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Abstract 

In nature, as well as in the context of medical applications, bacteria often dwell in highly complex 

environments such as soil, waste matter, plant and animal tissues. Consequently, bacteria have 

developed numerous movement patterns for their growth and survival across a broad spectrum of 

habitats. Understanding bacterial movements through human-engineered micro confinements can 

be important for medical and industrial applications, for bacteria-based biocomputation, as well as 

for biosensors and industrial fermentation controls. A majority of the studies focused on bacterial 

movement patterns through open spaces, bulk fluids, larger confinements, but to address specific 

knowledge gaps within this field our study focuses on studying the motility of five bacterial species 

of various sizes and different flagellar architectures (Vibrio natriegens, Magnetococcus marinus, 

Pseudomonas putida, Vibrio fischeri, and Escherichia coli) through micro confinements. Using 

micro confined environments of different complexity, we aim to find the ideal bacterial candidate 

for solving a small instance of non-polynomial time complete (NP-complete) problems. The first 

chapter discusses the hydrodynamics-based interactions of bacteria with the surrounding walls in 

open spaces, the steric interactions through tighter confined environments, and finally the 

overlapping of both interactions through mesoscale regions. Classifying the bacterial candidates 

(theoretically and experimentally) into different categories based on their movement patterns, such 

as movement parallel to the wall, stable movement along the wall, and wall escapers. The 

following chapter evaluates the bacterial efficiency for space searching and partitioning through 

or by using maze networks of different complexity. We presented how bacterial motility during 

space searching is strongly influenced by the surroundings and the presence of obstacles found in 

the micro confinements. The efficiency for finding all possible valid paths through the network, as 

well as finding the shortest paths were evaluated. Our observations suggested that Vibrio 

natriegens and Escherichia coli explored the possible paths more efficiently despite having lower 

velocity compared to other bacterial species with minimum energy expenditure, making them ideal 

candidates for network-based biocomputational approach. In the last chapter, bacteria-based 

network- biocomputation has been proposed for a highly compact SSP (Subset Sum Problems) 

network – Pascal’s unit series network. This study also demonstrated the scalability and possible 

solutions for use of microscopy for biocomputation applications. 



 
 

These ensembles of bacterial motility observations in microfluidic networks of different special 

complexity can be used as a methodological template for designing microdevices for biosensing, 

drug delivery, bacterial cell sorting (according to their movement pattern classification), and more 

importantly, the selection of bacterial candidates for network-based biocomputation approaches.           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Résumé 

Dans la nature, ainsi que dans le contexte des applications médicales, les bactéries vivent souvent 

dans des environnements très complexes tels que le sol, les déchets, les tissus végétaux et animaux. 

Par conséquent, les bactéries ont développé de nombreux modèles de mouvement pour leur 

croissance et leur survie dans un large éventail d'habitats. La compréhension des mouvements 

bactériens à travers des micro-confinements créés par l'homme peut être importante pour les 

applications médicales et industrielles, pour le biocalcul basé sur les bactéries, ainsi que pour les 

biocapteurs et les contrôles industriels de la fermentation. La majorité des études se sont 

concentrées sur les modèles de mouvement des bactéries à travers les espaces ouverts, les fluides 

en vrac, les confinements plus importants, mais pour combler les lacunes de connaissances 

spécifiques dans ce domaine, notre étude se concentre sur l'étude de la motilité de cinq espèces 

bactériennes de différentes tailles et différentes architectures flagellaires (Vibrio natriegens , 

Magnetococcus marinus, Pseudomonas putida, Vibrio fischeri et Escherichia coli) par micro 

confinement. En utilisant des environnements micro-confinés de complexité différente, nous 

visons à trouver le candidat bactérien idéal pour résoudre une petite instance de problèmes non 

polynomiaux complets (NP-complet). Le premier chapitre traite des interactions basées sur 

l'hydrodynamique des bactéries avec les murs environnants dans les espaces ouverts, les 

interactions stériques à travers des environnements confinés plus serrés, et enfin le chevauchement 

des deux interactions à travers des régions à mésoéchelle. Classer les candidats bactériens 

(théoriquement et expérimentalement) en différentes catégories en fonction de leurs schémas de 

mouvement, tels que le mouvement parallèle à la paroi, le mouvement stable le long de la paroi et 

les échappements muraux. Le chapitre suivant évalue l'efficacité bactérienne pour la recherche et 

le partitionnement de l'espace à travers ou en utilisant des réseaux de labyrinthe de complexité 

différente. Nous avons présenté comment la motilité bactérienne lors de la recherche spatiale est 

fortement influencée par l'environnement et la présence d'obstacles trouvés dans les micro-

confinements. L'efficacité pour trouver tous les chemins valides possibles à travers le réseau, ainsi 

que pour trouver les chemins les plus courts ont été évaluées. Nos observations suggèrent que 

Vibrio natriegens et Escherichia coli ont exploré les chemins possibles plus efficacement malgré 

une vitesse inférieure à celle d'autres espèces bactériennes avec une dépense énergétique minimale, 

ce qui en fait des candidats idéaux pour une approche bioinformatique basée sur le réseau. Dans 

le dernier chapitre, le biocalcul en réseau basé sur les bactéries a été proposé pour un réseau SSP 



 
 

(Subset Sum Problems) très compact – le réseau de séries unitaires de Pascal. Cette étude a 

également démontré l'évolutivité et les solutions possibles pour l'utilisation de la microscopie pour 

les applications de biocalcul. 

Ces ensembles d'observations de la motilité bactérienne dans des réseaux microfluidiques de 

complexité particulière différente peuvent être utilisés comme modèle méthodologique pour la 

conception de microdispositifs pour la biodétection, l'administration de médicaments, le tri des 

cellules bactériennes (selon leur classification des modèles de mouvement) et, plus important 

encore, la sélection de candidats bactériens. pour les approches de biocalcul en réseau. 
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Chapter 1 

1. Introduction 

1.1 Microbial motility in natural environments 

1.1.1 Bacterial survival strategies and insights into bacterial motility 

Microorganisms are challenged through various stresses for their survival due to constantly 

changing environments in their natural habitats [1]. These environmental changes include nutrient 

limitation, temperature, radiation, pH and osmolarity changes, as well as the presence of excessive 

amounts of superoxides and metals. To cope with these stressful conditions, microorganisms 

employ numerous survival strategies, such as the formation of cysts and spores, modification in 

their cell membrane, changes in gene expression, etc. [1]. Alternative survival strategies that 

biological cells exhibit is directional motility in response to various environmental stimulus, also 

known as taxis, e.g., formation of biofilms by phytoplankton [2, 3], migration of bacteria towards 

plants rhizosphere for obtaining organic nutrients in soil [4], and motility of spermatozoa for 

fertilization [5], etc.   

Bacteria, a large group of micrometres sized organisms, constitute a significant proportion of 

biomass of Earth. They are able to swim in water and crawl on surfaces and come in different 

shape and sizes [6]. Six different categories of bacterial motility patterns have been identified: 

swimming, swarming, gliding, twitching, sliding, and darting [7]. Swimming is the most apparent 

behavior of bacteria, and it is dependent on flagella along with swarming [8, 9]. Gliding and 

twitching are correlated with type IV pili [10, 11]. 

Flagella, one or several cellular appendages, are the key structures responsible for bacterial 

swimming. Bacteria rotate one or several passive, helically shaped filaments, which are connected 

to a rotary motor in the cell wall, to propel themselves forward using the asymmetric drag force 

exerted by the surrounding fluid on the individual segments of the helix [12]. Flagella are 

categorized based on their position on a cell: monotrichous (single polar (at one or both the poles) 

flagellum), amphitrichous (single flagellum on both sides), lophotrichous (tufts of flagella at one 

or both sides), and peritrichous (arranged randomly on the cell body) flagella. The finding that 

intestinal Escherichia coli has left-handed helical flagella [13, 14] laid the foundation for the better 

insight of the interaction between bacterial motility and Brownian motion.



2 
 

The most known bacterial motility mechanism is the ‘run-and-tumble’ mechanism (Figure 1) [15]. 

Counterclockwise rotation of all flagella motors wraps the filaments in the helical bundle to initiate 

swimming, also known as “run”, which is mostly observed in peritrichous species such as E. coli. 

The alternative mechanism is a clockwise rotation that untangles the bundle making it “tumble”, 

reorienting the bacterial cells and producing a new swimming direction [16, 17]. Additionally, the 

sudden change in the rotation of filaments can have a polymorphic transition due to a viscous drag 

that changes the pitch, radius, and helix from left to right [18].  

 

 

In monotrichous bacterial species, the swimming behavior is completely different from those of 

peritrichous bacteria. Approximately 90% of motile marine bacterial species are found to be 

monotrichous and lack a tumbling pattern like E. coli [19]. Instead of the tumbling pattern, 

monotrichous marine bacteria, namely, Vibrio alginolyticus, Shewanella putrefaciens, and 

Pseudoalteromonas haloplanktis reorient their swimming direction by rotating their single motor 

 

Figure 1. Various modes of bacterial motility. Swarming is the movement across a surface and 

powered by rotating the helical flagella; Swimming is the movement in the liquid and powdered 

by rotating the flagella; Twitching is the surface movement that powered by the extension of pilli, 

which then attach to the surface and retract by pulling the cell closer to the attachment; Gliding is 

surface that does not require flagella or pilli and has focal adhesion complexes; Sliding is powered 

by growth; Darting is passive motility facilitated by growth and movement occur by cell 

aggregates. The direction of cell movement is indicated by black arrows. 
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[20]. The swimming patterns of the above-mentioned bacterial cells are different from those of E. 

coli as they alternate between forward swimming (when the flagellum pushes the cell head) and 

backward swimming (when the flagellum pulls the cell head). However, E. coli always swims 

forward with its flagella pushing the cell. Swimming for monotrichous bacterial cells occur back 

and forth in the same direction and they do not change their swimming direction. The ability to 

change the direction in the absence of multiple flagella for monotrichous bacteria was difficult to 

explain until the discovery of another motility adaptation, known as ‘flick’. This motility 

adaptation is prevalent in marine bacteria [21, 22]. The flick is completely mechanically driven 

[22], and it results in the deformation of the flagellum, which reorients the swimming direction. 

This discovery also demonstrated that microbial cells are dependent on the forward-backward 

swimming intervals during chemotaxis [22]. The ‘run reverse flick’ motility enables microbial 

cells to reorient themselves using only one flagellum and can also complement their chemotactic 

performance [20, 23, 24]. 

Classical studies have qualitatively emphasized on bacterial motility and have conferred them as 

the first chemical gradients microsensors [25]. In a non-uniform environment, the presence of an 

external stimuli, e.g., gradients in the concentration of oxygen, pH, nutrients, or the intensity of 

light, influence bacterial motility and make it biased towards one direction [17]. A majority of 

studies have focused to study the modeling of free-swimming cells motility in bulk fluid, which 

presents both random and biased movement. Extensive experiments have investigated power 

generation with the flagellar motor unit during swimming [26], the effect of cell geometry and 

flagellation on the motility patterns [21], the shape transitions of flagella during the run and tumble 

motility [27], and the effect of viscosity on different motility patterns [28].   

 

1.1.2 Bacterial flagellum 

The flagellum is a gigantic protein complex necessary for bacterial motility [29]. It consists of 

three major parts: the filament, hook, and basal body. (Figure 2) 

The filament is the largest part of the flagellum, with a thickness of 20–40 nm. Each individual 

bacterial filament is a helical tube connected to a single motor unit. The filament consists of 

thousands of subunits of one or multiple kinds of a protein called flagellin FliC [30].  
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The hook is flexible and is connected to the filament. It is also coupled to a rigid rod, which is 

attached to four rings. The rings are made of different proteins, namely, FlgB, FlgC, FlgF, and 

FlgG. The outer pair of the rings are called L (lipopolysaccharide) and P (peptidoglycan) ring and  

(cytoplasmic) ring [22].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The basal body has an active rotary unit called a flagellar motor that is rigidly attached to the cell 

wall. The flagellar motor unit found in the basal body, is composed of stator components called 

MotA and MotB. A proton gradient across the membrane drives a flux of H+ ions through the 

stator complex binding to the MotB protein. The binding creates a conformational change in the 

MotA protein and results in a power stroke on the MS ring causing the rotor to rotate incrementally. 

The H+ ions are released from the MotB protein at the end of the power stroke, which generates 

another conformational change [30]. 

 

 

 

Figure 2. Structure of flagellum of gram-negative bacteria 
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1.2 Methods for understanding the microbial motility  

1.2.1 Traditional methods; prior to the advent of microfluidics 

In the past, research on bacterial motility was performed using microbiological assays like the 

swim plate, agar-plug, and chemical-in-plug assays [31, 32].    

1.2.1.1 Microbiological assays 

Swim plate assay. A gradient of nutrients and bacterial media is created on an agar plate, 

inoculating the bacterial colony at the center of the low concentration gradient. Bacteria use the 

chemotaxis mechanism as they consume the nutrients locally, and swim towards the areas of higher 

nutrient concentration [32]. However, the results obtained from these traditional assays get 

affected by various factors simultaneously such as the swimming speed of bacteria, their chemo 

sensing capacities, and their growth rate.  

Chemical-in-plug and agar plug assays. This simple and quick assay was employed to monitor 

bacterial motility behavior by studying the effect of repellent stimuli [33]. In this method, an agar 

plug containing a chemo effector is placed at the center of a turbid suspension of bacterial cells on 

soft agar. If the chemical within the plug is a repellent, then a clear zone around the hard agar plugs 

appears due to bacteria swimming away from it. The distance of the cleared zone was solely 

dependent on the concentration of the repellent. However, this assay was prone to false-positive 

results when lacking suitable controls [34]. 

Microcapillary assays. The capillary-based motility assay was a well-known method for 

investigating bacterial motility. In this method bacteria were placed at one end of a capillary tube 

and an attractant at the other end, causing bacteria to migrate along the gradients [32]. 

1.2.2 Advanced motility research 

Fluorescence microscopy. More sophisticated techniques were introduced for studying motility, 

such as fluorescence microscopy, wherein different microcompartments with varying ionic 

concentrations were fabricated to describe the motility near surfaces through bulk fluid and 

constrained fluid [35]. This study also demonstrated the link between cell shape and surface 

dependent motility. Hydrodynamic entrapment was not observed in spherical-shaped cells, on the 

other hand rod-shaped cells swam parallel to the surface [35].  
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Magnetotaxis. Another remarkable research was conducted by Chemla et al. to study bacterial 

magnetotaxis using a superinduction quantum interface device [36]. In their experiment a 

microscope of magnetic fields with similar strengths to Earth, was designed. In this study, different 

performance parameters were measured such as flagellar rotation rate, cell rotation rate, rotational 

drag coefficient, and cell size. This study also claimed that motility of non-magnetic cells can also 

be investigated by attaching magnetic particles to them. 

Flagellar control. Flagellar shape and bundle stress gets influenced by environmental changes 

[37]. Scharf et al. studied the flagellar confirmational changes of Rhizobium lupuni, which has 

flagellar filaments with three flagellin subunits locked in a right-handed helical conformation [38]. 

These filaments were affected by higher viscosities and pH levels causing the flagella to tumble. 

Theoretical modeling also suggested that turbulence disrupts the swimming speed leading to 

occasional stops [39]. 

1.3 Microfluidics for studying bacterial motility 

Ongoing technological developments provide the opportunity to use microfluidic platforms for 

studying bacterial motility. Considering bacterial behavior gets easily altered by environmental 

conditions such as, chemical gradients, magnetic fields, and physical constraints, it is difficult to 

simultaneously analyze all the factors involved in the above-mentioned assays. Because of this, 

microfluidics has become one of the most promising technologies for studying bacterial motility.  

Why microfluidics?  

Microfluidics is an appealing technology to study microbial motility for the following reasons. 

• The environment of study can be manipulated in miniature channels with nano to 

micrometer level accuracy [40].   

• The ability and flexibility to control fluid flow by mimicking the salient features of the 

microbial environment [41]. 

• Microfluidic devices can enable the use of stimuli gradients allowing more promising 

studies in bacterial taxis [42]. 

• Microfluidics allow single-cell analysis [43]. 

• Seamless fabrication of funnels, obstacles, and barriers can be used to study microbial 

interactions and understand their adaptation and evolution.  



7 
 

1.3.1 Microfluidics for controlling the microbial environment 

The use of microfluidics has expanded dramatically in the last decade mainly due to the 

introduction of a seamless fabrication technique, i.e., soft lithography [40]. Soft lithography 

includes various techniques like printing, molding, and embossing using elastomeric polymers as 

mask and a stamp or cast to pattern. The most frequently used polymer is polydimethylsiloxane 

(PDMS) given its transparency, flexibility, gas permeability, chemical inertness, and 

biocompatibility [40]. Microfluidics have transformed basic and applied research in different areas 

such as chemical engineering, soft matter physics, and disease diagnostics. The application of 

microfluidics in microbial studies, specifically studies with controlled physical and chemical 

environments, shows the great potential of this technology.  

Controlling the fluid flow. Microfluidics have received considerable attention for studying 

microbial motility and understanding their response to the surrounding environment 

simultaneously. To mimic the salient features of the microbial environment, microfluidic channels 

can be fabricated to control the fluid flow [41]. The flow inside the microchannel is deep laminar. 

A microfluidic channel is fabricated to generate non-uniform flow velocity for achieving a velocity 

gradient. The flow velocity at the top, bottom, and sidewalls is essentially zero and maximum at 

the center [44]. This above-mentioned study reveals the surface attachment of cells in certain 

regions of the flow. 

Establishing chemical gradients. Microfluidic devices are designed to create chemical gradients 

(steady, unsteady, linear, and non-linear) of small molecules or gases that mimic the chemical 

ecology of microorganisms [45-47]. Microfluidic devices consisting of hydrogels or membranes 

facilitate the creation of a steady chemical gradient. These devices enable the study of microbial 

behavior or physiology in a chemically controlled environment [48]. Simultaneous quantification 

and migration of cells based on chemotaxis were studied by establishing a chemical gradient. 

Additionally, chemical gradients also allowed surface attachment of microbial cells [49].  

Modifying the surface chemistry. Microfluidic devices can be used for controlling surface 

chemistry. Traditional studies use bovine serum albumin (BSA) for preventing surface attachment 

during chemotaxis-based studies [50, 51]. On the other hand, microstamping techniques are used 

for biofilm studies [52]. 
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1.3.2 Microfluidic devices for studying bacterial motility 

Motility with information. Different biological cells can react to the same kind of stimulus in 

different ways. Biological cells present directional motility known as taxis, which can be classified 

as active or passive taxis. In active taxis, the bacterium adapts a new motility pattern by getting 

influenced by an attractant such as chemotaxis [53] and thermotaxis [54]. On the other hand, in 

passive taxis, bacterial motility is influenced by an imposed force such as magnetotaxis [55] and 

gyrotaxis [2].  

Chemotaxis and static/flow conditions. Microbial chemotaxis is one of the most extensively 

studied biological sensory systems. Microfluidic approaches are well suited for studying the 

microbial response to the chemical landscape that mimics the microbial environment. Microbial 

chemotaxis has essential roles in various processes, including nutrient consumption, pathogenesis, 

and surface colonization [56, 57]. Most microbial survival strategies are influenced by chemical 

gradients in the environment resulting in a biased movement towards the most favorable condition. 

Bacteria use transmembrane receptors (kinase complexes) for sensing the chemical stimuli. After 

sensing, these receptors initiate a series of molecular signals for regulating the intracellular levels 

of phosphorylated CheY. These molecules bind to the rotor of the biological flagellar motor to 

bias the rotational direction/switching event [53]. The chemotaxis machinery helps bacteria to 

either migrate towards the higher concentration of chemo attractants or away from 

chemorepellents. Chemotaxis has been explored for sorting or separating bacterial cells 

subpopulations as well as to study bacterial motility [58]. To separate subpopulations, 

microchannels are fabricated to establish a chemical gradient inside and across the channels either 

in static conditions or flow conditions which are described below.  

Static condition assays. Static condition assays are very similar to the traditional swim-plate assay, 

where a stable and linear chemical gradient is established across the membrane through the 

diffusion of chemo attractants. For example, in [59] two different cell types, P. aeruginosa and E. 

coli, were physically separated through a porous membrane using two-layered microfluidic 

devices and a weak chemoattractant (lysine) to initiate the chemotaxis process. An in situ 

chemotaxis assay (ISCA) was performed in a marine ecosystem using a 3D printed microfluidic 

device containing various cylindrical chambers containing specific chemo attractants to attract 

specific microbes [60]. The device was presented to the marine microbes to initiate the chemotaxis 

process which was quantified using flow cytometry. A microstructure designed with T junctions 
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in a three inlet and twenty two outlet device was used to sort bacterial cells based on chemotactic 

sensitivity [61]. A chemotactic gradient was created across the hydrogel-filled microstructure 

causing bacterial cells to migrate through the channels by sensing the chemical stimuli. The 

technique was observed to be very sensitive, as it linked the concentration of chemo effectors with 

chemo attractants/repellents. Another study presented a microfluidic device with a steady gradient 

to introduce chemotaxis with E. coli [62]. The response of E. coli was not found to be significantly 

altered over a wide range of concentration gradients. And were able to continue their chemotactic 

performance by modifying their motility behavior not in response to the concentration but to the 

normalized gradient, also known as logarithm sensing. This mechanism helps bacterial cells 

maintain high sensitivity towards a wide range of environmental conditions, similar to the human 

vision and hearing [63, 64]. Microfluidic devices having multiple chemical gradients offered the 

possibility of getting a better understanding of microbial motility as they can have the common 

features of the natural environment. For instance, a microfluidic device having chemical gradients 

of two different amino acids such as aspartame and serine were presented to E. coli cells [48]. E. 

coli has five types of chemoreceptors, of which Tar and Tsr are the most abundant [65]. Tar and 

Tsr have the highest affinity towards aspartame and serine respectively. The result provides 

insights about the decision-making mechanism of chemotactic bacteria, when subjected to multiple 

stimuli.   

Rheotaxis; response to fluid currents. Swimming patterns of microorganisms can be influenced by 

the current of the fluid. This behavioral orientation is called rheotaxis and was observed with fish 

[66] and sperm [67], where they sense the water current and swim against the flow direction. 

Various studies used a microfluidic approach to study bacterial rheotaxis. Microchannels were  

fabricated and presented to bacteria for studying their response to flowing fluid [68]. In this study, 

changes in swimming pattern of E. coli under different conditions of flow were observed. The 

bacteria presented circular and random trajectories under no flow conditions, positive rheotaxis 

under moderate flow, and sideways trajectories at high shear rates. The study deduce that the 

bacteria exhibit positive rheotaxis when the surface is smooth and maintain a laminar flow within 

the first few microns over it. Any sidewalls, imperfections and scratches within the bounding 

surface led to upstream motility. 

Another study observed hydrodynamic interactions between the bacterial flagella and the flowing 

fluid when swimming [69]. Based on this approach, a series of microchannels were fabricated and 
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bacterial motility was studied and classified based on the microchannel height of the microchannel 

and flow rate [70]. 

Aerotaxis; response to oxygen concentration. Oxygen concentration, or aerotaxis, influences the 

motility patterns of aerobic bacteria such as E. coli and B. subtilis. Various studies employed 

microfluidics to study motility pattern modifications due to aerotaxis [47, 71]. Microfluidic 

devices were fabricated with a stable oxygen gradient throughout the microchannel and presented 

to the bacteria. Bacterial motility was oriented towards the higher oxygen concentration. Another 

approach used a hydrogel-based microfluidic device to study the motility of Shewanella oneidensis 

through the interplay of chemotaxis and aerotaxis [72].  

Thermotaxis; response to temperature. Temperature gradients were created inside microchannels, 

allowing bacteria to navigate towards the most favorable temperature. This type of directional 

navigation approach is known as thermotaxis. Salman et al. used thermotaxis to study bacterial 

motility with a microfluidic device, demonstrating an interplay between thermotaxis, chemotaxis, 

and metabolism of E. coli, where they noticed that, when the established nutrient gradient was 

opposed to the temperature gradient, bacteria migrates towards lower temperatures [73]. Another 

approach used the interplay between thermotaxis and chemotaxis to understand bacterial motility, 

where the bacterial motility was influenced by the optimal temperature [74]. 

pH taxis. pH taxis demonstrate the directional motility towards favorable pH conditions. A 

hydrogel-based microfluidic device was fabricated to study bacterial motility under the influence 

of pH taxis [75]. Gradients of different pH values were created using hydrogel, and bacterial 

motility was analyzed under higher and lower pH conditions [75]. Another study investigated 

bacterial motility using microfluidic-based pH taxis approach coupled with hydrodynamics [76]. 

