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ABSTRACT 

  Conservation of at-risk species is often threatened by development projects. This thesis 

focused on an endangered Antillean manatee (Trichechus manatus manatus) subpopulation in 

the lower Changuinola River (Bocas del Toro, Panama). This region has been reshaped by 

intensive agricultural activity and an upstream hydropower dam (Changuinola I). We 

hypothesized manatee feeding abundance and habitat suitability would be negatively affected 

by hydropower flow modification, and agricultural pollution would promote vegetation growth 

and manatee feeding. We built species distribution models using land use, environmental 

indicators and a hydrological model to estimate the effect of dam operations on the probability 

and abundance of manatee feeding. Our models indicated that mean weighted manatee 

feeding abundance decreased by 10.9% between February 2011 (before dam operation) and 

May 2015 (after dam operation). Water depth and land slope were the only significant 

predictors of both manatee feeding abundance and presence, and land use was only predictive 

in the presence/absence model. Combination of both models explained 34% of the variation in 

feeding, incorporating occurrence and abundance of feeding marks (r2= 0.34). Our flow 

management strategy for Changuinola I showed that mean weighted manatee feeding 

abundance could only be marginally increased by 0.42% of 2015 levels, but monthly feeding 

variance reduced up to 2.63 times less than 2015 levels, even given the ideal management 

strategy maintaining a constant monthly discharge, while meeting target annual energy 

generation. Thus, hydropower flow management only has a slight effect on mean weighted 

feeding abundances, but a significant effect on foraging habitat stability. 
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RESUMÉ (FR) 

La conservation des espèces en péril est souvent menacée par des projets de 

développement. Ce thèse se focus sur une sous-population du lamantin antillais (Trichechus 

manatus manatus) en danger dans la zone d’aval de la Changuinola (Bocas del Toro, Panama). 

Des activités agricoles intenses et un barrage hydroélectrique (Changuinola I) ont notablement 

remodelés cette région. Nous avons ému les hypothèses que la modification du débit 

hydroélectrique affecterait négativement le fourrage et l’habitat du lamantin et que la pollution 

agricole promouvrait la croissance de la végétation et le fourrage du lamantin. Nous avons 

construit des modèles de répartition des espèces en utilisant usage des sols, indicateurs 

environnementaux et un modèle hydrologique afin d’estimer l’effet des barrages sur la 

probabilité et l’abondance du fourrage du lamantin. Nos modèles ont indiqué que la moyenne 

pondérée de l’abondance du fourrage a diminué par 10.9% entre février 2011 (avant 

l'opération du barrage) et mai 2015 (après l'opération du barrage). Profondeur des eaux et la 

pente de terre représentaient les seuls prédicteurs significatifs de l’abondance et présence du 

lamantin et l’usage des sols n’était que prévisionnel dans la présence/l’absence du modèle. La 

combinaison des deux modèles expliquait 34% de la variation en fourrage, intégrant 

l’occurrence et l’abondance des traces alimentaires (r2 = 0.34). Notre stratégie de gestion des 

flux pour le Changuinola I a démontré que la moyenne pondérée de l’abondance alimentaire au 

maximum peut augmenter par 0.42% de la valeur de 2015, mais la variance du fourrage 

mensuelle a été réduite jusqu’á 2.63 fois, étant donné que le décharge du Changuinola I est 

maintenu constant afin d’atteindre la production énergique annuelle ciblée. Ainsi la gestion 
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d’énergie hydraulique a seulement eu un effet modeste sur la moyenne pondérée de 

l’abondance alimentaire, mais un effet significatif sur la stabilité de l’habitat alimentaire. 
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PREFACE 

 This thesis seeks to bridge the fields of ecosystem-based management and biological 

conservation through the integration of interdisciplinary analysis techniques such as 

Geographic Information Systems (GIS), remote sensing, ecological modelling and fundamental 

hydrological concepts in an applied tropical biology context. We faced significant data 

limitations in this case study that required accommodations throughout the methodology. 

Though these accommodations are open to critique, they allowed analysis of a vulnerable 

system not uncommon to tropical or threatened species conservation and still provide a means 

of moving forward for research and management.  
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INTRODUCTION 

 Balancing societal needs with environmental and conservation objectives is a central 

objective of environmental management, but understanding their interactions is a challenge. 

Conservation managers must consider the need for efficient policy development, scientific 

analysis, and the preservation of societal needs versus ecological value. For example, a given 

natural resource, such as river flow, may be valued for its hydropower capabilities, but 

improper exploitation of this resource could undermine local species conservation efforts or 

affect other natural services provided by the river or habitat. To harmonize these competing 

interests, the field of ecosystem-based management has emerged. 

Ecosystem-based management 

Ecosystem-based management is the management of ecosystem health to conserve the 

environmental, economic and social benefits to society (Aswani et al., 2012). These benefits 

have been coined “ecosystem services” (Costanza & Daly, 1992; Gómez-Baggethun et al., 2010), 

and comprise the societal value gained from natural systems and their functions. Ecosystem-

based management provides a structure to approach biological conservation from a holistic 

ecosystem-level perspective. This management scheme creates a resilient strategy to maintain 

place-based natural capital and services for present and future uses (McLeod et al., 2005). 

The concept of ecosystem-based management is applicable across different industries, 

ecosystems and socio-economic strata. It has been widely developed in marine fisheries 

management practices (McLeod et al., 2005; Christie et al., 2007), and lauded as an alternative 

to the traditional top-down approach to conservation applied in both temperate and tropical 

regions (Aswani et al., 2012). The importance of integrating the ecosystem-based management 
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framework with biodiversity conservation is far from a novel concept, but consensus on how 

best to incorporate the two is controversial (de Groot et al., 2010). Fortunately, however, 

conserving biodiversity frequently also preserves ecosystem services, such as eco-tourism, 

suggesting synergy between these objectives and a balancing of species’ preservation with 

economic and social development (Egoh et al., 2009; Nelson et al., 2009; de Groot et al., 2010). 

Priorities and challenges to conservation 

The extent and severity of the current species’ extinction crisis is widely debated, but it 

is undeniable that some species are more susceptible than others (Brooks et al., 2002). To 

maximize efficacy of mitigation strategies or policies, resource allocation to hotspot regions, 

vulnerable species and towards threats with the greatest impact is crucial (Mittermeier et al., 

1998; Myers et al., 2000).  There are 34 global biodiversity hotspots, predominantly in tropical 

climes, which have been reduced by 70% of their original land area (Mittermeier et al., 2004). 

Although many factors play a role in species’ survival, a minimum of 75% of the terrestrial 

animal species classified as critically endangered, endangered, or vulnerable by the IUCN occur 

in areas experiencing significant habitat loss (Mittermeier et al., 1998). Thus, the regions of 

greatest concern (tropical ecosystem hotspots) are also the habitats of the most threatened 

species, where habitat loss is one of the greatest threats to survival (Marchese, 2015).  

Often with less socio-economic means than their temperate counterparts, tropical 

countries face additional challenges to conservation, with natural resource extraction industries 

as the primary fuel for economic growth. Frequently, their economies are dependent on 

export-oriented industries, such as agriculture and fisheries, which can have a devastating 

impact on biodiversity (Lenzen et al., 2012), and lead to habitat degradation from pollution and 
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over-harvesting (Tilman et al., 2001).  Alongside this economic development is a rise in energy 

demand, often met in the form of hydroelectric power generation. Hydropower projects are 

growing in scale and number across the globe, (Ansar et al., 2014) resulting in a range of 

environmental and social implications from severe flow manipulation, flooding, community 

resettlement, deforestation, pollution from runoff, and fragmentation of habitats and 

migratory routes (Dudgeon, 2000; Malmqvist & Rundle, 2002; Nilsson et al., 2005). Hydropower 

development is innately dependent on running freshwater ecosystems, which are historically 

under-studied, despite their demonstrated heightened biodiversity loss (Ricciardi & Rasmussen, 

1999; Malmqvist & Rundle, 2002; Dudgeon et al., 2006). In brief, tropical regions and 

freshwater systems are known harbours of biodiversity but concurrently exist in locales with 

exponential development, heightened habitat loss, limited data availability, and poorer socio-

economic circumstances.  

To overcome these conservation hurdles, tools such as traditional fieldwork, open 

source databases, Geographic Information Systems (GIS), and mathematical models can be 

combined to predict current, past and even future conditions. For instance, Species Distribution 

Models (SDMs) provide insight on the environmental variables that correlate with a species’ 

occurrence (based on presence/absence survey data, or at minimum presence-only data). 

These habitat characteristics can take the form of remote sensing land use data (Kerr & 

Ostrovsky, 2003; Rushton et al., 2004; He et al., 2015), water quality parameters, and climatic 

or hydrological variables (Oberdorff et al., 2001; Buisson et al., 2008; Bond et al., 2011). 

Environmental variables are generally easier to measure or extrapolate from open source 

databases than species’ occurrences. When it is not possible to directly observe a species in its 
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habitat, proxies can be used for species’ presence data. Proxies include scat, tracks (Hines et al., 

2010; Karanth et al., 2011), browsing marks, and physical damage caused by trampling, grazing 

and browsing (Albon et al., 2007). While not exhaustive, these proxies capture areas critical to 

population conservation, such as foraging habitat (Lefebvre et al., 1999). The applications of 

this technique are promising for rare and vulnerable species with large or scattered ranges, 

such as Panthera tigris (tigers; Hines et al., 2010; Karanth et al., 2011), Elephas maximus (Asian 

elephants; Jathanna et al., 2015), or Trichechus manatus (West Indian manatees [Linnaeus, 

1758]; Jiménez, 2005). Thus, presence proxies provide a means of applying SDMs to 

endangered species in data limited areas, such as tropical hotspots. 

