manner in which the flow evolves is intimately link:ed to the initial 

geometry of the vessel. The bulk flow past a stenosis is drawn cl oser to the straight si de, 

~, since the throat offers the path of least fluid resistance. On the constricted side, the large 
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(', wall slope from the widening section past the throat creates strong adverse pressure 

gradient, thus introducing significant flow resistance. This repulses the bulk flow, and 

creates a favorable environment for viscous dissipation layer expansion on the constricted 

side. The abovementioned flow behavior is manifestations of the influence of initial 

angular orientation on the flow field. The interplay between vessel geometry and flow 

field leads to an axial momentum accumulation from the upstream flow, alongside of the 

growth ofviscous layer on the adjacent constricted side. This excessive differentiai 

proves to be unstable, as flow instability sets in. This hastens the noticeable strong wall 

motion at the outlet, and possibly, as we have seen in sorne cases, serves as an impetus to 

wall osculation. For cases involving close constrictions, the results suggest that the wall 

motion propagate upstream, once they are initiated at the outlet. This induces the 

migration of the viscous layer upstream, thereby choking the core flow. 

Furthermore, we must stress that the angular orientation of the distal steno sis renders 

possible the "half ring" jets, impinging on the sidewall and enclosing a "core" of 

insignificant or zero flow. This marks a significant departure from the fluid dynamic 

diffuser flow model. This brings us to conclude that the angular orientation of the distal 

stenosis has great influence on the direction in which the Poiseuille flow develops, i.e. it 

is skewed towards the wall where impingement initially happens. This in tum has 

important implication for the wall motion at the outlet, owing to the tight coupling 

between fluid and structure. 
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4.2 Future Work 

As previously stated, there is currently no experimentally validated data for three­

dimensional artery under compression. Such experimentally validated data would 

increase the predictive value of our numerical simulation. However, Labrosse makes the 

case that data obtained from uniaxial and biaxial testing is not directly usable for the 

purpose ofthree-dimensional modeling [8]. However, he acknowledges that uniaxial 

tensile test on arterial strips provide important information for studying the mechanical 

response of excised tissues and for obtaining the stress-stain curves. Those yield 

interesting data about the required lev el of mechanical stimulus for permanent damage to 

occur. Nevertheless, he argues that since uniaxial test only probe one direction at a time, 

this limits their effectiveness. In other words, the potentially very significant interaction 

between different directions (i.e. circumferential, longitudinal, and radial) is not revealed 

by such test. This shortcoming renders uniaxial test data unusable in establishing 

constitutive equations for three-dimensional finite element analysis, i.e. the three­

dimensional response of the model will probably be wrong, since the necessary positive 

definiteness of the stiffness matrix is not guaranteed. 

On the other hand, biaxial testing allow for the stretching of a small piece of arterial 

tissue in two perpendicular directions at the same time, possibly with different values of 

stretch on each side. However, given that the natural curvature present in the arterial wall 

is not accounted in biaxial testing (i.e. the sample is stretched in a plane), data obtained 

from this method is unsuitable for three-dimensional analysis. Labrosse stresses that 

merely curve fitting experimental results would not produce a model of sufficient 

predictive quality. He emphasizes the need for a theoretical framework underlying the 

description of the material properties, with specifie information provided by experiments. 

Constitutive equations are typically not designed to represent the mechanical interaction 

between the components of the arterial wall at the cellular lev el. Irrespective of the 

choice of constitutive equations, modeling improvements for the problem of concem in 

this thesis will rest on validated experimental data for a three-dimensional artery under 

compression. 
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,~ An alternative area of exploration and progression for this work may lie in the three­

dimensional simulations of flow induced tube oscillations. This numerical task is at the 

edge of what is currently possible, in terms of both obtaining fluid structure interaction 

convergence, and the magnitude of the three-dimensional unsteady computation. Model 

validation could use data from the pioneering experimental work of Bertram et al. In 

study [114], experiments were mounted to investigate the onset in a 'Starling resistor' of 

flow rate limitation and flow induced oscillations, at the lowest possible Reynolds 

number. It was found that oscillations did not break out below a Reynolds number of 

about 300. In [112], a laser Doppler anemometer was used to determine the velocity of 

aqueous flow downstream of a collapsible tube while the tube was executing vigorous 

repetitive flow induced oscillations for a time averaged Reynolds number of 10,750. 

Numerical simulations could reveal a more intricate level of flow details and shed new 

light on the mechanisms which underlie collapsible tube oscillations, in particular their 

onset. 
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