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Abstract

This thesis addresses a specific problem of model-based segmentation; namely, the automatic

identification and delineation of gross anatomical structures of the human brain based on their

appearance in magnetic resonance images (MRI). The approach developed in this thesis depends

on ageneral, iterative, hierarchical registration procedure and a 3-D digital model ofhuman brain

anatomy that contains both volumetric intensity-based data and geometric atlas data that co-exist

in a brain-based stereotaxic coordinate system. The model contains features derived from an

MRI atlas of gross neuroanatomy, that is the result of an intensity average of 305 brains created

with an automatic stereotaxic registration procedure developed here.

The objective of this thesis is achieved by inverting the traditional segmentation strategy.

Instead of matching geometric contours from an idealized atlas directly to the MRI data, seg­

mentation is achieved by identifying the spatial transformation that, under certain constraints,

best maps corresponding features between the model and a particular volumetric data set. After

automatic recovery of the. linear registration transform, the 3-D non-lïnear transformation is re­

covered by estimating the local deformation fields, recursively selected by stepping through the

entire target volume in a 3D grid pattern, using cross-correlation of invariant intensity features

derived from image data. This registration process is performed hierarchically, with each step in

decreasing scale refining the fit of the previous step and providing input to the next. When corn­

pleted, atlas contours defined in the model are mapped through the recovered transformation to

segment structures in the original data set and identify them by name.

Experiments for registration and segmentation are presented using simple phantoms, a reaI­

istic digital brain phantom as weil as human MRI data. The a1gorithm is used to estimate neuro­

anatomical variability, to automatically segment cerebral structures and to create probabilistic

representations of the same structures. Validation with manual methods shows that the proce­

dure performs weil, is objective and its implementation robust.
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Résumé

Ce travail aborde le problème particulier de segmentation par modèle, et plus précisément

l'identification et le contourage automatiques des principales structures anatomiques du cerveau

humain, en se basant sur leur apparence dans les images de résonance magnétique (IRM). L'approche

développée dans cette thèse rep:>se sur une procédure de recalage global, itératif et hiérarchique,

ainsi qne sur un modèle anatomique 3D digitalisé du cerveau humain. Ce dernier contient à la

fois des données volumétriques issues des images I"RM et des données géométriques représentant

un atlas, celles-ci étant exprimées dans un système de coordonnées stéréotaxiques lié au cerveau.

Ce modèle présente des éléments provenant d'un atlas IRM de neuro-anatomie, qui résulte d'un

moyennage en intensité de 305 cerveaux créé avec la méthode de recalage stéréotaxique automa­

tique présentée dans cette thèse.

L'objectif de ce travail est réalisé en renversant la stratégie traditionnelle de segmentation.

Au lieu de recaler directement les contours géométriques d'un atlas idéal sur les données IRM,

la segmentation est réalisée en définissant la transformation spatiale qui, sous certaines condi­

tions, recale le mieux des éléments homologues du modèle et des données volumétriques d'un

individu particulier. Après récupération automatique de la transformation linéaire de recalage,

la transformation 3D non linéaire est obtenue en estimant les champs de déformation locaux.

Ceux-ci sont définis de façon récursive en parcourant complètement le modèle stéréotaxique,

le long d'une grille tridimensionnelle, à l'aide de fonctions de "cross-correlation" appliquées à

des éléments caractéristiques des images, invariants en rotation et translation. Ce recalage est

réalisé de façon hiérarchique; chaque nouvelle étape raffinant le recalage de l'étape précédente

et fournissant les données pour l'étape suivante. Les contours de l'atlas, définis dans le modèle

stéréotaxique, sont ensuite envoyés sur les données IRM de l'individu, à l'aide de cette transfor­

mation afin d'extraire les structures de ces images et de les identifier par leur nom.

Les exemples de recalage et de segmentation sont présentés sur de simples fantômes, sur un

fantôme digital ~édJiste de cerveau, ainsi que sur des données IRM chez l'homme. L'algorithme

est utilisé pour estimer la variabilité neuro-anatomique, pour segmenter automatiquement des

structures cérébrales et pour créer des représentations probabilistiques de ces mêmes structures.

La validation, réalisée par comparaisons avec des méthodes manuelles, montre que l'algorithme

se comporte correctement, de façon objective et est robuste.
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Preface

This work presented in this thesis was performed at the Montreal Neurologicallnstitule (MNI).

directed by Drs Alan Evans and Terry Peters. Herein are addressed two problems common in 3-D

multi-modal neuro-imaging for brain mapping: structure segmentation and volume registration.

Segmentation: the delineation of the extent of a region within an image and the

assignation of an identifying label to them. grouping them into sorne meaningful

biological structure.

Registration: the process of applying a geometric transformation to an image vol­

ume such that it is optimally aligned with another volume according to sorne simi­

larity criterion.

Registration is required to be able to directly compare two or more volumes on a voxel-by­

voxel basis; segmentation is required to compare corresponding regions between data sets. This

thesis examines the problem of automatic segmentation of anatomical structures from volumet­

ric magnetic resonance imaging (MRI) data for quantitative analysis and estimation of morpho­

metric variability in normal human brain anatomy. Segmentation involves both identification

and delineation; the structure must be named and its spatiallimits established.

Present classification techniques applied to this problem can identify gross tissue types such

as cerebro-spinal fluid, white or grey-matter. However, these methods cannot identify individ­

ual neuro-anatomical structures. While computer-vision based or image-processing based algo­

rithms delineate elementary regions from the image data based on measures of local intensity

vi
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properties, these regions are not anatomically labelled nor do their borders always correspond

to the outline of a cerebral structure. Techniques from artificial intelligence such as expert sys­

tems that combine these two methods have had moderate success, but become complex and un­

wieldly when dealing with many structures and are highly sensitive to the nature of a required

pre-segmentation process. The majority of fully automatic segmentation methods employ sorne

form of model-based information to belter constrain the problem. Conventional model-based

segmentation methods allemptto fit geometric constructs, such as points and Hnes from contours

of a pre-defined atlas, to the raster data of the medical image. Of the few successfultechniques,

none have been subjected to a thorough validation and evaluation, so the problem remains open.

The segmentation 'ask presented in this thesis tums the conventionai approach upside down.

Instead of matching atlas contours directly to the image data, a model was created that contains

both volumetric raster data as weil as geometric atlas data. Both components are registered

within a standard brain-based coordinate system know as stereotaxie spaee1• The segmenta­

tion strategy is separated into two stages: a registration step foilowed by a delineation step. The

goal of the registration process is to find the optimal spatial transformation between the prior

stereotaxie model and the individual MRI data set by maximizing the match (or overlap) offea­

tures derived from the data set and those in the mode!. Structure delineation is then achieved by

applying the inverse of the recovered transformation to contours defined in the model, thereby

outlining structures in the native data.

This organization yields two important benefits over previous methods. Since raster features

from the data are being matched to similar features in the model, the resulting approach circum­

vents matching problems that confound traditional model-based segmentation techniques that

allempt to fit one form ofdata representation, geometric contours of the atlas, directly to another,

raster data of the image. The two representations are inherently different in contrast, noise and

1Stereotaxie refers ta the representation of3·D brain structures in a standardized brain-based coordinate system

(Talairach et al., 1967; Talairach and Tournoux, 1988) such that ail brains have the same orientation, position and

size in the three orthogonal directions. Il is primarily used for compatison of brains from different individuals.

Stereotaet;e is a related tenn, meaning "ta touch in space" and is used ta describe a class ofneurosurgical procedures

that use an extemal rigid frame ta establish a common coordinate system for bath imaging and surgery.
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gradient properties. More importantly, the segmentation strategy described here results in an

atlas-independent segmentation. The geometric contours defined in the atlas are not used to de­

termine the match between data and mode!. Therefore, any atlas delined in the stereotaxic space

can be used for segmentation, thereby a1lowing for the co-existence of multiple atlases, each of

which is simultaneously mappable to the native MR image volume.

The matching of a data sel with the segmentation model is based on a general intra-modality

registration a1gorithm, which is applied recursively to decreasingly blurred versions of the origi­

nal data to ar-hieve its final match. Chapter 4 presents this multi-scale methodology that enables

two arbitrary 3-D MRI brain image-volumes to be automatically registered together. Since a

simple linear transformation model cannot account for non-linear morphometric variability br.­

tween subjects, nor for anatomical differences between a subject and the model, a non-linear

version ofthe registration technique is presented in Chapter 5. Local deformations are estimated

at each node of a regularly sampled 3-D lattice defined on the volume of data. Summation of ail

local deformation vectors yields the global non-linear or "warping" transformation function.

While the registration technique is fundamentally independent of a model, a prior segmen­

tation model is needed to guide the subsequent segmentation process. Chapter 6 describes the

model created for this thesis which contains both volumetric (raster) and geometric (polyhedral)

data and serves a dual purpose. For both registration methods, the raster component serves as a

target defined in the stereotaxic coordinate system. For segmentation, the geometric polyhedra

defined on the model are used to delineate structures on volumetric data mapped into the stan­

dardized coordinate space. Application of the inverse transformation on these contours segment

the data in its original space. Since the segmentation model takes no part in the registration, we

are free to use other data representations for modelling individual structures. For example, the

left head ofcaudate can be modelled as a set of labelled voxels in a binary-valued volume, where

the value 1represents caudate and 0 represents background. Other structures can be represented

in a similar fashion. This representation was used for validation of the segmentation procedure.

Registration and segmentation experiments are described in chapters 7, 8 and 9. Chapter 7

outlines experiments in linear registration, demonstrating that the automatic registration method
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yields results that are as accurate as manual methods, while being more robust and reproducible.

Statistical analysis of manually identified landmark points from a group of 17 data volumes,

mapped into stereotaxie space, shows that there exists an inter-subject neuro-anatomical vari­

abililty of3.9mm, when measured as the 3-D full-width-half-maximumof an equivalentisotropic

Gaussian probability distribution. This spread is due to anatomical variability across the normal

population left unaccounted for by linear registration. The experiments presented in chapter 8

show that the non-linear registration technique can reduce this misregistration to less than Imm

on simulated data, even in noisy conditions. When applied to real data, the anatomical vari­

ability is reduced from 3.9mm to 2.5mm. The remaining variability is mostiy due to observer­

dependent errors in landmark identification. Chapter 8 concludes with the creation and valida­

tion ofa 3-D anatomical variability map. Chapter 9 describes experiments in segmentation, and

shows that simulations on a complex digital brain phantom results in automatically delineated

structures whose volumes are recovered with less than 2% error, and that the structures overlap

by more than 98%. When applied to real data and compared to manually identified structures,

the measured volumes agree to within 4% and volume overlap is better than 90%. Probabilistic

representations of caudate, thalamus, putamen, insular cortex, ventricles and corpus callosum

are shown. The thesis ends with a discussion and conclusion in chapter 10.
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Original contributions

The following are believed to he significant contributions made by this thesis:

1. atlas-independent segmentation by re-posing of the model-based segmentation paradigm

into one involving a registration step followed by a delineation step.

2. removal of the extra level of abstraction in common segmentation methods; instead of di­

rectly fitting geometric constructs to raster data, the MRI data is fit to similar features of

the mode!.

3. notion of operating explicitly in a standardized stereotaxie space based on an anatomieal

coordinate system, where the model used to guide the segmentation contains both polyhe­

dral (i.e. geometric atlas contours) and volumetrie (tomographie, image-based features)

information in the same space.

4. automatic linear stereotaxie mapping procedure, obviating the need for the existing man­

ual, time-consuming, subjective methods for spatial standardization required for brain mor­

phometrics such as measuring and comparing structures between brains.

5. automatic non-linear stereotaxie mapping procedure, that alters the shape of a given brain

volume so that it conforms to a standard thus automating part of the morphometrics task.

The need for separate linear and non-linear registration procedures is required for sterco­

taxy and segmentation, and will he described in chapter 3.

6. experimcntal validation of the linear, non-linear and segmentation methods with simulatcd

phantom data and real MRI volumes.

7. creation ofa 3-D high-resolution digital brain phantom.

8. creation of a 3-D anatomical morphometric variability map.

9. creation of an initial probabilistic neuro-anatomical atlas.

10. insights into the extent of morphometric variability in the normal adult population.
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Chapter 1

Introduction

Modern imaging modalities such as computed tomography (CT) and magnetic resonance imag­

ing (MRI) have facilitated the investigation of complex spatial relationships between multiple

structures within the brain. The three-dimensional (3-D) nature oftomographic imaging removes

the blurring due to the unavoidable overlap of different anatomical structures that occurs in con­

ventional two-dimensional (2-D) radiographic projection imaging techniques. Other imaging

modalities such as positron emission tomography (PET) and single photon emission computed

tomography (SPECT) permit the in vivo measurement ofa wide variety offunctional parameters

on a regional basis in the human !>rain such as local hemodynarnics, metabolism, pharmokinet­

ics, tissue pH and the distribution of chemotherapeutic agents (Phelps et al., 1986). Unfortu­

nately, qualitative interpretation of these functional images is hampered by poor spatial resolu­

tion, low counting statistics,low contrast between diffcrent brain structures of interest and often

the distribution of the radio-label does not reflect the underlying anatomy. Therefore, there is a

general need to include external anatomical information for its inte.rpretation and analysis. Two

related solutions have been proposed in the past: 1) Merge complementary anatomical infor­

mation provided by cr or MRI. 2) Overlay a brain atlas on the functional data, using it as an

anatomical guide.

Registration (also described as correlation, matching, or image fusion) is required for bOlh

solutions. In a tirst step, the geometric transformation required to spatially align the two data sets
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is estimated. Afterwards, the digital nature of the data permits one of them (image or atlas) to be

resampled so that it corresponds to the other. The two images can then be compared on a voxel­

by-voxel basis to give an anatomical interpretation to the functional data. Due to the potential

informative gains and the relative simplicity of the procedures involved, registration techniques

have seen rapid growth in most areas of medical imaging. For example, correlative imaging has

been used for disease diagnosis (Levin et al., 1988), longitudinal monitoring of disease progres­

sion or remission (Arnold et al., 1992), pre-operative evaluation and surgical planning (Kelly et

al., 1983; Kali et al., 1987; Peters et al., 1990), radio-surgery and radiotherapy treatment plan­

ning (Schad et al., 1987; Sontag et al., 1986), mapping of functional neuroanatomy of sensori­

motor and cognitive processes (Fox et al., 1985; Evans et al., 1992c; Bohm et al., 1992) as weil

as the analysis of neuro-anatomical variability among normal brains (Evans et al., 1992a).

An essential step in the analysis completed for any of these examples is the identification of

anatomical structures and their sub-units. For qualitative analysis, a human investigator implic­

itly segments the data into its structural components based on personal knowledge of anatomy

derived from textbooks and atlases. The clinician builds a mental representation of the spatial re­

lationships present within the images. For quantitative analysis of specific regions, explicit seg­

mentation is required to separate and identify structures, and is often achieved using a brain atlas

as a guide for anatomicallocalization and functional interpretation (e.g., Talairach et al., 1967,

1988). A human observer begins to manually identify anatomical structures, by extracting fea­

tures (e.g.,landmark points, edges and regions ofsimilar intensity) from the tomographic images

and matches them with corresponding features from similar images in an anatomical atlas. The

border between two structures in the volumetric data set is defined by mapping the corresponding

contour from the atlas back onto the image. The position of the border is refined by comparing

it and its neighbouring structures, to the contours in the atlas. Unfortunately, manual outlining

of structures is tedious, difficult and time consuming. Errors are due to subjectivity in atlas slice

selection, structure interpretation, poor software interface design, poor eye-hand coordination,

low tissue contrast, image degradation caused by artefacts and noise, and edge blurring due to

partial volume effects (tissue mixing within a single voxel) and, perhaps most importantly, to

the fact that tomographic slices are often not scanned at the same orientation as the atlas. These

7.



•

•

difficulties must be overcome to achieve robust, objective quantitative analysis. This results in

the following problem statement:

Problem: Given volumetric magnetic resonance image data, develop a procedure to

automatically identify and delineate structures in the human brain that will facilitate

neuro-anatomic?J quantitative anaiysis and pennit characterization of morphomet­

ric variability across subjects.

This problem statement leads to the following specific objectives:

Objectives:

• Develop completely automatic model-based segmentation method for neuro­

anatomical structures.

• Ensure method is atlas-independent.

• Advanee the state-of-the-art in quantitative model-guided segmentation.

• Automate the stereotaxie transformation.

• Refine a coneeptual framework and ereate tools for eomparison of structural

anatomy within and between subjeets.

• Establish proofof principle for automated analysis of anatomieal variability.

1have ehosen to limit the seope of the thesis by the following eonstraints:

Scope:

• Deal only with one modality: MRI is the modality ofehoiee for neuro-anatomieal

studies.

• Deal only with normal young adult population.

• No pathology addressed.

• Limited to gross pathology as seen in MRI (with resolution of approximately

Imm3).
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• Cerebral cortex is not addressed in detail since is a completely different prob­

lem, complex enough to warrant a research project in its own right within this

laboratory (MacDonald et al., 1994).

A number of existing techniques have already been applied to this prcblem. Tissue classifi­

cation methods only identify gross components of the brain and do not identify individual brain

structures. While computer vision-based algorithms delineate elementary regions within the im­

age data, these regions are not anatomically labelled nor do their borders always correspond to

the outline of cerebral structures. Techniques from artificial intelligence such as expert systems

that combine these two methods have had moderate success, but they cannot always correct er­

rors introduced at the low-Ievel segmentation stage and are therefore heavily d"pendent on this

pre-segmentation step. The solution resides in the use ofextemal information to guide the seg­

mentation process (referred to as "model-based segmentation").

Digital atlases, usually consisting of a collection of geometric contours, have been used by

many groups to improve significantly quantitative analysis of functional data by substantially

reducing bias and size ofsystematic errors in region ofinterest definition (e.g., Bohm et al., 1985,

1991,1992,Greitzetal.,199Ia,Seitzetal.,1990,Evansetal.,1988,199Ia). Typically, the atlas

is first globally registered to the data, then each structure of the atlas is manipulated individually

to customize the fit to the individual data volume.

The use of such atlases also facilitates comparisons between different individuals or groups

through spatial standardization; by applying the inverse atlas transform to the data volume, it is

thus registered to the standard reference space and can he directly compared to other volumes

mapped into this space. This powerful concept forms the basis for the work presented here and

is described by the term stereotaxy. This term is used to describe the representation of 3-D brain

structures in a standardized brain-based coordinate system such that ail brains have the same

orientation, position and size in the three orthogonal directions (Talairach et al., 1967, 1988) . It

should be noted however, that a non-negligible amount of normal neuro-anatomical variability

remains even after this normalization. If left unaccounted for, it can be the source of signific<!I1t

positional difference for homologous landmarks between subjects. Chapters 7 and 8 deal with
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the characterization, and where appropriate, the removal of this residual variability.

In manual techniques using an atlas and in automatic model-driven approaches, it is assumed

that the target (atlas or digital model) and the data to be segmented are topologically equivalent

but that internal structures are mutually deformed. This means that even though the absolute po­

sitions of structures may vary between subjects, their relative positions remain (loosely) stable

and that there exists a one-to-one mapping between structures in the data and those in the atlas.!

This assumption, and the following example, form the basis for the segmentation strategy de­

veloped in this thesis. Suppose a segmented dataset, A, exists, and that each of its voxels are

tagged with sorne neuiO-anatomicallabe!. In order to segment another brain volume, B, in an

equivalent manner, the non-linear spatial warping transformation that represents the one-to-one

mapping from A to B must be recovered. Each of the labels in A is then mapped onto B, thus

segmenting B . Hence, the segmentation problem is expressed as a registration problem.

The strategy for automatic segmentation developed in this thesis uses a digital standardized

anatomical brain model to eliminate subjectivity in manual interpretation of structure definition

and takes advantage of image processing techniques to extract features from the data that are

robust in the presence of noise. This segmentation strategy is possible only with a two com­

ponent brain model developed here that contains both volumetric (raster) information to drive

the registration process and geometric (polyhedral) information used to guide the segmentation

process.

The automatic segmentation procedure begins by extracting features from the given data set

for matching with those stored in the raster component the brain mode!. Afterwards, a generic,

fully automatic, hierarchical, iterative, non-linear registration procedure (described in chapter 5)

is applied to identify the spatial transformation that, under certain constraints, best registers cor­

responding features between the model and the given volumetric data set. The transformation

is recovered by detecting local deformations required to map each region of the model onto its

homologue in the data in hierarchical fashion, starting with large regions and reducing their size

lThis assurn,ltion isjustified when dealing with normal neuro-anatorny, as is the caseherein. Abnormal anatorny

is discusscd in chapter 10.
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at each iteration. The largest deformations are recovered first, based on heavily blurred copies

of both data and mode!. The global warp is then refined by the addition of smaller deformations

estimated from less blurred data. Since raster features from the data are being matched lO simi­

lar features in the model, many difficulties that confound other existing techniques (Bajcsy and

Kovacic, 1989) that attempt to fit geometric contours directly to raster data are avoided. ln the

last step of the segmentation algorithm, the geometric atlas contours defined in the model are

mapped through the recovered transformation to segment structures in the original data set and

identify them by name.

This strategy has one powerful advantage over other model-based segmentation methods.

The design presented here makes for atlas-independent segmentation. The geometric contours

defined in the atlas are not used in any way to determine the match between data and mode!. The

non-Iinear transformation is established from the raster data in the brain mode!. Therefore, any

atlas defined in the stereotaxie space can be used for segmentation.

In this manner, the underlying structure of the MRI is used as a frame, onto which the atlas

contours are attached. Thus, any structure can be defined in the atlas and need not follow edges

present in the tomographic image volume. For example, functional areas whose edges do not

correspond to an explicit anatomical border, but whose Iimits are correlated with the underlying

anatomical substrate, may not only be defined in the atlas, but they can be segmented with this

methodology.
.

The outlines of structures visible in the MRI volume are explicitly defined where a distinct

contrast difference exists between them in the tomographic image. The position of the remaining

contour is estimated from two sources: 1) the most probable location described in the model and

2) points positioned on both contour portions previously found and on nearby structures. For

structures not directly visible in the MR image, their position, orientation, scale and shape are

inferred from the data in the model and constrained by the position of neighbouring structures.
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Summary

The motivation for this thesis stems from the need to have a fully automatic procedure to identify

and delineate meaningful anatomical regions ofthe human brain from volumetrie MRI data. The

automatic method presented herein goes beyond existing techniques in significant ways while re­

taining sorne of their best features. The method is objective and its hierarchical implementation

robust. The use of a standardized brain model yields consistent results and its separation into

constituent raster and geometric parts allows for atlas independent segmentation.

Even though the methods developed in this thesis are applied to the normal human brain and

rely on a model of same, the techniques presented here can be applied to other structures. The

necessary models can be constructed using the methodology described in chapter 3. Also, the

non-Iinear registration model described in chapter 5 can be used to register or track deformable

or movable structures such as the lung or Iiver.

While the need for averaging across subjects to obtain significant responses is removed with

new imaging techniques such as functional MRI (fMRI), the machinery for cross-subject image

comparison in a standard reference frame is still necessary for drawing conclusions about the

variability of functional systems across individuals. The tools developed in this project are nec­

essary to determine whether morphological features of human brain anatomy serve as markers

for cyto/myeloarchitecture. The deformation maps created by this procedure will also provide

primary data for the statistical integration of morphological variability into the digital cerebral

atlas.

The following chapter summarizes related work done by others in this field. This is followed

by a chapter that discusses the issues related to stereotaxy and the use of a standardized space

for brain morphometrics. Chapters three, four and five present methodology for Iinear registra­

tion, non-linear registration and segmentation, respectively. Experiments with simulated data

and real MRI volumes are covered in chapters six, seven and eight for the same three topics.

Please note that unJess otherwise specified, ail figures is this thesis represent 2-D slices of 3-D

volumes and ail processing for registration and segmentation is performed entirely in 3-D. This
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point must be stressed, since the majority ofprevious work has been completed only in 2-D. and

other authors simply allude to the 3-D solution. Although computationally more difficult. the 3­

D algorithms make the problem tractable. since a 2-D procedure can never account for data out

of the plane of interesl. The thesis ends with conclusions and suggestions for further research

for linear registration. non-linear registration and segmentation that are offered in chapter ten.
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Chapter 2

Literature Review

2.1 Introduction

For the purposes of this thesis, we shaH define the terrns classification and segmentation:

• Classification involves labeling pixels in terrns ofdifferent classes by grouping pixels that

have similar characteristics, based on the measurement or estimation of different features

known to exist in the image using low-Ievel operators with small areas of support (Duda

and Hart, 1973). It does not demand spatially contiguous voxels within any single class.

• Segmentation is the parceHation of the input image into meaningful contiguous groups of

voxels. The word "meaningful" indicates a task-dependent definition. For this project,

the segmentation task involves the identification and delineation ofcommonly-recognized

structures in the human brain (hat are labelled as such with neuroanatomy textbooks.

The measurements from two or three different MR imaging scans of the same brain are usu­

ally enough for existing simple classification algorithms using only image processing techniques

or statistical pattern recognition methods such as thresholding, multi-feature classification, and

automatic clustering (e.g. (Duda and Hart, 1973; Puliti and Tascini, 1989; Amamoto et al., 1990;

Herrrnann etai., 1988; Delapaz et al., 1985; Kübler and Gerig, 1990; Gerig etai., 1990; Gerig et
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Figure 2.1: Classification example
The image on the left shows a typical transverse MR image through the level of the
ventricles. The image on the right is the result of application of aminimum distance
classifier, identifying tissue types of grey-matter, white-matter, and CSF.

al., 1991a; Bonar et al., 1993) to characterize each voxel into a unique tissue class (see Fig. 2.1

for an example). Local image structure such as edges are used to improve the separation betwecn

distinct regions (Feehs and Arce, 1987; Panda and Rosenfeld, 1978; Chuang and Udupa, 1989;

Bomans et al., 1990; Zucker and Hummel, 1981). (A good review of MR image classification al­

gorithms can be found in (Bezdek et al., 1993).) In contrast to aclassification algorithm that may

label pixels as grey-matter, white-matter, cerebro-spinal fluid (CSF), muscle or fat, a segmenta­

tion procedure should automatically identify and establish the spatiallimits in 3-D of cerebral

structures such as the ventricles, thalamus, caudate nucleus or hippocampus.

While classification techniques permit the calculation of total volumes for the different classes,

each statistic cannot be broken down into separate components (e.g., amount of grey matter in

left temporal lobe or CSF volume in right lateral ventricle) because only image-based informa­

tion is used for classification (only features computed iocally are being used) and they do not

take into account more global information, such as the voxel's spatial position. The calculation

of such measures requires knowledge of the brain anatomy combined with segmentation to cal­

culate these values. (See Fig 2.2.)

The work presented here is fundamentally different than the data-driven approachcs, e.g.,

Pizer et al. (1989,1990), in basic computer vision research, where regions are defined as "rea­

sonable" on the basis of feature homogeneity within the raw data, rather than sorne external, in
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Figure 2.2: Model-based segmentation
This diagram shows the paradigm for model-based segmentation. A pre-defined
anatomical is fit to an input MRI in order to segment individual structures from the
brain volume.

this case neuro-anatomical, definition. This project is concemed with the segmentation of cere­

bral structures from MR image volumes of the normal brain. The image data represents only

one measurement conceming the underlying neuroanatomy, and by itself is not enough to dis­

criminate between similar adjacent, but anatomically distinct regions that are differentiated on

the basis of histology, cyto-architecture and connectivity, cyto-chemistry or function. Data from

external sources is required to guide and constrain the segmentation process, in arder to achieve

the required goal.

2.2 Manual segmentation methods

The most basic and primitive approach to image segmentation relies on the human expert to iden­

tifYand outline structures. Computer programs have been developed to assist in the task and re­

lieve sorne of the tedium involved in painting and contouring regions (e.g, Kennedy et al., 1989,

Collins, 1990), however it is the user who locates and defines regions of interest, based on per­

sonal anatomical knowledge.
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Sir' :tural information can 00 stored explicitly in digital brain atlases, often represented as a

collection of geometric outlines (Bohm et al., 1983; Evans et al., 1988). Sorne atlas-ba~ed sys­

tems have OOen developed to assist in anatomy teaching or to serve as a reference for radiologists

or surgeons (Hohne et al., 1988; Tiede et al., 1993; Kazarnovskaya et al., 1991). Others have

been developed to serve as a guide for the interpretation of functional images by linearly map­

ping the atlas to the data or vice·versa (Schifter et al., 1993; Berlangieri et al., 1993; Lehmann et

al., 1991), however in these exarnples the atlas is not used to directly segment the data. Fitting

techniques must be used to delineate structures and to serve a method for measuring morpho­

metric change (due to growth, evolution, disease progression, and other shape iTIodifications) by

deforming the atlas to volumetrie data.

The group from the Karolinskahospital (Bohmet al., 1983, 1985, Seitz et al., 1990, Greitz et

al., 1991a, 1991b) has developed a digital brain atlas that can be applied to a data set to simplify

structural identification. Manually chosen global 3-D scaling, rotation and positioning are used

first to remove the positional variance natural1y occuring among different subjects and fit the

atlas to the brain image volume. A number ofadditional parameters (e.g., off-axis scaling, skew,

scoliosis and second order scaling) are then modified by the user to achieve a non-linear fit. The

goodness offit is judged visually by the user, who must make compromises between arcas that fit

wel1 and those that don't, due to the limited number of parameters used to define the non-linear

transformation.

Evans et al. (1988, 1991a and Marrett et al., 1989a) have developed a similar system with a

region ofinterest (ROI) atlas containing 120 sub-structures of the normal human brain1
• In a first

step, homologous pairs of landmarks are manually chosen on both the dataset and atlas. These

Iandmarks are used to define the oost affine transformation that minimizes (in the least-squares

sense) the residual between point pairs. Two methods are then possible to address the remaining

differences due to morphological variability between subjects and the atlas: one manual and the

other semi-automatic.

lThis atlas is described in more detail in Chapter 6, since it forms the basis of the segmentation model used in

Ibis thesis.
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In the first case, manually determined scaling, rotation and translation are applied to each of

the ROIs. When needed, editing ofcontour points ",;hieves the final fit. The authors have shown

this method reduces inter-observer variability in structure delineation (Evans et al., 1988,1991a).

In the second case, the morphological differences are dealt with using a well-behaved non-linear

mapping that determines the smoothest continuous spatial deformation that transforms one set

of 3-D coordinates onto another set of homologous points. We have implemented the so-called

"thin-plate" spline (TPS) procedure (Duchon, 1976; Bookstein, 1989) and have extended it to

3-D (Evans et al., 199Ib). The procedure decompo~es the overall deformation into a series of

principal warps ofdecreasing geometric scale, exactly fitting the homologous points and interpo­

lating between them. This is mathematically analogous to the bending energy required to deform

a thin metal sheet so that a set of points on the sheet have a defined height above corresponding

points on a llat surface. Unfortunately, these methods have not been practical for routine use as a

deformation/warping model because ofthe subjectivity involved in selecting the precise location

and number of points that will define the non-linear deformation.

2.3 Automated segmentation methods

Automatic medical image matching and structure identification is a difficult task, due to the

anatomical variability between patients, the distinct physical properties measured by the imag­

ing modalities, differences in subject positioning and variability of acquisition parameters such

as slice thickness and pixel size. A wide variety of methods has been proposed to solve the

registration problem for different applications. Most segmentation methods follow a two-step

paradigm: features are extracted from the data set and the'! a mapping is found to assign labels

(such as structure names) to them.

This mapping is typically found using one of two techniques: 1) The first builds a sym­

bolic mapping between the extracted features (usually small homogeneous regions) and an iconic

model of the structure(s) to be segmented. Expert rJle-based systems are often used to achieve

this mapping. These are described in the next section. 2) The other type of algorithm calcu-
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lates a spatial transformation function that oost maps the features of one data set into the other.

These routines differ in the dimensionality (2-D, 3-D or4-D), the types of features OOing matched

(points, lines, surfaces, volumes), the numOOr of parameters used to define the transformation

(selected from translations, rotations, scalings and shears, amongst others), the method used to

find the transformation (direct solution, or iterative search) and the amount of interaction needed

on the part of the user. Such registration algorithms are descriOOd in the following sections.

2.3.1 Rule-based systems

Anatomical knowledge can he stored explicitly along with segmentation heuristics in seman­

tic form such as an 'if-then' rule. Raya et al. (1989,1990) apply a simple rule-based system to

the low-Ievel classification of MRi brain scans to extract large structures such as brain, extra­

cerebral CSF and ventricles. Chen and Sontag (1989) have developed a more complex knowledge­

based expert system using a blackboard data structure and input from multiple modalities to seg­

ment finer structures, e.g., thalamus, putamen, and globus pallidus.

Dellepiane et al. (1986, 1987, 1991, Vernazza et al., 1987, Serpico et al., 1987) have a rela­

tively complex system that starts with basic image processing techniques (geometric and ampli­

tude correction, edge preserving smoothing followed by the creation of an edge image and then

region-growing segmentation) to create elementary regions (ERs - similar to Pizer's reasonable

regions) from MR image of the head. A knowledge database containing atlas information and

rule-based expert-system is then used to identify neuro-anatomical structures by grouping the

ERs. Independently, Dhawan et al. (1988, 1990) have built a very similar system for segmenta­

tion of abdominal CT images and for MR images of the brain (Arata et al., 1991; Dhawan and

Arata, 1992). In the latter, the model database (in the form of structure masks) is dynamically

updated with each additional validated segmentation.

While these systems have achieved sorne measure of success, the results are heavily depen­

dent on the preprocessing and segmentation processes. Since such methods separate the struc­

ture identification into two tasks - pre-segmentation folJowed by rule application - they are not

always able to correct errors introduced at the low-Ievel segmentation stage. Davis and Tay-
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lor (1991) address these difficulties with an expert-system that uses model-driven, objective­

specific forward chaining to find required objects, with graph-based backtracking to resolve er­

rors. The rules actually specify whatlow-Ievel image processing methods to apply to extract

needed features.

Other algorithms do not explicitly employ if-then rules to drive the segmentation. Instead,

anatomical constraints are implicitly incorporated into the procedure. One of the earliest exam­

pies is that of Kaneda et al. (1978), where contour extraction and 3-D reconstruction is used

to identify dilated ventricles in CT images. The regions are extracted with a modified region­

growing algorithm after thresholding. Identification is accomplished using model-guided iden­

tification on two dimensional slices and then reconstructed by tessellation in 3-D. The anatomical

knowledge stored in the model is used to correct errors in the segmentation.

Brummer has used anatomical knowledge to design and implement morphological operators

that discriminate between desired and unwanted structures to extract brain contours from images

(Brummer et al., 1991), and similar anatomical constraints were used to detectthe longitudinal

fissure with the Hough transform (Brummer, 1991).

Menhardt has used iconic fuzzy sets with a symbolic modelto describe properties and rela­

tionships between objects in the brain to achieve the top-down analysis for automated interpreta­

tion ofMR images (Menhardt, 1988b,1988a) such as the extraction ofbrain contours (Menhardt

and Imme, 1988). The analysis is accomplished by recursive knowledge-based separation of

groups ofpixels from the MR tomograms using technique~ from pattern recognition, image pro­

cessing and artificial intelligence. Zachmann has continued this work, building an iconic model

(a voxelated volume, where the value in each voxel represents the probability of existence of

a structure) for classification of the f1uid spaces of the brain (zachmann, 1991a, 199Ib). Kam­

ber et al. (1992) have built a similar probability model of white matter, used as a mask when

identifying multiple sclerosis lesions.

Similarly, Kapouleus has uscd proton density and T2-weighted images with a geometric model

to segment MR images with MS lesions (Kapouleas and Kulikowski, 1988, 1990). The atlas is

fit in two steps: the brain (as a whole) and the longitudinal fissure are found first, and used to
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determine brain size, position and orientation (linear transfonnations), then only the segmented

brain surface is used to fit a defonnable geometric model consisting of brain and ventricular sur­

faces. In these last techniques, it is necessary to register the data with the model used to guide the

segmentation. Success of these methods is dependent on the quality of the registration between

data and mode!.

In most semi-automatic methods, features are extracted manually and can be either points

(Evans et al., 1991a; Schiers et al., 1989), surfaces (Pelizzari and Chen, 1987, 1989, 1993), vol­

umes (Alper! et al., 1990; Farber and Stokely, 1988) or a mixture of points, curves and surfaces

(Zubal et al., 1991). These techniques are described below.

2.3.2 Point-based registration

In point-based registration techniques, corresponding landmarks are identified in both data sets

to be matched. These points may be obtained from extemal fiducial markers attached to a head­

holder or preferably to the head itse1f, or from intemal anatomical1andmarks. Registration is

achieved by identifying the transfonnation that maps one set of points onto the other in sorne

optimal way, such as minimizing the least-squares residual mis-match between paired points.

The transfonnation is typical1y solved using one of several numerical methods; e.g., alignment

ofcenters ofgravity and principal axes (Langron and Collins, 1985; Sibson, 1978; Sibson, 1979),

singular valued decomposition (SVD), QR decomposition, or LU d"composition (Press et al., 1988).

The manual point-based methods using intemallandmarks have the advantage that no special

pre-scan procedures are required and that retrospective matching of data is possible. Since ex­

plicit correspondence is available for the landmarks identified, another advantage is that both

;:Iter-subject and cross-modality registration is limited only by the user's ability to identify ho­

mologous features between subjects/modalities. This is dependent upon the local implemen­

tation of the user interface for point tagging as much as on the fundamental considerations of

algorithmic robustness, image contrast and noise. The main disadvantage of these techniques

resides in possible user-bias and subjectivity involved in the selection of both the number and

placement of features required.
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In order to avoid these difficulties, Dalton and du Boulay (1988) have built a knowledge­

based system to register images by extracting invariant key geometric features from a segmented

input image. These features serve as landmarks and are matched to corresponding feature land­

marks of images stored in a canonical view database. Wbile tbis technique is wholly dependent

on the segmentation method, it may lend itself to cross-modality registration if the features ex­

tracted from the different imaging modalities correspond to the same physicallocation with the

brain. Allain et al. (1992) also automatically detects landmarks. His method uses model-based

constrained search techniques to locate the anterior and posterior commissures (the AC and PC

points) and brain extents that are used to automatically map the brain into the stereotaxic space.

2.3.3 Surface·based registration

In many semi-automatic techniques, the user is needed to identify similar features in both data

sets without the requirement of explicit point-to-point correspondence. Typically, an optimiza­

tion procedure is used to fit the two data sets together, and in doing so, implicitly defilies the

correspondence between the two volumes. For example, surfaces manually extracted from two

data sets can he used for registration. Known as the "head-and-hat" procedure, Pelizzari has

used an optimization technique to find the transformation that minimizes a function estimating

the distance between two surfaces where one serves as a fixed head and the other as a movable

hat (Pelizzari and Chen, 1987, 1989). Niew et al. (1991) improves on this method by automat­

ing the surface extraction step. After reviewing existing surface-based registration methods in

(Collingnon et al., 1993b), the author further improved the head-and-hat technique by speeding

up the optimization procedure as weIl as refining the distance function (Collingnon et al., 1993a).

The surface-based methods have the following advantage over point-based techniques: an

anatomically-trained expert user is not required to identify the features to he matched. However,

care must he taken to ensure that the extracted surfaces correspond to the same structure. While

the inner-skull surface can easily he extracted from MR or CT data, the same is not true for func­

tional PET or SPECT data. A smal1 change in threshold can change the position of the surface,

and thus change the transformation.
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The time required to calculate the similarity function can be reduced considerably if the data

describing the surface can be compressed to contain only salient features. Thirion, Gueziec and

Ayache (Thirion et al., 1992, Gueziec and Ayache, 1992a, 1992b) extract high curvature Iines

from surfaces extracted from cr volumes of the skull that correspond to ridges around the nose

and orbits as weil as below the mandible. Matching is based on hashing using curvature and

torsion measures. Since the curve-to-curve match is subject to stronger constraints, the implicit

correspondence achieved is tighter than that obtained by the surface to surface measures.

The matching data can be compressed even further when one considers that a surface natu­

rally defines an enclosed volume. Both Farber and Stokely (1988) and Alpert et al. (1990) have

independently developed a method to calculate the principal axes of the volume, and have used

this information to align the two data sets. Farber also calculated an equivalent transformation

based on a tensor formulation, but found that the principal axis transform to be more robust (Far­

ber and Stokely, 1988). Both techniques suffer when the entire brain is not contained within the

data set because the principal axis tends to align itself in the image plane and not along the main

axis of the images object.

2.3.4 Automatic Iinear registration

Fully automatic registration methods are similar in principle to the semi-automatic techniques;

however features are automatically extracted from the image data, obviating the need for user

intervention. These methods differ in the type of features extracted and the objective functÏC'·:;

used to measure the match.

