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Abstract 

Municipal wastewater biosolids are increasingly used to fertilize crops on Canadian 

farmland with the attendant effect of greenhouse gas (GHG) emissions. As part of their national 

inventories to the United Nations Framework Convention on Climate Change, countries are 

required to estimate GHG emissions from the land application of biosolids and report them using 

Intergovernmental Panel on Climate Change (IPCC) protocols. However, Canada currently does 

not have N2O emission factors to accurately model emissions from biosolids because of scarce 

empirical data. This study therefore measured emissions, generated emissions factors, and refined 

models of biosolids-induced GHG emissions to improve Canada’s national GHG inventory. To do 

this, laboratory and field experiments were used to assess three types of biosolids (i.e., composted, 

mesophilic anaerobically digested called “digested”, and alkaline-stabilized).  

In an incubation experiment, soil samples were amended with the three biosolids to assess 

the rate of C and N mineralization under 29% and 49% water-filled pore space (WFPS) soil 

moisture conditions. Under 49% WFPS, 79%, 52%, and 8% of C was mineralized in the digested, 

alkaline-stabilized, and composted biosolids, respectively. A first-order mathematical equation 

was fitted to the cumulative CO2-C and N2O-N emissions data, with R2 > 0.98 and p < 0.05. This 

study also highlighted the potential of composted biosolids to sequester carbon in soil and mitigate 

soil N2O emissions. The results of this experiment helped to calibrate the DeNitrification and 

DeComposition (DNDC) model to simulate C and N dynamics in a biosolids-fertilized corn (Zea 

mays L.) field in Quebec from 2017 to 2019. Pearson’s correlation coefficients between measured 

and simulated data ranged between 0.3 and 0.8 for crop yield, daily and cumulative CO2 and N2O 

emissions, and soil organic carbon, while being 0.1 for total soil N. In addition to the Quebec 

(mixed wood plains) site, DNDC was then used to simulate N2O emissions from two other sites in 
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Nova Scotia (Atlantic maritime) and Alberta (prairie). Overall, N2O emissions were highest for 

digested biosolids and overall emissions were influenced by site-specific factors, with emissions 

magnitudes following the order: Quebec > Nova Scotia > Alberta. The DNDC simulations were 

contrasted with IPCC Tier 1 and Tier 2 methods, and root mean-square error and coefficient of 

determination values between measured and simulated values showed that the DNDC (Tier 3) 

approach was more accurate than the Tier 1 and 2 methods. Empirically derived correction factors 

for each of the biosolids were proposed to improve the accuracy of Tier 2 method, which fits the 

proposed update to the Canadian GHG inventory methodology. 

This study resulted in improved estimates of biosolids-induced N2O emissions from 

Canadian farmlands, with the option to use an improved Tier 2 method to report such emissions in 

the national GHG inventory until the Tier 3 method is implemented.  
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Resumé 

Les biosolides des eaux usées municipales sont de plus en plus utilisés pour fertiliser les 

cultures sur les terres agricoles canadiennes avec l'effet concomitant des émissions de gaz à effet 

de serre (GES). Dans le cadre de leurs inventaires nationaux de la Convention-cadre des Nations 

Unies sur les changements climatiques, les pays sont tenus d'estimer les émissions de GES 

provenant de l'épandage de biosolides et de les déclarer en utilisant les protocoles du Groupe 

d'experts intergouvernemental sur l'évolution du climat (GIEC). Cependant, le Canada ne dispose 

pas actuellement de facteurs d'émissions de N2O pour modéliser avec précision les émissions des 

biosolides en raison de la rareté des données empiriques. Cette étude a donc mesuré les émissions, 

généré des facteurs d'émissions et affiné les modèles d'émissions de GES induites par les biosolides 

afin d'améliorer l'inventaire national des GES du Canada. Pour faire cela, des expériences en 

laboratoire et sur le terrain ont été utilisées pour évaluer trois types de biosolides (composté, 

mésophile digéré en anaérobie dit “digéré”, et stabilisé aux alcalins). 

Dans une expérience d'incubation, des échantillons de sol ont été modifiés avec les trois 

biosolides pour évaluer le taux de minéralisation du C et du N dans des conditions d'humidité du 

sol à espace interstitiel rempli d'eau à 29 % et à 49 %. Sous 49 % de WFPS, 79 %, 52 % et 8 % du 

C a été minéralisé dans les biosolides digérés, stabilisés alcalins et compostés, respectivement. 

Une équation mathématique de premier ordre a été ajustée aux données d'émissions cumulées de 

CO2-C et N2O-N, avec R2 > 0,98 et p < 0,05. Cette étude a également mis en évidence le potentiel 

des biosolides compostés à séquestrer le carbone dans le sol et à atténuer les émissions de N2O du 

sol. Les résultats de cette expérience ont permis de calibrer le modèle de DéNitrification et 

Décomposition (DNDC) pour simuler la dynamique du C et du N dans un champ de maïs (Zea 

mays L.) fertilisé aux biosolides au Québec de 2017 à 2019. Les coefficients de corrélation de 
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Pearson entre les données mesurées et simulées variaient entre 0,3 et 0,8 pour le rendement des 

cultures, les émissions quotidiennes et cumulatives de CO2 et de N2O et le carbone organique du 

sol, tout en étant de 0,1 pour le N total du sol. En plus du site du Québec (plaines à forêts mixtes), 

la DNDC a ensuite été utilisée pour simuler les émissions de N2O de deux autres sites en Nouvelle-

Écosse (Atlantique maritime) et en Alberta (prairie). Dans l'ensemble, les émissions de N2O 

étaient les plus élevées pour les biosolides digérés et les émissions globales étaient influencées par 

des facteurs propres au site, les magnitudes des émissions suivant l’ordre : Québec > Nouvelle-

Écosse > Alberta. Les simulations DNDC ont été comparées aux méthodes de niveau 1 et 2 du 

GIEC, et l'erreur quadratique moyenne et les valeurs de coefficient de détermination entre les 

valeurs mesurées et simulées ont montré que l'approche DNDC (niveau 3) était plus précise que 

les méthodes de niveau 1 et 2. Des facteurs de correction empiriquement dérivés pour chacun des 

biosolides ont été proposés afin d'améliorer l'exactitude de la méthode de niveau 2, qui correspond 

à la mise à jour proposée de la méthodologie canadienne d'inventaire des GES. 

Cette étude a permis d'améliorer les estimations des émissions de N2O induites par les 

biosolides des terres agricoles canadiennes, avec la possibilité d'utiliser une méthode de niveau 2 

améliorée pour déclarer ces émissions dans l'inventaire national des GES jusqu'à ce que la méthode 

de niveau 3 soit mise en œuvre. 
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Chapter 1. General Introduction 

1.1. Background of the Research 

Agriculture, through soil-plant-animal processes associated with intensive farming, is 

directly linked to the global increase in atmospheric concentrations of three principal greenhouse 

gases (GHG): carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) (IPCC, 2000). 

Intensive agricultural systems arose from the need to meet the increasing global demand for food, 

feed, and fuel triggered by the industrial revolution of the 18th Century (CAST, 2004; IPCC, 2014). 

Since then, atmospheric concentrations of GHGs have increased, and with this increase come the 

attendant effects of global warming and climate change (IPCC, 2014). For instance, atmospheric 

CO2 concentration increased from a pre-industrial level of 280 ppm to more than 410 ppm at the 

time of writing, with at an annual rate of 0.5–0.7 ppm (IPCC, 2014; Lindsey, 2019). Even more 

concerning are the increases in atmospheric N2O and CH4 concentrations, which have ~300 and 

~25 times the global warming potential (GWP) of CO2, respectively (CAST, 2004). The 

atmospheric concentration of N2O in 2020 stood at ~331 ppb with a 0.2–0.3% annual increase, 

while CH4 was at 1,869 ppb with an annual increase of 0.2–0.3% annually (World Meteorological 

Organization, 2020). To monitor these GHG emissions, Annex 1 Parties (industrialized countries 

such as Canada, USA, and France) to the United Nations Framework Convention on Climate 

Change (UNFCCC) are mandated to submit annual national inventories of sources and sinks of 

GHGs.  

Agricultural GHG emissions occur either directly on-farm or indirectly off-farm (Figure 

1.1), and in 2015 contributed approximately 5 Pg CO2e(~11%) of total global GHG emissions ( 

Tian et al., 2020). Agriculture contributed around 52% of the 17 Tg CO2e of total global N2O 

emissions in 2015 (Tian et al., 2020). These agricultural GHG emissions result mainly from enteric 
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fermentation by ruminants, soil management, manure management and storage, energy generation, 

and transport (Smith et al., 2008; ECCC, 2017). One of the major sources of agricultural GHG 

emissions is the industrial production and agricultural use of commercial fertilizers such as urea 

in intensive crop production systems (Chai et al., 2019). To mitigate these emissions, agricultural 

best management practices are being promoted in industrialized (Annex 1) countries, like Canada, 

including recycling plant nutrient sources (e.g. livestock manure and biosolids), increasing 

efficiency of plant nutrient use, and conservation tillage (Desjardins et al., 2001; Dace, et al, 2015). 
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Figure 1.1. Schematic diagram illustrating the sources and pathways of N that result in direct and 

indirect N2O emissions from on-farm agricultural activities. Adapted from IPCC (2006) 

 

GHG emissions from soils contribute significantly to Canada’s agricultural GHG budget, 

partly due to intensive use of N fertilizers (Lokupitiya & Paustian, 2006). In 2015, ~40% of 

Canada’s 60 Tg CO2e agricultural emissions were from soils (ECCC, 2017). Canadian soils receive 

• Biomass burning 

• Fossil fuel 

combustion 

• Storage and 

management of 

livestock manure 

• Synthetic N fertilizers 

• Applied organic N 

fertilizers 

• Urine and dung from 

grazing animals 

• Crop residues 

• Mineralization of soil 

organic matter 

Agricultural 

land 

Groundwater 

Surface 

water 

N flows: 

N input to 

managed 

soils 

Indirect 

N2O 

emissions 

Direct N2O, 

CO2, and 

CH4 

emissions 

N volatilization, 

combustion 

emissions, and 

N deposition 

N leaching N runoff 



4 
 

N through application of synthetic N fertilizers (e.g. urea) and organic amendments (e.g. livestock 

manure, urine, crop residues, and municipal biosolids) (Desjardins et al., 2001; CCWA, 2007; 

ECCC, 2017). Organic amendments, in particular, improve soil C sequestration and provide slow-

release plant-required N in the form of nitrate (NO3
−) and ammonium (NH4

+) (Rowell et al., 2001). 

The excess NO3
− and NH4

+  remaining after plant uptake, together with soil C, provide feedstock 

for microbe-mediated redox reactions that produce N2O, CO2, and CH4 emissions (Bouwman, 

1996; Rigby et al., 2016).  

Soil biochemical reactions are influenced by climatic and soil conditions (Tian et al., 2016). 

Research has shown that soil GHG production pathways are determined by soil aeration status, 

which is in turn influenced by rainfall- and/or irrigation-induced soil moisture and by tillage  

(Bateman & Baggs, 2005; Trumbore, 2006). This explains the relatively lower N2O emissions in 

the semi-arid prairies of western Canada than in the more humid eastern Canada, and also between 

conventional tillage, reduced tillage, and no-till practices (Rochette et al., 2008). Under aerobic 

soil conditions, CO2 and N2O emissions occur as a result of soil organic carbon (SOC) 

decomposition and NH4
+  nitrification, respectively (Trumbore, 2006; Kim et al., 2010; Norton & 

Stark, 2011). Under short-term anaerobic soil conditions, oxygen depletion occurs due to 

consumption by soil organisms (e.g. decomposers) when there is minimal diffusion of oxygen into 

the soil (Smith et al., 2008). This oxygen depletion stimulates denitrifying bacteria to use NO3
− as 

an oxidizer; thus, NO3
−  becomes sequentially reduced to nitrite (NO2

−), nitric oxide (NO), N2O, 

and dinitrogen (N2) (Bouwman, 1996; Lokupitiya & Paustian, 2006). The escape of N2O into the 

atmosphere during these biochemical processes leads to net N2O emission from the soil. If 

anaerobic conditions persist for several days, activities of methanogens dominate, resulting in CH4 

production and emission (Smith et al., 2008).  
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Biosolids are nutrient-rich by-products of wastewater treatment used by Canadian farmers 

to improve soil structure, pH, water-holding capacity, air, and water transport, and provide 

macronutrients (C, H, O, N, P, K, Ca, Mg, S) and micronutrients (B, Cu, Fe, Mn, Zn, Mo, Cl, Co, 

Ni) for plant growth and development (CCME, 2012; Fan et al., 2019). In Canada, biosolids are 

generally produced from sewage sludge by thermal treatment, aerobic or anaerobic digestion, co-

composting with carbonaceous bulking agents, or the addition of alkaline-stabilized admixtures 

(Cheminfo Services Inc., 2018). These treatment processes stabilize the organic matter content, 

reduce the pathogen load, and make biosolids easy to handle as a plant fertilizer and soil 

amendment (EPA, 2000; CCME, 2012). The selection of a biosolids processing method often 

depends on the intended beneficial use, for example as a liming agent, to build SOM, improve soil 

quality, or as a source of plant nutrients (CCME, 2012). The biochemical composition and physical 

attributes of biosolids and their decomposition rates vary according to their processing (Peters & 

Lundie, 2002). For instance, O2 availability in soil microsites could be modulated by relatively wet 

biosolids because their addition saturates soil micropores and provides labile C in the short term 

(Peters & Lundie, 2002). Such differences in the physico-chemical characteristics of biosolids due 

to differences in the selected processing techniques will likely result in varying rates of GHG 

emissions. 

The production and land-application of biosolids have been increasing in most Canadian 

provinces, yet GHG emissions resulting from their use remain unreported in Canada’s National 

Inventory Reports to the UNFCCC (ECCC, 2018; Cheminfo Services Inc., 2018). Canada’s 

biosolids production is driven by population growth, improved wastewater treatment technology, 

and more stringent government regulations sanctioning the disposal of untreated sewage sludge 

(CCME, 2010; Cheminfo Services Inc., 2018). Sludge production from municipal wastewater 
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treatment plants increased by 60%, from 500 to 780 dry Tg between 1990 and 2015 with 57% of 

the treated sludge being land applied as biosolids (Cheminfo Services Inc., 2018). Quantities of 

land-applied biosolids are expected to increase further in the coming years as provincial legislation 

is encouraging diversion of biosolids and other organics from landfills to soils (McCarthy, 2016). 

However, there is a scarcity of spatially explicit empirical data on GHG emissions from 

agricultural land application of biosolids across Canada relative to other organic materials (e.g., 

manure). Considering that methods for processing digested, alkaline-stabilized, and composted 

biosolids differ, and that the climatic conditions and biosolids application methods vary across 

Canada, we can hypothesize that: (1) the resulting N2O emissions during the growing season would 

be highest for digested biosolids due to its relatively lower C/N than those of other biosolids, (2) 

the magnitude of N2O emissions will be higher in sites with higher precipitation during the growing 

season,  and (3) higher N2O emissions will be recorded when biosolids are surface spread than 

when incorporated into soil. These hypotheses are supported by the observed effects of 

environmental variables and physico-chemical composition on GHG emissions from soils 

amended with different types of organic materials (Griffis et al., 2017). Meanwhile, the existing 

tool for estimating GHG emissions from biosolids management in Canada, the Biosolids 

Emissions Assessment Model (BEAM), does not account for relationships between biotic and 

abiotic factors that drive biosolids-induced GHG emissions (Sylvis, 2009). Therefore, an in-depth 

understanding of the interactions between soil, climate, crop, and applied biosolids in different 

Canadian ecological zones is critical for improving methods for estimating the GHG fluxes 

associated with land-application of biosolids. 

The Intergovernmental Panel on Climate Change (IPCC) developed protocols and 

guidelines for accounting and reporting national GHG fluxes to the UNFCCC (IPCC, 2006). The 
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protocols are categorized into three tiers based on increasing levels of accuracy from Tier 1 to 3 

(Grewer et al., 2016). This accounting system can be used to estimate GHG fluxes by multiplying 

an emission factor, which represents a fraction of the applied fertilizer N lost as N2O, by the 

activity data, which is the anthropogenic activity during a given period. Tier 1 methods for 

estimating national and subnational N2O emissions use aggregated, internationally derived 

emission factors; Tier 2 uses regional or country-specific emission factors to estimate 

disaggregated GHG emissions; and Tier 3 methods make use of high-resolution site-specific data 

and/or process-based models. In the 2001 UNFCCC inventory year, about 56%, 26%, and 0% of 

the Annex 1 countries used IPCC Tier 1, Tier 2, and Tier 3 methods, respectively, and 18% did 

not estimate or report N2O emissions. In addition, more than 65% of the countries failed to report 

CO2 emissions from the cultivation of mineral soils, organic soils, or liming and removals (e.g., 

sequestration in soil and woody biomass) (Lokupitiya and Paustian, 2006). The failure to include 

this information in the reports has been associated with a lack of detailed, spatially-explicit data, 

and disaggregated emission factors (Paustian et al., 2006). During the last decade, some Annex 1 

countries such as New Zealand, UK, and USA have made efforts to use Tier 2 and Tier 3 

methodologies for GHG accounting (Olander et al., 2011;  ECCC, 2018). 

Process-based models such as the Denitrification and Decomposition (DNDC) model (Li 

et al., 1992) and DayCent (Parton et al., 1994) are useful tools for implementing Tier 3 methods 

and have been used to estimate spatially disaggregated GHG fluxes for a variety of 

agroecosystems. These models consider the roles of climate, vegetation, soil, and crop 

management on C and N dynamics in agroecosystems. DNDC has been shown to reliably estimate 

GHG emissions under various land use systems (Brilli et al. 2017; Ehrhardt et al., 2018). However, 
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its suitability under Canadian conditions and specifically for use in modelling municipal biosolids 

as a soil amendment has not been evaluated. 

The variability in climate, soils, and agricultural practices across ecozones make it 

necessary to develop a Canada-specific methodology for estimating GHG from land-applied 

biosolids. This will fill the knowledge gap about the contribution of the agricultural use of 

biosolids to GHG emissions and improve the quality of data reported in Canada’s annual GHG 

inventory. This is of importance to Agriculture and Agri-Food Canada (AAFC) and Environment 

and Climate Change Canada (ECCC), which are both committed to improving Canada’s GHG 

accounting and to cutting anthropogenic GHG emissions to 30% below 2005 levels by 2030 

(ECCC, 2020).  

Currently, Canada’s national GHG inventory includes soil emissions estimated per 

province on an ecodistrict scale of ca. 150,000 ha, using a regression-based Tier 2 approach that 

accounts for inorganic N, crop residue, and manure application (Rochette et al., 2008; ECCC, 

2018). However, the data used for developing the Tier 2 equations did not include the agricultural 

use of municipal biosolids. In addition, datasets from Eastern Canada were based on empirical 

measurements from the provinces of Ontario and Quebec alone, which have similar climates and 

grow similar crops.  Eastern Canada is humid and includes mixed wood plains (~12% of croplands) 

and Atlantic maritime ecozones (ECCC, 2018). Croplands in eastern and western Canada differ in 

terms of soil, climate, and vegetation. Western Canada includes areas of semi-arid prairies, sub-

humid prairies, and boreal plains, which comprise 83% of croplands in Canada (ECCC, 2018). 

Compared to soils in eastern Canada, N2O emissions in the Black and Brown soil regions of the 

Canadian Prairies are respectively ~4 and ~10 times lower for a given fertilizer rate (Rochette et 

al., 2008). This indicates lower denitrification activity in the semi-arid prairies of western Canada 
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than in humid eastern Canada. Therefore, it is critical to develop an approach for deriving emission 

factors that takes into consideration variability in climate and soils after the agricultural application 

of biosolids. 

 

1.2. Research Objectives 

The general objective of this research was to generate GHG emission factors associated 

with agricultural land application of different types of municipal biosolids to improve the quality 

and completeness of Canada’s national GHG inventory reporting. The specific objectives were: 

1. To assess the kinetics of C decomposition and N mineralization from loam soil amended with 

urea and/or biosolids and incubated under different soil moisture conditions.  

2. To evaluate the capability of the DNDC model to simulate C and N dynamics in a typical 

Canadian agroecosystem amended with municipal biosolids. Calibrate and validate DNDC 

with daily and cumulative GHG emissions, crop yield, soil organic C, and total soil N from 

field experiments conducted over three growing seasons in Ste-Anne-de-Bellevue, Quebec.  

3. To compare estimates of N2O fluxes from agricultural soils amended with biosolids in 

Canada’s mixedwood plain, Atlantic maritime, and prairie ecozones using Tier 1, Tier 2 

(Canadian), and Tier 3 (Denitrification and Decomposition model [DNDC]) methodologies. 

Then, recommend the most accurate and compatible methodology for the accounting of N2O 

emissions from land-applied biosolids in the national GHG inventory.  

Since the majority (>85%) of biosolids that are land-applied in provinces in Eastern and 

Western Canada are produced either using anaerobic digestion, co-composted with carbonaceous 

bulking agents, or treated with alkaline admixtures (Cheminfo Services Inc., 2017; 2018), this 

research was focused on these biosolids. This research also was conducted in sites that broadly 
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represent agricultural conditions in humid and semi-arid agrizones in Canada, to establish a 

baseline upon which further studies can be conducted to improve biosolids-induced GHG 

accounting. 

1.3. Thesis Structure 

Chapter 1 of the thesis is a general introduction which provides background information 

about the research topic, describes the research problem under investigation, and identifies the 

pertinent research objectives which were pursued. Chapter 2 is a literature review describing the 

state of knowledge on biosolids composition, land-application and regulations, and emissions. In 

this chapter, the methodologies are reviewed for quantifying and scaling up GHG estimates for 

Canadian national inventories. It also describes how the DNDC model was applied as a tool for 

simulating GHG and for generating emission factors under different cropping systems. Chapters 

3, 4, and 5 address objectives 1, 2, and 3 above, respectively. Each of these chapters is in the form 

of a research paper for publication in a peer-reviewed scientific journal. The thesis is formatted 

according to the requirements of Library and Archives Canada. References are located at the end 

of each chapter of the thesis. 
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Chapter 2. Literature Review 

2.1. Introduction 

This literature review is aimed at describing the state-of-the-knowledge, regarding GHG 

emissions resulting from land-application of biosolids in Canada. This chapter begins with a 

review of the physico-chemical composition of commonly used biosolids in Canada and how, in 

conjunction with biotic and abiotic factors, their composition influences the kinetics of 

decomposition of land-applied biosolids. The methods for estimating GHG emissions following 

the decomposition of biosolids are reviewed in the context of reporting national GHG inventories, 

particularly in Canada. Also, the benefits and challenges associated with each method of estimating 

GHG emissions are briefly highlighted, including some details on the use of process-based models. 

Finally, the structure of process-based models, their uses, benefits, and limitations across different 

GHG estimation scenarios are discussed, mostly in the context of conducting sensitivity and 

uncertainty analysis, calibrating, and validating the models to minimize estimation errors. 

 

2.2. Composition of Biosolids 

Biosolids vary in their physico-chemical characteristics depending on the wastewater 

treatment process, age, and source of the biosolids (Arulrajah et al., 2011). In biosolids just like in 

other organic materials, C and N are bound in the form of water-soluble substances, polymer 

carbohydrates (e.g. pectin, hemicellulose, and holocellulose), lignin and other aromatic 

compounds, hydrophobic lipids, and proteins (e.g. hydroxyproline-rich glycoproteins) (Wang et 

al., 2007; Bisaria & Kondo, 2014). The process and extent of stabilization (physical, biological, 

and chemical) alters the morphology (e.g., shape, bulkiness, surface area) and quality (e.g.  C to N 

ratio [C/N], and carbon, lignin, hot water-soluble materials, and nutrient contents), which have an 
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impact on biosolids mineralization rates (Rubio-Loza & Noyola, 2010; Rigby et al., 2016; Case et 

al., 2016). Treatment methods such as alkaline-stabilized stabilization, composting, and anaerobic 

digestion all vary in terms of process duration, temperature, biochemical pathway, physical 

conditions, and type of additive used for co-composting, co-digestion, or alkalizing (EPA, 2000; 

Barbarick & Ippolito, 2009; Rubio-Loza & Noyola, 2010; Cheminfo Services Inc., 2018). For 

instance, during the production of commercial-grade alkaline-stabilized biosolids (N-Viro®, 

Walker Environmental, Goffs, NS), the addition of alkaline-stabilized admixtures to the biosolids 

increases the pH of the biosolids above 12, which may result in rapid ammonia (NH3) loss (Christie 

et al., 2001). Also, the addition of carbon-based bulking agents during composting results in an 

overall increase in the carbon content of the final product (Ippolito et al., 2010; Dentel & Qi, 2013). 

As can be expected, N losses during composting and alkaline-stabilized stabilization account for 

the generally lower N concentrations in these biosolids compared to digested biosolids (Sullivan 

et al., 2015).  

 

2.3. Kinetics of Carbon and Nitrogen Mineralization 

An understanding of the kinetics of C and N mineralization of land-applied biosolids help 

farmers and regulatory authorities determine the amounts and timing of biosolids application 

during the growing season. Given the difference in composition between  a variety of biosolids 

and manures, some researchers have suggested that the mineralization rate in soils fertilized with 

livestock manure is much higher than in soils fertilized with municipal biosolids (Barbarick & 

Ippolito, 2007; Cogger et al., 2011; Thangarajan, 2013; Sayem, 2014). The different manures (e.g., 

swine, poultry, and dairy) vary in their C/N ratios, total N concentrations, and moisture contents, 

hence cannot be compared directly with biosolids in general. Also, it is not clear how these findings 
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are applicable in the Canadian context where variations in mineralization rates and availability of 

crop-required N can be expected due to differences in the prevailing climatic and soil conditions 

as reported by Mendoza et al. (2006) and Robinson & Polglase (2000). Mendoza et al. (2006) 

showed that N losses through leaching may occur if the rate of N release during degradation of 

biosolids exceeds the rate of crop N uptake. These losses could be further exacerbated by high 

rainfall or meltwater which move N beyond the reach of plant roots into deeper soil layers. These 

considerations differ due to notable variations in soil moisture regimes induced by precipitation 

differences across Canadian landscapes, soils, and vegetations in the different ecozones. Also, N 

losses through leaching can be mitigated if biosolids degrade slowly and release N at a rate slower 

than the crop N uptake rate. However, the crop N requirement may not be met, and N release may 

continue after crop harvest, leading to N leaching (Haynes et al., 2009). Therefore, the degradation 

rate and application method of the biosolids, as well as site characteristics (e.g. soil type and 

climate) are considered when determining the biosolids application rate, to minimize N losses, 

increase C sequestration, and meet crop N needs (Öğüt & Er, 2015; Charles et al., 2017). 

 

2.3.1. Effect of Biosolids Composition on Mineralization Rate 

The degradation rate of biosolids depends in part on the composition of the biosolids 

(Wang et al., 2007; Pei et al., 2019). In general, organic matter degradation varies as a function of 

its quality and morphology, biotic activity, exogenous nutrient inputs, and stage of decomposition 

(Harmon et al., 1999). Depending on the morphology and particle size of the biosolids, initial 

degradation occurs quickly and later at a slow rate following stabilization (Gilmour et al., 2003; 

Cabrera et al., 2005). Morphology refers to size, nature, and structure of carbonaceous material 

(e.g. lignin) in the particles of organic matter and determines the exposure and availability of 
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organic molecules to microbial activity (Schowalter, 2016). Typically, the exposed labile cellulose 

and hemicellulose contained in the organic matter is first consumed by decomposers before the 

lignin-protected cellulosic and hemicellulosic organic substrates (Harmon et al., 1999; Zmora-

Nahum et al., 2007). This partly explains the initial slow mineralization of C in biosolids with a 

relatively high C/N (e.g., ≥30).  

 

2.3.2. Effect of Environmental Factors on Mineralization Rate 

In addition to the physico-chemical characteristics of biosolids, biotic and abiotic 

conditions of the soil also influence the kinetics of C and N mineralization after application 

(Kaboneka et al., 1997). Humidity, precipitation, and soil temperature are among the most 

influential factors (Benbi et al., 2014; Blagodatsky et al., 2011). For example, decomposition rates 

are typically higher in warm, humid ecosystems than in temperate, arid ones (Gregorich et al. 2016; 

Bell et al., 2018). Soil temperature and moisture can jointly influence abiotic factors which control 

SOM decomposition, with implications for GHG emissions (Solly et al. 2014; Gregorich et al., 

2017). Solar radiation, air temperature, and precipitation are the dominant climatic features that 

influence soil temperature and moisture. All these factors influence the rate of decomposition due 

to their effect on soil microbiota (Li, 2007; Blagodatsky et al., 2011). This can be seen in the rate 

of CO2 and N2O evolution resulting from soil microbial activity, as well as the higher SOM in arid 

climates as compared with humid ones  (Knapp et al., 1983; Van de Werf & Verstraete, 1987; 

Rowell et al., 2001; Gregorich et al., 2017; Pei et al., 2019).  

Also, local soil conditions can further amplify the effect of climatic conditions on 

decomposition of SOM and N mineralization (Bouwman et al., 1993; Dou et al., 1996; 

Thangarajan et al., 2013). For instance, higher denitrification rates have been associated with finer 
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soil texture compared to coarser soil texture (Sey, 2006) and higher soil pH until about 7 leads to 

increased soil respiration (Kunhikrishnan et al., 2016). Furthermore, soil management practices 

also influence degradation rates; e.g. tillage aerates the soil, accelerating microbial activity 

(Beyaert & Voroney, 2011).  

 

2.4. Methods for Estimating Greenhouse Gas Emissions from Agricultural Soils 

Amended with Biosolids 

The Intergovernmental Panel on Climate Change (IPCC) established a three-tier 

framework for estimating GHG emissions from agricultural soils to support internationally 

standardized estimation and reporting of national GHG emissions to the United Nations 

Framework Convention on Climate Change (UNFCCC). The implementation of these methods is 

guided by the IPCC Good Practice Guidance (IPCC, 2000a, 2003), the IPCC 2006 Guidelines for 

National Greenhouse Gas Inventory (IPCC, 2006), and the 2019 refinements (IPCC, 2019). 

  

2.4.1. Tier 1 Method 

The IPCC Tier 1 method involves using simple equations and default emission factors 

which do not take into consideration country-specific data. In this methodology, the emission 

factor is multiplied by the activity data (e.g., amount of N applied) to estimate N2O emissions (Eq. 

2.1). Since the 1996 IPCC Guidelines for National Greenhouse Gas Inventories, the aggregated 

Tier 1 emission factor has undergone several refinements. The Tier 1 emission factor for estimating 

direct N2O emissions was refined from 1.25 to 1.0% N2O-N per kg N applied in the 2006 version 

without accounting for country- or region-specific climatic conditions or management practices 

other than N application rate. In the current 2019 Refinement to the 2006 IPCC Guidelines for 
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National Greenhouse Gas Inventories, two approaches were provided: (1) an aggregated emission 

factor of 1.0 ± 0.8%, irrespective of climate, management practices other than N application rate, 

or soil differences; and (2) a set of emission factors disaggregated according to climate into wet 

(ratio of annual precipitation: potential evapotranspiration > 1) and dry (ratio of annual 

precipitation: potential evapotranspiration < 1), as well as the fertilizer type (synthetic and organic)  

(IPCC, 2019). In wet climates, the recommended emission factors for synthetic N and other forms 

of N (e.g., organic N) are 1.6 ± 0.3% and 0.6 ± 0.5%, respectively, while in dry climates, 

irrespective of the fertilizer type, the emission factor is 0.5 ± 0.5%. These refinements to the 

emission factors for direct soil N2O emissions are based on recent scientific studies conducted 

around the world, which are yet to be validated for biosolids-induced soil N2O emissions within 

the Canadian context. Meanwhile, to estimate indirect N2O emissions, it is assumed that the 

fraction of volatilized NOx and NH3 are constant irrespective of geographical location and climatic 

conditions. This approach is a mere simplification which serves as a baseline for estimating 

difficult-to-monitor indirect N2O emissions. 

 𝑁2𝑂_𝑁 =  𝐸𝐹 × 𝑁𝑖𝑛𝑝𝑢𝑡𝑠 Eq. 2.1 

N2O-N is the amount of N emitted as N2O; EF is the emission factor for this Tier which is expressed 

as kg N2O-N kg-1 N; and Ninputs is the amount of synthetic or organic N applied in kg.  

 

Since the Tier 1 emission factor was derived from a dataset biased towards mid-latitude 

and temperate regions, it is likely to over- or under-estimate country- or region-specific soil GHG 

fluxes when applied in countries or regions with different conditions (Bouwman et al., 2002; IPCC, 

2006). According to a meta-analysis of global N2O emissions from  land-application of livestock 

manures and a combination of biosolids and crop residues, the global emission factor for organic 
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materials was reported to be 0.57 ± 0.30% (Charles et al., 2017). This value falls within the range 

of climate-disaggregated Tier 1 emission factors recommended by the IPCC in the 2019 refinement 

of the IPCC (2006) emission factor. Charles et al. (2017) also estimated an emission factor of 1.21 

± 0.14% for animal slurries, waste waters, and biosolids combined with crop residue. These 

organic materials while being different in their physico-chemical characteristics were surprisingly 

estimated to fall within the same range of emission factors, as well as being similar to that of the 

aggregated Tier 1 method. Meanwhile, crop residues + fertilizers (0.59 ± 0.27%) had an emission 

factor similar to the disaggregated Tier 1 emission factor. However, for most other organic 

materials, the disaggregated IPCC Tier 1 emission factor for organic N sources was generally 

higher than the mean values of the emission factors reviewed by Charles et al. (2017) as follows: 

solid manure, composts + fertilizers, and crop residues + fertilizers had emission factor of 0.35 ± 

0.13%; and composts, crop residues, paper mill sludge and pellets had emission factor of 0.02 ± 

0.13%. Only the emission factor from liquid manures + fertilizers (2.14 ± 0.53%) was higher than 

the Tier 1 emission factor. The resulting emission factors had less uncertainty (ranging from 0.13% 

up to 0.59% of the applied N emitted as N2O) than the aggregated IPCC Tier 1 emission factors. 

The recent Tier 1 emission factors could be considered an improvement given that their values are 

comparable with those found in recent scientific studies. Also, the uncertainties associated with 

their values were minimal compared to those found in a Canadian study where uncertainties were 

at least 15% of the applied N (Hutchinson et al., 2007). Such uncertainties could be due to 

differences in soil, climate, and fertilizer type, as well as possible shortcomings of the available 

measurement techniques (Butterbach-Bahl et al., 2013).  

Given the influence of temperature, moisture, and C/N on N2O emissions, as well as the 

spatial variability of Canada’s vegetations, the Tier 1 method is limited as it ignores spatial 
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variability in the variables that drive emissions at national and regional scales. Also, this approach 

is top-down (i.e., estimating from global to local scale) and is likely to over- or under-estimate soil 

GHG fluxes at ecoregion, ecoprovince, and ecozone scales. On the contrary, bottom-up 

approaches, which disaggregate these spatial variabilities on a local scale, are typical of Tier 2 and 

3 methods and are expected to produce better GHG estimates. 

 

2.4.2. Tier 2 Method 

A comparison between the Tier 1 (using the IPCC (2006) default value) and Tier 2 methods 

revealed that their emission factor estimates varied in some instances at regional and national 

scales. For instance, Lesschen et al. (2011) showed that, across Europe, Tier 2 emission factors 

were estimated to range between 0.25–0.75% of the applied N and predicted the actual emissions 

better than the IPCC Tier 1 method. Their results also showed that, by accounting for regional 

differences in N input sources, precipitation, land use, and soil type, the Tier 2 method had lower 

errors than the Tier 1 method in reference to empirical measurements. In China, the Tier 2 emission 

factor estimates ranged between 0.56% and 1.54% of the applied N with a mean of 0.92% of 

applied N for non-rice crops (mainly wheat and maize) (Shepherd et al., 2015). The mean value of 

the estimated Tier 2 emission factor for China was similar to the aggregated IPCC Tier 1 emission 

factor but with higher uncertainty ranges. Also, in the study by Shepherd et al. (2015), regional 

differences in emission factors were found for wheat but not maize crop. In summary, these 

variations in emission factors across China were not only due to differences in climate, fertilizer 

type, and soil texture, but crop type as well.  

Canada’s annual direct N2O emissions from agricultural soils are currently reported in the 

National Inventory Reports to the UNFCCC based on a Tier 2 methodology developed by Rochette 
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et al. (2008a) (ECCC, 2006; 2018). This method uses empirical data from Canadian cropping 

systems to estimate direct N2O-N emissions from applied N, adjusted according to climate and 

farm management practices. The estimates of soil N2O emissions account for: applied N; 

mineralization associated with loss of soil organic matter; decomposition of animal manure on 

pasture, range, and paddock; tillage intensity; summer fallow; soil texture (including organic 

soils); topography; and irrigation. In this method, the emission factors were first derived at the 

regional scale based on the relationship between N2O emissions and N fertilizer rate for 

unirrigated, well-drained soils under conventional tillage practices. Only three regions had 

sufficient field measurements for this analysis: Quebec-Ontario (n = 72 site-years), and the Brown-

Dark Brown (n = 155 site-years) and Black (n = 48 site-years) soil regions in the Canadian Prairies. 

The regional emission factor values were then refined at the ecodistrict scale (~150,000 ha) to 

reflect the effects of local conditions on N2O emissions (Eq. 2.2). 

 
𝐸𝐹𝑒𝑐𝑜 =  0.022 ⨯

𝑃

𝑃𝐸
− 0.0048 

Eq. 2.2 

𝐸𝐹𝑒𝑐𝑜 is the emission factor per ecodistrict (kg N2O-N per kg N); P is the precipitation during the 

growing season; and PE is the potential evapotranspiration during the growing season. EFeco 

depends on the ratio of precipitation to potential evapotranspiration (P/PE) during the growing 

season (May to October). 

 

In Canada’s Tier 2 method, N2O emissions are estimated using a bottom-up approach. Here 

N2O emissions are estimated per ecodistrict by multiplying the derived ecodistrict-specific 

emission factor (𝐸𝐹𝑒𝑐𝑜) by the corresponding activity data (e.g., N amount). The N2O emissions 

are then corrected for the effects of soil texture, crop type (annual or perennial), and tillage type, 

and aggregated incrementally at the ecoregion, ecoprovince, and ecozone scales to determine the 
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overall national N2O emissions. Using this methodology, the estimated emission factor varied from 

less than 0.25% in semi-arid ecozones to about 1.7% in humid ecozones (Rochette et al., 2008b). 

Two weakness of this method that limit its use for estimating N2O emissions from land-application 

of biosolids on a national scale are: (1) the dataset was based on four out of ten Canadian provinces 

(Quebec, Ontario, Saskatchewan and Alberta); and (2) wastewater biosolids were not accounted 

for in this methodology. 

An updated Tier 2 methodology was proposed by Rochette et al. (2018) but, at the time of 

writing, had yet to be implemented in the National Inventory Report. In the updated method, 

datasets for developing the Tier 2 regression equations cover three more provinces (New 

Brunswick, Manitoba, and British Columbia) than in the earlier version. In addition, the number 

of site observations in the dataset for synthetic fertilizer N application in the semi-arid Prairies 

increased from 48 to 126 sites. Organic N datasets, however, still came from studies in Ontario 

and Quebec, representing limited variability in soil texture, precipitation, potential 

evapotranspiration, and crop type. As shown in Eq. 2.3, emission factor for organic materials 

(EForg) was estimated using two parameters: soil clay content and the ratio of precipitation to 

potential evapotranspiration during the growing season.  

 𝑁2𝑂𝐸𝐹𝑜𝑟𝑔 =  −1.4 + 𝑒[2.07+0.003𝐶𝐿𝐴𝑌−2.01𝑃𝑃𝐸] Eq. 2.3 

N2OEForg is the N2O emission factor with organic N application (kg N2O-N per kg N); CLAY is 

clay content (g kg-1); and PPE is the ratio of the growing season precipitation to potential 

evapotranspiration.  

 

Meanwhile, as seen in Eq. 2.4, emission factor for mineral N (EFmin) was estimated using 

four parameters.  
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 𝑁2𝑂𝐸𝐹𝑚𝑖𝑛 =  −1.4 + 𝑒[−0.2982+0.00095𝑃+0.0198𝐶𝑜𝑟𝑔+0.0732𝑇𝑎𝑖𝑟−0.4264𝐶𝑟𝑜𝑝] Eq. 2.4 

N2OEFmin is the N2O emission factor with mineral N application (kg N2O-N per kg N), P is the 

precipitation during the growing season from May to October (mm); Corg is the soil organic C 

content (g C kg-1); Tair is the air temperature (ᵒC); and Crop is crop type (annual and perennial). 

 

Liang et al. (2020) described how the updated Tier 2 methodology would be integrated into 

the GHG inventory, with preliminary results showing improvements in N2O estimation over the 

previous version of Canada’s GHG inventory methodology. Given the limitations of the Tier 2 

method in estimating N2O emissions from organic N sources, particularly in Canada’s Prairies, 

discrepancies between Tier 2 estimates and empirical measurements of N2O emissions are still 

expected. Methods for estimating N2O emissions from land-applied biosolids need to be based on 

empirical measurements representative of the Canadian ecodistricts where biosolids are used in 

agriculture. 

 

2.4.3. Tier 3 Method: Process-Based Modelling Approach for Estimating Nationwide Soil 

Greenhouse Gas Fluxes  

Tier 3 methods use site-specific measurements and/or process-based models that simulate 

the physical processes that underly GHG emissions (IPCC, 2006; IPCC, 2019). Process-based 

models range from simple, N-cycling models like NEMIS (Hénault & Germon, 2000) to complex 

C and N-cycling models like DNDC (Li et al., 1992), DailyDayCent (Parton et al., 1994), the 

Environmental Policy Integrated Climate (EPIC) model (Izaurralde et al., 2006), Root Zone Water 

Quality Model (RZWQM2) (Ma et al., 2012), Ecosys (Grant, 1995), SWAT-N2O (Arnold et al., 

1998), APSIM (Agricultural Production Systems sIMulator) (Thorburn et al., 2010), the Water 
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and Nitrogen Management Model (WNMM) platform for field-scale simulation (Li et al., 2005), 

Crop Environment REsource Synthesis - Environnement et Grandes Cultures (CERES-EGC) 

(Gabrielle et al., 1995), and more expansive whole-farm models. These models have been used to 

simulate and study ecosystems processes such as plant growth and development (Justes et al., 

1994; Lipiec et al., 2003; Puntel et al., 2018), the impacts of management practice on soil C 

dynamics (Zhang et al., 2015; Zhang et al., 2017), SOM turnover (Paustian et al., 1992; Li et al., 

1994), land use change (Meiyappan et al., 2014),  gas exchange at the soil-plant-atmosphere 

interface (Coleman et al., 1997; Gabrielle et al., 2006; Misselbrook et al., 2006; Nguyen et al., 

2014), soil water dynamics (Lascano, 1991), denitrification (Saggar et al., 2013), climate change 

impacts on crop systems (Graux et al., 2013), and nitrification and denitrification in lab-scale trials 

(Xing et al., 2011). Several of these models, including DNDC, have been tested and validated 

using datasets measured from forest, grassland, and agricultural ecosystems (Beheydt et al., 2007). 

Amongst all the numerous studies, only a few studies in Europe and the USA focused on process-

based modelling of C and N dynamics in agricultural soils amended with sewage sludge/biosolids 

(e.g. Fumagalli et al., 2013). However, no such modelling studies have been carried out on 

Canadian soils receiving biosolids. 

Tier 3 reporting methods that use process-based models are required by the IPCC to follow 

seven steps: model selection or development, calibration, evaluation, collection and collation of 

input data, implementation, assessment of uncertainty, and verification of inventory estimates with 

independent data (IPCC, 2019). 
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2.4.3.1.  Process-Based Modelling Approach for Estimating Regional Soil GHG Fluxes  

Process-based models can be used together with inventories of measurements that capture 

variability in climatic, soil, vegetation, and farm management conditions within a region (e.g. 

nation)  (IPCC, 2019). This approach involves dividing a region into spatial sub-units for which 

the input parameters are assumed to be homogeneous and running the model for each sub-unit. For 

instance, Del Grosso et al. (2005) used DayCent in a Tier 2 emission factor methodology to 

estimate direct and indirect N2O emissions for major non-rice cropping systems in the USA. The 

croplands in the USA were stratified into 63 sets according to similarities in vegetation and soil 

type prior to DayCent parameterization and simulation. Also, Smith et al. (2002) and de Vries et 

al. (2005) used DNDC to estimate N2O emissions over different landscapes and crop management 

practices in Canada and the Netherlands, respectively, to produce more accurate estimates than the 

IPCC Tier 1 methodology. In Poland, Syp & Faber (2017) used DNDC to simulate N2O emissions, 

but their results did not differ significantly from the established Tier 2 method. This method has 

been used in other studies to quantify GHG fluxes in the UK (Brown et al., 2002), across Europe 

(Britz & Leip, 2009; Leip et al., 2011), the Netherlands (De Vries et al., 2011), China (Cai et al., 

2003), and Italy (Lugato et al., 2010). The Tier 2 method has many limitations. For instance, soil 

heterogeneity is a critical factor in modelling spatial variability in GHG fluxes, but soil data at fine 

spatial resolutions are difficult to obtain (Gottschalk et al., 2007; Nol et al., 2010). Therefore, 

extensive data collection is required for model parameterization, or data limitations may 

undermine the scaling up of model estimates from site to regional scales (Olander et al., 2011; 

Fitton et al., 2017). 
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2.4.3.2. Estimating Regional GHG Emissions Using Meta-models 

A process-based modelling approach can also be used to estimate N2O emissions, and a 

simplified model may be fitted to those simulated data (e.g. using regression modelling) as a way 

to estimate emission factors with lower computational and data requirements, for use in National 

Inventory Reports (de Vries et al., 2005; Li et al., 2001; Lesschen et al., 2011). Here, a combination 

of models or a range of outputs from multiple range of inputs in a single model are often used to 

produce meta-models, which are domain-specific (e.g., region or vegetation) and preserve the 

relationships between the key inputs and response variables. This method involves 

parameterization of the selected model(s), Monte Carlo simulations over the full range of input 

variables, and multiple regression analysis to produce simplified meta-models of emission factor. 

This method was used by Giltrap & Ausseil (2016)  to produce simplified meta-models of the 

simulated N2O emission factor for grazed pastures in New Zealand; by Britz & Leip (2009) to 

calculate marginal N2O emission factor for a 1 kg ha-1 increase of N fertilizer rate for specific 

crops in Western Europe; and by Giltrap et al. (2008) to directly estimate N2O emissions from 

agriculture in the Manawatu-Wanganui region in New Zealand. The advantage of meta-models 

over process-based models is that they are less data intensive. However, like other models, meta-

models cannot be extrapolated beyond the range of input values originally simulated. This is 

especially important when estimating non-CO2 GHG (e.g. N2O) emissions in agroecosystems, as 

non-CO2 emissions exhibit higher spatial and temporal variability than CO2 emissions (Gottschalk 

et al., 2007; Hastings et al., 2010; IPCC, 2019).  

 



25 
 

2.5. The DeNitrification and DeComposition (DNDC) Model 

2.5.1. Overview of DNDC 

The DNDC model was originally developed in the USA to simulate soil N2O emissions 

but has since been improved to simulate C and N cycling in entire agroecosystems across the globe 

(Gilhespy et al., 2014). The original DNDC model consists of six sub-models (Figure 2.1.): soil 

climate, decomposition, nitrification, denitrification, fermentation, and crop growth (Li & 

Frolking, 1992; Giltrap et al., 2010). These sub-models are grouped into two components. The first 

component consists of the soil climate, crop growth, and decomposition sub-models, while the 

second component consists of nitrification, denitrification, and fermentation sub-models. The first 

component simulates the soil environment and drives the simulation of C and N cycling by the 

second component.  

Since its development, DNDC has evolved to simulate complex C and N dynamics in 

whole-farm systems. For instances, DNDC has been adapted to simulate soil C and N cycling (Li 

et al., 1994; Li, 2000), crop growth based on phenology (Zhang et al., 2002), soil water and N 

movement (Li et al., 2006), ammonia volatilization (Congreves et al., 2016; Dutta et al., 2016), 

and OM turnover and gas emissions  in livestock systems with full farm facilities (Li et al., 2012). 

It has also been tested and adapted to meet user-specific needs by different researchers in several 

countries, including Canada (Gilhespy et al., 2014). DNDC produces results that are consistent 

and compatible with other models used in compiling GHG inventories (Brilli et al., 2017). It also 

allows for the quantification and reduction of uncertainty relative to Tiers 1 and 2 methods (Li et 

al., 2001), to improve the simulation of C and N transformations in the soil (Myrgiotis et al., 2018). 
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Figure 2.1. DNDC model structure showing the 6 sub-models and processes linking ecological 

and soil environmental drivers that control C, N, and P cycling in crop production in agricultural 

fields. Adapted from Li et al. (2006), Smith et al. (2020), and Gilhespy et al. (2014). 

 

Three groups of data are required to parameterize DNDC. The first group includes the soil 

characteristics such as soil texture, bulk density, clay content, hydraulic conductivity, organic C 

concentration, initial NH4
+  and NO3

−  concentrations, field capacity, wilting point, and porosity. The 

second group includes daily climate information such as wind speed, relative humidity, maximum 

and minimum air temperature, solar radiation, and precipitation. The third group includes crop 

profile and management information, the former including temperature degree-day and water 
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requirements, crop morphology, crop (grain, shoot, and root) biomass yield, C and N 

concentrations in biomass, and the latter including tillage practices, N application rate and method, 

crop rotation, planting, and harvest dates, etc. The soil, climate, and crop parameters are the 

ecological drivers used by the soil climate sub-model to simulate the soil environmental factors 

such as soil temperature, pH, NH4
+ and NO3

− concentrations, and redox potential. DNDC 

simulations produce daily N2O and CO2 emissions estimates that can be used for reporting 

emissions and removals from croplands and grasslands.  

Compared to other models, DNDC has numerous advantages that make it stand out as a 

model for simulating agroecosystem dynamics. A review by Brilli et al. (2017) concluded that the 

DNDC was the only model that simulates all N processes, CO2 emissions, and non-CO2-GHG 

(N2O, CH4, NH3, NOx, and N2). The next best models for agroecosystem simulation were 

DailyDayCent and EPIC. In addition, the DNDC model can  be linked to a database of activity 

data and run in an operational context using easily measurable input data (Brown et al., 2002; 

Smith et al., 2010). The availability of default parameters for over 60 crop types and a complete 

suite of commonly simulated agroecosystems outputs gives this model an edge over similar models 

(Gilhespy et al., 2014). The data required to initialize DNDC’s SOC pools are more readily 

available than the data required by DailyDayCent. The simulated SOC content can be stabilized 

by running a 10-yr spin-up simulation, unlike in DailyDayCent which demands soil information 

for each soil layer and an SOC initialization simulation of 1,000 years. However, some weakness 

of DNDC include: (1) unavailability of source code; (2) the soil-crop-atmospheric processes, 

especially for the more recent versions, are not well documented in the user’s manual (Smith, 

2019); (3) microbial diversity, growth and abundance are only represented implicitly (Brilli et al., 

2017); (4) it often exhibits inaccuracies in simulating the impacts of certain management practices 
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(e.g. tillage) on GHG fluxes (Uzoma et al., 2015); and (5) it often exhibits inaccuracies in 

simulating soil water and N flow through the soil profile (Smith et al., 2020).  