 Our study focused on the endangered Antillean manatee (Trichechus manatus 

manatus), a subspecies of West Indian manatee, in the lower Changuinola River in Bocas del 

Toro, Panama. This case exemplifies numerous challenges facing conservation biologists 

working in tropical areas: a vulnerable species on the IUCN Red List (Deutsch et al., 2008; IUCN 

Species Survival Commission, 2000), limited species distribution data available for the lower 

Changuinola River, and challenging animal detection due to the environmental characteristics 

of the study site (Guzmán & Condit, in press). The objective of this study was to identify 

significant foraging habitat-determining characteristics of Antillean manatees in the lower 

Changuinola River, and thereby assimilate conservation of manatees into hydropower dam 

operations considering the natural flow of the channel system, Changuinola I operational 

capacity and the annual Changuinola I energy generation targets. This alternative flow 

management strategy allowed a comparison between the predicted natural flow prior to dam 

operation, 2015 Changuinola I modified flow, and future variance-reduced flow in the study 
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site. We evaluated how Changuinola I is managed to meet its energy demands, the effects of 

flow modification on the downstream manatee foraging habitat in the lower Changuinola River, 

and how these might be modified to the greatest benefit for all. To address conservation 

concerns for the Antillean manatee, we integrated and applied a suite of management tools: 

species distribution modelling, remote sensing, foraging habitat proxies, fluvial geomorphology 

and management of hydropower generation.  

METHODS 

Study system 

Trichechus manatus  

There are two subspecies of West Indian manatee, one only found in Florida (T. m. 

latirostris, Florida manatee [Harlan,1824]), and the other in Central and northern South 

America (T. m. manatus, Antillean manatee); both are each listed as “endangered” and 

declining on the IUCN Red List (Deutsch et al., 2008). Latest population estimates place the 

Antillean manatee at only 6 700 individuals across its known range (Castelblanco-Martínez et 

al., 2012; Figure 1). The IUCN predicts a greater than 20% population decline over the next two 

generations due to current and predicted anthropogenic threats (Deutsch et al., 2008). 
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Figure 1 Population distribution of T. m. latirostris and T. m. manatus in North and South 

America. Dark grey shading indicates the Antillean manatee range, hatches the Florida manatee 

range, and the solid lines represent subpopulations and the dashed lines are areas of likely 

genetic barriers (Castelblanco-Martínez et al., 2012). 

Panama 

The main Antillean manatee population in Panama can be found in Bocas del Toro 

province, (Mou Sue et al., 1990; Guzmán & Rivera-Chavarria, 2014; Guzmán & Condit, in press) 

in the San San Pond Sack Wetlands protected area (Quintana-Rizzo & Reynolds, 2010; Figure 2). 

The population between 1987 and 2013 appears to have remained stable, ranging from 42-72 

manatees in 1987, determined by aerial survey data (Mou Sue et al., 1990), to 33 individuals at 

peak season in May 2013 according to Bayesian modeling and side-scan sonar estimates 

(Guzmán & Condit, in press). However, with such a small population, the Panamanian 

population is vulnerable to extirpation, while also providing a potentially critical bridge 

between South and Central American manatee subpopulations (Castelblanco-Martínez et al., 
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2012; Díaz-Ferguson et al., in press). Turbid and thickly vegetated waterways make species 

detection challenging in the Changuinola River, far more so than the neighbouring San San River 

(Mou Sue et al., 1990; Guzmán & Condit, in press). As a result, it is unclear what attracts 

manatees to the Changuinola River and identifying these characteristics is important for species 

and habitat conservation (Gonzalez-Socoloske et al., 2015).    

 

 

Figure 2 Population distribution of T. m. manatus in Panama. Grey shading highlights the 

watersheds with manatees present (Quintana-Rizzo & Reynolds, 2010). 

Manatee habitat characteristics 

 Temperature, waterway depth and width, salinity, currents, forest cover, abundance of 

aquatic vegetation and motorboat traffic have been identified as habitat-limiting factors for 

West Indian manatees (Jiménez, 2005; LaCommare et al., 2008). In general, wide, secluded and 

warm water bodies with low flow rates, shallow depths, with a variety of vegetation typify 

manatee habitat. They can tolerate salinity levels that range from fresh to salt water. 
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Temperature sensitivity is generally only a reported issue for Florida manatees, given seasonal 

fluctuations in northern latitudes (Smith, 1993; Deutsch et al., 2008). Each of these factors have 

been investigated in some capacity, although some of the evidence has only been described 

anecdotally; the level of importance of each factor has yet to be investigated in the lower 

Changuinola River. Our analysis integrates the western Panamanian manatee population into 

the broader context of West Indian manatee habitat research. 

Threats to conservation 

Characterized by a long lifespan and slow reproductive rate, West Indian manatees are 

highly susceptible to environmental changes and pressures (Quintana-Rizzo & Reynolds, 2010). 

Habitat variables are the most significant predictors of manatee presence, with much greater 

influence than inter or intra-specific competition or predation (Quintana-Rizzo & Reynolds, 

2010). Habitat loss is considered one of the most significant threats facing Sirenians (manatees 

and dugongs) (Marsh et al., 1986; Castelblanco-Martínez et al., 2012). The plethora of threats 

(i.e. hunting, urban development, agricultural and industrial runoff, and hydroelectric 

expansion), combined with their slow breeding cycle and minimal genetic variation within and 

between populations, contributes to the manatees’ vulnerability in Panama and across its range 

(Hunter et al., 2010; Castelblanco-Martínez et al., 2012; Díaz-Ferguson et al., in press; Guzmán 

& Condit, in press). 

Panama 

Poaching, agro-chemical pollution and motorboat traffic threaten manatee conservation 

in Bocas del Toro, particularly with motorboat noise pollution interrupting mother-calf 

communication (Mou Sue et al., 1990; Quintana-Rizzo & Reynolds, 2010; Guzmán & Rivera-
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Chavarria, 2014). The expansion of banana agriculture during the 20th century was 

characterised by intensified applications of pesticides, fungicides, and fertilizers to combat the 

increasingly resistant agricultural pests and degrading soil conditions. Direct wastewater 

discharge and widespread deforestation caused by the development of these, cattle, and teak 

plantations have resulted in heavy metal pollution, nutrification and sedimentation in local 

waterways and receiving bays (Guzmán & Jiménez, 1992; Collin, 2005; D’Croz et al., 2005; 

Seemann et al., 2014). Furthermore, river fragmentation and flow alterations from recent 

hydropower development have the potential to reduce habitat persistence (Freeman et al., 

2001). With its longstanding effects on flow regulation, overall habitat preservation, and 

detriment for aquatic biodiversity, the scope of this study was narrowed to hydropower 

development and changes in surrounding land use. 

In 2011, AES Changuinola began operation of the 223MW Changuinola I dam after four 

years of construction inside the Bosque Proyector de Palo Seco protected forest area in Bocas 

del Toro, Panama (AES Changuinola, 2013). Located downstream from this dam, in a system of 

interconnected artificial irrigation and navigation channels on the lower Changuinola River, is a 

subpopulation of Antillean manatees (Mou Sue et al., 1990; Guzmán & Rivera-Chavarria, 2014; 

Guzmán & Condit, in press). With uncertainty surrounding the population status of these 

manatees in the lower Changuinola River, we developed a methodology that incorporated 

fieldwork, remote sensing, foraging habitat proxies, fluvial geomorphology and species 

distribution modelling to elucidate the potential implications of hydropower activities and land 

use change on this vulnerable species. 
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Changuinola River 

 The study focus area is the downstream region of the Changuinola River (9°27’49”N, 

82°26’36”W). With an entire watershed area of 3202km2, it is characterized by relatively low 

uniform elevation near the river mouth (less than 20m above sea level), turbid waters, and high 

levels of floating aquatic vegetation which both impede water visibility and maneuverability 

(Mou Sue et al., 1990; Empresa de Transmisión Eléctrica, S. A. [ETESA], 2009; Guzmán & Rivera-

Chavarria, 2014). Water temperatures downstream do not drop below 20°C, a critical threshold 

for manatees (Deutsch et al., 2008; unpublished HOBO data, 2015-2016). The area is a humid 

tropical climate; the seasonal variations in precipitation are characterized by “dry” periods, 

generally between January and April, and “wet” season for the remainder of the year (D’Croz et 

al., 2005). Mean annual rainfall in Changuinola town is approximately 2615mm (Kaufmann & 

Thompson, 2005) and the tidal variation does not exceed 0.5m (Guzmán et al., 2005).  

Navigation and irrigation channels built by banana corporations in the early 20th century 

were used by manatees in the late 1980s, (Mou Sue et al., 1990, Cramer, 2013), and present 

day use was confirmed during our field surveys. This artificial canal system is not static, with 

regular inundations in the area tending to clear away the thickets of floating aquatic vegetation 

that densely cover them in the dry season (H. Guzmán, personal communication, Sept. 28, 

2016). A significant flooding event in May 2005 (ETESA, 2008) caused a permanent change to 

the mouth of the Changuinola River by inundating a section of one of the western channels, 

and creating a large lagoon now also an observed feeding area for manatees.  
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Field data collection 

We collected all field data between April 29 and May 2, 2016, at the end of the dry 

season in Panama. This is when the water depth was predicted to be at its (approximate) 

lowest, and thus was selected to illustrate the most limited channel accessibility that the 

manatees experience throughout the year. Navigability constraints defined the perimeter of the 

study site, as we were unable to traverse the most densely vegetated channels. The study site 

represents the lower 27km2 area of the Changuinola River and neighbouring artificial channels, 

within the first 4km of the main stem, to the upper limit where manatee feeding marks have 

been observed (Figure 3). 

