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Abstract

Significant inter-individual variability has been noted at every scale of brain organization,
from cellular features to large-scale anatomy to functional patterning. This variability
presents fundamental challenges to identifying shared neural principles supporting com-
plex cognition and behavior. With the advent of functional Magnetic Resonance Imaging
(fMRI), researchers have gained unprecedented access to data from healthy participants en-
gaged in a range of experimental tasks. However, this volume of data has only highlighted
the challenge of inter-individual comparisons. This thesis explores a class of recently de-
veloped methods that aim to address this challenge through “functional alignment;” that
is, directly aligning individual brains on functional features. In considering these methods,
we aim to develop guidelines of direct relevance for cognitive neuroscience researchers.
Chapters 1 and 2 provide a brief introduction to the challenge of inter-subject comparisons
in neuroimaging research and lay out the primary objectives of the work presented in this
thesis. Chapter 3 benchmarks five available functional alignment algorithms via inter-
subject decoding performance across four open-access datasets. The presented results
highlight the potential of functional alignment to improve inter-individual comparisons,
while cautioning that algorithm choice may significantly impact performance. Chapter 4
explores additional experimental factors that impact functional alignment performance:
namely, selected data to derive and to which to apply the alignment. We examine both of
these dimensions across two publicly available datasets with extensive characterizations
of individual subjects, presenting results for three unique performance metrics. Chapter
5 synthesizes these results into practical recommendations for cognitive neuroscience
researchers who hope to use functional alignment in their own research questions. We also
include interactive, online materials supporting these recommendations, leveraging recent
developments in open publishing infrastructure. Chapter 6 then reviews the current land-
scape of open publishing infrastructure, highlighting its importance in developing future
scientific objects such as those included in Chapter 5. We address ongoing infrastructure
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work as well as potential areas for development, several of which have been advanced
through this thesis. Finally, Chapter 7 closes with a discussion of the overall contributions
of this thesis and highlights avenues for future work to develop functional alignment
methods. Throughout this thesis, the presented work underscores the interaction between
domain research and methods development.
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Résumé en français

Une importante variabilité interindividuelle a été constatée à toutes les échelles de
l’organisation cérébrale, à partir des caractéristiques cellulaires jusqu’à l’anatomie à grande
échelle et au schéma fonctionnel. Cette variabilité présente des défis fondamentaux pour
l’identification des principes neuronaux partagés par tous les individus et dont émergent la
cognition et les comportements complexes. Avec l’avènement de l’imagerie par résonance
magnétique fonctionnelle (IRMf), les chercheurs ont obtenu un accès sans précédent à
des données provenant de participants sains engagés dans une série de tâches expérimen-
tales. Cependant, ce volume de données n’a fait que souligner le défi des comparaisons
interindividuelles. Cette thèse explore une classe de méthodes récemment développées qui
visent à relever ce défi par le biais de “l’alignement fonctionnel,” c’est-à-dire l’alignement
direct des cerveaux individuels grâce à leurs caractéristiques fonctionnelles. En examinant
ces méthodes, nous visons à développer des lignes directrices directement pertinentes
pour les chercheurs en neurosciences cognitives. Les chapitres 1 et 2 présente une brève
introduction au défi des comparaisons inter-sujets dans la recherche en neuroimagerie et
exposent les objectifs principaux du travail présenté dans cette thèse. Le chapitre 3 com-
pare la performance de décodage inter-sujets de cinq algorithmes d’alignement fonctionnel
sur quatre ensembles de données ouvertes. Les résultats présentés mettent en évidence le
potentiel de l’alignement fonctionnel pour améliorer les comparaisons inter-individuelles,
tout en soulignant que le choix de l’algorithme peut avoir un impact significatif sur les
performances. Le chapitre 4 explore d’autres facteurs expérimentaux qui ont un impact
sur la performance de l’alignement fonctionnel, notamment les données sélectionnées
pour dériver et celles auxquelles il est appliqué. Nous examinons ces deux dimensions
à travers deux jeux de données publics, qui fournissent des caractérisations étendues
des sujets individuels, présentant des résultats pour trois mesures de performance. Le
chapitre 5 synthétise ces résultats sous forme de recommandations pratiques à l’intention
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des chercheurs en neurosciences cognitives qui espèrent utiliser l’alignement fonction-
nel pour leurs propres questions de recherche. Nous incluons également des documents
interactifs en ligne à l’appui de ces recommandations, en tirant parti des récents développe-
ments en matière d’infrastructure de publication ouverte. Le chapitre 6 offre un aperçu de
l’infrastructure de publications ouvertes, en soulignant son importance dans le développe-
ment de futurs objets scientifiques tels que ceux inclus dans le chapitre 5. Nous abordons
les travaux d’infrastructure en cours ainsi que les domaines potentiels de développement,
dont plusieurs ont été avancés dans le cadre de cette thèse. Enfin, le chapitre 7 se termine
par une discussion sur les contributions globales de cette thèse et met en évidence les
pistes de travail futures pour développer des méthodes d’alignement fonctionnel. Les
travaux présentés par cette thèse soulignent l’interaction entre la recherche sur le domaine
et le développement de méthodes.
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Chapter 1

Introduction

1.1 General context

Individual differences dominate our lived experience, with each person showing a unique
constellation of physical, cognitive, and behavioral traits. Cognitive neuroscience seeks
the relationship between ‘the brain’ and ‘the mind’ (Churchland and Sejnowski, 1988),
but the sheer diversity of individual brains and minds complicates this goal. While
neuroscientists have adopted many strategies to overcome this challenge, a promising
addition is ‘functional alignment,’ which compares individual brains directly on their
functional activity rather than the underlying anatomy, the latter of which differs at the
cellular-, circuit-, and macro-levels. Functional alignment is not a single method, however,
but a broad class of algorithms each with unique assumptions.

The complexity of associated constraints means that these methods remain relatively
inaccessible, even to researchers themselves. The aim of this thesis is to provide a gen-
eral framework for understanding and evaluating functional alignment applications in
cognitive neuroscience. To do so, I consider both the algorithms themselves as well
as the experimental choices that impact alignment performance. I use these results to
create guidelines for researchers and develop on existing publishing infrastructure to
communicate these guidelines in accessible formats.



CHAPTER 1. INTRODUCTION 2

1.2 Objectives

Chapter 3 objectives

Chapter 3 presents a benchmarking analysis of five functional alignment algorithms
across four open fMRI datasets. Using inter-subject decoding as an index of alignment
performance, I compare the relative increase in decoding accuracy for each considered
functional alignment algorithm against both within-subject decoding as well as anatomical
alignment baselines. I generate estimates across the whole brain and within task-relevant
regions-of-interest, providing researchers with general guidelines for selecting among
available functional alignment algorithms in their own work.

Chapter 4 objectives

Chapter 4 of this thesis examines the impact of experimental factors on functional align-
ment performance. Beyond algorithm choice, alignment performance can be significantly
impacted by the data on which alignment transformations are learnt and applied. Using
two well-sampled, open access fMRI datasets, I compare the influence of training and
application data across three performance metrics in use in the literature. I evaluate how
these effects differ between task-relevant and task-irrelevant brain regions, underscor-
ing the complexity of appropriately deploying these methods in cognitive neuroscience
questions.

Chapter 5 objectives

Chapter 5 synthesizes current literature and results from Chapters 3 and 4 to familiarize
cognitive neuroscience researchers with functional alignment and outline general recom-
mendations for appropriate experimental design in adopting these methods. I additionally
provide an online, executable series of tutorials to help researchers directly integrate these
methods into their existing workflows.

Chapter 6 objectives

Chapter 6 of this thesis overviews the current publishing landscape for executable research
objects, such as the tutorials included in Chapter 5. Appropriate usage of multivariate
methods in cognitive neuroscience directly benefits from the availability of executable
research objects, though these are difficult to publish and so disincentivized in the current
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publishing landscape. I highlight current gaps in the supporting infrastructure and pro-
vide suggestions for future development. I draw on my experience in developing open
publishing workflows to center the social and technical solutions likely to support future
publishing platforms for executable research objects in neuroscience.

1.3 Contributions to original knowledge

Collectively, the work included in this thesis provides a general framework for functional
alignment adoption across cognitive neuroscience and suggests future technical work
to increase the accessibility of these and other multivariate methods. In doing so, the
presented research explores how methodological choices and research context interact in
characterizing individual variability of functional organization. Below, I briefly highlight
the distinct conclusions and contributions of each included chapter.

Chapter 3

• Functional alignment recovers approximately half of the individual variability lost
in anatomical alignment

• Piecewise aggregation schemes outperform the popular searchlight aggregation
scheme

• Piecewise Shared Response Model is the best performing of all considered methods,
although it does require an additional hyperparameter search

Chapter 4

• Stimuli used to derive and to apply alignment transformations both impact per-
formance, with cross-modal (i.e., audio-only versus visual-only) pairings showing
weakest results

• Functional alignment improves inter-individual similarity in regions with little task-
relevant signal, but this effect is balanced by reduced similarity in highly task-relevant
areas

• Functional alignment cannot be assumed to improve inter-subject similarity for a
given application; instead, this effect must be evaluated with independent testing
data
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Chapter 5

• Functional alignment offers unique insight compared to other methods for improving
inter-individual similarity such as individualized parcellations

• Researchers using functional alignment should ensure that data used to derive
alignment transformations are kept separate from data on which alignment is applied

• Many kinds of stimuli can be used in learning alignment transformations, though
these should be selected in conjunction with the desired experimental task

Chapter 6

• Publishing infrastructure is consolidated around static formats such as the PDF, with
key barriers in archiving and reviewing other research objects

• Developing open standards for executable research objects is necessary to move
forward future publishing formats

• Initiatives such as NeuroLibre provide a potential blueprint for new platforms to
leverage composable infrastructure



5

Chapter 2

Review of the literature

Although neuroscience case studies such as Phineas Gage (Teles, 2020) and patient HM
(Squire, 2009) have yielded foundational insights, the field remains fundamentally focussed
on general organizational principles supporting neural activity and behavior. Uncovering
these principles relies on making appropriate comparisons across individuals; however,
this presents a core technical and conceptual challenge. Human brains differ along nearly
every dimension: from cytoarchitectonic features (Amunts et al., 1999; Rademacher et al.,
1993), to large-scale sulco-gyral anatomy (Galaburda et al., 1990; Marie et al., 2015), to
functional organization (Benson et al., 2021; Frost and Goebel, 2012; Gordon et al., 2017a),
to functional response profiles (Henriksen et al., 2012).

With the advent of Positron Emission Tomography (PET) imaging, researchers could
non-invasively collect measurements from non-clinical populations, dramatically expand-
ing our ability to characterize neural organization (Portnow et al., 2013). However, the
need to minimize an individual participant’s radiation exposure (Fedorenko, 2021) and
to overcome the low signal-to-noise ratio of PET images (Crivello et al., 2009) necessi-
tated that researchers focus on deriving group-level maps. The emergence of functional
magnetic resonance imaging (fMRI) dramatically increased available temporal and spa-
tial resolution—while removing radiation-exposure risks—however, the field remained
largely focussed on group-level results (Raichle, 2009). In the early days of fMRI, this
may have been driven by the large overlap in scientists with PET and fMRI expertise.
Moreover, appropriate statistical methods for analyzing these data were jointly developed
and distributed (Ashburner, 2012) encouraging harmonized workflows.

As fMRI grew to be a predominant modality for human neuroimaging (Poldrack
and Farah, 2015), the effects of sample size in identifying brain-behavior relationships
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came under greater scrutiny, with relationships derived from small sample sizes showing
limited reproducibility (Button et al., 2013; Marek et al., 2020). Further, efforts such as
MyConnectome (Poldrack et al., 2015) highlighted how the relatively small amount of
participant-level data in traditional group studies prevented systematic investigation into
dynamic cycles in sleep or mood, alongside other idiosyncratic factors. Researchers thus
began to turn to extensive characterizations of a small number of individuals, sidestepping
statistical power issues in group-level inference and opening up new scientific questions.
As a result, recent years have seen a dramatic increase in the number of fMRI studies that
“deeply” or “densely” phenotype individual participants (Naselaris et al., 2021; Poldrack,
2017). Thanks to open sharing initiatives such as OpenNeuro (Markiewicz et al., 2021;
Poldrack et al., 2013), many of these “deep phenotyping” fMRI datasets are publicly
available for re-analysis, including Courtois-NeuroMod (Boyle et al., 2020), the Individual
Brain Charting initiative (Pinho et al., 2018), the Midnight Scan Club (Gordon et al., 2017b),
and Study Forrest (Hanke et al., 2014), among others. These datasets promise significant
insight in describing fine-scale functional organization; however, there is little consensus
on how to use these resources to make appropriate comparisons across individuals while
overcoming the technical and conceptual challenges noted above.

Here, I review how fMRI is currently used in cognitive neuroscience to investigate
the functional architecture of the human brain as well as relevant ideas from cognitive
science to compare across individual functional organizations. I first describe standard
fMRI preprocessing pipelines and their methodological assumptions before reviewing the
idea of functional representations as putatively captured by fMRI. I then introduce the
idea of functional alignment, exploring its roots in cognitive science and particularly the
connectionist philosophy of science. Finally, I consider current applications of and open
challenges for functional alignment within cognitive neuroscience, which this thesis aims
to address.

2.1 Characterizing fMRI measurements

Whereas PET imaging measures the neural uptake of tagged tracers such as radiolabeled-
glucose (e.g. FDG-PET; Berti et al., 2014), fMRI measures the relative concentration of
deoxyhemoglobin via its paramagnetic properties. This index of the magnetic suscepti-
bility of circulating blood is known as the blood-oxygen level dependent (BOLD) signal
(Greve, 2011) and provides an estimate of the uptake of oxygen in imaged tissue. Although
the BOLD signal avoids invasive introduction of contrast agents, it provides a measure
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of cerebrovascular—rather than directly neuronal—activity. Thus, it is commonly con-
founded with noise sources, both those shared with other neuroimaging modalities and
those unique to cerebrovascular measures. For example, neuroimaging modalities such
as (f)MRI, PET, and even calcium imaging (Robbins et al., 2021) all share a susceptibility
to tissue motion, due to their fixed acquisition windows and relatively long sampling
rates (Dubbs et al., 2016; Mukherjee et al., 2016). In the case of human brain imaging,
participant motion can arise from both voluntary processes such as subject discomfort
as well as involuntary, physiological motions such as respiratory oscillations and cardiac
pulsations (Power et al., 2018). Additionally, as a measure of cerebrovascular activity, fMRI
is uniquely sensitive to fluctuations in blood pressure (Wang et al., 2006) and cerebrovas-
cular reactivity (Pinto et al., 2020). These latter properties position fMRI as a relative index
of cerebrovascular activity, rather than a quantitative measure, meaning that absolute
measured signal differs from session-to-session even within the same subject.

As a result of these diverse noise sources, many denoising methods exist for fMRI data,
most of which I consider to be beyond the scope of the present review (e.g. multi-echo
denoising; DuPre et al., 2021). Nonetheless, I describe these noise sources to highlight
the unique properties of the fMRI signal which further challenge direct comparisons in
measured activation patterns across individuals. To date, standard preprocessing pipelines
have been developed for cleaning and comparing fMRI signals (e.g., fMRIPrep; Esteban
et al., 2019), although the exact algorithms implemented at each step differ significantly
across research groups (Carp, 2012; Li et al., 2021). Here, I review three stages of the
standard preprocessing pipeline with strong relevance for inter-subject comparison: (1)
anatomical-functional co-registration, (2) normalization to a reference template, and (3)
Gaussian smoothing.

2.1.1 Anatomical-functional co-registration

In order to make comparisons across participant functional patterns, an initial co-registration
between individual anatomical and functional images is necessary (c.f., Dohmatob et al.,
2018). This co-registration allows for direct mapping between locations in each anatomical
and functional image, though initial functional images may have significant distortions
due to their unique acquisition parameters. For example, magnetic field inhomogeneity
from the air-tissue interface in the sinuses commonly causes significant dropout of BOLD
signal in regions including the orbitofrontal and anterior temporal cortices with standard
echo-planar imaging (EPI) sequences, particularly when collected with anterior-posterior
phase encoding. Thus, an initial susceptibility distortion correction (Hutton et al., 2002)
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may be performed before co-registration to correct some of this distortion, though this
procedure cannot create signal in areas with severe dropout artifacts. I note this only
to emphasize the immediate challenges in making comparisons between function and
anatomy.

Optionally following distortion correction, multiple algorithms exist to co-register
functional and anatomical images. One of the most well-known is boundary-based regis-
tration (Greve and Fischl, 2009), as implemented in the widely-used software packages FSL
(Jenkinson et al., 2012) and FreeSurfer (Fischl and Dale, 2000). This algorithm emphasizes
the cross-modal nature of the alignment, delineating tissue-boundaries in a high-resolution
anatomical reference image and then using these boundaries to drive subsequent align-
ment with a lower-resolution functional input image. Other linear algorithms such as
local Pearson correlation (Saad et al., 2009) as implemented in the AFNI platform (Cox,
1996) similarly emphasize tissue boundaries in driving cross-modal alignment. Additional,
non-linear approaches such as the symmetric diffeomorphic transformation model SyN
(Avants et al., 2008) have recently seen an increase in popularity for situations where
gold-standard estimates of anatomical-functional misregistration—such as fieldmaps—are
not available. These non-linear approaches, however, can be especially sensitive to initial
image masking (Huntenberg, 2014) and require careful visual inspection to ensure that
functional images are not inappropriately warped to the reference anatomy. Thus, some
degree of misalignments may persist across the two modalities, even within a single partic-
ipant (Dukart and Bertolino, 2014). Even assuming a successful co-registration, however,
additional processing is necessary to extend inferences to across participants.

2.1.2 Normalization to a reference template

Following anatomical-functional co-registration, participant anatomical images are com-
monly normalized to a reference template in a defined stereotaxic space. Two primary
challenges exist when normalizing participant images to a reference anatomy: the defini-
tion of a standard template and the process by which images are normalized to it (Brett
et al., 2002). Initial fMRI studies normalized acquired images to the “Talaraich brain”
(Talairach and Tournoux, 1988), which was defined on only a single hemisphere of the
post-mortem, ex vivo brain of a 60-year-old French woman. This allowed for the inclusion
of additional histological information on Brodmann’s cytoarchitectonic areas (Strotzer,
2009). However, a high degree of uncertainty arose in using Talaraich space as a stereo-
taxic reference due to its definition on a single subject. Thus, subsequent work to define
reference templates primarily focussed on average anatomy across many individuals;
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for example, the MNI152 (Mazziotta et al., 2001) which was defined on 152 participants.
In those cases where participants have variable anatomical features (e.g. duplication of
Heschel’s gyrus; Marie et al., 2015) an ideal correspondence between individual anatomies
may not exist, requiring a defined reference to only model a subset of the population or to
blur the included anatomies into a single consensus image. Despite this inherent limitation,
the definition of standard templates has significantly facilitated inter-subject comparisons
with downstream impacts on knowledge aggregation across the field, enabling efforts
such as meta-analysis (Wager et al., 2007) and broad adoption of standard parcellations
(Lawrence et al., 2021).

To date, a wide variety of reference templates are in use for unique developmental
(Fonov et al., 2011) or geographic populations (Liang et al., 2015) and supported by atlas
sharing infrastructure such as TemplateFlow (Ciric et al., 2021). Two of the most commonly
used are the MNI152 templates (for volumetric representations of anatomy) and the
fsaverage templates (for surface-based representations of anatomy; Fischl et al., 1999b).
Different registration algorithms are generally favored for these differing representations of
anatomical representations. While volumetric normalization can be achieved using either
affine (i.e., linear) or non-linear registration, surface-based normalization heavily relies on
non-linear normalizationto project individual cortical meshes to a spherical representation
(Fischl et al., 1999a). These individual cortical meshes can then be aligned using one or
more reference features (e.g., both sulco-gyral patterning and functional activations as in
MSM-all; Glasser et al., 2016). In general, these different normalization procedures allow
for different relative weightings of relevant features that are expected to correspond across
subjects, with significant consequences for downstream analysis workflows (Coalson et
al., 2018). Wide variability in individual cortical anatomy and functional organization,
however, mean that there is no registration algorithm which can perfectly map between
all participants across all features of interest. Thus, preprocessing pipelines commonly
include additional Gaussian smoothing to smooth over any remaining misalignments.

2.1.3 Gaussian smoothing

Many researchers working with fMRI data for the first time are confused why smoothing
is included in standard preprocessing pipelines. Gaussian smoothing is implemented
as an isotropic filter that indiscriminately blurs spatial information, resulting in a loss
of fine detail. This loss, however, is often outweighed by the benefits that smoothing
brings to fMRI analysis. I have already alluded to the first of these, which is to blur over
remaining inter-subject variability following normalization. As this variability is on the
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order of millimeters (Tahmasebi et al., 2009), applied smoothing kernels typically have
a full-width-half-maximum (FWHM) of at least one voxel, if not more. Although less
immediately relevant for inter-subject comparisons, Gaussian smoothing brings at least
two important, additional benefits to fMRI analysis, which I briefly review below.

The first benefit is to improve statistical inference by reducing the number of resolution
elements (or “resels”) that must be accounted for when correcting for multiple comparisons.
This is particularly important in the framework of Random Field Theory (RFT; Worsley et
al., 1996) which assumes that data are reasonably represented by a smooth Gaussian field.
While fMRI data does have an inherent spatial smoothness, the exact value is dependent
on scanning acquisition parameters, with higher-resolution sequences generally showing
lower intrinsic smoothness (Bollmann and Barth, 2020). Thus, smoothing fMRI data
before statistical analysis ensures that data can be appropriately considered with a smooth
Gaussian representation. Today, RFT is only one of many multiple comparison correction
frameworks for fMRI data (Lindquist and Mejia, 2015), although it remains in active use
across the community.

The second additional benefit of Gaussian smoothing is to increase statistical power
both for individual voxels as well as for detection of supravoxel signals. These effects can
be explained by two main factors. First, given the intrinsic spatial smoothness of fMRI,
nearby voxels often share some overlapping signal. Smoothing increases the correlation
between nearby voxels, thereby strengthening this shared signal while reducing the ef-
fects of asynchronous signals that might arise from partial volume effects (Dukart and
Bertolino, 2014) or unshared noise sources. Smoothing also increases the signal-to-noise
ratio for supravoxel signals of the same effective resolution as the applied smoothing ker-
nel, as explained by the matched filter theorem (Rosenfeld, 2014). For example, cognitive
neuroscience experiments commonly adopt an 8mm FWHM Gaussian kernel to capture
distributed spatial activations such as those evoked during a visual oddball task (Mikl
et al., 2008).

Despite these benefits, analytic frameworks have arisen that broadly reject smoothing
to maintain the highest spatial resolution possible. Perhaps the most influential of these is
Multi-Voxel Pattern Analysis (MVPA; Norman et al., 2006), which encourages researchers
to directly leverage distributed voxelwise activation patterns for decoding participant
mental states. The popularization of this approach accelerated a move away from large
Gaussian kernel sizes in the hopes of uncovering fine-scaled functional organization.
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2.2 Assessing individual correspondence in the analysis of

fMRI data

Multi-voxel pattern analysis (MVPA) emerged as an alternative to univariate analy-
ses—such as the general linear model—that separately model the relationship of each voxel
to an experimental feature of interest. While univariate analyses continue to advance the
study of brain organization, MVPA offers unique insights by examining how information is
represented in the across voxelwise activations rather than solely within individual voxels
(Weaverdyck et al., 2020). Many MVPA researchers have thus advised against Gaussian
smoothing in order to maintain as much voxelwise information as possible (c.f., Beeck,
2010). As hundreds of thousands of voxels can be obtained in a single scanning session,
cognitive neuroscientists have turned to increasingly sophisticated analytic techniques to
explore these relationships.

Since its introduction in Haxby et al. 2001, encoding and decoding models (Naselaris
et al., 2011) and pattern classification (Kragel et al., 2012), have emerged as predominant
forms of MVPA in the field, with many successful applications (Haxby et al., 2014). This
relative success has been suggested to reveal principles of neural coding (Guest and
Love, 2017); i.e., the mechanism by which information is represented in neural activity
(deCharms and Zador, 2000; c.f. Brette, 2018). Importantly, however, MVPA is typically
conducted within individual subjects with summary information (e.g., individual classifier
accuracy) carried forward for group-level comparisons. Thus, there is no direct comparison
of voxelwise patterns across individuals, as variable correspondence between structural
and functional features (Paquola et al., 2019a; Vázquez-Rodríguez et al., 2019) yields
consistently poor performance with group-level MVPA models (Bilenko et al., 2010). Here,
I motivate MVPA by briefly introducing the idea of functional representations, a principle
of neural coding that has driven significant research within the field.

2.2.1 Distributed functional representations organize neural activity

Neuroscience has broadly adopted the term ”representation“ to describe any systematic
patterns in the relationship between features of the world and neural activity (Poldrack,
2020). The widely observed organization of large portions of primary cortices to mirror
their interacting sensory systems provides strong support for the idea of representations.
For example, the retinotopic organization of primary visual cortex (Hubel and Wiesel,
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1959), the tonotopic organization of auditory cortex (Humphries et al., 2010), or the so-
matotopic organization of primary motor cortex are all well-known principles of neural
coding. Representations in successive cortical areas have been suggested to correspond
to successive layers of abstraction (Eickenberg et al., 2017), motivating investigation into
higher-order representations of complex stimuli such as faces (Jiahui et al., 2020). Within
this broad organization, neurons are further organized into columnar structures which
interact to create areal population responses (Panzeri et al., 2015). The relatively low spa-
tial resolution of standard 3T fMRI sequences—commonly on the order of 2mm isotropic
voxels—means that columnar information—on the order of 600 µm in diameter (Mount-
castle, 1997)—is inaccessible. Instead, voxels irregularly sample underlying neuronal
population activity through the complex spatiotemporal filter of the hemodynamic re-
sponse (Kriegeskorte et al., 2010). Further, both noise correlations and tuning heterogeneity
(i.e. those stimulus features that neurons respond most strongly to) in the underlying
neuronal populations significantly influence what information that can be recovered from
voxelwise activations (Zhang et al., 2020).

The relative success of MVPA applications, however, suggest that multivariate voxel-
wise information provides a useful, if coarse, measure of population-level activity sup-
porting functional representations. Nonetheless, both the irregular sampling of cortical
columns as well as the heterogeneity of their supporting neuronal populations throw
the challenge of identifying inter-individual correspondence into stark relief. That is, we
cannot assume that a given voxel provides information on the same neuronal population
across individuals, even when located at identical coordinates in standard space. While
their close spatial proximity means that they are likely to provide similar information,
their unique sampling means that they require additional attention to align across partici-
pants. To directly leverage voxelwise response patterns across individuals, then, requires a
method by which to compare distributed functional representations.

2.3 Origins of functional alignment in connectionism

The challenge of comparing distributed functional representations loomed in the late
twentieth century as cognitive scientists sought a new approach to artificial intelligence.
Connectionism was emerging as a promising framework to understand both the brain as
well as the artificial neural networks modelled after it (Rumelhart et al., 1988). Classical
models of artificial intelligence, by contrast, argued that cognition could be understood as
operating over symbols, similar to natural language. Neural activity, then, was assumed to
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involve tokenized representations of these symbols (Newell, 1980). Although this classical
approach had dominated early discussions of artificial intelligence, it struggled to translate
into successful applications. Connectionism offered an alternative approach with no direct
reliance on symbolic representations. Instead, computation was assumed to be carried
out on distributed activations across inter-connected “units;” i.e., neurons. This approach
showed several initial successes (cf. single layer perceptrons; Minsky and Papert, 1988),
providing the foundation for today’s deep learning algorithms (Buckner and Garson, 2019).