 

2.5.2. Using DNDCv.CAN to Simulate Carbon and Nitrogen Cycling from Land-Applied 

Biosolids 

DNDC.vCAN is the version of DNDC95 adapted by several Canadian researchers for 

national use. It estimates soil and hydrological dynamics up to a depth of 2m under conditions 

typical of Canadian climate, crops, agricultural management practices, and soil types (Smith et al., 

2020). The previous version of the model, DNDC95, was designed for use in a wide variety of 

agroecosystems (Gilhespy et al., 2014), and these features together with improvements in C and 

N cycling mechanisms were retained in DNDC.vCAN (Smith et al., 2020). To that effect, it 

performs reasonably across various Canadian geographic regions (Ehrhardt et al., 2018; Deng et 

al., 2016; Yadav & Wang, 2017; Smith et al., 2020), farm management practices (e.g. Uzoma et 

al., 2015), and climate conditions (e.g. Congreves et al., 2016). It was recently adapted to cold 

weather conditions, long winter periods with snowpack, and soil textures that are typical of Canada 

(Dutta et al., 2018). Also, the deficiencies in simulating soil water flow have been improved by 

introducing root density functions for different crops and changing the approach for simulating 

soil hydrology (Smith et al., 2019). The previous cascade water flow model was based on the 

assumption of a homogenous 50 cm soil profile, but this was improved by accounting for water 

flow through a 2 m heterogeneous soil profile (Smith et al., 2020). This improvement enables the 

characterization of the soil profile as comprising up to 20 different layers based on pH, SOC, 

texture, porosity, bulk density, and hydraulic conductivity.  
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DNDC can be parameterized to simulate C and N transformation in different types of 

biosolids. DNDC has been used in several studies of soils amended with different N sources, such 

as urea (Dutta et al., 2016), digestate from anaerobic digestors (Terhoeven-Urselmans et al., 2009), 

and crop residue (Ehrhardt et al., 2018) in several countries. The characterization of organic 

amendments in DNDC demands the values of C/N, organic C, organic N, NO3
−, urea or NH4

+, pH, 

and dry matter as input parameters. These parameters distinguish the different types of  biosolids 

(Arulrajah et al., 2011) and influence the decomposition, nitrification, and denitrification in 

agricultural soils that receive biosolids, as well as the magnitude of the resulting GHG emissions 

(Gilmour & Skinner, 1999; Gilmour et al., 2003; Rigby et al., 2016). These parameters are 

empirically measurable and are also user specified DNDC inputs. The rigorous work already done 

in the development and use of DNDC.vCAN makes it a suitable model for implementing the 

objectives of this research. 

 

2.5.3. Simulation of Carbon Mineralization using DNDC 

There are seven SOC pools in DNDC, distributed amongst soil, microbial biomass, and 

litter as follows: (1) labile soil C, (2) passive humus, (3) labile microbial C, (4) resistant microbial 

C, (5) very labile litter C, (6) labile litter C, and (7) resistant litter C. Carbon mineralization in the 

model follows a sequential transformation from the very labile to the resistant C pool. When 

organic matter (e.g., biosolids) is applied to the soil, the organic C from the biosolids is allocated 

to either the very labile, labile, or resistant SOC pool depending on the C/N ratio of the biosolids 

in question. DNDC models the SOM decomposition process using first-order kinetics, whereby 

the decomposition rates of the labile and resistant pools of organic carbon depend on the C/N ratio, 

soil moisture, and temperature (the moisture and temperature factor) (Eq. 2.5). The decomposition 
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process occurs independently and simultaneously in all SOC pools at different rates. The DNDC 

model quantifies the daily amounts of SOC, heterotrophic CO2 production, and root respiration. 

The equations used to estimate the rate of SOC decomposition have been documented by the 

Institute for the Study of Earth, Oceans, and Space (2017). 

𝑑𝐶

𝑑𝑡
= 𝐶𝑁𝑅 ⨯ 𝜇 ⨯ (𝑆 ⨯ 𝑘1 + (1 − 𝑆) ⨯ 𝑘𝑟) ⨯ [𝐶] Eq. 2.5 

𝑑𝐶

𝑑𝑡
 is the rate of decomposition of the organic C pool (kg-C ha–1 d-1); 𝑡 is time (day); 𝐶𝑁𝑅 is the 

C/N ratio reduction factor; μ is the temperature and moisture factor; S is the labile fraction of 

organic C compounds; 𝑘1 is the specific decomposition rate of the labile fraction (day–1); (1 –  𝑆) 

is the resistant fraction of organic C compounds; 𝑘𝑟 is the specific decomposition rate of the 

resistant fraction (day–1); and [𝐶] is the organic C content (kg-C ha–1).  

 

During the microbial decomposition of SOC, a fraction of the produced dissolved organic 

carbon (DOC) serves as an energy source for the microbes and another fraction for microbial 

biomass growth. Microbial decomposition of SOC leads to CO2 production and emission from 

each soil layer, depending on its initial C content. The quantity and quality of C in the biosolids 

determine the growth rate of decomposers, the CO2 production rate during decomposition, the 

mineralization rate of available N compounds, and the quantity of C in the resistant and passive C 

pools that are available to sustain microbial activity over time. This mechanism assumes that other 

substrates (e.g., plant micronutrients) are not limiting. 

  

2.5.4. Simulating Nitrification and Denitrification Processes using DNDC 

In DNDC, the nitrification and denitrification of N applied to the soil in the form of 

synthetic fertilizers, crop residue, manure, or biosolids are simulated using the “anaerobic balloon” 
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concept (Li et al., 2000). Here, soil is conceptually divided into an anaerobic volumetric fraction 

(within the anaerobic balloon) which represents anaerobic microsites in the soil, and the remaining 

aerobic volumetric fraction (outside the anaerobic balloon) which represents the aerobic microsites 

in the soil. The proportion of aerobic to anaerobic fractions determine the proportion of substrates 

(DOC, NO3
−, NH4

+, etc.) allocated to each portion. Substrates within the anaerobic volumetric 

fraction take part in reduction reactions (e.g., denitrification), while substrates allocated outside 

the anaerobic volumetric fraction (soil aerobic microsites) take part in oxidation reactions (e.g., 

nitrification). The Nernst equation (Eq. 2.6) describes either nitrification or denitrification, 

depending on the estimated soil redox potential (Eh) due to concentrations of the existing oxidants 

and reductants in the soil liquid phase. The equations used in DNDC to estimate Eh, as well as 

those used to estimate N2O production through nitrification and denitrification, have been 

documented by the Institute for the Study of Earth, Oceans, and Space (2017). 

𝐸ℎ = 𝐸𝑜 +
𝑅𝑇

𝑛𝐹
⨯ ln (

[𝑜𝑥𝑖𝑑𝑎𝑛𝑡]

[𝑟𝑒𝑑𝑢𝑐𝑡𝑎𝑛𝑡]
) Eq. 2.6 

Eh is the redox potential of the oxidation-reduction system (V); E0 is the standard electromotive 

force (V); R is the universal gas constant (8.314 J mol–1 K–1); T is the absolute temperature (K); n 

is the number of electrons transferred during the redox reaction, F is the Faraday constant (96,485 

Coulombs mol–1); [oxidant] is the concentration (mol L–1) of the dominant oxidant in the system; 

and [reductant] is the concentration (mol L–1) of the dominant reductant in the system.  

 

The concentration of each oxidant (O2, NO3
−, Mn4

+, Fe3
+, SO4

2- and CO2) in the soil is 

allocated (conceptually) to a unique anaerobic balloon. In descending order of Gibb’s free energy 

from O2 to CO2, each oxidant becomes dominant at its suitable range of soil Eh, following the 

depletion of the preceding oxidant by microbial activity. Once an oxidant becomes active, 
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microbes begin to deplete that specific oxidant, causing a swelling of its anaerobic balloon. The 

anaerobic balloon bursts as soon as the oxidant is depleted, leading to a decrease in soil Eh, which 

then activates the use of the next oxidant. This process is sequential and continues repetitively 

depending on the availability of substrates. The consumption rates of oxidants are described using 

the dual-nutrient Michaelis-Menten equation (Eq. 2.7), while the reaction rate depends on 

concentration of the dominant oxidant and available C. 

 𝐹[𝑜𝑥𝑖𝑑𝑎𝑛𝑡] = 𝑎 [
𝐷𝑂𝐶

𝑏+𝐷𝑂𝐶
] ⨯ [

𝑜𝑥𝑖𝑑𝑎𝑛𝑡

𝑐+𝑜𝑥𝑖𝑑𝑎𝑛𝑡
]  Eq. 2.7 

𝐹[𝑜𝑥𝑖𝑑𝑎𝑛𝑡] is the fraction of oxidant reduced during each time step, DOC is the dissolved organic 

carbon content (kg-C ha-1), oxidant is the concentration of the dominant oxidant in the oxidation-

reduction system, a is the maximum rate of reaction, and b and c are half-saturation constants for 

substrates DOC and oxidants, respectively. The constants (b and c) and a were taken from a 

laboratory study by Leffelaar and Wessel (1998). 

 

2.5.4.1. Nitrous Oxide Production through Nitrification 

In DNDC, N2O production due to nitrification occurs when soil is aerated, i.e., in the 

aerobic volumetric fraction of the anaerobic balloon. In this state, O2 is the dominant oxidant, and 

the water-filled pore space (WFPS) must be greater than 0.05 for nitrification to occur. The process 

is modelled after the nitrification reactions shown in Eq. 2.8 and Eq. 2.9. 

𝑁𝐻4
+ + 𝑂2  → 𝑁𝑂2

− + 4𝐻+ + 2𝑒−  Eq. 2.8 

𝑁𝑂2
− + 𝐻2𝑂 → 𝑁𝑂3

− + 2𝐻+ + 2𝑒−  Eq. 2.9 
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Soil temperature, pH, moisture, DOC concentration, and nitrifying bacteria activity 

together influence the nitrification rate as shown in Eq. 2.10 to Eq. 2.16. The rate of nitrification 

is optimum when temperature is 35℃.  

 

Nitrification rate depends on the activity of nitrifying bacteria, soil pH, and the availability 

of NH4
+. The effect of soil pH on the nitrification rate is represented by Eq. 2.10, with optimum 

nitrification occurring at a soil pH of 7.5 to 8.0.  

𝑅𝑁 =  𝑘35  ∗  [𝑁𝐻4
+] ⨯  𝑁𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟 ⨯  𝑝𝐻   Eq. 2.10 

 RN is the nitrification rate (kg-N ha-1 d-1), 𝑘35 is the nitrification rate (25 mg kg-1 manure d-1) at 

35 °C, [𝑁𝐻4
+] is the concentration of ammonium (kg-N kg-soil-1), Nitrifier is the biomass of 

nitrifying bacteria (kg-C ha-1), and pH is the soil pH. 

 

The N2O produced by nitrification is computed as a fraction of the nitrification rate shown 

in Eq. 2.11.  

𝑁2𝑂𝑁  =  0.006 ⨯ 𝑅𝑁 ⨯ 𝐹𝑡   ⨯ 𝑊𝐹𝑃𝑆      Eq. 2.11 

𝑁2𝑂𝑁 is N2O-N production through nitrification (kg-N ha-1 d-1), Ft is the soil temperature factor, 

and WFPS is water-filled pore space. 

 

Nitrifier activity (growth and death rates) depends on DOC, soil temperature, and soil 

moisture as represented by Equations 2.12, 2.13 and 2.14.  

𝑑𝑁𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟

𝑑𝑡
 =  (

𝑑𝐺

𝑑𝑡
–

𝑑𝐷

𝑑𝑡
) ⨯ 𝑁𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟 ⨯ 𝐹𝑡 ⨯ 𝐹𝑚   Eq. 2.12 
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𝑑𝐺

𝑑𝑡
 =  µ𝑚𝑎𝑥 ⨯ (

[𝐷𝑂𝐶]

1.0 + [𝐷𝑂𝐶]
+

𝐹𝑚

1.0 + 𝐹𝑚
)  Eq. 2.13 

𝑑𝐷

𝑑𝑡
 =  𝑎𝑚𝑎𝑥 ⨯ 𝑁𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟 ⨯

1.0

1.0 + [𝐷𝑂𝐶]

1.0+𝐹𝑚
        

Eq. 2.14 

𝑑𝑁𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟

𝑑𝑡
 is the net change of nitrifying bacteria biomass (kg-C ha-1 d-1), 

𝑑𝐺

𝑑𝑡
 is the relative growth 

and 
𝑑𝐷

𝑑𝑡
  is the relative death rate of the nitrifying bacteria (d-1), Fm is the soil moisture factor, µ𝑚𝑎𝑥 

is the maximum growth rate of nitrifiers (4.87 d-1), and 𝑎𝑚𝑎𝑥 is the maximum death rate for 

nitrifiers (1.44 d-1). 

 

The effect of soil moisture on nitrification is shown in Eq. 2.15, with the water-filled pore 

space (WFPS) limiting the nitrification rate when the soil becomes too dry.  

𝐹𝑚 = {
0.8 +  0.21 ⨯ (1.0 –  𝑊𝐹𝑃𝑆);  𝑊𝐹𝑃𝑆 >  0.05

0.0;  𝑊𝐹𝑃𝑆 ≤  0.05
  

Eq. 2.15 

The temperature function is used to calculate the effect of temperature on the nitrifying 

bacteria growth rate shown in Eq. 2.16. 

𝐹𝑡 = 3.503(
60−𝑇
25.78

) ⨯ exp3.503⨯(
𝑇−34.22

25.78
). 

Eq. 2.16 

T is the soil temperature (°C).  

 

2.5.4.2. Nitrous Oxide Production through Denitrification 

DNDC models the reduction reaction following Eq. 2.17, representing the reduction of 

nitrate to diatomic nitrogen and the production of N2O and NO as intermediate products.  
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𝑁𝑂3
− + 2𝑒−  → 𝑁𝑂2

− + 𝑒−  → 𝑁𝑂 + 𝑒−  → 𝑁2𝑂 + 2𝑒−  → 𝑁2 Eq. 2.17 

Denitrification begins when Eh = 500 mV or lower due to soil O2 depletion, therefore 

sequentially activating 𝑁𝑂3
−  and other oxidizers as the electron acceptors. The denitrifying 

bacteria consume the oxides of N and grow at a rate proportional to their respective biomasses and 

the available concentrations of DOC and N oxides. The growth of denitrifying bacteria is estimated 

using the Michaelis-Menten equation that describes growth kinetics based on multiple nutrients 

(Eq. 2.18). The growth rates of denitrifying bacteria in the different reactions are independent and 

all compete for the available soluble C substrate.  

𝑢𝑁𝑂𝑥 = 𝑢𝑁𝑂𝑥,𝑚𝑎𝑥 ⨯ (
[𝐷𝑂𝐶]

𝐾𝑐+[𝐷𝑂𝐶]
) ⨯ (

[𝑁𝑂𝑥]

𝐾𝑁+[𝑁𝑂𝑥]
)  

Eq. 2.18 

𝑢𝑁𝑂𝑥 is the relative growth rate of NO3
−, NO2

−, NO, or N2O denitrifying bacteria (h-1),𝑢𝑁𝑂𝑥,𝑚𝑎𝑥  is 

the maximum growth rate (0.67 h-1) for NO3
−, NO2

− denitrifiers, and 0.34 h-1 

for NO  and N2O denitrifiers (h-1); [DOC] is the soluble C concentration (kg-C cm-3), NOx is the 

concentration of N oxides or N2O in soil water (kg-N cm-3); KC is the half-saturation value of 

soluble C in the Monod model (kg-C m-3 soil water); and KN is the half saturation value of the N 

oxides or N2O in the Monod model (kg-N m-3 soil water). 

The denitrification reaction is influenced by soil pH (Equations 2.19, 2.29 to 2.31). 

Denitrification rates increase with increasing pH, having an optimum pH range of 7.0–8.0, while 

at pH values less than 5.0 denitrification is limited to N2O production.  The growth and death rates 

of denitrifying bacteria are estimated using Equations 2.19, 2.20, and 2.21.  

𝑢𝐷𝑁 = 𝐹𝑇 ⨯ (𝑢𝑁𝑂3 ⨯ 𝐹𝑝𝐻−𝑁𝑂3 + 𝑢𝑁𝑂2 ⨯ 𝐹𝑝𝐻−𝑁𝑂2+𝑢𝑁𝑂 ⨯ 𝐹𝑝𝐻−𝑁𝑂 + 𝑢𝑁2𝑂 ⨯ 𝐹𝑝𝐻−𝑁2𝑂)  Eq. 2.19 
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𝑢𝐷𝑁 is the relative growth rate of NOx and N2O denitrifying bacteria (h-1); FT is the temperature 

factor; and FPH-NO3, FPH-NO2, FPH-NO, and FPH-N2O are all soil pH factors for the compound indicated 

in the subscript. 

(
𝑑𝐷𝑒𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟

𝑑𝑡
)

𝑔
= 𝑢𝐷𝑁 ⨯ 𝐷𝑒𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟  Eq. 2.20 

(
𝑑𝐷𝑒𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟

𝑑𝑡
)

𝑔
 is the potential growth rate of denitrifier biomass (kg C ha-1 d-1),Denitrifier is the 

biomass of denitrifying bacteria (kg-C ha-1). 

(
𝑑𝐷𝑒𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟

𝑑𝑡
)

𝑑
= 𝑀𝐶 ⨯ 𝑌𝐶 ⨯ 𝐷𝑒𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟   Eq. 2.21 

(
𝑑𝐷𝑒𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟

𝑑𝑡
)

𝑑
 is the denitrifier death rate, MC is maintenance coefficient on C (0.0076 kg-N kg h-

1), and YC is maximum growth yield on soluble carbon (0.503 kg-C kg-C-1) 

 Consumption of DOC and CO2 production through denitrification is shown in Eq. 2.22 

and 2.23, respectively. 

𝑑𝐶𝑐𝑜𝑛

𝑑𝑡
= (

𝜇𝐷𝑁

𝑌𝑐
+ 𝑀𝑐) ⨯ 𝐷𝑒𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟 

Eq. 2.22 

 

𝑑𝐶𝑂2

𝑑𝑡
=

𝑑𝐶𝑐𝑜𝑛

𝑑𝑡
−

𝑑𝐷𝑒𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟

𝑑𝑡
 

Eq. 2.23 

𝑑𝐶𝑐𝑜𝑛

𝑑𝑡
 is the hourly rate of change of C concentration (kg-C ha-1 h-1) and 

𝑑𝐶𝑂2

𝑑𝑡
 is the hourly rate of 

CO2 production (kg-C ha-1 h-1). 

Equations 2.24 to 2.27 are used to calculate the rate of N oxides consumption.  
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𝑑(𝑁𝑂3)

𝑑𝑡
= (

𝑢𝑁𝑂3

𝑌𝑁𝑂3
+ 𝑀𝑁𝑂3 ⨯

[𝑁𝑂3]

[𝑁]
) ⨯ 𝐷𝑒𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟 ⨯ 𝐹𝑝𝐻−𝑁𝑂3 ⨯ 𝐹𝑇  Eq. 2.24 

  

𝑑(𝑁𝑂2)

𝑑𝑡
= (

𝑢𝑁𝑂2

𝑌𝑁𝑂2
+ 𝑀𝑁𝑂2 ⨯

[𝑁𝑂2]

[𝑁]
) ⨯ 𝐷𝑒𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟 ⨯ 𝐹𝑝𝐻−𝑁𝑂2 ⨯ 𝐹𝑇  

Eq. 2.25 

𝑑(𝑁𝑂)

𝑑𝑡
= (

𝑢𝑁𝑂

𝑌𝑁𝑂
+ 𝑀𝑁𝑂2 ⨯

[𝑁𝑂]

[𝑁]
) ⨯ 𝐷𝑒𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟 ⨯ 𝐹𝑝𝐻−𝑁𝑂 ⨯ 𝐹𝑇 

Eq. 2.26 

𝑑(𝑁2𝑂)

𝑑𝑡
= (

𝑢𝑁2𝑂

𝑌𝑁2𝑂
+ 𝑀𝑁2𝑂 ⨯

[𝑁2𝑂]

[𝑁]
) ⨯ 𝐷𝑒𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟 ⨯ 𝐹𝑝𝐻−𝑁2𝑂 ⨯ 𝐹𝑇   Eq. 2.27 

N is the total nitrogen as the sum of NO3
−, NO2

−, NO, or N2O (kg-N ha-1); and YNO3, YNO2, YNO, and 

YN2O are the maximum growth yield on NO3
−, NO2

−, NO, or N2O (kg-C Kg-N-1), respectively.  

The effects of temperature on denitrification is estimated using Equation 2.28 and applied 

to equations 2.24 and 2.27. 

𝐹𝑇 = {2.0
𝑇−22.5

10.0  ;  𝑇 ≤ 60.0
0.0;  𝑇 > 60.0

  
Eq. 2.28 

 

DNDC estimates the effect of pH on denitrification using Equations 2.29 to 2.31. 

𝐹𝑝𝐻−𝑁𝑂3 = 1 − (
1

1+exp
𝑝𝐻−4.25

0.5 .

)  
Eq. 2.29 

𝐹𝑝𝐻−𝑁𝑂2 = 1 − (
1

1+exp
𝑝𝐻−5.25

1.0 .

)  
Eq. 2.30 
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      𝐹𝑝𝐻−𝑁𝑂3 = 1 − (
1

1+exp
𝑝𝐻−6.25

1.5 .

)   
Eq. 2.31 

 

Under aerated soil conditions in DNDC, SOC decomposition, N nitrification, and NO3
− 

denitrification processes release CO2, N2O, NOx, and NH3, and provide mineral N for plant uptake. 

The soil organic N, having increased by application of biosolids, mineralizes to NH4
+, which is 

maintained in equilibrium with NH3. NH4
+ is a substrate for denitrification into NO3

− and can be 

taken up directly by plants. The quantity of nitrogen in the biosolids determines the amount of 

NH4
+ and NO3

− available for plant uptake and microbial growth, as well as loss through NO3
−  

leaching, NH3 volatilization, and N2O emissions.  

 

2.5.5. Calibration and Evaluation of DNDC 

The complex interactions of variables in DNDC require parameter optimization to properly 

represent the transformation of C and N and their exchange between soil, crop, and atmosphere in 

the target system. As a rule, soil temperature, soil moisture, crop N, crop C, crop biomass, SOC, 

as well as NH3, N2O, NO3
−, NH4

+ and CO2 measurements are compared as benchmarks with 

simulated values from DNDC to assess DNDC’s performance (Li, 2013; Li et al., 2014; Li et al., 

2017a; Myrgiotis et al., 2018). 

Calibration and evaluation ensure confidence in DNDC simulations prior to deployment as 

a predictive tool. For good calibration to be achieved, multi-parameter optimization is typically 

done using manual iterations, generic algorithms, machine learning, and Bayesian methods 

(Kercher & Chambers, 2001; Ratto et al., 2001; Li, 2013; Muehleisen & Bergerson, 2016). 

Disparities between measured and simulated values occur mostly due to Type 1 and 2 errors in 
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field measurements, the parameterization and structure of DNDC, or combinations of these three 

(Lamers et al., 2007; Hastings et al., 2010). Poor performance of DNDC is often associated with 

poor parameterization of soil hydrology and the nitrifying and denitrifying bacteria functions (Li 

et al., 2006, 2012). For C and N cycling processes to be properly calibrated in DNDC, SOC 

together with soil temperature, moisture,  NO3
−, and NH4

+ values should be simulated within 

acceptable ranges of the mean and standard error values of each of the observed variables (Smith 

& Smith, 2007). Also, the simulation of the background and episodic N2O emissions should be 

monitored concurrently with the simulated crop N and crop water uptake (Li et al., 2013). This is 

done to achieve optimum DNDC parameter values that produce the least discrepancies between 

the measured and simulated soil GHG emissions and crop yield values. Some statistical metrics 

used to determine a model’s performance in simulating the measured variables include relative 

error (E), mean difference (M), Pearson’s correlation coefficient (r), root-mean-square error 

(RMSE), index of agreement (d), paired T-tests, lack-of-fit (LOFIT), and coefficient of 

determination (R2) (Smith & Smith, 2007). These metrics quantify the total difference (e.g. 

RMSE), degree of bias (e.g. M and E), and degree of association (e.g. r and R2) between the 

simulated and measured values (Smith & Smith, 2007). The difference between the measured and 

simulated values minus the errors due to measurement variations can be determined using LOFIT 

(Smith & Smith, 2007). 

Generally, DNDC calibration is necessary to improve the simulation of GHG fluxes under 

different soil and crop management systems, climates, and agroecosystems (Rafique et al., 2011; 

Li et al., 2017; Myrgiotis et al., 2018; Zimmermann et al., 2018). Calibrating the model against 

measured field values ensure the selection of optimum model parameter values to simulate daily 

moisture, temperature, NH4
+, and NO3

− dynamics in soils, as well as for crop growth processes 
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(Foltz et al., 2019; Sleutel et al., 2006; Smith et al., 2019). Some DNDC modelling studies of 

eastern Canadian agroecosystems showed that with minimal adjustments to DNDC parameters, 

the measured field values where generally well-represented within acceptable error values (e.g. 

low RMSE values) (Smith et al., 2008; Sansoulet et al., 2014; Guest et al., 2017). In a study by Li 

et al. (2017), adjusting only the thermal degree days for crop maturity and the root: shoot ratio 

improved the simulation of daily soil CO2 fluxes and temporal offset in the soil CO2 fluxes for 

soybean under both monoculture and rotation. Meanwhile, in some other cases, particularly when 

testing DNDC for novel scenarios, e.g. on sites fertilized with mineral N in combination with either 

nitrification inhibitor or urease inhibitor, detailed representation of the soil water and thermal 

dynamics and the soil-plant-atmosphere C and N exchange is needed to calibrate DNDC (Smith et 

al., 2002; Zimmermann et al. 2018; Smith et al., 2020). One major challenge in using DNDC is 

that the water and N dynamics in soils are complex and cannot be estimated with great certainty 

(Li et al., 2017). Therefore, to minimize systematic errors, untested scenarios in DNDC (e.g. C 

and N dynamics when biosolids are land-applied) require site-specific calibration and subsequent 

validation using independent empirical data sets to ensure the model’s consistency in simulating 

agroecosystem dynamics (Smith et al., 2008).  

 

2.5.6. Validation of DNDC for Estimation of Seasonal and Inter-Annual GHG Emissions 

from Soils Amended with Biosolids in Canada  

Validating DNDC for simulating GHG fluxes from soils amended with biosolids under 

various Canadian soils and climatic zones is an important step towards generating representative 

emission factors for the national GHG inventory. Validating process-based models for use in 

simulating biogeochemical processes is challenging due to the many variables and non-linear 
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interactions between the fitted parameters (Hastings et al., 2010). Across the world, many 

researchers have validated DNDC for simulating spatio-temporal dynamics of C and N in various 

agroecosystems, such as those fertilized with animal manure or mineral fertilizer (Beheydt et al., 

2007); animal waste (Brown et al., 2002); and urea with or without nitrification inhibitors (Cui et 

al., 2014). In Canada, some researchers have also validated DNDC under different management 

practices across different agroecosystems. For instance, He et al. (2018) validated DNDC on a 

winter wheat-maize-soybean rotation under conventional tillage and no tillage practices at 

Woodslee, ON, prior to using DNDC to predict the effects of various climate change scenarios of 

crop yields and N2O emissions. Also, a study by Smith et al. (2002) validated DNDC on crop fields 

in eastern (Ontario) and western (Saskatchewan) Canada amended with cattle manure and either 

mineral fertilizer or no fertilizer, respectively. However, using a model in a novel scenario requires 

model validation for building user confidence in model predictions (Shaffer et al., 2001). Model 

validation is particularly important when simulating multi-year C and N dynamics of 

agroecosystems across Canada, which are amended with vastly heterogenous types of organic 

materials, such as biosolids.  

Model validation over extended time scales minimizes under- and over-estimation of 

response variables and model inconsistencies. For instance, Qin et al. (2013) reported better 

simulation of seasonal GHG emissions over longer time scales as compared to shorter ones, 

indicating that the sensitivities of simulated soil GHG emissions to some important parameters 

were time-dependent. DNDC does not simulate the effect of long-term tillage practices on soil 

bulk density and its resulting effect on N2O emissions as would be expected in a typical agricultural 

soil under conventional tillage over so many years (Uzoma et al., 2015; Maharjan et al., 2018). In 

addition to multi-year simulations, when developing national GHG inventories, multiple site-based 
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model validation reduces inconsistencies in the simulation of spatial variations in water, C, and N 

dynamics in nitrogen-fertilized soils.  For example, Brown et al. (2002) reported that, when DNDC 

was parameterized with site-specific data, the discrepancies between measured and simulated 

historical N2O emissions from several UK test sites were reduced. In another study, Beheydt et al. 

(2007) reported significant under- or over-estimates when similar simulations were done across 

several Belgian test sites using default data for water-filled pore space. However, these 

discrepancies in estimating N2O emissions were reduced across all test sites after water-filled pore 

space at both wilting point and field capacity were adjusted to reflect the soil conditions on the test 

sites. In some cases, even with measured site-specific input parameters, validation studies have 

reported underestimation by DNDC of GHG fluxes and soil moisture in relatively dry years. 

According to Smith et al. (2018), poor estimation by DNDC of soil water content during the 

growing season occurs mainly due to two reasons. First, older versions of the model cannot 

simulate water uptake from the water table through soil capillary rise or direct uptake by roots. 

Second, older versions of the model did not include root density functions to represent higher 

density of roots near the soil surface, leading to the underestimation of soil water content in the 

deeper profile and overestimates at the soil surface. These shortcomings are common in previous 

versions of DNDC, but the revised version DNDCv.CAN features improvements in the hydrology 

sub-routine which could improve estimates of GHG emissions and C and N cycling in general 

(Smith et al., 2018).  

 

2.5.7. Sensitivity and Uncertainty Analysis in GHG Emissions using DNDC  

The high temporal and spatial variability of ecological drivers together with the non-linear 

relationships between them make biogeochemical processes challenging to quantify (Li, 2000; 
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Bouwman et al., 2002). According to Shaffer et al. (2001), the efficacy of process-based models 

in estimating GHG emissions, particularly N2O, is limited by the temporal and spatial resolution 

of experimental data, lack of definite information for partitioning the C and N pools and 

determining their different transformation rates, and scant knowledge about parameter uncertainty. 

These limitations, coupled with field measurement errors, systematic error during GHG analysis, 

inherent randomness, and subjective judgement make simulations using process-based models 

vulnerable to error propagation (Uusitalo et al., 2015). This concern becomes even more 

consequential when a model is being tested for novel scenarios or is used for simulations at large 

temporal and spatial scales (Chen et al., 2008). An approach to minimize such simulation errors is 

to quantify the sensitivity of the model to changes in the values of critical parameters (Shaffer et 

al., 2001). Uncertainty analysis is used in DNDC simulation studies to estimate the distribution 

and confidence intervals of simulated values, and to develop plans to further reduce uncertainties.  

Sensitivity and uncertainty analysis in previous studies show that spatial heterogeneity 

(e.g., of soil properties) is one key factor influencing GHG emissions from arable soils (Li et al., 

2004; Fitton et al., 2017). Mathematical approaches such as the most sensitive factor (MSF), 

Monte Carlo, Sobol, and Morris methods have been used to estimate the uncertainty arising from 

the variation of multiple parameters (Qin et al. 2013). For reporting GHG emissions on a national 

scale, uncertainties are generally quantified on annual time steps for each spatial unit prior to 

aggregation (IPCC, 2019). However, due to limitations in computing resources and time, full 

Monte Carlo simulations may not be feasible or sensible to apply to every spatial unit in a country.  

Uncertainties introduced in DNDC simulations by spatial heterogeneity may be addressed 

by using the MSF approach, while those introduced by temporal variation can be addressed using 

time-intensive, long-term empirical data collection (Qin et al., 2013). Using the MSF approach, a 
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set of maximum and minimum values of the most sensitive soil and environmental factors of a 

spatial unit are each used in two simulation runs to produce an emissions range representative of 

the variations in the given soil properties and environmental variables (Li et al., 2004). The MSF 

approach was also used by Li et al. (1996) for nationwide estimation of N2O emissions from all 

US states and found fertilizer inputs and tillage to be the most sensitive factors affecting N2O 

emissions at the national scale. On the other hand, initial SOC, tillage, and soil temperature were 

found to be the factors that most affected CO2 emissions (Hastings et al., 2010; Abdalla et al., 

2011). Temporal variability may also have significant influence, as single-year sensitivity analysis 

may fall short of representing the long-term effect of parameter uncertainty on model prediction 

(Qin et al., 2013). Also, uncertainty in the input data and model structure are other sources of 

uncertainty in model simulation (Uusitalo et al., 2015).  

Uncertainty analysis is important for determining the likely contributions of management, 

climate, and soil to GHG emissions under Canadian conditions given the size and number of 

ecozones in Canada. DNDC has built-in functions for both the MSF and Monte Carlo methods of 

uncertainty analysis. The Monte Carlo simulation involves multiple runs of a model using 

different, randomly chosen sets of parameter values. Li et al. (2000) found that the results from 

DNDC uncertainty analysis using MSF approach and Monte Carlo approach coincided 60–90% of 

the time. Due to the computational requirements of a full Monte Carlo simulation, model input 

uncertainty can be evaluated using the MSF, Morris, Sobol, or MSF+Morris approach to provide 

a range of uncertainty based on input variance (Qin et al., 2013). Then, structural uncertainty can 

be evaluated by comparing DNDC-simulated values to good quality empirical observations or 

through inter-model comparisons (IPCC, 2019).  
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Connecting text to Chapter 3 

Chapter 2 provided a review of the approaches for estimating greenhouse gas (GHG) 

emission factors (EF) associated with agricultural land application of biosolids in Canada to be 

used in the national GHG inventory. A review was done of the Intergovernmental Panel on Climate 

Change (IPCC) protocols, including process-based modelling approaches, specifically the 

DeNitrification and DeComposition (DNDC) model. Simulation of decomposition, nitrification, 

and denitrification processes by DNDC were discussed and a review of calibration, validation, 

sensitivity analysis, and uncertainty analysis were included. 

In Chapter 3, we describe a 92-day incubation study of soil organic carbon degradation and 

nitrogen mineralization in loam soil amended with mesophilic anaerobically digested, composted, 

or alkaline-stabilized biosolids under two different moisture conditions. We determine the 

fractions of C left at the end of the experiment and use that information to choose the equations 

and coefficient values to describe the kinetics of C and N transformation under both moisture 

conditions for all three biosolids. The knowledge from this study will be useful for parameterizing 

DNDC to improve the simulation of C and N cycling in Canadian agroecosystems amended with 

biosolids. 

The following manuscript reporting Chapter 3 results has been submitted for review: Obi-

Njoku, Gonzalez-Pavia, A., Boh, M. Y., Price, G.W., and Clark, O. G. (under review). Carbon and 

nitrogen mineralization kinetics of three different types of biosolids. Soil Science Society of 

America Journal. 

  



76 
 

Chapter 3. Carbon and Nitrogen Mineralization Kinetics of Different Types of Biosolids 

Applied to Agricultural Soil 

Okenna Obi-Njoku, Michael Yongha Boh, Andrea Gonzalez-Pavia, G.W. Price, and O. 

Grant Clark 

  

Abstract 

A controlled environment study was conducted to assess how differently processed sewage 

solids, also referred to as biosolids, would impact the rate of carbon and nitrogen mineralization 

under varying soil moisture conditions. The study aimed to estimate parameter values for 

modelling the degradation of three biosolids in soil. A soil was amended with either composted, 

mesophilic anaerobically digested (digested), or alkaline-stabilized biosolids, under soil moisture 

of 29% water-filled pore space (WFPS) and 49% WFPS. Gas and soil samples were collected and 

analysed for changes in concentrations of carbon dioxide (CO2) and nitrous oxide (N2O) emissions, 

as well as soil nitrate (NO3
−) and ammonium (NH4

+). Then, four different first-order models were 

fitted to the measured cumulative CO2-C and N2O-N emissions resulting in a coefficient of 

determination (R2) > 0.98, while soil NO3
− and NH4

+ concentrations were R2 > 0.65 and R2 > 0.93, 

respectively. C mineralization was higher under 49% than 29% WFPS soil moisture conditions. 

Under soil moisture of 49% WFPS, 79% of the digested biosolids carbon degraded in the soils 

compared to 52 and 8% for alkaline-stabilized and composted biosolids, respectively. This study 

shows how C and N mineralization rates may differ between humid and semi-arid regions, as well 

as during wet and dry cycles of the growing season. It also shows that either of the four first-order 

models are capable of simulating degradation of different types of biosolids in this agricultural 

soil, as well as provide useful coefficients for parameterizing mechanistic models. 
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Abbreviations: CEC, cation exchange capacity; CMC, complementary mineralization coefficient; 

DM, dry matter; DNDC, denitrification and decomposition model; EC, electrical conductivity; 

GHG, greenhouse gas; NMC, net mineralization coefficient; OM, organic matter; SOC, soil 

organic carbon; SOM, soil organic matter; TC, total carbon; TN, total nitrogen; WFPS, water-

filled pore space 

 

3.1. Introduction 

  

 Returning organic C and plant nutrients in municipal biosolids to agriculture soils is one 

way of improving the health and sustainability of our food production system. Once applied, 

biosolids decompose and release CO2 and N2O into the atmosphere, as well as NO3
− and NH4

+ ions 

into the soil that are available for plant uptake (Lal, 2013; Gougoulias et al., 2014). Biosolids 

application also builds soil organic carbon content and, in some cases, ameliorate soil pH for 

increased soil microbial activity. Each year, Canadian farmers apply about 50% of the 780,000 dry 

tonnes of municipal biosolids generated (Cheminfo Services Inc., 2018). As a signatory to the 

Copenhagen Accord of the United Nations Framework Convention on Climate Change 

(UNFCCC), Canada is committed to reporting its greenhouse gas (GHG) emissions from all 

sources. To date, emissions from land application of biosolids have not been included in the 

National Inventory Reports due to a lack of empirical data (Environment and Climate Change 

Canada, 2018). 
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Biosolids in Canada are typically processed by digestion (aerobic and anaerobic), alkaline 

stabilization, and composting (Christie et al., 2001; Rubio-Loza & Noyola, 2010; Ippolito et al., 

2010; Dentel & Qi, 2013) which makes them different in their biological stability, pH, carbon-to-

nitrogen ratio (C/N), morphology, and forms of C (Jamal et al., 2011; Li et al., 2013; Rigby et al., 

2016; Cheminfo Services Inc., 2017). Due to these differences, the impact of applying each 

biosolids type to agricultural soils on GHG emissions could differ across climatic zones (Rochette 

et al., 2018). 

Soil moisture content and biosolids characteristics are known to affect the decomposition 

kinetics of biosolids C and N (Gilmour et al., 1996; Baral et al., 2016; Charles et al., 2017). The 

rate of organic matter (OM)  degradation in the soil can be measured by tracking the rate of soil 

respiration (Knapp et al., 1983) or comparing the fraction of OM remaining to that at the start of 

the process (Gregorich et al., 2017; Pei et al., 2019). In addition, single or multiple exponential 

decomposition functions can be used to model the dynamics  involved in OM degradation (Borgen 

et al., 2011). To account for the heterogeneous nature of biosolids C, a suitable modelling approach 

is to use a multiple-pool equation with a specific decomposition rate for the different types of OM 

(Gillis & Price, 2011).  This approach has been used to model C mineralization for different types 

of biosolids in soils with a percentage moisture content between 11 to 52% (Gilmour et al., 2003). 

They suggested that using different types of biosolids under soil moisture regimes may have 

different implications on GHG emissions under agricultural field conditions. 

Running long-term field experiments to determine the contribution of agricultural use of 

biosolids to GHG emissions across Canada is both expensive and time-consuming. To bypass these 

challenges, researchers have used mechanistic models (e.g. Denitrification and Decomposition 

(DNDC) model (Li et al., 1992) and DayCent (Parton et al., 1998)) to assess the effect of using 
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manure, compost, and other organics on C degradation rates, soil chemical properties (e.g., mineral 

N concentration and pH) and GHG emissions in soils (Brilli et al., 2017). However, there is scant 

evidence in the scientific literature of any mechanistic models parameterized to simulate C and N 

dynamics in soils amended with biosolids, globally. During preliminary investigations 

(unpublished), we found that the default parameters in DNDC used to simulate C and N dynamics 

in soils fertilized with urea and different livestock manures overestimated CO2 and N2O emissions 

when used for biosolids applied on soil near Montreal, Canada.  

To accurately estimate GHG emissions from biosolids amended soils in Canada, it is 

necessary to understand the kinetics of organic C decomposition and N mineralization under 

distinct soil moisture regimes that reflect those in most Canadian agrizones. The DNDC model is 

an attractive tool for this due to its ability to account for the different forms of carbon found in 

organic materials (Fernández et al., 2007). The model requires the input of decomposition rate 

coefficients for different types of biosolids which can be derived from empirical experimental data 

(Zacháry et al., 2018). Gilmour et al. (1996) identified fast and slow rates of decomposition 

corresponding to the labile (e.g., cellulose, hemicellulose, and proteins) and recalcitrant (e.g., 

lignin, waxes, resins, and tannins) carbon fractions in biosolids, respectively. For this double-pool 

model, the rates of decomposition of the labile and recalcitrant carbon fractions were 0.025 d-1 and 

0.00287 d-1, respectively, assuming both organic carbon pools decomposed simultaneously. When 

the labile and recalcitrant organic carbon fractions were assumed to decompose sequentially, the 

decomposition rates were 0.154 d-1 and 0.00297 d-1, respectively. Some biosolids exhibited only 

one decomposition phase, perhaps due to a slow overall rate of decomposition (Gilmour et al., 

2003). This ambiguity demonstrates that simple models are often inadequate to represent the 

degradation kinetics of biosolids. 
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 The main objectives of this study were to 1.) assess the ability of simple mathematical 

models to predict biosolids C and N mineralization under simulated field conditions; 2) investigate 

the effect of soil moisture content and biosolids type on OM degradation (i.e., C and N 

mineralization) kinetics; and 3) asses the changes in soil pH and electrical conductivity during 

SOM degradation and how they correlate with soil nitrate and ammonium concentrations. The data 

generated will provide insights on how to calibrate mechanistic models to simulate the 

decomposition of these biosolids and improve the predictive capacity of such models under 

Canadian conditions.   

 

3.2. Materials and Methods 

An incubation experiment was conducted under a controlled environment to determine the 

rate of C and N mineralization for three types of biosolids used in Canada as influenced by soil 

moisture conditions. 

3.2.1. Biosolids and Soil 

Three types of commonly used biosolids in Canadian agriculture were used for this 

experiment, namely (1) mesophilic anaerobically digested biosolids collected from a municipal 

biomethanization centre (St. Hyacinthe, Quebec) (henceforth, called digested biosolids); (2) 

alkaline-stabilized biosolids, obtained from N-Viro®, Walker Environmental, Goffs, Nova Scotia 

which was produced using admixtures that increase the pH to levels >12 (Christie et al., 2001); 

and (3) composted biosolids obtained from Gaudreau Compost, Victoriaville, Quebec. Composted 

biosolids were produced by co-composting municipal sewage sludge with wood chips (>40% wet 

mass). After collection, all three types of biosolids were stored at -18°C for three weeks and then 

defrosted by placing them in a refrigerator at 4˚C for two days before adding them to the soil. 



81 
 

The soil used for this experiment was collected from the surface layer (15 cm depth) of a 

field at the Emile A. Lods Agronomy Research Centre, McGill University, Ste-Anne-de-Bellevue, 

Quebec (45º25ʹ38ʹʹ N, 73º55ʹ45ʹʹ W). The soils here are classified as Gleysolic (loam) with 190 g 

kg-1 clay, 490 g kg-1 sand, 320 g kg-1 silt, 1.21 g cm-3 bulk density, and 0.24 cm cm-3 volumetric 

field capacity. No fertilizers or biosolids had been applied to the field from where these soil 

samples were collected for at least 3 years. The chemical characteristics of the biosolids and soil 

used in the experiment are shown in Table 3.1. 
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Table 3.1. Chemical characteristics of soil and biosolids used in the experiment as reported by the 

suppliers.† 

Parameter Soil Digested 

biosolids 

Alkaline-

stabilized 

biosolids 

Composted 

biosolids 

Organic matter (%) 1.5 ± 0.1 67.0 ± 0.2 20.0 ± n/a 75.2 ± n/a 

pH (H2O) 5.8 ± 0.0 8.2 ± n/a 10.8 ± 0.0 7.6 ± n/a 

Dry matter (%) 1.5 ± 0.0 19.0 ± 0.2 62.0 ± 0.0 38.1 ± n/a 

Electrical conductivity (µS cm-1) 403.0 ± 2.0 n/a n/a n/a 

Cation exchange capacity (cmol kg-1) 7.2 ± 0.1 n/a n/a n/a 

Total carbon (mg g-1) 13.4 ± 0.7 333.7 ± n/a 164.0 ± n/a 367.5 ± n/a 

Total nitrogen (mg g-1) 1.1 ± 0.1 71.0 ± 0.5 10.0 ± 0.2 24.5 ± 0.1 

Ammonium (NH4
+) (µg g-1) 1.5 ± 0.4 1.1 ± 0.0 0.2 ± 0.0 0.4 ± n/a 

Nitrate (NO3
−) (µg g-1) 9.0 ± 1.3 n/a n/a n/a 

Total phosphorus (%DM) n/a 3.3 ± 0.0 n/a 0.9 ± n/a 

Phosphate (P2O5) (µg g-1) n/a 7.5 ± 0.0 0.0 ± n/a 2.1 ± n/a 

Potassium K (%DM) n/a 0.6 ± 0.0 n/a 0.4 ± n/a 

Potash (K2O) (µg g-1) n/a 0.7 ± 0.0 0.1 ± n/a 0.5 ± n/a 

C/N 11.8 ± 0.2 4.7 ± 0.3 16.4 ± 2.0 15.0 ± 0.4 

† Values in this table are mean (± standard error); n/a = not available; and C/N = C to N ratio. 

 

3.2.2. Incubation Experiment 

The incubation experiment was conducted in the Soil Ecology Laboratory at McGill 

University. Soil samples from the field were air-dried, sieved through a 2-mm mesh, and mixed to 
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obtain a homogenous sample. A hundred grams of the homogenized soil was placed into each of 

1-L Mason jar used, rewetted to 29% WFPS, and incubated in a dark room at 20°C for two weeks. 

After that, 240 mg of digested biosolids, 380 mg of alkaline-stabilized biosolids, and 780 mg of 

composted biosolids were added to the respective jars according to the treatment. To ensure that 

N was not a limiting factor to C mineralization, about 15 mg of urea was added to alkaline-

stabilized and composted biosolids. This decision was informed by preliminary data (unpublished) 

from the research site at Emile A. Lods Agronomy Research Centre which suggested that with 

equal N application rates, CO2 and N2O emissions from digested biosolids treatments were higher 

than those from composted biosolids and alkaline-stabilized biosolids. After biosolids were added 

to the jars, deionized water was added and adjusted to achieve the target WFPS for each treatment 

combination. The 29% and 49% WFPS moisture conditions chosen in this study cover the range 

of soil moisture conditions that favour soil microbial activity suggested by Schaufler et al. (2010). 

To ensure that moisture content remained the same through out the experiment, Mason jars were 

weighed weekly. The calculated total C and N contents in each treatment combination are shown 

in Table 3.2. 

The experimental factors were four fertilized treatments (i.e., digested biosolids, alkaline-

stabilized biosolids plus urea, composted biosolids plus urea, and a treatment receiving only urea 

as a control) and two soil moisture regimes (i.e., 29 and 49% water-filled pore space [WFPS] 

representing dry and wet conditions, respectively. The 4 × 2 factorial experiment (i.e., 8 

experimental units) was replicated 4 times in a randomized complete block design (RCBD) for 

non-destructive gas sampling. A second experiment with the same treatment factors was conducted 

for destructive soil sampling. It consisted of 228 experimental units (i.e., 8 treatments × 4 replicates 
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× 7 sampling times). Both experiments were run simultaneously under the same controlled 

conditions for 92-days.  

 

Table 3.2. Estimated field equivalent amounts of C and N applied as biosolids and/or urea.  

Amendment Nitrogen (kg N ha-1)  Carbon (kg C ha-1) C/N 

 Biosolids Urea Total  Biosolids Urea Total 

Digested biosolids 58.8 0 58.8  276.2 0 276.2 4.7 

alkaline-stabilized biosolids + urea  42.2 85.6 127.8  692.1 37.2 729.3 5.7 

Composted biosolids + urea 132.2 82.4 214.6  1982.2 35.8 2018.1 9.4 

Urea 0 120.0 120.0  0 52.2 52.2 0.4 

 

3.2.3. Soil Sampling and Analysis 

Soil samples were collected from 4 replicates of each treatment without replacement on 

days 1, 3, 5, 15, 35, 56, and 72 to analyze for NO3
−, NH4

+, pH, and electrical conductivity (EC). 

After every sampling event, soils were stored in sealed impermeable plastic bags at -5°C before 

analysis. pH and EC in the soil samples were measured from a 1:2 soil-water extract (Bado et al., 

2016) using a pH meter (Accumet® AR 10, Fisher Scientific, Toronto, Canada) and a conductivity 

meter (CDM 83, Radiometer A/S, Copenhagen, Denmark), respectively. Inorganic nitrogen (NH4
+ 

and NO3
−) was extracted from the soil samples in a 0.5 M K2SO4 solution and analyzed on a 

microplate spectrophotometer (µQuantTM, Bio-Tek Instruments Inc., Burlington, VT, USA) as per 

Maynard & Kalra (1993). To determine the NO3
− content, NO3

− and nitrite (NO2
−) in the remaining 

subsample were reduced to NH4
+ using Devarda’s alloy and incubated for 3 h at 35°C. The 

difference in NH4
+ content between the two subsamples was assumed to correspond to the NO3

− 

fraction in the soil, considering that NO2
− content was negligible (Sheppard & Bittman, 2013). Soil 
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samples collected at the start of the experiment were analyzed for total carbon (TC) and total 

nitrogen (TN) in a CN analyzer (Thermo Finnigan Flash EA 1112 Series, Thermo Fisher Scientific 

Inc, MA, USA) following the procedure described by Skjemstad & Baldock 2006 and Rutherford 

et al. 2006, respectively.  

 

3.2.4. Gas Sampling and Analysis 

Gas samples were collected 18 times from four replicates of each experimental treatment 

on days 0, 1, 3, 5, 7, 10, 12, 15, 21, 28, 35, 42, 49, 56, 63, 70, 77, and 91. During sampling, 20 mL 

of gas was drawn from the headspace of each jar using a syringe, injected into pre-evacuated 12-

mL Labco ExetainerTM vials (Labco Ltd., High Wycombe, UK) and stored in the lab until analysis. 

