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Abstract

The ~prz'ce of anarchy, a concept introduced by Koutsoupias and Papadimitriou [9], is
the main topic of this thesis. It is a measure of the loss of efficiency that occurs when
there is no central control over a system consisting of many “selfish” agénts. We will
be particularly interested in this in the context of network games, which can be used
to model congestion in traffic and communication networks.

After an introduction of the relevant concepts and review of related work, we
proceed with the new results of this thesis. We provide a new upper bound for
the price of anarchy in the case of atomic unsplittable agents with polynomial cost
functions, and demonstrate that it is tight by an explicit construction. We then
introduce a new model for network routing that introduces priorities; users with a
higher priority on a link will be able to traverse the link more quickly. Our model
 is fairly general, and allows various different priority schemes for modelling different
situations. One-particularly interesting version, which we have dubbed the timestamp
game, assigns priorities according to the order of arrival at the start of the link.

We derive tight upper bounds for the price of anarchy in our model in the case
of polynomial cost functions and nonatomic agents. We also obtain tight results in
the unsplittable case with linear cost functions, and an upper bound with polynomial
cost functions. |

While we concentrate on network games, most of the results carry through to the

more general class of congestion games, which we also discuss.
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Résumé

Le prix de I’anarchie, un concept présenté par Koutsoupias et Papadimitriou, est la
matieére principale de cette thése. Il s’agit d’une mesure de la perte d’efficacité qui se
produit quand il n’y a aucun contréle central d’un systéme se composant de beaucoup
d’agents “égoistes”. Nous serons particulierement intéressés par ce concept dans le
contexte des jeux de réseau, qui peuvent étre employés pour modéliser la congestion
dans les réseaux du trafic et de transmission.

Aprés une introduction des concepts essentiels et une révision de la littérature
pertinente, nous introduirons les nouveaux résultats de cette thése. Nous fournirons
un nouveau majorant dans le cas des agents indivisibles avec fonctions polynomiales
de coiit, et démontrerons, au moyen d’une construction explicite, que ce majorant
exact. Nous présenterons alors un nouveau modele pour le cheminement de réseau
qui présente des priorités; les utilisateurs ayant une priorité plus élevée sur un lien
pourront traverser le lien plus rapidement. Notre modéle est assez général, et permet
divers arrangements prioritaires pour modéliser différentes situations. Une version
particulierement intéressante, que nous avons nommsée le “timestamp game”, assigne
des priorités selon 'ordre d’arrivée au début du lien.

Nous dériverons les majorants exacts pour le prix de ’anarchie dans notre modele,
dans le cas de fonctions polynomiales de cofit et des agents non-atomiques. Nous
obtiendrons également des résultats exacts dans la situation indivisible avec des fonc-

tions linéaires de cofit, et un majorant avec des fonctions polynomiales de cofit.
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Bien que nous nous concentrions sur les jeux de réseau, la plupart des résultats se

généralisenz a la catégorie plus large des jeux de congestion.
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Introduction

We begin with an example all too familiar to many: traffic. As cities expand, traffic
congestion has become an increasing inconvenience to many motorists, particularly
those driving to and from work during heavy rush-hour traffic. A Statistics Canada
survey found that the average daily commute for residents of greater Montreal was
76 minutes in 2005, compared to 62 minutes in 1992.! Time spent in a traffic jam is
typically unproductive; the time could be better spent for work or recreation. Fuel
efficiency is also decreased, leading to higher fuel costs (and pollution). So not only
is traffic an annoyance, it has a clear-cut economic and environmental costs.

So what strategies should be considered for reducing commute times? An obvious
answer is to build more (or Wider) roads. But surprisingly, there is increasing evidence
suggesting that, quite often, this can increase traffic congestion rather than reduce it.
We will return to this in the next section with an emphatic example in the context
of a simplified mathematical model.

Another approach is to attempt to change the behaviour of the road users. There
are a number of ways to do this, for example by instigating some form of tax or fee. A
prominent example of this is the London congestion charge; motorists are charged a
fee for entering within the Central London area. Part of the effect of such a fee might
be to reduce the total amount of trafﬁé, by encouraging the use of public transport,

cycling, etc. But let us assume for the purpose of argument that we cannot reduce the

1Source: http://www.statcan.ca/Daily/English/060712/d060712b.htm
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total amount of traffic — perhaps the public transport system is already at capacity.
If we can manipulate motorists and somehow control the routes they take, can we
increase the overall efficiency of the traffic system? For example, by reducing the

traffic on a central artery?

Let’s think about this from another perspective; suppose you are driving home
from work at the end of a long day. All other things being equal, you will take the
quickest way home. Note “quickest”, not “shortest”; you will take a detour if it means
avoiding a particularly busy road. When considering the various routes available to
you, your fellow motorists are unlikely to be in your thoughts. It’s possible that taking
a slightly longer, but less popular route would reduce the average commute times, by
slightly reducing the congestion on a well-used road, and hence slightly reducing the
journey time of many motorists. But you are selfish, in the sense that your concern is
your own commute time, not the total commute time experienced by everyone. This
gives us a more quantitative way of phrasing the question of the previous paragraph.
How much of an improvement can we obtain if we are allowed to tell drivers which
route to take, compared with the situation obtained if we allow everyone to behave
selfishly? Or, to flip this around, how much do we lose if we lack control? This is
the essential idea of the so-called price of anarchy, which is a central concept used

throughout this thesis. A rigorous definition will be provided in the first chapter.

The explosion of telecommunications networks yields another motivation for the
study of network routing. As the internet increasingly becomes the communication
tool of choice for all types of media, including Voice over IP and streaming video,
bandwidth and latency requirements are increasing. Changes to the current routing

protocols and systems may be required to keep up with these changes.

Broadly speaking, this thesis will be concerned with the mathematical treatment,
using tools such as game theory, of selfishness in network routing. The problem is not

a new one; Roughgarden [14] provided a very accessible and comprehensive review of



the subject. However, this thesis contributes a number of novel results.

This thesis is organised as follows. In Chapter 1, we review some fairly recent
results, and in particular we will discuss and rigorously define the price of anarchy,
and provide proofs of some standard results in the nonatomic case of selfish routing.

In Chapter 2, we discuss the atomic unsplittable case of the classical model. We
- begin with the linear case, and review the results previously obtained by Awerbuch
et al. [1]. We then present some novel results for unsplittable low with polynomial

cost functions:

e We present a new construction which has a price of anarchy higher than previous

lower bound constructions.
¢ We prove an upper bound on the price of anarchy that matches our construction.

e We also consider the unweighted. case, and again derive an upper bound and

matching lower bound construction.

In Chapter 3, we define a new model which we have called the flow-free model.
This model tries to capture a very simple observation: a car in traffic causes delay for
vehicles behind it, but not in front of it. We define and discuss various properties of

the model, and find exact values or bounds for the price of anarchy in various cases:

e In the nonatomic case, we obtain a tight result for polynomial cost functions

(including linear cost functions).

e In the atomic case for linear cost functions, we obtain tight results for weighted

and unweighted agents.

e In the atomic case for polynomial cost functions, we find an upper bound (al-

though not a tight one).
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e In the single-commodity case under certain conditions, we show that the price

of anarchy is 1, in contrast to the classical model.

The conclusion deals principally with a discussion of opportunities for further

work.



Chapter 1

Selfish Routing

1.1 The model

The model which we describe here has been around for a long time - it was discussed
qualitatively by Pigou in 1920 [11}, and much work was done in the 1950s by Wardrop
[19] and others. The model, while fairly simple, captures a number of properties of
road networks as described in the introduction.

We will represent the network as a directed graph G, with vertex set V and arc set
E; we will allow multiple arcs. There will be some set of pairs {(s;,t;) : 1 < j < n}
which are origin-destination pairs for some motorists (which we will henceforth refer
to as users, agents, and later, players). Many users might be making the same journey,
originating from the same origin and travelling to the same destination. So let the
proportion of traffic corresponding to a particular pair (s;,¢;) be w;. Let us suppose
that there is sufficient traffic that a single car, on its own, is almost insignificant.
We can approximate this by regarding each car as being infinitesimally small; this
of course means we must have an infinite number of cars. If the traffic flow really
is large enough, this approximation will be fairly good. We will return to the case

where the users have non-negligible size later.
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We now need to model the congestion on an edge, by defining how long it takes for
agents to traverse an edge. Here we will make a significant simplifying assumption:
all players traversing an edge experience the same delay. It is by no means clear that
this assumption is reasonable in all situations, and in fact this is a primary motivation
for a new model which we will introduce in Chapter 3.

Given this assumption, it is very reasonable to require that the delay experienced
on an edge depends on the amount of traffic using that edge, and nothing else. This
can of course be different for different edges; a three lane highway will have very
different characteristics from a narrow street. So for each edge e € F, we define the
cost function f.(z) which gives the delay on edge e as a function of the amount of
traffic on that edge. We will require all cost functions to be non-negative, increasing
and continuous. We will use the term “latency function” interchangeably with “cost
function”.

Let R; be the set of s; —t; paths, and let R = U}_;R;. For any path P € R,
let 2p be the proportion of agents using path P. Then the total flow on an edge ¢ is
simply Ze = Y pcr.ccp Tp- The delay experienced by users on edge e under this flow
will then be simply f.(z.). The average journey time over all users, which we will
denote C(x), is then

C(x) = Z Zfe(a:e)xp

PeR ecP

:Z Z fe(xe)xP,

ecE PcR:ecP

= Zfe(xe)xe. (1.1)

ecE
Here, x is just the vector of all the xz.’s. This seems like a good candidate for a
value measuring the overall “social” cost of the routing. Although we have so far
measured in terms of the fraction of all agents, this is just a normalisation - setting

Z;‘:l w; = 1. This is not necessary, and we will often for example talk about, for



1.2 The price of anarchy 7

Figure 1.1: Pigou’s example. The edge labels give the cost functions.

example, the “total” social cost; this will differ from the average journey time only
by a factor of ) w;. Equation (1.1) then gives the total social cost; dividing through
by > w; yields the average journey time.