Nonetheless, philosophers of science disagreed—then and now—as to whether connec-
tionism could provide a meaningful framework for understanding the brain itself (Fodor
and Pylyshyn, 1988). One strong challenge came from Jerry Fodor and Ernest Lepore,
who argued that no “useful sense of notions of conceptual identity, or even conceptual
similarity, [could be found] in the face of the enormous functional and structural diversity
across individual networks that constitute human brains” (Churchland, 1998). That is,
given the remarkable inter-individual variability in brain organization, it would be difficult
if not impossible to find meaningful correspondence in the computation carried out across
these different architectures, even at a single spatial scale. This challenge strongly overlaps
with the difficulties I have described above in finding correspondence across activations
from irregular sampling of individual brains.

To overcome this challenge, Paul Churchland advanced a specific view of connection-
ism which he coined “state-space semantics,” wherein representations can be viewed as
corresponding to specific points in activation space (Laakso and Cottrell, 2005). Figure 2.1,
from Churchland (1998), demonstrates this idea: an identical activation pattern across three
units can be viewed as either a histogram or distribution of activation values, a vector of
length three, or a point in a three-dimensional space—with each dimension corresponding
to a single unit. Within this framework, Churchland argued that correspondence could
be identified by mapping between two or more defined activation spaces based on their
labelled activations. Thus, although the specific arrangement of neurons across two brains
may differ, the relative organization of content within them would likely be preserved;
e.g., activations evoked by ‘cat’ and ‘dog’ stimuli would be closer to one another than to
activation evoked by ‘car.’ Aligning functional spaces on these labelled representations,
which we call “functional alignment,” would allow for direct inferences across activation
spaces.

While state-space semantics offered one solution to the Fodor-Lepore challenge, it came
with its own criticisms. Laakso and Cottrell (2000) pointed out a fundamental “problem
with Churchland’s strict identification of content with a specific position in state space. It
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Figure 2.1: Three ways of conceiving the activity of a specific neuronal population. Neuronal
population activity can be represented using many different formats. Here, we show a single activity
pattern as a histogram of activation levels, as an activation vector, and as a point in an activation space.
Figure reproduced from Churchland (1998)

.

is well known that networks with different numbers of hidden units can solve the same
problem.” Indeed, the exact number of neurons varies significantly across brains (Neves
et al., 2020), and it is unclear how one could identify a direct mapping between activation
spaces with a variable number of dimensions. Laasko and Cottrell thus proposed that com-
parisons between these activation spaces should not be direct, but instead take place on
second-order isomorphisms (Shepard and Chipman, 1970). This is the approach adopted
by Representational Similarity Analysis (RSA; Kriegeskorte et al., 2008), where correla-
tions between evoked activation patterns are compared rather than the activation patterns
themselves. RSA has seen widespread adoption across cognitive and computational neu-
roscience (Kriegeskorte and Diedrichsen, 2019) and generated significant methodological
development to improve measurement of second-order isomorphisms beyond simple
correlations (e.g., Williams et al., 2021).

Despite Laakso and Cottrell’s criticism, functional alignment remains a viable analytic
approach even in networks with variable numbers of neurons. While Churchland argued
for direct comparison using the smallest number of dimensions (Churchland, 1998), neuro-
scientists more commonly adopt techniques such as dimensionality reduction or manifold
learning to learn shared subspace with desired statistical properties (Chen et al., 2015;
Dabagia et al., n.d.). In the case of fMRI data, standard normalization and resampling pro-
cedures constrain each participant’s measurements to the same number of voxels, with an
approximate anatomical correspondence. This implicit mapping encouraged initial work
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to adopt methods such as Procrustes analysis which assume a shared dimensionality when
functionally aligning fMRI data (Haxby et al., 2011). Although these methods follow in the
tradition of Churchland’s state-space semantics, they were largely rediscovered by Haxby
and colleagues from the ”representational spaces“ of RSA (Haxby et al., 2014). In the
decade since its introduction to cognitive neuroscience, functional alignment has seen sig-
nificant development—in both the range of algorithms and relevant applications—which I
briefly review below.

2.4 Applications of functional alignment in cognitive

neuroscience

While earlier methods for improving functional correspondence operated in three-dimensional
anatomical space (e.g., rubber-sheet warping; Conroy et al., 2013; Sabuncu et al., 2010),
perhaps the foundational functional alignment reference is Haxby et al. 2011 which in-
troduced “hyperalignment.” Hyperalignment is a specific application of generalized
Procrustes analysis where fMRI data from three or more individuals are successively
registered to a common activation space through linear transformations. Although the
original experiments focused on activations in a single region of interest, hyperalignment
has since been extended to whole-brain contexts (Guntupalli et al., 2016) and to functional
connectivity data (Busch et al., 2020; Guntupalli et al., 2018).

Beyond Procrustes-based methods, a variety of other algorithms have also been pro-
posed for functional alignment. At a broad level, these algorithms can be characterized
along two dimensions. The first is whether they employ linear or nonlinear transforma-
tions. Linear methods only allow for aligning two or more activation spaces by rigid-body
transformations, along with affine registrations such as stretching and shearing. Nonlin-
ear methods, by contrast, allow for more variable transformations and are particularly
promising in cases of weak correspondence across individuals, such as broad functional
reorganization following stroke (Langs et al., 2010; Nenning et al., 2020) or when compar-
ing across species (Xu et al., 2019). Throughout this thesis, I focus on linear algorithms,
as these have the highest potential for interpretability and—unlike several field-standard
non-linear algorithms (e.g., diffusion map embedding; Nenning et al., 2017)—they can be
derived on co-occurring data of one task structure such as movie-watching and applied on
another, unrelated task structure such as a traditional psychological paradigm.

The second dimension by which to characterize functional alignment algorithms is on
whether they include dimensionality reduction. For example, algorithms such as gradient
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hyperalignment (Xu et al., 2018), regularized canonical correlation analysis (Bilenko and
Gallant, 2016; Xu et al., 2012; Yousefnezhad and Zhang, 2016) and the shared response
model (Chen et al., 2015; Richard et al., 2019) include a dimensionality reduction to find
shared latent factors across individual functional activations. Other methods such as
hyperalignment, optimal transport (Bazeille et al., 2019), and ridge regression (Tavor et al.,
2016), by contrast, operate directly on the provided voxel time series. Fundamentally,
methods that include a dimensionality reduction make different assumptions as to the
nature of information that is likely to correspond across individuals; that is, whether the
high-dimensional, voxelwise representation is a faithful measure of shared information, or
if it is a noisy measure of a lower-dimensional, shared latent process.

For each of these functional alignment methods, a variety of applications are pos-
sible with both synchronized and unsynchronized task data. From synchronized data,
researchers first generate functional alignment parameters from high-engagement stim-
uli such as naturalistic audio-visual narratives (Sonkusare et al., 2019; Vanderwal et al.,
2019). In the case of unsynchronized data—such as resting-state time series—functional
alignment may be used to synchronize the time series itself (Joshi et al., 2017). More
commonly, however, unsynchronized data are aligned using patterns of functional connec-
tivity derived across the entire time series (Nastase et al., 2020b). Derived connectomes
themselves can also be directly functionally aligned to find correspondence across different
parcellation schemes (Dadashkarimi et al., 2021). Other relevant applications include ap-
proximating functional localizers from synchronized naturalistic data (Jiahui et al., 2020),
deriving shared encoding models (Van Uden et al., 2018), and even evaluating individual
differences (Feilong et al., 2018).

Typically, the success of functional alignment is then assessed by applying the derived
transformations to unrelated task data and training classifiers to predict individual par-
ticipant activity based on shared patterns across the group; i.e., inter-subject decoding.
Researchers have primarily focused on improving inter-individual correspondence during
low-engagement paradigms such as traditional psychological tasks (Nastase et al., 2020a;
Vanderwal et al., 2017) as these are likely to most strongly benefit from improved mapping
between individual activation spaces. In cases where separate psychological task data is
not available in the same participants, however, researchers may instead create alternate
classification benchmarks such as time-segment matching for a continuous, naturalistic
narrative. In some of these applications, alignment has been seen to significantly boost
inter-subject decoding accuracy, approaching or even exceeding accuracy from within-
subject classification (Haxby et al., 2011). This is particularly impressive as rates of accuracy
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for between-subject classification for functionally unaligned data are typically at or below
chance.

Given these successes, interest in functional alignment has continued to grow. Po-
tential applications in psychiatric research (Anderson et al., 2021) and connections with
ongoing work in systems neuroscience (Chen et al., 2021; Stella and Treves, 2021) promise
new opportunities to assess both how neural coding is preserved in health and disease
as well as across species. Despite this enthusiasm, the proportion of cognitive neuro-
science researchers who engage with functional alignment methods is relatively small,
both due to challenges in defining appropriate use cases as well as providing accessible
implementations.

2.5 Challenges in adopting functional alignment

While potential algorithms and applications for functional alignment have proliferated,
the gap between theory and experiment has become increasingly obvious. This problem is
not unique to functional alignment and instead reflects a relatively common dissociation
between methodological and domain-oriented work, with only a small subset of developed
algorithms taken up by the field. Many challenges exist for broader adoption, including
minimal characterization of the appropriate applications for each new method. That is,
while a method may perform well on the dataset used to benchmark its performance, will
it perform similarly on other datasets with different characteristics? This is particularly
concerning as methods tend to overfit to a given benchmark (Recht et al., 2018), and a small
number of open datasets such as Study Forrest (Hanke et al., 2014) and Sherlock (Chen et al.,
2017) are predominantly used to characterize new functional alignment methods. Further,
providing methods in accessible software packages or other, computational resources
significantly lowers the barrier to adopting a method. New methods, however, are still
rarely distributed as usage-oriented code—if indeed they are distributed as code at all—but
instead as software for re-executing the original experiments (Pradal et al., 2013).

As an interdisciplinary field, cognitive neuroscience faces unique, additional challenges
beyond characterizing appropriate applications. Many researchers lack the methodological
training necessary to engage with high-dimensional methods (Hauk, 2020), making it diffi-
cult to effectively re-implement functional alignment within individual research groups.
This challenge has been recognized for multivariate methods in cognitive neuroscience
more broadly (Cohen et al., 2017), leading to the development of many field-standard
Python software libraries such as PyMVPA (Hanke et al., 2009) and Nilearn (Abraham
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et al., 2014). Importantly, these libraries include extensive tutorials orienting researchers to
their use. As the multivariate toolkit has continued to expand, new software libraries have
emerged to meet community needs. Recently, the Python library BrainIAK (Kumar et al.,
2020) released a series of tutorials on emerging multivariate methods for fMRI data, in-
cluding for the Shared Response Model (SRM; Kumar et al., 2019) as well as other methods
such as inter-subject correlation (Nastase et al., 2019). Thus, at present, PyMVPA supports
hyperalignment while BrainIAK supports SRM, with no direct connection between the
two. Other methods exist in standalone implementations developed for individual re-
search projects, discouraging wider use (Benureau and Rougier, 2017). As a result, the
relationship between alignment techniques and their appropriate applications remains
poorly explored outside of the original methodological papers introducing each method.

There is a clear need for new educational materials to connect functional alignment
methods implemented across software libraries, without being directly tied to a single
library. One challenge for researchers who hope to develop these materials is to select
the appropriate format. Tutorials that accompany software libraries are often written as
Jupyter Notebooks (Kluyver et al., 2016), which allow for interweaving code, results, and
supporting scientific narrative. Jupyter notebooks are a commonly used computational
format (Rule et al., 2019); however, they may be relatively unfamiliar to cognitive neu-
roscience researchers who use other programming languages such as MATLAB. Further,
these formats do not align with traditional publishing infrastructures which focus on
PDFs. The BrainIAK tutorials, for example, are described in a brief piece published in
PLOS Computational Biology, while the actual tutorials themselves are hosted directly by
the authors as standalone Jupyter notebooks. Since only the short paper is archived, the
availability of the tutorials themselves depends on the authors continued access to their
current hosting infrastructure. It further means that relatively few journals consider these
as publishable research objects—since the majority of content is outside of the review
process—disincentivizing researchers from investing time to develop these materials. Al-
leviating this challenge requires the development of new publishing infrastructures that
more directly support executable research objects.

2.6 Summary and conclusions

Although neuroscience aims to identify generalizable principles by which the brain sup-
ports cognition and behavior, to do so effectively requires robust inter-individual map-
pings. Variability in structural and functional features of brain organization challenge
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these mappings, and the limitations of modern neuroimaging methods such as fMRI
further complicate clear comparisons across individuals. From its origins in connectivist
philosophy of science to its rapid development in cognitive neuroscience, functional align-
ment has emerged as a promising technique to improve mapping across the distributed
representations that characterize neural activity. The work described in this thesis explores
existing paradigms for functional alignment with fMRI data and develops new resources
to address current challenges in these applications. First, in Chapter 3, I benchmark five
functional alignment methods on four publicly available datasets to identify which algo-
rithms show robust performance. Then, in Chapter 4, I examine how diverse experimental
factors including data characteristics for deriving and applying functional alignment trans-
formations impact algorithm performance. Next, in Chapter 5, I synthesize these results
into general guidelines to guide cognitive neuroscience researchers who are interested
in using functional alignment methods in their own experimental work. I also develop
accompanying online materials for researchers to directly access code supporting each of
the described alignment methods. Finally, in Chapter 6, I discuss current publishing infras-
tructure for executable research objects such as those included in Chapter 5, highlighting
my recent work in this area as well as important next steps.

Overall, the current thesis develops an initial framework for the application of func-
tional alignment in fMRI, examining how algorithm choice and experimental context
impact relative performance, developing guidelines for experimental applications, and
exploring how these guidelines may be better communicated through future developments
on open publishing infrastructure.
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3.1 Preface

As a broad class of methods, functional alignment includes several algorithms which each
place different constraints on the transformations that can be learned across individual
functional patterns. Many of these algorithms are already in use in the cognitive neuro-
science literature. However, they are rarely systematically compared outside of their initial
introduction to the field. Even in these methodological papers, the number of algorithms
and the range of considered datasets is limited, hindering a clear understanding of their
application to functional magnetic resonance imaging (fMRI) data. In this chapter, I bench-
mark five unique functional alignment algorithms across four publicly available datasets. I
use inter-subject decoding to evaluate the relative similarity across subjects before and after

https://doi.org/10.1016/j.neuroimage.2021.118683
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functional alignment and characterize algorithm performance at both the region-of-interest
and whole-brain level of analysis. This work was published in NeuroImage in 2021 (Bazeille
et al., 2021).

3.2 Abstract

Inter-individual variability in the functional organization of the brain presents a major
obstacle to identifying generalizable neural coding principles. Functional alignment—a
class of methods that matches subjects’ neural signals based on their functional similarity—
is a promising strategy for addressing this variability. To date, however, a range of
functional alignment methods have been proposed and their relative performance is still
unclear. In this work, we benchmark five functional alignment methods for inter-subject
decoding on four publicly available datasets. Specifically, we consider three existing
methods: piecewise Procrustes, searchlight Procrustes, and piecewise Optimal Transport.
We also introduce and benchmark two new extensions of functional alignment methods:
piecewise Shared Response Modelling (SRM), and intra-subject alignment. We find that
functional alignment generally improves inter-subject decoding accuracy though the best
performing method depends on the research context. Specifically, SRM and Optimal
Transport perform well at both the region-of-interest level of analysis as well as at the
whole-brain scale when aggregated through a piecewise scheme. We also benchmark the
computational efficiency of each of the surveyed methods, providing insight into their
usability and scalability. Taking inter-subject decoding accuracy as a quantification of
inter-subject similarity, our results support the use of functional alignment to improve
inter-subject comparisons in the face of variable structure-function organization. We
provide open implementations of all methods used.

3.3 Introduction

A core challenge for cognitive neuroscience is to find similarity across neural diversity
(Churchland, 1998); that is, to find shared or similar neural processes supporting the
diversity of individual cognitive experience. Anatomical variability and limited structure-
function correspondence across cortex (Paquola et al., 2019; Vázquez-Rodríguez et al.,
2019) make this goal challenging (Rademacher et al., 1993; Thirion et al., 2006). Even after
state-of-the-art anatomical normalization to a standard space, we still observe differences
in individual-level functional activation patterns that hinder cross-subject comparisons
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(Langs et al., 2010; Sabuncu et al., 2010). With standard processing pipelines, it is therefore
difficult to disentangle whether individuals are engaging in idiosyncratic cognitive experi-
ence or if they are engaging in shared functional states that are differently encoded in the
supporting cortical anatomy.

To address this challenge, functional alignment is an increasingly popular family of
methods for functional magnetic resonance imaging (fMRI) analysis: from the initial
introduction of hyperalignment in Haxby et al. 2011, the range of associated methods
has grown to include Shared Response Modelling (SRM; Chen et al., 2015) and Optimal
Transport (Bazeille et al., 2019) with many variations thereof (see e.g. Xu et al. 2018;
Yousefnezhad and Zhang 2017, among others). Although this class of methods is broadly
referred to as both functional alignment methods and hyperalignment methods, we adopt the
term functional alignment methods to better distinguish from the specific Procrustes-based
hyperalignment implementation in use in the literature.

The conceptual shift from anatomically-based to functionally-driven alignment has
opened new avenues for exploring neural similarity and diversity. In particular, by align-
ing activation patterns in a high-dimensional functional space (i.e., where each dimension
corresponds to a voxel), we can discover shared representations that show similar trajecto-
ries in functional space but rely on unique combinations of voxels across subjects. For a
review of current applications of functional alignment, see Haxby et al. 2020.

Nonetheless, it remains unclear how researchers should choose among the available
functional alignment methods for a given research application. We therefore aimed to
benchmark performance of existing functional alignment methods on several publicly
accessible fMRI datasets, with the goal of systematically evaluating their usage for a range
of research questions. We consider performance to include both (1) improving inter-subject
similarity while retaining individual signal structure as well as (2) computational efficiency,
as the latter is an important consideration for scientists who may not have access to
specialized hardware. Here, we specifically focus on pairwise alignments wherein subjects
are directly aligned to a target subject’s functional activations. An alternative approach
is known as template-based alignment, wherein a group-level functional template is first
created and then used as a reference space to which individual functional activations
are aligned. Although template-based approaches are an important area of research—
particularly for datasets with a large number of subjects—the question of how best to
generate the reference template is distinct from its alignment and beyond the scope of
the current work. For all alignment methods considered here, technically up-to-date and
efficient implementations to reproduce these results are provided at https://github.com/

https://github.com/neurodatascience/fmralign-benchmark
https://github.com/neurodatascience/fmralign-benchmark
https://github.com/neurodatascience/fmralign-benchmark
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neurodatascience/fmralign-benchmark.

3.3.1 Defining levels of analysis: region-of-interest or whole-brain

Functionally aligning whole-brain response patterns at the voxel level is computationally
demanding and may yield biologically implausible transformations (e.g., aligning con-
tralateral regions). Therefore, currently available functional alignment methods generally
define transformations within a sub-region. This constraint acts as a form of regularization,
considering local inter-subject variability rather than global changes such as large-scale
functional reorganization. It also divides the computationally intractable problem of
matching the whole-brain into smaller, more tractable sub-problems.

An important consideration, then, is how to define a local neighborhood. Broadly,
two main strategies exist: (1) considering voxels within a given region of interest (ROI)
that reflects prior expectations on the predictive pattern or (2) grouping or parcellating
voxels into a collection of subregions across the whole-brain. Existing functional alignment
methods have been proposed using both approaches. For example, the initial introduction
of hyperalignment in Haxby et al. 2011 was evaluated within a ventral temporal cortex ROI
and was later extended to aggregate many local alignments into larger transforms using a
Searchlight scheme (Guntupalli et al., 2016). Other methods such as Optimal Transport have
been evaluated on whole-brain parcellations (Bazeille et al., 2019), where transforms are
derived for each parcel in parallel and then aggregated into a single whole-brain transform.
Throughout this work, we therefore consider functional alignment methods at both the
ROI and aggregated whole-brain level of analysis.

3.3.2 Quantifying the accuracy of functional alignment

3.3.2.1 Image-based statistics

A key question is how to objectively measure the performance of functional alignment.
One approach is to consider alignment as a reconstruction problem, where we aim to learn
a functional alignment transformation that allows us to impute missing images in a target
subject using data from source subjects. These functionally aligned maps can then be
compared with held-out ground-truth maps from the target subject. We can quantify this
comparison using image-based statistics such as the correlation of voxel activity profiles
across tasks (Guntupalli et al., 2016; Jiahui et al., 2020), spatial correlation or Dice coefficient
between estimated and held-out brain maps (Langs et al., 2014) or other metrics such as
reconstruction ratio (Bazeille et al., 2019). However, these image-based statistics are sensitive

https://github.com/neurodatascience/fmralign-benchmark
https://github.com/neurodatascience/fmralign-benchmark
https://github.com/neurodatascience/fmralign-benchmark
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to low-level image characteristics (e.g., smoothness, scaling), and their values can therefore
reflect trivial image processing effects (such as the smoothness introduced by resampling
routines) rather than meaningful activity patterns.

3.3.2.2 Adopting a predictive framework to quantify alignment accuracy

Rather than using image-based statistics, an alternative approach is to test functional
alignment accuracy in a predictive framework. Prior work adopting this framework has
used tests such as time-segment matching from held-out naturalistic data (e.g., Chen et al.,
2015; Guntupalli et al., 2016). However, because time-segment matching relies on the same
stimulus class to train and test the alignment, it is unclear whether the learnt functional
transformations extend to other, unrelated tasks—particularly tasks with low inter-subject
correlation (Nastase et al., 2019). We are therefore specifically interested in predictive
frameworks that probe model validity by measuring accuracy on held-out data from a
different stimulus class, with or without functional alignment.

Inter-subject decoding is a well-known problem in the literature aimed at uncovering
generalizable neural coding principles. More in detail, in inter-subject decoding one learns
a predictive model on a set of subjects and then test that model on held-out subjects,
measuring the extent to which learned representations generalize across individuals. In an
information-mapping framework (Kriegeskorte and Diedrichsen, 2019), decoding allows
one to assess the mutual information between task conditions. Alternate information-
mapping approaches include Representational Similarity Analysis (Kriegeskorte et al.,
2008), which assesses similarities between relative patterns of activations across task
conditions. In this context, functional alignment should facilitate information-mapping
by increasing the similarity of condition-specific representations across subjects, thus
improving their decoding.

Although the link between mutual information and decoding accuracy is non-trivial
(Olivetti et al., 2011), we consider that measuring alignment with decoding accuracy on
unseen subjects better fulfils neuroscientists’ expectations of inter-subject alignment in
two main ways. First, decoding accuracy provides a more interpretable assessment of
performance than other measures such as mutual information estimates. Second, decoding
accuracy on a held-out sample provides insight into the external validity and therefore
generalizability of derived neural coding principles. Compared to image-based measures,
decoding accuracy is thus a more rigorous measure of whether functional alignment im-
proves the similarity of brain signals across subjects while also preserving their structure
and usability for broader research use cases. In this work, we therefore quantify functional
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Figure 3.1: Principle of functional alignment. The goal of functional alignment is to learn correspon-
dence between data drawn from two subjects: from a source subject to a target subject using their
synchronized alignment data A. In this paper, each subject comes with additional decoding task data
D. Red arrows describe functional alignment methods where correspondence is learnt from Asource to
Atarget, while blue arrow describes intra-subject alignment method, where we learn correlation structure
from Asource to Dsource. Solid arrows indicate a transformation learnt during training. Dashed arrows
indicate when the previously learnt transformation is applied in prediction to estimate D̂target.

alignment accuracy by assessing improvements in inter-subject decoding when using
functional alignment over and above anatomical alignment. That is, the field-standard ap-
proach of normalizing subjects to a standardized anatomical template using diffeomorphic
registrations, as implemented in e.g. fMRIPrep (Esteban et al., 2019).

3.3.3 The present study

Using this inter-subject decoding framework, we: (1) establish that functional alignment
improves decoding accuracy above anatomical-only alignment, (2) investigate the impact
of common methodological choices such as whether alignment is learned in subregions
across the whole brain or in a pre-defined region-of-interest (ROI), and (3) compare the
impact of specific alignment methods in whole-brain and ROI-based settings. We then
provide a qualitative comparison of the transformations learnt by each method to “open
the black box" and provide insights into how potential accuracy gains are achieved. Finally,
we discuss the availability, usability and scalability of current implementations for each of
the methods considered.

3.4 Materials and methods

In this section, we first consider frameworks for aggregating local functional alignment
transformations into a single, larger transform (Section 3.4.1.1) that can be applied at a
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whole-brain scale. We then proceed by introducing mathematical notations for functional
alignment, as well as the alignment methods included in our benchmark (Section 3.4.2).
We next describe our procedure to quantify alignment performance using inter-subject
decoding (Section 3.4.3) and a series of experiments aimed at investigating the impact
of functional alignment on decoding accuracy (Section 3.4.4). Finally, we describe the
datasets (Section 3.4.5) and implementations used to run each experiment (Section 3.4.6).

3.4.1 Aggregating local alignments

3.4.1.1 Comparing searchlight and piecewise schemes

As discussed in Section 3.3.1, alignment methods are closely linked with the definition
of local correspondence models. To align the entire cortex across subjects, two main
frameworks have been proposed: searchlight and piecewise aggregation schemes. Each of
these frameworks use functional alignment methods to learn local transformations and
aggregate them into a single large-scale alignment; however, searchlight and piecewise
differ in how they aggregate transforms, as illustrated in Figure 3.2. The searchlight scheme
(Kriegeskorte et al., 2006), popular in brain imaging (Guntupalli et al., 2018, 2016), has
been used as a way to divide the cortex into small overlapping spheres of a fixed radius.
This method allows researchers to remain agnostic as to the location of functional or
anatomical boundaries, such as those suggested by parcellation-based approaches. A
local transform can then be learnt in each sphere and the full alignment is obtained by
aggregating (e.g. summing as in Guntupalli et al., 2016 or averaging) across overlapping
transforms. Importantly, the aggregated transformation produced is no longer guaranteed
to bear the type of regularity (e.g orthogonality, isometry, or diffeomorphicity) enforced
during the local neighborhood fit.

An alternative scheme, piecewise alignment (Bazeille et al., 2019), uses non-overlapping
neighborhoods either learnt from the data using a parcellation method—such as k-means—
or derived from an a priori functional or anatomical atlas. Local transforms are derived in
each neighborhood and concatenated to yield a single large-scale transformation. Unlike
searchlight, this returns a transformation matrix with the desired regularities. This frame-
work might induce staircase effects or other functionally-irrelevant discontinuities in the
final transformation due to the underlying boundaries.
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Figure 3.2: Comparing piecewise and searchlight alignment. In this illustration, transformations
are derived for the blue, green, and red areas separately. Note that the piecewise alignment does not
include a green area, as this corresponds to a searchlight overlapping both the red and blue areas. For
non-overlapping parcels, these transformations are stacked into a larger orthogonal matrix. For the
overlapping searchlight, these transformations are aggregated, with overlapping values averaged. Note
that the final transformation for the searchlight alignment is no longer orthogonal in this example.

3.4.1.2 Aggregation schemes used in this benchmark

In the literature to date, searchlight and piecewise aggregation schemes have both been
used in conjunction with Generalized Procrustes Analysis (detailed in section 3.4.2) under
the names hyperalignment (Guntupalli et al., 2016) and scaled orthogonal alignment
(Bazeille et al., 2019), respectively. We therefore include both searchlight Procrustes and
piecewise Procrustes in our benchmark. Every other method is regularized at the whole-
brain level of analysis through piecewise aggregation.

