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Abstract 

Network-based video-on-demand (VoD) deployments are today very limited in scope. The 

largest deployed libraries are just 0.7% of the global movie and TV-series catalog and peak 

utilization of YoD targets are 10-15% of broadcast TV peak viewing numbers. Recognizing 

that libraries and usage may grow, service providers are intensely interested in large-scaIe 

content delivery networks that provide content propagation, storage, streaming, and trans­

port. We focus on one of the challenges of YoD network design: resource planning. We 

clescribe a rnethocl and design tool for the planning of large-scale YoD systems and address 

the resourcc allocation problem of determining the number and moclel of YoD servers to 

install in a topology such that the deployment cost is minimized. Our general design tool 

provides important feedback and insights on YoD network design; we observed that the 

available equipment and the topology had a significant impact on the resulting design. 
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Abrégé 

Le: contemn disponihl(~ de:s servicns de: vidéo ft la de:mandn (YoD) en place: re:pr(;snnte: 0.7% 

de la totalité des films et séries télévisées et le nombre d'utilisateurs aux heures de pointe 

représente ]()-lfJ% de hmelitoire: cl 'émissions télévisées. Prenant conscie:ncn de l'e:xpansion 

imminente de l'utilisation et de la bibliothèque, les fournisseurs de service s'intéressent 

aux réseaux de diffusion de rontenu (CDN) de grande échelle qui offre h propagation, le 

stockage, la lecture en transit et le transport du contenu. Nous développons une méthode 

et lU! outil pour la planification de: systèmes de YoD de grande: éehdlc et s'attaqnons ml 

problème d'attribution de ressources suivant: déterminer le nombre et le modèle de serveurs 

YoD ft installer à chaque localisation pour minimiser le cout de déploiement. Nos résultatiS 

de simulation démolltrent que le type d'équipement disponible ainsi que la topologie dll 

réi:it:all Oiit Ulle grande influence Sllr le desigll final. 
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Chapter 1 

Introduction 

Network-based video-on-demand (VoD) deployments are today very limited in scope. The 

largest deployed libraries are just 0.7% (5,000 hours) of the global movie and TV-series cat­

alog and peak utilization of YoD targets are 10-15% of broadcast TV peak viewing numbers. 

Recognizing that libraries and usage may grow, service providers are intensely interested in 

large-scale content delivery networks that provide content propagation, storage, streaming, 

and transport. Content delivery networks (CDNs) are designed to distribute content to a 

set of clients, as streams or as files [1-6]. We focus primarily on the case of a streaming 

CDN: ill that the client is assumed to have buffering capability but not c:aching capability. 

Nonethcless, the mathernatics and the rnodels we adopt are readily extellded to the c1ient­

cached scenario. Through approaches such as replication of content at multiple servers 

(known as replicas, proxies or caches), CDNs attempt to minimize latency at the end-user 

while reducing bandwidth consumption and load at the origin servel'. The CDN delivery 

of streaming media causes new problems that did not apply to the distribution of HTTP 

objects: streaming objects are much larger than web objects and hence create mu ch more 

trafiic [7]. Furtherrnare, it is no longer possible to assume infinite starage size at the repliea 

locations, which makes calculations more complicated [1]. The design of a YoD network 

consists of two tasks: (i) making resource planning decisions and (ii) developing in-service 

intelligent request routing, resource control policies, and performance monitoring. We focus 

on the first challenge, i.e., the allocation of resources during network planning, generally 

performed when planning greenfield and incremental deployments. Of particular inter est 

is YoD delivery across metropolitan area networks (MANs). 
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1.1 Motivation 

ln this thesis, we describe a method and design tool for the planning of large-seale YoD 

8yRtems. Bcfore deilcribillg the rnethod, il, is uileful 1,0 undcrlinc tlw scale of the problclrI. 

Toda.y's libraries of COIlSl1l1lCr-aCCcssible media. vary widely in size. We compare tlte total 

stock of media content (listcd in Table Li) against the lihrary sizcs as <1.dvertis(~d by serviœ 

providers. Mnsir serviœs (c.~., Apple iTnTIcs) offcr ClTOllnd 10% of cxist.illg ml1sir. Similarly, 

services of movies on DVD by lIlail (e.g., NetFlix) offer around 10% of movics and TV 

series. In contrast, the largest cxisting network YoD systems (e.g., Comcast) offor only 

0.7% (several thousand) of the movies and TV series genres, and only 0.002% of the back 

catalog if bl'oadcast TY is considered to be within the scope of VoD libraries. 

Table 1.1 Amount of unique stock of media content produced annual1y, and 
the accumulated unique stock. [8]. 

Type of content Unique stock pel' year Accumulated unique stock 
Movies except TV rnovies 7350 titles (19TB) 250,000 titles(720 TB) 
TV movies & series 3010 series titles (38TB) 62,000 series titles (950TB) 
Ail forms of TV 31M hrs (70,000TB) »100M hrs (»200,000TB) 
rf broadcast radio 70M hrs (3,500TB) »200M hrs (»10,000TB) 
Professional music recording 90,000 albums (59TB) 1,5M albums (975TB) 

The amount of video content produced annuaUy (over 10,000 movie and series titles) and 

size of the libraries of other media providers indicate that the amount of content available 

to video-on-demand users will probably grow in the future. Even if this growth is only il 

few percent, considering the accumulated arnount of unique video titles, we expect that 

an expansion of the library would make video-on-dernand a real alternative to services likc 

DVD by mail and attract more users. Large-scale YoD systems with high storage and high 

bandwidth requircmcnts l'cquire a substantial amount of resources to store, distribute ane! 

transport all the content and deliver it to aU the clients. At a time where many companies 

are considering deploying such large-scale systems, there is a real need for a design tool 

used during the network planning. 

Resources allocation is an important and complicated task that consists of deterrnining 

the location and number of resources to deploy such that cost is minimized whilst certain 

conditions are respected. ThiiS operation is important because it is often very difficult or 

impossible to adjust the chosen solution based on observations made after the deployment. 



l Introduction 3 

The main challenge is to build accurate models for all the factors involved: the available 

infrastructure, the network topology, the peak/average usage of the system, the popularity 

of each title, bandwidth and st orage requirements, etc. 

1.2 Thesis Problem Statement 

In the case of a video-on-demand network deployment, the resources to consider are the 

equipment required at the origin and proxy video servers and the equipment required for 

the actual transport between each location (switching). We assume an existing topology 

with a high bandwidth capacity and focus on the equipment required at each location to 

store and stream the content. A video servel' consists of storage devices to cache the desired 

content and streaming deviccs to deliver the videos to the users. For this thesis, we definc 

and tackle the VoD eq'uipme.nt allocation pmblem that consists of deterrnining the nurnber 

of streaming and storage devices at each location in the topology such that the deployrnent 

cost i8 minimizcd. 

1.3 Thesis Contribution and Organization 

In Chapter 2, we review the different aspects related to the delivery of multimedia objects: 

architecture and topology, caching scheme and file popularity model, delivery mechanism 

and traffic modeling. AIso, we present a summary of the solutions proposed in the litera­

ture: problem statements, parameters and constraints considered for the cost function and 

heuristics proposed to solve the replica placement problern. 

In Chapter 3, wc address a simplified VoD equipment allocation pTOblem, which focuses 

on identifying the optimetl number of YoD servers at a set of locations with fixed and pre­

determined streaming and storage capacity pel' YoD servel', su ch that the deployment co st 

of the YoD system is rninimized. Our main contributions to solving this problem are the 

following. We design a parametric function for estimating the worst-case hit ratio for 

givcn system paranwters (cache sizc, liLrary size and file arrivaI rate). VVe clct.crminc an 

appropriate functional form and train parameters using discrete-time simulations based 

on au cxtension of the filc aeccss modcl proposcd in [9]. Sueh a parmnctric funetioll i8 

essential for the inte.mctive design tool we develop (see Section 3.2.1). We propose a cost 

function based on the hit ratio, the distributed demand and the number of YoD servers 
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at cach location. This differs from previous work that only takes into ace ou nt transport 

and stora.ge eosts without explic:itly considering the cost and type of equipmellt illsta.llce! 

(see Section 3.2.2). Wc develop the Integer Relaxation Heuristic to generate a solution 

to t.he problem. TIte heuristic relaxes the integer constraint on the number of devices in 

order to identify an optimal non-integer solution, and then finds a near-optimal integer 

solution by searehing in the ncighborhood of the non-integer solution (see Section 3.2.3). 

We develop an 'interactive design tool that implements our cost function, hit. ratio function 

and beuristic. This tool allows a user to modify system parameters easily and generate new 

design solutions quickly. 

In Chapter 4, we extend the work of Chapter 3 by addressing the problem of doterrnin­

ing not only the number, but also the model of the VoD servers at each potential replica. 

location. Ill::ltead of fixillg tllc ::ltl'eaming and storage capacity pel' VuD servel' aL each 

site, we require t.he pre-specification of a set of available VoD servel's and select the model 

at cach location that rninirnizes total network cost. This new problem being of greater 

complcxity, we adapt the Integer Relaxation Heuristic and present another algorithrn: the 

lrnprovcd Grœdy Scan:h. Finally, wc bridJy analy:w the feasibility and implications of a 

VoD deployrnent. over an agile all-phot.onic network (AAPN) [10] 

In Chapter 5, we surnmarize our work and discuss in more detail the results presentee! 

in the previous chapters and conclude with proposed future work. 

1.4 Published Work 

Sorne pa.rt.s of this thesis have been published or have been accepted for publica.tion. Pa.rts 

of the literature review presented in Chapter 2 has been published as a t.echnical report 

and a surnrnarize version of Chapter 3 on our solution to the VoD eqv.iprnent allocation 

pT'Oblern has been accepted for presentation at the Symposium on Net.work Cornputing and 

Applications (IEEE NCA) . 

• F. Thouin and M.J. Coates, A review on content delivery net,work, Teclmical report, 

McGill University, .Mont.real, Canada. June 2005 . 

• F. Thouin, M.J. Coates and D. Goodwill, Video-on-demand Equipment Allocation, 

Proc. IEEE Network Computing and Applications (IEEE NCA), Bost.on, MA. July 

2006. 
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Chapter 2 

Literature R,eview 

Services with low system cost, like near video-on-demand (n VoD) , have been available for 

many years in hotcls and oHered by cable providers as pay-per-view tclevision. In uVoD, al, 

fixed scheduled times, a video is broadcast on a single channel shared by aIl the lisers who 

wish to sec it. This solution is simple and cost-effective, but it is not flexible and do es not 

allow the user to illteract with the system [11,12]. True or Interactive video-on-demand 

(i VoD) dedica,tes a single channel to each user and allows the video to be started at ally 

Lime witl! VCR-like controls (pause, rewind, fast-forward, etc.) [13]. While beiug very 

user-friendly, this type of service has high bandwidth requirements and high deployment 

cost. 

There is currently on-going research into optical core networks (e.g. agile all-photonic 

networks (AAPN) [10]) that should be able to support applications, like iVoD, that requin; 

substantiaJ bandwidth. We address the challenge of rninirnizing the deployment cost of 

a nctwork oifming iVoD. As a first step, it is valuable to review the previously proposed 

solutions for the deli very of multimedia objects. This chapter serves that purpose and 

is organi:œd as follows. Section 2.1 presents architectures and topologies that have been 

consideree! for content distribution (delivery) networks (CDNs) and YoD deployrnents. Sec­

tion 2.2 surveys the diffcrent caching schernes and the strategies to dctcrrninc file popular­

ity. Section 2.3 covers the techniques used for content delivery, traffic modeling and rouhng 

users' requests. Section 2.4 describes optimization problems related to the deployrnent of 

content delivery networks such as replica location, content allocation, StOl' age capacity al­

location and resource allocation. We summarize the factors to consider, cost functions and 
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heuristies proposed to solve these problems. 

2.1 Architecture and Topology 

Metro network 

Core network 

• main node 

o local node 

household 

(a) The transport network is divided into a core 
netwOl'k and local metro networks. (Reproduced 
l'rom [14]) 

(b) Generic VoD network architecture. (Repro­
duced [rom [15]) 

Fig. 2.1 (a) ln this architecture, video servers are installcd in the metro 
network to reduce the 10ad on the core network. (b) Video 1ibrary (VL) and 
video servcl'S (VS) de1iver the videos to the user's set-top box (STB). The front­
end server (FES) is responsib1e for making and maintaining the connection 
betwC8n thc user's set-top box and the video server. The front-end servers can 
a1so have a smaller video buffer (VB) to serve a fraction of the requests. 

In this section, we present architectures and topologies that have been considered for 

YoD networks. In general, the available network infrastructure is divided into ft core net­

work and localjmetro networks such as that depicted in Fig. 2.1(a) [14-21]. The COI'() 

lletwork is typically where substantial bandwidth is both available and needed duc to 

aggregated transit trame between the origin and replicas or clients. The locaJjmetro 

network is responsible for the delivery to the users and is usually organized in a tree­

hierarchy [15,17, 2()--22], but \"lauters et al. have proposed to interconnect nodes as ft 

ring [14]. 

The deployrnen1 of a YoD nctwork consists of placing and connectillg a few elements 

ShOWIl in Fig. 2.1(b). The set-top box (STB) installed at the users' household is used to 

uncornpress and display streams on a standard television. The video library (VL) ane! 
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servers (VS) are responsible for storing and streaming the video objects. The front-enel 

servers (FES) are responsible for the establishment and management of the connections 

between the set-top box and the video server. With the presence of a video bnffcr, a front­

end server effectively becomcs a small video server. Referring to Fig. 2.1 (n), the main nodes 

represent the video ser'vers and the local nodes front-end ser·vers. 

The location and presence of these clements in the network varies between each design. 

In fi, centralized architecture, the origin servel' is responsible for serving ail the clients 

(Fig. 2.2(a)). Although it is very simple, this approach has serious weaknesses: a single 

point of failure and high load on both the origin server and the backbone network. Due 

to these shortcomings, authors have focused on distributed approaches with proxy servers 

im;talleel at strategic location in the network (closer to the clients). The proxy servers cache 

content to reduce the load on the origin, as shown in Fig. 2.2(b) [14,15,19,21,22]. 

Instead of deploying proxy servers in the client domain, content distribution networks 

(CD N s) use proxy servers (called replicas or surrogates) on the edge of the core of the 

network, as close to the user-end as possible (Fig. 2.2(c)). The purpose of a CDN il' 

to transmit to llsers the content thcy requcstcd in the rnost effi.cient rnanncr, that is, 

meeting the quality of service (QoS) requirements at the lowest cost possible. Content 

distribution networks, sueh as Akamai, achieve this by re-routing clients' requests to their 

replica servers [23]. Placing copies of objects al, edge proxy servers closer 1,0 the user 

minirnizes the delay at the user-end while reducing the bandwidth requirements al, the origin 

server by serving a fraction of the requests at the proxies [24]. Furthermore, Barnett shows 

that distributed approaches can solve the main problems associated with centralized design 

without increasing cost [15]. However, Hefeeda et al. argue that proxy-based approaches 

shift the bottleneck from the origin to the proxy servers without reducing the cost and 

that CDNs are not cost-effective solutions for streaming media [16]. As an alternative, 

they propose a hybrid architecture based on the peer-to-peer (P2P) paradigm 1,0 distribute 

the files to the users (Fig. 2.2(d)). Ditze et al. have also considered collaborative transfers 

between peers to improve the scalability of media delivery networks [20]. In P2P-based 

architectures, network coding eases the scheduling and makes distribution more efficient [25, 

26]. Finally, other solutions include placing proxy servers with different functionality both 

inside and outside the core [17] and assigning one server for each movie [18]. 
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(a) Centl'alized architecture 

Client 
~ 

(c) CDN approach 

(b) Proxy-based architecture 

(d) I-lybrid architectme 

Fig. 2.2 Architectures used for media delivery. (a) In the centralÏl:ed archi­
tecture, aIl the l'equcsts from the clients are handled at the origin servel'. (b) 
Proxy servers located close to the user-end reduce the load on the origin server 
by caching content to serve a fraction of the clients' requests. (c) Content de­
livery network (CDN) is a third-party solution that deploys proxy servers in 
the core of the network (close to the edge) that serve a fraction of the clients' 
requests. (d) In a peer-to-peer (P2P) based approach, the peers share their 
resourccs to distribute the media. Powerful peers help in routing the requests 
and searching for content. (Reproduced from [16]) 

2.2 Content Allocation 

8 

Deciding upon the location of the proxy servers is not the only task, because the determi­

nation of the optimal content to store at each of these locations is non-trivial. The choice 
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of content has an irnpad on the total cast (arnount of storage requil'ed) and on the user 

perceivcd quality. If the selection is poorly made, users are forccd to retrieve the data from 

the origill servel' which incrcascs latcncy and the load on the origin servel'. 