 

Figure 3 Changuinola watershed (blue) in Bocas del Toro, Panama (STRI, 2013), the study site 

where all field data was collected (orange), and the Changuinola I dam (red diamond). 
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Depth profile 

We generated the depth profile of the lagoon system using a Hummingbird 385ci Global 

Positioning System (GPS) fishfinder (WGS84) secured to the back of a motorboat. Travelling at 

4km/h, we drove the motorboat in a zigzag pattern across all accessible lagoons and channels in 

the lower reaches of the Changuinola River. We took depth measurements once every five 

seconds in most areas, unless the areas were very constricted by aquatic vegetation, in which 

case the measurement frequency was increased to once every second.  

Salinity 

We collected salinity measurements using a Vee Gee STX-3 Salinity Scale Optical 

Refractometer throughout the lower Changuinola River, irrigation channels and lagoon. We 

selected sampling points based on microhabitat characteristics (e.g. different water colours, 

different points within a channel, and varying distances from the mouth of the river). We took 

two salinity measurements at each point; one at the surface of the water, and another to the 

nearest half meter of the actual water depth (e.g. if the water was 2m deep, a sample was 

taken at about 1.5m depth). Because no surface water sample yielded a salinity value greater 

than 0, only the deep salinity samples were used in the analysis. We took a GPS coordinate 

(WGS84) at each location, with a GPS accurate to within 2m.  

Turbidity 

We measured turbidity using an EISCO limnological turbidity tube with Secchi disk at the 

same locations where salinity measurements were taken. These samples were taken at the 

surface, with total depth and time of sample also recorded. We filled the tube with water and 

slowly released it from a valve at the base until the black and white target disk became visible. 
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At this point, a measurement was taken in centimeters. To convert these distance values into 

Nephelometric Turbidity Units (NTU), we used the following equation: 

Equation 1 

 Depth in Centimetres= 244.13*(Turbidity in NTU)-0.662 

(State of Utah Department of Environmental Quality, 2014) 

Vegetation feeding survey 

West Indian manatees spend 6-8 hours per day feeding, and thus their feeding marks 

were used as a proxy for species’ presence and foraging habitat (Hartman, 1979; Jiménez, 

2005). We drove a motorboat at 4km/h on both banks of the lower Changuinola River and 

along all navigable channels to record all feeding marks on bank and surface vegetation. A local 

boatman assisted us with common plant and mark identification. At any one time, there were a 

minimum of three people scanning the vegetation for feeding marks. Marks were identifiable 

by the characteristic jagged appearance of manatee bite marks (very different from machete or 

motorboat propeller marks, which produce uniform and straight cuts on the vegetation; 

Jiménez, 2005). Underwater vegetation was not plausible to survey, given the poor water 

clarity. Waypoint numbers were recorded at each feeding location observed, with a GPS 

accuracy of 2m (WGS84). Please note that the term “feeding abundance” refers to feeding 

marks per square meter as a measure of manatee feeding mark density. 

 Landsat classification 

 We classified a selection of Landsat images to determine the land use in the study area. 

This classification step allowed the integration of land cover classification into the SDMs 

developed.  
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Image selection 

We selected Landsat images from the USGS Earth Explorer database that covered the 

Changuinola River watershed, including the lagoon and channels near the mouth of the 

Changuinola River (for coordinates, see Appendix, Table A1). We reviewed satellite imagery 

over a 15-year period (2000-2015) to identify images in the region with less than 20% cloud 

cover (a prevalent issue in tropical remote sensing optical imagery). Images taken by Landsat 7 

after May 2003 have missing data bands, which caused an additional complication to identify 

images with sufficient data in the study region (USGS, 2015). These combined challenges 

resulted in the selection of seven Landsat images from Landsat satellites 5, 7, and 8 over the 15 

years (see Appendix, Table A2), and one global land classification (GlobCover 2009), to fill-in any 

remaining missing data gaps in the optical imagery. 

Image pre-processing 

 All images across all years were pre-processed in ENVI 5.3. We created a cloud mask and 

applied it using MATLAB (Zhu & Woodcock 2012; Zhu et al., 2015). Once all the cloud masks 

were created, we radiometrically calibrated the images using the settings appropriate to Fast 

Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) preparation, and subsequently 

atmospherically corrected them using the FLAASH tool. We ran a range of different FLAASH 

models on each image, and selected and compared the spectral profiles of 4 regions of interest 

in water, vegetation and soil classes to estimate the accuracy of the atmospheric correction. 

The optimal atmospherically corrected image was selected based on the closest representation 

of each class’ spectral signature and values (Bowker et al., 1985). Once the pre-processed and 
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atmospherically corrected image was selected, we applied the cloud mask created in MATLAB 

(see Appendix for full details on the pre-processing procedure). 

Image classification 

Six land use classes were defined: forest, non-forest vegetation, agriculture, water, soil 

(exposed land) and urban cover based on the class delineations given by Hopkins II (2009) and 

Sliva & Williams (2001). Broad land use classes are appropriate for habitat, riparian and land 

use analyses (Johnson et al., 1997). Soil, or exposed land, was included (as in Hopkins II (2009)) 

to indicate high erosion and runoff-susceptible areas. We applied maximum likelihood 

supervised classification to all images due to its class precision (classifications were compared 

to higher resolution Google Earth imagery, and pixel spectral profiles) and time efficiency. A 

minimum of 1000 training pixels were used in each image for each class (See Appendix, Table 

A3). We manually varied the weighting of each class to compensate for cases where classes 

exhibit similar spectral profiles (e.g. forest and non-forest vegetation; see Appendix for an 

example of spectral signatures; Figure A1).  

Filling in data gaps 

We processed classified images in Google Earth Engine using the Bayesian Updating of 

Land Cover Classification (BULC) algorithm. BULC fills data gaps by determining the agreement 

between land cover classifications from year to year and estimating the most likely land class at 

a given pixel (see Cardille & Fortin, 2016 for full algorithm details). This algorithm requires one 

complete base layer without missing pixel values, so we inputted GlobCover 2009 as the base 

layer (ESA, 2010). We reclassified the 23 classes of GlobCover 2009 into the 6 classes identified 

in this study using the remap function in Google Earth Engine (see Appendix, Table A4 for 



 

 
28 

details). We ran the BULC script in the Code Editor of Google Earth Engine and produced 7 

complete land cover classification maps. We used the final May 2015 classification map in the 

SDMs developed in the next section, ultimately with less than 2% of the pixel values needed 

from GlobCover 2009. The final February 2011 classification map was used in the backcasting 

scenario, as representative of “pre-dam” operation conditions. Thus, the final 2015 

classification image was a result of seven BULC-integrated Landsat images and GlobCover 2009 

data, and the final 2011 classification image was a result of six BULC-integrated Landsat images 

and GlobCover 2009 data. The proportions of each land use class were extracted from each 

year within a 5km radius of the study site to compare pre/post dam operation. 

Species distribution model 

We discretized the lower Changuinola River and surrounding channels and lagoon in 

ArcGIS 10.3 into 626 (100m2) grid cells, each containing information on local environmental 

variables. We applied a spline function to the collected salinity, depth, and turbidity values 

using QGIS and GRASS software version 2.14.3 to interpolate the values for each of these 

variables within all grid cells. We calculated the width of the river and the lagoons using the 

Near function and shoreline points created along the river and channel banks within ArcGIS 

10.3. We applied the Spline function in ArcGIS 10.3 to the SRTM void-filled HydroSHEDS 90m 

Digital Elevation Model (DEM) to calculate the slope. To associate land use classes to each grid 

cell, we extracted the proportion of each land use class around each grid cell by applying 

buffers of varying radii. The proportions of all land use classes (excluding water, as this is a pre-

requisite for all manatee presences), were inputted as predictor variables in the SDM. The 

buffer radii were optimized using the optim function in R Studio 3.3 to select for the highest 
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adjusted r-squared value obtained in every SDM run for each land use class and corresponding 

buffer radius (Wood, 2016). Land use class proportions were extracted from both the February 

2011 and May 2015 land use maps, with the model fit to May 2015 data and buffer radii. 

February 2011 land use class proportions were used for the backcasting scenario.   

Development of SDM (2015 Model) 

 We used a Generalized Additive Model (GAM) as the base of our SDMs to determine the 

relationship between the environmental variables described above (depth, salinity, turbidity, 

waterway width, slope, and surrounding land types) and foraging habitat (the occurrence and 

abundance of feeding marks). We ran three analyses to generate our predictions. First, we 

modelled the presence-absence of feeding marks in each of the 626 grid cells versus the 

environmental predictors (PA model). Second, we modelled the feeding abundance per unit 

area of each grid cell only where feeding marks were recorded (FA model). In the third analysis, 

we combined both models by multiplying the output of the PA and FA model (yielding the 

combined model), which provided the expected feeding marks per unit area of each grid cell. 

This approach was modelled after the method applied by Barry & Welsh (2002) to 

accommodate for zero-inflated data in SDMs. We ran the SDMs in R-Studio 3.3 using the mgcv 

package (Wood, 2016). We determined the fit of the PA, FA and combined models by 

calculating the ordinary least squares regression, r2, of the models ran with only significant 

variables.   

Linking hydropower management with manatee foraging habitat 

The consequences of hydropower development on manatee conservation was a central 

focus of this thesis. This required the integration of three components: a flow accumulation grid 
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to estimate natural watershed flow, a means of estimating downstream discharge, and a 

relationship between downstream discharge and river depth at the study site. To generate a 

flow accumulation grid from the same SRTM 90m resolution DEM used to calculate slope, DEM 

depressions were filled by identifying sinks using the method outlined by the Environmental 

Systems Research Institute ([ESRI], 2016). Once completed, the flow accumulation grid was 

created using the output from the Flow Direction tool, and clipped to the area of the 

Changuinola watershed. Flow accumulation, as a measurement of the number of upstream cells 

that flow into a given cell, is also an approximation of basin area, and was used to estimate 

proportional flow in the watershed (Das & Paul, 2006). 