As piecewise alignment is learnt within a parcellation, an important question is: which
brain atlas should be used for piecewise alignment? In Section S3.12 we compare results
from the Schaefer et al. 2018 atlases to those from parcellations derived directly on the
alignment data. By default, the results presented below are derived with the 300 ROI par-
cellation of the Schaefer atlas unless noted otherwise. In the case of searchlight Procrustes,
we selected searchlight parameters to match those used in Guntupalli et al. 2016; that is,
each searchlight had 5 voxel radius, with a 3 voxel distance between searchlight centers.
All searchlight analyses were implemented using PyMVPA (Hanke et al., 2009).

3.4.2 Description of the benchmarked methods

As we use inter-subject decoding to compare functional alignment methods, we only
consider methods that meet the following two criteria. First, the alignment transformations
should be learnt on activations evoked during temporally synchronized (i.e., co-occuring)
task data, or on contrasts matched across individuals. Second, the learnt transformations
must be invertible or almost invertible linear mappings and applicable as-is on unseen
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data with a different task structure. These two criteria exclude several methods currently
used in the literature such as regularized canonical correlation analysis (rCCA; Bilenko
and Gallant, 2016), gradient hyperalignment (Xu et al., 2018), connectivity hyperalignment
(Guntupalli et al., 2018), and methods based on Laplacian embeddings (Langs et al., 2014).

In our whole-brain benchmark, we consider five different alignment methods: search-
light Procrustes (Guntupalli et al., 2016; Haxby et al., 2011), piecewise Procrustes, piecewise
Optimal Transport (Bazeille et al., 2019), piecewise Shared Response Modelling (SRM;
Chen et al., 2015), and intra-subject correlations across tasks (Tavor et al., 2016), here
referred to as “intra-subject alignment." We provide a brief summary of these methods
below.

3.4.2.1 General notations

Assume that for every subject we have alignment data A ∈ Rp×n and decoding task data
D ∈ Rp×d, where n is the number of alignment time points or frames, d is the number of
decoding task images and p is the number of voxels. The alignment and decoding task
data are collected for both source and target subjects, which we denote with superscripts.

In general, functional alignment methods learn a transformation matrix R ∈ Rp×p that
best maps functional signals from a source subject to those of a target subject. To do so,
R can be seen as a linear mixing of source voxels signals such that RAsource best matches
Atarget. R is then applied on separate, held-out data from the source subject, Dsource to
estimate Dtarget. Because we are only learning an estimate of that held-out decoding task
data, we denote this D̂target. Thus, D̂target = RDsource.

We consider one method, intra-subject alignment, which uses the same alignment
and decoding task data to learn a different transformation than the one described above.
Specifically, in intra-subject alignment we are interested in learning Rintra ∈ Rn×s; that
is, the “intra-subject" correlations between Asource and Dsource. We can then use Rintra

to output D̂target = RintraAtarget. Thus, the main distinction here is that intra-subject
alignment does not learn a source-target mapping; instead, it learns a A to D mapping
within-subjects. These notations are illustrated in Figure 3.1.

3.4.2.2 Procrustes

Generalized Procrustes analysis, introduced to the cognitive neuroscience literature as
hyperalignment (Haxby et al., 2011), searches for an orthogonal local transformation R to
align subject-level activation patterns such that:
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min
R=sM

||RAsource − Atarget||2F, s ∈ R+, M ∈ Rp×p (3.1)

where p is the number of voxels in a given region, such that

M⊺M = Ip (3.2)

This transform can be seen as a rotation matrix mixing signals of voxels in Asource to
reconstruct the signal of voxels in Atarget as accurately as possible. We note that hyper-
alignment as defined in (Haxby et al., 2011) uses a three stage alignment-and-averaging
procedure to extend these Procrustes transformations into a group-level, template-based
method. In the context of pairwise alignments, however, this method is naturally equiva-
lent to Procrustes. Thus, in the rest of this work we use the terms “hyperalignment” and
“Procrustes” interchangeably. As described in Section 3.4.1.2, we compare two whole-brain
implementations of this method: piecewise Procrustes and searchlight Procrustes, that
differ in the way local transformations are aggregated.

3.4.2.3 Optimal Transport

Optimal transport—first introduced as a functional alignment method in Bazeille et al.
2019—estimates a local transformation R that aligns subject-level activation patterns at a
minimal overall cost. Specifically, we can compute the cost of aligning two subject-level
activation patterns as Tr(R · C), where C is the functional dissimilarity—or difference in
activation patterns—between source and target, as measured by a pairwise functional
distance matrix. Thus, for voxel i in Asource and voxel j in Atarget:

Ci,j(Asource, Atarget) = ||Asource
i − Atarget

j || (3.3)

Importantly, the resulting matching is constrained to exhaustively map all source voxels
to all target voxels, with every voxel having an equal weight. This implicitly yields an
invertible and strongly constrained transform, preserving signal structure as much as
possible. To allow for a more efficient estimation, we slightly relax this constraint with an
additional entropic smoothing term. As introduced in Cuturi, 2013, we can then find R,
the regularized Optimal Transport plan by finding a minimum for Equation 3.4 through
the Sinkhorn algorithm.

min
R∈R+

p×p;
R1=1/p, 1R⊤=1/p

Tr(R · C)− ϵH(R) (3.4)
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where ϵ > 0, and the discrete entropy of the transformation H(R) is defined as:

H(R)
def.
= −∑

i,j
Ri,j(log(Ri,j)− 1) (3.5)

This method differs from Procrustes analysis in that it yields a sparser mapping between
source and target voxels with high functional similarity, making it less sensitive to noisy
voxels on both ends. The level of sparsity is controlled by ϵ, a user-supplied hyper-
parameter, which we set to 0.1 throughout our experiments. For our implementation,
we rely on the fmralign package. Optimal transport transformations are calculated in a
piecewise fashion, following Bazeille et al., 2019.

3.4.2.4 Shared response model

The Shared Response Model (SRM), introduced in Chen et al. 2015, differs from Procrustes
analysis and Optimal Transport in that it naturally provides a decomposition of all sub-
jects’s activity at once, rather than requiring pairwise transformations. Specifically, SRM
(in its deterministic formulation) estimates a common shared response S ∈ Rk×n and a
per-subject orthogonal basis Wi ∈ Rp×k from subject-level alignment data Ai such that:

min
W1,...,Wn,S

∑
i
||Ai − WiS||2F (3.6)

where n is the number of time points, p is the number of voxels, and k is a hyper-
parameter indexing the dimensionality. The subject-specific basis Wi has orthonormal
columns such that :

Wi⊺Wi = Ik ∀i (3.7)

We specifically use the FastSRM implementation proposed by Richard et al. 2019 and
available in the BrainIAK library (RRID: SCR_01 4824), that approximates this calcula-
tion with an emphasis on improved computational performance. For full details on the
computational advantages of FastSRM, we direct the reader to their work.

In order to align our SRM implementation with the other considered alignment algo-
rithms, we introduce a new piecewise SRM method to aggregate SRM transformations
across the whole brain. Thus within each parcel or across an a priori ROI, SRM decomposes
the signal of many subjects in a common basis, with the same orthogonality constraint
as Procrustes. This ability to jointly fit inter-subject data through orthogonal transforms
makes it reminiscent of Procrustes, with a caveat: SRM is effective if the number of
components k is large enough to capture all distinct components in the signal.
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Figure 3.3: Intra-subject alignment. Using intra-subject alignment to learn piecewise correlations
between a single subject’s alignment and decoding task data. As with other piecewise methods, this
mapping is learnt separately for all parcels i . . . j of the chosen parcellation. For the ith parcel, voxels are
samples used to train a cross-validated ridge regression Ri to map between the two task conditions—
alignment data Ai and independent decoding task data Di—for this source subject. We then aggregate
these piecewise predictions into a single, whole-brain prediction D̂. In training, this prediction can be
directly compared to the ground-truth decoding data, D. When testing, we would have access to the
target subject’s alignment data A but not their decoding task data, D.

Given the strong dependency of SRM performance on the selected hyper-parameter k,
this parameter requires additional experimenter consideration. For piecewise SRM, we
perform a grid search to select the relevant Schaefer parcellation resolution and number of
components k (see Section S3.13). From these results, we chose to use Schaefer atlas 700
and run one SRM on each parcel searching for 50 components—or equal to the number
of voxels if less than 50 voxels are in a given parcel. For ROI-based analyses, we set k to
50 components as in our piecewise analyses and matching the original SRM benchmarks
provided in Chen et al., 2015.

3.4.2.5 Intra-subject alignment

Another alternative to pairwise functional alignment has been proposed in Tavor et al.
2016. In their paper, Tavor and colleagues show that while individual activity patterns in
each task may appear idiosyncratic, correspondences learnt across different tasks using a
general linear model (e.g., to predict task data from resting-state derived features) display
less across-subject variability than individual activity maps. This provides an interesting
twist on the typical functional alignment workflow: while most methods learn alignments
within a single task and across subjects, we can instead learn within-subject correlations
across tasks. The structure of learnt task-specific correlations should then hold in new,
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unseen subjects. We include here a method for learning these intra-subject correlations in
a piecewise fashion, which we call intra-subject alignment.

Figure 3.3 illustrates how we can learn the local-level correlation structure between
two independent tasks Asource ∈ Rp×n, Dsource ∈ Rp×d within a single source subject. We
denote the mapping between these tasks as Rintra to distinguish it from mappings that are
learnt between pairs of subjects.

From preliminary analyses we observed that—unlike other piecewise techniques (Sec-
tion S3.12)—the decoding accuracy for intra-subject alignment strictly improved with
parcellation resolution so we use the highest resolution Schaefer atlas available (Schaefer
et al., 2018). Thus, we first divide alignment and decoding data into 1000 parcels. On a
local parcel i, each voxel is considered a sample and we train Rintra

i ∈ Rn×d through ridge
regression:

Rintra
i = arg min

Ri

||Asource
i Ri − Dsource

i ||2F + α||Ri||2F (3.8)

The hyperparameter α is chosen with nested cross-validation among five values scaled
between 0.1 and 1000 logarithmically.

After repeating this procedure for all source subjects, we then use Rintra to estimate de-
coding data for target subject as D̂target = AtargetRintra. As with other functional alignment
methods, we can evaluate the quality of our estimation using an inter-subject decoding
framework.

3.4.3 Experimental procedure

For each dataset considered (described in Section 3.4.5), we calculated the inter-subject
decoding accuracy for anatomical-only alignment and for each of the five considered
functional alignment methods.

To calculate inter-subject decoding accuracy, we took the trial- or condition-specific beta
maps generated for each dataset (see Section 3.4.5 for full details on beta-map generation)
and fit a linear Support Vector Machine (SVM). In order to ensure fair comparisons of
decoding accuracy across experiments, we chose a classifier with no feature selection
and default model regularization (C = 1.0). Classifiers were implemented in scikit-learn
(Pedregosa et al., 2011), and decoding accuracy was assessed using a leave-one-subject-out
cross-validation scheme. That is, the linear SVM was trained to classify condition labels on
all-but-one subject and the resulting trained classifier was used without retraining on the
held-out subject, providing an accuracy score for that cross-validation fold.
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Figure 3.4: Analysis pipeline. (A) First-level general linear models are fit for each subject to derive trial-
or condition-specific beta-maps for each session. (B) These beta maps and their matching condition
labels are used to train a linear SVM on the training set of subjects. (C) The trained classifier is applied
on a held-out test subject, and accuracy is assessed by comparing the predicted and actual condition
labels. (D) On a separate task, we compare subject-level activation patterns as trajectories in the high-
dimensional voxel space. This allows us to learn functional alignment transformations that maximize
the similarity of these high-dimensional spaces. (E) These voxel-wise transformations are applied on the
decoding beta maps, and a new linear SVC is trained to predict condition labels. This trained classifier
can then be applied to the held-out test subject and decoding accuracy assessed as in (C).

For each dataset, we first calculated the inter-subject decoding accuracy using anatom-
ical alignment. This served as a baseline accuracy against which we could compare
each functional alignment method. Using alignment data, functional alignment transfor-
mations were then learnt for each pairwise method, where the left-out subject for that
cross-validation fold was the target subject for functional alignment. Inter-subject decoding
accuracy was then re-calculated after applying functional alignment transformations to
the decoding beta maps.

In the special case of SRM—which allows for calculating an alignment from all provided
subjects in a single decomposition—we withheld the left-out subject from the shared
response estimation step to avoid data leakage. The projection of the left-out subject is then
learnt from previously estimated shared space. Finally, the learnt projections are applied
to the decoding data, and decoding is performed on the projected data.

For each cross-validation fold, we report the inter-subject decoding accuracy of a given
functional alignment method after subtracting the baseline, anatomical-only accuracy for
that same fold. An overview of the experimental procedures is provided in Figure 3.4.
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3.4.4 Main experiments

Experiment 1 uses the experimental procedure described previously to assess accuracy gains
provided by alignment methods with respect to anatomical alignment when applied on
whole-brain images. We benchmarked the five methods described in Section 3.4.2: piece-
wise Procrustes, searchlight Procrustes, piecewise Optimal Transport, piecewise SRM, and
intra-subject alignment, with relevant hyperparameters selected as described previously.
Results of this benchmark (on five tasks from four datasets as described in Section 3.4.5)
are presented in Section 3.5.1. For each method, we also assessed its computation time
relative to piecewise Procrustes alignment. Piecewise Procrustes provides a reasonable
computational baseline as it is the only considered alignment method that does not include
a hyperparameter and therefore shows a stable computation time across experiments.

We estimate the noise ceiling for this task as within-subject decoding accuracy. Within-
subject decoding was calculated separately for each subject as the average leave-one-
session-out decoding accuracy. We can then directly compare this accuracy value to the
inter-subject decoding accuracy when that subject is the target—that is, the left-out—
subject. The difference between within- and anatomical inter-subject decoding accuracies,
then, is a good approximation of the decoding accuracy lost due to inter-subject variabil-
ity; therefore, it provides a range of possible accuracy gains that can be expected from
functional alignment.

We then conducted Experiment 2 to understand how whole-brain results compare to
ROI-based analyses. Specifically, we replicated Experiment 1 within selected ROIs, such
that local alignment methods were applied directly without any aggregation scheme. ROIs
were chosen based on a priori expectations of each decoding task (see Section 3.4.5 for
details for each dataset). Results from Experiment 2 are shown in Section 3.5.2.

Experiment 3 tackles the notoriously hard problem of understanding how each of the
considered methods align subjects by examining qualitatively their impact on activity
patterns across individuals. To “open the black-box," we reused IBC dataset full-brain
alignments learnt in Experiment 1. Specifically, we consider the transformation to sub-04’s
activity pattern from all other subjects’s functional data. With these transformations,
we align two contrasts from each of the two decoding tasks of the IBC dataset: Rapid
Serial Visual Presentation of words (RSVP language task) and sound listening. Finally,
we run a group conjunction analysis (Heller et al., 2007) on these four aligned contrasts
and visualize the results. This statistical analysis, more sensitive than its random effect
equivalent on small samples, allows one to infer that every subject activated in the region
with a proportion γ showing the effect considered. Here we use γ = 0.25 to recover all
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regions selectively activated by at least a few subjects, and we show in Section 3.5.3 how
this group functional topography is modified by alignment.

3.4.4.1 Control analyses

In addition to our three main experiments, we ran three additional control analyses on the
IBC dataset. First, we aimed to assess the impact of the brain parcellation and its resolution
on piecewise alignment by comparing whole-brain decoding accuracy for two IBC dataset
tasks using piecewise Procrustes across both data-driven and pre-defined parcellations
(Section S3.12). As piecewise SRM displays an interaction between parcellation resolution
and the method-specific hyperparameter k, we ran an additional grid search for this
algorithm to determine its optimal experimental parameters (Section S3.13).

Second, we calculated inter-subject decoding performance after applying Gaussian
smoothing kernels of several widths on both IBC dataset decoding tasks (Section S3.14).
Gaussian smoothing is of particular interest as a comparison to functional alignment, as
it is commonly used to facilitate inter-subject comparisons by smoothing over residual
variance in functional mappings. Finally, in a third control experiment, we assessed the
impact of whether data is represented on the surface or the volume and resolution on
decoding accuracy in the IBC RSVP language task (Section S3.15).

3.4.5 Datasets and preprocessing

In order to assess the performance of each functional alignment method in a range of
applications, we searched for publicly accessible datasets that included both a task suitable
to learn the alignment (e.g. naturalistic or localizer protocols) as well as an independent
decoding task on which we could evaluate functional alignment performance. After
discarding datasets where we could not obtain above-chance accuracy levels for within-
subject decoding, we retained four datasets: BOLD5000 (Chang et al., 2019), Courtois-
NeuroMod (Boyle et al., 2020), Individual Brain Charting (IBC; Pinho et al., 2018), and
Study Forrest (Hanke et al., 2016). For the IBC dataset, we included both a language (RSVP
language) and auditory (Sounds dataset) decoding task, yielding a total of five decoding
tasks that probe visual, auditory and language systems. For a complete description of the
alignment and decoding data included in each experiment, please see Table 3.1.

BOLD5000, StudyForrest and Courtois-NeuroMod were preprocessed with fMRIPrep
(Esteban et al., 2019), while IBC data were preprocessed using an SPM-based pipeline
as described in Pinho et al. 2018. A complete description of the fMRIPrep preprocessing
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Dataset S Alignment data p Decoding
task

Decoding categories d

Individual
Brain

Charting
10

Contrast maps from
HCP and ARCHI task

batteries
53 RSVP

Language
Words, Non-Words,

Consonants,
Sentences,

Jabberwocky

360

Sounds
dataset

Voice, Nature,
Animal, Music,
Speech, Tools

72

BOLD5000 4 COCO, ImageNet,
and Scenes images

300 Imagenet
images
content

Plant, Animal, Food,
Artifact

350

Forrest 10 Forrest Gump
audio-movie listening

1600 Music
genre

Country, Metal,
Ambient, Symphonic,

Rock

200

Courtois
Neuro-
mod

6 Life movie watching 2008 Visual
n-back

condition

Body 0-back, Body
2-back, Face 0-back,
Face 2-back, Place

0-back, Place 2-back,
Tools 0-back, Tools

2-back

72

Table 3.1: Datasets used to benchmark alignment methods. The four datasets used in this benchmark,
where each dataset consists of S subjects. We note the alignment data used for each dataset and p
the number of timeframes it comprises. These datasets show the range of possible task structures
which work for alignment—from static images for BOLD5000, to statistical contrast maps for IBC, to
complex audio or audio-visual movies for Forrest and Courtois Neuromod. A full listing of included
53 contrast maps for IBC is included in Section S3.16. We also include the decoding task(s) used for
each dataset. Each subject’s decoding task data comprises d images evenly divided across the listed
stimulus categories (except for BOLD5000 categories that are unbalanced). Of note, IBC dataset has two
independent decoding tasks, bringing the total number of decoding tasks to five.
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procedures is available in the appendix (Section S3.9). Preprocessed data were then masked
using a grey matter mask, detrended, and standardized using Nilearn (Abraham et al.,
2014a). To reduce the computational cost of functional alignment, we downsampled all
included datasets to 3mm resolution. Both alignment and decoding task data were then
additionally smoothed with a 5mm Gaussian kernel. A general linear model (GLM) was
fit to each decoding task run to derive trial-specific beta maps (or condition-specific beta
maps for the Courtois Neuromod and IBC Sounds tasks), which were carried forward for
inter-subject decoding.

As described in Section 3.4.3, Experiment 2 uses pre-defined regions of interest (ROIs).
We selected large, task-relevant ROIs to ensure that sufficient signal was available when
decoding. A large visual region, extracted from the Yeo7 (Buckner et al., 2011) atlas
was used for the visual tasks in BOLD5000 and Courtois-NeuroMod. For Forrest and
IBC Sounds—which are auditory tasks—we took the Neuroquery (Dockès et al., 2020)
predicted response to the term “auditory". We then compared this predicted response
with the BASC (Bootstrap Analysis of Stable Clusters) atlas (at scale 36; Bellec et al., 2010)
and took the parcel most overlapping with the predicted response; namely, parcel 25. For
IBC RSVP, which is a reading task, we extracted the BASC (at scale 20) atlas components
most overlapping with MSDL (Multi-Subject Dictionary Learning; Varoquaux et al., 2011)
atlas parcels labeled as left superior temporal sulcus, Broca and left temporo-parietal
junction: namely, the 8 and 18 BASC components. We then kept only the largest connected
component. All included ROIs are displayed in Figure 3.7.

3.4.6 Implementation

With the exception of Courtois Neuromod, all other included datasets are available on
OpenNeuro (Poldrack et al., 2013) under the following identifiers: ds000113 (Study Forrest),
ds001499 (BOLD5000), and ds002685 (IBC). Courtois Neuromod 2020-alpha2 release will
be available under a data usage agreement as outlined on https://docs.cneuromod.ca.

Our pipeline entirely relies on open-source Python software, particularly the SciPy stack
(Virtanen et al., 2020). All included methods are implemented in fmralign or accessed
through their original, open source implementations as described in Section 3.4.2. To ease
replication and extension of the presented results, we have created the fmralign-benchmark
repository under https://github.com/neurodatascience/fmralign-benchmark. This repos-
itory provides an implementation of the procedures adopted in these experiments, building
on fmralign and previously cited tools.

https://docs.cneuromod.ca
https://github.com/neurodatascience/fmralign-benchmark
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Figure 3.5: Decoding accuracy improvement and computation time after whole-brain functional
alignment. In the left panel, we show decoding accuracy improvement for each of the considered
functional alignment methods at the whole-brain level of analysis. Each dot represents a single subject,
and subjects are colored according to their decoding task. To aggregate results across datasets, we show
accuracy scores after subtracting inter-subject decoding accuracy for the same leave-one-subject-out
cross-validation fold with anatomical-only alignment. While we depict relative accuracies here, absolute
accuracy values are provided in Table S3.1. In the right panel, we show the computational time for each
of the considered methods. All computation times are depicted as relative to piecewise Procrustes.
For both panels, each box plot describes the distribution of values across datasets, where the green
line indicates the median. All methods seem to improve decoding accuracy across datasets, especially
piecewise Shared Response Model, piecewise Optimal Transport and piecewise Procrustes. We also see
that piecewise Optimal Transport and searchlight Procrustes are respectively 7 and 25 times slower than
piecewise Procrustes.
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3.5 Results

3.5.1 Functional alignment improves inter-subject decoding

The left panel of Figure 3.5 displays absolute decoding accuracy change brought by each
functional alignment method relative to anatomical alignment on whole-brain images. As
every method is trained and tested on the same cross-validation folds, we report the fold-
by-fold performance change. The right panel displays each method’s relative computation
time compared to piecewise Procrustes alignment. For each panel, each point displayed is
the result for one leave-one-subject-out cross validation fold and each color corresponds to
one of the five decoding tasks. Note that these timings are based on available implementa-
tions — fmralign for piecewise alignment methods, pymvpa2 for searchlight, and BrainIAK

for SRM— and are therefore subject to change as implementations improve. Nonetheless,
these estimates provide insight into the current state-of-the-art.

3.5.1.1 Alignment substantially improves inter-subject decoding accuracy

Overall, we see that most functional alignment methods consistently improve decoding
accuracy, with gains from 2-5% over baseline. This trend is relatively consistent across
datasets and target subjects. Thus, alignment methods manage to reliably reduce individ-
ual signal variability while preserving task-relevant information in a variety of conditions.
Although there is noticeable variance in performance across data sets, these methods
generally show significant effects on inter-subject decoding accuracies. As reported in
Table S3.1, baseline accuracy is around 20% above chance on average. In this setting, the
observed 5% average improvement across datasets is a substantial increase in performance.

In order to provide further context for these results, we also estimated the noise
ceiling for inter-subject decoding. Figure 3.6 reports that across datasets, the leave-one-
session-out (i.e., within-subject) decoding accuracy for the target subject is on average 8.5%
higher than the corresponding leave-one-subject-out (i.e., inter-subject) decoding accuracy
after anatomical alignment for the same target subject. Thus, we expect that functional
alignment methods will achieve at most an 8.5% increase in inter-subject decoding accuracy
over anatomical alignment. In this light, we can see that the best functional alignment
method recovers more than half of the decoding accuracy lost to inter-subject variability.

Additional control analyses suggest that this effect cannot be explained by smoothing
(Section S3.14). We further find that the presented results are largely insensitive both to
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whether the data is represented on the cortical surface or in volumetric space as well as to
the parcellation resolution used (see section S3.15).

3.5.1.2 Piecewise methods show computational and accuracy advantages

Procrustes alignment results in better inter-subject decoding accuracies when performed
in a piecewise as compared to a searchlight approach. Specifically, searchlight Procrustes
shows lower decoding accuracies on average, suggesting that its internal averaging de-
stroys part of the signal structure recovered by Procrustes. With respect to computational
cost, we can see that searchlight Procrustes is 25 times slower on average than piecewise
Procrustes. These results suggest that piecewise alignment is a better choice when calcu-
lating functional alignment transformations on full-brain data. Moreover, Section S3.12
shows that gains from piecewise alignment are largely insensitive to the resolution and
type of parcellation used; i.e., taken from an atlas or learnt directly from subject data.

The two best performing alignment methods also use a piecewise aggregation scheme.
Specifically, piecewise SRM and Optimal Transport yield the highest decoding scores, with
a slightly lower standard deviation in accuracy scores than Procrustes.

Piecewise SRM is the best performing method and faster to train than piecewise Pro-
crustes for a fixed set of hyperparameters; however, identifying the ideal hyperparameters
for a new dataset requires a computationally costly grid-search. Our results (see Section
S3.13) suggest that, in general, a large number of components k and a high-resolution
parcellation are likely to give reasonable performance across datasets.

The second best performing method, Optimal Transport, gives non-trivial accuracy
gains in most configurations and only rarely decreases decoding accuracy, likely because
of the stronger constraints that it imposes. However, this extra-performance comes at a
computational cost: it is on average 7 times slower than Procrustes. For data sets without
sufficient data or computational power to perform a hyper-parameter grid search for
piecewise SRM, we suggest that Optimal Transport offers robust decoding performance
with little hyper-parameter tuning. It remains, however, more computationally costly than
the reference implementation of piecewise Procrustes.

3.5.1.3 Task-specific mappings can be learnt within subjects

The intra-subject alignment approach differs from other considered functional alignment
methods in that it learns mappings between the alignment data and decoding task data,
with the assumption that these mappings can be generalized across subjects. Our re-
sults support this assumption, although this method yields gains half as large as the best
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Figure 3.6: Within-subject minus inter-subject decoding accuracy. We show the difference between
the average leave-one-session-out within-subject decoding accuracy and anatomically-aligned leave-
one-subject-out inter-subject decoding accuracy, when that target subject is left-out. Thus, each dot
corresponds to a single subject, and the dot’s color indicates the decoding task. Of note, BOLD5000 was
dropped as it did not have independent folds, and therefore could not be used for within-subject cross-
validation. The box plot describes the distribution of differences, where the green line represents the
median value. Considering that this difference approximates the effects of inter-individual variability,
the best average accuracy improvement one can hope for using functional alignment is around 9%.

performing alignment method and comes with a significant computational cost. Part of
this cost can be accounted for by the increase in the number of parcels that are used to
preserve signal specificity. Nonetheless, using task-specific mappings as a functional align-
ment method suggests that future work on refining related methods may be a promising
direction of research.