The simplest methods operate directly on the pixel intensity values. Venot et al. (1983) maxi­

mize the number of zero-crossings in a 2-D difference scintigram image. Mintun and Lee (1990)

extended this concept to 3-D to register two PET volumes of the same subject obtained on dif­

ferent days. Minoshima et al. (1992) used the same objective function for orienting a single

volume. Here, the left half of the volume is subtracted from the mirrored right half to center and

vertically align the transverse and coronal planes for left-right comparisons ofa single PET data­

set. The absolute difference of pixel intensity values is dependent on the intensity and contrast

18



•

•

in the original image. More statistically robust objective functions have OOen incorporated into

different matching algorithms.

Cross-eorrelation of pixel intensity values has been used in 2-D by Junck et al. (1990) and

Rizzo et al. (1991). Junck uses an exhaustive search procedure to find the oost transformation

for PET-PET or SPECT-SPECT matching while Rizzo achieves a direct result by calculating

the correlation in frequency space for 2-D inter-modality registration. Peli et al. (1997) has de­

veloped a method to speed the correlation process by automatically detecting points of interest

in retinal photographs. The correlation is only calculated for small neighbourhoods centered on

these points ofinterest to find their homologues in the target image. Once found, the point-based

methods described above are used to determine the transformation.

Woods et al. (1993a) also uses the pixel intensity for both intra- and inter-modality 3-D regis­

tration. The chosen objective function measures the variance of the pixel-to-pixel intensity ratio

and this function is minimized by a 12-parameter Newton-Raphson optimization. The principle

employed here is that for intra-modality matching, the ratio should 00 unity with minimum vari­

ance. For cross-modality matching, this ratio will not 00 unity, but should 00 fixed for any tissue

c1ass, again with minimum variance.

Convolution with partial differential Gaussian kemels may 00 used to extract geometric fea­

tures automatically from the raw image intensities without the need for manual definition of a

region or contour. van den Eisen (1993) descriOOs the L•• operator that detects high intensity

ridges or low intensity valleys from an image. This operator can 00 thought of as the second

derivative of image intensity perpendicular to the direction of the maximum intensity gradient.

When the width of the Gaussian kemel is properly selected, the skull can 00 extracted as aridge in

CT and a valley in MR for 2-D registration ofMR and CT images of the same subject. Extension

of the operator to 3-D is not trivial, since there is an infinite numOOr of directions perpendkular

to the gradient. Instead ofconvolution, the operator is set as a minimization problem, where the

direction of second derivative maximum (for valleys) or minimum (for ridges) is found under

the constraint that this direction 00 perpendicular to the gradient.

Maintaining the simplicity ofconvolution with aGaussian kemel for feature detection, Collins
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et al. have developed a completely automatic multi-resolution 3-0 intra-moda!ity inter-subject

registration procedure based on correlation of invariant features derived by convolution of the

data with zeroth and first order Gaussian kernels (Collins et al., 1992a, 1994b). At present, this

procedure is used routinely at the Montreal Neurological Institute (MNI) to map MRI volumes

into stereotaxic space. This technique is described in chapter 4 and is extensively compared to

the methods ofboth Woods 1993a and Minoshima 1993.

2.3.5 Automated non-linear registration

While a !inear transformation yields a reasonable approximation to fit one data set onlo another

or onto an atlas, non-!inear transformations must be used to account for fine structure differences

persisting after !inear registration. There are many different parameterizations possible to define

the type of non-linear transformation.

One group of methods employs a domain-specific a priori parametization of the non-linear

transformation. Among the first non-linear computerized matching methods described in the lit­

erature, the "rubber mask", deals with 2-0 human chromosome identification (Widrow, 1973).

After !inear registration, the author uses 16 manually adjustable parameters -Iength, width, an­

gle and curvature per arm - to fit a typical model chromosome to a sample data set. Reliev­

ing the user of the parameter adjustment task, Fischler and Elschlager (1973) have described a

2-0 face-recognition system that uses a simple model with 7 pre-defined features (hair, eyes,

cheeks, nose and mouth) with connections between them characterized by spring models. Au­

tomatic template-matching is used to locale each feature with a locallinear transformation, how­

ever each local match is constrained by the global deformation modeled with the springs. These

two papers show the power of a simple deformation model applied to weil defined problems.

Their main disadvantage is that they require an a priori parametization of deformation and user­

defined correspondence of features.

In order to address this problem, Burr (1981 a,1981 b) has developed a technique that uses 1) a

nearest-neighbour rule on points, 2) a nearest-line with similar orientation rule on curves and 3)

a nearest-region with high similarity rule on images to determine correspondence automatically
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for hand-drawn characters and 2-D face images. The global warp is calculated iteratively, bring­

ing corresponding features closer together by estimating one deformation vector per feature and

the warp is interpolated between features. A stiffness parameter controls the amount of interac­

tion between neighbouring areas to reduce the effect of mismatches. The stiffness is reduced at

each iteration so that global fitting is achieved first, and local fitting last. Leclerc and Benchi­

mol (1991) have developed a similar system for registration of digital subtraction angiography

images to correct for patient motion during scanning that uses local image cross-correlation but

uses a different method to avoid mis-matches. An iterative coarse-to-fine fitting strategy is used

by first matching points positioned on a coarse grid and then interpolating the warp onto a new

grid with reduced spacing at each successive iteration.

Another method to correct for patient motion in 2-D abdominal images has been developed

by Gerig et al. (1991 b). After application of a ridge/valley detection algorithm, a user identifies

the two renal contours. The kidneys can then be segmented and tracked in successive images

using a Hough transform on contour segments. The transform yields displacements for each

segment, which are then used to geometrically warp the images backonto the first for comparison

and analysis.

Neural networks have been used by Kosugi et al. (1993) to find corresponding parts between

a subjects brain and a standard 2-D MR image. Using 2 degrees of freedom per node, the net­

work generates a set of deformation vectors, organized on a rectangular lattice, based on local

cross-correlation of image intensity to establish a local match. The neural net achieves consen­

sus between nodes to ensure a smooth mapping.

By themselves, linear and non-linear registration are not enough to achieve segmentation.

These routines are designed to match one image onto another for motion detection, tracking and

correction. However, no explicit identification of parts of the image, Le. labelling, is implied by

the process. Amodel or atlas must be incorporated with the registration method to build a viable

segmentation scheme. These methods are discussed next.
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2.3.6 Nonlinear warping for segmentation.

Many model-based segmentation techniques share the concept of deforming a model to fit the

image data. Edges/surfaces are extracted from the image/volume data and are used to guide the

shape of the model subject to certain constraints. For example, Terzopoulos et al. applyelasticity

theory to construct differential equations tha~ model the behavior of non-rigid curves, surfaccs

and solids as a function of time (Terzopoulos et al., 1987). These techniques have been used

to simulate non-rigid objects for animation (Terzopoulos and Witkin, 1988; Terzopoulos and

Fleischer, 1988; Metaxas and Terzopoulos, 1992) and to model3-0 shape and non-rigid motion

from single and stereo 2-0 images as weil as video sequences (Terzopoulos et al., 1988; Ter­

zopoulos and Metaxes, 1990). In 2-0, a "snake" is an energy-minimizing spline that is deformed

from an initial model by extemal forces that pull it toward image features such as lines and

edges while physically-based constraints imposed by the elastic model counteractthem (Kass

et al., 1988). Improving on these techniques, Nastar and Ayache (1993) have proposed a similar

deformation based on masses attached by springs, however they attach extra springs between

non-neighbouring nodes to model sorne volumetric properties of the object and can thus main­

tain the initial model shape. The spring equations are integrated over time until an equilibrium

is found.

These physkally-based methods provide a flexible method ofdeformation, buttwo problems

exist: 1) The modeling of natural phenomena usually results in a deformation that simply finds

the nearest local energy minimum, not necessarily the global minimum. 2) The deformation pro­

cess is modelied as a physical process. While this may be useful in practice, care must be taken

not to interpret the resulting displacement map as a true physical deformation of the underlying

object.

The routines described above have been used mostly to segment a single object from an im­

age or volume. The problem addressed in this thesis is that of segmentation of multiple complex

3-D structures from volumetric data sets. While the deformation ofmany interconnected objects

is possible by extending the techniques described above, the authors have not yet done so.

Inspired by the work of Fischler and Burr described above (Fischler and Elschlager, 1973;
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BUIT, 1981a; BUIT, 1981b), Broit has developed a 3-0 non-linearregistration algorithm to match

volumetrie data by deforming one data set onto another to address the multiple object problem

(Broit, 1981). Like BUIT, warping is based on local matching of cOITesponding grid points con­

strained by a model of a continuous elastic solid. This technique has been used in 2-0 to match

CT images to a predefined atlas image (Bajcsy and Broit, 1982,1983). The atlas contours are

then mapped through the recovered deforrnation onto the original data for segmentation. This

mcthod was extended to 3-0 atlas matching in (Oann et al., 1988; Bajcsy and Kovacic, 1989)

and tcstcd with simulated data in (Gee et al., 1993).

Zhengping and Mowforth (1991) have described similar work applied to 2-0 MR data. The

authors defined a volumetric anatomical model by manually painting the scalp, bone, CSF grey­

matter and white-matter on one MRI data volume. A customized model is instantiated to match

a given MR image, by colouring the voxels from each tissue class with a grey-Ievel value de­

termincd by the scanning parameters of the volume to be registered. After an exhaustive search

linear registration procedure, a single arbitrary slice is extracted from the model for input to the

non-linear matching procedure. Warping of the model is based on a coarse-to-fine estimation

of local deformation in the same manner as Leclerc and Benchimol (1991). Unfortunately, the

method is applicd on 2-0 slices only, and therefore it can never fully recover the complete non­

linear deformation required to match two volume together.

The non-linear segmentation method developed in this thesis and elsewhere (Collins et al., 1992c,

1992d, 1994a) is an extension of the work of BUIT, Bajscy and Zhengping described above. AI­

though the work presented here is similar, our approach differs significantly in a number of re­

spects such as the (1) type of data used, (2) the features matched, (3) the definition of the atlas,

(4) the optimization procedure and (5) the amount of user interaction needed to complete the

segmentation. The consequences of these differences is that unlike the previous methods, the

technique developed here operates on volumetrie MR data and estimates local deformations en­

tirely in 3-0 and requires no user interaction whatsoever. These algorithms are compared in

detail in the discussion section of chapter 5.
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2.4 Summary

The specific aim of this thesis is neuro-anatomical segmentation. Ideally, a perfect segmenta­

tion device would obviate the need for any fonn of post-processing since pointing the device at

sorne location would yield the desired information, e.g., this tissue belongs to the head of the

caudate. The nearest one can come to the ideal device is the human visual system combined

with the expert knowledge of a trained anatomist. Since medical images are an indirect repre­

sentation of what we wish to observe, measuring some physical property as opposed to a unique

structural identifier, the data must be subject to post-processing techniques to extract meaningflll

neuroanatomic labels.

In previous work described above, algorithms enhanced with high-Ievel domain knowledge,

such as anatomical information (Brllmmer, 1991; Menhardt, 1988b; Menhardt, 1988a), atlases

in 2-D (Dalton and du Boulay, 1988; Kaneda et al., 1978; Bajcsy and Broit, 1982; Bajcsy et

al., 1983), in 3-D (Kapouleas and Kulikowski, 1988; Kapouleas, 1990; Dann et al., 1988; Bajcsy

and Kovacic, 1989) or expert systems (Dellepiane et al., 1987; Kapolileas and Klilikowski, 1988;

Vandermeulen et al., 1989; Chen and Sontag, 1989; Dhawan and Juvvadi, 1988) have not al­

ways been able to correct errors accomplished at the low-level segmentation and the latter can

become quite complex and unwieldy, sometimes requiring manual intervention. In these tradi­

tional AI approaches to segmentation, the pre-segmentation step serves as a data rcdllction stage,

compressing the information contained within the original input data to salient features which

succinctly describe the data. If the feature extraction process were perfect, there wOlild be no

need for reasoning systems to manipulate the data. Unfortunately, features (edges, points, re­

gions) derived from the image volume are indirect measures of the structure labels that wc wish

to apply to the brain data. In many situations, the image shows no signal change at boundaries be­

tween structures and these bounds must be inferred from neighbouring boundaries. Hence, more

global information such as spatial relationships must be represented in the symbolic rule-base,

since extracted features represent only local information. When these operators l'ail, possibly

because assumptions about the nature of the image are ill-founded or that spatial relationships

conflict, the whole system breaks down. Another representation of the imaging modelmust be
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used to replace the edges and regions in the data as weil as the anatomical structures and their

spatial relationships

In ail approaches that use an explicit model or atlas, the latter is fit to the data using linear

or non-linear registration. The registration methods discussed in this chapter are summarized in

Table 2.1 for linear registration and Table 2.3 for non-linear methods. The model-driven tech­

niques assume that the geometric model and the data to be segmented are topologically equiva­

lent but that internaI structures are mutually deformed with a one-to-one mapping. Segmentation

is achieved by detecting local deformations to match model to data. Even though there may be

a large variability in the overall volume, position and shape of individual brains, the relative po­

sition of internai structures is maintained. Thus, segmentation is viewed as a registration and

interpolation problem, with structures being delineated by the deformed atlas.

Both Kapouleas (1988, 1990) and Bajcsy and Kovacic (1989) stretch and match only the

cortical and ventricular surfaces, and interpolate the positions of other structures to yield "good

outlines for most of the basal ganglia". However, very little validation has been published other

than the work of Gee et al. (1993) that used classified data and simulated deformations. The

technique of fitting a model to the data is powerful, however linear interpolation between corti­

cal and ventricular surfaces is not sufficient to locate the position of internai structures. Similar

to basing a decision function on a prior probability only, interpolation gives the 'best guess' of

structure identification at a given location based on distant features, but it does not take into ac­

count local structure. Obviously, the use of local features will yield a better local fit.

Sorne of the segmentationlfitting errors of these methods may be due to incorrect assump­

tions that lead to errors in the design of model-based segmenwtion algorithms. In many cases,

the models used to match and describe the data do not have the same representation as the data

itself (i.e. raster image data vs. geometric line segments). Thus, features used to measure the

match between model and data are not directly comparable and may be subject to error. For ex­

ample, sorne model-based segmentation algorithms match contours fram an idealized atlas to

those detected by an edge operator without regal'd to image contrast, noise, slice thickness or

sampling (Bajcsy and Brait, 1982; Bajcsy et al., 1983; Dalton and du Boulay, 1988; Kaneda et
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al., 1978; Kapouleas and Kulikowski, 1988; Kapouleas, 1990), while others attempt to match

edges based on image intensity of photographs of microtomed brains with that of computed to­

mographic (CT) images (Dann et al., 1988; Bajcsy and Kovacie, 1989). While these techniques

may have sorne success in regions where both model and data have similar contrast. in many

other regions they fail where their imaging model breaks down. To date. no method exists to

sub-segment tomographic image data reliably into anatomically rneaningful entities.
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Allain 1992 3 landmarks 13 nroc auto inter inter M.P.A automatic search for AP. PC and brain extents.
Alpert 1990 3 volume 6 direct serr.i- P.A.T. intra inter C.M.P principal axis transform (P.A.T.) on manually

auto extractcd volumes.
Collingnon 3 surf-surf 6 itcr auto . optimi- inter inter C.M.P Modified "Head and Hat" - improved spccd.
1993 1 zatian obiective function.
Collins 3 int+grad 12 iter auto optimi- inter Întra M.A maxirnize cross-correlation.
1994 zUlian +atlas
Dallnn 1988 3 landmarks 12 iler auto nroc. inter intra M.A exocet system used 10 identifv Iandmarks.
Evans 3 Jandmarks 9 direct man svd inter inter C.M,P. matching of manually idcntificd homologous
1991 +atias A landmarks.
Farber 3 intensity 9 direct semi- P.A.T. inlra inter C,M,P PAT or lcnsorbased on manually extracled
1988 aulo & tensor volumes.
Fox 3 landmarks 9 direct man AC-PC inter inter M,P manual identification of Glline to estir.late AC·PC
1985 based +atlas line.
Friston 3 landmarks 9 direct man AC·PC inter inter M,P manual identification of AC·PC line.- and brain
1989 based +atlas extents.
Junck 2 intensity 3 direct auto search intra intra P.S exhaustive search using cross correlation of image
1990 intensilV.
Lemoine 3 landmarks 13 direct man AC-PC inter inter M,P,A manual intcration to define Talairach
1991b based +atlas transformation.
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Linear registralion methods (cont.)
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Minoshima 3 J·r inl diff 5 iter auto senoch intra intra P like Venot:: but left minus righl for cenlering:: rOlalional
\992 correction.
Miomo 3 intensity 6 iler auto search Înlra intra P like Venol:: extended to 3D. using multi·dimensiona!
\990 search.
Neiw 3 pts-surf 6 iler auto optimi- intra inter C.M.P Removed manual delineation SICp (rom "Head and Hat".
199\ zation
Peli 1987 2 intensilV 3 iler auto SSO intra imra relina auto delect points usin~ local cross-correlation.
Pelizluri 3 pts-surf 6 Îler semi- 0plimi- inlra inter C.M.P '"Head and Hat". Optimization wilh Powell and
\987 auto zatieR simul:lted annealint!',
Rino 1991 2 intensilv 3 direct aulo xcorr intra inter C.M.P Frcauencv sence cross-correlation.
Schien;; 3 landmarks 12 direct m.n filtiog inter inter .11 liuear or polynomial fil to manually identified
1989 landmarks.
Venot 2 volume 3 iter auto oplimi- inlra intra scinto- maximize zero-crossings in difference image.
1983 zation 2rams
Woods 3 intensity 12 iter auto optimi- inter inter M.P minimizes variance ofintensily ratio wilh Newton-
\993 zation Raohson opl.
van den 3 Lv. 6 i1er auto optimi· inter inter C,M,P uses "chamfer distance" minimization.
EIsen 1993 zation
Zubal 1991 3 .11 12 ? semi- ? inter inter .11
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Bajscy 3 Heukle cross-eorr elastic iter semi- inter bl'ain CT multi-seate match to cotoured allas
1989 auto

Burr 2 inte~;;:ity ab, diff elastic iter auto inter faces photo deforrnation modeled with descreasing
1981a stiffness al cach ileration
comns 94 3 Ipradl cross-corr nIastic itcr auto inter brain MR multi-seule match to avemec MR atlas
Fischler 2 masks abs diff masses+ iter aulo inter images photo predefine structure masks attached with
1973 snrinp:s sonnes
Frislon 2 intensity line plastic direct auto intra brain PET mntch line integral along rows, then <:tlong
1991 Înteeral columns
Gerig 2 edges hough plastic direct semi- intra ubdo- MR user id of lst roi, hough lTansform trucks
1991b xform auto mon motion
Kosugi 2 locai cross·corr plastic iter auto inter brain MR neural·net selects local deforamtion
1993 intensit... vieldinl! best neil!hbourhood consensus
Leclerc 2 local cross-corr elastic iter auto intra vessels DSA multi·scale match la correct for patient
1991 intensitv motion
Lemoine 3 landmarks I,q fil lri-variate direct man inter brain CT, use polynomial for ct continuity of
1991a oolvnomial MR 1 orevious niecewise Iinear transfonn
Widrow 2 intensity binary fixed iter man inter iamges photo '''Rubber·mask:'' manual adjustmem of
1973 overlao oarameters 1 oarametized deformation
Zhenping 2 intensity cross-corr plastic iter auto inter brain MR multi·scale match la MR model
1991 DoG
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The following abbreviations are used for the Tables 2.1, 2.2 and 2.3:

• Features matched: surf-surf is surface to surface, illt+grad is intensity
and gradient magnitude, DoG is difference of Gaussians.

• Solution type: proc is procedural, irer is iterative.

• Interaction: auto is automatic, semi-auto is semi-automcatic, mail is
manual.

• Method: P.A.T. is principal axis transform, proc is procedural, svd is
singular valued decomposition.

• Subject: illter is inter-subject, illtra is intra-subject, al/as is atlas to
subject.

• Modality: illter is inter-modality, illtra is intra-modality.

• Data-type: M is MRI, P is PET, C is CT, A is atlas.

• Objective function: cross-corr is cross-correlation, abs-diff is abso­
lute difference, /sq is least squares.
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Chapter 3

Stereotaxy: background & theory

The purpose of this ehapter is fourfold: 1) to deseribe the rationale for, and the design of, the Ta­

lairaeh stereotaxie eoordinate system, 2) to present the implementation of the MN! stereotaxie

eoordinate system that addresses problems associated with the original Talairaeh implementa­

tion, 3) to show the MRI atlas ereated using this loeally defined stereotaxie mapping transforma­

tion, 4) to deseribe the differenees between segmentation for anatomical parcellation and stereo­

taxy for the analysis of anatomical morphometric variability.

3.1 Introduction

The methodology presented in this thesis originates from a basic concept first proposed by Ta­

lairach et al. (1967,1988) for stereotactic neurosurgery. His goal was to provide external refer­

ence material, such as an anatomical atlas, for guidance in stereotactic procedures - a blind surgi­

cal procedure where the target is approached from a small twist-drill hole in the skull. The guid­

ing principle is to establish a standard anatomically-basedcoordinate system within the brain so

that locations from the atlas may be mapped back into the patient brain space to predict the posi­

tion of sub-structures in the basal ganglia for surgical treatment. Anatomicallandmarks visible

in the different medical imaging modalities are used to define the coordinate system.
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In the neurosurgical context, stereotactic means to tOl/ch i1l space and refers to peri-operative

procedures in a single patient. The derived term stereotaxic means to orga1lize i1l space and is

used in this thesis to describe the use of a brain-basd coordinate system for analysis of pop­

ulations of brains, most often from normal subjects. A standardized method for identification

of structure location and position is achieved so that regions of interest can be compared be­

tween brains using these coordinates. In current brain mapping research, 3-D brain volumes are

transformed into this coordinate system and resarnpled onto a common sampling grid, such that

ail brains have the same orientation and size, making comparisons of different populations on

a voxel-by-voxel basis possible. The transformation to this coordinate system also provides a

means for enhancement offunctional signais by averaging images in this space (Fox et a1., 1988).

This paradigm allows information (anatomical, metabolic, electrophysiological, chemical, ar­

chitectonic) from different brains to be spatially organized and catalogued by mapping ail brains

into the sarne coordinate system (Fox et al., 1994). Finally, in the original Talairach spirit, the co­

ordinate corresponding to a particular structure, as defined by an atlas in this coordinate system,

can be used to predict its location in a brain volume of a given subject mapped into the same

space. The latter forms the basis of the segmentation procedure presented in chapter 6, since

structure outlines defined in the digital model described below are used to predict the location

and orientation of structures within any given brain.

3.2 Segmentation and Stereotaxy

The methodologies developed here depend on a stereotaxic segmentation model that serves two

purposes: 1) it defines the neuro-anatomical structures that will be identified (i.e.,labelled) and

delineated by the segmentation algorithm and 2) it also defines a standard coordinate system in

which to estimate spatial neuro-anatomical variability across individuais. While determination

of structure labels and estimation of positional variability are closely related, they aim to achieve

two very distinct goals:
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• Segmentation describes the identification and assignment of a label to each brain

volume voxel û~cording to sorne predefined neuro-anatomical segmentation mode!.

Conceptually,labelling requires that a perfect match be found between an unlabelled

source volume and the model defining the segmentation, so that labels from the tar­

get volume can then be transferred to voxels within the source. The mapping func­

tion must have a large number of degrees of freedom to establish a one-to-one cor­

respondence between source and target volumes, theoretically as many as the total

number of voxels.

• In contrast, the analysis of anatomical variability may be achieved by mapping

a group of labelled volumetric data sets into a common frame of reference with a

limited number of well-defined degrees of freedom (Le., stereotaxy). The distance

between homologous points from different subjects is then used to estimate their po­

sitional variance with respect to the chosen coordinate system and mapping. Since

this amounts to establishing a convention, these measurements are only meaningful

if the number of degrees of freedom and the dimensions of the 3-D target coordinate

space are well-defined.

Implicit in this analysis is the notion that perfect segmentation has been performed, by the

previous segmentation step, and that a one-to-one correspondence exists between the two brains.

Figure 3.1 summarizes the differences between segmentation and stereotaxy.

The determination of the best reference frame for stereotaxy is non-trivial as it depends on

region of interest (e.g, cortex, deep brain structures or a specific lobe) and the difference fUllc­

tion to be measured (e.g., based on image intensity, gradient magnitude, or landmark correspon­

dence). One linear coordinate system for the analysis of anatoIllical variability couId be defined

as that which wouId minimize the positional variance (or residual) of ail points mapped into the

space. This so-called minimum variance frame could also be defined by maxirnizing the overlap

of equivalent neuro-anatomicallabels across ail brains, resulting in a slightly different ccordi­

nate system. Therefore, all reasonable frames are essentially equivalent, although sorne are more
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Figure 3.1: Differences between segmentation and stereotaxy.

Segmentation is achieved by estimating the non-linear transformation required to
optimally map the original MRI volume to the intensity features of the VBSM. Once
resampled into the stereotaxie spaee. the MRI volume is implieitly segmented by
the VOl atlas that is eo-resident with the intensity features in the VBSM. Structures
are identified by the VOl labels, and their outlines defined by thc VOI's geometrie
contours. In facto any brain volume, registered in the stereotaxie spaee is segmented
by the VOl atlas. The inverse non-linear transformation is applied to both the labels
and contours to segment the original MRI volume in native space. In principle, a
peifect non-linear deformation whieh maps the source onto the VBSM also yields
a peifect segmentation of the source brain.

Stereotaxy requires segmented volumes to be mapped into the stereotaxie spaee us­
ing a well-defined transformation with a fixed number ofdegrees offreedom in order
to standardize ail positional information to a predefined brain size and orientation.
The difference in position of a given anatomical landmark or segmented structure
in the standard eoordinate system allows for the estimation of anatomieal morpho­
metric variability as weil as the creation of probabilistic models of anatomy.
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convenient than others. A brain-based coordinate system very similar to that proposed by Ta­

lairach and Toumoux (1988) has been chosen here, since it is a well-circulated published atlas

and provides a common anatomically standardized coordinate system for precise and unambigu­

ous reporting of the location of points of interest within the human brain.

3.2.1 Segmentation

Within this stereotaxie coordinate system, a segmentation model has been created that contains

both intensity-based and geometric data. The volumetrie data are represented at different spatial

scales (as in pyramid techniques) where a number of features are associated with each voxel

at the particular scale (e.g. grey level intensity and gradient magnitude). The geometric data

consists of a collection of 3-D polyhedral objects that represent important anatomical structures

within the human brain. Information regarding each structure (name, tissue type, etc...) is a1so

stored with each structure in the atlas.

The segmentation procedure consists ofmatehing the partieular subject data set to the stereo­

taxie segmentation mode!. This process is approached as a feature detection (at a local level) and

registration (to the global model) problem which involves finding the transformation that best

maps volumetrie features of the given data set to those in the model brain volume. The method

uses the non-Iinear warping method described in chapter 5 to register a given brain volume with

the model, based on the estimation of local deformations derived from local neighbourhood cor­

relation of invariant features calculated from image data (Collins et al., 1992c, 1992a, 1994a).

Once the two data sets are in optimal registration, the contours defined in the model are directly

applicable to the transformed brain volume, since the intensity-based data and the polyhedral

data are co-extensive in the mode!. Conversely, the inverse transformation may be applied to

the stereotaxie segmentation model to outline structures back in the native data volume.
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3.2.2 Stereotaxy

The method for estimation of anatomical variability is based on the analysis of the differences

in mapping between homologous point pairs, mapped into stereotaxie space with both the linear

and non-linear transformation models. For example, a transformation al10wing only three dc­

grees offreedom to represent translations in the X-, y- and z-directions is not likcly to provide

much information other than how consistently subjects are positioned within the scanner. Trans­

formations a1lowing six degrees of freedom, with the three additional paramcters used to map

rotations about the coordinate axes, al10w alignment cf both position and oricntation of brain

volumes. Hence, measuremel1' of different structures based on homologous points al10ws anal­

ysis of size variability across a population. If an additional scaling parametcr is incorporatcd,

then the analysis of size variability can be normalized to a standard gross brain sizc. Notwith­

standing noise considerations, additional parameters in the transformation should yield bcttcr

fits of data to the model and a1low more specifie variability studies to be accomplished.

The following sections describe the stereotaxie coordinate system, the creation of thc seg­

mentation model, the automatic stereotaxie mapping procedure and final1y, the segmentation

procedure.

3.3 The stereotaxie eoordinate system

3.3.1 Talairach definitioü

The Talairach stereotaxie coordinate system (Talairach et al., 1967; Talairach and Tournoux, 1988)

is based on the identification of the line contained in the inter-hemispheric plane, passing through

the superior aspect of the anterior commissure (AC) and the inferior edge of the posterior com­

missure (PC): the so-called AC-PC line (see Fig. 3.2). The second axis is defined by a vcrtical

line in the midline plane, perpendicular to the AC-PC line, passing through the posterior margin

of the AC (VAC-line). The intersection of these two lines on the AC serves as the origin. The

third axis mns laterally through the origin, perpendicular to the AC-PC line and the VAC-line.
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The extent of the standard space is defined by the smallest bounding box that completely con­

tains the cortex. Talairach's normalized proportional grid is established on the given brain within

the bounding box. Il is divided into 12 sub-volumes: 2 divisions laterally (Ieft, right), 2 verti­

cally (above and below the AC-PC line) and 3 in the anterior-posterior direction (from posterior

limit to PC, from PC to AC and from AC to anterior limit). This piecewise linear transformation

wa~ an attempt to model non-linear differences between brains which would not be adequately

handled by simple linear rescaling along the orthogonal axes.

3.3.2 Methods for stereotaxie mapping

A number of different methods have been published to map a given data set into the Talairach

brain-ba~ed coordinate system (Fox et al., 1985; Friston et al., 1989; Evans etal., 1992c; Lemoine

et al., 199Ib). Manual methods used to transform brain volumes into the Talairach stereotaxie

space are based on the estimation of the AC-PC line and brain extents. Since the AC and PC

points are relatively close together (approximately 25mm apart) and difficult to identify reliably

even on MRI, significant errors can be introduced which are magnified at the level of the cortex.

Originally, Fox et al. (1985) inferred the location of the AC-PC line from that of the glabella­

inion (GI) line, visible on a lateral skull radiograph in combination with a CT-like transmission

scan acquired on the PET scanner. Friston et al. (1989) used a sagittal PET image to establish

this line directly. Owing to the difficulty of identification of the line from AC and PC alone when

the images are noisy, they used linear regression through the commissures and other points in the

midline plane. Our group (Evans et al., 1992c) uses a similar technique with MRI data, fitting 5

well-separated midline landmarks with a least-squares approximation to the AC-PC line on the

MR images, whieh were previously co-registered with a PET volume ofthe same subject (Evans

et u.'., 1989b; Evans et al., 199Ia).

The extents of the brain in the lateral and vertical directions are assumed to lie on the perpen­

dicular bisectors of the AC-PC line. While this approach is not strictly equivalent to the Talairach

bounding box definition, experience has shown that the extreme cortical edges often lie near the

bisector. The St.-Louis group (Fox et al., 1985) scale each slice to fit the corresponding atlas
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Figure 3.2: The Talairach stereotactic coordinate system.
These three images show a transverse (z=-I mm), sagittal (x=-9mm) and coronal
(y=Omm) slice through the Talairach atlas.
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slicc. Friston et al. (1991) use two ID pldStic transformations on each slice to map the edges of

the cortex to that of the atlas. In these last two methods, there exists a possibility that the stereo­

taxie mapping in not continuous in the z-direction, since the in-plane scale changes from slice

to slice without any vertical constraints. This is not the case with the implementation presented

here, the same x- and y-scale is used for the whole volume.

With a few exceptions (e.g. Lemoine et al. (1991b», most groups have avoided the awk­

ward piecewise linear approach of Talairach, preferring simply either linear or a true non-linear

mapping. A single affine transformation is used at the MN! to map data volumes into stereo­

taxie space. The present 9 parameter linear transformation can be separated into translation,

rigid body rotation and anisotropie scaling along preselected axes (the AC-PC line, the VAC-line

and the left-right lateralline). This model was selected since the Talairach space has tradition­

ally involved rescaling along the stereotaxie coordinate axes. Since only 9 parameters are used,

the transformation does not inc1ude a shearing (or off-axis scaling) term. Recently, Woods et

al. (l993a) have reported a 12-parameter algorithm which allows non-orthogonal scaling axes.

The inter-related issues of (1) the number of allowed degrees of freedom needed to adequately

capture the observable variance, (2) computational efficiency and (3) robustness are addressed

further in the discussion of chapter 4.

To summarize the manual stereotaxie mapping procedure used at the MN!:

1. Manually identify live mid-line landmarks: inferior margin of both genu and splenium

of corpus callosum, inferior margin of thalamus, superior aspect of cerebellum and the

occipital pole.

2. Use Jeast-squares estimation to lit AC-PC line to landmarks.

3. Identify anterior and posterior brain lirnits on the AC-PC line.

4. Identify brain height on vertical perpendicular bisector of AC-PC line.

5. Identify brain width from left and right extents of horizontal perpendicular bisector ofAC­

oC line.
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6. Resample brain volume into stereotaxie space using orientation and scaling dctermined

above.

3.3.3 Problems with the Talairach atlas

The Talairach coordinate system and atlas form the most commonly used frame of reference for

reporting cognitive activation stimuli (Fox et al., 1985). However, it is not withoutlimitations

for brain mapping. The atlas is the result of a detailed study of a single human post-mortem

specimen. The subject, a 60 year old right-handed European female, is considerably older than

the young normal subjects most often studied in in-vivo cognitive research. Also, the subject is

not necessarily representative of the average normal population, since an individual brain, even

though normal, may represent an extreme of normal variability. Moreover, while the atlas shows

transverse, sagittal and coronal planes, positional information is not always consistent between

orthogonal planes. Finally, sampling is only 4mm between slices.

The Talairaeh model uses an awkward piece-wise transformation in an altempt to reduce

anatomical variability. While this system works reasonably weil for structures near the origin

(AC) of the coordinate space such as the basal ganglia, its aceuracy decreases as distance l'rom

the origin inereases. As indicated by Talairach 1988, the errors can be particularly large for gyri

of the cerebral cortex, where it can reach magnitudes of l-2cm in the AP direction for the cen­

tral suleus, for example. This is due to both the limitations of the affine transformation as weil

as the signifieant amount of variation in human cortical morphology. Unfortunately, the atlas

contains no rigorous analysis of anatomical variability - especially important in cortex where

most activation foci occur.

Despite these practical difficulties, the Talairaeh coordinate system remains the gold standard

for anatomical interpretation of many cognitive functional activation studies due to the power of

the basic Talairach concept. However, the precise anatomicallocalization of focal activation de­

rived l'rom PET using the Talairach atlas alone may lead to over-interpretation of the results. For

example, Drevits et al. (1992) have pointed out that an activation foci l'rom an anxiety study was

associated with the tempon,l pole when using the Talairach atlas for anatomical interpretation.
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However, when matched MRIs were used, it was found that the activation corresponded to flex­

ion of the temporalis muscle due to jaw clenching during the study.

3.3.4 Automation of stereotaxie mapping

While validation studies in 37 MRI volumes of young normals show that manual estimation of

the AC-PC line by least-squares fitting is a robust technique (Evans et al., 1992c), the landmarks

must he selected manually. Besides being time-consuming, the method is highly dependent on

the quality of the software used to locate landmarks in the 3-D volume. Furthermore, another

problem exists with manual stereotaxic mapping methods. Even though most manual proce­

dures follow the Talairach definition for manual identification of the AC-PC line and extreme

Iimits of the brain volume, they differ on implementation details, as described above in section

3.3.2. Therefore, there are methodological differences as wel1 as subjective differences among

observers for the coordinate reported for a particular point of interest within the Talairach stereo­

taxic space. Standardization of methodology is a key factor in identifying a particular cerebral

location.

An objective, automatic technique is needed to address these problems. The registration

method presented in detail in chapter 4 achieves automatic registration of two brain volumes by

3-D cross-correlation between features extracted from the two data sets. The automatic stereo­

taxic mapping procedure applies this general registration technique, using an MRI atlas described

in the next section to serve as the target volume. The transformation recovered is applied to the

given data set to resample it within the stereotaxic space. This procedure is described in greater

detail in section 4.6 and is experimentally validated in chapter 7.

3.4 Stereotaxie MRI atlas

In this section, a model is described that is the first step in the evolution from the original single­

brain Talairach stereotaxic space (Talairach and Toumoux, 1988) to a voxel field operational
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space defined by the minimum variance frame that produces the maximal ovcrlap ofneuro-anatomical

labels across all structures. Since there is significant morphometric variability between individ­

uals (Steinmetz and Seitz, 1991; Evans et al., 1991b), the initial model was established from

241 MRI data sets from young healthy norma1s (age 23.4±4.0; 170 males; 71 females) (Evans

et al., 1992a), rather than using the brain from a single subjeet. These brain volumes are from

a data-base of MRIs of normal volunteers, acquired as part of an on-going brain mapping pro­

gramme at the MN!. The data sets were acquired on a Philips Gyroscan 1.5 Tesla superconduct-

ing magnet system using a multi-slice spin-echo acquisition, yielding 64 non-overlapped Tl­

weighted (TR=400ms, TE=30msec) 2mm thick image planes. Each slice is stored on a 256 x 256

matrix with 1 x 1 x 2mm voxels. The model was created in two stages, the second removing

sorne of the subjectivity involved when defining the first stage mode!.

Stage 1:

The first stage model is based on a voxel-to-voxel intensity average of aIl data sets. This was ac­

complished by registering the data sets to the standardized model space by manually identifying

the AC-PC line, the interhemispheric fissure and the brain extents using the method described

above in section 3.3.2 (Evans et al., 1993b; Evans etaI., 1992c). After registration, each individ­

ual MRI volume was then intensity normalized so that each volume had the same mean illtensity

and resampled on voxel grid parallel with the AC-PC, VAC and laterallines of the Talairach co­

ordinate system, with spacing of 1.34mm x l.72mm x 1.50mm in X, Y and Z directions. The

entire ensemble of resampled brain volumes was averaged to create the mean stereotaxic MRI

brain (see Fig. 3.3).

Ali major anatomical features were c1early defined in the average. The mean positions of pri­

mary fissures and sulci, e.g., central, occipito-parietal, inter-hemispheric, calcarine, cingulate,

sylvian, were weil-defined while the more variable secondary and tertiary sulci were less evi­

dent. The cingulate, occipito-parietal and calcarine sulci appear highly conserved (see Fig. 3.3­

c). The mean MRI also exhibits details not usually apparent on individual brain volumes, since

in regions near the origin of the stereotaxic space, the noise reduction due to image averaging
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Figure 3.3: The MNI stereotaxie eoordinate system.

These three images show a transverse (z=-I mm), sagittal (x=-9mm) and eoronal
(y=Omm) sUce through the mean MRI atlas, eorresponding to the Talairaeh atlas
slices shown in Fig. 3.2.
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outweighs the resolution loss caused by anatomical variability. For example, the dorsomedial

nucleus of the thalamus is visible and the slight contrast between the optic radiations and adja­

cent white matter is evident (Fig. 3.3-a). Comparison of left and right hemispheres, preformed

by reflecting one hemisphere about the midline of stereotaxie space and subtracting the images,

reveals some interesting features consistent with previous work (Geschwind and Levitsky, 1968;

Rubens et al., 1976; Witelson, 1977; Galaburda et al., 1978; Chui and Damasio, 1980). There

is c1ear evidence of left occipital and right frontal petalias, Le., anatomical asymmetries (le May

and Kido, 1978; Weinberger et al., 1982).

Stage II:

After initial validation experiments with the automatic stereotaxie transformation algorithm, it

was applied to reduce the impact of subjectivity in the choice of landmarks used to build the

initial model of Stage I. In the second stage, a new MRI atlas brain volume was created by au­

tomatieally mapping each brain into the standard coordinate system from its original position in

the native data base. After the required stereotaxie transformation was applied to 305 data sets

(239 males, 66 females, mean age 23.4 ± 4.1 years), each volume was intensity normalized and

then resampled, using tri-cubic interpolation, to a 256x256x 160 raster with voxel dimensions of

0.67mm xO.86mm x 0.75mm, resulting in a sharpened average MRI volume (experiments de­

scribed in chapter 7 show the automatie stereotaxie mapping procedure to be more robust than

the manual method used to create the initial MRI atlas). Figure 3.4 shows a c1ose-up view of the

stereotaxie MRI atlas.