The diffusion across laminar flow enables to test the flow conditions and the study of how 

hydrodynamics under flow correlate with the pH taxis. 

Magnetotaxis and other taxes. Bacterial motility influenced by a magnetic field is known as 

magnetotaxis. Bacteria that respond to magnetic fields are known as magnetotactic bacteria, which 

found applications in drug delivery applications [77]. Microfluidic approaches have been used 

along with magnetic fields to investigate bacterial motility and to sorting cells [78]. Bacterial cells 

also exhibit directional motility towards light (phototaxis) [79] and osmolarity (osmotaxis) [80]. 

Apart from cues such as chemicals, temperature, pH etc., bacterial motility is often affected by 

physical environmental cues. 
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Motility near and on surfaces; Effect on speed, curvature, and cell orientation. The interaction of 

microbes with surfaces and boundaries is a prime question in microbial ecology. The motility of 

microorganisms is considerably influenced by surfaces since they act as physical barriers. 

Hydrodynamic forces can trap swimming bacterial cells adjacent to the surfaces and alter their 

swimming patterns [81]. Furthermore, surfaces in microbial habitats can enable biofilm formation. 

The attachment of cells to surfaces, by encasing themselves to form biofilms, increases their 

resistance to antibiotics and mechanical stress [82, 83]. As a result of an exquisite control over 

geometry, microfluidic devices were used to study bacterial motility by directing their 

directionality or collecting microbes near surfaces. Microbes near boundaries can attach to surfaces 

because of various complex processes, such as electrostatic, van der Walls, and hydrophobic 

interactions by appendages, e.g., pili, fimbriae, and flagella. Various features that affect the rate of 

attachment or biofilm formation have been analyzed. For instance, E. coli gets trapped to the 

surface independently of the distance from the surface while swimming [81]. The flagella of E. 

coli push the cell head forward, causing the fluid to move away from the cell along the swimming 

direction. This fluid flow generates a force that attracts them to the surfaces. On the other hand, 

mono-flagellated bacteria, which can adapt the flick motility pattern, are pulled into the fluid [84]. 

Another striking feature was that trajectories were circular near the boundaries. This phenomenon 

is the result of a reactive force coming from the surface and acting on the cell head and flagellar 

bundle, making it rotate in opposite directions [85]. The reactive force generates stress on the 

bacteria making them curve and causing the swimming pattern to appear circular. While E. coli 

cells were allowed to navigate through microchannels slightly taller than their width, they 

preferred to swim along the right-side wall [86].  

Trapping near the surfaces can also be highly dependent on the behavior of pili. Vibrio cholerae 

uses their pili along with their flagella to sense the physical surface before it gets attached to them 

[87]. Depending on the frictional forces between the surface and the pili, the pattern of trajectories 

changes. Low frictional forces lead to meandering trajectories, while high frictional forces 

generate high curvature trajectories. The different appendages on microorganisms also contribute 

to their ability of having distinct surface motility patterns. Pseudomonas aeruginosa can attach 

and detach the pili to have two different patterns of motility, such as moving in a vertical or 

horizontal orientation, respectively [88].  
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Motility in moving fluids. Microbial habitats are characterized by the fluid flow from lakes and 

oceans to soils, and the human body. Microfluidics have been used as an ideal approach for 

studying motility patterns of microorganisms in fluids and to understand their interactions. Marcos 

"et al." used microfluidic channels to study the correlation between shear rate and velocity of non-

motile, helically shaped bacteria (Leptospira biflexa) [89]. By precisely imaging the bacteria at 

various depth of the channel and with theoretical prediction, the result deduce that the drift velocity 

is directly proportional to shear rate. A different effect of flow was observed with motile bacteria 

(Bacillus subtilis) [90]. Here, the swimming direction of bacteria is biased by the coupling between 

shear and the chirality of the bacterial flagellum.  

In another study with motile flagella driven microorganisms, the rotation rate is faster when cells 

are traversing parallel to the flow and slower when they are aligned with the fluid flow [44]. 

Additional observations revealed the consequences of different swimming patterns with different 

fluid flows on chemotaxis and surface trapping [44]. Other studies with E. coli swimming near 

surfaces suggested upstream migration in the presence of flow [91]. Thus, fast fluid flows can be 

assumed to have important implications for colonization processes where upstream migration may 

cause bacterial transport into unexpected regions of the flow system.  

Motility in groups. The collective motion of microorganisms received attention in the last decades. 

Studies have proved that physical interactions between densely packed cells are responsible for 

collective behavior [92, 93]. However, it remains uncertain whether these interactions are based 

on a simple physical contact, or they are the results of a more complex hydrodynamic interaction. 

Understanding collective motility can contribute towards some fundamental insights on bacterial 

dispersion and collective bacterial resistance to antibiotics [94].     

Motility through tightly confined geometries and obstacles. Several theoretical [85, 95] and 

experimental [96, 97] studies investigated the effect of constricted geometries on the motility 

patterns of microorganisms. Studies with E. coli have been performed with narrow to wider 

microfluidic channels to understand how motility patterns are related to tight confinements [97]. 

The dimension of microchannels can be tuned for either channel height or channel width such that 

E. coli cells are able to grow and move through very narrow channels [98]. However, for very 

small width channels (smaller than the cell’s diameter), cells were not able to move, but their 

growth remained unaffected. When motility was studied with narrow confinements, the motility 

patterns were observed to be less random and distinct [97]. Peritrichous bacteria, like E. coli, 
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presented a run-and-tumble mechanism in bulk media, while the motility pattern was circular 

through a constrained two-dimensional network [99, 100]. Additionally, they were able to swim 

in narrow channels with a smaller turn angle. Serratia marcescens presented straight motility 

patterns along the wall through narrow strip channels [99].  

Bacterial motility can be altered with the transition of microchannels from linear to other shapes. 

Various studied have shown that bacterial cells switched their motility pattern from a straight line 

to a zig-zag pattern with changing structures [99, 101]. Various shapes of microstructures have 

been used for sorting bacteria based on their motility, for instance a ratchet-shaped microstructure 

was used as a rectifier to collect bacteria [102]. Alternative strategies, such as presenting obstacles 

to bacteria during motility, was investigated. A microchannel with several wall aligned pillars was 

designed and fabricated to study bacterial motility, which was found to be hindered due to 

obstacles that makes bacteria change their path repetitively after collision [102, 103]. Different 

obstacles, such as symmetric funnels, were used to direct bacterial motility and to establish well-

defined motility patterns through interactions with the channel’s boundaries [103, 104]. 

This extensive information on motility makes bacteria an attractive model candidate for studying 

and evaluating their decision-making behavior and path finding/space searching abilities in a maze 

or labyrinth. 

1.4 Evaluation of decision-making behavior and path-finding abilities 

Mazes – sometimes also called labyrinths are a type of graphical puzzles that consist of a series of 

nodes, junctions, and connectors arranged to form a network of interconnected paths. They are 

used as prototype models in graph theory, robotics [105, 106], experimental psychology [107], and 

urban transportation [108]. The simplest maze problem involves determining the shortest distance 

from the entrance to the exit and can be solved using digital computation in polynomial time [109]. 

Solving a maze problem with increasing complexity that incorporates non-linear behavior can be 

very challenging to solve, if at all, by a computational algorithm. With the advent of computers, 

several automated maze solving algorithms were developed. The “wall follower” algorithm [110] 

is the simplest and the best-known algorithm to find a solution to mazes, but it is not the most 

efficient for achieving multiple solutions in parallel. Other mathematical algorithms for maze-

solving and path planning are Dijkstra’s algorithm, which is used to find the shortest routes by 

connecting the nodes. A* (A star) search algorithm [111] uses graph traversal and pathfinding 
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processes for computer games. Rapidly exploring random tree algorithm uses the sampling based 

algorithm approach to find optimal solutions through the complex environments with many 

iterations [112]. The maze problems with increasing complexity are non-trivial exercises such as 

simultaneous maze problems are NP-Complete problems [113, 114]. These algorithms operate in 

a sequential fashion and are extremely slow when the complexity of the maze increases. Moreover, 

various chemical and biological systems have been explored by researchers to solve maze 

problems as a non-conventional approach.  

1.4.1 Nonconventional approaches for solving mazes 

Abiotic approaches. 

Chemical based maze solving techniques. Using chemical waves to solve mazes was one of the 

earliest chemical based techniques [115]. A 2D maze was created with polymer membranes 

saturated with the Belousov-Zhabotinsky (BZ) reaction precursor, a family of oscillating chemical 

reactions. In this method, chemical waves were initiated through the maze, and their dispersion 

was recorded and analyzed using an image processing system. The direction of wave propagation 

was derived from the recorded image based on the velocity field while the shortest path was 

calculated using this vector field. However, the main drawback of this method was the requirement 

of a computer-based algorithm for post analysis.  

Another chemical system designed for maze-solving used a droplet of organic solvent (2-

hexyldecanoic acid/ pure 2-hexyldecanoic acid) [105]. In this experiment, complex mazes were 

designed and fabricated photolithographically, and a pH gradient was created throughout the 

structure. The surfactants or droplets were dyed with Calco Oil Red to increase the optical constant 

and the movement through the pH gradient, to be recorded. The droplet was found to move towards 

the regions of lower pH by finding the shortest path to the exit.  

An alternative chemical-based pathfinding process was demonstrated using the Marangoni flow 

induced by a pH gradient [116]. The pH gradient through the network induced the Marangoni flow 

towards the region of lower pH. These experiments predicted the shortest path in a few seconds. 

In another study, the chemotactic motion of a decanol droplet towards a salt source was analyzed 

to explore the shortest path in a topologically complex environment [117]. 

Temperature induced method. After the study of pH-induced Marangoni flow for exploring the 

path finding process, temperature-induced Marangoni flow was investigated for finding the 
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shortest path in a maze [118]. Temperature gradients can be easily generated for solving maze 

problems. Marangoni flows are not limited to liquid–air interfaces. Microfluidic mazes have been 

presented with Marangoni flows to solve mazes effectively [119]. However, the major drawback 

in this case was that the temperature-induced Marangoni flow was relatively weak and could only 

be used for topologically simple mazes.  

Using liquid metals. A gallium droplet was used to navigate along the highest electrical current 

density through a maze structure to explore the path finding process. Gallium droplets navigated 

through the shortest path as the intensity of the electric current was strongest through the shortest 

path [120].  

Biotic approaches; exploring biological agents 

DNA. Pathfinding operations with DNA molecules were studied by Chao “et al.” [121]. A DNA 

nano device was designed, and each single-molecule navigator autonomously explores any of the 

possible paths through the maze. The DNA molecules explore the paths by connecting a given pair 

of start and end vertices in the maze. However, the study focused on the solutions of a simply 

connected maze without cyclic paths. 

Slime mold. The slime mold Physarum polycephalum is famous as a computing biological agent 

because of its ability to find the minimum length distance through a maze [122]. The amoeboid 

forms a dynamic tubular network by connecting the food sources from entry to exit during 

foraging. Various algorithms were designed based on the path finding patterns of slime mold, but 

many of the Physarum inspired algorithms remained inefficient due to the low growth rate.  

Fungi. Hanson “et al.”, investigated the growth of filamentous fungi, which used long-term 

directional memory and collision-induced branching for space searching in a micro-confined maze 

network [123]. Directional memory is a tendency to extend in an initial direction, yet in the 

presence of an obstacle, the hyphae will stop. Directional memory was also observed to vary with 

different fungal species. The efficiency of the fungal (Pycnoporus Cinnabarinus) space searching 

algorithm outperforms a number of classical space searching algorithms such as Breadth-First-

Search, A*, and Dijkstra algorithm studied by Asenova “et al.” [124]. Held “et al.” [125] studied 

the fungal growth through microfluidic mazes to understand the space searching strategies. This 

study suggests that the intracellular processes such as fungal hyphal extension and branching are 

involved in directional memory, which contributes towards the fungal space searching processes.       
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Mammalian cells. Moving cells such as neutrophils [122], leukocytes [123], and epithelial cancer 

cells [124] were investigated as biological candidates for navigating through mazes. Neutrophils 

and lymphocytes implemented their navigation process, guided by chemoattractant gradients. In 

contrast, epithelial cancer cells established the shortest distance from entry to exit in the absence 

of any external attractants, guided by self-generated gradients. 

Worms. Caenorhabditis elegans was used as model candidate for exploring complex networks 

with [126] or without [127] any external cues. C. elegans associates the cues from food and 

information on the surrounding structures to explore the maze networks [126].  

Bacteria. A classical microfluidic T-maze was designed and fabricated to study the chemotactic 

decision-making ability as well as the chemotactic sensitivity coefficient of bacterial populations.  

[128]. The study presented both experimental and theoretical observation, which reveals the 

heterogenicity in chemotactic sensitivity within bacterial populations. The study by Weber “et al.” 

explained that the dispersal of the bacteria through the maze gets greatly influenced by the 

underlying geometry of the structure. The narrower channels and obstacles guide the movement 

of bacteria. They also compared the experimental data with a theoretical model and numerical 

simulations [129]. Park “et al.” also studied the behavior of bacteria in the context of their spatial 

environment. E. coli cells traversed towards the dead ends of the maze under nutrient-deprived 

conditions. The study reveals that the topology of complex structures influences the movement of 

bacteria when there are no external cues [130].     

Advancement in maze solving; exploring all possible paths to the maze 

Although finding the shortest path in a maze network is the scientific goal, all possible valid and 

unique routes to the maze network need to be analyzed for important real-world applications. 

Computing the shortest route benefits emergency services such as; ambulances, fire engines [131], 

board game designers [132], and food and commodities transportation[133]. However, for the 

computer game industry, exploring unique paths is always a crucial task [134]. Even navigating in 

a new city to find simple multiple paths to the destination is always challenging. Nonetheless, few 

studies have investigated the navigation through mazes to explore and identify all valid paths, 

regardless of being the shortest ones. 

In the pressure-driven flow was demonstrated by Fuerstman "et al." [135] to compute all possible 

solutions in a parallel manner. The maze was fabricated in the form of a network of microchannels 

with multiple paths. The study was conducted by changing the channels’ shapes and dimensions, 
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and by using different tracing fluids to target multiple paths. In another study, networks of 

memristors performed calculations simultaneously to find all the possible solutions in a complex 

maze based on their length [136]. Lovas "et al." introduced temperature-induced Marangoni flow 

to find all possible paths in a maze network of different complexities [118]. The major issue with 

this method was that temperature-induced Marangoni flow is relatively weak and therefore, it can 

only be used for simple maze networks.  

1.5 Unconventional computing  

Unconventional computation deals with computing implemented in physical, chemical, and 

biological system. Light, fluid, microorganisms [137], or DNA [138], protein [139], and other 

molecules can be used as a computational medium for unconventional computation.  

Computation inspired by nature; Nature inspired computation is beneficial in many ways; when, 

• The problem is complex and nonlinear, such as combinatorial mathematical problems that 

involves many possible/potential variables/solutions. The time increases exponentially 

with the problem size and becomes intractable for sequential electronic computers.    

• Finding an optimal solution using a conventional approach is difficult, and impossible to 

obtain. 

• Modeling the problem cannot be possibly obtained by conventional approaches such as 

identifying complex pattern and classifying them. 

Population based computation. This is mainly inspired by a wide range of biological systems, such 

as group of organisms or cells that work together or compete to search or find a solution [140]. 

The population and the overall search process benefit us to design evolutionary algorithms. 

Competition between a population of antibodies to target an intruder leads to the development of 

immune algorithms [141]. Kennedy and Eberhart designed particle swam optimization algorithms 

by studying the pattern of birds cooperation for finding food [137]. One of the most notable 

population algorithms is known as the ant colony optimization (ACO) algorithm, which is based 

on a nest of ants cooperating to target the shortest path to and from a food source [142].  

DNA computation. DNA computation occurs in solutions [143] or on surfaces [144], which 

consists of a reaction between the four DNA bases. The initial implementation of DNA 

computation was by Adleman “et al.” to solve the Travel Salesman Problem (TSP) [143], which 
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requires to find the shortest complete route The cities and the paths between the cities were 

represented by the sequence of individual DNA strands. When strands hybridize, it represents a 

sequence of visited nodes by a path. DNA computing requires unreasonable amount of DNA for 

medium size problems [145]. The necessary number of oligonucleotides for a larger problem 

would be just slightly less than the number of the particle in the universe [138] Also, DNA 

computation is prone to errors and redundancy in ligation and PCR amplification at each 

computational step. 

Network based computation. Network-based computation draws on a rich suite of biological 

processes. A network comprises a collection of nodes joined by edges. The network is more often 

abstract: the nodes are typically physical objects, but the edges are abstractions of different kinds 

of interactions. Examples include genetic regulation networks (the regulatory interaction between 

genes via their expressed proteins) [146], metabolic networks (the interactions between metabolic 

molecules, mediated by enzymes) [147], signaling networks (interaction pathways as signal 

molecules that propagate from the outside to the interior of a cell, mediated by proteins) [148], 

food webs (who eats whom), and social networks [149].  

Network-based computation for solving combinatorial problems. Combinatorial mathematical 

problems require exploring many candidate solutions by brute-force, making the number of 

solutions to raise exponentially with the problem size. These problems are relevant to molecular 

biology [150, 151], information management [152], and cryptography [153]. Network-based 

computation processes include a) formulation of specific NP-complete problems into graphs, b) 

translation of graphs into physical networks, which contain microfluidic channels, nodes, entries, 

and exits, and c) massively parallel exploration of the network by many agents. 

The proof of concept for solving Subset Sum Problem (SSP) using network-based computation 

with self-propelled cytoskeletal filaments, i.e., actin filaments, or microtubules has been proposed 

recently [154]. The major drawback of this approach is related to scalability, and it is also prone 

to errors. In this case the requirement of ATP restoration for the filaments and computational errors 

due to unexpected addition or loss of filaments restrict its practicality. Alternative proof of 

principles was reported for network-based computing such as microscopic beads for Clique 

problem using 3D microfluidics network [150] and photons for SSP [151]. Nevertheless, there are 

several drawbacks associated with fabrication as well as for visualizing techniques. 
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Scaling and imaging. One of the significant problem for all these above mentioned 

biocomputational approaches are scalability [155]. The limiting factor in the scaling up is the 

Field-of-View (FoV) of the network that encodes for the combinatorial problems with larger size 

[155]. The FoV is needed to monitor the networks that are of high density, but low compactness. 

With the increasing problem set size, the network's overall computing area explodes exponentially, 

too large to be recorded in one FoV. There are also advancements for imaging such as; lens-less 

microscopy and mobile phone-based microscopy [156], but it appears that the scaling of networks 

for solving SSP is problematic, and the FoV for larger networks is not achievable easily.       

Accordingly, in the course of this dissertation, my first objective is to understand the motility 

behaviour of bacteria in confined microenvironments starting with quasi-open spaces like plazas, 

different widths linear channels, channels presenting lateral exits at various angles, and meandered 

confinements in comb-like structures. The second objective is the navigation of bacteria through 

mazes which are a class of NP-Complete problem, to study the space searching efficiencies to 

compute maximum possible paths in mazes of different complexity. With the studied knowledge 

on bacterial motility, the last objective is to perform Agent-based Network BioComputation with 

compact SSP series – (Pascal’s series). 
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Chapter 2 

2. Patterns of bacterial motility in microfluidics-confining 

environments 

For an advancement in understanding of the motility of individual bacterial cells in confining 

microenvironments, and to assess the extent by which the behavior of bacteria with complex 

architectures can be assimilated with that of the more predictable monotrichous bacteria, the 

present chapter presents the investigation of the movement of five species, i.e., Vibrio natriegens, 

Magnetococcus marinus, Pseudomonas putida, Vibrio fischeri, and Escherichia coli in 

microfluidic geometries with various levels of confinement and geometrical complexity. 
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Significance 

Understanding bacterial movement is crucial for health, agriculture, environment, and industry. 

Studying the motility of five bacterial species in microfluidic environments showed that bacterial 

motility behavior is the result of a “tug-of-war” between hydrodynamics and local nanomechanics. 

In less confining spaces, bacterial motility is governed by hydrodynamics and can be 

approximately predicted by modeling developed for the simplest species. Conversely, in tightly 

confining environments, movement is mainly controlled by the steric interactions between flagella 

and the surrounding walls. Intriguingly, in mesoscale-sized geometries, hydrodynamics and 

bacterium– wall interactions overlap, either “constructively,” leading to smooth movement in 

straight channels, or “destructively,” leading to trapping. Our study provides a methodological 
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template for the development of devices for single-cell genomics, diagnostics, or biocomputation. 

Abstract 

Understanding the motility behavior of bacteria in confining microenvironments, in which they 

search for available physical space and move in response to stimuli, is important for 

environmental, food industry, and biomedical applications. We studied the motility of five 

bacterial species with various sizes and flagellar architectures (Vibrio natriegens, Magnetococcus 

marinus, Pseudomonas putida, Vibrio fischeri, and Escherichia coli) in microfluidic environments 

presenting various levels of confinement and geometrical complexity, in the absence of external 

flow and concentration gradients. When the confinement is moderate, such as in quasi-open spaces 

with only one limiting wall, and in wide channels, the motility behavior of bacteria with complex 

flagellar architectures approximately follows the hydrodynamics-based predictions developed for 

simple monotrichous bacteria. Specifically, V. natriegens and V. fischeri moved parallel to the wall 

and P. putida and E. coli presented a stable movement parallel to the wall but with incidental wall 

escape events, while M. marinus exhibited frequent flipping between wall accumulator and wall 

escaper regimes. Conversely, in tighter confining environments, the motility is governed by the 

steric interactions between bacteria and the surrounding walls. In mesoscale regions, where the 

impacts of hydrodynamics and steric interactions overlap, these mechanisms can either push 

bacteria in the same directions in linear channels, leading to smooth bacterial movement, or they 

could be oppositional (e.g., in mesoscale-sized meandered channels), leading to chaotic movement 

and subsequent bacterial trapping. The study provides a methodological template for the design of 

microfluidic devices for single-cell genomic screening, bacterial entrapment for diagnostics, or 

biocomputation. 

Keywords: bacterial motility, microfluidic devices, space partitioning, wall escaper, wall 

accumulator 

2.1 Introduction 

Many motile bacteria live in confining microenvironments (e.g., animal or plant tissue, soil, waste, 

granulated, and porous materials) and consequently are important to many applications like health 

[infectious diseases [1, 2], pharmaceuticals [3], and nutrition [4]], agriculture [veterinary [5] and 
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crops [6]], environmental science [photosynthesis (7), biodegradation (8), and bioremediation (9)], 

and industrial activities [mining [10] and biofouling [11]]. Bacterial motility is essential in the 

search for available physical space as well as for enabling bacterial taxis in response to external 

stimuli, such as temperature [12], chemical gradients [13, 14], mechanical cues [15], or magnetic 

fields [16]. To thrive in environments with diverse geometrical and physical characteristics, from 

open spaces to constraining environments, motile bacteria have evolved a multitude of propelling 

mechanisms [17], with flagellum-driven being the most common [18,19]. Flagellum-based 

machinery features various numbers of flagella [20] and designs: monotrichous, lophotrichous, 

amphitrichous, or peritrichous. The mechanics of this machinery, coupled with cell morphology 

[21] (e.g., coccus, rod-like, or curved) translates into several motility modes (e.g., turn angle, run-

and-tumble, or run-and-flick) [22], and various motility behaviors (e.g., swimming, tumbling, and 

swarming) [17, 23]. Environmental factors [24,25] (e.g., chemical composition, viscosity, 

temperature, pH, and the chemistry and the roughness of adjacent surfaces) also influence bacterial 

motility.  