3.5.2 Whole-brain alignment outperforms ROI-based alignment

The left panel of Figure 3.7 displays the performance of each functional alignment method
relative to anatomical alignment within task-relevant ROIs. The right panel displays each
method’s relative computation time compared to piecewise Procrustes alignment.

When visually compared to Figure 3.5, ROI-based decoding accuracies appear to be
slightly lower than whole-brain decoding accuracies for most of the methods considered.
We directly compare ROI-based and whole-brain alignment in a supplementary analysis,
depicted in Figure S3.1, confirming that ROI-based decoding accuracies are in fact lower on
average for the datasets considered in this work. Our results support previous work from
the inter-subject decoding literature (Chang et al., 2015; Schrouff et al., 2018) and suggest
that full-brain piecewise alignment yields the best overall decoding pipeline, though we
note that this conclusion may change depending on the exact research context.

3.5.2.1 Optimal Transport and SRM show high ROI performance

Overall, we find that the best performing methods bring a 3-5% improvement in decoding
accuracy at the ROI level of analysis. Specifically, Optimal Transport is on average the best
performing method, with a median accuracy increase of 5% within task-relevant ROIs.
Here, we see that baseline decoding accuracy is less than 10% above chance in all datasets
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(with the exception of Courtois Neuromod; see Table S3.2 for exact accuracy values). Thus,
the 5% accuracy increase brought by Optimal Transport represents a strong effect.

SRM yields the second best performance within ROIs, showing reasonable decoding
accuracy gains on most datasets. It shows more variance across datasets, however, than the
other considered methods. In particular, SRM decreases inter-subject decoding accuracy on
the visual ROI for Courtois Neuromod, with accuracy values dropping by approximately
-20% compared to anatomical alignment (see Table S3.2). Performance was not significantly
improved by using a higher number (up to 600) components, highlighting the unique
difficulty in identifying well-suited hyper-parameters for SRM. Interestingly, Procrustes
shows substantially lower performance on average in the ROI compared to the whole-brain
level of analysis, especially on large ROIs, possibly due to its weak regularization.

Computationally, we see that SRM is the fastest method and runs roughly 3 times faster
than Procrustes, while Optimal Transport remains 10 times slower than Procrustes.

We also note that—on average—intra-subject alignment does not show increased
inter-subject decoding accuracy within task-relevant ROIs. We suspect that this is likely
because when restricting the learnt relationship between data types (e.g. movie-watching
to classification task data) to a single ROI, the low number of predicted features precludes
the identification of stable multivariate patterns that can transfer across subjects.

3.5.3 Qualitative display of transformations learnt by various methods

Understanding the effects of high-dimensional transformations—such as those used in
functional alignment—is non-trivial. To aid in this process, we “open the black box" by
functionally aligning a group of subjects to an individual target subject’s functional space
and depict the resulting maps in Figure 3.8. Here, we reuse whole-brain alignments learnt
in Experiment 1.

We also display the ground-truth individual activation maps in panel A, in order to
better highlight how each method affects the signal distribution. As a reminder, the
contrast data displayed here was not used to learn alignments, so it means that alignment
learnt on various task data, not specifically related to language nor audition carried enough
information for fine-grain registration of these networks.

We can see that overall, functional alignment methods enhance group-level contrasts
compared to anatomical-only alignment; i.e., activation maps are more similar across
functionally-aligned subjects. This result is not at the expense of signal specificity, since
the aligned group topographies are still sharp. From the comparison between panels
A and B, one can also conclude that alignment methods bring group topography much
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Figure 3.7: Decoding accuracy improvement and computation time after ROI-based functional
alignment. In the left panel, we show decoding accuracy for each of the considered local functional
alignment methods at the ROI level of analysis. The ROIs used for each dataset are displayed on the far
right. Each dot represents a single subject, and subjects are colored according to their decoding task.
Rather than raw values, we show accuracy scores after subtracting inter-subject decoding accuracy for
the same leave-one-subject-out cross-validation fold with anatomical-only alignment. While we depict
relative accuracies here, absolute accuracy values are provided in Table S3.2. Note that all methods
are applied without aggregation, so only the method name is given. In the right panel, we show the
computational time for each of the considered methods. All computation times are depicted as relative
to piecewise Procrustes. For both panels, each box plot describes the distribution of values where the
green line indicates the median.
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closer to the targeted subject topography across the considered contrasts. Nonetheless, one
can still observe that there seems to be a trade-off between sharpness of activation (low
smoothness of image, due to low variance across aligned subjects) with Optimal Transport,
and accuracy of their location compared to the target ones (low bias introduced by the
matching) with searchlight Procrustes.
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Figure 3.8: Comparison of alignment methods geometrical effects. (A) Activation patterns for the
Target subject (IBC sub-04) for two contrasts from the IBC Sounds task (Speech > Silence, Voice > Silence)
and IBC RSVP task (Sentence > Word, Word > Consonants). Here, we only show contrast maps from a
sub-region of the temporal lobe containing contrast-relevant information. Note that this sub-region
differs slightly between the Sounds and RSVP task. (B) Visualization of a group conjunction analysis of
all IBC subjects after alignment to the target subject for each of the considered methods. We used a γ
value of 0.25 in the group conjunction analysis, which corresponds to at least 25% of the IBC sample
showing activation in this temporal region after alignment. For ease of comparison, the colorbar for
each contrast and method was scaled to show the full range of values (i.e., the colorbar spans different
interval across methods and contrasts) and so is not included here. All displayed maps were thresholded
at 1/3 of their maximum value. We see that functional alignment yields stronger contrasts overall when
compared to anatomical alignment. Piecewise Procrustes and piecewise Optimal Transport yield less
smooth representations, better preserving signal specificity.
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3.6 Discussion

In this work, we have proposed a new procedure to measure the information recovered
through functional alignment using inter-subject decoding, and we subsequently used
this framework to benchmark five functional alignment methods on five distinct decoding
tasks across four publicly available datasets.

In general, we find that functional alignment improves inter-subject decoding accu-
racy in both whole-brain and ROI settings. These results, combined with our qualitative
visualization of the effects of functional alignment on signal structure, suggest that func-
tional alignment improves inter-subject correspondence while matching signal to realistic
functional topographies. This finding extends and supports conclusions from earlier work
(Güçlü and Gerven, 2015; Guntupalli et al., 2016).

At a whole-brain scale, the best performing methods are piecewise SRM, piecewise
Optimal Transport, and piecewise Procrustes which each bring 5% improvement over
baseline on average. As the baseline inter-subject decoding accuracy is roughly 20% above
chance across datasets (Table S3.1), this 5% increase represents a substantial improvement.
We also note that this represents recovering more than half of the accuracy lost to inter-
subject variability.

The considered functional alignment methods also improve decoding performance
when applied without an aggregation scheme (i.e., piecewise or searchlight aggregation)
within task-relevant ROIs. Here, Optimal Transport and SRM bring 5% and 3% improve-
ment in inter-subject decoding accuracy, respectively, over a baseline accuracy which is on
average 10-15% above chance across datasets (Table S3.2).

From our control analyses, we observe that these increases in decoding accuracy were
reliably greater than the effect of Gaussian smoothing (see section S3.14). In a minimalistic
replication, this effect seems to hold for both volumetric and surface data and at different
parcellation resolutions (see section S3.15; cf. Oosterhof et al., 2011).

Our benchmark also brings new evidence that the latent correspondences that can be
learnt between different tasks display less inter-individual variability than the task-specific
activation maps (Tavor et al., 2016). Experiment 1 indeed showed that such correspon-
dences could even be used at a whole-brain scale to transfer signals subjects to solve an
inter-subject decoding problem, which is—to the best of our knowledge—an original ex-
perimental result. By releasing efficient and accessible implementations of these methods
in the fmralign package, we hope to facilitate future cognitive neuroscience research using
functional alignment methods.
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3.6.1 Combining local alignment models

Across datasets, we find that the aggregation scheme for alignment significantly affects sub-
sequent performance. Notably, piecewise Procrustes outperforms searchlight Procrustes,
both in terms of accuracy as well as computational performance. The methodological differ-
ence between these aggregation schemes is whether alignment transformations are learnt
within overlapping neighborhoods (as in searchlight Procrustes) or not (as in piecewise
Procrustes). Searchlight alignment suffers in that the overlap between searchlights requires
multiple computations for a given neighborhood, and the aggregated transformation is
no longer guaranteed to reflect properties of the original transforms, e.g. orthogonality.
Although piecewise aggregation may theoretically introduce discontinuities at parcel
boundaries, in our results we do not find evidence of this effect and indeed find that
piecewise aggregation overall benefits decoding performance. Importantly, we found that
the improved performance of piecewise Procrustes was largely insensitive to parcel size
and definition (see Figure S3.2).

3.6.2 Evaluating alignment performance with decoding

We use inter-subject decoding to quantify the amount of information recovered by func-
tional alignment methods. In general, identifying publicly available datasets with tasks
appropriate for both inter-subject decoding as well as functional alignment remains a
challenge. Beyond the four datasets included in these results, we investigated several
other publicly available datasets such as the Neuroimaging Analysis Replication and
Prediction Study (NARPS; Botvinik-Nezer et al., 2020),the Healthy Brain Network Serial
Scanning Initiative (HBN-SSI; O’Connor et al., 2017), the interTVA dataset (Aglieri et al.,
2019, available as Openneuro ds001771) and the Dual Mechanisms of Cognitive Control
Project (DMCC, Etzel et al., 2021).

We had difficulties in achieving sufficient baseline accuracy levels in these and other
datasets, and we therefore chose not to include them in the present study. This suggests
that the amount of signal discriminating complex experimental conditions is not strong
enough to find inter-subject patterns robust to variability in many publicly available
datasets, likely due to limited sample sizes and suboptimal experimental designs. We
hope that broader recognition of the benefits of using inter-subject decoding to uncover
neural coding principles across subjects—using functional alignment if necessary—will
encourage investigators to collect and share more datasets supporting this type of analysis.
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Greater data availability will encourage robust, principled comparisons of alignment
methods and foster progress in the field.

3.6.3 Study limitations and future directions

Although our study provides a broad evaluation of the performance of several functional
alignment methods, there are several dimensions which we hope future work will better
address. Notably, we did not thoroughly investigate how alignment performance is
impacted by image resolution and whether data are represented on the surface or the
volume. Using volumetric images downsampled to a standard resolution of 3mm isotropic
enabled us to make fair comparisons across datasets at a reasonable computational cost.
We also show in Section S3.15 that results from piecewise Procrustes alignment on the IBC
dataset hold in a higher resolution, surface-based setting. Nonetheless, other functional
alignment methods might show different patterns of performance in this setting or at
different resolution levels. Moreover, applying these methods on high-resolution images
is an exciting perspective to better understand how brain function details vary across
subjects. To progress in this direction, a stronger focus on developing computationally
efficient methods will be needed. The use of high-resolution parcellations—combined
with more efficient implementations of piecewise Optimal Transport or a piecewise Shared
Response Model—seem to be particularly promising directions.

We have not examined either the impact of alignment data on the learnt transforma-
tions or whether this impact varies across cortex. That is, we could further ask whether
certain kinds of stimuli may produce more accurate functional alignments for specialized
functional regions. In general, the surveyed functional alignment methods view each
subject alignment image as a sample, and the resulting transformation is trained to match
corresponding samples across subjects. If some training images lack stable signal in a
given ROI, functional alignment methods are unlikely to learn meaningful transformations
in this region. Finally this benchmark largely focused on pairwise alignment models.
Template-based models—beyond latent factor models as SRM—are an important area of
research to further improve the usability of functional alignment methods, particularly in
research settings with a large number of subjects. In future work, we intend to address
the above questions to learn more about when functional alignment methods are most
appropriate.
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3.7 Conclusion

In the present work, we have provided an extensive benchmark of five popular functional
alignment methods across five unique experimental tasks from four publicly available
datasets. Assessing each method in an inter-subject decoding framework, we show that
both Shared Response Modelling (SRM) and Optimal Transport perform well at a region-
of-interest level of analysis, as well as at the whole-brain scale when aggregated through
a piecewise scheme. Our results support previous work proposing functional alignment
to improve across-subject comparisons, while providing nuance that some alignment
methods may be most appropriate for a given research question. We further suggest that
identified improvements in inter-subject decoding demonstrate the potential of functional
alignment to identify generalizable neural coding principles across subjects.
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S3.9 fMRIPrep preprocessing

Results included in this manuscript come from preprocessing performed using fMRIPrep
20.1.1+38.g8480eabb (Esteban et al., 2018b; Esteban et al., 2018a; RRID:SCR_016216), which
is based on Nipype 1.5.0 (Gorgolewski et al., 2011; Gorgolewski et al., 2018; RRID:SCR_002502).

S3.9.1 Anatomical data preprocessing

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.2.0 (Avants et al.,
2008, RRID:SCR_004757), and used as T1w-reference throughout the workflow. The
T1w-reference was then skull-stripped with a Nipype implementation of the antsBrainEx-
traction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue
segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was
performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang et al.,
2001). Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym)
was performed through nonlinear registration with antsRegistration (ANTs 2.2.0), us-
ing brain-extracted versions of both T1w reference and the T1w template. The follow-
ing template was selected for spatial normalization: ICBM 152 Nonlinear Asymmet-
rical template version 2009c (Fonov et al., 2009, RRID:SCR_008796; TemplateFlow ID:
MNI152NLin2009cAsym).

S3.9.2 Functional data preprocessing

For each subject’s BOLD runs (across all tasks and sessions), the following preprocessing
was performed. First, a reference volume and its skull-stripped version were generated by
aligning and averaging 1 single-band references (SBRefs). A B0-nonuniformity map (or
fieldmap) was estimated based on two (or more) echo-planar imaging (EPI) references with
opposing phase-encoding directions, with 3dQwarp Cox and Hyde (1997) (AFNI 20160207).
Based on the estimated susceptibility distortion, a corrected EPI (echo-planar imaging)
reference was calculated for a more accurate co-registration with the anatomical refer-
ence. The BOLD reference was then co-registered to the T1w reference using bbregister

(FreeSurfer) which implements boundary-based registration (Greve and Fischl, 2009).
Co-registration was configured with six degrees of freedom. Head-motion parameters
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with respect to the BOLD reference (transformation matrices, and six corresponding rota-
tion and translation parameters) are estimated before any spatiotemporal filtering using
mcflirt (FSL 5.0.9, Jenkinson et al., 2002).

First, a reference volume and its skull-stripped version were generated using a custom
methodology of fMRIPrep. The BOLD time-series (including slice-timing correction when
applied) were resampled onto their original, native space by applying a single, composite
transform to correct for head-motion and susceptibility distortions. These resampled BOLD
time-series will be referred to as preprocessed BOLD in original space, or just preprocessed
BOLD. The BOLD time-series were resampled into standard space, generating a preprocessed
BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped
version were generated using a custom methodology of fMRIPrep.

All resamplings can be performed with a single interpolation step by composing all the
pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion
correction when available, and co-registrations to anatomical and output spaces). Gridded
(volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured
with Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos,
1964).

Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al., 2014b, RRID:SCR_001362),
mostly within the functional processing workflow. For more details of the pipeline, see the
section corresponding to workflows in fMRIPrep’s documentation.

S3.9.3 Copyright Waiver

The above boilerplate text was automatically generated by fMRIPrep with the express
intention that users should copy and paste this text into their manuscripts unchanged. It is
released under the CC0 license.

S3.10 Absolute decoding accuracy of various methods

Tables S3.1 and S3.2 report absolute decoding accuracies for Experiment 1 and Experiment 2,
to bring a different view of results presented in Figures 3.5 and 3.7, as relative improve-
ments brought over anatomical registration by various alignment methods. This “per
dataset view" highlight that gains brought by best methods are substantial improvement
over baseline, especially when compared to chance.

https://fmriprep.readthedocs.io/en/latest/workflows.html
https://fmriprep.readthedocs.io/en/latest/workflows.html
https://creativecommons.org/publicdomain/zero/1.0/
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Methods/Dataset IBC RSVP IBC Sounds Forrest BOLD5000 Neuromod

Chance 16.7 16.7 20 25.5 12.5

Anatomical 38.2 ± 4.1 32.7 ±4.8 31.4 ± 4.7 33.3 ± 2.9 54.1 ± 6.7

Intra-subject 39.6 ± 3.1 36.4 ± 8.6 31.9 ± 5.4 34.9 ± 2.8 55.6 ± 7.7

Searchlight Procrustes 39.0 ± 5.1 32.6 ± 6.5 33.6 ± 6.1 35.2 ± 2.0 65.5 ± 6.6

Piecewise Procrustes 42.0 ± 4.7 36.6 ± 5.5 33.8 ± 6.4 36.4 ± 1.8 67.4 ± 10.6

Piecewise Optimal Transport 43.5 ± 5.5 38.0 ± 9.5 33.8 ± 5.6 36.6 ± 2.1 65.3 ± 9.1

Piecewise Shared Response Model 42.4 ± 4.0 37.0 ± 6.8 33.7 ± 7.2 39.6 ± 2.9 66.2 ± 7.0

Table S3.1: Fullbrain benchmark absolute decoding accuracy (%).
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Methods/Dataset IBC RSVP IBC Sounds Forrest BOLD5000 Neuromod

Chance 16.7 16.7 20 25.5 12.5

Anatomical 22.3 ± 3.3 26.9 ± 6.9 28.6 ± 6.0 33.5 ± 3.3 50.2 ± 5.3

Intra-subject 22.0 ± 1.7 25.6 ± 2.7 27.5 ± 3.2 38.0 ± 2.6 51.4 ± 10.2

Procrustes 31.0 ± 4.3 32.7 ± 8.3 30.1 ± 7.0 30.1 ± 2.2 46.5 ± 7.8

Optimal Transport 24.9 ± 2.5 29.9 ± 5.4 28.9 ± 2.2 39.7 ± 2.7 64.4 ± 8.9

Shared Response Model 30.4 ± 4.4 30.9 ± 6.3 34.3 ± 5.2 40.9 ± 3.6 32.6 ± 5.5

Table S3.2: ROI benchmark absolute decoding accuracy (%).

S3.11 Whole-brain decoding provides better accuracy than

ROI-based decoding

In Figure S3.1, we compare ROI-based and whole-brain inter-subject decoding accuracy im-
provements for piecewise Procrustes alignment above anatomical-only alignment. We see
that whole-brain alignment generally shows higher inter-subject decoding improvements
compared to ROI-based alignment. As mentioned in the main text, this result supports
previous work from the inter-subject decoding literature (Chang et al., 2015; Schrouff et al.,
2018), and it suggests that full-brain piecewise alignment yields the best overall decoding
pipeline.

S3.12 Parcellation has limited impact on decoding accuracy

To assess the impact of the parcellation used on piecewise alignment results, we compared
decoding accuracy gains while varying the parcellation kind and resolution. First, we
consider the multi-resolution Schaefer et al. (2018) atlas, which was learnt using a gradient
weighted markov random field on resting state data from 1489 subjects. We compare this
a priori parcellation to two parcellations learnt directly on the subject’s alignment data
after 5mm FWHM Gaussian smoothing: K-means or Hierarchical K-means. All these
parcellations were taken at ten resolutions from 100 to 1000 parcels.

As hierarchical K-means may be less familiar to readers, we briefly describe it in more
detail here. This method is a variant of K-means aimed specifically at obtaining more
balanced parcels. To identify k parcels, we first apply K-means to cluster the voxels in

√
k

big clusters. Each of these “big clusters" is then clustered again in
√

k to obtain a total of
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k smaller well-balanced parcels. In this experiment, K-means and Hierarchical K-means
implementations used are respectively from scikit-learn and fmralign, and fitted as
part of fmralign alignment functions on the source subject data.

We plot piecewise Procustes accuracy improvements for these three parcellation meth-
ods and ten resolutions in Figure S3.2. Here, we only show the IBC Sounds and IBC
RSVP decoding tasks to ease in interpretation. Overall, we observe on these two tasks that
the type and resolution of parcellation used does not have a strong impact on accuracy
improvements above anatomical-only alignment. We therefore suggest that piecewise align-
ment can be used with confidence that the parcellation choice won’t strongly impact its
results.

S3.13 Grid-search of Piecewise SRM hyperparameters

As a piecewise implementation of SRM is a novel contribution from this work, we had no
prior knowledge on how to properly set hyperparameters from this methods (clustering
type and resolution as well as the number of components to set for each parcelwise SRM).

For the type of clustering, we limited ourselves to a pre-computed parcellation (the
Schaefer atlas) available at various resolutions. This is based on the intuitions acquired on
Procrustes ( see Section S3.12) that the parcellation type was not of utmost importance to
decoding results. We ran a cross-validation on the two remaining parameters. We used
Schaefer atlas at resolution : [100,300,500,700] while our number of components ranged
in [5,25,35,50]. Figure S3.3 present the results of this cross-validation, that led us to chose
Schaefer atlas 700 and 50 components as hyper parameters for our main experiments.

S3.14 Functional alignment is not merely smoothing

Gaussian smoothing is a common preprocessing step in neuroimaging group studies,
which reconciles dissimilar subject-level signals by smoothing over inter-individual vari-
ability. Our qualitative results (section 3.5.3) show that best performing alignment methods
do not seem to smooth the signal across voxels, but instead preserve the signal specificity
while matching its geometry with the target subject functional topography. Specifically, we
compared decoding gains from six different Gaussian smoothing kernels to those obtained
through the reference method piecewise Procrustes alignment.
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The results displayed in Figure S3.4 clearly support previous findings (Guntupalli et al.,
2016) that smoothing does not improve inter-subject decoding performance—and therefore
recover mutual information—in the same way as functional alignment.

S3.15 Impact of the data representation and resolution

Oosterhof et al. 2011 argued that functional alignment benefits from working with a
representation of the fMRI signal on the cortical surface (Coalson et al., 2018). Relatedly,
we would also expect that the resolution of the data representation—whether in the surface
or the volume—will impact the quality of the alignment learnt.

To assess the dependence of our 3mm volumetric results presented in the main text on
sampling parameters, we replicated our inter-subject decoding framework with the IBC
RSVP language task data on a high-resolution cortical surface representation(fsaverage7)(obtained
through freesurfer surface projection of full-resolution raw images in their respective sub-
ject space, later on mapped to the common surface template). This surface mesh includes
168k cortical nodes per hemisphere, which we divided into 350 parcels per hemisphere
using Schaefer atlas at scale 700.

We provide results for the inter-subject decoding accuracy gains seen with the reference
functional alignment method of piecewise Procrustes over standard, anatomical-only
alignment. We had to limit to this setting because (i) replicating this analysis on every
dataset would represent an important amount of processing work, and (ii) working
on other methods than piecewise Procrustes on this very large data is computationally
prohibitive.

The results displayed in Figure S3.5 show that although decoding gains are a little
higher using high-resolution surface-based representation, they remain in the same range
as the volume-based representation. This shows that a 10-fold higher resolution can help
match more precisely topographies across subjects (and reduce the decoding variance as
a consequence), but no important marginal gains can be expected from it. In the end the
signal available for use is bounded by the same rough limitations: test-retest reliability in
each subject.

S3.16 IBC alignment data explained

In this work, 53 contrasts were pulled together are used as alignment for IBC dataset.
The contrasts are common to all subjects and taken from both HCP and ARCHI protocol.



CHAPTER 3. BENCHMARKING FUNCTIONAL ALIGNMENT ALGORITHMS 60

In order they are labelled : audio left button press, audio right button press, video left button
press, video right button press, horizontal checkerboard, vertical checkerboard, audio sentence, video
sentence, audio computation, video computation, saccades, rotation hand, rotation side, object grasp,
object orientation, mechanistic audio, mechanistic video, triangle mental, triangle random, false
belief audio, false belief video, speech sound, non speech sound, face gender, face control, face trusty,
expression intention, expression gender, expression control, shape, face, punishment, reward, left
hand, right hand, left foot, right foot, tongue, cue, story, math„relational, match, mental, random,
0back body, 2back body, 0back face, 2back face, 0back tools, 2back tools, 0back place, 2back place.

To know more, please visit the relevant IBC documentation.

https://project.inria.fr/IBC/data/
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Figure S3.1: Comparing ROI and whole-brain decoding accuracy after piecewise Procrustes alignment.
The ROIs used for each dataset are displayed on the lower panel. In the upper panel, we show the
distribution of differences in decoding accuracy scores between ROI-based and whole-brain piecewise
Procrustes alignment. Each dot represents a single subject, and subjects are colored according to their
decoding task. Each difference score is calculated by subtracting the inter-subject decoding accuracy
for whole-brain piecewise Procrustes alignment from the ROI-based piecewise Procrustes alignment
accuracy score—for the same leave-one-subject-out cross-validation fold. The box plot thus describes
the distribution of differences, where the green line represents the median value. We see that decoding
accuracy is lower when performed within ROIs than when performed on the whole-brain data.
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Figure S3.2: Effect of parcellation type, resolution on Piecewise Procrustes decoding accuracy im-
provement over anatomical alignment. We consider the impact of parcellation type (the a priori
Schaefer atlas or learned directly on the data with k-means or hierarchical k-means) and resolution (from
100 to 1000 parcels). Results are shown for the IBC RSVP and IBC Sounds decoding tasks. Each line
represents the average accuracy improvement for piecewise Procruses over standard, anatomical-only
alignment, and the confidence band represents the range of accuracy improvements seen across all IBC
subjects. Accuracy improvements are calculated by subtracting anatomical-only inter-subject decoding
accuracy scores for the same leave-one-subject-out cross-validation fold. We see that parcellation type
and resolution show limited impact on accuracy gains.
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Figure S3.3: Grid search of Piecewise SRM hyperparameters impact on decoding accuracy across
datasets. We considered a grid of 4 parcellations (Schaefer atlas at resolution 100, 300, 500 and 700)
and 4 different values of k (number of SRM components) for each model fitted on a parcel. We ran our
inter-subject decoding pipeline on four inter-subject decoding task (in columns, among those used in
the main benchmark). We report here the decoding accuracy improvement over anatomical baseline
across datasets for each set of parameter (in line). Altough we didn’t have the computational means to
run an extensive grid-search, we can already conclude that high-resolution parcelations (and thus more
fitted local SRMs) yield a higher decoding gain as long as they come with enough component. Decoding
accuracy is also positively linked with K, probably up to a plateau that we did not clearly reached with
our limited grid. For the main benchmark we retained the last line model (K = 50, Schaefer 700).
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Figure S3.4: Decoding accuracy does not improve after Gaussian smoothing over anatomical align-
ment. For six smoothing kernels, we show inter-subject decoding accuracy scores after subtracting
anatomical-only inter-subject decoding accuracy for the same leave-one-subject-out cross-validation
fold. Each dot represents a single subject, and subjects are colored according to their decoding task.
We also show differences in decoding accuracy scores for the reference functional alignment method
piecewise Procrustes, again as compared to anatomical-only alignment. Each box plot describes the
distribution of values for that smoothing kernel or alignment method, and the green line indicates
the median. We see that Gaussian smoothing does not show the same pattern of decoding accuracy
differences as the reference functional alignment method.