Figure 3.5 shows the Talairach atlas overlaid on the mean MRI atlas. Overall, both data sets

fit each other quite weil, howeverthere exist some regions where the MRI atlas does not perfectly

match the Talairach atlas. For example, the area of the inferior frontal lobe is a few millimeters

lower on the Talairach than the mean MRI atlas, the cerebellar tentiorium is IAcm higher on

the Talairach definition; on the coronal view, the temporal lobes extend lower by 7-8mm on the

mean MRI atlas than on the Talairach atlas; the sylvian fissure is positioned slightly higher and

more posteriorly in the Talairach atlas than the mean MRI atlas. These differences arc duc to
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Figure 3.4: Close up of stereotaxie MRI atlas following Stage il averaging
procedure.
Two transverse slices through the stereotaxic MRI atlas at z=Omm (left) and z=­
!Omm (right). These images show detail not normally apparent on a single MRI,
but are brought out by noise reduction with image averaging. On the left can be
seen both the centro-medial (cm) nucleus and dorso-medial (dm) nucleus of the tha­
lamus. The connections between the putamen (Pu) and the thalamus (Th) can be
made out as weil. The increase in contrast-to-noise allows differentiation of white
matter tracts in the occipital lobe such as thefas/cu/us /ongitud/nalis super/or (fis).
The image on the right is positioned lcm lower, and is enlarged by 25%, compared
to the left. Here the red nucleus (m), substantia nigra (sn) and the superior colliculus
(sc) cao be seen.

45



•

•

nonnal anatomical variability in the Talairach brain. Even though the sE,Jject was considered

nonnal, it does not represent the average anatomy, since it contains structures that are different

from the mean brain created from over 300 subjects. These points must be kept in mind when

using only tl;.~ ";,alairach atlas to give a neuro-anatomicallocation for functional data obtained

from ether brains.

One could argue that the mean MRI-atlas does not fit the Talairach atlas because we did not

use the complete 12 component piece-wise transfonnation specified by Talairach. While this is

true, most groups (with the exception of Lemoine et al. (199Ib)) use a single affine transforma­

tion to map functional data into stereotaxic space (e.g., Fox et al., 1985 and Friston et al., 1989).

Consequently, the limitations described above apply for most brain-mapping applications that

use the Talairach atlas.

Ideally, this atlas should be defined in the minimum-variance frame described in section 3.2.

Unfortunately, this is not possible to determine without estimates ofneuro-anatomical variability

over a large number of data sets. However, the model described here will be used to acquire

this necessary infonnation in order to define the "best" coordinate system for stereotaxy, in a

data-driven fashion. Once defined, the MRI-atlas can be re-constructed in this frame, and al!

algorithms developed here re-applied with the new MRI-atlas. While this is beyond the scope

of this thesis, the methods and tools developed here will serve to estimate the neuro-anatomical

variability in a large number of subjects, and thus define the minimum-variance frame.

3.5 Summary

By establishing astandard anatomically-basedcoordinate system within the brain, Talairach formed

a powerful concept that allowed extemal neuro-anatomical atlases to be used to predict the loca­

tions of specific structures within the brain. More importantly, the transformation to the stereo­

taxic space permits the analysis of anatomical variability in a well-define coordinate system.

In contrast to the single-brain atlas, the average MRI brain serves as a large n-brair., low res­

olution atlas, where the bJurring in the atlas serves as a visual indicatorof morphometric variabil-
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Figure 3.5: Mean MRI atlas with superposed Talairach atlas.
These three images show a sagittal (x=-llmm), coronal (y=15mm) and transverse
slice (z=18mm) through the mean MRI atlas with the Talairach atlas overlaid on il.
Even though the fit between the two atlases is good overall, there exist local differ­
ences due to normal non-Iinear neuro-anatomical morphological variability in the
single brain used by Talairach.
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ity and a warning against over-interpretation of functional data in anatomieal terms. This data

base is a first step in the construction of a 3-D probability map of gross neuroanatomy across

the normal population. The average brain volume may be used not only as ar, atlas, but this new

MRI atlas replaces the previous one and serves as a target volume for the auttlmatie stereotaxie

mapping procedure.
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Chapter4

Linear registration:theory and

implementation

In both diagnostic and research applications, the interpretation of magnetic resonance (MR) im­

ages of the human brain is facilitated when different data sets can be compared by visuaI inspec­

tion between each other or to equivaIent anatomicaI planes of an atlas. Quantitative anaIysis

with pre-defined atlas templates often requires the initiai aIignment of atlas and image planes.

Unfortunately, the axial planes acquired during separate scanning sessions are often different in

their relative position and orientation, and these slices are not usuaIly coplanar with those in the

atlas.

This chapter describes the development ofa completely automatic method to register a given

volumetric data set to another based on multi-scale, three dimensionaI (3-D) cross-correlation.

Once the data set is resampled by the transformation recovered by the aIgorithm, slices from the

target volume can be directly super-imposed on the corresponding slices of the resampled vol­

ume allowing direct voxel-to-voxel comparisons. When the target volume is an atlas, the atlas

slices can be overlaid on the resampled data, to be used as an aid in neuro-anatomicaI identifi­

cation or as a basis for morphometric anaIysis.
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4.1 Introduction

Many neurological studies of a single subject require the precise superposition of tomographic

images from the same modality (intra-subject intra-modality registration). This may be nec­

essary for clinical diagnosis, therapy planning, detection of anatomical or functional changes

from previous scans and outcome evaluation. Intra-subject intra-modality registration can also

be used to detect subject motion between frames during the course of a long PET acquisition.

Intra-subject inter-modality registration is usefui for integration of complementary information

from different scanners. Forexample, the analysis offunctional data from PET is enhanced when

related to the underlying anatomy as defined by MR or CT where regions of interest defined on

the anatomical scan are overlaid on the functional data. Both MR and CT can be used together for

planning skull-base surgery where CT shows bony structures and MR soft tissues as in the paper

by Hill et al. (1991). Applications of inter-subject intra-modality registration include the assess­

ment of morphometric variability over a large number of subjects (Steinmetz and Seitz, 1991;

Evans et al., 1992a), or the analysis of subtle cognitive activation foci measured from cerebral

blood flow (CBF) volumes derived from positron emission tomography (PET) within a standard­

ized space (Fox et al., 1985; Fox et al., 1988; Evans et al., 1992c)t. Direct measurement and

comparison on a pixel-by-pixel basis is possible only when the data sets are properly registered.

Registration consists of determining the transformation that best maps corresponding fea­

tures from one data set into another. The term best depends on the definition of a similarity cri­

terion between two data sets and on the number of degrees of freedom allowed for the mapping

function. Once found, the transformation can be used to resample the first data set in the coordi­

nate space of the second, thus aligning them geometrically so that corresponding morphological

features of both data sets are assigned to the same spatial location. In the context of this thesis,

registration is the first step in the segmentation procedure, mapping features of a segmentation

model onto the data set.

1Note that even though high resolution imaging techniques such as fMRI make it possible ta measure activation

within a single subject, it will slill be necessary ta compare results among individuals in arder la fully understand

normal cognilive funclion within a population.
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The proliferation of registration algorithms in the literature is due, in part, to the selection

of different transformations (e.g. rigid body (Sibson, 1978; Marrett et al., 1989a), piece-wise

linear (Lemoine et al., 1991b) or non-linear (Bookstein, 1989; Evans et al., 1991b», the match­

ing of different features (e.g. principal axis (Alpert et al., 1990), homologous points (Evans et

al., 1989a; Evans et al., 1991a; Hill et al., 1991), points to surfaces (Pelizzari et al., 1989), ho­

mologous surfaces (Jiang et al., 1992), corresponding high-curvature lines on surfaces (Gueziec

and Ayache, 1992a», the modalities registered (e.g. MRI-MRI (Collins et al., 1994b), PET-PET

(Minoshima, 1993; Friston et al., 1991; Woods et al., 1992), MRI-CT (Hill et al., 1991), MRI­

PET (Evans et al., 1989a; Evans et al., 1991a; Pelizzari et al., 1989; Woods et al., 1993a; Alpert

et al., 1990», and the measure of the registration error that was used to determine the best match

(see van den Eisen et al., 1993 or Evans, 1993 for comprehensive reviews.) In general, intra­

subject image matching is non-trivial because ofdifferent volume imaging parameters (e.g. slice

thickness, pixel size, inter-slice gap, angulation, and resolution) and different patient positioning

during the separate scanning sessions. The problem is even more difficult, both to define and to

solve, for inter-subject registration because of dissimilarity in brain sizes and shapes.

The registration method presented in this chapter is applicable to both intra- and inter-subject

intra-modality registration2 • The a1gorithm uses an iterative optimization procedure to minimize

the difference between image intensity features of the first data set and the second. The fol1ow­

ing sections describe 1) the transformation model used to map one data set on to another (§4.2) 2)

the features extracted from the data (§4.3), 3) the similarity function used to measure the match

(§4.4), and 4) the optimization method used to find the transformation model parameters (§4.5).

After the general methodology is presented, the automatic stereotaxic mapping procedure is de­

scribed in section 4.6. Practical aspects are considered and the procedure is compared to two

other automatic registration procedures in section 4.7.

2While the algorithm is also applicable to intra.subject inter-modality registration (such as MRI-PET), this as­

pect does not fall within the scope of anatomical segmentation as proscribed for this thesis, and thus will not be

examined further.
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• 4.2 Transformation model

Either linear or non-linear transformations can be used to map the coordinate system of one data

set into another. The linear case is addressed here, white non-linear transformations are dealt

with in the following chapter.

Linear transformations for volumetrie registration are either rigid or affine, where the former

is a subset of the latter. A transformation is called rigid if the distance between any two points in

the first volume is preserved in the transformed coordinate system, as is the case when moving

a rigid body in space. This transformation can be decomposed into a translation component to

center one data set on the other and a rotation component to align their orientations. Mirror­

refleetions can also be included in this definition of a rigid-transformation. However, for the

practical task of matching 2 brain data sets, reflections are not used.

The distance constraint is dropped for affine transformations. However, straight lines in one

data set continue to be mapped to straight lines in the other. Also, parallellines remain parallel in

the mapped volume. The affine transformation can be decomposed into translation and rotation

as before, with the addition ofscaling and shearing. Using matrix formulation and homogeneous

coordinates, a point (x, y, z, 1) is mapped to the point (x', y', Zl, 1) using the homogeneous co­

ordinate transformation:

(x', y', Z', 1) = [A](x, y, z, 1)'. (4.1)

Where A is a 4 x 4 affine transformation matrix containing 12 independent elements and results

from the concatenation of 4 matrices, representing translation, rotation, scaling and shear:

•

A = [Sh][Sc][R][T].

The matrices T, R, Sc, Sh are defined as follows:

1 0 0 tx

0 1 0 ty
T=

0 0 1 tz

0 0 0 1
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• where tx is the translation in x between the centroid of the two volumes in the 'real-world' co­

ordinate system, while ty and tz are the corresponding translations in y and z.

R = [0][~]['1'l

where
1 0 0 0

0 casO sinO 0
0=

0 -sinO casO 0

0 0 0 1

casrl> 0 -sinrl> 0

0 1 0 0
~=

sinif; 0 casrl> 0

0 0 0 1

(4.4)

(4.5)

(4.6)

cos1/; sin1/; 0 0

-sin1/; cos1/; 0 0
'1'= (4.7)

0 0 1 0

0 0 0 1

and the angles 0, ri> and 1/; are clockwise rotations around the x-, y- and z-axes, respectively.

The scaling matrix S is defined by:

sx 0 0 0

0 sy 0 0
Sc= (4.8)

0 0 sz 0

0 0 0 1

where sx, sy and sz are scaling factors along each of the axes.

•
Sh=

100 0

a 1 0 0

b cIO

000 1
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where a, b and c are the three free parameters left to define the shear matrix Sh. The shear pa­

rameters convert a rectangular parallelepiped into an oblique one.

In practice, the number of parameters (between 6 and 12) actually used to characterize the

transformation is dependent on the type of registration required. For most cases of intra-subject

registration, one can assume that the structure to be matched, the brain in this cuse, hus not

changed size or shape. Therefore a rigid-body transformation consisting of only translution und

rotation is necessary to achieve registration. This transformution requires the estimation of only

six parameters (three translations tx, ty and tz, and three rotations 0, ri> and 'I/J).

More parameters are necessary to account for the increased degrees offreedom in inter-subject

registration. In the simplest case, a total of seven transformation parameters wouId result from

the addition of a single uniform scaling parameter to account for different brain sizes (sx = sy =

sz). For most of the work described here, anisotropic orthogonal scaling along the coordinate

system axes has been chosen (in the spirit of the Talairach coordinate system), yielding a total

of nine parameters.

Other authors use ail 12 parameters, including shear or, equivalently, non-orthogonal or off­

axis scaling (Woods et al., 1993a). In principle, the extra parameters should permit a better fit.

Experiments in chapter 7 show that for a selected set of landmarks, in practice there is no signif­

icant decrease in the registration residual given the increased fitting power of the transformation

with three additional parameters.

4.3 Feature detection and scale space

Most registration algorithms begin by extracting salient features from the image data that will

be used in the evaluation of the matching process. This extraction is the goal of feature detec­

tion algorithms and is usually accomplished by convolution of an operator with the image data.

Local peak values in the convolved array indicate the presence of structure similar to the desired

feature and can be used to compare one image to another. There are a large number of ad hoc

features-detectors described in the literature that could be chosen for evaluation in the similarity
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Figure 4.1: Partial derivatives of rotated object
Both images show the partial derivative, in the horizontal direction, of the same ob­
ject rotated by 45 degrees. One can easily see that the upper and lower vertex of the
ellipse does not have the same intensity signature, and thus does not have the same
feature values, in the same region of the rotated object. Hencc, this feature is not
orientation invariant and cannot be used for registration where similar regions are
matched together because they have similar feature values.

function. For example, edge enhancement was tirst accomplished with simple mask operators

by Roberts (1965). The Sobel operator is slightly more complex, as it was designed to approxi­

mate the discrete gradient function in the vertical and horizontal directions (Duda and Hart, 1973;

Levine, 1985). Bajcsy et al. has used Hueckel edge detection basis functions (Hueckel, 1973)

in their papers published in 1983 and 1987, and then used Hermite polynomials in (Bajcsy and

Kovacic, 1989). Until recently, there were no fundamental grounds to select one of these op­

erators over another. However, there are sorne constraints on the volumetric features that limit

the choice. The features must be insensitive to small perturbations in shape and robust to noise.

Most importantly, the features detected must be intrinsic to the object, and dependent neither on

the position nor on the orientation of the object within the image. For exarnple, the feature de­

tected at a given point on the object should have the same value if the object is moved or rotated

in the image. In Fig. 4.1 the partial derivative in the horizontal direction for an ellipse is shown.

When the ellipse is vertical, the detected feature is equal to zero at the superior or inferior point.

However, on the rotated ellipse, the superior pole is almost entirely bright and the inferior pole

dark. Thus, this feature is not intrinsic to the object, but dependent on the orientation of an ob­

ject's edge with respect to the image coordinate system.

An additional constraint is imposed on the features used for registration. In order to minimize
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problems associated with local minima in the solution hyper-surface, the optimization algorithm

used to find the registration parameters is performed in a hierarchical fashion so that gross struc­

tures are used to begin the registration, and smaller details are included in processing as nceded

to refine the fit. In this way, the possibility of the optimization procedure setlling into a local

minimum is lessened. Therefore, features must be extracted from the data in a multi-scale man­

ner, where seale corresponds to its intuitive meaning of size. In order to observe an image at

different scales, a set of spatially tuned operators is required. Recently, a construct termed .l'cale

spaee was developed by Koenderink and van Doom (1987) and is defined "as a family of images

generated in a continuous manner from a given image by means of a convolution with a suitable

spatial kernel of size determined by a one-dimensional parameter an (Llacer et a/', 1993). The

absence of a priori geometrical knowledge imposes a number of constraints on the kernel used

in the construction of the scale-space. The operator must be:

• Iinear: to allow for superposition of multiple input signaIs.

• spatially shift invariant: there must be no preferred position in the field of view for fea­

ture detection, thus allowing convolution of the operator with the image for detection of

the feature.

• rotationally invariant: there must be no preferred orientations or directions for feature

detection as there are for simple edge detectors such as Sobel or Hueckel operators that

prefer horizontally or vertically oriented edges.

• seale invariant: there should be no preferred scale.

If the operator does not satisfy these constraints, then the feature detected at a particular point

on the object will not necessarily have the same value when the object is rotated or moved in the

image. Since abject registration is achieved by maximizing feature similarity, it is imperative

that corresponding regions of the two objects have similar values. Convolution with an isotropie

Gaussian kemel satisfies these requirements, where the a of the Gaussian operator is indicative

of the spatial scale (tar Haar Romeny et al., 1991; Koenderink and van Doorn, 1987). In this
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thesis, full-width-half-maximum (FWHM= 2.36a) is used as the measure of spatial scale. Let• ~ l '(')2G(x a) = e-' ..
, V21ru2 '

(4.10)

be the Gaussian operator and let La (x) be the 3-D image intensity function. Then, the convolu­

tion, represented by *, of La with Gis:

L(x, a) = {La *G(.; a)} (x, a).

Since the Gaussian operator is separable, we can write:

L(x, a) = {((La *Gx(.;cr)) *Gy(.;a)) *Gz(.;a)}(x,a).

(4.11)

(4.12)

where Gx, Gy and Gz are the ID Gaussian kemels along the x, y and z axes. This simplifies the

processing of the data and is described below in the section on practical considerations.

Convolution with this operator is well-behaved. There is no introduction of sporadic detail

with increasing blurring, i.e., no new details appear at a given scale ifthey did not exist at previ­

ous smaller scales. Unfortunately, convolution with the Gaussian kernel by itself is not enough

for a complete local description of the image, since convolution with different values of a will

simply result in blurred copies of the original data. The local structure needed for both registra­

tion and segmentation can be extracted using differential operators. Scaled partial differentiation

in a cartesian coordinate system is weil defined to be the convolution of the original data with

the corresponding partial derivative of the zeroth-order Gaussian at that scale:

(4.13)

•

Fortunately, the differential Gaussian operators are well-behaved even at small scales; the spatial

inte-gration inherent in the convolution more than compensates for the noise amplification that

usually accompanies differentiation of noisy images.

4.3.1 Invariant features used

Both registration and segmentation are dependent on invariant features (as described above).

Two features were selected for evaluation in the sirnilarity function. The first is the blurred in­

tensity: a zeroth-order invariant feature. The value of 8L/8x is inherently dependent on the
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• selection of the coordinate axes, and is therefore not an invariant feature. Fig. 4.1 shows the

horizonal derivative for the same object, rotated by 45 degrees. The apex of the ellipse does

not have the same intensity signature, because 8L/ex is orientation dependent. However, the

magnitude of the 3-D intensity gradient is independent of the position and orientation of the co­

ordinate axes and it is used as the first order invariant feature. This feature is defined as:

IVI = J(8L/8x)2 + (8L/8y)2 + (8L/8z)2 (4.14)

These two features, blurred intensity and gradient magnitude, can be calculated at every voxel

in the 3D image volume and were found to be sufficient for linear registration. Figure 4.2 shows

slices through the original data, and the features extracted at the FWHM=8mm scale.

Since the Gaussian blurring is defined by the scale parameter a, the operator is not scale

invariant. Therefore, the features must be calculated anew for each scale of interest in the reg­

istration problem. This will be described in more detail below.

4.4 Similarity function

In the method presented here, registration is achieved by identifying the affine transformation T

that maximizes the similarity between features derived from the voxels in the two data sets, V"

and Vn , the volumetrie data for the subject and the target model, respectively. T is the concate­

nation of 3 coordinate transformations: from subject-voxel-to-world in the subject, from world­

to-world for registration, and from world-to-target-voxel to map a point from the subject into the

target model volume:

T = S-lAM, (4.15)

•

where "world" corresponds to the real world coordinates of the source or target objects. Matrices

Sand M define the known world-to-voxel coordinate system mapping for the subject and model,

respectively, and A is the required (or unknown) world-to-world affine registration matrix.

Like the other registration procedures, (e.g., Rizzo et al. (1991)), correlation is used as a

measure of goodness-of-fit between the transformed volume and the target volume. At a given
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Figure 4.2: 8mm features used for matching
Tomographie planes through the volumetrie features ofa single data set at a seale of
FWHM=8mm . On the top row from left to right are sagittal, eoronal and transverse
sliees through the original data. The middle row shows the same sliees blurred with
a 3-D Gaussian kemel. The last row sh(;ws the eorresponding gradient magnitude
data.
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• scale step, the correlation value is evaluated on a set of voxel positions, 1:-, organized on a 3-D

cubic lattice, with spacing between each lattice point equal to half of the FWHM distance of the

current scale.

The spacing between lattice points used to sampIe the two data sets must be sufficiently small

to avoid aliasing artefacts. These errors are especiaily evident when examining the shape of the

correlation function in the neighbourhood of the correct transformation. When spacing is too

large, the objective function is not smooth through the region of pammeter space near the best

transformation. Moreover, the function does not monotonically decrease 'towards the correct

answer, but instead has large discontinuous jumps in value as Olle npproaches the correct value

for the given parameter.

Let xbe an element of 1:-. The points used to calculate the cross-correlation are those that

are within the volume of the subject's data set and that map throllgh Tinto unmasked voxels in

the model volume; i.e.,

(4.16)

The normalized cross-correlation value, R, between the two volumes, Vs and V", for a given

transformation T is defined:

R(V V . T) _ L::ëEC f(V., x) f (V", ,T . x)
., "', - (" f2(V ~))I-(" f2(V T ~))I-'LJief:. s, X :.1 LJiet:. m,' X :.1

(4.17)

•

where f(V, x) is the interpolated feature value from the volume V at voxel position x, and the

summation is done over ail elements xE L R takes on a maximum value of 1.0 when the two

volumes are in perfect registration. In the registration algorithm, this function is evaluated at

each step of the optimization procedure described in the following section.

4.5 Optimization

The 3-D image registration task is set up as an optimization problem to identify the required

transformation while minimizing the computational complexity usually associated with an ex­

haustive grid search approach. The optimization is performed at different spatial resolutions to
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minimize the problems associated with local minima in the solution hyper-surface, starting with

very blurred data and increasing detail at each step by using less blurred images. This is simi­

lar to pyramid techniques where the optimal solution for the match at one level is passed down

to the next (more complex) level (e.g. Pizer et al., 1988, Kalvin and Peleg, 1989, Sokolowska

and Newell, 1986). The following sections describe the optimization at one scale step (§4.5.l),

the starting conditions (§4.5.2), the selection of scale steps used in the optimization (§4.5.3) and

registration strategy (§4.5.4).

4.5.1 One scale step

At each step in decreasing scale, the optimization procedure refines the transformation param­

eters for registration of the source volume onto the target. A simplex multi-dimensional opti­

mization procedure is used to maximize the normalized cross-correlation value (eq. 4.17) of the

blurred intensity volume (the zeroth-order invariant feature) at the eurrent scale. The resam­

pling process used to caiculate the correlation value employs tri-linear interpolation on super­

sampled data to minimize sampling artifacts (the volumes have an imposed Gaussian blur, with

a FWHM larger than the 2 mm -sized voxels used to represent the volumetrie features).

The registration procedure can provide up to 12 updated resampling parameters (three scales,

three rotations, three translations and three shears) that are used to optimize A, and thus optimize

Tin eq. 4.15. There are two benefits obtained by posing the optimization in terms of the actual

transformation parameters instead of in terms of the elements of the transform matri;:. The first

is that the type of transformation can be specified easily, and only the number of parameters

required for its definition need be optimized, thus achieving a savings of C:::PU time and reducing

the possibility of error due to the more complex hypersurface of the objective function of ail

12 parameters of an affine transform. The second benefit is that the transformation paranleters

are nearly orthogonal in the multi-dimensional optimization space when the center of gravity of

the transformed volume is used as the center of rotation and scaling, e.g., a small change in the

rotation parameters does not require a complete re-optimization along the scaling or translation

axes.
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4.5.2 Starting conditions

The optimization procedure requires an initial estimate of the transformation parameters that are

to be optimized. The better the estimate, the faster the optimization procedure will converge.

In order to maintain the fully automated characteristic of the registration procedure, a principal

axis transform, similar to that described by Alpert et al. (1990), is used to determine the start­

ing parameters for the optimization. This automatic procedure eliminates the need for any user

intervention.

Aweighted principal-axis method is used to calculate the covariance matrix and the center of

gravity of the blurred intensity feature volumes that are used in the first scale-step optimization.

The rotation angles are extracted from the principal axis vectors in order to establish the approx­

imate transformation parameters. In cases of partial volume coverage (e.g, where the scanned

volume covers only a part of the brain), only the centers of gravity are used to establish the initial

transformation and the rotation parameters are set to zero since they cannot be reliably extracted

from the covariance matrix.

4.5.3 Scale selection

A discrete image contains features with a limited range of scales. The smallest or inner scale is

bounded by the pixel size and imaging point spread function, and defines the finestlevel ofdetail

(or highest frequencies) that can be represented in the image. Similarly, the largest or outer scale

is bounded by the field of view and limits the size of gross structures (or lowest frequencies).

When extracting characteristic features from data, the proper scale for measurement must he

deterrnined, since each feature is defined by an inherent scale. Traditionally, a factor of 2 is used

to step through scale space, starting at the original pixel size and sampling at 2, 4, 8, 16 and 32

times the original pixel size.

Which ofthese scales should be used to drive the registration proccss? With a typical inplane

pixel size of Imm, the resolution of the MRI image is approximately 2.3mm as measured by the

FWHM of a Gaussian approximation to the imaging point spread function. Slîce thickness and
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spacing determine the resolution out-of plane, yielding out-of-plane resolutions of 4.7 to 7mm

for the data used in this thesis. These values fix the lower limit for the inner scale.

Data blurred to have isotropic resolution of 32, 16 and 8 mm were used sequentially to cal­

culate the multi-scale registration. We found that the most blurred data could be eliminated from

the procedure without penalty. Therefore, data blurred to the FWHM=16 mm scale is use to start

the registration with the principal axis transforrn. The first optimization process used the ~ame

data. When the optimal solution is obtained for the FWHM=16 mm scale, it is used as a start­

ing point for the same process calculated with the blurred intensity feature volumes at FWHM=8

mm scale (l7 = 3.4 mm ).

4.5.4 Registration strategy

Other authors (e.g., Pratt, 1978, p557 ) have remarked that correlation of blurred intensity sig­

nais provides relatively poor discrimination between objects of different shapes, but of similar

size or energy content. This has also been found to be true here, since ending the optimization

at the 8mm FWHM scale shows a tendency for the angulation about the z-axis to be biased

by approximately 4 degrees, misaligning the longitudinal fissure in the transverse plane and the

z-scale was over-estimated by as much as 20% in sorne cases. This over-estimation occured

when the source volume was smaller in the z-direction than the target. The optimizatioll proce­

dure compensated for the missing data by stretching the source volume in the z-direction.

A plot of the objective function verses parameter value for correlation of blurred intensity

volumes shows a very fiat peak in the region of the correct value for the transformation parameter

(see Fig. 4.3). The flatness makes it difficult for the optimization procedure to quickly reach the

correct answer. In comparison, the peak based on correlation of the gradient magnitude at the

same scale is much sharper, making it easier for the optimization to arrive at the right answer.

With this in mind, one more refinement was added to the optimization process. The result of

the FWHM=8mm blurred intensity fit is used as the starting point for optimization using gradient

magnitude volume (first-order invariant feature) at the same scale. Since this feature emphasizes
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Figure 4.3: Comparison of image intensity vs gradient-based fitting.

These graphs show the correlation value (vertical axis) plotted against parameter er­
ror for blurred intensity (solid line) and gradient magnitude (dotted line). Seventeen
data sets were deliberately mis-registered. varying one parameter at a time. The ob­
jective function based on blurred intensity shows almost no deviation
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boundaries between tissue types and is less sensitive to low frequency variations in absolute in­

tensities, it makes the algorithm more robust when dealing with data sets where image sensitivity

is not constant across the entire object due to radio-frequency inhomogeneity during the image

acquisition.

In summary of the registration process, the optimal solution obtained at each step is used as

input to the next, where it is refined. Both intensity and gradient magnitude features are used:

1. calculation of image features (for FWHM=16 and FWHM=8mm).

2. principal axis transformation on FWHM=16 mm intensity volumes.

3. optimization on FWHM=16 mm intensity volumes.

4. optimization on FWHM=8 mm intensity volumes.

5. optimization on FWHM=8 mm gradient magnitude volumes.

The lineartransformation does not become significantly more accurate by continuing to FWHM=4

or 2 mm scale. This is due to non-linear morphometric variability which limits the precision of

the transformation recovery to that found at 8mm.

4.6 Automatie stereotaxie transformation

As noted in the introduction of this chapter, the use of a stereotaxie coordinate space addresses a

problem common to studies that involve inter-subject comparisons between large numbers of

data sets, where it is necessary to compare many subjects, regardless of the size, position or

orientation of the original volumetrie data set. This need is most evident in the assessment of

morphometric variability over a large number of subjects (Evans et al., 1992a; Steinmetz and

Seitz, 1991), or the analysis of subtle cognitive activation foci measured from cerebral blood

tlow (CBF) volumes derived from positron emission tomography (PET) (Fox et al., 1985; Evans

el al., 1992c). The registration technique developed in this chapter may be used to automate the
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stereotaxie transformation procedure, however two additional steps are required to ensure robust

estimation of the transformation:

1) Ideally, the matehing procedure ealculates the correlation of similar features betwcen the

two data sets to determir.e the registration transformation. Since the resolution of the target MRI

brain model is lowcr than an individual MRI volume because of the inherent blurring in the aver­

age due to morpliometric variability, the individual data sets arc pre-blurred using a 3-D smooth­

ing kemel. A 6mm FWHM isotropie Gaussian blurring kernel was used, bceause initial munual

estimates of anatomieal variability indieated values of 6-7mm (Evans et af., 1991b).

2) The existing correlation technique identified the best transformation for brain plus sculp,

which will someümes bias the overall scale in the resulting transformation when a subject has u

thicker Oi" thinner skull than the average or other errors introduced by bright signais from fut in

the scalp in sorne patients. Since it is the optimal overlap of eorresponding brain voxcls that is of

interest here, a brain mask was manually defined in stereotaxie space and added one more step to

the multi-resolution correlation procedure. The best fit at the 8 mm seale is used as the sturting

point for another optimization procedure ealculated at the same scale, but using only voxcls that

fall within the brain mask.

In summary of the registration process, the optimal solution obtained at caeh stcp is used as

input to the next, where it is refined:

1. pre-blur data with FWHM=6.0mm (<7 = 2.55mm) kernel.

2. extract features from data with kernels of FWHM=16 and 8mm .

3. principal axis transformation on FWHM=16mm intensity volumes.

4. optimization on FWHM=16mm intensity volumes.

5. optimization on FWHM=8mm intensity volumes.

6. optimization on FWHM=8mm intensity volumes with brain mask.

7. optimization on FWHM=8mm gradient magnitude volumes with brain mask.
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The experiments in chapter 7 show that this completely objective automatic technique has

accuracies similar to that of landmark-based registration, or surface to surface matching tech­

niques, while having the additional advantage that explicit manual intervention is not required

to identify such points or contours.

4.7 Discussion

4.7.1 Practical considerations

Blurring of the intensity volume is achieved by 3-D convolution of the data volume with a 3-D

Gaussian kernel. There are a number of methods that have been applied to calculate the blurred

intensity and gradient magnitude features for a given scale such as recursive Iinear filtering (Monga

and Deriche, 1989), 3-D spline interpolation, or local Gaussian filtering using a small finite ker­

nel (such as a 7 x 7 x 7 convolution kernel). Since non-zero order differentials are very sensitive

to noise, we have decided not to blur the data by convolution with a small finite kemel (say 53

or 73 voxels) or by spline interpolation using a small area of support. Instead, multiplication in

the Fourier domain is used as the transform equivalent of convolution. A 3-D FFT algorithm

(Press el al., 1988) is applied to the data volume which is then multiplied, voxel-by-voxel, with

the 3-D FT of a Gaussian kernel centered at the origin of FT space. An inverse FFT is applied

to the product, resulting in a blurred intensity volume. The partial derivative volumes are also

calculated in the Fourier domain, multiplying corresponding data rows of the FT of the blurred

data by - 211'i before taking the inverse transform. Since blurring and differentiation are com­

pleted in the Fourier domain, the long tails of both the Gaussian and derivative kernels can be

maintained without additional computational cost as would be the case if the convolution were

done in the spatial domain. AIso, ringing artefacts are avoided since neither kernel is truncated

to be smaller than the number of samples in the data volumes.

The original MRI data does not have isotropic resolution prior to convolution, usually being

poorer in the z-direction. Therefore, in theory, a 2-D in-plane Gaussian blurring should be ap-
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plied to restore isotropy before convolution with the 3-D kernel. However, this is a moot issue,

since the blurrings add in quadrature and the out-of-plane resolution is still smaller than the ker­

nel sizes used here. In future, as the resolution of acquired data improves, this will no longer be

a problem.

4.7.2 Multi-resolution methodology

There are two benefits achieved using the multi-step,multi-resolution strategy. 1) The multi-step

process lessens the likelihood of settling into a local minimum in the optimization proccss. An

approximate solution is found at the first step and it is refined in each sequential step. 2) The

multi-step multi-resolution approach offers a substantial computational savings. While there

was an eight-fold increase in time required to calculate the correlation coefficient when pass­

ing from one scale level to the next, the linear transformation can be recovered using the multi­

resolution method in less than one quarter the time taken when starting at the highest resolution

level (where the solution found was not always correct beeause of local minima). At its current

un-optimized state, the routine requires approximately 30 minutes on an SOI Indig02 Extreme,

a 60.5 SpecFP Unix machine, to calculate the features and register a specifie volume into stereo­

taxie space.

4.7.3 Relation to other registration techniques

Other research studies of 3-D intra-modal registration have employed different objective func­

tions and matching strategies. In this section the work of two algorithms of direct relevancc to

the present work are discussed in detail. The work of Woods et al. (1992, 1993b, 1993a) and

that of Minoshima et al. (1992) is described and then compared to the methods developed here

on the basis of 1) the features used, 2) in the objective function, 3) the parameters used in the

fitting model and 4) the optimization procedure used to calculate the result.

Woods et al. (1992) developed an algorithm that achieves six-parameter (three translations,

three rotations) registration of PET data by minimizing the variance of the ratio of one image to
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the other on a voxel-by-voxel basis. This method assun:es that voxel values in !he two datu sets

are related by a single multiplicative factor when registered. A threshold is used to eliminute

zero-division crrors and to restrict voxels considered to those within the brain volume. It is not

clear how the level of this threshold affects the sensitivity of the matching.

An innovative modification to the algorithm allows PET-MRI registrution, where pixels arc

grouped based on MRI intensity value, and the variance is calculated for euch group und the

weighted sum of the group variances is minimized (Woods et al., 1993a). However, non-trivial

manual intervention is required to edit <\nd remove the non-brain regions l'rom the MRI data,

rendering the procedure semi-automatic at present. Inter-subject MRI-MRI registration hus been

accomplished by increasing the number of transformation parameters l'rom 6 to 12 (Woods et

al., 1993a).

Like others, (Kapouleas and Kulikowski, 1988; Brummer et al., 1991; Allain et al., 1992),

Minoshima et al. (1992) have designed a two stage registration process that begins by identify­

ing the inter-hemispheric plane. The procedure finds the plane, defined by two rotation angles

and a lateral translation, that maximizes the number of sign changes (or zero-crossings) in the

subtraction of the mirrored left side l'rom the right. In a second step, the volume is aligned into

stereotaxic space using empirical rules to automatically locate four points along the AC-PC line

(Minoshima, 1993). These rules are dependent on the PET tracer distribution, but arc appropri­

ate for CBF images.

Features: Both Woods and Minoshima calculate their objective functions based directly on

the intensity values in the original image. The technique presented here calculates invariunt fea­

tures l'rom the images using both blurred image intensity and gradient magnitude. Our routine

has been found to be more robust using these two features than when using intensity alone when

dealing with partial volume coverage or with data sets affected by radio-frequency (RF) inho­

mogeneity artefacts (see experiments in chapter 7.
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Objective function: The technique of Woods minimizes the variance of the voxel-to-voxel

ratio. That of Minoshima maximizes the number of zero-crossings and Ihis method maximizes

the correlation value.

Fitting parameters: The method presented here, and that of Minoshima, use a 9 parameter

transformation (3 translations, 3 rotations and 3 scales) to map a brain into stereotaxie space.

Woods et al. use a 12 parameter affine fit, where three more parameters allow off-axis scaling.

ln principle, the extra parameters should permit a better fit, unless the noise characteristics negate

the advantage of the extra parameters.

The objective function used here does not require the difference in overall image intensity to

be modeled as an additional separate parameter, thus simplifying the optimization. This feature

is similar to the approach of Woods et al. , but differs from that of Minoshima and from other

approaches that attempt to minimize the summed absolute differences in pixel intensities.

Optimization procedure: Minoshima et al. use a dual-level grid search technique. A global

coarse search is used first and is followed by a finer step adjustment of the parameters in the

neighbourhood of the initial transformation. Woods et al. first used a derivative-based tech­

nique where the parameter with the largest magnitude first derivative is adjusted at each iter­

ation (Woods et al., 1992; Woods et al., 1993a). In their newer method (Woods et al., 1993b),

new values are calculated for ail parameters on each iteration. Woods also uses a hierarchical

technique, starting with data samples spaced at every eighty-first voxel within the volume. Af­

ter the initial convergence, the resulting parameters are used to restart the algorithm sampling

every twenty-seventh voxel, then every ninth voxel, every third voxel and finally every voxel of

the data set. Our optimization is achieved in a hierarchical multi-scale, multi-resolution strategy.

Using recursive refinement, the optimization procedure is applied to data at different resolutions,

beginning with very blurred data. The result is used as a starting point for a new optimization

using lef,s blurred data.

While ail methods use multi-Ievel search techniques, the two former methods employ sub-
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sampling to define coarser grids but do not impose blurring kernels on the original data, and

therefore do not use a weil-behaved (linear, invariant (tar Haar Romeny et al., 199!» multi-scale

approach as described previously. Noise in the data may cause spurious detail within the sub­

samples, adversely affecting the optimization routine. However, the inherent blur of the PET

data may keep these algorithms from falling into local minima. The higher spatial frequencies

of MRI data, both real and noise-related, cause many local minima in the objective function hy­

persurface. Hence, the global minima in the objective function for MRI-MRI correlation l11ay

be missed if a true multi-scale approach is not applied in the optimization process.

4.8 Summary

In this chapter, an objective and automatie procedure to register two or more volumetric data

sets together has been described. The experiments presented in chapter 7 show that 3-D l11ulti­

resolution correlation to be an effective toolto determine the affine component of transforma­

tion between two data sets. While the technique has benefits and accuracies similar to those of

landmark-based registration or surface-to-surface matching techniques, it does not require ex­

plicit manual intervention to identify such points or contours.

The registration method developed here can be applied to automate the linear stereotaxic

mapping procedure and it can be applied retrospectively since il relies on automatically detected

edges in the data that correspond to internai anatomical structures rather on than fiducial mark­

ers. As weil as characterizing the stereotaxic space, the use of the standardized model provides

information on the location of specific structures, obviating the need to manually identify, edit

and remove scalp, skull or meninges from the MRI volumes.

Currently, in many registration methods, the AC-PC line is often explicitly identified, based

on the technique originally developed by Talairach to localize structures in the basal ganglia

and brain stem. However, cv, ticallandmarks may be more important for many brain mapping

projects. No assumptions are made here about the AC-PC line and its relation to the brain, nor

are assumptions needed regarding left-right symmetry. The approach registers a given data set
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with stereotaxic space using a generic 3-D fitting routine, malching ail structures in the brain

simultaneo:Jsly, and in doing so, does not depend fundamentally on the AC-PC points. The 3­

D masking incorpcrated in the routine can easily be used to limit the data fitted to the regions

of interest. For example, either occipital lobe structures or peri-ventricular structures could be

masked and fitted after ail initial transformation using the whole brain volume.