To predict mean flow at the site at the time of sampling in May 2015, we used empirical 

flow data from three ETESA sites (910102, 910202, and 910401) and the Changuinola I dam (in 

2015), and flow accumulation estimates (Figure 4). Data for each ETESA station ranged between 

January 1st 2000- July 18th 2013, January 1st 2000- April 30 2012, and June 12th 2001- November 

11th 2002, respectively. In cases where data gaps existed in the gauge discharge data, the 

na.interp function in the forecast package of R was used to interpolate these values (Moritz et 

al., 2015). Once full flow datasets were created, we determined the mean monthly flow across 

a typical year at each of the three ETESA gauges prior to 2011 (before the Changuinola dam 

began operation). It was important to estimate these values prior to 2011 to relate empirical 

flow estimates to the flow accumulation grid. 
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Figure 4 Map of the Changuinola watershed in Bocas del Toro province, Panama (STRI, 2013), 

the three ETESA discharge gauges used to build our hydrological model (latest discharge data 

collected on January 16, 2017; ETESA, n.d.), and the Changuinola I dam (red diamond). River 

discharge flows northward. 

 With the flow accumulation grid developed, the relationship between the standardized 

monthly ETESA gauge discharge values and the standardized extrapolated flow accumulation 

values at each gauge were linearly regressed on a 1:1 line (where each monthly gauge value 

was divided by the maximum discharge for that given month across all stations, and all flow 

accumulation values were divided by the maximum gauge flow accumulation). The strength of 
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this linear relationship confirmed whether flow accumulation, and the proportional relationship 

between flow accumulation values at the gauges, could be used as a proxy to estimate natural 

flows (Das & Paul, 2006; Kuemmerlen et al., 2014). The regression line fit to this relationship 

was used to estimate what the natural flow at the Changuinola I dam would have been (per the 

flow accumulation at its location), had the dam not been built (represented by Qnat in Equation 

3). With the assumption that this linear relationship between discharge rate and flow 

accumulation holds across the watershed, the flow unaccounted for by the three gauges was 

estimated as a fraction of the total natural flow between stations 910102, 910401, and 910202. 

With these proportions of flow accumulation, we developed the following equation to estimate 

downstream mean flow at the site for a given month, without (Equation 2) and with (Equation 

3) the dam present: 

Equation 2 

  Qsite= (1 + p1) *(Q910102 + Q910401 + Q910202) 

Equation 3 

 Qsite= (1 + p1) *(Q910102 + Q910401 + Q910202) – Qnat + Qchan 

Where Q910102, Q910401, and Q910202 are the monthly flow values (m3/s) at a given gauge, Qsite is 

the monthly flow at the study site (m3/s), Qnat is the estimated expected monthly natural flow 

at the dam location prior to its operation calculated using the regression of flow accumulation 

versus discharge rate above (m3/s), Qchan is the mean monthly flow released through the 

Changuinola I dam in 2015 (m3/s), and p1 is the proportional flow accumulation of cells 

unaccounted for by the ETESA gauges. Note that only the discharge values from the three 

ETESA gauges prior to 2011 were used to estimate natural flow (both for ungauged channels 
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and estimated natural flow at the Changuinola I dam location). Qchan was entirely based on 

discharge data (total dam releases including turbine and base ecological flow) provided by AES 

Changuinola for the year 2015 (AES Changuinola, personal communication, Mar. 21, 2016). 

There are three ETESA precipitation gauges in the Changuinola watershed, but one only 

collected data between May 27th and October 31st 2015. To determine if a precipitation factor 

should be incorporated into the model, we applied a paired t-test to compare mean annual 

precipitation values for the remaining two ETESA stations (91001 and 91030) for the complete 

overlapping years: between 2006 and 2015, excluding 2012 which was not recorded at station 

91030. We did not incorporate precipitation into the model because the null hypothesis that 

mean annual precipitation between the two stations was the same could not be rejected 

(paired t-test, p= 0.1831), and even if this value were significant, there was not sufficient data 

at only two stations to parameterize precipitation into the model. Thus, we considered the 

mean discharge rates sufficient to estimate natural flow. 

 To link hydropower operation with the SDMs, we related river flow with river depth 

downstream. This relationship is described as the river continuity relation in fluvial 

geomorphology: 

Equation 4 

 Q= w*d*v  

Where Q is discharge (m3/s), w is channel width (m), d is average depth of channel (m), and v is 

mean velocity (m/s) (Leopold & Maddock, 1953; Hickin, 1995). To estimate velocity, Manning’s 

equation was applied: 
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Equation 5 

 v= (n-1)*(R2/3)*(S1/2); 

Where n is Manning’s roughness coefficient (or coefficient of roughness, a value which 

estimates the coarseness of the riverbed), R is the hydraulic radius (m, calculated by dividing 

the cross-sectional area by perimeter), and S is the channel slope (m/m). A first order 

approximation was applied to relate upstream discharge rate to the downstream depth values. 

First, the channel width is assumed to remain constant with changing flow, and the bankfull 

channel is assumed to have a rectangular cross-section with a flat river bed and vertical banks, 

as would be the case in a one-dimensional impervious channel (Julien, 2002). Second, with the 

mean channel width more than 120 times larger than the mean depth, the wetted perimeter 

(P) and hydraulic radius (R) could be estimated as (Julien, 2002): 

 P w; therefore, 

 R d; 

In the case of these assumptions, we can simplify equations 4 and 5 into a singular constant 

variable, K, as follows: 

Equation 6 

 Q= w*(S1/2)*d*d2/3; 

 Q= w*(n-1)(S1/2)*(d5/3); 

With w*(n-1)(S1/2) as a constant (K); 

Equation 7 

 Q= K*(d5/3) 
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This relation is a derivative of the integration of Manning’s equation and the continuity relation, 

and it is generally accepted that most river flows exhibit this relation (Julien, 2002). Thus, with a 

prediction of mean flow at the study site at the time of sampling, and the mean depth 

measured, a constant value of K was calculated and was used in Equation 7 for our predictions.  

 The 2015 discharge values provided by AES Changuinola were used to determine the 

Qchan value in Equation 3, to solve for the mean discharge rate in the manatee habitat at the 

lower Changuinola River (Qsite) in May. Qsite was incorporated into Equation 7, along with the 

mean depth value from the site depth spline interpolation map, to calculate the constant K 

value. With this K value and Equation 7, mean depth could be estimated for any given mean 

discharge value. The differences between the calculated mean depth and the real measured 

site mean depth (residuals) were recorded, allowing variation in local depths across grid cells. 

To backcast into February 2011 (the date of the satellite image from 2011), the estimated mean 

February monthly flow for 2011 using Equation 2, and the residual differences between local 

depth and mean depth from Equation 7, were used to predict the channel depth changes at 

each grid cell. These depths, and the extracted land use class proportions, were then used to 

predict foraging habitat in 2011.  

Alternative management strategy 

 Changuinola I will maintain its future discharge rate at approximate 2015 levels to 

generate an average 1060GWh of energy across each year; this fact provided the basis for our 

alternative discharge management strategy (AES Changuinola, personal communication, 

February 22, 2017). We calculated the approximate discharge rate that would yield this energy 

output using the Hydropower Equation: 
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Equation 8 

 Pa= p*Qchan*g*h*E  

Where Pa is the actual power generated in watts (1060GWh across a year, divided by 8760 

hours in a year), p is the density of water (1000kg/m3), Qchan is the mean monthly discharge rate 

at the dam (m3/s), g is the acceleration of gravity (9.81m/s2), h is the mean dam head (m), and E 

is the mean monthly dam efficiency. Head relates to the falling height of the water from the 

reservoir to the turbines. The maximum head at Changuinola I is 110m (Karlsson & Tallberg, 

2011), and the head height change was reported in the data provided by AES Changuinola in 

2015. The mean value across 2015 was used to estimate mean head in Equation 8. Monthly 

efficiency was calculated by estimating the theoretical power (Pth) that could be produced by 

each mean monthly discharge reported by AES Changuinola in 2015 (Equation 8, where E=1), 

and dividing the actual energy generated for that month by this amount (reported by AES 

Changuinola);  

Equation 9 

 E= Pa/Pth 

Which yields the dam efficiency (E) that can be used to estimate actual power production (Pa) 

for a given discharge rate (Qchan), and vice versa. The mean efficiency across 2015, was used in 

Equation 8 to estimate the mean monthly discharge rate required to meet the energy 

generation target for Changuinola I (1060GWh annually). 

 Once this mean monthly discharge rate was calculated at Changuinola I, we inputted it 

into Equation 3 to estimate the mean monthly site discharge rate. We then used Equation 7 to 

estimate mean monthly site depth, whose residual change between monthly 2015 estimates 
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were used to estimate depths across the study site. These depth values were integrated into 

our combined SDM to estimate mean monthly feeding abundance values in our alternative 

management strategy. 

The Secretaría Nacional de Energía (SNE) in Panama predicts that energy demands will 

increase by 4.9% per year until 2050, but AES Changuinola reports that Changuinola I is 

currently operating at capacity (AES Changuinola, personal communication, February 22, 2017; 

SNE, 2016). Thus, alterations to the flow structure at Changuinola I were constrained by the 

natural discharge regime and the dam’s target energy generation. Our alternative management 

strategy compares the estimated natural discharge rates across a year and the 2015 discharge 

regime to one where mean monthly Changuinola I discharge is constantly maintained at the 

mean discharge rate calculated in Equation 8. This represents a maximum reduction in 

discharge variance, and thus the maximum difference that could be observed in manatee 

feeding activity. Discharge variance is an important factor in manatee foraging activity, as 

habitat stability (or consistency of environment) and peaking flow management impacts 

species’ survivorship and life history traits over the long term (Freeman et al., 2001). We 

considered the limits of the natural flow regime, Changuinola I operational capacity and the 

annual Changuinola I energy generation targets.  