After every sampling event, the lids of the jars were removed for 10 to 15 min to dissipate the 

remaining gas in the headspace. On each day of sampling, ambient air was also sampled from the 

headspace in the centre of the incubation chamber housing the experimental units. In the 

laboratory, the concentrations of CO2 and N2O were analyzed by gas chromatography (Bruker 

450-GC, Bruker Daltonik GmbH, Bremen, Germany). The mass concentrations of CO2-C and 

N2O-N in the headspace were calculated using the Ideal Gas Law and converted to emissions per 

gram of dry soil using Equation 3.1 (Hogg et al., 1992): 

𝐹 =  [
𝐶𝑠 –  𝐶𝑎

𝑀
] × 𝑉  

Eq. 3.1 

F is gas flux (µg g-1 dry soil), V is the effective volume of the headspace (L), Cs is the sample mass 

concentrations of CO2-C (or N2O-N), Ca  is the ambient mass concentrations of CO2-C (or N2O-

N) in the sampling environment (µg L-1) and M is the total mass of dry soil in the jar (g). 
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3.2.5. Carbon and Nitrogen Mineralization Models 

Following a general first-order equation for OM degradation (Jenkinson, 1990; Gilmour et 

al., 1996), four nonlinear models (Table 3) were fitted to the cumulative quantities of CO2-C and 

N2O-N measured during the experiment. The single-pool first-order exponential model represents 

C and N substrate decomposition in biosolids and soil as a single pool with a single mineralization 

rate throughout the incubation period. The first-order + zero-order model is a hybrid model with 

a labile and resistant pool for C and N. The coefficient X1 (mg g−1 of dry soil) represents the mass 

of the small pool of short-lived, labile carbon which mineralizes during the early stages of 

incubation. Meanwhile, the second pool, k3t (mg g-1) represents the large pool of resistant C or N 

that mineralizes slowly at a constant rate during the middle and later stages of incubation. The 

special first-order double-pool (Special first-order) model represents the quick C or N flush and the 

labile C or N as two distinct pools. Finally, the double-pool simultaneous decomposition (double-

pool first-order) model represents the mineralization of C and N substrates as first-order 

exponential decay of labile and resistant pools occurring simultaneously at specific rates. The 

concentrations of NO3
− and NH4

+ measured during the experiment were fitted to Equations 3.2 and 

3.3 below.  

𝑁𝐻4
+(𝑡)  =  𝑁0 × 𝑒𝑥𝑝−𝑘4𝑡       Eq. 3.2 

𝑁𝑂3
−(𝑡)  =  𝑁1 × (1 − 𝑒𝑥𝑝−𝑘5𝑡)    Eq. 3.3 

𝑁𝐻4
+(𝑡) and 𝑁𝑂3

−(𝑡) represent the cumulative net mineralization and nitrification at time t (days), 

respectively; N0 and N1 represent the size of the extractable pools of NH4
+ and NO3

−, respectively; 

and k4 and k5 correspond to the mineralization and nitrification rates per day (d-1), respectively.  
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The model parameters were estimated using the fitModel function of the R mosaic package 

(v1.8.3; Pruim, 2021) and the coefficient of determination (R2) was used to assess the models’ 

goodness-of-fit. 

Table 3.3. Models describing cumulative CO2 or N2O emissions from soil. 

Model Form Parameter description (units) 

Single-pool 

first-order 

𝑋(𝑡)  =  𝑋0(1 − 𝑒𝑥𝑝−𝑘0𝑡) X(t) = cumulative C or N emitted (mg g−1) at time t (d) 

X0 = potentially mineralizable C or N (mg g−1) 

k0 = first-order rate constant (d-1) 

Double-pool 

first-order 

𝑋(𝑡) = 𝑋1𝑒𝑥𝑝−𝑘1𝑡 + 𝑋2𝑒𝑥𝑝−𝑘2𝑡 X1 = size of the labile pool (mg g−1) 

X2 = size of the recalcitrant pool (mg g−1) 

k1 = labile pool rate constant (d-1) 

k2 = recalcitrant pool rate constant (d-1) 

First-order + 

zero-order  

𝑋(𝑡)  =  𝑋1(1  −  𝑒−𝑘1𝑡)  +  𝑘3𝑡 k3t = size of recalcitrant linear C or N pool (mg g-1) 

k3 = recalcitrant linear pool rate constant (mg g-1 d-1) 

Special first-

order  

𝑋(𝑡) =  𝑋1(1 − 𝑒𝑥𝑝−𝑘1𝑡) + 𝑋𝑓 Xf = size of quick flush pool (mg g−1) 

 

3.2.6. Mineralization Parameters 

The mineralization capacity of biosolids amended soil was estimated by calculating the 

percentage of initial OM that had degraded at the end of the experiment. This term is called the 

net mineralization coefficient (NMC; Eq. 3.4). Complementary mineralization coefficient (CMC) 

is the mineralizable portion of C in biosolids which was estimated at the end of the experiment 

using Eq. 3.5. NMC and CMC were calculated after accounting for the estimated cumulative CO2 

emissions resulting from C applied through urea in the corresponding treatments. It was assumed 
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that urea hydrolysis released 98% of the C urea in the form of CO2 within the first eight days of 

urea application (Tierling, 2016; Souza et al., 2017; Wang et al., 2020). The CMC values for N 

were not calculated as we did not control for the effect of complementary N addition to either the 

alkaline-stabilized or composted biosolids on soil N mineralization in this study. 

𝑁𝑀𝐶(%) = (
𝑅𝑡𝑒

𝑅𝑡𝑎 + 𝑅𝑡𝑠
) × 100 

Eq. 3.4 

𝐶𝑀𝐶(%) = (
𝑅𝑡𝑒 − 𝑅𝑡𝑒𝑠

𝑅𝑡𝑎
) × 100 

Eq. 3.5 

Rte (mg g−1) is the total C or N released as CO2 and N2O, respectively; Rta (mg g−1) is the total 

organic C or N added with the biosolids; Rts (mg g−1) is the total organic C or N in the soil before 

application of biosolids; Rtes (mg g−1 of dry soil) is the C evolved as CO2 from the control treatment 

(i.e., the urea treatments under the corresponding soil moisture conditions for each treatment). 

 

3.2.7. Statistical Analysis 

The data generated from the incubation experiments were analyzed and fitted to models 

using the open-source statistical software package R (version 3.6.1; R Core Team, 2020). Before 

subjecting datasets to statistical further statistical analysis, they were checked for homogeneity of 

variance and normality using the Shapiro-Wilks test. The datasets of CMC and NMC for both 

carbon and nitrogen, together with the dataset of cumulative N2O were normalized by log 

transformation as p < 0.05 following the Shapiro-Wilks test. Thereafter, a two-way ANOVA (α = 

5%) was performed to examine the effects of biosolids, soil moisture regime, and their interactions 

on cumulative CO2 and N2O emissions, NMC and CMC after 92 days and, soil pH, and EC on 

days 3 and 72 of the experiment. Days 3 and 72 correspond respectively with the earliest and latest 
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days for which soil samples were collected after biosolids and moisture treatments were applied. 

Also, a three-way repeated measures ANOVA (α = 5%) was performed to examine the effects of 

biosolids, soil moisture regime, sampling days (time), and their interactions on soil NH4
+ and NO3

− 

concentrations. Tukey’s pairwise comparison of treatment means was performed using the 

LSmeans function. The cov function was then used to find the Pearson coefficient of correlation 

between all pairs of measured variables (Watier et al., 2016).  

3.2.8. Applying Kinetic Parameters Derived from the Incubation Study to Simulate N2O 

and CO2 Emissions using DNDC  

3.2.8.1. Description of the Revised DNDC Model 

The DNDC model was originally developed to simulate N2O, CH4, and CO2 emissions 

from agricultural soils in USA on a daily time-step (Li et al., 1992, 1994). The Canadian version 

of DNDC (DNDC.vCAN) was developed to better represent Canadian climate, soils, and 

management conditions (Banger et al., 2020; He et al., 2020). DNDC has six sub-models for 

simulating soil climate, decomposition, nitrification, denitrification, fermentation, and crop 

growth. The decomposition sub-model of DNDC simulates SOC decomposition across the full 

200 cm heterogenous soil profile in ~1cm increments (Jiang et al., 2020; Smith et al., 2020). 

Manure (including biosolids) decomposition dynamics are controlled by incoming manure C:N 

which determines the fractional allocation of manure C to the major soil C pools (litter, microbial, 

humads, and humus). Decomposition of each C pool occurs independently using first-order 

kinetics and is regulated by soil temperature and moisture conditions (see Equation 3.6).  

𝑑𝐶

𝑑𝑡
 = CNR * μ * (S * kl + (1-S) * kr) * [C] Eq. 3.6 

[C] is the decomposed organic C (kg C kg-1 manure per day), CNR is the C:N ratio reduction 

factor, t is time (day), S is the labile fraction of organic C compounds in the pool, (1 - S) is the 
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resistant fraction of organic C compounds, kl is the specific decomposition rate (SDR) of labile 

fraction (day-1), kr is the SDR of the resistant fraction (day-1), and μ is the temperature and moisture 

reduction factor. SDR = 0.074, 0.074, 0.02, 0.33, 0.04, 0.16 and 0.006 (day-1) for very labile litter, 

labile litter, resistant litter, labile microbes, resistant microbes, labile humads, and resistant 

humads, respectively. 

 The C:N ratio reduction factor is computed by DNDC using Equation 3.7. Details of the 

DNDC model’s schematic for simulating manure/biosolids C decomposition is shown in Appendix 

D of Chapter 4 (Section 4.8.4). 

CNR = 0.2 + 7.2 ∗ (
𝑁𝑃

𝐶𝑃
)    

 

Eq. 3.7 

CP is the C produced by potential residue decomposition per day (without CNR reduction factor) 

(kg C ha-1), NP is the N produced by potential residue decomposition per day plus free NH4 and 

NO3

-
 in soil (kg N ha-1).  

The model framework simulates N2O emissions based on the ‘‘anaerobic balloon” concept 

(Li et al., 2000), and allows the user control of trace gas parameters that are difficult to measure 

but can have significant impacts on N cycling. Such parameters include the release of denitrifier 

substrates during freeze-thaw conditions, overall rates of denitrifier and nitrifier growth, and 

rainfall intensity impacts, to better calibrate site-specific nitrification and denitrification rates as 

driven by moisture, nitrogen, and microbial dynamics in soils (Smith et al., 2020). The anaerobic 

balloon (regulated by soil Eh via the Nernst equation (see Section 4.8.4) cycles the mineralized 

organic N/ammoniacal N from manure/biosolid application into the nitrification and denitrification 
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pathways to evolve trace gas emissions (N2O, NO, N2). The NH4:NH3 equilibrium framework 

derives the partitioning of N that may be subject to NH3 volatilization (see Congreves et al., 2016). 

In previous versions of DNDC.vCAN, the sizes of the major soil C pools could be adjusted 

by the user, while the turnover rates of the soil C pools were based on DNDC’s default specific 

decomposition rates. The revised version of the model allows user-defined manure labile organic 

C pool size relative to the total manure C pool size. In addition, it allows changes to the 

decomposition rates and disaggregates the simulation of decomposition of initial soil C pool 

independent of the manure C pool. 

3.2.8.2. Datasets 

CO2 and N2O emissions datasets were collected from four selected treatments of a 

replicated (n = 4) field experiment in Ste-Anne-de-Bellevue, QC (described in detail in Chapter 4) 

growing corn (Zea mays L.) with biosolids, urea, or biosolids and urea applied at a targeted N rate 

of 120 kg N ha-1 of available nitrogen. The selected treatments were full-rate urea, digested 

biosolids, alkaline-stabilized biosolids, and composted biosolids surface spread on the soil surface 

as those used in this incubation study. Measured CO2 and N2O emissions in 2019, out of the three-

year (2017 – 2019) data, was selected to compare DNDC’s simulated CO2 and N2O emissions in 

2019 for the four selected treatments.  

3.2.8.3. DNDC Simulations 

Two simulations were run for each selected treatment using either DNDC’s default manure 

C decomposition parameter values or those derived from the incubation study. Figure A.3.9 shows 

a scheme describing the simulation process. The initialization, calibration, and validation of 

DNDC to simulate CO2 and N2O emissions for the treatments are explained in detail in Chapter 4 

(Section 4.2.3). Also, the input files for the simulations are the same as those described in Chapter 
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4. For the simulation run using the empirically-derived biosolids C decomposition parameter 

values, only two changes were made in the input files used in Chapter 4 prior to the simulation 

runs: (1) the fraction of labile biosolids C pools for each of the biosolids were changed according 

to the CMC values derived in the incubation experiment, and (2) the decomposition rates were 

changed according to the values of k1 (labile pool rate constant) derived per fertilizer type 

(biosolids and/or urea) when the double pool first-order model was fitted to the measured 

cumulative CO2 data. The CMC and k1 values respectively used for the biosolids were 0.79 and 

0.325 d-1 for digested biosolids, 0.52 and 0.135 d-1 for alkaline-stabilized biosolids, and 0.08 and 

0.747 d-1 for composted biosolids. The site of the field experiment is located in the humid Eastern 

Canada, as such the biosolids C decomposition parameter values applied in the DNDC simulation 

were for treatments under 49% WFPS condition. Biosolids C decomposition parameter values 

remained unchanged for the default simulation and urea treatment runs. The Pearson’s correlation 

coefficient (r) was used to compare the association between the measured GHG emissions against 

the simulated emissions for each of the treatments using either the default or adjusted parameters 

 

3.3. Results 

3.3.1. Carbon Mineralization and Cumulative Carbon Dioxide Emissions 

In this study, oxidative losses of C during microbial degradation of soil organic matter 

(SOM) were estimated after 92 days via cumulative CO2-C emissions and CMC (Table 3.4). It 

was found that soil moisture and biosolids type (fertilizer) influenced cumulative CO2-C emissions 

(Table A.3.1) at p < 0.05. Cumulative CO2-C emissions were consistently higher under the 49% 

than under the 29% WFPS soil moisture condition and were in the range of 0.19 to 0.41 mg CO2-

C g-1 and 0.15 to 0.36 mg CO2-C g-1, respectively (Table 3.4). Cumulative CO2-C emissions were 
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also higher in soils amended with biosolids than in the control treatment which received urea alone 

regardless of moisture conditions (Table 3.4). It was further observed that CO2-C emissions from 

alkaline-stabilized biosolids were significantly higher than emissions from composted biosolids 

under both soil moisture conditions. Meanwhile, cumulative CO2-C emissions from digested 

biosolids were statistically the same as those of the other types of biosolids regardless of soil 

moisture conditions. 

Soil moisture and biosolids type influenced the soil carbon mineralization capacity (NMC-

C; Table A.3.2) at p < 0.05. Based on the experimental conditions, the NMC of carbon was in the 

range of 1.2% and 2.9% and decreased by experimental treatment in the following order: alkaline-

stabilized biosolids > digested biosolids > composted biosolids > urea. The NMC of carbon in the 

soil was significantly higher under 49% than the 29% WFPS soil moisture condition. Also, the 

NMC of carbon in treatments receiving composted biosolids was not different from the urea 

treatment while being significantly less than those of alkaline-stabilized biosolids. 

 

Table 3.4. Cumulative CO2-C emissions, and Net Mineralization Coefficient (NMC) and 

Complementary Mineralization Coefficient (CMC) of carbon from biosolids-amended soils at the 

end of the experiment. 

Treatment†   CO2-C†† NMC-C†† CMC-C†† 

Fertilizer Moisture  mg g-1 % % 

Composted biosolids 

49% WFPS 

  0.3 ± 0.05 de 2.2 ± 0.31 cd 8.3 ± 3.08 a 

Digested biosolids   0.3 ± 0.06 ef 2.4 ± 0.44 de 78.8 ± 27.32 b 

Alkaline-stabilized biosolids  0.4 ± 0.02 f 2.85 ± 0.06 e 51.93 ± 15.92 b 

Urea   0.2 ± 0.04 bc 1.59 ± 0.17 bc - 
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Composted biosolids 

29% WFPS 

 0.2 ± 0.02 b 1.4 ± 0.09 ab 4.5 ± 0.75 a 

Digested biosolids   0.2 ± 0.06bcd 1.8 ± 0.43 bc 61.5 ± 42.80 b 

Alkaline-stabilized biosolids  0.3 ± 0.06 cde 2.15 ± 0.36 cd 45.87 ± 20.85 b 

Urea    0.2 ± 0.01 a 1.21 ± 0.08 a - 

†† Different letters within a column represent significant differences at p < 0.05 based on Tukey’s test for 

pairwise comparison. Value are means ± standard deviation (n = 4). 

 

The mineralization of biosolids carbon depended only on the biosolids type as seen the 

values of CMC for carbon (CMC-C; Table A.3.3). According to the CMC values, the fraction of 

mineralized carbon was higher in digested than in alkaline-stabilized and composted biosolids 

(Table 3.4). However, the proportion of carbonaceous compounds that was mineralizable in the 

digested biosolids was highly variable judging from the high standard deviation of CMC. Even 

though soil moisture conditions did not significantly affect organic C mineralization across the 

biosolids types, the rate of organic C mineralization between both soil moisture conditions was 

about 17 percentage points in digested, 6 percentage points in alkaline-stabilized, and 3 percentage 

points higher in composted biosolids. Under the 49% WFPS soil moisture condition, the 

percentage of organic C that degraded over the 92-day period was 79% for digested, 52% for 

alkaline-stabilized, and 8% for composted biosolids. Under the 29% WFPS soil moisture 

condition, these were 62%, 46%, and 5% for digested, alkaline-stabilized, and composted 

biosolids, respectively. 

 

3.3.2. Carbon Mineralization Curves and Model Fitting 

Soil organic C (initial SOC + applied biosolids carbon) degradation occurred in two phases. 

The first phase was marked by a fast rate of degradation at the start of incubation depicted by the 
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steep and short-lived CO2 gradient curve (Figure 3.1). For instance, on Day 6 in the treatment 

receiving alkaline-stabilized biosolids under 49% WFPS moisture conditions, about 27% of the 

measured CO2-C had been released. The observed rate of biosolids degradation at the later stages 

of the incubation decreased as seen by the decrease in CO2 emissions. The second phase was 

characterized by a slower rate of degradation as seen in Figure 3.1.  

Cumulative CO2 emission curves showed an exponential pattern across all treatments 

(Figure 3.1 and Table 3.5) with a high degree of association (R2 > 0.99) between the observed data 

and the four exponential models. Also, the biosolids degradation rate constants for single (k0) and 

double (k1) pool models and the sizes of the mineralized C pools (X0, X1 + X2, X1 + k3t, and X1 + 

Xf) were of similar magnitudes for all four models.  
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Figure 3.1. Cumulative CO2 emissions from soils amended with different types of biosolids under 

29% WFPS and 49% WFPS soil moisture conditions. Red diamonds and blue square are means 

(n = 4) with standard deviation bars. A double-pool first-order model was fitted to the observed 

data (R2 > 0.99).  
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Amongst the four kinetic models, the double pool first-order model provided the best 

estimate of biosolids degradation across all treatments. In this model, the kinetics of microbial 

decomposition of biosolids carbon was captured independently as labile and resistant organic C 

pools, irrespective of soil moisture condition. The double pool first-order model estimated larger 

sizes of mineralizable C pools (X1 + X2) in the 49% than in the 29% WFPS soil moisture 

treatments, except for digested biosolids treatments. Except for alkaline-stabilized biosolids where 

approximately 20% of C was within the rapid mineralization phase (X1), only 10% of the C 

belonged to this category for all the biosolids types. 
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Table 3.5. Fitted model parameters and coefficients of determination (R2) for measured cumulative CO2 fluxes from incubated loam 

soil amended with three types of biosolids under 49% and 29% WFPS soil moisture conditions. 

Model Parameter Treatment 

Urea Digested biosolids Alkaline-stabilized  

biosolids 

Composted biosolids   

  

29% 

WFPS 

moisture 

49% 

WFPS 

moisture 

29% 

WFPS 

moisture 

49% 

WFPS 

moisture 

29% 

WFPS 

moisture 

49% 

WFPS 

moisture 

29% 

WFPS 

moisture 

49% 

WFPS 

moisture 

First order single-pool X0 0.204 0.275 0.233 0.340 0.314 0.385 0.256 0.417 

k0 0.025 0.024 0.028 0.025 0.033 0.037 0.023 0.017 

R2 0.996 0.990 0.992 0.997 0.995 0.992 0.997 0.997 

Double pool first-

order 

X1 0.018 0.040 0.055 0.031 0.083 0.138 0.022 0.023 

X2 0.224 0.406 0.390 0.371 0.378 0.583 0.283 0.491 

k1 1.293 0.624 0.187 0.325 0.147 0.135 0.379 0.747 

k2 0.016 0.009 0.007 0.016 0.011 0.007 0.015 0.011 

R2 0.999 0.999 0.999 0.999 1.000 1.000 0.999 0.999 

First-order + zero-

order 

X1 0.074 0.060 0.075 0.136 0.136 0.174 0.096 0.121 

k1 0.073 0.259 0.128 0.062 0.090 0.107 0.062 0.051 

k2 0.001 0.002 0.002 0.002 0.002 0.003 0.002 0.002 

R2 0.996 0.997 0.999 0.999 0.999 0.999 0.998 0.997 
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Special first order 

  

X1 0.214 0.317 0.246 0.351 0.316 0.382 0.254 0.455 

Xf 0.012 0.024 0.018 0.014 0.019 0.028 0.011 0.014 

k1 0.019 0.014 0.020 0.020 0.026 0.029 0.019 0.013 

R2 0.997 0.994 0.994 0.998 0.996 0.994 0.998 0.998 
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3.3.3. Cumulative Nitrous Oxide Emissions  

Cumulative N2O emissions at the end of the study were generally below 0.6µg N2O-N g-1 

of dry soil and were influenced significantly by soil moisture and fertilization (p < 0.05; Table 

A.3.4). Cumulative N2O emissions were 6 to 10 times higher under the 49% than the 29% WFPS 

condition, irrespective of the fertilization applied (Tables A.3.5, A.3.6, and A.3.8). The cumulative 

N2O emissions did not differ between the treatments receiving alkaline-stabilized, composted, or 

urea (control) as seen in Table A.3.7. However, under the 49% and 29% WFPS soil moisture 

conditions, respectively, N2O emissions were significantly higher in the alkaline-stabilized (0.45 

± 0.25 and 0.05 ± 0.02 µg N2O-N per g of dry soil) than the digested biosolids treatments (0.18 ± 

0.21 and 0.01 ± 0.01 µg N2O-N per g of dry soil) as seen in Table A.3.8 and Figure 3.2. It is 

noteworthy to state that digested biosolids received lower N than other biosolids. Also, the 

variation in the measured N2O emissions were generally high across all treatments. As such, the 

NMC values served as the absolute criteria to compare the fraction of N2O-N emissions relative to 

initial soil N between the treatments.  

The NMC values for N were < 0.04% across all treatments and were higher under 49% 

than 29% WFPS soil moisture conditions (Tables A.3.9 and A.3.10). The NMC values were not 

statistically different for the different N fertilization treatments. The CMC of nitrogen was not 

calculated as there was no unfertilized control treatment to serve as the reference.  

 

3.3.4. Cumulative Nitrous Oxide Emissions Curves and Model Fitting 

Nitrous oxide emission rates were nonlinear, starting with an exponential rise, then 

plateauing over time (Figure 3.2). This pattern was observed for all treatments although the 
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exponential rise in N2O emission rate was sustained longer in alkaline-stabilized and control 

treatments.  

Except for the control treatment under the 29% WFPS soil moisture condition, cumulative 

N2O fluxes were well-represented by the four models (R2 > 0.98) for all treatments (Table 3.6). 

The single-pool model and special first-order model estimated similar initial N pool sizes and rate 

constants for all treatments. Meanwhile, the first-order + zero-order model estimated larger initial 

N pools than the first-order single-pool and special first-order models. The double-pool first-order 

model estimated cumulative N2O emissions from the control treatment under 29% WFPS moisture 

conditions with R2 = 0.23.  
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Figure 3.2. Measured and modelled cumulative N2O emissions from soils amended with different 

types of biosolids under 29% and 49% WFPS soil moisture conditions. Red diamonds and blue 

squares are means (n = 4) with standard deviation bars. A double-pool first-order model (black 

lines) was fitted to the observed data (R2 > 0.98).  
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Table 3.6. Fitted model parameters and coefficients of determination (R2) for measured cumulative N2O fluxes from incubated loam 

soil amended with three types of biosolids under 49% and 29% WFPS soil moisture levels. 

Model 

P
a

ra
m

et
er

s 

Treatment 

Urea Digested biosolids Alkaline-stabilized   

biosolids 

Composted biosolids   

29% WFPS 

moisture 

49% WFPS 

moisture 

29% WFPS 

moisture 

49% WFPS 

moisture 

29% WFPS 

moisture 

49% WFPS 

moisture 

29% WFPS 

moisture 

49% WFPS 

moisture 

First-order 

Single-pool 

X1 0.032 0.125 0.011 0.177 0.045 0.479 0.036 0.217 

k0 0.047 0.033 0.178 0.099 0.113 0.027 0.059 0.057 

R2 0.989 0.985 0.970 0.996 0.997 0.990 0.999 0.999 

Double-pool 

first-order 

 

X1 0.173 -0.055 0.006 0.136 0.036 0.086 0.040 0.195 

X2 -0.126 0.161 -0.114 -0.230 -0.105 0.641 0.012 0.218 

k1 -0.075 0.095 0.370 0.133 0.147 0.253 0.038 0.061 

k2 1.603 -0.065 0.001 0.001 0.001 -0.010 0.001 -0.001 

R2 0.231 0.979 0.959 0.992 0.996 0.996 0.988 0.998 

First-order + 

zero-order 

X1 0.064 2.428 0.009 0.173 0.042 0.145 0.037 0.214 

k1 0.026 0.005 0.315 0.103 0.125 0.131 0.058 0.058 

k2 0.000 0.008 0.000 0.000 0.000 -0.004 0.000 0.000 

R2 0.992 0.990 0.980 0.996 0.998 0.995 0.999 0.999 

X1 0.034 0.129 0.010 0.168 0.043 0.507 0.036 0.219 
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Special first-

order 

  

Xf -0.003 -0.007 0.002 0.010 0.002 0.035 -0.001 -0.002 

k1 0.055 0.037 0.135 0.091 0.105 0.019 0.061 0.058 

R2 0.990 0.986 0.975 0.997 0.998 0.992 0.999 0.999 
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3.3.5. Nitrogen Mineralization and Nitrification Dynamics 

The concentrations of NH4
+ and NO3

− in the soil changed significantly over time in all cases, 

but the magnitude of these changes depended on the type of fertilization received (p < 0.05; Tables 

A.3.11 and A.3.12). Meanwhile, soil moisture conditions and biosolids type alone did not have 

any significant effect on NH4
+ and NO3

− concentrations despite the different amounts of total N at 

the beginning of the experiment. After Day 3 of the experiment, NH4
+ concentration peaked 

followed by an exponential decrease until the end of the experiment. Simultaneously, a non-linear 

increase in NO3
− concentrations was observed (Figure 3.3).  
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Figure 3.3. Ammonium and nitrate concentrations in soils amended with biosolids under 29% 

WFPS and 49% WFPS soil moisture conditions. Red circles and blue triangles are means (n = 4) 
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with standard deviation bars. A first-order model was fitted to the observed ammonium (R2 > 0.93) 

and nitrate (R2 > 0.65) data.  

 

3.3.6. Nitrogen Transformation Kinetics and Model Fitting 

The single-pool exponential decay model was fitted to the net N mineralization data for all 

the treatments, with R2 ≥ 0.93 for all treatments as shown in Table 3.7. The net N mineralization 

rates (k0) ranged from 0.07 to 0.45 d-1 in the order: digested biosolids < composted biosolids < 

urea < alkaline-stabilized biosolids under 29% WFPS soil moisture conditions. The single-pool 

exponential model was fitted to the derived net N nitrification values for all the treatments with a 

resulting R2 ≥ 0.65 for all treatments as shown in Table 3.7. The net N nitrification rates ranged 

from 0.02 to 0.18 d-1. 
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Table 3.7. Model parameters for cumulative NO3
− and NH4

+ concentrations in soil amended with 

three types of biosolids under soil moisture regimes. 

Model 

P
a
ra

m
et

er
 

Treatment 

Urea Digested 

biosolids 

Alkaline-

stabilized 

biosolids  

Composted 

biosolids  

29% 

WFPS 

49% 

WFPS 

29% 

WFPS 

49% 

WFPS 

29% 

WFPS 

49% 

WFPS 

29% 

WFPS 

49% 

WFPS 

Ammonium: 

𝑁(𝑡) = 𝑁0 × 𝑒𝑥𝑝−𝑘𝑡 

N0 126.2 88.0 10.6 8.9 255.7 118.0 39.1 40.7 

k 0.24 0.23 0.07 0.08 0.45 0.36 0.10 0.17 

R2 1.00 1.00 0.97 0.99 0.99 1.00 0.93 0.97 

Nitrate: 

𝑁(𝑡) = 𝑁0 × (1 −

𝑒𝑥𝑝−𝑘𝑡)  

N0 56.3 49.1 23.9 28.0 49.6 74.6 41.6 30.6 

k 0.07 0.13 0.14 0.06 0.16 0.02 0.15 0.18 

R2 0.94 0.82 0.91 0.77 0.65 0.85 0.84 0.69 

 

3.3.7. Changes in Soil pH and Electrical Conductivity 

In general, soil pH decreased significantly with time, but the magnitudes of these changes 

depended on type of fertilization and moisture content (Table A.3.13 and Figure 3.4). Before 

adding biosolids to the soil, the average soil pH was 5.82 ± 0.02, however, the pH of soils that 

received alkaline-stabilized biosolids increased temporarily by 0.34 to 0.55 units on average under 

each moisture condition at Day 3. Afterward, soil pH declined continuously until Day 92.  

As seen in Table 3.8, the average soil pH was higher in alkaline-stabilized biosolids 

treatments than in other treatments throughout the experiment. On Day 3 (at the start of the 

experiment), under the 49% WFPS moisture condition, the pH of alkaline-stabilized biosolids was 
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0.21 units higher compared to the 29% WFPS moisture condition. This difference was no longer 

significant by the end of the experiment.  

 

 

Figure 3.4. Electrical conductivity (EC) and pH of soils amended with biosolids under 29% WFPS 

and 49% WFPS soil moisture conditions. Circles and triangles are means (n = 4) with standard 

deviation bars. 

 

In general, soil EC increased significantly with time, but the magnitudes differed at each 

sampling time depended on the type of fertilization (Table A.13). Soil EC values of treatments 

receiving alkaline-stabilized biosolids were significantly higher (p < 0.05) than those of other 

treatments at the first and last soil sampling events during the experiment (Table 8). Compared to 
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digested biosolids treatment, the EC of urea treatment was significantly higher by the end of the 

experiment. 

 

Table 3.8. Average values of soil pH and EC near the start (Day 3) and end (Day 72) of the 

experiment from all treatments. 

Fertilizer Moisture pH EC 

Day 3† Day 72† Day 3† Day 72† 

Alkaline-stabilized biosolids 

29% WFPS 

 

6.35 c 5.91 d 217 f 362 d 

Composted biosolids 5.92 a 5.50 abc 180 ce 306 bd 

Digested biosolids 5.87 a 5.62 c 166 bcde 233 ac 

Urea 5.93 a 5.35 ab 177 de 354 d 

Alkaline-stabilized biosolids 

49% WFPS 

6.14 b 5.84 d 193 e 361 d 

Composted biosolids 5.88 a 5.43 abc 156 abd 306 cd 

Digested biosolids 5.78 a 5.56 bc 142 a 233 ab 

Urea 5.90 a 5.29 a 153 abc 354 d 

† Different letters within a column represent significant differences at p < 0.05 based on Tukey’s test for 

pairwise comparison. Value are means (n = 4). 

 

3.3.8. Correlation between Greenhouse Gas Emissions and Measured Soil Variables 

The values of Pearson’s correlation coefficient shown in Figure 3.5 indicate varying 

degrees of linear correlation between variables related to N mineralization and nitrification. 

Positive correlation was observed between pH and NH4
+ (r = 0.5), but negative correlation between 

EC and NH4
+ (r = -0.4). Also, NO3

− had strong positive correlation with EC (r = 0.7) and time (r = 

0.5), but weak negative correlation with pH (r = -0.3) at p < 0.05. For all treatments receiving 



111 
 

biosolids, mineralization peaked at the early stages of the experiment as seen in Figure 3.3, 

coinciding with the slight increase in soil pH seen in Figure 3.4. Then, a strong positive linear 

correlation was observed between inorganic N and NO3
− (r = 0.7), while a weak positive correlation 

was observed between inorganic N and NH4
+. Also NO3

− and NH4
+ were negatively correlated (r = 

- 0.5), perhaps due to the depletion of NH4
+ as a substrate for NO3

− formation. 

 

Figure 3.5. Matrix of Pearson’s correlation coefficients (α = 0.05) between EC, pH, NH4
+, NO3

−, 

inorganic N, cumulative CO2 and N2O emissions, and time of measurement from soils amended 

with alkaline-stabilized biosolids, composted biosolids, mesophilic anaerobically digested 

biosolids (digested biosolids), and urea during the incubation experiment. 
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3.3.9. Simulating N2O Emissions 

Figure 3.6 shows a generally poor simulation of the measured daily N2O emissions by 

DNDC given the < 0.6 correlation coefficients, despite the use of empirically derived biosolids C 

decomposition parameters. However, there was a slight improvement in r in the daily trends and 

magnitudes of N2O simulations using the empirically derived biosolids C decomposition parameter 

values over the default manure values, especially for digested and alkaline-stabilized biosolids 

treatments (see Table 3.9). The r values for urea treatments remained the same because it did not 

receive biosolids or any organic amendments that would been simulated by the manure/biosolids 

C pool subroutine. 

 

Figure 3.6. comparison of the measured daily N2O emissions against DNDC simulations using 

either the default manure (default DNDC) or empirically derived biosolids (adjusted DNDC) 

carbon decomposition parameters. 
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3.3.10. Simulating CO2 Emissions 

Figure 3.7 shows that using either set of kinetic parameters (default or biosolids) failed to 

noticeably improve DNDC’s estimates of the measured daily CO2 emissions. However, there was 

slight improvement in r using the empirically derived values over the default values for the 

digested and alkaline-stabilized biosolids treatments but not the composted biosolids treatments 

(see Table 3.9).  

 

Figure 3.7. comparison of the measured daily CO2 emissions against DNDC simulations using 

either the default manure (default DNDC) or empirically derived biosolids (adjusted DNDC) 

carbon decomposition parameters. 
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Table 3.9. Values of Pearson’s correlation coefficients (r) between measured and simulated CO2 

and N2O emissions using either DNDC default (Default) manure decomposition or empirically 

derived biosolids (Adjusted) decomposition parameters. 

Amendment CO2  N2O 

Default Adjusted  Default Adjusted 

Alkaline-stabilized biosolids 0.30 0.32  0.17 0.18 

Composted biosolids -0.18 -0.05  0.48 0.51 

Digested biosolids 0.47 0.53  0.25 0.29 

Urea 0.72 0.72  0.35 0.35 

 

3.4. Discussion 

3.4.1. Carbon Mineralization and Cumulative Carbon Dioxide Emissions 

The relatively higher degradation rate of SOM in the 49% than the 29% WFPS soil 

moisture condition is consistent with findings from other studies. For instance, Wang et al. (2016) 

found that SOM decomposition and cumulative CO2-C emissions under unsaturated conditions 

increased linearly as soil moisture content was raised from 30% to 90%. This was expected given 

that water is required for OM hydrolysis which in turn determines the availability of dissolved 

organic compounds necessary for microbial activity (Liao et al., 2016).  

Judging from the higher CO2 emissions in the biosolids treatments relative to the control 

treatment, adding OM (e.g., biosolids) to soil improves soil microbial activity; thus, improving the 

soil quality. As also reported by Fernández et al. (2007), the low percentage of mineralized carbon 

relative to the total soil carbon indicates the fraction of easily degradable OM content of the soil, 

which mostly consists of newly applied OM; in this case, biosolids.  
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The low percentage of organic carbon mineralization as seen in the composted biosolids 

treatment was due to the high lignin content in the 40% woody biomass to 60% municipal sludge 

used to produce the compost (Coors et al., 2016). From visual inspection, composted biosolids was 

expected to be more resistant to degradation than digested biosolids and alkaline-stabilized 

biosolids due to the visible presence of woody particles.  

However, the magnitude of the differences in the rate of degradation of biosolids carbon 

cannot be explained by soil moisture content alone. Carbon mineralization rates of 16%  have been 

reported for composted sewage sludge by Huang & Chen (2009) but their incubation experiment 

lasted 112 days and composition of the compost feedstock was different. In another incubation 

study lasting 60 days, Gilmour et al. (2003) recorded C mineralization in the range of 7-35% for 

digested and alkaline-stabilized biosolids which is lower than in this study. Another study by Gillis 

& Price (2011) found that C mineralization in alkaline-stabilized biosolids can be as high as 78% 

in gley and fragic Humo-ferric Podzol soils. The reported differences in the mineralization rates 

in these studies suggest that incubation temperature, duration of study, biosolids type, and stage of 

biosolids degradation before land application, as well as the characteristics of receiving soils are 

critical determinants of the biosolids mineralization which should be taken into consideration when 

comparing studies (Rigby et al., 2016). 

While organic C content is important, the proportion of mineralizable C to total biosolid C 

is a more important indicator of mineralization rate during the growing season as seen in the CMC 

values of the biosolids. At the beginning of this experiment, organic C content was 7 times less in 

digested biosolids compared to composted biosolids, however, both biosolids had similar 

cumulative CO2-C emissions at the end of the experiment. This suggests that slow degrading 

biosolids like composted biosolids have a relatively higher potential to sequester carbon in soils to 
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improve quality. This slow rate of degradation also implies a slow release of mineral N vis-à-vis 

slow rate of N2O emissions. This mechanism is in contrast with the rate of degradation for digested 

biosolids, suggesting a higher cumulative CO2 and N2O emissions if applied at the same rate as 

the composted and alkaline-stabilized biosolids. 

3.4.2. Carbon Mineralization Curves and Model Fitting 

The early-stage rapid decomposition seen in Figure 1 is typically influenced by the form 

of C present in the biosolids, initial soil moisture, and temperature (Gillis & Price, 2011). After 

the easily degradable fraction of biosolids C has been microbially metabolized, the remainder is 

usually more recalcitrant and can only degrade slowly. Additionally, increasing the concentration 

of inorganic soil N due to the degradation of nitrogenous compounds limit the activity of oxidative 

enzymes as reported by Saggar et al. (2013). Nitrogen release after land application of biosolids 

corresponded with the fast and slow phases observed with CO2 release (Pei et al., 2019). The 

kinetics of these two phases support the hypothesis that the type of biosolid vis-à-vis the form of 

organic carbon and C/N of biosolids influence its carbon sequestration and N2O emissions 

potential (Figure 3.1). 

The high degree of association (R2 > 0.99) between the observed data and the four 

exponential models, especially the double-pool first-order model, were similar to the observation 

in an earlier study (Gillis & Price, 2011). The degradation coefficients deduced from the double 

pool first-order model were in the range of 0.007 to 1.293 per day and compared to the default 

values between  0.074 and 0.02 per day used for litter degradation in DNDC (University of New 

Hampshire, 2012). These coefficients can be used to initialize mechanistic models like DNDC to 

better simulate SOC degradation when soil is amended with biosolids. 
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3.4.3. Cumulative Nitrous Oxide Emissions  

Under relatively high soil moisture conditions in well-aerated soils, ammonia (NH3) or 

NH4
+ is rapidly oxidized to NO2

−
 and/or 𝑁𝑂3

− by Nitrosomonas and Nitrobacter which leads to the 

production of nitric oxide (NO) and N2O as intermediate products of N2 production (Norton & 

Stark, 2011; Xing et al. 2011). Moisture-limited conditions impact microbial activities; thus, 

adversely affecting Nitrosomonas and Nitrobacters ability to oxidize NH3 or NH4
+ to N2O. Since 

N2O is an intermediate product of nitrification and denitrification, majority of N will be found in 

the form of organic N and other forms of N such as NH3 or NH4
+, NO2

−, 𝑁𝑂3
−, and NO. 

Alkaline-stabilized biosolids emitted more N2O than the digested biosolids treatment due 

to its relatively higher total N content (in the form of both organic N and urea enrichment) than 

other treatments. The unique physicochemical characteristics (e.g., pH > 7 and Ca content) of 

alkaline-stabilized biosolids also ameliorates pH of low-pH soils thereby enhancing soil microbial 

activity. However, there is scant evidence in this study to suggest that biosolids pH had a 

significant on soil microbial activity. 

 

3.4.4. Cumulative Nitrous Oxide Emissions Curves and Model Fitting 

The tested models provide simplified methods and coefficients that indicate the potential 

magnitude and rates of N2O emissions. The initial N pools are indicative of the potential N2O 

emissions, while the rate constants quantify the rate of emissions under any of the assumed N 

kinetics. In most cases, the initial N pools were larger for the 49% than the 29% WFPS conditions, 

and this effect of soil moisture on N2O emissions is described in mechanistic models such as 

DNDC using a parameter called the soil moisture factor. The soil moisture factor interacts with 

the soil temperature factor in DNDC in DNDC is influenced by soil hydraulic parameters such as 



118 
 

bulk density, porosity, field capacity, permanent wilting point, hydraulic conductivity, and clay 

fraction (Li et al., 1992). As seen in a few cases where the model coefficients (see Table 3.6) 

indicate negative values of the N pools, the size of the N pool and the rate of N2O emissions alone 

are not enough parameters to describe the complex physical and biological processes that drive 

N2O emissions. Modelling the variation in nitrous oxide emissions does not only depend on soil 

physical parameters, but also on the rates of organic N mineralization and nitrification vis-à-vis 

the microbial dynamics.  

 

3.4.5. Nitrogen Mineralization and Nitrification Dynamics 

According to Wang & Cai (2008), the temporal pattern of soil NH4
+ is influenced by N 

mineralization and nitrification, while the temporal pattern observed for NO3
−

 is due to the net 

effect of NO3
−

 production from nitrification and its denitrification to N2O and N2. As seen in the 

early stage of this study, the immediate fixation of NH4
+ and its subsequent conversion to NO3

− by 

nitrifiers indicate a rapid rate of nitrification (Bateman & Baggs, 2005). Though these changes 

were first observed after Day 3 of our experiments, other studies have shown that this can occur 

within a couple of hours after soil incubation (Xing et al., 2011). Given that the first day of soil 

sampling was on Day 3, perhaps, our sampling frequency may have failed to capture the actual N 

dynamics at the early stages of the experiment. The lack of intensive early-stage measurement of 

NH4
+ and NH3 dynamics in such closed systems may have limited our understanding of N balance 

between the treatments to model N dynamics in agricultural soils amended with biosolids. For 

instance, the surface application of urea on wet soil could have led to urea N volatilization and 

eventual NH3 loss due to intensive gas sampling and repeated aeration of the jars during the early 

stages of the experiment. 
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Nitrification is usually the dominant process compared to denitrification in well-aerated 

soils (Vilain et al., 2014). There seems to be a direct relationship between low moisture conditions 

and low N2O production as observed under 29% WFPS soil moisture conditions. Westphal et al. 

(2018), have suggested that the quantity of mineralized N in the soil at any given time is a function 

of available water, temperature, rate of oxygen replenishment, pH, amount and nature of organic 

amendment, and levels of other nutrients. Between the two common microbial pathways for N2O 

production, i.e. nitrification via hydroxylamine and through nitrifier denitrification, the former is 

the major source of N2O production (Vilain et al., 2014). In this experiment pH, moisture, amount 

of OM amendment and temperature were measured assuming that the effects of other factors were 

negligible due to the controlled conditions under which the experiment was run. 

The relatively low mineral N concentration and low NH4
+ peaks in digested biosolids 

treatments were perhaps due to no urea enrichment in the digested biosolids compared to other 

treatments. Urea will typically hydrolyse between a few hours to few days after application, to 

sequentially produce ammonium carbonate and NH3 (Wang et al., 2020). This accounts for the 

high NH4
+ peaks and overall high levels of mineral N for urea-enriched biosolids treatments. 

However, this was not the case with composted biosolids, which had a relatively low soil mineral 

N despite having the highest total N amongst all the treatments. This was likely due to the slow 

rate of composted biosolids degradation and organic N release (Abbasi & Khaliq, 2016). Adjusting 

for the effects of urea enrichment, digested biosolids supplied about 1.5 and 3 times the amount of 

mineral N than alkaline-stabilized biosolids and composted biosolids, respectively at peak periods. 

These results suggest that more mineral N could be supplied to crops from digested biosolids 

despite applying a lower total N relative to other treatments. This insight offers a possibility of 

cutting down N losses when land applying digested biosolids. 
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3.4.6. Nitrogen Transformation Kinetics and Model Fitting 

The coefficients derived from fitting the single-pool exponential decay model to the 

measured soil NH4
+ and NO3

−
  data offer a means to quantify mineral N dynamics in soils and 

inform farm practices.  

 

3.4.7. Changes in Soil pH and Electrical Conductivity 

The temporary increase in soil pH after biosolids application occurs due to the 

mineralization of nitrogenous compounds to NH4
+ with the release of hydroxyl ions (OH-) 

(Kunhikrishnan et al., 2016; McCauley et al., 2017). The subsequent decline in soil pH was due to 

the release of hydrogen ions (H+) through dissociation of carboxylic acids which is enhanced by 

the degradation of SOM, as well as the mineralization and oxidation of organic N causing this 

decrease in soil pH (Kunhikrishnan et al., 2016). This effect was more pronounced in treatments 

receiving alkaline-stabilized biosolids due to the addition of alkaline materials during stabilization 

of the biosolids using N-Viro® method. 

The results of this study suggests that in low-pH soils, microbial activity could be enhanced 

by adding alkaline-stabilized biosolids; thus, reinforcing the science behind its use as a soil pH 

buffer. Based on the findings of Price et al. (2015) who sourced alkaline-stabilized biosolids from 

the same company, the increase in soil pH could be attributed to the presence of base-forming 

cations in the form of calcium carbonate contained in the biosolids.  

The EC value at the end of the experiment reflects the number of cations (e.g. Ca2+ and 

Na+) that were released into the soil solution by the degradation of biosolids and initial SOM (Niu 

et al., 2015). The higher soil EC in alkaline-stabilized biosolids treatments relative to other 
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treatments was due to the matrix of alkaline materials, including CaO, mixed with the alkaline-

stabilized biosolids during the N-Viro® process (Sloan & Basta, 1995). 

 

3.4.8. Correlation between Greenhouse Gas Emissions and Measured Soil Variables 

NH4
+ is the dominant form of soil mineral-N in the early weeks after N fertilizer application 

and is influenced by nitrifier activity, which is sensitive to soil pH (Blagodatsky et al., 2011; 

Abbasi & Khaliq, 2016). The slightly acidic soil pH (~5.8) at the start of the experiment may have 

affected the build-up of nitrifier populations due to initial soil pre-incubation. Only the treatment 

receiving urea decreased in soil pH without any prior increase. In soils receiving inorganic 

fertilizers, such as urea, H+ accumulates through nitrification in the absence of leaching 

(Kunhikrishnan et al., 2016). The accumulation of H+ results in soil acidification and decreased 

OM degradation (Ge et al., 2013). Perhaps the concurrent degradation of biosolids and NH4
+ 

nitrification leading to H+ accumulation explains the negative correlation between CO2 emissions 

and NO3
−. The observed correlations between the variables are indicative of the relationships 

between variables in the soil biochemical processes that drive C and N dynamics as observed in a 

closed system without vegetation. Such relationships can be extrapolated beyond the current 

scientific context to inform further scientific research, quantify the effects of these variables, and 

improve predictive models. 

 

3.4.9. Simulation of CO2 and N2O Emissions 

The result of the simulation trial only demonstrates the possibility of improving the 

simulation of biosolids degradation in soils using empirically derived kinetic parameters. Given 

that the quantity of biosolids organic carbon applied to the soil constitutes < 3% of the total soil 



122 
 

organic carbon, the effect of changing the degradation rate of biosolids were miniscule. While 

there was only a slight increase in correlation coefficients between the measured and simulated 

emissions when empirically derived kinetic parameter values were used over default DNDC 

values, DNDC parameters could be further adjusted to improve the simulated emissions. DNDC 

parameters which are difficult to measure such as the nitrification adjustment factor, rainfall 

intensity index, fraction of soil humads, and denitrifier growth rates could further be adjusted to 

improve simulations of organic carbon mineralization in soils. Also, incubation experiments are 

conducted in controlled environments, as such they differ from field conditions in the number of 

biotic and abiotic factors that interact to influence soil C mineralization.  

 

3.5. Conclusion 

Our findings suggest that the rate of biosolids degradation is affected by the type of 

biosolids and soil moisture condition.  The differences in the degradation kinetics of the three types 

of biosolids were perhaps due to the forms of organic C inherent in the biosolids, which influenced 

the rates of soil respiration, N2O production, and NH4
+ and NO3

− dynamics after biosolids 

application. While about 79 and 62% of digested biosolids C, 52 and 46% of alkaline-stabilized 

biosolids C degraded during the experiment under 49% and 29% WFPS moisture conditions 

respectively, only 8 and 5% of composted biosolids C was degraded. N mineralization occurred 

within three days after biosolids application, with NH4
+ and NO3

− dominating the initial and later 

stages of the experiment, respectively. Biosolids degradation in soils occurs in two phases: an 

initial rapid release of C and N, followed by a slower rate of C and N release in the later stages of 

the incubation experiment.  
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The four first-order models were well-fitted to the C and N mineralization curves (R2 > 

0.65), to estimate the kinetic parameters of C and N mineralization. The kinetics of biosolids 

degradation and the associated cumulative CO2 and N2O emissions over time can be best described 

using a double-pool simultaneous decomposition first-order model and a special first-order model, 

respectively. Meanwhile, the kinetics of N mineralization and nitrification can be best described 

using single-pool first-order models. From these results, the estimated values of the mineralizable 

C and N for biosolids, as well as their degradation rate constants were found to be akin to those of 

manures and other biological materials under similar soil moisture and temperature conditions, in 

most cases.  

We further conclude that land-application of composted biosolids offer the best option for 

sequestering soil C and minimizing N losses due to its slower rate of degradation than alkaline-

stabilized biosolids and digested biosolids. Meanwhile, alkaline-stabilized biosolids offer the best 

option for adjusting the pH of acidic soils. Applying 1.5 and 3 times the amount of alkaline-

stabilized biosolids and composted biosolids, respectively, supplies about the same amount of 

mineral N as digested biosolids, under the given experimental conditions. The results of this study 

are useful for biosolids regulators, policymakers, and farmers who consider using biosolids as a 

soils amendment to improve C sequestration, mitigate N2O emissions, reduce soil acidity, and 

potentially improve N use efficiency based on location-specific moisture regimes. These results 

may also be used to improve mechanistic models like DNDC to better simulate the degradation of 

biosolids, and the C and N dynamics in soils amended with biosolids. 

As this study only aims to demonstrate the effect of simulating GHG emissions using 

empirically derived kinetic parameter values of the biosolids C pools, the range of conditions 
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considered in the incubation study do not represent the typical field conditions. As such, parameter 

values derived from incubation studies alone are not sufficient for improving mechanistic models. 
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3.7. Appendix 

3.7.1. Appendix A: Statistical Analysis Tables 

Table A.3.1. Two-way ANOVA table for the effects of fertilizer, soil moisture, and their 

interaction (fertilizer ⨯ moisture) on cumulative CO2 emissions. 

Effect Sum of Square DF F value Pr(>F) Significance 

Fertilizer 0.078752 3 16.6445 4.62E-06 *** 

Moisture 0.065139 1 41.3023 1.21E-06 *** 

Fertilizer:Moisture 0.002697 3 0.5701 0.6401  

Residuals 0.037851 24       

Note: p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), p < 0.1 (.), indicates significant influence of 

effect ((factor or combination of factors)) on the dependent variable at the p value in the brackets. 

p < 0.05 (*) was the tested significance level for the main and interaction effects in this study.  

 

Table A.3.2. Two-way ANOVA table for the effects of fertilizer and moisture on net 

mineralization coefficient (NMC) of carbon due to fertilizer, soil moisture, and their interaction 

(fertilizer ⨯ moisture). 

Effect Sum of Square DF F value Pr(>F) Significance 

  

Fertilizer 1.1517 3 16.201 3.20E-06 *** 

  
Moisture 0.84002 1 35.449 2.39E-06 *** 

  
Fertilizer:Moisture 0.001714 3 0.31 8.18E-01    

Residuals 0.63981 24       

  

Note: p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), p < 0.1 (.), indicates significant influence of 

effect ((factor or combination of factors)) on the dependent variable at the p value in the brackets. 

p < 0.05 (*) was the tested significance level for the main and interaction effects in this study.  
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Table A.3.3. Two-way ANOVA table for the effects of fertilizer and moisture on the 

complementary mineralization coefficient (CMC) of carbon due to fertilizer, soil moisture, and 

their interaction (fertilizer ⨯ moisture). 