This technique can be readily extended to other modalities. Other features can be added to

the volumetric information stored in the model using the same methodology as that described

above for MRI. For example, the average intensity and gradient magnitude values derived from

positron emitted tomography (PET) cerebral blood flow (CBF) data can be stored in the model

and used to register against other PET CBF studies. This achieves two goals. The first permits

cross-registration of PET volume data sets. The second provides a procedure to automatically

register data sets from different modalities. Since MRI and PET volumes can be independently

registered to the same target space, the transformation between the two volumes is known im­

plicitly. The capacity to compare and correlate brain maps across modalities and individuals in

an objective, reproducible fashion will greatly enhance our understanding of normal and patho­

logical brain states.
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Chapter 5

Non-linear registration:theory and

implementation

Registration using only an affine transformation cannot account for non-linear morphometric

variability between subjects. This has profound implications for applications employing stereo­

taxie systems which map individual brains into a common reference frame: quantitative neuro­

radiology, stereotactic neurosurgery and cognitive mapping of normal brain functions with PET

where point localization with an accuracy of less than 5mm can mean failure of the proccss. ln

this chapter, an automatic procedure is presented to address these issues by generating the nec­

essary non-linear transformation in the form of a spatial warping field, where a 3-D deformation

vector is stored for each voxel in the field. The recovery of this global non-linear warp is based

on the recursive estimation of locallinear deformations, again using cross-correlation of invari­

ant features derived from image data. Not only does this method serve to accomplish non-linear

registration between data sets, it serves as the basis for the segmentation procedures described

in the next chapter.
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5.1 Introduction

5.1.1 Background

New imaging modali!:es and techniques, e.g. PET, SPECT, functionai MRI (fMRI), magnetoen­

cephalography (MEG), and electroencephalography (EEG) have made il possible to map func­

tional areas of the human brain with respectto anatomy. Two aspects of this work require inte­

gralion of data between individuals: 1) The low signal associated with cognitive activation (e.g.

a subtle change in cerebral blood flow as measured by PET) requires averaging between subjects

to improve statistical significance of measured changes (Fox et al., 1988; Evans et al., 1992c). 2)

High resolution imaging techniques such as fMRI make it possible to measure activation within

a single subject. However, it will still be necessary to compare results between individuals in

order to fully understand the normal anatomical variability in the location of focal sites of phys­

iological responses underlying normal cognitive operations. Both averaging and comparison

require precise point-to-point correspondence between brains, and each has typically been ac­

complished by mapping the volumetric data into a stereotaxic brain-based coordinate system

(Talairach and Tournoux, 1988). Until recently, most centers have used !inear transformations

only (Fox et al., 1985; Friston et al., 1989; Minoshima et al., 1992; Woods et al., 1992). How­

ever, previous work (Talairach and Tournoux, 1988; Steinmetz and Seitz, 1991) has shown that

even after !inear mapping, there is variability of up to 1.5 cm in the position of cortical struc­

tures, which represented a significant source of error when mapping activation foci. We have

previously shown (Evans et al., 199Ib), that on average for points throughout the brain (corti­

cal and sub-cortical), there is a 6-7mm anatomical variability (defined as the 3-D r.m.s. distance

between a given landmark and its homologue in the target volume) in position not accounted for

by !inear registration.
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5.1.2 Issues

In order to account for these morphological differences in normal anatomy, a rcgistrution pro­

cedure that allows more degrees of freedom than a simple linear affine transformation must be

used. Stated simply, the problem is this: Givell tlVO volumetrie data sets of the 1l/IIIUlIl bmill.

filld the Ilon-linear spatial distortionfimetion ta map ail poillts of the first hmill to their homo­

logues in the second. Implicit in thi> statement is '!-te assumption that homologous points exist.

that they can be identified reliably, and that there exists a one-to-one mapping between ail points

of the first brain and their homologs in the target. Hence, non-linear registration is much more

complex than it first appears.

Depending on the technique used to find the spatial distortion function, homologous points

are often requirecl either to establish or to evaluate it. The points selected to create homologous

sets are those that serve as anatomicallandmarks and usually have biologically meaningfulla­

bels. These landmarks must be defined with respect to their local neighbourhood, Le., the in­

tersection of a line with a plane Ce.g., anterior commissure on mid-sagittal plane), the point of

contact between two structures Ce.g, inter-thalamic adhesion), a point of extreme curvaturc of a

surface Ce.g., occipital pole) or the center of a structure Ce.g., center ofhead of caudate). Many of

these definitions are idealized, and cannot be realized in practice without additional constraints.

For example, the definition of a landmark at the inter-thalamic adhesion must be refined to in­

clude a notion of centroid, since the left and right thalami are not connected at a single point.

Talairach does not actually define the origin of the stereotaxic coordinate system on the anterior

commissure, but at the intersection of two lines: one passing horizontally through the superior

aspect of the AC and the other vertically through the postcrior aspect of the AC. Thus, when

identifying the 3-D coordinate of a landmark, a small difference in interpretation of its definition

may cause a positional error of 1-2mm between observers (inter-observer errar). Repeatability

trials yield another ~uurce of error that stems from the inability of a single observer to identify

exactly the same landmark in a given brain at different times (intra-observer error).

The difficulty in reliable identification ofhomologous points is far more complex when deal­

ing with multiple subjects because of normal natural morphometric variability between brains
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(inter-subject variability), where there may not exist a complete one-to-one correspondence. It is

this variability that is of interest for morphametric analysis and must be quantified in stereotaxy.

The combination of the two observer-dependent errors with the inter-subject variability renders

exact homology between brains unattainable in both praetice and in theory. Nevertheless, an en­

gineering approaeh allows us to refine our methodology continuously and to ovcreome observer

errors and to make useful inferences about neuro-anatomical variability during the pursuit of the

idealized mapping.

The use ofdifferent brains also confounds the notion ofa one-to-one mapping funetion. While

there may exist a one-to-one transformation for a given set of landmarks, il is not necessarily

unique for ihat set, nor need il be the same for a different set of landmarks defined on the same

two brains. There may not even exist a one-to-one mapping for partieular structures, e.g., the

para-cingulate sulcus is more prominent on the left than the right hemisphere, being absent twice

as often on the right side (Paus et al., 1994). Since the structure may not exist, how does one

determine the one-to-one mapping for that region? These facts lead to the conclusion that no

completely objective, general, direct measurement of non-linear registration quality is attain­

able. However, a task-dependent measure may be defined with respect to the given operation

rcquiring higher-order warping for registration. Given that a general theoretical approach to the

non-linear registration problem appears impracticable, and based on the success of the Iinear

rcgistration algorithm described in the previous chapter, a similar empirical strategy was under­

takcn for the development of the non-Iinear registration strategy to address the misregistration

remaining after linear alignment between data sets. The experimental results described in chap­

ters 8 and 9 dcmonstrate the practical utility of this approach.

5.1.3 Proposed method

Non-linear warping using non-parametric models has been proposed as a means to character­

ize the transformation that most smoothly maps one data set into the second. The goal was to

develop a technique that reduced the registration residual due to anatomical variability, despite

the difficulties described above. Both automatic and manual warping models are based on the
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assumptions that different brains are topologically equivalent, and that the application of non­

linear deformations to one data set can bring it into correspondence with another or with a mode!.

One existlng technique applied to the problem was the thin-plate spline, a manual non-linear

warping method based on homologous landmarks (Duchon, 1976; Bookstein, 1989; Ev:ms et

al., 1991b). Its main advantage is that achieves exact matching of the landmark points and yields

a continuous spatial deformation function that is decomposed into orthogonal warps of dccrcas­

ing energy. Since landmarks must be identified, explicit correspondence is available at a fixed

number of points. However, because the procedure yields an exact fit at the landmarks, errors

in their identification are not damped, but are propagated over a neighbourhood around the er­

ror. Ev(;n with modification of the algorithm to produce a least-squares fit, the method still de­

pends on user intervention and thus is time consuming, requiring more than one hour of a neuro­

anatornical expert's time to identify 40 landmarks, even with real-time 3-D display software.

Finally, the subjectivity involved in selecting the precise location and the number of points that

will define the non-linear deformation does not make these methods practical for routine use as

a deformation/warping mode!.

This has lead to the consideration of fully automatic, non-parametric, objective, non-linear

mapping techniques (Bajcsy et al., 1983; Friston et al., 1991; Minoshima, 1993; Collins et lIl., 1992c;

Collins et lIl., 1992d; Collins et al., 1994a). These alternative approaches avoid the potentially

time-consuming landmark tagging by replacing it with automatic feature-matching. Instead, cor­

respondence is estimated using a similarity criterion and constrained with an elastic model, mak­

ing the procedure tolerant of errors in local point correspondence.

The non-linear registration technique described here is a straightl'orward extension of the

linear registration method of the previous chapter, except that the target volume is reduced to a

small neighbourhood of the whole brain, recursively selected by stepping through the entire tar­

get volume in a 3-D grid pattern, and the local transformation is limited to 3 translations instead

of a full 12 parameter transformation. The global non-linear warp needed to map the data set

onto the model is composed of a set of local deformations that are derived l'rom the 3 transla­

tions, with one deformation vector being defined for each voxel position. Each deformation is
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turcs from the neighbourhood surrounding the given voxel to its corresponding neighbourhood

in the target data set.

The following inter-related sections define 1) the representation of the non-linear transfor­

mation, 2) features used in the matching process, 3) the strategy used to recover the global warp

from the source and target MRI data sets, and 4) the notion of correspondence. The chapter con­

cludes with a section comparing the method developed here with two related, previously pub­

lished techniques.

5.2 Representation of the non-lïnear transformation

5.2.1 Deformation function

Using the same notation as the previous chapter, let f(V., x) represent the intensity of source

volume Vs at position x. Let Vs be transformed into Vd so that each point in Vd matches its

homologue in the target model Vm . The transformation from source to target space is affected

by resampling the source volume by the non-linear spatial warping function, N : !R3 -1 !R3•

The mapping N is divided into two components: one affine and one non-linear. (See Fig.

5. 1). The affine component, A, is represented by a homogeneous matrix and is recovered us­

ing the method described in the previous chapter. After removal of this component, the residual

differences between Vs and Vd are due to morphometric differences between source and target

data sets. The goal of the procedure is to estimate the non-linear component, D, representing the

additional deformation required to match the transformed source point (Le., after affine transfor­

mation) to its homologue in the target volume:

• N(x) = A . x + D(A . x),
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Figure 5.1: Displaeement required after linear transformation.
The source image on the left must be registered to the target image on the right.
The first step involves a linear transformation A, that aeeounts for global position,
orientation and seale. Underthe lineartransformation, a point xis mapped to A·x in
the target volume spaee. A non-Iinear transformation D must be estimated. where
an additional deformation J maps xto ils homologue, for ail points xof the source
volume.

where N represents the world-to-world transformation from subjeet to mode\. Equation 4.15

is rewritten to include this term sueh that TNL = S-tNM now beeomcs the total non-linear

transformation from the subjeet voxel spaee to the target voxel spaee. We define a deformation

funetion in the following manner:

A deformation funetion is a eontinuous, invertible mapping From ln:! to ln:! that ae­

eounts for the residual mismateh between two volumes after linear registration.

For illustration, a ID profile From an example 3-D deformation funetion is shown in Fig. 5.2,

where t steps along an arbitrary parametrie line L through the volume. The slope of A indieates

the global sealing along L. IfdAjdt > 1.0, there is an overall inerease in seale, and eonversely,

if the slope is less than \.0. there is an overall shrinkage. ln the regions where dD(t)jdl. > 0.0

(sueh as in regions a and c in Fig. 5.2), there is a loeal expansion and where dD(t)jdt < 0.0•
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Figur05.2: ID profile through deformation field.
The graph on the left iIIustrates how points of the source volume are mapped into the
target space. The graph on the right shows the deformation required at each point in
the target space. N(t) is the defonnation mapping function along the line. Lis the
lînear component ofN. D(t) is the non-lînear component ofN. There is expansion
in regions a and c and contraction in regions band d.

as in region b and d, there is a local compression (see Fig. 5.3. When dD(t)/dt = 0.0, there

is only a linear translation component to the transformation. Since A represents the best affine

transformation, the overall scale should be accounted for. Therefore, D (t) ~ 0 at either end

of the mapping domain (or field of view FOV) and thus establishes the boundary-value at the

limits of the field. (Note that D(t) is not strictly equal to zero, since the global scale applies to

the entire 3-D object and not only to L.)

In order to map the information from the target space onto the source data set (e.g., geometric

contours from a standardized model onto a patient's MRI) it is necessary to invert the deforma­

tion field. For N(t) to be invertible, it must be monotonically increasing, requiring that N must

have li positive-definite derivative. Therefore, the slope of N is bounded by:

0< dN/dt < 00. (5.3)

•
Substituting for N, this leads to:

-dA/dt < dD/dt < 00. (5.4)
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Figure 5.3: ID deformation field.

This 1D schematic shows how points in the original data are mapped into the targel
space by a non-Iînear deformation function D. Note that slope of ,ID /dt cannot be
(ess than -dA/de, otherwise the points will overlap. Regions a,b,c,d as in Fig. 5.2,
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Thus, the rate of change of the deformation function is bounded below by the perpendicular to

the slope of A and above by 00. These limits have a physical interpretation: the deformation is

constrained so that it cannot compress two distinct points together or allow an overlap, nor can

it induce a tearing of the field. The magnitude of the deformation is limited by the size of the

FOV since the deformation must have approximately zero magnitude at both the boundaries of

the field. and once the magnitude of the function exceeds FOV, it cannot return to zero without

causing the data to overlap on itself. These functional constraints can be limited further to more

realistic values using anatomical information. For example, the maximum deformation size may

be estimated from neuro-anatomical and morphological data. AIso, the amount of compression

and expansion can be limited by the local anatomy; the size of a normal individual's temporal

lobe cannot be twice as big, for example, as that measured on average once the brain is normal­

ized into standard space. Limits such as these, along with that of the boundary value, are used

to constrain the estimation of the deformation function below.

5.2.2 Deformation field

A tri-variate polynomial, such as that used by Lemoine et al. (l99Ia), was not chosen ta rep­

resent the deformation function because more degrees of freedom were necessary. Instead, the

deformation function is represented explicitly by a deformation field with the following defini­

tion:

A deformation field is a vector valued volumetrie data set representing a band-limited

deformation function.

In the implementation of the algorithm, the deformation function D is represented by a deforma­

tion field, where a 3-D displacement vector is stored for each voxel position in the field. Three

scalar volumes are stored: dx, dy and dz, representing the x, y and z-components of the 3-D

displacement vector. For a given arbitrary (x, y, z) position in the domain of the deformation

function, the value of the corresponding 3-D displacement is given by interpolation in each com­

ponent volume, yielding the three necessary values for the 3-D vector.
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Since each component of the deformation field is stored volumetrically, only band-limited

deformation functions can be properly represented. However, even though the maximum rate

of change is functionally Iimited by 00, the rate determined for real data is fini te. The limits are

imposed by actual anatomical morphology and by the inner scale defined by the resolution of

the MR images.

The recovery of the deformation function, presented in the next section, is based on local

estimation ofdisplacement vectors, one for each voxe\. Each estimated vector is a point sample

from the deformation function and represents the best distortion for the given point and its sur­

rounding neighbourhood based on the cross-correlation residual, subject to the allowed degrees

offreedom. In this way, the recovered deformation field is forced to be a band-limited version of

the true function, since the estimation process acts as a low-pass filter. Therefore, the maximum

rate of change of the deformation field is Iimited by the smallest scale of estimation.

5.3 Estimation of deformation . ID case

The goal of the non-Iinear registration procedure is to recover the deformation field D, given

only A, the intensity values of Vs and Vmand the constraints described above. A 1D example is

used to explain the principles of the methodology in this section. The full 3-D procedure is then

detailed in the following section.

Fig. 5.4 shows two ID intensity profiles Pl and P2 through two volumetric data sets. The

applic?tion of the recovered non-linear transformation should align ail labelled regions of Pl

with P2 so that each region of Pl can be directly compared to the corresponding region of P2.

If the two profiles are labelled a priori, then explicit correspondence is available and it is rela­

tively trivial to calculate an interpulating transformation to register homologous regions together.

Since the data to be matched are not already segmented and labelled, explicit correspondence

does not exisl. Therefore, correspondence between local regions must be established from the

data itself, and Js accomplished by maximizing similarity of image-derived features.

Examination of the ID profiles of Fig. 5.4 reveals that corresponding regions have similar
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Figure 5.4: ID profiles of 2 different Tl-weighted data sets.
Thcse two profiles correspond 10 the image intensity along a line mnning from left
to right through two registered data sets at the level of the ventricles (inset). After
linear registration, there remains significant positional difference at the ventricles
and skull-brain interface.

relative intensities and positions. Correspondence must be established on a local basis; a match

for a small region of the first image must be found in the seconù image. The displacement re­

quired to achieve this match is the local deformation that must be stored as part of the deforma­

tion field. Unfortunately, a small neighbourhood of raw image intensity does not exhibit a great

deal of local image structure for matching. Other, more specific and robust features must he ex­

tracted and used to drive the registration and these features must satisfy the same constraints as

those used to accomplish the linear registration, i.e., they must be linear, rotationally invariant

and shift invariant. Once again, convolution with differential Gaussian operators is used to ex­

tract local structure from the raw intensity data. Extrema of the first derivative data indicate the

presence ofedges in the raw images (see Fig 5.5). These edges can be used to align local regions

of the data.

To begin the example, let p~ = T(pil, where Pl E Pl, the data profile in Fig. 5.4. Once

the global position and scale are accounted for by the linear transformation A, a point p~ will

be at sorne distance d from its homologue P2 E P2, the target profile. (Note that the vector

p') - 1/1 is precisely the deformation to be recovered.) If the upper limit, dmax, in magnitude

of ail possible d's is known (e.g., the value can be estimated from a knowledge of the normal

range of anatomical variability), then the search on P2 for the homologue of Pl can be limited
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Figure 5.5: Edges reveal image structure
The image on the left shows atypical transverse MR image with an an intensity pro­
file of the indicated row. The image on the right shows the corresponding gradient
magnitude image calculated after blurring with a FWHM=4mm Gaussian kernel. Ils
corresponding profile is also shown.

to a neighbourhood of radius dmax centered on p~. Therefore, each deformation vector can be

estimated using only information from a neighbourhood of fixed size surrounding each point pair

(P, A(p) with a form of classical template matching1 (Ouda and Hart, 1973). The template is

defined by the gradient magnitude feature in the local neighbourhood of Pl' Il is overlaid on P2,

and moved from p~ - dmax to p~ +dmax• The values of the template are compared to the features

of P2 and a match is declared where the template best correlates with P2. The offset from p~ is

the local deformation vector at p~ for the global non-linear transformation.

A problem exists when using only local information to estimate the deformation for sorne

point P, and is illustrated in Fig. 5.6. Under the linear transformation, the gradient peak at Pl is

mapped to P~, exaetly between two equally likely target peaks. Sinee explicit correspondenee is

not available, the process is unable to select which of the two possible matches is correct since

both states will result in an equal measure of similarity within a data window limited by 2dmax .

More global information is needed to deterrnine which of the two states is preferable. Even if the

ISince only local infonnalion is used 10 estimate each defornJalion veclor, in principle Ihe procedure can he

easily veclorized 10 run on parallel machinery.
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Figure 5.6: Correspondence problem.
The solid line represents the feature template from the source data set. The broken
line shows feature neighbourhood of the target data set. Given only this information,
it is not possible to select which of the two peaks is best.

data window was extended past the limits indicated by dmax, it would be possible to construct

a similar example where two other deformations would yield the same similarity measure and

fllrther information, beyond the window defined by dmax , would be needed to make the decision.

The solution to this problem resides in the fact that data bh.:rred at a higher scale contain in­

formation from a wider region of support. Thus, lower resolution data are used to bias the esti­

mation at the current scale towards the correct answer. The strategy does not attempt to recover

the complete deforrnation in one step, using data from only one scale. Instead, the non-linear

transformation is derived in a iterative fashion where the procedure estimates the deforrnation

field using gradient magnitude estimated at different spatial scales. Starting with very blurred

features from both source and target data, the largest deformations are recovered first. Each suc­

cessive iteration refines the registration estimated at the previous scale by the addition of smaller

deformations estimated from less blurred data.

•
Besides using the data in a multi-scale fashion, this strategy also recovers the deforrnation

itself in a hierarchical manner. The procedure begins by estimating an initial band-limited de­

formation field, Dl, at a low resolution (with large voxel spacing) that accounts for part of the
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residual mismateh not dealt with by A. Once eompleted, Dl is added to A to l'orm NI' When

Pl is resampled by NI and eompared to P2, the overall similarity measure will have inercased

sinee eaeh deformation in DI has inereased the local similarity at that seale between eorrespond­

ing neighbourhoods. However, since DI is oflow resolution, many regions will not be in perfeet

eorrespondenee. In order to aeeount for these mismatehed regions, the next reeovery step esti­

mates D 2 at twiee the resolution as DI based on data blurred at hall' the previous seale. D 2 is

added to NI to form N 2. This proeess is repeated for eaeh seale of interest.

As in the linear case, the seales of interest (measured with the FWHM) are 2, 4, 8, l6mm. Il

was found that seales greater than 32mm blur the data too mueh to be of any use in the estimation

of the deformation. Experiments in section 8.3.3 show that the deformation reeovered at the scale

of 2mrn does not signifieantly improve the registration between different subjeets. This is due

to the errors eaused by non-equivalent topology between brains, that outweigh the benefits of

ealculating the deformation at the lower seale. Therefore, this seale step is eliminated l'rom the

estimation process. The final deformation field is estimated at the 4mm seale and is sampled

every 2mrn. This field is tri-eubically interpolated to have deformation veetor per voxel of the

source data, to map that voxel into the target space.

5.4 Estimation of deformation - 3-D case

At eaeh seale spaee step in the deformation estimation, the goal of the optimization procedure

is to identify the non-linear transformation D that maximizes the similarity between features

derived from the voxels in the two data sets: the volumetrie data for the subjeet, V,,, and the

model, Vm . These sections deseribe the 3-D non-linear registration procedure for a given seale

step. The complete reeovery strategy is summarizeli in section 5.4.6.
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5.4.1 Lattice definition

The deformation function is recovered hierarchically at a number of different steps, each succes­

sive step refining the estimation of the previous one. Each step attempts to recover the deforrna­

tion function for a given scale, where the scale is a measure of the resolution of the band-limited

deformation function to be recovered. As in the previous chapter, the deforrnation field is evalu­

ated on a set of voxel positions, L, organized on a 3-D cubic lattice. If the FWHM of the current

scule step is used to measure resolution, then the voxel spacing of the deformation field must be

no greater than FWHM/2 to recover the function without aIiasing, Le., the usual Nyquist sam­

pling limit.

A correlation coefficient is estimated at each of the lattice nodes using the same principle as

the linear registration, however the correlation is based on a summation over a set of voxels in

the local neighbourhood of the particular node. Hence, RO is the norrnaIized correlation value

between the local neighbourhood of fi in Vs and the corresponding neighbourhood of M(fi) in

R(V V 'N -) - L:vEN, f(V"v)f(Vm, N(v)) (5.5)
8' m, ,X - 2 1 ( 2 1 ,

ŒVEN, f (Vs> V))2 L:vEN, f (Vm, N(v)))2

where Ni is the local neighbourhood of fi with diameter=~FwHM, f(V, v) is the interpolated

feature value from the volume V at voxel position v, and the summation is performed over ail

voxel elements v E Ni. A local neighbourhood diameter of ~FWHM was chosen since a di­

ameter of at least FWHMI2 was needed to completely cover the source and target domains. A

diameter of FWHM was initiaIly used to guarantee complete coverage, even in areas subject to

expansion or stretching and to ensure overlap between successive neighbourhoods to maintain

continuity of the deformation field. Initial experiments showed that this was not enough, and

ttFWHM was the smallest diameter that resulted in robust estimation of deformation vectors.

Larger diameters such as 2·FWHM or 5/2·FWHM enforce greater continuity between regions at

the expense of possibly missing smalliocai deforrnations.

The norrnalized similarity vaIue, S, between the two volumes, Vs and Vmfor a given trans-
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• formation N is defined as the sum of alilocai correlations:

S(V" Vm ; N) = ~ L R(V" Vm ; N, :i:),
n iEC

(5.6)

•

where n is the number of elements in C. R, and like-wise S, take on a maximum valuc of 1.0

when the two volumes are in perfect registration.

5.4.2 Local neighbourhood features

The estimation of a local deformation vector is based on the correlation of fealures l'rom both thc

source and target volumes. For the non-linear registration method, the geomelrically invariant

feature of image-intensity gradient-magnitude is used so that feature values derived l'rom the

volumetric data are not dependent on the original position, scale and orientation of one data set

with respect to the other. Since gradient extraction is dependent on scale, this parameter must

be chosen in relation to the resolution of the estimated deformation function.

Il is not clear how the scale parameter should be chosen. A very large value is of no use,

since it will blur out ail structural detail l'rom the volumetric data. Conversely, a very small value

will extract a high amount of structure and increase the probability of local mis-matches, as was

shown in Fig. 5.6. The size of the Gaussian blurring kernel applied to the volumetric data was

chosen to be equal to the resolution of the deformation field estimated at the current scale step.

Scale factors yielding gradient magnitude data with twice the resolution and with hall' the res­

olution were also tried. Only small differences in the rer:overy of the deformation field were

observed, when compared to when the gradient magnitude data was at the same scale.

The local neighbourhood of if is defined by a sub-lattice of nodes. For data blurred with

a=FwHM/2.35, it is necessary to have samples spaced at FWHM/2 to recover the underlying

band-limited function. However, only a limited region of the gradient magnitude data is being

sampled by the sub-lattice. Twice as many samples (in each direction) are required to fit the gra­

dient data, since the gradient changes at a twice the rate of the blurred data. Therefore, the cubic

sub-lattice of diameter ~FWHM requires 73 ( =(2n - 1)3 ), where n = 4 samples were needed

to represent the blurred data) samples to represent the local neighbourhood.
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5.4.3 Node thresholding

An intensity threshold is used to eliminate lattice nodes with near zero-value gradient intensity,

since no deformation can be estimated in these regions. The threshold was arbitrarily set to 10%

of the average gradient magnitude. In this fashion, nodes that fall in the middle of a homoge­

neous region, away from any edge structures, are not used to define a local neighbourhood and

consequently, are not used to estimate a local deformation vector. The deformation for these

nodes is interpolated from neighbouring lattice points in a smoothing step described below. It is

important to note that the threshold is applied only to select or reject a particular node for esti­

mation of the local deformation, and it is not used to eliminate any voxels from the calculation

of local correlation for any selected node. Therefore, changing the value to 20%, for example,

slightly thins most of the edges seen in the gradient magnitude image, leaving them behind so

that they can be used to estimate the deformation. However, low contrast edges may be lost, and

thus the deformation in these regions must be interpolated from neighbonring nodes.

5.4.4 Estimation of local deformation

lt is clear that equation 5.6 is maximized when each of the terms in the summation are at a max­

imum. Since the transformation N is stored such that there is one deformation vector for each

node x, equation 5.6 is maximized by optimization at each node of L. The optimization is sim­

ilar to that performed for the !inear registration procedure, however only three parameters are

optimized instead of nine, since only three are required to define the local deformation vector d;
that maximizes for correlation of the local neighbourhood of xi with its homologue in the target

volume. Hence, the goal is to find d; that maximizes R(V., Vmi (N +d;), Xi). (See Fig. 5.7.)

The local neighbourhood of xi is specified by the ensemble of interpolated feature values

front each sub-lattice node defined above. Before optimization, the corresponding neighbour­

hood in the target volume is defined by transforrning each sub-Iattice node by the current non­

linear transformation N and interpolating the feature value on the target volume.

The vector d; is found using a three-dimensional Simplex optimization procedure. The start-
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Figure 5.7: Local node deformation strategy.
Theses images show a part of the 3-D latlice overlaid on the gmdient magnitude
data. Under the currenttransforrnation, the node xi> is mapped to A . (Xi) on the
mode!. Asmall displacementtowards the edge of the scalp is necessary to maximize
the neighbourhood correlation for this node. This found through optimization of 11

three translational pammeters dx, dy and dz.

ing values of the simplex are initialized to (0,0,0), (1',0,0), (0,1" 0) and (0,0, l'), where l' is the

radius of the initial search space of the simplex. The value of l' is set to the minimum of ri",.x

and FWHM. The value of FWHM is chosen because the functionallimits on the rate of change

of the deformation field constrain the maximum deformation to be smaller than ±FWHM for the

current scale step.

At each step of the optimization procedure, the coordinates of the target sub-Iattice are mod­

ified, the feature values re-interpolated, and the correlation between the two sub-Iattices calcu­

lated. The optimization procedure stops when the normalized difference between the maximum

and minimum correlation values, evaluated at the simplex vertices, is smaller than a preset toler­

ance. The largest tolerance value possible should be used to avoid ineffective correlation func­

tion evaluations. Values ranging from 10-6 to 10-1 were tried, and it was found that a value near

10-2 worked weil for the test volumes used. The tolerance of 0.01 caused approximately 130

function evaluations on average per node xi. Multiplying or dividing this tolerance by a factor

of ten changed the average number of function evaluation by ±20 only, without affecting the

resulting non-linear registration result. Instead of using 0.1, the value of 0.01 was kept since

tolerances slightly greater than 0.1 caused local mis-matches in some test volumes.
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5.4.5 Iterative refinement

Since the deforrnation at a single node is part of a continuous global warp, it affects not only

that node, but aIl neighbouring nodes as weIl. Therefore, the neighbourhood correlation values

for the nodes in the vicinity of Xi will also change as a result, making the terrns in the summa­

tion of equation 5.6 inter-dependent. Consequently, an iterative approach must be used, where

a fractional value of d; is stored for each node at each iteration.

If this fractional value is small (less [han .1) then many iterations are necessary to bring the

two data sets into alignment. If the value is large (0.5 - 1.0) then there is a possibility that the

deformation field recovered will not be continuous (e.g., if one node matches to a point that is

not ils homologue). Experimentally, a value between 0.2 and 0.5 has been found to represent an

acceptable compromise, aIlowing a smooth deformation field to be recovered without necessi­

tating a large number of iterations.

At the end of each iteration, the stored fractional value of d; is added to the existing warp.

Since sorne mis-matches may have occurred during the iteration, a smoothing step is applied to

the deformation field to remove local outliers.

5.4.6 Non-linear registration summary

The following pseudo-code summarizes the non-linear registration strategy.
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non-linear registration:

foreach scale do

define a 3-D lattice on the source volurœ
initialize N for this scale
foreach iteration do

initialize D to zero
foreach node xi do

define sub-Iattice around xi
map sub-Iattice through N
cali simplex optimization to get fi;
store fraction of fi; in D

update N with D

5.5 Speed considerations

Running the non-linear registration algorithm on an MRI volumetric data set of the brain origi­

nally required approximately 300 hours of CPU time on a SOI Indig02 Extreme (a 60.5 SpecFP

Unix machine). Optimization of the program was necessary to bring this amount of time down

to a reasonable level. Three approaches were employed to increase algorithm speed:

1. Reduce the amount of time required to estimate a single deformation.

2. Reduce the number of nodes where deformation must be estimated.

3. Reduce the number of iterations required for convergence.

These methods are described below:

Node estimation: Although a number offactors entered into the cost of an estimation of the lo­

cal correlation, they were ail proportional to the number of nodes in the local sub-Iattice. Chang-

93



•

•

ing the local neighbourhood from a cube to a sphere of the same diameter reduced the number

of sub-nodes almost by half, without affecting the resulting correlation results.

Number ofnodes: Two methods were used to reduce the number of nodes participating in the

the deformation estimation:

1) The overal1 number of nodes could be reduced by raising the threshold on the gradient

magnitude. In this case, the deforrnation is not estimated everywhere, and must be interpolated

from neighbouring regions. Thus a balance must be found between estimation and interpolation.

By selecting the threshold manual1y, one can choose whieh edges in the data will participate in

the estimation and which regions will be estimated. Originally, this threshold value was set to

1% of the average gradient magnitude to reject only nodes with no gradient magnitude. The

value of 10% described above eliminates sorne of the data due to noise and maintains almost al1

of the edges detected in the volumetrie data.

2) A voxel mask can be used to limit the number of nodes. Since the main interest is in fitting

the brain, a mask defining only brain voxels was defined on the target volume - eliminating ail

nodes outside the brain. Note that regions outside the brain are used to constrain the fitting for

low resolution deformation fields. The mask was used only at the high resolution step, after the

overal1 brain shape has been accounted for.

Number of iterations: Two procedures have been implemented to reduce the number of it­

erations needed to complete the optimization. The first is applied to each iteration of the opti­

mization algorithm, and the second modifies the multi-scale aspect of the non-linear registration

strategy.

1) After an iteration over al! nodes is completed, a "mini-iteration" is executed. In this pass,

the deformation is estimated only at nodes where the local vector from the previous estima­

tion step was greater than sorne threshold. Approximately 10% of the nodes satisfy a threshold

set equal to the magnitude of the average deforrnation plus one standard deviation. Inserting a

"mini-iteration" between each true iteration allows us to skip the estimation of nodes where the
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additional deformation will most likely be nul!. Even though a single iteration now requires 10%

more time to calculate, the total number of iterations may be reduced by halfwithout appreciable

loss in accuracy.

2) Since the optimization procedure terminates sooner when the initial conditions are close

to the final result, and since calculating the fit at a scale of Smm requires less than one quarter

the time taken for the scale S/2mm, an extra scale-step was added at the beginning of the multi­

scale procedure. This step recovers the deformation at a scale of 24mm, however it uses the

data that is blurred for the 16mm scale step. The result of this estimation is used us input to the

procedure at the 16mm step. Hence, this step can be considered un initiulizution procedure for

the previously mentioned non-linear registration strategy.

These modifications along with sorne internai coding changes reduced the time required by

a factor of ten. The non-linear registration program now requires approximately 30 hours to run

to completion.

5.6 Discussion

This non-linear warping method is based on the assumption that there exists an equivulent topol­

ogy between brains so that a I-to-l mapping can be estimated to account for differences between

the two data sets. While not strictly truc, the validity of this assumption depends on the sputial

scale of comparison. When blurred at 16mm FWHM, ail structures of the brain are topologically

equivalent because only major structures (temporal lobe, ventricles, longitudinal fissure) arc ap­

parent. Smaller features are simply not visible. At 8mm FWHM, regions within the interior of

the brain (e.g., basal ganglia, ventricles, brain stem) and the major gyri and sulci remain topo­

logically equivalent, while secondary and tertiary gyri may no longer be equivalent.

This procedure can be applied to blurred data of the whole brain volume to correct overail

shape (as if all brains were forced to fit inside the same skull). At scales smuller than 8mm, this

method is still able to register structures as long as there is a I-to-I mapping between them such

as the ventricles, basal ganglia and major sulci. On the cortex, however, the topology is not con-
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sistent for secondary and tertiary gyri. This is a completely different problem, complex enough

to warrant a separate research project in our laboratory. A solution to this problem has been pro­

posed by MacDonald et al. (MacDonald et al., 1994) where the cortieal surface is extracted and

mapped ante a simple parametric space with the same topology, e.g., a sphere.

5.6.1 Relation to other techniques

Other non-linear matching methods have employed different objective functions, matching strate­

gies and types of data. In this section we describe the work of two authors that address most

closely the automatic image-matching problem considered in this thesis and compare their tech­

niques with ours on the basis of J) the manual interaction required, 2) the features used, 3) the

type of non-linear fitting model, 4) the objective function, and 5) the type of data used.

Broit (1981) has developed a non-linear registration procedure for cr data of the brain that

models the physical deformation process of an elastic solid being warped from the position of

the first data set to that of the targe!. Afterdefining a 3-D grid on both volumes, warping is based

on matching the local neighbourhoods of corresponding grid points. Edge-like features, derived

from the image, are used to derive deformation force vectors that move each grid point, while

elastic constraints attempt to resist them. The differential equations describing the system are

integrated over time until an equilibrium is found. In order to avoid local minima, and speed the

fitting process, the optiniization is completed in a hierarchical fashion by changing the elastic

properties of the mode!. At first, the model is rigid and the registration process essentially cal­

culates the linear registration transformation. At each successive iteration, the model is made to

be less and less stiff, thus accounting for large deformations first and refining the fit with smaller

deformations in successive iterations.

Zhengping and Mowforth (1991) have developed a similar technique to match cerebral MR

volumetrie data, however the non-linear registration is accomplished only on transverse slices,

after 3-D linear matching. Even though this method is 2-D, it is included for comparison because

it is applied to the brain segmentation problem and could be directly extended to 3-D (although

it has not been done as of yet). Following a coarse-to-fine regime, the deformation is recovered
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in a multi-scale fashion, based on the difference of Gaussians (DoG) filtered data at different

resolutions.

Manual interaction required: ln the procedure developed by Broit, the skull and scalp must

be manually edited from each of the transverse CT images. While this step can be simplified by

use of thresholding and region growing, the user must decide on the threshold levels and select

non-brain regions for removal. After linear registration, Zhengping daims that it is sometimes

necessary to select the appropriate 2-D slice for non-linear registration. If extended to 3-D, this

operation could possibly be eliminated. In comparison, the method presented herc. is completely

automatic; no user intervention is required to prepare or manipulate the data.

Features: Ali three methods use edges to drive the registration, however they differ in their

method of edge detection. Broit used Hueckel basi.s functions (Hueckel, 1973) to extract edges

from the data. Even though these detectors approximate derivative functions, they are not rota­

tionally invariant. Therefore, the edge strength differs depending on its orientation. A derivative

approximation is also used by Zhengping. The DoG operator is a type of band-pass fil:er, and

is calculated by subtracting data blurred with a wide Gaussian filter from the same data blurred

with a narrow filter. The selection of the two fixed filter widths can favor edges of one strength

and size over another.

We have used a mathematically sound procedure to directly calculate the partial derivatives

ofblurred volumetric data in Fourier space, thus taking into account the full Gaussian kernel and

thus avoiding truncation artefacts. The gradient magnitude calculated from the partial deriva­

tives is invariant to both rotation and position. Therefore, the features deœcted by this proce­

dure are intrinsic to the object, and don't depend on the position or orientation of the object in

the image as is the case for the other two methods.

Since the recovery procedure is essentially edge-driven for ail three methods, the resulting

deformation field are ail dependent on the contrast of the original images. If a structure of inter­

est has sufficient contrast with its surrounding to yield an edge (as seen in the gradient magni-
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tude data), then the deformation for that area will be directly calculated, based on the position

of that edge. The deformations for regions of interest that do not have edges apparent in the

gradient magnitude volumes are interpolated from nearby edges. Their actuallocation is com­

pletely dependent on the type of interpolant chosen, which in tum is dependent on the non-linear

transformation mode!.

Non-linear model: AlI three authors use a non-linear transformation model that is distributed

in nature. These models enhance their representational power over parametric deformation mod-

els such as those proposed by Fischler and Eischiager (1973), Widrow (1973), Lemoine et al. (1991a)

or Gerig et al. (1991b). Every point in the deformation field contributes 3 degrees of freedom

(2 in the case of Zhengping) to the global warp allowing a large continuum of deformations to

be specified.

The non-linear transformation modeled by Broit is based on differential equations that de­

scribe the behavior ofelastic solids. This model is applied to ail points of the volume, balancing

the need for deformation, as indicated by correlation of the image data, against the restraining

forces of the elastic mode!. While the use of a physical elastic properties provides a flexible

model of deformation, it is not necessarily a faithful representation of anatomical variability.

The data is deformed like a piece of homogeneous elastic material, without consideration of real

morphometric differences. Neither we, nor Zhengping use a physical model to represent the de­

formation process. We simply employ smoothing constmints to ensure acontinuous deformation

field that does not stretch or compress the data beyond the functionallimits described above.

Objective function: The objective function is closely linked to the transformation mode!. Each

of these methods uses cross-correlation over small neighbourhoods to estimate the local defor­

mation needed to bring one region in line with another, increasing their similarity. Broit balances

this deformation force wi,h elastic constraints, so that the goal of the optimization is to minimize

the cost function, cost = cost(deformation) - cost(similarity). The paper from Zhengping does

not define the objective function used. Here, the deformation forces are are constrained only by

the Iimits imposed by the functional representation of the deformation function. Smoothness is
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guaranteed by the iterative nature of the estimation process.

Data: The type of data used for registration differs between Broit and Zhengping. Broit used

CT data for registration. Like Zhengping, we use MRI data for registration. The use of MR or CT

has direct ramifications on the type and position of features that can be extrac.ed from the data.

Since CT has much lower grey-white contrast than MR, the edges extracted correspond almost

entirely to the ventricular and cortical surfaces. Many of the other subtle differences seen on

MR are simply not visible in CT. For example in CT, cortical edges do not present as detailcd

an enfolding of the sulci as apparent in MR, nor is the contrast as great between basal ganglia

structures such as the putamen and globus pallidus. Thus, the CT images are not as complex and

this renders matching of CT data a much simpler problem. Broit therefore uses only the cortical

and ventricular surfaces for non-linear mapping, interpolating the deformation between thcm.