RESULTS 

Species Distribution Model of Feeding 

 Significant variables and buffer radii differed between model subcomponents. Depth 

and slope were consistently significant (Table 1). Salinity was neither predictive in the PA nor FA 

models. Greater depth, turbidity, agriculture and urban development were all positively 
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correlated with the presence and abundance of feeding marks, while increased width and 

forest cover were negatively correlated with manatee presence in both models. Salinity, slope, 

soil and non-forest vegetation showed opposite correlations between the PA and FA models 

(Table 1; for all Pearson correlation r values see Appendix, Table A5 and Table A6). Optimized 

buffer radii ranged from 121m to 2070m between approaches and classes (Table 1). Overall, we 

predicted feeding presence and absence moderately well, including only significant variables 

(r2= 0.50, Table 1). Within cells where feeding occurred, we were also able to predict the 

quantity of feeding, albeit at a lower predictive power (r2= 0.21, Table 1). The combined model, 

which yielded weighted feeding abundances, also had reasonable predictive power (r2= 0.34). 

The study site, particularly the manmade channel system, is surrounded by intensive 

agricultural development. Our land use classification method was sensitive enough to identify 

the spectral signatures of thickly vegetated channel areas and highly turbid water ways as non-

forest vegetation and soil classes, respectively (Figure 5). 
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Table 1 Summary of Pearson correlation values between the feeding marks used in each model 

and the environmental variables inputted into the GAM. An * indicates that the variable was 

significant in the GAM. Buffer radii are listed in brackets, and r-squared values (ordinary least 

squares) found in each of the GAMs with only significant variables run on T. manatus feeding. 

Variable PA Model FA model 

Water   

Depth 0.2139* 0.0511* 

Salinity -0.0808 0.0551 

Turbidity 0.1381 0.1313* 

Width -0.1585* -0.0560 

Slope 0.0321*  -0.1933* 

Land Use   

Soil 0.0213 (buffer: 464.5m)* -0.1650 (buffer: 795.0m) 

Forest -0.0133 (buffer: 1737.3m)* -0.3163 (buffer: 2069.9m) 

Agriculture 0.0557 (buffer: 121.2m)* 0.3212 (buffer: 724.8m) 

Non-forest -0.2216 (buffer: 1462.4m)* 0.0670 (buffer: 1535.0m) 

Urban 0.2502 (buffer: 1737.3m)* 0.2250 (buffer: 1416.3m) 

R-squared 0.5004 0.2050 
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Figure 5 Land use classification of the T. manatus habitat in the Changuinola River, Panama in 

May 2015. Red= soil, dark green= forest, yellow= agriculture, light green= non-forest 

vegetation, purple= urban and blue= water. 

 While there was greater probability of feeding in the northwestern channels in the study 

site (PA model, Figure 6), feeding abundance predictions were uniform across the area in both 

the FA and combined models. There was a small cluster of greater feeding abundance predicted 

in the FA model, but when the probability of feeding occurrence was integrated (as in the 

combined model), this cluster became far less apparent (Figure 6).
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a           b 

 
c 

Figure 6 The GAM predictions for T. manatus feeding in the Changuinola River, Panama in May 

2015; a) FA model, b) PA model, and c) combined model. Darker colours correspond to a 

greater amount of feeding abundance (marks/m2) in the FA and combined models, and to a 

greater probability of feeding activity in the PA model. 
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Backcasting and alternative management 

 We used the flow accumulation grid to estimate discharge rates across the watershed 

(Figure 7) and the mean monthly flows at each gauge and the Changuinola I dam (Table A7), to 

confirm the linear regression relationship between flow accumulation and mean monthly 

discharge. 

 

 

Figure 7 Flow accumulation grid in the Changuinola watershed, Panama generated from a sink-

filled SRTM HYDROSHEDS 90m DEM (USGS, 2009). The red diamond represents the location of 

the Changuinola I dam. 

 The flow accumulation at each of the three stations 910102, 910401, and 910202 was 

102 596 (52.1% flow), 17 326 (8.8% flow) and 28 454 cells (14.5% flow) respectively. The flow 

accumulation at the study site was 196 761 and at Changuinola I dam, it was 75 187. The value 

for p1 in Equations 2 and 3 was 0.326, representing about 24.6% of the total flow, and about 

one third of the flow accounted for by the ETESA stations. Gauge flow accumulation explained 
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97% of the variation in mean discharge for each month (Figure 8). Thus, flow accumulation 

could reasonably be used as a surrogate of mean monthly flow at each location in the 

watershed. The linear regression relationship is described by the following equation: 

Equation 10 

Qprop= 1.014*Fprop – 0.006 

Where Qprop is the mean monthly discharge at a given gauge (ETESA, n.d.), divided by the 

maximum monthly discharge across all gauges, and Fprop is the flow accumulation at a given 

gauge, divided by the maximum flow accumulation among the gauges (in this case, 102 596). 

    

Figure 8 Proportional mean monthly discharge rate and flow accumulation at each of the three 

ETESA gauges in the Changuinola watershed across the length of their respective data collection 

periods (January 1st 2000-December 31st 2010 for stations 910102 and 910202, and June 12th 

2001- November 11th 2002) prior to 2011 (ETESA, n.d.). Values were calculated using Equation 

10. Linear regression between variables had a strong relationship (adjusted r2= 0.9728). 
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 Mean monthly flow at the Changuinola I dam was 132.41m3/s, based on real time data 

provided by AES Changuinola (personal communication, Mar. 21, 2016). Using flow 

accumulation and Equation 10, we estimated what the expected mean monthly natural 

discharge at the Changuinola I dam location would have been prior to its operation. Across a 

given year, the mean natural flow predicted at that location was 142.54m3/s. From September 

to December, our reported mean monthly flow at Changuinola I deviated more than one 

standard deviation (39.4m3/s) below the expected mean natural flow for those given months. 

Mean reported November and December discharge rates were both greater than two standard 

deviations away from the predicted mean monthly natural flow for those months. Mean 

reported discharge rates for June and July were greater than one standard deviation above the 

mean monthly natural flow, with July being greater than three standard deviations above the 

mean natural flow for that month. Overall, the reported mean discharge rate with the dam 

present exhibited 2.52 times higher variance than would have been expected at Changuinola I if 

the dam were not present (Figure 9).  
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Figure 9 The mean monthly discharge rate (m3/s) at the Changuinola I dam location, with the 

dam present in 2015 (Chan I dam and Mean Q dam; AES Changuinola, personal communication, 

Mar. 21, 2016) and predicted natural flows for 2015 (Chan I natural, and mean Q natural; 

calculated from Equations 2 and 3). Dotted lines indicate the mean discharge rate across the 

year for dam-modified (132.41m3/s ± 39.4m3/s) and natural flows (142.54m3/s ± 24.8m3/s). 

 Mean monthly study site discharge rates were estimated using Equations 2 and 3, for 

natural and dam-modified flows. We then calibrated the mean discharge rate at the study site 

for the month of May 2015 (359.39m3/s; Equation 3), to the mean depth across the study site in 

our empirical measurements taken in May (1.43m), to estimate the coefficient K = 198.10 

(Equation 7). Combining Equation 7 with the predicted site discharge rate (Table A8), we 

calculated the mean depth for each month in 2015, with and without the dam (Figure 10).  
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Figure 10 Mean monthly water depth (m) at study site with Changuinola I dam, Panama 

(modified; 1.43m) and without the dam (natural; 1.45m), calculated from Equation 7 and 

discharge estimates from Equations 2 and 3 for 2015 (AES Changuinola, personal 

communication, Mar. 21, 2016). 

 Despite the large difference in variance of flow at Changuinola I due to dam operations 

(Figure 10), this had only minor effect on depth at the site with manatees (variances of 0.034m2 

and 0.032m2 for dam-modified and natural, respectively). Between June and August, the 

modified depths tended to be greater than would be expected with a natural flow rate; 

between September and December, this trend was reversed. We used these findings to model 

manatee foraging behaviour prior to the beginning of dam operation in November 2011, and 

given alternative management strategies. 

Backcasting (2011) 

We developed the backcasting scenario from two main inputs: land use classification in 

February 2011 (Figure 10) and predicted grid cell depths for February with natural flow at the 
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dam site. In 2011, there was less agricultural, urban and soil land cover and more forest, non-

forest vegetation and water land cover than in 2015. The biggest changes within a 5km radius 

of the study site (Figure 11) occurred in soil and forest, where soil increased by 1.3% and forest 

decreased by 1.1% over this 4-year period. In both years, the channels and lagoon were 

surrounded by less soil, non-forest vegetation, and forest cover, and more agriculture and 

urban land use than the lower Changuinola River main stem. In 2015, there was 3.4% and 1.4% 

more agriculture and urban land use; in 2011, there was 2.2% and 0.93% more agriculture and 

urban land use respectively surrounding the channels and lagoon than the main river stem. The 

5km radius around the lower Changuinola River main stem saw an increase in forest cover of 

0.5% over this 4-year period; whereas forest cover around the channels and lagoons decreased 

by 1.6%. The entire site exhibited an increase in soil land use classification between 2011 and 

2015, however the soil increase around the main river (1.7%) was more than double that of the 

channels and lagoon (0.86%). 
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a) 

 

b) 

 

Figure 11 Land use classification of the T. manatus habitat in the lower Changuinola River, 

Panama in February 2011 (a) and May 2015 (b). Red= soil, dark green= forest, yellow= 

agriculture, light green= non-forest vegetation, purple= urban and blue= water. 
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 We re-ran the SDMs built for 2015 with 2011 land use and local depth values (Figure 