Effect Sum of Square DF F value Pr(>F) Significance 

Fertilizer 25.3631 2 48.1591 5.95E-08 *** 

Moisture 0.9558 1 3.6297 0.07286 . 

Fertilizer:Moisture 0.1496 2 0.2841 0.75603 

 
Residuals 4.7399 18       

Note: p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), p < 0.1 (.), indicates significant influence of 

effect ((factor or combination of factors)) on the dependent variable at the p value in the brackets. 

p < 0.05 (*) was the tested significance level for the main and interaction effects in this study.  

 

Table A.3.4. Two-way ANOVA table for the effects of fertilizer, soil moisture, and their 

interaction (fertilizer ⨯ moisture) on cumulative N2O emissions. 

Effect Sum of Square DF F value Pr(>F) Significance 

Fertilizer 10.512 3 5.1704 0.00673 ** 

Moisture 25.4107 1 37.4958 2.52E-06 *** 

Fertilizer:Moisture 2.3844 3 1.1728 0.34078 

 
Residuals 16.2647 24       

Note: p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), p < 0.1 (.), indicates significant influence of 

effect ((factor or combination of factors)) on the dependent variable at the p value in the brackets. 

p < 0.05 (*) was the tested significance level for the main and interaction effects in this study.   
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Table A.3.5. Tukey HSD pairwise comparison of means of cumulative nitrous oxide emissions 

due to fertilizer and soil moisture level. 

Fertilizer Moisture LSmean SE df Lower 

CL 

Upper 

CL 

††group 

Digested biosolids 29% WFPS -2.66 0.329 27 -3.34 -1.988 bcd 

Urea 29% WFPS -2.21 0.329 27 -2.89 -1.537 cde 

Composted biosolids 29% WFPS -1.64 0.329 27 -2.31 -0.964 de 

Alkaline-stabilized biosolids 29% WFPS -1.15 0.329 27 -1.82 -0.472 e 

Urea 49% WFPS -4.44 0.329 27 -5.12 -3.771 a 

Digested biosolids 49% WFPS -3.99 0.329 27 -4.67 -3.319 ab 

Composted biosolids 49% WFPS -3.42 0.329 27 -4.09 -2.747 abc 

Alkaline-stabilized biosolids 49% WFPS -2.93 0.329 27 -3.6 -2.254 bcd 

†† Different letters within the “group” column represent significant differences at alpha = 0.05 

based on Tukey’s test for pairwise comparison of a family of 8 estimates. LSmean = least squared 

means, DF = degrees of freedom, CL = confidence limit, and WFPS = water-filled pore space. 

Note: Results are given on the log (not the response) scale. Confidence level used: 0.95.  

 

Table A.3.6. Tukey HSD pairwise comparison of means of cumulative nitrous oxide emissions 

due to soil moisture level. 

Moisture LSmean SE DF lower.CL upper.CL ††group 

29% WFPS -3.7 0.206 24 -4.12 -3.27 a 

49% WFPS -1.91 0.206 24 -2.34 -1.49 b 

Results are averaged over the levels of: Fertilizer; Results are given on the log (not the response) 

scale. Confidence level used: 0.95; significance level used: alpha = 0.05. LSmean = least squared 

means, DF = degrees of freedom, CL = confidence limit, and WFPS = water-filled pore space. 
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Table A.3.7. Tukey HSD pairwise comparison of means of cumulative nitrous oxide emissions 

due to fertilizer type. 

Fertilizer LSmean SE df lower.CL upper.CL ††group 

Digested -3.55 0.294 27 -4.16 -2.95 a 

Urea -3.1 0.294 27 -3.71 -2.5 ab 

Composted -2.53 0.294 27 -3.13 -1.93 ab 

Alkaline-stabilized -2.04 0.294 27 -2.64 -1.43 b 

Results are averaged over the levels of: Moisture; Results are given on the log (not the response) 

scale. Confidence level used: 0.95; P value adjustment based on Tukey method for comparing a 

family of 4 estimates; significance level used: alpha = 0.05. LSmean = least squared means, DF = 

degrees of freedom, CL = confidence limit, and WFPS = water-filled pore space. 

 

Table A.3.8. Measured mean and standard deviations (n=4) of cumulative N2O emissions from 

the treatments during the incubation experiment 

Fertilizer Moisture 

Mean 

(µg N2O-N g-1) 

SD 

(µg N2O-N g-1) 

Alkaline-stabilized biosolids 

29% WFPS 

0.046 0.021 

Composted biosolids 0.036 0.015 

Urea 0.030 0.010 

Digested biosolids 0.013 0.009 

Alkaline-stabilized biosolids 

49% WFPS 

0.445 0.250 

Composted biosolids 0.218 0.131 

Digested biosolids 0.178 0.211 

Urea 0.111 0.136 
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Table A.3.9. Two-way ANOVA table for the effects of fertilizer and moisture on net 

mineralization coefficient of nitrogen due to fertilizer, soil moisture, and their interaction (fertilizer 

⨯ moisture). 

Effect Sum of Square DF F value Pr(>F) Significance 

Fertilizer 5.1712 3 1.5571 0.25088 

 
Moisture 19.5413 1 17.6525 0.00123 ** 

Fertilizer:Moisture 0.086 2 0.0389 0.96201 

 
Residuals 13.284 12       

Note: p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), p < 0.1 (.), indicates significant influence of 

effect ((factor or combination of factors)) on the dependent variable at the p value in the brackets. 

p < 0.05 (*) was the tested significance level for the main and interaction effects in this study.  

 

Table A.3.10. Tukey HSD pairwise comparison of means of net mineralization coefficient of 

nitrogen (minus urea treatment) due to soil moisture level. 

Moisture LSmean SE DF Lower 

CL 

Upper 

CL 

††group 

49% WFPS -4.38 0.282 14 -4.99 -3.78 b 

29% WFPS -6.71 0.431 14 -7.64 -5.79 a 

†† Different letters within the “group” column represent significant differences at alpha = 0.05 

based on Tukey’s test for pairwise comparison of a family of 2 estimates. LSmean = least squared 

means, DF = degrees of freedom, CL = confidence limit, and WFPS = water-filled pore space. 

Note: Results are averaged over the levels of fertilizer and are given on the log (not the 

response) scale. Confidence level used: 0.95.  
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Table A.3.11. Three-way repeated measures ANOVA for soil nitrate concentration during the 

incubation experiment 

Effect DF Sum of 

Squares 

Mean 

Square 

F value Pr(>F) Significance 

Time 1 26835 26835 101.263 < 2e-16 *** 

Fertilizer 3 296 99 0.372 0.77307 
 

Moisture 1 97 97 0.367 0.54556 
 

Time:Fertilizer 3 3667 1222 4.612 0.00397 ** 

Time:Moisture 1 2 2 0.007 0.9318 
 

Fertilizer:Moisture 3 355 118 0.446 0.72048 
 

Time:Fertilizer:Moisture 3 517 172 0.651 0.58344 
 

Residuals 168 44521 265 
   

Note: p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), p < 0.1 (.), indicates significant influence of 

effect ((factor or combination of factors)) on the dependent variable at the p value in the brackets. 

p < 0.05 (*) was the tested significance level for the main and interaction effects in this study.  
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Table A.3.12. Three-way repeated measures ANOVA for soil ammonium concentration during 

the incubation experiment 

Effect DF Sum of 

Squares 

Mean 

Squares 

F value Pr(>F) Significance 

Time 1 18980 18980 118.973 < 2e-16 *** 

Fertilizer 3 203 68 0.423 0.7366  

Moisture 1 7 7 0.047 0.8291  

Time:Fertilizer 3 4643 1548 9.702 6.12E-06 *** 

Time:Moisture 1 526 526 3.299 0.0711 . 

Fertilizer:Moisture 3 138 46 0.287 0.8344  

Time:Fertilizer:Moisture 3 241 80 0.503 0.6808  

Residuals 168 26801 160    

Note: p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), p < 0.1 (.), indicates significant influence of 

effect ((factor or combination of factors)) on the dependent variable at the p value in the brackets. 

p < 0.05 (*) was the tested significance level for the main and interaction effects in this study.  

 

Table A.3.13. Three-way repeated measures ANOVA for soil pH during the incubation 

experiment 

Effect DF Sum of 

Squares 

Mean 

Squares 

F value Pr(>F) Significance 

Time 5 5.109 1.0218 78.927 <2.0E-16 *** 

Time:Fertilizer 15 0.574 0.0382 2.954 0.00052 *** 

Time:Moisture 5 0.186 0.0372 2.87 0.01754 * 

Time:Fertilizer:Moisture 15 0.261 0.0174 1.346 0.18609 
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Residuals 118 1.528 0.0129       

Note: p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), p < 0.1 (.), indicates significant influence of 

effect ((factor or combination of factors)) on the dependent variable at the p value in the brackets. 

p < 0.05 (*) was the tested significance level for the main and interaction effects in this study.  

 

Table A.3.14. Three-way repeated measures ANOVA for soil electrical conductivity during the 

incubation experiment 

Effect DF Sum of 

Square 

Mean 

Square 

F value Pr(>F) Significance 

Time 5 583945 116789 131.092 <2E-16 *** 

Time:Fertilizer 15 58358 3891 4.367 1.9E-16 *** 

Time:Moisture 5 4743 949 1.065 0.383  

Time:Fertilizer:Moisture 15 12589 839 0.942 0.52  

Residuals 118 105126 891       

Note: p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), p < 0.1 (.), indicates significant influence of 

effect ((factor or combination of factors)) on the dependent variable at the p value in the brackets. 

p < 0.05 (*) was the tested significance level for the main and interaction effects in this study.  
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3.7.2. Appendix B 

 

Figure A 3.1. Initializing DNDC using measured soil properties, daily climate variables (e.g., 

precipitation and temperature), and cropping/management practice data, followed by calibration 

and validation against measured CO2 and N2O emissions from surface spreading of biosolids. 
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Connecting text to Chapter 4 

An important step in estimating C and N dynamics in soils amended with biosolids was 

done in Chapter 3 whereby the rates of decomposition and mineralization of organic carbon and 

nitrogen for the biosolids were determined in an incubation experiment. This sets the background 

for Chapter 4 where DNDC was tested for simulating daily and seasonal CO2 and N2O emissions, 

annual corn yields, and initial and final SOC and total soil N on a Quebec soil amended with three 

different types of biosolids. The differences in the decomposition rates of the mesophilic 

anaerobically digested, alkaline-stabilized, and composted biosolids observed in Chapter 3 

provided insights for calibrating DNDC to simulate organic C degradation in the soil receiving 

biosolids. The DNDC model used in Chapter 3 is still under development; hence, it was not used 

in Chapter 4. Chapter 4 also suggests further improvement in the decomposition mechanism of 

DNDC to better simulate C and N dynamics in reference to the measured variables. 

The following manuscript has been submitted to the Journal of Agriculture, Ecosystems 

and Environment: Obi-Njoku, O., Smith, W., Grant, B., Boh, M. Y., Hussain, N., Whalen, J., 

Price, G.W., and Clark, O. G. (under review). Greenhouse gas emissions following biosolids 

application to farmland: Estimates from the DeNitrification and DeComposition model. Journal 

of Agriculture, Ecosystems and Environment. 
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Chapter 4. Greenhouse gas emissions following biosolids application to farmland: 

Estimates from the DeNitrification and DeComposition model  

Okenna Obi-Njoku, Ward Smith, Brian Grant, Michael Yongha Boh, G.W. Price, Naseer 

Hussain, Joann Whalen, and O. Grant Clark 

 

Abstract 

Biosolids supply plant nutrients and increase soil organic carbon, but also contribute to the 

production of greenhouse gases (GHGs: carbon dioxide (CO2) and nitrous oxide (N2O)) that must 

be included in national GHG inventories. In this study, the DeNitrification and DeComposition 

(DNDC) model was used to simulate the effect of biosolids applications on GHGs in farmlands, 

towards implementing the model in Canada’s GHG inventory. Three years (2017–2019) of data 

were collected from corn (Zea mays L.) plots in a replicated field experiment in Quebec, Canada. 

The plots received 120 kg of available N ha-1 y-1 in the form of mesophilic anaerobically digested 

(digested) biosolids, composted biosolids, alkaline-stabilized biosolids, urea, or combinations of 

these, while control plots were left unfertilized. Treatments receiving digested biosolids emitted 

higher N2O during the growing season than other treatments, while CO2 emissions were rarely 

varied between the treatments. After calibration and validation, DNDC estimates were within 95% 

confidence interval of the measured variables, signifying a good representation of C and N 

transformations in the soil. Correlation coefficients (r) indicated discrepancies in trends between 

the estimated and measured values for daily CO2 and N2O emissions (r = 0.3). These emissions 

were generally underestimated in the early and mid-growing season of 2018 and were more 

variable from plots fertilized with composted or alkaline-stabilized biosolids, as compared with 

digested biosolids. Annual changes in cumulative N2O emissions (r = 0.8), crop yields (r = 0.5), 
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and soil organic carbon (r = 0.4) were modelled with higher accuracy than cumulative CO2 

emissions (r = 0.3) and total soil N (r = 0.1). These findings suggest that DNDC would be most 

suitable for estimating field-scale N2O emissions following biosolids application however, 

estimated CO2 emissions could be improved by disaggregating the biosolid decomposition from 

the existing soil organic matter pools.   
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4.1. Introduction 

Disposal of treated municipal wastewater sludge (hereafter referred to as biosolids) in 

landfills is recognized as an unsustainable practice due to the environmental pollution associated 

with GHG emissions and nutrient leaching. For instance, of the 44 Gt carbon dioxide equivalent 

(CO2e) of global anthropogenic emissions in 2005, landfill emissions represented ~2% (794 Mt 

CO2e), and are increasing by 1–2% annually (UN-Habitat, 2008; Drechsel et al., 2015). Landfilling 

of organic waste has been banned in many countries to reduce GHG emissions and increasing 

amounts of biosolids are therefore applied to farmland as soil conditioner and fertilizer. Biosolids 

are a nutrient-rich organic material that is safe for crop production and increases soil fertility by 

building the soil organic carbon (SOC) and total soil N pools (Vogel, 2006; Barbarick et al., 2010; 

Price et al., 2015; Coors et al., 2016). However, there is a lack of information about the GHG 

emissions from agricultural land that receives biosolids. For example, approximately 500,000 t of 

biosolids are applied annually to farmland in Canada (Cheminfo Services Inc., 2018), but there are 

scant empirical data on GHG emissions from biosolids-amended land; thus they are not considered 

in the national GHG inventory (Environment and Climate Change Canada, 2015). The 

Intergovernmental Panel on Climate Change (IPCC) recommends a three-tier approach for 

estimating GHG emissions, designated as Tier 1 to Tier 3 in order of increasing accuracy, data 

requirements, and spatial resolution. The baseline assumption under the IPCC Tier 1 approach is 

that 1% of the applied N is emitted as N2O, regardless of the N fertilizer source or site-specific 

field conditions, although Charles et al. (2017) reported 0.57 ± 0.30% for organic amendments. To 

implement the Tier 2 method in the national GHG inventory, GHG emissions data specific to 

biosolids application in Canadian agroecosystems is required.  
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Since there are few empirical measurements of GHG emissions following biosolids 

application to farmland, mathematical models that represent biogeochemical processes and crop 

production in agroecosystems can complement available local measurements to produce more 

accurate GHG estimates than those of the Tiers 1 and 2 methods. Process-based models (Tier 3 

approach) provide a realistic estimate of GHG emissions in agricultural eco-regions when adjusted 

to reflect local agricultural practices. For example, N2O emissions were approximately 25% lower 

when site-specific conditions in US croplands were considered in the DailyDayCent model (Parton 

et al., 1994) than when the baseline Tier 1 method was used to calculate the N2O emissions (Del 

Grosso et al., 2010). The GHG emissions from corn agroecosystems managed according to best 

management practices were predicted within 2–8% of the measured N2O and NH3 values using 

the DeNitrification and DeComposition (DNDC) model (Li et al., 1992). Also, DNDC has been 

used to quantify N2O emissions and estimate Tier 3 emission factors from the application of green 

compost, slurry, and digestate (Shen et al., 2018; 2019). However, any process-based model like 

DNDC is only as good as the data used to calibrate and validate its function, due to inherent 

uncertainties in the model structure and initial parameters. With a novel organic amendment like 

biosolids, its physico-chemical characteristics and assumptions about its transformations and fate 

in the soil-plant system (e.g., what proportion of the nutrients are plant-available or partitioned 

into the SOC and associated pools) must be well defined. Then, the DNDC model can be calibrated 

with key environmental inputs that influence microbial production of N2O and CO2, in the soil 

(organic matter, texture, pH, Eh), including the temporal and spatial variation in weather 

(precipitation, temperature, humidity) and vegetation (crop type, residues) (Lugato et al., 2010; 

Gilmour et al., 2013; Smith, 2017). Finally, the DNDC model should describe realistic agricultural 

practices, such as fertilizer application methods, that influence crop yield and N2O emissions 



149 
 

(Webb et al., 2010; VanderZaag et al., 2011; Uzoma et al., 2015). The accuracy of GHG emissions 

predicted by the DNDC model must then be validated relative to experimental data before the 

model estimates can be accepted in a Tier 2 method for estimating the GHGs lost from biosolids-

amended soils on Canadian farms.  

The goal of this study was to calibrate and validate the DNDC model to estimate GHG 

emissions from biosolids-amended soils in a corn agroecosystem, as part of a broader study with 

three representative sites in Canada.  The DNDC model was validated with daily and cumulative 

CO2 and N2O emissions, crop yield, SOC and total soil N data collected during three growing 

seasons (2017–2019) from an agricultural field experiment in Ste-Anne-de-Bellevue, Quebec, 

Canada. 

 

4.2. Materials and Methods 

4.2.1. Site Description and Field Experiment 

4.2.1.1. Physico-chemical Characteristics of Biosolids 

Chemical characteristics of the biosolids are shown in Table 4.1 and Table A.4.1. The 

mesophilic anaerobically digested biosolids (henceforth referred to as digested biosolids) were 

collected from a municipal biomethanization centre (St-Hyacinthe, Quebec); composted biosolids 

were collected from Gaudreau Compost, Victoriaville, Quebec; and alkaline-stabilized biosolids 

were produced the N-Viro® process by Walker Environmental, Goffs, Nova Scotia. 

 

  



150 
 

Table 4.1. Chemical characteristics of biosolids applied consecutively to agricultural soils over 

the three years (2017–2019) of field experiment in Ste-Anne-de-Bellevue, Quebec, Canada.  

Parametera 
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DM (kg kg-1)  0.20 0.38 0.62 0.23 0.42 0.62 0.17 0.45 0.62 

pH  8.2 7.6 10.8 8.2 7.4 9.8 8.1 7.0 8.7 

TKN (g kg-1)  71.0 24.5 n/a 64.3 11.7 11.3 61.7 11.3 7.3 

NH4
+ N (g kg-1)  11.0 4.10 n/a 13.4 1.3 0.7 13.3 1.3 1.0 

K (g kg-1)  0.6 0.4 n/a n/a n/a n/a 8.1 1.6 1.1 

P (g kg-1)  3.3 0.9 n/a n/a n/a n/a 39.1 6.4 5.9 

OM-LOI (g kg-1)  670 752 315 567 451 350 547 428 279 

OC (g kg-1) 390 437 183 330 262 204 274 249 162 

C:N (kg kg-1)  4.7 15.0 22.3 5.1 22.4 18.1 4.4 22.0 22.2 

a C:N = carbon to nitrogen ratio; DM = dry matter; NH4
+ = ammonium; OC = organic carbon; 

OM = organic matter; TKN = total Kjeldhal nitrogen; n/a = not available.  

Note: Besides the alkaline-stabilized biosolids, the OM and C:N values of the biosolids in 2017 

were reported in the suppliers’ data sheet based on monthly sampling of biosolids in 2016 and 

2017. The C:N for all biosolids in 2018 and 2019 were calculated by dividing the yearly 

measured OM contents derived using the loss-on-ignition method by the van Bemmelen factor 

of 1.72, and subsequently dividing the OC by TKN. For the alkaline-stabilized biosolids, the OM 

and C:N values in 2017 were the averages of the reported 2018 and 2019 values. 
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4.2.1.2. Study Area and Materials 

The field experiment was a three-year study (2017–2019) at the Emile A. Lods Agronomy 

Research Centre, Ste-Anne-de-Bellevue, Quebec, Canada (Latitude 45˚28’N, 73˚45’W). The site 

has a 30-year mean annual rainfall of 785 mm, mean annual snowfall of 206 cm, and mean annual 

temperature of 6.5˚C (Environment and Climate Change Canada, 2021). The growing season is 

from May to October with a mean daily temperature of about 16˚C. The experiment was 

established on a 0.6 ha area of a moderate to well drained alluvio-lacustrine parent material with 

<5% slope. The soil is classified as Gleysol under the Canadian Soil Classification System and has 

a loam soil texture (490 g sand kg-1, 320 g silt kg-1 and 190 g clay kg-1) with 2.58% organic matter 

(OM), bulk density of 1.21 ± 0.15 (g cm-3), and pH of 6.1 ± 0.2 at the start of the field study. The 

fields were under a corn-soybean-pea rotation from 2007 until 2015, then in 2016, Field 1 (see 

Figure A.4.1) was cropped with corn, while Field 2 was cropped with spring wheat. In the spring 

of 2017, both fields where moldboard ploughed (17 cm depth) and harrowed (10 cm depth) prior 

to seeding. 

 

4.2.1.3. Experimental Design 

The field experiment was designed as an unbalanced factorial with three treatment factors: 

fertilizer type, rate of biosolid application, and method of application. Silage corn was grown with 

either commercial urea, digested biosolids, alkaline-stabilized biosolids, or composted biosolids, 

or a combination (1:1 ratio) of one type of biosolids and urea (e.g., digested biosolids + urea). The 

fertilizers were either surface-spread or soil-incorporated, with an unfertilized treatment serving 

as the negative control. In total, there were 15 treatments organized within each of 4 blocks, 

resulting in 60 experimental plots (see Figure A.4.1). Each experimental plot (8 m × 5 m) received 



152 
 

39 kg N ha-1 in the form of calcium ammonium nitrate as a starter dose of N at seeding (27% total 

applied N, including 13.5% as ammonia N and 13.5% as nitrate N). The remaining N was applied 

to the fertilized treatments as either of the biosolids before seeding and/or commercial urea applied 

at the six-leaf stage, depending on the treatment, to achieve a targeted 120 kg of applied available 

N per hectare, annually. For the treatments biosolids without urea, the target was achieved by 

adding a total of 162 kg N ha-1 as biosolids, with 50% assumed to be available to the crop, i.e., 81 

kg available N ha-1 from biosolids and 39 kg N ha-1 from the starter fertilizer. Then for the 

treatments receiving half N from biosolids, the target was achieved by applying 39 kg N ha-1 as 

starter fertilizer, 21 kg N ha-1 as urea, and 60 kg available N ha-1 as biosolids (120 kg total N as 

biosolids but assuming only 50% was available to the plants). There were two control treatments: 

the positive control which received all N in mineral form (81 kg N ha-1 as urea and 39 kg N ha-1 

as calcium ammonium nitrate), and the negative (unfertilized) control which received only the 

starter fertilizer. After the biosolids were applied, they were spread uniformly over the 

experimental plots and either left on the surface until planting or else incorporated using a 

cultivator to a depth of 15 cm within 24 h. All the plots were seeded with silage corn DKC 35-54 

in 2017 and DKC 3378-RIB in 2018 and 2019, at a rate of 76,000 seeds ha-1. Between 10–20% of 

corn residues were left on the plots after harvest and were incorporated into the soil during post-

harvest tillage. The management practices during the planting season are shown in Table A.4.2.  

 

4.2.1.4. Gas Sampling and Analysis 

Soil CO2 and N2O fluxes were determined in every plot with manual non-steady-state 

chambers during the growing season (late Apr. to Oct. of 2018 and 2019).  The non-steady-state 

chambers were made of acrylic (50 cm × 50 cm × 15 cm), with collars that were buried to a depth 
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of 10 cm in the centre of each plot in accordance to the quality criteria described in Rochette and 

Eriksen-Hamel (2008). The top 5 cm of the collar protruded above the ground and served as the 

base over which an insulated cover (50 cm × 50 cm × 15 cm) was placed during each sampling 

event (Hung et al., 2021). After covering the chamber, 20 mL of headspace gas was sampled at 

15-min intervals from 0 to 60 min and transferred into pre-vacuumed 12-ml glass Exetainers™ 

(Labco Limited, Lampeter, Wales, UK). Gas sampling was conducted twice weekly immediately 

after biosolids and urea fertilizer applications, once weekly thereafter, and within 48 h after every 

rainfall event to capture any spikes in gas flux as a consequence of increased soil moisture (Barton 

et al., 2015). In some cases, it was impossible to conduct gas sampling after consecutive rainy days 

due to muddy soil conditions. Gas samples were analyzed for N2O and CO2 concentrations using 

a gas chromatograph (Bruker 450-GC, Bruker Corporation, Billerica, MA, USA) fitted with a 

flame ionisation detector (FID) for CO2 analysis, a 63Ni electron capture detector (ECD) for N2O 

analysis, and using high-purity helium as a carrier gas.  

The concentrations of N2O and CO2 were estimated using the Hutchinson-Mosier R (HMR) 

software package (v1.0.1; Pedersen, 2020) considering the relative molecular mass of C and N, 

i.e., CO2 equals 12 g mol−1 and N2O equals 28 g mol−1. During each of the gas sampling events, a 

Kestrel Drop 3 environmental data logger (Kestrel Meters, Boothwyn, PA, USA) was placed in a 

chamber to record the air temperature and water vapor pressure. The N2O and CO2 fluxes were 

adjusted for air temperature and water vapor pressure according to the procedure described in 

Hung et al. (2021). N2O and CO2 fluxes measured in 2017 failed to meet the quality criteria as 

described by Rochette and Eriksen-Hamel (2008), as such were excluded from further analysis. 

The cumulative flux for the 2018 and 2019 growing seasons were estimated by linear interpolation, 

assuming that the flux changed linearly between successive sampling dates (De Klein & Harvey, 
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2012).  Soil temperature was measured by inserting a thermometer probe 10 cm into the soil, while 

soil moisture was measured gravimetrically by collecting about 50 g of soil from the top 10 cm 

and drying it at 60˚C for 48 h. 

 

4.2.1.5. Soil and Crop Biomass Sampling and Analysis  

Sampling and analysis of soil and the above-ground biomass of corn were done as per 

Halpern et al. (2010). To test DNDC’s ability to simulate SOC and total soil N changes across 

different soil layers, soil samples were collected at 0–10 cm, 10–20 cm, and 20–30 cm depths of 

each plot at the start (before ploughing in April 2017) and end (after crop harvest in October 2019) 

of the field experiment. Subsamples of the collected soil were dried and finely ground to pass 

through a 1-mm-mesh sieve before analysis for total C and N with a Thermo Finnigan Flash EA 

1112 CN analyzer (Carbo Erba, Milan, Italy). It was assumed that total C was equivalent to SOC 

at this site because no carbonates were detected during treatment of the soil with dilute acid (1 mol 

L−1 HCl). Each year, above-ground biomass of the corn plants was harvested at half-milk stage 

within an area of 1.5 m × 2.5 m at the center of each plot, shredded, homogenized, weighed, and 

dried in an oven (Type K T/C ST498, JPW Industrial Ovens & Furnaces, PA, USA) at 55℃ to 

constant dry weight. 

 

4.2.2. The DeNitrification and DeComposition (DNDC) Model  

The DNDC model was originally developed to simulate N2O, CH4, and CO2 emissions from 

agricultural soils in USA on a daily time-step (Li et al., 1992, 1994). Since 2013, a Canadian 

regionalized version named DNDC.vCAN, has been developed to better represent Canadian 

climate, soils, and management conditions (Banger et al., 2020; He et al., 2020). The model 
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framework simulates N2O emissions based on the ‘‘anaerobic balloon” concept (Li et al., 2000), 

and allows the user control of trace gas parameters that are difficult to measure but can have 

significant impacts on N cycling. Such parameters include the release of denitrifier substrates 

during freeze-thaw conditions, overall rates of denitrifier and nitrifier growth, and rainfall intensity 

impacts to better calibrate site-specific nitrification and denitrification rates as driven by moisture, 

nitrogen, and microbial dynamics in soils (Smith et al., 2020). The decomposition sub-model 

estimates SOC decomposition and soil respiration across the full 200 cm heterogenous soil profile 

in ~1cm increments (Jiang et al., 2020; Smith et al., 2020). Manure (raw/digested slurries, 

farmyard composted and biosolids) decomposition dynamics are controlled by incoming manure 

C:N which determines the fractional allocation of manure C to the major soil C pools (litter, 

microbial, humads, and humus).  Potential daily crop growth is regulated using crop specific 

empirical growth curves (Kröbel et al., 2011) modified by water, temperature and nutrient stresses 

as influenced by root growth & density algorithms (Smith et al., 2020). The DNDC model’s 

capability in being able to simultaneously track a mass balance of soil C and N dynamics and 

losses for a wide-range of fertilizer-manure management options made its selection ideal for use 

in this study.  

 

4.2.3. Model Calibration, Validation, and Evaluation 

4.2.3.1. Model Input and Set Up 

 The DNDC.vCAN simulation was set up using the following input data: (1) daily climate 

data from 2007 to 2019 collected from the Ste-Anne-de-Bellevue weather station, located within 

50 m of the experimental site. Missing data from this station was supplemented with data from the 

Montreal/Pierre Elliott Trudeau International Airport weather station (Environment and Climate 
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Change Canada, 2021) located about 20 km from the experimental site; (2) soil properties were 

established using measured values (Table A.4.3) with the exception of hydraulic conductivity, 

field capacity, and wilting point for the loam soil which were estimated using soil water 

characteristic equations derived by Saxton & Rawls (2006); (3) historical management practices 

at the field site from 2007 to 2016,  as recorded at the Emile A. Lods Agronomy Research Center 

(M. Samoisette, personal communication, 2018; Tables A.4.4 and A.4.5); and (4) crop 

management practices and the properties for each type of biosolids (Tables 4.1 and A.4.2). Based 

on the collected input data, one input file was created for each of the 15 treatments. DNDC 

simulations were run on site mode for 13 consecutive years from 2007 to 2019 (i.e., a 10-year spin-

up was simulated) to reduce the residual effects of initial conditions and previous season’s crop 

residue.  The results were then extracted for the study period when the measurements were made 

from 2017 to 2019.  

 

4.2.3.2. Model Calibration and Validation 

Following the procedure described in Li (2013), DNDC was calibrated against measured 

soil moisture and temperature in the top 10 cm of soil, CO2 and N2O emissions, crop yield, and 

total soil N and SOC at 0–10, 10–20, and 20–30 cm depths. Using the measured values of the soil, 

crop, and climate parameters (Table A.4.3), five of the 15 treatments were used to calibrate DNDC: 

i.e., the unfertilized and surface-spread treatments of urea, digested biosolids, alkaline-stabilized 

biosolids, and composted biosolids. The snow melt factor, denitrifier growth rate, crop N and water 

demand, and SOC decomposition factor were adjusted manually in an iterative manner until 

minimum RMSE values between the simulated and measured variables were achieved across all 

calibration treatments (see parameter values in Table A.4.3 and flowchart in Figure A.4.2). The 
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adjustment factors for decomposition rates of the SOC pools and denitrifier growth rates 

respectively were set for the following calibration treatments: unfertilized = 1.35, urea = 1.35, 

composted biosolids = 1.45, digested biosolids = 2.65, and alkaline-stabilized biosolids = 1.65. 

The adjusted parameters were then fixed for the rest of the treatments for their simulation runs. 

Only the management practices unique to each treatment were modified during the validation runs. 

Following the DNDC model user guide (University of New Hampshire, 2012), the simulated 

biomass yield expressed on an equivalent C basis was converted to dry matter (DM) basis, where 

1 kg C is equivalent to 2.5 kg (DM) of silage corn grain, while N2O and CO2 emissions were based 

on equivalent N and C contents, respectively. 

 

4.2.4. Statistical Analysis and Model Evaluation  

The data were analysed using R (v3.6.1, R Core Team, 2020) prior to model evaluation. The 

data were checked for homogeneity of variance and normality using the Shapiro-Wilks test and 

the N2O emissions data for the growing season were log-transformed. A three-way ANOVA (α = 

5%) was used to examine treatment effects on CO2 and N2O emissions and crop yields for the 

growing seasons. The HSD.test function of the Agricolae package was used to perform Tukey’s 

test for pairwise comparison on the analysed datasets (v1.3-5; De Mendiburu, 2021).  

Statistical procedures from Smith & Smith (2007) and Giltrap et al. (2020) were employed 

to estimate the measures of association and confidence of model simulations. The degree of 

association between the patterns of the DNDC simulation results and the field measurements were 

evaluated using the Pearson’s correlation coefficient r (Eq. A.4.1; see Appendix for all equations) 

and the significance of association F (Eq. A.4.2) at p = 0.05. The difference and bias between 

observed and simulated values were assessed by calculating the root-mean-squared error (RMSE; 
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Eq. A.4.3) and relative error (E; Eq. A.4.4), respectively. Meanwhile, the significance of the RMSE 

and E values were tested by comparing them to the RMSE95% (Eq. A.4.5) and E95% (Eq. A.4.6) 

values, respectively which were based on the standard error of the measurements.  

 

4.3. Results 

4.3.1. Temperature and Precipitation during the Growing Season 

Daily precipitation was lower and daily temperatures were higher on average during the 

growing season in 2018, relative to 2017 and 2019. The mean daily precipitation was generally 

lower in 2018 than in 2019 and 2017, except in July and September. For instance, in May of 2018, 

when biosolids were applied, the mean daily precipitation was 1.45 mm, while it was 4.0 mm and 

2.89 mm in May 2017 and 2019, respectively (see Table A.4.6). The mean daily temperature in 

2018 was at least 1.5°C higher than in 2017 and 2019 until August (see Table A.4.6). 

 

4.3.2. Model Calibration and Validation 

The total bias and error between the measured and simulated GHG emissions, SOC, total 

soil N, and corn yields were within the 95% confidence interval of the measurements for both 

calibration and validation (Table 4.2). DNDC was well-calibrated for soil moisture (r = 0.55) and 

soil temperature (r = 0.90). The method of biosolids application was found to have no significant 

effect on the measured variables (Tables A.4.7, A.4.9, and A.4.10), so the application method was 

removed as a treatment effect during data analysis.  
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Table 4.2. Statistical analyses of the model performance in simulating daily and cumulative carbon 

dioxide and nitrous oxide emissions during the growing season in 2018 and 2019, crop yields from 

2017 to 2019, and soil organic carbon and total soil N at 0–30 cm depth for the calibration and 

validation stages. Total model error is not significant if RMSE < RMSE95%. Model bias is not 

significant for E < E95%. Model association ranges from -1 to 1 with increasing association for r 

values ranging from 0 - 1. 
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Ave. N2O  0.2 -2.5 155.2 25.7 45.7  0.3 6.2 155.2 33.2 72.3 

Ave. CO2  0.4 -53.4 85.6 20.2 19.7  0.3 -85.0 92.8 22.7 24.7 

Cum. N2O  0.8 -16.1 84.8 1.2 2.4  0.8 -5.8 80.7 1.0 3.0 

Cum. CO2  0.3 -33.3 66.9 1.1 2.1  0.3 -26 67.5 0.9 2.2 

Crop yield 0.7 2.2 19.1 1.4 2.3  0.4 1.1 19.9 1.8 2.5 

SOC 0.6 -9.1 19.5 2.4 3.1  0.3 -15.8 21.9 3.1 3.5 

Soil N 0.3 7.7 26.9 0.3 0.4  0.0 3.1 28.0 0.3 0.5 

† Ave. N2O = average daily nitrogen emission as nitrous oxide (g N ha-1 d-1), Ave. CO2 = average 

daily carbon emission as carbon dioxide (kg C ha-1 d-1), Cum. N2O = cumulative nitrogen emission 

as nitrous oxide during the growing season (kg N ha-1 y-1), Cum. CO2 = cumulative carbon emission 

as carbon dioxide during the growing season (t C ha-1 y-1), Crop yield (t DM ha-1 y-1), and SOC = 

soil organic carbon (t C ha-1) at 0–30 cm soil depth; and Soil N = total soil nitrogen (t N ha-1) at 

0–30 cm soil depth. 
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4.3.3. Corn Yields 

Measured corn yields were significantly influenced by fertilizer type depending on annual 

effects (Year; as written in Table A.4.7 and other ANOVA tables) as they generally declined from 

2017 to 2019, except for treatments receiving only alkaline-stabilized and digested biosolids, 

which also had the highest corn yields in each year (see Figure 4.1 and Tables A.4.8, A.4.11 and 

A.4.12). Across the treatments, the average corn yields ranged from 11.6 to 16.4 t DM ha-1 in 2017, 

9.4 to 17.5 t DM ha-1 in 2018, and 7.5 to 14.8 t DM ha-1 in 2019. In 2017 and 2018, there was no 

marked difference in yield among the biosolids treatments. Meanwhile, in 2019 there were 

observable differences in yields among the treatments amended with digested and alkaline-

stabilized biosolids and the unfertilized control (see Figure 4.1 and Table A.4.8). Also, the effects 

of method of application and rate of biosolids application on crop yields were not significant. 

 DNDC underestimated corn yields by 12% and 14% during the model calibration and 

validation stages, respectively. The RMSE values for crop yield are shown in Table A.4.13. The 

simulated interannual variation in corn yields were similar to those for the field observations (r = 

0.6; Figure 4.1), especially for the following treatments: unfertilized (r = 1.0), urea + digested 

biosolids (r = 0.9), urea + alkaline-stabilized biosolids (r = 0.7), and urea + composted biosolids (r 

= 0.9). However, the trends in simulated and observed yield were dissimilar for the treatments 

receiving only alkaline-stabilized (r = -0.5) or composted (r = -0.1) biosolids. 
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Figure 4.1. Simulated (DNDC) and measured above-ground biomass (dry basis) for all treatments 

for 2017, 2018, and 2019. Mean values within treatments; n = 8 for fertilized and n = 4 for 

unfertilized treatments; error bars indicate standard deviation. The method of application had no 

significant effect on crop yield (α = 0.05), so data from surface-spread and soil-incorporated 

treatments were pooled. 

 

4.3.4. Daily Nitrous Oxide Emissions 

There were differences among treatments in the trends, magnitude, and variability of the 

daily N2O emissions. The mean daily N2O emissions from treatments amended with digested 

biosolids only (27.0–73.9 g N ha-1 d-1) were generally higher than those from treatments amended 

with either composted biosolids (2.6–13.9 g N ha-1 d-1) or alkaline-stabilized biosolids (5.6–16.0 

g N ha-1 d-1; Table A.4.10). The daily N2O emissions were generally low during the early growing 

season (< 50 g N ha-1 d-1) even after the application of biosolids but peaked in the mid-growing 
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season in both 2018 and 2019. The daily N2O emissions then declined during late summer and 

early fall and remained low until the end of the growing season (see Figures 4.2 and 4.3). 

The RMSE and E values for N2O flux were within the 95% confidence limits in 2018 and 

2019 for all treatments except for composted biosolids in 2018, where RMSE > RMSE95%. 

However, in 2018 the simulated fluxes were significantly different from the observed N2O fluxes 

for urea, composted biosolids, alkaline-stabilized biosolids + urea, composted biosolids + urea, 

and the unfertilized control (Figure 4.2 and Table A.4.14). Overall, the model overestimated the 

mean daily N2O emissions by 3.3%. In 2018, the correlation between the simulated and measured 

daily N2O emissions was low (r = 0.3). This was mainly due to the overestimation by the model 

of N2O emissions in the early season followed by underestimation of emission peaks in mid-

August. However, the correlation coefficients were higher in 2019 (Figure 4.3) than in 2018 

(Figure 4.2). In 2019, the r values were 0.4–0.9 for all treatments except the unfertilized control (r 

= -0.2–0.1; Table A.4.14) and treatments receiving either full or half alkaline-stabilized biosolids 

(r = 0–0.2). Interestingly, the model captured the major N2O peaks observed in 2019 across most 

of the treatments (Figure 4.3). 
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Figure 4.2.  Simulated (DNDC) and measured daily nitrous oxide flux for all treatments during 

the 2018 growing season. Mean values within treatments; n = 8 for fertilized and n = 4 for 

unfertilized treatments; error bars indicate standard deviation. The method of application had no 

significant effect on nitrous oxide flux (α = 0.05), so data from surface-spread and soil-

incorporated treatments were pooled. 
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Figure 4.3. Simulated (DNDC) and measured daily nitrous oxide flux for all treatments during the 

2019 growing season. Mean values within treatments; n = 8 for fertilized and n = 4 for unfertilized 

treatments; error bars indicate standard deviation. The method of application had no significant 

effect on nitrous oxide flux (α = 0.05), so data from surface-spread and soil-incorporated 

treatments were pooled. 

 

4.3.5. Daily Carbon Dioxide Emissions 

The mean daily CO2 emissions during the growing season ranged from 9.9 to 27.3 kg C 

ha-1 d-1 and showed similar trends across treatments (Figures 4.4 and 4.5). In 2018, the daily CO2 

emissions were lower from early May until mid-July in relation to the mid-season (Figure 4.4). 

From mid-July, the daily CO2 emissions increased to a peak in August, then declined gradually 

until the end of the season. The pattern of CO2 emissions was similar in 2019 (Figure 4.5). The 

CO2 emissions gradually increased from mid-June to mid-August, then declined until the end of 
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the season. In 2019, however, there was an initial peak in CO2 emissions in mid-May from 

treatments receiving alkaline-stabilized biosolids. 

 

Figure 4.4. Simulated (DNDC) and measured daily carbon dioxide fluxes for all treatments during 

the 2018 growing season. Mean values within treatments; n = 8 for fertilized and n = 4 for 

unfertilized treatments; error bars indicate standard deviation. The method of application had no 

significant effect on carbon dioxide flux (α = 0.05), so data from surface-spread and soil-

incorporated treatments were pooled. The y-axis values are the same for all plots. 
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Figure 4.5. Simulated (DNDC) and measured daily carbon dioxide fluxes for all treatments during 

the 2019 growing season. Mean values within treatments; n = 8 for fertilized and n = 4 for 

unfertilized treatments; error bars indicate standard deviation. The method of application had no 

significant effect on carbon dioxide flux (α = 0.05), so data from surface-spread and soil-

incorporated treatments were pooled. The y-axis values are the same for all plots. 

 

There was no significant difference between the simulated and observed daily CO2 fluxes 

across treatments, and the RMSE and E values were within the 95% confidence limits, except for 

the unfertilized and urea treatments where RMSE > RMSE95% (see Table A.4.15). The correlation 

coefficients between the simulated and measured daily CO2 fluxes ranged from -0.1 to 0.8. For 

treatments receiving composted biosolids, the r values were mostly at the lower end of this range 

(Table A.4.15). During the early growing season in 2018, the mean daily CO2 emissions were low 

and were overestimated by DNDC. However, DNDC more accurately reflected the emissions 
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trends later in the season for most treatments. In 2019, both the trends and magnitudes of the 

measured CO2 emissions were well represented (r = 0.5) for most treatments.  

 

4.3.6. Seasonal Nitrous Oxide Emissions 

Cumulative N2O emissions during the growing season were influenced by fertilizer and 

annual effects (see Table A.4.9). Digested biosolids had the highest mean cumulative N2O 

emissions during the growing season (Table A.4.11) and the highest variability among all 

treatments, at 5.93 ± 4.34 kg -N ha-1 in 2018 and 11.58 ± 5.12 kg -N ha-1 in 2019 (Table 4.3). Soils 

receiving composted biosolids emitted the least N2O, at 0.53 kg N2O-N ha-1, followed by alkaline-

stabilized biosolids at 1.09 kg N2O-N ha-1. The difference in cumulative N2O emissions between 

these latter two treatments was statistically significant. Also, the effects of method of application 

and rate of biosolids application on cumulative N2O emissions were not significant.
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Table 4.3. Measured and simulated cumulative carbon dioxide and nitrous oxide emissions from the experimental site located at Ste-

Anne-de-Bellevue, Quebec, during the 2018 and 2019 growing seasons. 

Treatment 

N2O (kg N ha-1)  CO2 (t C ha-1) 

2018  2019  2018  2019 

Obs.† Sim.  Obs. † Sim.  Obs. † Sim.  Obs. † Sim. 

Unfertilized 0.36 (0.35)e 0.6  1.37 (0.44)bc 0.43  1.98 (0.50)b 3.49  3.46 (0.48)ab 3.92 

Urea 2.81 (1.64)abc 2.22  3.42 (4.13)bc 1.42  3.02 (1.74)b 2.71  3.86 (0.99)b 3.94 

Digested biosolids 5.93 (4.39)ab 6.93  11.58 (5.12)a 6.2  2.04 (0.69)ab 3.39  2.59 (0.69)a 3.38 

Alkaline-stabilized biosolids 1.09 (0.75)cde 1.99  1.76 (0.71)bc 1.94  2.44 (1.02)ab 3.3  3.18 (0.98)a 3.38 

Composted biosolids 0.53 (0.20)de 1.36  1.09 (0.61)c 1.09  2.68 (0.45)a 2.99  2.53 (0.55)ab 4.09 

Digested biosolids + urea 5.39 (2.97)a 5.64  5.52 (3.52)ab 4.39  4.54 (0.86)ab 3.18  3.83 (1.87)ab 4.3 

Alkaline-stabilized biosolids + urea 1.13 (0.72)cde 1.73  2.77 (1.72)bc 1.91  2.74 (0.50)b 5.21  2.76 (0.60)ab 4.08 

Composted biosolids + urea 2.00 (1.39)bcd 1.66  2.44 (1.33)bc 1.52  4.48 (1.52)ab 5.25  3.75 (0.45)ab 4.16 

† Obs. = Mean measured values by treatment (n=4 for the unfertilized treatment and n = 8 for the other treatments) with standard 

deviations in parentheses; Sim. = Values simulated using DNDC. Different letters within each column of the measured variables 

represent significant differences at p < 0.05 based on Tukey’s test for pairwise comparison. 
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Deducting the background N2O emissions (i.e., emissions from the unfertilized treatment), 

the average value of N2O-N emitted relative to the total N applied was highest in both 2018 and 

2019 for treatments receiving only digested biosolids (3.4% and 6.3%), followed by treatments 

receiving urea (3.0% and 2.5%). More N2O-N per N applied (less background emission) was 

emitted from treatments that received alkaline-stabilized biosolids + urea (0.55% and 0.99%) or 

composted biosolids + urea (1.16% and 0.76%) than from those receiving only alkaline-stabilized 

biosolids (0.45% and 0.24%) or composted biosolids (0.11% and 0.17%). 

Overall, the RMSE and E values of simulated, cumulative N2O emissions for the growing 

season were within 95% confidence limits of the measurements, except for treatments of 

composted biosolids in 2018 and the unfertilized treatment in 2019, for which RMSE (RMSE95%) 

values were 0.8 (0.2) and 0.9 (0.7), respectively. Overall, DNDC underestimated the mean 

cumulative N2O emissions for the growing season by 9.3%. In most cases, the model was able to 

capture differences in cumulative N2O emissions between years (r = 0.8) (Table 4.2 and Table 

A.4.16). 

 

4.3.7. Seasonal Carbon Dioxide Emissions 

The mean cumulative CO2 emissions for the growing season were higher in 2019 than in 

2018 across all treatments (Tables 4.3 and A.4.12). Also, the effects of method of application and 

rate of biosolids application on cumulative CO2 emissions were not significant. DNDC was 

generally able to accurately simulate these values, with RMSE and E values mostly within the 95% 

confidence limits, except in a few cases (Table A.4.17). In 2018, for instance, the RMSE 

(RMSE95%) values were 1.5 (1.2) for the unfertilized treatment, 1.4 (0.8) for urea, 2.5 (0.6) for 

alkaline-stabilized biosolids, 1.6 (0.6) for alkaline-stabilized + urea biosolids, and 1.3 (0.7) for 
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composted + urea biosolids. In 2019, RMSE (RMSE95%) values were 0.4 (1.0) for digested 

biosolids and 0.3 (0.2) for composted biosolids + urea. The model overestimated the cumulative 

CO2 emissions by 27.6% overall and poorly (r = 0.3) represented trends during the growing season.  

 

4.3.8. Soil Organic Carbon  

SOC generally increased between the start of the field experiment, in April 2017, and the 

end, in November 2019 (Figure A 4.3). DNDC generally represented the values and trends in SOC 

well at the three depths, as indicated by Pearson’s correlation coefficient (r = 0.4–0.8), except for 

treatments of urea (r = 0.1) and urea + composted biosolids (r = 0). The RMSE values for most 

biosolids and biosolids + urea treatments, however, were not within the 95% confidence interval, 

even though SOC values were overestimated by only about 13% overall (Table A.4.18).   

 

4.3.9. Total Soil Nitrogen 

In general, total soil N decreased at the end of the experiment relative to the initial soil N, 

especially in the top 0–20 cm soil layers (Figure A 4.4). Overall, DNDC underestimated the 

observed soil N by 4.3% on average (Table A.4.19). The model estimated the total soil N better at 

the end of the experiment than at the start of the experiment. The model poorly represented the 

observed trends in total soil N between April 2017 (initial) and November 2019 (final) (r = 0.2). 

 

4.4. Discussion 

4.4.1. Crop and Soil Responses 

The corn silage yields in this study were generally lower than yields from a typical farm in 

Quebec, as reported by the Institut de la statistique du Québec (2021). This was likely because we 
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applied only 120 kg of available N per hectare in each growing season compared to the 170–240 

kg N typically applied by farmers in Quebec. There was also an overall decline in corn yields in 

2018 and 2019 as compared with 2017, likely due to less precipitation and higher temperatures. 

Among the experimental treatments, difference in the rate of biosolids degradation and the 

resultant release of mineral N (NO3
− and NH4

+) appeared to influence yields. Corn yields are 

typically influenced by soil mineral N release, especially during the critical stages of plant growth 

(Kablan et al., 2017). Differences in degradation rates were observed in the incubation experiment 

(Chapter 3) using similarly sourced biosolids applied to soil samples collected from the same 

experimental site. Corn yields were higher in treatments that received only digested biosolids and 

alkaline-stabilized biosolids than in those that received composted biosolids. We presume that this 

was due to higher rates of organic matter degradation and N mineralization in the digested and 

alkaline-stabilized biosolids relative to the composted biosolids as observed in the incubation 

experiment.   

DNDC simulated values that were in general agreement with the observed magnitudes and 

interannual variation in corn yields. Similar results were found in crop yield simulations for similar 

corn agroecosystem in Ottawa, Canada (Dutta et al., 2016). In DNDC, crop yield simulation is 

influenced by the simulated SOC (biosolids C + initial soil organic C) and soil N degradation 

dynamics as well as precipitation-driven soil moisture and soil temperature (Zhang et al., 2017; 

Zhang et al., 2019). While simulated soil moisture and soil temperature correlated strongly with 

the observed values, the agreement between the measured and simulated magnitudes and changes 

in SOC (good; r = 0.4) and organic N (poor; r = 0.1) for the 0–30 cm soil depth varied across the 

treatments.  
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While the two measurements taken for SOC and total soil N were not sufficient to describe 

the detailed dynamics of C and N transformations in the soil, they were typical of Humic Gleysols 

in the St. Lawrence Lowlands of Quebec where this experiment was conducted (Bedard-Haughn, 

2011). Tillage depletes soil C and N in Humic Gleysols while, in contrast, the application of 

organics increases SOC. In our experiment, SOC increased in the 0–10 cm soil depth over the 

course of the experiment, likely due to the net accumulation of biosolids and crop residue. Plots 

that received both biosolids and urea may have experienced a priming effect that accelerated SOC 

decomposition (Torri et al., 2014; Qiu et al., 2016), but the results from this study cannot provide 

any insights on this effect. Soil N did not decrease during the experiment, however, likely due to 

net N losses through crop uptake, N2O and NH3 emissions, leaching and runoff. 