1.2 The price of anarchy

Consider a very simple example. Our network consists only of two nodes, s and ¢,
and all users need to travel from s to t. There are two roads available. The first is a
very wide highway, which can accommodate a lot of traffic; however, it isn’t quite a
direct route, and so it takes an hour, no matter what the traffic situation. The second
is a small road, with only a single lane; however, the route is much more direct. Let’s
assume for simplicity that the time taken on this road is simply proportional to the
amount of traffic on it, and choose f.,(z) = z for this edge. Figure 1.1 shows this
example, commonly referred to as Pigou’s example.

Assuming all the players are acting selfishly, what flow will the system settle down
to? Well, if the fraction of players using the narrow road is less than one, that route
will be quicker than the highway; thus any players using the highway will switch.
On the other hand, if all agents take the narrow road, nobody will have an incentive

to switch, since both routes take exactly an hour. In the language of game theory,
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this flow is a Nash equilibrium. In fact, it is a pure strategy Nash equilibrium (often
abbreviated PSNE), since each player picks a specific strategy (the narrow road). It
can be shown [2] that a PSNE always exists in this game.

So the Nash equilibrium is obtained when all the players are taking the narrow
road, in which case everybody takes an hour to get to work.

Now suppose we are able to force people to take a specific route. What’s the most
efficient solution? Suppose « is the fraction of traffic that takes the narrow road, so

a 1 — o fraction takes the highway. The average commute time is then
of,(@)+ (1 -a)f,(1—a)=a"+1-a.

This is minimised when o = %, in which case the average commute time is ;31'- hours.
So for this specific instance of the network game, the ratio between the average
commute time in the Nash equilibrium is % the average of the optimal solution. We
will call this ratio the price of anarchy. The concept was first defined in [9], where it
was dubbed the coordination ratio; the name “price of anarchy” was coined in [10].
Actually, there may be more than one Nash equilibrium; we define the price of
anarchy to be the ratio of the worst (highest cost) Nash over the optimum cost.
The price of anarchy is % for Pigou’s very simple example. What about different
networks, and different cost functioﬁs? How large can it get? Well, if we don’t
restrict any further the choice of cost functions, it can be arbitrarily large. To see
this, consider again Pigou’s example, but replace the cost function for the narrow road
with f.,(z) = z¢, where d is some integer. The Nash equilibrium remains the same,
with all agents taking the narrow road. It can easily be checked that the optimal flow
x* is obtained by routing a fraction o = (d + 1)71/% along the lower link, and yields

a cost of

C(x*) =1—d(d+ 1)

1 Actually, in the network game as defined so far with infinitesimally small agents, all Nash have

the same cost [2].
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So the price of anarchy is (1 — d(d + 1)71~%/4)~! which tends to infinity as d — oo.
For this reason, we will concentrate on specific classes of cost functions. In this thesis,
most of our attention will be on linear cost functions, and polynomial cost functions
where some maximum degree is prescribed. We define the price of anarchy of a set of
functions (such as linear functions) to be the supremum of the price of anarchy over

all network games with cost functions in that set.

1.3 Bounding the price of anarchy

In the original paper [16] of Roﬁghgarden and Tardos, the price of anarchy was derived
in the nonatomic case for linear cost functions, and in [12] Roughgarden did the same
for polynomial cost functions. The proofs however are somewhat involved. Correa,
Schulz and Stier-Moses [5] give a much shorter proof. A variation of these ideas will
be used to prove some of the novel results of this thesis later, so we demonstrate their

proof here.

Theorem 1.1. The price of anarchy with linear cost functions and nonatomic agents

4

s 3

Proof. The starting point of the proof is the variational form of the requirement for

a Nash equilibrium: A flow x is a Nash equilibrium iff

Zfe(az:e)(ace —2,) <0  for all valid flows x'. (1.2)

ecE

This well known result can be found in [18]; we will not rederive it here. So let z* be
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fe(we) /

fe(x:)

Y

Ze
Figure 1.2: A visual proof of Equation 1.3

the optimal flow; we have by the above

C(x) < Z fe(ze)ze

ecE

=Y fe@)al + ) (folwe) — felab))z:

ecE ecE

< C(X*) + Z (fe(xe) - fe(‘TZ))x:,

ecEixt<ze
since f. is increasing. Now consider Figure 1.2. The area of the greyed rectangle is

equal to (fo(z.) — fo(x*))x; this is clearly at most 3 of the area of the upper triangle,

which is in turn at most % the area of the large rectangle. This has area fo(ze)Z.. So

C(x) < C(x") + EE2;< 3 fe(@e)ze (1.3)
< O(x") + 50():), (1.4)

and so i
C((;)) <5 (1.5)

as required.
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So we see that the very simple example of Pigou actually yields the maximum
possible price of anarchy when only linear cost functions are allowed, for any network
topology.

The same method applies to polynomial latency functions with non-negative co-
efficents and maximum degree d; some calculus is required to calculdte the maximum

ratio of fe(we)x. to (fe(z.) — fe(z%))z:. The price of anarchy in this case is
p=(1-d(d+1)747, (16)

again the same as the two-link example with cost functions a and z% on the two links.

1.4 Atomic games

Up until now, we have assumed that an individual agent is infinitesimally small. What
- if this is not true? There are two fairly natural ways to modify the model to handle

this case, although only the first will apply to the example of traffic flow.

Unsplittable flow

The first variant is quite straightforward. Instead of an infinite number of infinitesimal
agents, we have a finite set J of agents (let n = |J|). Each agent is associated with
a source s; and sink ¢; aé before. Now however, each agent has a specified non-zero
size w;. A feasible routing is then defined as P = {Py, P, ..., P}, where each P; is
a path from s; to ;. A

In this model, the agents are unsplittable; they take only one route from their
source to their destination. This makes sense for traffic modelling, where each agent
corresponds to a car. The different sizes w; might be used to model trucks and buses,

or all the w;’s might be set to 1.
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The flow vector x is easily determined from P:

Te = E wj.

Je€P;

We will define the social cost as in the nonatomic model, by Equation (1.1):

C(P) = fe(e)me

= Zfe(xe) Z Wj
= Z ( Z fe(xe))wj
=D 4(P)u;, (L.7)

where £;(P) is the latency experienced by player j under routing P. Note that this
means that players’ contribution to the total cost is proportional to their weight. This

is not the only possible option - one could define the social cost to instead be

C'(P) =) 4(P). (1.8)
jeJ

Which is appropriate depends on exactly what we are modelling and what the agents
represent. For example, if agents are cars, and larger w;’s represent larger vehicles,
we probably don’t want to give extra consideration to larger vehicles in our cost, so
C' would be the appropriate cost. But suppose each agent represents a large bundle
of mail, that must be transported as a unit, and the w;’s represent the number Qf
letters in the bundle. In that case, it makes sense to consider the social cost to be
the average time taken per letter, not per bundle, and C' is appropriate. We will only
consider C as defined in (1.7) for this thesis, following Awerbuch et al. [1]. We will

spend a lot of time discussing the nonatomic unsplittable case in Chapters 2 and 3.
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Splittable flow

. In éontrast, the agents in this second atomic variation are allowed to split their flow.
This doesn’t make much sense in the context of road networks (at least not if we
associate each agent with an individual motorist), but it has applications in other
areas. Imagine a number of users downloading some large data file over the internet
(movjes for example). The data is not transferred as a single chunk; rather it is split
into packets, each of which can be routed independently through the network. Each
user wants to minimise the time required to download the entire file; they are not
interested in individual packets. This could have an effect on the optimum routing;
it may be bietter to route some packets along a longer route to reduce congestion for
the remaining packets.

The behaviour in this case is somewhat counterintuitive, as can be attested by
a number of incorrect results in the literature. Intuitively, it might seem that the
price of anarchy in this case should be no larger than in the atomic case; a user is at
least trying to enforce the “social optimum” for the flow under her control. It seems
plausible that this should push things in the direction of the global social optimum.
In fact, Roughgarden [15] and Correa et al. [5] both independently published proofs
that the price of anarchy in the atomic splittable case could not exceed that of the
nonatomic case. As was demonstrated by Cominetti et al. [4] however, the proofs are
incorrect. They give the following example with linear cost functions where the price
- of anarchy exceeds 4/3, the upper bound in the nonatomic case.

Consider Figure 1.3. There are infinitely many nonatomic users with total weight
1 routing that want to route from s; to ¢;, and there is one player, controlling 1 unit
of flow, routing from s; to ¢;. (We have a mixture of atomic and nonatomic users
in this example; if desired, replacing the nonatomic players with a sufficiently large,
but finite, number of atomic players will still provide an example exceeding 4/3).

It can be verified that the routing where all the flow of the nonatomic players, and
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Figure 1.3: An atomic splittable game with linear cost functions that has a price of

anarchy larger than 4/3.

0.9 of the flow from the atomic player, is routed through the central edge is a Nash.
This has cost 3.89. On the other hand, the optimum flow is obtained by routing
all of the nonatomic players along the left edge, and all of the flow from the atomic
player through the centre. This has a total cost of 2.9, yielding a price of anarchy of
~ approximately 1.341, which is slightly larger than 4/3.