“Pure” bacterial motility, unbiased by chemotaxis or fluid flow, was reported near simple flat 

surfaces [26, 27] and in channels [28–30]. Simulations of model bacteria in analogous conditions 

were also undertaken [31–37] but owing to the complexity of bacterial mechanics [38], modeling 

from first principles did not provide sufficient understanding to accurately predict movement 

patterns of different species in complex, confined environments. Consequently, studies of the 

effects of bacterial geometry in confined geometries were limited to models of simple, 

monotrichous bacteria with an assumed rigid flagellum [32, 39]. 

Microfluidic devices [40, 41] are commonly used for the manipulation of individual or small 

populations of cells in micrometer-sized channels for medical diagnostics [42], drug screening 

[43], cell separation [44, 45], detection and sorting [46], and single-cell genomics [47]. While 

microfluidic structures are used for the study of the motility of mammalian cells (48, 49), and 

microorganisms [e.g., fungi [50, 51], algae (52), or bacteria (29, 53–56)], these studies typically 

focus on a single species.  

To make progress toward a more general understanding of the motility of individual bacterial cells 

in confining microenvironments, as well as to assess the extent to which the behavior of bacteria 

with complex architectures can be assimilated with that of the more predictable monotrichous 

bacteria, the present work investigated the movement of five species (i.e., Vibrio natriegens, 
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Magnetococcus marinus, Pseudomonas putida, Vibrio fischeri, and Escherichia coli) in 

microfluidic geometries with various levels of confinement and geometrical complexity. 

2. 2 Results and Discussion 

The modulation of motility behavior by confinement was assessed by observing, by three-

dimensional (3D) imaging, the movement of individual bacteria, presenting various characteristics 

(Fig. 3A and SI Appendix, Fig. S1) in microfluidic structures with high (6 μm) or low (4 μm) 

ceilings (Fig. 1B) and with various geometries (Fig. 3C and SI Appendix, Fig. S2) as follows: 1) 

large chambers with quasi-open spaces (“plazas”), 2) linear channels with various widths, 3) 

channels presenting lateral exits at various angles, and 4) meandered channels with various widths. 

In the absence of pressure and concentration gradients, this approach allowed the study of the 

interaction between hydrodynamics and the steric interactions of bacteria with the walls, 

unobscured by other external factors (e.g., rheo- and chemotaxis). Experimental, image analysis, 

and simulation protocols are fully described in SI Appendix.
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2.2.1 Motility in large chambers 

Impact of the distance between horizontal planes. To minimize the possible coupling of the impact 

of horizontal planes, the designs of microfluidic chambers, made of polydimethylsiloxane (PDMS), 

had to find a compromise between their height and fabrication and operation issues. From the design 

perspective, it was found that a height of 6 μm (Fig. 3A and SI Appendix, Table S1) allows, 

conservatively, the unencumbered bacterial motility. Furthermore, preliminary experiments 

comparing motility in both types of microfluidic structures presented evidence (Movie S1) of the 

coupling of the impact on both horizontal planes on bacterial motility for those with 4 μm heights. 

Consequently, 6 μm–tall microfluidic structures were used for all further experiments. A detailed 

discussion is presented in SI Appendix. 

Spatial distribution of bacteria. The bacterial species studied presented different motility behaviors 

with respect to proximity of vertical walls and corners (Fig. 4 A–C). First, V. fischeri, V. natriegens, 

and E. coli moved at small distances from vertical walls. Second, M. marinus presented an uneven, 

broken density near vertical walls, due to the frequent “ping-pong”–like collisions and reflections 

(Movie S1). Third, P. putida presented an even spatial distribution throughout the chamber. 

The 3D imaging and z-stack sectioning of bacterial trajectories in 6 μm–tall plazas (Fig. 4D and SI 

Appendix, Figs. S6–S8) revealed a similar behavior in the central area close to the horizonal walls 

(i.e., free of the possible edge effects from the vertical walls). V. natriegens, V. fischeri, and E. coli 

presented trajectories in proximity to and parallel with the horizontal walls. This was not the case 

for P. putida and M. marinus, which frequently fluctuated between z-planes (SI Appendix, Figs. S7 

and S8). Statistical analysis of the bacterial positions (SI Appendix, Fig. S9) showed that V. 

natriegens, V. fischeri, and E. coli moved preferentially in a parallel plane to the horizontal walls 

and that P. putida and M. marinus presented a rather uniform distribution of positions on the vertical 

axis. 
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Figure 3. Microfluidics chip for testing microbial motility. (A) Scanning electron micrographs 

(SEM) images of bacteria studied with various architectures and dimensions (full details in SI 

Appendix, Table S1). (B) Graphical projection of the fit of the total bacterial length (body plus 

flagella) positioned at 45° versus the height of the microfluidic structures for 6 μm and 4 μm heights. 

(C) Sequential, from left to right, zoom-in images of the experimental device: 1) the bacterial 

suspension is introduced from the side of the chip attached to the cover slide; 2) the overall 

architecture of the chip; 3) zoom-in of one lane of experimental structures (sequence of angled 

channels separated by plazas); 4) detailed image of the experimental structures used in this study 

(i.e., plazas) and linear channels (top row), angled, and meandered channels (bottom row); and 5) 

SEM image of a bacterium (here, E. coli) in a channel. 

Theoretical classification of bacterial motility behavior. For bacteria that are propelled by a 

flagellum or flagellar bundle behind the cell, the fluid flow generated by swimming has a dipolar 

structure: the fluid is pushed backward by the flagellum and pulled forward by the cell body. This 

flow has been shown to attract swimmers to solid walls, causing them to remain close to the wall for 

long time periods despite rotational Brownian motion [57]. A separate effect of swimming near 

surfaces is that hydrodynamic interactions between the wall and rotating flagellum and between the 

wall and counter-rotating cell body, respectively, lead to bacteria swimming in circular orbits when 

they are close to a wall [58]. 
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Detailed hydrodynamic modeling of monotrichous bacteria showed that the geometrical parameters 

of the cell (length and width) and of the helical flagellum (length, helical amplitude, and wavelength) 

determine the motility behavior near a single flat surface [32]. Based on this modeling framework, 

correlated with the experimental observations from the present study, three classes of behavior were 

observed, depending on the geometry of the bacterium. “Wall accumulators” descend to the walls 

and exhibit a strong propensity for swimming in the closest vicinity to the wall (with a separation of 

tens of nanometres between the bacterium and the surface), where steric interactions are likely, thus 

making difficult the precise prediction of motility behavior even for the simplest monotrichous 

bacteria. When bacteria swim at distances further than this from the wall but at a nearly constant 

separation, exhibiting the characteristic circular orbits predicted by simpler analysis, they are 

classified as “stable swimmers parallel to the wall.” It was observed [26] those dynamical 

interactions are negligible before collisions with the walls, but once bacteria swim on parallel planes 

a few micrometers away from surfaces, hydrodynamic forces maintain long residence times in this 

region. Finally, when hydrodynamic interactions result in bacterial movement away from surfaces, 

they are classified as “wall escapers.” The demarcation between these classes is approximate, due to 

the inherent stochasticity of bacterial motility. 

Two key geometrical parameters determining whether a particular bacterium is an accumulator, 

escaper, or moving parallel to the wall are 1) the cell body aspect ratio and 2) the length of the 

flagellum. Higher aspect ratios (more rod-like) and shorter flagella encourage escape from walls 

(Fig. 5). For geometries at the boundary between parallel motion and escapers, it is possible for a 

bacterium to exhibit either stable motion close to the wall or escape depending on the angle of 

approach to the wall. It is useful to first determine the behavior of bacteria near a single wall because 

this is indicative of motility in more complex environments. For example, simulations showed that 

parallel–stable swimmers and escapers had different characteristics when placed between parallel 

walls [35] and in corners of rectangular channels [39]. However, the variability of characteristic 

bacterial dimensions adds to the inherent stochasticity of movement. This in turn makes the 

demarcation between motility classes approximate. Details of the modeling used in Fig. 5 are given 

in SI Appendix, and the characteristic dimensions of bacteria are presented in SI Appendix, Table 

S2. 
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Figure 4. Motility in plazas with 6 μm high ceilings. (A) Density maps of bacterial locations. Color 

code (bottom): “min” and “max” represent no and the highest presence of bacteria, respectively. (B) 

Spatial distribution of bacteria obtained by superimposing and averaging the data from all four 

quarters of the density maps in A. Color code (bottom): frequency of bacterial presence, with red for 

the highest and dark green for the minimum probability. (C) Characteristic long 2D projections of 

bacterial trajectories. (D) 3D bacterial trajectories. By rows, from top to bottom, are the following: 

V. natriegens (average count of bacterial positions in each frame, n = 14/frame); M. marinus (n = 

12/frame); P. putida (n = 15/frame); V. fischeri (n = 15/frame); and E. coli (n = 13/frame).  

While these theoretical studies were based on a model with a single, polar flagellum, it was 

demonstrated that such models accurately reproduce the experimentally observed radius of curvature 
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of near-wall tracks for E. coli, which swim with several flagella [31]. Therefore, it is expected that 

this classification serves as a useful conceptual background for the characterization of motility 

behavior in relation to a solid surface, even though most of the species in the current study are 

architecturally more complex than the monotrichous model (here, V. natriegens). Indeed, the 

propensity to move near surfaces was observed experimentally for several non monotrichous 

bacterial species, for instance (extensively) for E. coli [26, 27, 30, 31, 57, 59], but also for Serratia 

marcescens [29] and Pseudomonas aeruginosa [60]. 

Comparison of experimental and theoretically predicted behavior. By comparison with 

monotrichous model bacteria of equivalent dimensions, M. marinus is predicted to be a wall 

accumulator, but it is near the boundary between accumulators and escapers (Fig. 5). All other 

species are expected to maintain stable motion parallel to and near the walls (Fig. 5), although 

variability within populations is sufficient for some individuals to be classified as escapers. There 

are elements that correlate well with the predicted motility behavior of simple bacteria with that of 

the more complex geometries studied as well as explanations for the deviations from this general 

“motility landscape” (Fig. 5): 

1) Our experiments showed that M. marinus did not exhibit stable motion parallel to the wall but 

rather a “ping-pong”–like movement, with abrupt approaches to the walls alternating with equally 

abrupt breakouts. Recently, a model of the movement of a polar biflagellate bacterium [61], based 

on M. marinus, showed that such wall escaping (scattering) behavior could occur for certain 

arrangements of the two flagella. Additionally, it was recently reported that M. marinus swims with 

one flagellar bundle in front of the cell body and one behind [62], a mode of motility that is 

fundamentally different from the monotrichous model. 

2) The density maps, probability maps, long trajectories, represented as two-dimensional (2D) 

projections and in 3D (Fig. 4 A– D, respectively) for P. putida and E. coli, showed characteristics 

of both escapers, more apparent for P. putida, and movement parallel to the wall, more apparent for 

E. coli. The persistent circular orbits indicate motion close to the horizontal walls, and for E. coli, 

the long trajectories along the vertical walls also highlight boundary accumulation. In contrast, the 

long, relatively straight trajectories through the middle of the chamber and frequent transitions 

between z-planes represent wall escaping behaviors. These seemingly contradictory observations 

are, in fact, consistent with the variability found in the measured cell shapes and flagella lengths. 

While the average values for both P. putida and E. coli lie within the movement parallel to the wall 

regime (Fig. 3), the spread of parameters extends considerably into the wall escaper region. 

3) Density and probability maps, as well as 2D projections and 3D bacterial trajectories (Fig. 4 A–

D, respectively), are consistent with the placement of V. natriegens and V. fischeri deep in the 
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movement parallel to the walls, according to the theoretical predictions in Fig. 5. Both species 

showed circular trajectories (more prominent in V. natriegens) and high densities around the 

perimeter of the chamber. Interestingly, V. natriegens was often observed swimming parallel to the 

vertical walls but at distances of around 3.5 μm from the wall (Fig. 4B) rather than keeping almost 

in contact with the wall. This type of parallel motion was found in simulations of boundary 

accumulators in corners of channels [39]. 

Motility patterns. The longest trajectories of bacterial motility in plazas had characteristics that were 

the most species specific (Fig. 4C and Movie S1, top row). V. natriegens, E. coli, and V. fischeri 

presented, to various degrees, two classes of trajectories: 1) movement along the vertical and 

horizontal walls and, when detached, 2) circular motions, until again attaching to the walls. M. 

marinus exhibited a “ping-pong”–like motility pattern, generally following relatively straight paths 

until it approached and scattered off a vertical wall, resulting in a statistically higher density localized 

near the walls (due to frequent collisions). There was little discernible movement along 

the vertical or horizontal walls of the plaza, and no complete circular orbits were observed. Two 

classes of behavior were present in the longest trajectories of P. putida. Some were relatively 

straight, spanning from one side of the chamber to the other, whereas other trajectories were circular 

and persisted for many overlapping cycles. Long trajectories around the perimeter of the chamber, 

as observed for V. natriegens, E. coli, and even V. fischeri, were uncommon for P. putida. 

Circular motion. The circular motion of bacteria near surfaces was previously reported for E. coli 

both at air–liquid [27] and solid–liquid interfaces [58, 63] and for P. putida at solid–liquid interfaces 

[33, 64]. Counterintuitively, despite their very different flagellar arrangements (Fig. 3A and SI 

Appendix, Fig. S1 and Table S1), circular patterns were also observed here for P. putida, to a lesser 

extent for E. coli, and for V. natriegens (Fig. 4 C and D). Theoretically, the hydrodynamic 

interactions between a flat surface and a bacterium swimming on a parallel plane to it are indeed 

able to explain this curved pattern of trajectories [58, 60]. 

In summary, in quasi-open spaces, such as plazas, when the movement is limited only by parallel 

vertical or horizontal walls placed at distances considerably larger than the size of bacteria, their 

motility can be approximately characterized as stable movement parallel to the wall, wall escapers, 

or rarely as wall accumulators, as derived from bacterial geometric parameters and hydrodynamics-

based modeling of the movement near surfaces of monotrichous bacteria. 
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Figure 5. Prediction of motility behavior. (A) Bacterial positions, according to their dimensions, on 

a motility “map” [32], derived from hydrodynamic principles, for monotrichous bacteria. V. 

natriegens, V. fischeri, and E. coli, “swim parallel to walls” (confirmed experimentally, Fig. 2B and 

SI Appendix, Fig. S9). M. marinus is placed at the boundary between “wall accumulators” and “wall 

escapers” regions (confirmed experimentally by its wall-bouncing behavior). P. putida, with the 

largest variability of sizes, straddles the extreme “swimming parallel to wall” and “wall escaper” 

regions (confirmed by spatial distribution in Fig. 2B and SI Appendix, Fig. S9). The legend (updated 

from ref. 32, SI Appendix, Table S2) is as follows: a1 = polar radius of cell body (half the cell 

length); a2 = equatorial radius of cell body (half of the diameter diameter); [a1/a2] = aspect ratio of 

the cell body; L = curvilinear length of the flagellum (approximated by the axial length of the 

flagellum); _a = radius of sphere with volume of cell body; L/_a = nondimensional length of the 

flagellum/a; h* = optimal distance from wall (for swimmers parallel to walls); and h*/_a = 

nondimensional stable distance from wall. The colors of bacterial coordinates approximately 

replicate the color equivalent to h*/_a (determined from z-stack analysis). (B) Example of a 

bacterium moving stable parallel to the walls: E. coli (also exhibiting “escape from wall” jumps). 

(C) Example of a “wall escaper” bacterium: M. marinus. 
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2.2.2 Motility in tightly confining geometries 

2.2.2.1 Motility in linear channels 

Following the experiments in plazas with high and low ceilings and to avoid (to the extent possible) 

the impact on motility from more than two vertical walls, further experiments used only microfluidic 

channels with a 6 μm distance between the horizontal planes. 

Overall motility characteristics; sinusoidal movement. When laterally confined in wider channels 

(e.g., 6 to 8 μm), V. natriegens and E. coli showed the strongest propensity for moving along walls 

(Fig. 6A and SI Appendix, Fig. S10 for 3D trajectories), correlating well with their motility behavior 

in plazas (Fig. 4A and B) and their movement parallel to the vertical (Fig. 4C and D) and horizontal 

walls (SI Appendix, Fig. S9). 

P. putida exhibited an apparent sinusoidal movement, especially in larger channels (Fig. 6A). A Fast 

Fourier Transform (FFT) analysis of the trajectories (SI Appendix, Figs. S11 and S12B) indicated 

that V. natriegens, V. fischeri, and, to a much lesser extent, E. coli also present sinusoidal movement 

characteristics, with wavelengths increasing roughly proportionally with an increase in channel 

widths (SI Appendix, Fig. S12B). It was demonstrated [39,65] that monotrichous wall escapers (with 

this behavior being predicted, partially, for P. putida in Fig. 5) move in distorted helical paths in 

channels of large rectangular transversal section. This upwards correlation between motility 

wavelengths and available volume for movement is like the larger radii of the circular movement in 

plazas with higher ceilings than in those with low ceilings (Fig. 4C and SI Appendix, Fig. S5C). M. 

marinus also exhibited sinusoidal-like behavior, but the FFT analysis showed that this movement is 

only the result of frequent collisions to, and bouncing from, the walls. 

In narrower channels (i.e., 3 to 6 μm), the tighter confinement increasingly forced bacteria to move 

along the channel axis (except for M. marinus) rather than exhibited their motility behavior observed 

in open spaces (plazas). Moreover, in tighter (but still larger than the lateral size of the cell) channels, 

bacterial movement appeared to benefit from both hydrodynamics and steric interaction with the 

walls, which synergistically push bacteria in the same direction due to the lateral-only confinement 

of straight channels [66]. 
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Figure 6. Bacterial motility in linear channels. (A, Left) Density maps of the movement patterns of 

bacteria in channels with different widths. (A, Right) Bacterial trajectories in 8 μm wide channels, 

moving from one direction (green) or from an opposite one (red). (B) Double histograms of velocity 

(y-axis) versus normalized distance from the center of the linear channel (channel wall on the 

extreme right) for 6 μm × 6 μm channels (the full analysis is presented in SI Appendix, Fig. S14). E. 

coli and V. natriegens present a specific bimodal distribution of velocities near the wall. (C) 

Influence of the channel width on the fraction of U-turns. By rows, from top to bottom, are the 

following: V. natriegens (average count of bacteria each frame, n = 20/frame); M. marinus (n = 10/ 

frame); P. putida (n = 19/frame); V. fischeri (n = 18/frame); and E. coli (n = 22/frame). (D) Graphical 

representation of the top view of a bacterium with their average dimensions, in linear channels. The 

thick and dotted lines represent the minimum and maximum channel widths. 
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Velocities in channels. Analysis of the velocities in straight channels appeared to further substantiate 

the synergy between hydrodynamics-driven and steric interactions–driven motility mechanisms. 

Indeed, while M. marinus exhibited a moderate decrease in average velocity with the decrease of the 

width of the channel, including compared with that in the plazas, due to an increase in collisions 

with the walls, all other species did not show any notable and systemic velocity variation with 

channel widths (SI Appendix, Fig. S13). Furthermore, the double histograms of the velocity in 

channels (Fig. 6B, for rectangular 6 × 6 μm channels; full analysis in SI Appendix, Fig. S14) revealed 

that V. natriegens and E. coli presented a distinctive bimodal distribution of velocities at the walls, 

with one velocity higher and one lower than the overall velocity. This bimodal distribution, for the 

species with the lowest ratios of the cell body and of the flagella (a1/a2 and L/_a, respectively, Fig. 

5 and SI Appendix, Table S2), could be the result of separate instances of short-term cell adhesion 

to the wall and movement acceleration due to the steric interaction of flagella with the walls. In this 

context, it was reported [67] that the interaction between the walls and the flagella of E. coli translates 

into a “thrusting aid” for those bacteria running smoothly along solid surfaces. It was also reported, 

for E. coli [30, 68], B. subtilis [69], and S. marcescens [29], that bacteria exhibited higher velocities 

in narrower channels (which eventually decreases significantly in even narrower channels, due to 

the severe mechanical constraints applied to the cells), which is supported by the bimodal 

distribution of velocities observed for E. coli (and V. natriegens) here. 

Straight versus U-turn movements. In straight channels, bacterial motility was expected to be 

increasingly driven by steric interactions, to the detriment of hydrodynamics, with a decrease in 

channel widths. This increased impact of the steric interactions can explain the species-specific 

proportion of U-turns (Fig. 6C). First, the species with the lowest ratio of flagellum/length/cell body 

(i.e., V. natriegens and E. coli) (Fig. 5) had the lowest overall proportion of U-turns, with an apparent 

decrease of U-turns with the channel width for the larger E. coli (Fig. 6C, Bottom). Conversely, the 

species clustered at higher characteristic values of L/_a and a1/a2 ratios (i.e., P. putida and V. 

fischeri) (Fig. 5) have a considerably higher proportion of U-turns than V. natriegens and E. coli, 

and there was even a considerably higher proportion for V. fischeri (Fig. 4D, fourth from the top). 

Second, M. marinus, with its characteristic frequent collisions and rebounds from the walls, had a 

low ratio of U-turns, with the notable exception of the 2 μm– wide channels. This unique behavior 

can be explained by the extreme steric interactions of M. marinus with both walls in channels with 

2 μm widths, (i.e., as large as the cell body) (Fig. 6D, second from the top), resulting in the bacterial 

cell being “pinned” by both vertical walls then “flipped” in the 6 μm–tall vertical plane of the 
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channel, followed by the movement in the opposite direction. Third, P. putida, experiencing 

intermittent wall contact, exhibited a similar ratio of U-turns as V. natriegens and E. coli. Fourth, V. 

fischeri, which swim the closest to the wall (Fig. 4B), had the highest ratio of U-turns. 

In summary, these results demonstrate that, when a strong and complex coupling exists between the 

interaction by parallel walls placed at distances like the dimensions of bacteria, their motility is 

primarily governed by the local steric interactions between the walls and the flagella and, in extreme 

confinement, the cell body. Consequently, the increase in confinement with narrower channels leads 

to a decrease in hydrodynamics-based propulsion, and the dilution, or outright disappearance of the 

classes of motility behavior observed in open spaces. 

2.2.2.2 Motility in channels with angled exits 

Motility in channels with angled exits. In the structures with angled exits (Fig. 3C, lower right of the 

fourth image from the left), all bacterial species had a large preference for moving in straight 

trajectories along the middle axis of the channel, as qualitatively suggested by the density maps (Fig. 

7A), by representative trajectories (Fig. 7B and Movie S3), and by representative bacterial 3D 

trajectories (SI Appendix, Fig. S15). Even for the smallest exit angle (i.e., 30°), the probability of 

movement in a straight line instead of exiting laterally (estimated as the ratio between bacteria 

moving straight and the total number that arrived at that intersection) ranges from 72% (for P. putida) 

to 58% (for M. marinus). While the general trend for all bacteria was that the exiting probability 

decreased with increasing exit angle, there were some species-specific details (Fig. 7C). First, V. 

natriegens, E. coli, and P. putida had a clearly decreasing exiting probability with an increase in exit 

angle, while for V. fischeri this trend was less visible, and M. marinus exhibited a rather indifferent 

relationship between exit probabilities and exit angles, following an abrupt drop at angles higher 

than 30°. Second, all species other than M. marinus had a relatively higher exiting probability at 90° 

angles. 
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Figure 7. Bacterial motility in channels with angled exits. (A) Density maps of the movement 

patterns of bacteria in straight parallel channels, connected by side channels at angles ranging from 

0° to 150°. All channels are nominally 4 μm wide. (B) Bacterial trajectories, either from top (green) 

or from the opposite direction (red). (C) Frequencies of bacteria moving at different exit angles. By 

rows, from top to bottom, are the following: V. natriegens (average count of bacteria each frame, n 

= 10/frame); M. marinus (n = 8/frame); P. putida (n = 10/frame); V. fischeri (n = 13/frame); and E. 

coli (n = 11/frame). (D) Graphical representation of the top view of bacterium with average 

dimensions in the angled channels (few representative angles). The areas in light brown 

representspaces that exceed the dimensions of the respective bacteria in the respective position.  
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This species-specific motility behavior in angled channels appeared to be the result of bacterial 

movement being driven by both local hydrodynamics and by steric interactions with the walls. First, 

the decrease of exit probabilities with exit angles for all species, but especially for V. natriegens and 

E. coli, resembles the lower frequency of turning by large angles in open spaces (SI Appendix, Fig. 

S3). The deflection angles in open spaces (SI Appendix, Figs. S3 and S4) are near-instantaneous 

measurements, and while longer integration times would lead to larger apparent values, this could 

also incorporate other sudden changes of direction, thus obscuring the inherent propensity of bacteria 

for sideways movement. With this qualification, it is reasonable to expect a connection between the 

propensity to escape laterally at set angles in angled channels (Fig. 7C) and the deflection angles in 

open spaces. However, this similarity had notable limitations (e.g., all species studied had negligible 

probabilities of deflection angles at much lower angles than those for bacteria in the angled 

channels). Second, while the wide spread of deflection angles in plazas (SI Appendix, Figs. S3 and 

S16) for P. putida could justify its relatively wide spread of exit probabilities in angled channels, E. 

coli, which had a narrow distribution of deflection angles, had a considerably larger and wider 

distribution of exit probabilities in angled channels than P. putida. Similarly, while both V. 

natriegens and V. fischeri exhibited a monotone decrease of frequency with increasing deflection 

angles in plazas (SI Appendix, Figs. S3 and S16), this behavior translated into a monotone decrease 

of exit probabilities in angled channels only for the former, whereas the latter did not show any 

obvious correlation between exit probabilities and respective escape angles. Finally, M. marinus had 

a monotone decrease of frequency with increasing deflection angles (after 10°) but an approximately 

flat relationship between the exit probabilities and escape angles (after 30°).  