The discrepancies between the measured and simulated SOC and total soil N seen in this 

study were similar to those reported in other studies of Canadian agroecosystems (Smith et al., 

2012; Cui and Wang, 2019). The accurate simulation of CO2 and N2O emissions using DNDC is 

very sensitive to SOC changes (Li et al., 1994), so more intensive SOC measurements over a longer 

time period would help to more accurately model the effects of repeated biosolids application on 

SOC dynamics, especially in the 0–10 cm soil depth. To the best knowledge of the authors, 

moreover, this is the only study in which DNDC was evaluated for simulating the co-application 

of biosolids and urea. Therefore, simulation of C and N dynamics resulting from the co-application 

of biosolids and urea would benefit from further investigation over longer time periods.  

 

4.4.2. Nitrous Oxide Emissions 

The N2O emissions factor is the mean N2O emissions during the growing season relative 

to the total applied N. The IPCC (2006) reported an emissions factor of 1% for all biosolids, 
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wastewaters, and animal slurries and Charles et al. (2017) reported a value of 1.21 ± 0.14%. Those 

values are higher than what we observed in this experiment, except for treatments receiving 

digested biosolids and/or urea. The digested biosolids differed from the alkaline-stabilized and 

composted biosolids in terms of C/N, the chemical form of organic C, and in moisture content. 

The C/N of the digested biosolids ranged from 4.7 to 8.9, while the C/N of the other biosolids 

ranged from 15 to 22. In addition, more of the organic C in the digested biosolids was labile and 

the DM was lower (0.17 to 0.23 kg kg-1) than in composted and alkaline-stabilized biosolids, 

leading to faster mineralization and more N2O emission during the growing season. 

In addition to the differences in the physico-chemical characteristics of the biosolids in this 

study, variations in soil and weather conditions also contributed to spatial and temporal variations 

in the N2O emissions. The amount and variability of N2O emissions are known to be affected by  

mineral N availability, soil pH, and soil clay content as well as precipitation and temperature 

(Oertel et al., 2016; Congreves et al., 2016). High N2O emissions driven by precipitation during 

late spring to mid-summer are often observed in Quebec (Almaraz et al., 2009). It is also common 

to observe early bursts of N2O within 10 days after the application of urea and biosolids (Case et 

al., 2016). In our study, however, manual gas sampling immediately after such events was 

physically challenging and we did not observe such spikes in emissions, possibly due to the 

sparsity of field measurements. The variations that we observed in N2O emissions within and 

between the treatments were consistent with findings from other studies. Several other field 

experiments showed that N2O fluxes varied from 56 to 262% of the measured average emissions 

(Saggar et al., 2007). This spatial heterogeneity in N2O emissions within the treatments was likely 

due to differences in soil characteristics and uneven distribution of the biosolids across the plots. 

In addition, the field measurements using manual chambers were often done weekly or fortnightly, 
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introducing potential error due to insufficient spatial coverage, sampling time and frequency, 

chamber position, and data censoring, as seen in other studies (Collier et al., 2014; Lee, 2018).  

The DNDC estimates were generally close to the observed N2O emissions, especially in 

2019 (E = 26%). DNDC was unable to simulate the observed N2O emissions peaks in some 

instances, e.g. in mid-August of 2018, especially for composted biosolids, possibly due to a 

mismatch between the measured and simulated soil C and N dynamics (Li et al., 2017). Some 

erroneous model estimates could have resulted from limited experimental data for model 

calibration (Smith et al., 2002). In addition, discrepancies between observed and simulated N2O 

emissions between July and September 2018 may have been due to insufficient local weather data, 

which were substituted with data from another weather station located ~20 km away from the field.  

DNDC does not have the input resolution (and often the measurements are not available) 

to appropriately characterize biogeochemical processes and their drivers at the temporal resolution 

necessary to simulate changes at a daily scale for trace gas emissions. For example, climate 

sensitive inputs such as precipitation & temperature are only input at a daily value, soil microbial 

heterogeneity is not explicitly defined, soil hydraulic parameterization is simplified across larger 

soil layers and hydraulic processes are aggregated to the hourly time step. All these input 

differences contribute to a divergence from the in-field conditions and can result in daily 

desynchronization between observed and simulated events. The impacts of these input 

simplifications become less of an issue when modelled comparisons are made at larger temporal 

timescales (i.e., monthly, seasonal, annual).  
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4.4.3. Carbon Dioxide Emissions 

The CO2 emissions observed in this study were within the range measured by Almaraz et 

al. (2009) from a similar Quebec corn agroecosystem. Emissions increased in mid-summer relative 

to late spring and early autumn, as typically caused by increased soil temperatures driving 

microbial respiration and SOC decomposition (Riggs and Hobbie, 2016). Increased growth of corn 

biomass during the growing season was also a driver of CO2 emissions from the soil during mid-

summer, given that root respiration is a function of root biomass (Li et al., 2017). However, the 

use of manual chambers in fixed positions to measure CO2 emissions from corn fields is quite 

limiting. In this study, the manual chambers were placed between corn rows which could have 

limited the measurement of actual CO2 emissions due to root respiration.  

DNDC estimates of CO2 emissions from soils amended with biosolids were similar in most 

instances to the observed magnitudes and temporal trends, as found in other studies (e.g. Yadav 

and Wang, 2017; Li et al., 2017). Following the application of biosolids in mid-May 2018, the 

observed CO2 emissions remained unexpectedly low until mid-June. The decomposition of the 

biosolids may have been slow due to low precipitation or there may have been shortcomings in the 

measurements done early in the growing season of 2018. Simulations showed root autotrophic 

respiration rates that were higher than expected during the vegetative stage, while root 

maintenance respiration values were lower than expected, resulting in an under-estimation of CO2 

emissions in the late growing season. Coefficients for root growth and maintenance respiration 

originally were hardcoded in DNDC and were the same for all crop types. Adjustable parameters 

for root autotrophic and soil heterotrophic respiration were therefore added to DNDC.vCAN, 

which improved the simulation of temperature-driven CO2 emissions during the mid-growing 

season, especially for the treatments receiving digested biosolids. Further improvement is still 



176 
 

required, however, to simulate the peaks in daily CO2 emissions which were observed early in 

2018 from the land-application of alkaline-stabilized and composted biosolids. 

The simulation of SOC decomposition dynamics and the resulting CO2 emissions for 

treatments receiving alkaline-stabilized and composted biosolids were more difficult to calibrate 

than those for digested biosolids. Prior to this study, DNDC had been used mainly to simulate the 

land application of N as synthetic fertilizer or as manure, which resembles digested biosolids in 

terms of C/N and the form of organic C. Alkaline-stabilized and composted biosolids, however, 

both contain complex organic compounds that are harder to decompose. Most of the readily 

decomposable substances in these biosolids are degraded during the thermophilic processes 

involved in their stabilization. The Ca-O-C bonding that results from the addition of CaCO3 or 

CaO during the alkaline-stabilized stabilization of biosolids retards the hydrolysis of organic 

compounds (Wang et al., 2007). In addition, wood chips were used in the composted biosolids of 

this study, resulting in > 40% recalcitrant organic C content. The decomposition module in DNDC 

aggregates the organic C of soil and biosolids in the same pool, making it impossible to explicitly 

represent different rates of decomposition for these different materials. Disaggregating the 

representation of initial SOC and applied organic C pools would allow the modelling of specific 

decomposition rates and further improve the simulation of trends in CO2 and N2O emissions. 

 

4.5. Conclusion 

The DNDC model was calibrated and validated using measured weather, crop, field 

management, and soil data and was able to simulate corn yield and GHG emissions from fields in 

Quebec receiving three different types of biosolids, generating simulated values that were mostly 

statistically similar to observed values. In addition, the underlying drivers of C and N cycling in 
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agroecosystems, such as soil moisture, soil temperature, SOC, and total soil N, were also simulated 

within acceptable ranges of the observed variables, especially in the top 10 cm depth of the soil. 

Discrepancies between the simulated and observed values in this study were likely due in part to 

DNDC’s inability to represent different rates of decomposition of complex carbon structures in the 

biosolids, especially composted biosolids and alkaline-stabilized biosolids. Temporal and spatial 

variability in the biotic and abiotic factors that influence C and N cycling in agroecosystems may 

also have contributed to inaccuracies in the simulation. Also, DNDC outputs CO2 and N2O fluxes 

on a daily scale using average parameter values, while field measurements were done using manual 

chambers, often only once weekly, across randomly replicated treatments. Despite these 

challenges, however, there was general agreement between simulated and observed values.  

We conclude, based on our results, that DNDC is a suitable tool for simulating C and N 

dynamics in farmland in Southwestern Quebec that has been amended with biosolids. DNDC had 

previously been tested for simulating C and N cycling in agroecosystems receiving manures and 

synthetic fertilizers. This novel work therefore extends the functionality of DNDC to simulate 

agroecosystems amended with biosolids. As researchers continue to improve the functionality of 

DNDC, it may be implemented beyond the field scale to simulate crop yields and GHG emissions 

on landscape, regional, and national scales, given the availability of high-quality reference datasets 

for model testing. DNDC may be a useful tool to help researchers answer questions about the 

optimization of crop production, the regulation of biosolids use, and climate change impacts and 

mitigation. However, DNDC still needs to be improved to better simulate daily CO2 emissions 

during the early growing season and daily N2O emissions during the mid-season, especially for 

fields amended with composted or alkaline-stabilized biosolids. We recommend that the 

representation of C and N decomposition and mineralization kinetics in SOM and organic 
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amendments like biosolids be disaggregated in the decomposition module of DNDC, to improve 

the simulation of C and N turnover from the biosolids to the soil. 
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4.8. Appendix  

4.8.1. Appendix A: Supporting Data  

Table A.4.1. Macro- and micro-nutrient concentrations in treated municipal wastewater biosolids 

applied to agricultural soils in 2017 and 2019. No data was available in 2018. The agricultural field 

experiment was in Ste-Anne-de-Bellevue, QC, Canada.† 

Parameter 

2017 2019 
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 Ca (g kg-1)  23 29 250  38 12 229 

 Mg (g kg-1)  4.8 2.7 n/a 4.5 1.6 1.0 

 Na (g kg-1)  2.5 11.2 n/a 4.2 0.4 0.4 

 Fe (g kg-1)  29.0 6.6 n/a 28.1 6.2 3.4 

 B (mg kg-1)  11 16 n/a 12 12 10 

 Cu (mg kg-1)  350 91 n/a 139 27 72 

 Zn (mg kg-1)  320 266 n/a 281 124 178 

†n/a = not available 

 

 

 

  



189 
 

Table A.4.2. Management practices and timing during the agricultural field experiment in Ste-

Anne-de-Bellevue, QC, Canada from 2017–2019.  

Management practice 2017 2018 2019 

Tillage date May 15 May 3 May 6 

Tillage method  Disc plough (1st pass) and disc harrow (2nd pass)   

Tillage depth 10 cm 10 cm 10 cm 

Biosolids application May 23 May 5 May 5 

Biosolids incorporation  May 24 May 16 May 16 

Incorporation method --------- Cultivator at 10–15 cm depth ----------- 

Planting/starter N application June 8 May 17 May 23 

Post emergence urea application July 5 July 19 July 24 

Harvest date October 4 October 18 October 24 

Post-harvest tillage October 11 October 20 October 24 

Tool used for termination till Chisel plough Chisel plough Chisel plough 
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Table A.4.3. List of crop, soil and climate parameters used in DNDC calibration and simulation 

of C and N cycling on the experimental field in Ste-Anne-de-Bellevue, QC, Canada. 

Parameter  Value Unit Parameter Type 

Land-use type Upland crop field - Soil 

Bulk density 1.21 g cm-3 Soil 

Soil pH 7.0 - Soil 

Clay fraction 0.19 - Soil 

Porosity 0.45 cm3 cm-3 Soil 

Field capacity (WFPS)† 0.46 mL mL-1 Soil 

Wilting point (WFPS)† 0.20 mL mL-1 Soil 

Hydraulic conductivity 0.015 m hr-1 Soil 

Top layer SOC to 20 cm depth† 0.015 kg C kg-1 Soil 

Litter fraction 0.01 - Soil 

Humads fraction 0.19 - Soil 

Humus fraction 0.80 - Soil 

Initial soil nitrate 0.50 mg N kg-1 Soil 

Initial soil ammonium 0.05 mg N kg-1 Soil 

Crop residue fraction left in field 0.20 - Soil 

Snow melt factor†† 1.10 - Soil 

Soil evaporation factor†† 0.80 - Soil 

Run-off snow melt fraction†† 0.20 - Soil 

N2O rain intensity factor†† 0.70 - Soil 
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Parameter  Value Unit Parameter Type 

Litter decomposition factor†† 0.80 - Soil 

Humads decomposition factor†† 0.80 - Soil 

Humus decomposition factor†† 0.80 - Soil 

Denitrifier growth rate†† 1.35 - Soil 

Grain yield 4,800 kg C ha-1 yr-1 Crop 

Grain fraction of crop biomass 0.25 - Crop 

Leaf fraction of crop biomass 0.30 - Crop 

Stem fraction of crop biomass 0.30 - Crop 

Root fraction of crop biomass 0.15 - Crop 

TDD† 2,600 °C d Crop 

Optimum crop temperature 30 °C Crop 

Crop water requirement 151 g water g-1 DM Crop 

N in rainfall 0.19 mg N kg-1 Climate 

Air NH3 concentration 0.15 µg N m-3 Climate 

Air_CO2 concentration 407 Mg CO2 kg-1 air Climate 

†SOC = soil organic carbon; TDD = temperature degree days; WFPS = water-filled pore space 

†† Rate of snow melt, soil evaporation, litter decomposition, humads (active humus) 

decomposition, humus decomposition, and rainfall induced denitrification rate as a fraction of 

the default values 
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Table A.4.4. Dates and activities of historical (2007 to 2016) agricultural practices on Field 1 of 

the Ste-Anne-de-Bellevue site used for the field experiment. 

Date Activity 

10-May-16 Fertilizer 0-0-60 at 66 kg ha-1,  

17-Nov-16 Mouldboard plough 17 cm deep 

25-Oct-16 Harvest corn 

20-Jun-16 Post emergence fertilization 34-0-0, 418 kg ha-1 left on surface 

10-May-16 Seeding of corn DKC 39-97RIB 76000 seeds ha-1 

10-May-16 Fertilizer banded and incorporated 23-23-0, 168 kg ha-1 

30-Oct-15 Mouldboard plough 17 cm deep 

27-Oct-15 Limestone applied 3 tons ha-1 

25-Aug-15 Harvest of canola 

21-May-15 Seeding of canola 

20-May-15 Fertilization 0-20-40 in the form of 11-52-0 and 0-0-60 

20-May-15 Incorporation of fertilizer using cultivator 7 cm deep 

30-Apr-15 Disc harrow 10 cm deep 

23-Oct-14 Mouldboard plough 17 cm deep 

20-Oct-14 Harvest soybeans 

22-May-14 Seed soybeans 

20-May-14 Fertilizer 20-0-40 in the form of 27.5-0-0 and 0-0-60 

1-May-13 Soybeans 

1-May-12 Corn and soybeans 

1-May-11 Corn   
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Date Activity 

1-May-10 Processing beans 

1-May-09 Corn 

1-May-08 Soybeans 

1-May-07 Processing peas 
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Table A.4.5. Dates and activities of historical (2007 to 2016) agricultural practices on Field 2 of 

the Ste-Anne-de-Bellevue site used for the field experiment. 

Date Activity 

10-Nov-16 Mouldboard plough 17 cm deep 

10-Aug-16 Harvest wheat 

24-Aug-16 Disc harrow 10 cm deep 

26-Aug-16 Seed green manure winter wheat 

25-Apr-16 Cultivator 7 cm deep 

25-Apr-16 Fertilizer 27.5-0-0 300 kg ha-1 + 11-52-0 67 kg ha-1 + 0-0-60 75 kg ha-1 broadcast 

25-Apr-16 Cultivator 7 cm deep to incorporate fertilizer 

25-Apr-16 Seeding of spring wheat  

30-Oct-15 Mouldboard plough 17 cm deep 

27-Oct-15 Limestone applied 3 tons ha-1 

25-Aug-15 Harvest of canola 

21-May-15 Seeding of canola 

20-May-15 Fertilizer 50-30-40 in the form of 27.5-0-0, 11-52-0, and 0-0-60 

20-May-15 Incorporation of fertilizer using cultivator 7 cm deep 

30-Apr-15 Disc harrow 10 cm deep 

23-Oct-14 Mouldboard plough 17 cm deep 

20-Oct-14 Harvest soybeans 

22-May-14 Seed soybeans 

20-May-14 Fertilizer 20-20-40 in the form of 27.5-0-0 + 3-18-36 and 0-0-60 

1-May-13 Soybeans 
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Date Activity 

1-May-12 Corn and soybeans 

1-May-11 Corn   

1-May-10 Processing beans 

1-May-09 Fallow 

1-May-08 Soybeans 

1-May-07 Processing peas 

 

Table A.4.6. Mean daily temperature and precipitation during months of the growing seasons as 

recorded at the Ste-Anne-de-Bellevue experimental site from 2017 to 2019. 

Month Mean daily temperature (°C)  Mean daily precipitation (mm) 

2017 2018 2019  2017 2018 2019 

May 13.12 15.04 11.50  4.00 1.45 2.89 

Jun 18.66 18.25 17.56  4.51 2.36 2.69 

Jul 20.79 23.36 22.76  4.05 2.14 1.25 

Aug 19.99 22.03 19.75  2.82 1.69 1.81 

Sep 18.39 17.18 15.18  1.79 3.05 3.33 

Oct 13.15 6.46 9.49  3.95 2.15 8.37 

Average 17.35 17.06 16.04  3.52 2.14 3.39 
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4.8.2. Appendix B: Statistical Analysis 

Table A.4.7. The three-way ANOVA table for the effects of fertilizer N source (Fert), method of 

application (MA) and annual effects (Year) on crop yield from 2017 to 2019 on the experimental 

field in Ste-Anne-de-Bellevue, Quebec, Canada at α = 0.05. 

Source DF Sum of Squares Mean Square F value Pr (>F value) Significance 

Fert 7 375,270,249 53,610,036 18.5538 <2.20E-16 *** 

MA 1 4,690,849 4,690,849 1.6234 0.2048 

 
Year 2 307,204,919 153,602,460 53.1599 <2.20E-16 *** 

Fert:MA 6 20,770,773 3,461,795 1.1981 0.3111 

 
Fert:Year 14 174,297,005 12,449,786 4.3087 2.82E-06 *** 

MA:Year 2 10,876,999 5,438,499 1.8822 0.1562 

 
Fert:MA:Year 12 52,269,647 4,355,804 1.5075 0.1286 

 
Residuals 135 390,074,656 2,889,442 

   
Note: *** indicates significant influence of effect (factor or combination of factors) on crop yield 

at p = 0.001. 

Table A.4.8. Tukey HSD pairwise comparison of means of crop yield (tonne dry mass of silage 

corn) during the growing seasons from 2017 to 2019 due to the interaction of fertilizer type and 

annual effects (year). Mean differences are significant at α = 0.05. 

Fertilizer type and year interaction Mean SD N groups 

Alkaline-stabilized biosolids:2017 15.03 1.78 8 abc 

Alkaline-stabilized biosolids:2018 16.60 2.05 8 a 

Alkaline-stabilized biosolids:2019 14.02 2.07 8 abcd 
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Composted biosolids:2017 14.00 1.51 8 abcd 

Composted biosolids:2018 12.00 1.89 8 cdef 

Composted biosolids:2019 8.58 1.29 8 g 

Control:2017 12.98 1.17 4 bcdef 

Control:2018 9.37 0.46 4 fg 

Control:2019 7.49 0.50 4 g 

Digested biosolids:2017 14.07 1.20 8 abcd 

Digested biosolids:2018 13.41 0.94 8 bcde 

Digested biosolids:2019 14.09 2.38 8 abcd 

Urea:2017 12.30 1.95 8 cdef 

Urea:2018 11.99 2.36 8 cdef 

Urea:2019 10.57 1.51 8 efg 

Alkaline-stabilized biosolids+Urea:2017 14.77 1.75 8 abc 

Alkaline-stabilized biosolids+Urea:2018 12.74 1.00 8 bcdef 

Alkaline-stabilized biosolids+Urea:2019 9.78 1.92 8 fg 

Composted biosolids+Urea:2017 14.59 2.52 8 abc 

Composted biosolids+Urea:2018 11.22 1.64 8 defg 

Composted biosolids+Urea:2019 9.61 1.04 8 fg 

Digested biosolids+Urea:2017 15.64 1.88 8 ab 

Digested biosolids+Urea:2018 12.56 1.83 8 bcdef 

Digested biosolids+Urea:2019 12.49 2.00 8 bcdef 

Different letters within the “groups” column represent significant differences in crop yields at p 

< 0.05 based on Tukey’s test for pairwise comparison. SD = standard deviation. 
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Table A.4.9. The three-way ANOVA table for the effects of fertilizer N source (Fert), method of 

application (MA) and year (Year) on N2O emissions during the growing season in 2018 and 2019 

on the experimental field in Ste-Anne-de-Bellevue, Quebec, Canada at α = 0.05. 

Source DF Sum of Squares Mean Square F value Pr (>F value) Significance 

Fert 7 72.484 10.3548 20.334 3.99E-16 *** 

MA 1 0.196 0.1962 0.3852 0.536383 

 
Year 1 7.571 7.5714 14.8681 0.000216 *** 

Fert:MA 6 0.67 0.1116 0.2192 0.969715 

 
Fert:Year 7 7.09 1.0129 1.9891 0.06516 

 
MA:Year 1 1.525 1.5247 2.994 0.087 

 
Fert:MA:Year 6 1.448 0.2414 0.474 0.826023 

 
Residuals 90 45.831 0.5092 

   
Note: *** indicates significant influence of effect (factor or combination of factors) on growing 

season N2O emission at p = 0.001. 
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Table A.4.10. The three-way ANOVA table for the effects of fertilizer N source (Fert), method of 

application (MA) and year (Year) on growing season CO2 emission in 2018 and 2019 on the 

experimental field in Ste-Anne-de-Bellevue, Quebec, Canada at α = 0.05. 

Source DF Sum of Squares Mean Square F value Pr(>F value) Significance 

Fert 7 28,889,439 4,127,063 4.8589 0.000111 *** 

MA 1 1,201,701 1,201,701 1.4148 0.237391 
 

Year 1 32,390,008 32,390,008 38.1336 1.87E-08 *** 

Fert:MA 6 7,423,483 1,237,247 1.4566 0.202189 
 

Fert:Year 7 9,111,184 1,301,598 1.5324 0.166463 
 

MA:Year 1 234,297 234,297 0.2758 0.60073 
 

Fert:MA:Year 6 8,563,047 1,427,174 1.6802 0.134917 
 

Residuals 90 76,444,408 849,382 
   

Note: *** indicates significant influence of effect (factor or combination of factors) on growing 

season CO2 emission at p =0.001. 

 

 

Table A.4.11. Tukey HSD pairwise comparison of means of cumulative N2O and CO2 emissions 

and crop yield across the growing seasons from 2017 to 2019 due to type of fertilizer. Mean 

differences are significant at α = 0.05. 

Year N2O†† 

(g N ha-1) 

CO2
†† 

(t C ha-1) 

Crop yield†† 

(t DM ha-1) 

Alkaline-stabilized biosolids 7.10 ± 0.62 bc 3.61 ± 1.42 a 15.22 ± 2.18 a 

Alkaline-stabilized biosolids + Urea 7.31 ± 0.76 bc 3.18 ± 1.49 ab 12.43 ± 2.59 bc 

Composted biosolids 6.54 ± 0.57 c 3.66 ± 0.78 a 11.53 ± 2.74 cd 
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Composted biosolids + Urea 7.46 ± 0.80 b 3.25 ± 0.72 ab 11.80 ± 2.75 c 

Unfertilized 6.38 ± 1.06 c 2.50 ± 1.31 ab 9.94 ± 2.48 d 

Digested biosolids 8.85 ± 0.76 a 3.61 ± 1.17 a 13.86 ± 1.59 ab 

Digested biosolids + Urea 8.47 ± 0.53 a 2.88 ± 0.87 ab 13.56 ± 2.36 b 

†† Different letters within each column of the analysed variables represent significant differences 

at p < 0.05 based on Tukey’s test for pairwise comparison. Note: N2O data was log transformed. 

Also, data for soil C and total soil N were collected at the start (before planting in 2017) and end 

(after harvest in 2019) of the experiment. 

 

Table A.4.12. Tukey HSD pairwise comparison of means of cumulative N2O and CO2 emissions, 

crop yield, soil organic carbon, and total soil nitrogen across all treatments due to annual effects 

during the growing seasons from 2017 to 2019. Mean differences are significant at α = 0.05.  

Year N2O†† 

(g N ha-1) 

CO2
††  

(t C ha-1) 

Crop yield†† 

(t DM ha-1) 

2017 n/a n/a 14.25±1.98a 

2018 7.29±1.09b 2.64±0.68b 12.69±2.42b 

2019 7.79±1.00a 3.68±1.33a 11.05±2.77c 

†† Different letters within each column of the analysed variables represent significant differences 

at p < 0.05 based on Tukey’s test for pairwise comparison.  n/a = not applicable. Note: N2O data 

was log transformed. Also, data for soil C and total soil N were collected at the start (before 

planting in 2017) and end (after harvest in 2019) of the experiment. 
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Table A.4.13. Statistical evaluation of DNDC-simulated crop yield using field experimental data (n = 8 for the fertilized and n = 4 for 

unfertilized treatments) from the site at Ste-Anne-de-Bellevue, Quebec, Canada. The standard deviation for the simulated crop yield is 

not included in this Table for the purpose of clarity. Total model error is not significant if RMSE < RMSE95%. Model bias is not 

significant for E < E95%. 

Treatment Year 

Obs 

(t DM ha-1) 

Std. Dev. 

(t DM ha-1) 

Sim 

(t DM ha-1) 

E (%) E95% (%) 

RMSE 

(t DM ha-1) 

RMSE95% 

(t DM ha-1) 

Unfertilized 2017          13.0             1.2           11.6           10.4           14.3             1.3             1.9  

Unfertilized 2018            9.4             0.5             9.2             1.8             7.8             0.2             0.7  

Unfertilized 2019            7.5             0.5             6.0           20.2           10.6             1.5             0.8  

Urea 2017          12.3             1.9           11.6             6.0           17.8             0.7             2.2  

Urea 2018          12.0             2.4           10.3           13.8           22.1             1.7             2.7  

Urea 2019          10.6             1.5           12.7         -20.5          16.0             2.2             1.7  

Digested biosolids 2017          14.1             1.2           12.9             8.2             9.6             1.2             1.4  

Digested biosolids 2018          13.4             0.9           13.5            -1.0            7.9             0.1             1.1  

Digested biosolids 2019          14.1             2.4           14.9            -5.7          19.0             0.8             2.7  

Alkaline-stabilized biosolids 2017          15.0             1.8           11.9           21.1           13.4             3.2             2.0  

Alkaline-stabilized biosolids 2018          16.6             2.1           13.0           21.6           13.9             3.6             2.3  
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Treatment Year 

Obs 

(t DM ha-1) 

Std. Dev. 

(t DM ha-1) 

Sim 

(t DM ha-1) 

E (%) E95% (%) 

RMSE 

(t DM ha-1) 

RMSE95% 

(t DM ha-1) 

Alkaline-stabilized biosolids 2019          14.0             2.1           14.8            -5.3          16.6             0.7             2.3  

Composted biosolids 2017          14.0             1.5           10.4           25.8           12.1             3.6             1.7  

Composted biosolids 2018          12.0             1.9           10.7           10.6           17.7             1.3             2.1  

Composted biosolids 2019            8.6             1.3           12.3         -43.8          17.0             3.8             1.5  

Digested biosolids + Urea 2017          15.6             1.9           15.2             2.6           13.5             0.4             2.1  

Digested biosolids + Urea 2018          12.6             1.8           13.9         -10.9          16.4             1.4             2.1  

Digested biosolids + Urea 2019          12.5             2.0           13.9         -11.6          18.0             1.5             2.3  

Alkaline-stabilized biosolids + Urea 2017          14.8             1.7           12.7           14.3           13.3             2.1             2.0  

Alkaline-stabilized biosolids + Urea 2018          12.7             1.0           11.0           13.6             8.8             1.7             1.1  

Alkaline-stabilized biosolids + Urea 2019            9.8             1.9           11.3         -15.2          22.1             1.5             2.2  

Composted biosolids + Urea 2017          14.6             2.5           12.8           12.3           19.4             1.8             2.8  

Composted biosolids + Urea 2018          11.2             1.6           11.0             2.3           16.4             0.3             1.8  

Composted biosolids + Urea 2019            9.6             1.0           11.0         14.3          12.1             1.4             1.2  
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Table A.4.14. Statistical evaluation of DNDC-simulated daily N2O fluxes (g N ha-1 d-1) using field experimental data (n = 8 for the 

fertilized and n = 4 for unfertilized treatments) from the site at Ste-Anne-de-Bellevue, Quebec, Canada. Total model error is not 

significant if RMSE < RMSE95%. Model bias is not significant for E < E95%. 

Treatment Year Mean 

Obs 

Mean 

Sim 

r F Sig.diff? E 

(%) 

E95% 

(%) 

RMSE RMSE95% 

Unfertilized 2018 1.8 2.3 -0.2 -6.4 yes -30.9 220.5 5.1 10.9 

Unfertilized 2019 8.1 2.7 0.1 3.1 no 66.9 104.5 11.2 11.2 

Urea 2018 14.2 8.2 -0.3 -15.3 yes 42.4 122.1 37.2 39.2 

Urea 2019 19.4 8.6 0.7 58.0 no 55.7 198.0 62.6 152.6 

Digested biosolids 2018 30.4 30.4 0.4 30.0 no 0.1 186.7 52.2 138.5 

Digested biosolids 2019 73.9 39.6 0.7 56.7 no 46.5 115.2 79.2 179.5 

Alkaline-stabilized biosolids 2018 6.4 8.3 0.1 3.0 no -30.7 204.7 17.4 46.1 

Alkaline-stabilized biosolids 2019 10.5 12.6 0.2 7.9 no -20.3 125.0 17.6 21.2 

Composted biosolids 2018 2.6 5.7 -0.1 -6.0 yes -116.0 130.9 7.6 5.8 

Composted biosolids 2019 6.4 7.0 0.5 36.1 no -8.6 160.8 8.1 24.2 

Digested biosolids + Urea 2018 27.0 24.1 0.4 23.5 no 10.6 163.8 52.8 106.7 
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Treatment Year Mean 

Obs 

Mean 

Sim 

r F Sig.diff? E 

(%) 

E95% 

(%) 

RMSE RMSE95% 

Digested biosolids + Urea 2019 34.7 28.4 0.8 79.1 no 18.1 132.1 39.2 101.8 

Alkaline-stabilized biosolids + Urea 2018 5.6 6.8 -0.2 -9.0 yes -20.8 183.9 14.0 23.3 

Alkaline-stabilized biosolids + Urea 2019 16.0 11.3 0.6 40.9 no 29.3 168.4 25.9 65.0 

Composted biosolids + Urea 2018 9.9 6.4 -0.2 -8.5 yes 35.1 162.0 23.1 36.9 

Composted biosolids + Urea 2019 13.9 8.4 0.7 52.7 no 39.7 126.2 29.0 46.0 

Note: The mean observed and simulated daily N2O fluxes are not significantly different from each other when F ≥1 (Sig.diff?). 
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Table A.4.15. Statistical evaluation of DNDC-simulated daily CO2 fluxes using field experimental data (n = 8 for the fertilized and n = 

4 for unfertilized treatments) from the site at Ste-Anne-de-Bellevue, Quebec, Canada. Total model error is not significant if RMSE < 

RMSE95%. Model bias is not significant for E < E95%. 

Treatment Year Mean 

Obs 

(kg C ha-1) 

Mean 

Sim 

(kg C ha-1) 

r F Sig. diff? E 

(%) 

E95% 

(%) 

RMSE 

(kg C ha-1) 

RMSE95% 

(kg C ha-1) 

Unfertilized 2018 10.0 17.2 0.1 3.9 no -70.9 88.8 14.0 12.6 

Unfertilized 2019 17.8 16.5 0.5 14.8 no 7.6 108.0 12.4 25.5 

Urea 2018 9.9 16.3 0.5 32.5 no -64.6 90.4 11.4 10.9 

Urea 2019 14.4 19.3 0.6 47.1 no -34.7 98.3 11.0 21.0 

Digested biosolids 2018 13.4 14.2 0.6 56.9 no -5.7 81.7 8.8 13.8 

Digested biosolids 2019 27.3 17.8 0.7 67.5 no 35.0 80.4 17.2 31.2 

Alkaline-stabilized biosolids 2018 13.9 22.7 0.4 25.2 no -63.0 94.0 15.5 19.2 

Alkaline-stabilized biosolids 2019 26.5 26.9 0.6 48.9 no -1.4 88.6 14.2 30.1 

Composted biosolids 2018 17.1 21.1 0.3 20.2 no -23.5 78.8 15.2 17.1 

Composted biosolids 2019 22.6 27.2 0.4 23.4 no -20.7 92.0 17.0 28.6 

Digested biosolids + Urea 2018 12.9 16.3 0.6 47.1 no -26.3 103.2 10.3 24.5 

Digested biosolids + Urea 2019 18.8 19.4 0.7 66.4 no -3.1 87.2 11.0 24.2 
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Treatment Year Mean 

Obs 

(kg C ha-1) 

Mean 

Sim 

(kg C ha-1) 

r F Sig. diff? E 

(%) 

E95% 

(%) 

RMSE 

(kg C ha-1) 

RMSE95% 

(kg C ha-1) 

Alkaline-stabilized biosolids + Urea 2018 12.4 20.8 0.4 26.0 no -68.1 93.5 14.2 14.7 

Alkaline-stabilized biosolids + Urea 2019 22.5 24.8 0.3 17.5 no -10.1 121.1 26.2 73.1 

Composted biosolids + Urea 2018 13.6 18.7 0.5 31.8 no -37.0 83.9 12.6 15.2 

Composted biosolids + Urea 2019 21.9 23.7 0.6 50.7 no -8.1 71.6 12.5 20.4 

Note: The mean observed and simulated daily CO2 fluxes are not significantly different from each other when F ≥ 1 (Sig.diff?). 
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Table A.4.16. Statistical evaluation of DNDC-simulated cumulative N2O fluxes using field experimental data (n = 8 for the fertilized 

and n = 4 for unfertilized treatments) from the site at Ste-Anne-de-Bellevue, Quebec, Canada. Total model error is not significant if 

RMSE < RMSE95%. Model bias is not significant for E < E95%. 

Treatment Year N Sim 

(kg N ha-1) 

Obs 

(kg N ha-1) 

Std. Dev. 

(kg N ha-1) 

E 

(%) 

E95% 

(%) 

RMSE 

(kg N ha-1) 

RMSE95% 

(kg N ha-1) 

Unfertilized 2018 4 0.61 0.36 0.35 -69.2 155.1 0.25 0.56 

Unfertilized 2019 4 0.43 1.37 0.44 68.6 51.4 0.94 0.70 

Urea 2018 8 2.22 2.81 1.64 20.9 65.8 0.59 1.85 

Urea 2019 8 1.52 3.42 4.13 55.5 135.7 1.90 4.64 

Digested biosolids 2018 8 6.57 5.93 4.39 -10.7 83.3 0.64 4.94 

Digested biosolids 2019 8 6.97 11.58 5.12 39.8 49.8 4.61 5.76 

Alkaline-stabilized biosolids 2018 8 2.61 1.09 0.75 -139.4 77.2 1.52 0.84 

Alkaline-stabilized biosolids 2019 8 1.82 1.76 0.71 -3.6 45.1 0.06 0.79 

Composted biosolids 2018 8 1.35 0.53 0.20 -153.0 41.6 0.82 0.22 

Composted biosolids 2019 8 0.93 1.09 0.61 14.4 63.1 0.16 0.69 

Digested biosolids + Urea 2018 8 6.98 5.39 2.97 -29.5 62.0 1.59 3.34 
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Treatment Year N Sim 

(kg N ha-1) 

Obs 

(kg N ha-1) 

Std. Dev. 

(kg N ha-1) 

E 

(%) 

E95% 

(%) 

RMSE 

(kg N ha-1) 

RMSE95% 

(kg N ha-1) 

Digested biosolids + Urea 2019 8 6.17 5.52 3.52 -11.8 71.7 0.65 3.96 

Alkaline-stabilized biosolids + Urea 2018 8 1.88 1.13 0.72 -65.5 71.2 0.74 0.81 

Alkaline-stabilized biosolids + Urea 2019 8 2.21 2.77 1.72 20.3 70.0 0.56 1.94 

Composted biosolids + Urea 2018 8 1.97 2.00 1.39 1.6 78.1 0.03 1.56 

Composted biosolids + Urea 2019 8 2.15 2.44 1.33 11.8 61.4 0.29 1.50 
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Table A.4.17. Statistical evaluation of DNDC-simulated cumulative CO2 fluxes using field experimental data (n = 8 for the fertilized 

and n = 4 for unfertilized treatments) from the site at Ste-Anne-de-Bellevue, Quebec, Canada. Total model error is not significant if 

RMSE < RMSE95%. Model bias is not significant for E < E95%. 

Treatment Year N Sim 

(t C ha-1) 

Obs 

(t C ha-1) 

Std. Dev. 

(t C ha-1) 

E 

(%) 

E95% 

(%) 

RMSE 

(t C ha-1) 

RMSE95% 

(t C ha-1) 

Unfertilized 2018 4 3.49 1.98 0.50 -76.4 40.1 1.51 0.79 

Unfertilized 2019 4 2.71 3.02 1.74 10.2 91.9 0.31 2.77 

Urea 2018 8 3.39 2.04 0.69 -66.2 38.0 1.35 0.78 

Urea 2019 8 3.30 2.44 1.02 -35.2 46.9 0.86 1.14 

Digested biosolids 2018 8 2.99 2.68 0.45 -11.7 18.8 0.31 0.51 

Digested biosolids 2019 8 3.18 4.54 0.86 30.0 21.2 1.36 0.96 

Alkaline-stabilized biosolids 2018 8 5.21 2.74 0.50 -90.2 20.4 2.47 0.56 

Alkaline-stabilized biosolids 2019 8 5.25 4.48 1.52 -17.1 38.1 0.77 1.71 

Composted biosolids 2018 8 3.92 3.46 0.48 -13.2 15.6 0.46 0.54 

Composted biosolids 2019 8 3.94 3.86 0.99 -2.2 28.9 0.09 1.11 

Digested biosolids + Urea 2018 8 3.38 2.59 0.69 -30.4 29.9 0.79 0.78 
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Treatment Year N Sim 

(t C ha-1) 

Obs 

(t C ha-1) 

Std. Dev. 

(t C ha-1) 

E 

(%) 

E95% 

(%) 

RMSE 

(t C ha-1) 

RMSE95% 

(t C ha-1) 

Digested biosolids + Urea 2019 8 3.38 3.18 0.98 -6.4 34.7 0.20 1.10 

Alkaline-stabilized biosolids + Urea 2018 8 4.09 2.53 0.55 -61.3 24.4 1.55 0.62 

Alkaline-stabilized biosolids + Urea 2019 8 4.30 3.83 1.87 -12.3 54.9 0.47 2.10 

Composted biosolids + Urea 2018 8 4.08 2.76 0.60 -48.1 24.3 1.33 0.67 

Composted biosolids + Urea 2019 8 4.16 3.75 0.45 -10.9 13.6 0.41 0.51 
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Table A.4.18. Using field experimental data (n = 8) from the site at Ste-Anne-de-Bellevue, Quebec, Canada to statistically evaluate 

DNDC-simulated soil carbon in the 0–10 cm, 10–20 cm, and 20–30 cm soil layer at the start (initial) and end (final) stages of the 3-year 

field experiment. Total model error is not significant if RMSE < RMSE95%. Model bias is not significant for E < E95%. 

Treatment Stage Layer Sim Obs Std. Dev.  E  E95%   RMSE RMSE95% 

(Mg C ha-1)  (%)  (Mg C ha-1) 

Unfertilized A(0-10cm) Initial 16.60 14.86 1.23  -11.7 13.2  1.74 1.96 

Unfertilized B(10-20cm) Initial 16.58 15.12 0.83  -9.6 8.7  1.46 1.32 

Unfertilized C(20-30cm) Initial 12.99 13.98 2.29  7.1 26.0  1.00 3.64 

Urea A(0-10cm) Initial 15.98 15.03 2.31  -6.3 17.3  0.95 2.60 

Urea B(10-20cm) Initial 15.82 16.15 2.42  2.1 16.9  0.33 2.72 

Urea C(20-30cm) Initial 12.66 15.49 4.40  18.3 31.9  2.83 4.95 

Digested biosolids A(0-10cm) Initial 19.79 14.61 2.71  -35.5 20.9  5.18 3.05 

Digested biosolids B(10-20cm) Initial 18.81 15.73 1.59  -19.5 11.4  3.07 1.79 

Digested biosolids C(20-30cm) Initial 14.32 14.85 2.41  3.6 18.3  0.53 2.71 

Alkaline-stabilized biosolids A(0-10cm) Initial 21.06 14.70 1.07  -43.3 8.2  6.36 1.20 

Alkaline-stabilized biosolids B(10-20cm) Initial 19.90 15.60 0.69  -27.5 5.0  4.29 0.78 
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Treatment Stage Layer Sim Obs Std. Dev.  E  E95%   RMSE RMSE95% 

(Mg C ha-1)  (%)  (Mg C ha-1) 

Alkaline-stabilized biosolids C(20-30cm) Initial 14.86 14.27 2.54  -4.1 20.1  0.58 2.86 

Composted biosolids A(0-10cm) Initial 19.85 15.46 1.85  -28.4 13.4  4.39 2.08 

Composted biosolids B(10-20cm) Initial 19.06 16.10 1.81  -18.4 12.7  2.96 2.04 

Composted biosolids C(20-30cm) Initial 14.50 14.22 5.47  -2.0 43.2  0.28 6.15 

Digested biosolids + Urea A(0-10cm) Initial 19.25 15.58 3.18  -23.5 22.9  3.66 3.57 

Digested biosolids + Urea B(10-20cm) Initial 18.40 15.47 1.94  -18.9 14.1  2.93 2.19 

Digested biosolids + Urea C(20-30cm) Initial 14.12 14.89 2.71  5.2 20.5  0.77 3.05 

Alkaline-stabilized biosolids + Urea A(0-10cm) Initial 19.49 15.42 1.09  -26.4 8.0  4.07 1.23 

Alkaline-stabilized biosolids + Urea B(10-20cm) Initial 18.66 15.45 1.07  -20.8 7.8  3.21 1.21 

Alkaline-stabilized biosolids + Urea C(20-30cm) Initial 14.27 13.59 3.39  -5.0 28.0  0.68 3.81 

Composted biosolids + Urea A(0-10cm) Initial 19.52 14.85 1.74  -31.5 13.2  4.67 1.95 

Composted biosolids + Urea B(10-20cm) Initial 18.69 16.32 2.19  -14.5 15.1  2.37 2.46 

Composted biosolids + Urea C(20-30cm) Initial 14.28 15.19 1.07  6.0 7.9  0.91 1.20 

Unfertilized A(0-10cm) Final 15.52 16.72 1.75  7.2 16.7  1.20 2.79 



213 
 

Treatment Stage Layer Sim Obs Std. Dev.  E  E95%   RMSE RMSE95% 

(Mg C ha-1)  (%)  (Mg C ha-1) 

Unfertilized B(10-20cm) Final 15.44 15.64 1.36  1.3 13.9  0.20 2.17 

Unfertilized C(20-30cm) Final 12.64 14.11 1.22  10.4 13.7  1.47 1.93 

Urea A(0-10cm) Final 15.42 18.57 3.59  17.0 21.7  3.15 4.04 

Urea B(10-20cm) Final 15.27 16.59 2.10  8.0 14.2  1.32 2.36 

Urea C(20-30cm) Final 12.58 14.87 1.28  15.4 9.7  2.29 1.44 

Digested biosolids A(0-10cm) Final 21.18 18.89 4.16  -12.1 24.8  2.29 4.68 

Digested biosolids B(10-20cm) Final 20.97 17.23 2.46  -21.8 16.1  3.75 2.77 

Digested biosolids C(20-30cm) Final 15.38 16.20 1.92  5.0 13.3  0.82 2.15 

Alkaline-stabilized biosolids A(0-10cm) Final 23.12 19.86 4.09  -16.4 23.2  3.25 4.60 

Alkaline-stabilized biosolids B(10-20cm) Final 22.95 17.02 1.73  -34.8 11.4  5.93 1.94 

Alkaline-stabilized biosolids C(20-30cm) Final 16.13 16.19 1.38  0.4 9.6  0.06 1.56 

Composted biosolids A(0-10cm) Final 21.47 17.71 2.25  -21.2 14.3  3.76 2.53 

Composted biosolids B(10-20cm) Final 21.32 16.76 2.01  -27.2 13.5  4.56 2.27 

Composted biosolids C(20-30cm) Final 15.46 15.83 0.69  2.3 4.9  0.37 0.77 
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Treatment Stage Layer Sim Obs Std. Dev.  E  E95%   RMSE RMSE95% 

(Mg C ha-1)  (%)  (Mg C ha-1) 

Digested biosolids + Urea A(0-10cm) Final 20.68 19.64 3.17  -5.3 18.2  1.04 3.57 

Digested biosolids + Urea B(10-20cm) Final 20.50 16.40 1.67  -25.0 11.5  4.10 1.88 

Digested biosolids + Urea C(20-30cm) Final 15.17 15.09 1.50  -0.6 11.2  0.09 1.69 

Alkaline-stabilized biosolids + Urea A(0-10cm) Final 22.05 16.52 2.24  -33.5 15.3  5.53 2.52 

Alkaline-stabilized biosolids + Urea B(10-20cm) Final 21.93 15.16 1.79  -44.6 13.3  6.77 2.02 

Alkaline-stabilized biosolids + Urea C(20-30cm) Final 15.59 14.42 0.63  -8.2 4.9  1.18 0.71 

Composted biosolids + Urea A(0-10cm) Final 22.79 16.61 3.01  -37.2 20.4  6.18 3.38 

Composted biosolids + Urea B(10-20cm) Final 22.67 13.96 2.18  -62.4 17.5  8.71 2.45 

Composted biosolids + Urea C(20-30cm) Final 15.85 14.02 1.91  -13.0 15.3  1.82 2.14 
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Table A.4.19. Using field experimental data (n = 4) from the site at Ste-Anne-de-Bellevue, Quebec, Canada to statistically evaluate 

DNDC-simulated soil nitrogen (Mg N ha-1) in the 0–10 cm, 10–20 cm, and 20–30 cm soil layer at the start (initial) and end (final) stages 

of the 3-year field experiment. Total model error is not significant if RMSE < RMSE95%. Model bias is not significant for E < E95%. 

Treatment Stage Layer  Sim Obs Std. Dev.  E E95%  RMSE RMSE95% 

    (Mg N ha-1)  (%)  (Mg N ha-1) 

Unfertilized A(0-10cm) Initial  1.35 1.72 0.15  21.23 13.81  0.36 0.24 

Unfertilized B(10-20cm) Initial  1.35 1.74 0.16  22.66 14.64  0.39 0.25 

Unfertilized C(20-30cm) Initial  1.16 1.68 0.26  30.83 25.09  0.52 0.42 

Urea A(0-10cm) Initial  1.35 1.74 0.18  22.62 11.31  0.39 0.20 

Urea B(10-20cm) Initial  1.34 1.82 0.16  26.11 9.92  0.47 0.18 

Urea C(20-30cm) Initial  1.17 1.67 0.21  30.04 13.90  0.50 0.23 

Digested biosolids A(0-10cm) Initial  1.43 1.69 0.24  15.61 16.06  0.26 0.27 

Digested biosolids B(10-20cm) Initial  1.43 1.78 0.20  19.65 12.68  0.35 0.23 

Digested biosolids C(20-30cm) Initial  1.23 1.71 0.24  28.17 15.55  0.48 0.27 

Alkaline-stabilized biosolids A(0-10cm) Initial  1.39 1.73 0.11  19.74 7.25  0.34 0.13 

Alkaline-stabilized biosolids B(10-20cm) Initial  1.40 1.75 0.12  20.14 7.74  0.35 0.14 
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Treatment Stage Layer  Sim Obs Std. Dev.  E E95%  RMSE RMSE95% 

    (Mg N ha-1)  (%)  (Mg N ha-1) 

Alkaline-stabilized biosolids C(20-30cm) Initial  1.21 1.67 0.21  27.33 14.47  0.46 0.24 

Composted biosolids A(0-10cm) Initial  1.43 1.75 0.16  18.37 9.97  0.32 0.17 

Composted biosolids B(10-20cm) Initial  1.44 1.80 0.16  20.36 10.12  0.37 0.18 

Composted biosolids C(20-30cm) Initial  1.23 1.67 0.42  26.06 28.62  0.44 0.48 

Digested biosolids + Urea A(0-10cm) Initial  1.42 1.73 0.22  18.20 14.04  0.31 0.24 

Digested biosolids + Urea B(10-20cm) Initial  1.42 1.76 0.20  18.97 12.82  0.33 0.23 

Digested biosolids + Urea C(20-30cm) Initial  1.22 1.76 0.26  30.46 16.74  0.54 0.29 

Alkaline-stabilized biosolids + Urea A(0-10cm) Initial  1.42 1.78 0.13  20.21 8.40  0.36 0.15 

Alkaline-stabilized biosolids + Urea B(10-20cm) Initial  1.43 1.77 0.12  19.33 7.51  0.34 0.13 

Alkaline-stabilized biosolids + Urea C(20-30cm) Initial  1.23 1.69 0.25  27.41 16.47  0.46 0.28 

Composted biosolids + Urea A(0-10cm) Initial  1.42 1.77 0.12  19.42 7.46  0.34 0.13 

Composted biosolids + Urea B(10-20cm) Initial  1.43 1.85 0.09  22.59 5.76  0.42 0.11 

Composted biosolids + Urea C(20-30cm) Initial  1.23 1.78 0.12  31.13 7.44  0.56 0.13 

Unfertilized A(0-10cm) Final  1.34 1.19 0.26  -12.77 34.40  0.15 0.41 
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Treatment Stage Layer  Sim Obs Std. Dev.  E E95%  RMSE RMSE95% 

    (Mg N ha-1)  (%)  (Mg N ha-1) 

Unfertilized B(10-20cm) Final  1.35 1.06 0.26  -27.33 39.80  0.29 0.42 

Unfertilized C(20-30cm) Final  1.14 1.13 0.05  -0.47 7.64  0.01 0.09 

Urea A(0-10cm) Final  1.34 1.43 0.44  6.16 34.33  0.09 0.49 

Urea B(10-20cm) Final  1.34 1.26 0.32  -6.39 28.57  0.08 0.36 

Urea C(20-30cm) Final  1.14 1.11 0.21  -2.62 20.89  0.03 0.23 

Digested biosolids A(0-10cm) Final  1.60 1.42 0.55  -12.83 43.76  0.18 0.62 

Digested biosolids B(10-20cm) Final  1.51 1.37 0.21  -10.67 17.28  0.15 0.24 

Digested biosolids C(20-30cm) Final  1.24 1.23 0.34  -0.79 31.00  0.01 0.38 

Alkaline-stabilized biosolids A(0-10cm) Final  1.67 1.54 0.55  -8.61 40.08  0.13 0.62 

Alkaline-stabilized biosolids B(10-20cm) Final  1.52 1.43 0.25  -6.35 19.65  0.09 0.28 

Alkaline-stabilized biosolids C(20-30cm) Final  1.23 1.22 0.23  -0.83 21.71  0.01 0.26 

Composted biosolids A(0-10cm) Final  1.71 1.45 0.29  -17.82 22.48  0.26 0.33 

Composted biosolids B(10-20cm) Final  1.56 1.25 0.33  -25.29 30.18  0.32 0.38 

Composted biosolids C(20-30cm) Final  1.25 1.09 0.23  -14.86 23.83  0.16 0.26 
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Treatment Stage Layer  Sim Obs Std. Dev.  E E95%  RMSE RMSE95% 

    (Mg N ha-1)  (%)  (Mg N ha-1) 

Digested biosolids + Urea A(0-10cm) Final  1.54 1.64 0.31  5.76 21.62  0.09 0.35 

Digested biosolids + Urea B(10-20cm) Final  1.48 1.34 0.13  -10.53 11.24  0.14 0.15 

Digested biosolids + Urea C(20-30cm) Final  1.23 1.21 0.25  -1.06 23.21  0.01 0.28 

Alkaline-stabilized biosolids + Urea A(0-10cm) Final  1.64 1.27 0.23  -29.66 20.74  0.38 0.26 

Alkaline-stabilized biosolids + Urea B(10-20cm) Final  1.53 1.11 0.28  -38.43 28.71  0.43 0.32 

Alkaline-stabilized biosolids + Urea C(20-30cm) Final  1.24 1.05 0.19  -18.88 20.62  0.20 0.22 

Composted biosolids + Urea A(0-10cm) Final  1.62 1.30 0.33  -24.29 28.68  0.32 0.37 

Composted biosolids + Urea B(10-20cm) Final  1.56 1.02 0.29  -52.14 31.75  0.53 0.33 

Composted biosolids + Urea C(20-30cm) Final  1.24 1.08 0.30  -14.54 30.92  0.16 0.34 
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4.8.3. Appendix C: Equations 

𝑟 =  
∑ (𝑂𝑖 − �̅�)(𝑃𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑂𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑃𝑖 − �̅�)2𝑛

𝑖=1

 
(Eq. A.4.1) 

Where r is Pearson’s correlation coefficient, Oi is the ith measured value, �̅� is the average 

measured value, Pi is the ith simulated value, and �̅� is the average simulated value. 