Figure S3.5: Comparing piecewise Procrustes accuracy improvements across volumetric and surface
data representations. For the IBC RSVP task, we compare piecewise Procrustes decoding accuracy
scores to anatomical-only alignment. Each dot represents an IBC subject, where their difference score
is calculated by subtracting the inter-subject decoding accuracy for anatomical-only alignment from
the piecewise Procrustes alignment accuracy score for the same leave-one-subject-out cross-validation
fold; i.e., where they are the left-out subject. We compare these difference scores as calculated using
data in the volume (3mm resolution), to data on the high-resolution cortical surface (fsaverage7). Each
box plot describes the distribution of values for that data representation, and the green line indicates
the median. We see that the high-resolution surface representation yields a moderate gain of decoding
accuracy, compared to 3mm isotropic volumetric representation.
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Chapter 4

When is functional alignment useful?
Examining the impact of experimental
context
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4.1 Preface

While the work presented in Chapter 3 provides important insight into the relative per-
formance of available functional alignment algorithms, it does not explore other factors
relevant for cognitive neuroscience applications. For example: What data should I use to
learn functional alignment applications? How can I assess whether functional alignment
has effectively improved inter-subject similarity? These other experimental dimensions
are often most pressing for investigators. In this chapter, I characterize three experimental
dimensions relevant for cognitive neuroscience research: the data used to train functional
alignment transformations, the data on which learned transformations are applied, and
the metric by which functional alignment performance is assessed. By comparing these
dimensions across two publicly available, well-sampled datasets, we assess their relative
impacts in a range applications. This project will be submitted for publication in 2022.
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4.2 Introduction

Individual differences in cortical anatomy and organization challenge group-level infer-
ences in human brain mapping. Standard neuroimaging reference spaces—such as MNI
space—are designed to provide a common coordinate system for mapping structural and
functional characteristics across individual brains. In doing so, they necessarily represent a
consensus or average anatomy across many participants. In areas where participants may
have variable anatomical features (e.g., duplication of Heschel’s gyrus; Marie et al. 2015),
however, such an average anatomy may not map accurately to any individual subject.
Thus, there is no ideal correspondence in these regions between individual anatomy and a
reference template.

This concern is not limited to a small number of regions; instead, individual-level
variability has emerged as a dominant principle of human brain organization, particularly
across cortex. Within primary somatosensory areas, we see significant individual vari-
ability in cytoarchitectonically- (Rademacher et al., 1993), topographically- (Marie et al.,
2015), and functionally-defined regions (Benson et al., 2021). Higher-order association cor-
tices show still weaker relationships between structure and function (Paquola et al., 2019;
Vázquez-Rodríguez et al., 2019), suggesting an even greater variability across individuals
in these areas. This weak structure-function mapping may be particularly noticeable in
relatively low engagement tasks, such as traditional psychological paradigms (Hasson
et al., 2010; Sonkusare et al., 2019).

Resulting challenges for human brain mapping have long been known within the field
(Brett et al., 2002; Thirion et al., 2006), and they continue to complicate direct comparisons
of functional activation patterns (Bilenko et al., 2010; Michel et al., 2012; Raizada and
Connolly, 2012). Traditionally, functional magnetic resonance imaging (fMRI) studies
have met this challenge by introducing additional, artificial smoothness through Gaussian
blurring. Even as smoothing minimizes the impact of mis-registration across subjects,
it may obscure meaningful information (Coalson et al., 2018). Thus, we have gained
a significant understanding of cognition at a group-level, but often at the sacrifice of
individual-specific mappings.

Recently, however, researchers have become increasingly interested in mapping individual-
level organization, as reflected in the rise of novel “deep phenotyping” acquisitions such
as the Midnight Scan Club (Gordon et al., 2017) and Individual Brain Charting initiative
(Pinho et al., 2018; Pinho et al., 2020). Building on these new, richly sampled datasets,
methods that align directly on individual functional activation—rather than solely on
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anatomy—have been developed over the past decade. This class of “functional alignment”
methods aims to preserve the individual-specific information that is commonly lost in
cross-subject comparisons. Beginning with the introduction of hyperalignment in Haxby et
al. (2011), functional alignment has expanded to a range of algorithms that are increasingly
used in cognitive neuroscience research.

In our previous work Bazeille et al. (2021), we benchmarked four of these algorithms
to align individual pairs of subjects across a range of publicly available datasets. While
algorithm choice outlines the kinds of transformations that can be learned and therefore
substantially impacts derived results, experimental context constrains the kinds of data
available for alignment transformations. In particular, the relationship between the data in
which the alignment is learned and the data to which the alignment is applied—as well as
the brain region in which this data is evaluated—all are likely to significantly influence the
success of functional alignment. Here, we extend on our previous results to better capture
the performance of functional alignment in cognitive neuroscience applications. We con-
sider how a single functional alignment algorithm interacts with a range of experimental
factors to assess their relative impacts.

4.2.1 Experimental dimensions

Functional alignment is a complex transformation that relies on at least three experimental
factors: (1) an alignment stimulus on which to learn the alignment transformation parame-
ters, (2) a downstream application on which to apply the learned alignment transformation,
and (3) a performance metric to evaluate the success of alignment in improving inter-
subject similarity. While these three factors cannot be considered entirely independently,
they broadly outline most applications of functional alignment in cognitive neuroscience
to date. Although a number of studies in the current literature apply functional alignment
to fMRI data, they have little overlap in these described experimental factors. For example,
in Nastase et al. (2017), the authors learn functional alignment transformations using
whole-brain searchlight hyperalignment on Life documentary viewing and then apply
these transformation parameters to an independent visual attention task. In Chen et al.
(2017), by contrast, the authors use the Shared Response Model (SRM; Chen et al., 2015) to
learn a shared functional mapping between participants watching BBC’s Sherlock within a
posterior medial cortex region-of-interest. They then examine whether the dimensionality
of this mapping affects scene-classification accuracy both within movie-viewing as well
as during movie-recall. In each study, all three of the described experimental factors are
tailored to the research question, making it difficult to disentangle their relative impacts
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on functional alignment performance. Understanding these impacts will help to develop
more general guidelines for functional alignment applications.

We thus consider each of these experimental dimensions as important methodological
choices for applications of functional alignment. To evaluate these experimental factors,
we use two openly-available deep phenotyping datasets, the Courtois Project on Neuronal
Modelling (Courtois-NeuroMod; Boyle et al. 2020) and Individual Brain Charting (IBC;
Pinho et al. 2018; Pinho et al. 2020) datasets, each of which include a range of alignment
stimuli and downstream experimental applications. In directly building on our previous
results, we draw on synchronized alignment data across both datasets and and apply linear,
pairwise functional alignment algorithms as in Bazeille et al. (2021). Using these richly-
sampled datasets, we can systematically compare the impacts of our three experimental
dimensions: the data on which functional alignment is learned, the data to which it
is applied, and the metric by which alignment success is evaluated. We will provide
analytic Python code to re-create all of our analyses, available at https://github.com/
neurodatascience/cog-align.

4.3 Methods

In our previous work, we explored the impact of alignment algorithms on inter-subject
decoding accuracy across a range of datasets, each with a single alignment stimulus
(Bazeille et al., 2021). Here, we build on this work and shift our focus from alignment
algorithm to explore the impact of experimental factors. Specifically, we consider (1)
the alignment data on which a functional alignment transformation is learned, (2) the
downstream application data on which functional alignment is applied, and (3) associated
performance metrics such as inter-subject decoding. Throughout, we use the piecewise
Procrustes alignment algorithm as our previous results suggest that it performs well across
a range of datasets with a low computational cost.

4.3.1 Performance metrics

Across the existing literature, we have identified three metrics used to evaluate the success
of functional alignment in improving inter-subject similarity: inter-subject decoding, time
segment matching, and spatial inter-subject correlation. A graphical summary of these
metrics is available in Figure 4.1, and we briefly review each in turn below.

https://github.com/neurodatascience/cog-align
https://github.com/neurodatascience/cog-align
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Figure 4.1: Graphical overview of considered performance metrics. We focus on two voxels to ease
visualization, with voxel 1 depicted in pink and voxel 2 in blue. Panel A depicts inter-subject decoding,
used on data with clear task labels for supervised learning. In our experiments, we learn a logistic
regression classifier on all-but-one subject and then test the trained classifier on the single, held-out
subject S. We report the accuracy of the trained classifier on subject S as the accuracy for that inter-subject
decoding cross-validation fold. Panel B schematizes time-segment matching, which can be used on
unlabelled data unfolding over time. Here, we take a sliding window approach to divide a time series
into N segments, each containing a pre-defined number of TRs. We correlate each window from our
single, held-out subject S with all non-overlapping windows—depicted in grey—from the average
time series across all other subjects. We then learn a maximum-correlation classifier to identify each
time-segment. The overall accuracy for the time-segment matching cross-validation fold is the average
accuracy across all N segments for subject S. In Panel C, we show spatial inter-subject correlation (ISC)
which can be calculated on both labelled and unlabelled data. This metric differs from the two previous
metrics in that we calculate it between all possible pairs of subjects rather than in a leave-one-subject-out
fashion. First, we define a set radius around the considered voxel, within which we separately average
each subjects’ time series to derive their unique spatial pattern. The average of all possible pairwise
correlations between a target subject S and all other subjects’ spatial patterns is reported as the spatial
inter-subject correlation for that voxel in subject S. The same procedure is repeated for all voxels and all
target subjects to derive individual spatial ISC maps.
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4.3.1.1 Inter-subject decoding

First, and as motivated by our previous work (Bazeille et al., 2021), we use inter-subject de-
coding in the case of downstream tasks with well-defined labels appropriate for supervised
learning. To calculate inter-subject decoding accuracy, we learned a logistic regression
classifier with no feature selection on fixed-effects contrast maps from each downstream
application (see Section 4.3.4.1 for details on contrast map generation). Classifiers were
implemented in scikit-learn (Pedregosa et al., 2011), and decoding accuracy was assessed
using a leave-one-subject-out cross-validation scheme. That is, the logistic regression
classifier was trained to classify condition labels on all-but-one subject and the resulting
trained classier was used without retraining on the held-out subject, providing an accuracy
score for that cross-validation fold.

4.3.1.2 Time-segment matching

For downstream tasks without well-defined experimental labels, inter-subject decoding
is not supported. This lack of labelled data may occur, for example, when working with
naturalistic audio-visual data without annotated features, such as the presence or absence
of a face in the video. In this case, time-segment matching—as introduced in Haxby et al.,
2011—is a useful adaptation of inter-subject classification. Here, the stimulus is divided
into overlapping segments using a sliding window of experimenter-specified window size.
In this work, we adopt 30 TR windows, corresponding to one minute of acquisition in IBC
and 45 seconds in Courtois-NeuroMod.

For all-but-one subject, we calculate the average activity across subjects during each
segment. Iterating through all available time segments, we then calculate the correlation
between the held-out subject’s activity during that segment and every segment of the
average time series of all other subjects, discarding the correlations for segments that
overlap with the test segment. Note that overlapping segments are excluded from the
correlation to avoid duplicating data between our train and test sets. If the maximum
correlation corresponds to the same time segment in the training and held-out subject’s
data, we consider that time segment to be accurately matched. The overall accuracy for a
given subject is then the number of correct matches divided by the total number of time
segments. As in inter-subject decoding, we can iterate over each subject to calculate the
average accuracy for the given data set.
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4.3.1.3 Spatial inter-subject correlation

Finally, spatial inter-subject correlation (spatial ISC; Nastase et al., 2019) can be used
to assess the performance of functional alignment both with and without well-labelled
data. Spatial ISC is calculated as the correlation between a target subject’s and all other
subject’s spatial patterns at each time point within a pre-defined radius. That is, for each
voxel, we calculate the correlation of all voxel activity patterns within a sphere of some
pre-specified radius centered on that voxel, and we repeat this procedure for each time
point. In this work, we use a radius of 5mm resulting in a sphere of approximately 20
voxels. By averaging across all subjects, we can derive a single spatial ISC value for a given
target subject’s voxel, repeating the procedure for all voxels and target subjects. Because
spatial ISC as calculated for each voxel, we can also derive voxelwise spatial ISC maps
showing the distribution of spatial ISC values over the cortex. Note that in the case of
labelled task data—such as fixed-effects contrast maps—each test sample corresponds to a
single contrast map.

4.3.2 Datasets and preprocessing

To rigorously investigate the impacts of alignment stimulus and downstream application,
we focus on two datasets which include extensive characterization of participant responses
across a range of experimental conditions. Specifically, we use 10 subjects from the Indi-
vidual Brain Charting (IBC; Pinho et al. 2018) and six subjects from the Courtois Project on
Neuronal Modelling (Courtois-NeuroMod; Boyle et al. 2020) datasets. Courtois-NeuroMod
was preprocessed with fMRIPrep LTS v20.2 (Esteban et al., 2018b); a complete description
of the fMRIPrep preprocessing procedures is included in the appendix (Section S4.8). IBC
was preprocessed using an SPM-based pipeline as described in (Pinho et al., 2018).

To reduce the computational cost of functional alignment, we downsampled all in-
cluded datasets to 3mm isotropic resolution. For both datasets, preprocessed data were
masked using a grey matter mask, corrected for the six motion regressors and 10 high-
variance (i.e., CompCorr) components, and smoothed with a 5mm Gaussian kernel using
Nilearn (Abraham et al., 2014). Audio-visual alignment data were additionally trimmed
to approximately 2000 time frames such that stimulus-type was not confounded with
stimulus-length.
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4.3.3 Data description

Here we review the exact data included across our experiments to first learn and then to
apply functional alignment transformations. When evaluating how these learned trans-
formations influence inter-subject similarity, we adopt the performance metrics detailed
in Section 4.3.1. Importantly, inter-subject decoding requires labelled data to derive an
accuracy score, while time-segment matching relies on unlabelled data. We therefore
separately present the downstream application datasets for these two metrics, noting that
inter-subject correlation can be applied in either case.

4.3.4 Alignment data

Courtois-NeuroMod and IBC emphasize different experimental paradigms in their scan-
ning protocols. Courtois-NeuroMod includes a broader range of naturalistic stimuli,
including repetitions of full audio-visual movies. IBC, meanwhile, emphasizes traditional
psychological paradigms while also including additional naturalistic stimuli.

For Courtois-NeuroMod, we derived alignments using the movie10 sub-dataset which
includes four different audio-visual movies: Bourne Supremacy, Hidden Figures, Life, and
Wolf of Wall Street. For IBC, we derived alignments from four different stimuli: a Raiders
of the Lost Ark audio-visual movie, Le Petit Prince audio-only recording, short visual-only
clips introduced in Nishimoto et al. (2011), and 151 non-overlapping contrasts collected
using non-overlapping task paradigms (i.e., excluding HCP, RSVP, and Sounds tasks).
For a complete description of the alignment stimuli included in each data set, please see
Table 4.1.

4.3.4.1 Downstream tasks for inter-subject decoding

Both the IBC and Courtois-NeuroMod data sets include the six Human Connectome Project
(HCP, Van Essen et al. 2013) tasks in their experimental protocols. We therefore calculated
fixed-effects contrasts for the 24 task conditions (i.e., non-oppositional contrasts) pooled
across all six HCP tasks and used this set of fixed-effects maps as a downstream application
for both Courtois-NeuroMod and IBC.

As IBC further contains a range of task-based protocols covering unrelated cognitive
domains, we also incorporated two additional experimental tasks as downstream applica-
tions. Specifically, we included the Rapid Serial Visual Presentation (RSVP) language and
Sounds auditory (Tonotopy) paradigms. Although the HCP task protocol does include
a language task, this differs from RSVP language along several dimensions: while HCP
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Dataset Alignment
stimulus n Modality

Individual Brain
Charting

Task-battery
contrasts 151 Fixed-effects statistical maps

Clips dataset 2000 Visual-only clips
Le Petit Prince 2000 Audio-only narrative

Raiders of the Lost
Ark 2000 Audio-visual narrative film

Courtois-
NeuroMod

Bourne Identity 2023

Audio-visual narrative filmHidden Figures 2038
Life documentary 2008
Wolf of Wall Street 2030

Table 4.1: Included alignment stimuli. The range of alignment stimuli used for each dataset, the
number of timeframes n that it contains, and the modalities that it covers (e.g. audio only, audio-visual,
narrative-based). For the IBC contrasts, a full listing of included 151 contrast maps is provided in
Supplemental Section S4.9.

language focuses on contrasting an auditory narrative with spoken math problems, RSVP
language engages syntactic and semantic processing of visually presented words and
non-words. These downstream applications thus provide additional, unique cognitive
contexts in which experimenters may wish to improve inter-subject similiarity.

For a complete description of the downstream tasks for inter-subject decoding consid-
ered with each data set, please see Table 4.2.

4.3.4.2 Downstream tasks for time-segment matching

For time-segment matching, we rely on the same stimuli described in Section 4.3.4. For a
given experiment, we exclude overlapping stimuli when training and testing the alignment.
That is, if functional alignment transformations are calculated using one naturalistic
stimulus, then the learned transformation would be applied on all other naturalistic
stimuli within the same dataset and evaluated. For example, if alignment transformations
are learned on the Life dataset in Courtois-NeuroMod, time-segment matching would be
calculated separately on Bourne Supremacy, Hidden Figures, and Wolf of Wallstreet.

Importantly, we exclude the 151 contrast maps used in IBC as these do not have a
defined temporal structure. For a complete description of the downstream tasks for
time-segment matching, please see Table 4.2.
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Dataset Downstream task d n Cognitive domains

Individual Brain
Charting

RSVP 360 72 Language
Tonotopy 72 12 Auditory

HCP 24 48 2
Emotion, Gambling, Language,

Motor, Socio-relational,
Working Memory

Courtois-
Neuromod HCP 24 216 9

Emotion, Gambling, Language,
Motor, Socio-relational,

Working Memory

Table 4.2: Downstream inter-subject decoding tasks. The downstream inter-subject decoding task(s)
used for each dataset. Each subject’s decoding task data comprises d images evenly divided across the n
cross-validation folds. We note the cognitive domains covered by each downstream task. In the case of
the HCP 24 task, these include all six domains targeted by the six Human Connectome Project (HCP)
task protocol.

4.3.5 Experimental procedure

For both the Courtois-NeuroMod and IBC datasets, we calculate piecewise Procrustes
alignment transformations within the 300 region Schaefer parcellation (Schaefer et al., 2018).
Pairwise alignment transformations were calculated using each of the dataset-specific
alignment stimuli described in Section 4.3.4.

Alignment transformations were applied to each of the labelled downstream tasks de-
scribed in Section 4.3.4.1 and the unlabelled downstream tasks described in Section 4.3.4.2.
We then calculate each of the three performance metrics described in Section 4.3.1 at both
the whole-brain and parcel-wise level. In all cases, we evaluate the performance of func-
tional alignment as a change in each metric’s values after piecewise Procrustes alignment
as compared to anatomical-only alignment.

In addition to the qualitative spatial patterns we observe for each metric, we also derive
additional quantitative indicators of functional alignment performance. Specifically, we
correlate observed distributions to assess similarity (1) across alignment stimuli and (2)
across performance metrics. We also conduct ANOVAs to assess the relative influence of
alignment stimuli vs downstream task within each metric.
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4.4 Results

4.4.1 Impacts of downstream task and alignment stimuli

We first examine the relative impacts of alignment stimuli and downstream task on perfor-
mance. We assess these at a whole-brain level to establish general effects when pooling
over all possible brain regions before examining in a parcelwise fashion. Note that for the
whole-brain level-of-analysis, we only consider inter-subject decoding and spatial inter-
subject correlation (spatial ISC) as relevant performance metrics as, to date, time-segment
matching has not been developed and applied at a whole-brain scale.

4.4.1.1 Inter-subject decoding at a whole-brain scale

For inter-subject decoding, we compare all possible alignment stimuli for each of dataset-
specific decoding tasks. Figure 4.2 shows the distribution of inter-subject decoding accu-
racy values relative to anatomical alignment. In general, we see that alignment stimuli
within the same modality (e.g. audio-visual movies) show relatively similar performance
within a given decoding task. However, across tasks, the same alignment stimulus can
have different effects on downstream inter-subject decoding accuracy. For example, Le Petit
Prince decreases inter-subject decoding accuracy in the RSVP language task but increases
inter-subject decoding accuracy above baseline for the Tonotopy task.

To quantify this effect, we performed a two-way ANOVA to analyze the effect of task
and alignment stimulus on change in inter-subject decoding accuracy following Procrustes
alignment. The ANOVA revealed that there was a statistically significant interaction
between the effects of task and alignment (F(14, 84) = 5.43, p < 0.001). Simple main effects
analyses showed that both task (F(2, 84) = 5.09, p = 0.008) and alignment (F(7, 84) = 3.66, p
= 0.002) have a statistically significant effect on accuracy change.

4.4.1.2 Spatial inter-subject correlation patterns

We generate spatial inter-subject correlation (spatial ISC) values for each decoding task
following anatomical alignment and compare them with derived spatial ISC patterns
following piecewise Procrustes alignment on each alignment stimulus.

Figure 4.3 shows the distribution of changes in spatial ISC values for the HCP24
decoding task in Courtois-NeuroMod after functional alignment on each of the four audio-
visual alignment stimuli. In general, we note that a majority of regions show decreased
spatial ISC after functional alignment, while a few regions—particularly in visual and
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Figure 4.2: Full brain inter-subject decoding accuracy changes across alignment stimuli. We plot
the change in full-brain inter-subject decoding accuracy against baseline, anatomical-only alignment
for each of the four considered alignment stimuli in both the Courtois-NeuroMod (left panel) and IBC
(right panel) datasets. Here, the zero indicates no-change from anatomical only alignment, whereas
positive values indicate a relative increase in decoding performance and negative values indicate a
relative decrease. Error bars represent the standard error across cross validation folds.
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Figure 4.3: Spatial inter-subject correlation in Courtois-NeuroMod. Change in spatial ISC distributions
following functional alignment across two naturalistic audio-visual films. Results are shown for a single
representative cross-validation fold. Spatial ISC values are thresholded at 0.01 and shown from -0.15 to
0.15.

dorsolateral prefrontal cortex—show increased spatial ISC. This pattern is remarkably
consistent across alignment stimuli even as individual regions show slight differences in
the spatial extent of this effect.

4.4.2 Parcelwise analyses

Although spatial ISC provides voxelwise information on the relative effects of functional
alignment, we conduct additional, parcelwise analyses to more directly examine regional
differences in the impacts of functional alignment on our considered performance metrics.

In order to summarize general trends across parcels, we calculate the correlation
between the original, baseline value of each performance metric with its value after
functional alignment. For example, we calculate inter-subject decoding accuracy scores
for all parcels with baseline, anatomical-alignment and then correlate these values with
the inter-subject decoding accuracies computed for each parcel after functional alignment.
By repeating this procedure for each cross-validation fold, we obtain a distribution of
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Dataset Alignment stimulus 24 contrasts RSVP Tonotopy

Individual
Brain

Charting

151 contrasts -0.60 ± 0.05 -0.39 ± 0.10 -0.57 ± 0.07
Clips dataset -0.48 ± 0.08 -0.53 ± 0.07 -0.67 ± 0.04
Le Petit Prince -0.73 ± 0.02 -0.65 ± 0.07 -0.61 ± 0.05

Raiders of the Lost Ark -0.54 ± 0.06 -0.40 ± 0.11 -0.61 ± 0.06

Courtois-
NeuroMod

Bourne Identity -0.43 ± 0.05
Hidden Figures -0.41 ± 0.06

Life documentary -0.43 ± 0.03
Wolf of Wall Street -0.41 ± 0.05

Table 4.3: Correlation between baseline and change in parcelwise decoding following functional
alignment. Correlation between parcelwise gains in inter-subject decoding of task-relevant information
following Procrustes alignment with the baseline parcelwise decoding accuracy following anatomical
alignment. Parcelwise correlations were calculated separately for each cross-validation fold (i.e., each
left-out subject), and the average overall rho value is reported here.

correlation values for our sample, each of which represent the relative consistency of our
performance metrics before and after functional alignment. Here, we focus on inter-subject
decoding and time-segment matching accuracies, rather than re-calculating voxelwise
spatial ISC values (see Section 4.4.1.2).

4.4.2.1 Inter-subject decoding within individual parcels

Table 4.3 shows the correlation between inter-subject decoding accuracies for each task
following anatomical only alignment with inter-subject decoding accuracies after piecewise
Procrustes alignment. Across all considered decoding tasks and alignment stimuli, we
observe a negative relationship between parcelwise decoding accuracies at baseline and
as changed after functional alignment. Thus, parcels with higher baseline inter-subject
decoding accuracy values show the largest decreases following functional alignment on
average.

To investigate the exact spatial pattern of these results, we sub-select two downstream
decoding tasks from IBC: the Tonotopy and RSVP Language tasks. In Figure 4.4, we show
the spatial pattern of inter-subject decoding accuracies across these two tasks at baseline
(in purple) and as changed following functional alignment—with two unique alignment
stimuli—for a single cross-validation fold.

These results highlight that observed changed in inter-subject decoding with functional
alignment are primarily dependent on the unique spatial locations that are informative
for a given downstream application rather than being driven by the considered alignment
stimulus. We further visualize the correlation between these baseline values and the
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Figure 4.4: Parcelwise relationship between baseline decoding accuracy and improvement following
functional alignment. In Panel A, results are shown for a representative cross-validation fold. In Panel
B, each dot represents a separate cross-validation fold, with the fold shown in Panel A highlighted in
purple.
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Alignment
stimulus Clips dataset Le Petit Prince Raiders of the Lost

Ark
151 contrasts 0.02 ± 0.39 -0.42 ± 0.11 -0.27 ± 0.07
Clips dataset -0.58 ± 0.08 -0.35 ± 0.24
Le Petit Prince -0.95 ± 0.03 -0.82 ± 0.07
Raiders of the

Lost Ark 0.30 ± 0.33 -0.40 ± 0.15

Table 4.4: Parcelwise time-segment matching in IBC. Correlation between parcelwise gains in time-
segment matching following Procrustes alignment with baseline parcelwise time-segment matching
accuracy after anatomical alignment. Parcelwise correlations were calculated separately for each cross-
validation fold (i.e., each left-out subject), and the average overall rho value is reported here.

change in inter-subject decoding accuracy following functional alignment—on each of the
two considered stimuli—showing the same negative relationship observed in Table 4.3.

4.4.2.2 Time-segment matching within individual parcels

Table 4.4 shows the average parcelwise correlations within IBC for time-segment matching
accuracy values at baseline (i.e., following anatomical alignment) and accuracy gains
following Procrustes alignment (i.e., subtracting the baseline accuracy value for that
cross-validation fold from the accuracy value following Procrustes alignment).

In general, we observe a similar pattern to that seen with inter-subject decoding, where
regions that had weakest performance with anatomical alignment show the largest relative
increase in time-segment matching accuracy following piecewise Procrustes functional
alignment. We note, however, that there is significantly more variability in these results:
while the maximum standard deviation in Table 4.3 is 0.11, the same value in Table 4.4 is
0.39. This variability suggests that the relationship between the spatial pattern of baseline
time-segment matching accuracies and parcelwise change in time-segment matching accu-
racies following functional alignment is weaker than that seen for inter-subject decoding.

4.4.2.3 Comparing spatial inter-subject correlation to other performance metrics

Spatial inter-subject correlation (spatial ISC) is unique among our considered performance
metrics in that it can be applied on both labelled as well as unlabelled data. It is therefore
interesting to ask whether there is a significant relationship between spatial ISC and our
two other considered performance metrics. If, in fact, spatial ISC is strongly related to both
metrics, it would provide a convenient mechanisms to compare results between labelled
and unlabelled downstream applications.
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Figure 4.5: Parcelwise correlation between change in spatial ISC and other performance metrics.
We compare parcelwise changes in spatial ISC following functional alignment on Bourne Supremacy
with the parcelwise changes in time-segment matching accuracy for Hidden Figures (upper plot) and in
inter-subject decoding for the HCP 24 contrasts task (lower plot) in Courtois-NeuroMod. Results are
shown for a representative cross-validation fold.