12). For the combined model, 2011 yielded both a larger mean (by a factor of 1.12 times) and 

maximum feeding abundance (by a factor of 4.0 times) than 2015; representing a 10.9% 

decrease in mean weighted feeding abundance and 75% decrease in max weighted feeding 

abundance over time. Thus, feeding intensity decreased between 2011 and 2015 according to 

our combined model. The small cluster of high feeding abundance identified in 2015 was also 

present in 2011 in the FA and combined models. 
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a            b 

 
c 

Figure 12 The GAM predictions for T. manatus feeding in the lower Changuinola River, Panama 

in February 2011; a) FA model, b) PA model, and c) combined model. Darker colours correspond 

to a greater amount of feeding abundance (marks/m2) in the FA and combined models, and to a 

greater probability of feeding activity in the PA model. 
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Alternative management strategy 

 Power generation efficiency rates across 2015 ranged from 79.7% to 94.5%, and mean 

dam head height varied between 2.16m to 12.36m below the maximum height of 110m. The 

mean efficiency and dam head loss across the year was 90.5% and 6.91m, respectively. Panama 

produced a total of 1086.75MW in 2015, with AES Changuinola contributing about 11% 

(Autoridad Nacional de los Servicios Públicos, 2015). The mean monthly magnitude of energy 

produced at Changuinola I in 2015 was reported by AES Changuinola at approximately 

122.51MW, and a mean discharge rate of 132.42m3/s. As per discussions with AES Changuinola, 

the flow at Changuinola I would be maintained such that 1060GWh of energy are generated 

across the year, (AES Changuinola, personal communication, February 22, 2017) equivalent to 

about 121MW and 132.21m3/s, based on the average head height (103.09m) and dam 

efficiency (90.5%) in 2015. With this in consideration, our alternative flow management 

scenario focused on minimizing the variance in the monthly dam discharge rate while meeting 

the target energy generation goals.  

As previously shown in Figure 9, the dam-modified discharge rate at Changuinola I was 

far more variable than would be estimated naturally, with 2.52 times greater variance 

according to 2015 values. We compared the peaking flow management regime of 2015 with a 

maximally reduced variance structure where the mean monthly discharge at Changuinola I was 

maintained at 132.21m3/s (the target discharge rate to yield 1060GWh annually). All monthly 

dam flows were set to the AES Changuinola reported discharge rate target (132.21m3/s, 

corresponding to a site discharge rate of 362.59m3/s), to represent maximum variance 

reduction (2.15 times less site flow variance). In this case, depth variance at the study site 
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decreased by a factor of 2.28 times from 2015 variance, and feeding abundance variance 

decreased by a factor of 2.63 times from 2015 variance. 

 The estimated depth values for each month in our alternative management strategy, 

natural flow, and 2015 estimates were all inputted into our combined SDM model to yield 

monthly feeding abundances at the study site. With natural flows, mean weighted feeding 

abundances were 1.61% greater than that in 2015 and 1.18% greater than the alternative 

management strategy. With a maximum reduction of Changuinola I discharge variance, mean 

weighted feeding abundances were 0.42% greater than 2015 (Figure 13).  

 

Figure 13 Estimated mean T. manatus foraging intensity (marks/m2) at the lower Changuinola 

River study site, Panama in 2015 due to varying depth projections from Changuinola I dam flow 

management. Black indicates 2015 feeding abundances, yellow indicates alternative 

management feeding abundances (if Changuinola I discharge were maintained at 132.21m3/s 

across the year), and purple indicates natural feeding abundances prior to Changuinola I dam 

operation. 
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DISCUSSION 

Manatee distribution in the lower Changuinola River 

This study yielded several important findings for manatees in the lower Changuinola 

River basin in Panama, with implications extending beyond this species and site. We developed 

an integrated GAM that predicts the weighted manatee feeding abundance, and accounts for 

data zero-inflation with a predictive power of r2= 0.34. The analyses demonstrated that the 

manatees are feeding across the lower Changuinola River, with only environmental variables 

predicting feeding abundance, and land use affecting the probability of feeding occurring, but 

not abundance. The land use in the lower Changuinola region, particularly in the channel and 

lagoon system is heavily influenced by agricultural development, which has increased even 

within the short period between 2011 and 2015. The backcasting scenario suggests that mean 

weighted feeding abundance decreased by 10.9% between 2011 and 2015. Our use of coarse 

resolution land use classes, BULC, and first order approximation of the river continuity relation 

and Manning’s equation allowed the development of a basic, but functional, hydrological 

model that integrates fluvial geomorphology, hydropower flow management and species 

distribution modelling. Lastly, the maximum discharge variance modification that could be 

applied to the Changuinola I dam flow management scheme only has the potential to increase 

mean weighted manatee feeding abundance by approximately 0.42% but decrease feeding 

variance by 2.63 times. 

Land use change and backcasting  

 Feeding abundance was primarily predicted based on water depth, turbidity and land 

slope. Depth and slope are closely linked to river discharge, suggesting that discharge is an 
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important variable to monitor for manatee foraging habitat. Land use was not significantly 

predictive for feeding abundance, although the identification of turbidity as a significant 

predictive variable suggests an indirect effect due to local erosion and runoff. The lagoons and 

manmade channel system to the west of the Changuinola River main stem are particularly 

vulnerable to these processes, with 3.4% and 1.4% more agricultural and urban land use than 

the main river in 2015. The majority of the agricultural activity in the region consists of banana 

plantations, (Mou Sue et al., 1990) which have been subject to heavy applications of pesticides, 

fungicides and fertilizers for several decades (Cramer, 2013). These agrochemicals inevitably 

runoff into the local waterways and affect the local ecosystem, spurring accelerated aquatic 

vegetative growth. It is thus unsurprising that manatees are feeding in these highly polluted 

waterways, despite the threat of motorboat traffic and strikes on the Changuinola River and 

bordering channels (Reynolds III et al., 1995; Smethurst & Nietschmann, 1999; Guzmán & 

Rivera-Chavarria, 2014). Manatees in western Panama favour a foraging habitat centered 

within intense agricultural development, and downstream of direct wastewater effluent (Mou 

Sue et al., 1990; Collin et al., 2009; Cramer, 2013). While the water pollution may be aiding 

manatee foraging by accelerating vegetation growth, the ecological and physiological impacts 

of pollutant exposure have not been thoroughly studied and require immediate investigation 

for the conservation of the species and its habitat. 

 The economy in the lower Changuinola River is dominated by the banana industry 

(Cramer, 2013); however, this is not the only potential ecosystem service this region can 

provide. The local Bocas del Toro economy has boomed in the past decade with high flows of 

tourists, and specifically eco-tourists. Appropriate manatee habitat conservation and 
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management could provide an opportunity for similar economic growth in the Changuinola 

community, and simultaneously support further scientific investigation. Florida manatees bring 

a net benefit of millions of dollars into the local economy each year, based mostly on eco-

tourist attractions and establish a consistent source of funding for conservation and research 

activities (Solomon et al., 2004). The ecosystem service provided by these endangered 

mammals in the United States could be extrapolated to Bocas del Toro, building on the eco-

tourism industry that is already present in the province. 

Model performance and new applications 

 Despite some methodological shortcomings, the models developed herein were 

successfully predictive and comparable to the feeding occurrences and abundances observed in 

the field survey. The land use analysis techniques applied were modified to accommodate for 

the natural limitations of remote sensing in tropical ecosystems. While the land use classes 

selected were coarse and did not encompass different stages of forest succession or 

classification, they were predictive and essential to model building, suggesting that broad land 

cover classifications can still be useful in model development and conservation planning (Sliva & 

Williams, 2001; Hopkins II, 2009). In cases where land cover data is limited, or missing 

altogether, a basic land use map can provide valuable insight into a species’ distribution in a 

system. To build on these results, classifications could be added to the analysis using finer 

resolution optical imagery, land use classes or radar technology. The integration of radar data 

would be particularly interesting, as this is not subject to cloud cover limitations. In cases where 

cloud cover is a significant limitation to data acquisition, the BULC method proved to be a highly 
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effective tool to fill in missing data components. This technique has only recently been 

developed, and has great promise for future research and management programs.  

 Fluvial geomorphological concepts are frequently applied in SDMs for fish species, but 

this is much less often the case for aquatic mammals (Oberdorff et al., 2001; Buisson et al., 

2008; Bond et al., 2011). One exception is the recent Charbonnel et al. (2016) study that 

integrated species distribution modelling, hydrology, and land cover to generate predictions for 

a semi-aquatic endemic mammalian species in the French Pyrenees. Both the Charbonnel et al. 

(2016) study and our study demonstrate the value of integrating diverse predictive tools in 

cases of conservation management. Building on the Charbonnel et al. (2016) methodology, we 

took our analysis one step further to predict future management strategies for local 

disturbance activities (in this case, hydroelectric power generation), and performed our own 

land use classification at a greater spatial resolution. Even though discharge, precipitation, 

temperature and evapotranspiration data in the region were either incomplete or missing 

altogether, we could reasonably estimate natural discharge at Changuinola I based on the 

similarity between our mean natural flow (142.54m3/s) and the upper bound of mean dam 

discharge cited by AES Changuinola (132.21m3/s). While this model could be improved by the 

integration of soils and climatic data, such as in a Soil and Water Assessment Tool (SWAT) 

(Charbonnel et al., 2016), our generalized approach allows the integration of fluvial hydrology 

into SDMs in cases where data at fine resolution may be missing.  

Future management 

 With an annual mean discharge across 2015 at 132.41m3/s, and a stated limitation of 

the Changuinola I dam at an average energy production of 1060GWh, there can be no further 
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electricity output at this hydropower plant. Unfortunately, energy demand in Panama is 

projected to increase by an average of 4.9% per year until 2050 (SNE, 2016), which has already 

been exceeded between 2014 and 2015 (9.18%) and 2015 and 2016 (5.48%) (BNAM, 2017). 