𝐹 𝑣𝑎𝑙𝑢𝑒 =
(𝑛 − 2) × 𝑟2

(1 − 𝑟2)
 

(Eq. A 4.2) 

  

𝑅𝑀𝑆𝐸 = √
∑ (𝑂𝑖 − 𝑃𝑖)2𝑛

𝑖=1

𝑛
 

(Eq. A 4.3) 

  

 𝑅𝑀𝑆𝐸95% = √∑ (𝑆𝐸𝑖 × 𝑡𝑚,95)
2𝑛

𝑖=1

𝑛
 

(Eq. A 4.4) 

Where RMSE95% is the root mean-square error (RMSE) at 95% confidence interval, SEi is the 

standard error in the ith measurement, tm,95 is the Student’s t value for m replicates and 95% 

probability (P-value of 0.95), and n is the number of measurements. 

𝐸 (%) =
100

�̅�
×

∑ (𝑂𝑖 − 𝑃𝑖)𝑛
𝑖=1

𝑛
 

(Eq. A 4.5) 

  

𝐸95%(%) =
100

�̅�

∑ (𝑆𝐸𝑖 × 𝑡𝑚,95)𝑛
𝑖=1

𝑛
 

(Eq. A 4.6) 

  

Where E95% is the relative error (E) at 95% confidence interval. 
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4.8.4. Appendix D: Additional Figures  

 

 

Figure A 4.1. Layout of experimental treatments (not to scale) from 1 to 15 replicated four times 

(Blocks 1 to 4) across Fields 1 and 2. Numbers 1 to 15 represent the applied fertilizer and method 

of application in brackets. Environment and Climate Change Canada’s weather station (located 

about 50 m from Field 1, on the left) at the Emile Lod’s Agronomy Research Centre Ste-Anne-de-

Bellevue, QC, Canada. 
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Figure A 4.2. Schematic of manure/biosolids carbon and nitrogen flow schematic for DNDC 

Decomposition of each C-pool occurs independently using first-order kinetics and is regulated by 

soil temperature and moisture conditions as shown in the equation below. The anaerobic balloon 

(regulated by soil Eh via the Nernst equation) cycles the mineralized organic N /ammoniacal N 

from manure/biosolid application into the nitrification and denitrification pathways to evolve trace 
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gas emissions (N2O, NO, N2). The NH4:NH3 equilibrium framework derives the partitioning of N 

that may be subject to NH3 volatilization (see Congreves et al., 2016). 

 

 

Microbial-mediated first-order decomposition kinetics of organic C pools 

dC/dt = CNR * μ * (S * k
l
 + (1-S) * k

r
) * [C]                                                                                 (Eq. A 4.7) 

[C], decomposed organic C (kg C/kg manure per day) 

t, time (day)  

S, labile fraction of organic C compounds in the pool 

(1 - S), resistant fraction of organic C compounds  

k
l
, specific decomposition rate (SDR) of labile fraction (1/day) 

k
r
, SDR of the resistant fraction (1/day)  

l, temperature and moisture reduction 

factor 

CNR = 0.2 + 7.2/(CP/NP), C:N ratio reduction factor 

CP,C produced by potential residue decomposition per day (without CNR reduction factor) (kg C/ha) 

NP, N produced by potential residue decomposition per day plus free NH
4
 and NO

3

-
 in soil (kg N/ha). C:N ratio = 02.35, 20, 20, 8, 8, 

8 and 8 

SDR = 0.074, 0.074, 0.02, 0.33, 0.04, 0.16 and 0.006 (1/day) for very labile litter, labile litter, resistant litter, labile microbes, resistant 

microbes, labile humads and resistant humads, respectively 

Anaerobic Balloon Main Principles 

• Nernst equation determines soil Eh used for anaerobic/aerobic soil partitioning and determines 

substrate allocation (DOC, NO
3

-
, NH

4

+
 etc) 

• Michaelis-Menten equations regulate nitrifier/denitrifier growth 

Organic Matter Pools C:N ratio and pool specific decomposition rates described in Table 2 (https://doi.org/10.1007/s10705-012-

9507-z) 
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Figure A 4.3. Measured vs. simulated total soil carbon (indicated by red markers) at the start (April 

2017) and end (November 2019) of the experiment at 0–30 cm soil depth. Measured mean values 

within treatments; n = 8 for fertilized and n = 4 for unfertilized treatments; error bars indicate 

standard deviation; blue lines indicate identity (1:1) lines; and black lines indicate the trend lines. 

The method of application had no significant effect on total soil carbon (α = 0.05), so data from 

surface-spread and soil-incorporated treatments were pooled. 
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Figure A 4.4. Measured vs. simulated total soil nitrogen (indicated by red markers) at the start 

(April 2017) and end (November 2019) of the experiment at 0–30 cm soil depth. Measured mean 

values within treatments; n = 8 for fertilized and n = 4 for unfertilized treatments; error bars 

indicate standard deviation; blue lines indicate identity (1:1) lines; and black lines indicate the 

trend lines. The method of application had no significant effect on total soil nitrogen (α = 0.05), 

so data from surface-spread and soil-incorporated treatments were pooled.  
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Connecting text to Chapter 5 

The DNDC model estimated GHG emissions, crop yields, and select underlying soil 

climate and chemical conditions within the standard errors of the observed means when tested on 

a system level for estimating C and N dynamics in a Quebec corn agroecosystem amended with 

biosolids.  This site-specific performance of DNDC against empirical data shows the potential of 

process models as tools for estimating and reporting Canada-wide GHG emissions. In the next 

chapter, in addition to the Quebec site (Ste-Anne-de-Bellevue), we test DNDC across two more 

sites (Truro and Edmonton) and compare the DNDC-, IPCC Tier 1-, and IPCC Tier 2 – estimates 

against measured seasonal N2O emissions across the three sites: Ste-Anne-de-Bellevue, QC; Truro, 

NS; and Edmonton, AB.  

The following manuscript has been submitted for review and eventual publishing in Journal 

of Agriculture, Ecosystems and Environment: Obi-Njoku, O., Smith, W., Grant, B., Boh, M. Y., 

Flemming, C., Singh, G., Roman-Perez, C., Burton, D., Hernandez-Ramirez, G., Price, G.W., and 

Clark, O. G. (under review). Comparing IPCC Tier 1, 2, and 3 methodologies for estimating 

nitrous oxide emissions from biosolids-amended soils in three different climatic ecozones in 

Canada. Journal of Agriculture, Ecosystems and Environment. 
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Chapter 5. Comparing IPCC Tier 1, 2, and 3 methodologies for estimating nitrous oxide 

emissions from biosolids-amended soils in three different climatic ecozones in Canada  

 

Okenna Obi-Njoku, Ward Smith, Brian Grant, Michael Yongha Boh, Corey Flemming, 

Carmen Roman-Perez, Gurwinder Singh, Zheya Lin, Guillermo Hernandez-Ramirez, David 

Burton, G.W. Price, O. Grant Clark 

 

Abstract 

There is an increasing use of municipal biosolids in farmlands across Canada to grow crops. 

However, due to sparse empirical data, Canada currently does not have biosolids-specific N2O 

emission factors required to estimate and report emissions from land-application of biosolids in 

the national inventory. In this study, N2O emissions during the growing season were estimated 

using Tier 1, Tier 2 (Canadian), and Tier 3 (Denitrification and Decomposition model [DNDC]) 

methodologies recommended by the Intergovernmental Panel on Climate Change (IPCC) and 

compared with measured emission factors from agricultural soils amended with different types of 

biosolids in Canada. The experiments were conducted in the Canadian provinces of Quebec (mixed 

wood plains), Nova Scotia (Atlantic maritime), and Alberta (prairie) between 2017 and 2019. 

Nitrogen was applied in amounts recommended for the given crop and location in the form of 

either mesophilic anaerobically digested biosolids, composted biosolids, alkaline-stabilized 

biosolids, urea, or a 1:1 combination of biosolids and urea. N2O emissions were measured 

periodically during the growing season using manual chambers and compared against the estimates 

from the IPCC methods. In all locations, the mean N2O emissions during the growing season were 
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higher from plots receiving digested biosolids than from other plots. Also, N2O emissions from 

plots receiving composted or alkaline-stabilized biosolids were not statistically different from the 

unfertilized treatment. The root mean-square error (RMSE) was used to evaluate the N2O 

emissions estimated by the IPCC methods relative to the measured values across the three sites. 

Akin to the performance of the Tier 3 method, a Tier 2 method adapted with empirically 

determined biosolid-specific correction factors improved N2O estimates relative to the current Tier 

2 and Tier 1 methods. These results will be used by researchers and government scientists to 

improve methods for estimating N2O emissions from agricultural soils amended with biosolids, 

and to generate more accurate GHG inventories to fulfil reporting obligations. 

 

Keywords: Biosolids; DNDC model; N2O emissions; IPCC methodology; Land application; 

National GHG inventory 
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5.1. Introduction 

Greenhouse gas (GHG) emissions from cultivated soils contribute up to 10% of the 50 Gt 

CO2e (carbon dioxide equivalent) of global emissions each year. Countries with a large 

industrialized agricultural sector are the largest emitters of these soil gases, with nitrous oxide 

(N2O) being the most potent (Reay et al., 2012). In Canada, for example, about 40% of the 60 Mt 

CO2e of agricultural GHG emissions are from soils. Countries are mandated to report soil GHG 

emissions, except (biogenic) CO2 emissions to the United Nations Framework Convention on 

Climate Change (UNFCCC). However, many countries currently do not report GHG emissions 

from land-application of treated municipal wastewater sludge (i.e., biosolids) to, or do not report 

those emissions accurately. In the Canadian national GHG inventory, it is assumed that biosolids 

and urea emit the same fraction of applied N amount as N2O. This shortcoming is due mainly to 

the lack of empirical data about GHG emissions from agricultural soils amended with biosolids 

(ECCC, 2017).  

It is important that Canada’s national GHG inventory include an accurate estimate of the 

N2O emissions from soils fertilized with biosolids. From 1990 to 2015, land application of 

biosolids in Canada increased by 60% (780 Tg in 2015), partly due to policies intended to divert 

biosolids from landfills and thus avoid the generation of methane (Cheminfo Services Inc., 2018). 

About 500 Tg of biosolids are now applied annually by Canadian farmers to supply plant nutrients, 

adjust the pH of acidic soils, and increase soil organic carbon (SOC) (Cheminfo Services Inc., 

2018). The land-application of biosolids is expected to keep increasing in Canada and with it the 

associated emission of GHGs from the amended soil. The emissions of GHGs resulting from this 

practice differ according to location. There are about 68 million ha of agricultural land spread 

across numerous ecodistricts in Canada (Statistics Canada, 2014), with each ecodistrict having 
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characteristic agroclimatic conditions, soil types, and management practices that differently 

influence GHG emissions (Kirschbaum, 1995; Sass et al., 2002; Paul, 2016).  

The Intergovernmental Panel on Climate Change (IPCC, 2006) recommends three methods 

for reporting national soil GHG emissions to the UNFCCC. Canada uses a Tier 2 approach, which 

uses information about climate, soil type, crops, and management practices to estimate annual soil 

N2O emissions at an ecodistrict scale. These estimates are then aggregated at the provincial and 

national scales (Rochette et al., 2008). The Canadian approach is based on domestic studies of the 

relationship between precipitation and N2O emissions during the growing season (Rochette et al., 

2008; Rochette et al., 2018). The Tier 2 method is an improvement over Tier 1, which uses a 

generic, globally-derived emission factor to compute N2O emissions as a fraction of applied N and 

neglects local conditions (IPCC, 2006; 2019). The Tier 3 method is even more accurate because it 

also accounts for the physiochemical and biological properties of different fertilizers, which 

influence the transformation of C and N in soils (Grewer et al., 2016). Given the variability of 

moisture, carbon-to-nitrogen ratio (C/N), and types of organic compounds in different kinds of 

biosolids, modelling studies consider these variables as important model inputs to accurately 

estimate N2O emissions. 

Tier 2 and 3 methods are more accurate than the Tier 1 method, but collecting the enormous 

amounts of data required for these methods is challenging and expensive if done empirically (Li, 

2000; Bouwman et al., 2002; Oertel et al., 2016). The use of process-based models such as the 

Denitrification and Decomposition (DNDC) model (Li et al., 1992) or DayCent (Parton et al., 

1994) provides an alternative method for estimating GHGs that is more accurate than Tier 1 but 

less expensive than an entirely empirical approach. Many model inputs, simulation runs, and 

statistical analyses are still required, however, to develop a model that accurately relates ecological 
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parameters to soil N2O emissions. Different mathematical approaches have been adapted for this 

purpose, such as the Morris (1991), Monte Carlo (Fryer & Rubinstein, 1983), and Sobol′  (2001) 

methods. 

The objective of this paper was to estimate N2O fluxes using Tier 1, Tier 2 (Canadian), and 

Tier 3 (Denitrification and Decomposition model [DNDC]) methodologies and compare these with 

measured emissions from agricultural soils amended with different types of biosolids in Canada’s 

mixed wood plain, Atlantic maritime, and prairie ecozones. We then evaluated which approach is 

the most accurate and amenable for estimating soil N2O emissions from land-applied biosolids at 

the national scale. 

 

5.2. Methodology 

5.2.1. Site Description and Field Experiment 

5.2.1.1.Physicochemical Characteristics of Biosolids 

 The chemical characteristics of the biosolids are described in Table 5.1 and Table A.5.1 to 

Table A.5.3 (Appendix 5.1). The mesophilic anaerobically digested biosolids (henceforth called 

digested biosolids) applied in Ste-Anne-de-Bellevue, QC and Truro, NS were collected from a 

municipal biomethanization centre (St-Hyacinthe, QC), where wastewater sludge was co-digested 

with food waste under mesophilic conditions. The digested biosolids used in Edmonton, AB were 

collected from Edmonton Waste Management Centre. The alkaline-stabilized biosolids applied in 

Ste-Anne-de-Bellevue and Truro were produced at the Aerotech Biosolids Processing Facility 

(Walker Environmental Inc.), Goffs, NS while those used in Edmonton were produced at the 

Wastewater Treatment Facility in Banff, AB. Both were produced using the N-Viro® technique, 

which involves addition of cement kiln dust and quicklime to wastewater sludge at a temperature 
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of 52–62°C to raise the pH over 12 for at least 12 hours (Wang et al., 2007). The composted 

biosolids applied in Ste-Anne-de-Bellevue, Truro, and Edmonton were produced by Gaudreau 

Compost (Victoriaville, QC), Fundy Compost Incorporated (Brookfield, NS), and the Edmonton 

Waste Management Centre (Edmonton, AB), respectively. In each case, biomethanized 

wastewater sludge was co-composted with different proportions of wood chips as a bulking agent 

for structure and additional carbon. 
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Table 5.1. Chemical characteristics of mesophilic anaerobically digested, composted, and alkaline-stabilized biosolids applied to 

agricultural soils in the Ste-Anne-de-Bellevue, QC; Truro, NS; and Edmonton, AB sites.  Value are means ± standard deviation (n = 3). 

Parameter 

Ste-Anne-de-Bellevue Truro Edmonton† 
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Dry Matter (kg kg-1) 0.20 ± 0.02 0.44 ± 0.04 0.62 ± 0 0.21 ± 0.01 0.43 ± 0.01 0.62 ± 0 0.2 ± 0 0.71 ± 0.05 0.72 ± 0.02 

pH  8.2 ± 0.1 7.3 ± 0.3 9.8 ± 0.9 8.0 ± 0.2 7.3 ± 0.2 9.5 ± 0.6 7.7 ± 0 5.0 ± 0 12.8 ± 0 

Nitrogen (g N kg-1) 65.3 ± 4.1 15.8 ± 6.1 9.3 ± 2.0 60.7 ± 3.4 12.3 ± 1.3 9.5 ± 1.7 30.2 ± 10.0 21.0 ± 1.2 8.0 ± 0.1 

Ammonium-N (g N kg-1) 12.6 ± 1.1 2.2 ± 1.3 0.9 ± 0.2 13.0 ± 0 0.7 ± 0.5 1.0 ± 0 8.2 ± 0 1.4 ± 0 1.3 ± 0 

Potassium (g kg-1) 4.4 ± 3.8 1.0 ± 0.6 1.1 ± 0 6.3 ± 1.8 2.0 ± 0 6.0 ± 3.5 n/a n/a n/a 

Phosphorus (g kg-1) 21.2 ± 17.9 3.7 ± 2.8 5.9 ± 0 32.7 ± 5.8 8.0 ± 1.4 6.6 ± 0.5 n/a n/a n/a 

Calcium (g kg-1) 30.5 ± 7.5 29.0 ± 0 163.7±107.6 28.3 ± 7.8 15.3 ± 3.4 186.3 ± 30.2 n/a n/a n/a 

Magnesium (g kg-1) 4.7 ± 0.2 2.7 ± 0 1.3 ± 0.3 4.0 ± 0.8 2.0 ± 0 2.3 ± 0.9 n/a n/a n/a 

Sodium (g kg-1) 3.4 ± 0.9 11.2 ± 0 0.4 ± 0 3.0 ± 0.8 0.7 ± 0.5 0.8 ± 0.3 n/a n/a n/a 

Iron (g kg-1) 28.6 ± 0.5 6.6 ± 0 4.8 ± 1.4 27.7 ± 6.3 6.3 ± 0.2 6.4 ± 2.1 n/a n/a n/a 

Boron (mg kg-1) 11.6 ± 0.6 16.0 ± 0 12.3 ± 0 12.6 ± 0.8 11.3 ± 0.7 19.1 ± 0.3 n/a n/a n/a 

Copper (mg kg-1) 244.3 ± 105.8 91.0 ± 0 49.3 ± 22.6 141.8 ± 6.0 51.2 ± 17.5 88.4 ± 11.9 n/a n/a n/a 

Zinc (mg kg-1) 300.5 ± 19.5 266.0 ± 0 151.0 ± 27.0 243.6± 28.3 165.8 ± 31.2 211.2 ± 28.7 n/a n/a n/a 

C:N ratio (g g-1) 4.7 ± 0.3 38.3 ± 0.4 20.9 ± 2.0 8.9 ± 0.1 38.3 ± 0.4 34.7 ± 3.8 6.7 ± 0 12.4 ± 0 15.7 ± 0 

†n/a = not available.
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5.2.1.2.Study Areas and Materials 

Three experimental sites were chosen to represent the diversity of soils and climates of 

Canada’s main agricultural regions. The field experiments were run concurrently for three years 

(2017-2019): the Emile A. Lods Agronomy Research Centre, Ste-Anne-de-Bellevue, QC, 

(45°28’N, 73°45’W); the Bio-Environmental Engineering Complex, Bible Hill (Truro), NS, 

(45°22’N, 63°14’W); and the Ellerslie (53°25’N, 113°27’W) Research Station, near Edmonton, 

AB. Geographic location, soil, and climate information for the sites are described in Table A.5.4 

and Table A.5.5. Each experiment was conducted using management practices and crops 

appropriate to the region: silage corn (Zea mays L.) was grown in Ste-Anne-de-Bellevue and 

Truro, while barley (Hordeum vulgare L.) was grown in Edmonton. 

 

5.2.1.3. Experimental Design 

The experiments followed an unbalanced factorial design, the three treatment factors being 

fertilizer type, rate of biosolid application, and fertilizer application method. The fertilizer types 

included three different biosolids: composted biosolids, alkaline-stabilized biosolids, and 

mesophilic anaerobically digested (digested) biosolids. The application rates provided sufficient 

biosolids to meet plant N requirements or 50% of that rate with additional urea to provide an 

equivalent amount of N. The two fertilizer application methods were surface-spreading and 

incorporation by tillage. Positive control plots were fertilized solely with urea and negative control 

plots received no fertilizer at all. Fertilizers were applied annually based on recommended rates of 

120 kg N ha-1 for corn and 96 kg N ha-1 for barley. N mineralization rates were assumed to be 50% 

for all biosolids except for digested biosolids in Truro, for which a 75% mineralization rate was 

assumed based on preliminary tests conducted on the three biosolids in Truro. The total N applied 
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at each site for the majority-biosolids (full rate) and split-application (half rate) treatments, 

respectively, was as follows: the Edmonton site received 192 and 96 kg N ha-1, all applied during 

planting of barley; the Ste-Anne-de-Bellevue site received 201 and 180 kg N ha-1, with 39 kg N 

ha-1 of these amounts applied as urea during planting of corn and the rest applied at a later date; 

and the Truro site received 210 and 150 kg N ha-1 as digested or composted biosolids, or 390 and 

210 kg N ha-1 as alkaline-stabilized biosolids, with 30–36 kg N ha-1 applied during planting of corn 

for all treatments and the rest applied at a later date. Biosolids were uniformly distributed on the 

surface prior to planting and then either left on the surface or incorporated to a depth of 10 to 15 

cm within 24 h of application, using a cultivator or rototiller. Surface spread treatments in Truro 

were not tilled during the course of the experiment to approximate the application of biosolids to 

a no-till production system. In total, there were 15 treatments replicated 4 times, resulting in 60 

experimental plots per site. The plot dimensions, treatments, and site management practices 

specific to each site are shown in Table A.5.6.  

 

5.2.2. Sampling and Analysis of N2O Emissions 

Manual non-steady-state vented chambers were used for gas sampling from every plot 

during the growing seasons from 2017 to 2019 in Ste-Anne-de-Bellevue, Truro (Singh & Burton, 

unpublished data), and Edmonton (Roman-Perez & Hernandez-Ramirez, 2021). In Ste-Anne-de-

Bellevue and Truro, the manual chambers consisted of a square acrylic collar (50 cm × 50 cm × 

15 cm high) buried to a depth of 10 cm in the centre of each plot, while in Edmonton, the collars 

(64.1 cm × 15.6 cm × 15 cm high) of the manual chambers were placed perpendicular to the crop 

rows, in the middle of each plot to a depth of 5 cm. The top 5 cm of each chamber served as the 

base over which an equally sized insulated cover was placed during each sampling event (Hung et 
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al., 2021). After covering the chamber, 20 mL of headspace gas was sampled from each chamber 

at 15-min intervals from 0 to 60 min and transferred into 12-ml pre-evacuated glass Exetainers™ 

(Labco Limited, Lampeter, Wales, UK). Manual gas sampling was conducted twice weekly 

immediately after biosolids and urea fertilizer application, once weekly thereafter, and within 48 

h after major rainfall events to capture any spikes in gas flux as a consequence of increased soil 

moisture (Barton et al., 2015). N2O concentrations in the gas samples were measured using a gas 

chromatograph (Bruker 450-GC, Bruker Corporation, Billerica, MA, USA) fitted with a 63Ni 

electron capture detector (ECD) for N2O analysis and using high purity He as a carrier gas. The 

2017 gas measurements at the Ste-Anne-de-Bellevue site were excluded from further analysis due 

to failure to meet the quality criteria as described by Rochette and Eriksen-Hamel (2008). Also, 

2019 gas measurements from Edmonton were excluded in this study as the treatments in 2019 

received significantly higher amounts of N than in previous years. 

The emission rates of N2O were estimated using the Hutchinson-Mosier R (HMR) software 

package (v1.0.1; Pedersen, 2020) assuming the molar mass of N in N2O equals 28 g mol−1. During 

each sampling event, a Kestrel Drop 3 environmental data logger (Kestrel Meters, Boothwyn, PA, 

USA) was placed inside a chamber to record the air temperature and water vapor pressure. The 

calculated N2O fluxes were adjusted accordingly, as per Hung et al. (2021). The cumulative 

emissions for the growing season were estimated by linear interpolation of the flux between 

successive sampling dates (De Klein & Harvey, 2012).  In Ste-Anne-de-Bellevue and Truro, soil 

temperature was measured by inserting a thermometer probe 10 cm into the soil, while soil 

moisture was measured by collecting about 50 g of soil from the top 10 cm, drying it at 60oC for 

48 h, and noting the change in mass. For the Edmonton site, soil moisture and soil temperature 
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were measured at depths of 5 and 10 cm with 5TM sensors interfaced with EM50 data loggers 

(Decagon Devices, Inc., Pullman, WA).  

 

5.2.3. Statistical Analysis 

All statistical analyses were conducted in R 3.6.1 (R Core Team, 2020) using an alpha level 

of 0.05 to indicate statistical significance. Measurements of N2O (g N ha-1) emissions during the 

growing season at the three sites failed to satisfy the assumptions of normality and 

homoscedasticity, based on the Shapiro-Wilk test and residuals plots, respectively, and therefore 

were log-transformed. A five-way analysis of variance (ANOVA) was used to test for statistical 

differences between treatment effects, with site, fertilizer type, method of application, rate of 

application, annual effects (year) and their interactions considered as fixed effects. The fertilizer 

type and rate of application were colinear, as such the rate of application was dropped from the 

ANOVA. At each site, ANOVA was also used to test for statistical differences between treatment 

effects, with fertilizer type, method of application, annual effects, and their interactions considered 

as fixed effects. If the ANOVA indicated significant differences among treatment effects, then 

Tukey's Honest Significant Difference (HSD) post-hoc test was used to test the cumulative N2O 

emissions for pairwise differences between treatments. 

 

5.2.4. Estimating N2O Emissions and Uncertainty Using the IPCC Tier 1 Method  

The refined IPCC Tier 1 method (Eq. 5.1) was used to estimate growing season N2O 

emissions from biosolids-amended soils on the three sites. According to the 2019 Refinement to 

the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, the emission factor was 

disaggregated according to climate into wet (ratio of annual precipitation: potential 
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evapotranspiration > 1) and dry (ratio of annual precipitation: potential evapotranspiration < 1), as 

well as the fertilizer type (IPCC, 2019); in this case, biosolids, mineral N, and crop residue. In dry 

climates, the recommended emission factor is 0.005 kg N2O-N per kg N for all N sources. 

Meanwhile, in wet climates (e.g., Truro and Ste-Anne-de-Bellevue), the recommended emission 

factor is 0.006 kg N2O-N per kg N for organic N sources and 0.016 kg N2O-N per kg N for mineral 

N sources (e.g., urea). The uncertainty of this Tier 1 emission factor ranges from 0.00–0.019 kg-

N2O-N per kg of total N applied, depending on the fertilizer type and climate. 

N2O-Ni,j =  𝐸𝐹 × 𝑁𝑖𝑛𝑝𝑢𝑡𝑠𝑖,𝑗
 Eq. 5.1 

N2O-N is the amount of N emitted as N2O on site i by fertilizer type j during the growing season; 

EF is the IPCC Tier 1 emissions factor (kg N2O-N kg-1 N); and 𝑁𝑖𝑛𝑝𝑢𝑡𝑠𝑖
, 𝑗 is the amount of N 

applied on site i from fertilizer type j (kg ha-1).  

Crop residue N (Nres) was calculated using crop-specific parameters from Jansen et al. 

(2003) to convert the site-specific crop production (kg ha-1) amounts to total above and below 

ground residual N, following Eq. 5.2: 

Nres = (AGprod(k) × AGN(k) + BGprod(k) × BGN(k)) × DMi,k × (
1

𝑅𝑒𝑛𝑒𝑤(𝑘)
) Eq. 5.2 

AGprod(k) is the fraction of above-ground biomass remaining as residue for crop k; AGN(k) 

is the fraction of N in the above-ground residue; BGprod(k) is the ratio of below-ground biomass 

remaining as residue for crop k; BGN(k) is the fraction of N in the below-ground residue; DMi,k 

is the quantity of dry matter produced for crop k at site i; and Renew(k) represents a correction for 

the duration of forage crop k. About 10% of crop residue was left on the field each year after 

harvest. 
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5.2.5. Estimating Cumulative N2O Emissions and Uncertainty During the Growing Season 

Using Two IPCC Tier 2 Approach 

Three  

Three country-specific Tier 2 methods: Canada’s 2020 National Inventory Report (NIR)  

(Rochette et al. 2008; NIR 2020), henceforth called the Tier 2 (2008); a proposed update to the 

Tier 2 (2008) methodology using a manure-derived correction factor to estimate N2O emissions 

from land-applied organics (Rochette et al., 2018; Liang et al., 2020), henceforth called the Tier 2 

(2018); and the Tier 2 (2018) method with proposed biosolids-derived correction factors based on 

the results of this study, henceforth called the corrected Tier 2 (2018) were individually used to 

estimate growing season N2O emissions from land-application of biosolids on the three sites.  

The Tier 2 (2018) methodology uses a non-linear (exponential) function based on a 

relationship between growing season precipitation and N2O emissions (Eq. 5.3), with further 

adjustments for cropping system, nitrogen source, tillage, soil texture, and topography. The 

approach was implemented for each treatment across the three sites according to Liang et al. 

(2020). Cropping system had no effect on N2O emissions since only annual crops (corn and barley) 

were used in this study. Conventional tillage is the baseline tillage type in this method, hence; had 

no effect on N2O emissions across the sites. As such, surface spread treatments in Truro, with no- 

to minimal tillage during the course of the experiment were accounted for in the Tier 2 (2018) 

emission factor estimate. The effects of soil texture (Eq. 5.4) and N input were also relevant in 

estimating the emission factor at our site locations. The overall contributions of climate, soil 

texture, tillage, and N inputs are shown in Eq. 5.5. 

Tier 2 (2018) emission factor, 𝐸𝐹𝑒𝑐𝑜𝑖
 =  𝑒0.00558𝑃𝑖– 7.701 

Eq. 5.3 

Pi is the precipitation during the growing season in ecodistrict i. 
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RF𝑡𝑒𝑥𝑡𝑖
=  RF𝑡𝑒𝑥𝑡,𝑓𝑖𝑛𝑒i

⨯ 𝐹𝑡𝑒𝑥𝑡,𝑓𝑖𝑛𝑒𝑖
+ RF𝑡𝑒𝑥𝑡,𝑚𝑒𝑑𝑖𝑢𝑚i

⨯ 𝐹𝑡𝑒𝑥𝑡,𝑚𝑒𝑑𝑖𝑢𝑚𝑖

+ RF𝑡𝑒𝑥𝑡,𝑐𝑜𝑎𝑟𝑠𝑒i
⨯ 𝐹𝑡𝑒𝑥𝑡,𝑐𝑜𝑎𝑟𝑠𝑒𝑖

 

Eq. 5.4 

𝑅𝐹𝑡𝑒𝑥𝑡𝑖
 is the ratio factor for coarse, medium, and fine soils, while and 𝐹𝑡𝑒𝑥𝑡𝑖

 is the corresponding 

proportion of the soil texture on site i. Following Rochette et al. (2018), 𝑅𝐹𝑡𝑒𝑥𝑡 values of 2.55, 

0.49, and 0.49 were assigned to clay (fine), silt (medium), and sand (coarse), respectively, for the 

sites in Eastern Canada (Ste-Anne-de-Bellevue and Truro), while the Edmonton site had 𝑅𝐹𝑡𝑒𝑥𝑡 

value of 1.0 irrespective of soil texture. 

𝑁2𝑂𝑖𝑛𝑝𝑢𝑡𝑠𝑖
= [Nappliedi,j

 ⨯ (𝐸𝐹𝑒𝑐𝑜𝑖
 ⨯ 𝑅𝐹𝑡𝑒𝑥𝑡𝑗

 ⨯ 𝑅𝐹𝑡𝑖𝑙𝑙𝑗
⨯ 𝑅𝐹𝑁,𝑗)] 

Eq. 5.5 

𝑁2𝑂𝑖𝑛𝑝𝑢𝑡𝑠𝑖
 represents N2O emissions from site i due to nitrogen source (kg N ha-1); j = N source 

type (mineral N, manure, crop residue, or biosolids treatment). 𝑅𝐹𝑁 is the correction factor for 

each N source (fertilizer type): mineral N = 1, manure = 0.84, and crop residue = 0.28. 𝑅𝐹𝑡𝑖𝑙𝑙 due 

to minimum tillage in Truro = 1.1. 

 

The emission factors in Tier 2 (2018) were adjusted using the empirical ratio of growing 

season N2O emissions from biosolids to that of urea. In place of the 0.84 coefficient used for 

manure in Eq. 5.5, the correction factors 0.71, 0.43, and 2.77 were used for alkaline-stabilized, 

composted, and digested biosolids, respectively. These biosolids correction factors were derived 

by dividing the average values of measured N2O emissions across the three sites from the 

respective biosolids treatment by the average measured N2O emissions from urea treatment . 

The Tier 2 (2008) methodology is based on a linear regression between N2O emissions and 

the ratio of precipitation to potential evapotranspiration, with modifications for topography, soil 

texture, summer fallow, irrigation, and tillage (Rochette et al. 2008). A soil N2O emission factor 
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(kg N2O-N kg N applied-1) was calculated for each site location based on the average soil and 

climate characteristics for the ecodistrict in which the site is located. Given that none of the sites 

in this study were located in the lower portion of the toposequence, and that irrigation and summer 

fallow, only P/PE and soil texture were considered (Eq. 5.6). The effect of minimum tillage was 

considered in Truro but not for the Ste-Anne-de-Bellevue and Edmonton sites. In both cases, the 

site-specific emission factors were multiplied by the quantity of biosolids N, synthetic N fertilizer 

(urea and calcium ammonium nitrate), and crop residue N, to estimate N2O emissions from each 

fertilizer type (Eq. 5.7). 

𝐸𝐹𝑒𝑐𝑜𝑖
= (0.022 ⨯

𝑃𝑖

𝑃𝐸𝑖
− 0.0048) Eq. 5.6 

𝑁2𝑂𝑖𝑛𝑝𝑢𝑡𝑠𝑖
= ∑(𝑁𝑖𝑛𝑝𝑢𝑡𝑠𝑖,𝑗

) ⨯ 𝐸𝐹𝑒𝑐𝑜𝑖
 

Eq. 5.7 

𝐸𝐹𝑒𝑐𝑜𝑖
 is the calculated emission factor in ecodistrict i (kg N2O-N per kg N); PE is the growing 

season (May to October) potential evapotranspiration in ecodistrict i, estimated using the 

Thornthwaite method; Ninput is the quantity of nitrogen input (kg N ha-1) for ecodistrict i and for 

nitrogen source j (biosolids, synthetic fertilizer, crop residue; kg N ha-1).  

Rochette et al. (2008) in developing the Tier 2 approach estimated that 70% of annual N2O 

emissions occur during the Canadian growing season. Therefore, emissions were calculated on an 

annual basis for each source of N input, and then multiplied by 0.7 to estimate growing season 

N2O emissions from individual sources, following Eq. 5.8. 
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N2O-N = 0.7 ⨯  N2Oinputsi
⨯ [((𝑅𝐹𝑡𝑖𝑙𝑙 − 1) ⨯ 𝐹𝑡𝑖𝑙𝑙𝑖

) + (1 + (RF𝑡𝑒𝑥𝑡,𝑓𝑖𝑛𝑒i
− 1) ⨯

𝐹𝑡𝑒𝑥𝑡,𝑓𝑖𝑛𝑒𝑖
+ (RF𝑡𝑒𝑥𝑡,𝑚𝑒𝑑𝑖𝑢𝑚i

− 1) ⨯ 𝐹𝑡𝑒𝑥𝑡,𝑚𝑒𝑑𝑖𝑢𝑚𝑖
+ (RF𝑡𝑒𝑥𝑡,𝑐𝑜𝑎𝑟𝑠𝑒i

− 1) ⨯

𝐹𝑡𝑒𝑥𝑡,𝑐𝑜𝑎𝑟𝑠𝑒𝑖
] 

Eq. 5.8 

According to Rochette et al. (2008), RFtext values of 0.8, 0.8, and 1.0 were assigned to the 

fraction of silt (medium) and sand (coarse) in soils of the Ste-Anne-de-Bellevue, Truro, and 

Edmonton sites, respectively, while RFtext values of 1.2, 1.2, and 1.0 were assigned to clay (fine), 

respectively. 𝑅𝐹𝑡𝑖𝑙𝑙 is the ratio factor determined in the region where ecodistrict i is located and 

𝐹𝑡𝑖𝑙𝑙𝑖
 is the fraction of agricultural land under tillage. 𝑅𝐹𝑡𝑖𝑙𝑙 is 1.0 for the sites under conventional 

tillage and 1.1 for surface spread treatments receiving minimum tillage in Truro. 

 

5.2.6. Estimating N2O Emissions Using the Denitrification and Decomposition (DNDC) 

Model 

5.2.6.1. Initializing the DNDC Model 

The DNDC model (Li et al., 1994; version DNDC.vCAN) was used to simulate daily N2O 

emissions, which were summed over the growing season. Three types of data were used to 

initialize DNDC: 1) soil physical characteristics including soil texture, bulk density, clay content, 

hydraulic conductivity, organic carbon concentration, soil pH, field capacity, wilting point, and 

porosity; 2) historical  daily climate data obtained from Environment and Climate Change Canada 

(ECCC) weather stations near the test sites (years 2007-2019), including wind speed, relative 

humidity, maximum and minimum air temperature, solar radiation and precipitation; and 3) crop 

characteristics, e.g. temperature and water requirements, crop biomass fractions, potential crop 

yield, carbon and nitrogen concentrations, as well as historical farm management practices, e.g. 

tillage, N application rate and method, crop rotation, and planting and harvest dates, which were 
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provided by the farm managers at each site. Literature values or DNDC default values were used 

as substitutes for missing data. 

The site characteristics and management information were compiled as lists of input 

parameters to initialize the model (Table A.5.7). The DNDC model was run using these lists of 

input parameters and climate data files specific to each site. A simulation spin-up of 10 years was 

used to allow the simulated SOC to stabilize. The simulated outputs were then converted into the 

same standard units as used for the measured datasets.  

 

5.2.6.2. Calibration and Validation of DNDC Model to Simulate N2O Emissions 

DNDC calibration followed the method described by Li (2007). Datasets (N2O and CO2 

emissions, crop yield, and soil moisture and temperature) from the negative control (unfertilized), 

positive control (urea only), and surface-spread biosolids treatments on each site were used for 

calibration, while data from the incorporated biosolids and biosolids + urea treatments were used 

for validation. First, crop parameters in DNDC were adjusted iteratively, such that the simulated 

above-ground biomass closely approximated the measured mean values. The means and standard 

errors time series of simulated soil water content, soil temperature, and N2O flux values over the 

growing season were compared with those of the measured values for all calibration treatments. 

The performance of the calibrated model was evaluated using R2, RMSE, relative root means 

square error (rRMSE), and relative error (E), as shown in Equations A.5.1 to A.5.6 and described 

by Smith & Smith (2007). For model validation, the fertilizer parameters were changed to reflect 

the field management practices while the calibrated soil and crop parameters were kept the same. 

Model validation followed the same statistical evaluation methods used for calibration. 
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5.2.6.3. Sensitivity Analysis 

  To identify the DNDC parameters with the most influence on simulated soil N2O emissions 

across the three sites, a sensitivity analysis (SA) was conducted using the sensitivity package 

(v1.26.0; Iooss et al., 2021) in R 3.6.1, following Morris (1991) method, modified as shown in Qin 

et al. (2016). The Morris method can detect whether the effect of an input (factor or variable) is 

linear and additive, non-linear and/or interact with other inputs, or have a negligible effect on the 

simulated outputs. The method calculates for each selected model parameter a number of 

incremental ratios, called Elementary Effects (EE), from which three sensitivity measures are 

computed: the mean of the distribution of the EE, μ, which assesses the overall influence of the 

input on the simulated output; Morris sensitivity index, μ*, which is the estimate of the mean of 

the distribution of the absolute values of the elementary effects; and the standard deviation of the 

distribution of the EE, σ, which estimates the collective effects of the input due to non-linearity 

and/or interactions with other factors. Using the estimated range of values for crop, soil, and 

climate variables for each site, based on informed opinion of site researchers and expert modelers 

(Table A.5.8), the elementary effect of each input on cumulative growing season N2O emissions 

was determined. The inputs were then ranked according to their μ* values.  

 

5.2.6.4. Simulating N2O Emissions due to Variations in Measured Soil, Climate, and Crop 

Variables During the Growing Season 

Using the most significant factor (MSF) approach, the set of maximum and minimum values 

of the eight most sensitive factors identified at each site during the sensitivity analysis were used 

to simulate N2O emissions. While keeping other input values the same, the set of maximum values 

of the selected variables were used in one model run and the set of minimum values were used in 
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another run, to generate N2O emissions, as described by Li et al. (2004) and Fitton et al. (2014).. 

This approach was carried out to estimate the potential range of N2O emissions during the growing 

season, using the most significant site-specific input variables to minimize computational expense. 

Then, the mean and standard deviation of the simulated cumulative N2O emissions during the 

growing season were calculated with values simulated using the minimum, maximum, and 

baseline (measured mean) of all the chosen input variables. 

5.2.7. Error Analyses 

N2O emissions during the growing season were estimated using the IPCC Tier 1, 2, and 3 

methods and compared to the emissions measured on each site. RMSE was used to determine the 

degree of coincidence, accuracy, and predictive power, relative error (E) was used to determine 

model bias for DNDC simulations alone, while R2 was used to determine the degree of association 

between the measured and estimated values.  

 

5.3. Results 

5.3.1. Site, Treatment, and Weather Effects on N2O Emissions During the Growing Season 

 The ANOVA results show that differences between the sites, fertilizer types, annual effects 

(Year; as written in the tables), and method of application led to significant differences in N2O 

emissions during the growing season (Table A.5.9). The magnitude of N2O emissions depend on 

fertilizer type, annual effects, and site-specific conditions as seen in the interaction effects between 

site, annual effect, and fertilizer type on N2O emissions in Table A.5.9. In general, N2O emissions 

were highest in Ste-Anne-de-Bellevue, followed by Truro, then Edmonton (Table A.5.10). 

Between the fertilizer types, emissions were highest for treatments receiving digested biosolids 

either in full or half rate (Table A.5.11). The least emissions were from the unfertilized and full 
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rate composted biosolids treatments, while emissions from the other treatments were not 

significantly different from each other. The method of application significantly influenced N2O 

emissions as seen in Table A.5.12, but this was true only in Edmonton. Annually, N2O emissions 

increased significantly from 2017 to 2019 (Table A.5.13).  

 At Ste-Anne-de-Bellevue (Mixed Wood Plain Ecozone), N2O emissions during the 

growing season differed with fertilizer type (Table A.5.14). Annual differences in weather and 

perhaps the cumulative effect of repeated applications of biosolids in 2018 and 2019 resulted in 

higher N2O emissions in the 2019 growing season than in 2018 (Table A.5.15). The differences 

among treatments were significant. N2O emissions from the plots that received digested biosolids 

were similar whether or not they also received urea, and their emissions were significantly higher 

than those of other treatments (Table A.5.16). N2O emissions during the growing season from the 

negative control plots (no fertilizer) were lower than those from treatments receiving urea alone 

(positive control) or in combination with composted biosolids, but the same as emissions from 

treatments receiving alkaline biosolids with or without urea, and those receiving only composted 

biosolids. 

 At Truro (Atlantic Maritime Ecozone), N2O emissions during the growing season differed 

with fertilizer type, as well as by interaction between fertilizer type and annual effects (Table 

A.5.17). While N2O emissions from treatments receiving digested biosolids alone or at half-rate 

with urea were the same as those receiving full-rate alkaline-stabilized biosolids, they were 

significantly higher than emissions from treatments receiving composted biosolids at full-rate or 

half-rate with urea (Table A.5.18). N2O emissions during the growing season from half-rate 

alkaline-stabilized biosolids were greater in 2018 than in 2017 (Table A.5.19).   
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 At Edmonton (Prairie Ecozone), N2O emissions during the growing season differed with 

type of fertilizer, annual effects, and fertilizer application method (Table A.5.20). The N2O 

emissions from treatments receiving full-rate digested biosolids or half-rate + urea were the same 

but were significantly higher than emissions from all the other treatments, except composted 

biosolids + urea (Table A.5.21). There was no significant difference in emissions between the 

control and treatments receiving alkaline-stabilized and composted biosolids, with or without urea. 

Also, there were no differences in N2O emissions between each of the biosolids when applied at 

full-rate or applied at half-rate with urea. Annual effects influenced N2O emissions, which in 2018 

were generally higher than in 2017 (Table A.5.22). Notably, N2O emissions were generally higher 

in incorporated than in surface spread treatments (Table A.5.23). 

 

5.3.2. Comparison between IPCC Tier 1-Estimated and Measured Growing Season N2O 

Emissions Estimates 

In general, relative to the measured N2O emissions across sites, the Tier 1 method 

performed poorly as seen in the R2 (association) values in Tables 5.2, which ranged from 0 to 0.14, 

and the divergence between the trendline and 1:1 line as seen in Figures A.5.1 (Appendix D). 

However, except for Ste-Anne-de-Bellevue (total difference, rRMSE = 48%), the rRMSE for the 

other sites were low: Truro (21%) and Edmonton (3%). These error values indicate a poor 

performance of the Tier 1 method in the humid sites but not in the semi-arid Edmonton site (see 

Table 5.2 and Figure 5.1). At the Edmonton site, the mean of the measured emissions across the 

treatments were lower than those of the Tier 1 estimates, except for those of the digested biosolids 

(full- and half-rate) treatments (Figure 5.1). At the humid sites (Truro and Ste-Anne-de-Bellevue), 

only the composted biosolids and the alkaline-stabilized biosolids treatments, both full-rate and 
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half-rate with urea, were within the ranges of the Tier 1-estimated emissions (see Figure 5.1). The 

measured mean emissions from the urea (full-rate) treatments in Truro was similar to the Tier 1-

estimated emissions but not in Ste-Anne-de-Bellevue.  

Across the treatments, the total difference between the Tier 1-estimated and measured 

emissions ranged from 1% (for alkaline-stabilized biosolids) to 135% (for composted biosolids), 

as seen in the rRMSE values in Table 5.3. Tier 1 N2O estimates vs measurements for urea (rRMSE 

= 5%, R2 = 0.36), unfertilized (rRMSE = 21%, R2 = 0.46), and composted biosolids + urea (rRMSE 

= 22%, R2 = 0.50) treatments despite having relatively low error values, showed divergence 

between the trendline and 1:1 line as seen in Figures A.5.2.   
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Table 5.2. Comparing R2, RMSE, and rRMSE for measured vs. IPCC Tier 1, 2, and 3 - estimated 

N2O emissions during the growing season, averaged across all treatments in each of the sites.  