We calculate and depict this relationship for a representative cross-validation fold of
Courtois-NeuroMod in Figure 4.5. That is, we show the parcelwise relationship between
change in spatial ISC following functional alignment and change in each of the two leave-
one-out performance metrics for a single alignment stimulus, Bourne Supremacy. In general,
we see a weak, positive relationship between changes in spatial ISC and each of the other
metrics. That is, while spatial ISC generally shares a similar spatial pattern with both inter-
subject decoding as well as time-segment matching, the observed values differ significantly.
We note, though, that this relationship is strongest when training and testing alignment
on two non-overlapping stimuli of the same structure; e.g., two naturalistic audio-visual
films, as in the upper panel of Figure 4.5.



CHAPTER 4. EVALUATING EXPERIMENTAL CONTEXT 82

4.5 Discussion

In this work, we evaluated the impacts of experimental context on the performance of
functional alignment in cognitive neuroscience applications. We defined performance us-
ing three unique metrics—inter-subject decoding, time-segment classification, and spatial
inter-subject correlation (spatial ISC)—and calculate these metrics across two openly avail-
able, well-sampled deep phenotyping datasets for a variety of alignment and application
tasks. In general, we find that there is a broad consistency across these metrics and that
functional alignment improves performance in a majority of downstream applications.
Importantly, however, we also find that in some contexts functional alignment can im-
pair rather than improve observed inter-subject similarity. Further, even in cases where
functional alignment improves inter-subject similarity on average, it may decrease the
inter-subject similarity of individual brain regions.

4.5.1 Evaluating functional alignment performance across performance

metrics

Assessing the effect of functional alignment on inter-subject similarity is non-trivial. In
this work, we adopted three metrics commonly used in the cognitive neuroscience liter-
ature to try and quantify these effects: inter-subject decoding, time-segment matching,
and spatial ISC. While both inter-subject decoding and time-segment matching provide
quantitative estimates of inter-subject similarity via classification accuracy, they are in-
tended for labelled and unlabelled data, respectively. Spatial ISC, meanwhile, estimates
the voxelwise correlation of evoked activity patterns across subjects and can therefore be
applied across differently structured datasets. Our results indicate that change in spatial
ISC following functional alignment roughly matches the change in spatial patterns seen
with either inter-subject decoding or time-segment matching. However, the magnitude of
derived values differs significantly between spatial ISC and each of the two classification
metrics—as well as across datasets—cautioning against its use as an independent metric.
Indeed, this concern in using spatial ISC to evaluate inter-subject similarity across datasets
aligns with more general concerns around image-based metrics (e.g. Dice coefficient), as
these metrics may be sensitive to low-level image characteristics induced by processing
routines or different acquisition parameters.

While the two classification-based performance metrics cannot be directly compared,
they show unique performance in their sensitivity to functional alignment changes. There



CHAPTER 4. EVALUATING EXPERIMENTAL CONTEXT 83

is a consistent, negative relationship between baseline inter-subject decoding accuracy
and the change in accuracy following functional alignment across the 300 considered
Schaefer parcels. Time-segment matching similarly shows a negative relationship between
baseline and change in classification accuracy; however, this relationship is notably weaker,
showing more variability across parcels. This decoupling between baseline and observed
changes suggests that time-segment classification accuracy may not serve as an effective
replacement for inter-subject decoding, encouraging researchers to collect separate, task-
based data to assess the impacts of functional alignment.

4.5.2 The importance of matching alignment and application data

At a whole-brain scale, we note that unique alignment stimuli differentially impact the
performance of both inter-subject decoding and spatial ISC metrics. Nonetheless, as sug-
gested by both metrics in Courtois-NeuroMod (see Figures 4.2 and 4.3), these differences
are relatively minor within a given alignment modality (e.g., audio-visual narrative film).
Across modalities, by contrast, we see more significant differences in performance. For
example, in the IBC whole-brain inter-subject decoding results depicted in Figure 4.2,
the visual-only Clips dataset impairs inter-subject decoding performance for both the
RSVP Language and Tonotopy tasks. This effect is likely because Clips primarily contains
structured signal in visual regions.

The audio-only narrative in the Le Petit Prince dataset, by contrast, improves inter-
subject decoding accuracy in the Tonotopy but not RSVP Language application. We can
infer that this is due to the RSVP Language task relying on more distributed regions
outside of auditory context, as both 151 contrasts and Raiders of the Lost Ark—which evoke
structured signal across the whole-brain—successfully improve inter-subject decoding.
This result highlights the difficulty in selecting an appropriate functional alignment stimu-
lus. That is, even when calculating functional alignment transformations on a language
stimulus, there is no guarantee that applying those transformations to a non-overlapping
language task will improve inter-subject similarity. In general, however, we expect that
functional alignment applications will have a higher probability of successfully improving
similarity when data on which the transformations are learned and applied share a similar
structure or pattern of evoked activations.
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4.5.3 Functional alignment improves information gain in ill-fitted areas

When comparing across individual parcels, we see that the regions which show the
most change following functional alignment are largely dependent on the downstream
application rather than the alignment dataset. For example, we see relative consistency
in panel A of Figure 4.4 between the Tonotopy and RSVP Language tasks, with more
similarity across the two alignment stimuli considered for each decoding task.

Functional alignment tends to improve information gain in areas that showed low
inter-subject similarity at baseline. Importantly, this improvement comes at the expense
of high inter-subject similarity regions, which show decreased inter-subject similarity
after functional alignment. From the voxelwise spatial ISC patterns shown in Figure 4.3,
however, many of these regions with high inter-subject similarity at baseline may be
driven by shared noise sources rather than shared task-relevant signal. For example,
functional alignment reduces the spatial ISC in both the ventricles as well as along the
cortical mid-line, where we expect pulsation-related artifacts.

4.5.4 Study limitations and future directions

Although our study provides important insight into the experimental dimensions which
influence functional alignment performance, there are of course more relevant dimen-
sions than we can systematically assess here. For example, we have chosen to focus on
whole-brain parcellations rather than task-specific regions-of-interest to more easily make
comparisons across different downstream applications. It is nonetheless possible that
a single alignment transformation derived from a large task-specific region-of-interest
will be more dramatically influenced by signal structure differences between training and
downstream application data. Aggregating learned transformations over smaller parcels,
by contrast, may mediate these differences, allowing smaller regions with shared signal
structure to partially correct for poor overlap in the training and application data. Given
our previous findings showing relatively consistent performance of specific functional
alignment algorithms between task-specific regions-of-interest and whole-brain parcella-
tions (Bazeille et al., 2021), however, it is unclear exactly how strong this effect would be
and it is likely to differ across both regions-of-interest and included data.

Further, while we have tried to include a broad range of downstream applications—
including constructing a new HCP24 inter-subject decoding task, spanning six cognitive
domains—it is possible that other cognitive domains not included here may show differ-
ential impacts of functional alignment. This is particularly interesting for complex social
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cognition relying on regions such as the ventromedial prefrontal cortex, as the cortical
mid-line shows no clear increase after functional alignment in any of the three considered
performance metrics. Future work evaluating alignment specifically in these more tar-
geted tasks will be useful to examine the limitations of this class of methods, and whether
additional alignment in time (as in Xie et al., 2021) is also necessary to better capture these
regions. In general, our current results suggest that training data that evoke structured
signal across the whole brain—such as naturalistic audio-visual narratives, or statistical
contrast maps from a range of cognitive domains—are likely to allow researchers to learn
broadly generalizable alignment transformations. These results caution, however, that
we cannot expect current techniques to maximize inter-subject similarity across all brain
regions, even when applying these more generalizable transformations.

4.6 Conclusion

In the present work, we have investigated the impact of three experimental dimensions on
a single functional alignment algorithm. We find that the relative success of the method
is dependent on the exact combination of data used to train and test alignment transfor-
mations. These results highlight the importance of assessing alignment performance in
cognitive neuroscience applications and suggest that caution is required when using these
techniques to improve inter-subject similarity, as we do not find consistent improvement
across downstream applications and identical alignment stimuli and vice versa. It is thus
clear that independent testing data is required when applying functional alignment and
that this testing data should share a similar signal structure to the data used to train the
alignment; i.e., it should evoke structured signal in overlapping regions. Our results
further suggest that this data should ideally be amenable to inter-subject decoding as this
performance metric shows consistent spatial relationships between baseline task-relevant
signal and signal following functional alignment. We argue that improvement in inter-
subject decoding in a related task should therefore be considered a minimum requirement
for future applications of functional alignment in cognitive neuroscience.
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S4.8 fMRIPrep preprocessing

Results included in this manuscript come from preprocessing performed using fMRIPrep
20.2 (Esteban et al., 2018b; Esteban et al., 2018a; RRID:SCR_016216), which is based on
Nipype 1.5.0 (Gorgolewski et al., 2011; Gorgolewski et al., 2018; RRID:SCR_002502).

S4.8.1 Anatomical data preprocessing

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.2.0 (Avants et al.,
2008, RRID:SCR_004757), and used as T1w-reference throughout the workflow. The
T1w-reference was then skull-stripped with a Nipype implementation of the antsBrainEx-
traction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue
segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was
performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang et al.,
2001). Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym)
was performed through nonlinear registration with antsRegistration (ANTs 2.2.0), us-
ing brain-extracted versions of both T1w reference and the T1w template. The follow-
ing template was selected for spatial normalization: ICBM 152 Nonlinear Asymmet-
rical template version 2009c (Fonov et al., 2009, RRID:SCR_008796; TemplateFlow ID:
MNI152NLin2009cAsym).

S4.8.2 Functional data preprocessing

For each subject’s BOLD runs (across all tasks and sessions), the following preprocessing
was performed. First, a reference volume and its skull-stripped version were generated by
aligning and averaging 1 single-band references (SBRefs). A B0-nonuniformity map (or
fieldmap) was estimated based on two (or more) echo-planar imaging (EPI) references with
opposing phase-encoding directions, with 3dQwarp Cox and Hyde (1997) (AFNI 20160207).
Based on the estimated susceptibility distortion, a corrected EPI (echo-planar imaging)
reference was calculated for a more accurate co-registration with the anatomical refer-
ence. The BOLD reference was then co-registered to the T1w reference using bbregister

(FreeSurfer) which implements boundary-based registration (Greve and Fischl, 2009).
Co-registration was configured with six degrees of freedom. Head-motion parameters
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with respect to the BOLD reference (transformation matrices, and six corresponding rota-
tion and translation parameters) are estimated before any spatiotemporal filtering using
mcflirt (FSL 5.0.9, Jenkinson et al., 2002).

First, a reference volume and its skull-stripped version were generated using a custom
methodology of fMRIPrep. The BOLD time-series (including slice-timing correction when
applied) were resampled onto their original, native space by applying a single, composite
transform to correct for head-motion and susceptibility distortions. These resampled BOLD
time-series will be referred to as preprocessed BOLD in original space, or just preprocessed
BOLD. The BOLD time-series were resampled into standard space, generating a preprocessed
BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped
version were generated using a custom methodology of fMRIPrep.

All resamplings can be performed with a single interpolation step by composing all the
pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion
correction when available, and co-registrations to anatomical and output spaces). Gridded
(volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured
with Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos,
1964).

Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al., 2014, RRID:SCR_001362),
mostly within the functional processing workflow. For more details of the pipeline, see the
section corresponding to workflows in fMRIPrep’s documentation.

S4.8.3 Copyright Waiver

The above boilerplate text was automatically generated by fMRIPrep with the express
intention that users should copy and paste this text into their manuscripts unchanged. It is
released under the CC0 license.

S4.9 Listing of 151 contrasts used as IBC alignment stimuli

Here, we include 151 contrasts as alignment stimuli for the IBC dataset. The contrasts are
common to all subjects and taken from various protocols. For completeness, we provide
their full listing here. To know more about the supporting protocols, please visit the project
documentation. Contrasts include :

• ARCHI battery of tasks: ’left - right button press’,’reading - listening’,’motor - cogni-
tive’,’reading - checkerboard’,’computation - sentences’,’horizontal - vertical’,’saccades’,’hand

https://fmriprep.readthedocs.io/en/latest/workflows.html
https://fmriprep.readthedocs.io/en/latest/workflows.html
https://creativecommons.org/publicdomain/zero/1.0/
https://project.inria.fr/IBC/data/
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- side’,’grasp - orientation’,’rotation side’,’object orientation’,’triangle mental - random’,’false
belief - mechanistic audio’,’triangle random’,’mechanistic audio’,’mechanistic video’,’non
speech sound’,’false belief - mechanistic video’,’speech - non speech’,’expression gender -
control’,’expression intention - gender’,’face gender - control’,’face trusty - gender’

• Mental Time Travel tasks: ’we average reference’,’we all space - time cue’,’we average
event’,’we space - time event’,’westside - eastside event’,’we before - after event’,’sn average
reference’,’sn all space - time cue’,’sn average event’,’sn space - time event’,’southside -
northside event’,’sn before - after event’

• Preference tasks: ’preference constant’,’preference linear’,’preference quadratic’

• Theory-of-Mind and Pain Matrices localizer tasks: ’photo’,’belief - photo’,’physical
pain’,’emotional - physical pain’,’movie pain’,’movie mental - pain’

• Visual Short-Term Memory and Enumeration tasks: ’vstm constant’,’vstm linear’,’vstm
quadratic’,’enumeration constant’,’enumeration linear’,’enumeration quadratic’

• Self task: ’encode other’,’encode self - other’,’recognition other hit’,’recognition self - other’,’correct
rejection’,’recognition hit - correct rejection’

• Lyon tasks battery: ’unattend’,’attend - unattend’,’attend’,’tear - silence’,’suomi - si-
lence’,’yawn - silence’,’human - silence’,’silence’,’music - silence’,’reverse - silence’,’speech -
silence’,’alphabet - silence’,’cough - silence’,’environment - silence’,’laugh - silence’,’animals
- silence’,’scrambled’,’face - scrambled’,’characters - scrambled’,’scene - scrambled’,’house -
scrambled’,’animal - scrambled’,’pseudoword - scrambled’,’tool - scrambled’,’random string’,’word
- pseudoword’,’word - random string’,’pseudoword - random string’,’2 letters different -
same’,’4 letters different - same’,’6 letters different - same’,’6 letters different - 2 letters
different’,’2 dots - 2 dots control’,’4 dots - 4 dots control’,’6 dots - 6 dots control’,’6 dots - 2
dots’,’low - high salience’,’salience left - right’

• Stanford tasks battery: ’spatial cue - double cue’,’spatial cue’,’incongruent - congru-
ent’,’double incongruent - double congruent’,’double congruent’,’double incongruent’,’double
cue’,’spatial incongruent - spatial congruent’,’spatial incongruent’,’spatial congruent’,’go’,’stop’,’stop
- go’,’task stay cue stay’,’task switch cue switch’,’task switch cue stay’,’task stay cue switch’,’task
switch - stay’,’cue switch - stay’,’delay’,’amount’,’go critical’,’go noncritical’,’stop’,’ignore’,’go
critical - stop’,’go noncritical - ignore’,’ignore - stop’,’stop - ignore’,’congruent’,’incongruent’,’incongruent
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- congruent’,’num loss cards’,’loss’,’gain’,’cue’,’correct cue correct probe’,’correct cue in-
correct probe’,’incorrect cue correct probe’,’incorrect cue incorrect probe’,’correct cue incor-
rect probe - correct cue correct probe’,’incorrect cue incorrect probe - incorrect cue correct
probe’,’correct cue incorrect probe - incorrect cue correct probe’,’incorrect cue incorrect
probe - correct cue incorrect probe’,’incorrect probe - correct probe’,’ambiguous intermedi-
ate’,’unambiguous direct’,’intermediate - direct’,’ambiguous direct’,’unambiguous intermedi-
ate’,’ambiguous - unambiguous’

• Biological Motion task: ’global upright - global inverted’,’natural upright - natural in-
verted’,’global upright - natural upright’,’modified upright - modified inverted’,’natural
upright - natural inverted’,’natural upright - modified upright’
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Finding similarity across participants
using functional alignment
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5.1 Preface

The gap between methodological and domain-oriented science persists in part because of
the difficulty in translating controlled benchmarks into more general recommendations.
To do so effectively requires synthesizing experimental results such as those presented in
Chapter 3 and Chapter 4 with domain-relevant literature. Ideally, these recommendations
should be provided as actionable steps for researchers to consider in their own studies.
Although several tutorials and reviews exist for functional alignment to date, these are
focused on a specific algorithm or provide a single analysis pipeline without more general
considerations. In this chapter, I develop an accessible tutorial for functional alignment
geared towards domain-oriented researchers. This work refines the research presented
in Chapters 3 and 4 into a more general framework for considering functional alignment
applications in cognitive neuroscience. Accompanying interactive materials provide
opportunities to directly translate these recommendations into Python research workflows.
This project will be submitted for publication in 2022.
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5.2 Abstract

Finding shared neural principles that support the diversity of human experience is a
core challenge for social and cognitive neuroscience. By leveraging data collected from
different individuals, we can identify similar functional patterns supporting behavior and
cognition. Although many functional magnetic resonance imaging (fMRI) studies perform
group-level analyses, these largely assume that mapping across neuroanatomical features
ensures functional correspondence. In recent years, however, this assumption has been
increasingly challenged, and new methods have been introduced to find similarity across
different functional organizations. In this tutorial, we introduce functional alignment, a
class of methods that search for correspondence across participants from their function
rather than their anatomy. Throughout, we focus on providing an accessible treatment of
methodological choices specific to functional alignment and outline current best practices
for applying these methods to fMRI data.

5.3 Introduction

Challenges in comparing fMRI data from different individuals have been well-recognized
since fMRI was first introduced as a human brain imaging method (Rademacher et al., 1993)
and remain a fundamental question in any multi-subject imaging study. While traditional
preprocessing pipelines focus on equating individual anatomies, there are clear limitations
to this approach (Brett et al., 2002; Thirion et al., 2006). Over the past decade, social and
cognitive neuroscientists have thus turned to new methods for aligning individuals on
function rather than structure. Following the introduction of hyperalignment in Haxby
et al. (2011), the availability of these ”functional alignment“ methods has dramatically
expanded, matching growing enthusiasm in the field. Despite this enthusiasm, these
methods remain relatively inaccessible, with little shared understanding of the relationship
between available methods or their appropriate applications. This tutorial aims to address
this need by providing a practical introduction to functional alignment methods, their
use in social and cognitive neuroscience, their limitations, and their relationship to other
available methods for improving correspondence across individuals.

Our presentation is organized around an example implementation, highlighting avail-
able decision points in adopting functional alignment. At each described step, we discuss
the choices it implicitly involves and available alternatives. While other tutorials (Hanke
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et al., 2009; Kumar et al., 2019) similarly focus on illustrative examples, these are spe-
cific to a single functional alignment method and available Python software library. We
expand on this idea to include multiple classes of functional alignment methods, under-
scoring shared considerations. We conclude by characterizing both functional alignment
applications as well as how they compare against other techniques for improving inter-
individual comparisons in fMRI, such as individualized parcellations. To increase the
practical relevance of this tutorial, we further develop an accompanying online resource,
https://neurodatascience.github.io/fmralign-tutorials, to provide formalisms and
interactive Python code examples for five commonly-used functional alignment methods.

While functional alignment promises new insights into the shared principles support-
ing diverse functional organizations, the relative inaccessibility of these methods means
that they remain untested in some experimental applications. It is thus important to
acknowledge that in many cases, there is insufficient evidence to base detailed recom-
mendations. Whenever possible, however, we derive recommendations from controlled
empirical work. In those cases where experimental evidence is unavailable, we provide
general heuristics based on our own experience in applying functional alignment to fMRI
data. To ground our discussion, we first introduce the idea of functional alignment and
briefly overview its application in social and cognitive neuroscience studies using fMRI
data.

5.3.1 What is functional alignment?

Functional alignment is a family of methods for aligning individual activations directly
on evoked functional response patterns, rather than on the underlying neuroanatomy. As
a result, it is sometimes called ”anatomy-free mapping,“ although this does not imply
that anatomical alignment is not additionally performed—and indeed, some functional
alignment algorithms can also incorporate anatomical information (Rustamov and Guibas,
2016). Perhaps the clearest contrast between functional alignment and anatomical align-
ment methods is in the space in which they operate. Anatomical alignment methods
operate largely in three-dimensional, physical space, with X, Y, and Z coordinates for
each location of measured fMRI data. Functional alignment methods, by contrast, require
defining a new ”activation space.“ The dimensions of a given activation space are set by
the number of voxels included within it. For example, the activation space defined by
two voxels will be a plane, while the activation space defined by three voxels will be a
cube. Importantly, activation spaces are simply another way to conceptualize a measured
functional response pattern, as illustrated in Figure 5.1.

https://neurodatascience.github.io/fmralign-tutorials
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Figure 5.1: Multiple ways to represent a voxelwise activity pattern. Voxel activity patterns from
voxels A, B, and C can be represented as a histogram of the distribution of values, an activity vector
whose length is equal to the number of voxels, or as a point in activation space. In the latter case, the
dimensions of the space are determined by the number of voxels. Note that we could also define these
spaces using alternative measures such as connectivity. Figure adapted from Churchland (1998).

Although we lose our ability to intuitively visualize activation patterns in these new,
high-dimensional spaces, describing fMRI data in an activation space also brings some
important advantages. For example, we can easily incorporate information across many
voxels, rather than focusing on each voxel independently. As a result of this focus on multi-
voxel patterns, functional alignment may feel familiar for researchers who have previously
used other Multi-Voxel Pattern Analysis (MVPA; Weaverdyck et al., 2020) methods such
as pattern classifiers (Pereira et al., 2009) or Representational Similarity Analysis (RSA:
Popal et al., 2019). While these spaces can be defined by other measures such as functional
connectivity, for the sake of simplicity we focus on activation. We discuss connectivity and
other, alternative measures in Section 5.6.

Functional alignment differs from MVPA methods, however, in that we are not inter-
ested in information within a single individual’s fMRI data but in the relationship between
their fMRI activations and activations from one or more unrelated individuals. That is,
functional alignment aims to find correspondence across two or more participant’s fMRI
data and then use this correspondence to increase their inter-subject similarity. To do so,
we learn an alignment transformation for each participant using set-aside fMRI data. This
data may be known as alignment data or training data, as in other MVPA methods. The
learned transformations can then be applied on a different set of non-overlapping test data
acquired for each participant. Importantly for the methods considered here, this test data
should cover the same region or regions of the brain, but it does not have to have the
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same task structure. For example, we could learn functional alignment transformations
on a movie-viewing alignment dataset and then apply these transformations on test data
collected during a traditional psychological paradigm, such as a working-memory or
language task.

Formally, we are interested in learning a transformation Rsource→target that maps an
alignment dataset from one source participant Asource to an alignment dataset from a target
participant Atarget, assuming that each dataset contains the same number of n time points
for each of p voxels. Note that the target may either be another participant in the same
dataset or a reference participant created by averaging across datasets; we discuss the
difference between these two approaches further in Section 5.5.3.1. Most commonly, these
training datasets are collected while participants watch synchronized stimuli such as a
naturalistic film (Finn et al., 2019); however, we assume that we are learning a more general
mapping between the functional organization of our source and target participants. In this
case, the learned transformation R can then be applied to another dataset Dsource, and we
can test if the learned relationship improves inter-individual correspondence. Thus, we
are interested in whether RDsource is more similar to Dtarget than Dsource.

When the number of voxels p is very large, the mapping defined by R is difficult to
reason about intuitively. We can visualize a simple case with three voxels, however, to
illustrate the basic idea behind learning this transformation. In Figure 5.2, we show activa-
tion spaces defined by two individual’s measured fMRI activity patterns across voxels A, B,
and C. Within each activation space we define labelled points indicating relative voxelwise
activation to the four stimuli: ”face,“ ”place,“ ”body,“ and ”tool.“ This labelling creates an
important, implicit correspondence between the two activation spaces even though we
can see from visual inspection that there is not a direct correspondence in position; i.e.,
most stimuli are not located in identical positions across the two activation spaces. When
using functional alignment we assume, however, that the relative relationship between
each stimulus is preserved across the two spaces, as in this example. The learned transfor-
mation R then reflects bringing the activations defined in one space into alignment with
the activations defined in a different space. For example, we can align the activations in
Activation space #2 with those in Activation space #1.

There are multiple constraints that we can place on our learned transformation R,
reflecting different assumptions about how similar the relationship between labelled
activations are across activation spaces. In this tutorial, we focus on alignment methods
which learn linear relationships for reasons we discuss later in Section 5.5.3.
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Figure 5.2: Comparing across individual activation spaces. For two different participants, we define
an activation space using voxels A, B, and C. We then plot the evoked voxelwise activation for four
example stimuli within each of these activations. In this case, only the ‘Tool’ stimulus is in the same
place in each activation space; i.e., it evokes the same relative activity pattern across the two participants.
The relationship between each of the four stimuli, however, is preserved across both spaces. Figure
adapted from Churchland (1998).
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5.4 An illustrative example

Here we describe an example application of functional alignment using the publicly avail-
able Individual Brain Charting (IBC; Pinho et al., 2018) dataset, accessed on OpenNeuro
(Markiewicz et al., 2021) as ds000244 and ds002685. Although IBC contains dozens of task
protocols spanning a wide range of cognitive domains, here we focus on just two tasks
from nine participants. First, we used a Raiders of the Lost Ark audio-visual film viewing
during which participants watched the film in its entirety over ten runs, with no in-scanner
behavioral responses. Second, we used an experiment designed to assess differences in
syntactic and semantic processing of visually presented words and non-words. In each
trial, the participant was rapidly visually presented with a series of words or non-words
and then asked to indicate whether they recognized a test stimulus from the previous
presentation. The exact experimental protocol for all six runs of this Rapid Serial Visual
Presentation (RSVP) language task is available on GitHub. Note that as IBC protocols were
designed for native French speakers, all stimuli were presented in French.

IBC data acquisition and preprocessing details are described in Pinho et al. (2018), with
preprocessing code available from GitHub. Following preprocessing, data were masked
using a grey matter mask, detrended, and standardized before being downsampled to 3mm
isotropic resolution and smoothed with a 5mm FWHM Gaussian kernel. For the RSVP
language task, we then fit a general linear model for each participant to generate trial-wise
beta maps. Each run generated 60 beta maps evenly divided between five experimental
categories: words, non-words, consonants, sentences, and jabberwocky. To define the data
included in our alignment, we used a left lateralized, language-relevant region-of-interest
defined in Bazeille et al. (2021) and depicted in Figure 5.3. All subsequently described
steps are considering only the 3084 voxels within this region.

Figure 5.3: The RSVP Language Task. A schematic overview of data included in the RSVP language
task. On the left, an example experimental trial with a sequentially, visually presented French sentence.
On the right, the left-lateralized region of interest included in our analysis.

https://github.com/hbp-brain-charting/public_protocols/tree/master/rsvp_language
https://github.com/hbp-brain-charting/public_analysis_code
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Figure 5.4: Learning a transformation between participants. Using alignment data A from a source
and target participant, we can create data matrices Asource and Atarget, each of which is of the shape
voxels by TRs. In our example, these alignment data are taken from a presentation of Raiders of the Lost
Ark. We then learn a transformation Rsource→target between these two matrices. This transformation can
then be applied on any dataset from the source subject with the same number of voxels; i.e., on the same
ROI.