1.5 Congestion games

The games we have considered up until this point have all been tied to a network
structure. Is there a way to generalise these models to versions that don’t have
this underlying structure? There is, and the generalised games are called congestion
games. We will define the congestion game equivalent of the atomic unsplittable
network game; it will be clear how to generalise other variants.

So again we have a set J of players, each with weight w;. We also have a set
of items I - these should be considered the equivalent of the edges in the network

model. A cost function fi(z) is associated with each item 7 € I, exactly as in the
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network game. But now, each player has a set of possible strategies S;, where each
strategy is some subset of the items. There is no restriction on what subsets can be
specified as a players allowed strategies, or how many strategies a player may have.
Now notice that a network game is a special case of a congestion game where the
strategies of player j are exactly the subsets corresponding to s; — t; paths. These
games are normally referred to as weighted congestion games in the literature, since
congestion games were first considered in the unweighted case where w; = 1 for all j.

Essentially all of the results we obtain in this thesis will apply to both network
games and the more general congestion game equivalents. We will generally prove
results in terms of network games, but it will be clear that the network structure is

not used.
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Chapter 2

Unsplittable Flow

In this chapter, we consider in detail the atomic unsplittable model defined in the
previous chapter. After deriving a useful inequality that holds for all Nash flows, we
will review the linear case, where tight results were already available. The bulk of the
chapter will then be devoted to demonstrating a tight upper bound in the polynomial
case, which is a new result.

We will only consider pure Nash equilibria in this chapter. If the cost functions
are linear, a pure Nash always exists, as was demonstrated using a potential function
approach [6]. Allowing for more general cost functions, a pure Nash need not exist;
in Goemans et al. [7] a construction with no pure Nash is given using quadratic cost
functions. In [1], both pure and mixed strategy Nash equilibria are considered. We
will only consider pure Nash equilibria; most likely, the results for the polynomial

case could be generalised to mixed equilibria without too much difficulty.

2.1 The Nash condition

Suppose P is a Nash flow. This means that any agent j € J has no incentive to

switch, since the latency along any s; — ¢; path is no smaller than the latency along
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P;, the path taken at Nash. If player j tried to switch to some other path P', his

latency would be

b= flz)+ Y, felmetwy),

BGPjnP/ eGP’\Pj
since he would increase the flow along any new edges that weren’t already part of P;.
Applying this with P’ = P}, the path of agent j at some optimal solution P*, we

obtain

Now using (1.7),

C(P) =Y 4;(P)u;

jeJ

< Z Z fe(ze + wj)w;. (2.1)

jE€J e€P}

We will sometimes use the notation C;(P) for the portion of the total cost attributable

to player j; this is equal to £;(P)w;.

2.2 Linear cost functions

A tight result in the case of linear cost functions was obtained by Awerbuch et al. [1],

which we briefly review here.

Theorem 2.1 (Awerbuch et al. [1]). The price of anarchy of an atomic unsplittable

“network game with linear cost functions is no more than (3 + v/5)/2.
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Proof. Let fe(x) = aex + be.

C(P) <D folze +wjw;

jedJ eEPj*

= Z Z (e + wj)w; + bew;.

€€E jie€P;

. * __ . *2 2
Now since z¥ = zj:eepj,_. wj, and so also z3% > Zj:eepf wy,

C(P) < Z QeTeTs + ety + bixh

13
= E AeZeT, + E (@ez] + be )z}
ecl ecE

The second term is just C(P*); apply Cauchy-Schwartz to the first:

C(P) < \/Z Qo2 Z a.z:2 + C(P*)

eckE ecE

< Z(aexe + be)-re Z(aefﬁé)x: + C(P*)

134 ecE
= y/C(P)C(P*) + C(P").
Write o = 4/C(P)/C(P*); then dividing the above by C(P*),

?<a+l.

Thus « < (v/5 +1)/2, and so finally

O

This upper bound is tight, as is confirmed by the construction shown in Figure 2.1.

There are four players; the four (s;,t;,w;) triplets are, in order, (u,v, ), (u,w, ¢),
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w

Figure 2.1: A network game with the largest possible price of anarchy when restricted

to linear cost functions.

(v,w,1) and (w, v, 1). Here, ¢ is the golden ratio,(1+ v/5)/2. Tt can easily be checked
that the strategy profile defined by the paths

P, = uwwv, P, = uvw, Py = vuw, Py = wuv
is a Nash equilibrium, and has cost 4¢% + 4¢ + 2. The optimum solution is
P! = uv, P} = uw, P; = vw, P} = wv,
which has cost 2¢% + 2. The price of anarchy of this game is thus
C(P) 44 +4¢+2 ¢’ +3¢+2 3+5

CPY~  242+2 ¢ +2 =otl=—3

2.3 Improved bounds for the unsplittable case

In this section, we consider the unsplittable atomic case with polynomial latency
functions of maximum degree d. Actually, we consider cost functions in Cy, defined
as the set of polynomials of maximum degree d with non-negative coefficients. The
requirement that the coefficients be non-negative will be assumed from here on.
Awerbuch et al. [1] showed that the price of anarchy is (d%?) and O(2%d**!). The
lower bound by Christodoulou and Koutsoupias [3] of 2(d41=°()) for finite congestion
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games can also be modified to provide a lower bound for unsplittable network flow.

Let ¢(d) be the positive real root of the equation (z 4+ 1)¢ = 291, so that
(p(d) +1)? = p(d)**! (2.2)

is satisfied. We will write simply ¢ if there is no confusion over the value of d. We
will show that ©?*! is a tight upper bound for the value of the price of anarchy, and
also give constructions that obtain this upper bound. It is interesting to compare
with the nonatomic case, where the asymptotic behaviour of Equation (1.6) is easily

found to be
d
nonatomic — — . 2.3
Dnonatomic = O (m d) (23)

Although computing the exact asymptotic behaviour of %! seems to be somewhat

problematic, it can easily be shown that for any e > 0,

d d
m<§0<(1+6)m

for d sufficiently large. It follows that the price of anarchy in the unsplittable case

satisfies
p=o0((1+€)?(d/Ind)**") and  p=w((d/Ind)*).

So, roughly speaking, p is about the (d + 1)’th power of pponatomic - @ considerable
difference.

We will require the following identities that follow from the definition of ¢:

@+ 1=t/ : (2.4)
14! = (2.5)
(p—l/d + (p—l—-l/d =1 (26)
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2.3.1 The lowerbound construction

We construct a congestion game with price of anarchy ¢(d)%+?.

Let the set of items be I = Iy U I, where I, = {0,1,...,d}, and I, = {0,1,...,d}
is a disjoint copy of Io. Let the set of players be J = JyU Jo, where Jo = {0, 1,...,d}
and Jo = {0,1,...,d}. We also define a bar operation in the obvious way, so 0=0,
etc. and {A} = {4}.
The player weights w; are defined by
w; = w; = YN/ vj e {0,1,...,d -1}

wg = wg = 1.
The cost functions f; are defined as f;(z) = a;x?, where

aoza-=1
0

a; = a; = (¢ + 1)1 Vie{1,2,3,...,d}.

The set of allowed strategies for player j € J is S; = {5}, S;} where

S;={0,1,...,5} Vi€ Jo
5= {0,1,...,7} Vi e Jo

S;={+1} vj € Jo\{d}

St ={j+1} Vi € Jo\{d}

Si =10}

S5 = {0}

Let P = {S;:j € J} and P* = {S} : j € J}. Once our construction is complete, we
will show that P is a Nash equilibrium; P* will be the optimal solution.

Let z; and x} be the total utilisation of item ¢ under P and P* respectively. We
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first calculate z; for z € I

d—1
T = E Wk + Wq
k=i

d
=Y pHi4q

k=i+1

_ gy (L@ O
— )t

. 1 — p-1+i/d
= - +D/d (_(p:f__ﬁd__) +1  from (2.6)

= pl~i/d (2.7)
Thus for j € Jp,

f(z5) = fi(zs) = as(p*~9/%)?

J=0

(p+ 1)t j>1,

and hence

J

Ci(P) =w; Yy, fulzs)

j
= w, Z QA 1HE=1/d |

/i
=, of 1(m + o

i 1) + god] using (2.5)

el
. Q@
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Define PU) = P\S; U S;. For j € {0,1,...,d — 1}:

Ci(PY) = w; frrr(@smr + w))
= w; f3+1(2;)
= w;(p+ 1)
= wjapj(d”"l)/dgod_j by (2.2)
— i,

Also,

Ca(PDY = wyfs(z5 + wa)
= wy(yp + 1)d

= wap®™ by (2.2).

Thus C;(P) = C;(PYW) for all j € Jo, and so (by symmetry) for all j € J. So at P,
no player has an incentive to switch to 57, and so it is a Nash.

Finally, notice that for all i € {1,2,...,d},

m_ 1~/ B
.T,‘:‘ Wi—1 QD—i/d ¥
Additionally,
n_¢_,
zy 1 '

So (by symmetry) z;/z} = ¢ for all ¢ € I, and so the price of anarchy is

01 A1 rd+1
D e %% . D ier 6P T d+1

wd+l TR O
Ziel aix; Eiel aiZ;

The construction can easily be modified to give a network game. Figure 2.2 shows

p:

a possible construction for d = 2. Arcs labelled 1,1 etc refer to the items of the
original congestion game, and have the same cost functions; dashed arcs have zero

cost. Each player j € J requires a flow of w; from s; to t;. It is easy to check that
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sl.\"x\ ’¢t2
N PEap,
-7 2

\

3"‘"““%‘—0*4'—1—7—2»-----“‘7%

\J ~
NS % ’
So . \\ I\ S N, \ e , tl
’

Figure 2.2: A network game version of the lower bound construction for d = 2.

the s; — t; paths available to player j correspond exactly to the allowed strategies in

the congestion game construction. It is also easy to see how this can be generalised

to arbitrary d.