Since a future scenario of flow modification could not be generated for our study system, all 

that can be done is alteration of the current discharge scheme. It was found that a maximum 

reduction in discharge variance at the Changuinola I dam could only increase the estimated 

mean weighted feeding abundance by 0.42% (2.63 times less foraging variance than 2015), and 

represents a median value between current Changuinola I modified flows and estimated 

natural flow rates. Natural discharge rates produced the greatest mean weighted feeding 

abundance, 1.61% greater than 2015 levels. Hydropower flow modification did not have a 

significant detrimental impact on absolute mean weighted feeding abundance in this case 

study, but modifications to discharge management could improve habitat stability across a 

given year. This finding is supported by the principle of Jensen’s Inequality, where an 

environmental variable’s variance has a greater effect than its average alone on species’ 

behaviour (Ruel & Ayres, 1999). Thus, habitat stability is at risk from hydropower 

impoundment, particularly dams operating under a peak load management scheme (Freeman 

et al., 2001). Reducing foraging habitat variance in our future management scenario promotes 

habitat persistence while also maintaining the ecosystem service of river flow for energy 

production. It reflects a realistic and attainable management strategy for the study system.  

Caveats of research 

 While the measures of fit attained in this analysis are encouraging, there are several 

caveats that should be addressed. First, the age of the feeding marks was not determined, thus 
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some areas may have been former feeding grounds. That being said, manatees are known to 

return to the same feeding areas, so this may have provided a more complete picture of their 

preferred feeding grounds. Secondly, feeding marks were only recorded on floating, not 

subaquatic, vegetation where the motorboat could navigate during the survey (we were 

prohibited from certain narrow channels which were so thickly vegetated, we could not travel 

further). This presents bias in the survey, as it is unknown where the manatees are feeding 

underwater, and their foraging behaviour in the densely vegetated channels could not be 

recorded. This could not be helped, given river turbidity and navigability, but could be a 

potential opportunity for further investigation into seagrass mapping and infrared drone 

detection of manatees underwater (Lefebvre et al., 1999; Koski et al., 2009). Cross-validation of 

the model was not integrated into the analyses, because there was not enough data available 

to allow for an accurate examination of model performance across such a small study site. 

Repetition of the field surveys conducted, and the application of drone technology to estimate 

manatee abundances and distribution in the turbid waters of the lower Changuinola would 

both be highly recommended developments in the future, as time and resource restrictions did 

not allow multiple surveys.  

Another potential cause for concern may be the land use classes selected and the use of 

varying buffer sizes for each class. We would argue that this constitutes a strength of our 

analysis, as the coarse land use classes were consciously selected to increase efficiency of 

classification, and facilitate easier methodology extrapolation to other studies. Additionally, 

these land use classes are commonly used to analyse species’ distributions and river water 

quality (Sliva & Williams, 2001; Hopkins II, 2009). Further, there are issues with limiting land use 
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analysis and riparian buffers to a simple 100m model (Sliva & Williams, 2001). Often, this 100m 

buffer is not enough to capture the effects of local watershed land use on river quality, and the 

catchment level is more appropriate (Hunsaker & Levine, 1995). The opposite has also been 

found, where riparian buffers performed equally as well, or better, than the watershed level 

analysis (Johnson et al., 1997), thus fuelling a “buffer versus catchment” debate in scholarly 

literature (Sliva & Williams, 2001). As such, our approach to address this issue was to optimize 

buffer selection for each land use class using the optim function in R. While this may be open to 

the critique of over-fitting, it represented a median approach between riparian buffer versus 

catchment analysis. 

The overlaying and filling of land use images is often a task only for remote sensing 

specialists, but the BULC algorithm developed by Cardille and Fortin (2016) allowed basic land 

use classification maps, and data sparse regions of analysis (e.g. intense cloud, haze cover or 

missing data lines from Landsat 7 imagery) to be compiled into a continuously updating image 

with only the most probable and recent land use classes incorporated. The BULC algorithm 

provided a means of circumventing what would have otherwise been an extremely time and 

computationally expensive process to potentially yield one full classified image (Cardille & 

Fortin, 2016).  

Lastly, to build flow modification and hydrology into our model, several assumptions 

were made. The first was that all depths across the site varied by the residuals about the mean 

water depth in the lower Changuinola River. This assumption also implied that water levels in 

the main stem and in the channels and lagoon system varied by the same amount. This may not 

represent reality, but given the artificial and ungauged nature of the channels and main stem, 
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this was the best possible approach for approximation. Furthermore, with no discharge gauges 

existing in the study site, no validation step could be applied to the model. However, ungauged 

river catchments are not an uncommon issue in hydrological research, and the integration of a 

flow accumulation grid to interpolate discharge rates in ungauged channels has been applied in 

systems ranging from the Himalayas (Das & Paul, 2006), Germany (Kuemmerlen et al., 2014) 

and China (Schmalz et al., 2015). The next step for our research would be to install discharge 

gauges in the lower Changuinola River as validation for our approach, and to build on the 

current SDM with the integration of soil and precipitation analyses into the hydrological model. 

SWAT could accomplish this integration, and has been successfully applied in SDMs in other 

data-restricted areas (Schmalz et al., 2015; Charbonnel et al., 2016). Thus, despite these 

shortcomings, the findings from this study lead to several interesting future avenues for 

conservation research, in Panama and beyond.  

Implications for conservation in tropical countries 

 The concerns regarding conservation of Antillean manatees in this case study mirror the 

common struggles encountered by many tropical conservation biologists. Large scale flow 

manipulation and land use change are significant ecological drivers for habitat and species 

conservation. The pollution and deforestation resulting from massive agricultural monoculture 

plantations could have devastating biodiversity consequences (Lenzen et al., 2012), and 

damage the potential for an economically and scientifically valuable eco-tourism industry. 

 Long term data acquisition and analysis is relatively rare in the tropics; this study 

demonstrates understanding the current state of affairs can unveil targeted local and attainable 

conservation efforts. The application of SDMs, remote sensing technology, foraging habitat 



 

 
61 

proxies and fluvial geomorphology to analyse hydropower operations and management 

illustrate the ecological and hydrological conditions of an ecosystem and species. The unique 

toolset employed addresses the common challenges facing many conservation biologists today, 

and sets the stage for future research and economic endeavours.  

CONCLUDING REMARKS 

 In this thesis, we examined the foraging distribution of Antillean manatees in the lower 

Changuinola River, Panama, and the changes of that distribution across time with land use and 

river discharge modification. Our models indicated that mean weighted manatee feeding 

abundance decreased by 10.9% between February 2011 (before dam operation) and May 2015 

(after dam operation). SDMs built for 2015 suggested that only water depth, turbidity and land 

slope were predictive for feeding abundance, while land use was also predictive of manatee 

foraging presence. The final GAM produced accounted for significant zero-inflation in the data 

and yielded a predictive power of r2=0.34.  

 Implications of flow modification from hydropower generation in the watershed 

indicate that the Changuinola I dam peaking flow management practice causes 2.52 times the 

variance in flow than would be expected naturally at the dam location, and maximum reduction 

of this variance caused a decrease in mean weighted feeding abundance variance at the study 

site by 2.63 times the variance in 2015, and a 0.42% increase in weighted feeding abundance 

from 2015. Our findings indicate that flow management at the Changuinola I dam would have a 

marginal effect on absolute mean weighted feeding abundances, but a significant effect on 

foraging habitat stability. Our study suggests that preserving manatees in western Panama has 
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the potential to provide a new eco-tourism ecosystem service, while maintaining the current 

hydropower production service that is already realised. 
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APPENDIX 

Landsat pre-processing 

 The coordinates selected to limit the boundaries of the Landsat imagery in the USGS 

Earth Explorer database are listed in Table A1. The Landsat images selected for analysis are 

listed in Table A2, along with the details of each that was required in the pre-processing steps in 

ENVI 5.3. 

Table A1 Boundary coordinates for the Landsat images taken to cover the entirety of the 

Changuinola River watershed in Bocas del Toro, Panama. 

Point Latitude  Longitude 

1 09°43’42”N 082°03’29”W 

2 09°43’42”N 083°11’03”W 

3 08°45’09”N 083°11’03”W 

4 08°45’09”N 082°03’29”W 
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Table A2 Landsat images selected between 2000 and 2015 to illustrate land use in the 

Changuinola watershed over time. All were downloaded in the UTM17N_WGS84 coordinate 

system, with 30m resolution from the USGS. 

Landsat Scene ID Sensor Date Time Cloud cover (%) Path Row 

LC80140542015126LGN00 L8 OLI 2015-05-06 15:47:45 15.32 14 54 

LC80140542014027LGN00 L8 OLI 2014-01-27 15:49:44 3.74 14 54 

LT50140542011051CHM00 Landsat TM (5) 2011-02-20 15:38:36 16 14 54 

LE70140532007112ASN00 Landsat 7 

ETM+ (SLC off) 

2007-04-22 15:38:43 4 14 53 

LE70140542006013EDC00 Landsat 7 

ETM+ (SLC off) 

2006-01-13 15:38:30 7 14 54 

LE70140542003021EDC00 Landsat 7 

ETM+ (SLC on) 

2003-01-21 15:37:07 17 14 54 

LT50140542000357AAA02 Landsat TM (5) 2000-12-22 15:28:15 0 14 54 

 
 Radiometric calibration settings were set to create a radiance band Interleaved by Line 

(BIL) float image with a scale factor of 0.1. To determine the atmospheric correction settings for 

the FLAASH tool, the Google Earth path and elevation tools were used to roughly estimate the 

approximate elevation of the area (elevation is only specified to the nearest kilometer in the 

tool, thus the values provided by Google Earth were more than sufficiently accurate to 

parameterize the model), which was inputted as an average elevation of 1.127km. A “Tropical” 

atmospheric model and “Rural” aerosol model were selected based on the climatic and 
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environmental characteristics of the region. FLAASH was run with visibilities ranging from 40km 

to 80km, and with Aerosol Retrieval methods: standard 2-Band Kaufman-Tanre (K-T), 

alternative K-T, and none (Harris Geospatial Solutions, 2016). 