To train our alignment transformations, we concatenate 2000 TRs of Raiders of the Lost
Ark viewing into a 2000 TRs by 3084 voxels matrix, with one matrix for each participant’s
data. Using Procrustes alignment (see Section 5.5.3), we align all-but-one source partici-
pants to a single target participant. This alignment learns a transformation matrix R for
each source-target pair; in our case, this means that we learn eight R matrices. This process
is depicted in Figure 5.4. We then apply the relevant learned R matrix to each of the nine
source participant’s RSVP language data.

We use inter-subject decoding to evaluate whether functional alignment successfully
improves inter-subject similarity in this RSVP language task. Specifically, we train a
linear Support Vector Machine to decode experimental categories across participants; for
a review of using linear Support Vector Machines and other classifiers with fMRI data,
we recommend Pereira et al. (2009). Here, we use the aligned RSVP language statistical
maps as features, where each participant has 60 maps for each of six runs. We trained the
model to classify each of the five experimental conditions on all source participants; i.e.,
on 60 x 6 x 8 = 2880 statistical maps. We then tested the trained Support Vector Machine
on the trial-wise maps from the target participant’s RSVP language data. Note that no
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transformation matrix R has been applied to these data, since all other participants were
aligned to this target. We repeated this procedure 9 times, iterating the choice of target
participant each time. We find an average inter-subject decoding accuracy of 28% after
functional alignment.

We can compare this value against the average inter-subject decoding accuracy on
unaligned data; that is, by training on the statistical maps from all-but-one participant and
testing on the held-out target participant without applying any of the derived R matrices.
In this case, we find an average inter-subject decoding accuracy of 28%. Functionally
aligning on Raiders of the Lost Ark thus brings an average gain of 0% decoding accuracy in
this left-lateralized region-of-interest for the RSVP language task.

5.5 Implementation and available decision points

We can consider the preceding example as a series of steps for moving from data processing
through algorithm choice and finally to result evaluation. At each of these steps, we have
described a single analytic choice. In this section, we detail each step separately and lay
out other potential alternative choices, consider how those choices interact, and describe
available guidelines for selecting among available alternatives in a given experimental
application.

Specifically, we consider: how researchers should define training and testing data, how
to select spatial context within these datasets, choosing a functional alignment algorithm
to apply, and evaluating the success of the learned alignment.

5.5.1 Defining training and testing data

As with other MVPA methods, functional alignment transformations must be learned on
independent training data since training and testing on the same data will yield excessively
optimistic estimates of performance. We review the effects of—as well as targeted use
cases for—using overlapping data in Section 5.5.1.1. Beyond this requirement, there are
several general guidelines driving choice of training dataset: (1) synchronization between
presentations, (2) amount of available data, as well as (3) relevance to the downstream
application.

Many traditional psychological paradigms may include counterbalancing session-
specific stimuli across participants to account for ordering effects. To train functional
alignment, however, we want data that are as consistent between participants as possible
such that we learn transformations between individual-specific functional organization
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rather than between different task conditions. Functional alignment training data should
thus be synchronized or co-occurring; i.e., not unconstrained tasks such as resting-state or
participant-driven tasks such as video-game play. While we do not consider them here,
we note that connectivity-based alignment strategies (e.g., Guntupalli et al., 2018; Nastase
et al., 2020b) should be a better option for desynchronized datasets. Importantly, training
data do not have to be co-occuring in the original tasks but only when used to train the
alignment. For example, Bazeille et al. (2021) use 53 statistical contrast maps to train
functional alignment within the IBC dataset. Although these contrast maps are drawn
from multiple experimental protocols, they are stacked in an identical order to create a
single training matrix of p voxels by 53 conditions. This identical ordering is important in
creating an implicit correspondence between Asource and Atarget, which is assumed across
all of the functional alignment algorithms discussed in Section 5.5.3.

The amount of synchronized training data necessary largely depends on the amount
of task-relevant signal available in each image for the specific combination of region-of-
interest and test data. While as few as 53 statistical contrast maps have been used to
successfully drive an alignment (Bazeille et al., 2021), Guntupalli et al. (2016) estimated
that at least 30 minutes of Raiders of the Lost Ark movie data is necessary to learn robust
transformations, with most applications falling somewhere in-between (Geerligs et al.,
2021). In general, it is difficult to assess the amount of relevant signal outside of a specific
application and associated performance metric (see Section 5.5.4). Researchers leverage
previous literature, however, to assess the magnitude of data that should be used for
training. In those cases where no relevant guidelines can be established, we recommend
using as much data as possible.

Ideally, investigators would jointly select training and testing data that cover similar
cognitive domains. For example, using train and test data of similar motor imagery
(Al-Wasity et al., 2020) or sub-sampled visual categories (Ho et al., 2022) ensures that
transformations learned on the training data will be relevant to the test data. Researchers
should avoid learning transformations on data with no clear relevance to the task data;
for example, learning alignment on a visual stimulus depicting natural scenes and then
applying the learned alignment to a language task. These cross-modal pairings are likely
to share very little task-relevant signal, limiting the success of alignment. Naturalistic
stimuli are a popular choice for functional alignment, as their multimodal nature, complex
temporal structure, and high ecological validity (Nastase et al., 2020a; Sonkusare et al.,
2019) are relevant to many higher-order cognitive processes such as memory and attention
(Baldassano et al., 2017; Nastase et al., 2017).
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5.5.1.1 Learning and applying the alignment on overlapping data

Many investigators who are interested in applying functional alignment may be working
with pre-collected datasets that do not include independent task data that can be used to
derive an alignment. For example, investigators working with very short movie clips may
be unable to effectively learn and apply transformations using independent subsets of the
movie if insufficient data is available. In these cases, it is particularly appealing to directly
train and apply functional alignment transformations on the same data. Indeed, this proce-
dure has been adopted in the literature as in Geerligs et al. (2021), where hyperalignment
transformations were learned and then applied on the same 8-minute movie clip. Using
the aligned movie, the authors then segmented neural events within the movie timecourse
and compared the consistency of event boundaries across participants. Importantly, the
authors themselves acknowledge the limitations of this approach for deriving supervised
classifiers, but argue that overlapping data will not influence the temporal structure of the
data, which is their measure of interest.

For this and related measures, it is possible that using overlapping data may be appro-
priate to answer the research question of interest. We caution, however, that the derived
transformation cannot be assumed to have successfully improved inter-individual simi-
larity without an explicit test, and it may therefore be appropriate to report the derived
measure of interest with and without functional alignment. Regardless, we encourage re-
searchers to explicit report whether alignment was calculated and applied on overlapping
data, as this will significantly influence the interpretation of derived transformations.

5.5.2 Selecting spatial context

Without constraints, functional alignment transformations can learn biologically implausi-
ble relationships; for example, finding correspondence between the visual cortex of one
participant and the frontal cortex of a different participant. To avoid this, functional align-
ment is commonly constrained to learn transformations within a specific spatial context or
neighborhood. In its first introduction in Haxby et al. (2011), functional alignment was
learnt within a single region-of-interest as in our preceding example. Since then, other
spatial contexts such as searchlights (Guntupalli et al., 2016; Kriegeskorte et al., 2006) and
non-overlapping, deterministic parcellations (Bazeille et al., 2021) have also been used to
constrain learned alignments.

While region-of-interests are generally chosen based on their relevance to the appli-
cation task, searchlights and parcellations are used when investigators need to define a
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Figure 5.5: Comparing non-overlapping and overlapping spatial contexts. On the left, two non-
overlapping parcels from a single parcellation. On the right, three overlapping searchlights. The blue
transformation differs between the two spatial contexts, resulting in a different overall learned functional
alignment. Figure adapted from Bazeille et al. (2021).

whole-brain transformation for function alignment. These methods differ, however, in
how individual, neighborhood transformations are combined into a whole-brain context.
Importantly, searchlights average overlapping transformations, as shown in Figure 5.5.
While this allows investigators to avoid defining areal boundaries, it means that overlap-
ping transformations must be aggregated in some way; for example, by summing or by
averaging. The aggregated transformation, then, is no longer guaranteed to reflect the
original transformations from which it was calculated.

As a result of this aggregation, we generally recommend that investigators first use
either individual regions-of-interest or non-overlapping parcellations, unless their ex-
perimental question requires a searchlight approach. In this case, the ideal radius of the
searchlight is largely dependent on the research question; however, we recommend the gen-
eral guidelines for searchlight analyses provided in Etzel et al. (2013). For non-overlapping
parcellations, we have found that many function alignment algorithms (see Section 5.5.3)
are not strongly dependent on the exact parcellation scheme (Bazeille et al., 2021), though
predictions from alignment can be further improved by using bootstrap aggregation across
multiple parcellations (Dohmatob et al., 2021). We therefore recommend that researchers
use their preferred parcellation for whole-brain functional alignment.
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5.5.3 Choosing a functional alignment algorithm

At a high-level, the goal of functional alignment is to make two or more participant
activity patterns look as similar as possible. The difference between available functional
alignment algorithms are the ways by which we define ”as similar as possible,“ and
the exact constraints under which we can transform a given source activity pattern to
increase its similarity to a target pattern. In this tutorial, we focus on methods which
generate linear mappings for two main reasons. The first is interpretability: since we
are constrained to linear transformations, we retain as much information as possible on
each individual’s activity pattern without more subtle, non-linear changes. The second
reason is for downstream applications: because linear-only transformations do not fit as
closely to the training data, we can use the same transformations in a new task context
with a different structure. That is, we can learn a relationship between Asource and Atarget

using Raiders of the Lost Ark movie data and apply the resulting transformation on Dsource,
statistical contrast maps from an RSVP language task.

In general, we suggest that the advantages of linear-only transformations outweigh
the disadvantages of excluding non-linear changes when our goal is to apply the derived
transformations in new contexts. In some applications, however, researchers may only
be able to assume a weak correspondence between each participant’s activity patterns;
for example, in functional reorganization following stroke (Langs et al., 2010, 2014) or
when making comparisons across species, such as human and non-human primates
(Xu et al., 2019). In these cases, researchers may prefer to use non-linear alignment
methods, sacrificing interpretability for a more effective alignment. Nonetheless, because
the transformations resulting from these non-linear methods are difficult to apply and
validate using the framework described above, we do not consider them here.

Although linear methods for functional alignment include a wide variety of algorithms,
we can consider them to fall within two general families: direct alignment methods and
latent factor methods. Latent factor methods assume that the observed activity patterns
are generated by underlying latent factors and that these latent factors—rather than the
observed activity—should be shared across participants. Direct alignment methods, on the
other hand, assume that observed activity patterns are shared, if differently encoded in the
supporting anatomy, across participants. Direct alignment methods include the popular
hyperalignment algorithm, which is based on Procrustes analysis (Schönemann, 1966).
Other methods in this family include ridge regression (Ho et al., 2022; Tavor et al., 2016)
and optimal transport (Bazeille et al., 2019). Latent factor methods include the Shared
Response Model (Chen et al., 2015) and regularized Canonical Correlation Analysis (rCCA;
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Bilenko and Gallant, 2016).
We provide more mathematical detail on each of these methods in the online material.

In brief, within a given family, each of these methods make slightly different constraints on
the possible transformations. For example, Procrustes analysis only allows for rigid-body
transformations (e.g., rotations and translations), stretching, and shearing. In this way, it
matches our intuitive ideas of comparing two geometrical shapes. Optimal transport, by
contrast, tries to maximize similarity for each observation based on some predefined cost
metric; for example, their anatomical distance on the cortical surface. Importantly, however,
these methods—particularly the direct-fit methods—are primarily defined between a single
pair of subjects. In order to consider multiple subjects, we need to introduce the idea of
functional templates.

5.5.3.1 Contrasting pairwise and template-based alignment

In our illustrative example, we functionally align a source and target participant by
learning a direct transformation from source to target. This procedure is broadly known
as ”pairwise alignment,“ since transformations are learnt between pairs of participants.
This approach is very useful when inferences can be drawn on a single participant; for
example, in deep phenotyping datasets with a small number of subjects. By contrast, in
many research contexts we may have a large number of participants that we would like to
make direct comparisons between. To do so, investigators generally use ”template-based
alignment.“ In this case, a functional template or reference space is constructed and all
available participants are then transformed into this new space.

Different researchers have adopted different approaches to construct these templates,
which can have significant downstream effects. In the hyperalignment algorithm (Gun-
tupalli et al., 2016), a three-pass iterative procedure is used. In the first stage, a single
participant is arbitrarily chosen as the initial target. A second participant is aligned to this
target using Procrustes analysis. The average of the transformed images from the aligned
second participant and the target participant is then used as the target for aligning the
third participant, and so on until all participants have been aligned. In the second stage,
all participants—including the initial target—are aligned to the final, average target from
the first stage, known as the intermediate common space. In the third and final stage, the
resulting transformations are applied to each image, and the second step is repeated with
the new target space serving as the final reference space. While this approach draws from
Generalized Procrustes Analysis (Gower, 1975), it is sensitive to order effects, including in
the choice of initial reference participant (Al-Wasity et al., 2020).
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Figure 5.6: Using learned transformations to improve similarity between the source and target
participants. Using the mapping R learned on our alignment data, we can now transform any data
from our source participant with the same number of voxels. In this case, we apply it to their collected
D dataset. RDsource can now be considered an approximation of Dtarget, or a mapping of Dsource into the
activation space of Dtarget.

Alternative procedures to generate functional templates are in active development
(e.g., Bazeille et al., 2019). Importantly, however, latent factor methods such as the Shared
Response Model (SRM) avoid this question of template definition since they include a
shared decomposition across participants. In this case, new subjects can be projected into
the shared decomposition (Chen et al., 2015) to identify their correspondence with existing
participants, with the identified latent factors serving as a low-dimensional template for
aligning new participants.

5.5.4 Evaluating results

For any transformation, an important question is how to evaluate the results. While
anatomical alignments can be visually inspected (as in MRIQC reports; Esteban et al.,
2017), functional alignment transformations take place in high-dimensional activation
spaces. This high dimensionality complicates visualization; as a result, we need to define
useful quantitative metrics.

When applying the calculated transformation R to Dsource, we can consider RDsource as
an approximation of Dtarget, as depicted in Figure 5.6. One metric to evaluate the success
of functional alignment, then, is to directly compare our RDsource and Dtarget images using
methods such as Pearson correlation or the Dice coefficient.

While these provide a useful estimate of how successfully R aligns the functional
organization of source and target participants, the range of possible values of e.g. Dice
coefficients are likely to vary across different datasets as a result of different acquisition
and preprocessing pipelines. For example, in datasets processed with a larger smoothing
kernel, source and target images will have slightly higher Dice values than images from a
different dataset processed with a smaller smoothing kernel—even without any functional
alignment. Thus, these image-based metrics provide useful comparisons within a given
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dataset but may be hard to compare across datasets, complicating attempts to make
comparisons across different studies or sites.

Alternative quantitative metrics can be defined based on prediction accuracy. That
is, using predictive frameworks such as inter-subject decoding allows us to derive a set
accuracy value for a given functional alignment application. Unlike image-based metrics,
however, these accuracy values can be more directly compared across datasets when
properly evaluated against chance and against relevant benchmarks; for example, within-
subject alignment or standard, anatomical-only preprocessing. We adopt an inter-subject
decoding framework in the illustrative example included in Section 5.4, though other
predictive frameworks are also possible. For example, time-segment matching (Haxby
et al., 2011; Kumar et al., 2019) is a predictive framework defined for naturalistic data
where stimulus labels are not available. In this case, continuous stimuli are divided into
small time bins using a sliding window approach. The average time course for all source
subjects in this bin is compared against all possible, non-overlapping time bins from a
single target subject. The time bin with the maximum correlation is selected. If this bin
corresponds to the same time points in both the average source and individual target time
course, then that time bin is marked as correct. This procedure is repeated for all time bins,
and the average accuracy is reported.

We encourage researchers to adopt predictive models to evaluate the success of func-
tional alignment in those cases where they have access to sufficient held-out test data to
train a successful predictive model. If too little data is available, however, image-based met-
rics such as the Dice coefficient may be a better choice, though researchers should be aware
that these metrics may be difficult to compare across datasets. Regardless of the exact
metric used, however, we emphasize the importance of adopting some metric to evaluate
alignment performance in addition to using the transformation for a downstream scientific
question. Much as researchers visually evaluate the success of anatomical alignment before
using fMRI data in standard preprocessing pipelines, quantitatively evaluating the success
of functional alignment provides insight into how well the calculated transformations
improve inter-subject similarity, which can then be used in a range of applications.

5.6 Applications and extensions

While our preceding sections overview functional alignment as a technique—and im-
portant implementation choices—we have not yet addressed a fundamental issue: what
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kinds of scientific questions are amenable to functional alignment? How does functional
alignment interact as a processing technique with different downstream scientific analyses?

Our illustrative example pairs functional alignment with a multivariate classification
analysis The same example can also be considered with other univariate methods of
analysis; for example, we can analyze the RSVP language task with a General Linear Model
(GLM) after functionally aligning using transformations learned from the Raiders of the Lost
Ark dataset. In both cases, however, we are learning functional alignment transformations
using evoked activity in the training dataset. Importantly, activity is not the only measure
on which we can learn these transformations. For example, several research groups have
adopted connectivity-based functional alignment, building on algorithms discussed in
Section 5.5.3 including hyperalignment (Busch et al., 2020; Guntupalli et al., 2018) and
the Shared Response Model (Nastase et al., 2020b). For connectivity-based alignment, we
replace the ”activation spaces“ discussed in Section 5.3.1 with new ”functional spaces,“
where each point in functional space is the strength of functional connectivity between two
spatial neighborhoods (e.g., searchlights in Guntupalli et al., 2018). Defining functional
spaces in this way significantly increases the kinds of stimuli we can use to learn functional
alignment from shared, synchronized stimuli to unsynchronized data such as resting-state
or even non-overlapping narrative stimuli. Dadashkarimi et al. (2021) and colleagues took
this idea one step further, using optimal transport to map between connectomes derived
from different parcellations rather than functionally aligning the voxelwise time courses
directly.

In addition to considering new measures for functional alignment, we can also broaden
our potential use cases. Beyond individual-level mappings, similar questions of correspon-
dence underlie processes unfolding over time such as attention, memory, and learning. In
systems neuroscience, for example, functional alignment is already used to stabilize read-
outs across multi-session recordings (Gallego et al., 2020). As the amount of data available
for individual participants continues to increase in new deep-phenotyping datasets (Nase-
laris et al., 2021; Poldrack, 2017)—such as the Individual Brain Charting dataset included
in our example analysis (Pinho et al., 2018)—these multi-session alignments may become
similarly accessible in social and cognitive neuroscience applications. We caution, though,
that fMRI lacks the high temporal resolution of many systems neuroscience measurements,
meaning that we may be less able to align the dynamics supporting attention and learning.
Nonetheless, applications of functional alignment to other modalities such as intracranial
electroencephalography (iEEG) as in Xie et al. (2021) confirm the potential of this approach.
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5.7 Relationship to other alignment methods

While functional alignment promises continued insight into mappings between indi-
vidual’s fMRI measurements, other approaches have also been pioneered to improve
inter-individual correspondence. To better situate alignment within the field, we briefly
consider its relationship to two other methods: surface-based registration and individual-
ized parcellations. We provide brief summaries of each method below.

5.7.1 Surface-based registration

Although volumetric registration remains widely-used within the community, this may
lead to functionally significant mis-alignment of sulco-gyral patterns (Coalson et al., 2018).
Since sulco-gyral patterns are closely tied to functional areas (Desai et al., 2005), volumetric
registration may exacerbate misaligned functional activations across participants. Surface
registration techniques have been proposed to instead align directly on sulco-gyral pat-
terning, representing cortex as either a two-dimensional sheet (Van Essen et al., 1998) or as
a three-dimensional sphere (Fischl et al., 1999; Yeo et al., 2010). Surface-based alignment
has been shown to improve group-level analyses on the cortical surface in both univariate
(Tucholka et al., 2012) and multivariate (Oosterhof et al., 2011) contexts.

While surface-based registration provides important improvements in mapping across
neuroanatomy, it does not broadly address variable structure-function correspondence,
instead improving correspondence only for functional areas that closely track sulco-gyral
patterning. Several researchers have therefore advocated for pairing surface-based registra-
tion with functional alignment (Guntupalli et al., 2016; cf. Bazeille et al., 2021). Additionally,
functional alignment can uniquely address functional variability within subcortical or
allocortical structures such as the hippocampus (Chen et al., 2021) which are commonly
excluded from surface-based registration.

5.7.2 Individualized parcellations

Unlike functional alignment, which can be applied across a range of spatial contexts,
individualized parcellations work within a given parcellation scheme. For example, the
individualized parcellation method proposed by Kong et al. (2018) works by assigning a
given voxel to one parcel or another to maximize similarity of network-level functional
connectivity patterns across participants. In creating functional connectomes, individual-
ized parcellations have been shown to better account for individual-level differences in
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cognition, emotion, and personality, reflecting the idea that functional areas captured by
these parcellations show stable inter-individual differences (Gratton et al., 2018).

While individualized parcellations could in theory be used as spatial contexts for
functional alignment, many of these methods yield a variable number of voxels per par-
cel across participants. The functional alignment algorithms considered here assume a
consistent number of voxels across participants, limiting their use with individualized par-
cellations. Bootstrap aggregation across different parcellations, however, has been shown
to improve the ability of alignment to predict individual task statistical maps (Dohmatob
et al., 2021). Future work combining individualized parcellations and functional alignment
is therefore likely to be of significant interest. In cases when only one method can be
adopted, however, we recommend that researchers use individualized parcellations for
analyses where they intend to extract parcel-level measures, while functional alignment
may be more useful for MVPA or general-linear model analyses which rely on voxel-level
information.

5.8 Conclusions

In this tutorial, we have introduced functional alignment as an accessible method for social
and cognitive neuroscience through an illustrative example. We explained the intuitions
supporting functional alignment as well as the available choices to guide its application.
We further provided a few general recommendations for researchers, and we compared
alignment to other methods for improving inter-individual correspondence to help situate
its potential impact within the field.

Over the last decade, functional alignment has emerged as a powerful method for find-
ing inter-individual similarity across social and cognitive neuroscience. The next decade
promises more work in this direction, with new algorithms and applications for this
toolset. While we have tried to point to several of the most promising developments in this
area, other reviews such as Haxby et al. (2020) provide additional detail on several of the
methods that we discussed here. We further direct readers to our accompanying online re-
source https://neurodatascience.github.io/fmralign-tutorials for formalisms and
interactive Python code examples for five commonly-used functional alignment methods.

https://neurodatascience.github.io/fmralign-tutorials
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6.1 Preface

Publishing interactive code and data significantly facilitates exploration and adoption of
methods such as functional alignment. Being able to directly build on another researcher’s
work—without re-implementing their described processing and analyses—allows for more

https://doi.org/10.1371/journal.pcbi.1009651
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rapid iteration across the field. For example, the experimental code used in Chapters 3
and 4 benefited directly from Python packages such as PyMVPA and BrainIAK. Despite
the clear utility of such resources, it is difficult to publish interactive research articles.
As the infrastructure necessary to support them is not yet available, these materials
largely exist outside of the traditional publishing platforms, often appearing instead as
documentation for specific software packages. This limits their scope to those algorithms
directly implemented in a given tool, preventing broader consideration of a given method.
Further, it disincentivizes researchers from developing scientific articles with integrated
code and data, such as the framework for functional alignment presented in Chapter 5. In
this chapter, I review the current status of scientific publishing infrastructure and propose
novel directions for development. Several of the future directions suggested in this piece
have been actively developed to support the interactive materials accompanying Chapter 5.
This work was published in PLOS Computational Biology in 2022 (DuPre et al., 2022).

6.2 Abstract

Moving beyond static text and illustrations is a central challenge for scientific publishing
in the twenty-first century. As early as 1995, Donoho and Buckheit paraphrased John
Claerbout that “an article about [a] computational result is advertising, not scholarship.
The actual scholarship is the full software environment, code and data, that produced the
result” (Donoho, 2010). Awareness of this problem has only grown over the last 25 years;
nonetheless, scientific publishing infrastructures remain remarkably resistant to change
(Piotrowski, 2016). Even as these infrastructures have largely stagnated, the internet has
ushered in a transition “from the wet lab to the web lab” (Keshavan and Poline, 2019).
New expectations have emerged in this shift, but these expectations must play against
the reality of currently available infrastructures and associated sociological pressures.
Here, we compare current scientific publishing norms against those associated with online
content more broadly, and we argue that meeting the “Claerbout challenge” of providing
the full software environment, code, and data supporting a scientific result will require
open infrastructure development to create environments for authoring, reviewing and
accessing interactive research objects.
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6.3 Publishing as curating, promoting, and archiving

content

Scientific publishing platforms—traditionally, scientific journals—fulfill a variety of roles
in their communities. Three of the most prominent of these are curating, promoting, and
archiving research. Although these roles have adapted to online spaces, they have not
been fundamentally reshaped. Indeed, contemporary scientific articles are disseminated
primarily as PDFs, directly translating paper-based workflows into digital workspaces.
Here, we briefly review how publishing fulfills these roles today: curation via peer review,
short-term promotion via online dissemination, and long-term access via archiving.

Across many kinds of media, curating online content is challenging both due to its
scale and its style of interaction, which often blurs the boundary between creating and
consuming information. For scientific publishing, formal and independent peer review
is widely considered to be a key demarcation (Mulligan et al., 2013) and provides an
immediate mechanism to curate research objects. Curation in peer review involves checks
on a submission’s ethical and scientific rigor, in addition to its relevance to a particular
research community. Even as many other forms of curation are possible—including crowd-
sourced or algorithmically-driven (Yarkoni, 2012)—these remain relatively uncommon in
neuroscience (cf. arxiv-sanity.com).

In addition to curating (i.e. reviewing and selecting) research objects, publishing also
serves an important role in promoting and archiving content. This occurs in the short
term through activities such as website hosting and advertising on social media platforms
(Klar et al., 2020). Ongoing promotion to an ever evolving scientific community is enabled
through the long term archiving and the references system. These roles can be fulfilled
independently or in an arbitrary order. For example, online interactions have allowed
peer review to expand into post-publication peer review on platforms such as PubPeer
(https://pubpeer.com) and Sciety (https://sciety.org; Stern and O’Shea, 2019).

Even as scientific publishers have successfully moved online, they have not yet em-
braced the full potential of web-first workflows. We briefly review how two norms of
online content, connectivity and interactivity, are currently reflected in scientific publishing
before arguing for infrastructure that allows for more directly interactive and re-usable
content.

arxiv-sanity.com
https://pubpeer.com
https://sciety.org
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6.4 Rich linking for research objects: Connecting through

hybrid content types

Much of the rich, content-driven interactivity of the web depends on access to structured
data such as user content on social media platforms. To separate out this content from
its presentation, data formats such as XML have been developed to link online content
with its supporting resources (Guha et al., 2015). Although scientific publishing workflows
are largely built around the XML format, the need to output PDF documents means that
resources that cannot be directly embedded—such as executable code or supporting data—
have been largely excluded from academic publishing. Thus, the scientific narrative has
historically been detached from its other associated research objects.

Recently, growing awareness of this problem has led to an increase in publishing what
we term ‘hybrid research objects.’ Hybrid research objects are distinct from traditional
publications in that they make multiple content types available in the same object; that
is, they contain narrative text and at least one or more examples of code, data, and com-
putation (e.g., Eglen et al., 2017). Multiple paths exist to make these objects available.
One path is to include direct links to each resource such as through data and code avail-
ability statements (Colavizza et al., 2020), without constraining their format or content.
Alternatively, some publishers require that linked research objects adhere to specified
standards and are explicitly included in the review process. For example, the journal
Scientific Data from Nature Research publishes descriptors of datasets (Poline, 2019) that
include links to dedicated, domain-relevant data hosting infrastructure such as OpenNeuro
(https://openneuro.org). Importantly, this raises new questions on how to appropriately
handle their peer review; questions for which there is no current consensus (Carpenter,
2017).