These observations suggest that, in addition to species-specific hydrodynamics-driven spread of 

deflection angles in open spaces (plazas), another mechanism was also responsible for determining 

the exit probabilities in angled channels. Indeed, the species that exhibited a notable departure from 

the expected extrapolation of behavior in open spaces is also the species whose dimensions exceed 

the clearance in the angled channels (i.e., E. coli and V. fischeri) (Fig. 7D). Conversely, the species 

whose dimensions did not surpass the clearance in the angled channels (i.e., V. natriegens and P. 

putida) are also those which exhibited a reasonable extrapolation of deflection angles in open spaces 

to a monotonical decrease of exit probabilities with escape angles. The frequent collisions and 

bouncing of M. marinus had the effect of levelling the exit probabilities regardless of the escape 

angles (except for 30°, for which there is enough turning space and therefore a higher exit 

probability, Fig. 7D). 
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It must be also noted that the confinement at the intersection between central and lateral channels 

did not fully correlate with the respective exit angle. For instance, the 150° exit offered the largest 

volume available for movement at the intersection between the axial and lateral channels 

(highlighted in SI Appendix, Fig. S2), thus making the comparison with U-turns (at 180°) in tight 

linear channels, with no variation of widths, inconsistent. Finally, the relatively higher escape 

probabilities for 90° angles could be the result of smaller free volume at the intersection of the axial 

channel, with steric interactions biasing bacteria toward lateral exits. 

In conclusion, bacterial motility studies in angled channels revealed that when the level of 

confinement is low, due to the large volume at cross-intersection in relation to smaller bacterial sizes, 

the movement is mostly driven by hydrodynamics, as an extension of the behavior observed in open 

spaces. Conversely, when the confinement is tight, due to larger bacterial sizes, the local steric 

interactions between flagella and the walls contribute substantially to the motility behavior. 

2.2.2.3 Motility in meandered channels  

The trapping of bacteria in purposefully designed microfluidics structures is of special interest 

to various applications [e.g., single-cell genomics [70] and accelerated evolution [71]], and therefore, 

the responsible mechanisms were studied [72, 73].  

The meandered system comprised three channels, each with a different gap between the edge of the 

“teeth” (i.e., 5 μm [left], 10 μm [middle], and 15 μm [right]) (Fig. 3C, lower right, fourth image from 

left). The tightly confined, 5 μm–wide meandered channels made the motility of all species more 

complex (Fig. 8 and SI Appendix, Fig. S17 and Movie S4). The elastic-like collisions of M. marinus 

resulted in frequent trappings and, consequently, a considerably lower overall “success rate” (defined 

as the ratio of bacterial entries versus exits, at steady state) than the rest of the bacterial species (Fig. 

8C). In addition, the 90°-angled corners appeared to operate as traps for E. coli and to a lesser extent 

for V. natriegens (bright spots in the density maps in Fig. 8A; the higher retention time for E. coli, 

SI Appendix, Tables S3 and S4). 
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Figure 8. Bacterial motility in meandered channels. (A) Density maps of the bacterial movement 

patterns. (B) Representative tracks of the bacterial motility (trajectories in red are for bacteria that 

took U-turns or got trapped). (C) Frequency of bacteria making successful exits, relative to those 

that are trapped, or performed U-turns (unsuccessful tracks) for each meandered channel. By rows, 

from top to bottom, are the following: V. natriegens (average count of bacteria each frame, n = 

18/frame); M. marinus (n = 12/frame); P. putida (n = 22/frame); V. fischeri (n = 25/frame); and E. 

coli (n = 19/frame). (D) Graphical representation of the top view of bacteria in the mesoscale-sized 

channel.  
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Intriguingly, all species appeared to have difficulty in passing the middle, 10 μm–wide channels 

(Fig. 8C). All species made U-turns or carried out repeated deflection at different angles, as well as 

being trapped (SI Appendix, Fig. S18). Intuitively, the overall bacterial velocity in meandered 

channels is the lowest when compared with those in plazas and straight channels (SI Appendix, Fig. 

S19). However, perhaps counterintuitively, the larger-than–5 μm distance between the walls made 

the trapping effect of the 90°-angled corners more effective, to a near-total extent for V. natriegens 

and E. coli and to a lower relative extent for V. fischeri, M. marinus, and P. putida. As expected, the 

highest passage “success rate” was provided by the meandered channels with the largest distance 

between walls (Fig. 8C). Again, M. marinus and P. putida executed more zigzagged trajectories than 

V. natriegens, V. fischeri, and E. coli (Fig. 8B). 

This complex and species-specific behavior can be explained in view of previous findings as follows. 

In channels with large gaps between comb teeth, all bacteria can negotiate the passage, their 

movement being driven mostly by hydrodynamics, with only occasional interference of the local 

steric interactions between the flagella and the walls. Conversely, in channels with tight confinement, 

bacteria are also capable of successfully negotiating the channels, this time “channelled” by the local 

steric interaction between flagella and the 90°-angled walls. Finally, in the channels in the mesoscale 

region (i.e., 10 μm distance between the “comb teeth”), the mechanism based on hydrodynamics and 

that based on the local steric interaction do not operate synergistically, increasing the chaotic 

character of motility and making the overall forward advancement difficult. This is particularly 

obvious for V. natriegens and E. coli, which swim parallel to walls (Fig. 5) at a ∼2 μm distance from 

the walls (Fig. 4B), thus leading to frequent U-turns. Additionally, these two species are those with 

the lowest ratios of the cell body and of the flagella (Fig. 5 and SI Appendix, Table S2). The more 

compact architectures of V. natriegens and E. coli could explain the near-perfect trapping by frequent 

circular movements in very confined spaces leading to long retention times. Conversely, but for 

different reasons, V. fischeri (a species swimming the closest to the walls, Fig. 4B) and P. putida (a 

species with opportunistic distribution in free volumes) can avoid, to a larger extent than V. 

natriegens and E. coli, being trapped in the meandered channels. Tellingly, these two species are 

also those with the highest ratios of the cell body and of the whole bacterium (Fig. 5 and SI Appendix, 

Table S2). This dichotomy of behavior for species swimming parallel to the walls suggests that the 

steric interactions–driven movement in tight confinement is also modulated by bacterial shape and 

not only by size (presented schematically in Fig. 8D). Indeed, V. natriegens and E. coli are both very 

effectively trapped in mesoscale-sized meandered channels, and while P. putida, a much shorter 

species (SI Appendix, Table S2), appeared to have some success, V. fischeri, the largest of the 

species swimming parallel to the walls, had the best success rate. Finally, M. marinus was also found 
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to exit mesoscale meandered channels more, but its frequent collision-and-rebound on the walls led 

to slightly lower trapping efficiencies. 

To elucidate whether the trapping effect is permanent or transient, the average duration for 

successfully traversing the meandered channels was quantified (SI Appendix, Table S3). Within the 

experimental time window (4 to 5 min), V. natriegens and E. coli were unable to successfully 

traverse the middle-meandered channels. Although M. marinus had a shorter retention time due to 

its high velocity, the distance that it needed to travel to be able to exit the meandered channel was 

longer. Representative 3D trajectories in meandered channels are presented in SI Appendix, Fig. 

S17. The color-coded trajectories for U-turns, successful passages, and trapped bacteria are 

presented in SI Appendix, Fig. S18. 

To conclude, in complex geometries, such as meandered channels, hydrodynamics-driven motility 

is prevalent in wider channels, and the local steric interactions–based mechanism governs bacterial 

motility in narrow channels. However, in the mesoscale region, these two mechanisms do not act in 

synergy, resulting in trapping bacteria, with high efficiency for species swimming parallel to the 

walls, finely modulated by their characteristic shape ratios. 

2.3. Perspectives and future work 

The present study, in which we studied a wide range of bacterial motility behavior, provides insights 

in several areas of applications, as well as suggesting further research. 

Fundamentals of bacterial motility mechanics in microenvironments. It was previously shown that 

a fundamental understanding of the mechanics of the movement of monoflagellated [32, 33, 39] and 

even bi-flagellated [61] bacteria in simple geometries, such as the proximity to a surface, can 

accurately predict motility patterns of bacteria. However, the current study, which described motility 

patterns of more complex bacterial architectures and in more complex geometries, revealed the limits 

of this understanding, which would be critical for designing microdevices manipulating bacteria for 

biosensing, drug delivery, cell sorting, or biocomputation. Further theoretical directions suggested 

by our study, perhaps coupled with long-term monitoring [74], include analyzing the impact of 

population variation on cell behavior, investigating the extent to which more complicated bacterial 

geometries and flagellar arrangements can be represented by more advanced mechanical models, 

and the need to conduct systematic validation studies. Studies of this type, using artificial 

microfluidics systems mimicking their natural counterparts, recently carried out for bacteria [75] and 

fungi [76] or for specifically investigating stochastic processes in bacteria [77], are motivated by the 

abundance of microbial habitats comprising linear and meandered channels and spaces with different 

angled turns (SI Appendix, Fig. S20). 
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Motility of magnetic bacteria in biological networks. Chemically or magnetically guided self-

propelled bacteria were used for non-systemic delivery of drugs and cargoes in tumour therapy [78–

81]. The targeted physiological regions (e.g., deep enteric tissues, hypoxic tumors, tissue granules, 

and arterioles) [78, 82] are essentially impenetrable to probing devices, but they can be accessed, in 

principle, by robust bacteria operating as autonomous microrobots moving in the natural 

microfluidic vascular system [78]. The description of bacterial motility, that of M. marinus, in PDMS 

microfluidic channels mimicking the microvascular system surrounding the tumor (e.g., micrometer-

range sizes and relevant mechanical elasticity) can lead to the optimization of the operation of these 

microrobots outside clinical settings, which are expensive to operate and unable to provide 

reproducible observations at the microscale and in real time. 

Bacterial cell sorting. The efficient characterization, sorting, or selection of individual bacterial cells 

in small volumes are achieved in various microfluidics-based applications, such as those derived 

from the classical flow cytometry [83–85] to the more recent single-cell analysis [70]. In fact, 

microfluidic devices have been increasingly used for assessing bacterial chemotaxis [86–89], 

motility [29, 30, 90, 91], and for bacterial cell sorting [46, 72, 91–93], and our results can offer 

insights for the design of these devices. For instance, the characterization of bacteria as wall 

accumulators, or wall escapers, can suggest entirely different geometries for microfluidic structures 

for bacterial cell sorting. Similarly, microfluidic channels can be designed to increase retention time 

(e.g., by having helical profiles) or to amplify the differences in mechanical responses to flow in 

microfluidics-based flow cytometry. 

Network-based biocomputation. Microfluidics-based approaches to computation of problems 

intractable to electronic computers have been proposed for clique problem (94) and subset sum 

problem [95]. These biological computers require the independent exploration of microfluidic 

networks encoding a mathematical problem by autonomous agents such as beads [94], cytoskeletal 

filaments [95], or microorganisms [96]. The precision of the microfluidics-based computation is 

determined by the capacity of biological agents, such as bacteria, to faithfully follow the movement 

rules embedded in the logic junctions they visit [97]. Consequently, the selection of bacterial 

candidates and the designs of computational microfluidic networks will require the removal or at 

least minimization of errors, such as U-turns in narrow channels, as well as optimization of the angles 

of logic gates channels. 
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2.4. Conclusion 

We here provided a comprehensive account of the motility of individual bacterial cells, belonging 

to five species with considerably varied dimensions and morphologies, in microfluidic networks and 

with various levels of confinement and complexity. For lesser confining geometries, such as facing 

one limiting wall, the motility behavior of the five species studied can be assimilated, with 

qualifications, to that of monotrichous bacteria with similar dimensions. However, when increasing 

confinement complexity, as for instance in straight channels with various widths, in networks with 

exits at various angles, and meandered channels, the classification as swimming parallel to the walls 

for V. natriegens, E. coli, V. fischeri, and P. putida and as escapers, partially, for E. coli, P. putida, 

and M. marinus is increasingly inaccurate, as a result of the increase of the impact of local steric 

interaction of species-specific morphology with the tightly confining geometry. The study can be 

also used as a methodological template for the optimization of the design of microfluidic devices 

with specific functions (e.g., motility-based cell selection for single-cell genomic screening, 

detection of rare cells, bacterial entrapment devices for diagnostics, or biocomputation). 

2.5. Materials and Methods 

All experimental, modeling, and simulation data analysis protocols are presented in SI Appendix. 

Data Availability. All study data are included in the article and/or supporting information. 
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Chapter 3 

3. Navigation through uniform and non-uniform maze 

Based on the previous fundamental understanding of the movement of different bacterial species 

through simple to complex confined geometrics, here our study introduces microfluidic maze 

networks (uniform /non-uniform) as a valuable tool for studying their efficient strategies for space 

searching and pathfinding by exploring the maze environment. Furthermore, different performance 

parameters such as average time required for finding the solutions to the maze, number of vertices 

explored during the navigation, the success rate for maze solving, and energy expenditure during 

their navigation were evaluated. These experimental characterizations can be beneficial in 

development of a practical, straight forward space searching, and partitioning algorithm relevant for 

real-world applications such as transportation system planning, development of urban transportation, 

and vehicle routing problem etc.  
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Abstract 

The microbial environment, where the bacteria inhabit is diverse and highly complex. Bacteria 

exhibit different patterns of motility for their specific needs to be adopted to such a broad spectrum 

of habitats. Also, bacterial space searching and partitioning in the highly complex environments such 

as soil or tissues is relevant in the context of infection and medical applications. Here, we evaluated 

the space searching efficiency of bacteria of different species and morphology (Vibrio natriegens, 

Magnetococcus marinus, Pseudomonas putida, Vibrio fischeri, and Escherichia coli) through 

microfluidic maze networks of different complexity. The velocity, average time, distance travelled, 

and energy expenditure was calculated to access the navigation efficiency of bacteria. First, we 

presented the ability of bacteria to explore the shortest path, and the ability to explore all possible 

paths through the maze in the shortest time. We observed that higher velocity is not correlated to the 

space searching efficiency of bacteria. Second, by varying the geometry of the maze, we also 

observed that the complex confinements strongly influence the motility near the boundaries, and as 

well as near the obstacles through the network. Specifically, the bacterial species, which preferred 

to move along the wall such as V. natriegens and E. coli presented adequate strategies to navigate 

through the maze efficiently with lower energy expenditure despite having lower velocity compared 

to other studied bacterial species. Conversely, M. marinus exhibited the highest velocity but was less 

efficient as they also get strongly affected by the obstacles during the navigation leading to chaotic 

movement. Precision evaluation of bacterial efficiency for navigating through a complex maze could 

ultimately be relevant to medical applications such as understanding the spreading of bacteria during 

the infection and most importantly to bacteria-mediated biocomputational approaches.   
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3.1. Introduction 

Unicellular organisms like bacteria are ubiquitous on earth. Efficient navigation in the microbial 

habitats (a/biotic) is critical for microbial survival. The microbes need to interact with the physical 

and chemical environments to perform a myriad of microbial processes like searching for nutrients, 

space, and conductive spots for propagation [1, 2]. Consequently, bacteria have developed numerous 

motility strategies; the dynamics of their motility guide them to unfold their ability for decision-

making, space partitioning and interactions with their surrounding environments. The decision-

making ability allows the bacteria to collect the information from surrounding environments using 

strategies like chemotaxis and biofilm formation. Understanding bacterial motility on surfaces has 

been the focus of applied research in the food industry for preventing the fouling effects [3, 4] and 

in the paper industry to study the effective ness of enzymatic treatment [5]. Thus, substantial research 

has been devoted to study and model the motility pattern of different bacterial species [6-8]. Both 

physicists and biologists have also investigated the underlying mechanism behind the mechanics and 

hydrodynamic forces that drive the motility of bacteria [9-11]. The earlier mentioned study explains 

the consequence of fluid dynamics that are relevant to the motility of bacteria in viscous 

environments.  

Additionally, the motility of bacteria is actively influenced by its surroundings, which generally 

restricts their growth in natural habitats. Various studies have explained the interaction of surfaces 

with a single microorganism [12] and a group of microorganisms (collective behavior) [9] that can 

be used in technological applications. The advances in the field of microfluidics have made it 

possible to study the growth and motility pattern of bacteria in narrow confinements [13]; the 

influence of micron-confined geometry on the flagellar motility which is the most common 

propulsion system [14, 15], and the effect of solid boundaries on the swimming pattern of bacteria 

[16]. Also, a quasi-two-dimensional porous medium has been presented to bacterial cells to 

investigate the changes in its motility pattern [17]. This extensive information about the motility 

makes the bacteria an attractive model candidate for studying and evaluating their decision-making 

behavior and path finding/space searching abilities in maze or labyrinths. 

Mazes are a class of graphical puzzle that consists of a series of nodes, junctions, and connectors 

arranged to form a network of interconnected paths. The maze problem with increasing complexity, 

non-trivial exercise has been placed in the category of non-polynomial time complete (NP-complete) 

problems [18]. Maze solving is defined as finding a route from the start point to the end point in a 

geometrical constrained space. This includes finding the best route (shortest) and to trace all possible 

valid routes with several solutions. The simplest maze problems involve determining the shortest 

distance from the entrance to the exit and can be solved by digital computation in polynomial time 
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[19]. Solving the maze problem with increasing complexity that incorporates non-linear behavior 

can be very challenging if at all by computational algorithm. There are several different maze solving 

algorithms starting from random mouse algorithm to mathematical search algorithms, which operate 

sequentially to find the correct solution. The “wall follower” algorithm is the simplest and the best-

known algorithm that follows the wall to find a solution to mazes, but it is not the most efficient for 

achieving multiple solutions in parallel. Other mathematical algorithms for maze solving and path 

planning are Dijkstra’s algorithm, which is used to find the shortest routes by connecting the nodes. 

A* (A star) search algorithm [20], uses graph traversal and pathfinding processes for computer 

games and rapidly exploring random tree algorithm that was designed for complex environments to 

find optimal solutions [21]. However, these methods are limited because of the slow computation 

time with the complexity of the maze network as the solution time increases dramatically with the 

increasing complexity [22]. In those circumstances, the digital computation can be insufficient and 

inaccurate.  

As a non-conventional approach, various chemical and biological systems have been explored by 

researchers to solve the maze problems like by the use of chemical waves [23], tube morphogenesis 

in an amoeboid organism [24] tracing the path of plasma [25] as well as different organisms like ants 

[26], bees [27], rats [28], octopi [29, 30], humans [31], robots [32, 33], rat cyborgs [32], crabs [34] 

and simple organisms like amoeba [35], slime mold and fungi [36-38]. Nonetheless, all these above-

mentioned methods are partially inefficient. For example, propagations of chemical waves were very 

slow and were difficult to visualize. Also, these methods were not suitable for larger mazes with 

complex connectivity. Reconfiguration of slime mold occurred between two food sources within the 

maze network allowed them to explore only the shortest path. Tube morphogenesis is complex and 

has been experimented only for very simple mazes. Hanson et al, investigated the growth of 

filamentous fungi, which used long term directional memory and collision-induced branching for 

space searching in a micro confined maze network. This reported methodology showed potential for 

efficient and complex natural algorithms for space searching and space partitioning. However, those 

studies became inefficient for the exploration of simultaneous maze solving problems such as finding 

possible solutions to complex maze (NP-complete problems). Other successful approaches have also 

been presented based on classical chemotaxis, which makes the navigation/exploration biased [33, 

36, 39]. This approach hinders the bacterial innate space searching capabilities. Here, we suggest 

and demonstrate different bacterial species for solving mazes based on massively parallel 

computation without any external cues but the geometry of the maze itself. Importantly, optimal 

pathfinding, which is one of the primary functions of the intelligent transportation systems has many 

applications in transportation problems, such as, efficient pathfinding over large-scale road networks 
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will slow down the traffic jam in the shortest path. Previous studies regarding maze solving have 

only targeted to determine the shortest route [38] or the most efficient route where there is a greater 

number of possible valid routes to the network. Therefore, the proposed approach of introducing the 

bacterial candidates in the maze network without any external cue is to explore all possible efficient 

paths along with the shortest path. So, the study is essentially different from earlier studies, which 

was entirely focused on finding the shortest path. The navigation of bacteria through complex 

geometrics is a synergistic effect of confined geometrics along with its motility pattern. Here our 

study introduces microfluidic maze networks (uniform /non-uniform) as a valuable tool for 

behavioral preferences and demonstrates the surprising ability of different bacterial species namely 

E. coli, V. natriegens, M. marinus, P. putida, V. fischeri (different motility characteristics, and 

different flagellar arrangements) for exploring the maze environment as individual navigators. 

Furthermore, different performance parameters such as average time required for finding the 

solutions to the maze, number of vertices explored during the navigation, the success rate for maze 

solving to compare the efficiency between the bacterial candidates and energy expenditure during 

their navigation has been evaluated. Those experimental characterizations can allow a practical, 

straight forward space searching, and partitioning algorithm towards the analysis of more complex 

geometrics relevant for real-world applications. 

The paper is organized as follows; We start by describing the overall motility pattern of proposed 

bacterial species during their navigation through maze networks of different complexity. We then 

perform a detailed estimation of different performance parameters to classify the bacterial species 

based on the efficient navigation. 
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Figure 9. Experimental setup for bacterial navigation through microfluidic mazes B and C. PDMS 

microfluidic structures Uniform and Non-uniform strutures respectively. 

3.2. Materials and Methods 

Design and fabrication of the microfluidics networks. The overall design of the microfluidics chip 

(Figure 9B, C), used to probe various motility characteristics of bacteria, comprises parallel 

reservoirs with a width of 2 mm, connected through 1 mm-wide patterned areas (Figure 9B, C). All 

patterned areas are separated by the open spaces ‘plazas’ of 100 μm x 100 μm. The study of specific 

parameters of the bacterial motility required specific designs of the microfluidic structures, as 

follows: a ‘diamond’ structure: uniform maze (Figure 9B), presenting 45° and 90° angles, with a 

channel size with a width of 3 μm and a length of its edge of 12 μm designed to explore the bias for 

right-, or left-hand turns; and a complex maze structure: Non-uniform maze (Figure 9C) to observe 

the overall moving patterns in complex, randomly distributed geometrical obstacles with internal 

channels of 3 μm. The microfluidic chip devices were made by polydimethyl-siloxane (PDMS) 

through the replication process of a positive-relief silicon master, fabricated by standard 

photolithography [40, 41]. The mixture of PDMS and cross-linker in a weight ratio 10:1 was poured 

onto the silicon master, degassed inside the vacuum chamber to remove air bubbles, and cured at 

65°C overnight to ensure full cross-linking. After cutting and peeling off, the PDMS replica was 

treated with air plasma for 30 seconds to render the surface hydrophilic before irreversibly bonding 

it onto the glass coverslip, also plasma-activated for 30 seconds.  