A content allocation strategy is servel' replication, which consists of placing copies of the 

origin server fit strategie places in the network. Servel' replicatioll partitions the neLwork, 

retmlting in lower ba,ndwidth requircments fit the expense of SeI'ver cast.. Whell usillg sucb 

EL stra,Legy, the placcment of the servers that minimizes total cost is above the switches 

that connect the users ta the network; between 70% and 90% of the path length betwccll 

the origin servel' and the user-end [27]. However, according ta Lu, content distribution 

ndworks using cdgc dclivcry (files arc tmnsrnittcd to us ers via servel'S placcd on the edgc 

of the Internet) cannat be scaled ta deliver high-quality broadband video because therc 

arc no sufIicicllt and aH'ordablc bandwidth and QoS aIl the last mile. [28]. He proposes 

the illclusion of "leaf scrvers" in local-area networks (LANs); these serve as second-tier 

surrogate and support a relatively small number of clients. The motivation behind this 

appronch is that heavy traffic do es not go beyond the edge servers of the core network and 

LANs have abundant and stable bandwidth, are less dependent on a sophisticated direction 

system and have a higher degree of personalization. 

It is not al ways possible to have complete replicas of the origin servel' because the large 

size of multimedia abjects leads to a high storage cost. An alternative is to store only 

specifie abjects from the origin at the surrogate sel'vers; upstream bandwidth is reduœd 

at the cost of increasing the storage for caching the rnost popular programs. Using the 

cost Hlodcl he developed, Schaffa f01md that overall minimum eost is achievcd whcm 15% 

of the prograrns are cached at 80% of the path length between origin and client [27], The 

popularity of an object changes through time and a hot (popular) file might bccome cold 

(the IlLllnber of requests l'aIls below a given threshold) after sorne time. Ta maintain request 

coverage stable for long periods, it is important to replace objects tbat become cold with 

hot abjects, a procedure called 'incTemental clusteTing in [29], 

Scbaffa suggests 1.hat program caching be performed at more than one level in the 

network hierarchy [27], The idea is to use a main cache ta reduce overall system cast and a 

secondary cache at a higher level for fine-tuning the performance. When the main cache is 

close ta the root, the cost of the system is mainly driven by the bandwidth component which 

makes the secondary cache almost useless. As the main cache is placed closer ta the user, 

stora.ge starts beiug the dominant factor and splitting the cache becomes advantageous, If 



2 Literature Review 10 

the client request rate is high and/or proxy storage is limited, storing file prefixes rather 

than full files significantly reduces delivery cost [30,31]. It prevents clients from expcriencing 

del<tys and jitter and reduces traffic on the origin-proxy path. Despite these advantages, 

Almeida et al argue that storage al, proxies is only effective if the origill is not. multicast­

enabled, the file request. is low or the cost of a proxy is a small fraction of the origin 

servel' [32]. 

An efficient way to improve the performance is by sharing the content. of the different 

surrogate servers by grouping them into clusters [19]. Clustering avoids the duplication of 

content at servers that are close to each other. In a hierarchical content routing scheme [33], 

the request are served by the local servel' (local hit), by another servel' in the same cluster 

(intra-cluster), by a servel' outside the cluster (inter-cluster), or by the original content 

servel'. Another approach is to cluster data using correlation distance (spatial, temporal, 

session clustering or popularity-based) [29]. 

Finally, it is worth Illcntioning that therc are two diffcrent approachcs ta aJlocatc con­

tent [29]. First, in the client-initiated approach, or pull-caching, the replica retrieves the 

copy of an object in the case of a cache miss. On the other hand, in a server-initiatecl 

approach, or push-caching, content is distributed ta replicas befoI'(~ any requests for this 

data have bœn made [31]. 1f we anticipate that a specifie object will be very poplllar (c.g. 

blockbuster movie release), it is advantageous to distribute the abject prio]' to any requests 

in arder to avoid cache misses and longer delays. 

2.2.1 Choice of Content and File Popularity 

\iVhen allocating content with a program caching scheme, only the most popular files arc 

stored, with the airn of minimizing the star age and bandwidth needs. By using an appro­

priate popularity distribution, we can predict the hit ratio at a replie a site given the set of 

files it is hosting. The hit ratio f()presents the probability that a US8r's reqllest is servcd on 

a givcn path (or a given replie a) [1]. 

Previous studies exploring the distribution of multimedia files in CDNs have used Zipf's 

Law to characterize the papularity of the different files [14, 27, 30, 32. 33]. In Zipf-likc 

distributions, access frequency for file of rank i is equal ta Clin, where C is a normalization 

constant and Œ > ° is the distribution parameter [35]. 8uch distributions generate a linear 

curve in a log-log plot of access frequency versus rank. In [29], the a.nalysis of Chen 
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indicates that 80% of an requests are for 10% of an Web objects. Based on a video store 

rentaI statistics ([36]), researchers also adopt the Zipf approach [37-39] to model popularity 

in video-on-demand applications. Although this data seems to fit a Zipf curve (Fig. 2.3( a)) 

on a linear scale, Fig. 2.3(b) shows that the part of the curve for the most popular files is 

f-lattened and does not fit the Zipf linear curve on a log-log graph. 

i 1~::1 t-_"'"""'-=:'=~.:. --~] 
f ,:~.~~~ ......... ~ ..... . 

50 100 150 200 250 10 100 
movie index movie index 

(a) lincal' scale (b) log-log scale 

Pig. 2.3 (a) The popularity distribution from a 1992 video rentaI data set 
used to justify Zipf's law in many video-on-demand proposaIs, along with a 
Zipf eurve fit with 0: = 0.9, and (b) the same data set and eurve fit plotted on 
a log-log seale. Contrary to the assumption of many papers, video rentaI data 
does not appear to follow Zipf's law. (Reproduced from [9]) 
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Gummadi et al. explain this behaviour by analyzing the characteristics of video ob­

ject access [9]. VoD system users rarely access the same file twicc because the files arc 

not monitien (fetch-at-most-onœ). However, new files are often adnen to the system. ln 

contras1" Web objects are aceessed more than once because they are updated rcgularly 

(fetch-repeatedly). Since the popularity of a movie diminishes in tirne, wh en llew titles are 

added to the system, they beeorne the most popular titles. Hence, popularity distributions 

need to be adjustcd over t.ime. To model t.he flattened part of the eurvc, Almeida et al. 

usee! a mixture of two Zipf distributions, after not.icing the log-log graph is divided in two 

linear eurves [40]. Although t.he mixture model fit.s t.he dat.a reasormbly well, there is no 

explanat.ion of why t.he mixture is a realist.ic model. Gummadi et al. propose a model 

that is driven by Zipf's Law but takes into account. the "fetch-at-most-once" and "new 

arrivaIs" factors [9]. V/hen a client makes a second request, the previously fetched files 

are removed from t.he distribut.ion and access probabilities are recalculated t.o have a tot.al 

probability of 1. When an object is added t.o the syst.em, its popularity rank is determinecl 

from a Zipf distribution, the rank of existing files which are less popular is decreased and 



2 Literature Review 12 

file probabilities are recalculated ta normalize the distribution ta 1. 

Gridwodz et al. propose a model for request generation based on the long-term life cycle 

of rnovies in the VoD context and varying user population sizes. They consider not only 

day-ta-clay changes when estimating the popularity of a file, but also the variations of the 

users' behaviour throughout the day: children's interests dorninate during the afternoon 

whereas adults' inte1'ests dominate late1' in the day [22]. 

2.3 Content Delivery 

Content delivery consists of transmitting objects from the surrogate servers (or origin 

servers) ta the clients. A papular technique ta transmit large multimedia files over the 

Internet is called streaming. Tt allows clients to start displaying the da.ta before the en­

tire file has been trallsmitted which is useful if the user does not have fast access or the 

fih~ tn send is VfTy large. YoD is llnic:ast in natmc (thc:re is a dc:dic:atc:d stream t,n c:ac:h 

user), which imposes significant bandwidth pressure on the network, but provides inter­

a.ctive VCR functions to the user. In broadcast schemes, the video is transmitted with 

a pre-defined schedule on a dedicated channel that supports any number of clients with 

a constant amount of bandwidth. As opposed to unicast connections, the client has no 

control on the stream (when it starts or stops) and bandwidth is wasted if the popularity 

of the video is low. 

Another scheme is multicasting, which is a one-to-many connection where multiple 

clients receive the same stream from a server by monitoring (listening) to a specifie multicast 

IP address [41]. Lichtenberg argues that multicasting can easily be implemented in existillg 

client and servel' structures and provides a better Quality-of-Servic:e (QoS) while saving é\, 

substantial amount of bandwidth [42]. An example of multicasting is batching, which 

collects requests that arrive within a given time interval and then multicasts the stream 

to the clients [43,44]. In patchillg (stream tapping), if there is no stream for a video, 

then one is initiated when a client requests it [45-47]. If it already exists, then the client 

sirnultaneously listens to the rnulticast stream of the video and retricves, from ct proxy 

servel', the part of the video that was streamed before he joined the broadcast. In [13], 

Lee proposes ct trade-oH betwccn n VoD and iVoD caUed unified vidco-on-demand (u VoD). 

This approach first trics to serve a client by searching for a channel that is multicast.ing the 

requestccl rnovie, if none is available it. assigns the first fl'ce unicast channel. Although this 
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scheme shows performance close to that of iVoD, it requires additional buft'cring capabilities 

at the user-end. 

The problem with aforementiorwd techniques is that they all require the path between 

the server and the client to be multicast-enabled (all the routers OIl the path must be able 

to interpret Class D IP addresses), but multicast capability is far from being fully deployed 

on the Internet due to its lack of support by Internet Service Providers (ISPs) [30,48]. 

One solution when the end-to-end network provides only unicast service is to use proxy­

assisted transmission schemes (one-to-one connection between the ser'ver and the client). 

By using patching in the unicast context (which is possible because proxies can forward 

one copy of the data to multiple clients), Wang et al. derived a transmission scheme that 

takes advantage of prefix caching at proxy servers [30]. The proxy transmits the prefix 

to the clients (if present locally) and schedules the transmission of the sufIix from the 

origin servel'. If a request arrives within a given interval after the transmission of the suffix 

starts, the proxy can schedule a patch from the origin for the rnissing part of the suffix. 

Application-layer Multicast provides another alternative to IP multicast [48-50]. In thi8 

method, end hosts need to maintain a data forwarding path for nearby hosts. In [48], 

Milic ct al. suggest an approach called Multicast Middlewa're that uses a virtual network 

d<:viee for capturing th<: traffie and forwarding it to a user application. HSl1 d al. propos<: 

a mechanism called Active Video Ddivery (AVD) that takes advantage of application-layer 

rnulticast [51]. AltllOugh AVD cloes not require all the routers on the transmission patb 

to be multicast-enabled, it achieves the same efficiency as IP Multicast. Another way to 

transmit content without requiring multicast support on the delivery path is to use peer 

resources [16,20,25,26]. 

2.3.1 'l'raffle Models 

We are interested in modeling traffie generated by high quality video (determining the 

amount of bandwidth required for a stream) for applications like YoD. Without using any 

eompreRsion Rehemes, it would he diffieult to transmit DVD-lilw quality videos over the 

Internet because of their large bandwidth requirements. For that reason, compressioll 

methods like MPEG, which can achieve high compression ratio while rnaintaining good 

quality, are used and MPEG-encoded sources are expected to generate a large part of the 

internet traffic in the future. 
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Fig. 2.4 YoD usage projections by time of day and day of wcck. (Rcproduced 
from [53]) 

MPgG videos are encoded using a variable bit rate (VBR) making tra,ffic modeling a 

non-trivial task. The VBR is caused by the fact that compression is performed byencodillg 

each frame using one of three difI'erent schemes: intra(I), predicted(P) and bidirectiona.l(B). 

I-frames are encoded with a low compression ratio, but are independent and act as reference 

points. P-frames provide a higher compression by using motion-compensatcd prediction 

based on the previous l or P frame. Finally, B-frames achieve the highest level of compres­

sion by using both the previous and next frame in the sequence for its prediction. These 

difI'erent levels of compression produce frames with different sizes and hence a variable bit 

rate. MPEG movies use a group-of-picture (GOP) structure based on a (N,M) cyclic for­

mat; each sequence contains N frames (6, 8, 10, etc.) with the first one being an T-framc 

and every Mth one a P-frame [52]. A full-Iength movie is usually encoded with one GOP 

structme oven though the MPEG standard allows the use of mally different structures. 

Tbe variable bit. ratc (YI3l1) and high burstincss of thesc movic~ rlw,kc it difIicult to 

predict the requircd resourees. By reserving resources based on average rates, long delay 

are experienced in case of bursts or when the source is transmitting at peak rates. Fig. 2.4 

depicts projections of the usage (in terms of concurrent streams and bandwidth peI' sub­

scribcr) of YoD during the ncxt five years. Although thesc cxpcctations arc not basco on 

actual data, the presence of peak hours, during which bandwidth requirements are substan­

tially greater than at other times, is highly likely. If the system is designed to support the 

peak rates, it will be under-utilized outside the high-usage periods [53]. On the other hand, 

if it is Ilot, the customers will experience poor service during the busy hours. One way to 
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eliminate the peaks and maintain a constant rate is to request contellt ahead of time. How­

ever, this procedure requires us ers to have a device that can store the content at home. A 

solution to this problern is using a stochastic pro cess to model the dynamics of VBR video 

traffie. Mod(~ls of this mÜure Lake advantage of the statistical properUes of the source Lo 

Hchiev(~ bigher ntili7.:ation of the bandwidth. However, Wrege et al. argue that using theso 

moclpls has several drawbacks, rnaillly arisiug from difficulty of implementatiol1 and COIrl­

plexity [M]. ThmeJ'ore, as au altemative, they suggest USillg detel'lllinistic lIloclels, whicb 

provid(~ an a.bsoluto upper buund (WOnît case) on the source's arrivaI traffî.e. Empirical 

evidcllCü illdicaLes that peak-rate allocation, which leads to low-utili;;ation of the network 

l'csourees for Imrsty traffic, is not rcquil'cd for dctcrrnillistic rnodcls [55-58]. These ruodds 

arc pararnctcrized to establish an upper-bound on the arrivaJ rate frolll the source. As arl 

cxample, the tokell-bucket approach uses two parameters: average rate alld bucket depth. 

As this solution is not suit able for variable bit rate sources, Lee et al. present an improvccl 

version of the leaky-bucket scheme by updating the parameter pail' after every group-of­

picture [59]. They take advantage of the fact that I-frarnes and P-frames can tolerate Olle 

extra frame deJay compared to B-frames to reduce the bandwidth requirements [60]. Theil' 

simulations show bctter accuracy and higher utilization than previous lcaky-bucket rnodels 

or peak rate models. 

The dctcrrninistic rnodcls are called data-rate rnodels (D RMs) becallse they ollly c:on­

sider the rate at which data is arriving. While these rnodels are good for predicting average 

packet-loss probability, they fail to identify such details as percentage of frames lost 01' 

incornpletc [52]. Altcmatively, there are frame-size rnodels (FSMs) which generate the sille 

of inclividual MPEG frames tha1; can afterwards be useel to deduce the data-rate. Sarkal 

et al. show, through modcl simulation, that even a sma,ll loss rate can decrea.se the video 

quality substantially bccause loss of an I-frame (or part of it) affects an cntirc GOP [52]. 

They propose two FSMs that generate frame sizes for full-length VER videos prcsel'ving 

both GOP periodicity and size-based video-segment transitions, which previously proposed 

FSMs failed to do. These transitions are modeJed with a Markov renewal process, an ap­

proach also adopted in [61,62]. Zhang et al. add that it is important to consider the 

entire auto-correlation structure (many models deal with l, Band P frames sub-sequences 

separateJy) [63]. Finally, Janakiraman et al. propose a proactive multicast scheme and 

demollstrated that it was able to deliver VBR content over constant-rate channels with 

minimal performance loss or complexity overhead [64]. 
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Another consideration with video on demand (VoD) when predictiIlg the required band­

width is that several videos can be transmitted simultaneously on the same link. In tha1, 

case, effective bandwidth pel' video (measure of the amount of bRnclwidth that a giv(~n 

SOUlce will use over a given tirne period) is in fact rnuch lower because tbe average frarne­

size of a VBR video is usually diffcrcnt in different segments; this is known as multiplexing 

gain. Zhou et al. have developed a Markov-modulated gamma (MMG)-based model to 

predict the value of this multiplexing gain [62]. 

2.3.2 Request Routing 

Request routing is a function perforrned by a content distribution network which consists 

of directing the client requests to the best surrogate servel'. The objective of a request 

routing aJgorithm is to exclude the surrogate servers that provicle low performance while 

avoiding overloading the others. 

For a replicated server system, one of the sirnplest approaches is Round-Robin (RR) [65]. 
This algorithm selects which surrogate serves a specific request in a cyclic mode without 

considering the state of the network. Tt H18anS that a RR scheme can assign a surrogate that 

is ovcrloadcd or out of service tu handle a specific request. On the other hand, there are 

many schemes which use various metrics to make a better decision than the 11.11. algorithm. 