2.3.2 A matching upper bound

The proof of the matching upper bound requires two steps; we first show that the

price of anarchy does not decrease if we restrict the cost functions to be in the set

Cy = {az®: a > 0};

we then use a sequence of inequalities partially based on the upper bound proof in

[1]-

Theorem 2.2. Given an arbitrary weighted finite congestion game G with cost func-

tions in Cq which has a pure Nash equilibrium, there exists another congestion game

G with cost functions in C; where the price of anarchy is at least as large.



26 Unsplittable Flow

Proof. Denote the set of items by F, the players by J, and the set of strategies
available to player j € J by S;. As usual, denote the cost functions by fe(z) and the
player weights by w;.

Let the price of anarchy of G be p. Pick a Nash equilibrium of G with maximal
cost, i.e. p times the cost of the optimal solution. Let S; € &; be the strategy
that player j plays in this Nash equilibrium, and let S} be the strategy player j
plays in the optimal solution. Note that any other strategies in G are superfluous—
~ discarding them does not affect the price of anarchy. As usual, let P = {S;:j € J},
P*={S;:je€ J}and PU) = P\S; U S;. By Equation (3.2), the Nash requirement
yields C;(P) < C;(PW).

We now define a new game G. Define

F={ec€E:z. <z}

Fjsz{eEF::vgj)gxz}
and
FJ! = F\F}.

Intuitively, at the Nash flow, player j makes a “small” increase (or even a decrease) to
elements of F¥ upon switching to S7, but a “large” increase to elements of F; (which

also implies that F} C S¥). Also let
F'={:eeF}

be a disjoint copy of F; for any U C F, we will use U’ to denote {¢’ € F': e € U}.

Also, define a new item ¢, for every j € J. The item set for G will be

E=EUF Ut jeJ}.
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The cost functions f,(z) are defined as follows:

folz) = fu(z.) (%)d Ve € E\F, (2.8)
= @) (2)" VeeF, (2.9)
= folze) (2 ) — fulz | Ve € F, (2.10)
=3 £@9) (2 ) Vi€ J. (2.11)

eeF’

We should verify that fe/ € éd; to see this, we first define
fe(w d i
he(z) = ——zid——)— = Zae,im <
=0
he(z) is clearly a non-increasing function. Now for any e’ € F,
7 fe(xe) fe(m )
fe’(x) = ( -’Iig w*de
= (he(z.) — he(x:))xd

S éd:

since z, < z} for e € F and s0 he(ze) > he(z?).

Define the strategy set S'j for player j in (3 as follows: S'j {SJ, SJ*} where
;=8 U(FnS),
Sy = SI\F? U {t;).

We now claim that P = {§; : j € J} is a Nash for the new game. We use the

notation C to refer to costs in @, and X for the Nash flow vector.

61(75) = wj Z fe(‘f’e)

eGS'j

Z fe(xe)+ Z fe(-’re)+ Z fe(xe)

EGSJ'\F eGS,ﬂF e'G(SjﬂF)’
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Combine the last two terms and apply (2.10):

Define PY) = ’p\S] U S'J* analogously to PY; the strategy profile where player j
plays the optimal strategy, and all other players the Nash strategy.

6,(P9) = uy Y £69)

Gk
eESj

=w; | > fel@D)+ fiy(w)

| eESI\FY
A~ . N . w d
—uy | Y L@+ Y L) (%)
_eeS;.‘ \Fjs ecF;

—uy | Y hle) () + T R (£) + 3 )

| ecS3\F ecF! ecFy

by the definition of f, and since SI\F} = (S;\F) U F}. Now since 29 > g, for all

e € 53 (and hence Sy\F), and 29 > forall e € F}, and h(z) is decreasing,

Ci(PD) Zwy | D fold@)+ Y fele@) + Y fe(fvff))}

e€SH\F e€F} ecFy

= C;(PY).

Since C;(PY) > C;(P) in G by the Nash requirement, C;(PD) > C;(P) as required.
So P is a Nash.



2.3 Improved bounds for the unsplittable case 29

Since C(P) = C(P), to show that the price of anarchy of G is no smaller than p
we must show that C(P*) < C(P*).

Ci(P*) = w; ) fe(#?)

eeg*
= Wy j{: j; *’f@ Uh)
| eeSy\F?
o\ 4 ) .
=w; | 3 fle) (£) + 3 L@+ D £29)
| e€SI\F eeFl ecF}

Now z, > z? for e € S\ F.and z* > :cgj ) for e € F?, and so since h.(z) is decreasing
e Jj e J

we have
Cj(ﬁ*) < wj Z fe(z}) + Z fe(z )+ Z fe($:)
e€ST\F eEF} ecF?
= Wj Z fe(zg)
e€sS*
7
= G;(P").
Thus we have achieved the required reduction. O

This means an upper bound on the price of anarchy with cost functions in Gy will
apply to general polynomial cost functions in C4, so we restrict our attention to cost

functions in C; from now on. We begin with a useful lemma:
Lemma 2.1. Fora,b>0,d>1and0<~y<1,

(a+b)? <y + (1 — )%t (2.12)
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Proof.

vy
a\? b d
< -1 +({1- (———) by convexit
v(,y) -2 (= (by convexity)

Cl

Theorem 2.3. For any weighted congestion game G with cost functions in Cgy, the

price of anarchy is at most L.

Proof. We begin with Equation (2.1):

P) < Z Z fe(Te +wj)w; (2.13)

eeE j:eer*

= Z Z ae(ze + w;) w;. (2.14)

e€lE j:eePJ’.“

We now apply Lemma 2.1, with a = z, and b = w;, and ¥ to be determined later:

P) <Y S [aer'tadu; + a (1 — 7))

eEEj:eEP’.*
1d§aemx+ 1d§ae*d+1
ecE eckE

We now apply Holder’s inequality,

o B
Zu“vﬂg (Zue) <Zve> , at+pf=1
to the first term, with a = d/(d+1), 8= 1/(d+ 1), ue = aez?™ and v, = @,z to
obtain

d/(d+1) 1/(d+1)
C(P) < ’Yl_d (Z Qo d+1> (Z aex:d-i—l) + (1 _ 7)1_dC(P*)

eckE ecl

= AA-dO(P)YED (P )Y@ 4 (1 — 4) =40 (P¥). (2.15)
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1/(d+1)
Now let z = (&(7?)) and divide by C(P*) to obtain
2L < ylmdyd (1 y)1ee,
let C(Z) — zd+1 _ 'yl‘dzd _ (1 _ ,y)l—-d.
We now choose v = ;%. Then
+1\¢? _
C(p) =™ ~ (%) ¢! = (p+ 1)1
=™ — (o +1)" o — (p+ 1)+
=™ —(p+1)
by the definition of ¢, and so ¢ is a root of . Also,
d—1
C'(2) = (d+1)2% - (%1) dz* !
2
d-1{ ¢, 4
= d+1)z — d
z (( + 1)z o1 )
> d2* 1 (2 — )
>0 for z > o.
Thus ¢ is the largest root, and in order to satisfy (2.15) we must have
CP) _ o
C(P*)
U

Combining the two theorems, we obtain

Corollary 2.1. Any weighted congestion game with polynomial cost functions has a

price of anarchy of at most @1,

a
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2.4 Unweighted games

We now consider the case where we restrict w; = 1 for all players j. Our bound is
more precise than the d®@ bound of Christodoulou and Koutsoupias [3], and is again
tight. The construction is actually quite different from the weighted version, which
is perhaps surprising.

By writing (2.2) in the form (1+¢71)¢ = ¢, it can easily be shown that ¢ is never
an integer. Let k = |¢]. Then define «, 8 by

o= (k+1)% — k4! (2.16)

B=(k+ 1) — (k+2)% (2.17)

Since 7% . (24! — (z + 1)¢) = 2 — (1 + z71)? is increasing and has ¢ ¢ N as a root,

o and 3 are both strictly positive. We will show the following:

Theorem 2.4. A tight upper bound for the price of anarchy for unweighted network
(or congestion) games with cost functions in Cq is
B

k4 1)¢H 4 &= gdtl 2.18
( ) +a+ﬁ (2.18)

(67

a+pf

Proof. We begin with the lower bound construction. Let the players be J = Jo U Jo,
with

JO = {pl)p27 ceyPry 41,92, - - - 7qk+1}-

Let the items be I = Iy U I, with

IO = {Ul,’u,g, vy Uy, V1, V2, - - avk‘+1}'
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Define the cost functions as f; = a;z¢, for all i € I, where:

k d

Y <k

e ﬁ(k+1) '

. 1 d
o= (557)
k+1\*

o= _— <

G O‘(k+2) b

The cost functions for items in Iy are defined symmetrically.

We define the strategies for players in Jy as follows:

Sp; = {u;j 11 < k+1} i<k
Sg; ={vi:i<k+1} j<k+1
Sp; =1t} J<k
Sy =19} i<k
Spon = {Tkr1, Vo }
Again, for players in Jy we define the strategies in a symmetric fashion.
We now show that the strategy distribution P = {S; : j € J} is a Nash. First,

for all j <k,

k+1

Cp;(P) =D ay b
i=1

_ 1
T (B+1)d

= Bk, using (2.16).