Bacterial selection. Five bacterial species were selected for the study. M. marinus, P. putida, and V. 

fischeri, have similar lophotrichous morphology, i.e., they have multiple flagella at one end of the 

body. E. coli MG1665 (K12 wild type) is a rod-shaped bacterium with a peritrichous flagellar 

architecture. V. natriegens is a rod shaped, polar uniflagellated bacterium. M. marinus (MC-1) is a 
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marine bacterium with a spherical (‘coccus’) body of 1-2 μm in diameter and an average swimming 

speed of 110 μm·s-1 (maximum speed can exceed 200 μm. s-1) [42]. As M. marinus is a 

microaerophilic bacterium, it prefers environments containing lower concentrations of O2, it is 

cultured in a chemo hetero lithotrophic medium at room temperature [43]. E. coli and V. natriegens 

were genetically transformed with a plasmid mCherry for visualization and tracking during the 

motility experiments. E. coli and V. natriegens were transformed to constitutively express the 

plasmid pMF440. The plasmids express mCherry, a red fluorescent protein in bacteria to visualize 

them in our experiments using fluorescence microscopy techniques. P. putida and V. fischeri were 

cultivated at room temperature in LB medium.  

Motility experiments. While the PDMS surface was still hydrophilic, the microfluidics chip, 

comprising the PDMS stamp attached on the coverslip, was put in contact with the buffer/medium 

(LB medium in the case of P. putida and V. fischeri, E. coli and V. natriegens, and PBS buffer for M. 

marinus) for 1 hour to pre-wet all the channels in the structure; and then stored inside a wet chamber 

at 4°C before use. Prior to experiments, a bacterial suspension was introduced into the microfluidics 

chamber through the open ends of the PDMS stamps and let stay in contact for five minutes, to allow 

bacteria to enter the chip (Figure 9B, C). To ensure that the natural motility is the only mechanism 

at play, bacterial cells were let to randomly swim into the chips, without any guidance from external 

stimuli, or from a concentration gradient of the nutrients.  

Image Acquisition and Analysis. For the image acquisition of M. marinus strain an inverted Zeiss 

AxioImager Z1m microscope with AxioVision Software Sonny HD-1000 camera (with VirtualDub 

1.10.4 software), LD Epiplan 20x (NA 0.4) and N-Achroplan 10x (NA 0.25) objectives were used. 

The dark field imaging system was built to enhance the contrast between bacterial cell and 

surrounding structures, which is necessary for further image analysis of fast swimming bacteria such 

as M. marinus. On the other hand, the experiments with P. putida and V. fischeri, E. coli and V. 

natriegens were performed on an inverted - Spinning Disk Confocal Olympus IX83 microscope, 

with MetaMorph® (from Molecular Devices) Microscopy Automation & Image Analysis Software, 

and 10x (NA 0.4), 20x (NA 0.75) and 40x (NA 0.95) Differential Interference Contrast (DIC) 

objectives.  

ImageJ 1.50a [44], a public domain software, has been used for image analysis, density map 

reconstructions, and time-resolved bacteria tracking. The density maps of bacterial movement inside 

confined structures were prepared from original RGB image stack as follows: (i) a median of 8-bit 

image stack (a background) was created using a ‘Z Project’ function; (ii) a new stack was created as 

a difference between the original stack and the background; (iii) the histogram of a new stack was 

adjusted and converted to a binary image; (iv) the binary operations ‘Close’ and ‘Dilate’ were applied 
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to remove the remaining noise; and (v) all binary images were added into one image, and a suitable 

‘Look Up Table’ (LUT) was chosen. In some cases, the density map created by the above-mentioned 

procedure was accompanied by a high level of noise at the proximity of microfluidic channels, due 

to the non-uniform light conditions in the optically transparent PDMS chip. In such cases, the 

original stack of n-images was duplicated in the range of 1 to n-1 and 2 to n. However, the difference 

|Img2 - Img1| between stacks shifted by one frame highlighted the bacterial movement without 

background and light-related noise. The fact that this difference was used to calculate the absolute 

change between two images is important since bacteria have also free movement along the vertical 

z-axis, in and out of the focal plane, in the range limited by the depth of PDMS structures. The new 

image stack was processed by steps (iii)-(v) described above to create density map.  

The trajectories of single bacterium cells were tracked by the automatic (TrackMate, ImageJ), and 

the manual (MTrackJ, ImageJ) plugins [45]. The TrackMate plugin, using LAP tracker algorithm, 

was used for M. marinus, which exhibits a quasi-linear motion behaviour, with a low deflection rate. 

The settings for this 2-parameter tracker were chosen to reach the maximum distance between the 

two consecutive points of one trajectory, at a given time, with a time gap set to 3 frames. To analyse 

the movement of these species the manual MTrackJ plugin, with a dark/white centroid snap feature, 

was employed with a point-and-click tracking. In all cases, the acquired x-y-time coordinates were 

used for calculating the velocity from single bacterial trajectories. 

3.3. Results 

 3.3.1 Navigation through uniform maze  

The navigation efficiency for all bacterial species was accessed by presenting them with a 

microfluidic uniform maze. The uniform maze is a simple, symmetric, diamond-shaped maze. The 

network has two types of routes from entry to exits, for instance, the outer boundary channel and the 

inner grid (the distance between two channels is 12μm and the channel width is 3μm) channels 

through a zigzagged path (Figure 9B). Because of the symmetrical nature, the shortest path (100 μm) 

is equivalent irrespective of the route the bacteria take (provided that bacterial species do not revisit 

the vertices of any route). 

 3.3.1.1 Overall motility pattern 

The density map, which was created by the summation of individual bacterial trajectories through 

the network contributed towards the qualitative information. The boundaries of the network (Figure 

10A) were explored densely by M. marinus for finding the valid routes towards the exit. Most of the 
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bacteria preferred to swim towards the right or left side of the network but the grids or inner channels. 

The density maps for the V. natriegens, and E. coli presented the highest propensity of bacterial 

trajectories along the walls of the network. (Figure 10A). The frequency of the bacterial trajectories 

in the inner channels of the network was not very evident, however E. coli exhibited a more even 

distribution of trajectories compared to V. natriegens. Another significant observation that was 

observed that the corners of the network were appeared to be denser with the trajectories of V. 

natriegens, and E. coli (Figure 10A). As suggested by the density maps, P. putida and V. fischeri 

showed high local densities in the boundary of the network and a smaller uniform density through 

the inner network channels like V. natriegens, and E. coli. 

Individual trajectory analysis. To study the modulations in different performance parameters, the 

individual bacterial trajectories were evaluated thoroughly. Figure 10B presents a few of the 

successful representative bacterial trajectories in the network to substantiate the information 

conferred from the density maps. Around 30 individual trajectories were analyzed for 4 individual 

sets of experiments to calculate the average distance travelled to find a successful path from entry to 

exit. The average swimming velocity for V. natriegens, and E. coli was calculated to be 12±5 and 

8±2 μm·s-1 respectively. To explore the successful route inside the network, the average distance 

travelled by V. natriegens, and E. coli were 130±30 μm and 144±45 μm (n=4) respectively. The 

average distance traveled by M. marinus was calculated to be 267±38 μm (n=4) with an average 

swimming velocity 69±19 μm·s-1. P. putida and V. fischeri swam slowly compared to M. marinus 

with a mean velocity around 30±12 and 15±6 μm·s-1, respectively. The average distance traveled by 

P. putida was 120±20 μm and 140±30 μm by V. fischeri. Furthermore, the distribution of the vertices 

(nodes) of the maze for a complete trajectory was calculated in each set of experiments. The 

distribution was presented statistically in Figure 10C. The complete trajectories for V. natriegens 

connected around 8 to 25 vertices. Most of the trajectories were found to be connected by 8 vertices 

which is the minimum number of vertices for a complete trajectory. We also observed few longest 

trajectories (vertices explored around 20) and the probability of longest trajectories was found to be 

around ~10 according to our analysis. The distribution of vertices in the case of M. marinus was 

between 8 to 30. Most of the trajectories traversed the minimum number (~8) of the vertices. P. 

putida and V. fischeri behaved like E. coli and explored the vertices distributed between 8 to 25 (n= 

30 trajectories). V. fischeri could traverse a larger number of vertices (~25) as well. 
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 3.3.1.2 Ability to find the shortest route 

Success rate. Applications of maze solving through the shortest route include intelligent traffic 

control that benefits ambulances, firefighters, or rescuing robots to find accurately their shortest path 

to their destination [46]. Despite the simplicity, the bacterial species did explore the network 

differently. We first calculated the overall success rate, which was calculated as the number of 

trajectories that contributed to the shortest route, divided by the number of all successful trajectories 

in the network. The motility behavior of V. natriegens and E. coli in the network, which helped to 

find the shortest route resulted in high success rates which was calculated to be 95% (SD ±2%) and 

90% (SD ±5%) respectively. The probability of finding the shortest paths in the case of M. marinus 

was evaluated to be 70% (SD ±7%). The success rate presented by P. putida and V. fischeri was 

calculated to be 80% (SD ±5%) and 75% (SD ±6%) respectively (Figure 10A).  

Time and distance. Aside from analyzing the velocity and vertices with the success rate, we also 

calculated the time required to find the shortest route in the network. The average time spent in the 

network to find the shortest route for E. coli was estimated to be 16s (n=4) and 10s. (n=4) for V. 

natriegens. M. marinus spent around 5 s (n=4) to find the shortest route. P. putida, spent around 15 

s and V. fischeri took around 8s to explore the shortest route in the network (Figure 10A)  

Our further investigation was to determine the number of vertices traveled /unit time to comprehend 

the efficiency in finding the distinct routes for all studied bacterial species. The average number of 

vertices traveled during the successful pathfinding process was correlated with the swimming speed 

to calculate the number of vertices per unit time. V. natriegens and E. coli traveled a greater number 

of vertices/unit time (second) followed by. V. fischeri and P. putida. M. marinus, having the highest 

velocity traversed a lesser number of vertices per unit time compared to other bacterial species 

(Figure 12A).  

Energy expenditure. We extended our analysis by calculating the energy expenditure by the bacterial 

cells during the navigation. These bacteria swim by means of flagella, which are rotated by a 

nanoscale motor embedded in the cell membrane. The rotation of the flagellar motor is energized by 

protons moving down the transmembrane gradient [47]. The energy expenditure was evaluated by 

multiplying the proton consumption rate, the power consumption for protons needed for rotation, 

and the number of flagella involved for the motility [47]. V. natriegens was found to spend less 

energy, hence presenting them as a more efficient candidate in exploring the shortest route (Figure 

12A) followed by E. coli. The energy expenditure for V. natriegens was calculated to be 2 x 10-15 J 

and for E. coli was 1.4e x 10-14 J. Other bacterial species like V. fischeri and P. putida spent more 

energy compared to the earlier which was calculated to be 1 x 10-15 J and 1.2 x 10-14 J respectively. 

M. marinus spent more energy, which was calculated to be 2.8 x 10-14 J. (Figure 12A).  
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 3.3.1.3 Ability to find all possible routes 

Success rate. The success rate in finding the possible valid paths presented by V. natriegens and E. 

coli was evaluated to be 70% (SD ±5%) and 80% (SD ±5%) respectively. The success rate for M. 

marinus that presented the highest swimming velocity, was calculated to be 69% (SD ±8). V. fischeri 

and P. putida presented a lower success rate compared to other studied bacterial species and that was 

estimated to be 60 % (SD ±5%) and 50% (SD ±6%) respectively. 

Time and Distance. The average time spent in the network to explore all possible valid routes was 

calculated for all bacterial species. The average time spent by E. coli and V. natriegens was calculated 

to be 16s and 10s respectively. V. fischeri and P. putida spent 15s and 8s respectively to explore the 

successful routes through the network. The average time spent by M. marinus was calculated to be 

4s. (Figure 13A). The average number of vertices traversed during the navigation process was 

calculated along with the number of unique vertices explored (traveled only once). We observed that 

V. natriegens and E. coli traveled a greater number of vertices per unit time and explored a greater 

number of unique vertices, which means they were able to explore the unique junctions for any valid 

routes efficiently. The pathfinding mechanism has also been studied extensively for large-scale road 

networks [48], where connecting different locations to find an efficient path is important. M. 

marinus, spent less time in the network to explore the valid routes because of the highest swimming 

speed, however explored a smaller number of vertices per unit time. V. fischeri and P. putida also 

explored a smaller number of vertices/unit time, compared to V. natriegens and E. coli. However, V. 

fischeri was found to be efficient in finding the unique vertices like V. natriegens and E. coli. (Figure 

13A). The average time and swimming speed were correlated with a number of vertices explored to 

investigate the efficiency in navigation. These counts of vertices suggest that these behavioral traits 

can afford advantages in exploring more routes per time during the pathfinding process.  
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Figure 10. A. Density maps of movement for five bacterial strains through diamond like structure 

(uniform-MAZE), B. Few of the representative successful trajectories, that correspond to the bacteria 

movement through the structure, C. Probability of number of vertices traveled to complete a 

trajectory and their distribution in an individual experiment. 
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3.3.2 Navigation through non-uniform maze 

Following the experiments with the uniform maze, we used a random non uniform maze to find 

out how the absence of regularity of the previously studied geometrics affects the motility pattern 

for studied bacterial species. This complex maze presented to bacterial candidates consists of 

geometries like circular pillars, corners and, barriers with multiple possible solutions along with 

one possible shortest route. 

3.3.2.1 Overall motility pattern 

Similarly, to the study in the uniform network, the density maps for the non-uniform maze network 

presented the information qualitatively at the first step. The density maps (Figure 11A) for V. 

natriegens and E. coli presented a stronger local density towards the corners and walls and the 

motility behavior correlates well with our previous observation for the uniform maze. M. marinus 

exhibited the strongest propensity to navigate through the centre of the network as the high-density 

clusters observed in the central and the upper-left corner of the maze. The qualitative observation 

for P. putida and V. fischeri, as suggested by the density maps (Figure 11A) offered information 

regarding the higher frequency of trajectories along the walls of the network. This observation was 

substantiated by a few representative individual successful trajectories (Figure 11B). 

Individual trajectory analysis. The individual successful trajectories were evaluated to extract the 

information regarding the average swimming velocity along with the average time taken to find a 

successful route. V. natriegens and E. coli travelled around 268 ± 199 μm and 651± 450 μm 

respectively. The average swimming velocity presented by V. natriegens was 8 ±3 μm·s-1 and by E. 

coli 5±2 μm·s-1. The average distance traversed by the M. marinus is 1495 ± 1197 μm with an 

average swimming speed of 67±18 μm·s-1, which is 3.6x more than the distance made by P. putida 

(410 ± 243 μm) and 3.1x more when compared to the V. fischeri (477 ± 340 μm). While trying to 

find a way out of the maze, the distribution of each vertex of the maze in a single successful trajectory 

was estimated and compared between the bacterial species. The statistical analysis regarding the 

distribution of the average number of the vertices traveled to complete a successful trajectory shows 

apparent changes like skewed distribution in between studied bacterial species (Figure 11C). The 

distribution is skewed considerably towards a greater number of vertices count in the case of M. 

marinus. The distribution of the number of vertices in an individual experiment for M. marinus lies 

between 20 to 120.V. natriegens and E. coli presented the distribution towards a lesser number of 

average vertices compared to M. marinus. The majority of the successful trajectories included 20 to 

60 vertices, and a few explored only 80 to 100. The distribution of the number of vertices for P. 

putida and V. fischeri was calculated between 20 to 100. 
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 3.3.2.2 Ability to find the shortest route  

To extend our understanding of the ability of the studied bacterial species to find the shortest path 

through the complex maze network, individual trajectories were thoroughly evaluated. We observed 

a significant difference in motility pattern with the increasing irregularity in the geometry. By 

analysing statistically, E. coli, and V. natriegens followed the shortest path to a lower extent but 

more efficiently than the other studied bacterial species. Success rate: M. marinus exhibited 

minimum possibilities of exploring the shortest route in the maze. P. putida and to a lesser extent V. 

fischeri appears to be less efficient in finding the shortest route as well. The probability of finding 

the shortest route in the presented network was found to be 15% (SD ±4%) and 13% (SD± 5%) for 

V. natriegens and E. coli respectively. The calculated success rate for P. putida and V. fischeri was 

found to be 2% (SD ±0.005%) and 7% (SD±0.1%).  

Time. The average time calculated for finding the shortest route for E. coli was 18 s and V. natriegens 

was 16s. V. fischeri spent 10s to explore the shortest route and P. putida spent 8s for navigating 

through the shortest route in the network. Further the average time and swimming speed was 

correlated with number of vertices explored to investigate the efficiency in pathfinding process. 

Vertices. We expanded the previous information regarding the traveled distance with the number of 

vertices traversed (in one complete trajectory) per unit time. These counts of vertices suggest that 

these behavioral traits can afford advantages in exploring more routes per time during the pathfinding 

process. V. natriegens traveled a greater number of vertices per second and it correlates well with 

the uniform maze. Strikingly these cells not only migrate through uniform maze remarkably to find 

the shortest path but also continued to be successful for finding the shortest route with increasing 

irregularity in the geometry. As can be seen (Figure 10 B), E. coli presented a significant number of 

vertices per second followed by V. natriegens. V. fischeri and P. putida presented a considerably 

lower number of vertices per unit time despite being the fastest candidates. (Figure 12 B). 

Energy expenditure. Another performance parameter, that needed to be taken care of was the energy 

expenditure by the individual candidates. Here we observed that the energy expenditure achieved 

good agreement with the success rate. V. natriegens spent a lesser amount of energy that was 

calculated to be 3 x 10-14 J. The energy expenditure by E. coli was calculated to be 2.5 x 10-13 J. The 

average amount of energy spent by V. fischeri, and P. putida was calculated to be 1 x 10-13 J and 8.4 

x 10-14 J. (Figure 10 B). 
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 3.3.2.3 Ability to find all possible valid routes  

All possible valid/unique routes to the maze network need to be analysed for important real-world 

applications. In our study, the studied bacterial species explored all possible valid solutions 

parallelly.  

Success rate. The success rate for exploring the possible routes was calculated to be 50% (SD±8%) 

and 45% (SD±5%) for E. coli, and V. natriegens respectively. M. marinus presented a higher success 

rate among all the bacterial candidates that was calculated to be 55% (SD±7%). P. putida and V. 

fischeri were not able to succeed in exploring the path efficiently like the earlier candidates and 

presented as the success rate as 30% (SD±8%) and 40% (SD±7%) respectively (Figure 11B).  

Time. We calculated the average time spent by each bacterial species and we observed that E. coli, 

and V. natriegens spent 96s and 58 s respectively to find the successful routes. The average time 

spent in the network by M. marinus was calculated to be 25s. The average calculated for V. fischeri 

was 41s and for P. putida was 21s. 

Vertices. Also, the vertices traversed during the successful pathfinding process was calculated for all 

studied bacterial species. E. coli, and V. natriegens traversed though 6 and 11 vertices respectively 

per second. The frequency of exploring unique vertices were more for E. coli, and V. natriegens. M. 

marinus with the highest swimming speed travelled more distance but were able to explore only 1.5 

vertices per second. It traveled more distance but were not able to explore the unique vertices for 

individual trajectories (Figure 13B), which was calculated to be 9%. They traveled the same vertices 

repetitively. V. fischeri was able to traverse through 2.5 vertices per second and the ability of 

exploring the unique vertices were also less compared to E. coli, and V. natriegens. The exploratory 

behavior for P. putida was very much like V. fischeri and they were able to traverse through 2 vertices 

per second. 
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Figure 11. Bacterial Motility in non-uniform maze A. Density maps of movement for five bacterial 

strains through nonuniform-maze, B. Few of the representative successful trajectories, that 

correspond to the bacteria movement through the structure, C. Probability of number of vertices 

traveled to complete a trajectory and their distribution in an individual experiment. 
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Energy expenditure. Finding all possible valid solutions to a maze is an energy intensive process. 

Calculating the energy to investigate their efficiency during the energy efficient autonomous 

navigation inside the maze network is one of the crucial steps. V. natriegens spent a lesser amount 

of energy as observed earlier that was calculated to be 1.1 x 10-13 J. The amount of energy spent by 

E. coli was calculated to be 1.3 x 10-12 J. M. marinus spent more amount of energy that was 

determined to be 6.5 x 10-13 J. The energy expenditure for V. fischeri and P. putida was calculated to 

be 5.7 x 10-13 J and 1.4 x 10-13 J. 

3.4 Discussion  

Efficiency in exploring the shortest path. Finding the shortest path in a maze network is a classical 

problem, which is relevant to the fields such as the development of urban transportation [49], traffic 

engineering research, gaming optimization, and increasing the efficiency of board game creation 

[50]. Due to its wide applications for many practical problems, many researchers have developed 

hundreds of algorithms, silicon computing architectures and unconventional computation 

approaches to deal with this problem. Concerning more efficient computation, unconventional 

approaches have been demonstrated to compute the shortest path in a maze network. Previous studies 

presented neutrophil cells [51] and T cells [52], which navigated through the maze without any 

chemoattractant gradient, slime mold [38] P. polycephalum, which formed the biological network 

inside the maze by distributing its biomass, and nematodes, [53] which located the shortest route 

utilizing chemotaxis. However, there are still challenges in previously mentioned methods, such as 

the slime mold can build robust networks inside the maze but how the networks are formed are not 

clearly understood and do not seem to be suitable for complex mazes. The challenges arise with the 

complexity of the network and the unavailability of previous knowledge about the destination in the 

network. For instance, autonomous robots were unsuccessful in navigation after encountering any 

loop or obstacle in the network [54]. 
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Figure 12. Comparison between multiple parameters (exploring the shortest path). Radar chart A. 

(Uniform maze), B. (Non-uniform maze) shows how the studied bacterial candidate behaves for 

different parameters like success rate, average time, energy demand, vertices travelled once and 

vertices travelled/sec. For each parameter larger area of the polygon represents a better candidate for 

solving the maze. 

 

 

 

 

 

 

 

 
 

Figure 13. Comparison between multiple parameters (exploring all possible paths). Radar chart A. 

(Uniform maze), B. (Non-uniform maze) shows how the studied bacterial candidate behaves for 

different parameters like success rate, average time, energy demand, vertices travelled once and 

vertices travelled/sec. For each parameter larger area of the polygon represents a better candidate for 

solving the maze 
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Bacteria-based maze solving. The ability of bacteria to navigate through maze was demonstrated by 

many researchers. Nevertheless, previous experiments have typically been limited to the chemotaxis, 

where the intracellular biochemical noise significantly affects bacterial motility [55, 56]. Our result 

accessed the effect of the complex geometries on the random motility of bacteria without any 

external guidance. In the context of geometry of the network, Weber et al [57] studied the bacterial 

diffusion through a squared lattice maze and analyzed how the obstacles through the channels guided 

the swimming direction of bacteria. Here, we evaluated the motility pattern of different bacterial 

species through the maze network and the effect of micro confined geometries on the efficient 

navigation. We found that V. natriegens and E. coli, which moved parallel to the wall presented the 

highest success rate in exploring the shortest route in the mazes of different complexity. (Figure 12A 

& 12B). M. marinus, presented the highest velocity compared to other studied bacterial species in 

the networks but stands as an inefficient species for finding the shortest route. P. putida and V. fischeri 

explored the shortest route by some means, however, they presented a lower success rate compared 

to V. natriegens and E. coli. The complexity of the maze network holds a huge amount of effect on 

the bacterial ability for finding the shortest route. Even though M. marinus were able to find the 

shortest route through uniform mazes fairly, exhibit minimum possibilities with the non-uniform 

maze. One possible explanation for this observation is the chances of physical collision with the 

corners and walls with increasing complexity, which hindered the efficient navigation. These 

observations corelates well with our previous study [58], where we discussed about the species-

specific motility pattern in micro-confinements such as hydrodynamic drag through the open spaces 

and steric interactions through the tight confinements. P. putida and V. fischeri also failed to 

efficiently explore the shortest route with increasing complexity. It must be noted that, the tight 

confinement with multiple junctions (angled junctions) limits the bacterial motility. The recurrence 

of U-turns for P. putida and V. fischeri through the linear channels were reported before, which also 

lower the efficient navigation. However, V. natriegens ranked first in the efficient exploration of the 

shortest route despite the lower swimming speed.  