For example, the 11.esponse Time (RT) algorithm selects the surrogate based on the responsc 

tirne the user previously experienced with a particular servel' [66]. Although this scheme 

distributes requests among the different surrogates more efficiently than the RR scheme 

and provides us ers with low dclay, it does not necessarily prevent overloading. On the other 

hand, the Load scheme assigns a probability to each surrogate in inverse proportiOll to the 

client-replica path's current utilization [67]. So, the Load algorithm prevents overloadillg 

by reducing the chance of a request being served by a busy servel'. In [65], Masa proposes an 

algorithrn that takes fuU advantage of the CDN architecture by considering latency, cluster 

request rate and link load and capacity. Worst Surrogate Exclusion (WSE) is based on 

three concepts: the exclusion of surrogates with latency higher than the estimated average 

system response time, the equalization of the average response time and the prevention 

of overloading the surrogate servers. Based on simulation results, Masa shows how WSE 

per[orms better than the other schernes which either consider only one metric (Load and 

RT) or do not consider the nctwork at aU (RR). 
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When pl'Ograrn caching is preferred ta servel' replication, the request routing algorithrn:-o 

are difEerent than thoso Just described. Because surrogate servers are hosting sets of diff'er­

ent abjects, requests cannot be sim ply routed according ta sorne metric. A simple rnethocl 

is the query-based scheme [33], in which a ProXy broadcasts a query ta other nodes in it:-o 

cluster if it does not have the requested content 10ca11y. If a node in its clustor responds 

positively, the roquest is routed ta that server. The downside of this approach is that the 

queries and replies generate a significant amount of traffic. An alternative is a digest-basecl 

seheme where eaeh proxy rnaintains a list of the information stored on al! others [68]. Al­

though there is no "query traffic" , the8e lists need to be kept up-to-date date which, agaiu, 

cau producc 8ignificé111t traf[ie. One way to reduce this "updatc-traffic" i8 to ccl1tralizc the 

list of 61es hosted by each proxy on a direct ory servel' [69]. Even if this approach helps to 

l'cdllcc undcsircd traf[ie, it has the disadvantagc of having Ct single point of l'ailure. Jian 

et al. propose a solution ca11ed the semi-hashing based approach which has sma11 routillg 

overhcad and high efficieney [33]. Theil' scheme i8 a modified version of thc hashing method 

([70,71]) which uses the content's URL, the address of the proxies and a hashing function to 

redirect the request to a designated proxy. Theil' enhancement consists of reserving a por­

tion of storage at each proxy for local popular content. They show that even if the amount 

of stOI'Flge dcdicated is very smaH (smaller thFln 20%), 1.here is a significFlnt improvcment 

in performance (higher hit-ratio). The only eonstraint is that cooperating proxies must be 

close to one another because requests are often redirected. 

2.4 Optirnization Problems 

ln section 2.1, we presented distributed architectures in which replicas are placed in strategie 

locations. Placing replicas very close to the clients, in order to achieve very sma11 delay, is 

not a viable solution because of the storage costs il, ineurs. On the other hand, placing the 

replica8 too close La the origin requires far tao mu ch bandwidth ta hancHe all the traffic. The 

replica placement pT'Oblem consists of determining the location of replicas in the network 

such that the performance is rnaximized given an infrastructure or that the infrastructure 

cost is minimized for a given quality of experience (QoE) impairment, such as delay, packet 

1088, frame 108s, or packet jitter. Content delivery networks are usua11y modeled as read­

only (or read-mostly) workloads using classic network problems like the k-median problem 

or the facility location problern [72]. In the k-median problem, the objective is to select k 
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locations for rcplicas among Tn potcntial sites for a fixed k. The choice for this value of k is 

not obvious; if the vaJuc is too smaU, clients are forced to take a longer route (long responsc 

time a.nd high load on the network) wherea8 if the value is too large, the hit ratio bccomcs 

srml1ler and hence <:08t of delivcry is shared by fewcr requests. A high number of replicas 

results in a considerable traffic Joad to distribute the objects to the replicas. Therefore, 

contrary 1.0 intuition, deploying as many replicas as possible is not al ways good. 

A solution, to avoid this tedious task of determining a value for k, is ta find the subset 

of the m locations that minimizes the cost over aU possible values of k, which is knowll 

as the facility location pTOblern [73]. The problem consists of finding the number and 

location of the replie a and assign customers to each such that total cost is minimized. In 

the capacitated facility location problem (CFLP), each replie a has a limited arnount of 

resources (streaming or storage capacity, etc.) and a set of customers require a certain 

amount of those resources. A simplification of that problem is the uncapacitated facility 

location problcIll (UFLP) whcrc cach rcplica has unlirnitcd rcsourccs (infiuite storagc ane! 

strearning capacity). Wu ct al. presented an extension of the CFLP that allows multiple) 

n:plicas (with different capacities) at each location and a general setllp cost function [74]. 

The cost fllnction cOllsists of a 6xed site setup cast and replica sctup cost proportion al to 

the number of customCl'S served. 

Detel'mining the location of the l'eplicas is only one of the problern illvolved in the design 

on content distribution networks. The placement of the objects (which objects to cache 

at each replica) and the allocation of streaming and storage capacity at each location are 

other problmns that affect the final design. In [44], the video placement problem is rlefinccl 

as idcntifying the number of copies of each video and their location such that capacity 

usage is minimized and a specified quality-of-service (QoS) is guaranteed. Laoutaris et al. 

argue that the replica and video placement problems should not be solved independently 

of the resource allocation problern to avoid a suboptimal solution [75]. They definc the 

stomge capacity allocation pTOblem as the distribution of an available storage capacity 

budget to the nodes of a hierarchical content distribution system, given known access costs 

and client demand patterns. In [Itl], Wauters et al. address the reSO'U,Tce allocation J1TOblem 

of deterrnining the equipment required for transport (number of ports at eaeh servel' anel 

llumber of multiplexers and switch ports al, eaeh node). In this thesis, wc l'ocus on a 

different resource allocation problem: determining equipment required to store and stream 

the content at each location (number of streaming and storage devices). 



2 Literature Review 19 

2.4.1 Pararnoters and constraints 

To solve these problems, it is crucial to first detcrmine a good cosl; fUIlction which i8 

rninimizcd whilst respcc:ting appropriate constraints. An important factor ta cOllsider whcn 

determining the cast fUllCtic)Il is the internodal distance between clients, replicas and origill 

servers. Many metrics are used ta represent distance such as network latency, number 

of hops, or link cast (also called band width cast). Another way ta express distance i8 

transmission cast, i.e., the cast ta transmit a bit on a specifie path [30,76]. Bartolini et 

al. propose a scheme where requests are served by the closest replica and use distance 

as a means to measure the users' perceived quality by summing the user-replica distance 

over ail requests [4]. In the streaming case, finding the multicast tree that minimizes the 

bandwidth cost i:-> a tradc-of-F bctwccn minimizing distance and maxirnizing the nurnbcr 

of clients sharing a path segment (streaming and multicast are discussed in section 2.3). 

Almeida et al. argue that closest server and short est path routing do 110t nccessarily lcne! 

ta lowest cast [77]. Instead, ta calculate the delivery cast, they use the total network 

bandwidth, which is expressed as the sum (possibly weighted) of the bandwidth requirecl 

for each hop on the dclivcry path. 

Anothcr kcy parameter is the storage server cost, or rcplicatioIl co:->t, of keeping a CO])y 

of an object at a given location [4,27,76,78]. In addition to st orage cost, a fixed start-np 

cost or a server installatio11 cast has been considered in [76,78]. Bartolini et al. propose ml 

algorithrn where the location of the replica changes dynamically [1]. The start-up cost iB 

expressed as the addition or rernoval of a replica site. The server must aJso be able to serve 

all the incoming requests for this specifie file. The server cost therefore includes the cast 

of the required bandwidth, which is proportional to the popularity of the file it stores. A 

server that hosts very large files (high storage cost) which are not popular (like archives) 

has low bandwidth requirements. 

In multimedia applications, due to the size of the objects, it is not always possible 

to have complete replicas of the origin server, because unacceptably large storage costs 

result. Thercfore, a selection of the objects is stored at proxy servers; the choice is basecl 

on popularity and hit ratio. The decision of whether to place a file at a replica is based 

on its size and its popularity: is the abject popular enough (able ta rnaintain a given 

hit ratio) ta deserve the storage space it requires? As the popularity of an object C8.n 

change through tirne, it might be neeessary to replace abjects or update thern. In HTTP 
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applications, abjects are small and the transmission cast from the origin server ta the replica 

is negligible. However, video objects are mu ch larger and the distribution of a document 

is only compensated by a finite number of requests from the client. Therefore, the number 

of updates or replacements required is another factor ta consider. 

ln defining the optirnization problern, the constraints to impose on the possible solutions 

must be considered. Depending on the given infrastructure, it might be necessary to upper­

bound the storage capacity of the servers [6,76]. N guyen et al. add c:onst.raints on the loac! 

capacity of the servOl' (nurnoOl' of requests it can hanclle) and a quaJity of serviœ (QoS) 

Lhrcshold (rnaxinmw dela.y) for eac:h roquest [78]. Other researchers impose requirernents 

of the availability of any object in the system, e.g., ail requests must be handlecl ancl al! 

objects must be available [76,78]. 

2.4.2 Cast functians 

We divide cast functions into categories according to whether they consider a single or 

multiple objects and whether they take storage into account [72]. In a single abject cast 

function, ouly thc aggl'cgatc user clcmancl is considered; the specifie; objects requcsted ar<~ 

unimportant. In the case of streaming media applications, a common choice for the delivery 

cost model is one that considers the bandwidth required by the se l'vers and network as tlw 

only factor [~32, 77]. An alternative choicc is a cost function based sim ply on diHU11lcc and 

hit ratio [1] (Table 2.1). In a paper by Bartolini et al. the storage, or hosting cost, is part 

of the so-called mailltenance cost, which also includes the cost of updating the copies al 

the ddrcrent locations (Taule 2.1) [41. 
A morc cornplicaled case is one where there are many different objects in the system, 

ench with different popularity (user demand). A proposed solution by Wnng ct nI. is 

ta rninimize the transmission cast (similar ta what is done in the examples above with 

ddivery cost) by fin ding the position for each object that reslllts in the largest savings in 

transmission cost (Table 2.1) [30]. However, it is often impossible to minimize the cost while 

maximizing the performance becallse these are two conflicting objectives. Buchholz maps 

the quality of the service into the cost domain by determining the amount the customerH 

are willing to pay for maximal performance [6]. Finally, in the case where both multiple 

objects and storage are considered, the cost function is the sum of the start-up cost, storage 

cos1; and transmission cost, as shown in Table 2.1 [27,74,76,78]. 
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Table 2.1 Categories of cost functions 

Objects 1 Storage 1 Example 
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Vi Vi 
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n n ]{ 'fi 
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'i=l i=1 k=l j=l 

n f{ 'fi 

+ L L L cij · :/;k(i,j) 
i=l k j",,1 

N'i 

demand from client j 

hit ratio of repli ca i 

cost (distance) from client j to replica i 

cost (distance) from the origin to replica i 

user-perceived quality in network configuration :r 

[1] 

[1] 

[30] 

[76] 

maintenance cost pel' unit of time of a network configuration :r 

dwell time of a network configuration :r 

prefix size 

transmission cost for video i if a prefix Vi is stored 

smallest unit of cache allocation 

size of video i 

rnean bandwidth of video i 

1 if a servel' is installed at location i 

amount of transmission for prograrn k from location 'L to j 

installation cost of a server 

s(.orage cos1; 

number of multiple accesses 

transmission cost pel' program from location 'L to j 

2] 

1 Otller 

[14,32,77] 

[6] 

[27,74,78] 
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2.4.3 Heuristics 

The cost functions presentee! in Hection 2.4.2 arc often complex a.nd obtaining the optima] 

solution is impractical; solving the 'f'cplica placement pTOblem. is considerc,cl NP-harcIl. Tlw 

heurifltics (a.lgorithms with no gua.rantc~e of finding a solution) prescn!;ccl in this section offcr 

near-optimal perfurmancc as Cl. !.radc-ofr Lo reclucing Lhe complexit.y. In simplcr scenarios, i1. 

is sonwtimes possible to c:alcllla!;c; tliC optimal solution and usc it a,'i a referenœ to t'valuaLl; 

Lhe performa.nce of heuristics. 

A popular heuristic, considered by many authors [1,6,29,75,78], is greedy selection [80]. 

Jt fifst. chooses the replica t,lmt minimizes the total cost and th en selects a second replicn 

aIl lOng the remailling sites such that the total is minimized wh en cornbined with the tirst. 

choiœ. Replica sites are adcled either until a predetennined number of sites is reaehed or 

when ad ding more replicas increases the total cost [1]. Based on cornputational reflults, 

Cornujelos et aL suggested the use of Lagrangian heuristics to solve large instances of 

the capaeitatcd facility locatioll problern (CFLP) to calculatc bath the lower and upper 

bouncls of the solution whcrc t]l() idea is to compute the highest lowcr bOlllld possible 

tbwugh cl. Lagrangian relaxation [81]. Genetic algorithms are another approach t.o solv(~ 

the optimizatioll problelIl~ described at the beginning of this ~ecLioll [44,76]. 

Although these methods are known to perfonn very closely to the optimal solution 

(within a factor of 1.1-1.5), they require knowledge about the client locatiolls in the network 

and internodal distances [82]. Arnong the alternatives to greedy algorithrns are hot-spot [11 
and max fan-out [1,82]. In the; hot-spot algorithm, the traffic gcneratcd ncar (~ach site is 

used as the metric for selection and is expressed as the total number of requests from clients 

within a given range. At each step, the algorithrn selects the hottest (maxirnurn number of 

requests) site available. This is clifferent from the greedy scheme as the latest choice does 

not depend on the combined cast with previous selections. The max fan-out algorithm 

behaves similarly with the difference that the metric used is the number of input/output 

terminaIs at. eaeh site. In bath cases, sites are added until a local minimum is reached. As 

routers with high fan-out are usually busy, the solution is to build a cluster of replicas as 

close as possible ta high fan-out routers [82]. By using the sum of distances between each 

client and its replica as performance metric, these strategies usually work very well (within 

lThe cümplexity class of decision problems that are intrinsically harder than those that can be solved 
by a nündetmministic Turing machine in polynomial time. [79] 
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1.1-1.2 of gn:edy pL-tcemellt). However, performance decreases when t.he number of clients 

is small. 

The system st.ate wight change through time and the quality of an originally near­

optimal configuration can deteriorate substantially. In or der to adapt to system variations, 

we can periodically execute any of the aforementioned static algorithms ta reposition repli­

cas suell that eost i8 rninirniz:cd. However, if the period betwecn two executioIlS is not 

chosen carefully, the replica placement determined by the last algorithm exccution can be­

corne poody matched to the CUITent network state. The dynamic algorithm proposed by 

Bartolini et al. allalyzes the CUITent configuration and removes unnecessary replica(s) (if 

possible) if il can support an im:rease in user dernand [4]. If the CUITent configuration can­

not, the algorithm adds one or more replica(s) while taking the cost of these changes into 

account. When considering as performance measures (i) the average number of replicas, 

(ii) user-repliea average distance and (iii) the number of requests that cannot be served, the 

heuristic performs within 2-4% of the optimal strategy as eomputed by solving the Markov 

deeision model. 

2.5 State-of-the-art and Contributions 

ln this chapter, we reviewed the many aspects to consider when planning a YoD network: 

the architecture, the content allocation and delivery and the location of the replicas. In 

the first section, we discussed three different distributed architectures that reduce the load 

on the origin servel' by placing replicas (proxy-based and content distribution networks) or 

using peer resources (peer-to-peer) to deliver media. In section 2.2, we addressed content 

allocation. The size of the media objects and the amount of storage it takes 1,0 store 

entire libraries (servel' replication) rnotivates program eaehing (cache only the most popular 

objects) and prefix eaehing. Gummadi et al. showed evidenee that the Zipf distribution, 

which is a good model for the popularity of Web objects and has been usecl by many authors 

in the context of YoD, is not appropriate for media objects because of the aeeess pattern 

of users for movies (feteh-at-rnost-once and new arrivaIs) [9]. In section 2.3, we reviewed 

delivery protocols, traffie rnodels for video and request routing meehanisms. Although iVoD 

is unieast in nature, multicast is more efficient, but it is mu ch harder to implement beeause 

it is not guaranteed to be supported along aIl delivery paths. In section 2.4, we presented the 

parameters and constraints to consider when solving optimization problems related to the 
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design of content delivery nctworks. In particular, the replica placement problem consistH 

of HIlding the location of rcplica.s that minimizes a function that includes storagc and/or 

trallsport cost. Because rninirnilling the cost function is a NP-hard problem, heuristiCR 

that pro duce near-optirnal results have been proposed. Greody and Lagrangian heuristic 

algorithms perforrn the best wh on client locations, internodal distances and demand are 

lmown, buL algoritluns such as hoL-spot and max fan-out have beell suggested wh en thiH 

information is unknown [82]. 

Rm;carchms luwe approaclwd the problern of generating cost-cfficicmt YoD network de­

signs \lsing diflorent optimization techniques: placement of video objects or allocatiOlI 

of available l'Csomces 1,0 minimize cost. Solving the l'eplica pla.cement [83, 8!J] or video 

placement [44] problorns indopondently of the resouree allocation problem uSllally loads to 

snboptirnal solutions becallse the location of the replicas lw.s a. direct impact 011 the mnOllnt 

of rcsources required. The storage capacity allocation problern [75] and the network eqllip­

mellt allocation 1,001 [14] both take aU these factors into accounL simultancously, but fail 

1.0 idelltify explicitly the requircd equiprncnt (bath rnernory and streaming dcviccs) al, each 

locat.ion. ln t.his thr:sis, we defîne i1nd i1ddrcss the VoD equiprnent allocation pmblern as tlw 

task of detorrnining the number and model of YoD servers (which include both a storagc 

and streaming device) to deploy at each potentiallocation in a network topology such that 

the total demand is satisfied and the deployment cast is minirnized. This optirnization 

problem has some similarities with the classical facility location problem which has been 

studied thoroughly (many aJgorithms and exact heuristics have aJready boen developed to 

solve it). However, the presence of an origin servel' that gat.hcrs traffic from all other lo­

cations and the non-linearity in sorne constraints make our problem substantially diflerent 

oyen from the generalizod form of the facility location problem proposed in recent work [741 
and thus unsolvable using available heuristics. 