Gy, (PP)) =3 (—-k——>d (k + 1)

(k- k + af) K

k+ 1
= Bk?.
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Also,

k+1
Cyy(P) = ay,(k +1)*
i=1
=a(k+1)%  using (2.17).

, k+1)\°
(@)Y — L d
Cq; (P'%7) a<k+2> (k+2)

= a(k +1)%
Finally,
Coir(P) = a(k + 1)%
Coprr (PO = ay (k4 1) + ay,,, (k+2)*
= of + a((k+ 1) - B)
= a(k + 1)%

So the Nash requirements are satisfied. The optimal flow is obtained by taking all of

the S) strategies, where every item is used only once. Thus the price of anarchy is

0= 25:11 oy kTt + Zf:ll avi(k + 1)d+1
- k+1 k41
Zi:1 Qy; + Z'L:l Qv;
_ Bkt + alk + 1)d+1
B+«

bl

as required.

There is some intuition behind this construction. There are two groups of items;
the u;’s are used by k players at Nash, and the v;’s by k+1 players. Because k+1 > ¢,
the g; players can’t quite fit their optimal strategies within the v; group; on the other
hand, because & < ¢, the u; group has some “extra space” available. The cost
functions are scaled in the different groups to match the “excess” of the v;’s with the
amount of “extra space” from the u; group.

We now provide a matching upper bound. First a lemma; the proof is annoyingly

technical, and has been relegated to the appendix.
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Lemma 2.2. Forallr,s € N,
(r +1)%s < prdt! 4 pstt

where

(k+2)¢— (k+1)¢ J L
= (k4 D) gL v=(k+1)" — pk*.

We will again assume that the transformation of the previous section has been
applied, so that all cost functions can be written fe(z) = a.z%. We begin again with

(2.13):

C(P) < Z Z Je(ze + wj)w;

jeJ eeP]?‘

= Z ae(Te + 1)%z?
e€E

< Z ae (pzdt + vzlttt)
ecE

= pC(P) +vC(P").

Now

- (k+2)y—(k+1)*
- (k + 1)d+1 — fgd+1
(k+1)H - (k+1)¢
(k + 1)d+1 — g+
a+pf
- (k + 1)d+! — fa+1°

=1
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Thus
C(P) v
<
CP*) " 1—up
(k + 1) — ukd*!
1—p
_ a+ (1 ‘“/J:)kd+1
I—p
_ a(k + 1)‘”_:/6— kdtt T
e
a g
= k+ 1) iy
a+ ﬁ( )T+ oa+(

This matches the lower bound construction.
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Chapter 3

The Flow-free Model

In this chapter, we will consider a new variation on the “classical” model that we have
considered so far. We will first motivate and define the model, and then proceed to
some results on the price of anarchy, first for nonatomic agents and then for atomic
agents. We will consider linear and polynomial cost functions, and most of our results

will be tight.

3.1 The model

The classical model considered in the previous chapter has the property that all
players using an edge experience the same latency. This makes sense if we think of
the players as continuously routing flow. For example, the model is a reasonable one
for users streaming audio or video across the internet. But suppose we are interested
in rush hour traffic. Here, the assumption of equal latency is no longer as reasonable;
cars that use a road earlier will cause congestion to later traffic, but not the reverse.

We provide a very simple modification to the classical model which incorporates
this effect. We will first give an informal description of the model in the nonatomic

case, where all players are infinitesimally small. In the classical model, on an edge
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fe(ze)

Fo(z9)

NE)

Te

Figure 3.1: The cost is defined by the area of the greyed region in our new model, as

opposed to the area of the large rectangle.

with utilisation z., all players pay a rate of f.(z.), giving a total cost of fe(z.)z. for
that edge. In our new model, the players on an edge have some priority ranking. For
example, the priority could be based on the time at which the agents arrived at the
start of the edge; agents who arrive earlier get higher priority. For any agent j, let
79 be the amount of flow with higher priority than j along edge e; this depends on
the current routing of the players. We now dictate that player j’s latency on edge e is
not fe(x.) as in the classical model, but fe (ac,(a] )). The total contribution to the social
cost by edge e will then be [ f.(z)dz. See Figure 3.1 for a pictorial representation.
The area of the greyed region is exactly the above integral.

We now define the model rigorously. We begin with the atomic unsplittable case,

since this is actually easier to define (although more difficult to analyse).

The atomic case

As before, we have a directed network G = (V, E), and n players J = {1,2,...,n}.
Player j wishes to route traffic of size w; from vertex s; to vertex ¢;. As before, each

edge has an associated cost functions f.(z). But in addition, we must define some



3.1 The model 39

kind of priority scheme on the edges. We will allow this to be very general - the
priority ordering on an edge can depend arbitrarily on the current routing P. Later
we will look at special cases for the priority scheme. If player ¢ has lower priority
than player j on edge e under routing P, we write i <, p j. For a fixed e and P , the
relation <. » must define a total ordering of the players using edge e; this is the only
restriction we impose. If it is clear from the context what edge or routing is being

referred to, we will omit it to avoid notational clutter.
Let us now consider some particular priority schemes that seem natural.

The global priority game: This is the simplest possible case; the ordering is in-

dependent of the routing, and is also the same for all edges. In other words, there is

a fixed priority ordering of the players.

The fixed priority game: A more general model than the global priority one, here

we still insist that the priorities are independent of the routing, but we allow different

| orderings on different edges.

The timestamp game: This particular variant was the inspiration for the flow-free

model. The priorities of agents are determined by their arrival times at the start of
the edge. Associate with each agent j an additional value 7; that represents the
starting time of that agent. Now take a specific routing P = {P,, ..., P,}. The time
agent j arrives at a vertex u € P; is then 7; plus the time taken to traverse all the
edges on the subpath of P; from s; to u, denoted Pj[s;,u]. Of course, the latency of
player j along an edge in Pj[s;, u| depends on the priority of j on that edge, which
in turn depends on the start times of other agents. So it is not perhaps completely
clear that we have enough information to uniquely determine the priorities. To see
that we do, imagine simulating the game. If we take the player 7 with the smallest
value of 7;, that player must have the highest priority on the first edge e; of her
path. So we can imagine moving her to u, the second vertex of her path F;. Her

timestamp at u will be 7; + fowj fe:(2)dz. Now we continue by again taking the player
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with the lowest timestamp (this could be the same player as in the first step, if the
updated timestamp is still lower than that of the other players). When a player moves
in our simulation, she will always have a priority lower than any players who have
already moved along that edge, but higher than those yet to move along it. When
the simulation terminates, we have the priorities we require.

There is also the small difficulty of ties - two agents taking the same edge who hap-
pen to have the same timestamp. We resolve this by simply prescribing a tie-braking
order on the players. Alternatively, perturbing the starting times by sufficiently small
values will break the ties without modifying the orderings.

We can also consider the congestion game generalisation of this flow-free model.
The generalisation is exactly analogous to the classical case - we simply remove the
network structure and allow strategies to be arbitrarily specified subsets of items. Of
the three specific models mentioned above, the first two generalise to this context;
the timestamp game does not have a natural generalisation.

As in the informal discussion, let ¢ (P) be the amount of flow on edge e with a

higher priority than player j (under routing P), i.e.

xgj)(P) = Z w;.
itie,pJ
C;(P) is again the portion of the total cost attributable to player j, which is
2 (P)+w;
oGP =Y / ) fo(x)dz. (3.1)
ace])(’P)
eckE

For P to be a Nash, we must have for any player j and any s; — t; path P/,
C;(P) < C;(P") (32)

where P’ = P\P; U P'. This is simply a restatement of the condition that player j

cannot switch to a cheaper route.
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The nonatomic case

In the limit as maxw; — 0, we obtain the nonatomic case, where the agents are
negligibly small. Intuitively, there is not much difficulty here, and all of the specific
models defined above for the atomic case would seem to carry over easily to the
nonatomic case. We have to be somewhat careful if we are to define this rigorously
however. Our treatment, which requires a little measure theory, is inspired by a 1973
paper by Schmeidler [17], which first discussed nonatomic games. |

We denote the set of playefs R by an interval [0, N], where N € R*. The choice
of N is completely irrelevant, and could be normalised to 1 if desired. We also have
two measurable functions s,¢ : R — V, which specify the origin and destination of
each player respectively. Finally, we define a priority scheme exactly as before; for a
specified routing P, <. p is a relation defining a total ordering on edge e.

The value a:f(f)(P), the amount of flow on edge e with higher priority than player
r under routing P, still makes sense in the nonatomic case, although we must define

it differently:
V(P = [ fodp, (3.3)

L,
where L, = {g € R : ¢ >p r}. The integral is a Lebesgue integral.! = The total

latency experienced by player r, i.e. the time taken for the player to traverse from

the source to the sink, is

LGPy => f. (= (P). (3.4)

e€P,
Analogously to the atomic case, the requirement for P to be a Nash equilibrium is

that for any r € R and any s, — t, path P/,
£(P) < 4,(P) (3.5)

where P’ = P\P; U P'.

1We need L, to be Lebesgue measurable, which implies a requirement on the ordering s; any

even remotely reasonable ordering will satisfy this very technical requirement however.
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The above is more complicated than the definition of the nonatomic case of the
classical model. There is a good reason for this. In the classical model, all agents
with the same origin-destination pair are essentially indistinguishable. Because of
this, essentially everything of importance can be defined in terms of the flow vector
x. In our model, this is not the case; there is no way to formulate the Nash condition,
for instance, in terms of just the flow, since the priority scheme can encode very
complicated dependence on the routing. Hence our model is more reminiscent of
general nonatomic games.