Method Metric Edmonton Ste-Anne-de-

Bellevue 

Truro 

Measured Mean N2O emission (kg N ha-1) 0.61 3.07 1.51 

S.D. (kg N ha-1) 0.52 2.87 0.93 

Tier 1 Mean N2O emission (kg N ha-1) 0.77 1.60 1.55 

S.D. (kg N ha-1) 0.21 0.28 0.33 

R2 0.14 0.07 0.00 

RMSE (kg N ha-1) 0.13 1.47 0.05 

rRMSE (%) 21.0 47.9 3.04 

Tier 2 (2008) Mean N2O emission (kg N ha-1) 1.22 1.72 2.03 

S.D. (kg N ha-1) 0.44 0.69 0.66 

R2 0.17 0.15 0.03 

RMSE (kg N ha-1) 0.55 1.44 0.43 

rRMSE (%) 90.9 46.8 28.2 

Tier 2 (2018) Mean N2O emission (kg N ha-1) 0.40 1.29 1.53 

S.D. (kg N ha-1) 0.16 0.81 0.81 

R2 0.15 0.13 0.05 

RMSE (kg N ha-1) 0.23 1.84 0.05 

rRMSE (%) 37.6 59.9 3.04 

Corrected Tier 2 

(2018) 

Mean N2O emission (kg N ha-1) 0.56 1.72 1.87 

S.D. (kg N ha-1) 0.52 1.71 1.45 



249 
 

R2 0.86 0.42 0.48 

RMSE (kg N ha-1) 0.08 1.44 0.27 

rRMSE (%) 13.2 46.7 18.0 

Tier 3 Mean N2O emission (kg N ha-1) 0.62 2.69 1.85 

S.D. (kg N ha-1) 0.21 0.45 1.15 

R2 0.64 0.81 0.31 

RMSE (kg N ha-1) 0.01 0.39 0.35 

rRMSE (%) 2.4 12.6 22.9 

R2, RMSE, and rRMSE values for the estimation methods were derived based on comparison 

between simulated and empirical values. Note: S.D. = standard deviation. 
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Figure 5.1. Comparison between measured nitrous oxide emissions (with standard deviation) during the growing season and those 

estimated using the IPCC Tier 1, Tier 2 (2008), Tier 2 (2018), corrected Tier 2 (2018), and Tier 3 (DNDC) methods from agricultural 

soils in Edmonton, Ste-Anne-de-Bellevue, and Truro amended with biosolids and/or urea from 2017 to 2019. 
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Table 5.3. Comparing R2, RMSE, and rRMSE for measured vs. IPCC Tier 1, 2, and 3 - estimated 

N2O emissions during the growing season for each treatment, averaged across the three sites (Ste-

Anne-de-Bellevue, QC; Truro, NS; and Edmonton, AB). 
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Measured Mean (kg N ha-1) 1.08 1.39 0.65 1.18 4.24 2.87 0.64 1.53 

 S. D. (kg N ha-1) 0.55 0.98 0.31 0.78 3.61 1.95 0.50 1.17 

Tier 1 

Mean (kg N ha-1) 1.47 1.41 1.52 1.43 1.35 1.37 0.51 1.60 

S. D. (kg N ha-1) 0.33 0.43 0.38 0.46 0.27 0.42 0.23 0.63 

R2 0.79 0.55 0.51 0.50 0.45 0.50 0.46 0.36 

RMSE (kg N ha-1) 0.39 0.01 0.88 0.25 2.89 1.50 0.13 0.07 

rRMSE (%) 36.2 0.99 135.0 21.5 68.2 52.1 20.7 4.65 

Tier 2 

(2008) 

Mean (kg N ha-1) 2.15 1.68 2.23 1.72 1.88 1.62 0.43 1.30 

S. D. (kg N ha-1) 0.75 0.57 0.77 0.57 0.51 0.54 0.17 0.43 

R2 0.59 0.29 0.44 0.17 0.35 0.22 0.62 0.04 

RMSE (kg N ha-1) 1.06 0.29 1.58 0.54 2.35 1.25 0.20 0.23 

rRMSE (%) 98 21 243 46 55 44 32 15 

Tier 2 

(2018) 

Mean (kg N ha-1) 1.41 1.14 1.45 1.16 1.20 1.10 0.29 0.96 

Std (kg N ha-1) 1.06 0.85 1.05 0.84 0.83 0.81 0.21 0.70 

R2 0.66 0.61 0.40 0.16 0.42 0.25 0.43 0.09 



252 
 

RMSE (kg N ha-1) 0.33 0.25 0.79 0.02 3.04 1.77 0.35 0.58 

rRMSE (%) 31 18 121 2 72 62 55 38 

Corrected 

Tier 2 

(2018) 

Mean (kg N ha-1) 1.23 1.04 0.87 0.83 3.34 2.50 0.29 0.96 

Stdev (kg N ha-1) 0.94 0.77 0.65 0.61 2.19 1.85 0.21 0.70 

R2 0.67 0.61 0.44 0.14 0.43 0.30 0.43 0.09 

RMSE (kg N ha-1) 0.15 0.35 0.22 0.35 0.90 0.38 0.35 0.58 

rRMSE (%) 14 25 34 30 21 13 55 38 

Tier 3 

Mean (kg N ha-1) 2.06 1.15 0.83 0.89 4.67 2.35 0.61 1.36 

S.D. (kg N ha-1) 1.40 0.02 0.24 0.04 0.32 2.73 0.25 0.46 

R2 0.69 0.43 0.49 0.86 0.46 0.65 0.23 0.80 

RMSE (kg N ha-1) 0.98 0.24 0.18 0.30 0.44 0.53 0.03 0.17 

rRMSE (%) 91 17 28 25 10 18 4 11 

 

 

5.3.3. Comparison between IPCC Tier 2-Estimated and Measured Growing Season N2O 

Emissions Estimates 

5.3.3.1. Tier 2 (2008) 

 Relative to the measured N2O emissions across sites and treatments, the Tier 2 (2008) 

method performed poorly as seen in the rRMSE and R2 values in Tables 5.2 and 5.3, as well as the 

divergence between the trendline and 1:1 line as seen in Figures A.5.3 and A.5.4. In terms of 

estimating N2O emissions magnitudes, the Tier 2 (2008) method underperformed relative to the 

Tier 1 method. Overall, it estimated N2O emissions in Truro (rRMSE = 28%) better than in Ste-

Anne-de-Bellevue (rRMSE = 47%) and Edmonton (rRMSE = 91%) (Table 5.2). In estimating 

treatment-specific emissions, the rRMSE values for the Tier 2 (2008) method were only slightly 
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better than those for the Tier 1 estimates of N2O emissions during the growing season from 

treatments amended with digested biosolids (Table 5.3). Noticeably, N2O emissions estimated 

using the Tier 1 method had lower rRMSE for treatments receiving half-rate biosolids with urea 

than for treatments receiving full-rate biosolids.  

 

5.3.3.2. Tier 2 (2018) 

 In general, general, the Tier 2 (2018) method estimated N2O emissions during the growing 

season across the three sites was better than the Tier 2 (2008) method but was not better than the 

Tier 1 method. On average, the Tier 2 (2018) emissions estimates were mostly lower than the Tier 

2 (2008) emissions estimates for the Edmonton site but were the same as Tier 2 (2008) emission 

estimates for the Ste-Anne-de-Bellevue and Truro sites (Figure 5.1). The total difference between 

the estimated and measured emissions showed that the Tier 2 (2018) estimates were better than 

the Tier 2 (2008) estimates for Edmonton (rRMSE: from 91% to 38%) and Truro (from 28% to 

3%) but worse for Ste-Anne-de-Bellevue (rRMSE: from 47% to 60%), particularly for treatments 

receiving full-rate or half-rate digested biosolids or urea alone (positive control). The N2O 

emissions estimated for the growing season using the Tier 2 (2018) method had lower rRMSE 

values for the half-rate biosolids treatments than for the full-rate biosolids treatments. However, 

there was visible divergence between the trendline and 1:1 line as seen in plots in Figures A.5.5 

and A.5.6.  

 

5.3.3.3. Corrected Tier 2 (2018) 

 In general, using the corrected Tier 2 (2018) method to estimate growing season N2O 

emissions across the three sites led to smaller rRMSE values and increase in R2 values (between 
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the simulated and measured values) over the Tier 2 (2008), Tier 2 (2018), and Tier 1 estimates. 

Also, the convergence between the trendline and 1:1 line improved across the sites, as seen in plots 

in Figure A.5.7, but not for the treatments (Figure A.5.8). The ratio of measured biosolids-induced 

N2O-N to urea-induced N2O-N resulted to biosolids-specific corrections factors for the emission 

factors as follows: 0.71 for alkaline-stabilized, 2.77 for digested, and 0.43 for composted biosolids, 

instead of the 0.84 (manure correction factor) used for the Tier 2 (2018) method. These 

improvements in Tier 2 (2018) estimates were observed across the sites, but to a lesser extent in 

Ste-Anne-de-Bellevue. In Truro and Edmonton, the rRMSE values between the measured and 

estimated emissions were < 20%, while Ste-Anne-de-Bellevue was ~47% as shown in Table 5.2. 

In addition, the estimated (i.e., corrected) emissions were generally within the range of the 

measured emissions (Figure 1). Meanwhile, across the treatments, rRMSE values were < 40%, 

except for the unfertilized treatment with rRMSE of 55%. 

 

5.3.4. Comparison between IPCC Tier 3-Estimated and Measured N2O Emissions During 

the Growing Season 

5.3.4.1. DNDC Calibration and Validation Results 

DNDC was calibrated to simulate N2O emissions for the growing season. Validation of the 

simulated emissions showed that they were within the 95% confidence intervals of the measured 

N2O emissions across the three sites (Tables A.5.24 and A.5.25). The total model error and bias 

across the sites were not significant in either the calibration or validation stages. 
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5.3.4.2. DNDC-Estimated N2O Emissions During the Growing Season 

The rRMSE values comparing the measured N2O emissions and those simulated using 

DNDC for the growing season were: 2% for Edmonton, 13% for Ste-Anne-de-Bellevue, and 23% 

for Truro. The rRMSE values for DNDC were lower than those for Tier 1 and 2 estimates across 

the three sites and for most treatments (Tables 5.2 and 5.3). There was convergence between the 

trendline and 1:1 line across the sites, as seen in plots in Figure A.5.9, but not for the treatments 

(Figure A.5.10). Also, the R2 values between the measured N2O emissions and DNDC estimates 

across all sites ranged from 0.31 to 0.81 and were greater than those for Tier 1 and 2 estimates, 

before the biosolids correction factors were applied. For N2O emissions specifically from 

treatments amended with digested biosolids at full and half rates, respectively, there was only a 

10% and 18% rRMSE between the measured emissions and those estimated using DNDC, while 

Tier 1 and Tier 2 methods before correction factor was applied, underestimated the emissions by 

at least 44%. The rRMSE values for ranged from 4% to 28% across the treatments except for 

treatments receiving alkaline-stabilized biosolids with rRMSE of 91%. 

 

5.3.4.3. Influence of DNDC Input Parameters on Simulated N2O Emissions 

The sensitivity analysis using the Morris method (Morris, 1991) showed how simulated 

N2O emissions during the growing season were affected by varying characteristics of biosolids, 

soil, weather, and management practices (Tables 5.4 and A.5.26). Input variables with higher 

Morris sensitivity index (μ*) have a greater effect on a simulated output (e.g., N2O emissions) than 

those with lower values of μ*. Meanwhile, the standard deviation (σ) reflects whether the effect of 

a variable is linear or nonlinear (i.e., interacts with other inputs). A high value of σ indicates that 

the elementary effect of a given input variable depends on the values of other input variables.  
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As seen in Table 5.4 (also Table A.5.26; in this text, the names of the model inputs and 

parameters shown in the tables are written in brackets while referring to the physical parameter 

they represent), across the three sites, soil pH was the dominant variable and had a non-linear 

relationship with soil N2O emissions. In Ste-Anne-de-Bellevue, soil pH (µ* = 8.61) had the highest 

influence on N2O emissions followed by biosolid C/N (written as manure C/N in DNDC with µ* 

= 5.0), and their effects were non-linear with σ equals 3.05 and 2.16, respectively. Increases in soil 

pH, C/N, clay fraction, and depth of N application (fertilizer depth, which in this study 

differentiates surface spread from soil incorporated N application) were correlated with decreasing 

N2O emissions. However, the correlations were weak for clay fraction (r = -0.2) and depth of N 

application (r = -0.13). Meanwhile, increasing the amount of biosolids N (Manure org. N), 

temperature degree days (Acc. temp.), precipitation, or field capacity of the soil led to an increase 

in N2O emissions. In Truro, soil pH (µ* = 2.59) and active humus fraction (humads fraction, with 

µ* = 2.30 is a DNDC parameter, which represents the unstable fraction of soil humus) were the 

most sensitive model variables, and N2O emissions responded non-linearly to changes in these 

variables. In DNDC, an increase in soil pH from 5.4 to 6.0 led to an increase in N2O emissions 

with µ = 2.59, while an increase in soil active humus fraction led to a decrease in N2O emissions 

(µ = -2.30). N2O emissions during the growing season were also sensitive to- and positively 

correlated with soil bulk density (bulk density, µ* = 1.27 and r = 0.28), precipitation (µ* = 1.16 

and r = 0.37), soil organic C (Top SOC, µ* = 0.91 and r = 0.18), and air temperature (Max. air 

temp and Min. air temp). As seen in the simulated results of the Ste-Anne-de-Bellevue site, in the 

Truro site simulations, the effect of depth of N application (fertilizer depth) also had a negative 

correlation with N2O emission during the growing season. The effect of soil bulk density on N2O 

emission was non-linear (σ = 0.42). In Edmonton, soil clay content was the most sensitive 



257 
 

parameter with respect to N2O emissions with µ* = 0.81. Increasing the soil clay fraction without 

changing the soil hydraulic parameters led to a decrease in N2O emissions during the growing 

season. To a lesser extent, N2O emissions during the growing season were also sensitive to 

temperature degree days (Acc. Temp.), soil pH, soil organic C (Top SOC), air temperature (Max. 

air temp and Min. air temp), precipitation, and porosity. 
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Table 5.4. Simulation input parameters and variables ranked according to the Morris sensitivity index (μ*) with respect to simulated 

cumulative N2O emissions in Ste-Anne-de-Bellevue (2018 and 2019), Truro (2017–2019), and Edmonton (2017 and 2018). The standard 

deviation (σ) indicates whether linear or nonlinear effects exist due to interactions with other inputs. The Pearson correlation coefficient 

(r) is an alternative measure of the strength of the association between the input and the N2O emissions. 

Ste-Anne-de-Bellevue 

 

Truro 

 

Edmonton 

†Parameter µ µ* σ r 

 

†Parameter µ µ* σ r 

 

†Parameter µ µ* σ r 

Soil pH -8.61 8.61 3.05 -0.62 

 

Soil pH 2.59 2.59 0.43 0.51 

 

Clay fraction -0.81 0.81 0.12 -0.47 

Manure C/N -5.00 5.00 2.16 -0.41 

 

Humads frac. -2.30 2.30 0.72 -0.33 

 

Acc. Temp. -0.27 0.31 0.21 -0.15 

Manure Org. N 3.08 3.08 0.89 0.12 

 

Bulk density 1.27 1.27 0.42 0.28 

 

Soil pH -0.30 0.30 0.07 -0.08 

Acc. temp. 2.20 2.20 0.98 0.10 

 

Precipitation 1.16 1.16 0.25 0.37 

 

Top SOC 0.25 0.25 0.11 0.09 

Clay fraction -1.69 1.69 0.48 -0.20 

 

Top SOC 0.91 0.91 0.32 0.18 

 

Min. air temp 0.20 0.20 0.11 0.16 

Precipitation 1.37 1.37 0.31 0.27 

 

Max. air temp 0.74 0.74 0.24 0.09 

 

Precipitation 0.20 0.20 0.12 0.22 

Field capacity 1.12 1.12 0.38 0.01 

 

Min. air temp 0.67 0.67 0.19 0.36 

 

Max. air temp 0.17 0.18 0.15 0.16 

Fert. depth -0.47 0.78 0.87 -0.13 

 

Fert. depth -0.23 0.23 0.21 -0.05 

 

Porosity -0.14 0.14 0.08 0.12 

Urea 0.76 0.76 0.23 0.08 

 

Field capacity 0.21 0.21 0.08 0.16 

 

Humads frac. 0.12 0.12 0.03 -0.06 

Top SOC 0.68 0.68 0.45 0.07 

 

Manure depth -0.15 0.17 0.18 -0.03 

 

Hydro cond. 0.11 0.11 0.08 -0.07 
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† Manure C/N = C to N ratio in biosolids, Manure org. N = biosolids N, Acc. Temp. = temperature degree days, Fert. depth = fertilizer depth, Top 

SOC = soil organic carbon in topsoil, Humads frac. = fraction of active humus in soil organic carbon based on measurements made in several field 

experiments (Li et al., 1994), Max./min air temp = maximum/minimum daily air temperature.  

Note: μ = the mean of the distribution of the elementary effects (EE), which assesses the overall influence of the input on the simulated output; μ* = 

Morris sensitivity index, which is the estimate of the mean of the distribution of the absolute values of the elementary effects; and σ = the standard 

deviation of the distribution of the EE, which estimates the collective effects of the input due to non-linearity and/or interactions with other inputs. 
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5.4. Discussion 

5.4.1. Assessment of Measured Growing Season N2O Emissions: Site, Treatment, Weather 

Effects 

 The individual or combined effects of fertilizer type, rate of application, method of 

application, and annual effects on N2O emissions measured during the growing season varied in 

response to the unique biotic and abiotic features of each site. Among the sites, the average N2O 

emissions in Ste-Anne-de-Bellevue were about 5 times the average values in Edmonton and 2.5 

times those in Truro. These findings corroborate those of many other studies in which N2O 

emissions differed among sites due to differences in soil types and climatic zones (e.g. Aliyu et 

al., 2018). Of particular importance were differences in precipitation, agricultural practices (e.g., 

amount of N applied), and soil organic carbon content, which were dominant factors influencing 

N2O emissions. 

 At the sites in humid Eastern Canada (Ste-Anne-de-Bellevue and Truro), N2O emissions 

were dominantly driven by denitrification while nitrification was the dominant process driving 

N2O emissions in Edmonton, in the semi-arid Canadian Prairies (Rochette et al., 2018; 

Thilakarathna & Hernandez-Ramirez, 2021). The total average precipitation during the three 

growing seasons was 606 mm in Ste-Anne-de-Bellevue and 555 mm in Truro, while Edmonton 

received an average of 211 mm (Table A.5.5). Also, fields in humid regions have higher plant 

yield potential than those in arid regions and farmers therefore apply more N. Barley, moreover, 

requires less N than corn for vegetative growth. In this study, the total N applied in Ste-Anne-de-

Bellevue (corn; 120 kg N ha-1 for urea and 180 or 201 kg N ha-1 for half- and full-rate biosolids 

treatments, respectively) and Truro (corn; 120 kg N ha-1 for urea and 150 or 220 kg N ha-1 for half- 

and full-rate biosolids treatments, respectively) was higher than in Edmonton (barley; 96 and 192 
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kg N ha-1). Given that precipitation is the most significant factor influencing the rate of 

denitrification in soil in humid climates and that less N was applied in Edmonton, it is 

understandable that N2O emissions in the humid ecozones were higher than in the semi-arid 

ecozone. 

 The N2O emissions, averaged across all growing seasons and the three sites, were generally 

higher from treatments receiving digested biosolids (full-rate or half-rate) than from other 

treatments. Digested biosolids have relatively lower C/N and more labile C forms and thus higher 

mineralization rates relative to the other biosolids (Wang et al., 2016). This suggests that soil 

inorganic N level was more influential than the amount of organic C being added. Adding the urea 

effectively nullified the effect of reducing the rate of biosolids application by half.  

 The differences in N2O emissions between treatments due to method of fertilizer 

application in the semi-arid Edmonton site were perhaps due to a combination of factors as follows: 

mineral N availability in the fertilizers, the high SOC (~55 g C kg-1 soil) in the Black Chernozemic 

soils, and the likely increase in SOC decomposition and soil N mineralization rates due to soil 

disturbance through incorporation of fertilizers using a rotary plough. Chernozemic soils of the 

Canadian prairies are generally characterized by high SOC in the topsoil, unlike gleysolic and 

podzolic/luvisolic soils in Eastern Canada which have SOC < 20 g C kg-1 soil. Annual tillage at 

the Edmonton site is expected to trigger increased SOC decomposition than when left undisturbed. 

As such, further soil disturbance through soil incorporation of biosolids in Chernozemic soils could 

potentially result to higher SOC decomposition and microbial activity than in relatively lesser 

disturbed surface-spread treatments. However, an empirical assessment of the N budget, especially 

likely N losses due to volatilization and run-off in surface-spread treatments, is required prior to a 

definitive conclusion. 
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  In addition to climate and SOC differences between the sites, soil clay content, and soil 

pH also influence the magnitude of soil N2O emissions in agroecosystems. On the one hand, soil 

clay content affects soil aeration (porosity), moisture retention, and provides binding sites for NH4
+ 

and influences N availability for denitrification (Bateman & Baggs, 2005). Increasing 

concentration of clay in the soil provides more binding sites for NH4
+ and then to have higher water 

contents (lower aeration) favouring complete denitrification, lowering N2O emissions. Overall, 

soil texture and clay content differed between the sites. Ste-Anne-de-Bellevue (loam; clay = ~190 

g kg-1 soil), Truro (sandy loam; clay = ~100 g kg-1 soil), Edmonton (silty clay loam; clay = ~327 g 

kg-1 soil). On the other hand, N2O:N2 ratio reduces as soil pH tends to neutral (Saggar et al., 2013; 

Hénault et al., 2019). However, the effect of soil pH on growing season emissions across the sites 

appear to be masked by climate differences. N2O emissions from the Ste-Anne-de-Bellevue site 

with mean pH of ~7 was higher than those of Truro which had a mean pH of 5.7. Besides the 

alkaline-stabilized biosolids which had a relatively high pH (> 9), other soil amendments may not 

be able to buffer the soil pH as effectively at the Truro site. Perhaps, this explains why N2O 

emissions from Truro soils receiving alkaline-stabilized biosolids were not significantly different 

from those receiving digested biosolids.  

 A limiting factor in GHG measurement using manual chambers is the sampling frequency 

and spatial coverage which can introduce gaps in emissions data impacting the level of uncertainty 

in estimating cumulative emissions on both national and sub-national scales (Barton et al., 2015). 

Also, the linear vs. exponential interpolation approaches of estimating cumulative N2O emissions 

produce different values (Levy et al., 2017).  
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5.4.2. Comparing Estimated and Measured N2O Emissions During the Growing Season 

5.4.2.1. IPCC Tier 1 Method 

 The poor results from the Tier 1 method does not come as a surprise since it is well 

established that biotic and abiotic differences between agroecosystems influence the rates of N 

mineralization, nitrification, and denitrification, and are only partially represented in the Tier 1 

methodology. Similar studies conducted in Canada and other temperate countries using manure, 

identified disparities of about 15% between the measured and estimated N2O emissions (Bell et 

al., 2015). These disparities occur broadly due to differences in site and in type of amendment. In 

addition to the Tier 1 method’s lack of representation of biosolids in the dataset used for developing 

the emissions factors, the Tier 1 method broadly categorizes climate differences into wet and dry 

conditions. It does not account for the magnitudes of growing season precipitation, which vary in 

their marginal effects on N2O emissions between sites. Also, organic materials are not segregated 

according to more definitive characteristics such as the inherent C/N and form of the organic C in 

the organic amendment. In addition to these, variations in soil conditions, management practices, 

and vegetation between the sites influence N2O emissions significantly but were not strongly 

accounted for in the analysis. The Tier 1 methodology differentiates between management 

practices only when there is a change quantity of the applied N. Tillage, fertilizer placement, timing 

and source are not considered. It surprising however, that on average, the Tier 1 method estimated 

the emissions magnitudes better than the Tier 2 (2008 and 2018) methods. 

 

5.4.2.2. IPCC Tier 2 Method 

 Irrespective of the localized datasets used in developing the Tier 2 method, the uncorrected 

(Tier 2 (2008) and Tier 2 (2018)) Tier 2-estimated growing season N2O emissions in this study 
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were more poorly simulated relative to the Tier 1-estimates. A similar performance was found in 

another study where the Tier 2 method underestimated N2O emissions by 75% for inorganic 

amendment additions at a site in Manitoba, Canada (Uzoma et al., 2015). This is despite the 

accounted regional/ecodistrict-scale effects of moisture regime, soil texture, spring thaw in 

Western Canada, topography, tillage, summer fallow, and irrigation on N2O emissions. Also, the 

Tier 2 (2008) method was adjusted for growing season emissions by a factor of 0.7, i.e., according 

to Rochette et al. (2008) that 70% of annual N2O emissions occur during the growing season. Other 

studies report that 50–70% of annual emissions could occur during the growing season depending 

on the site (Chantigny et al., 2016); thus, leaving room for marginal error due to estimation 

uncertainty. 

 The effects of moisture regime on N2O emissions were accounted for in the form of either 

precipitation or ratio of precipitation to potential evapotranspiration (P/PE). However, the 

discrepancies between the measured and estimated growing season N2O emissions occurred in the 

Tier 2 estimates due to their different approaches in expressing the relationships between 

ecodistrict moisture regime and N2O emission factor. While the relationship between emission 

factor and moisture regime was linear for the Tier 2 (2008) method, the Tier 2 (2018) method was 

based on an exponential relationship. Being sensitive parameters, changes in precipitation will lead 

to exponential changes in emissions factors for the Tier 2 (2018) and corrected Tier 2 (2018) 

methods but linear for the Tier 2 (2008) method. Moreover, considering that the Tier 2 methods 

were developed using 30-year regional precipitation averages, which was mostly < 700 mm, site 

specific growing season precipitation values exceeding 700 mm in a target year will lead to 

exaggerated changes in the magnitude of emissions factors. These challenges highlight the 
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limitations of the IPCC Tier 2 method to accurately estimate site scale emissions on an annual 

basis.  

 Besides the challenges of applying the Tier 2 method on a site scale, additional 

shortcomings of the Tier 2 method include its lacking representation of several sensitive soil and 

fertilizer parameters. For instance, the Tier 2 methods do not account for the differences in soil 

pH, which has been found in several studies to significantly differentiate N2O emissions 

magnitudes between sites. In addition, the dataset used in developing the Tier 2 (2008) method 

were biased towards sites in Brown-Dark Brown and Black soil regions in the Canadian Prairies, 

of which most sites were mineral N-fertilized. Meanwhile, the Tier 2 (2018) method used more 

recent data covering organic- and mineral N-fertilized sites across Canada, including pacific 

maritime ecozone. However, its inability to accurately estimate biosolids-induced N2O emissions 

led to implementation of correction factors in the so-called corrected Tier 2 (2018) method.  

 The corrected Tier 2 (2018) method minimized deviations between the measured and 

estimated growing season N2O emissions relative to the Tiers 1 and 2 (2008 and 2018) methods 

by incorporating biosolids-specific correction factors into the Tier 2 (2018) equation. The 

correction factors represent sensitive biosolids parameters such as C/N, pH, and organic carbon 

forms, which are major distinguishing factors between biosolids. As such, the corrected Tier 2 

(2018) method estimated digested biosolids-related N2O emissions better than the previous Tier 2 

and Tier 1 methods.  

 The use of the relatively simple corrected Tier 2 (2018) method for Canada’s national GHG 

inventory requires validation and better alignment with the existing national inventory 

infrastructure. Despite the addition of site-specific effects of moisture on N2O emissions and the 

proposed biosolids-specific correction factors, minimal deviations still exist between the measured 
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and estimated N2O emissions. These deviations occur because the correction factors are global 

(calculated across the three sites) and as such the site-specific effects of temperature were 

unaccounted for in this Tier 2 method. Also, the meta-data used in deriving the emission factors 

did not account for the differences in research objectives and protocols used in the selected 

empirical studies and how they might influence the deduced emissions factors. Therefore, this 

method needs to be tested on independent datasets prior to deployment in the national inventory. 

Despite these shortcomings, the corrected Tier 2 (2018) method offers a better approach than the 

Tier 1 and previous Tier 2 methods for estimating biosolids-induced N2O emissions across the 

studied sites. The improvement in the fit between the corrected Tier 2 (2018) estimates and the 

measured emissions justifies the added task of including the correction factors in the inventory 

methodology. Further requirements include availability of activity data and technical/scientific 

requirements to employ and defend methodology to regional/national and international partners-

stakeholders. 

   

5.4.2.3.IPCC Tier 3 Method 

 The improvement of the Tier 3- over the Tiers 1- and 2-estimates support the original 

hypothesis that the Tier 3 method would produce the most accurate N2O emission estimates in 

reference to growing season measurements. The main reason for these improved estimates is that 

the interaction between management, soils and climate are well captured in the Tier 3, unlike the 

Tier 1 and 2 approaches. The Tier 3 method via process-based modelling accounts for the effects 

of influential soil, fertilizer (e.g., biosolid), climate, and crop variables, as well as management 

practices on N2O emissions, irrespective of spatial scale. However, there are limitations and 

challenges associated with the Tier 3 method. Firstly, process-based models must be calibrated 
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and validated against empirical data for each site/region prior to use. Secondly, running such data-

intensive modelling exercise requires extensive data collection, which are challenging in terms of 

both labour and time. Thirdly, process-based models are complex and often limited in their 

mechanistic explanation of soil processes. Also, to use DNDC in the national GHG inventory 

requires the development of a transparent and complete documentation of the Canada model 

version. Finally, expertise is required to employ process-based models and uncertainty due to 

model structure needs to be quantified at high computational expense. 

  The data requirement of the Tier 3 method in estimating biosolids-induced soil N2O 

emissions limit its immediate implementation in the national GHG inventory. To minimize the 

data requirements for making accurate estimates of N2O emissions, effort could be focused on 

identifying the most important parameters influencing region-specific N2O emissions as seen in 

the sensitivity analysis. Through such approach, measurements, in coordination with process-

based modelling could be used to develop improved meta-equations for use in the Tier 2 

framework. For instance, to estimate direct N2O emissions from grazed pastures in New Zealand, 

Giltrap et al. (2013) and Giltrap & Ausseil (2016) used DNDC to develop regression models with 

N2O-sensitive input parameters which predicted national emissions in agreement with national 

emission factor-estimated emissions. However, using this approach requires additional datasets to 

test and validate estimates to minimize model/estimation errors. Computational efficiency is an 

advantage of this method, while a major limitation is the under-representation of nationwide 

differences in site-sensitive inputs due to limited empirical data. For instance, in this study, N2O 

emissions were sensitive to soil bulk density only in Truro. Such discrepancy could be transmitted 

to the meta-equation to produce biased N2O emissions estimates across sub-national units.  
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5.5. Conclusions 

 Mean growing season N2O emissions were significantly higher in treatments receiving 

digested biosolids than composted and alkaline-stabilized biosolids across the three sites. 

Considering that emissions from the control treatment were not different from emissions from the 

alkaline-stabilized and composted biosolids, the use of these two biosolids offer a means to reduce 

emissions relative to the digested biosolids. Reducing the rate of application of biosolids from a 

rate sufficient to meet plant N requirements to half that rate with supplemental urea did not 

influence N2O emissions. This suggest N availability and not organic C availability may be more 

influential in determining N2O emissions from land receiving biosolids. In Chernozemic soils, 

surface spreading of digested and composted biosolids and soil incorporation of alkaline-stabilized 

biosolids does not necessarily reduce N2O emissions. Surface spreading likely leads to increased 

ammonia volatilization in the composted and mesophilic biosolids. In addition, surface application 

is outside most provincial regulations across Canada for several good reasons. Then, in the current 

study, emissions from New Brunswick, Manitoba, and British Columbia which represent other 

ecozones such as the Pacific maritime ecozone were not accounted for, due to the practical 

limitations (e.g., logistics) of conducting empirical studies on a national scale. Still, we see the 

value to science as this enables comprehensive understanding of biosolids effects on environment 

and plant productivity. However, empirical determination of N budgets across Canadian 

agroecosystems is required to properly understand the N pathways when biosolids are land-

applied.  

 Given the poor performance of the Tiers 1 and 2 (2008 and 2018) methods as seen in this 

study and the challenges associated with deploying the Tier 3 method for national GHG 

accounting, the corrected Tier 2 (2018) method offers the best chance for accounting national 
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biosolids-induced soil GHG emissions in the near future. On a regional scale, the Tier 2 and 3 

methods can be combined to better estimate national scale soil N2O emissions. However, 

regionalized activity data at the inventory level may not currently be sufficient to support this kind 

of application of Tier 3 models. Global market access based on country specific Tier 3 approaches 

to quantify and benchmark current farm practices and emission levels could face additional 

scrutiny (compared to Tier 1 and Tier 2) if robust calibration/validation procedures are not 

demonstrated and model processes are not sufficiently documented for evaluation. The 

ramifications can be that local producers may feel arbitrarily misrepresented by a complex 

mechanistic modelling approach compared to a Tier 2 or Tier 1, although every approach has its 

merits. Then, there are no global standards or criteria determining how to use the Tier 3 modelling 

approach for GHG inventory, which can result in a lot of disparity/uncertainty in the integrity in 

country-country assessments. Finally, the comparison between Tier 1, Tier 2, and Tier 3 

approaches has some inherent bias in that the Tier 3 approach was employed after the model was 

“trained” –calibrated for the site level emissions, unlike the Tiers 1 and 2 approaches which were 

“trained” with regional and international datasets, respectively. This is both a strength (improved 

outcomes) and limitation (in its applicability nationally) in the approach and will inherently impact 

the comparability of the Tier 3 approach with the other 2 approaches. However, models can be 

calibrated regionally using what data is available.  

 

5.6. Path Forward 

 In the short-term, the Tier 2 (2008) method could be used for national biosolids-induced 

soil N2O emissions accounting prior to the development of activity data, additional measurement, 

and validation of the Tier 3 method. Due to the high data requirement of the Tier 3 method, and 
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its marginal improvement over the corrected Tier 2 (2018) method in estimating emissions, the 

corrected Tier 2 (2018) method presents a more practical approach in developing an N2O 

accounting tool in the mid-term. Firstly, engagement of producers is much easier using a Tier 2 

approach. Secondly, the application of the Tier 2 approach avoids the pitfalls that a Tier 3 approach 

inherently has. Also, the Tier 2 approach is much more transparent in how the current scientific 

understanding is being applied towards quantifying GHG emissions from farm practices. 

Considering these points, utilizing a Tier 3 approach to improve Tier 2 methodologies as well as 

highlighting where additional resources for measuring scientific gaps can be allocated could be an 

area for future research. Producer groups and Fertilizer Canada are concerned that Tier 2 

approaches do not include 4R practices (right source, right rate, right time, and right place). As 

such, the Tier 2 approach could be updated or a complete move to a process-based modelling 

approach could be implemented in the long-term. 
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5.8. Appendix 

5.8.1. Appendix A: Tables Showing Measured Variables and Model Parameter Values 

Table A.5.1. Macro and micronutrients content of biosolids applied to agricultural soils for the 

three years (2017–2019) of field experiment in Ste-Anne-de-Bellevue, QC, Canada. † 

Parameter 
Digested biosolids 

Composted 

biosolids 

alkaline-stabilized 

biosolids 

2017 2018 2019 2017 2018 2019 2017 2018 2019 

Dry Matter (kg kg-1) 0.20 0.23 0.17 0.38 0.48 0.45 0.62 0.61 0.62 

pH (pH Units) 8.2 8.2 8.1 7.6 7.4 7 10.8 9.8 8.7 

Nitrogen (g N kg-1) 71.0 63.3 61.7 24.5 11.7 11.3 n/a 11.3 7.3 

Ammonium-N (g N kg-1) 11.0 13.4 13.3 4.1 1.3 1.3 n/a 0.7 1.0 

Potassium (g kg-1) 0.6 n/a 8.1 0.4 n/a 1.6 n/a n/a 1.1 

Phosphorus (g kg-1) 3.3 n/a 39.1 0.9 n/a 6.4 n/a n/a 5.9 

Calcium (g kg-1) 23 n/a 38 29 n/a n/a 250 12 229 

Magnesium (g kg-1) 4.8 n/a 4.5 2.7 n/a n/a n/a 1.6 1.0 

Sodium (g kg-1) 2.5 n/a 4.2 11.2 n/a n/a n/a 0.4 0.4 

Iron (g kg-1) 29.0 n/a 28.1 6.6 n/a n/a n/a 6.2 3.4 

Boron (mg kg-1) 11.0 n/a 12.1 16.0 n/a n/a n/a 12.3 <10.0 

Copper (mg kg-1) 350 n/a 139 91 n/a n/a n/a 27 72 

Zinc (mg kg-1) 320 n/a 281 266 n/a n/a n/a 124 178 

C:N ratio 4.7 5.1 4.4 n/a 38.6 37.9 22.3 18.1 22.2 
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Table A.5.2. Macro and micronutrients content of biosolids applied to agricultural soils for the 

three years (2017–2019) of field experiment in Truro, NS, Canada. † 

Parameter 
Digested biosolids 

Composted 

biosolids 

alkaline-stabilized 

biosolids 

2017 2018 2019 2017 2018 2019 2017 2018 2019 

Dry Matter (kg kg-1) 0.23 0.23 0.17 0.42 0.42 0.45 0.62 0.62 0.62 

pH (pH Units) 7.8 8.2 8.1 7.4 7.4 7.0 10.0 9.8 8.7 

Nitrogen (g N kg-1) 56.0 64.0 62.0 14.0 12.0 11.0 10.0 11.3 7.3 

Ammonium-N (g N kg-1) 13.0 13.0 13.0 0.0 1.0 1.0 n/a 1.0 1.0 

Potassium (g kg-1) 3.8 7.0 8.1 2.0 2.0 2.0 8.0 9.0 1.1 

Phosphorus (g kg-1) 25.0 34.0 39.0 9.0 9.0 6.0 7.0 7.0 5.9 

Calcium (g kg-1) 19.0 28.0 38.0 20.0 14.0 12.0 165.0 165.0 229 

Magnesium (g kg-1) 3.0 4.0 5.0 2.0 2.0 2.0 3.0 3.0 1.0 

Sodium (g kg-1) 2.0 3.0 4.0 1.0 1.0 0.0 1.0 1.0 0.4 

Iron (g kg-1) 19.8 35.2 28.1 6.1 6.6 6.2 7.7 8.1 3.4 

Boron (mg kg-1) 13.7 12.1 12.0 10.9 10.7 12.3 18.8 19.4 <10.0 

Copper (mg kg-1) 150.2 136.7 138.5 61.0 66.0 26.7 99.4 93.9 72 

Zinc (mg kg-1) 212 238 281 175 198 124 208 248 178 

Manganese (mg kg-1) 287 118 122 1172 1094 1114 219 449 256 

C:N ratio n/a 8.8 8.9 n/a 38.6 37.9 n/a 30.9 38.5 
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Table A.5.3. Macro and micronutrients content of biosolids applied to experiment field in 

Edmonton, AB, Canada in 2017 and 2018. † 

Parameter 

Digested 

biosolids 

Composted 

biosolids 

alkaline-stabilized 

biosolids 

2017 2018 2017 2018 2017 2018 

Dry Matter (kg kg-1) 0.23 0.23 0.59 0.72 0.69 0.74 

pH 7.7‡ n/a 5.01§ n/a 12.8§ n/a 

Nitrogen† (g N kg-1) 17.9 42.4 19.5 22.5 8.1 7.8 

Ammonium-N (g N kg-1) 8.2 n/a 1.4 n/a 1.3 n/a 

C to N ratio n/a 6.7 n/a 12.4 n/a 15.7 

TC† (g C kg-1) n/a 283.3 n/a 278.4 n/a 122.5 

Electrical conductivity‡ (dS m-1) 4.5 n/a n/a n/a n/a n/a 

Moisture (mass basis) 0.77 0.77 0.41 0.28 0.31 0.26 

†Total carbon (TC) and total nitrogen (TN) were measured by dry combustion. 

‡Measured in saturated paste 1:2.  

§Measured by the TMECC 04.11 Electrometric pH Determinations for Compost. 1:5 Slurry 

Method. 
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Table A.5.4. Site descriptions of the Ste-Anne-de-Bellevue, QC; Truro, NS; and Edmonton, AB sites where experiments were 

conducted across Canada from 2017 to 2019. 

Site climate and soil parameters Ste-Anne-de-Bellevue Site Truro Site Edmonton Site 

Ecozone Mixed wood plain Atlantic maritime Prairies 

Ave. annual rainfall (mm) 785 928 339 

Ave. annual snowpack (cm) 206 162 115 

Ave. annual temperature (°C) 6.5 6.2 3.9 

Ave. growing season temp. (°C) 16 15 16.5 

Crop grown Silage corn Silage corn Barley 

Growing season for crop May to October May to September June to September 

Soil class Gleysolic Podzolic/Luvisolic Chernozomic 

Soil texture Loam Sandy loam Silty clay loam 

Bulk density (g cm-3) 1.21 ± 0.06 1.31 ± 0.05 1.18 ± 0.05 

Soil pH 6.1 ± 0.2 5.7 ± 0.2 6.1 ± 0.2 

Clay content (g kg-1) 190 ± 10 103 ± 15 342 ± 15 

Sand (g kg-1) 490 ± 20 589 ± 15 70 ± 10 

Silt (g kg-1) 320 ± 15 309± 12 460 ± 10 

Porosity (cm3 cm-3) 0.54 ± 0.02 0.51 ± 0.01 0.56 ± 0.02 

Conductivity (m hr-1) 0.015 ± 0.008 0.046 ± 0.005 0.008 ± 0.001 
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field capacity (cm3 cm-3) 0.46 ± 0.05 0.382 ± 0.05 0.391 ± 0.05 

wilting point (cm3 cm-3) 0.243 ± 0.04 0.161 ± 0.05 0.251 ± 0.05 

Initial Soil NO3
−(mg N kg-1) 10cm† 9.0 ± 0.2 24.2 ± 0.3 13.3 ± 0.1 

Initial Soil NH4
+(mg N kg-1) 10cm† 1.52 ± 0.15 3.91 ± 0.01 4.00 ± 0.01 

SOC at 0-10cm of soil (kg C kg-1)† 0.013 ± 0.005 0.012 ± 0.005 0.055 ± 0.005 

† NO3
−= nitrate, NH4

+= ammonium, and SOC = soil organic carbon. 

  



283 
 

Table A.5.5.  Values of mean air temperature (ºC), total potential evapotranspiration (mm), total precipitation (mm), and ratio of 

precipitation to potential evapotranspiration during the growing season in the Ste-Anne-de-Bellevue, QC (May to October); Truro, NS 

(May to October); and Edmonton, AB (June to August) sites between 2017 and 2019.  

Site Year Air 

temperature 

 (ºC) 

Potential 

evapotranspiration 

(mm) 

Precipitation (mm) Precipitation/ 

potential evapotranspiration 

Edmonton 2017 14.0 243.2 136.8 0.56 

Edmonton 2018 11.9 242.3 168.8 0.70 

Edmonton 2019 11.0 236.9 328.6 1.39 

Ste-Anne-de-Bellevue 2017 17.3 549.9 648.4 1.18 

Ste-Anne-de-Bellevue 2018 17.1 559.3 392.6 0.70 

Ste-Anne-de-Bellevue 2019 16.0 546.2 624.8 1.14 

Truro 2017 14.5 532.6 491.3 0.92 

Truro 2018 13.8 538.5 611.3 1.14 

Truro 2019 12.9 531.5 715.9 1.35 

  



284 
 

Table A.5.6.  Management practices (tillage, fertilizer and biosolids application, planting, and harvesting) at Ste-Anne-de-Bellevue, 

QC; Truro, NS; and Edmonton, AB sites during field experiments from 2017 to 2019.  

Management practice Year 

Ste-Anne-

de-Bellevue 

Truro  Edmonton 

Chamber base dimensions (L × W × H) 

(cm) 

n/a 50 ⨯ 50 ⨯ 15 40 ⨯ 20 ⨯ 15 64.1 ⨯ 15.6 ⨯ 15 

Chamber cover dimensions (L × W × H) 

(cm) 

n/a 50 ⨯ 50 ⨯ 15 40 ⨯ 20 ⨯ 15 50 ⨯ 50 ⨯ 15 

Plot dimension (L × W) (m) n/a 8 ⨯ 5 8 ⨯ 6 8 ⨯ 2 

Quantity of crop residue N (kg N ha-1) 

2
0
1
7
 

0 0 0 

Date of biosolids application 23-May 10-May 31-May 

Quantity of applied biosolids N (kg N ha-1) 

(biosolids only/half-rate + urea) 

162/120 

145/72 (digested),  

173/86 (alkaline-stabilized),  

239/120 (composted) 

192/96 

Date of tillage/incorporation 15-May 11-May 31-May 

Type of till Chisel plough Disk plough Rotary plough 
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Date of planting with initial mineral N 8-Jun 20-May 1-Jun 

Mineral N applied at planting (kg N ha-1) 39 36 96 

Planting rate (seeds per hectare) 76,000 84,000 n/a 

Date of urea application 5-Jul 4-Jul 31-May 

Quantity of urea N applied (kg N ha-1)  

(urea only/half-rate + urea) 

120/60 126/66 96/48 

Date of harvest 4-Oct 17-Oct 17-Aug 

Date of termination till  - 20-Oct 17-Aug 

Quantity of crop residue N (kg N ha-1) 

2
0
1
8
 

9.4 11.1 2.0 

Date of biosolids application 15-May 17-May 4-Jun 

Quantity of applied biosolids N (kg N ha-1) 

(biosolids only/half-rate + urea) 

162/120 

120/80 (digested),  

180/90 (alkaline-stabilized),  

180/90 (composted) 

192/96 

Date of tillage/incorporation 3-May 18-May 4-Jun 

Type of till Chisel plough Disk plough Rotary plough 

Date of planting with initial mineral N 14-Jun 24-May 5-Jun 
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Mineral N applied at planting (kg N ha-1) 36 30 96 

Planting rate (seeds per hectare) 76,000 84,000 n/a 

Date of urea application 19-Jul 23-Jul 4-Jun 

Quantity of urea N applied (kg N ha-1)  

(urea only/half-rate + urea) 

120/60 120/68  96/48 

Date of harvest 18-Oct 15-Oct 15-Aug 

Date of termination till 20-Oct 18-Oct  15-Aug 

Quantity of crop residue N (kg N ha-1) 

2
0
1
9
 

9.4 11.1 2.0 

Date of biosolids application 15-May 7-May 5-Jun 

Quantity of applied biosolids N  

(biosolids only/half-rate + urea) 

162/120 

145/72 (digested),  

173/86 (alkaline-stabilized),  

239/120 (composted) 

1230/615 (digested),  

402/201 (alkaline-stabilized),  

351/176 (composted) 

Date of tillage/incorporation 6-May 8-May 5-Jun 

Type of till Chisel plough Disk plough Rotary plough 

Date of planting with initial mineral N 24-May 31-May 5-Jun 

Mineral N applied at planting (kg N ha-1) 36 30 96 
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Planting rate (seeds per hectare) 76,000 84,000 n/a 

Date of urea application 30-May 7-Aug 2-Jun 

Quantity of urea N applied (kg N ha-1)  

(urea only/half-rate + urea) 

120/60 120/60 96/48 

Date of harvest 21-Oct 22-Oct 22-Aug 

Date of termination till 22-Oct 25-Oct 22-Aug 
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Table A.5.7.  List of crop, soil and climate parameters used in DNDC calibration and simulation 

of carbon and nitrogen cycling on the Ste-Anne-de-Bellevue, QC; Truro, NS; and Edmonton, AB 

sites. † 

Model parameter † Ste-Anne-de-Bellevue Truro Edmonton Unit† 

Land-use type Upland  Upland  Upland  - 

Bulk density 1.21 1.18 1.18 g cm-3 

Soil pH 7.0 5.7 6.1 - 

Clay fraction 0.19 0.10 0.34 - 

Porosity 0.45 0.46 0.55 cm3 cm-3 

Field capacity 0.46 0.60 0.66 WFPS 

Wilting point 0.20 0.30 0.46 WFPS 

Hydraulic conductivity 0.015 0.046 0.015 m hr-1 

Top layer SOC to 20 cm depth 0.015 0.014 0.054 kg C kg-1 

Litter fraction 0.01 0.01 0.01 - 

Humads fraction 0.19 0.09 0.02 - 

Humus fraction 0.80 0.90 0.97 - 

Crop residue left in field 0.10 0.10 0.10 - 

Snow melt factor# 1.10 1.50 1.50 - 

Soil evaporation factor# 0.80 0.70 0.80 - 

Run-off snow melt fraction 0.20 0.20 0.20 - 

N2O rain intensity factor# 0.70 0.50 0.50 - 

Litter decomposition factor# 0.80 1.00 0.01 - 

Humads decomposition factor# 0.80 1.00 0.10 - 
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Humus decomposition factor# 0.80 1.00 0.10 - 

Denitrifier growth rate# 1.95 1.35 0.50 - 

Grain yield 4,800 4,700 2,150 kg C ha-1 yr-1 

Grain fraction of crop biomass 0.25 0.25 0.30 - 

Leaf fraction of crop biomass 0.30 0.30 0.23 - 

Stem fraction of crop biomass 0.30 0.30 0.23 - 

Root fraction of crop biomass 0.15 0.15 0.24 - 

TDD 2600 2600 1500 °C d 

Optimum crop temperature 25 30 18 °C 

Crop water requirement 151 150 150 g water g-1 DM 

N in rainfall 0.19 0.15 5.90 mg g-1 

Maximum air NH3 concentration 0.15 0.06 0.45 µg N m-3 

Air CO2 concentration 407 400 405 mg g-1 

# dimensionless variables influencing soil carbon and nitrogen mineralization and water flow 
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Table A.5.8.  Ranges of values used to conduct DNDC sensitivity analysis on the effects of changing crop, soil, and climate parameters 

on growing season N2O emissions from soils amended with biosolids in Ste-Anne-de-Bellevue, QC; Truro, NS; and Edmonton, AB.  

Mesophilic anaerobically digested biosolids were used as the default for the model simulations. Def = default, Min. = minimum, and 

Max. = maximum values. 

Parameter and parameter type 

Data 

source 

Ste-Anne-de-Bellevue Truro Edmonton 

Def. Min. Max. Def. Min. Max. Def. Min. Max. 

Topsoil organic C (kg C Kg-1 soil) 

--
--

--
--

--
--

-S
o
il

--
--

--
--

--
--

--
- 

Estimated  0.015   0.012   0.018 0.014 0.011 0.017 0.054 0.04 0.063 

Clay fraction (kg kg-1 soil) Measured 0.19 0.15 0.23 0.12 0.1 0.14 0.34 0.27 0.41 

Bulk density (g cm-3) Measured 1.31 1.27 1.4 1.4 1.12 1.68 1.18 1.15 1.21 

Conductivity (m hr-1) Estimated 0.015 0.0135 0.0165 0.046 0.0414 0.0506 0.015 0.0135 0.0165 

Porosity (cm3 cm-3) Estimated 0.45 0.405 0.495 0.46 0.414 0.506 0.55 0.495 0.605 

Soil pH (-) Estimated  7.0 6.6 7.4 5.7 5.4 6.0 6.1 5.8 6.4 

Field capacity (WFPS) Estimated  0.46 0.40 0.52 0.60 0.54 0.66 0.70 0.63 0.77 

Wilting point (WFPS) Estimated  0.20 0.16 0.24 0.30 0.27 0.33 0.46 0.41 0.51 

Litter fraction (kg C kg-1 C) Estimated  0.01   0.005   0.02 0.01 0.005 0.02 0.01 0.005 0.02 

Humads fraction (kg C kg-1 C) Estimated  0.19  0.05 0.25 0.09 0.05 0.14 0.02 0.015 0.025 
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Maximum yield (kg C ha-1 yr-1) 

C
ro

p
 m

an
ag

em
en

t-
 

Estimated  4800 4400 5200 4700 4230 5170 2150 1900 2400 

Grain C:N ratio (-) Estimated  50 45 65 59 45 65 35 30 50 

Water demand (g water g-1 DM) Estimated  151 120 181 150 120 181 141 113 169 

Thermal degree days (ºC d) Estimated  2600 2340 2860 2600 2340 2860 1200 1080 1440 

Optimum temperature (ºC) Estimated 22 22.5 27.5 30 22.5 27.5 18 16.2 19.8 

Biosolids N applied (kg N ha-1) Estimated  162 129.6 194.4 162 129.6 194.4 96 86.4 105.6 

Crop residue (kg C kg-1 C ha-1) Estimated  0.2 0.1 0.3 0.2 0.1 0.3 0.1 0.05 0.15 

Fertilizer depth (cm) Estimated  15 5 20 15 5 20 15 5 20 

Urea N applied (kg N ha-1) Estimated 39 30 45 30 24 36 10 8 12 

Manure depth (cm) Estimated  15 5 20 15 5 20 15 5 20 

Manure C/N Estimated  6.0 4.0 7.5 6.0 4.0 7.5 7.73 6.2 9.3 

Manure pH Estimated  8.22 6.7 9.2 8.22 6.7 9.2 8.15 6.5 9.9 

Solar radiation (MJ m-2 d-1)  

E
n
v
ir

o
n
m

en
t Estimated  value -10% +10% value -10% +10% value -10% +10% 

Precipitation (cm) Estimated  value -10% +10% value -10% +10% value -10% +10% 

Air temperature (ºC) Estimated value -1 +1 value -1 +1 value -1 +1 

 



292 
 

5.8.2. Appendix B: Tables Showing the Results of Statistical and Error Analysis 

Table A.5.9. Four-way ANOVA table for the effects of Site, fertilizer N source (Fert), method of 

application (MA) and annual effects (Year) on N2O emissions during the growing season across 

Ste-Anne-de-Bellevue (QC; 2018 and 2019), Truro (NS; 2017 to 2019), and Edmonton (AB; 2017 

and 2018) sites at α = 0.05. 

Source DF Sum of 

Squares 

Mean 

Square 

F value Pr(>F) Significance 

Fert 7 112.518 16.074 32.1498 <2.0E16 *** 

Year 2 81.814 40.907 81.8186 <2.0E16 *** 

MA 1 2.752 2.752 5.504 0.0196007 * 

Site 2 85.837 42.918 85.8419 <2.0E16 *** 

Fert:Year 14 12.34 0.881 1.7629 0.04329 * 

Fert:MA 6 3.559 0.593 1.1865 0.3131656 

 
Year:MA 2 0.39 0.195 0.3896 0.6776863 

 
Fert:Site 14 16.549 1.182 2.3643 0.0039358 ** 

Year:Site 2 8.661 4.331 8.6617 0.0002184 *** 

MA:Site 2 2.765 1.383 2.7654 0.0644973 . 