Broit further simplified the problem by manual extraction of the brain in a pre-processing

step. Not only is the cortical surface essentiaUy defined by hand, and there is no possibility of

mis-match between scalp and cortex since the former is removed. The computer is left to extract

the ventricular surface - not a difficult task, since it is easily achieved by thresholding the CT

data. Non-linear registration by edge fitting is a powerful tool, however interpolation between

cortex and ventricle leaves to be desired. Like Zhengping, our technique requires no editing of

the data before matching and aU edges in the data are used to derive the deformation field.

5.7 Summary

In t1;·'·. chapter, a technique has been describpd to estimate a non-linear deformation field nec­

essary to register two MRI data sets that differ in second-order anatomy due to morphometric

variability. The estimation is accomplished in a hierarchical multi-scale fashion, where the reg­

istration is performed at different spatial scales, refining the match at each stage. This defor­

malion field can be applied to one data set by resampling, making aU points of the first data set

match with their homologues in the second. The method presented here goes beyond existing
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techniques in significant ways while retaining sorne of their best features, being objective, fully

autornatic. and robust against noise. This procedure forms the core of the segmentation method

described in the next chapter.
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Chapter 6

Stereotaxie segmentation:theory and

implementation

The purpose of this chapter is twofold: 1) to describe the rationale for, and the design of, thc

stereotaxic segmentation model, and 2) to present the segmentation method that merges this

model with the registration methods presented in the previous chapters.

6.1 Introduction

In this thesis, the goal of neuro-anatomical segmentation is to identify and delineate regions l'rom

MRI volumetric data that correspond to biologically meaningful structures. Hence, a segmented

volume consists of a set of labelled voxels. A pre-defined atlas, most often represented as a

collection of geometric objects, is used to determine which anatomical structures are 10 be seg­

mented. The atlas guides the segmentation process by specifying both the spatial extent of each

structure and relationships between them. The automatic segmentation procedure presented here

is based on the following premise:

For both manual and automatic model-based segmentation methods, it is assumed

that at sorne level of representation, the brain to be segmented and the brain atlas
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used for guidance are topoIogically equivalent, but that internal structures are mu­

tually deformed.

This implies that there exists a one-to-one mapping between a subject's brain image volume and

the atlas mode!. Segmentation is achieved by deforming the atlas, through the spatial warping

function that represents the one-to-one mapping, onto the given brain data set.

The segmentation procedure developed in this thesis requires a two-component segmenta­

tion modeI to reverse the conventional modeI-based segmentation strategy. Instead of fitting the

geometric contours ofabrain atlas directly to the raster data ofan image volume, features derived

from the grey-leveI voxeI intensities of the source data set are registered to simiIar intensity fea­

turcs stored in the first component of the brain segmentation mode!. Hence, the necessary spatial

warping function between source and target modeI is recovered. The second part is formed by

a brain atlas that is co-extensive with the first model component. Il is similar to most conven­

tional atlases, consisting of labelled regions and their associated contours. Il is mapped through

the inverse of the recovered transformation onto the native source data volume to complete the

model-based segmentation process.

The major advantage of this procedure over previous techniques is it that the atlas is not

used explicitIy to determine the non-Iinear registration transform. Therefore, the segmentation

method is completely atlas independent since any atlas defined in the stereotaxic brain space can

be used for segmentation. The following sections describe the segmentation model and strategy

in more detai!.

6.2 Volumetrie Brain Segmentation Model

An ideal model for the segmentation ofbrain images must meet a number of requirements. Fore­

most, the model must have a completely 3-D representation so that positional information is con­

sistent throughout the cerebral volume. Anatomical structures in the brain are three-dimensional,

therefore the modeI must represent their 3-D boundary definitions in a manner that is flexible,

easy to manipulate and modify. The model must contain structures whose features can be identi-

102



•

•

fied in the data volumes on which the segmentation process will operate. Landmark information

other than brain region boundaries (e.g., optic chiasma, ventricular horns, ventricular notch, si­

nus cavities, cortical sulci, etc.) should a1so be included to assist in the segmentation process.

In order to address problems associated with the original Talairach atlas, the model must incor­

porate information from a large population of young normal subjects and thus represent normal

anatomical variability. Finally, since knowledge of anatomy is continuously evolving, the design

of the model should not be dependent on any one existing atlas.

These requirements are met with the stereotaxic model designed here, known as the Vol­

umetric Brain Segmentation Model (VBSM). Il serves two purposes: 1) it defines the neuro­

anatomical structures that will be identified and delineated by the segmentation algorithm, and

2) it defines a standard coordinate system in which to estimate spatial anatomical variability. The

VBSM consists ofboth volumetric (intensity, gradient magnitude, etc...) and geometric (points,

surfaces) data that co-exist in the stereotaxic coordinate system. The volumetric data are used

to drive the rnatching process white the geometric atlas is used to delineate and segment struc­

tures. The former are arranged in hierarchical fashion so that gross structures are used to begin

the segmentation, and smaller details are included in processing, as needed, to refine the fit. A

pyramid data structure is used to represent the volumetric information at differentlevels of scale.

The following seetions describe the two model components.

6.2.1 Volumetrie MRI model

Instead ofusing a single brain to define the VBSM, the MRI atlas described in section 3.4 is used

as the source for ail derived features, thus addressing the main drawback of the Talairach atlas.

Since the registration algorithms developed in the last two chapters are used for the segmenta­

tion procedure described below, the features normally calculated afresh for correlation between

two individual data sets are simply stored for the MRI atlas. Stable features must be extracted

from the average MRI data set so that it can be used as a target in the automatic matching proce­

dure. Convolution with a 3-D Gaussian kernel was used to blur the average data set and ereate

three smoothed intensity volumes corresponding to values of FWHM::4, 8 and 16 mm. The cor-
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responding partial derivative (Le, gradient) volumes were created for the x, y and z-directions,

yielding three more volumes each of the three scales. Finally, the magnitude of the gradient was

calculated at each scale yielding a total of 15 feature volumes. Only the voxel intensity and gra­

dient magnitude volumes at each of the three scales are stored with the MRI atlas 10 be used as

invariant features for both the linear and non-linear matchinu processes. (Recal1 that the indi­

vidual partial derivative volumes are not used, since they do not represent invariant features,

see Fig. 4.1.) The MRI atlas and its corresponding feature volumes make up the VBSM-IIF

(Invariant lntensity-based Eeatures) and are used to drive the registration processes. Fig. 6.1

shows tomographic slices through the IIF for features at the FWHM = 8mm scale.

6.2.2 Geometrie anatomieal model

While the MRI atlas and the associated feature volumes of the VBSM-IIF serve to define the

target space for registration, a companion model known as the VBSM-VOl is required to delin­

eate and label structures for neuro-anatomical segmentation in stereotaxic space. Without loss

of any generality, any atlas can be used to define the structures to be segmented in stereotaxic

space, since the recovery of the spatial transformation to map a given data set into this space is

dependent on the VBSM-IIF only. A 3-D 18-slice volume of interest (VOl) atlas has been previ­

ously created to model the human brain (Evans et al., 1988; Marrett etai., 1989a). The atlas was

refined by incorporation of more slices in the z- direction in the paper by Evans et al. (1991a).

This atlas contains 120 3-D polyhedral objects representing the outer surface of important neuro­

anatomical structures most often identified for quantitative analysis. The atlas has been used as

a guide to assist manual segmentation, where it has been shown to reduce intra-observer vari­

ability in structure definition (Evans et al., 1988; Evans et al., 1991a).

In order to generate the 3-D atlas contours, a single normal brain was scanned using 64 con­

tiguous 2mm-thickTl-weighted (TR=400ms,TE=30ms) MRI planes parallel to the AC-PC (anterior­

commissure posterior-commissure) plane. The MR images exhibited excellent contrast between

grey and white matter as weil as cleardefinition ofthe ventricles. Using standard neuro-anatomical

atlases for reference (Talairach et al., 1967; Talairach and Toumoux, 1988; Hanaway et al., 1980;
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Figure 6.1: 8mm VBSM-IIF.
Tomographie planes through the VBSM-IIF at the FWHM=8mm scale. On the top
row from left to right are sagittal. coronal and transverse slices through the origi­
nal30S brain MRI atlas. The middle row shows the same slices blurred with a 3-D
Gaussian kemel of FWHM=8mm (<1 = 3.4mm). The last row shows the correspond­
ing gradient magnitude data at the same scale.
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Kretchmann and Weinrich, 1986; Matsui and Hirano, 1978), a neuro-anatomically trained expert

outline each of60 brain regions in each hemisphere on every MRI plane where they were present

(Evans el al., 1988). These contours were then tessellated to form a set ofpolyhedra which can

be re-sliced to generate arbitrary 2-D ROI templates and used for 2-D slice-based segmentation

tasks (Marrett et al., 1989a; Evans et al., 1989d).

ln order to facilitate manipulation with existing software, the atlas was voxelized onto a

1 x 1 x 1 mm raster, i.e., ail voxels within a region defined by the tessellated 3-D contours were

painted with a unique voxel value. This value is used as an index into a list of structure iden­

tifiers. The volumetric representation of the atlas was then mapped into the stereotaxic space

manually in a two slep process: the atlas was first linearly fit before being non-linearly adjusted

in stereotaxie space.

1) ln order to accomplish the first step, a number of homologous landmarks were identified

10 calculate the linear transform needed to map the atlas into the stereotaxie coordinate system.

The atlas was then resampled along the axes of the VBSM volumetric data set so that it could

be directly compared to the latter.

2) Since the atlas was defined on a single subject, it did not perfeetly outline structures on

the average model and therefore had to be warped manually to fit the model in a second step. A

non-linear warping procedure was used to address this misregistration and find the transforma­

tion lhat most smoothly maps the first set into the second, and is based on the thin-plate spline

(Ouchon, 1976; Bookstein, 1989; Evans et al., 1991b) for interpolating surfaces over scattered

data (see page II). ln order to avoid pixel drop-out, i.e. missing samples in the target volume

which occur when mapping source voxels into target space in a forward transform, the (numer­

ically determined) inverse transformation was applied to the positions of the points in the target

volume, in order to locate the point in the source volume that is to be mapped to il. The target

volume was then resampled using nearest-neighbour interpolation to maintain continuity among

the voxellabels from the non-linearly warped source volume.

For this task, homologous points were chosen in an iterative fashion. In a first pass, fifty­

four anatomicallandmarks were chosen on both the atlas and the average MRI volume. These
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Figure 6.2: VBSM-VOI.
Sagittal tomographie planes through one hemispl1ere of VOl atlas of the VBSM
from most lateral to 6 mm from the midline (x=66 to 6mm. in steps of 4mm). Note
that white 2-D sliees are shown. eaeh VOl is defined in 3-D.

points were distributed on the cortical surface. cerebellar surface, ventricular surface, centers of

basal ganglia structures and points within the brain stem. The atlas volume was resampled and

compared visually to the average MRI. In following iterations, existing landmarks were adjusted

and additionallandmarks were placed in regions that were not matched satisfactorily in order to

bring them into registration.

The VBSM-val in stereotaxic space now implicitly segments and delineates structures of

interest for any image volume mapped into that space. Figure 6.2 shows sagittal planes though

one hemisphere of the VBSM-VOL Transverse slices though the MRI atlas with the overlaid

VBSM-VOl are shown in Fig. 6.2. It is important to emphasize that the VBSM-val takes no

part in the registration process, and is only used to define the structures to be segmented. Hence,

any atlas defined on the average MRI volume in stereotaxic space ean be used to accomplish the

segmentation and multiple atlases can be used together and compared.

107



•

•

Figure 6.3: VBSM-VOl overlaid on the MRI-atlas.
Transverse slices through the VBSM showing the VBSM-VOl overlaid on the
VBSM-Atlas (z=-33 to 55mm, in steps of Il mm).
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6.3 Stereotaxie segmentation

After application of the automatic linear stereotaxic mapping procedure, a given brain volume

is resarnpled into the standard space. The geometric VBSM-VOl yields the best approximation

for structure position and orientation in the stereotaxic coordinate system, within the limits of

an affine transformation. By applying the inverse transformation to the atlas contours, neuro­

anatomical structures can be outlined in the native data set. Even though many regions are cor­

rectly identified (i.e., structure names are assigned to correct regions), their borders are not prop­

erly delineated by the contours mapped through a simple linear transformation (see Fig. 6.4). For

the most part, these errors are due to the limitations of the affine transformation and to the sig­

nificant arnount of inter-subject morphometric variation. Higher order transformation functions

for the stereotaxie mapping m!'st be used to account for these complexities.

Two methods have been implemented in our lab to incorporate non-linear warping into the

atlas mapping procedure. White both methods use the geometrie VOl atlas of the VBSM, the first

requires manual intervention and the second is fully automatic. The first approach did not take

explicit advantage of stereotaxic concepts ?nd was used to match atlas to brain regardless of the

original orientation of either. The second method, now adopted as our laboratory standard and

forming the major theme of this thesis, was developed in large mensure to overcome deficiencies

that became evident in the first approach.

6.3.1 Landmark·driven segmentation

In order to fit the atlas to a given brain, and thus use the contours defined in the atlas to seg­

ment structures in the data volume, the thin-plate spline procedure was implemented to deform

the entire 3-D atlas under landmark-driven constraints (Evans et al., 199Ib). For initial analy­

sis, 261andmark points were identified in each of 16 MRI volumes. The points were distributed

throughout the basal ganglia, brain-stem, ventricies and cortex and each point wa~ identified by

its Talairach atlas coordinates for consistent reference between subjects. The non-linear trans­

formation defined the 26 points on each target MRII MRI atlas pair was used to deform atlas
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Figure 6.4: Segmentation using Iinear transformation only

This image shows the typical segmentation of a single transverse slice of an MRI
volume, after the contours of the VBSM-VOl have been mapped through the linear
; ànsformation. While the centroid of each region of interest is near the structure
that it is to segment (thus identifying it correctly), the contours do not delineate the
regions weil. This is due to the limitations of the affine transformation when trying
to account for anatomical variability. The most notable differences are in the region
of the occipito-parietal cortex and in the insular cor,ex regions.
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and fit it on the subjects MRI volume. Fig. 6.5 shows a typical slice through one of the matched

VOIIMRI volumes at the level of the peri-ventricular grey-matter regions. The good quality of

the fit in the central brain regions is due to the number of clearly identifiable landmarks in the

peri-ventricular region (caudate, thalamus, AC, PC, genu and splenium of the corpus callosum,

anterior and posterior poles of the lateral ventricles). However, the degradation of the fit near the

cortex is the result of the lack of landmarks in that area, due to the difficultly in reliably identi­

fying cortical points.

Mapping the VOl atlas ooto a single brain volume by both linear and non-linear solutions

allows a direct comparison of the two solutions for that volume and is indicative of the extentto

which non-linear techniques are necessary for automatic identification of brain regions. How­

ever, since each brain is of different size and orientation, pooling of results across subjects is

not straightforward. By first fitting with a non-linear solution, and mapping back into stereo­

taxie coordinate space with the inverse linear solution, ail measurements could be established

in the master frame and the two methods compared. The centre-of-gravity (COG) for each of

the structures of the VOl atlas was used to assess the magnitude of the non-linear deformation

required throughout the brain volume. The results shown in table 6.1, indicate that a substantial

component of normal anatomical variation cannot be accommodated by the linear model alone.

The overall 3-D r.m.s. COG shift of 6-7mm is considerable and problematic not only for seg­

mentation, but for all applications based on the classical stereotaxic concept.

6.3.2 Automatic segmentation

The prohibitively large number of landmarks necessary, the subjectivity inherent in their selec­

tion, and the dependence of the resultant deformation on their distribution forced us to look

into fully automatie techniques for atlas-based segmentation. Automatic feature matching is

proposed in this thesis as an alternative approach which avoids the potentially time-consuming

landmark tagging. In this context, local properties of the image, such as edges and zones of

relatively homogeneous intensity, are extracted automatieally as features by neighbourhood op­

erators. They are matched to similar features of the stereotaxic VBSM, using the local correla-
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Figure 6.5: Segmentation using 3-D thin-plate spline transformation

This image demonstrates segmentation achieved by mapping the contours of the
VBSM-VOl have been mapped through a manually M,ined TPS transformation.
The segmentation of basal-ganglia structures has imprc.ved over the linear segmen­
tation due to the number of landmarks in that region. Also,landmarks at the anterior
temporal poles and in the insular region have improved the segmentation near the
insular cortex. The lack of landmarks in the area of the occipito-parietal cortex has
left the TPS to assume its minimum energy configuration in that area, which does
not correspond to a proper segmentation in that region. This indicates the depen­
dence of this type of manual warping technique on the number and position of the
chosen landmarks.
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Distance (R) SD Region

6.34 3.15 Superior frontal gyrus
7.69 2.27 Middle frontal gyrus
5.86 2.40 Inferior frontal gyrus
5.83 2.14 Pre-central gyrus
5.05 2.35 Post-central gyrus
4.50 1.91 Superior temporal gyrus
4.47 1.65 Middle temporal gyrus
5.19 2.07 Inferior temporal gyrus
5.38 2.19 Amygdala
5.22 2.26 Hippocampus
9.18 3.52 Head of Caudate Nucleus
7.14 2.99 Putamen
7.80 3.15 Globus Pallidus
7.63 2.94 Thalamus
6.52 3.16 Total (N.B. 60 structures)

Table 6.1: Estimate of residual anatomieal variability.
The root mean squared distance (mm) of regional 3-D centre-of-gravity From tar­
get position following linear warping of VOl atlas to target space indicates residual
anatomieal variability not handled by the linear model (see tex!). 60 regions in total
(14 shown); 16 subjects. (Evans et al., 1991b)
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tion and non-linear deformation procedure described in the previous chapter. Once rilapped into

stereotaxic space, the labels in the geometric VBSM atlas identify neuro-anatomical structures

by name and the atlas contours delineate each structure region. Application of the inverse trans­

formation segments structures in the native space. Fig. 6.6 shows a typical segmentation of a

transverse MR image using the automatic method.

Matching a source MRI volume to raster data of the VBSM is key to the reversai of the tradi­

tional model-based segmentation strategy. Instead of fitting contours from the atlas to the MRI

data to achieve segmentation, similar image-based volumetric features are matched between the

two data sets and borders of the neuro-anatomical regions are inferred from the geometric in­

formation in the VBSM. This strategy reversai achieves three important benefits over previous

methods:

1. The extra level of abstraction needed to fit geometric contours to dissimilar raster data

is removed, since both model and data have the same representation as weil as similar

contrast, sampling and noise characteristics.

2. Subtle edges derived from the MR volume are registered with corresponding edges in the

segmentation model, eliminating the need for interpolation between cortical and ventricu­

lar structures and allowing the positions and surfaces of anatomical regions to be inferred

from the mode!.

3. Most importantly, the segmentation procedure presented here is atlas-independent. The

atlas data of the model is not used in any way to estimate the registration transformation

between data and mode!. Therefore, any atlas defined on the stereotaxic brain volume can

be used to achieve the segmentation. Therefore, it is possible that more than one label

may be associated with a single voxel to allow for multiple co-existing atlases, for a hier­

archical nomenclature, or to account for partial volume effects due to multiple structures

intersecting at a single voxe!.

This segmentation paradigm is very general. Not only is it atlas independent, but the pro­

cedure does not require the MRI atlas to be used as the source for the invariant features in the
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Figure 6.6: Segmentation using automatic non-linear deformations

This image shows the marked improvement in segmentation achieved by mapping
the contours of the VBSM-VOl have been mapped through a the inverse of the auto­
matically recovered non-linear deformation function. Segmentation of ail structures
is improved over both automatic linear segmentation and manual non-linear seg­
mentation. Since local neighbourhood correlation is used in ail regions of the vol­
ume, the automatic procedure does not suffer from a lack of information conceming
the deformation as is possible with the manual procedure. The use of a non-linear
deformation function can account for normal anatomical variability, unlike the au­
tomatic linear procedure. One must note that the quality of the segmentation depend
on the quality of the VBSM-VOl. Since the segmentation procedure is independent
ofatlas used for structure delineation, improvements in the atlas can be immediately
applied to segment the data, simply by remapping the new atlas through the existing
non-Iinear transformation.
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VBSM-IIF. For example, an MRI brain volume from a single subject can be used to define the

target space, and the required feature volumes derived and stored for it. The non-linear registra­

tion procedure recovers the ~patial deformation function to map ail voxels from any source data

set on this target data set. If structures on the target brain are outlined and identified, they can he

used to segment structures from other brains registered with it by mapping voxellabels through

the inverse transformation from the target volume to the second data set. This method functions

weil with the following caveat: it suffers from the same drawback as the original Talairach at­

las, namely ail segmentation results must be interpreted in function of the single selected target

brain. However, using this type of target permits the definition of sorne cortical structures that

cannot be resolved on the 30S-brain MRI atlas due to high morphometric variability.

6.4 Summary

Considering the number ofdifferent forms ofbrain atlases in the Iiterature (Talairach and Toumoux, 1988;

Hanaway et al., 1980; Kretchmann and Weinrich, 1986; Matsui and Hirano, 1978) that deal with

gross neuroanatomy and/or functional neuroanatomy, it is clear that there is no universally ac-

cepted model for either type of atlas. Many brain structures can be easily identified by their ap­

proximate center or main axis, but the exact delineation of their borders is problematic. The seg­

mentation method proposed here is independent of the atlas definition. A given MRI brain vol-

ume is warped to match similar volumetric features in a standardized space. Since these features

are derived from an average MRI vo1J!me, they are completely independent of the segmentation

atlas. Therefore, any atlas defined in this space can be used to accomplish the segmentation and

replacement of one atlas model with another requires a minimum of subjective effort. Hence,

as higher resolution digital atlases become available, the algorithm remains applicable and even

more functional. Furthermore, the ability to correlate any volume or model within the stereotaxic

coordinate system allows the direct comparison of different previously published brain atlases.
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Chapter 7

Linear registration: experiments and

results

7.1 Introduction

The experiments in this chapter are divided into three parts; 1) evaluation of the linear registra­

tion a1gorithm using simulated data and transformations, 2) validation of the method with real

MRI data and 3) evaluation of the automatic stereotaxie mapping procedure and description of

the refinement of the mean MRI brain for its use in the VBSM. Note that aH simulations and

registrations are completed in 3D using volumetrie data.

7.2 Simulated data

7.2.1 Ellipsoid phantom

A program was written to generate simple 3-D voxelated phantoms ofellipsoidal and rectangular

objeets with arbitrary orientation, size, slice thickness, contrast and ncsting, and was used to

build a simple volumetrie brain model containing three concentric ellipsoids for the skin surface,

117



•

•

Figure 7.1: 3-D rendering of ellipsoid phantom.
The simple ellipsoid phantom contains two large concentric ellipsoids to model the
cortex and grey/white matter interface. Two smaller oblong ellipsoids represent the
lateral ventricles. This phantom is used to demonstrate the !inear registration algo­
rithm.

cortical surface and grey-white interface, and two smaller ellipsoids to represent the ventricles.

The parallelepiped represents an arbitrary object. Fig. 7.1 shows a 3-D rendering of the phantom

used to test the algorithm in the first experiment. The long axis of the ellipsoid measures lOOmm.

Source data sets for matching experiments were created by resampling the model volume

with a randomly generated affine transformations onto a 128xl28xl28 matrix, with Imm3 voxel

size. The transformations contained random translations (±15 mm) and random rotations (±15

degrees) on each axis. Fig.7.2 shows a transverse slice through the model and a typical resam­

pied data set. The difference image in Fig. 7.2-d show a qualitative measure of the resulting

registration.

Twenty random 3D linear transformations were applied to the model and two quantitative

measures were used to evaluate the resulting match. The first measures differences in the re­

covered transformation parameters and the second measures the r.m.s. distance between homol­

ogous points. In each of the twenty cases, after application of the multiresolution registration

scheme, the r.m.s. translationaI error from the transformation mapping was less than O.5mm

(less than half a pixel) and r.m.s. rotationaI error was less than 0.2 degrees around each axis.

1I8



•

•

Figure 7.2: 2-D transverse slices through 3-D ellipsoid phantom.

a) Transverse slice through the model phantom. b) Same slice through same data
set, after application of a random transformation. c) Shows the data set of (b) re­
transformed by the recovered transformation. d) Difference image between target
(a) and restored data (c). The pixel values in the difference image have been multi­
plied by a factor of ten to enhance the voxel intensity difference.
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In order to estimate mis-registration at different locations, a set specifie points, organized on

a 3-D lattice with 8mm spacing between nodes, were mapped through the known transform and

through the recovered transform. The difference in position defines the point registration error

and indicates the quality of the registration. On average over the 20 random transformations, the

r.m.s. point registration error was 0.14mm. The maximal point registration error at the edges of

the field ofview was ±0.95mm, and at the edge of the geometric model, ±O.77mm. From these

mcasurcs, we can conclude that the multi-resolution procedure can recover the transformation

rcquired to register a simple object in a noiseless data set. A more complex phantom is used in

the next section.

7.2.2 Digital Brain Phantom.

ln order to realistically evaluate the performance of the algorithm with respect to image intensity

noise, contrast and different transformations, it was necessary to create a phantom that was more

complcx than simple concentric ellipsoids. Adetailed brain phantom was created by identifying

different structures and tissue types from an MR data set of a single volunteer. The resulting

labeled volume could then be endowed with the appropriate contrast for each tissue type, and

noise added, to resemble a true MR acquisition. This data set provides a gold-standard with

which to evaluate the linear registration algorithm.

The MR data used to create the phantom consisted of3 volumetrie data sets representing Tl­

, T2-, and proton density-weighted (PD-weighted) data. The Tl-weighted data were acquired

wilh a 3-D volume spoiled Gradient Echo sequence (TE=7ms, TR=23ms, flip angle 30°) yield­

ing 180 sagittal slices with Imm3 voxels. The T2-weighted and PD-weighted volumes were

acquired in a second 2-D multi-slice dual echo sequence (TR=3300ms, TE=35ms for PD and

TE=125ms for T2). Slice thickness was increased to 2mm to reduce noise in these two data

sets. Since the three volumes were acquired with two acquisitions, there was possibility of sub­

ject movement between scans, which was in fact verified by visual comparison of the TI and T2

data sets. Therefore, the T2-weighted volume was first registered to its Tl-weighted counterpart

by identification of 20 homologous landmarks on both volumes using the landmark-matching
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method described in (Evans et al., 1989d). Once completed, the T I-weighted data set was reg­

istered to the standardized space using the same technique. Al! three data sets were then mapped

into stereotaxie space with the same transformation and resampled using a 1mm3 voxel size.

After 120 voxel samples of grey-matter, white matter, CSF, muscle, fat, skin, bone and back­

ground were manually identified, a minimum-distance classifier (Duda and Hart, 1973) was used

to label each voxel with one of the aforementioned classes. Since sorne voxels outside the skull

were label!ed as white, grey or CSF, a manually defined mask was used to change the values of

voxellabels within the brain. A similar procedure was used to differentiate background from

bone voxels. Typical slices from the resulting classified volume are shown in Fig. 7.3. While

there are sorne small classification errors, e.g., a slight overestimation of grey matter atthe cor­

tex, the phantom is more than adequate to represent of the complexity of structures within the

brain for ;:valuation of the non-linear registration algorithm. Il should be noted that it does not

matter that sorne voxels from the original MRI data were mis-Iabel!ed by the minimum-distance

classifier. The labelled volume is now a phantom defined as truth and is no different in principle

than the arbitrarily defined ellipsoid phantom. Il has the single advantage that it is a complex

simulated data set which closely mimics the convoluted nature of a real brain.

In order to simulate MR data from a particular scanning protocol, the classified regions were

colourlzed according the mean intensity value for the given tissue type. For example, a Tl­

weighted phantom has all grey matter voxels mapped to an intensity of 438, white matter voxels

to 350, CSF to 137 and bone to 38. These representative values were estimated from regions of

interest taken from one MRI volume from the second group ofdata sets used to test the algorithm.

Noise is added in the last step of the creation of the phantom. For each voxel in the phantom,

the coloured intensity is augmented by a randomly generated noise value from a Rayleigh distri­

bution with a user-specified mean. Fig. 7.4 shows a typicaltransverse slice through the original

data volumes used to create the phantom along with the corresponding simulated data.
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Figure 7.3: Classification result.
The tirst row shows 5 transverse images from the original Tl-weighted volume. The
second row shows the corresponding slices classitied into grey-matter, white matter,
ventricular CSF, sulcal CSF, muscle, skin, bone, fat and background.
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Figure 7.4: Comparison of real MRI data with phantom.
Transverse image through both real MRI data (top row) and the simulated phantom
without added noise (bottom row) at the level of the lateral ventricles. From left
to right: proton density, TI and T2-weighted images. The difference is Ihat in the
latter case, ail voxels within a given class are known and given the same intensity,
prior to the addition of noise.
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Figure 7.5: Noisy brain phantom
These images show a transverse slice tht'ough the T1-weighted digital brain phan­
tom at noise levels of 20%, 40%, 60% and 80%, from left to righl. Compare these
with the equivalent noise-free version in the bollom-Ieft corner of Fig. 7.4.

7.2.3 Registration error vs noise

ln order to test a1gorithm performance with respect to noise, the following methodology was

used. Random transformations were applied to the brain phantom followed by the addition of

noise to create source/target pairs, where the transformed volume was identified as the source

and the original brain phantom as the targel.

The transformation was created by generating random transformation parameters within a

fixed range; the translations a10ng the x, y and z-axes varied ± 10 mm, rotations around the three

axes varied ±IO degrees and scale alung the axes varied from 0.9 to 1.1. These parameters were

used to create the transformation matrix used to resample the brain phantom. After resampling,

Rayleigh distributed noise was added to the transformed volume at levels from 0% to 80% in

intervals of 10% ofthe non-zero signal of the input volume. Note that typical MR images have a

signal-to-noise ratio at least 10: l, corresponding to the 10% noise levei. Fig. 7.5 shows the same

transverse slice through four noise levels used in this experiment, where the level is defined to

be the standard deviation of the Rayleigh distribution.

For each noise level, ten source/target pairs were generated and the automatic registration

procedure applied to recover the random transformation. As for the first phantom experiment,
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two measures of error were calculated: parameter error and the r.m.s. between homologous

points. The graph in Figure 7.6 shows that the parameter error remains quite small up to 40%

noise. At that level, average scaling error is less than 0.03±0.28%, translation error is 0.08±0.16mm

and rotational error is -0.06±0.67 degrees. At 50% noise, the registration of only one of the ten

source/target pairs failed, while the others were recovered with error similar to the 40% level.

The second measure of registration error is the registration residual and indicates how weil

homologous points are mapped to each other. For this experiment, 10 points were chosen (5 cor­

tical and 5 internal: frontal pole, occipital pole, UR central sulcus, vertical apex, splenium of

corpus callosurn, UR head ofcaudate, UR posterior pole of lateral ventricle). These points were

mapped through the forward random transformation and then back through the recovered trans­

formation onto the original brain phantom. As shown in Fig. 7.7, for each of the source/target

pairs, the 3-D r.m.s. residual is less than 0.8mm until 50% noise has been added to the trans­

formed brain volume. At 40% noise, the registration r.m.s. residual is 0.81 ±0.50mm and is con­

sistent with the parameter eITors measured above. At 50% noise, the error increases to 3.76±3.50mm.

7.3 Real Data

7.3.1 Data acquisition

After simulation studies, the registration algorithm was tested with real MRI data. For this task,

a set of 17 brain volumes were acquired from young volunteers (27 ± 3 years; 13 males, 3 fe­

males). These volumes form the core data base of real data for most of the analysis accomplished

in this thesis.

Ali MRI studies for this chapter were performed on a Philips Gyroscan SI5-HP 1.5 Tesla su­

perconducting magnet system. A 3-D gradient echo acquisition, with Tl-enhancement was se­

lected for this study (TR=75ms, TE=14.lms, FOV=250mm, slice thick=3mm, number of slices

= 56, flip angle=600) yielding a total scanning time of 37 minutes. The data set was reconstructed

on a 256x256x56 rnatrix with 12 bits per voxel and a voxel size ofO.98xO.98x3.0mm. The imag-
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Figure 7.6: Parameter error vs noise.

These graphs indicate that the registration algorithm can deal with noise levels up to
40%. This corresponds to a signal-to-noise ratio ofapproximately 3: 1. Since typical
MRI data has a ratio of at least 10: l, the algorithm is applicable to any realistic MR
volume used for neuro-scientific studies.
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Figure 7.7: Residual error vs noise.
This graph indicates that the registratian algarithm is robust against noise. The
r.m.s. registration residual is 0.81 mm or less until40% noise has been added ta the
simulated data.

ing parameters were selected to maximize grey/white matter contrast and the signal to noise ratio

to faeilitate both manual and automatic structure identification while minimizing the scanning

time and eovering the entire brain.

A non-invasive form of head immobilization, based on a pre-formed foam pillow and a vel­

cro strap across the forehead, was used allowing for simple setup. The absence of specifie pres­

sure points made this a relatively comfortable procedure for the short period in the scanner. The

subjeets (ail graduate students and technicians associated with the lab) were cooperative during

scanning. There were negligible artefacts in the data.

The images were reconstructed on a local VAX system and transferred via EtherNET to the

Neurolmaging Laboratory. For display and analysis in the creation of the VBSM, the 12 bit/voxel

intensity range was reduced to 8 bits without signifieant degradation of image contras!.

•
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7.3.2 Data preprocessing.

In dealing with real data, there are a number of problems with machine-related imperfections in

the image. These are dealt with by preprocessing steps as foIIows.

Image intensity corrections.

A procedure has been implemented to correct for the RF field inhomogeneity that is evident in

the patient data as a slightly brighter diagonal band from the upper left to the lower right corner

of each transverse image. This artefact is typical of the Iinearly polarized RF coil used in the

MR scanner when the imaging experiments were perforrned. This artefact can be modeled as a

multiplicative intensity variation. There are a number of methods in the literature that address

this problem: unsharp masking, phantom correction, homomorphie filtering (BraceweII, 1978;

Pratt, 1978) and unsharp blurring (Gohagan et al., 1987).

The intensity inhomogeneity in each slice is addressed using the unsharp blurring technique,

a method similar to homomorphie filtering except that processing involves dividing images by

their neighbourhood average rather than subtracting logarithms. The algorithm has been imple­

mented within the MSP program running on the SPARC 1+as a preprocessing step (Collins, 1990)

before the volume is brought into stereotaxie space for comparison with the modeL

This preprocessing step is no longer strictly necessary, since the final steps of the registration

procedure are based on gradient magnitude data and are therefore much Jess sensitive to this type

of intensity artefact.

Geometrie corrections.

ln sorne systems, geometric distortions in the images require correction before processing. How­

ever, for the system used here, measurements of the dimensions of an MRI calibration phantom

indicate negligible distortions through the central portion of the MRI imaging field, thus elimi­

nating the possibility of significant geometric artifacts (Drangova, 1987; Peters et al., 1988).
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rot. (deg) 0.0766 0.0958 0.0773 1 0.0832 0.0487 0.0612 0.0466
trans. (mm) 0.0959 0.1027 0.1081 1 0.1022 0.0576 0.0675 0.0639
exp. 2

rot. (deg) 0.0787 0.1010 0.0874 0.0890 0.0500 0.0640 0.0513
trans. (mm) 0.1055 0.1034 0.1218 0.1102 0.0628 0.0678 0.0760

scale 0.0012 0.0011 0.0018 0.0014 0.0009 0.0007 0.0011

Table 7.1: Simulation of intra-subject registration.
Twenty random transformations were applied to each of 17 subjects. The automatic
linear registration procedure was used to recover the transformation. The Table
shows the errors in affine parameters for rotation and translation only (Exp. 1). and
with scaling (Exp. 2).

7.3.3 Simulated intra-subject registration

In an initial experiment to establish intra-subject registrati'On. 20 random linear transformations

(only translations and rotations) were applied to each of the seventeen MRI volumes of the head

from the normal volunteers. Errors were measured in the same fashion as for the ellipsoid and

the digital brain phantoms described earlier. The errors in the parameter recovery are surnma­

rized in Table 7.1. The average r.m.s. rotational error was 0.083 degrees while the average r.m.s.

translational error was 0.102 mm. The r.m.s. point registration error was less than 0.2 mm. The

results were better than that obtained with the phantom, because in that case partial volume ef­

fects were not accounted for.

This experiment was then repeated with anisotropie scaling included with the previous ro­

tations and translations in the 20 random linear transforms. The results of the nine parameter

registration are still very good as shown in the second half of Table 7.1. The average r.m.s. er­

ror for rotation increased slightly to 0.089 degrees. Translational error increased from 0.102 to

0.110 mm. The average r.m.s. scaling error was 0.14%. The point registration error, as defined

above, was stilliess than 0.2 mm. These measurements determine the lower bound on the error

using this forro of 3-D registration.
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7.3.4 Inter-subject registration

For inter-subject registration, each of the 17 brain volumes in tum was identified as the target and

the other 16 volumes registered to il. Figure 7.8-a shows the sarne transverse slice through nine

of the seventeen volumes used in the experiment. Even though the laser cross-hairs were used for

alignment on the scanner, this method of pre-scan registration achieve liule success. In Fig. 7.8­

b, the upper-left volume was selected as a target, and the other 16 volumes registered to it, eight

ofwhich are shown in the figure. Visually, the automatic procedure appears to have recovered the

transformation necessary to register the volumes together. Here, the registration error can not be

estimated as before, since the source and target volumes represent different brains. Therefore,

there is no generalized correct registration solution since the quality of the match will depend

on the task requiring the registration. Other objective measures that can estimate the registration

residual based on information derived from the two volumes must therefore be determined. One

such measure is similar to the point registration error and is described below.

Landmark points and registration residual

One of the goals ofregistration is the alignment ofsimilar structures. Therefore, the 3-D distance

separating similar structures after registration is an objective, quantitative estimate of the quality

of the registration. Anatomicallandmarks are often used to establish this measure because they

can be identified across a number of different subjects and a large number of them can give a

reasonable estimate of the goodness-of-fit in registration. In this thesis, the registration residual

is defined as the distance, in the target space (be it the coordinate space of an individual data set,

or the stereotaxic space), between a specific landmark point and its homologue mapped into the

same space by the recovered transformation. This is not only registration error, but an indication

of the second order difference in anatomy between subjects.

For this and the following experiments, software was developed to allow real-time tri-plane

display of tomographic data so that the user May roam through each volume in 3-D (Evans et

tll., 1989a; Evans et al., 1991a) and identify 48 anatomicallandmarkpoints on each ofseventeen
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Figure 7.8: Before and after inter-subject registration
The group of images on the left shows the same transverse slice through 9 of the se\'­
enteen volumes used for inter-subject experiments in this chapter, before application
of the automatic registration procedure. In the group on the right, the upper-leftmost
volume was used as a target and the other sixteen (only eight shown) linearly reg­
istered to il. One can see that the automatic registration procedure accounts for the
position, orientation and scaling needed to align the data sets.
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data sets. These landmarks were distributed over the cerebrum, cerebellum and brain stem and

are separated into five groups (sorne points occur in more than one group):

1. longitudinal structures(n=14): (e.g. the ventral aspect of the genu and splenium of the

corpus callosum, the anterior and posterior commissures, the inter-thalamic adhesion, the

occipito-cerebellarjunction at the mid-line, the inferiorventral aspect of the pons-midbrain

clef! and the most superior and most inferior aspects of the vermis.)

2. basal ganglia (n= 11): (e.g. the ventral aspect of the genu and splenium of the corpus cal­

losum, the anterior and posterior commissures, the inter-thalamic adhesion, the center of

the head of caudate and the center of the thalamus.)

3. ventricular structures (n=5): (e.g. both anterior horns, both posterior horns and the poste­

rior notch of the 4th ventricle.)

4. cortical structures (n=18): (e.g. the most anterior point of the temporal poles, the most

posterior aspect on the occipital poles, the point of intersection of major fissures such as

the central sulcus with the longitudinal fissure and the parieto/occipital sulcus with the

longitudinal fissure and the temporo-cerebello-occipital notch.)

5. cerebellar structures (n=18): (e.g. the occipito-cerebellarjunction at the mid-line, the most

superior, the most inferior and the most posterior aspects of the vermis, the most superior,

the most inferior, the most posterior and the most lateral aspects of both cerebellar lobes

and the centers of the cerebellar peduncles.)

These points represent a compromise between (i) the requirement for a large number of neuro­

anatomically weil identified landmarks throughout the brain volume, and (ii) the practicallimi­

talions on identifying reliable structures, particlliarly on the cortical surface.