Generalising to congestion games is done analogously to the atomic case.

Existence of pure Nash equilibria

We mention a few existence and nonexistence results regarding pure Nash equilibria.
First, an unsurprising negative result. In the atomic unsplittable case, allowing gen-
eral priority schemes, there need not be a pure Nash. In particular, the following is
an example in the fixed priority game. Consider the network shown in Figure 3.2.
The edges in this network are undirected, and flow in either direction contributes to
the congestion on an edge (we will return to this point shortly). There are two users,
each of size 1, with source-destination pairs (s1,t;) and (se, t2) respectively. All edges
have cost function f.(x) = z. The priorities on each edge are shown in the figure.
It is easy to see that no matter which direction each of the two players choose to
route their flow, the player with lower priority on the single edge these routes have
in common will have an incentive to change to the other route. Thus the game has
no pure Nash.

Of course, we have not explicitly allowed undirected edges in our model. But we
can replace each of the undirected edges in the construction with the widget shown
in Figure 3.3.

Now for a positive result: in the global priority model, even in the atomic un-
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—2-1— 9
(2 t

Figure 3.2: A fixed-priority game with no pure Nash equilibria.

Figure 3.3: Widget to imitate an undirected edge e = (v, w) with directed edges

(dashed arcs have zero cost).

splittable case, there is always a pure Nash (as long as the cost functions are at least
non-negative and increasing). This can be seen in the atomic case by an explicit
algori.thm to construct the Nash: simply go through the agents in priority order, and
route each along a shortest path given the congestion effects of the higher priority

agents that have already been routed.

It should be possible to show existence in the nonatomic case under some weak
assumptions on the priority scheme. In particular, we conjecture that a pure Nash
always exists, as long as the priority scheme is such that x,(f) depends continuously

on the flow P, for every edge e and player r.
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A correspondence with the classical model

The optimal flows in the flow-free model can be linked quite nicely with the classical

model, especially in the nonatomic case:

Lemma 3.1. Given an instance G = (V, E) of the (atomic or nonatomic) flow-free
network game with cost functions f., optimal flows are ezxactly the same as the optimal

flows in the classical game on the same network, but with cost functions

. 1 [*
flz) =2 / fu(2)dz. (3.6)
T Jo
Proof. This follows by noting that the cost of a flow x in the flow-free model,
Clx) =) / fo(z)dz,
ecE VO
is exactly the same as the cost induced in the classical model with cost functions fe:

C(x) = Zfé(xe)me = Z /Owe fe(z)dz.

ecE ecE
[

Corollary 3.1. In a nonatomic flow-free game, the optimal flows are exactly the
Nash equilibria of the classical network game on the same network, with the same

cost functions.

Proof. The result follows directly from the following characterisation of optimal flows
in the classical game, an old result [2, 11] also discussed in Roughgarden’s book [14,
Section 2.4]: A flow x is optimal for a classical nonatomic game with continuously
differentiable, semiconvex? cost functions f, iff it is a Nash for a game on the same

network, where the cost functions are replaced by
* d ¢
foly) = & (y : fe(y)) :

But if the f,’s are defined as in Equation (3.6), then f}(y) = fe(y), and the result
follows. O

2A function f(y) is semiconvex iff yf(y) is convex.
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3.2 The price of anarchy of nonatomic agents

We begin by considering the case of nonatomic agents, i.e. where there are an infinite
number of players, each controlling an infinitesimal amount of flow. We will obtain

~ tight bounds for linear and polynomial cost functions. First a useful inequality:

Theorem 3.1. For any Nash flow P, under any priority scheme,

CP) <3 flee)a:. (3.7)

eckE

Proof. Let P* = {P* : r € R} be some assignment of paths to players that obtains
an optimum flow x* (so formally, it is a valid routing such that [ 1du = z¥).

Apply (3.5) with P/ = P*:

:ee Py

4(P) < £,(PM)
=Y f (aP(PD)),

ecP}
where P = P\ P. U P*; we have used Equation (3.4). Now clearly z" (P®) < z,,

S0

6(P) < Y folze).

eeP}
Thus

am:/a@m-
< ; Z fe(ze)dr

ecPx

= Zfe(a:e) /R(Jleep;)dr

eckE

= Z fe(ze)xy.

ecE
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Let us now find an upper bound in the case of linear cost functions. The result
is superseded by the more general polynomial case considered next, but the proof in

the linear case is more transparent.

Theorem 3.2. In the nonatomic case with linear cost functions, and for any priority

scheme, 4 is an upper bound on the price of anarchy.

Proof. Let f.(x) = a.x + b, for all e € E. Note the following, for any flow vector x:

Zfe ), —22 laex? + bz,

ecE ecE

322/ Gex + bedx

e€ElE

= 20(x'). (3.8)

Beginning with the result of Theorem 3.1, we again use the technique from [5].

7)) S Z fe(xe)me

ecE
= Zfe CI? + Z fe xe )).’E
eckE eckE

<2C(P)+ Y. (felze) — felal))x;  from (3.8).

eER:xe2xt

Following exactly Equation (1.3), we obtain

C(P) < 2C(P*) + Zfe T )T

eeE

< 20(P) + 2O(P),
again using (3.8) in the final step. Thus C(P)/C(P*) < 4, as required. O

We now extend this result to polynomial cost functions. This requires a generali-

sation of the technique used for Theorem 3.2 and Theorem 1.1.
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Theorem 3.3. For the nonatomic case with polynomial cost functions of mazimum

degree d, (d+ 1)%*! is an upper bound for the price of anarchy.

Proof. The proof uses a generalisation of the technique used to prove Theorem 3.2.

Let o > 1 be a constant to be chosen later. We have

C(P) <D folze)z
ecE
:aZfe 117 +Z(fe xe afe ))
eckE eckE
<Sad+1DCPI+ D) (felze) —afelad) 5
eeE:fe(ze)Zafe(z;)

Now consider:

(fe(e) — afe(ry))r; _ m: fe{z )T,

=L _q-
fe(Te)Te Ze fe(iL‘e):Ee
* d *i41
< T Y o Ge,iZh
= —a _d—_
Te D i Qe it
z Qe ittt
< —= —q@- min T
Te 0<i<d @, ;Tit
d+1
¥ z} .
=-=—qa|=2 (since z; < ).
xe me

Let g(¢) = ¢ — ag®*1. Since ¢'(¢) = 1 — a(d + 1)¢?, the maximum value of g occurs
at ¢ = (a(d +1))71/4, giving '

d 1
99 < I v )7
Thus

(fele) = afula)e? < 37 gy Fel)ae

and since ), p fe(ze)ze < (d+ 1)C(P),

d 1
d+1 (a(d+ 1))1/d'(

C(P) < a(d+1)C(P*) + d+ 1)C(P),
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0 0— -
51 S2 53 Sp-1 Sp

Figure 3.4: Lower bound construction for polynomial cost functions.

yielding
C(P) < a(d+1)
C(P*) — 1—-d(a(d+ 1))~V

Now set o = (d + 1)@ this gives

C(P)
C(P*)

S ( d + 1)d+1’
completing the proof. O

Having obtained an upper bound, we now show that it cannot be improved, by
demonstrating how to construct a game with price of anarchy arbitrarily close to this

upper bound.

Theorem 3.4. For the nonatomic case with polynomial cost functions of mazimum
degree d, (d + 1)*™ is a lower bound on the price of anarchy in the global priority

model.

Proof. Consider a network of the form shown in Figure 3.4. There are two types of
latency function in the network. Each link of the form (s;, si+1) has latency zero,
and each link e; = (s;,t) has latency l(z) = z%/i. We have a large number of
infinitesimally small agents, all trying to get to ¢ from one of the s;’s. The total
amount of traffic originating at each s; is unity. In addition, for all j < i all agents

originating at s; have higher priority than agents originating at s;. Agents originating
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at the same vertex are indistinguishable, except for some fixed priority ordering among

them.

Let us calculate the price of anarchy for this network. Any agent is unaffected by
the choices of lower priority agents, so we can calculate the Nash by working from the
highest priority agents (i.e those starting from s,) to the lowest (starting at s;). Let
;,; be the flow on the edge (s;, t) after all the players with origins in {s;, Sj4+1,...,8n}
have played (Tin41 :=0). Let y; = fe,(x;;). It is easy to see that the Nash condition
implies that

fei(@ij) = fe;(zj5) =y;  foralli <j.

Inverting this gives

1/d

z;j = (iy;) forall i < 5.

Now since the total flow from s; is 1, we have 37, (;; — i j41) = 1, 50

J
3 ()~ iggoa) ) =1

i=1

Define hy := Y% i/4. Then

Thus

as Yn41 = 0.

Since the sequence (3% d) _; is increasing, we have the bound

k+1
hi < / /iy = ——(k + 1)+,
0

d+1
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Hence

n
1/d
y'/ 2

> a+1 E(k +1)~(+1/d)

1 n-+1
/ (x+ 1)—(1+1/d)d$

J

Qu U
+ s+
Eol

2

+Q~.

I

@+ (G +D)7 = (n+2)7)

We can now get a lower bound on the cost of the Nash flow P. Since the flow from

81,82, - - ., 8j—1 does not use edge e;, the total flow along edge e; at Nash is z; ;. Thus

/ foy(a

=;j(d+1)

d+1
.’L'e]

n

1 1
= LS Gy
d+1 =
_ 1 - 1/d, 1+1/d
_d+1.23 Ui
>~ +1231/d @+ D(G + )7 = (r+2) 7

(@ DES G 1) (4 2) (3.9)

We can rewrite the statement of Lemma 2.1 as

d-1
a >y Ha +b)* - (-1%;) ve.