As hybrid research objects have become more prominent, best practices in publishing
these objects continue to evolve. We hope to see more hybrid research objects where
each linked object is formatted with domain-relevant standards (e.g., neuroimaging data
organized according to a domain-standard such as the Brain Imaging Data Structure
[BIDS]; Gorgolewski et al., 2016) and bi-directionally linked using persistent identifiers.
Nonetheless, because the linked research objects are hosted on unique platforms without
clear checks on interoperability across the hybrid object components, it can be difficult to
interact with the code, data, or their combination; for example, when trying to perform
minimal quality checks on a dataset. It further prevents eventual readers from assessing
the reproducibility or generalizability (The Turing Way Community, 2021) of presented

https://openneuro.org
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results. Enhancing this experience requires making these research objects interoperable,
improving their reusability. Here, we introduce the idea of ‘integrated’ research objects to
explicitly test the interaction of included research objects in reproducing a scientific result.

6.5 Bridging the gaps: Interactive and integrated research

objects

Interactivity is an attractive feature of online content, and one that scientists have been
especially eager to adopt (Perkel, 2021). This enthusiasm has spurred development of
platforms such as Bokeh (https://bokeh.org) and Plotly (https://plotly.com), enabling
scientists to provide multiple views of their data through interactive figures and dash-
boards. Although this work is impressive, it is limited: researchers remain unable to
modify or re-execute the code used to generate these figures when shared through HTML
documents. This hinders deep engagement with the presented results.

Achieving deeper interactivity requires interaction between the code, data, and com-
putation supporting a scientific result. One approach to achieve this is to focus on what
we call ‘integrated research objects.’ Integrated research objects not only make multiple
kinds of research objects available and tightly coupled, but they do so in formats (e.g.
computational notebooks) that foreground their interaction by allowing re-execution. In
doing so, they offer a clear answer to the Claerbout challenge.

There are limits on the kinds of experiments that can be supported through integrated
research objects; for example, experiments relying on cell cultures or other biological
samples may only have digital representations of the statistical analyses and end results
rather than the experiments themselves. Nonetheless, researchers should be encouraged
to provide access to research objects that can be digitized. This is particularly important
for computational work, where experiments are carried out in silico and so computation
and the resulting narrative are closely linked.

Despite their immediate appeal, the infrastructure required to support integrated
research objects is less straightforward. In particular, authoring, curating, and archiving
these research objects all introduce significant challenges. Further, requiring that these
objects be archivable imposes strong constraints on the kinds of technologies that can
be used. Most archival services discourage submitting complex HTML objects with
external dependencies as these documents are unlikely to retain their full functionality
with evolving versions of HTML, JavaScript and web browsers (Davis, 2011).

https://bokeh.org
https://plotly.com
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To sidestep this concern, current pilots for publishing integrated research objects
consider them as secondary to a traditional, archivable article. For example, eLife authors
can develop additional, web-first materials to accompany their accepted research articles.
Co-developed with Stencila (https://stenci.la), these Executable Research Articles
(ERAs) inherit their structure from the Jupyter notebook (Kluyver et al., 2016) format.
ERA development has explicitly focussed on improving the authoring experience, and
authors are supported in ensuring that all relevant code and data files are included in the
ERA environment. While this support reduces the technical barrier in creating integrated
research objects, it also means that ERAs are necessarily only developed at the end of
the publication process after scientific analyses are finalized. In this way, the traditional,
narrative-text-based document remains privileged as the primary research object.

Centering integrated research objects will require infrastructure development to both
ease the authoring experience as well as represent these objects in an archivable format.
Although several standards for integrated research objects could serve as potential starting
points, we argue that sustainable development demands open standards with multi-
stakeholder governance and leadership to ensure that resulting specifications are not
driven by a single stakeholder.

6.6 Authoring integrated research objects with open

standards

Perhaps the two most broadly adopted standards for integrated research objects are the
RMarkdown (https://rmarkdown.rstudio.com) and Jupyter notebook (Kluyver et al.,
2016) formats. Both technologies allow researchers to create integrated research objects
that include narrative text, code, and computation, though they do so using different
internal implementations. Specifically, RMarkdown is based on YAML and markdown
formats, while Jupyter notebook is based on the JSON format.

Recent development on Jupyter Book (https://jupyterbook.org) has led to the cre-
ation of a MyST markdown format (https://myst-parser.readthedocs.io) that extends
Jupyter to build from a combination of YAML and markdown, improving handling for
scientific publishing use cases. Thus, RMarkdown and MyST allow researchers to directly
describe their scholarship—the code, data, and computation that support a given scientific
result—such that it can be easily source-controlled and archived. They each also enable
generation of user-focused HTML and PDF documents, including PDFs formatted for

https://stenci.la
https://rmarkdown.rstudio.com
https://jupyterbook.org
https://myst-parser.readthedocs.io
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several major scientific journals (using e.g. ‘rticles’, RStudio, 2021), from user-provided
markdown content.

These technologies differ, however, in that RMarkdown development is controlled
by a single-stakeholder, RStudio. Although its product is openly licensed, developed
with community consultation, and freely available, decision-making power rests with
RStudio employees. This model is distinct from multi-stakeholder governance, in which
formats are not controlled by individual entities but instead benefit from consensus across
organizations. We thus focus on standards developed within the Jupyter ecosystem.

Open standards development within Jupyter has enabled other initiatives such as
Stencila and Curvenote (https://curvenote.com) to overlay with additional views and
functionality. Integrating these technologies into existing standards (e.g. the Journal
Article Tag Suite [JATS] XML format) via translation or conversion processes remains an
active area of work. Perhaps their largest departure from existing formats, however, is
that they can be re-executed in an integrated computational environment that includes the
supporting data files.

6.7 Centering complex objects in scientific publishing with

cloud infrastructure

Cloud infrastructure enables browser-based access to computational environments. A
major challenge in extending these cloud infrastructures for scientific publishing is the asso-
ciated cost, both for initial peer review as well as for the long term preservation of included
research objects. User-focused cloud technologies such as Binder (https://mybinder.org;
Project Jupyter et al., 2018) enable easy access to these environments, but they do not
directly address dataset storage. Neuroscience datasets may involve terabytes of data and
hundreds of CPU hours of compute time, making cloud computing and data hosting non-
trivial. Including multiple versions of a given dataset—from raw data to analysis-ready
derivatives—only compounds this problem.

Creating economically viable, non-commercial options will likely involve the coordi-
nation of multiple academic and non-profit groups such as the International Interactive
Computing Collaboration (2i2c, https://2i2c.org) as well as explicit funding calls for
projects advancing open standards through modular, composable infrastructure. Large
field-standard datasets, such as those provided by the Allen Institute for Brain Science
(https://alleninstitute.org) or the International Brain Laboratory (International Brain
Laboratory, 2017), are likely to further benefit from centralized data and computation. This

https://curvenote.com
https://2i2c.org
https://alleninstitute.org
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Figure 6.1: Contrasting monolithic and modular publishing platforms. While monolithic publishing
platforms are self-contained, modular publishing platforms rely on open standards across composable
infrastructure. In doing so, they create space for additional functionality such as data management that
better supports scientific communities.

approach has been pioneered in geosciences by the Pangeo project (Odaka et al., 2020),
which provides centralized access to and computation on field-standard climatology data
via JupyterHubs hosted on commercial clouds. Recently, Rokem et al. 2021 have proto-
typed this approach in neuroscience through the development of a Pan-neuro initiative,
encouraging optimism about future adoption in other scientific communities.

Smaller datasets collected by individual research groups, however, may require alter-
native approaches; in particular, decentralized data management offers a promising route
forward to minimize reliance on a central hosting service in those cases where datasets are
small enough to be duplicated (Hanke et al., 2021). NeuroLibre (https://neurolibre.com)
provides one example of this model and relies on non-profit support to host a curated
collection of datasets, each of which support one or more NeuroLibre publications through
hosted environments for re-executing the described analyses.

Although different in scale, we argue that both Pangeo and NeuroLibre share a core ap-
proach that should be more broadly adopted. By investing in infrastructure for integrated
research objects that heavily relies on open, modular components, we can make strong con-
tributions in individual research domains while still ensuring that these investments can
be easily re-tooled and extended. Fig 6.1 contrasts this modular, composable infrastructure
with more traditional publishing platforms developed on a monolithic technology stack.

NeuroLibre, for example, relies on a combined technology stack from the Journal of
Open Source Software (JOSS; Katz et al., 2018), Jupyter Book, and BinderHub. Each of
these projects independently combines modular technologies to meet existing community

https://neurolibre.com
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needs, and their combination—while currently unique to neuroscience—can easily be
repurposed for other research communities, such as the development of Pan-neuro from
the Pangeo model.

As scientists increasingly recognize the value in sharing their code and data (Boudreau
et al., 2021), this approach could facilitate an important transition in scientific publishing.
By leveraging MyST as an emerging standard for integrated research objects, alongside
modular components for their hosting and re-execution through BinderHub and other
open technologies, scientists will be better positioned to author articles which center all
the research objects supporting a scientific result, in addition to the underlying narrative.

As science increasingly depends on digital infrastructure, it is clear that scientific
publishing is at an inflection point. Reckoning with the Claerbout challenge will require
providing access to the research objects supporting the actual scholarship rather than the
“advertising” of static scientific articles. Adopting web-based technologies provides the
strongest possible path forward, but managing this transition in the face of economic and
sociological pressure requires academic communities to advocate for open and sustainable
infrastructure development, as seen in the Pan-neuro and NeuroLibre initiatives. We
argue that community-based efforts around open standards, modular and composable
infrastructures, and new research object types will underpin the full potential of web-
driven publishing.

6.8 Bibliography

Boudreau, M. et al. (2021). “On the open-source landscape of PLOS Computational Biol-
ogy”. PLoS Comput. Biol., 17(2), e1008725.

Carpenter, T. A. (2017). “What Constitutes Peer Review of Data: A survey of published
peer review guidelines”. CoRR, abs/1704.02236.

Colavizza, G. et al. (2020). “The citation advantage of linking publications to research
data”. PloS one, 15(4), e0230416.

Davis, R. C. (2011). Five Tips for Designing Preservable Websites. https://siarchives.si.
edu/blog/five-tips-designing-preservable-websites. Accessed: 2021-11-19.

Donoho, D. L. (2010). “An invitation to reproducible computational research”. Biostatistics,
11(3), pp. 385–388.

DuPre, E. et al. (2022). “Beyond advertising: New infrastructures for publishing integrated
research objects”. PLoS Comput. Biol., 18(1), e1009651.

https://siarchives.si.edu/blog/five-tips-designing-preservable-websites
https://siarchives.si.edu/blog/five-tips-designing-preservable-websites


CHAPTER 6. CONSIDERING NEW PUBLISHING INFRASTRUCTURES 125

Eglen, S. J. et al. (2017). “Toward standard practices for sharing computer code and pro-
grams in neuroscience”. Nat. Neurosci., 20(6), pp. 770–773.

Gorgolewski, K. J. et al. (2016). “The brain imaging data structure, a format for organizing
and describing outputs of neuroimaging experiments”. Scientific Data, 3, p. 160044.

Guha, R. V., D. Brickley, and S. MacBeth (2015). “Schema.org: Evolution of Structured Data
on the Web: Big data makes common schemas even more necessary”. Queueing Syst.,
13(9), pp. 10–37.

Hanke, M. et al. (2021). “In defense of decentralized research data management”. Neurofo-
rum, 27(1), pp. 17–25.

International Brain Laboratory (2017). “An International Laboratory for Systems and
Computational Neuroscience”. Neuron, 96(6), pp. 1213–1218.

Katz, D. S., K. E. Niemeyer, and A. M. Smith (2018). “Publish your software: introducing
the journal of open source software (JOSS)”. Comput. Sci. Eng.

Keshavan, A. and J.-B. Poline (2019). “From the Wet Lab to the Web Lab: A Paradigm Shift
in Brain Imaging Research”. Front. Neuroinform., 13, p. 3.

Klar, S. et al. (2020). “Using social media to promote academic research: Identifying the
benefits of twitter for sharing academic work”. PLoS One, 15(4), e0229446.

Kluyver, T. et al. (2016). “Jupyter Notebooks – a publishing format for reproducible com-
putational workflows”. In: Positioning and Power in Academic Publishing: Players, Agents
and Agendas. Amsterdam, NY: IOS Press, pp. 87–90.

Mulligan, A., L. Hall, and E. Raphael (2013). “Peer review in a changing world: An
international study measuring the attitudes of researchers”. J. Am. Soc. Inf. Sci. Technol.,
64(1), pp. 132–161.

Odaka, T. E. et al. (2020). “The Pangeo Ecosystem: Interactive Computing Tools for the
Geosciences: Benchmarking on HPC”. In: Tools and Techniques for High Performance
Computing. Springer International Publishing, pp. 190–204.

Perkel, J. M. (2021). “Reactive, reproducible, collaborative: computational notebooks
evolve”. Nature, 593(7857), pp. 156–157.

Piotrowski, M. (2016). “Future Publishing Formats”. In: Proceedings of the 2016 ACM
Symposium on Document Engineering. DocEng ’16. New York, NY, USA: Association for
Computing Machinery, pp. 7–8.

Poline, J.-B. (2019). “From data sharing to data publishing”. MNI Open Res, 2.
Project Jupyter et al. (2018). “Binder 2.0 - Reproducible, interactive, sharable environments

for science at scale”. In: Proceedings of the 17th Python in Science Conference, pp. 113–120.
Rokem, A. et al. (2021). “Pan-neuro: interactive computing at scale with BRAIN datasets”.



CHAPTER 6. CONSIDERING NEW PUBLISHING INFRASTRUCTURES 126

RStudio (2021). rticles. https://github.com/rstudio/rticles.
Stern, B. M. and E. K. O’Shea (2019). “A proposal for the future of scientific publishing in

the life sciences”. PLoS Biol., 17(2), e3000116.
The Turing Way Community (2021). The Turing Way: A handbook for reproducible, ethical and

collaborative research.
Yarkoni, T. (2012). “Designing next-generation platforms for evaluating scientific output:

what scientists can learn from the social web”. Front. Comput. Neurosci., 6, p. 72.

https://github.com/rstudio/rticles


127

Chapter 7

Discussion

7.1 Summary of findings and contributions

The body of work presented in this thesis explores functional alignment applications in
cognitive neuroscience: Chapter 3 benchmarks different alignment algorithms on func-
tional Magnetic Resonance Imaging (fMRI) datasets; Chapter 4 examines the impact
of experimental factors on the performance of a single functional alignment algorithm;
Chapter 5 integrates these results with the current literature into an accessible, interac-
tive introduction to functional alignment for social and cognitive neuroscientists; and
Chapter 6 highlights ongoing infrastructure work to create platforms to directly embed
these interactive materials in future publications, rather than authoring them in separate
environments.

In Chapter 3, I collate and expand on existing functional alignment algorithms to
quantitatively assess their performance on a range of public fMRI datasets. I demonstrate
how the same datasets and tasks can show a range of inter-subject similarity values after
functional alignment depending on the assumptions of the algorithm. I observe that
the best-performing functional alignment algorithms can recover approximately half of
the individual variability usually lost in anatomical alignment. These results suggest
that functional alignment can be used to successfully improve inter-subject similarity but
caution that its performance must be carefully assessed.

In Chapter 4, I then examine other factors—beyond algorithm choice—that are likely to
influence the performance of functional alignment. Specifically, I use a single functional
alignment algorithm to assess the impact of experimental factors including both the data
used to learn and to apply functional alignment transformations as well as the exact
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evaluation metric used. I find that functional alignment performance depends on the
relationship between the alignment dataset and its application, highlighting the importance
of careful evaluation when adopting functional alignment in experimental contexts. These
results confirm that functional alignment performance is strongly influenced by its context
and suggest that researchers should incorporate functional alignment into their initial
experimental designs for the best chance of successful applications.

Synthesizing these experimental results, in Chapter 5 I develop an accessible introduc-
tion to functional alignment for researchers in social and cognitive neuroscience. While
functional alignment has been increasingly adopted in these fields, relatively few resources
exist for orienting researchers to its use. I generate accompanying interactive materi-
als allowing researchers to directly incorporate these methods into their own Python
workflows.

Finally, in Chapter 6, I review the current state of publishing for interactive research
objects such as those developed in Chapter 5. I propose new publishing infrastructure
for research objects that integrate across scientific narrative, code, and data, pointing to
our ongoing work in this area. Future developments supporting these integrated research
objects will improve adoption of methods such as functional alignment across the field.

While each of these chapters distinctly contributes to considering functional alignment
applications in cognitive neuroscience, collectively they provide a general framework for
its adoption and offer a template for bridging the gap between methods development and
domain science.

7.2 The challenges of individual variability for human

brain mapping

While many fMRI studies include group-level analyses, their results are sensitive to any
remaining variability in anatomical features—from cytoarchitectonic composition (Amunts
et al., 1999; Rademacher et al., 1993) to large-scale sulco-gyral patterning (Galaburda
et al., 1990; Marie et al., 2015)—after normalization to a reference template. Although
standard fMRI preprocessing pipelines incorporate Gaussian smoothing to spatially blur
this between-subject variability, smoothing also discards fine-scale functional information.
Further, it cannot account for variable structure-function mapping across cortex (Paquola
et al., 2019b; Vázquez-Rodríguez et al., 2019), making it difficult to directly compare
functional organizations across individuals. While this challenge to human brain mapping
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has been well-recognized for over two decades (Brett et al., 2002), standard practice has
lagged behind ongoing technical developments.

In this thesis, I explored the potential of functional alignment to address the challenge of
inter-individual variability. Since its introduction to cognitive neuroscience over a decade
ago in Haxby et al. (2011), functional alignment has expanded into a broad class of methods
for aligning on functional responses rather than supporting anatomical features. The work
presented here confirms that functional alignment can improve comparisons between
different individual’s functional patterns; however, its success is heavily dependent on
both algorithm choice (Chapter 3) as well as experimental context (Chapter 4). These
results caution that functional alignment cannot guarantee inter-subject similarity and that
researchers should be well-informed when incorporating these methods into their own
studies. Importantly, this does not mean that functional alignment should be discarded
from the cognitive neuroscience toolkit; rather, it suggests that we need a clearer framework
for evaluating the impact of these methods on individual results. We proposed one such
framework in Chapter 5, encouraging researchers to adopt predictive tasks to benchmark
the relative success of functional alignment in improving inter-subject similarity.

The need for a clear evaluation framework is not limited to functional alignment,
instead reflecting a more general challenge for integrating emerging methods into standard
practice. New publishing formats offer an important path forward in making these
frameworks accessible to the widest possible community. By integrating the code, data,
and computational environment supporting a given result, other scientists will be able to
more directly iterate and build on previous research. While the appeal of these integrated
research objects is obvious, there is relatively little publishing infrastructure to support
them. In Chapter 6, we discussed the current landscape for publishing integrated research
objects and highlight our recent work in this space, some of which has been used to
advance the interactive materials provided in Chapter 5.

Together, these results provide a general framework for evaluating individual func-
tional alignment applications and suggest a template for adopting emerging methods
and communicating their usage to the broader research community. As we continue
to grapple with the challenge of individual variability in human brain mapping, this
template promises to be of broad use for the field. The tension between finding correspon-
dence across individuals while retaining unique information will likely continue to drive
significant methodological development over the coming years. Here, I briefly review
some promising directions for this development and discuss its relationship to the work
presented in this thesis.
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7.3 Future directions for recognizing functional diversity

within and between brains

Functional alignment—as currently applied—is unlikely to be a singular solution for the
problem of individual variability in human brain mapping. Rather, the work introduced
in this thesis supplements a growing awareness of the problem and provides a framework
for researchers to explore additional methods in approaching this challenge. To date,
two main areas of research appear particularly promising for evaluating inter-individual
correspondence. The first is continued methodological development to incorporate other
important sources of variability beyond individual functional organizations. The second is
technical and sociological support to more effectively leverage emerging deep phenotyping
datasets. I consider each of these directions in turn.

7.3.1 Intra-individual variability across brain regions and trials

Recent years have seen remarkable strides in creating models of neural systems whose
internal representations closely resemble biological measurements (Hassabis et al., 2017;
Schrimpf et al., 2018). Importantly, different neural systems are best captured by entirely
different classes of models, rather than simply by different parameterizations. For example,
motor cortex is commonly modelled as a dynamical system (Sussillo et al., 2015; Vyas et al.,
2020) while the ventral visual stream is modelled as a hierarchical series of convolutions
(Eickenberg et al., 2017; Issa et al., 2018). This diversity of successful models highlights
the variety of information processing strategies used throughout the brain, as well as the
different time scales at which they operate (Honey et al., 2012; Jain et al., 2021). To date,
functional alignment applications such as those explored in Chapters 3 and 4 employ a
single algorithm across all considered brain regions. It is likely, however, that different
transformations may be better suited to different brain systems.

Further complicating the question of correspondence is trial-by-trial variability in
processing stimuli (Donnet et al., 2006; Westfall et al., 2016). In some higher-order cognitive
regions, even synchronized stimuli may be processed in an unsynchronized fashion
across individuals and trials. For example, Xie et al. (2021) found that responses in the
ventromedial prefrontal cortex to emotionally salient stimuli were not well-aligned with
the Shared Response Model (Chen et al., 2015), even when participants occupied the same
cognitive state labelled by a Hidden Markov Model, confirming that the Shared Response
Model is not able to effectively accommodate time-varying cognitive events. In recognition
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of this challenge, some extensions of the algorithms used in this thesis focus on aligning
information over time rather than space; for example, the BrainSync algorithm (Joshi et al.,
2017) uses Procrustes alignment to find corresponding timepoints across individuals for
the same set of voxels. However, it is more likely that effective inter-individual alignment
in these regions will require finding correspondence across both time and space.

Rather than searching for correspondence across both dimensions in their original
resolution, low-dimensional representations of well-labelled states offer a tractable path
forward (Williams and Linderman, 2021). These representations can be used both to
establish correspondence across individuals (Dabagia et al., n.d.) as well as to create effec-
tive models for re-analysis (Musall et al., 2019). To date, these labelled low-dimensional
representations have been primarily developed in systems neuroscience applications, par-
ticularly as technological developments have allowed for new, large-scale neural recording
methods (Urai et al., 2022). Translating these ideas to human brain mapping will re-
quire access to large volumes of well-labelled data from single-subjects, underscoring the
continued importance of emerging deep phenotyping datasets in this work.

7.3.2 Drawing insights from deep data

The experimental work presented in Chapters 3 and 4 of this thesis heavily relies on
currently available deep phenotyping datasets, particularly the Individual Brain Charting
initiative (Pinho et al., 2018) and the Courtois Project on Neuronal Modelling (Courtois-
NeuroMod; Boyle et al., 2020). Both of these datasets, however, are still actively being
collected. Indeed, despite the increasing popularity of deep phenotyping acquisitions
(Naselaris et al., 2021), these datasets are still relatively rare in the field. Further, those that
do exist are designed with markedly divergent scientific goals: from mapping individual
differences in intrinsic activity during resting-state (e.g., Midnight Scan Club; Gordon
et al., 2017b) to comparing fine-scale differences in visual activity to naturalistic scenes
(e.g., Natural Scenes Dataset; Allen et al., 2022).

While deep phenotyping datasets hold immense potential for advancing the field, they
must be approached with care. As we currently lack a clear ontology of psychological
processes (Poldrack et al., 2011), there is little guidance for which acquisitions to prioritize,
and currently available acquisitions therefore vary widely between datasets. There is thus
a strong risk that individual datasets will become the sole benchmarks for their scientific
domains of interest. These concerns have already come to light across the fields of machine
learning and artificial intelligence, where an over-reliance on benchmark datasets (Recht
et al., 2018; Thompson et al., 2020) obscures real-world performance of new algorithms.
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Avoiding such a situation in computational neuroscience will require a cohesive framework
for analyzing and reporting results from these datasets.

I suggest that at least two approaches will be necessary for successful adoption of deep
phenotyping datasets across human brain mapping. The first approach relies on improved
technical solutions for accessing, analyzing, and reporting on these datasets. Current tools
are piecemeal or dedicated to only a small number of datasets (e.g., PanNeuro, Rokem et
al., 2021). The developing deep phenotype literature therefore lacks coherence—obscuring
both the robustness of individual claims as well as the potential for harmonization across
these resources. The publishing infrastructure suggested in Chapter 6 provides one
potential solution, allowing investigators to report not only their conclusions but also each
of the supporting research objects, increasing their possibility of re-use.

The framework presented in Chapter 5 suggests a second approach for integrating deep
phenotyping datasets in human brain mapping: namely, evaluating predictive models
for individual subjects. While training many models on a single dataset carries a strong
risk of “dataset decay” (Thompson et al., 2020), deep phenotyping datasets are unique in
their ability to support individual-level models. That is, as the volume of individual-level
data continues to increase, it will become increasingly tractable to create complex models
on individual subjects using, for example, deep learning methods. Indeed, this is an
explicit goal of several ongoing data collection efforts such as Courtois-NeuroMod (Boyle
et al., 2020). Work from artificial intelligence suggests that there will likely be important
inter-individual variability in these models (Mehrer et al., 2020) and that reporting this
variability may help to counteract model overfit. Further, functional alignment may be
useful for directly comparing individual-level models within a dataset (as in Ho et al.,
2022), providing more effective estimates of variance.

This work will help to extend the utility of individual predictive models beyond their
original implementation. The potential of predictive models to improve theory in psychol-
ogy and cognitive neuroscience is increasingly well-recognized (Bzdok et al., 2020; Rocca
and Yarkoni, 2020; Varoquaux and Poldrack, 2019). Studying the models themselves—
abstracted away from the originating datasets—may provide investigators the opportunity
to look for common computational mechanisms in related but non-overlapping cognitive
tasks. This is currently relatively popular in computational cognitive neuroscience, where
successful predictive models are often directly compared to biological measurements
(Schrimpf et al., 2018). The assumption in this line of research is that by comparing the
accuracy and learned representations of different predictive models, we may be able to
infer the underlying information-processing strategies (c.f. Thompson, 2021). This strategy
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is already in active development for deep learning models (Kornblith et al., 2019; Yang
et al., 2019) and may further support ongoing efforts to develop new cognitive ontologies
for human brain mapping (Eisenberg et al., 2019; Varoquaux et al., 2018). Incorporating
functional alignment into this work will help to provide clearer understanding of the
variability around individual model estimates and may provide more a more generalizable
understanding of information-processing strategies.

7.4 Conclusions

Individual variability in brain structure and function presents a core challenge to human
brain mapping, and it is likely to drive continued research for the foreseeable future. Lever-
aging this variability appropriately, however, may provide us with substantial scientific
insight into the mechanisms supporting individual outcomes. The work presented in
this thesis focuses on functional alignment as a method for finding similarity across the
“sensory and neural diversity” that define this variability. While functional alignment is
unlikely to serve as a definitive solution to individual-level variability, it can effectively
improve similarity across subjects in a variety of experimental use cases. The projects
presented here describe both the relative performance of functional alignment as a method
as well as a more general framework for considering other future methods that may be
developed to meet this challenge. Taken together, this thesis serves to scaffold future
work recognizing and addressing the impacts of individual variability on human brain
mapping.
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