Landsat classification 

 Once all images were pre-processed and corrected, they were classified using Maximum 

Likelihood. While these steps are described in the Methods section, the exact probabilities 

assigned to each land class, to adjust for similarity in spectral profiles and variance within class 

spectral profiles as well are listed in Table A3. An example of the similarity between the spectral 

signatures of a forest pixel and a non-forest pixel are illustrated in Figure A1. 

Table A3 Probabilities inputted for the maximum likelihood of each supervised class in the 

Landsat imagery analysis. 

Landsat Scene ID Date Forest Non-forest 

Vegetation 

Agriculture Water Soil Urban 

LC80140542015126LGN00 2015-05-06 0.1 0.05 0.4 0 0 0.6 

LC80140542014027LGN00 2014-01-27 0.05 0.05 0.5 0.01 0.05 0.6 

LT50140542011051CHM00 2011-02-20 0.1 0.1 0.5 0.05 0.05 0.6 

LE70140532007112ASN00 2007-04-22 0.1 0.05 0.4 0.01 0.05 0.6 

LE70140542006013EDC00 2006-01-13 0.05 0.1 0.4 0.3 0.05 0.6 

LE70140542003021EDC00 2003-01-21 0.05 0.05 0.4 0.01 0.05 0.6 

LT50140542000357AAA02 2000-12-22 0.05 0.1 0.4 0.05 0.05 0.6 
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a) Forest       b) Non-forest 

        

Figure A1 Example spectral signatures of the 6 land use classes identified in the Changuinola 

River watershed. The units of the “Date Value” variable are in reflectance, scaled by 10,000 in 

the FLAASH tool in ENVI 5.3. 

 The final step of the classification was to combine all images selected in the BULC tool. 

Because a base map was required to provide a base for the program to estimate pixel values, 

GlobCover 2009 was inputted into the model and translated into the land use classes used in 

this analysis. The translation of the GlobCover 2009 classes into the six land use classes of this 

study are demonstrated in Table A4. 
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Table A4 Reclassification of GlobCover (GC) 2009 classes to current study’s classification system (ESA, 2010). 

GC Value GC Class Reclassified 

11 Post-flooding or irrigated croplands (or aquatic) Agriculture 

14 Rain-fed croplands Agriculture 

20 Mosaic cropland (50-70%) / vegetation (grassland/shrub land/forest) (20-50%) Agriculture 

30 Mosaic vegetation (grassland/shrub land/forest) (50-70%) / cropland (20-50%) Non-forest vegetation 

40 Closed to open (>15%) broad-leaved evergreen or semi-deciduous forest (>5m) Forest 

50 Closed (>40%) broad-leaved deciduous forest (>5m) Forest 

60 Open (15-40%) broad-leaved deciduous forest/woodland (>5m) Forest 

70 Closed (>40%) needle-leaved evergreen forest (>5m) Forest 

90 Open (15-40%) needle-leaved deciduous or evergreen forest (>5m) Forest 

100 Closed to open (>15%) mixed broad-leaved and needle-leaved forest (>5m) Forest 

110 Mosaic forest or shrub land (50-70%) / grassland (20-50%) Forest 

120 Mosaic grassland (50-70%) / forest or shrub land (20-50%) Non-forest vegetation 

130 Closed to open (>15%) (broad-leaved or needle-leaved, evergreen or deciduous) shrub land (<5m) Forest 
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140 Closed to open (>15%) herbaceous vegetation (grassland, savannas or lichens/mosses) Non-forest vegetation 

150 Sparse (<15%) vegetation Non-forest vegetation 

160 Closed to open (>15%) broad-leaved forest regularly flooded (semi-permanently or temporarily) - 

fresh or brackish water 

Water 

170 Closed (>40%) broad-leaved forest or shrub land permanently flooded - saline or brackish water Water 

180 Closed to open (>15%) grassland or woody vegetation on regularly flooded or waterlogged soil - 

fresh, brackish or saline water 

Water 

190 Artificial surfaces and associated areas (urban areas >50%) Urban 

200 Bare areas Soil 

210 Water bodies Water 

220 Permanent snow and ice Water 

230 No data (burnt areas, clouds) No Data 
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Predictor variables and Pearson correlation 

Table A5 Pearson correlation values between predictor variables in the PA model. 

 

Soil Forest Agriculture Non-forest Urban Depth Salinity Turbidity Width Slope Feeding 

Soil 1 0.0657 -0.1237 -0.0918 -0.1368 0.1405 0.1976 -0.0093 -0.0219 0.0831 0.0213 

Forest 0.0657 1 -0.5455 -0.2245 -0.6745 0.1001 -0.0086 -0.3663 -0.0125 0.0955 -0.0133 

Agriculture -0.1237 -0.5455 1 -0.0241 0.6333 -0.1102 -0.1623 0.1824 -0.2756 -0.2668 0.0557 

Non-forest -0.0918 -0.2245 -0.0241 1 -0.1739 0.1105 -0.2268 -0.126 0.5587 0.1929 -0.2216 

Urban -0.1368 -0.6745 0.6333 -0.1739 1 -0.1449 -0.0846 0.3181 -0.3669 -0.2286 0.2502 

Depth 0.1405 0.1001 -0.1102 0.1105 -0.1449 1 0.3807 0.07 0.2411 0.1684 0.2139 

Salinity 0.1976 -0.0086 -0.1623 -0.2268 -0.0846 0.3807 1 -0.0525 0.1024 0.0503 -0.0808 

Turbidity -0.0093 -0.3663 0.1824 -0.126 0.3181 0.07 -0.0525 1 -0.1942 -0.0694 0.1381 

Width -0.0219 -0.0125 -0.2756 0.5587 -0.3669 0.2411 0.1024 -0.1942 1 0.1748 -0.1585 

Slope 0.0831 0.0955 -0.2668 0.1929 -0.2286 0.1684 0.0503 -0.0694 0.1748 1 0.0321 

Feeding 0.0213 -0.0133 0.0557 -0.2216 0.2502 0.2139 -0.0808 0.1381 -0.1585 0.0321 1 
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Table A6 Pearson correlation values between predictor variables in the FA model. 

 

Soil Forest Agriculture Non-forest Urban Depth Salinity Turbidity Width Slope Feeding 

Soil 1 0.0551 0.0511 0.1313 -0.0560 -0.1933 -0.1650 -0.3163 0.3212 0.0670 0.2250 

Forest 0.0551 1 0.2550 -0.0937 0.1081 0.2054 0.0836 0.0760 -0.2326 -0.1320 -0.0790 

Agriculture 0.0511 0.2550 1 -0.1648 0.5467 0.2972 0.0853 0.3259 -0.2661 0.4076 -0.2888 

Non-forest 0.1313 -0.0937 -0.1648 1 -0.1996 -0.2439 -0.2930 -0.3589 0.1088 -0.1828 0.2891 

Urban -0.0560 0.1081 0.5467 -0.1996 1 0.0906 -0.1811 0.2955 -0.0974 0.5088 -0.3423 

Depth -0.1933 0.2054 0.2972 -0.2439 0.0906 1 0.2373 0.3057 -0.3037 0.1135 -0.2178 

Salinity -0.1650 0.0836 0.0853 -0.2930 -0.1811 0.2373 1 0.2040 -0.4753 0.0343 -0.0668 

Turbidity -0.3163 0.0760 0.3259 -0.3589 0.2955 0.3057 0.2040 1 -0.8246 -0.0561 -0.6505 

Width 0.3212 -0.2326 -0.2661 0.1088 -0.0974 -0.3037 -0.4753 -0.8246 1 0.2681 0.6753 

Slope 0.0670 -0.1320 0.4076 -0.1828 0.5088 0.1135 0.0343 -0.0561 0.2681 1 0.2921 

Feeding 0.2250 -0.0790 -0.2888 0.2891 -0.3423 -0.2178 -0.0668 -0.6505 0.6753 0.2921 1 

 

 



 

 
84 

Monthly discharge on gauged channels 

Table A7 Mean monthly discharge (m3/s) at each ETESA gauge (ETESA, n.d.). 

Month Station 910102  Station 910401 Station 910202 

1 220.01 17.94 84.90 

2 191.42 11.23 49.50 

3 149.04 13.10 42.95 

4 126.13 14.93 36.20 

5 201.06 16.76 62.63 

6 196.61 20.41 66.58 

7 181.23 30.54 63.64 

8 191.94 42.76 63.46 

9 187.20 17.50 67.48 

10 189.54 16.23 73.47 

11 250.32 28.11 101.85 

12 234.91 22.99 89.88 
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Estimated monthly discharge rates 

Table A8 Mean monthly discharge rates (m3/s) in 2015 at the Changuinola I dam, Panama 

without (AES Changuinola, personal communication, Mar. 21, 2016) and with the dam present, 

and the same at the study site downstream (calculated from Equations 2 and 3, respectively). 

Month Changuinola I Dam Changuinola I Dam (natural) Site Site (natural) 

1 154.64 162.24 420.85 428.46 

2 143.2 141.16 338.94 336.9 

3 105.39 109.91 263.92 268.44 

4 70.33 93.01 210.12 232.8 

5 134.63 148.28 359.39 373.04 

6 187.93 144.99 421.41 378.47 

7 212.74 133.65 443.17 364.09 

8 126.85 141.55 381.01 395.7 

9 98.41 138.05 321.77 361.41 

10 101.61 139.78 329.98 368.15 

11 134.69 184.6 457.38 507.29 

12 118.52 173.24 405.5 460.22 

Sum 1588.94 1710.46 4353.44 4474.97 

 