Apply this to (3.9) witha = (j + 1) V4 = (n+2)"Y4 b= (n+2)"Y?andd=d+1

to obtain, for any constant 0 < v < 1,

d n
C(P) 2 d+ 1 dZ] —-1-1/d _ (Ij_7> (n + 2)_1—1/d2j1/d

j=1
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We deal with each term separately. We have

n n , 1/d
9)-1-1/d 1/d _ 9)-1 J
(n+2)7 Y M = (427 Y

j=1 =1

n
<(n+2)! Z 1
j=1
<1,

and so the second term is O (1). For the first term, we have

Do DTSN =S (1= (1 by
j=1 j=1 j=1
=H,+0(1).
The proof that the second term is convergent is given in the appendix. Thus
C(P) =~*1d+1)'H, + O (1).

The optimal flow P* is clearly obtained by routing all of the flow from s; through
e; for each i. This yields a cost of

n

o1 1 H,
C(P)—d+1Z¢_d+1'

We thus get a bound for the price of anarchy:
C(P) S v4(d + 1)¢H, + O (1)
C(P*) — (d+1)'H,
=74 d+ 1) +0(1).

Thus letting n — oo, we find that v¥(d + 1)%+! is a lower bound for the price of
anarchy. Finally, since v was an arbitrary constant strictly less than 1, we send

v — 1 to obtain (d + 1)%*! as a lower bound. O
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Note that the priority ordering used in the above construction can also easily be
produced in the time-stamp case. Let any agent originating at s; have an earlier
start-time 7; than any agent originating at s;, for all j < ¢. The relative ordering
of time-stamps for agents originating at the same vertex is unimportant. We may
assume that that start-times are measured to an arbitrary precision so that ties do

not arise.

Combining the previous two theorems, we have an exact value of (d + 1)4*! for

the price of anarchy of our model with polynomial latency functions.

3.3 Unsplittable atomic agents

In this section, we will present a tight upper bound for the linear case, as well as
a number of matching lower bound constructions for different priority schemes. For
polynomial cost functions, we will only provide an upper bound.

We begin with a useful inequality that holds for any Nash flow P. As usual let P
be a Nash flow, P* be an optimal flow, and define PY) = P\P; U P}, where everyone

follows P except player j. Using equations (3.1) and (3.2),

Ci(P) < G;(PY)
z (PO,
> / fo(z)dz.

) i
ecP} z’ (PW)

But 29 (PW) < ., so
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Summing over all j yields

C(P) < Z Z /mﬁwJ fe(z)dz
jeJ eGP*
Y / T @)de. (3.10)
eck j: eEP*

3.3.1 Linear cost functions

Theorem 3.5. In the unsplittable case with linear latency functions, the price of

anarchy is at most 3 + 2/2.

Proof. Let P and P* be a Nash flow and an optimal flow respectively. Writing

Equation (3.10) in the linear case with f.(z) = a.r + b,, we obtain

C(P) < Z Z [(aeze + be)w; + 2a.w?)

ecEE jieeP;

< Z [(aeze + be)z} + tacz}?]

ecE

= Z QeleZ) + Z(%aex: + b))

ecE ecE

We now apply the Cauchy-Schwarz inequality to the first term to obtain

C(P) < Z Qe - Z a.x:? + C(P*)

eck eclE

< +/2C(P) - 2C(P*) + C(P*).

Let a = bc%. The above gives us o? < % + 1, whence the price of anarchy is at
most 3 + 2v/2 ~ 5.828. O

We now provide some matching lower bounds for various game variants. We begin
with a weighted congestion game construction. We will require different priofity

orderings on different edges.
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Let the set of items be I = {1,2,3,1,2,3}, and the players be J = {1,2,3,1,2,3}.
One should think of the barred items as mirror copies of the originals, and the barred
players as reflected copies. We also define 1 = 1, etc. and {A} = {A}.

We define the set of strategies for player j € J as S; = {S;, S}} where

S, = {1,2,3} §t = {1}
Sy = {1,2} Sy = {2}
Sy = {1,2} S; = {3}

and S; = S; for j =1,2,3.

The player weights w; are given by

W) =wi =wy =ws =1,

w3 = w3 = V2 -—1.
The priority ordering is

1-2>3>1=2%3  foritems 1,2,3

1-2>=3=1»2%3 for items 1,2,3

The cost function for item i is f;(z) = a;x where

2v2

a =a] = ————, 3.11

! ! 3+2\/-2- ( )
3

—ay = — 3.12

NN (3.12)

as =az3 =2V2 — 1. (3.13)

We claim that if all players pick strategy S;, we have a Nash. To show this, we need to
show that no player has an incentive to switch to S}. Note that the priority ordering

is such that a player would have the lowest priority on an item if they switched.



3.3 Unsplittable atomic agents

55

Let the cost for player j when all players are playing S; be C;. Then:

= owl fi(z) + fo(2) + f3(2)dz

N V) 3
.=/0 <3+2\/_ 3+2\/§+2\/§_1)$dx
_ 5

wi+watws
C3 = / fl(.’E) + fQ(SC)diL‘

wi+twz

V2+1
= / zdx
2

1
2—-.
2

Let é’j be the cost player j pays upon switching. Then
_ wi+wz+wz+wy
G, = / fi(z)dz

witwstws

_ /'\/§+2 2\/2—

Virl 3+ 22
— 3.

o wi +ws+wz+w2
Ca= [ fal@)dz

wi+ws+ws

zdzx

V2+2
/f+1 3+2\/—

I
Nl oo
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S =11 83=t_3

Figure 3.5: A network game construction with a price of anarchy of 3 + 2v/2.

- wy+w3
Cy = / f3(z)dz

wi

V2
=/ (2V2 — 1)zdx
1
=2 - 5

So none of players 1,2,3 have an incentive to switch, and by symmetry neither do
players 1,2,3. So we do have a Nash equilibrium. The optimal strategy is for all
players to play S7. Now notice that the utilisation of each item under the Nash is
exactly 1+ v/2 times the utilisation under the optimal strategy. It follows that the
price of anarchy is (14 v/2)? = 3 + 2v/2.

We can turn this into a network game, as shown in Figure 3.5. The dashed arcs
have zero cost, and the remaining arcs are labelled to correspond with the items of the
congestion game, and have the same cost functions, and the same priority orderings.
The sources s; and destinations t; of the players are also labelled. It can easily be
verified that this network game reduces to the above congestion game, and so also

has a price of anarchy of 3 + 2v/2.
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While the above construction uses different priorities on different edges, we can
use the basic idea for constructions with other priority schemes. First, let’s go back
to the congestion game formulation and consider the global priority game. Let N be

some large integer. Let the players be
J={jrs:1<r<3,1<s< N}

and the items be

I={i;,:1<r<3,1<s<N+1}.

We now set, for 1 < s < N,

Sie = {i1,5, 92,5, 83,6} S5 = {ins+1}
Siae = {i1,5, 92,5} Shs = {d2,s41}
Sjae = {18, t2,5} S;z,a = {izs41}

The weights are

Wy, = Wiy, = 1, Wiz, = \/5 -1

The global priority ordering is
JLN > J2,N > J3N > Ji,N-1 = Jo.N—1°" > J21 & J31-

For s < N, we set the cost functions as before, i.e. f; , = a, for r = 1,2,3, with the
ar defined in (3.11) through (3.13). The exception is the final group of items, which

nobody plays at Nash; thus we have to make it more expensive to ensure that players

Ji,n, Ja,n and js n do not have an incentive to switch. So simply set

fir,N+1 (LL‘) = er,N (P)

Without this imperfection, the price of anarchy would be exactly as before, since we

would simply have N copies instead of two. The addition of the final group reduces
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the price of anarchy slightly. However, as we increase N to infinity, the effect of this
on the total social cost becomes negligible. So we have a construction that yields a
price of anarchy of 3 + 2v/2 — ¢, for any € > 0; thus the upper bound is still tight in
the global priority game.

This construction can be turned into a network game fairly easily, in much the
same way as before. We will not demonstrate the exact construction here, since it is
somewhat complicated and not very edifying. Once we have this, we also can obtain
a timestamp game construction by judicious choice of starting times. In particular,

if we set the start times as
T’il,z‘ = (N - Z)K, Tiz,i = (N — Z)K -+ 1,7'1;3’1‘ = (N — Z)K+ 2,

where K is sufficiently large, we clearly end up with the same priority ordering.
We can also consider the unweighted case, where w; = 1 for all players j. We give

a tight result here also.
Theorem 3.6. For unweighted agents, the price of anarchy is at most 1?7
Proof. We need the following lemma.:
Lemma 3.2. Let i,7 > 0 be integers. Then
(264 1)j < 2% + 252 | (3.14)
Proof. Note that
2i— 3)° = 5 - 47* (3.15)

To see this, note that if j > 2 the right hand side is negative; if j = 1 it is %, and the
left hand side is at least % because 7 is an integer. Simplifying this equation yields

the result. a
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Now:

C(P) < Z:(agﬂr:e + be)z} + Z Z t0.w?

ecE ecE j:eGPJf‘
, 1 . 2
= E Qe (xe + 5) z, + E be;, using w; = w;
ecE ecE
2 .
< E zae (3z2+ Uy + E bex:  using Lemma 3.2
ecE ecE

< 20(P) + Lo(PY).