Automatic inter-subject registration

Returning to the inter-subject registration experiment, over the 272 trials (17 targets x 16 data

sets), the lineartransformation recovered by the multi-resolution registration procedure yielded a
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• 3-D r.m.s. registration residua! of 6.65 mm when estimated over the 48 points above. This value

is in good agreement with the mean anatomical variability of 6.52 mm in Table 6.1 of section

6.3.1, determined with a different technique, different subjects and differcnt landmark points.

Manual inter-subject registration

In order to compare this result to manualJandmark-based registration, the 48 landmarks were

submitted to a homologous landmark registration procedure based on the Procrusles algorithm

(Langron and Collins, 1985; Sibson, 1978; Sibson, 1979). This procedure requires two sets of

points and finds the besl solution in the Jeast squares sense by minimizing the r.m.s. distance

between aIl paired points. The optimal transformation is found in two stages. First, the trans­

lationa! component, T, of the transformation is obtained by calculating the difference between

the COGs of the two clouds of points. Both sets of points are then translated so that their cen­

troids coincide with the origin. SecondJy, the rotational component, R, of the transformation is

determined by minimizing the residual,

(7.1)

where Pl and P2 are the 3 x N matrices representing N points in the source and target volumes,

respectiveJy. The solution to this problem is obtained by calculating the singular value deeom­

position (SVD) of P~Phwhere ' indieates matrix transposition. If,

(7.2)

•

is the SVD of P~Ph then R above is given by U'V. A global seale is extracted from the ratio of

the trace of P2RP{ divided by the trace of P2P~,

Comparison manuaI vs automatic inter-subject registration

With isotropie scale the Proerustes r.m.s. residual was 5.94mm. This value obtained for di­

rect landmark-matching is slightly smaller than the 6.65mm obtained by the automatic indirect
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image-matching approach. This is expected, since the points used to define the Procrustes trans­

formation are the same as those used to measure the error. Nevertheless, the values indicate that

the automatie feature-matching approach performs as required.

7.4 Stereotaxie mapping

As described in section 4.6, the automatic registration procedure cali be used to map individual

data sets into stereotaxie space prior to analysis. Four experiments were performed to evaluate

the performance of the general algorithm when applied to this particular task. These experiments

• demonstrate the improved registration using the gradient magnitude compared with just

using voxel intensity;

• compare the automatie method to a manual registration based on mapping of homologous

landmarks between the two volumes;

• compare the automatic method to a second manual registration procedure, where the user

begins by identifying points along the AC-PC line and then deterrnines rotation parame­

ters by locating points in the inter-hemispheric plane and scaling by estimating the brain

extents;

• explore the algorithm's robustness with respect to missing data.

A typical automatic stereotaxie registration is shown in Fig. 7.9.

For the results quoted below, the following coordinate system convention is used: x-axis

in the LR (left-right) direction (positive towards the right), y-axis in the PA (posterior-anterior)

direct;'Jn (positive anterioriy), z-axis in the CC (caudo-cranial) direction (positive superiorly)

and the origin was located at the intersection of the center of the anterior commissure with the

inter-hemispheric plane.
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Figure 7.9: Typieal automatie stereotaxie registration.
Four transverse planes (z=-IO,O,1O,20mm) through a typical data set after automatic
registration with the stereotaxic Talairach space with the corresponding atlas sliccs
overlaid. While these images show the quality of the automatic alignment, they also
indicate the need for sorne form of non-Iinear mapping to complete the alignment
of specific regions near the edge of the cortex and internai structures such as the
ventricles.
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total of mean (mm) standard deviation
48 points head brain edge head braill edge

x: 1.2 1.6 -0.1 2.37 2.08 2.00
y: -38.6 -37.7 -36.5 4.57 4.11 4.07
z: -3.2 -3.5 -5.5 5.05 4.11 3.62

3-D: 7.21 6.17 5.80

Table 7.2: Comparison of fitting strategies.
Automatic intra-subject registration (16 subjects) in stereotaxie space. Comparison
of full volume intensity correlation (head) vs. brain-masked intensity correlation
(brain) vs. brain-masked gradient correlation (edge) based on registration residuals
of symmetrically (Ieft-right) disposed landmark points. Hence x should = 0 (fj and
z have no significance). Note the reduced 3-D r.m.s. distance among homologous
landmarks when comparing head, brain and edge fitting strategies.

7.4.1 Gradient magnitude vs. voxel intensity

For each data set, three transformations were computed at a final scale of FWHM=8 mm. The first

was based on the intensity fit alone (noted head in Table 7.2), the second on the brain-masked

intensity fit (noted brain) and the third on the masked gradient fit (noted edge). For each trans­

formation, the centroid and the average standard deviation for the different groups of landmark

points were calculated and are shown in Table 7.2.

When comparing the edge-based registration to that accomplished by masked-intensity cor­

relation for each group of points, i) mapping by the transformation recovered by the edge fit

reduced their spread as indicated by the standard deviation in stereotaxie space; ii) the bias of

points away from the mid-line (x =0) was found to be reduced as weil, iii) the bias in rotation

about the z-axis indicated in Table 7.2 was removed, aligning the longitudinal tissure with that

in the model in ail cases tested, and iv) that the bias in scale in the same direction was removed

in the three cases where it was over-estimated.
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7.4.2 Automatic registration vs. land-mark based technique

The hypothesis tested here was that the automatic multi-resolution methodology could estimate

the transformation necessary to bring a volumetrie T l-weighted MR data set into stereotaxie

space with errors similar to, or smaller than, those estimated by manual registration methods

that use homologous landmark matching.

For each of sixteen data sets, two linear transformations were caleulated: one by the auto­

matie method (Tauta ) and the other that minimized, in the least-squares sense, the distance be­

tween manually identified homologous landmark point pairs (Tma,,) (Golub and van Loan, 1983)

deseribed in section 7.3.4. Both transformations are defined by nine parameters: three scale fac­

tors, three translations and three rotations. In order to directly compare the transformation pa­

rameters, the center of rotation and scaling was constrained in Tma" to be equal to that found in

Tauta• This constraint was somewhat biased against Tma", since the true least squares solution

imposes its own center. However, the center of the of landmark points was close to the one im­

posed, sinee the points used are weIl distributed around the cerebral volume. There was only a

1.1 mm r.m.s. difference in 3-D position between the mapping of these points between the con­

strained and unconstrained transformations. T-I~nce, there is no important difference between the

the rotation and sealing parameters between the constrained and true least-squares solutions.

For each trial, three difference measures were calculated. The first two compared the auto­

matie with manual methods without defining which was more correct, while the third measured

how weIl either method accomplished the required task of registering target points. These mea­

sures were based on:

1. differenees between the transformation parameters (rotation, translation and scaling) re­

covered by Tauta and Tma,,;

2. average difference in position of landmark points (listed in section 7.3.4) mapped into

stereotaxie spaee by Tauta compared to Tma,,;

3. a comparison of registration residual for mapped landmark points with respect to target

points for the two methods.
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Parameter dilTerences

Using a two-tailed Student's t-test for paired samples, there was no significant difference in the

parameters recovered by the automatic algorithm when compared to the manual method (p >

0.1 for ail parameters except y-scale, where p > 0.05; deg. freedom = 15; For the x, y and

z-axis, respectively: Student's t=(O.927, 0.030, 0.351) for rotation, t=(O.189, 0.770, 0.335) for

translation and t=(O.89 1, 1.773, 1.082) for scaling.

When the registration parameters for Tman and Tauta are compared for each data set, the r.m.s.

rotational difference was 2.1, 0.75 and 1.48 degrees around the x, y and z-axes. The inter­

hemispheric fissure strongly constrained rotation about the y and z-axes. Most other strong

features, such as the brain and ventricular surfaces, are aligned tangentially rather than radially

to the .T-axis of rotation, and hence have a less constraining influence on this parameter. The

r.m.s. difference in translation was 0.49 , 0.95, and 1.0 mm in the x, y and z-directions. Once

again, the gradient edges along the longitudinal fissure fixed the LR position. The r.m.s. change

in scaling was less than 2.5 percent along the x and y-axes and 4.8 percent along the z-axis.

The scaling along the z--axis is worse since the cortical surface at the top ofthe head was missing

on sorne data sets, due to the lack of MR slices in that region.

Mapping dilTerences

The difference in mapping through Tman and Tauta into stereotaxic space was estimated by mea­

suring the average distance between landmark points (listed in section 7.3.4) mapped forward by

the two transformations (see Table 7.3). Note that this does not measure how weil either method

map the points to their target position, which is the subject of the next section.

For 48 points, across ail sixteen data sets, the average r.m.s. residual differences between

mappings were 1.87, 1.21 and 2.20 mm in x, y and z-directions, respectively (3.09 mm in 3­

D). Not surprisingly, the smallest residuals were for structures near the transformation center

where, for instance, the basal ganglia landmarks showed average r.m.s. values of 1.1, 0.7 and

1.4 mm in x, y and z (1.91 mm in 3-D). The largest were for cortical structures: 2.2, 1.4 and 2.5
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structllre/grollp meall3-D
poillts dist. (mm)

basal ganglia (n=Il): 1.91 ± 0.93
ventricular (n-5): 2.49 ± 1.16

longitudinal (n=14): 2.61 ± 1.14
cerebellar (n=18): 2.85 ± 1.55

cortical (n=18): 3.61 ± 1.36
total (n=48): 3.09 ± 1.15

Table 7.3: Mapping differences: automatic vs. manual.

Average r.m.s. difference in position for points mapped into stereotaxie space with
the manual (Ieast-squares) method and the automatic correlation technique (16 sub­
jects). Groups of points are described in section 7.3.4

mm, for x, y and z (3.61 mm in 3-D).

Misregistration with target points

For inter-subject registration, it is weil known that even after transformation (manual or auto­

matie), there remains a considerable difference in position for landmark points (Evans el al., 1991 b;

Talairach and Toumoux, 1988; Steinmetz and Seitz, 1991). For each of the 48 landmarks, a tar­

get point was defined as the centroid of each ensemble of 17 landmarks (one from each subject)

mapped into stereotaxie space by the automatic transformation. The average r.m.s. residual for

landmark points mapped through Tman was 5.21mm in 3-D (3.72, l.81 and 3.13mm , in :1:,1/ and

z-directions, respectively). (The 3-D residual for the unconstrained least-squares, Le. no fixed

origin, was 5.05 mm .) The corresponding value for Tauta was slightly larger at 6.13mm in 3-D

( 4.39, 2.08 and 3.73mm, in X,1/ and z). Not surprisingly, the smallest r.m.s. residuals were for

points in the basal ganglia (2.7 mm vs 2.9 mm , for TmaTl and Tauto respectively) and the largest

were for cortical structures (6.8 mm vs 7.8 mm). (See Table 7.4 for details.)

139



• SlruClure/group automatic monuol
poillls 3d disl (mm) 3d disl (mm)

basal ganglia (n-II): 2.87 ± 0.96 2.70 ± 0.1'1
ventricular (n=5): 4.32 ± 1.68 4.14 ± 1.75

longitudinal (n=14): 4.99 ± 1.45 4.09 ± 1.02
cerehellar (n=18): 5.99 ± 1.88 4.91 ± 1.59

cortical (n=18): 7.74 ± 1.74 6.78 ± 1.46
total (n=48): 6.13 ± 1.09 5.21 ± 0.90

Table 7.4: Misregistration: automatic vs. manuaI.
Average r.m.s. misregistration ofhomologous landmark points mapped into stereo­
taxic space. Comparison of the automatic correlation method vs. manuallandmark
based registration (16 subjects). Even though the difference in group means is sig­
nificant CP < 0.01, t = 5.2), note that the manual result is optimized for the given
set of landmark points.

7.4.3 Automatic registration vs. manual AC-PC based techniques

The hypothesis tested in the second experiment was similar to the first: that the automatie method

was comparable to manual techniques used over the Just five years at the Montreal Neurologicai

Institute to map over 400 MR data sets into stereotaxie space (Evans et al., 1992c), as described

in section 6.2.

Two volumetrie goodness-of-fit measures have been calculated for each of 60 brains trans­

formed into stereotaxie space. One measure was the correlation statistic (as described in Ap­

pendix A) and the other was an r.m.s. difference between norrnalized voxel intensities, where

voxel values for each volume are replaced by a z-vaIue:

x-x
z=-­

s
(7.3)

•

where xand s are the sample mean and the standard deviation for voxels within the brain-masked

region. The z-score difference (or just z-score) is defined as the voxel-to-voxel difference in z­

value between the two data sets. This measure, a difference of z-values, is used instead of a z

of the intensity difference (z-of-difference) because it aIlows the comparison of volumes with

different mean intensity values and contrasts. While it would be possible to norrnalize the z-of­

difference to the mean intensity of one volume, the other volume, or both, this wouId bring the
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z-of-difference back to the difference-of-z used here.

In order to establish a comparison between methods, these two measures were calculated for

each data set in stereotaxie space with respectto the brain-masked model, one each for the uu­

tomatic and manually transformed volumes. When estimated in over 60 data sets, therc wus a

higher average correlation value for the automatically transformed volumes, compared to their

manually transformed counterparts (0.984 ± 0.0023 vs. 0.965 ± 0.019). While this measure

was biased towards the automatic registration method which uses a cross-correlation measure

to achieve the fit, and therefore should give a higher mean value, the standard deviation of the

measured residual across the 60 automatic transformations was more than eight times smaller

than that for the manualtransformation, indicating a more stable procedure. The r.m.s. z-score

difference was not as biased towards one method or the other. When estimated over the same

60 volumetrie MRIs, this measure was slightly lower for the automatic technique compured to

the manual method: 0.734 ± 0.064 vs 0.784 ± 0.093. Note again the smaller (i.e beller) standard

deviation of the z-score for automatically registered data, although now only a factor of 1.5, in­

dicating that this approach is more stable than the manualtechnique while yielding comparable

registrations.

The z-score measures intensity variation liot only due to misregistration, but also to noise in

the original data and to sampling errors incurred in the transformation to stereotuxic space. The

effects of resampling and noise were reduced by imposing a blur (FwHM=8mm) on the MRls,

after mapping into stereotaxie space, and re-computing the comparisons for the corresponding

blurred intensity and gradient magnitude volumes. For the cross-correlation measure, the auto­

matie vs manual results remained essentially the same: 0.996 ± 0.0015 vs. 0.D85 ± 0.014 for

blurred intensity data; and 0.958 ± 0.0085 vs. 0.915 ± 0.028 for gradient data (sec Fig. 7.1 O-a).

The z-score difference was found to be significantly improved, since it was no longer measuring

differences due to image noise. With the imposed blur, the z-scores are much lower for the auto­

matie technique than manual method (automatie vs manual): 00409 ± 0.076 vs. 0.535 ± 0.13 for

intensity data; 0.531 ±0.056 vs J.750±0.13 for gradient data (see Fig. 7.IO-b). These numbers

are consistent with the automatic approach being more stable than the manualtechnique.
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Figure 7,10: Comparison of manual and automatic stereotaxie registration
The graph on the right shows the correlation value for6D stereotaxically transformed
volumes and the MRI atlas. The correlation value was calculated on gradient mag­
nitude (FWHM=8mm) data. The dashed line corresponds to the manual transforma­
tion, and the solid line corresponds to the automatic transformation. Not only does
the automatic transformation yield higher correlation values, but the standard de­
viation is smaller as weil, indicating a more stable technique. (Note the non-zero
ordinate axis, used to accentuate the difference between the manual and automatic
correlation value.) The graph on the right shows the z-score value calculated for the
same data.
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In order to provide a context for these measurements, z-scores were calculated for twenty

stereotaxie data sets, that had been deliberately misregistered by varying one of the nine param­

eters at a lime. In each case, the translation parameters were varied from -lOto 10 mm , the

rotation pararnt"ters from -10 to 10 degrees and the scale from -20% to +20%. From the graphs,

shown in Fig 7.11, one can estimate the amount of parameter error for a given z-score.

For example, in the case of the manual registrations, the average z-score for gradient magni­

tude data was 0.75. This corresponds to a translational error of 6 mm in the 3: and y-directions or

8 mm in the z-direction with respect to the stereotaxie space, rotational errors of 2 lo 3 degrees

or scaling errors of 6% too small or 8% too large in the x and y-directions or 12% too small or

20% too large in the z-direclion. For the automatic approach with an average Z-score of 0.53,

the corresponding errors would be 1-2mm for translation, 1-2 degrees for rotation and 2% for

scale in x and y and 3-4

Note that this does not lead to the conclusion that the error in registration is on the order of

6mm in x or y, nor 8mm in z. The magnitude of these values is due to inter-subject differences.

7.4.4 Aigorithm robustness

Finally, the robustnf'ss of the algorithm to missing data, Le., when the data set to be registered

covers only part of the model in stereotaxie space, was examined.

For each experiment, a number of slices were removed from the top, from the bottom or

from both top and bottom of five original MRI volumes. The resulting data werl then used as

input to the automatic registration routine. As can be seen in the graph in Fig. 7.12, this r.m.s.

misregistration stays relatively stable with up to 30% removed from the top, 60% removed l'rom

the bottom, or 50% removed from top and bottom.

Il should be noted that the MRI volumes used in this experiment were scanned at different an­

gles than that in the model and extended lower than the model to include the cerebellum and the

nasal sinus cavities. Therefore, slices from the bottom of the data set that have no corresponding

structure in the model may b-:; dropped without penalty, and this accounts for the stability of the
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Figure 7.11: Correlation value and z-score vs parameter error.
Plnt ofcorrelation value and z-score vs parameter error for 8mm gradient magnitude
data. Twenty data sets were deliberately mis-registered. varying one parameter at
a time. The solid line corresponds to the z-score. the dashed line to the correlation
measure. Note that rot-z is steeper than rot-x and rot-y. since the edges correspond­
ing to the inter-hemispheric fissure strongly constrained rotation around the z-axis.
The scale and position along the x and y-axis is constrained more than that along
z since the Iimits of the cortex. in the LR (x) and AP (y) directions. were always
apparent on the tmnsverse images.
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Figure 7.12: Misregistration error vs slices missing.
Solid line corresponds to slices removed from the top, dashed line to slices removed
from the top and bottom, dash-dotted line to slices removed from the bollom.

a1gorithm for the first twenty percent of bottom slices removed. However, the registration re­

mains stable with up to 60% of sliees removed from the bottom, corresponding to keeping slices

superior to the line joining the occipital lobe and the lower third of the frontal lobe (line c in Fig.

7.13).

7.5 Measures of anatomical variability

7.5.1 Inter-subject variability estimated from landmark points

In stereotaxy, the analysis of anatomical variability requires both a well-defined coordinate sys­

tem to establish a standard frame of referenee and a transformation with a lin.ited number of

parameters to map volumetrie datasets to this eoordinate system. Therefore, to normalize stalis­

tieal results aeross subjeets and a1low direct point-by-point eomparisons between subjeets, data

sets were mapped into stereotaxie spaee using both the manual and automatic methods deseribcd
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Figure 7.13: Robustness to missing data.

Mid-sagittal slice showing approximate levels of data removed for testing. Regis­
tration remains stable with slices removed above line b, removed below line c, or
removed both above a and below d. PC, posterior commissure; AC, anterior com­
missure; CS •central sulcus; SP. splenium; G, genou; ITA. inter-thalamic adhesion.
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above. The difference in position of a given hmdmark across a number of brains, after normal­

ization to a predefined brain size and orientation, was used as a measure of ncuro-anatomical

variability. Unfortunately, point correspondence is difficultto establish not only because of real

anatomical variability, but also because subjeetivity in landmark identification, i.e., landmark

interpretation and positioning error. In order to reduce the effect of subjective decisions on thc

point residual, five neuro-anatomically trained physicians were asked to define a list of land­

marks and identify them on the 17 MRI brains used in the previous experiments. The observers

agreed on a search strategy for identification of each landmark. Then they followed that slmt­

egy for each landmark in each brain to generate an ensemble of 5 x 17 x 34 landmarks which

could be analyzed to separate the contribution of landmark mis-matching from sources due 10

inter-subject variability (lSV), inter-observer variability (IOV) and a residual variability (RV)

term associated with intra-observer variability. This work has recently been submitted by Sorlié

et al. (1994).

Landmark identification

The 34 anatomicallandmarks selected were distributed over the cerebrum, the cerebellum and

the brain stem, and can be separated into two broad categories:

• Points on cortical structures (n=15)

(enthorinal sulcus, collaleral sulcus, intersection ascendant-horizontal sulci, central sul­

cus at interhemispheric fissure, olfactory sulcus, parieto-occipital sulcus, marginal ramus,

occipital lobe).

• Points on internai structures (n=19)

(red nucleus, ventral beginning caudate, end splenium, curvature chiasma, tip anterior genu,

anterior and postt;uur commissures, inter-thalamic adhesion, rostral pons at interpedicu­

lar, fastigium, superior cerebellar peduncle, inferior and superior colliculus).

As before, this set of landmark points represents a compromise between the need for a large

number of points, their ease of identification and the aim of not specifying redundant anatom-
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ieal information by seleeting points very close to eaeh other simply beeause they were easy to

identify.

Registration and analysis methodology

The automatie image registration algorithm was used to reeover the stereotaxie transformation

T.mto required to m!lp eaeh volume (and its set oflandmark points) into stereotaxie spaee. Anatom­

ieal variability was estimated by measuring the distribution oflandmark points after affine trans­

formation to stereotaxie spaee. For eompleteness, the procedure was repeated for different de­

grees of fœedom. The probability distribution of a landmark location as a function of position

along the x, y and z-axes was modelled as a Gaussian, centered on the mean landmark position

pooled over ail data sets and ail observers. The FWHM of the Gaussian was the measure chosen

to express the variability.

The width of the distribution measured for a given landmark in stereotaxie space, averaged

over ail observers and ail data sets, is a eombination of variabilities including intra-observer er­

ror, inter-observer error and inter-subject variability. A statistical analysis of variance was used

to estimate and remove the observer-dependent variabilities and then to infer the desired mea­

surement of the true inter-subject variability. In the following analysis, the notation Çij refers

to the position along the ç-axis (ç = x,y or z) for a single landmark tagged on the i-th subject

(i = l, n; 11 = 17) by the j-th observer (j = 1, m; m = 5). A dot is used to represent the
m n

2:: ({ij) 2:: ((ij)

mean position when averaged over observers Çi. = ~, over subjects Ç.j = _i_n- or both
Il fil

2:: 2::({ij)

Ç.. = i ,:.... • These points are shown schematically in Fig. 7.14.

Thus, the coordinate t;.. represents the grand average estimate of the true location ofany given

landmark since il is averaged over ail subjeets and ail observers. The coordinate Çi. is the best

guess of thatlandmark position on a given subject, since it is the centroid of the points identified

by the five anatomists. The difference between these two points is defined by Cii = Çi. - Ç.. and

is indicative of the anatomical deviation from the average of this landmark in subject i. Another

difference of interest is defined by {Jj = Ç.j - t;..; it is an estimate of the bias of observer j,

148



•

Subject 1

Observer 5 Observer 1X X
x. XObserver 2

Observer 4 XObserver 3

p..<x..,y•.,z.J~ 0

@ 0
P.l(x.j.Y.I,z.I)~ 0

Observer J

Subject 2
X X
X. X

X

XXX
~x

Subject 3

•

Xx/PI,(XI.,YI.,ZI.)

x· xObserver j

X ~PI1(XII'YII,zII)
Subject i

Figure 7.14: Point definitions for statistical analysis.

Four types of points are used in the statistical analysis:

Pij: landmark point tagged by observer j on subject i.
Pi.: centroid over observers for subject i (j = 1,5).
p.j: centroid ovcr subjects for observer j (i = 1,17).
P..: centroid over ail observers and ail subjects. (i = 1,17; j = 1,5)
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• comparcd to the best estimate C.

These definitions allow the derivation of expressions that characterize the various compo­

nents of the variance across estimates of each landmark coordinate. The total variability is sim­

ply the standard deviation measured over ail F,i{

T~=

n m
2:: 2:: (F,ij - F,..)2
i j

(n - 1)(m - 1)"
(7.4)

We can derive equations that separate the inter-subject variability from the observer-dependent

variabilities. We can model the difference between any landmark and the "true" position, F,ij -F,.. ,

as a sum of terms ai> fij and €ij such that,

T~=

n m
2:: 2:: (ai + fij + €ij)2
i j

(n - 1)(m - 1)
(7.5)

where ai and fii were defined above, and €ij = F,ij - F,i. - Ç,j + F,...

The residual variability (RY) is defined as a measure of the consistency of an observer when

tagging the same point in the same subject. Thus this term RY equals 0 if the observer is consis­

tent and will differ from 0 according to his inconsistency. The residual variability RV~ is written

for each of the coordinate system axes F, as:

RV~ = a{ =

n m
2:: 2:: (F,ij - F,i. - Ç,j + F,..)2
i j

(n - l)(m - 1)
(7.6)

The illter-subject variability (ISY) is the measure of neuro-anatomical variability that is to be

separated from the total variability. It is defined for a given landmark, as a measure of the differ­

ence between its "mean" location, €.. , and its 17 "individual" positions in the corresponding 17

subjects volumes, fi. minus a term that is a function of the residual variability. The inter-subject

variability measured along each coordinates system axis F, is then expressed as:

The inter-observer variability (Iay) is a measure of the error made by the observers when tag­

ging the same landmark. Il is, for a given landmark, the distance between the centroid for the•
IS~ = a{ =

n m

~ 1(F,i. - F,..)2 _ RVl

n-l m
(7.7)
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• points tagged by one observer, f.j in ail the subjects and its "mean" location, f .. , minus a term

including the residual variability. It thus gives an estimate of the inter-observer variability. For

each of the coordinates system axes ç, the inter-observer variability is given by:

n lU

2;: 2;: (fj - ç..)2 R\/2
1 J __{_

m-l n
(7.8)

These variability measures in X-, y- and z-directions for ail the landmark points can be consid­

ered as an estimate of the standard deviation on the points, which are assumed to come from the

same distribution. The 3-D average FWHM value of each variability for every landmark point

was then calculated using the following equation, but replacing (lxi with the appropriate a", ail

or a':

FWHM = 2.35)(a; + a~ + a~)/3.

Results of variability estimation

(7.9)

•

These equations provide the means to estimate neuro-anatomical variability, based on the land­

marks selected above. Six automatic transformations were evaluated that differed in the number

of degree offreedom allowed in the optimization where 3,6,7,9, 10 or 12 parameters were used.

The 3-parameter transformation includes only translations along the 3cardinal axes. Three rota­

tions around the cardinal axes are added to form the 6-parameter transform. The use of li single

scaling factor is added in the 7-parameter transformation, or the use of three scaling along each

axis for the 9-parameter fit. A single shear defined in the longitudinal plane is added for the

10 parameter fit, while the addition of 3 different shears (one along each axis) leads to the 12­

parameter transformation. Figure 7.15 graphs the IOV, ISV and RV for the six transformations.

As expected, ISV decreases with added degrees of freedom, however there does not seem to be

a significant improvement between the 9-, 10- and 12-parameter transformations. The estimate

of IOV remains stable as il should, since it does not depend on the type of stereotaxie transfor­

mation employed. The same holds true for RV, however it is larger than either IOV or ISV. The

flat behavior ofIOV and RV curves, coupled with the expected reduction in ISV with increasing

parameters, supports the assumption of additive, orthogonal errors and the use of the modc1 de-
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Figure 7.15: Variability vs degree offreedom.
Average inter-subject (ISV), inter-observer (!OV) and residual (RV) variabilities,
defined as 3D FWHM, plotted vs varying number of degrees of freedom (3, 6, 7, 9,
10, 12) for internai and cortical landmark points. Not surprisingly, cortical points
are subject to larger variabilities than internai points,

scribed by eq. 7.5, The average ISV over ail points is 3.9mm for the 9 parameter transformation,

when measured as a 3D FWHM. As expected, the ISV is greater for cortical points (mm) than

for internai points (mm).

7.5.2 Anatomical blurring kernel

Recently, Evans et al. (1993a) presented an alternative method to characterize anatomicaI vari­

ability. They modelled the variability as a spatially invariant blurring kernel that when applied

to a single individual makes it appear similar to the mean MRI atlas. The optimal kernel width

was found by comparing the 3-D Fourier transform of the true average MRI volume with that of

a single brain. The width estimated by this technique corresponds to a 3-D FWHM of 4.0Smm.

The average ISV of 3.9mm corresponds weil with this estimate.
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7.6 Discussion

7.6.1 Comparison to manual registration methods

When compared to manuallandmark based methods, there was no bias in the registration pa­

rameters reeovered by the automatic technique. As stated previously, the 3-D r.m.s. difference

in position for landmark points mapped into stereotaxie space automatically when compared to

manual mapping was 3.1 mm .

Both techniques yielded similar r.m.s. residuals between specifie target landmark points and

their homologues, in standard space: 5.19 mm for manual and 6.13 mm for the automatic tech­

nique. While the misregistration error appears significantly greater for the automalic procedure

(P < 0.01, t = 5.2 for comparison of group means), its measurement was biased in favor of

the manual technique, since the points used to define the transformation were the same as those

used to measure their error.

Based on the smaller standard deviations for both correlation (0.0023 vs. 0.019 for raw data)

and r.m.s. normalized difference measures (0.056 vs. 0.13 for gradient data) when using the

automatic procedure, we conclude that it is more stable than the manual registration melhod.

The lower z-scores (0.41 vs. 0.54 for gr;~dient data) for the aulomatic technique also indicate

that it was superior to the manual one.

7.6.2 Aigorithm robustness

The algorithm has been shown to be robust to missing data and to noise. Registration experi­

ments that included noise show that the algorithm can recover simulated transformations with

up to 40% noise before the registration r~sidual begins to increase. This is explained by the blur­

ring due to convolution with a Gaussian kernel before gradient extraction.

Because the final fit is edge-driven by the gradient magnitude, it is important that the input

data contain robust, reHable edges to be registered with the mode!. At the FWHM=8 mm scale,

one can see (on Fig. 4.2) strong edges at the cortex, insula, longitudinal fissure and ventricular
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surfaces; these are the structures that dominate the registration process atthis scale.

ln order to constrain the scale and position of the x-axis, the data should coyer the longitu­

dinal fissure and the lateral aspects of the cortical rim. The anterior and posterior aspects of th"

cortex must be visible to fix the scale and position of the y-axis.

The scale in the z-direction was the most difficult to obtain. While the ventricular bound­

aries play a large role in fixing the z-position, they do not extend for a large distance in that

direction, and smail errors in registration magnify sca!ing errors at the edges of the brain unless

either the top or the bottom !imit of the cortex are also present.

As indicated in Fig. 7.13, a large arnount of data could be missing from the bottom (below

!ine cl, since the ventricles along with superior aspect of the cortex will fix the CC-position and

scaie. The same was true when slices are missing from the top (above !ine b), as the ventricles

and the floor of the cerebral volume serve to fix the parameters.•

7.6.3 Multi-resolution methodology

There are two benefits achieved using the multi-step multi-resolution strategy. 1) The multi-step

process lessens the !ike!ihood of settIing into a local minimum in the optimization process. An

approximate solution is found at the first step and it is refined in each sequential step. 2) The

multi-step multi-resolution approach offers a substantial computational savings. There was an

eight-fold increase in time required to calculate the correlation coefficient when passing from

one scale levelto the next. The !inear transformation can be recovered using the multi-resolution

method in less than one quarter the time taken when starting at the highest resolution level (where

the solution found was not always cor.ect because of local minima). At its current un-optimized

state, the routine requires approximately 30 minutes on an SGI Indig02 Extreme, a 60.5 SpecFP

Unix machine, to calculate the features and register a specific volume into stereotaxic space.
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7.7 Summary

A fully automatic registration method has been presented that yields results comparable to manually­

based techniques, while eliminating the drawbacks involved in manual intervention such as re­

producibility and inter-observer variability. Multi-resolution cross correlation has been shown to

be an effective tool to determine the affine component of the transformation between source and

model for both simulated and real data. While this technique has benefits and accuracies simi­

lar to that of landmark-based registration, or surface to surface matching techniques. it hus the

advantage that explicit manual intervention is not required to identify such points or contours.

The algorithm can be applied retrospectively since it relies on uutomatically detected edges in

the data that correspond to internai anutomicul structures rather on than fiducial markers.

This registration method has been used to automate the stereotuxic mapping procedure. As

weil as characterizing the stereotaxic space, the use of the standardized model obviated the need

to manually identify, edit and remove scalp, skull or meninges from the MRI volumes.
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Chapter 8

Non-Iinear registration: experiments and

results

8.1 Introduction

This chapter presents the validation experiments for the non-linear registration procedure and the

evaluation of its performance with simulated data with respect to noise and with different real

data sets. The experiments presented here are divided into three parts. The first uses simulated

data and transformations to demonstrates the functionality of the non-linear registration with a

simple bar phantom, a simple ellipsoid phantom and the 3-D digital brain phantom introduced

in the previous chapter. Real MRI data are used in the second group ofexperiments to show that

the algorithm is capable of reducing the inter-subject neuro-anatomical variability in stereotaxie

space by 35%, when the measure is based on landmark points. The non-linear registration tech­

nique is compared to a manuallandmark-based method and shown to be more robust. In the last

experiment, an automatic method for estimating anatomical variability is shown and correlated

with manual results of the previous chapter.
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Figure 8.1: Non-linear simulation: bar phantom
On the left, the non-linear registration routine wu.< applied to the straight bar in b)
using the benttarget in a). c) shows the application of the recovered non-linear warp
(indicated by the grid) to the source volume. In d) the subtraction of the resampled
volume from the target indicates very good registration. On the right is a vector
representation of the deformation field. Each local 3-D deformation vector from
the 2-D slice shown is projected onto that plane an~ repre.c;;ted by a small vector,
originating from the center ofeach voxel in the delbrmation field. The regions a and
c show the diagonal vectors pushing on the ends of the bar. The horizontal vectors
of region b are pushing the middle of the bar towards the lef!.

8.2 Simulated data

8.2.1 Bar phantom

The recovery of a deformation field is illustrated by applying a non-linear warp to a 3-D rectilin­

ear parallelepiped to create a "bent" parallelepiped. The warp was applied with a 3-D thin-plate

spline defined by 9 points; 1 at each corner of the bar, and 1 in the middle. The registrallon

procedure was then used to recover the applied transformation (see Fig. 8.1). The hierarchical

optimization routine recovered the 3-D deformation field (shown as a quiver plot in Fig. 8.1,

where the projection onto the 2-D slice of the 3-D local deformation vector is represented by

small arrows, originating from the center of each voxel in the deformation field) required to map

the source onto the target volume. The difference image shows that a good registration has been

aehieved.
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8.2.2 Ellipsoid phantom

In order to examine the non-linear registration with a more complex example, the thin-plate

spline warping algorithm developed for point to point non-linear registration (see page Il) was

used to lÎeform the ellipsoid phantom originally described in section 7.2.1. The automatic non­

linear matching algorithm was then applied to fit the original volume onto its warped counter­

part. The top row of Fig. 8.2 shows a slice through the center the source volume, the pear-shaped

deformed volume as weil as the volume resampled through the recovered transformation. At

each hierarc!lical step in the non-linear registration procedure, adeformation field is stored at that

scale. The second row of Fig. 8.2 shows an intensity difference image, formed by the subtraction

of the resampled source from the target volume, at three of the four scales used in the recovery

process. The last difference image indicates that the registration is not completely perfect. This

is due to at least two reasons. The first is that linear interpolation on the original volume is used

to resample it ';hrough the recovered transformation and form the warped result. Small interpo­

lation errors are accentuated by the high contrast at the edge of each structure. Also, at each

iteration of the non-linear registration procedure, only a fraction of the required local deforma­

tion is added to the global warp. Thus, an edge will tend to align onto its corresponding edge,

without ever reaching it.

The difference images in Fig. 8.2 show that the non-linear registration procedure can recover

the deformation needed to match the intentionally warped volume. On average, voxels were sub­

ject to a 4.14mm warp in the TPS-applied deformation. The r.m.s. distance of landmark points

sent through the forward and inverse transformations from their original locations was 1.78mm.

The relatively large error remaining is due to the fact that the registration method is based on

gradient matching. Areas where there are no gradients to mdicate the true local deformation are

simply interpolated from more distant areas. Even though the objects may be weil registered (as

indicated by the difference images), their surfaces may slide on each other, therefore possibly

increasing the point-to-point residual. When more complex structure is available on the object

surface, the registration on the surface of the object is further constrained and the residual error

is reduced. This effect is apparent in the next experiment, using a digital brain phantom.
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Figure 8.2: Non-linear registration of ellipsoid phantom.

These images show the result of the non-linear registration procedure applied to the
ellipsoid phantom. In the top row, the tirst image is the source phantom. The sec­
ond image shows the warped target and the third shows the result of application of
the recovered deformation to the source volume. The bollom row shows difference
images between the resampled source and the target at the tirst, second and forth
scale steps (16mm, 8mm and 2mm). One can see that the error is reduced at each
scale step. The difference images have their range set to -0.5 to 0.5, where 1.0 was
the maximum intensity of the original data sets.
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8.2.3 Brain phantom

Realistic evaluation of the non-linear registration procedure begins with the use of the brain

phantom described in section 7.2.2. The 3-D phantom was used to create three realistic vol­

umes, representing Tl, T2 and PD-weighted scans containing 10% Rayleigh-distributed noise.

The first column of Fig. 8.3 shows transverse slices through the three original volumes. A set

of landmarks was defined for input to the TPS algorithm to warp each volume into topologi­

cally equivalent, but spatially non-equivalent, target data sets. The non-linear registration pro­

cedure was then applied to each original/warped volume pair to recover the deformation needed

to transform the original so that it would coincide perfectly with the targe!. There is no differ­

ence between recovering the transformation from source to target, or from target to source, since

the non-linear deformation field is constrained to be invertible. The second column of Fig. 8.3

shows a transverse slice through the data set that was mapped through the recovered transfor­

mation. The corresponding difference images are presented in the third column.

Since the deformation is recovered in a hierarchical fashion, the original volume was mapped

through the transformation recovered at each scale step. Figure 8.4 shows the intensity differ­

ence images for the linear and non-linear registrations. As the scale of the deformation is re­

duced, the registration improves. By the 4mm scale, there appears to be less than half a voxel

mis-registration in most regions of the volume.

In these simulations, three measures are possible for quantitative evaiuation of the non-linear

registration. These include the registration error on homologous points and image-based z-score

difference used in chapter 7, as weil as the difference between the applied and recovered non­

linear deformation. The 34 points described in section 7.5.1 were identified on the unwarped

brain phantom. The coordinate of each landmark was mapped through the applied TPS and re­

covered deformation field. As before, the registration error was the 3-D r.m.s. difference in posi­

tion between these two sets of points, and was equal to 3.8±2.1mm following linear registration

but before non-linear registration. For the Tl-weighted data, the registration error was reduced

by 87% to 0.50±0.42mm. The error was slightly higher for the T2 data: 0.54±0.48mm, and

even higher for the PD-weighted volumes: 0.94±1.30. These differences are discussed below.
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Figure 8.3: Non-linear registration for Tl, T2 and PD-weighted volumes.
These images show the results of non-linear registration for Tl (!irst row), TI (sec­
ond row) and PD-weighted (third row) volumes, each with 10% added noise. The
!irst column shows a single transverse slice through the original 3-D data. Each vol­
ume was warped with the same TPS interpolant to form spatially deformed targets.
The non-linear registration procedure applied, and the recovered deformation was
used to resample the original volume so that it resembles the target (second column).
The voxel-by-voxel intensity difference is shown in column three to judge the qual­
ity of the registration. Since a braîn-mask is used at the last step of the deformation
recovery process, the fit inside the brain is beller than the scalp region.
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Figure 8.4: Deformation reeovery at different seales.
Intensity difference images for the non-linear registration of the TI originaVwarped
volume pair. From top left to bottom right: Linear, 24mm, 16mm, 8mm and 4mm
non-linear transformations used to resample the original volume into the target
space. Each successive step refines the fit of the previous, evident in the reduction
of the voxel intensity difference.
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w/mask no mask
data lin 1l00z·lill lin nOll~lill

TI: 0.558 0.159 0.481 0.168
T2: 0.486 0.075 0.439 0.113
PD: 0.424 0.070 0.430 0.134

avera~ê; 0.489 0.101 0.450 0.135

Table 8.1: Z-scores for simulated deformations on TI, T2 and PD data.
This table shows the z-score values calculated for the Tl, TI and PD-weighted data.
mapped through the recovered Iin~ar (lin) and non-Iinear (non-lin) transformations.
Since the fit over the brain region is of interest, the z-scores were calculated with
and without a brain mask. On average, the non-Iinear transformation improves the
registration over the brain region by almost 80%.