Exploring the shortest path in shortest time. To solve the shortest path problems in the shortest time, 

various methods have been reported earlier like the use of glow discharge [25, 59], thermal 

visualization of the path [60], and pathfinding using crystallization [61]. These above-mentioned 

methods trace the shortest path in a matter of milliseconds or seconds. Other methods that employ 

conductive particles [62], dyes [63] droplets [64, 65], and waves [66] find the optimal paths in 

minutes. Living organisms like slime mold [38], and epithelial cells [67] demand hours to days to 

trace the path. In the results presented here, all studied bacterial species explored the shortest route 

in a few seconds. M. marinus having the highest swimming speed explored the shortest route in the 
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uniform maze network in 5s followed by V. fischeri, which took around 8s to navigate through the 

shortest route. The average time spent to find the shortest route in the non-uniform maze for V. 

fischeri was found to be 10s. V. natriegens having the lowest swimming speed compared to earlier 

spent 10s in the uniform maze and 16s in the non-uniform maze network. E. coli took 16s to navigate 

through the shortest route in the uniform maze and 18s for the non-uniform maze. (Figure 12A & 

12B) 

Exploring unique vertices. One of the key features in the pathfinding process is the ability to get a 

target location while traversing through the environment without any redundant move. When 

traversing the maze to find the shortest route, V. natriegens and E. coli traveled a larger number of 

vertices per unit time with lower swimming velocity through the uniform maze network. The ability 

of V. natriegens and E. coli remain unaffected with increasing irregularities in the network. V. fischeri 

traversed a fair number of vertices per second during exploring the shortest path. The individual 

trajectories implied chaotic like movement for M. marinus and consequently, they visited the same 

vertices multiple times. So, they are less efficient at navigating through mazes with higher 

complexity. M. marinus and P. putida explored a lesser number of vertices per unit time despite 

having higher swimming speed. (Figure 12A & 12B) Energy efficient bacterium Calculating the 

energy to investigate the bacterial efficiency during the energy-efficient autonomous navigation 

inside the maze network is one of the crucial steps. When the P. polycephalum model was 

demonstrated to compute the shortest path problem, it needed a substantial number of iterations. 

Having demonstrated that, we aimed to present the most efficient bacterial species when dealing 

with the maze solving problem. We calculated the energy expenditure during the navigation through 

the shortest route and we observed that V. natriegens spent a lesser amount of energy followed by E. 

coli. The motility behavior of M. marinus was observed random and redundant along the same path 

and the energy expenditure was more making it less efficient compared with other studied bacterial 

species. 

Efficiency in exploring all possible routes. While the scientific potential of the race to learn about 

the shortest path in a maze network is a goal, all possible valid/unique routes to the maze network 

needs to be analysed for important real-world applications. In the context of the computer game 

industry, [68] exploring unique paths is a crucial task. Navigating through a city to find new and 

simple paths is always a challenge. Generally, maze solving through graph theory, which is 

demonstrated for the pathfinding algorithms is more superior, accurate, and efficient. Meanwhile, 

most studies investigated the navigation through the maze network for finding the shortest path only. 

For the first time our study presents the bacteria-based computational approach to compute all the 

possible paths through the maze network along with the shortest path. The success rates for finding 
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the multiple routes were calculated and that described the ability of studied bacterial species to 

perform efficient navigation. V. natriegens and E. coli presented a higher success rate compared to 

all studied bacterial species through the uniform network. This can be explained as the preference of 

the bacterial species to move along the wall and preference to exit at 90° angles (at each junction). 

However, M. marinus was able to explore a greater number of possible paths with overall success 

rate 55% (SD±7%) with increasing complexity. Nevertheless, the success rate for all bacterial 

species in the non-uniform maze is comparable. (Figure 13A and 13B) 

Exploring the unique vertices. In addition to the success rate, the average swimming velocity, travel 

time, and the traversed vertices were also compared between the bacterial species to classify them 

according to the efficient navigation. M. marinus spent the lowest amount of time because of the 

highest swimming velocity to explore multiple routes through maze networks of different complexity 

followed by V. fischeri and P. putida. V. natriegens and E. coli took higher amount of time compared 

to earlier and presented the lowest swimming velocity. However, the efficient navigation was 

realized to be independent of higher swimming velocity and the time required to trace any correct 

solution through the network. Traveling unique vertices in the maze and connecting them to find the 

path may provide advantages for route planning road networks [48]. V. natriegens and E. coli were 

found to be more efficient in traversing unique vertices through the uniform maze as well as the non-

uniform maze (Figure 13A and 13B). M. marinus being in the wall escaper category showed 

redundant movement and was unsuccessful in finding the unique paths. The unique vertices traversed 

by P. putida was also not significant. Furthermore, V. fischeri was efficient in finding the unique 

vertices alike V. natriegens and E. coli. With respect to number of vertices explored per unit time 

(second), V. natriegens and E. coli presented a larger number of vertices irrespective of the network 

complexity (Figure 13A and 13B). 

3.5 Conclusion  

Our findings provide a description of how bacteria navigate the maze to explore the shortest path, 

and all possible valid paths. The performance parameters were evaluated with increasing variability 

to understand the strategy of bacteria to efficiently explore the maze network. Most notably, the 

modulations in the motility patterns of the bacteria with different flagellar arrangements may be 

critical for evaluating the efficiency for space partitioning. V. natriegens and E. coli presented 

efficient space partitioning strategies, hence can be used as independent computational agent for 

biocomputation and for development of space searching and partitioning algorithm. 
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3.6 Perspective of future work  

The ability of different microorganisms and animals to perform a complex task for natural adaptation to 

the environment has become the basis for various optimization algorithms. Few examples of such 

algorithms are ant algorithm that has been inspired by the behavior of ants [69, 70], bee algorithms based 

on the foraging behavior of the honeybees [71], and many other methods. Present-day research projects 

concern the maze problems that are used as a prototype model in graph theory for practical problems like 

navigation-based problems, problems related to network routing agents, and exploring robots in a 

dangerous situation [72], etc. The “wall follower” algorithm is the simplest yet efficient algorithm that 

follows the right or left wall for navigating through the maze until the solution has arrived. One of the 

famous algorithms is Dijkstra algorithm that was proposed to solve the single source shortest path. 

Another well-known algorithm is the Bellman-ford algorithm [62] that has been demonstrated to 

compute the shortest path. However, these algorithms need an excessive amount of computation time 

with the very largescale network. The precision in developing and optimizing the algorithms, our 

bacteria-based maze solving can be beneficial in the fields of urban transportation [49], traffic 

engineering research, and gaming optimization and increasing the efficiency of board game creation [50]. 
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Abstract 

Agent-based Network BioComputation (NBC) has been proposed as an advanced non-conventional 

computing method to solve combinatorial non-polynomial time complete (NP-complete) problems. 

Apart from the benchmark demonstration of NP-computation using molecular motor proteins and 

cytoskeletal filaments, actively replicating bacteria in microfluidic networks are proposed as 

alternative computing agents. Bacterial operated NBC, due to the inherent ability of bacteria to 

replicate in confined spaces, has the potential to exponentially scale-up the computing power at par 

with the problem size under optimal conditions. The Subset Sum Problem (SSP) is frequently used 

as model problem, specifically the Prime number series (SSP {2,3,5,7,11,13…}). The Prime 

numbers+1 SSP set translates into a relatively compact, but unary coded network, requiring large 

network areas and a large readout Field-of-View (FoV) when scaling up to cardinalities above N=7. 

To overcome this limitation and experimentally establish the solution exploration capability of 

bacterial NBC with sample sizes of cardinality higher than N=7, we chose a high density, ultra-

compact SSP series – the unit (or Pascal’s) series. This communication presents a preliminary 

experimental demonstration of scalability up to a cardinality of 10, i.e., for the SSP@10 

{1,1,1,1,1,1,1,1,1,1} set. This work also shows the readouts obtained and demonstrates the time-

point comparisons to achieve readouts for various cardinalities; this demonstration uses a small part 

of the larger network that was used. The available microscopy-based tools can monitor the network 

up to cardinalities of N=42, at which point, however, computer derived solutions will be intractable 

when using a brute force algorithm only. 
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4.1 INTRODUTION 

In applied mathematics, combinatorial problems require exploring many candidate solutions by 

brute force. As the sample size increases, the number of solutions to explore raises exponentially 

[1]. Among the many different NP-complete problems such as, the graph colouring problem, the 

traveling salesman problem, the knapsack problem, etc. [2,3,4], the Subset Sum Problem (SSP) is a 

very commonly used model problem for demonstrating agent-based NBC [1,5]. In SSP, for a 

problem size of N numbers, referred to as cardinality, the total number of possible solutions is 2^N. 

When solving SSP problems, sequentially operating electronic computers must explore solutions by 

brute force and are shown to reach intractability for higher cardinalities, N≥40 (for a Pentium Core 

V processor with 1Gb RAM capacity) [1]. Also, no single best algorithm could scale up with the 

increasing problem size [2]. Non-conventional computing approaches use DNA [3-4], or molecular 

motor proteins [5] to solve NP-complete problems like SSP. However, a significant problem for all 

these bio-computational methods is scalability [1].  

Recently, our group proposed bacteria as an alternative computation entity based upon computer-

aided simulations; bacteria have manifold advantages compared to other entities [1]: they replicate 

and adapt in constrained channels and microfluidic spaces; they are resilient, genetically 

manipulatable, and autonomously motile [1]. However, the limiting factor to scaling up is the FoV 

needed to monitor the SSP networks that are of high density, but low compactness. For 

demonstrating SSP solving ability, we used the Prime numbers+1 set, i.e., {1,2,3,5,7,11,13} which 

translates into a relatively compact, but unary coded network, requiring large network areas and a 

large readout FoV when scaling up to cardinalities above N=7. The solution density corresponds to 

the number of combinations to reach the target solutions (complexity class I networks has one 

solution per exit, complexity class II network has more than one solution combination to reach the 

same exits) [1]. While solving SSP as an NP-complete problem, the computation approach has two 

questions to be answered. Q1: “Does a solution exist for a particular target sum?” and Q2: “If a 

solution exists, what is/are the subset(s) of the target sum?”. Q1 can usually be answered for the non-

conventional NBC approach using a density or heat map or quantifying agents at the network exits. 

However, for answering Q2, full tracking of the bacterial trajectories in the network is necessary, 

unless otherwise tagging-based approaches as proposed in [1] can be employed. 

The bacterial-driven NBC approach demonstrated a maximum Prime number +1 set has been solved 

up to a cardinality of N=7 (work in review). Although N=7 is the highest Cardinality set solved by 

bacteria, we could not further expand yet, due to limitations in the Field-of-View of our current set-

up. However, to experimentally explore higher cardinality sets solvable by bacteria, we used an even 

more compact set, i.e., Pascal's series of 1s. Such a set with our present resolution and FoV could 
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expand up to a cardinality of N=42. The Pascal set SSP network consists of two types of junctions, 

namely split junctions and join junctions. Split junctions provide the bacteria exploring the networks 

an equal opportunity to go left or right. Join junctions are active on all routes that encode more than 

one solution to the same exit. Bacteria follow the junction rules detailed elsewhere [6], leading to 

exits that encode the solutions. The solutions are tracked either by density map profiles (solving Q1) 

[1,5] or by tracking individual agents, showing all individual routes taken (solving Q2 as well) [1,5].  

The work here demonstrates a bacterial (E. coli) operated SSP network encoding the Pascal set of 1s 

for N=9, one of the highest Cardinality problems solved by bacteria. Our network here could 

experimentally run a problem of cardinality N=42, without any modification or new imaging 

technologies needed, while requiring advancements in NBC-specific tracking tools. 

4.2 METHODS 

The detailed protocols for network fabrication and operation by bacteria, image processing, and 

network tracking are provided in [6][8]. 

4.3 RESULTS AND DISCUSSION 

The bacterial trajectory summation as heat patterns or density maps, shown in Figure 14, 

demonstrates the solutions explored by bacteria for a model Pascal set of 1s for the Cardinality N=5. 

A and B represent the density maps and individual trajectories for each exit, respectively. Except for 

the first and last exit, all the remaining exits have more than one route to reach the exit, meaning 

complexity class II exits with active join junctions. As a result, Fig 14A (bar graph) in black fonts 

represents the possible routes to reach the same exit (target sum). The same has been tracked and 

shown with individual bacterial trajectories in Figure 14B (the inset for exit 3 with ten possible 

solutions. Figure 13A shows a larger cardinality network, with N=9. In all the networks used for this 

demonstration, the bacterial counts have been quantified at the exit of the network (Figure 14B) with 

the computation time for Pascal series of 1s for the cardinality of up to N=9. It should be noted that, 

in the case of N=9, the exits, #4 and #5 have a total of 126 different paths to reach the same exit, 

while the bacteria that explored these networks were more than 6000, i.e., 6000 individual bacterial 

agents explored one of the subsets in the series (Figure 15A and 15B).  

The model demonstration shown here is particularly useful to show the ability of bacteria to solve 

higher cardinality networks. While the Q1 for NP computation could be answered using density 

maps, as shown in Figure 14A (left), Figure 15A, for answering Q2, the effective solutions to these 

NBC of SSP require tracking the entire paths of the computing agents in real-time through the 

network, from the starting point until the exits, i.e., the entire network in a single FoV [1]. With the 
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increasing problem set size, the network's overall computing area explodes exponentially, too large 

to be recorded in one FoV. The image stitching of different frames benefits us to some extent, but 

there are chances of missing bacterial trajectories. Despite imaging advancements, e.g., lens-less 

microscopy, mobile phone-based microscopy [7], it appears that the scaling of networks for solving 

SSP is problematic, and the FoV for larger networks is not achievable easily without modification 

to the existing imaging techniques. The use of a Pascal set here is an alternative to test the efficiency 

of bacterial operated networks for high density, high compact networks. While we tested the network 

up till N=42, the results presented here are majorly of cardinality up to N=9, SSP {1,1,1,1,1,1,1,1,1}, 

answering both Q1 and Q2. For networks of cardinality N≥10 and up to N=42, Q1 could be readily 

achieved using existing imaging techniques using fluorescence microscopy, while Q2 would need 

extensive improvement in automatic tracking of bacteria. While we present here the solutions to the 

cardinality N=9 network (Fig. 15), one of the highest solved and first-ever compact series attempted, 

we aim to test the network to perform tracking and computation with N>10, high density, highly 

compact networks in the future. 
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4.4 FIGURES 

 

  

 

 
 

 

 

 

 

 

 

Figure 14. Demonstration of solutions for bacteria operated Pascal series of N+1 set (N=5, Pascal 

SSP@5 {1,1,1,1,1}). A and B represent the density maps, bar graphs (answering Q1), and individual 

trajectories (answering Q2) to each solution by NBC approach (different routes to one exit, i.e., target 

sum (highlighted with yellow) by E. coli. 
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Figure 15. Demonstration of solutions for bacteria operated Pascal series of N+1 set (N=9, Pascal 

SSP@9 {1,1,1,1,11,1,1,1}). A represents the density map derived solutions to the SSP problem of 

N=9 explored by E. coli. B. Four bar graphs show the computation time for different cardinalities.  

4.5 CONCLUSION 

The important aim of this communication is to show experimental evidence for bacterial-operated 

NBC using the Pascal's series. Since the use of the Prime number series was limited by the FoV and 

readout achievable, a different series with compact network size and a complexity class II network 

have been experimented here. The presented proofs not only answer the Q1 for NP-complete 

problems but also Q2. While the current experimental setup with Pascal series could scale up 

immediately to N=42, with the ability to answer Q1, the approach needs detailed time-energy 

computation analysis, comparing different SSP sets and comparing the efficiency of a computer 

solving SSP of Pascal series by brute force. Also, any advancement in advanced imaging with large 

FoV in the future will further the non-conventional NBC approach using bacteria. 
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Chapter 5 

5. Discussion 

This thesis provides an in-depth experimental and simulation-based comprehension of bacterial 

motility in confinement, for five bacterial species with significantly diverse morphologies, 

dimensions, and flagellar complexities, through microfluidic networks of different levels of 

confinement. More crucially, these observations can be used as a foundation for the design of 

microfluidic devices for biocomputational and biosimulation approaches, bacteria entrapment for 

diagnostics, and single-cell genome screening. Maze solving and solution exploration by bacteria 

reveal species specific and genus specific space searching and path finding abilities of the studied 

bacterial species individually. Also, the study demonstrates a small instance of bacteria operated 

network-based computation as a proof of concept to address the limitation with scaling and Field-of 

view. 

The chapter 1 described a theoretical introduction to the insights into microbial motility in the natural 

environments and methods to understand the underlying mechanisms of microbial motility. The 

methods include traditional microbiological assays, [31, 32], microscopic analysis of bacterial 

motility [35, 36], and microfluidics-based approaches [45, 46]. This chapter also briefly explained 

the relevant applications in the areas of biocomputation and biosimulation with the rules of the 

motility. Chapter 2 provided comprehensive research of motility of five individual bacterial species 

of diverse dimensions and morphologies, through microfluidic networks of different confinement 

and complexity. Chapter 3 evaluated the efficiency of individual bacterial species for space searching 

and pathfinding through the maze networks of different complexity such as uniform and non-uniform 

maze. This study also explained species specific strategies to find the shortest path along with 

maximum number of possible paths, which can be advantageous for developing bio-inspired 

algorithms. Agent-based Network BioComputation approach was demonstrated in Chapter 4 by 

using bacteria as an ideal computing agent. The work also presented experimental evidence for 

bacterial-operated NBC using the Pascal series. 

Chapter 2 described the modulations in the motility patterns of five individual bacteria, i.e., V. 

natriegens, M. marinus, P. putida, V. fischeri, and E. coli through microfluidic structures of different 

confinement. The motility behavior was accessed through microfluidic structures with high (6 µm), 

or low (4 µm) ceilings (Figure 3B), large chambers with quasi-open spaces (‘plazas’), linear channels 

with various widths, channels presenting lateral exits at various angles, and meandered channels 

with various widths by 2D and 3D imaging. The 2D and 3D imaging/z-stack sectioning of bacterial 

trajectories through plaza presented the motility close to the walls and corners. V. natriegens, V. 
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fischeri, and E. coli presented trajectories in the proximity to, and parallel with the horizontal walls, 

where the motility behavior for P. putida and M. marinus was frequently fluctuated between z-planes 

(Figure S7, S8). 

Correlation between experimental and theoretical classification. An in-depth hydrodynamic 

modeling of monotrichous bacteria revealed that the geometrical parameters of the cell and the 

helical flagellum determines the motility behavior near a stable flat surface [157]. The experimental 

results were correlated with the theoretical modeling and the bacterial species were classifies into 

various categories based on the geometry of the bacterium. The bacterial species that exhibit an 

active propensity for swimming adjacent to the wall were classified as “Wall accumulators”. When 

the movement of the bacteria was away from the wall but maintain a near constant distance from the 

wall and presented circular motility patterns were classified as “stable swimmers parallel to the 

wall”. The last classified group was “wall escapers as the hydrodynamic interactions result in 

bacterial movement away from surfaces. Experimentally, M. marinus as an monotrichous model 

bacteria exhibited a ‘ping-pong’-like movement resulting in higher density localized near the walls 

due to frequent collisions and is predicted as wall escapers, but it is near the boundary between 

accumulators and escapers. Another theoretical model of the movement of a polar bi-flagellate 

bacterium based on M. marinus [158] demonstrated that, V. natriegens, E. coli, and V. fischeri 

presented two patterns of movement: movement along vertical and horizontal walls, and circular 

motion when detached. 

Experimentally, V. natriegens and V. fischeri were grouped in the category of movement parallel to 

the wall alike theoretical predictions. P. putida and E. coli exhibited both escapers motility pattern, 

and movement parallel to the wall. 

The theorical classification was determined by two geometrical parameters such as; cell body aspect 

ratio and the length of the flagellum. Even though, the theoretical models depict a single, polar 

flagellum [159], E. coli, with multiple flagella was reproduced accurately by these theoretical 

models. Thus, this classification is expected to serve as a useful conceptual framework for the 

characterization of motility behavior in relation to a solid surface, although most species in the 

current study are architecturally more complex than the monotrichous model.  

Motility in linear channels. Our observations provide several insights to straight and U-turn 

movements, the effect of different channel widths on the motility, and the effect of local steric 

interactions between the walls and the flagella during the movement through extreme confinements. 

The motility of V. natriegens and E. coli through the wider channels (6 to 8 µm) correlates well with 

their behavior through plaza (Figure 4). These species presented the lowest overall proportion of U-

turns, with an apparent decrease of U-turns with the channel width for the larger E. coli. Due to 
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extreme steric interactions with both the walls through the narrower channels and because of large 

cell body, M. marinus exhibited higher ratio of U-turns. This could also be the result of frequent 

collision with the walls.  

V. fischeri and P. putida presented intermittent wall contact and presented highest ratio of U-turns.  

According to the previous studies, the velocity decreases significantly in narrower channels because 

of various mechanical constraints for E. coli, [160, 161] B. subtilis,[98] and S. marcescens [99] that 

is supported well by our observation for V. natriegens and E. coli. Another interesting pattern of 

motility was observed, which is sinusoidal pattern of motility. P. putida, V. natriegens, V. fischeri, 

and to a much less extent E. coli present sinusoidal movement pattern with increasing channel 

widths. One of the studies for monotrichous wall escaper bacterial species [156] demonstrated 

distorted helical motility pattern through the channels of large rectangular transversal section. These 

observations are useful for the design of biocomputation of networks and also the different patterns 

of motility such as; wall accumulators, or wall escapers, can translate into different geometrics for 

bacterial cell sorting; and also, for microfluidics-based flow cytometry. 

Motility in channels with angled exits. Microfluidic structures presenting angled exits were used to 

reveal the additional mechanism responsible for determining the exit probabilities in angled channels 

in addition to the species-specific hydrodynamics driven spread of deflection angles in open spaces 

(plazas). The exiting probability decreased with increasing the exit angle due to species specific 

details, and it was observed for all the studied bacterial species. In the tight confinements, the 

species-specific pattern was the result of local hydrodynamics interactions. The movement of the 

larger bacterial species were guided by the steric interactions of flagella with the walls. These 

findings are interesting topic for selection of bacterial candidates, and the designs of computational 

microfluidic networks for cancelling of errors, such as U-turns in narrow channels, and the 

optimization of the angles of logic gates channels. 

Motility in meandered channels. The meandered channel, which was comprised of three channels 

of different width made the movement of all bacterial species difficult, more specifically the tightly 

confined 5μm–wide meandered channels. M. marinus presented considerably lower overall success 

rate than the other species because of elastic-like collisions that resulted in frequent trappings 

through the channels. The movement of all bacterial species through the channels with large gaps 

between comb teeth was found to be mostly directed by hydrodynamics, with only occasional 

interference of the local steric interactions between the flagella and the walls. The bacterial species 

were also successful to pass through the tight confinements due to local steric interaction between 

flagella and the 90°-angled walls. And the movement in the channels in the meso-scale region, i.e., 

10 µm distance between the comb teeth, all species had difficulties in passing through the channel 
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and the hydrodynamics-based mechanism governs the motility. Another intriguing phenomenon, 

which was observed that steric interactions–driven movement in tight confinement is also modulated 

by bacterial shape and not only by size. P. putida, a much shorter species had some success in 

passing, while V. natriegens and E. coli are both very effectively trapped in mesoscale-sized 

meandered channels. V. fischeri being the largest among all largest of the species appeared to have 

the best success rate. To conclude, in the mesoscale region, hydrodynamics and local steric 

interaction mechanism do not act synergistically, and as a result, the bacteria get trapped and their 

movement gets modulated by their characteristic shape ratios. These observations can be useful in 

the areas of cell sorting and single cell genomics [162, 163]. 

Maze solving by bacteria. We extended the study about the motility of different bacterial species by 

evaluating their space searching efficiency through the microfluidic maze networks. Maze solving 

with increasing complexity is a non-trivial exercise, which has been placed in the category of NP-

complete problems [113]. We used microfluidic maze networks (uniform /non-uniform) as a 

complex network for studying the behavioral preferences of the bacterial species and evaluating the 

motility parameters by presenting them as individual navigators. These experimental 

characterizations can allow a practical, straight forward space searching, and partitioning algorithm 

towards the analysis of more complex geometrics relevant for real-world applications.  

The efficiency was calculated by evaluating various performance parameters such as velocity, ability 

to explore unique paths/unique vertices, shortest time, and distance traveled through the network.   