Fert:Year:MA 12 5.351 0.446 0.8919 0.5555328 

 
Fert:Year:Site 14 16.127 1.152 2.304 0.0050728 ** 

Fert:MA:Site 12 1.862 0.155 0.3103 0.987379 

 
Year:MA:Site 2 0.88 0.44 0.8803 0.415687 

 
Fert:Year:MA:Site 12 3.423 0.285 0.5706 0.8653979 

 
Residuals 311 155.491 0.5       
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Note: p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), p < 0.1 (.), indicates significant influence of 

effect ((factor or combination of factors)) on growing season N2O emission at the p value in the 

brackets. p < 0.05 (*) was the tested significance level for the main and interaction effects in this 

study.  

 

Table A.5.10. Tukey HSD pairwise comparison of means of growing season N2O emission due to 

site-specific differences where the respective soils were amended with either surface spread or soil 

incorporated biosolids and/or urea between 2017 and 2019. Mean differences are significant at α 

= 0.05.  

Site log(N2O) std N se ††groups 

Ste-Anne-de-Bellevue 7.5376 1.07225 120 0.09788 a 

Truro 7.04557 0.81128 176 0.06115 b 

Edmonton 5.97094 0.92782 120 0.0847 c 

†† Different letters within the “group” column represent significant differences at p < 0.05 based 

on Tukey’s test for pairwise comparison.  
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Table A.5.11. Tukey HSD pairwise comparison of means of growing season N2O emission due to 

fertilizers (biosolids and/or urea) applied on the surface or incorporated into the soil in Ste-Anne-

de-Bellevue (QC; 2018 and 2019), Truro (NS; 2017 to 2019), and Edmonton (AB; 2017 and 2018) 

sites at α = 0.05. 

Fertilizer log(N2O) std N se ††groups 

Digested biosolids 7.752 1.2505 56 0.16711 a 

Digested biosolids + urea 7.56127 0.99715 55 0.13446 a 

Urea 6.80985 1.03591 56 0.13843 b 

Alkaline-stabilized biosolids + urea 6.79322 0.9984 56 0.13342 b 

Composted biosolids + urea 6.67992 0.91364 56 0.12209 b 

Alkaline-stabilized biosolids 6.67811 0.8712 55 0.11747 b 

Composted biosolids 6.25693 0.75367 55 0.10162 c 

Unfertilized 6.06624 1.01316 27 0.19498 c 

†† Different letters within the “group” column represent significant differences at p < 0.05 based 

on Tukey’s test for pairwise comparison.  

 

Table A.5.12. Tukey HSD pairwise comparison of means of growing season N2O emission due to 

method of application (MA) of the fertilizers (biosolids and/or urea) in Ste-Anne-de-Bellevue (QC; 

2018 and 2019), Truro (NS; 2017 to 2019), and Edmonton (AB; 2017 and 2018) sites at α = 0.05. 

Method of application log(N2O) std n se ††groups 

Soil incorporated 7.01831 1.11148 195 0.07959 a 

Surface spread 6.84889 1.07291 194 0.07703 b 

†† Different letters within the “group” column represent significant differences at p < 0.05 based 

on Tukey’s test for pairwise comparison.  
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Table A.5.13. Tukey HSD pairwise comparison of means of growing season N2O emission due to 

annual effects (Year) across Ste-Anne-de-Bellevue (QC; 2018 and 2019), Truro (NS; 2017 to 

2019), and Edmonton (AB; 2017 and 2018) sites where the respective soils were amended with 

biosolids and/or urea. Mean differences are significant at α = 0.05.  

Year log(N2O) std N se ††groups 

2019 7.43548 1.00874 120 0.09209 a 

2018 6.89677 0.97744 179 0.07306 b 

2017 6.27577 1.09615 117 0.10134 c 

†† Different letters within the “group” column represent significant differences at p < 0.05 based 

on Tukey’s test for pairwise comparison.  

 

Table A.5.14. The three-way ANOVA table for the effects of fertilizer N source (Fert), method of 

application (MA) and annual effects (Year) on N2O emissions during the growing season in 2018 

and 2019 at the Ste-Anne-de-Bellevue, QC site at α = 0.05. 

Source DF Sum of Squares Mean Square F value Pr(>F) Significance 

Fert 7 72.484 10.3548 20.334 3.99E-16 *** 

MA 1 0.196 0.1962 0.3852 0.536383 
 

Year 1 7.571 7.5714 14.8681 0.000216 *** 

Fert:MA 6 0.67 0.1116 0.2192 0.969715 
 

Fert:Year 7 7.09 1.0129 1.9891 0.06516 
 

MA:Year 1 1.525 1.5247 2.994 0.087 
 

Fert:MA:Year 6 1.448 0.2414 0.474 0.826023 
 

Residuals 90 45.831 0.5092 
   

Note: ***, indicates significant influence of effect ((factor or combination of factors)) on 

growing season N2O emission at p < 0.001. 
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Table A.5.15. Tukey HSD pairwise comparison of means of growing season N2O emission due to 

annual effects at the Ste-Anne-de-Bellevue, QC site where soil was amended with biosolids and/or 

urea in 2018 and 2019. Mean differences are significant at α = 0.05.  

Year log(N2O) std n se ††groups 

2019 7.79 1.00 60 0.13 a 

2018 7.29 1.09 60 0.14 b 

†† Different letters within the “group” column represent significant differences at p < 0.05 

based on Tukey’s test for pairwise comparison.  
 

 

 

Table A.5.16. Tukey HSD pairwise comparison of means of growing season N2O emission in 

2018 and 2019 due to fertilizer (biosolids and/or urea) type applied at the Ste-Anne-de-Bellevue, 

QC site (α = 0.05).  

Fertilizer type log(N2O) std n se ††groups 

Digested biosolids 8.85 0.76 16 0.19 a 

Digested biosolids + urea 8.47 0.53 16 0.13 a 

Urea 7.62 0.99 16 0.25 b 

Composted biosolids + urea 7.46 0.80 16 0.20 b 

Alkaline-stabilized biosolids + urea 7.31 0.76 16 0.19 bc 

Alkaline-stabilized biosolids 7.10 0.62 16 0.16 bc 

Composted biosolids 6.54 0.57 16 0.14 c 

Control 6.38 1.06 8 0.37 c 

†† Different letters within the “group” column represent significant differences at p < 0.05 

based on Tukey’s test for pairwise comparison. Value are means ± standard deviation (n = 4). 
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Table A.5.17. The three-way ANOVA table for the effects of fertilizer N source (Fert), method of 

application (MA) and annual effects (Year) on growing season N2O emission in 2018 and 2019 at 

the Truro site (α = 0.05). 

Source DF Sum of Square Mean Square F value Pr(>F)  Significance 

Fert 7 23.645 3.3778 6.7555 7.67E-07 *** 

Year 2 1.951 0.9753 1.9505 0.14631  

MA 1 0.381 0.381 0.7621 0.38428  

Fert:Year 14 16.52 1.18 2.36 0.00596 ** 

Fert:MA 6 1.596 0.2661 0.5321 0.78306  

Year:MA 2 1.004 0.5018 1.0037 0.36934  

Fert:Year:MA 12 4.583 0.3819 0.7638 0.68641  

Residuals 131 65.501 0.5    

Note: p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), p < 0.1 (.), indicates significant influence of 

effect ((factor or combination of factors)) on growing season N2O emission at the p value in the 

brackets. p < 0.05 (*) was the tested significance level for the main and interaction effects in 

this study.  
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Table A.5.18. Tukey HSD pairwise comparison of means of growing season N2O emission in 

2018 and 2019 due to fertilizer (biosolids and/or urea) type applied at the Truro, NS site (α = 0.05).  

Fertilizer type log(N2O) std n se ††groups 

Digested biosolids + urea 7.60 0.64 23 0.13 a 

Digested biosolids 7.55 1.04 24 0.21 ab 

Alkaline-stabilized biosolids + urea 7.10 0.97 24 0.20 abc 

Alkaline-stabilized biosolids 7.06 0.64 23 0.13 abc 

Urea 6.93 0.56 24 0.11 bc 

Composted biosolids + urea 6.72 0.63 24 0.13 c 

Composted biosolids 6.58 0.55 23 0.11 c 

Control 6.57 0.63 11 0.19 c 

†† Different letters within the “group” column represent significant differences at p < 0.05 

based on Tukey’s test for pairwise comparison. Value are means ± standard deviation (n = 4). 
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Table A.5.19. Tukey HSD pairwise comparison of means of logarithms of growing season N2O 

emission (g N ha-1) in 2018 and 2019 due to interaction of year and fertilizer (biosolids and/or 

urea) type applied on at the Truro, NS site (α = 0.05).  

Year × Fertilizer interaction log(N2O) Std. Dev. N SE ††groups 

2019:Digested biosolids 8.17 0.71 8 0.25 a 

2019:Digested biosolids + urea 7.93 0.75 8 0.27 ab 

2018:Alkaline-stabilized biosolids + urea 7.74 0.52 8 0.18 abc 

2017:Digested biosolids + urea 7.57 0.48 8 0.17 abcd 

2017:Digested biosolids 7.31 1.02 8 0.36 abcd 

2018:Urea 7.27 0.48 8 0.17 abcd 

2018:Digested biosolids + urea 7.26 0.55 7 0.21 abcd 

2019:Alkaline-stabilized biosolids + urea 7.21 0.66 8 0.23 abcd 

2018:Digested biosolids 7.17 1.15 8 0.41 abcd 

2019:Alkaline-stabilized biosolids 7.11 0.70 8 0.25 abcd 

2018:Alkaline-stabilized biosolids 7.05 0.59 8 0.21 abcd 

2018:Control 7.01 0.66 4 0.33 abcd 

2017:Alkaline-stabilized biosolids 7.00 0.72 7 0.27 abcd 

2017:Urea 6.82 0.33 8 0.12 bcd 

2018:Composted biosolids + urea 6.80 0.79 8 0.28 bcd 

2018:Composted biosolids 6.75 0.66 8 0.23 bcd 

2017:Composted biosolids + urea 6.73 0.71 8 0.25 bcd 

2017:Control 6.72 0.43 3 0.25 bcd 

2019:Urea 6.71 0.71 8 0.25 bcd 

2017:Composted biosolids 6.65 0.43 7 0.16 bcd 

2019:Composted biosolids + urea 6.62 0.42 8 0.15 cd 

2017:Alkaline-stabilized biosolids + urea 6.36 1.13 8 0.40 d 

2019:Composted biosolids 6.35 0.49 8 0.17 d 

2019:Control 6.02 0.25 4 0.12 d 

 †† Different letters within the “group” column represent significant differences at p < 0.05 based on 

Tukey’s test for pairwise comparison. Value are means ± standard deviation (n = 4). 
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Table A.5.20. The three-way ANOVA table for the effects of fertilizer N source (Fert), method of 

application (MA) and annual effects (Year) on growing season N2O emission in 2018 and 2019 at 

the Truro, NS site (α = 0.05). 

Source DF Sum Sq Mean Sq F value Pr(>F) Significance 

Fert 7 33.79 4.8272 9.8382 4.68E-09 *** 

Year 1 10.807 10.8071 22.0257 9.57E-06 *** 

MA 1 3.586 3.5861 7.3089 0.0082 ** 

Fert:Year 7 4.035 0.5765 1.1749 0.32514 
 

Fert:MA 6 3.726 0.6209 1.2655 0.28128 
 

Year:MA 1 0.006 0.0065 0.0132 0.90869 
 

Fert:Year:MA 6 2.332 0.3887 0.7921 0.57844 
 

Residuals 90 44.159 0.4907 
   

Note: p < 0.001 (***), p < 0.01 (**), p < 0.05 (*), p < 0.1 (.), indicates significant influence 

of effect ((factor or combination of factors)) on growing season N2O emission at the p value 

in the brackets. p < 0.05 (*) was the tested significance level for the main and interaction 

effects in this study.  
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Table A.5.21. Tukey HSD pairwise comparison of means of growing season N2O emission in 

2017 and 2018 due to fertilizer type (biosolids and/or urea) applied on a soil at the Edmonton, AB 

site (α = 0.05).  

Fertilizer type log(flux) std N se ††groups 

Digested biosolids 6.95 1.21 16 0.30 a 

Digested biosolids + urea 6.60 0.91 16 0.23 ab 

Composted biosolids + urea 5.84 0.63 16 0.16 bc 

Urea 5.82 0.83 16 0.21 c 

Alkaline-stabilized biosolids + urea 5.82 0.44 16 0.11 c 

Alkaline-stabilized biosolids 5.71 0.59 16 0.15 c 

Composted biosolids 5.51 0.67 16 0.17 c 

Control 5.06 0.68 8 0.24 c 

 †† Different letters within the “group” column represent significant differences at p < 0.05 based 

on Tukey’s test for pairwise comparison. Value are means ± standard deviation (n = 4).  

 

Table A.5.22. Tukey HSD pairwise comparison of means of growing season N2O emission due to 

year of fertilizer application at the Edmonton, AB site where soil was amended with biosolids 

and/or urea in 2017 and 2018. Mean differences are significant at α = 0.05.  

Year log(flux) std N se †† groups 

2018 6.27 0.74 60 0.10 a 

2017 5.67 1.00 60 0.13 b 

 †† Different letters within the “group” column represent significant differences at p < 0.05 based 

on Tukey’s test for pairwise comparison. Value are means ± standard deviation (n = 4).  
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Table A.5.23. Tukey HSD pairwise comparison of means of growing season N2O emission in 

2017 and 2018 due to method of applying fertilizers (biosolids and/or urea) on a soil at the 

Edmonton, AB site at α = 0.05.  

Method of application log(flux) std N se ††groups 

Soil incorporated 6.21 1.04 8 0.37 a 

Surface spread 5.86 0.73 56 0.10 b 

†† Different letters within the “group” column represent significant differences at p < 0.05 based 

on Tukey’s test for pairwise comparison. Value are means ± standard deviation (n = 4). 
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Table A.5.24. Error analysis between measured and DNDC-simulated N2O emissions from 2017 to 2019 across the three sites 

(Edmonton, AB; Ste-Anne-de-Bellevue, QC; and Truro, NS). 

Site Amendment Year Measured  

(kg N ha-1)  

Simulated  

(kg N ha-1)  

M 

(kg N 

ha-1) 

E (%) E95% 

(%) 

RMSE 

(kg N ha-

1) 

RMSE95% 

(kg N ha-

1) 
Mean Std. 

Dev. 

Mean Std. 

Dev. 

E
d
m

o
n
to

n
 

 

Alkaline-stabilized biosolids 2017 0.26 0.16 0.66 0.32 -0.40 -157.34 69.00 0.40 0.18 

Alkaline-stabilized biosolids 2018 0.46 0.23 0.58 0.21 -0.13 -27.96 57.15 0.13 0.26 

Alkaline-stabilized biosolids + Urea 2017 0.36 0.21 0.42 0.00 -0.05 -14.62 64.96 0.05 0.24 

Alkaline-stabilized biosolids + Urea 2018 0.37 0.11 0.33 0.00 0.04 10.41 32.22 0.04 0.12 

Composted biosolids 2017 0.29 0.23 0.48 0.17 -0.19 -64.65 87.30 0.19 0.25 

Composted biosolids 2018 0.31 0.13 0.35 0.08 -0.04 -14.30 47.38 0.04 0.15 

Composted biosolids + Urea 2017 0.35 0.21 0.33 0.14 0.02 6.52 68.89 0.02 0.24 

Composted biosolids + Urea 2018 0.45 0.19 0.28 0.07 0.17 38.80 48.12 0.17 0.22 

Unfertilized 2017 0.09 0.03 0.26 0.13 -0.17 -190.40 51.12 0.17 0.05 

Unfertilized 2018 0.29 0.02 0.16 0.05 0.13 45.42 13.42 0.13 0.04 

Digested biosolids 2017 1.65 1.41 1.65 0.59 0.00 0.18 95.68 0.00 1.58 

Digested biosolids 2018 1.73 1.40 1.22 0.20 0.50 29.19 91.05 0.50 1.57 

Digested biosolids + Urea 2017 0.77 0.96 1.26 0.65 -0.49 -62.97 139.58 0.49 1.08 

Digested biosolids + Urea 2018 1.41 1.26 0.81 0.44 0.60 42.50 100.70 0.60 1.42 

Urea 2017 0.24 0.22 0.74 0.26 -0.51 -213.67 104.68 0.51 0.25 

Urea 2018 0.68 0.35 0.41 0.07 0.27 39.40 57.57 0.27 0.39 

S
te

-A
n
n
e-

d
e-

B
el

le
v

u
e Alkaline-stabilized biosolids 2018 1.09 0.75 1.92 0.18 -0.83 -75.79 77.22 0.83 0.84 

Alkaline-stabilized biosolids 2019 1.76 0.71 2.18 0.51 -0.42 -23.69 45.10 0.42 0.79 

Alkaline-stabilized biosolids + Urea 2018 1.13 0.72 1.73 0.03 -0.60 -52.43 71.15 0.60 0.81 

Alkaline-stabilized biosolids + Urea 2019 2.77 1.72 1.91 0.04 0.86 31.14 70.02 0.86 1.94 

Composted biosolids 2018 0.53 0.20 1.31 0.26 -0.77 -145.33 41.65 0.77 0.22 

Composted biosolids 2019 1.09 0.61 1.28 0.34 -0.19 -17.49 63.13 0.19 0.69 

Composted biosolids + Urea 2018 2.00 1.39 1.66 0.07 0.34 17.03 78.12 0.34 1.56 

Composted biosolids + Urea 2019 2.44 1.33 1.52 0.00 0.92 37.64 61.42 0.92 1.50 
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Site Amendment Year Measured  

(kg N ha-1)  

Simulated  

(kg N ha-1)  

M 

(kg N 

ha-1) 

E (%) E95% 

(%) 

RMSE 

(kg N ha-

1) 

RMSE95% 

(kg N ha-

1) 
Mean Std. 

Dev. 

Mean Std. 

Dev. 

Unfertilized 2018 0.36 0.35 0.51 0.16 -0.15 -42.42 155.10 0.15 0.56 

Unfertilized 2019 1.37 0.44 0.51 0.18 0.85 62.45 51.41 0.85 0.70 

Digested biosolids 2018 5.93 4.39 6.86 2.04 -0.93 -15.68 83.32 0.93 4.94 

Digested biosolids 2019 11.58 5.12 6.92 1.68 4.66 40.23 49.77 4.66 5.76 

Digested biosolids + Urea 2018 5.39 2.97 5.64 0.32 -0.25 -4.57 62.04 0.25 3.34 

Digested biosolids + Urea 2019 5.52 3.52 4.39 0.25 1.13 20.54 71.72 1.13 3.96 

Urea 2018 2.81 1.64 2.47 0.29 0.34 12.02 65.82 0.34 1.85 

Urea 2019 3.42 4.13 2.21 0.92 1.21 35.36 135.73 1.21 4.64 

T
ru

ro
 

 

Alkaline-stabilized biosolids 2017 1.16 0.89 2.55 1.95 -1.39 -119.14 86.49 1.39 1.01 

Alkaline-stabilized biosolids 2018 1.32 0.66 3.27 2.88 -1.95 -147.64 56.15 1.95 0.74 

Alkaline-stabilized biosolids 2019 1.52 1.12 3.25 3.76 -1.73 -114.17 83.02 1.73 1.26 

Alkaline-stabilized biosolids + Urea 2017 0.91 0.79 1.56 0.06 -0.64 -70.44 96.77 0.64 0.88 

Alkaline-stabilized biosolids + Urea 2018 2.57 1.27 1.54 0.01 1.02 39.83 55.86 1.02 1.43 

Alkaline-stabilized biosolids + Urea 2019 1.62 1.02 0.57 0.00 1.05 64.59 70.79 1.05 1.15 

Composted biosolids 2017 0.72 0.42 0.88 0.26 -0.16 -22.10 65.26 0.16 0.47 

Composted biosolids 2018 1.00 0.50 1.03 0.33 -0.03 -3.23 55.91 0.03 0.56 

Composted biosolids 2019 0.62 0.24 0.51 0.22 0.11 17.58 44.00 0.11 0.27 

Composted biosolids + Urea 2017 1.01 0.60 1.03 0.00 -0.02 -1.94 66.40 0.02 0.67 

Composted biosolids + Urea 2018 1.20 1.08 1.03 0.01 0.17 13.93 100.90 0.17 1.21 

Composted biosolids + Urea 2019 0.81 0.30 0.34 0.01 0.46 57.29 41.74 0.46 0.34 

Unfertilized 2017 0.65 0.56 1.20 0.71 -0.55 -84.31 136.40 0.55 0.89 

Unfertilized 2018 1.29 0.76 0.98 0.53 0.31 24.36 93.18 0.31 1.20 

Unfertilized 2019 0.42 0.11 0.68 0.49 -0.25 -60.28 42.60 0.25 0.18 

Digested biosolids 2017 2.22 2.00 4.67 2.59 -2.45 -110.11 101.38 2.45 2.26 

Digested biosolids 2018 2.12 1.96 5.73 4.78 -3.61 -170.19 103.74 3.61 2.20 

Digested biosolids 2019 4.42 3.14 5.64 7.21 -1.22 -27.72 80.01 1.22 3.53 

Digested biosolids + Urea 2017 2.13 0.94 1.89 0.03 0.24 11.16 49.59 0.24 1.05 
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Site Amendment Year Measured  

(kg N ha-1)  

Simulated  

(kg N ha-1)  

M 

(kg N 

ha-1) 

E (%) E95% 

(%) 

RMSE 

(kg N ha-

1) 

RMSE95% 

(kg N ha-

1) 
Mean Std. 

Dev. 

Mean Std. 

Dev. 

Digested biosolids + Urea 2018 1.43 1.13 1.89 0.03 -0.46 -32.42 88.98 0.46 1.27 

Digested biosolids + Urea 2019 3.47 2.46 0.57 0.00 2.90 83.61 79.75 2.90 2.77 

Urea 2017 0.96 0.32 1.52 0.54 -0.56 -58.66 38.01 0.56 0.36 

Urea 2018 1.59 0.82 1.29 0.46 0.30 19.00 57.77 0.30 0.92 

Urea 2019 1.04 0.83 0.87 0.67 0.17 16.49 90.53 0.17 0.94 

 

Table A.5.25. Statistical analyses of the model performance in simulating cumulative nitrous oxide emissions during the growing season 

from 2017 to 2019 for the calibration and validation stages across the three sites (Edmonton, AB; Ste-Anne-de-Bellevue, QC; and Truro, 

NS). Model total error is not significant for RMSE < RMSE95. Model bias is not significant for E < E95.  

Site Dataset M 

(kg N ha-1) 

E (%) E95% (%) RMSE 

(kg N ha-1) 

RMSE95% 

(kg N ha-1) 

Ste-Anne-de-Bellevue Calibration 0.23 -16.1 84.8 1.16 2.36 

 
Validation 0.52 -9.2 82.1 1.08 2.77 

Truro Calibration 0.17 9.1 90.1 0.60 1.26 

 
Validation 0.44 9.0 95.9 0.83 1.68 

Edmonton Calibration -0.01 -11.0 96.4 0.13 0.41 

 
Validation 0.07 -17.1 96.0 0.27 0.55 
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Table A.5.26. Simulation input parameters and variables ranked according to the Morris sensitivity index (μ*) with respect to simulated 

cumulative N2O emissions in Ste-Anne-de-Bellevue (2018 and 2019), Truro (2017–2019), and Edmonton (2017 and 2018). The standard 

deviation (σ) indicates whether linear or nonlinear effects exist due to interactions with other inputs. The Pearson correlation coefficient 

(r) is an alternative measure of the strength of the association between the input and the N2O emissions. 

Ste-Anne-de-Bellevue 

 

Truro 

 

Edmonton 

†Parameter µ µ* σ r 

 

†Parameter µ µ* σ r 

 

†Parameter µ µ* σ r 

Soil pH -8.61 8.61 3.05 -0.62 

 

Soil pH 2.59 2.59 0.43 0.51 

 

Clay fraction -0.81 0.81 0.12 -0.47 

Manure C/N -5.00 5.00 2.16 -0.41 

 

Humads frac. -2.30 2.30 0.72 -0.33 

 

Acc. Temp. -0.27 0.31 0.21 -0.15 

Manure Org. N 3.08 3.08 0.89 0.12 

 

Bulk density 1.27 1.27 0.42 0.28 

 

Soil pH -0.30 0.30 0.07 -0.08 

Acc. temp. 2.20 2.20 0.98 0.10 

 

Precipitation 1.16 1.16 0.25 0.37 

 

Top layer SOC 0.25 0.25 0.11 0.09 

Clay fraction -1.69 1.69 0.48 -0.20 

 

Top layer SOC 0.91 0.91 0.32 0.18 

 

Min. air temp 0.20 0.20 0.11 0.16 

Precipitation 1.37 1.37 0.31 0.27 

 

Max. air temp 0.74 0.74 0.24 0.09 

 

Precipitation 0.20 0.20 0.12 0.22 

Field capacity 1.12 1.12 0.38 0.01 

 

Min. air temp 0.67 0.67 0.19 0.36 

 

Max. air temp 0.17 0.18 0.15 0.16 

Fert. depth -0.47 0.78 0.87 -0.13 

 

Fert. depth -0.23 0.23 0.21 -0.05 

 

Porosity -0.14 0.14 0.08 0.12 

Urea 0.76 0.76 0.23 0.08 

 

Field capacity 0.21 0.21 0.08 0.16 

 

Humads frac. 0.12 0.12 0.03 -0.06 

Top layer SOC 0.68 0.68 0.45 0.07 

 

Manure depth -0.15 0.17 0.18 -0.03 

 

Hydro cond. 0.11 0.11 0.08 -0.07 

Manure depth 0.24 0.67 0.95 0.20 

 

Solar rad. 0.15 0.15 0.06 -0.05 

 

Manure depth -0.10 0.10 0.04 -0.03 

Humads frac.  0.46 0.46 0.36 -0.20 

 

Acc. temp -0.03 0.15 0.20 0.15 

 

Field capacity -0.08 0.09 0.07 0.06 
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Ste-Anne-de-Bellevue 

 

Truro 

 

Edmonton 

†Parameter µ µ* σ r 

 

†Parameter µ µ* σ r 

 

†Parameter µ µ* σ r 

Max. yield -0.44 0.44 0.25 0.04 

 

Porosity -0.12 0.12 0.08 0.07 

 

Max. yield -0.07 0.07 0.03 0.05 

Hydro cond. 0.43 0.43 0.33 0.09 

 

Max. yield 0.07 0.11 0.13 0.23 

 

Bulk density 0.05 0.05 0.03 -0.06 

Grain C/N 0.36 0.36 0.20 0.09 

 

Water req. -0.05 0.11 0.11 -0.11 

 

Manure C/N -0.05 0.05 0.02 -0.14 

Bulk density 0.30 0.30 0.21 0.03 

 

Clay fraction 0.09 0.11 0.10 -0.14 

 

Manure pH -0.05 0.05 0.01 0.05 

Min. air temp. -0.28 0.29 0.19 0.08 

 

Manure C/N 0.08 0.09 0.08 -0.30 

 

Grain C/N 0.03 0.03 0.02 0.18 

Max. air temp. -0.17 0.25 0.24 0.12 

 

Manure Org. N 0.04 0.07 0.10 0.25 

 

Manure Org. N 0.03 0.03 0.01 -0.06 

Crop res. left 0.13 0.15 0.18 -0.01 

 

Grain C/N 0.00 0.06 0.08 0.37 

 

Litter fraction -0.02 0.02 0.02 0.00 

Solar rad. -0.08 0.14 0.18 0.05 

 

Litter frac. 0.04 0.04 0.06 -0.11 

 

Opt. temp. 0.00 0.01 0.02 -0.28 

Wilting point 0.08 0.13 0.21 0.02 

 

Opt. temp. -0.01 0.04 0.05 -0.02 

 

Wilting point 0.00 0.01 0.02 0.12 

Porosity -0.04 0.06 0.06 -0.14 

 

Wilting point -0.01 0.03 0.04 -0.05 

 

Water req. 0.00 0.01 0.01 -0.06 

Water req. -0.02 0.05 0.07 0.06 

 

Manure PH 0.01 0.03 0.05 -0.04 

 

Solar rad. 0.00 0.00 0.01 0.12 

Manure pH -0.04 0.04 0.08 0.03 

 

Urea -0.01 0.03 0.04 0.03 

 

Fert. depth 0.00 0.00 0.01 -0.12 

Litter frac. -0.03 0.03 0.03 0.01 

 

Crop res. left 0.01 0.01 0.01 0.11 

 

Crop res. left 0.00 0.00 0.00 0.09 

Opt. temp. 0.02 0.02 0.02 -0.12 

 

Hydro cond. 0.00 0.00 0.00 0.03 

 

Urea 0.00 0.00 0.00 -0.02 

Note: †Fert. Depth = fertilizer depth, Acc. Temp. = temperature degree days, Manure Org. N = biosolids N, Manure C/N = C to N ratio in 

biosolid, Top SOC = soil organic carbon in topsoil, Water req. = crop water requirement, Crop res. Left = crop residue amount left on the field after 

harvest, Solar rad. = solar radiation, Opt. temp. = optimum crop temperature, Hydro cond. = soil hydraulic conductivity, Litter frac. = fraction of 
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litter organic carbon in soil, Humads frac. = fraction of active humus in soil organic carbon based on measurements made in several field experiments 

(Li et al., 1994), Max./min air temp = maximum/minimum daily air temperature. 

μ = the mean of the distribution of the elementary effects (EE), which assesses the overall influence of the input on the simulated output; μ* = Morris 

sensitivity index, which is the estimate of the mean of the distribution of the absolute values of the elementary effects; and σ = the standard deviation 

of the distribution of the EE, which estimates the collective effects of the input due to non-linearity and/or interactions with other inputs.
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5.8.3. Appendix C: Equations used for DNDC Error Analysis 

𝑟 =  
∑ (𝑂𝑖 − �̅�)(𝑃𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑂𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑃𝑖 − �̅�)2𝑛

𝑖=1

 
(Eq. A.5.1) 

r is Pearson’s correlation coefficient, Oi is the ith measured value, �̅� is the average measured value, 

Pi is the ith simulated value, and �̅� is the average simulated value. 

𝐹 𝑣𝑎𝑙𝑢𝑒 =
(𝑛 − 2) × 𝑟2

(1 − 𝑟2)
 

(Eq. A 5.2) 

  

𝑅𝑀𝑆𝐸 = √
∑ (𝑂𝑖 − 𝑃𝑖)2𝑛

𝑖=1

𝑛
 

(Eq. A 5.3) 

  

 𝑅𝑀𝑆𝐸95% = √∑ (𝑆𝐸𝑖 × 𝑡𝑚,95)
2𝑛

𝑖=1

𝑛
 

(Eq. A 5.4) 

RMSE95% is the root mean-square error (RMSE) at 95% confidence interval, SEi is the standard 

error in the ith measurement, tm,95 is the Student’s t value for m replicates and 95% probability 

(P-value of 0.95), and n is the number of measurements. 

𝐸 (%) =
100

�̅�
×

∑ (𝑂𝑖 − 𝑃𝑖)𝑛
𝑖=1

𝑛
 

(Eq. A 5.5) 

  

𝐸95%(%) =
100

�̅�

∑ (𝑆𝐸𝑖 × 𝑡𝑚,95)𝑛
𝑖=1

𝑛
 

(Eq. A 5.6) 

  

E95% is the relative error (E) at 95% confidence interval. 
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5.8.4. Appendix D: Comparison between Measured and Estimated N2O Emissions during the Growing Season 

 

Figure A 5.1. Comparison between measured mean and standard deviation (n=4) values (X-axis) and IPCC Tier 1-estimated mean 

values (Y-axis) of nitrous oxide emissions during the growing season from a field in Edmonton, Ste-Anne-de-Bellevue, and Truro 

amended with biosolids and/or urea between 2017 and 2019. The black lines represent the trend lines, while the blue dashed lines 

represent the 1:1 line. 
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Figure A 5.2. Comparison between measured mean and standard deviation (n=4) values (X-axis) and IPCC Tier 1-estimated mean 

values (Y-axis) of nitrous oxide emissions during the growing season from all treatments across fields in Edmonton, Ste-Anne-de-

Bellevue, and Truro amended with biosolids and/or urea between 2017 and 2019. The black lines represent the trend lines, while the 

blue dashed lines represent the 1:1 line. 
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Figure A 5.3. Comparison between measured mean and standard deviation (n=4) values (X-axis) and IPCC Tier 2 (2008)-estimated 

mean values (Y-axis) of nitrous oxide emissions during the growing season from a field in Edmonton, Ste-Anne-de-Bellevue, and Truro 

amended with biosolids and/or urea between 2017 and 2019. The black lines represent the trend lines, while the blue dashed lines 

represent the 1:1 line. 
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Figure A 5.4. Comparison between measured mean and standard deviation (n=4) values (X-axis) and IPCC Tier 2 (2008)-estimated 

mean values (Y-axis) of nitrous oxide emissions during the growing season from all treatments across fields in Edmonton, Ste-Anne-

de-Bellevue, and Truro amended with biosolids and/or urea between 2017 and 2019. 
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Figure A 5.5. Comparison between measured mean and standard deviation (n=4) values (X-axis) and IPCC Tier 2 (2018)-estimated 

mean values (Y-axis) of nitrous oxide emissions during the growing season from a field in Edmonton, Ste-Anne-de-Bellevue, and Truro 

amended with biosolids and/or urea between 2017 and 2019. The black lines represent the trend lines, while the blue dashed lines 

represent the 1:1 line. 
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Figure A 5.6. Comparison between measured mean and standard deviation (n=4) values (X-axis) and IPCC Tier 2 (2018)-estimated 

mean values (Y-axis) of nitrous oxide emissions during the growing season from all treatments across fields in Edmonton, Ste-Anne-

de-Bellevue, and Truro amended with biosolids and/or urea between 2017 and 2019. The black lines represent the trend lines, while the 

blue dashed lines represent the 1:1 line. 
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Figure A 5.7. Comparison between measured mean and standard deviation (n=4) values (X-axis) and biosolids-corrected IPCC Tier 2 

(2018)-estimated mean values (Y-axis) of nitrous oxide emissions during the growing season from a field in Edmonton, Ste-Anne-de-

Bellevue, and Truro amended with biosolids and/or urea between 2017 and 2019. The black lines represent the trend lines, while the 

blue dashed lines represent the 1:1 line. 
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Figure A 5.8. Comparison between measured mean and standard deviation (n=4) values (X-axis) and biosolids-corrected IPCC Tier 2 

(2018)-estimated mean values (Y-axis) of nitrous oxide emissions during the growing season from all treatments across fields in 

Edmonton, Ste-Anne-de-Bellevue, and Truro amended with biosolids and/or urea between 2017 and 2019. The black lines represent the 

trend lines, while the blue dashed lines represent the 1:1 line. 
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Figure A 5.9. Comparison between measured mean and standard deviation (n=4) values (X-axis) and IPCC Tier 3 (DNDC)-estimated 

mean values (Y-axis) of nitrous oxide emissions during the growing season from a field in Edmonton, Ste-Anne-de-Bellevue, and Truro 

amended with biosolids and/or urea between 2017 and 2019. The black lines represent the trend lines, while the blue dashed lines 

represent the 1:1 line. 

- 
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Figure A 5.10. Comparison between measured mean and standard deviation (n=4) values (X-axis) and IPCC Tier 3 (DNDC)-estimated 

mean values (Y-axis) of nitrous oxide emissions during the growing season from all treatments across fields in Edmonton, Ste-Anne-

de-Bellevue, and Truro amended with biosolids and/or urea between 2017 and 2019. The black lines represent the trend lines, while the 

blue dashed lines represent the 1:1 line.
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Chapter 6. Summary and Conclusions 

6.1. Summary 

The overarching goal of this research was to measure emissions, generate emissions 

factors, and refine models of biosolids-induced GHG emissions through laboratory incubation and 

field studies, to improve the federal government’s accounting and reporting of greenhouse gas 

(GHG) emissions associated with the agricultural use of municipal biosolids. With more stringent 

regulations on municipal organic waste disposal, including bans on landfilling, and increasing 

quantities of biosolids generated in the last decade, a greater number of farmers use this material 

as a source of nutrients for crop production. A preliminary literature review indicated that there 

was limited empirical data on the contributions to national GHG emissions from the agricultural 

use of municipal biosolids. This lack of data made it difficult to generate needed national estimates 

of biosolids-induced GHG emissions. My research identified three problems associated with the 

lack of concise estimates as follows: (1) current methods for estimating C and N dynamics 

resulting from land-application of biosolids are based on simplified linear models, which do not 

represent the complex biochemical reactions and interactions with soil moisture, nutrients, and 

plant growth; (2) a lack of empirical data to understand C and N dynamics in cropping systems 

amended with municipal biosolids under specific management practices in major Canadian 

agricultural regions; and (3) a lack of country-specific or regional activity data and emission factors 

for land-applied biosolids for use in compiling a national GHG inventory.  

A complete C and N budget for biosolids-amended soils should include the relevant GHG 

emissions. Compiling a complete and accurate GHG national inventory therefore involves a 

system-level C and N budget for all biosolids-amended agroecosystems across Canada, using 

hourly or daily time increments throughout the growing season of each year. However, owing to 



321 
 

the practical challenges (technical, labour, and economic) associated with a detailed accounting of 

the entire C and N flows in such agroecosystems, my thesis combined a laboratory study and three-

year field experiments in three locations to parameterize mathematical models that were used to 

quantify the relevant agricultural GHG emissions. The mathematical models used in this thesis 

follow a three-tier protocol as recommended in the guidelines of the Intergovernmental Panel on 

Climate Change (IPCC) for accounting and reporting national GHG fluxes to the United Nations 

Framework Convention on Climate Change. Briefly, estimating N2O emissions involves 

multiplying an emission factor, which represents a fraction of the applied fertilizer N lost as N2O, 

by the activity data, which is the anthropogenic activity during a given period. The quality and 

spatial resolution of the data used to derive these emission factors increases from Tier 1 to 3 as 

follows: Tier 1 uses aggregated, internationally-derived emission factors for estimating national 

and subnational N2O emissions, neglecting management practices other than applied N amount; 

Tier 2 uses region- or country-specific emission factors to estimate disaggregated GHG emissions; 

and Tier 3 uses site-specific data and/or process-based models to estimate disaggregated GHG 

emissions. The data generated using the IPCC Tier 2 or 3 approaches in this research will help to 

improve the quality of the national GHG emissions inventory by Environment and Climate Change 

Canada (ECCC).  

The Tier 2 approach used in this research was adapted with correction factors to improve 

its accuracy when used to estimate biosolids-induced soil N2O emissions. Precipitation was the 

main environmental variable responsible for the differences in N2O emissions among the sites. 

The physico-chemical characteristics of the different N sources were not considered as most of the 

commonly reported fertilizer parameters (e.g., pH and NO3
− content) do not exert as much influence 

on N2O emissions as the amount of N applied. Also, using additional model parameters requires 
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additional data to develop and use the Tier 2 approach (e.g., the physico-chemical characteristics 

of each type of biosolids), especially when it is deployed on the ecodistrict scale. The simplicity 

of the Tier 2 methodology makes it more amenable to Canada’s current GHG inventory framework 

than Tier 3 methods, however, it is underparameterized for evaluating the effects of N2O mitigation 

strategies.  

The Tier 3 approach is generally more accurate than the Tier 2 approach but is more 

complex. Tier 3 approaches involving process-based models like the Denitrification and 

Decomposition model (DNDC) are data intensive, require expertise to deploy for national GHG 

emissions estimates, and are computationally expensive. However, process-based models can be 

validated using data from- or combined with chamber, eddy covariance, and other empirical 

methods to improve estimates of sub-daily, daily, and even multi-year GHG emissions on field, 

landscape, or even regional and national scales. Despite the limitations of these modelling 

approaches, these tools are generally useful for estimating GHG emissions. The knowledge and 

tools described in this thesis have improved the baseline estimates of GHG emissions from 

biosolids-amended agricultural soils in Canada. 

Beyond providing an approach to estimate biosolids-induced emissions, this research 

provides other useful information. Chapter 3 of this thesis provides an understanding of biosolids 

degradation kinetics and nitrogen release in a laboratory incubation study which lasted for 92 days. 

This study is important as biosolids application rates and provincial regulations depend, in part, on 

the C and N mineralization rates which are highly variable and depend on the pH and proportions 

of C and N in the different type of organic compounds in biosolids. Meanwhile, the pH, labile C 

and N pools, and C/N ratio of the biosolids depend on the treatment methods used in their 

production. For example, anaerobic digestion of sewage sludge to produce biosolids mineralizes 
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some organic N but cannot support nitrification processes; composting increases the C/N ratio 

because of the addition of carbonaceous materials and the volatilization of nitrogen; and alkaline 

stabilization increases the pH of biosolids due to the addition of alkaline material and reduces N 

content due its volatilization under thermal treatment. Therefore, setting similar regulations for the 

use of all biosolids types, using a specific emission factor for all types of biosolids, or using the 

same emission factor for biosolids as for urea or manure misrepresents the characteristics of each 

type of biosolids and the attendant consequences of their application to soils.  

The estimated kinetic parameters associated with biosolids degradation also aid the 

parameterization of DNDC to simulate C and N cycling in biosolids-amended soils. DNDC models 

the decomposition process using first-order kinetics, where the rate constants depend primarily on 

C and N supply, moisture, and temperature. As such, DNDC can be tested beyond the scope of 

this work to explore the effects of different agronomic practices and climatic conditions.  However, 

given the current discrepancies between the observed emissions and those simulated with DNDC, 

it is evident that DNDC should be improved, as the uncertainties in the simulated data could 

compound over spatial and temporal scales.  

The empirical data generated by this research also provide additional useful information to 

compute the life-cycle environmental impacts associated with the use of each type of biosolids. 

The empirical studies conducted across the three ecozones included in this project showed that 

soils amended with mesophilic anaerobically digested biosolids emitted the most N2O, while 

composted biosolids sequestered the most carbon in soils. This work provides some of the 

information needed to calculate the overall environmental impacts, including the potential GHG 

offsets if biosolids were to be used instead of fertilizer as a source of plant nutrients. 
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Farm profit is an important factor which should be considered when assessing the 

suitability of biosolids as a source of organic nutrients. That is, since biosolids are often 

inexpensive or free, how will yields and net profit be affected over the long and short terms if 

biosolids are used instead of other fertilizers? Due to the lower N content by dry mass of biosolids 

(N ranges from 1 to 71 g kg-1) compared to urea and anhydrous ammonia, between 6.5 to over 460 

times more biosolids must be applied to equal the N content of urea (46-0-0) and 11.5 to 820 times 

for Anhydrous NH3, which contains 82% N. This means additional transport, storage, and 

application cost, as well as time duration of land-application. However, there are numerous 

agronomic benefits associated with the use of biosolids. Improving soil pH, SOC, and soil biota 

are few of the benefits while also recycling nutrients. The use of biosolids is a way of recycling 

nutrients as opposed, for example, to the mining and depletion of non-renewable global 

phosphorus reserves to produce mineral fertilizers. Understandably, the wage of farm workers is 

associated to the time and effort required to apply the biosolids compared to mineral fertilizers. 

However, the time and effort required to apply biosolids depend on the nature of the biosolids and 

the equipment used. For instance, when dewatered, mesophilic anaerobically digested biosolids 

are more difficult to handle using conventional manure spreaders in comparison to alkaline-

stabilized or composted biosolids, or even mineral fertilizers. As such, specialized machinery may 

be required to spread the biosolids, and the attendant capital expenses must be considered. A well-

informed choice between biosolids versus mineral fertilizers should also consider the broader 

environmental and social impacts associated with their production and use, both on and off-farm, 

such as GHG emissions and the distortion of natural landscape during phosphate and potash 

mining.  
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In summary, farmers may adopt management practices that are convenient and secure the 

highest profit margin without necessarily considering their broader environmental and social costs. 

While some farmers will consider long-term strategies that preserve soil quality, others may adopt 

practices that maximize short-term profits. Either way, the implications of intensive N application, 

whether as mineral fertilizers or organic amendments, require policies that guarantee decent profits 

for farmers using biosolids, while also ensuring minimal adverse effect on the environment. 

Therefore, a quantitative analysis of the agronomic and economic costs of using different types of 

biosolids as compared to conventional nutrient sources is required to inform farmers and 

policymakers when considering these choices. This factor, the holistic impact on the economy, 

environment, and society, is the key determinant of the future of biosolids in Canadian agriculture. 

 

6.2. Conclusion  

Canada intends to improve its GHG emissions inventory, including using higher-tier IPCC 

methodologies (e.g., Tiers 2 and 3) and reporting biosolids-induced N2O emissions, which were 

previously unaccounted for due to scarcity of data.  In this thesis, N2O emissions were measured 

using non-steady-state manual chambers from land application of mesophilic anaerobically 

digested, alkaline-stabilized, and composted biosolids in three ecozones (Atlantic maritime, 

mixedwood plains, and prairie) to generate Tier 2 and 3 emission factors. In addition to the 2019-

refined Tier 1 method, Canada’s current (2008) and updated (2018) Tier 2 methods (called 

uncorrected Canada-specific Tier 2 (2008 and 2018) methods in this study) and the Tier 3 method 

(using DNDC) were compared with measured GHG emissions from biosolids-amended soils. 

While all three principal GHGs were present in the field measurements, only N2O emissions were 

analyzed across the three sites because CH4 emissions were not significant, and (biogenic) CO2 
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emissions are not reported in GHG inventories. Results from this study showed that N2O emissions 

varied with biosolids type and site-specific factors such as precipitation and soil texture, pH, and 

organic carbon. Mean N2O emissions from land-applied mesophilic anaerobically digested 

biosolids were higher than those of composted and alkaline-stabilized biosolids across the three 

sites.  

Three objectives were addressed in order to generate the GHG emission factors associated 

with agricultural use of municipal biosolids and thereby improve the federal government’s 

accounting for and reporting GHG emissions. The first objective was to assess the kinetics of C 

decomposition and N mineralization in a loam soil amended with three biosolids and incubated 

under different soil moisture conditions. To achieve this objective, an incubation experiment was 

conducted to assess the rate of C and N mineralization in biosolids-amended soil under either sub-

optimal or optimal moisture conditions. It was found that moisture deficiency limited organic 

carbon decomposition and that the biosolids decomposed at different rates: mesophilic 

anaerobically digested and alkaline-stabilized biosolids decomposed more rapidly than composted 

biosolids. Four fitted models estimated different rates of C degradation but were consistent in the 

amounts of mineralizable C and N predicted under both moisture conditions. We concluded that 

(1) soil moisture influenced GHG emissions from biosolids-amended soil but biosolids type did 

not, and (2) any of the four models that were evaluated can be used to simulate biosolids 

degradation in the loam soil used in the study. This study provided rate constants associated with 

the degradation of biosolids which can be used to parameterize DNDC to accurately simulate C 

and N dynamics in a loam soil amended with these three types of biosolids.   

  The second objective was to evaluate the capability of the DNDC model to simulate C and 

N dynamics in a Canadian agroecosystem amended with municipal biosolids. To achieve this 
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objective, DNDC was calibrated and validated using daily and cumulative GHG emissions, crop 

yield, soil organic C, and soil mineral N data from three consecutive growing seasons in Ste-Anne-

de-Bellevue, Quebec. The DNDC model accurately represented C and N transformations in the 

soil relative to the measured values. Daily and cumulative CO2 and N2O emissions over the 

growing season, as well as above-ground corn biomass yields, were more variable with composted 

biosolids, which decompose more slowly than the alkaline-stabilized and mesophilic anaerobically 

digested biosolids. We concluded that the DNDC model is suitable for estimating N2O emissions 

following biosolids application and recommended that future model improvements consider the 

disaggregation of decomposition processes between biosolids and soils to improve the simulation 

of CO2 emissions.  

The third objective was to compare estimates of N2O fluxes from agricultural soils 

amended with biosolids in Canada’s mixedwood plains (humid continental climate), Atlantic 

maritime (maritime climate), and prairies (semi-arid climate) ecozones using Tier 1, Tier 2 

(Canadian), and Tier 3 (DNDC) methodologies. Then, we intended to recommend the most 

amendable and accurate approach for the accounting of N2O emissions from land-applied biosolids 

in the national GHG inventory. To achieve this objective, estimates of growing season N2O 

emissions from IPCC Tier 1, 2, and 3 approaches were compared to measurements from biosolids-

amended soils in Quebec (mixedwood plains), Nova Scotia (Atlantic maritime), and Alberta 

(prairies). The RMSE and R2 values between the observed and estimated N2O emissions showed 

that the Tier 1 and uncorrected Canada-specific Tier 2 (2008 and 2018) approaches produced larger 

errors than the Tier 3 (DNDC) approach. However, owing to the required data and expertise, the 

Tier 3 method was considered impractical for GHG inventory purposes in the near term (2 to 3 

years). To this end, the Tier 2 (2018) method was successfully adapted to estimate biosolids-
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induced N2O emissions using specific correction factors, resulting in the so-called biosolids-

corrected Tier 2 (2018) method described in this study. We conclude that the biosolids-corrected 

Tier 2 (2018) method could be used in the near term to estimate nationwide biosolids-induced N2O 

emissions until the Tier 3 approach is fully developed and integrated into the Canadian GHG 

inventory framework. This study helps to highlight the mitigation potential of composted biosolids 

towards reducing N2O emissions and evaluates practical approaches for generally estimating these 

emissions from Canadian farmlands given the data limitations. 

This research makes original contributions to knowledge (see Pages ix to x) as follows: 

• provides a suite of empirical data on GHG emissions from land-application of municipal 

biosolids generated across Canada; 

• differentiates the N2O mitigation potential of land-applied composted biosolids relative to the 

mesophilic anaerobically digested and alkaline-stabilized biosolids; 

• tests DNDC for simulating C and N dynamics in biosolids-amended agroecosystems in three 

different Canadian ecozones; and 

• develops IPCC Tier 2 correction factors to report nationwide emissions of N2O from land-

application of biosolids from 1990 to date. 

 

6.3. Recommendations for future research 

The data produced from this research provide a baseline to quantify and advance the 

scientific understanding of biosolids-related GHG emissions within the Canadian context. 

However, there is room for future research. 

1. Validate the biosolids-corrected Tier 2 (2018) method for estimating biosolids-induced 

N2O emissions in the national inventory. 
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2. Improve SOC modelling for biosolids-amended soils by disaggregating soil and biosolids 

organic carbon decomposition into two separate but interlinked mechanisms. 

3. Calibrate and validate DNDC to estimate C and N dynamics in soils amended with 

biosolids in the Pacific Maritime ecozone of Canada. 

4. Use the calibrated and validated DNDC to simulate the effects of projected climate change 

scenarios on N2O emissions and crop yields. Scenarios of interest across the three test sites 

include: a) +1.5 to 3°C increase in mean temperature during the typical growing season, b) 

±10% changes in mean annual precipitation, c) drought conditions over short or extended 

periods, and d) flooding conditions. 

5. Conduct a life-cycle assessment of the three biosolids from the production of sludge at a 

municipal WWTP to land-application of the biosolids and all the associated impacts. 

6. Quantitative analysis of the sustainability of using each of the biosolids on Canadian 

farmlands. The scope should encompass a holistic analysis using urea and livestock manure 

as references to conduct a relative: (1) cost-benefit analysis, (2) social implications to 

farmer and consumers, and (3) environmental impact. 
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