Solving the YoD equipment allocation problem deterrnines the location of the replicas, 

the amount of storage available 1,0 cache content, the streaming capacity D,vailable to serve 

clients i1nd the explicit specification of the equipment installed at each location. Our main 

contributions to solving this problem are tho foUowing. We design a parametric function 

for estimating the worst-case hit ratio for given system parameters (cache size, library size 

and file arrivaI rate) using discret.e-tirne simulations based on an extension of the file accesii 

model proposed in [9]. We propose a cost function based on the hit ratio, the distributecl 

dernand and the number of YoD servers at each location. We develop heuristics to generatc 
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a solution to the problem based on integer relaxation and greedy- based search. FinaJly, wc 

develop an interactive design tool that implements our cost function, hit ratio function and 

heuristic. We considcr an architecture in which replicas are organized in a star topology 

with the origin server in the middle. This simple architecture requires no complex request 

routing; requests are first handled at the replica and, only if necessary, forwarded to the 

origin. The delivery to the client is performed using unicast from the replica or the origin 

and each stream is dedicated a predetermined and constant amount of bandwidth. W(~ 

estimate the totalload at each location by caIculating the worst-case demand (during peak 

hours) based on the population size and use the bandwidth available during off-peak hours 

for content distribution (content updatc) from the origin to the replicas. In the followillg 

chapter, we propose a solution to a simplified version of the VoD equipTnent allocation, 

pTObleTn where the YoD modcl is fixcd for each location. We construct a cost functioll 

based on the hit ratio that we optimize by choosing the fraction of the library to cache 

at each location. We assume that the YoD software installed at each replica is capable of 

determining the popularity of each movie and properly fill the cache with the most popular 

ones. However, to map the size of a cache to its hit ratio, we build a function based on 

data gcnerated by sirnulator that implements the "fetch-at-most-ollce" and "new arrivaIs" 

factors introduced by Gurnmadi et al. in [9]. 
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In this chapter, we focus on resource allocation in a VoD network deployed in a metropoli­

tan area network such as the one depicted in Fig. 3.1 (a). "VVe define the VoD equipment 

allocation pmblem as choosing the number of streaming and st orage devices (depicted as 

YoD servers in Fig. 3.1 (b)) for each potential replica locations, such that the deployment 

cost of the VoD system is minirnized. We solve this problern by deterrnining the fraction 

of the totallibrary that should optirnally be stored at each location. 

T'he rerrminder of this chapter is organized as follows. In Section 3.1, we express the 

equiprnent allocation problem as ml optirnization problern, and we state our <1ssurnptions. 

Tn Section 3.2, wc present our solution to this problern, developing a novel cost function, 

hit ratio estirnation function and heuristic. In Section 3.3, we present the VoD Equipment 

Allocation Tool: an interactive design tool that irnplernents our solutioll. In Section 3.4, wc 

8pply our heuristic to thrcc scenarios with diflerent demand, equipment capabilities, aml 

topologies (or geographies). We cornpare the cost generated by our heuristic to a centralizecl 

design and illustrate our rnethod of deterrnining when a centralized VoD deployment shoulcl 

be modified to a hierarchically-distributed VoD deployment. 

3.1 Problem statement 

We address the problem of determining the number of storage and streaming devices needecl 

at each pütential replie a location. We require the specification of the topology of a metro-
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DWDM 

DIRECT FIBER ------
~ Origin 

Q Replica 

~ Router 

S Group of clients 

(a) Logical connectivity 

REPLICA 

(b) Repliea level 

Fig. 3.1 (a) The topology shows the logical connectivity betwcen the clients, 
rcplicas and the origin. AU requests originating from a group of clients are 
rouled to the associated replica through direct fiber. If the request cannot 
be served by the repliea (file not present), it is re-routed to the origin and 
scrved through DWDM equipment. (b) A repliea with ni = 3 YoD servers 
eaeh with storage capacity of Ci TB and strcaming eapaeity of Fi Gbps. The 
total streaming capacity ni . Fi must be greater or equal to h'i ' M'i where hi is 
the hit ratio at site i given the storage eapaeity ni' Ci and Mi is the worst-ease 
demand from the attached group of clients. 
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area nciwork (MAN) indicating the set of inter-nodal distances and the specifications (cost 

and capacity) of network elements and available equipment. We consider the case where 

only one type of equipment (VoD server) is installed at each site but allow this equipment 

type 1,0 vary from site to site, However, in Chapter 4, we relax this assumption and assume a 

case where we are given a set of available YoD server rnodels and must det.errnine the nurnber 

and the model of servers 1,0 install at each location. ,,ye define the VoD eq'Uipment allocation 

problcm as choosing the equipment for each of these replicas such tlwt the deployment cost 

of the network is rninimized, 

As illustrated in Fig. 3.1 (a), this topology contains one origin servel' and a maximum of 

N replicas. Each replica is responsible for a group of clients representing a fraction of the 

population; any request made by a client in that group is routed 1,0 that replica. The origin 

servel' hosting the entire library (the complete set of objects) can be located anywhere and 
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serves al! the requests thaL replicaR arc unablc to fil1. 

This thesis docs not consider the management of the content al. the replicas. We SUpPoS(~ 

that thcrc exists an cxtcrnal mechanism (e.g., YoD software installcd at cadl repliea) to 

mainLain \;hc mosL popular files at the replicas, which can be executcd during off-pea.k hours 

when more bandwidth is availablc. Because content delivery itself is a,lso out of the scope 

of this thesis, wc are assurning unicast delivery to the user-end. 

3.1.1 Mathematical formulation 

Let S = {Si: i = 1, ... ,N} and T = {t i : 'i = 1, ... ,N} where Si is the number of streamillg 

devices with capacity Fi (Gbps) and t'i the number of storage devices with capacity Ci (TB) 

of repli ca site 'Z. Let CTOT(S, T) be a strictly positive function that maps the number of 

devices installed at each location to the total network cost. The objective is to determine 

Sand T to rninimize total system cost: 

{S*, T*} = arg min CroT (S, T) 
S.T 

(3.1) 

This forrnulatic)]l is only valid when the streaming and storage devic:es can be deployecl 

indepcndently (Si does not nced ta be equal ta t.;). However, in prnctice, thc t,wo dcviccs 

are often dcploycd as a joint unit called a YoD server, so that Si = Li (Fig. 3.1(b)). To 

addrcss t.his scenario, wc ddiuc N = {ni: 'i = 1, ... ,N}, wherc ni is the number of YoD 

servel'S with strearning capacity Fi and storage capacity Ci at location 'i. The objective in 

this second formulation (used in the rest of this chapter) is to choose the number of YoD 

servers at each repli ca in order to minimize the total cost: 

Nopt = arg min CTO'r(N) 
N 

(3.2) 

Wc denote the worst-case demand Mi at replie a i as the total bandwidth required to 

serve all client requests using unicast streaming during the peak utilization hours. We 

assume that we cither know j\1'i or can approximate it from a given population size and 

peak usage ratiol
. Wc dcfine the hit ratio hi as the smallest fraction of requests satisfied by 

replica i, at any givcn time (worst-case). If the desircd object is not present a.t the replica. 

or the replica does not have enough streaming capacity, the request is unsatisfied (ca.che 

1 Worst-case dernand 1\11; = population size x ratio of subscribers (clients/house) x peak usage rate 
(stream/cliellt) x bitrate (Mbps/strearn) 



3 Video-on-dcmand cquipmont allocation 29 

miss) and routuel to the origin servel'. Although the hit ratio could be used as a measure 

of service quality, we do not ta add this constraint ta the optimization problem because of 

the imperceptible difference in quality of streaming video between the origin and il. replie a 

in fi, MAT\. 

8.2 Proposed solution 

ln this section, wo present the three components of our solution: the lüt ratio func:tioll, 

the cosL fUllction and the heuristic (Fig. 3.2). We caU our heuristic the IntegeT Relo,:ralùm 

HeUTistic (IlUI). The tirst step of the heuristic produces an initial solution X = {Xi: 'i, = 
1, ... ,N} whcre Xi is the fraction of the library stored at every replica i to minimize our 

cost function. This value is then used to form an estimate of the hit ratio, which allows us 

ta calculate the number of se l'vers needed, Mni. The second step of the heuristic consists 

of searching the neighborhood of the non-integer solution Mni to determine the integer 

number of servers NI RH. We generate the infrastructure and transport cost for the entire 

network by caJculating the output of the cost function for NI RH. 

Inp~t.~ .u 
• Topology 

. ... 9~tp~!s_. 
Equipment 

Number of servers 
• Costs 

Demand & Distances 
• Equipment specs 

Cost & Capa city Transport and Infrastructure; 
• File and Library specs 

Fig. 3.2 High levcl overview of the proposed solution components: the 
heuristic, the cost function and the hit ratio function. The inputs consists 
of the worst-case distl'ibuted demand and internodal distances, the cost and 
capacity of the VoD sel'vers, network interfaces and other network components 
and the number and type of objects (size and bandwidth requirements) stored 
at the origin and replicas. These values, the form of the cost function and 
hit ratio function are the inputs to the heuristic that pro duces an initial non­
integer solution NirL'i. A nc~ar-optimal integer solution NfRH is generated by 
searching the neighborhood of N ini during the second step of the heuristic. 

p •. 
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3.2.1 Rit ratio f'unction 

The purpose of a file popularity model is to predict the access frequency of a given file, 

which can be estirnated by dividing the number of requests for this file by the total number 

of requests. In section 2.2.1, we reviewed popularity models and file access models for 

video-on-demand systems. Of particular interest are the "fetch-at-most-once" and "new 

arrivaIs" factors introduced by Gummadi et al. in [9]. Although it is possible to estimatc 

the worst-case hit ratio through simulations, for the purpose of an interactive design process 

whcrc wc nccd to modify design choices repeatedly, it is impractical and time-consuming. 

Our objective is to train a parametric function that provides an estimate of the worst-casc 

hit ratio based on specified system parameters in a few seconds compared to the tens oC 

minutes required by simulations. 
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Fig. 3.~~ Data fitting curves ta construct the form of the hit ratio estimate 
Ji. The linear curves indicate that Ji = A + B log(X) achieves an adequate 
fit. Markers show values of JI and the dashed lines (- -) show the linear flts. 
Wc plot the hit ratio JI as a function of log(X) where X is the cache size ratio 
(Number of files in cache / Library Size). LEFT: We plot different values of 
file arrivaI rate Z for library size Y = 2500. RIGHT: We plot different values 
of library size Y for file arrivaI rate Z = 50. 

We clesigned a simulation environment with a library of size Y and a cache of size X . Y 

where files are accessecl according ta the model described by Gummadi [9]. We calculatc 
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Fig. 3.4 Data fitting curves to constl'uct the form of A in il = A + B log(X). 
Markers show values of A and the dashed lilles (- -) show the our fit A = 
1(1 -t- 1(2Z t- [(:; log(Y) -1- K1Z log(Y) where Y is the library size and Z is tbe 
file arrivai rate. LEVI: A as a function of the library size Y for dineront values 
of file arrival rat.e Z . RIGHT: A as a fllnction of Z for diffcfCllt values or Y. 
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100 

the hit rat.io by dividing the Ilumber of request.s for objects in the cache by the t.otal numbel' 

of rcquests. Let eacl! client's libl'a.ry Lj be a. subset of the complete libl'ê1ry L 1.hat exclndcs 

ail files client j has selected in the previous weeks. During each iteration (one week) of the 

discrete-time simnl8.tioll, the following sequence of events occurs: 

1. Clients arc adcl(~d 1.0 the population al. a speeificcl rate. 

2. New files a.rc added to the library L at a specified rate. 

3. The cache is filled with the most popular files. 

1. Bach client j selects an object from his library Lj. 

5. The weekly hit ratio is calculated. 

The 11sers' rcqucsts arc generated using a Zipf distribution with coefficient Cl: 

probability of selecting the file at rank i in library Lj is given by Pj (0: 

1. The 

Files that have 8.lready been fetched by the user cannot be selected again (fetch-at-
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Fig. 3.5 Data fitting eurves to eonstruct the form of B in fi = A + B log(X). 
Markers show values of B and the dashed lines (- -) show the our fit B = 
](5 + }(GZ + f{7 Y + ]{8ZY where Y is the library size and Z is the file arrivai 
rate. LEFT: A as a. functioll of the library size Y for different values of file 
arriva.I rate Z . RIGHT: A as a. funetion of Z for different values of Y. 

100 

most-once-model). After every request a user makes, the selected file is removed from his 

library Lj and file selection probabilities are recalculated. New fîles are introduced in the 

library Land each library Lj at a specified rate. The insert position of a file i8 detcrminecl 

using a Zipf distribution (with Œ = 1); the ranks of existing files which are less popular arc 

decl'easec1 and selection probabilities are recalculatec1. We ran extensive simulations with 

different values for the following pararneters: 

1. Number of weeks (lcngth of the simulation). 

2. Si:œ of the client population. 

3. Number of new clients every week. 

1. Size of the initiallibrary of objects Y. [1000 2500 5000 6500 8000 10000] 

5. Number of 6les added to the library every week Z. [0 10 25 50 75 100] 

6. Size of the cache as a fraction (X) of the library size. [0.1 0.2 0.30.5 0.70.9] 

From our simulation results, we determine that the only parameters that have a signif­

icant impact on the hit ratio are the library size Y, the number of files addecl every week 

Z and the cache size ratio X. We generated 864 points for the hit ratio H by running 
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the simulation four times for 216 possible combinations of X, Y and Z. In Fig. 3.3, we; 

observe the linear behavior of H as a function of 10g(X) for different values of Y and Z 

and propose the form in (3.3) for our estimate H, where 0 S; X S; 1, 1000 S; Y S; 10000 

and 0 S; Z S; 100. We construct the bilinear functional form for A and B represented re­

spcctively by (3.4) and (3.5). In Fig. 3.4 and Fig. 3.5, we show the fitting curves gcneratcd 

with those funetional fonns with the dashed lines (- -) and the adual values of A and B 

with the markers. The curvesfit the markers for most of the sets depicted; the lines for the 

file anival rate Z = 0 and library size Y = 1000 in both figures do Hot represent tlw actual 

value of A and B aH aecurately as the other eurves. We eonsider that Y = 1000 representH 

a library size smaller than those of interests for large-seale deployment. 

~ 

H 

A 

B 

A + B . 10g(X) = h(X) 

f{j + K 2Z + K3 10g(Y) + K4Z 10g(Y) 

K5 + K6Z + K 7Y + K 8ZY 

(3.3) 

(3.4) 

(3.5) 

We deterrnine the values of the coefficients Kl ta Ks by solving in the least squareH 

sense the system KV(X, Y, Z) ~ H obtained by substituting (3.4) and (3.5) into (3.3). 

Our resulting function for hi is accurate, showing less than a 0.02 error eighty-five percent 

of the time and less than a 0.05 error ninety-nine percent of time. In Fig. 3.6(a), we show 

the histogram of the error distribution for the entire dataset (1000 S; Y S; 100(0) for our 

simulations, the error is less than 0.05 ninety-nine percent of the Ume. In Fig. 3.6(b), wc 

show the histogram of a redueed datasct that focuses on the error for library sizes larger 

than 2500 files. The accuracy of the function estimate for this set is mu ch higher: the error 

is less than 0.015 ninety-eight percent of the time. 

3.2.2 Cost function 

We can express the total cost, CrOT, as the sum of the cost of infrastructure, CT, and the 

cost of transport, Cs. 

(3.6) 

The; cost of infrastructure, CT, includes the software and start-up cast of a location (Ai) 

and the cost of YoD servers (BJ for every replica site i and the origin servel'. In (3.7), we 
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(a) Entire dataset (1000 <::: y <::: 10000) (b) Reduced dataset (2500 <::: y <::: 10000) 

Fig. 3.6 Histograms of the error il - H betwcen our function estimate il 
and the value observed during simulations H. (a) The error for entil'e datasct 
generated by our simulations. The error is less than 0.05 ninet.y-nine percent 
of the time. (b) The error of a reduccd dataset where the values for libral'y 
size bclow 2500 arc disearcled, In the case of 2500 <::: y <::: 10000, the error is 
less than 0,015 ninety-cight percent of the time. 

express Cr as a fllIlCtioll of the 11llIllber of YoD servers installed al, location i, 'Li, and the 

onglIl, n". 

N N 

Cr = LAi + Bini = !l(no ) + L !l(ni) (3.7) 
i=O i=l 

The cast of transport consists of two components: transport from the origin ta replicas 

and clients, CSOR ' and transport from replica i ta client i, CSRC ' It includes the cast 
1. 1, 

of node interfaces (CIl") and of fiber (Cf). The transport from replicas ta the user-ene! 