Shortest path. Solving the shortest path problem in a maze has various applications, most notably in 

the fields of urban transportation [164], traffic engineering research, and gaming optimization and 

increasing the efficiency of board game creation [132]. Hundreds of algorithms, silicon computing 

architectures, and unconventional computation approaches have been developed to address this 

problem. Neutrophil cells [165], T cells [166], and slime mold [167] navigated through the maze to 

connect the shortest path with/out chemotaxis. However, challenges arise with the complexity of the 

network, and obstructions on a possible route. For instance, autonomous robots were unsuccessful 

in navigation after encountering any loop or obstacle in the network [168]. Many implementations 

require external assistance of hardware/software for detecting the shortest path [169, 170]. Using 

bacteria to study the space searching mechanism, behavioral preference, and modulations in motility 

parameters [171] were studied by many researchers but were also related to biased motility such as 

chemotaxis. Our study demonstrates the fundamental behavioral characteristic of bacterial species 

to find the shortest path in mazes of different complexity without any external inference. Addressing 

the shortest path in the shortest time various methods have been reported previously by tracing the 

path through thermal visualization [172], through crystallization [173], employing conductive 
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particles [174], and also by living organisms like slime mould [167], and epithelial cells [175]. All 

these reported studies took hours to days for tracing the path. V. natriegens and E. coli exhibited a 

higher success rate in exploring the shortest route in few seconds. Other bacterial species exhibit 

chaotic motility in tightly confinements, which present a lower success rate for exploring the shortest 

route in less time.  

All possible valid paths. During traffic simulation processes, navigating through a city to find new 

and unique paths are always a challenge. Other real-world applications such as optimizing computer 

games with unique solutions need better pathfinding/intelligence algorithms [134]. We evaluated the 

efficiency of bacterial species for exploring all possible valid/unique routes through the network. 

Previously reported hydrodynamics interaction and species steric interactions with the surrounding 

channel walls in tight confinements were observed as well with the increasing complexity of the 

network [176]. The angled junction through the networks influenced the motility of the bacterial 

species. V. natriegens and E. coli presented lower velocity but were successful in finding unique 

possible paths. In the end, the precision in the evaluation of the efficiency of bacteria can guide us 

to choose an ideal bacterial candidate as a computing agent for biocomputation approach, and 

bacteria-based space partitioning will help in developing and optimizing algorithms in urban 

transportation, board game creation/optimization, and traffic engineering research. We evaluated one 

of the important performance parameters, which is unique vertices traversed through the navigation. 

The ability was quantified with increasing complexity (while tracing all possible paths) as well and 

compared between all the bacterial species. V. natriegens and E. coli traversed a fair number of 

vertices per second when compared to other bacterial species. This observation is an important aspect 

in the pathfinding process to eliminate the redundant steps. 

Bacteria operated network-based computation. The advantages of using bacteria as a model 

organism for network-based computation approaches are manifold compared to other computation 

agents [155] as they replicate and adopt in constrained channels, microfluidic spaces; they are 

resilient, genetically manipulatable, and autonomously motile. The proof of concept of network 

based biocomputation has been proposed by using self-propelled cytoskeletal filaments, i.e actin 

filaments, or microtubules [177]. However, this approach was challenged with computational errors 

and scalability issues [155]. Real-time tracking of the computing agents through the network is 

essential during the computation, hence the requirement to capture the complete network in one 

optical FoV is necessary. With the increasing problem set, the network's overall computing area 

explodes exponentially, too large to be recorded in one FoV. Image stitching of different frames, 

lens-less microscopy, mobile phone-based microscopy benefits us by some means [156], but it 

appears that the scaling of networks for solving SSP is problematic, and the field-of-view for larger 
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networks is not achievable easily without modification to the existing imaging techniques. Thus, our 

present study advanced the network-based computation for solving SSP with bacteria as a computing 

agent. Our work shows experimental evidence for bacterial-operated NBC using the Pascal's series 

(high density and ultra compact). we present here the solutions to the cardinality N=9 network (Fig. 

15), one of the highest solved and first-ever compact series attempted, we aim to test the network to 

perform tracking and computation with N>10, high density, highly compact networks in the future. 
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Chapter 6 

6. Conclusion 

The objective of this thesis is to address the motility behavior of individual bacterial cells of five 

species of varying size and morphologies using microfluidic networks with various levels of 

confinement and complexity. This in-depth study of bacterial motility will facilitate further advances 

in biosensing, cell sorting, biocomputation, and biosimulation approaches. 

This study provided a detailed description of the bacterial motility pattern through complex 

geometries. Here, we presented the impact of the hydrodynamic effect and local steric interaction of 

species-specific morphology with varying confinements. For lesser confinements, such as an open 

space with one limiting wall, the motility behavior can be comprehended with qualifications 

compared to that of monotrichous bacteria with identical size. With increasing confinements, such 

as straight channels with various widths, in networks with exits at various angles and meandering 

channels, V. natriegens, E. coli, and V. fischeri were classified as swimmers parallel to the walls, 

while P. putida and M. marinus were wall escapers. However, E. coli and P. putida also presented 

wall escaper behavior partially with increasing complexity. The variation in the behavior was a result 

of the impact of local steric interaction of species-specific morphology with tight confining 

geometries. The detailed description of bacterial motility, especially the motility of M. marinus, in 

microfluidic channels can be used to mimic the microvascular system surrounding the tumors of 

micrometer range sizes and for the optimization of microrobots outside for medical applications. 

Additionally, for designing microfluidic biocomputational networks, the selection of an ideal 

biological candidate is essential, which can be achieved by studying their motility pattern to avoid 

any errors, such as U-turns in narrow channels, and the optimization of the angles of logic gates 

channels.  

The study also focused on the space searching ability of bacteria through micro-confined maze 

networks of different complexity along with additional motility parameters. The modulations in 

different performance parameters during the navigation were evaluated, which revealed the 

efficiency of five individual bacterial species for finding maximum number of possible paths along 

with the shortest path all possible in the maze networks. V. natriegens and E. coli possess an 

incredible ability to find the shortest path along with the most possible valid paths through the 

network with minimum redundant trajectories. Although M. marinus being the fastest swimmer 

among all the studied species traveled a larger distance with increasing complexity and the paths 

traversed were repetitious. Maze networks are commonly studied for chemotactic cell sorting, 

whereas our research has the potential to choose the efficient bacteria to solve mazes without any 
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external clue. The bacterial random motility parameters can allow a practical, straightforward space 

searching, and partitioning algorithm towards the analysis of more complex geometrics relevant for 

real-world applications, such as transportation system planning, development of urban 

transportation, and vehicle routing problem, etc.  

A proof of concept of the bacteria-operated biocomputational network was attempted with a 

comprehensive understanding of the bacterial motility behavior. A high compact SSP series – 

Pascal’s series was computed using E. coli. The study stands as a promising approach towards the 

limitations of scalability and smaller FoV with microscopy. 
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Appendix A 

SUPPORTING INFORMATION 

Patterns of bacterial motility in microfluidics-confining environments 

Viola Tokárová, Ayyappasamy Sudalaiyadum Perumal, Monalisha Nayak, Henry Shum, Ondřej 

Kašpar, Kavya Rajendran, Mahmood Mohammadi, Charles Tremblay, Eamonn Andrew Gaffney, 

Sylvain Martel, Dan V. Nicolau Jr., Dan V. Nicolau* 

 

1. Detailed Experimental Section 

1.1. Experimental protocols 

1.1.1. Bacterial species 

Five bacterial species living in micro-environments were studied, presented here in an increased 

order of architectural complexity. Vibrio natriegens is a rod-shaped, polar uni-flagellated bacterium. 

(1, 2) Magnetococcus marinus (MC-1) is a spherical bacterium with two clusters of seven flagella 

at one polar end (3, 4), Pseudomonas putida (ATCC® 12633™) (5, 6) and Vibrio fischeri (Ward's 

Science 15-5722) have rod-shaped bodies, (7, 8) and are polar-multi-flagellated bacteria. 

Escherichia coliMG1665 (K12-wild type) is a rod-shaped bacterium with a peritrichous flagellar 

machinery. (9-12) Figure 3 (main text) and Table S1 present the characteristics of the five bacterial 

strains used in this study, and Figure S1 presents detailed SEM images of individual bacterial cells. 

All the cultures, except M. marinus, were maintained in agar plates and cultured in Luria-Bertani 

(LB) medium prior to the experiments. P. putida and V. fischeri were cultivated at room temperature 

(RT), as reported else where (5) while E. coli and V. natriegens were cultivated at 30ºC. E. coli and 

V. natriegens were genetically transformed with a plasmid to express mCherry for visualization and 

tracking in microfluidic devices. E. coli and V. natriegens were transformed to constitutively express 

the plasmid pMF440-mChe (a gift from Dr. Michael Franklin’s lab, Addgene Plasmid #62550). The 

plasmids express mCherry, a red fluorescent protein in bacteria to visualize them in our experiments 

using fluorescence microscopy techniques. M. marinus was cultivated and maintained at École 

Polytechnique de Montréal, Canada, in a microaerophilic, chemo-hetero lithotrophic chemically-

defined medium, rich with ferrous ions, grown in dark, at room temperature, as described earlier (3), 

while a 24hrs to 48hrs culture was used for microfluidic experiments. 
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1.1.2. Design and fabrication of the microfluidics networks 

The microfluidic chip for probing bacterial motility (Figure 3C, first left) comprises parallel 

reservoirs with widths of 2mm, connected through 1 mm-wide ‘bus’ channel (Figure 3C, second 

left). Every area consists of 1 mm x 1 mm structures of 5 x 5 identical geometries separated by open 

spaces (‘plazas’) of 100µm x 100µm (Figure 3C, third left). 

The quantification of specific motility parameters required specific designs of the microfluidic 

structures (Figure 3C,third left, clockwise direction), as follows: (i) a set of linear, 100 µm-long 

channels (Figure S2A) with various widths, i.e., 2, 3, 4, 5, 6, 7 and 8µm, probed the linear movement 

and possible U-turns (~ 180°); (ii) zig-zag channels, ‘combs’, with 5, 10, and 15µm-long teeth length 

(Figure S2C), presenting 90° angles for each tooth, probed the corner preference and wall guiding 

behavior; (iii) 3.5µm-wide channels (Figure S2B) presenting different sideways angles, i.e., 0°, 30°, 

45°, 60°, 90°, 120°, 135°, and 150°, probed the deflection of movement and turn angle preferences; 

and (iv) 100 x 100 µm chambers, ‘plazas’, with two entrances opposite to each other on opposite 

walls (Figure S2). The microfluidic chip was made of polydimethylsiloxane (PDMS) through the 

replication of a positive-relief silicon master, fabricated by standard photolithography. (9, 13) The 

mixture of PDMS and cross-linker (weight ratio 10:1) was poured onto the silicon master, degassed 

inside vacuum chamber to remove air bubbles, and cured at 65°C overnight to ensure full cross-

linking. After cutting and peeling off, the PDMS replica was treated in air plasma for 30 seconds to 

render the surface hydrophilic, before irreversibly bonding it onto the glass coverslip (also plasma-

activated for 30 seconds). 

1.1.3. Impact of the distance between horizontal planes 

In chambers with lateral dimensions considerably larger than the size of bacterial cells, and if the 

horizontal surfaces are placed at a distance that allows the decoupling of their impact, bacterial 

motility is limited only by one of the horizontal planes (and by the vertical walls and corners placed 

at large distances from each other). However, to avoid the sagging, or outright collapse of the top 

horizontal plane in PDMS microfluidic chambers, the optimal height/width ratio is around 0.05, (14) 

i.e., approximately 5 μm for a 100x100 μm chamber. Because bacteria approach walls diagonally, a 

conservative design of the microfluidics structures required that the distance between the horizontal 

walls be larger than the vertical projection of the bacterium length (cell body and flagella) at a 45° 

diagonal. For the dimensions of the bacteria studied, this condition was fulfilled, for all species, by 

a height of 6 μm (Figure 3A, Table S1). Conversely, this condition was not fulfilled for any of the 

species studied at a height of 4 μm, with E. coli, V. fischeri, M. marinus, P. putida, and V. natriegens, 

exceeding the 4 μm clearance, in this order (Figure 3B).  
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Indeed, the motility behavior in large chambers with low ceilings presented evidence of the coupling 

of the impact on both horizontal planes on bacterial motility, i.e., a considerable alteration of the 

distribution of deflection angles of the 2D projections of bacterial trajectories (Figures S3), which 

appeared to be more pronounced for species with characteristic length larger than the 4 μm clearance. 

A finer analysis of the bacterial 3D trajectories revealed a much narrower distribution of the 

curvatures of these trajectories, for all species, for 4 μm tall plazas compared with those in 6 μm tall 

plazas (Figure S4). These streamlined trajectories appear be the result of the increased confinement 

by both horizontal walls of the chambers with 4 μm heights.  

A similar analysis for plazas with 4µm heights (Figure S5) and the characteristic trajectories 

(presented in Movie S1) also showed important differences in the motility behavior of all bacteria. 

Consequently, more detailed motility experiments were performed extensively in 6µm-tall 

microfluidic structures. 

1.1.4. Motility experiments 

Immediately after sealing the PDMS structure on the coverslip, the microfluidics chip was flooded 

with the working buffer, i.e., LB medium for V. natriegens. putida, V. fischeri, E. coli, and 

Phosphate-Buffered Saline (PBS) buffer for M. marinus, for 1 hour to pre-wet the microfluidic 

structure, then stored inside a wet chamber at 4°C before use. Separately, a log-phase bacterial 

suspension was introduced into the microfluidics chamber through the open ends of the PDMS 

stamps and left in contact for few minutes to allow of bacteria to enter the channels and plazas 

(Figure 1 C, first on the left). To ensure that the bacterial chemotaxis free motility is the only, or the 

over riding mechanism at play, t he working fluids have an excess of nutrients, and the experimental 

time is short enough (few minutes inside the confined environment) to ensure that the level of 

nutrients remains practically constant. Furthermore, the bacterial population in microenvironments 

never reached the population density of log phase or stationary phase (15, 16), during which other 

factors, e.g., quorum sensing, or chemotaxis could play a role in space searching and foraging for 

nutrients. 

1.1.5. Image acquisition and analysis 

Bacterial flagella were stained using Hardy Diagnostics Flagella Stain following the product 

protocol and visualized by optical microscopy (Olympus IX83, U PLAN S APO 100X oil objective). 

The scanning electron microscopy images of b bacterial cells and PDMS structures were obtained 

using a Quanta FEI450 SEM and Hitachi S 3400N SEM system. The image acquisition of M. 

marinus used a specially designed inverted Zeiss AxioImager Z1m microscope with AxioVision 
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Software Sonny HD 1000 camera (with VirtualDub 1.10.4 software), LD Epiplan 20x (NA 0.4) and 

N Achroplan 10x (NA 0.25) objectives. The dark field imaging system enhances the contrast 

between bacterial cell and surrounding structures, which is necessary for further image analysis of 

fast swimming bacteria such as M. marinus. The experiments with V. natriegens, P. putida, V. 

fischeri, and E. coli were performed on a system mounted on an inverted, Spinning Disk Confocal 

Olympus IX83 microscope, with MetaMorph® Microscopy Automation & Image Analysis Software 

(Molecular Devices), and 10x (NA 0.4), 20x (NA 0.75) and 40x (NA 0.95) Differential Interfer ence 

Contrast (DIC) objectives. The duration of image acquisition was based on type of imaging like 

bright field microscopy (for M. marinus MC 1 and P. putida) or with fluorescence microscopy (E. 

coli, V. natriegens, and V. fischeri). Depending on the type of acquisition, a different exposure was 

used, and the frames used for plotting density maps, or another trajectory analysis were normalized 

accordingly. Density maps also used the average number of bacteria per frame. 

ImageJ 1.50a (17), a public domain software, has been used for image analysis, density map 

reconstructions, and time resolved bacterial tracking. The density maps of bacterial movement inside 

confined structures were prepared from original RGB image stack as follows: (i) a median of 8 bit 

image stack (a background) was created using a ‘Z Project’ function; (ii) a new stack was created as 

a difference between the original stack and the background; (iii) the histogram of a new stack was 

adjusted and converted to a binary image; (iv) the binary operations ‘Close’ and ‘Dilate’ were 

applied to remove the remaining noise; and (v) all binary images w ere superimposed into one image. 

In some cases, the density map created by the procedure described above was accompanied by a 

high level of noise near the walls of the channels, due to the non uniform light 

conditions in the optically transparent PDMS chip. In such cases, the original stack of n images was 

duplicated in the range of 1 to n 1 and 2 to n. Thus, the difference |Img2 Img1| between stacks shifted 

by one frame highlighted the bacterial movement without the background and light related noise. Th 

is difference, used to calculate the absolute change between two images, is important, since bacteria 

have also free movement along the vertical z axis, in and out of the focal plane, in the range limited 

by the height of the PDMS structures. The new image stack was processed by steps (iii) iii) --(v) 

described above to create the respective density maps. The trajectories of the single bacterium were 

tracked by the automatic (TrackMate, ImageJ), and the manual (MTrackJ, ImageJ) plugins (18). The 

TrackMate plugin, using LAP tracker algorithm, was used for M. marinus, which exhibits a quasi-

linear motion, with low deflection angles thus making the analysis amenable to automation. The 

settings for this 2-parameter tracker were chosen to reach the maximum distance between the two 

consecutive points of one trajectory, at a given time, with a time gap set to three frames. However, 

because P. putida and V. fischeri tend to swim along the walls, thus leading to the possibility of 
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interrupted trajectories, the automatic tracking required more statistical data. The image analysis of 

these species used the manual MTrackJ plugin, with a dark/white centroid snap feature, with a point-

and-click tracking. To facilitate automatic tracking, we used fluorescently labelled E. coli and V. 

natriegens. In all cases, the acquired x-y-time coordinates were used for calculating the velocity and 

the deflection angle from trajectories of individual bacteria. All experiments and image analysis were 

performed in biological replicates, with at least 3 sets of experiment for each bacterial species in 

each motility structure. For analysis and probability/fraction % representation, at least 200-300 

independent bacterial count were used in multiple sets, to obtain a high confidence data and a 

statistical significance of P<0.005. For the density map, a fixed number of frames with average 

bacterial count (n=18±7) on each frame in any particular motility structure for any bacterial species 

was kept standard, so that the density map intensity was comparable to minimum and maximum 

values for each motility structure under discussion. 

For imaging bacterial trajectories in 3D, we used the piezo-stage controller of Olympus IX83, 

confocal microscope for rapid acquisition of z-stacking of the bacterial trajectory. The devices of 

6µm tall plaza were z-stacked at a step size of 2µm for 12µm. In total 7 images were captured at an 

exposure of 10ms (a total of ~90ms to 100ms per time point). For plotting trajectory analysis, the 

tracking was done manually, followed by the intensity-based segregation of trajectory points for 

each z-planes with highest fluorescence or bright field intensity. (19) This highest intensity bacterial 

corresponds to ‘in focus’ bacterial trajectories and marks the z-plane maximum for each time point. 

We used ‘Origin’ software for plotting the 3D tracks as described in the Results and discussion 

section. 

1.1.6. Imaging for mapping 3D motility patterns of bacteria in 6μm plaza 

For imaging bacterial trajectories in 3D, we used the piezo-stage controller of Olympus IX83, 

confocal microscope for rapid acquisition of z-stacking of the bacterial trajectory. The devices of 

6µm tall plaza were z-stacked at a step size of 2µm for 12µm. In total 7 images were captured at an 

exposure of 10ms (a total of ~90ms to 100ms per time point). For plotting trajectory analysis, the 

tracking was done manually, followed by the intensity-based segregation of trajectory points for 

each z-planes with highest fluorescence or bright field intensity. (19) This highest intensity bacterial 

corresponds to ‘in focus’ bacterial trajectories and marks the z-plane maximum for each time point. 

We used ‘Origin’ software for plotting the 3D tracks as described in the Results and discussion 

section. 
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1.2. Bacterial species 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Scanning electron images of the bacteria used in this study, having different flagellar 

architectures. (A) V. natriegens with single polar flagella; (B) M. marinus, bi-flagellated (C) P. putida 

with multiple polar flagella; (D) V. fischeri with multiple polar flagella; (E) E. coli K12 with multiple 

lateral flagella (peritrichous arrangement). 
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Bacteria 

 

V. natriegens 

 

M. marinus 

 

P. putida 

 

V. fischeri 

 

E. coli 

Cell: 

Length [µm] 

Width [µm] 

1.5 ± 0.5 

0.9 ± 0.1 

1.9 ± 0.2 

1.9 ± 0.2 

1.6 ± 0.3 

0.6 ± 0.2 

1.8 ± 0.1 

0.6 ± 0.1 

1.9 ± 0.6 

1.0 ± 0.2 

Flagellum/-a  

Architecture 

Length [µm] 

One 

4.7 ± 0.9 

Two bundles 

4.0 ± 0.8 

Polar 

multiple 

3.9 ± 0.8 

Polar 

multiple 

5.1 ± 1.1 

Peritrichous 

4.7 ± 1.4 

Velocity[µm.

s-1] 

15-20 Up to200 27 -44 60-100 < 20 

Habitat Marine, or 

fresh water 

Marine Soil Marine (free; 

or fish, squid) 

Ubiquitous, 

intestine/gut  

Aerobic Aerobic Micro-

aerophilic 

Aerobic Aerobic Facultative 

anaerobic 

Media LB, LB-V2 

salt medium  

Chemo-

hetero-

lithotrophic 

LB 

broth/agar 

LB 

broth/agar 

LB 

broth/agar 

 

Table S1. Characteristics of the motile bacteria used in this study 

 

1.3. Microfluidics structures and their characteristic dimensions  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Scanning electron microscopy (SEM) images of PDMS microfluidic structures for the 

probing of the bacterial motility, separated by quasi-open spaces. A. Linear channels with different 

widths, from 2 μm to 8 μm. B. Turn-angle chip presenting eight different angles (0°, or straight path, 

and 30°, 45°, 60°, 90°, 120°, 135°, and 150° angles). Note the various volumes available for motility 

at the intersection of the axial and lateral angle, for 90°, 30°/150°, and 150° angles (red circles, top 

left). C. Meandered channels with three different tooth lengths (5 μm, 10 μm, and 15 μm). 



107 
 

2. Results and Discussion  

2.1. Motility in large chambers  

2.1.1. Impact of the distance between horizontal planes  

2.1.1.1. Turn angle preference from 2D trajectories  

To assess the possible coupling of the interaction of the horizontal plane in plazas, for 4 and 6 μm 

heights, respectively, the turn angle preference of motility was calculated, in the first instance, using 

2D projections of the 3D trajectories (Figure S3).  

It was found that the turn angle preference was considerably different for plazas with 4 μm, and 6 

μm heights, respectively. Importantly, this difference appears to be larger for bacteria whose 

characteristic lengths are larger than the clearance of 4 μm heights (Figure 3B), with the notable 

exception of E. coli. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. Frequency of the deflection patterns for five different bacterial species, i.e., V. natriegens, 

M. marinus, P. putida, V. fischeri, and E. coli, each labelled at the side of the graph, analyzed from 

the 2D projections of trajectories data collected in the 4 and 6 μm-high plazas. 
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2.1.1.2. Curvature analysis from 3D trajectories 

A finer analysis of the possible coupling of the interaction of the top and bottom horizontal walls of 

the plazas is possible through the analysis of the representative 3D trajectories. To this end, twenty 

individual trajectories, each for each plaza with both 6µm, and 4µm heights, and for each bacterial 

species, respectively, were used for curvature analysis, with positive values corresponding to 

clockwise, and negative values corresponding to counter clockwise rotations. The median curvature 

value was calculated for each trajectory and twenty trajectories of each species and both heights 

were compared (Figure S4), as follows: for parametrized trajectories [x(t), y(t)], the curvature k is 

k (x0, y0) = [x-1‧y-1–x1‧y1]/ [(x-12+ y-12)3/2], where -1, 0, 1, represent the temporal sequence. 

Even a cursory inspection of the distribution of the average curvature for all bacteria showed much 

streamlined trajectories, that is, the considerably narrower distribution of curvatures, which could be 

understood only by the constrained applied by both horizontal walls. 