As in chapter 7 the z-score difference of the gradient magnitude volumes was also used as

a goodness-of-fit measure for the non-linear registration. The recovered transformation was ap­

plied to the FWHM=4mm gradient magnitude data so that it could be compared to the equivalent

target data. A mask was used to limit the calculation to voxels within the brain. On average, the

non-linear registration algorithm improved the z-score by 79% for voxels with the brain over the

linear transformation.

The registration error describes misregistration only at the landmark points selected and does

not estimate error throughout the volume. On the other hand, the z-score was evaluated over

all voxels, but it does not specifically measure the true deformation, Le., regions may be mis­

registered, but if they have the same z-score they will not be flagged as such. However, sincc

the transformation applied was simulated, the deformation vector for each voxel of the source

volume is known and can be directly compared to the deformation vector recovered by the auto­

matic procedure. This measure is termed the recavery errar and is equivalent to the registration

error estimated at every point in the volume. This value is a true estimate of the ability of the

non-linear registration algorithm to recover an applied deformation. On average, for ail points

in the volume,there was an r.m.s. recovery error of 4.l7±2.38mm after linear registration. For

the Tl-weighted data, this value was reduced to O.63±O.60mm. The recovery based on T2 or

PD-weighted data was higher: O.80±O.70mm and 1.15±l.llmm respectively. These values cor­

respond weil to the errors on landmark position estimated above.
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Interestingly, the Tl-weighted volume appears to have the best recovery. This is probably

due to the contrast difference between sulca! CSF and grey matter that is not as evident in the

PD or T2-weighted volumes. This extra contrast yields more edges where the local deforma­

tion can be directly estimated instead of interpolated from neighbouring regions. While these

extra edges improve the difference images, the recovery error, and the registration residual on

landmark points, the z-score difference is greater for the T I-weighted data than for the T2 or PD

results quoted in the previous paragraph. Since there are more edges in the TI data compared to

the T2 or PD volumes, there is more chance for misregistration, therefore increasing the z-score

difference.

Non-linear registration error vs noise

Since the recovery of the applied deformation was quite good for 10% noise, one may ask what

is the behavior of the non-linear registration algorithm in the presence of greater levels of noise.

Using the Tl-weighted images, noise was added to the unwarped data at levels l'rom 10% to

80% in steps of 10%. The linear component of the transformation was fixed to that recovered

in the noise-free linear registration. Fig. 7.5 in the previous chapter showed example slices of

the noisy source data. Voxel intensity difference images in Fig. 8.5 show the quality of the reg­

istration for different levels of noise. In order to separate intensity differences due to noise from

those due to registration error, the noise-free source volume was mapped through the recovered

transformation to be compared to the target for the error measures described here.

The graphs in Fig. 8.6 show that the algorithm is very stable throughout the range of noise

levels tested by the algorithm. The reasons for this stability is due to the inherent blurring of

the Gaussian kemel used to define the gradient magnitude feature. As in the previous section,

the z-score measure was calculated for the gradient magnitude volumes of both the resampled

source and the target data at the FWHM=4mm scale, with and without a brain mask. For the lin­

ear fit between the warped target and the linearly transformed, but un-warped source volumes,

the z-score was 0.558 and 0.481 with and without a brain mask respectiwly. This value is re­

duced by approximately 70% to 0.159 and 0.168 forthe 10% noise level, after application of the
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Figure 8.5: Non-linear registration in presence of noise.

The first row shows one transverse slice through the center of the noise-free source
volume, and the corresponding slice in the warped target volume. Noise was added
at levels from 0% to 80% in steps of 10% to the source volume and the non·linear
registration procedure applied. In order to estimate the quality of the registration,
the noise·free source was resampled through the recovered transformation and in­
tensity difference volumes were formed with the target, so that the voxel intensity
in the difference image would result from registration error only (and not from dif·
ferences in noise). The second and third rows show the corresponding slice through
the intensity difference image of the noise-free source, resampled by the transfor·
mations estimated on noisy data at levels of 0%, 20% and 40% (2nd row, left to
right), 60% and 80% (3rd row). For comparison, the bottom right image shows the
intensity difference after linear registration only.
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Figure 8.6: Quantitative non-linear error measures vs noise.

These graphs show three different quantitative measures of non-linear registration
error. (a,b,c top, bottom left and right). In a, the solid line shows the z-score nor­
malized gradient intensity difference for the whole volume, and for the brain only
(dashed line). The graph in b shows the r.m.s. residual mor for 34 landmarks de­
fined on the phantom. The recovery error is shown in c, measuring the r.m.s. dif­
ference in deformation between the applied transformation and the recovered trans­
formation for ail brain voxels. The tick marks in band C indicate one standard de­
viation. Notice the agreement between the residual error and the recovcry error, in­
dicating that the landmarks used to establish the residual error are representative of
the whole brain.
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recovereJ non-linear transformation. Even at the 80% noise level, the z-score was reduced sig­

nificantly to 0.196 and 0.2 J7, with and without the mask. The z-score measures how weil edges

in both volumes overlap after application of the recovered non-linear transformation. However,

this measure does not estimate the point-to-point error, since one surface (as defined by high gra­

dient magnitude values) could conceivably slide along its equivalero t in the other volume without

penalty. The registration error addresses this problem, estimating the misregistration at previ­

ously selected landmark points. As above, the 34landmarks were mapped through both the ap­

plied TPS transformation and the recovered deformation field. The registration error measured

as the r.m.s. difference in 3-D position between these two mappings ranged from 0.64±0.42mm

for 10% noise to 0.82±0.48mm for 80% noise. For comparison, when mapped through the lin­

ear component only of the registration, the r.m.s. residual was 4.37mm. Therefore, at the levels

of noise expected in typical MRI volumes (i.e., less than 10%), these simulations show that the

non-linear deformation algorithm recovers more than 85% of the residual not accounted for by

the linear model.

The recovery error defined above was calculated for each noise level. As shown in Fig. 8.6­

c, the recovery error is similar to the residual error; ranging from 0.62±0.59mm for 10% noise

to 0.85±0.66mm for 80% noise for the entire volume. Note the agreement with the graph of

residual error (Fig. 8.6-b), measured on 341andmark points.

8.3 Real MRI data

Real data wCl'e used to complete the validation of the non-linear registration procedure. For this

task, the seventeen volumetrie MRI studies described in the previous chapter were again used.

No preprocessing to correct for image intensity variations or geometric artefacts was applied to

the data before application of the non-linear registration procedure. As stated previously, the

use of gradient fields greatly reduces the impact of RF inhomogeneity and spatial distortions are

minimal. Three registration experiments were completed. The first used a single subject as a

target brain, and the other 16 brains were registered to il. In the second and third experiments,
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the non-linear registration algorithm was incorporated into the stereotaxie mapping proccdure

in order to reduce the residual anatomical variability in stereotaxie space not accountcd fo .. by

the linear transformation mode!.

8.3.1 Inter-subject non-Iinear registration

In order to demonstrate the operation of the general non-linear registration procedure betwecn

subjeets, a single data set was seleeted as a target, and the other 16 brains registered to it using

the methodology outlined in ehapter 5. Figure 8.7 shows one transverse slice through four of the

seventeen brains after linear registration with the left-most volume serving as the targel. Sincc

eaeh volume has a different mean signal value, the volumes were first normalized for mean in­

tensity and variance, thus minimizing error in the difference image from this source. Even 50,

the differenee images show structure indicating remaining intensity variation not accounted for

by the simple normalization procedure or by possible errors in registration. Most importantly,

actual morphometric differences between subjeets may be the cause of the high frcquency struc­

ture. The result of application of the non-linear registration is shown in Fig. 8.8 for the same three

brains. The grey-Ievel intensity of the structure seen in the difference images of Fig. 8.8 is less

than that of Fig. 8.7 indicating that a better registration has been aehieved, especially near t!Je

cortical surface an:: in the neighbourhood of the ventricles.

Two quantitative measures were used to objectively evaluate the improvement of the non­

linear over the linear registration. The first was the z-score and the second was based on the

registration residual of landmark points. The reeovery error eannot be calculated directly, sincc

the non-linear transformation required to match source to target for real data is not known as for

the previous simulation experiments. The z-score measure was ealculated for the gradient mag­

nitude volumes of both the individual target volume and each resampled source volume at the

FWHM=4mrn seale using a mask to caleulate the statistie over the brain region only. When eval­

uated over the sixteen resamplea source/target pairs the mean z-score was O.656±O.035 for the

linear transformation and 0.414±O.020 for the non-linear transformation. The 37% difference

in z-score indicates a substantial improvement in the registration.
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Figure 8.7: Linear registration result.
ln the top row, the leftmost volume was used as a target and the other three linearly
registered to il. In the previous chapter, it was shown than there was no significant
difference (p > 0.1) between the transformation parameters recovered by the auto­
mated algorithm and those recovered by hand using homologous landmark for linear
matching. The images on the botlom are difference images, where each volume has
been subtracted from the target volume on a voxel by voxel basis after normaliza­
tion for slice intensity and variance. (The range of the difference image is from -2.0
to 2.0 standard deviations in intensity.) The structure seen in the difference images
is primarily due to non-linear morphological variability between brains. It is this
variability that must be accounted for in the non-linear registration method.
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Figure 8.8: Non-Iinear registration result.
The top row shows the result of non-Iinear registration to the left-most volume.
Much Jess structure is evident in the difference images of the bottom row, especially
near the ventricles. than in the previous figure. This indicates beller registration.
The intensity range of the difference image is the same as in Fig. 8.7
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Landmarks (defined in section 7.5.1) identified in each individual brain were mapped through

the recovered deformations and compar~d to the cOITesponding landmarks identified in the tar­

get brain. When mapped through the Iinear transformation only, the r.m.S. registration resid­

ual evaluated over ail points and ail subjects was 4.9±2.5mm. This value was only reduced to

4.2±2.5mm for the non-Iinearly registered volumes. Hence, despite the apparent improvement

in registration in the difference images ofFig. 8.8 over those in Fig. 8.7 and the significant reduc­

tion in z-score, the improvement in landmark fitting is only 14.3%. This is explained as follows.

The simulations described above show an improvement of at least 70% in registration resid­

gal. After Iinear transformation, the registration residual is dependent on inter-subject anatomi­

cal differences as weil as observer-dependent eITors. With the difference images and z-score val­

ues, it is certain that the anatomical registration is improved by the non-Iinear algorithm, how­

ever the magnitude of the observer-dependent eITors may be too great when compared to the

inter-subject variability to show a substantial decrease in the registration residual. Experiments

completed in section 7.5.1 show that the inter-observer variability is 2.8mm FWHM compared

to the non-Iinear anatomical variability of 3.9mm FWHM when estimated over the same land­

marks (see section 7.5.1). This may cause an absolute lower Iimit in the registration residual,

given that only five expert observers identified landmark points.

8.3.2 Stereotaxie mapping with Real MRI data

MRI Atlas target volume

In section 4.6, the linear automatic stereotaxie mapping procedure was described. This proce­

dure was used to map data volumes into a well-defined coordinate system with a transformation

having a fixed number of degrees of freedom, thus retaining non-linear anatomical variabilities

in order to quantify them. These variabilities must be removed for labelling in segmentation

or for increasing the signal-to-noise ratio for functional experiments. Therefore, in order to ad­

dress this residual anatomical variability after application of the affine transform, the non-linear

registration algorithm was added to refine the stereotaxie mapping procedure. For each brain,
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Figure 8.9: Typical stereotaxic transformation: linear vs non-linear.
These three transverse images show the result of the linear (b) and non-linear (c)
stereotaxie transformation to the MRI-atlas (a). The non-linear registration pulls the
right occipital lobe out, so that it matches the MRI atlas. Since the entire procedure
is performed in 3-D, the regions of the insular cortex are also brought into alignmcnt
from slices above and below. This type of registration problem can ncver be handlcd
by the techniques that use 2-D warping only.

the non-linear registration algorithm was applied hierarchically at four scales, down to a scale

of FWHM=4mm with a voxel size of 2 x 2 x 2mm for the resulting deformation field. A typ­

ical non-linear registration for a single brain with the MRI-atlas is shown in Fig. 8.9 and may

be compared to the linear registration of the same brain. Morphometric differences in anatomy

were accounted for by the non-linear registration procedure, and structures were brought into

better alignment with the MRI-atlas, e.g., right parieto-occipital lobe, both anterior temporal

poles, both sylvian fissures and insular regions. Note how asymmetries in the occipital lobes

have been removed. The example in this figure also indicates the need for a truly 3-D approach

to th~ non-linear registration problem. The alignment of the region of the insular cortex, among

others, was possible only by deforming data from above or below into the slice shown in Fig. 8.9,

and this type of warp is possible only with a 3-D algorithm.

In order to evaluate the improvement in registration, the seventeen brain volumes used above

were mapped into stereotaxic space with both the linear and non-linear registration procedures.
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The brain-m"sked z-score gradient intensity (FWlIM=4mm) difference between the MRI atlas

and each stereotaxically transformed individual was used to measure the quality of the registra­

tion for both mapping procedures. The average z-score over the 17 brains for the linear trans­

formation was O.647±O.032. This measure was reduced by 26% to 0.479±O.OI4 for the non­

linear registration procedure. Figure 8.1O-a shows how the z-score is reduced at each scale step

in the non-linear procedure. These values for matching against the 305-brain MRI-atlas may be

compared with those for matching between two individual brains of O.656±O.035 (linear) and

0.414±O.020 (non-linear) from page 164. The values are larger here because the target average

MRI model does not have the hie!;. f.equency structure contained in a single-subject targel.

The goal of the non-linear registration procedure is to reduce the inter-sl1bject variability

remaining after linear transformation. Using the methods described in section 7.5.1, the inter­

subject variability (ISV), inter-observer variability (I0V) and residual variability (RV) were es­

timated. Figure 8.IO-b graphs the values ofISV, IOV and RV foreach scale step of the non-linear

registration. There is a 35% reduction in ISV, from 3.9mm for linearto 2.5mm for the non-linear

registration.

Figure 8.11 merges ISV estimates from the linear experiments of section 7.5.1 with those

presented here. The graph shows how the inter-su~iect variability is reduced with additional

parameters in the spatial transformation function used to map data from their native space to

the stereotaxic coordinate system. However, even though the z-score measure shows improved

registration for decreasing scale (Fig. 8.1O-a), inter-observer errors in landmark identification

limit the improvement measurable by ISV.

After mapping each MR volume non-linearly to stereotaxic space, an average intensity MR

brain was created, following the same methodology as that used to build the MRI-atlas for linear

and the non-linear stereotaxic mapping. Figure 8.12 shows matched slices through both the lin­

ear and non-linearly mapped data set averages. Details in the non-linearly mapped volume are

much clearer. For example, the optic nerve is detectable directly behind the orbits in the non­

linear average; the gyri of the insular region are aligned; the contrast between caudate, putamen

and globus pallidus are enhanced; the region of Heschl's gyrus is aligned such that the individual
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Figure 8.10: Error measures with respect to scale of deformation field.
The graph on the left (a) shows the average (17 subjects) z-score value for the 9­
parameter Iinear transformation (lin) and the non-Iinear transformation at scales of
24mm (nl-24), 16mm (nl-16), 8mm (nl-8) and 4mm (nl-4). The tick marks represent
one standard deviation on the mean z-score value. The graph on the right (b) shows
the average 3-D point variability measured a~ a3D FWHM for ail 341andmark points
sent through each of the transformations: solid line, inter-subject variability (ISY);
dashed line, inter-observer variability (IOY); dashed-dot line, residual variability
(RY). The lIat behavior of IOY and RY continues to support the assumption of ad­
ditive, orthogonal errors and the use of the model described in eq. 7.5.
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Figure 8.11: 3-D point variability vs number of parameters in transforma­
tion.

This graph shows the deereasing 3-D point inter-subjeet (17 subjeets) variability
measured as a 3D FWHM as a funetion of the number of parameters in the stereo­
laxie transformation funelion. The first data points on the left of the graph represent
the 3,6,7,9,10 and l2-parameter Iinear transformation. The four data points on the
right are the result ofapplication of the non-Iinear deformation field reeovered at24,
16, 8 and 41010 seales using approximately 3x104 , \.Ox105, 3.3x105 , and 2.6x106

parameters, respeetively. The graph seems to reaeh an asymptote near 2.51010. This
is due to observer errors in identifying landmarks, sinee z-seore values show thatthe
registralion belween the two volumes has not eeased to improve.

175



•

•

Figure 8.12: Comparison of linear and non-linear average Volumes.
In the top row, 5 transverse slices through the Iinear average of the 17 data sets
is shown. The bQllom row shows the same slices through the non-Iinear average.
Much more detail cao be seen in the non-Iinear average.

gyri are identifiable; and many of the cortical gyri are aligned.

This procedure could be applied to the 30S-brain data base in order to improve the MRI at­

las. In principal, this procedure could be repeated again and again, each time increasing the high­

frequency content ofthe average brain data set and tending toward an ideal high-resolution brain.

It is important to note that this process maintains the order-independence in creation of the aver­

age brain; each new average is dependent only on the previous MRI-atlas, created independently

from any single brain data-set, other than the original brain used for the Talairach atlas.

Not surprisingly, the non-linear average appears sharper than the linear average. This is con­

firmed by exarnining the frequency power spectrum from the two volumes l . Figure 8.13 shows

the normalized radial spectral power density function of both the linear and non-linear average

volumes. This distribution function is calculat.d as follows: The power spectrum is calculated

1The power spectrum was estimated on a 2-D slice lhrough lhe data sel inslead of in 3·D due 10 memory limi­

tations and the size of lhe volumes.
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Figure 8.13: Radial spectral power density function of linear/non-linear av­
erages.
This graph shows the JOglO normalized average radial power spectrum for the Iinear
average (dashed line) and for the non-Iinear average volume (solid line). See text for
definition of radial power spectrum. There i~ consistently more power at each fre­
quency for the non-Iinear average. The flat "step" in the region of 5-15 cycleslFOV
is due to the overall brain shape.

by taking the Fourier transform of the average data volume and multiplying it by ils complex

conjugate. Instead of taking ID cuts along the kx, or ky axes, an average radiai spectrum was

created. Circular annuli, corresponding to frequency windows, were defined on the power spec­

trum data. The sum of ail voxels within an ûIlnulus was divided by the number of voxels in the

annulus, yielding the average power for that frequency bin. The set of ail frequency bins formed

a power spectrum histogram that was the average radial spectral power density function. The

spectrum was then normalized so that the integral under the curve was equal to 1.0. Figure 8.13

shows consistently more power at each frequency for the non-linear average.

Single brain in stereotaxie spaee

As shown on page 169, the 3-D point variability based on ISV has been reduced by 35%, from

3.9mm to 2.5mm, by addition of the non-Iinear component to the stt:reotaxic mapping proce-
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dure. Simulations presemed in section 8.2.3 have shown that a corresponding reduction of more

than 70% was possible when a one-to-one mapping was guaranteed in simulated data. Since thc

reduction ofISV on real data was not as great, the non-!inear registration procedurc is not achicv­

ing the required goal of reeovering the complete one-to·one mapping required to map an indi­

vidual brain into stereotaxie spaee. The simulation experiments were also based on data whcrc

IOV=Omm and RV=Om;l1, so the simulation results were expected to be bcttcr cven if thc l'cal

data had a one-to-one mapping.

The smaller reduction in ISV with real data is also duc to the inhcrent blurring of thc targct

MRI atlas eaused by residual anatomieal variability of ail the clata sets which were mappcd into

stereotaxie space with a !inear transform. The model does not exhibit many sharp edges, Bor

does it contain representations of the seeondary cortical structures. The MRI atlll~ is a large-n

low resolution data set, and does not have the high frequency components needed to tighten the

mapping of homologous points. Therefore it is not be possible to map ail corresponding regions

from an individual brain into stereotaxie space in a well-detined fashion. The hypothesis tested

in this section is that a single individual brain in stereotaxie space will provide the nccessary

high-resolution structure to reduce landmark point variability and the z-score difference. Even

though an individual was selected arbitrarily as a target, the stereotaxie methodology allows ail

results to be recalculated in an equivalent fashion for the single stereotaxie brain, yielding infor­

mation on the potential gains of a sharper stereotaxie mode!.

The brain volume selected to represent a high-resùlution target in stereotaxie spaec was that

which yielded the highest correlation with the mean MRI volume after !inear transformation.

The target model was created by tirst mapping the single data set through the !inear stercotaxic

transformation. The features needed for the non-linear registration procedure were calculatcd

and storecl. A customized brain mask, necessary to speed up the final stages of the non-linear

estimation process, was ereated by manually editing the standard brain mask to ensure that it

fully eovered the subject's brain in stereotaxie space. This step is needed since only a linear

transformation was used in the tirst step, and normal variation on brain shape may allow sorne

areas ofcortex to extend beyond the standard mask, rendering them inaccessible to the non-linear
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procedure. With these steps completed, the 305-brain VBSM-IIF was replaced by an equivalent

data structure for the chosen individual.

The experiment described in section 8.3.2 was repeated, using the single brain volume as the

target. The z-score gradient intensity (FwHM=4mm) difference, 3-D point variabiIity and fre­

quency power spectrum analysises were completed for the remaining sixteen data sets mapped

through the recovered non-linear deformation. Note that the z-score difference is calculated be­

tween each of the sixteen volumes and the individual data set selected as the target, instead of

the MRI-atlas as was done for the previous experiment. Since the value of the z-score measure is

dependent on the target selected, the absolute values of the z-scores are not directly comparable.

However, the improvement of non-linearly transformed data over linearly transformed data can

be compared, since the target volume bias is removed.

When mapped through the non-linear transform, the average (subjects=16) brain-masked

z-score improved by 37%, from O.656±O.035 for linear to 0.414±O.020 for non-linear. This

improvement was greater than that measured when using the MRI atlas as a target (26%, from

O.647±O.032 to 0.479±O.OI4, for !inear and non-linear, respectively). On the other hand, the

inter-subject variabiIity estimated over the 34landmarks passed from 4.lmm for !inearto 2.5mm

for non-!inear, a 39% improvement. This result was not significantly better than the previous ex­

periment on page 169, where ISV was reduced by 36%, starting at 3.9mm for \inear and decreas­

ing to 2.5mm for the non-\inear transformation. This result is confirmed by the radial spectral

power density function. Figure 8.14 shows that there is no significant difference in the frequency

distribution of the averages formed by using a single blain as a target, or by using the MRI atlas

as a target.

These results lead to the conclusion that the single individual brain chosen did not provide the

high-resolution structure necessary to reduce the inter-subject variabiIity in stereotactic space.

One other explanation may be that the non-linear registration process was ended too soon, and

that the deformation estimated at a 2mm FWHM scale would improve the fit. This hypothesis

was tested in the next section.
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Figure 8.14: Radial spectral power density function comparisons.
The graph on the 1eft shows the 10gIO normalized average radial power spectrum for
the linear average (dashed line) and for the non-linear average volume using the sin­
gle brain as a targe!. As before, the "step" from 5 to 15 cyclesIFOV is due to overall
brain shape. Once again, there is consistently more power at each frequency for the
non-linear average. On the right, the normalized average radial power spectra are
compared for the non-linear averages using the MRI atlas as a target (dashed line)
and a single brain as a target (solid line). No significant difference in frequency con­
tent is demonstrated.
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8.3.3 High-resolution deformation field estimation

The non-linear registration process operates in a multi-scale fashion, ending at a scale of 4mm

FWHM, with samples every 2mm in the x, y and z-directions. To test the hypothesis that the

registration does not get better by going to higher resolution, the following experiment was per­

formed. Since the volumetrie data sets used in the previous sections had a slice thickness of

3mm. higher-resolution data were needed to test the hypothesis.

The recent arrivai of a new Philips Gyroscan ACS 1.5 Tesla superconducting magnet system

at the MNI permitted the acquisition of isotropie high-resolution volumes with 1 x 1 x Imm

voxels that covered the whole head with a scan time of less than fifteen minutes. Eleven subjects

were scanned using a Tl-weighted 3-D spoiled gradient-echo acquisition with sagittal volume

excitation (TR=18, TE=IO, fHp angle=30°, 140-180 sagittal slices). This sequence achieves a

high grey/white matter contrast with good signal-to-noise characteristics (15: 1).

One of these volumes was selected as the target and the other ten data sets non-linearly reg­

istered to it, using the same methodology as in section 8.3.1 where the fitting ended at the 4mm

scale. Since the non-linear registration process would require an additional40-50 hours of com­

putation time per volume to calculate the fit at the 2mm scale, the deformation at this scale step

was estimated only on a sub-volume of 58 x 96 x 90mm3 centered on the basal ganglia. Figure

8.15 shows three tomographie slices through one of the data sets, cropped at the limits of the

sub-volume.

The z-score measure was calculated for the gradient magnitude volumes of both the indi­

vidual target volume and each resampled source volume at the FWHM=2mm scale. The z-score

was calculated for the linearly transformed and each of the non-linearly transformed gradient

magnitude data sets, over the region defined by the sub-volume. The graph shown in Fig. 8.16

shows that on average over the 10 data sets, the zscore decreases at each step of the registration

process. However, the improvement from the 4mm scale to the 2mm scale was not statistically

significant. using a two-tailed Student's t-test for paired sampies (t=0.206, pl.O.8). Hence, there

was no evidence to justify the significant increase in computation time to calculate the non-linear

deformation at the 2mm scale.
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Figure 8.15: Sub-volume used for estimation of 2mm deformation
From left to right, these images show a transverse (z=5.5mm), sagittal (x=-14) and
coronal (y=-14) slice through the sub-volume on one subject used to estimate the
high-resolution deformation field.
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Figure 8.16: Zscore difference vs scale for high-resolution deformation

This graph shows the average (10 subjects) z-score value for the 9-pammeter Iinear
transformation (lin) and the non-linear transformation at scales of 24mm (nl-24),
16mm (nl-16), 8mm (nl-8), 4mm (nl-4) and 2mm (nl-2). The tick marks represent
one standard deviation on the mean z-score value. Note that the registration im­
proves at each scale of the non-Bnear fitling process. However,
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8.4 Comparison to mannal warping

The thin-plate spline (TPS) interpolant described in section 2.2 has been proposed as an effec­

tive means to transform a single data set onto another in a non-linear fashion (Duchon, 1976;

Bookstein, 1989; Evans et al., 1991b). Il therefore provides a useful point ofeomparison for the

automated non-linear 3-D procedure. This procedure was used to compare the automatic non­

linear transformation to a manual method. Since the TPS algorithm requires a set ofhomologous

points to be identified on both the source and target volumes, the 341andmark points identified

in section 7.5.1 were used to defined the 3-D interpolant. The individual brain selected to define

the target space for experiment in section 8.3.2 was used here. The manually-defined transform

was applied to the remaining 16 data volumes, transforming them into the stereotaxie space. Af­

ter resampling, a voxel intensity average data set was ereated for comparison with the average

created with the automatic non-linear registration procedure in the previous experiment. Figure

8.17 shows 5 transverse slices through both data sets. These average images clearly indicate bet­

ter registration for the automatically transformed volumes. The 3-D landmark point variability

cannot be used for quantitative measurement of the manual registration quality, since the TPS

interpolant exactly fits the data at the landmark points, hence reducing the variability to zero at

these points. However, both z-score and the 3-D power spectrum analysis can be used to com­

pare the two techniques. Figure 8.18 shows a eomparison of the radial spectral power density

function for average volumes created with the automatic non-linear registration procedure and

with the manual non-linear transform. There is consistently more power at each frequency for

the automatic non-linear average.

The average brain-masked z-score of the resampled 4mm intensity gradient volumes roI' the

TPS transformation was O.730±O.034. This value was mueh higher than the z-score estimated

for the automatic non-linear transformation (0.479±OI4). In fact, the z-score for the TPS trans­

formation was greater than the z-score for the linearly transformed volumes (O.647±O.032). The

manually-defined non-linear results are highly dependent on the points selected to define the

TPS. The variability remaining in the cortical region of the manual non-linear average is due to

the lack of landmarks in that region. The 34 seleeted landmark points are certainly not the "best"
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Figure 8.17: Manua1 YS automatic non-linear registration.
The manual non-linear registration procedure based on the thin-plate spline was
eompared to the automatie non-linear registration procedure. Using the same vol­
umetrie data set as a target in stereotaxie spaee. the sixteen other data sets were
registered to it using both methods. The top row shows 5 transverse sliees through
the average of 16 data sets mapped into stereotaxie spaee using the manually-based
transformation. The bollom row shows the same sliees through the automatieally
non-linear transformed data set average.
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Figure 8.18: Radial spectral power density function ofmanuallautomatic av­
erages.
This graph shows the loglO nonnalized average radial power spect11lm for the av­
erage volume created with the manual thin-plate spline method (dashed line) and
for the average volume created with the automatic non-linear registration procedure
(solid line). Each frequency shows more power for the automatically produced av­
erage volume.

set of landmarks that couId have been chosen. Ideally, one should select landmarks in those re­

gions with highest anatomical variability and many landmarks should be chosen for better local

fitting. Even though five neuro-anatomically trained physicians identified the landmark points,

they found it very difficult to define and then locate points on the cortex and other regions ofhigh

variability. Due to the nature of the TPS interpolant, regions away from the center of the object

(like the cortex) that are not "tied down" with landmarks are subject to possible lever-type forces

from other landmark points. However, in practice, the identification of many of these landmarks

is impractical. The automatic non-linear registration procedure sacrifices exact correspondence

that is available with the manual technique, however the automatic method yields a good esti­

mate of point correspondence throughout the whole brain volume. These results suggest that the

approach described here is superior to the manual non-linear warping procedure.
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8.5 Average anatomical variabilHy map

The result of application of the non-linear registration procedure yields a volumetric deforma­

tion field. For a given subject, each voxel of the deformation field represents the magnitude and

direction of the warping vector needed to locally match the individual to the target after uffine

transformation into stereotaxic space. In the volumetric representation of the inverse function,

the field is stored such that each vector represents the deformation that must be applied to a given

stereotaxie position to match the homologous position in the subject's brain volume after appli­

cation of the linear stereotaxic transformation. Hence, a vector is stored for each voxel in stereo­

taxic space that is a measure of the non-Iinear spatial difference between the MRI-atlas and the

subject, after normalization for brain shape, size and orientation.

When the deformation vectors are combined from a large number of subjects at each voxel,

the resulting volume indicates the amount normal anatomical variability with respect to the MRI­

atlas for each point. Specifically, the standard deviation at each voxel position is computed sep­

arately for each component volume (x, y and z) of the deformation volume. Hencc three vol­

umes, ax , ay and az are produced from the 17 deformation fields. The automatic estimate of

inter-subjeet variability is calculated as an average 3-D FWHM value using a definition similar

to eq. 7.9 at each voxel:

FWHM = 2.35J{ai + a~ + a~)/3. (8.1)

Fig. 8.19 shows such an map of morphometrie variability of the human brain, averaged over 17

normal subjects.

The anatomiçal variability map is not symmetric on left and right sides. The left frontal lobe

and right parieto-occipitallobe appear to be more variable than their counter parts. As indicated

in Fig. 8.19, the area near the posterior superior temporal gyri appear to be more variable on the

left than on the right. There can be a relatively large change of variability over a short distance.

For exarnple, in the sagittal plane along the longitudinal fissure, the anterior aspect of the inler­

thalarnic adhesion has a variability of 1.8mm, however the posterior aspect of the structure has

a mean deformation value of 4.7mm with the distance between the two points being less than

!Omm.
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Figure 8.19: Average variability map.

The images on the left show three slices through the average intensity volume of the
17 subjects mapped into stereotaxie space non-linearly. The three on the right show
the corresponding slices through the average variability map, calculated from the
defonnation vectors from each subject for each point in the standard space. From
top to bottom are transverse (z=14mm), sagittal (x=-44mm) and coronal (y=-37mm)
images. The average variability for ail brain voxels is 4.21mm (3D FWHM). The
regions of largest neuro-anatomical variability were posterior poles of the lateral
ventricles, the region near the fourth v"ntricle, the cingulate sulcus (slightly more on
the left than the right), the inferior frOilta1lohe and the area just above the splenium
of the corpus callosum.
The cross marker is near the region of the planum temporale, the most posterior as­
pect of the superior temporal gyri, a region KIIuwn to he variable, measured here to
he 6.3mm 3-D FWHM. Il is interesting to see that in this region, the left side of the
brain a'lpears more variable than the right.
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For this map to be va!id it must be compared to an existing manual estimation technique.

The manual estimates of ISV described in section 7.5.1 were used for two comparisons, since

they were completed on the sarne 17 data volumes. 1) In those experiments, the average inter­

subject variability, manually estimated over 34 points, was 3.9mm measured as a 3D FWHM.

The corresponding measure estimated automatically for ail brain voxels in the morphometric

variability volume was 4.2mm. 2) Using the "grand average" coordinate ofeach of the 34 land­

marks from section 7.5.1, the automatically deterrnined variability was extracted from the vol­

ume and correlated with the manually deterrnined ISV estimates, both measured as 3D FWHM.

Figure 8.20 shows a plot of manual verses automatic ISV values. The regression coefficient was

0.867, demonstrating good correlation between both methods at the 1% significance level. The

regression !ine had a slope of 0.80, indicating that the automatic procedure may be slightly un­

derestimating the variability. This is due to two reasons: 1) as described in section 8.2.2, at each

step of the non-linear registration procedure, only a fraction of the required local deformation

is added to the global warp, so that an edge will never completely reach its target with the lim­

ited number of iterations allowed. 2) More importantly, the deformation is estimated only on

voxels with a gradient magnitude that exceeds a preset threshold. Therefore, the deformation is

not estimated in areas that appear homogeneous in MRI, but is interpolated from nearby edges.

Since the weighting is inversely proportional to distance, voxels in these regions can only under­

estimate the true variability.

8.6 Summary

In warping techniques based on landmark matching (Bookstein, 1989; Evans et al., 1991b), cor­

respondence is defined explicitly by manually defining homologous points. The problem with

these methods resides in the choice of which landmarks to use, how many to use and the sub­

jective error in identifying equivalent landmarks in different brains. In the automated method

presented here, explicit point-to-point correspondence is not required. It is derived by maximiz­

ing local correlation between source and target volumes with respect to a cost function. This

achieves surface-to-surface correspondence since a surface from one data set, defined by high
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Figure 8.20: Correlation of automatic and manual ISV estimates
This graph shows the correlation between the automatic estimate of neuro­
anatomical variability and the manual estimate based on ISV (section 7.5.1 for each
of the 34 landmarks. The regression coefficient is 0.867, and is significant at the 1%
level.

values of the gradient magnitude, is cor:strained to fit on the closest surface within the target vol­

ume. While the radial component (perpendicular to the surface) of the deforrnation is is weIl con­

strained, displacements in the tangential direction do not affect the similarity function as much.

However, experimental results show that even under noisy conditions this is not a practical lim­

itation. The registration rcsidual is reduced significantly, indicating that anatollÙcal variability

is reduced in the stereotaxie reference frame.

Experiments with simulated data have shown that the non-linear registration procedure can

reduce the registration error by at least 70%, resulting in llÙs-registration of Jess than Imm for

homologous points. TI-weighted data appears to be better suited than T2 or PD-weighted data

for non-linear matching due to the increased contrast between grey-matter and CSF that yields

more edges at which the algorithm can estimate the necessary deformation vector. Inter-subject

registration experiments with real data indicate that the registration residual was decreased by

only 14.3%, however other measures showed a substantial improvement over the linear regis­

tration. Inter-observer variabiIity, on the order of 2-3mm, forces a lower lillÙt on the estimation

of the residual based on landmark data
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The non-linear registration algorithm was incorporated into the stereotaxic mapping proce­

dure, in order to reduce inter-subject variability in the standardized space. Using the statistical

landmark-based tools developed in chapter 7, the estimated inter-subject variability was rcduccd

from 3.9mrn to 2.5mm, again limited by the inter-observer variability. Mean MR intensity vol­

umes were created by averaging stereotaxically transformed volumes. The automatic non-linear

average appeared much sharper than the linear average or the manual non-linear average. These

results were confirmed using the z-score difference measure and power spectral density function

methods.

Finally, an anatomical variability map was created and compared to the estimates of ISV

from chapter 7. A regression coefficient of 0.867 indicates significant correlation betwcen the

manual and automatic estimation methods.
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Chapter 9

Segmentation: experiments and results

9.1 Introduction

In this chapter, the registration strategies are employed to effect the primary goal of this the­

sis: neuro-anatomical segmentation of structures of the human brain from MRI volumetrie data.

Recall that the segmentation procedure inverts the common segmentation strategy by using non­

linear registration to compute the spatial deformation required to map intensity based features of

a source volume onto similar features stored in the VBSM. Delineation of structures is accom­

plished by mapping the VBSM-VOl through the inverse transformation, thus outlining structures

in their native acquisition space.

The experiments in this chapter are divided into three parts. 1) Simulated data is used to

demonstrate the validity of the new segmentation strategy. 2) Real data is used in the second

part to evaluale the segmentation method with respect to the primary goal set for the thesis. 3)

The segmentation procedure is used to generate automatically sorne exarnples of how neuro­

anatomical structures can be represented as probability functions in stereotaxie space.
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Figure 9.1: Segmentation of ellipsoid phantom.
These images show the result of the segmentation procedure applied to the ellipsoid
phantom. From left to right, the ellipsoid contours are mapped through the Iinear,
and the first, third and last scale steps (24mm, 8mm and 2mm) of the non-linear
transformation. The first non-Iinear step begins to take account of the geneml bmin
shape, and finds the positions of the ventricles. By the third step in scale, the upper
right region of the volume is almost properly segmented as well as the corners of
the "mouth", however there appears to be a misregistmtion of approximately 1mm
between the object edge and the segmented contour. This error is corrected, and a
perfeet segmentation is eompleted by the last scale step.

9.2 Simulated data

9.2.1 Ellipsoid phantom

The simple ellipsoid phantom of the previous two ehapters was the tirst data set used to demon­

strate the feasibility of the segmentation procedure. As in section 8.2.2, the TPS warping al­

gorithm was used to deform the original ellipsoid phantom and create a warped target volume.

The non-linear registration algorithm was then applied to the original phantom to reeover the

applied deformation. The geometric contours detined on the phantom were mapped through the

recovered non-linear phantom and overlaid on the target data set. Figure 9.1 shows the resuiting

segmentation for the linear transformation and the tirst, third and last scale steps (24mm, 8mm

and 2mm) of the non-linear transformation. One can see that there is a signiticant improvement

in segmentation evident at the tirst non-linear result when compared to the linearly transformed

contours. The successive steps in scale retine the segmentation even further, tinishing with an

almost perfect segmentation of the phantom.
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first simply measures the percent difference in absolute volume between the true and the seg­

mented structure. This value is defined as:

VT-Vs
8(T, S) = V

T
x 100.0%, (9.1)

where 8 is the percent difference in absolute volume, VT is the volume of the true structure and

Vs is the volume of the automaticaUy segmented structure. While this value indicates differ­

ences in size between the segmented and true structures, il does not measure the qU21ity of the

segmentation, since two structures can have the same volume and not be the same shape, nor be

in the same position. The second error measure is the percent volume overlap, .60, defined as:

ITnsl
.60 (T, S) = ITI x 100.0%, (9.2)

where T is the set of voxels in the true structure, S is the set of voxels in the automatieally seg­

mented structure, n indicates volumetrie intersection and 1 . 1 retums the volume of the set of

voxels. The structure defined in the VBSM is defined by a binary label volume, Le., a voxel=1.0

if the voxel is part of the structure, otherwise the voxel=O.O. Tri-linear interpolation is used when

mapping the binary model structure through the inverse of the recovered spatial deforrnation

function onto the original source volume. Therefore after mapping, voxel labels defining the

segmented structure can have values between 0.0 and \.0. Consequentially, equation 9.2 is im­

plemented by a function similar to the correlation measure of equation 4.17:

~ f(7, x)f(S, x)

.6o(T, S) = XE( ~ 12(7, x)) x 100.0%,
xEC

(9.3)

•

where 7 and S are the label volumes representing the true and segmented structures, respec­

tively, f(V, x) is the interpolated value (between 0.0 and \.0) from the label volume Vat voxel

position x, the summations are done over aU elements x E t:. and t:. is as previously defined in

chapter 4 in eq. 4.16 with spacing between nodes equal to the voxel size of the original source

volume.