(small distances) uses direct fiber whereas the transport from the origin to the replicas uses 

DvVDM connections. 
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Cs 

n()I7, : 

c: 

Cn,': 

Cf: 

CDWJJtVI: 

'W'rnœc: 

CLA : 

da:mp : 

N 

~ CSO/(i -1- C Snci 

i=1 

Nmn. of iutcrfa,ccs (fibers) toward the origin. 

NUlii. of illterfaces (fiLers) toward the user-end. 

FiLer capaci ty. (G bps) 

Node switch interface cost. ($) 

Cost of fiber. ($/km) 

Cost of DWDM equiprnent ($) 

Numbcr of fibers supported by DWDM equipment. 

Cost of line amplifier. ($) 

Mrtx. distance betwccn two amplifiers. (km) 
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(3.8) 

(:UJ) 

(3.10) 

The Ilmnber of fibers at cach node depends on the amount of traffic on the various links, 

the bit ratio at the l'eplica and the fibcr capacity. On the link bctwccn location 'i and tll() 

cliellts (Re;), the traf-fie is equal to the demand [rom the user, Mi. On the lillk between Uw 

origin and a location 'i (Oni ), 8.11 the requests that cannot be se1'ved by the rcplica (ca,che 

misses) arc hanclled by the origin se1'ver, generating a t1'affic equal to (1 - h.J . Mi. NoLiœ 

that wc me using non-integcr valucs for thc number of nctwork cquipmcnt (n\lrnb(~r of fibers 

and ports) because we assurne that the unused fraction can be used for othe1' applications 

and does not need 1.0 be included in the cost. 

(3.11) 

The worst-case demand between location i and the group of clients is fixed, so CSRC , 

does not depend on any of the optirnization variables.However, CSOR indirectly depends on 
" 

ni because the hit ratio hi changes with the nurnber of YoD servers installed. Vve express 

the cost of transport Cs as follows, where fz(hi , Mi) is obtained by substituting (3.ll) into 

(3.10) and (3.9): 
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N N 

Cs L CSOR; + CSRCi = L f(noRJ + f(nRcJ 
'i=l i=l 

N 

LhU~i,Mi) (3,12) 
i=l 

Gy substituting (3.7) and (3.12) in (3.6), wo can express the total cost as a functioll of' 

the Ilumber of VoD servon; instaJled (ni)' the hit ratio (hi) and the dernand (Iv!,i) at eacb 

locatioIl : 

N 

CTOT = h(no ) + L h(ni) + h(hi , Mi) (3,13) 
i=l 

The required numbcr of VoD scrvers is deterrnincd by either the streamillg or storagc 

requirernent (ni = max(si, id), expressed as functions of X,;: 

hi·Mi 
Si = 

f3(Xi)· Mi 

Fi 
Xi·Y ti =--

Ci 
(3,14) 

(3,15) 

Define f4(X) ~ max(su, to) and f5(Xi) ~ rnax(si, ti). By substituting (3.3), (3,14) 

and (3.15) into (3.13) and assurning that the dernand Mi is known, we express CTOT as a 

function of the optirnizing variable Xi: 

N 

CrOT = hU4(X) + L f1(f5(X i )) + h(f3(Xi )) (3,16) 
'i=l 

:3.2.:3 Integer Relaxation Heuristic (IRH) 

The Integer Relaxation Houristic (described in Algorithrn 3,1) consists of two stops: (i) 

relaxing the integer constraint and (ii) searching the surroundings of the initial solution fol' 

a near-optimal integer solution, 

Step 1: The first stop of tho heuristic is to provide an initial solution, X ini = {Xi : 'i = 

1, ... ,N}, representing the optirnal fraction of the library to store at each replica. Wc 
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obLaill ",Yi"oi by perforllling Cl. consLrained nonlincar optirnizatioll on CroT (as exprussod ill 

(3.16)) where 0 ::;: Xi ::;: 1, which is solved USillg a sequential quadratic prograrnrning (SQP) 

mcthod [85,8G]. From X ini , wc calculatc Mnoi, the set of fractional numbcrs of VoD scrvcrs, 

by expressing Si, {i, .'lu and tu as functions of Xi with (3.14) and (3.15). 

1 Obtain X ini by pcrfonnillg a constrained nonlinear optimization on CTOT ; 

2 Calculate the integer values of NIRH with (3.14) and (3015); 
3 CaJculate XIlW from NI RH using (3.17) and (3.18); 
tI Set Co = GIRn = GroT(XIRH) and k = 1; 
5 repeat 
6 1'ora11 locations i do 
7 X = X/RH and N = NIRH ; 

8 for ni ± 2 do 
D calculate Xi with (3.17) and (3.18); 

JO calculate cost CTOT(X); 
11 if CTOT(X) < CJ/Vi then CUU! = CTOT(X), NIRH = N, "YIRJJ = X 

12 end 
]3 end 
14 Gk = C/RH ; 

15 k+ +; 
16 until Ck 2: Ck - 1 

Algorithrn 3.1: Integer Relaxation Heuristic (IRH) 

Step 2: The second step of the heuristic consists of searching the neighbourhood of Mni 
for a near-optimal integer solution. One iteration consists of going through each location i 

and cakulate the cost for integel' values of ni near the initial value (ni ± 2) by converting 

N to X using (3.17) and (3.18). At the end of each iteration k, we compare the lowest 

cost Ck with the lowest cost from the previous iteration Ck - l . We continue the search until 

Ck 2: Ck-l, which means that there was no improvement in the last iteration. 

(3.17) 

Xi = rnin (X sturage, X streamoing ) (3.18) 
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3.3 Interactive Design TooI 

Our design tool, the VoD Equipment Allocation Tool, is an interactive GI'a.phical User 

Interface (GUf) application 11see! to plan the deployrnent phase of a video-on-dcrnancl (VoD) 

lletwol'k. The 1,001 includcs two compolleuts: the Topology Design 1'001 (T'DT') (developccl 

by Vinokurov in [87]) and the optirnization prograrn. The l'DT al!ows the 11se]' tn (i) crcate 

topologies allclmodels of network components and VoD infrastructures and (ii) visualize the 

design suggested by the optimization program (the solution we generate wiLh our heuristic). 

§li .•.•••. ~ 

····(.\;jdl~ 

Index: 8 

Nmne: VoD_3 

Priee: 12 

Storage Capacity, TB: 2 

Streamiflg Capacity, Gbps: 1.8 

Fig. 3.7 Model editor of the design tool. Topology of a MAN where the small 
squares represent inter-connected locations. The demand and infrastructures 
(replica) installed at each location can be customized by the user. The model 
edit or allows the user to create different models for YoD Servers or ot.her 
network components. The models arc added to a library which is loaded every 
time a new project is created. 

We describe the typical workftow to follow to design a VoD network with the too1. The 
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Index: 2 

Name: 8 

Model: : 'ISO 

Vol) Servnr: : (IO.Ok$!2.0Gbp.,1t.0r8) 

Fig. 3.8 Rcplica editor of the design tool. The object editing window allows 
the user to create and edit abjects in the topology; for examplc, the user can 
edit a replica abject by changing the type of YoD servers available. This win­
dows aIs a displays results from the optimization: Si, ti, ni, hi and bandwidth 
available ùuring off-peak hour8. 
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first step is ta crea te the lletwork topology with all the locations using the TDT Wizard or 

rnanually. The second step is to build rnodels for network components, VoD equiprnent and 

the Vo D network i tsclf. At lcast one model (cast and specifications) needs ta be craeted for 

each of the following cornponcnts befme ad ding infrastructures to the topology: network 

interface, DWDM switch, fibeL stored file, VoD server, library server (or origin) and replien 

servel'. [n Fig. :3.7, wc show the rnodd cditor that allows the creation and rnodifiration of 

all the components. When the topology and the models are created, the user can create 

replicas and origin objects using the Objects Editor (shown in Fig. 3.8). The editor allows 

the creation and modification of cach replica and the origin servel', A valid VoD network 
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includes only one origin and any number of replicas (up to one pel' location). With a valid 

network setup, il, is possible to run the optimization to determinc the optimal cquipmcnt. 

3.4 Results 

ln this section we examine the rcsults obtained from applying our heuristic to three scenarios 

using our design too!. 

Scenariol 20 differenL sets of inputs where the number of locations N in the topol­

ogy is between land 100, the number of files in the library hetween 

1000 and 10000 and the file arrivaI rate pel' week is between 0 and 100. 

The system pararneters are a11 uniformly distributed within the fo11owing 

specified ranges: demand M (1-20Gbps), startup cost A (G-37k$), YoD 

server cost B (1-53k$), streaming capacity F (1-5Gbps), storage capacity 

G (1-10TB), distance to the origin dOR (0-50km), aNerage distance to the 

client dHC (O-5km), cost of bandwidth (0-4k$jGbps) and cost of stomgn 

(0-3k$jTB); 

Scenario2 Topology of 25 locations with the system parameters uniformly distributeel 

within the sarnc ranges as in Scenariol. For cach trial, dernand J'vii. = M 

nt cach rcplica, where J'v1 varies from 2.5Gbps to 50Gb])s; 

Scenario3 Topology of 14 locations with the system pararneters uniformly distributeel 

within the same ranges as in Sccnariol. The spcc:ifications of the eql1ip­

ment and dernand at each node appear in Table ~Ll. 

Fig. 3.9(a) shows three different total network costs eTOT for Scenario1: cost of a 

eentralized design (ni = 0 for 8011 'i) and cost after the first and second step of the Integer 

Relaxation Heuristic (IRH). Fig. 3.9(b) shows the percentage reduction of the cost achievecl 

by the lnteger Relaxation Heuristic. IRH yields average improvements of 17% over the a 

centralized design. The majority of the heuristic improvement cornes from the first step. 

In Scenari02 we illustrate the impact of the demand M on the deployrnent cost. In 

Fig. 3.10(a), as the demand increases, the cost differential between the design generatcd by 

our tool and a design in which no equiprnent is installed grows substantially. Below a certain 

dernand (~ 7 - 8 G bps), ooth designs are of equal cost, which rneans that if the dernancl 

is tao low, it is no longer cost-efficient to deploy equipment. Fig. 3.10(b) compares costs of 

transport and infrastructure for a single location i, which has a startup cast A = 19k$ anel 
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Fig. 3.9 Scenario 1. (a) Throo values for the total network cost for eac11 of 
the 20 different inputs sets are shown: placing no equipmont (Centralized), 
aJter the first step of the heuristic (IRH (Step 1)) and after the lnteger Re­
laxation Heuristic (nUI (Step 2)). (b) Cost improvement from a centralized 
approach and rmlIling the first step of the Integer Relaxation IIc1ll'istic (IRH 
(Step 1)) to running the entire IRH (IRH (Stop 2)). Running IRH yields an 
average improvememt of 2.5% on Step 1 and a 17% average irnprovCllwnt on a 
contralized design. In both (a) and (h), the 20 different cases are displayed in 
inorcasing orde)' of oost of Centralized. 

wltcrc YoD serve!'s witlt 3Gbps and 2T B capacity are available at 2k:$. Provicled "Cost. of J 

YoD ::lervcr" is lower than "Cost of transport (Centrlized)", il, is bcncficial tn cache content 

at 'i. fI' the equiprnenL installed at the origin andi is identical 1'wd "Cost of transport 

(Centalized)" is srnallel' 1;han "Cast of 1 YoD server", then it is cheaper not to install au)' 

replica aud carry the entire demaud up to the origin. In the analyzed scenario, equipment 

is cheaper at 'i than at the origin, sa there is one point (M = 8.3Gbps) where the heuristic 

iudicatcs that a replica should be installed even though the cost of transport is less than 

the minimum deployment cost. Therefore, the demand and type of equiprnent not ouly 

have an impact on the fraction of the library ta cache, but a1so de termine whether or not 

caching content is even profitable. 

Table 3.1 displays the values for ni, Si and t i calculated with our tool for Scenari03. The 

total network cast for this equipment is 1,810U. Looking at the table, we notice significant 

discrepancies between the values of Si] and ti1 , which signifies that n:sourœs are wastcd 
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Fig. 3.10 Scenario 2. (a) Total network cast with dcmand Mi = Iv! at 
each replica, wberc Id varies J'rom 2.5Gbps ta 50Gbps. As 11,[ illcrcases, the 
gain from applying tbc Int.eger Relaxation Heuristic increases, The dcrnalld 
must be at !cast;::::; 7 - 8Cbps to justify the installation of equipment, (b) 
Wc consider location i with the following specifications: Al = 19k$, El = 

2k$, FI = 3Cbps, Cl = 2TE. As a function of the demand Mi we show 
the following costs: transport cost from this location when hi = 0 (Cost 
of transport (Centralized)), cost of equipment (Cost of replica (IRH)) and 
transport (Cost of transport (IRH)) when we apply our Integer Relaxation 
Heuristic (IRH) and minimum deployment cost (installing one YoD server: 

Ai+Bi)' 

because of poorly chosen equipment. For example, at location 3, the required number of 

strearning devices is almost twice the number of st orage devices, whereas the streamillg 

capacit)' of the equipment is half of the st orage capacity. We consider the effect. of makillg 

equipment available at these locations with specifications that better match storage and 

strearning needs, For exarnple, we change the value of F3 from 1 to 3 in order to have a 

closer match for S3 and h We repeat for the other three locations where ni i: 0 (7, Hl 

and 11) and adjust tbe value of B accordingly; for exarnple, B3 increases from 9k$ to 15k$ 

to support an extra 2Gbps, AIl the modifications (Bi2 , F iz and G.iz ) and new results (n.iz' 

Si2' t i2 ) are also shawn in Table 3.1. We notice that the four locations where we rnodifiecl 

the hardware now have S'i2 = t i2 , which indicates a better usage of resources. Moreover, 

beeause of the s~1Vings at these locations, it is now beneficial to install more equipment at 

locations 1 and 14 to achieve a minimal network cost. We also note that even though the 
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Table :3.1 Scenario 3. Initial specifications of 14 locations (leil). On the 
right, specifications of the locations after modifying equipment (modified val­
ues arc highlighted with the surrounding box). 

Location NIi Ai Bil Fi) Gi) ni) Si) t i ) B i2 F "2 Gi2 ni2 8i2 
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t,i2 

1 10 19 12 2 2 0 0 0 12 2 2 W~lilJ 
2 13 8 29 1 9 0 0 0 29 1 9 0 0 0 
3 18 12 9 1 2 18 17.8 11 IT§J W 2 [K] [[§J [[§J 
4 5 13 16 4 1 0 0 0 16 4 1 0 0 0 
5 9 15 19 4 2 2 0 0 19 4 2 2 [UJ [UJ 
6 2 15 22 4 3 0 0 0 22 4 3 0 0 0 
7 19 10 30 4 6 4 4.5 3.6 ~ 4 W 4 @1J @1J 
8 1 15 12 1 3 0 0 0 12 1 3 0 0 0 
9 9 18 24 2 6 0 0 0 24 2 6 0 0 0 
10 19 16 27 3 6 5 6.3 3.6 Œ]J 3 œ [K] []]] []]] 
11 19 19 24 3 5 5 6.1 4.4 Œ]J 3 œ [K] [§]J [§]J 
12 10 6 29 2 8 0 0 0 29 2 8 0 0 0 
13 8 13 35 2 10 0 0 0 35 2 10 0 0 0 
11 11 14 22 4 3 1 0 0 22 4 3 [jJ [[TI [[TI 

value of n5 has not changcd, the streaming and storage requirements have incrcascd from 

() to 1.7. This rncans that the initial solution is n5 = 2 instead of n5 = 0 and that t]w 

value of n5 is already optimal after the first step of the heuristic, it do es not change from 

o to 2 during the searching step. The new total network cost for this setup is 1,580k$, a 

12.5% improvement. It is important to stress that the priees and capacity used in thesc 

scenarios are not intended to refiect the l'cal values used in practice. However, this simple 

exarnple shows the impact of modifying the type of equipment installed at each location 

on the total deployment cast. 

3.5 Conclusion 

~etwork cost is affected not only by where replicas are located, but also what equipment 

comprises a replica. We developed a design tool (that implernents a cost function, hit ratio 

function and heuristic) to address the VoD eq'Uipment allocation problem. There are four 

principal contributions in solving that problern. We used extensive sirnulatiolls ta train a 

parametric function that generates accurate estimates of the hit ratio for given cache size, 
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library size and file arrivaI rate. We constructed a cast function based on the hit ratio 

hi, the demand Jl.1i , and the number of YoD servers ni at each location. We designed a 

two-step heuristic, called the Integer Relaxation Heuristic (IRH) , that relaxes the integer 

constraint to pro duce an initial solution and then identifies a near-optimal integer solution 

in a reduced sear'ch spacc. The tool that implements our cost function, hit ratio function 

and nUI is truly interactive because it allows designers to create and challge network models 

to generate optimft] designs in an efficient and tirncly manller. 

Om key conclusions are: (i) the Hftture of the available scrVET equiprncut has iL 1I1iljor 

impact. on the design and cost of a YoD network; and (ii) it is not al ways benuficial (,0 

cache content. It is profitable to install YoD scrvcrs (regardless of the library sizc) if the 

demand at the givcn location is significant. On the other hand, cven if the library has 

tens of thousands of assets, if the clernand is tao low, no arnount of caching can reduce 

the nctwork cost. Accounting for the avai1ab1e equipment during the YoD network design 

is critica1 as the choice of equiprnent has a direct impact on the minimum demand that 

makcs caching profitable. :vroreover, se1ecting equipment that jointly matches streamillg 

and storage requirements at each location can resu1t in substantia1 reductions in network 

cost; we provide an exarnple in Section 3.4 which illustrates that only a few equiprnent 

changes can have a major impact. 