 

 

 

 

 

 

 

 

 

Figure S4. Curvature analysis of trajectories in plazas with 6 μm (A) and 4 μm (B) heights. 
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2.1.1.3. Preliminary analysis of bacterial motility in 4 µm tall plazas 

 

 

Figure S5. Motility in plazas with 4µm heights. A. Density maps of bacterial locations. B. 

Probabilities of bacterial positions. Note the differences in spatial distribution of probabilities 

compared with those for plazas with 6µm heights. C. Characteristic longest trajectories of bacterial 

motility. Note the differences in trajectory features compared with those for plazas with 6µm heights. 

D. Projection of bacterial length fit across the height of the chamber at 45º. 

 

Detailed explanations for Figure S5. A. Density maps of bacterial locations in plazas. Left column; 

“0 (min)” and “255 (max)” represent the color-coded heat map of no/highest bacterial population, 

respectively. B. Estimation of probabilities of positions, estimated from the 2D projections of the 

bacterial positions on a horizontal plane, followed by superimposition of the four corners of the 

density maps of the plaza (similar procedures as in Figure 4B, but presented here in 3D). Left 
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column; “0 (blue, min)” and “100 (red, max)” represent the color code for bacterial density along 

the corners and the walls. C. Characteristic longest trajectories of bacterial motility, as 2D 

projections. D. Graphical projection of bacterial length fit across the height of the at 45º. By rows, 

from top to bottom: V. natriegens (average count of bacteria in each frame, n = 14/frame); M. 

marinus (n = 12/frame); P. putida (n = 15/frame); V. fischeri (n = 15/frame); and E. coli (n = 

13/frame). Movie S1 presents bacterial overall movement in plazas, and representative trajectories 

(similar to C). Note the rather considerable difference between the long trajectories (column C) 

compared with equivalent representation for trajectories in Figure 4C. 

2.1.2. Overall spatial density.  

2.1.2.1. Quantification of bacterial positions at a distance from the horizontal walls in the plazas 

 

Figure S6. Quantification of bacterial positions 

using z-stack imaging of the plazas volume 

(representative analysis for E. coli). A. Schematic 

representation of the chamber, with four z-stacked 

planes, distanced by 2 μm step size. B. Assigning of 

the position of bacteria. The yellow circles over 

fluorescent signal represent the bacterial species 

that are out of focal plane, while the red circled 

overlapped over the fluorescing bacteria represent 

the bacterial outside the focal planes. C. Density 

maps for the representative z-resolved E. coli 

imaging at different levels. The density maps show 

that most of bacteria were placed close to the top and 

bottom horizontal planes. 
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2.1.2.2. 3D trajectory analysis and z-positioning of five bacterial species in tall plazas. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. S7. Representation of bacterial trajectories in 3D using z-stack imaging in plazas. Most of 

trajectory lengths (density of bacterial positions) were close, and often parallel to the adjacent wall. 

The transitions between one plane to the opposing one occurred quickly (few points, in few ms). For 

M. Marinus (presenting helical motility patterns) and P. Putida, most trajectories were placed away 

for the horizonal planes, especially in the center for the plaza. Images represent different view angles 

of the 3D trajectories (complementing Figure 2D). 
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Figure S8. Comparison of two bacterial species with opposite motility behavior. A. E. coli moves 

in planes parallel to the walls, at different distances. B. M. marinus does not move in a parallel plane, 

thus flipping from a wall accumulator to a wall escaper behavior. 

2.1.2.3. Estimation of the distance of swimming parallel to the walls 

The first estimation of the distance bacteria swim away from the wall was provided by the 

“probability map” (Figure 4B). This estimation was statistically precise, but it suffered from the 

edge effects, as the walls the bacteria are swimming near are only 6 μm in width. A fundamentally 

better (but statistically weaker) option is to collect the z coordinates of the 3D trajectories in the 

central region of the plazas, i.e., away from edge effects, and then to construct histograms of the 

bacterial presence away from the horizontal walls (Figure S9). 
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Figure S9. Histograms of the positions of bacteria away from horizontal walls (either ceiling, or 

floor) of the plazas. From top to bottom: A. V. natriegens; B. M. marinus; C. P. putida; D. V. fischeri, 

and E. E. coli. The logistic fit was used to determine the average bacterial position along vertical 

axis, and it does not reflect an actual distribution for M. marinus and P. putida.  

 

2.1.2.4. Simulation of motility of monotrichous bacteria near wall 

Numerical results for boundary interactions shown in Figure 5 are upgraded from previous work. 

(20) The data were generated as follows. A model bacterium is considered consisting of   a 

spheroidal cell body propelled by a single rigidly rotating flagellum. Body and flagellum shapes 

based on experimental measurements are depicted in Figure 5. The variable   is defined as the 

characteristic length scale of the body. The choice of semi-major axis     and semi-minor axis            

of the body result in various aspect ratios  while maintaining a fixed cell volume   
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The values of     based on cell lengths and widths for the studied bacteria are given in Table S2. 

In addition to the body aspect ratio, the length of the model flagellum is varied, keeping its helical 

pitch and amplitude fixed. 

For each set of geometry parameters, a Boundary Element Method was used to numerically 

calculate the velocity of the bacterium placed in a given configuration specified by the distance      

and orientation angle     relative to a solid wall. The instantaneous translational and rotational 

velocities of the bacterium are determined by satisfying the equations of Stokes flow subject to 

no-slip boundary conditions on the surface of the cell body, flagellum, and wall. The propulsive 

thrust generated by rotating the flagellum is generally not exactly aligned with the axis of the 

body, leading to a slight wobbling motion. To determine the average velocity over timescales 

longer than a motor revolution, the instantaneous velocities was calculated at uniform increments 

of the angular phase of the flagellum relative to the body and take the mean value. This 

process allows us to define an average vertical speed 
 
and rate of turning  that depend on 

the current and    

For some bacterial shapes, it was found that there is a certain combination of distance and 

orientation, denoted       , at which  and . This is an equilibrium configuration 

because the swimmer remains at this height and orientation indefinitely. Moreover, this is a 

stable equilibrium because bacteria starting at other configurations, provided they are not 

pointing too sharply away from the surface, would approach the equilibrium point. Bacteria 

with such an equilibrium point are referred in this study as ‘swimmers parallel to wall’ 

because they tend to remain in this plane (which is close to boundaries). This regime is placed at 

the top right quadrant in Figure 5. The stable configuration was computed for various 

combinations of the cell body aspect ratio and flagellum length and the stable height     was 

graphically presented by a color scale in the upper right of Figure 5. 

As the body aspect ratio decreases (approaching a spherical shape) for a fixed flagellum length, 

it was found that the stable height decreased until the bacterium became too close to the wall for 

numerical methods to be reliable. Since these model bacteria also have a strong attraction to walls, 

in fact descending into walls, they are classified in this study as ‘boundary      accumulators. This 

regime is placed, approximately, at the top left quadrant in Figure 5. 

Starting from boundary accumulators with a computed stable configuration, decreasing the 

flagellum length increases the stable height. There is a region of rapid transition from   

(where the cell body is very close to the wall) to  . Beyond this point, the stable height 
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is far enough from the wall that hydrodynamic interactions are negligible. In this regime, located 

in the lower portion of Figure 5, the bacteria turn and swim away from the wall even if they are 

initially approaching the wall, thus referred ‘boundary escapers. 

The hydrodynamic explanation for why changes in the geometry of the bacterium affect its 

motion near walls is that the shape determines the distribution of stresses acting on the cell 

membrane and flagellum. The flow field generated by a swimming bacterium can be 

approximated by combinations of a force dipole, source dipole, and higher order terms that each 

produce different interactions with a wall. (21) The relative strengths of these terms, and hence 

the net behavior near walls, depend on the shape of the organism.
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Table S2. Characteristic geometrical parameters of the bacteria studied used for the simulation 
of motility behavior (monotrichous architecture model), as in Figure 3. 

Parameter→ 

Bacteria↓ 

a1/a2 L/ā h*/ā L+a1 
(µm) 

V. natriegens 1.75 ±0.75 9.51 ±3.48 3.05 5.45 ± 2.30 

M. marinus 10.2 ±0.21 4.35 ±1.30 1.35 4.95 ± 1.80 

P. putida 3.19 ±1.56 10.84 ±5.03 2.47 4.70 ± 1.90 

V. fischeri 3.11 ±0.69 12.34 ±4.15 3.73 6.00 ± 3.40 

E. coli 2.10 ±1.02 8.64 ±4.33 2.74 5.65 ± 2.30 

Legend (32): 

a1 = polar radius of cell body (half the cell length); a2 = equatorial radius of cell body (half of 

the diameter diameter); [a1/a2] = aspect ratio of the cell body; L = curvilinear length of the 

flagellum (approximated by the axial length of the flagellum); ā = radius of sphere with volume 

of cell body; L/ ā = aspect ratio of the bacterium; h* = optimal distance from the wall (for 

swimmers parallel to the walls), determined in this study from the z-stack analysis (Figure S9); 

and h*/ā = non-dimensional distance from the wall. 
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2.2. Motility in tightly confining geometries  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. S10. Cumulative representation of trajectories of five different bacterial species projected 

in 3D space using z-stack imaging in linear channels.



118 
 

     2.2.1.2. Analysis of the possible sinusoidal motion of bacteria in straight channels 

2.2.1.2.1. Detecting potential helical motion from 2-dimensional camera data with multiple 

waveforms  

We consider the general problem of determining, from 2D tracking data, whether a bacterium is 

executing 3D helical motion or 2D, planar “sinusoidal” motion. To do this, we aim to convert 

2D data to three dimensions, under the assumption the helical motion is taking place. This then 

allows us to essentially test the hypothesis of helical motion. 

We begin by considering the directional components of the bacterial velocity, derived from 

positional data. Given a 2D track, we can compute vx(t) and vy(t), i.e., the x and y components, 

as a function of time, while vz(t), the z-component, is hidden from us due to the use of a point of 

view placed orthogonally to this axis. Given vx(t) and vy(t), our specific goal is to estimate the 

unobserved velocity component vz. 

Observe that the (unknown) magnitude of the total velocity is given by 

 

At any point where the bacterium is moving orthogonal to the axis of the camera, we have vz 

= 0, such that the total velocity follows 

 

We now assume (but see below) that the movement of the bacterium has no net drift in the z- 

direction. This implies the bacterium is moving orthogonal to the camera axis twice in each 

spiral of its 3D helix. 

The total magnitude of velocity can be estimated as a smooth curve fit over the peaks of the 

 curve, for instance using spline interpolation. At each peak, vz = 0 and its sign alternates as 

the helically moving bacterium completes each corkscrew. This allows the estimation of vz at 

all other points. 

This approach has limitations, because of the loss of information from 3D information being 

projected into 2D. If the bacterium is moving toward or away from the camera for significant 

portions of its trajectory, our method is unable to estimate its total vz component, absent further 

assumptions about the specific pattern of swimming. In addition, this estimation procedure is 

inaccurate if the trajectory is not close to a symmetrical, repeatable helix, e.g., if the helical motion 
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is highly stochastic. The technique is inaccurate in the absence of a sufficiently high number of 

data points, allowing a smooth spline to fit to be applied to the 

 curve. Lastly, it is not possible, by this approach, to determine the 

“handedness” of the helix. However, we note that for many bacterial species, the handedness is 

known or can be determined experimentally, because it is genetically controlled. 

Perhaps most crucially, however, this method requires the available tracking data from the camera 

to contain multiple peaks and troughs of the trajectory, otherwise the spline fitting to the peaks of 

the  curve is not possible. For situations where only one or less peak-to-trough sections are 

available, a different approach is needed. 

2.2.1.2.2. Detecting potential helical bacterial motion from 2D camera data where only fragments of 

sinusoidal tracks are present  

In this situation, it is possible to estimate the wavelength of the sinusoidal motion from fragments 

containing one or two peak-to-trough sections by employing a Fast Fourier Transform (FFT) 

analysis. Specifically, the FFT spectrum of the x-y curve (in 2D) will exhibit one dominant 

frequency if sinusoidal (potentially resulting from helical motion projected two-dimensionally) 

is present; otherwise, the spectrum will be highly noisy and/or flat. 

We ran all tracks in different channel widths for all five bacterial species through an FFT analysis, 

leading to the ability to directly fit sine curves to the x-y trajectories and estimate the wavelength 

of the motion in the channel. This approach is illustrated (using a randomly chosen bacterial track 

from the data set) in Figure X.1 below, in which the right-hand side panel shows the results of the 

fitting procedure, and the left-hand panel shows the FFT spectrum, exhibiting a dominant 

frequency. From this, the motion wavelength can be estimated as the inverse of the dominant 

frequency (code available on request). 
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Figure S11. Left: FFT analysis of a bacterial track in a channel, allowing the identification of 

the frequency of the sinusoidal motion (and thereby the wavelength) as the peak of the FFT 

spectrum (blue line and red cross). Right: in red, the bacterial track projected as an x-y trajectory; 

in blue and gray, the resulting sine curve fits corresponding to the FFT peak frequency (gray) 

and average weighted frequency (blue). 

2.2.1.2.3. Estimation of sinusoidal characteristics of bacterial motility in straight channels 

We used this method to study the variation in sinusoidal movement (resulting from 3D helical 

movement) of different bacterial species in different channel widths from 2µm to 8µm. The 

results are shown in Figure S12C. 

The sinusoidal character of the motion of P. putida and V. natriegens varies strongly with the 

widths of the linear channels, possibly due their shortest body lengths of all species studied. The 

increase of the wavelength of motion with the increase of the channel widths is probably due to 

the larger volume available for 3D helical movement. It is notable that a sinusoidal movement 

has been predicted (22) for monotrichous bacteria (such as V. natriegens) and for wall escapers 

(as partially exhibited by P. putida, Figure 5). 

At the other end of the spectrum, M. marinus, with its frequent collisions with and bouncing from 

the walls, appeared to be insensitive to channel widths with regard to a sinusoidal character of 

movement. 

Finally, in a medium class, V. fischeri and especially E. coli appear to have only a modest 

evolution of the sinusoidal character of movement with the increase of the channel widths, 

possibly due to their longest body lengths in all species studied. 
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Figure S12. Representative trajectories in the linear channels (A, left); and the variation of the 

estimated motion wavelengths versus channel widths (B, right). 

2.2.1.3. Velocity in straight channels  

To assess the impact of confinement on bacterial velocity, the average velocity of bacteria 

was measured, in straight channels, and in plazas, the latter seen as straight channels with 

100 μm widths (Figure S13). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S13. Bacterial velocities (logarithmic scale) in straight channels and plazas. 
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A moderate decrease was observed for the velocity of M. marinus, assumed to be a result of the 

amplification of the collisions with the walls, but for all other species the velocity does not vary 

importantly with the channel width. 

This observation is further substantiated by the more precise and more detailed measurements of 

velocities offered by double histograms of velocities in channels (Figure S14). Also, with the 

exception of M. marinus, for which extreme narrow channel ‘force’ motility at the walls, and V. 

natriegens and E coli, presenting a bimodal distribution of velocities, towards the channel center, 

and again a secondary bimodal distribution at the walls (as presented above), all other species 

behave as swimming parallel to the walls, that is, near the center of the channels, as predicted by 

Figure 5. 
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Figure S14. Double histograms of bacterial velocities in linear channels with 2 µm, 4 µm, 6 

µm, and 8 µm widths. All velocities values are normalized, i.e., top y-axis value is the maximum. 

The channel widths are also normalized, i.e., left value on the x-axis represents the channel 

center, and the right value represents the wall. Note the resilient bimodal distribution, at the walls, 

for both V. natriegens and E. coli. 
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2.3. Motility in channels with angled exits 

 
 

 

 

 

 

 

 

 

 

 

Figure. S15. 3D trajectories of five different bacterial species projected in 3D space using z- 

stack imaging in angled channels. 
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Figure. S16. 3D trajectories of five different bacterial species projected in 3D space using z- stack 

imaging in angled channels.
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2.4 Motility in meandered channels  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. S17. 3D trajectories of five different bacterial species in meandered channels. 



127 
 

Table S3. Comparison of the average time-spent (seconds) by bacteria in meandered 

channels with different tooth widths (left-middle-right channels as in Figure S2C). 

Meandered channels: 

Bacteria↓ Tooth length→ 

Left 
5 µm 

Middle 
10 µm 

Right 
15 µm 

V. natriegens 4.5 ±1.8 24.0 ±10.2 27.5 ±7.3 

M. marinus 3.2 ±2.0 5.5 ±3.3 7.3 ±3.2 

P. putida 7.9 ±5.1 11.2 ±4.4 15.4 ±5.6 

V. fischeri 9.9 ±5.8 49.1 ±8.9 38.8 ±16.3 

E. coli 24.3 ±19.3 43.1 ±14.9 65.9 ±22.3 
 

Table S4. Comparison of the average time-spent (seconds) by bacteria that succeeded in 

traversing the meandered channels with different tooth widths (left-middle-right channels as 

in Figure S2C). 

 
 

Meandered channels 
Bacteria↓ Tooth length→ 

Average time spent in succeeding the trapping 

(seconds) 

Left 
5 µm 

Middle 
10 µm 

Right 
15 µm 

V. natriegens 5 ±1.8 NA 28 ±7.4 

M. marinus 3 ±2.0 5 ±3.3 7.5 ±3 

P. putida 7.5 ±5 11.8±4.4 15.4 ±5.6 

V. fischeri 10 ±5.6 38.1 ±8 38.8 ±16.3 

E. coli 20.5±18 NA 30 ±22.3 

 

Note that bacterial species like V. natriegens and E. coli has a zero or negligible success rate 

in traversing the middle-sized meandered channel during experimental observation. 
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Figure S18. Bacterial motility in meandered, comb-like channels. A. Representative tracks of 

the bacterial motility: red trajectories - bacteria took U-turns; black trajectories - bacteria got 

trapped; any other color - bacteria successfully traversed. B. Distribution of unsuccessful 

bacteria that made either a U-turn or are trapped. By rows, from top to bottom: V. natriegens 

(average count of bacteria each frame, n = 18/frame); M. marinus (n = 12/frame); P. putida (n 

= 22/frame); V. fischeri (n = 25/frame); and E. coli (n = 19/frame). 
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2.4. Velocity distribution for bacterial species in different motility structures  

The velocity observed in various microfluidics structures were expected to be related to the 

respective levels of confinement, with the highest confinement levels present in the meandered 

channels (“combs” in Figure S17); and the lowest in plazas. However, while the variation of 

velocity due to confinement were obvious for M. marinus, it is far less obvious for other species. 

However, among the different structures studied here, the motility in the meandered channels 

present the most noticeable decrease of apparent velocity (with the notable exception of V. 

natriegens). For instance, E. coli and V. fischeri decreased their velocities by more than 75% 

compared to its velocity in plazas, and P. putida with almost 50%, This behavior is easily 

understood if connected with the frequent trapping in the corners of the meandered channels, 

reducing its overall average velocity. Such steep changes were not observed in the other species, 

suggesting there was not a strong corner preference for rest of the members of bacteria tested. 

The velocity differences observed with E. coli and M. marinus are classical examples of steric 

interactions-based confinement where M. marinus was restricted with space leading to reduction 

in velocity while for E. coli it was the geometrical preferences. Finally, it should be noticed that 

V. natriegens is the species with the smallest aspect ratio of the dimension of cell body, and one 

the species with the lowest ratio of length/cell diameter (Figure 5) which suggest an easier 

negotiation of convoluted geometries. 

 

 

Figure S19. Comparison of bacterial velocities (logarithmic scale) in plazas, straight channels 

(“straight” label) and meandered channels (“combs” label)  
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2.5 Tight geometrical like confinements from nature 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S20. Closer look into the microbial habitats and tight confinements in nature. The above 

images are adopted from several reported communications, which shows high-definition 

microenvironment that are bacterial habitats and the tight confinements that are common 

observations among these figures. A. Magnetotactic species in the soil sediments of lake (23, 

24), spherical bacteria in the constrained environments. B. Escherichia species in the gut (B I 

& ii) and on plant surfaces (25) (B iii & iv). The image shows constricted patterns with tight 

channel like features and different turn angles (iii & iv). C. Rod shaped bacterial species (26). 

The image shows several straight and different turn angles, like the feature that we used in the 

devices for studying angled preferences. D. Vibrio species in the gut of fishes (27). The image 

D(i) shows straight channel like feature present in the microvilli (MV) and image D (ii) shows 

different angled and zig-zag patterns, like the structures with higher complexity that we explored 
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in our studies. E. Pseudomonas species in soil sediments (i &ii) shows features with different 

pore sizes and highly complex structures (28). F. rod shaped bacterium on surface of 

phytoplankton (29). The figure shows straight lines with many turn angles and most notably 

90° turn angles. 
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Supporting Movies 

The movies present typical motility patterns of all bacterial species studied. E. coli and V. 

natriegens were labelled with fluorescent expressing plasmids (either GFP or mCherry) and the 

movies were recorded with a fluorescence microscope. Other species were observed in bright 

field (all species) or in dark field (M. marinus only). All the movies are played at original speed 

to show different behaviors like the velocity differences among the different species, U-turn 

types, wall-accumulating and wall repelling motions, circular, chaotic trajectories etc. 

    Supporting Movie 1 – Bacterial motility in quasi open spaces (plazas) of two different heights 

     Trajectories along the walls: Red, Ping-Pong like trajectories: Green, Circular 

trajectories (longest): Purple, Circular trajectories (Smallest): Yellow, Random 

trajectories: Cyan 

Movie S1. Motility in quasi-open spaces (plazas). Bacterial specific motility observed from the 

movies and discussed in the main text – Screen shots of the videos is presented here, while the 

actual movies can be downloaded. 

V. natriegens: Preference towards the corners and wall-directed motility. M. marinus: Wall- 

bouncing, ping-pong ball like motility pattern. Restricted motility and few straight trajectories 

in 4 µm tall plazas, as an effect of confinement. V. fischeri: Wiggling, chaotic motion with 

frequent pauses and change of directions. Observable frequently in 4 µm low plazas. P. putida: 

Typical circular motions with high deflection angles. The diameter of the circular motion 

decreases due to vertical confinement in 4 µm low plazas. E. coli: Wall- dependent motility with 

corner preferences. Also, small circular motions observed in both high and low plazas. 
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Linear channels 

 

 

Supporting Movie 2 – Bacterial motility in linear channels 

Trajectories along the walls: Red, Sinusoidal like trajectories: Green, Random trajectories: Cyan 

 

Movie S2. Bacterial motility in linear channels. V. natriegens: Lowest U-turn frequency with 

high accumulating. M. marinus: High U-turn frequency in narrow channels due to repeated 

sinusoidal (bouncing) motility and deflection from the walls. V. fischeri: Chaotic motility 

pattern with considerable U-turn frequency, irrespective of the channel dimensions. P. putida: 

Sinusoidal (bouncing) motility and deflection from the walls. E. coli: Second highest propensity 

for wall-accumulating and a low U-turn frequency. 

 

Angled channels 

 

      Supporting Movie 3 – Bacterial motility in angled channels 

 

Movie S3. Bacterial motility in angled channels. V. natriegens: Preference for moving on 

straight trajectories along the middle axis channel. M. marinus: Trajectories deflected at angles 
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> 135°. V. fischeri: Higher U-turn % and partly wall-accumulating behavior at angled channels. 

P. putida: Trajectories deflected at angles > 135°. E. coli: Preference for moving on straight 

trajectories along the middle axis channel. 
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Combed channels 

 

Supporting Movie 4 – Bacterial motility in combed structures 

Successful trajectories: Red, Unsuccessful trajectories: Yellow 

Movie S4 - Bacterial motility in combed structures. V. natriegens: Successfully traversed the 

combs of lowest and highest tooth length, but not the middle combed-structures due to trapping 

at the corners. M. marinus: Successfully traversed the middle tooth structures compared to the 

other two combed structures. Least success rate in combs. V. fischeri: Possessed a corner–to-

corner motility pattern, providing a higher success rates in traversing in all the three comb 

types. P. putida: Exhibited a shifted propensity to follow walls for traversing the combs. Still a 

second lowest success rate in navigating the complicated comb structures. E. coli: 90°: angled 

corners appear to operate as traps, for E. coli very efficiently in middle sized tooth, while the 

two other combs were successfully traversed. 
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