When the label volumes are binary valued, .60 exactly measures the ratio of the voxels of the

segmented structure that overlap the true structure. If the edges of the segmented structure are
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/illear non-linear
struct/lre 6 !:>t !:>b 6 !:>f !:>b

skin: 7.1% 92.8% 99.6% -0.2% 100.0% 99.9%
brain: 6.1% 93.4% 99.1% 0.6% 99.6% 100.3%

~..
1.7% 84.8% 85.6%ventncie (R): fl.5% 99.3% 100.6%

ventric1e (L): -2.1% 79.6% 77.3% 0.5% 99.1% 100.7%
rectangle: 23.0% 71.1% 90.3% -1.9% 99.4% 98.3 %

average: 8.0% 84.3% 90.4% 0.7% 99.5% 99.9%

Table 9.1: Segmented structure volume difference and overlap.
This table shows the percent volume dift"-:rence and the percent volume overlap for
the individual structures used to define the ellipsoid phantom. These values are nor­
malized to the true structure volume. The average percent difference in volume is
calculated in the last row for 6. Note that since !:> is nonnalized by a factor depen­
dent on T only, it can take on a value slightly greater than 100.0 due to numerical
eITors and finite sampling.

blurred, due to partial volume effects after resampling, .6. has a tendency to increase slightly.

This value is 100.0 when the segmented and true structures completely overlaj). In fact, if the

segmented structure is larger than the true structure, .6. can still equal to 100.0. Therefore, one

measure forward.6./ = .6. (T, 8) and one measure backward.6.b = .6.(8, T) were calculated,

and the minimum of the two was used to estimate the segmentation results.

Five objects were used in the definition of the ellipsoid phantom !md they can also be em­

ployed to test the segmentation. These are the skin surface, the cortical surface and three internai

structures: two ventricles and one rectangular object (the eyes and mouth of the phantom). For

the segmentation described above, the values of 8 and .6. were calculated for each object. The

results in table 9.1 show that on average the estimated segmented structure volume has less than

1% error and structure overlap is better than 99%, indicating that the objects are weil delineated

by the contours mapped through the deformation field recovered by the non-linear registration

method.
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9.2.2 Brain phantom

A more realistic evaluation of the automatic segmentation employed the digital brain phantom

created in section 7.2.2. The set of landmark points identified in chapter 8 were used to define a

TPS transformation that was applied to the Tl-weighted phantom data set to produce a topolog­

ically equivalent, but spatially warped target data set. Ten percent noise was added to the source

volume.

Five structures were defined on the original phantom data using a voxel painting feature

within a software program, developed at the MNI, that allowed simultaneous tri-plane (trans­

verse, coronal and sagittal) viewing of volumetric data. These structures included the head of

caudate (left and right) as weil as the lateral and third ventricies. The unwarped phantom and the

manually segmented structures formed the model atlas data. Together, they served as the target

for the segmentation proccdure.

The manually segmented structures were mapped through the applied transformation to cre­

ate the set of known structures in the warped data volume that must be segmented by the registra­

tionldelineati0n procedure. These structures were used to evaluate the segmentation algorithm

using the percent difference and the percent overlap measures defined above. Figure 9.2 shows

the result of the segmentation procedure. The contours defined by the painted structures were

mapped back through the inverse of the recovered transformation and overIaid on the warped

data. The structures in the segmented data are outlined weil by the warped contours.

Quantitative evaluation of the brain phantom segmentation is summarized in table 9.2. Since

a cIaEsified data set was used to create the brain phantom, the set of grey-matter and white-matter

voxels were known. These too were mapped through the applied and recovered transformation

for evaluation and were inciuded in table 9.2. On average, 0 was reduced by more than half,

from 4.2% to 1.7%, and t:;. was improved 38%, from 70.4% to 97.4% when using non-Iinear as

opposed to Iinear matching. Not only is there an improvement in the estimated structure volume,

but the structures are properly delineated as weil. The results for these structures indicate that

the segmentation method functions on realistic data.
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Figure 9.2: Segmentation of digital brain phantom.
Three transverse images of the digital brain phantom through the ventricles at the
level of the basal ganglia are shown here with the contours of the resulting segmenta­
tion superposed. The contours correspond to the head of caudate, the laierai ventri­
cles and the grey and white matter boundaries. On the left, the contours are mapped
through the linear transformation only. In the center are the true contours, gener­
ated by mapping the original atlas contours through the applied transformation. On
the right, are the contours resulting from t!Je segmentation algorithm. Almost no
difference is visible bctween the two sels of contours.

Iinear non-linear
structure 6 6., 6.b 6 6., 6.b
caudate: 1.3% 71.5% 65.7% 4.9% 96.4% 101.8%

ventricle: 7.0% 79.1% 77.6% -0.0% 99.1% 99.4%
grey: 3.4% 77.5% 72.0% 1.0% 97.6% 97.0%

white: 5.0% 71.1% 66.1% -0.7% 96.3% 95.6%
average: 4.2% 74.8% 70.4% 1.7% 97.4% 98.5%

Table 9.2: Segmented structures from brain phantom.

This table shows the percent volume difference, 6. and the percent volume overlap,
6., for the individual structures defined on the digital brain phantom and segmented
from a manually warped data set. These values are normalized to the true structure
volume. The average percent difference in volume is calculated in the last row for
6.
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In order to assess the quality of the non-linear registration based t:;. in terrns ofmis-registration

distance, a single caudate was taken and deliberately mis-registered by applying a translation

along one of the three axis. The value of t:;. was calculated for each originallmisregistered pair

for offset values varying from -5mm to 5mm, in steps of0.25 mm along the x, y and z coordinate

axes. The results are shown in Fig. 9.3. The volumetric correlation (as defined in equation 4.17)

on intensity values was calculated as weil and plotted for comparison; t:;. corresponds weil with

the correlation coefficient at each offset position. A value of t:;. greater than 90% corresponds

to less than 1mm misregistration along the x-axis. The same misregistration on either the y or

z axes alone corresponds a t:;. of approximately 95%. Therefore, the value of 96.4% found for

caudate in this experiment indicates that there is less than 1mm misregistration in the segmen­

tation of the simulated data. These values correspond weil to the residual error and deforrnation

recovery error measurements described in section 8.2.3 and shown in Fig. 8.6.

9.3 Real Data

9.3.1 Data acquisition

Segmentation experiments were carried out with new volumetric MRI data acquired for the ex­

periment described in section 8.3.3. Since the RF sensitivity of the new machine was appropri­

ately uniform, no preprocessing of the data was necessary before application of the automatic

registration algorithms.

9.3.2 Manual structure identification

Testing of the segmentation algorithm requires a set of gold-standard structures to be defined and

segmented from the II data volumes. The voxel painting program described above was used by

a trained neuro-anatomist to identify individual anatomical structures in the brain volumes. The

voxels labeled by this procedure serve as the gold-standard definition for each structure on each

brain, and were used to evaluate the automatic segmentation result. The left and right head of
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Figure 9.3: Volume overlap and correlation value vs registration error.

Plot of f:!,. (solid line) and correlation value (dashed line) for a single segmented
structure (left head of caudate). The data set was deliberately misregistered, vary­
ing one translation component (x, y or z) at a time. Note thatthe graph for x-offset
is steeper due to the shape of the caudate. Since the structure is narrow in the x­
direction, taller in the y direction and even longer in the z direction, a 1mm x-offset
reduces f:!,. more that an y or z-offset of the same size.
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caudate were chosen for testing, because of their inherent importance in many aspects ofcurrent

brain research and because they present a relatively well-defined object for manuallabelling.

9.3.3 Automatic structure segmentation

Withoutloss of generality, the segmentation algorithm allows one brain to serve as a target in

stereotaxic space and structures identified on it to define the anatomical atlas that is used for

segmentation of aIl other data sets. Therefore one brain volume, and its associated voxel la­

bels, were selected as the model and the other ten data sets segmented automatically with it.

The methodology outlined in section 8.3.2 was used to build the single-brain target VBSM-IIF

and VBSM-VOI.

After application of the non-linear registration algorithm to each of the individuallmodel

pairs, the inverse of the recovered transformation was used to resample the structure labels of

the target volume onto the individual data set. Figure 9.4 shows three transverse slices through

the ventricles and basal ganglia of one of these segmented data sets. Contours corresponding

to the head of caudate are overlaid on the images for both the manual and automatic segmenta­

tion. Comparison of the two sets of images shows that the segmentation algorithm succeeds in

identifying the boundaries of the structure, based on its definition in the model brain.

The results in Fig. 9.5 show how the values of8 and tJ. change with increasing scale step. Ta­

ble 9.3 shows that the overlap increases from 75.6% to 88.6% on average over the ten caudates.

The percent volume difference of the right caudate is greater than in the left, after non-linear

segmentation. Since the right caudate is thinner and occupies slightly less volume than the left

(5285mm3 vs 5482mm3, on average of the manually segmented data), misregistration between

the automatic and manually segmented structures cause more important errors for the right side.

While the value of tJ. increased to more than 97% for the simulations using the brain phantom, tJ.

increases to only 90% with real data. There are two reasons for this lack of improvement. The

main cause may be due to intra-observer variability in the definition of the caudate on differ­

ent subjects. For example, the anatomist found it quite difficult to identify the anterior-ventral

aspect of the caudate near the region of the nucleus accumbens, sometimes including it in the
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Figure 9.4: Typical segmentation of real MRI data.

Transverse slices through a single brain at the level of the ventricles and basal gon­
glia. The manually identified contours for the caudate are shown in the top row.
The corresponding automatic segmentation is shown in the bottom row. Notice that
there is good agreement between the manually and automatically-defined contours.
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Figure 9.5: Volume difference and overlap for segmentation of caudate.
The graph on the left shows the value of 181 averaged over ten brains for the auto­
matically segmented head ofcaudate for the linear transformation (lin) and the non­
linear transformation at scales of 24mm (nl-24), 16mm (nl-16), Smm (nl-S), 4mm
(nl-4) and 2mm (nl-2). The height of the tick marks represent one standard devia­
tion on the mean magnitude of 8. The graph on the right shows the value of t:. for
the same data.

structure definition and sometimes not. This region represents 1-2% of the volume of the head

of the caudate. Also, since the structures were painted manually, sorne ventricular voxels were

included on the medial wall of the body of the caudate and may account for an additional3-4%

of the difference. The second reason may be due to bias incurred by using the manually seg­

mented caudate from the single individual. Errors in manual segmentation of this structure are

carried through the non-Iinear transformation, yielding errors in the segmentation. This will be
..

true in general for any atlas defined on the basis of a single brain.

9.4 Probabilistic structure definition

•
One of the goals of this thesis was to develop a technique that couId be used to automate the

process of neuro-anatomical variability estimation. One aspect of this task involves the creation

of a stereotaxie probabilistic atlas, so called, because each of the voxels in the atlas represent the

probability of finding a given structure at that position after mapping a given dataset into stereo-
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/illear non-linear
structure J D.f D.b J D.[ D.b

caudate (L): 7.3% 77.5% 77.7% 3.7% 89.5% 90.5%
caudate (R): 6.6% 85.6% 73.5% 6.9% 92.0% 86.6%

average: 7.0% 81.6% 75.6% 5.3% 90.8% 88.6%

Table 9.3: Segmented structures from real MRI data.
Percent volume difference, J, and the percent volume overlap D., for the individual
structures segmented manually and automatically. These values are normalized to
the manually identified structure volume. The average percent difference in volume
is calculated in the last row for J.

taxic space with an affine transformation. In theory, a perfect non-linear transform would render

ail brains to be identical, and there would be no probabilistic distribution. Segmentcd data from

a number ofbrain volumes must be averaged in order to build probabilistic definitions of specific

structures. This required individual structure segmentation from each brain volume participating

in the average and until now, was only possible with manual segmentation techniques. For exam­

pIe, an average thalamic atlas was created by meticulously outlining the left and right thalami on

MRI volumes of 200 subjects (Absher, 1993). Each labelled thalamus was mapped into stereo­

taxic space individually, using the 9 parameter linear transformation identified for the particular

subject. The ensemble ofleft thalami were then averaged together on a voxel by voxel basis. The

same was done for ail right thalami. Once completed, each voxel value reprcsents the probability

of finding the thalamus at that coordinate in standardized space. The intensity profile perpendic­

ular to the surface of the average structure is a measure of the positional variability of that part

of the thalamus. This method is manually intensive and prohibitively time-consuming to replace

each of the structures in the VBSM-VOI atlas with its probabilistic representation. Furthermore,

intra- and inter-observer variations in labeIling strategy wouId confound the overall goal. Com­

pletely automatic and accurate regional volume segmentation such as that described in this thesis

is required to address these problems.
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9.4.1 Evaluation of method

In this section, the hypothesis that the segmentation method developed in this thesis can be used

to build a probabilistic structure that is not significantly different from that created manually is

tested. The manually segmented head of caudate from the experiment in section 9.3.3 was used

to compare the manual and automatic methods.

As described above, creation of the probabilistic structure requires mapping ofthe segmented

structures into stereotaxic space using an affine transformation with a fixed number of parame­

ters. The following procedure was repeated for left and right caudates, segmented manually and

automatically, thus yielding four average volumes. For each caudate, the automatically recov­

ered 9-parameter affine transformation identified for the subject was used to map it into stereo­

taxic space. After transformation and resampling, all caudates for each group (e.g., manual-Ieft)

were averaged together on a voxel-by-voxel basis. The resulting volumes were multiplied by a

constant so that each voxel represents a percentage value, indicating the probability of caudate

for each voxel.

Figure 9.6 shows sagittal slices through the left probabilistic caudate for both manual and

automatic averages for qualitative comparison. When visualized using the tri-plane display, the

automatic average appears to be slightly lower and more posterior than the manual average. This

fact is confirmed by the difference image in Fig. 9.6. When evaluated between the two volumes,

8=-1.3%, indicating that the automatic average is slightly larger than the manual one. The value

of .6.,=100.0, however .6.b=94.9.

These statistics are broken down for different probability levels and shown in Fig. 9.7. The

value of 8 decreases with increasing probability values. This is due to a number of factors. The

manually created structure is slightly more spread out, so that at low probability levels, it oc­

cupies a greater number of voxels. However, as the probability threshold is increased, it is the

automatically defined structure that is larger. The larger area occupied by the manually-defined

version may be due observer variability in structure definition. The graph of.6. shows that the

volumetric overlap is almost constant between the two representations. The sharper decrease

between probabilities of80% to 100% is due to the small size (approximately 3cm3) of the struc-
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Figure 9.6: Probabilistic caudate.
Three sagittal slices (x=lO,15,20mm) through the individual subject used as a target,
showing the probabilistic caudate overlaid on the darker MRI. The manually created
average is on the top and the automatically created one is in the middle the bottom.
The difference image formed by manual- automatic in the bottom row, shows that
the latter is slightly lower (1 mm) and more posterior than the former.

tures at those levels. A forced 1-0 misregistration of Imm a10ng the x-axis of the manual prob­

abilistic caudate thresholded at the 100% level yields a ~ of 75.8. Similarly, a ID translation

along the z-axis yields a ~ of 85.9 and the sarne translation along y gives 83.6. For the 50%

probability, where the structure is 1O.7cm3 in volume, a Imm translation along the x, y and z­

axis give ~ values of85.7, 91.35 and 90.9, respectively. Hence from these values, one may infer

that the automatically and manually created probabilistic caudate are very similar, differing by

no more than Imm in any single direction.
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Figure 9.7: Volumetric comparisons at different probability levels.
These graphs compare li and Il for the n;anual and automatic probabilistic caudate
at various probability threshold levels. The graph on the left shows that li decreases
with increasing probability, indicating that the manually defined structure is more
spread out atlower threshold values. The graph on the right shows that Il between
the two representations is relatively constant at 90% overlap.

9.4.2 Application of method

Given the validation results determined on the caudate, we conclude that the automatic segmen­

tation procedure can therefore be used to produce probabilistic structures of gross anatomy of

the human brain. Therefore, a number of other structures were identifled on the target brain by

the neuro-anatomist. These included the corpus callosum, insular cortex, lateral ventricles, tha­

lamus and putamen. These labelled volumes were used to segment these structures on the JO

data sets that were averaged to create the probabilistic caudate.

Using the automatic procedure described above in section 9.4.1, probabilistic representations

of the corpus callosum (Fig. 9.8), insular cortex (Fig. 9.9), ventricles (Fig. 9.10), and the basal

ganglia structures of the thalamus, caudate and putamen (Fig. 9.11) were created. These struc­

tures form the building blocks that will be used to reflne the VBSM-VOl so that it represents

neuro-anatomical variability.

•
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Figure 9.8: Probabilistic corpus callosum
These sagittal images shows the probabilistic corpus callosum (CC) overlaid on the
mean intensity MUI data set of ten subjects, linear mapped into stereotaxie space
(left) and on the target MRI data set used to define the segmentation. The proba­
bilistic CC has been thresholded at 20%, so that only voxels that have more than
a 20% chance of belonging to CC are overlaid on the MRIs. Note that there is a
small amount at the superior aspect of the genu of the CC on the targetthat extends
above the average CC. This is due to the neuro-anatomical variability of the selected
individual target brain with respectto the average anatomy.

9.5 Summary

A fully automatic segmentation strategy has been presented to address the goal set forth at the

beginning of this thesis. The reversai of the standard segmentation strategy, from matching ge­

ometric contours directly on image data, to one of registration followed by delineation has been

show to be valid. The structures identified by this method are comparable to those segmented

manually and the experimental results on both simulated and real MRI data have shown thatthe

method is accurate and robust.

The segmentation method developed here has direct application in the quantitative study of

neuro-anatomical variability in the normal population, the determination of inter-group differ­

ences, the detection of subtIe abnormalities, and the tracking of normal development. Il also

has direct utility in studies of functional neuro-anatomy with macroscopic imaging techniques

such as PET and fMRI. For PET, averaging across subjects in a standardized space is used to

detect subtle cognitive activation foci measured from cerebral blood flow (CBF) volumes. The

removal of the non-linear individual neuro-anatomical differences will potentially remove the
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Figure 9.9: Probabilistic insular cortex
These images shows the probabilistic insular cortex and the corresponding slices of
the mean intensity MRI data set of the 10 subjects. linearly mapped into stereotaxie
space. The probabilistic structure has been thresholded at 25%. The cross upper­
left transverse image (z=5mm) of the mean MRI data set shows the sagittal position
through the insular cortex for reference for the three other images. The upper-right
and lower-Ieft show the sagittal (x=39mm) slice through the mean MRI volume and
the probabilistic insular cortex data set. respectively. The probabilistic structure is
overlaid on the mean MRI in the lower right. Surprisingly. there is not a lot of vari­
ability. and the insular cortex appears conserved in the mean MRI and even more
so in its probabilistic representation. Note the agreement between the two volumes:
the cross is overlaid in white matter in the mean MRI and this area appears dark
in the probabilistic volume. indicating low probability of insular cortex (i.e.• grey
matter).
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Figure 9.10: Probabilistic lateral ventricles
These three images show a transverse slice (z=16mm) through the mean inten­
sity MRl data set (10 subjects), linearly mapped into stereotaxic space (Ieft), the
probabilistic representation of the ventricles (middle) and the two overlaid together
(right). The probabilistic structure is thresholded at the 20% leveJ. As expected, the
brightest regions of the probabilistic ventricles correspond to the central region of
the two lateral ventricles.

Figure 9.11: Probabilistic basal ganglia
These three images show a transverse slice (z=7mm) through the mean intensity
MRI data set (10 subjects), linearly mapped into stereotaxic space (Ieft), the prob­
abilistic representation of the head of the caudate, thalamus and putamen (middle)
and the two overlaid together (right). The probabilistic structure is thresholded at
the 20% leveJ.
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blurring due to morphometric variability and potentially increase the signal-to-noise ratio, and

enhance the detectability of even smaIIer signais. For fMRI, the automatic segmentation pro­

cedure can be used to objectively define an anatomical region associated with sorne cognitive

process. The analysis of the fMRI data within these regions may provide clues as to the exis­

tence and quantification of neuro-functional variability between subjects.
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Chapter 10

Discussion

10.1 Rationale

This thesis has addressed a fundamental problem that confounds many neuro scientific endeavors

using modern medical imaging modalities: how does one account for neuro-anatomical morpho­

logieal differences in order to make quantitative comparisons between individuals, or between

groups, for a given analysis or experiment? One solution is found in CUITent brain mapping re­

search where 3-D brain image volumes are transformed into the brain-based stereotaxie coor­

dinate system and, using a linear mapping, are resampled onto a common sampling grid, ~uch

that all brains have the same position, orientation and size. Hence, the transformation to stereo­

taxie space removes global variability and perrnits limited voxel-by-voxel comparisons between

data sets, or between the data set and an atlas defined in that coordinate system; limited in the

sense that all results must be interpreted with respect to the residual non-linear neuro-anatomical

variability which was not removed.

Estimation of this residual variability is not straightforward. It requires evaluation of the

variance on position between homologous points from clifferent subjects, after these subjects

have been mapped into a common frame of reference with a limited number of well-defined de­

grees of freedom. Implicit in this analysis is the notion that ail points in the brain have been
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identified exactly, and that there exists a one-to-one correspondence between ail brains. This

is c1early untrue and one is forced to adopt indirect and inferential techniques to obtain usable

information about quantitative neuro-anatomical variability.

Previous attempts to assess neuro-anatomical variability have been limited to a few stru::­

tures, based on manual analysis of a small number of excised brains while others have used CT

and MRI. Many of these studies have been purely qualitative or semi-quantitative, c1assifying

the type of variability in the cortex (Ono et al., 1990) or assessing differences in volume to de­

termine general anatomical asymmetries in the brain (Chui and Damasio, 1980; Galaburda et

al., 1978; le May and Kido, 1978), or of specific structures such as the sylvian fissure (Rubens

et al., 1976), temporal lobe (Witelson, 1977), temporal speech regions (Geschwind and Levit­

sky, 1968) or left-right differences in occipital and frontal lobes (Weinberger et al., 1982).

The task of manual structure delineation is difficult on medical images, such as MRI, due to

low tissue contrast, partial volume effects and mis-orientation of the scanned slices with those

in standard atlases. These difficulties are compounded when the shape of a given structure is

different from an atlas, or from subject to subject due to normal anatomical morphometric vari­

ability. This can result in inter- and intra-observer observer difference in shape definition due

to subjective structure interpretation that cause subjective decisionr, to be made on each brain

when drawing boundaries, for example. Observer-dependent differences in segmentation strat­

egy confound the goal of probabilistic structure creation, since methodological differences in

analysis for each brain may be indistinguishable from the true neuro variability. Furthermore,

manuallabelling is time consuming (e.g., left and right head ofcaudate required 2 hours on av­

erage per subject for one observer), making structure identification on a very large number of

brains impractical, signalling the necessity for a fully automated segmentation technique.

The first automated procedures applied to the segmentation problem included classification

techniques. While these methods could idemify gross tissue types such as cerebro-spinal fluid,

white or grey-matter, they were unable to achieve the delineation required to separate individ­

ua! neuro-anatomical structures. Other algorithms are also data driven, extracting "reasonable­

regions" that may be reasonable for a computer-vision mode1, but are not meaningful in terms of
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anatomy. Expert system-based methods have had moderate success, but become complex and

unwieldly when dealing with many structures and are highly sensitive to the nature of a required

pre-segmentation process. Model-based information must be used to better constrain the prob­

lem. A landmark-driven 3-D non-lineardeformation procedure for matching a model to differeni

brains was described in section 2.2. However, as described in section 8.4, this method requires

the manual identification of homologous points in different brains and is time-consuming and

highly dependent on the landmarks selected and the interpolant used. Many automatic model­

based algorithms fit a model to the image using some optimization criteria with physical con­

straints to force contours in the model to match edges estimated from the data. Of the few suc­

cessful techniques (Broit, 1981; Bajcsy et al., 1983; Terzopoulos and Witkin, 1988; Zhengping

and Mowforth, 1991; Nastar and Ayache, 1993; Kosugi et al., 1993), fewer have been applied in

3-D (Dann et al., 1988; Bajcsy and Kovacie, 1989; Terzopoulos and Metaxes, 1990),none have

been subjected to a thorough validation and evaluation.

10.2 Summary of the methodology

The problem statement expressed in ehapter 1 is repeated here:

Problem: Given volumetrie magnetie resonanee image data, develop a procedure to

automatieally identify and delineate structures in the human brain that will facilitate

neuro-anatomieal quantitative an2'Isis and permit eharaeterization of morphomet­

rie variability aeross subjeets.

Thus, addressing the problems ofexisting manual and automatic segmentation methods has formed

the basis ofthis thesis. The segmentation procedure developed here inverts the intuitive segmen­

tation approach. Instead of fitting geometric contours from an atlas direetly to the raster image

data, a volumetrie brain segmentation model (VBSM) was ereated that eontains both geometrie

atlas data (VBSM-VOl) and volumetrie raster data (VBSM-IIF). Both eomponents are registered

together by nature of the model definition in the brain-based eoordinate system known as stereo­

taxie spaee. The unique methodology presented here separates segmentation into two stages: a
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registration step followed by a delineation step. The optimal spatial transformation between an

individual data set and the model is found in the registration task by maximizing the overlap

between volumetrie features derived from the data set and those stored in the VBSM-IIF. The

inverse of the recovered transformation is used to complete the segmentation process. Structure

delineation is achieved by applying the inverse function to the VBSM-VOl, thereby outlining

structures in the native data.

The two stage approach is broken up into three steps: linear registration, non-linear registra­

tion and segmentation. The linear registration procedure used optimization over transformation

parameters to maximize the cross-correlation of invariant image intensity-base features between

two volumetrie data sets. When combined with VBSM used as a target, the technique was used

to automate the stereotaxie mapping procedure. Experiments completed in chapter7 showed that

the automated procedure was comparable to existing manual stereotaxie mapping methods, and

yielded more stable results. The automated method is completely objective and has benefits and

accuracies similar to that of landmark-based registration, or surface to surface matching tech­

niques, while having the additional advantage that explicit manual intervention is not required

to identify such points or contours. This eliminates the well-known drawbacks of manual tech­

niques such as reproducibility and inter-observer variability. When the procedure was used to

map data volumes into stereotaxie space, inter-subject variability measured by identifying ho­

mologous landmark points was estimated to be 4.11 mm.

The goal of the non-linear registration procedure developed in chapter 5 was to reduce this

variability in stereotaxie space by estimating the non-linear spatial warping function required

to map ail points from one subject's brain to their homologues in a second brain. The proce­

dure represents the non-linear transformation in the form of a spatial warping field, where a 3-D

deformation vector was stored for each voxel in tÎle field. The recovery of the global warp is

a straightforward extension of the linear registration method, except that the target volume is

a small neighbourhood of the whole brain, recursively selected by stepping through the entire

target volume in the 3-D grid pattern defined by the deformation field. Experiments on a sim­

ulated brain phantom showed that the procedure could recover more than 85% of the residual
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not accounted for by the linear model (see section 8.2.3), and was robust against noise (section

8.2.3, Fig. 8.6). Application of the non-linear procedure to the set of real MRI volumes used

in the inter-subject variability study, reduced this variability by 35%, from 4.llmm to 2.50mm.

Furthermore, the deformation fields created for each subject were averaged together to form a

3-D anatomical variability map within stereotaxie space (section 8.5). The values from this map

were highly correlated (r = 0.867) with the statistical estimates ofinter-subject variability based

on manually-identified landmark points (Fig. 8.20).

The combination oflinear and non-linear registration procedures forms the engine that drives

the unique segmentation method deve10ped in this thesis. Segmentation becomes simply a by­

product of the non-linear transformation required to map one data set onto the model. Because

the VBSM-VOl that defines the structures to be segmented takes no part in the registration pro­

cess, the segmentation procedure is completely atlas-independent. Therefore, any atlas defined

within the stereotaxie coordinate system of the VBSM can be used to achieve segmentation. It is

possible to permit multiple co-existing atlases, for a hierarchical nomenclature or for compari­

son between them. Experiments with the digital brain phantom presented in chapter 9 show that

the automatically segmented structures overlapped the true ones by more than 97% (see section

9.2.2, table 9.2). Comparison of the automatic segmentation algorithm with manual structure

identification on real data was completed for the left and right head of caudate in 10 volumetrie

data sets and resulted in an average overlap ofalmost 90%, indicating an average misregistration

of less than Imm (see section 9.3.3, Fig. 9.4 and table 9.3). The automatically segmented struc­

tures were used to create a probabilistic representation of the caudate. This probabilistic struc­

ture overlapped the manually-generated one by 95% (section 9.4.1, Fig. 9.7), indicating that the

automatic segmentation procedure can be used to build probabilistic structures given a struc­

ture definition on the target model volume and a number of deformation field from individual

subjects.

In summary, these results support the contention that segmentation can be defined as regis­

tration followed by delineation and that the reversai of the traditional model-based segmentation

techniques can lead to a practical and robust mechanism for outlining specifie brain regions in
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3-D. In this thesis, a method for fully automatic, atlas-independent, model-based segmentation

was developed, evaluated and shown to performed weil on real data. The examples presented

in this thesis have been exploratory and insights acquired by application of the methodology to

different structures will determine the true value of the method.

10.3 Caveat emptor

The segmentation method is subject to the following caveats. Even though the goal of the non­

Iinear registration algorithm was to account for as much anatomical variability as possible, it

is impossible to eliminate all variability, because of non-equivalent topology in sorne brain re­

gions. Therefore it is not clear that there can exist acompletely objective correct answer that can

be used to evaluate the algorithrn. In particular, while the major cortical convolutions are present

in ail brains, the secondary and tertiary gyri are rnuch more variable. Hence, at sorne scale, the

notion of absolute correspondence breaks down. This problem may ultirnately require a corn­

pletely different strategy in which the cortical mantle is "unfolded" and inter-subject matching is

achieved my maximizing the overlap of these unfolded sheets with a 2-D algorithrn. This work

has been the subject of the PhD project of another student at the MN! (MacDonald et al., 1994).

Eventually, these two methods must be combined into one.

The VBSM was based on the 305-brain MRI-atlas that was derived frorn the averaging of

many TI-weighted data sets. Even though the registration process functions weil for TI-weighted

data, the procedure may not work for T2 or PD-weighted images when using this same model

because the edges dcrivd frorn other data types will not correspond to the edges found in TI­

weighted model data. Nevertheless, experiments in chapter 8 have shown that the non-Iinear

registration procedure is relatively independent of the data on which it works since simulations

with T2 and PD-weighted brain phantom yielded results comparable to those obtained on Tl­

weighted data. Other average models can be created using the strategy described in section 3.4.

Sorne structures will never be properly segmented by this method. For example, there are

connections between the head of the caudate and the nearby putamen that pass through the in-
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ternal capsule. These connections appear in random locations between the structures. Since

their positions are random, they don't adhere to the equivalent topology assumption required for

proper segmentation. However, the segmentation procedure can be used to identify the region

where these connections are most Iikely by identifying such a region in the VBSM-VOL

No attempt has been made to address the complications brought about by pathology within

the anatomy. Nevertheless, the region ofa tumour could be masked and ignored by the algorithm

in order to see how it adapts to the remaining anatomy.

10.4 Applications and suggestions for future work

10.4.1 Applications

Only initial validation has been completed of the segmentation procedure. Other structures must

be evaluated to validate the automatic method. As part of the ongoing neuro-psychology projects

at the MNI, many neuro-anatomical structures are manually segmented and analyzed. This set

of user-defined structures will provide the data-base necessary for testing of the segmentation

procedure using the methods described in section 9.3.3.

One ofthe applications of the Iinear stereotaxic mapping procedure was to increase the signal­

to-noise ratio for functional activation paradigms. The transformation required to map the MRI

volume to stereotaxic space was applied to the co-registered PET data (Evans et al., 1992c) and

data sets from multiple subjects were then averaged to enhance the small signal associated with

cognitive activation. By using the non-Iinear stereotaxic transformation, the anatomical region

thought to give rise to the functional signal can be aligned. Application of the same transforma­

tion to the PET data may further increase the activation signal. Once anatomical variability is

eliminat~d, it may be possible to determine the existence of functional variability in the location

of focal sites of physiological responses underlying normal cognitive operations.

An international consortium has recently been created for a research project entitled "A prob­

abilistic reference atlas of the human brain" which has been funded by the V.S. Human Brain
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Map Project initiative, a multi-agency program lead by the National Institute of Mental Health.

The specifie goals of the project are to develop techniques to assess neuro-anatomical variability

and to build a probabilistic atlas of gross neuro-anatomy for the human brain. Amajor portion of

the rationale for the automatic image segmentation component for that project was derived from

the work in progress at the MNI and presented here. The probabilistic caudate and the anatomi­

cal variability map created in the previous chapter are specifie examples of the general strategy to

be employed in the ICBM consortium, but at this stage only represent proofof principle. These

procedures must be repeated on a large data base of subjects.

10.4.2 Enhancement of the registration methodology

Local deformation constraints

The non-linear registration procedure ofchapter 5 uses a single constraint on the amount of de­

formation allowed at each node. The use of stereotaxie space permits this constraint to be tai­

lored for each point in the VBSM by storing a vector quantity for each voxel that rellects the lo­

cal anatomical variability. The program should now be modified to take advantage of tbis data,

instead of the single constant value used presently.

Other matching features

Other features should be evaluated for use in the registration procedure. While the invariant

features of intensity and gradient magnitude were sufficient to achieve both linear and non-linear

registration, other invariant features such as strength of curvature may be used to improve the

non-linear registration. The present algorithm used zeroth and first order gradient magnitudes

and the incorporation of second and higher-order derivative invariants is straightforward. Il is

possible that other types of blurring functions may yield interesting results, particularly the class

of edge preserving filters based on anisotropie diffusion (Perona and Malik, 1990).

Simulations with the realistic digital brain phantom showed very good results. Il would be

interesting to examine the behavior of algorithm running only on classified data, instead of on
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real data. Il is possible that with c1assified data, a hierarchy of edges couId he built, so that the

non-linear registration begins by fitting the cortical edges only. Once completed, the ventricles

could be added and the fitting procedure restarted. Afterwards, the grey-white border could be

added in and the fitting procedure restarted once again. It would appear that this type of directed

strategy may speed the overall fitting process.

Non-equivalent topology:

While the scope of this thesis was limited to cerebral structures that are found below the cor­

tex, in order to maintain the validity of the equivalent topology assumption, initial experiments

have shown that major structures on the cortex (e.g., interhemispheric fissure, central sulcus,

and sylvian fissure) can be identified with the segmentation algorithm. A source of anticipated

difficulty will arise from other more variable structures, particularly in secondary and tertiary

cortical structures, where topological non-equivalence is more the rule than the exception. For

example, in a study of the cingulate sulcus for 238 hemispheres from the 30S-MRI database at

the MNI, Paus et al. (1993) have identified two common patterns of either a single cingulate

su1cus or two, with a transition zone between limbic cortex and neocortex in the latter pattern.

These alternatives can be accommodated by regarding each pattern not as two mutually exclusive

models, but as probabilistieally-weighted sub-types of the two-su1cus pattern. The segmentation

atlas will therefore have to modified to reflect the more complex pattern. The occurrence of a

simpler pattern will be reflected in a lower probability value for labelling the additional su1cus.

Similar strategies will be employed where multiple folding patterns have been observed (Ono el

al., 1990).

Discontinuous spatial deformation function

The recovery of the deformation is based on the assumption that there exists a one-to-olle map­

ping between homologous points in different brains. Since neighbouring points within a partic­

ular brain structure of the source data set should be mapped to neighbouring points in the target,

the non-linear deformation is constrained to be continuous throughout the domain of the brain.

218



•

•

However, there exist neighbouring points in unconnected structures (such as on opposite sides of

a sulcus, or on either side of the longitudinal fissure) that do not need to be mapped to neighbour­

ing points in the targe!. Therefore, it may be desirable to allow discontinuities in the transforma­

tion at internaI brain surfaces, e.g surfaces that separate the cerebellum from the occipital lobe

or that separate the temporal lobe from the inferior frontal lobe. While this may complicate the

recovery of the global transformation, defining piece-wise continuous regions where the current

algorithm can be applied is certainly possible. However, the main problem will then reside in the

inversion of the dis-continuous spatial deformation transformation required for segmentation.

Merging with other non·linear matching procedures

In the Positron Imaging Laboratory at the MNI there are two other on-going projects that address

non-linear matching and segmentation of brain structures. The first addresses the problem of

cortical mantle extraction and segmentation based on the simultaneous deformation of multiple

surfaces from a model combined with curvature matching (MacDonald et al., 1994). The second

project deals with the matching of previously extracted sulci from a given data volume with a

set of model sulci, using a force-based deformation technique without explicit pre-deterrnined

correspondence (Luo and Evans, 1994). The procedure is iterative, matching major sulci first

and then adding in smaller sulci as the fit between data and model improves. Since the scope of

the thesis was limited to brain structures beneath the cortex, these two algorithms complement

the one developed here, and ultimately the three should be merged together.

In particular, the extracted surfaces could be used to delimit piece-wise continuous regions

of the brain where the non-linear registration algorithm could be applied. The sulcal matching

algorithm can also be applied to vesser structures, and with the fit of the cortical sulci, provide

additional constraints for registration.
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10.4.3 Enhancement of the segmentation model

There are at least four ways to enhance the VBSM: 1) apply the non-linear registration procedure

to the 305 brain data base to enhance MRI atlas; 2) include the 3-D spatial variability field in the

model, for use as a local constraint in the non-linear registration procedure; 3) add other modal­

ities such as PET, CT or PD-weighted MRI to the VBSM and 4) redefinition of the present VOl

labelling with probabilistic representation of ail structures. These enhancements are described

below.

Non-linear registration to enhance MRI-atlas

The initial stereotaxie model was created by manually mapping 305 MRI data sets in to the

stereotaxie coordinate space using a linear transformation. As described in section 3.4, the au­

tomatic stereotaxie mapping procedure was applied to each of these volumes in order to rebuild

the average MRI model, removing the initial subjectivity involved in the identification the points

used to define the transformation. Il was found that sorne features in the average modcl were

significantly sharper, allowing the differentiation of structures not previously visible, e.g. sepa­

ration of white matter tracts of the optic radiations and in grey-matter nuclei of the brain-stem.

Using the same boot-strap paradigm, the non-linear stereotaxie mapping procedure should be

applied to all brains in the data base, so as to bring into focus details of the anatomy now blurred

by morphometric variability. The method could conceivably be repeated a number of times,

with the average getting sharper at each iteration until the residual difference between iterations

reaches sorne stopping criteria. Note that the creation of the atlas in this fashion remains order­

independent and that the result would be a higher-resolution MRI-atlas to be used as the basis

of a new refined VBSM.

Local stiffness parameters

A second enhancement to the model should be the incorporation of average local spatial vari­

ability measures in the form of elasticity or stiffness parameters to address new problems posed
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by the use of the non-linear warping procedure. Once an average anatomical variability map is

created with enough subjects, the tolerance for local deformation, which is reflected in the local

spatial variability, could be stored in order to tailor the model on a voxel-by-voxel basis. These

parameters should be used as constraints, limiting the amount of deformation permitted at any

voxellocation during the titting process.

Other modalities

The linear registration technique can be readily extended to other modalities. Other features can

be added to the VBSM-I!F and stored in the VBSM using the same methodology as that de­

scribed for MRl. For example, the average intensity and gradient values derived from positron

emitted tomography (PET) cerebral blood f10w (CBF) data can be stored in the model and used

to register against other PET CBF studies. This achieves two goals. The tirst permits cross­

registration of PET volume data sets. The second provides a procedure to automatically register

data sets from different modalities. Since MRI and PET volumes can be independently regis­

tered to the same target space, the transformation between the two volumes is known implicitly.

A 7.43-brain average stereotaxie PET volume has been created within the Positron Imaging Lab­

oratory within the MNl. This data set will be incorporated into the VBSM.

Probabilistic VBSM·VOI

The last improvement involves the VBSM-VOL The present atlas is based on contours derived

from a single individual and is not, in its present form, representative of normal anatomical vari­

ability. The composite mean MRI-intensity atlas is useful as a qualitative index ofIocal anatom­

ical variability, but it is insufticient as a quantitative tool. The methodology presented in chapter

9 can be used to replace ail structures of the VBSM-VOl with their probabilistic representation.
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10.5 Summary

In conclusion, in response to the primary goal restated at the beginning of this chapter, a fully

automatic model-based segmentation procedure for the identification and delineation of neuro­

anatomical structures has been developed and validated on both simulated and real Jata. The

reversai of the tradition segmentation procedure has resulted in an atlas-independent segmen­

tation scheme that can allow multiple allases to be used and take advantage of improvement in

structure definition without recalculating the spatial transformation required to achieve the seg­

mentation.

In this thesis, a conceptual framework has been constructed, based on the concept of stereo­

taxic space, that has permitted the creation of an automatic method for comparison of structural

anatomy within and between subjects. The tools developed here have been brought to the proof

of principle stage for the automated analysis of anatomical variability. Application of these pro­

cedures results in objective, reproducible delineation of gross neuro-anatomical structures and

tbeir use will extend our knowledge of quantitative anatomical variability.
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