Tn this chapter, we adressed the prob1em of determining the number of VoD servers 

10 insLall at each location when the streaming and stomge capacity at each site was fix(~d 

prior to the optirni:;-:ation. In the next chapter, we relax this assumption and definc El new 

problem where we are given a set of available VoD servers that; can be insta.lled al an)' 

locatioIl. This extellsion of the YoD equiprnent allocation problern consis1.s of detennining 

both the number and mode! of YoD servers to install at each location, such that the total 

cost is minirnized. 
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Chapter 4 

YoD Servers Model Selection 

Ln Chapter 3, we presentcd the equiprnent allocation problern and our approach to solvillg 

iL bascd on the assmnption tllat a fixed, single and predetermined type of VoD servel' was 

availnble aL eaeh location. As a, result of rnaking this simplifying assurnption, if multiple 

modcls are availahle, Cl, network pLumer has to iteratively change the available server mode! 

at varions locatiolls llntil the network deployment cast cannot be furLher decreascd. We 

showed how it is possible to identify which locations have suboptimal YoD servel' mode! 

by inspecting the discrepancy between the number of required and insta,llcd streaming and 

storagc devices. A large difference is an indication of wasted resources, and hence of a bad 

choice of servel' model. The exercise of identifying suboptimal VoD servel' rnodels is not 

trivial and can becorne very tedious for a large network. 

In this chapter, we relax the assurnption that we must pre-determine the availablc 

type of VoD servel' for each location. Instead, we assume that any servel' model from a 

given set can be chosen for each location. However, we still restrict Glu'selves 1,0 the case 

wlwre a single type of server is installed at each location (one cannot rnix sever al type8 of 

server'). This is motivated by practical considerations such as the purchase (olle vendor), 

the physical installation (rack of samc scrvers) or the software rnana,gernent (,mme OS) of' 

the servers, We formulatc a new problem statement and propose two heuristics (IRH and 

rCS) for finding approxirnate 801utions. 
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4.1 Problem Staternent 

We address the problern of deterrnining not only the number, but a1so the model of the 

VoD servers at each potentiaJ replie a location. The assurnptions for this problem are the 

idClltieal 1;0 those described in Chapter 3 (Section 3.1). To solve thi8 problern, we a180 

l'equire the specification of a set of available YoD servel' models W = {'Wj : j = 1, ... , \IV} 

where 'Wj is a YoD server with streaming capacity Fj Gbps, storage capacity Gj TB and unit 

cost Bj U. We define the sets N = {ni: i = 1, ... ,N} and V = {ni E W : i = 1, ... ,N} 

where ni is the number and Vi is the model of the servers installed at location i. The new 

optirnization problem is expressed as follows: 

{N*, V*} = arg minCTOTv(N) 
N,V 

where CTOTv(N) is the total cast of the network CTOT for a fixed set V. 

4.2 Cost function 

(4.1) 

\Ve adopt an approach to solving t11is ncw equipnwnt allocatioll problelll different l'rom 

that presented in Chapter 3. Instead of expressing cast as a fllnction of the fraction of 

the li brary cached at each location Xi, we optirnize the number of YoD servers ni directly. 

llccall that the total cast CroT is the sum of the cast of infrastructures, CT, and the cost 

of transport, Cs< 

N 

CS' = L !2(h.i , Mi) 

N 

CT = il (no) + L il (ni) ( 4.2) 
i=l 

N N 

CTOT = il (no) + Lf1(ni) + L!2(hi,Mi) 
i=l i=l 

Ta derive an expression for CTOT solely in terms of ni for i = 1, ... ,N, we resolve hi 

and no as fUllctions of ni (Mi is assumed to be a fixed parameter). Vve develop expressions 

to calculate hi and no for Cl fixed N. The hit ratio at a location is lirnited by either the 

strearning or the storage capacity. The demand at the replica hi . A1i cannot exceed the 
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strearning capacity ni . Fi, We calculate the cache size ratio x.i from the storage capacity 

ni' Ci. Using the value of x.i just calculated and (3.3), the equation for ii presented in the 

previous chapter, wc detcrmine the maximum hit ratio hi achievable for a given storag(~ 

capadty. We expresll hi as h(ni): 

h,; = min [ni' Fi, il ( n~. Ci. ,Y, z)l = h(n,;) 
. J\!!.i y. Ile Bize 

(4.3) 

TI18 nlll1lber of servon.; l'equirud at the origin, n", is also constmir18d by either strearnillg 

or Iltorage. Tho stmage capacity no . Co must be at least oqual to the nUlount of storagc 

Ileecled for a library of Y objects. The origin must also have enough streaming capacity 

no . F~ to hanclle the cache misses [rom al! the replicas equal to the sum of (1 - hi) . Mi 

for ail locations 'i. In (4.4), wo ddino no as f4(ni) by substituting hi with the expression in 

( 4.3). 

(4.4) 

By replacing the equations for no and hi in the initial definition of eTOT, we cler ive a 

new expression solely in terrns of ni: 

N 

CrOT = fI (.t4(N)) + L fi (ni) + f2 (f3 (n.i)) (1.5) 
'i=1 

4.3 Description of HeurÏstics 

The must ohvious approach to fillCl the solution that mlIllmlZCS CrOT is to pcrform a 

complete se arch in the solution space. However, this procedure, called Full Search (FS), 

is time consuming and not scalable. In this section, we quickly describe the full search 

and present four heuristics that can determine a near-optimal solution to the equipment 

allocation problem in a reasonable amount of time. 

4.3.1 Full Search (FS) 

The Full Search is a very straightforward approach that consists of trying aU the possible 

points in the solution space. We reduce this space by calculating the maximum number 
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of servers it is worth installing at a given location using (4.6). We define ub = {ub i : 

'i = 1, ... ,N} where 'ILbi is the upper-bound on the number of servers that repl'esents the 

uumber of servers required to store the entire library and handle 100% of the requests 

(hi = 1.0). 

, b _ (Mi y. file size) 
LL i - max -, G 

Fi 'i 
(4.6) 

For a given V, t.he boundaries of the solution space are N = 0 to ub where 0 = 
{ni = 0 : i = l, .. " N}. To complete the full search, all the possible combinations of V 

must FLlso be tri(~d. Althollgh this procedure is gUFLl'antced to find the optimal solution, 

it is vcry computationally expensive and the amount of tirne to scarch the entire space 

grows exponelltially with t.he si:;,() of the network (cornplexity is discussccl in more dctai! in 

Sect.ion 4,1). 

4.3.2 Central or F'ully Distributed Heuristic (CoFDH) 

1 Ccent'f'Q.l = 00; 

2 fm'allloco,tions i do /* centralized design, Ncentra.l = 0 */ 
3 l 'ni = 0; 
4 end 
5 foraIl models 'Wj E W do /* pick model at origin */ 

Set Vi: v; = 'Wj for i = 1, ... ,N; 6 

7 caJculate cost CroT 1 (Nœrdml); 
v 

8 if C TOT 1 (Ncent'('ol) < Ccentml then CCent'f'a.l = CTOT 1 (Neent'f'al) a,ncl Vœnl"'o.l = Vi ; 
V v 

9 end 

Algorithm 4.1: Central Heuristic 

The Central or Fully Distributed Heuristic sirnply calculates the cost of a centralizccl 

design (Vi : ni = 0) and a fully distributed design (vi : ni = 'ab'i) for eacll availablü 

YoD server model in W and picks the cheapest design. The Cent al part of the beuristic 

is described in Algorithrn 4.1; the Fully Distributed in Algorithrn 4.2. This heuristic is 

straight-forward and highly suboptirnal, but it provides an upper-bound that cau used as 

a cornparison base for other approaches. 
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1 CI"f) = 00; 
2 forall nwdels Wj E W do 
a foral] location,,, fi do 

: 1 :;;: ':~~ /* fully distributed, N' = ub */; 
6 end 
7 calculate cost CTOT 1 (N'); 

v 
if C'l'OT 1 (N') < CPD then 

v 
CPD = CTOT 1 (N'), N pD = N', VFJ) = Vi 

V 
8 

9 end 

Algorithrn 4.2: Fully Distributed Heuristic 

4.3.3 Greedy Search (GS) 

We define a topology in the diseretc solution spaee where eaeh solution is eonnected to its 

lleighbouring solutions, In this case, a neighbour consists of adding one servel' at one of 

the locations or changing the server model of the origin or any location. Creedy Search 

(CS) is a searching heuristic that explores aIl neighbouring nodes and selects the one that 

yields the best solution at every iteration without considering the subsequellt steps [80]. 

TIte scarch coutirmcs until it. n~achcs a local maximum (or rninimurn): no ncighbours offcr 

a b(~tt.(~l solution than the current one. We define N = 0 as our initial solution, i.e" !l0 

ser'vers installed at any of the locations. Then, at each iteration, the algorithrn tries to place 

a servel' at each of the N locations and selects the placement that yields the lower cost. 

Because we also need to consider the servel' model, we adapted the greedy search to our new 

equiprnent allocation problem by making a few modifications, as shown in Algorithm 4.~3. 

For each node, not only do we try each of the N locations (lines 5-7), but also the 

different server models for both the origin server (lines 8-9) and the cnrrent location (lines 

10-11). Therefore, each solution has NW2 neighbonrs; we select the origin model VI, the 

location 'i and the model at that location Vi that yield the lowest cost at each iteration, 

Note that with this procedure, the value of VI and Vi can change at every iteration, 

Typically, if it is impossible to find a neighbour yielding a better solution than the 

current one, the search stops, To perform a more thorough search, we wait for more than 

one (I = 3,5, 10,20, etc.) iteration over which the cost does not decrease before stoppillg 

the search, Let Ck be the minimum eost after placing k servers (k iterations), then the 

search stops when C j 2: Cj~1 \:Ij E k: - 1+1. . ,k, Finally, another tactic to explore a larger 
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l Sd Cos:::- 00, Nos: ni = 0 and VoS': Vi = Wl for i = 1, ... , N; 
2 Set Co = Cos, No = Nos, Vo = VoS' and k = 0; 
a repcat 1* cost has not decreased for l i terations *1 
-1 k-H-; 
5 Set Ck = 00, N = N k - 1 and V = Vk - 1 ; 

6 foraU locations i do 
7 N' = N, Vi = V; 
8 

9 

10 

11 

12 

la 

14 

15 

16 

n: = ni + 1 1* add one server at ~ *1; 
forall models Wj E W do 

v; = Wj 1* model at origin *1; 
forall madel" Wk E W do 

v~ = Wk 1* model at location i *1; 
calculatc cost CTOT 1 (N'); 

v 
if C'l'07'v

' 
(N') < CoS' then Cos = CrOT Vi , Nos = N', VOS = Vi 

if CTC)'/, 1 (N') < Ck then Ck = CTOT " NA = N', VA == Vi ; 
V v 

end 
17 end 
]8 end 

19 until Cj 2::: C j - 1 V) E k; - J + l. . . k; 

Algorithrn 4.3: Greedy Search (GS) 
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part of the tiolution space is to pcrform two different greedy scarches: one where servers arc 

added to an initial solution N = 0 and a second one that removes servers from an initial 

solution N = ub). For the second search, line 5 of Aigorithm 4.3 becomcs n: = ni -1. We 

then select the solution that pro duces the lowest cost. 

4.3.4 Integer Relaxation Heuristic (IRH) 

Thc Integer Relaxation Heuristic presented in Aigorithm 4.4 is a modified version of the 

IR}! prt~sented in Section 3.'2.3 of the previous cha.pter. As before, the first st.ep is 1,0 fincl 

an initial non-integcr solution and the second step is to scarch its neighborhood for a near­

optimal illteger solution. Howevcr, both steps have been adapted to this I1ew problclll. 

In the first titep (lines 1-l:~), wc starl, by Hnding a non-integer solution for eacb servel' 

model using a constmined nonlinear optimization. Then, we caJculate the cost associatecl 

with eaclt replica (CT, + CSOR) and determine the model that rninimizes this cost for each 

location. We complete the initial solution by dctermining the best servel' model to install al, 

the ol'igin (lines 9-13). In the second step (lines 14-42), we perforrn two different searches 

to fine! a Ilear-optilllai integer solution. In the fiŒt one (lines 14-20), wc iteratively tict 

ni = 0 at each location to makc sure il, is profitable to setup a repli ca. The second search 

(lines 27-42) is identical 1,0 the one described in Section 3.2.3: we itel'atively try to l'emove 

or add up to two servers al, each location until we find a local minimum. 

4.3.5 Improved Greedy Sem'ch (IGS) 

As in the Integer Relaxation Heuristic, the Improved Gl'eedy Search is diviclcd iuto two 

steps: determining an initial solution and seal'ching its sul'roundings for a better one. [n 

IGS, bath steps are inspired by the greedy sem·ch. Through tiimulatioIlti and resultti froUl 

Chapt el' 3, we noticed that the rmmber of installed se l'vers al, a givell location is cither 

IlOlle or very close 1,0 the upper-bound. During the first step of the hcurlt:itic (lines 7-17 0(' 

Aigorithrn 4.5), we iteratively acld servers in a greedy-fashion sta.rting frorn a centraliz(~c1 

design hy setting ni = u,bi nt the location that achieves the lowest c:ost. Wc repent thii'i 

proccss of aclding vbi servers at a chosen location such that cost is minirnized after eacl! 

itcration, nntil it is no longer possible to decrease the cost. This first stop is repeétted for 

each YoD servel' model at the origin and the other locations (lines 1-6) and al, that point, we 

have determined a.n initial integer solution and the first step is complete. The second stcp 
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1 forall TT/odcl" Wj E W do 
2 1 Set V;: '1< == 'lU) for; -- l, ' .. ,N; 
a ObtaiIJ N j by perfonnillg (l. constrained nonlillear optirnizatioll 011 CT(Yl'v

j
; 

4 end 
5 forall locations i do 
6 1 Set Vi = 'lUj and ni = nj such that CTi + CSORi is minimi::œd; 
7 end 
8 Set CmIl = 00, N IRH = N; 
9 foraU modcls 'Wj E W do 

H) Set V v = 'Wj; 

11 Calculate cost for CTOTv (N); 
12 if C TOTv < CIlW then CIIUi = CTOTv ' VmH = V 
la end 
14 Set Co = CTEur and k = 0; 
15 l'epeat 
]6 k + +; 
17 Set N = N rlUI ; 

18 forall locations i do 
19 Set N' = N and n~ = 0; 
20 Calculate cost CroTv(N'); 
21 if CTOTv(N') < C1RH then C1RH = CTOTv(N'), N JRH = N' ; 
22 end 
2:1 CA: = CI 1/B; 

24 until CA: ~ Ck - 1 

25 Set Co = CTI/.H and k = 0; 
26 repeat 
27 k + +; 
28 Set N = N1RH ; 

29 

30 

31 

32 

3:1 

34 

forall locationsi do 
Set N' =N; 
for k = ni ± 2 do 

Set ni = k· ., , 
Calculate cost CTOTv (N'); 
if CTOTv(N' ) < CmIl then CmH = CTOTv(N'), N IIW = N' 

35 end 
36 end 
37 Ck=CmH ; 

38 until Ck 2': Ck - 1 

Algorithm 4.4: Integer Relaxation Heuristic (IRH) 

52 
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1 Set C/C7S' = 00; 

2 forall 'fT/.odels lU) C: W do 
3 Set Vi: v; = w.; am! ca!c:ulate upper bounds 'LLb i for i = l, 0 • 0 ,N ; 
4 fm'aIl Tnodels WI.; E W do 
5 

6 

7 

8 

9 

10 

11 

Set 'u;) = 'Wk:; 

Set Co = 00 and 1 = 0; 
repeat 

1 + +; 
Set NI =N; 
foraU locations i do 

Set n: = 'LLb i and calculate CTOT 1 (NI); 
v 

12 

13 

14 

if CTOT 1 (NI) < CIGS then CIGS = CTOT l' N IGS = NI, VIGS = Vi 
v v 

15 

end 
Set Cl = CJ(]S; 

until Cl 2: Cl- 1 ; 

16 end 
17 end 
18 Set Co = CIGS, No = NIGS' and Vo = VIGS ; 
19 repeat /* cast has not decreased for l i terations */ 
20 k++; 
21 Set Ck = 00, N = Nk - 1 and V = Vk - 1 ; 

22 foraU locations i do 

25 

for 'l'TI. = - 1 arul TrI = 1 do 
Set NI = N and n: = ni + m; 
caJculate cost CTOTv (NI); 

26 if CTOTv(NI) < CIGS then CIGS = CroT l' N IGS = NI, V1GS = Vi 
v 

27 if CTOTv(NI) < Ck then Ck = CTOT l' N k = NI, Vk = Vi ; 
V 

28 end 
29 end 
30 until Cj 2: Cj - 1 Vj E k - l + 1. 0 ok or Cj 2: CIGS Vj E k - 21 + 1. 0 .k; 

Aigorithm 4,5: lmproved Greedy Search (lGS) 

53 
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(lines 20-36), just like in the Integer Relaxation Heuristic, is an exploration procedure in 

the neighbourhood of the initial solution. In a greedy-type approach, at iteration k we add 

or remove one servel' to the initial solution at the location that minimizes the cast Ch. Wc 

stop the search WlH:'Il Cj 2': C j1 'ij E k - l + l. . . k or when C j 2': CWS' 'ij E k - 2I + l. . . k 

(minimulIl cosl; bas not decreased for 2I iterations). Because we increase and decrcase the 

Humber of servers, sorne solutions cau be revisitcd dllring the searching procedure. For 

thaL roasou, wc add tbu second terrnination conditioll to guarantc() the cOllvergmlcc of t,lw 

heuriHtic (1,0 avoicl fI, Jonp ill the solution space topoJogy). 

4.4 Complexity Analysis 

In this section, we anaJyze the worst-case complexity, WCC, of each of the heuristic pre­

sentec1 ill the previolls section. We define the worst-case complexity as the maximum 

Humber of op(~ratioJls t11at the hemistics can perform before terminating. The expressions 

presentcd are functions of the number of locations N, number of VoD servel' models W 

and the maximum of ail upper bounds 'Ubi , Urnu.x = rnax(ub). To furtllCr simplify thes(~ 

expressions, we assume that 'Ubi = Umax for aIl locations; this is reasonable for a network 

where the demand is distributed evenly among aIl the locations. 

4.4.1 1"S 

In the full search, aIl models must be evaluated at aIl locations (W N
) for aIl the possible 

number of servers (TI~ 'Ub·i ). When we assume 'Ubi = Urrwx for aIl locations, the maximum 

number of iterations for FS is: 

N 

vVCCPS' = W N II ubi = W N 
. UrrUIJ

N 

(4.7) 

ln the case of the full search, this expression is not the worst-case scenario, but the 

actua1 number of iterations for every search. It is exponential in the size of the network, 

N, indicating that it is impractical to use this method for most scenarios. This justifies 

the developrnent of the heuristics presented in this chapter. 
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4.4.2 CoFDH 

CoFDH was writtell to generate an upper-bound and a cornparison base for the solutions 

produced by the other heuristics. It is trivial and has low complexity; running either the 

central or the fully distributed heuristic only requires a number of iterations equal to W 

because the value of N is either 0 (celltralized) or ub (fully distributed). 

WCCCoFDH = 2W (4.8) 

4.1.3 GS 

Olle iteratioll of the grcedy 8earch of Algorithrn 4.3 consists of trying each model at each 

location and the origin: N· 1;\12 operations. The worst-case scenario is that the best solution 

is a fully di8tributed design (ni = ub.; for all locations) which requires L~ 'Libi iterations if 

the algorithm reaches that solution. 

N 

TVCCcS' = L'Lib; . (N . W 2
) = (N . Urna;rJ . (N . W 2

) 
(4.9) 

Under our simplifying a8sumptions, the complexity of CS is a second degree polynomial 

in N and W and linear in Urnax . 

4.4.4 IRH 

The first stcp of IRH consists of performing a constrained nonlinear optimization for each 

YoD server mode!. This type of optimization is performed using a sequential quadratic 

programrning (SQP) [85,86] algorithm which has a complexity of O(N'2). With TV more 

operatiolls, wc clcterrninc the mode! al, the origin. The finit part of the scarching stop (lines 

11-18 of Algorithm 4.4) of the heuristic requires going through each location once until the 

cost docs not decrease. The worst-case scenario is starting from a solution N with ni i= 0 

for alllocations and finishillg with N = 0; which requires up to N iterations. In the secolle! 

part, cach iteration rcqllircs five operations (trying each of n.; ± 2) for each location. The 

worst-case number of iterations i8 L~ ub i if we start from N = 0 and terminate the search 
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with N ~ ub or vico-versa. 

4.4.5 1GS 

N 

WGG IIUI = (W· N 2 + W) + (N2
) + 5N L'u};, 

5f> 

(4.10) 

Each itcratioll of the first step of IGS has the sarne cornplexity as a GS iteration, but the 

maximum number of iterations is N because we add 'ub i servers at a Urne instead of one. 

In one iteration of the searching phase, two operations are performed for each location. 

The worst-case is the same as the one described in IRH: going from fully distributed to 

centmlized or vice-versa. 

N 

WCCIGS = (W 2N 2
) + 2NLubi 

4.4.6 Worst-case heuristic comparison 

(4.11) 

We complete our ana.lysis of the cornplexity by showillg in Table 4.1 the wec of a11 the 

heuristics described in this section. From this table, it is clear that a full soarch approach 

is unsuitable for our problern; even srnaller problerns such as N = 5, W = 6 and UTr/ax = 20 

take Oll the order of lOf) operations. A large value of Urnax is an indication of large worst-case 

dernand Ah files of large size or that the model is sim ply unfit for the specifie location. The 

three other proposed approaches GS, IRH and IGS have reasonable worst-case complexity 

even for cornplex problems like N = 100, W = 6 and Urnax = 20. We note that for most 

sarnple scenarios shown, the WCC of IRH and IGS together is stilliower than running the 

GS. This leads us to think that it is possible to perform both searches and choose the best 

of the two solutions. 

It is important to stress that the values and the expressions derived in this section 

are worst-case estimates and do not show the average complexity of these heuristics. The 

objectives were to provide an estimate of the maximum number of operations before COIl-
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Tabln 4.1 Worst-casc cOlllploxity for given N, W and U"w,x' 

N W Umu;c WCCPS' WCCCoFDH WCCGS' WCC1RH WCC1GS' 
5 2 5 100,000 4 500 202 350 

5 2 20 102,400,000 4 2,000 577 1,100 

5 6 5 21,300,000 12 4,500 306 1,]50 

5 6 20 2.4883. 109 12 18,000 681 1,900 

50 2 5 1 . 1050 4 50,000 20,002 35,000 

50 2 20 1.2677 . 1080 4 200,000 57,502 110,000 

50 6 5 7.179· 1073 12 450,000 30,006 115,000 

50 6 20 9.1004 . ]OJO:\ 12 1,800,000 67,506 190,000 

100 2 20 1 . lO100 4 200,000 80,002 140,000 

100 2 20 1.6069 . 10160 4 800,000 230,002 440,000 

100 6 5 5.1538·101<17 12 1,800,000 120,006 460,000 

100 6 20 8.2818.10207 12 7,200,000 270,006 760,000 

vergenœ of our hellrist.ic:s and confirm our intuition that the full searc:h is llnfit 1,0 solve 

this problem. The actual computational requirements are different than those estimates 

due 1,0 the different complexities of each iterations. In the next section, we compare the 

requirernents of each heuristic by rneasuring the CPU time used during our simulations. 

4.5 Simulation Experiments 

In this section, wc present our simulation results obtained by applying our heuristics to 

different networks. Each test network is defined by the constant variables in Table 4.2 

and choosing values for the other network parameters from uniform distributions with the 

ranges specified in Table 4.3. Simulations were executed on a AMD Athlon 3000+ wit.h ] 

GB of oez Premier Series 400 MHz Dual Channel memory. 

ln our firs!. set of tests, wc generated networks with the number of locat.ions N E 

{l, ... ,5} and t.he nurnber server model W = 1 and another series with N = 3 ane! 

y/v E {l, 2, 3}. Wc choose srnall net.works to compare the complexity and cost of our 

heuristics with the full sem'ch; other sett.ings with larger inputs take too mu ch tirne to solve 

(as shown in the previous section). 

Tn Fig. 4.1, we show the computational time in seconds on a log-scale averaged for 30 

different networb with the saIlle N and W. In both plots, we see the exponential behavior 
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Table 4.2 Values of constant vari­
ables used for the simulations. 

Table 4.3 Range of the 
used for the simulations. 

variables 

Variable Value Variable Min Max 

C IF 10 k$ dOR (km) 0 50 

CmvDlvI 25 U dRC (km) 0 5 
C LA 10 U Y (files) 1000 10000 

Cf 0.006 k$/km Z (files/week) 0 100 
dwma;r; 16 priceGbps (U/Gbps) 0 4 

c 10 Gbps priceTB (k$/TB) 0 3 
TnaXamp 75 km A (k$) 6 36 
bit rate 3.75 Mbps F (Gbps) 1 5 
duration 5400 s G (TB) 1 11 
file size 2.53 GB M (Gbps) 1 20 

10
3 ~====~----~------~----~ 10

3 

10 

-B-IRH 
-é-IGS 
-é-GS 

FS 

234 
Number of locations (N) for W=1 

10
2 

10
1 

10 

5 2 
Number of models (W) for N=3 

Fig. 4.1 Computational Ume in seconds required to find a solution by each of 
the heuristics averaged over 30 runs shown on a log-scale. Computational time 
of Full Sem'ch (FS) grows exponentially with the size of the network. Grcedy 
Search (GS), Integer Relaxation Heuristic (IRH) and Improved Groedy Search 
(lGS) all provide solutions within 0.1 seconds. 

58 

3 

of the full search whoreas the other heuristics show a very smaU increase in CPU time. Wc 

note Utat the computation al time of the greedy-based heuristics (GS and rGS) is one order 

of magllitude lower than the intcger relaxation approach, but both are nevertheless below 
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0.1 seconds for the sirnulatecl networks. 
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Fig. 4.2 H.atio between the cost of the heuristics solution and the full seareh 
(optimal) solution averageù over 30 runs. 

[n Fig. 4.2, we show the performance of our heuristics by dividing the cost of the 

solution by the optimal solution provided by the full search. For these srnall networks, 

lnteger Relaxation Heuristic and lmproved Greedy Search perform within 4% of the optimal 

solution. For all values of N aIlcl W, both IRH and lGS perfonn better thaIl the Greccly 

Search, which is within 8% of the Full Search solution. 

ln this next. set. of t.ests, wc compare the complexity and the performance for nctworks 

with N = 25 to 100 pot.ential replica locations and W = 2 1,0 10 server rnodels. Wc 

use Central or Fully Distributed Heuristic (CoFDH) 1,0 measure the performance of our 

heuristics because it is impossible to determine the optimal solution with the Full Search. 

CoFDH produces a very simple and quick solution by choosing the best our of a l'ully 

cent.ralized (no replicas) and a l'ully distributed design. 

In Fig. 4.3, we show values (averaged over 15 mns) of the ratio between the cost of 

Integer Relaxation Heurist.ic, lmproved Greedy Search and Greedy Search and the cost of 

CoFDH. Whereas Greedy Search is actually very close 1,0 the cost produced by CoFDH, 

the otf18r two heuristics generate solutions that cost 2-5% less. It is not clear l'rom those 

plot.s whether Integer Relaxat.ion Heuristic or lmproved Greedy Search performs better. By 



4 VoD Servers Model Selection no 

I o 
u­
o 
Ü 096 '0 . 
c 
o 
U 
~ 0.94 ..-
en 
o 

ü 

0.92 

0.9 
25 

~~~-~ -B-IRH 
IGS 

±IRH+IGS 
-e-GS 
___ L-___ L __ .--.....J._~ _ _'_ 

40 55 70 85 
Number of locations (N) for W=10 

L-__ ~ _______ ..L _____ ._._ . ..J... __ •• ____ ••• 

100 2 4 6 8 10 
Number of models (W) for N=100 

Fig. 4.3 Ratio betwccn the cost of the heuristics solution and CoFDH av­
eraged ove!' 25 runs. IRH+IGS is the average of the minimum value bctween 
[RH and lGS for all rllns. 

combining both (choosing the best solution of the two), we obtain a slightly better heuristic 

(lRH + lOS): 4-6% of CoFDH. In the lcft panel, we notice the downward trend of the cost 

fraction as the number of locations in the network increases because more modifications to 

the CoFDH design can be made to improve cost. 

For the same set of tests, we also show the complexity expressed as the computation al 

time in seconds in Fig. 4.4 and the number of iterations (cost function evaluatiolls) to obtain 

a solution ill Fig. 4.5. As suggested by the Worst-Case Complexity analysis in section 4.4, 

the grœdy search (OS) takes rnany more iterations to find a solution than om other two 

heuristics Integer Relaxation Heuristic and Improved Orcedy Search. However, even if the 

number of iterations for Oreecly Search is mu ch larger than for IRH, their computation al 

tirne is comparable in the left panel of Fig. 4.4. This is an indication that lRH's itcrations 

take more time to execute than those in the greedy approaches (CS and ICS). 

ln Table 4.1, the WCC is lower for lnteger Relaxation Heuristic than for the lmprovecl 

Creedy Scarch, but for the most complex network we simulated, lOS pro duces a solution 

in less than haH a minute and 50,000 iterations compared to the four minutes and 100,000 

iterations taken by nUl. The lnteger Relaxation Heuristic was the slowest of the tested 

heuristics, but il, still converges in a reasonable amount of time. Since the computation 
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tirnc of Irnproved Greedy Search is so low, we can combine IR.H and lGS and obtain a 

solution in a tirnely fashion. 
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Finally, wc focuscd on the nctworks with six servel' rnodcls (sirnilar bdl3.viour was ob­

served for other values of W) 1,0 analyze the hit ratio, ratio of locations with replicas, 

average dernand at replica locations and load on the origin servel'. Fig. 4.6 and Fig. 4.7 

show the results and provide interesting insights on the solution generated by the hcuris­

tics. The left panel of Fig. 4.6 shows that for networks of any size whcre dernand is not 

uniformly distributcd among alllocations (i.e, the dernand at each location iB different), the 

percent age of locations where a replie a will be deployed is below 40% for both heuristics. 

Although a case where the demand load is evenly shared arnong aIl the locations (aIl Mi are 

approximatelyequal) is more plausible, this result means that it is not always advantageoUi-; 

to cache content. Whether it is because the demand is 1,00 low or the site is 1,00 close 1,0 

the origin, it might be more cost-effective to assume the entire loa.d from a group of clients 

directly at the origin. An impact of this low percentage is shown in Table 4.4 where wc 

show the number of servers insta.lled at the origin. Because the fraction of locations wherc 

replicas are instaIled remains constant for any value of N, the total number of sites for 

which the origin must assume the demand grows as the network becomes larger. 
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In the right panel of Fig. 4.6, we display the averaged hit ratio al, aIl the locations 

whcrc content was cached. The average hit ratio of 90% suggests that the optimal numbcr 

of servers 1,0 install at a rcplica is often very close ta ubi . This is cxplained by both our 

popularity model and the ratio between the startup cast of a location (A) and the cast 

incurrecl in transportation to the origin. From our popularity model, we know that it i8 

possible to achieve a high hit ratio with a relatively srnall arnount. of storage. Dependiug 

on the actual demand and the type of servel' inst.alled, the st.reaming capacit.y is usually 



4 YoD Servers Madel Selection 

the limiting factor, whic:h means tJmt storage is often amülable to incretlse the hit ratio t,o 

the values we observe in this plot. 

Wc display thc fraction of the total network demand at the rcplica locations in the lcft 

panel of Fig. 4.7. Wc show two lines for each heuristic: the sum of the dcrnands !I/fi ai 

each locntioll where a, repliea il:1 installed (Entire Load) and the actual part of the load 

(Mi' hJ handled by the roplica (Served). For both Greedy Search and the best of Integer 

n .. elaxatioll Heuril:1tic and Improved Greedy Search (lRH + IGS), the performance is very 

similar as a result of the high average hit ratio (~ 90%). We compare this ratio with 

the fraction of replicas in the network (left panel of Fig. 4.6). For GS, the difference is 

not l:1ignificant, but in the cal:1e of lRH + lGS the perccntagc of the network load Imndled 

at replicas is approxirnately ten-twenty percent higher. This signifies that the locations 

chosen by lRH+lGS to host replicas generally have a high dernalld. This interpretation 

i8 confirrned in the right panel of Fig. 4.7 in which we depict the difference between tlw 

average clemanc! al, replica locations and locations where no caching i8 perfonned. Whereas 

thern is only a marginal diHercnce in the GS case, the average dernand al; replica sitos in th{) 

IRH+l GS solntiolls is almost twice the average demand of the other locations. The solutions 

genmated by cornbining Tnteger Relaxation Heuristic and Irnproved Greedy Sea,rch have a 

Yl1llch lower total cast than the GS solutions, indicating that it is more cost-dfirient to 

install replicas at locations where demand is high and transport the entire load of locations 

with low demand to the origin. 

4.6 YoD in AAPN 

Given that we proposed a solution to the VoD equiprnent allocation pmblern, we are now 

interested in validating our design choices by using the agile all-photonic network (AAPN) 

topology as an example. We also look at the advantages and disadvantages of using an 

AAPN as the core/backbone network to a video-on-demand deployment and describe the 

design pro cess of such a network. 

4.6.1 AAPN Architecture 

An AAPN is a network in which the transmission and the switching through the core are 

done purely in the optica.! dornain (all-photonic) [10,88]. It is built using an overlaid star 

topology which connects aH the edge nodes together using central core nodes (Fig. 4.8). 
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Fig. 4.8 The three-layer design of an agile all-photonic network (AAPN) 
includes edge nodes (switches that perform the O-E-O conversion), selec­
tor /multiplexor (Scl/Mux) devices, and all-photonic switches as the core 
nodes. The edge nodes are formed into sets and each set is connccted 1.0 

one or more Sel/Mux dcvices. Each Scl/Mux device is conncctcd via DWDM 
equipment to one core node. (Rcprodllccd from [10]) 
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Au edge node is the interface between the AAPN and the opto-elcctronic networks outsidc 

of the AAPN. Thp,s(~ nodes can support a different number of wavd(mgths nwaning that 

they do not aIl have necessarily the same traffic capacity. However, each node must be 

abl(~ 1,0 support a c:(-~rtain (llllount of traffic with every other edge node. Ali these edgc 

nodes are connected to each other through more than one core nodes (for robustness). The 

core nodes are basically optical switches with an opto-electronic interface for control. The 

clients are connected to a single edge node (or second one for backup) directly or through 

a switch, which is the case in Fig. 4.8. 

4.6.2 Analysis 

The need for substantial bandwidth in the core of the network makes the AAPN topology 

a sensible candidate to support an application like video-on-demand. Based on its topology 

and our proposed architecture (see Section 3.1), we propose to collocate the replica servers 
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with the edge HoLles of the AAPN where tho l'oplica-client path is outside of the AAPN. 

The origin servel' is deployed near an edge-node co11ocatod with the core node. Havillg 

the transmission path used to stream videos across larger distances (cache misses) anel 

distribute (update) content at the replicas, traversing the AAPN is a clear advantage anc! 

shonld result in significant improvement in performance and reclnction in cosL. Becallsc 

re-rollting a cache miss to the origin or any other replica is equivalcnt in an AAPN, wc 

suggest to implcment a rncchmüsl1l to share the load arnong a11 the replicas and the origin. 

Wc consider two dif'f'Ct'Cllt scenarios for the design of a VoD neLwork ove!' au AAf>N. 

Fin;t, we cOllsiclm tJw cas(~ of' an exisLing AA P N where the edgc am! core llocIe locatio!ls 

have all'cady bcell decidecl. In t.Iwt CeLse, VoD traflic is a110cated Ci fraction of the ove rai 1 

AA PN traillc, thereby pu tting ft constraint on the load from the origin t;o the replicas. 

We enforce this constraint by plltting a lower-bound on the hit ratio of ench replicn basncl 

on the dernand ane! caleulate the minimum number of YoD ser'vers to achieve such a bit 

ratio. Thi8 dfcctively rcduccs the 80lution space becausc the valid range for thc numbcr 

of servers at eaeh location is smaller. The other case is the one where the AAPN and the 

YoD network arc jointly designed. As it is anticipatcd that the video-on-demand lletwork 

Rccounts for a suLstantial portion of the AAPN traffic, it influences the location of the 

AAPN edgc nocles. Thn origin servers definitcly gennrate a large amount of t.raffic for th(~ 

distribution of ob.iects to replica servcrs or for the delivery to users. Thus, it rnakes sense 

to collocate AAPN edge nodes with origin servers. Also, the users for a YoD sysLem arc 

mainly ]ocated in residential areas, which is typieally not the main source for other types 

of rw!'wOl'k traHie, so the prescnœ of a video-on-dernand serviœ changes the traffic pattcT'll 

in the network. 

4.7 Concluding rerrlarks 

In tbis chapter, we defined an extension of the VoD equipment allocation pT'OblcTn describecl 

in Chapter 3. Instead of considcring fixed and pre-determined strearning and storage ea­

paciLy al, each location, we require the specification of a set of available YoD servers rnodels. 

The optimization problern consists of choosing the number and type of YoD servers to in­

sta11 at each potential location in the network such that cost is minimized. We moclified 

the total cost expression defined in Section 3.2.2 to make it a function of the number of 

ser'vers ni instead of the cache size ratio Xi' Solving this problem with a complete sear'ch is 
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possible, lm! for lletworks or more than five locations and a set of availablc Illodels large)' 

tl1au thrce the computa.tional requirernents render the approach irnpmctical. 

We described three heuristics to find a near-optimal solution including two greedy-type 

approaches (GS and lGS) and a modified version of the integer relaxation method (IRH) 

presentec! in the previous chapter. The Improved Greedy Search has very low complexity 

in practice (Jess than half a minute and 50,000 iterations for large networks), but does not 

always provide a better solution than the Integer Relaxation Heuristic. We showed that it 

is possible to combine both by choosing the best of the two to obtain a better solution while 

rnaintaining the computationaJ time reasonably low (slightly more than four minutes anel 

150,000 iterations on average for large networks). Depending on the context, two heuristics 

are available: lrnproved Greecly Search for a very quick solution (almost instantaneolls) or 

cornbining IEH and TGS rOI' a better solution that takes more tirne. 

For a1l 0111" sinl1llations, we generated network topologies where the lORd was different 

al, eaeh location. FOI sueh networks, wc observecl that the fractiOll of locatiolls wlwn~ il, 

was cost-efficient to insta]] replicas was small (35-45% depending on network size). III 

the optimal solutions produccd by our heuristic lRH + lGS, the average worst-case clemanc! 

aL repli ca locations is approximately 15 Gbps and 8 Gbps at locations where the entire 

loud is transported to the origin server. For networks with 100 locations, the replica sites 

assume less than 45% of the total network load which results in a very large number (aJrnosl, 

200) of required servers at the origin that might be impossible to deploy in practice. Our 

simulations indicate that the average hit ratio at the replica sites is above 85% for aIl 

network si~cs. This sug;gcst that il, is possible to have a cost-efficient solution with a hig;her 

fraction of the network load handled at replicas and rnuch reduced load at the origin. A 

way to obtain such a solution is by using equipment (VoD server model) that satisfies the 

strearning and storagc rcquirements of most of the locations in the topology. Alternatively, 

the network designer could strive to divide the demand evenly among a11 locations such 

that it is optirnal to deploy replicas at most locations using the same model of equipment. 

In the next chapter, wc discuss these results and possible extensions to our design tool in 

more detail and dcscribe the design process of a YoD network over an AAPN. 
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Chapter 5 

Conclusion 

5.1 S umrnary 

ln t1lis thesis, we focused on rewurce allocation during the network planning of a video-on­

clnmand dnployment. More Hpneifically, we address()d the VoD eq'uipTnent allocation p'('obleT/I, 

of deLermilling the mnnber of stoJ'age and strearning devices needed aL each potential replica 

location in a mctl'opolitan-area network. 

As a first step tu solving that problem, in Chapter 2 we reviewed previously proposecl 

approaches for the delivery of multimedia objects. Depending on the network architecture, 

mally aspects have to be considered to deploy a complete media delivery solution. A 

centrali6cd architecture, in which a unique media servel' handles the entire dernand, is the 

most simple solution, but it has serious weaknesses: a single point of fa.ilure and high lond 

on Olle Herver and the backbone nctwork. Many proxy-based solutions have been proposed 

to reduce both the latency nt the user-end and the load on the origin by caching content 

at servers located closer to the clients. The trade-off is the complexity of the design; wc 

presented solutions 1,0 the replica placement problem 1,0 determine the optimal location of 

proxy ser'vers in the topology. To solve that problem, we must determine a cost function 

for the transport and storage of the media objects that depends on the content cached at 

each replica, the delivery proto col and the clients' requests handling mechanism. Due to 

the size of multimedia objects, it is problematic and costly to replicate the entire library 

at each site. The analysis of video rentaI statistics showed that a large fraction of the 

requests are for only a small portion of the library. It therefore makes seuse to cache 

only the lIlOst popnlar content at the replicas. When performing prograrn caching, it iH 
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important to have a proper mechanism to serve requests and to handle cache misses. When 

Lhe rcqllested content is not present at the replica, the request is routed either to the origin 

servCJ' or to o,nothcl' repli ca. Forming clustcrs or replica rninirnizes the number of l'equcstc; 

that arc routed to the origin, but a direct ory of the objects cached at each location must 

be mailltain to direct rcqllcsts properly. The streaming capacity al, c80ch rcplica depellds 

on the chosen delivery proto col. Using uni cast delivery is the simplest a,pproach, but it 

consmnes a significant amollnt of bandwidth. For that reason, authol's have proposcd to 

use rnulticast to redllce bandwidth requirements at the replic80s and on the lletwork. 

In Chapter 3, we presented our solution to the YoD equip'fnent allocation pT'Oblem. Wc 

chose an architecture where the population is partitioned and each partition is assignccl 

to a specifie replica. vVe estimate the load at each location with the worst-case demand: 

the bandwidth required to serve aU requests al, peak hours using unicast delivery. If the 

replica cloes not have the requested content, the origin delivers the movie to the client. To 

avoid low-utilization of the l'esourees, wc uc;c available bandwidth duriug off-peak hours 

to distribute and update content from the origin to the replicas. Wc cleveloped a hit 

ratio function, cost functioll and heuristic integrated in an interactive design tool to solvc 

the VoD equipment allocation problem. We trained a parametr-ic fu,nction that generatetî 

ttccnrtttc cstimatcs of thc hit rtttio for givcn cache size, library sizc and file arrivaI ratc~ (tne[ 

then cO'nsLT"ucted a cost fv.ndioTJ, based on the hit ratio, the worst-case distributed demand 

and the Humber of YoD servers ni at cach location. To find a configuration that minimizctî 

this cost, we developed the Integer- Relaxation Heur-istic that produces a non-integer initial 

solution and then searches its neighbourhood for a near-optimal integer solution. 

Through simulations, we cliscovered that the model of instaUcd equipment has a di­

rect impact on the minimum demancl that makes caching profitable. For that reason, in 

Chapter 4, we relaxed the assumption that the specifications (streaming and stol'age ca­

pacity) of the VoD server were fixed and pre-determined before the optimizatioll. lnstead, 

we require the pre-selection of a set of available VoD servers; the optirnizatioll deterrninetî 

which model should be installed at each location. In Section 4.1, we generalized the Vo]) 

eqv.ipment allocation pTOblem as determining both the number and the model of the VoD 

ser'vers to iustall at each potential replica location. Due to the higher complexity of this 

problem, new algorithms are required to generate a solution. We described th:ree heur-is­

tics ta find a nem-optimal solution including a moclified version of the Integer Relaxation 

Heuristic (IRH) presented in Chapter 3. The basic idea behind IRH remains the same, but 
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we changed it so that the non-integer initial solution takes the set of avnilablc VoD server 

models into aCC011nt. The two new heuristics are based on the greedy search approach. Our 

Creedy Search (CS) consists of adding one VoD server of any model at every iteration at 

the location which rninirnizes the total cost for that particular iteration. Whereas greedy 

search algorithms 11sually terminate when the placement of an additional servel' no longer 

reduccs cost, we allow the search to continue for more iterations to explore a larger portioll 

of the solutioll space. vVe cleveloped an Improved Creedy Search (lCS) heuristic that uses 

greedy scarch tadies 1,0 generate an initial solution and to search it.s neighbourhood for a. 

solution with a lower cost. We observed that it has lower cornplexity and is faster than lnll 

in practice, but does Ilot always gellerate a better solution. By taking the best of tlle Inte­

ger Relaxatioll Heurüstic and Improved Creedy Search designs, wc producc a llear-optimal 

solution in a tirnely rnallIlel. 

5.2 Discussion 

ln Chapter 3, we clescribed and proposed a solution t.o the simplified VoD cq1Jiipement 

allocation pTOble-m of determining the number of VoD servers to deploy at each potential 

l'eplica locatioll in tlle given topology. Our results showed that the nature of the type of' 

equipment installed at each location has a significant impact on the optimal design and the 

deploymcnt cost. ln Chapter 4, wc extended the problem to a case where a set of availablc 

VoD s(~rver models for all locations is provided instead of having fixcd and pre-dekrmiuccl 

streaming anel storage capacity at each location. For networks whel'e the dernand is llot 

evenly distributed among alllocations, we noted that is was beneficial to cache content in 

only a small fraction of the locations for a given set of available VoD servel' models. 

This leads to the following question: should the hardware manufacturer develop custorn 

cquiprncnt or, if possible, should network engineers design topologies based on the avail­

able cqlliprncllt nt thci!' disposaI? From our perspective, the problcIll of joinLly dcsigllillg 

the VoD network and the logical topology is a very interesting and challenging one and 

represents the sensible extension to the resource allocation problern we addressed in tbis 

thesis. This problern consists of choosing a topology that allows an allocation of resources 

that rninimizes the deployrnent cost of the network. Whereas thl'Oughout this thesis wc 

assurned a given set of inter-nodal distances, potential replica location positions and dis­

tributed worst-case dernands, in this problem, these variables are unknown and the number 
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and position of the repli ca locations becorne part of the set of optirnization variables with 

the number and model of the YoD ser·vers. Not only is this a much more complex prob­

lem to solve, but it also illtroduces SOI ne new issues such as establishillg a. J'cqucst routillg 

rnechanisrn and possibly forming and rnaintaining replica clusters. 

In this thesis, we cOllsidered the scenario where the service provicler does Ilot own ally 

network equiprnent or infrastructures prior 1.0 the deployment. However, this is not. always 

the case because sorne provider might be able to transport clata for free, i.e., no neecl to 

install fiber, [jetwork interfaces, switches, or amplifier. For example, a provider who owns a 

backbone network snch as AAPN is interested in offering video-on-demand. Even if therc 

is no installation cost, there is still fees incurred by the usage and maintenance of the 

equipment and the l'esources, which have to be eonsidered when generating solutions for 

this scenario. 

We focused on large-scale deployments, but there is also the issue of sealability of sueh 

deployments. We assumed a growth in the library sizes and usage on video-on-demancl 

services, but it is hard to predict the exact impact that this expansion will bave on the 

designs. As the library reaches tens of thousands of assets, the access model we assurnecl 

changes as a larger portion of requests are located in the heavy tail of the popula.rity 

distribution. It is unclear if this simply shifts the hit ratio curve down (more storage 

needed to achieve the same hit ratio) or the function would be completely diffcrcllt. The 

growth in usage FLlso FLffects the design. During our simulat.ions for t.he hit. ratio fllnct.ion, 

wc det.ermined that the impact of the varying number of users on the hit ratio is Ilot 

significant. Even if t.he storage requirernents arc not affect cd , Hw higher loads at mch 

location and OIl the origin servel' require more streaming capacity. In that case, it. is 

sensible to impose (1 constraillt on the ma.ximum number of servers at the origin t.o avoicl 

a high load on one location (or a.lternatively impose a minimum hit ratio at each replica). 

The reason we chose not to include these constraints in our initial problem statement was 

to allow a maximum number of valid solutions. Producing the most cost.-efficient solution, 

whether it is feasible in practice or not, provides important feedback on the design choices 

of the network planner. From our results, an infeasible design is an indication that the 

equipmcnt was a mismatch for the given topology or, alternatively, the chosen topology 

was not optimal for the available equipment. 
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5.3 Future Work 

Wc obs())'vcc! (,11<\1, i t is difficult to sol()ct a mode! that matches the ]'()quirmll(mts of cacb 

location even when a set of many YoD servel' models is available. For that reason, an 

extension for the design tool is to determine how the topology should be designed, how the 

demand should be shared among the locations, for a given a set of available equiprnent. In 

Section 4.6.2, we presented two scenarios to consider for the design of a YoD network ove]' 

an AAPN. We propose to adopt an iterative pro cess for the joint design. First, wc decidc 

npon the location of Hw J\J\PN crlgc norlcs hascrl on a prim model for t.he t.raffie pattern in 

the network. We then solve the VoD equipement allocation PToblem for CÎ specifie demand. 

This placement changes the t.raffic pattern, so we repeat the AAPN topology design step 

(placement of edge nodes) for the new model of traffic demand. This pro cess is repea.ted to 

adjust the locations according to the performance of the prior setup until a local minimum 

is reached. 

ln the previous section, we presented a scenario where the service provider owns infras­

tructures prior to the deployrnent. Our tool needs to be extended to support this scenario 

by includillg usage and maintenance costs for bandwidth and infrastructures. Ta do so, 

we neecl to either acld cornponents to the cost function to mode! these l'ces or modify it 

cornpletely such that it is expressed as the cost of using (rather than installing) equipment 

for storing, streaming and transporting the data. By adding those features to the tool, 

wc could address other problems such as the delivery and distribution in a peer-to-peer 

architecture similar to that presented in Section 2.1. In that case, no or very few replicas 

are required, but the installation of equipment for transport might be required and the cost 

of usage and maintenance definitely need to be included. 

Because Iibrary size and usage of video-on-demand services will grow, proviclers arc 

interested in the scalability of a deployrnent during the design. For larger libraries, the file 

access model and popularity distribution are different and affect the hit ratio fnnction wc 

designed. To asses that dfcct, we rcdctine a file acccss modcl and popularity distribution 

based on usage/rentaI statistics of video-on-demand services. Then, we train a new para­

metric llit ratio function by following the procedure described in Section 3.2.1. As usage 

increases, the load on the origin servel' becomes very high and more strea.ming capacity is 

required. The tool can be extended to impose an upper-bound on the number of servers at 

the origin ta share the load among all locations. This is done by modifying the heuristics 
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to avoid searching the regions that are no longer in the solution space (solutions that yielc\ 

no > upper-bound). The extended tool supports the constraints to simply fiag a solution 

judgcd inf()üsiblc, but still provides sufficient information for the user to gain bette'!" 'Un­

derstanding of TeSO'UTce allocation fOT video-on-dernand deployrneni, which we feel was the 

main contribution of this work. 
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