Thus
C(P) < 17/5 ___l_z

C(P*) ~1-2/5 3’

The following construction shows that this upper bound is tight. Let
I=1{1,2,3,4,1333) and J=1{1,23,1,23)

be the items and players respectively. The strategies are

S: ={1,2,3,4} , St ={2,3}
Se=1{1,2,3,4} Sy = {4}
S3 = {1,2} S; = {1}

and S; = S; for j = 1,2,3. The priority ordering is

1-2>=3>=1>2+3 on items 1,2,3,4

1~2%3>=1%=2%3 on items 1,2,3,4
The cost function for item ¢ is fi(z) = a;x where

_ 1 _9
, a3=% and ag=z3

3ot
3o

a =z, a=
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(and symmetrically for the remaining items).

Defining P and P* as usual, it can easily be verified that

Cl(P) = % = C'1(73*)
Co(P) = § = Co(P")
Cs(P) = § = Cs(P")

Hence P is a Nash. The price of anarchy is

(a1+a2)%-32+(a3+a4)%-22=%+4 17
(a1+a2+a3+a4)%-12 %

as required.

Again, it is straightforward to convert this to a network game. Variations for more
restrictive priority schemes are possible using the same approach as for the weighted

case.

3.3.2 Polynomial cost functions

We will give only an upper bound for the polynomial case. For the lower bound, we
will simply note that the (d+ 1)4*! value obtained in the nonatomic case still applies,
simply using the same construction with sufficiently small agents. Clearly a better
construction is possible, and the upper bound is also unlikely to be tight. We will

not discuss the unweighted variations here.

Theorem 3.7. The price of anarchy is O (2¢d?) in the unsplittable atomic case with

polynomial cost functions of mazimum degree d.
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Proof. Begin from Equation (3.10):

Tetw;

EDID / fo(@)de

eck j: eeP*

< Z Z fe(ze + wj)w;

ecE jiee P}

d
= Z Z Qe oWj + Z Z Z ae,i(xe + wj)in

ecE j:eePJ’.“ . eek i=1 j:eePJ’.“

Now apply Lemma 2.1, with ¢ = z, and b = wj, and 7y to be determined later:

d
C(P) < z Z Ge oWj + ZZ Z [ae,fyl ’x’w] + aei(1— fy)l_iw;*'l] .

ecE j:eePJ?‘ ecE i=1 j:eEPJ?‘

. R i ¥t 3
Now since Zj:eeP; wj = z¥, and hence Zj:eer" w; <yt fori > 1,

<Za60$ +ZZ aez71 ~d ’L *+ae1,(1_ )l dx;i'l'l]

eck eckE i=1
d
< D" [aen atal + aus(1 — )]
ecE i=0
= fe(@e)zr + (1= )Y folal)a?
°eb ecE
1—-d * g .
<) felweal+ (1 =)' Hd+ DOPY).
eck

The technique used for the nonatomic case is applicable to the first term (see the

proof of Theorem 3.3). We thus obtain, for any @ > 1 and 0 < 7y < 1,

C(P) <7 (a(d+1)C(P*) + d(a(d + 1)) VIC(P)) + (1 =)'~ H(d + 1)C(P*).

Y lat+ (1-y)

p<(d+1)- 1 — y1=dd(a(d + 1))—1/d'
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Now set @ = 2%d? and v =1 — %. Then

,Yl—d — (1 _ §1d_)1—d < (6_1/2d)1_d < 61/2

ij‘v—d =271 Y4 d + 1)V < g
Thus
Ve2ddd + 24141
p<(d+1)- o
- (%) 244N d +1)
So we have that p = O (zddd). ]

3.4 Single-commodity networks

Single-commodity networks refer to the case where all agents have the same source
s and destination #. It is reasonable to expect the price of anarchy to perhaps be
reduced in this case; this is indeed true, at least for some choices of priority schemes.
We only require the cost functions be continuous, non-negative and increasing for the
following results.

First, a lemma:

Lemma 3.3. For a single-commodity game with nonatomic agents, any flow x where
all of the s —t paths with non-zero flow are shortest paths, where length is determined
by the metric l, = fe(j:e), is an optimal flow. In other words, for any s —t path P
with zp > 0, and all s — t paths P,
37 felme) < felze). (3.16)
ecP ecP’
Proof. This followé directly from Corollary 3.1, since x is clearly a Nash in the classical

version of the game. 0
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A particularly simple class of networks of this type are parallel link networks,
which consist only of a source node, a sink node, and some number of links between

them. We show the following:

Theorem 3.8. For parallel link networks with nonatomic agents and any choice of

priority scheme, the price of anarchy is one.

Proof. Let P be an arbitrary Nash. Consider Equation (3.5). In our case, it can be

written

L.(P) < fer(a:g)) for all €' € E, | (3.17)

for all players r. Now for each link e, either z. = 0 or there is a player r such that

P, = e and 7" = z,. Equation (3.17) then yields -
fe(ze) < fe(ze)  foralle € E.
Hence the result follows by Lemma 3.3. ' O

We can obtain a similar result for general single-commodity networks if we restrict

the priority scheme:

Theorem 3.9. The nonatomic versions of both the global priority and timestamp

games have a price of anarchy of one in single-commodity networks.

Proof. We first show that in the single-commodity case, the timestamp game is ex-
actly equivalent to the global priority game. Take any two players r,s € R whose
routes in the Nash routing P intersect, and where the start times satisfy 7, < 7.
Then for any edge e € P, N P,, »r must arrive at the start of this edge earlier than
s—for if not, r could change her route to be the same as s’s route until edge e, hence
arriving earlier and contradicting the Nash requirement.

So we need consider only the global priority game. Take any path P on which

P has non-zero flow. Consider player r, the lowest priority agent that takes path
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Figure 3.6: A single-commodity game with price of anarchy larger than one.

P. Since we are at Nash, this player has no incentive to switch; hence in particular,
6 (P) < 3 cpr fe(ze) for any s — ¢ path P'. Thus Lemma 3.3 applies, and P is an

optimal routing. O

The previous theorem does not hold if we consider fixed priority games instead.
Consider the simple network shown in Figure 3.6. Take R = [0,1] for the set of
players, and set all the cost functions to z. For those edges marked >, the priorty
ordering is defined by r >~ s iff r > s; for the edge marked <, r > siff r < s. It can
easily be checked that the routing which sends all players in [0, 1/3] along the bottom
path and all players in (1/3, 1] along the top path is a Nash. This has a social cost
larger than the optimum obtained by splitting the flow evenly between the two paths.

These results are in strong contrast to the classical model, where Pigou’s two-link

network yields the largest possible price of anarchy in most cases [12].
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Conclusion

In this thesis, we have proved some new results on the price of anarchy of the classical
game in the case of atomic and unsplittable flow. We have also introduced and
analysed a new model that takes priorities of agents into account.

Plenty of questions remain, and there is plenty of scope for further work. Here we
mention some of the more interesting avenues for exploration.

We have very little in the way of existence or uniqueness results in our model. It
should be possible to prove existence in the nonatomic case under some fairly general
restrictions on the priority scheme. It would be interesting to know if the timestamp
game always has a Nash in the atomic case. In those cases where a pure Nash need
not exist, it may be possible to extend our results to handle mixed strategy Nash
equilibria.’ Another avenue would be to investigate the so called “price of sinking”
introduced by Goemans et al. [7].

We have not considered the atomic splittable case in the flow-free model. There
are some indications that, unlike for the classical model, the price of anarchy may be
no larger than for the nonatomic case.

We have considered only linear and polynomial latency functions. Other cost
functions are of course possible, and may be of interest. All of the cost functions we
have considered are convex; for certain applications, concave cost functions might be
interesting.

In the nonatomic case, we have shown that the price of anarchy is one for single-
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commodity flow in the global priority and timestamp games. On the other hand, our
construction that maximised the price of anarchy required taking a limit where the
number of sources tends to infinity. So a natural question to ask is whether we can
obtain bounds that depend on the number of source-destination pairs.

We have captured the simple idea that a car only causes congestion to traffic
behind it, rather than before it, in the timestamp game. But this is very crude; a
car will only cause congestion to cars a short time behind it; rush-hour traffic in the
morning has no effect on rush-hour traffic in the evening. It may be possible to model
a car’s effect as some kind of “hump” which decays with time.

While we have concentrated almost exclusively on calculations of the price of
anarchy in this thesis, there are other aspects of our model that could be investigated.
For instance, in some situations the addition of an arc or arcs to a network can increase
the price of anarchy. This rather counterintuitive behaviour is called Braess’s paradoz.
This feature has received substantial attention in the classical model, and it would be
interesting to see how similar (or different) the behaviour is in the flow-free model.

Roughgarden [14] has a thorough review on the topic.
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Appendix A

Calculations

Proof of Lemma 2.2. Let

h(r,s) = (r +1)%s — pr®t! — ps?t1

where

_(k+2)%— (k+1)¢
o (k 4 1)d+1 — fd+1

V= (k‘—l— 1)d _ ,ukd-H.

We must show h(r,s) < 0 for all r,s € N. We first consider the case s = 1, so let
hi(r) = h(r,1). Then
i(e) = d(z + 1"~ (d + 1y’
=z% 1 d(1+ 1)4 — (d+ 1)pa] .
Thus A} (z)/z%! is clearly decreasing for z > 0, positive at x = 0, and negative for
z sufficiently large; let o be the unique positive zero. Then (by multiplying through
by z%°1) it is clear that hj(zo) = 0, hi(z) > 0 for z € (0,zo), and hj(z) < O for

z € (zo,00). Now notice that by the choice of u and v,

hi(k) = hi(k+1) =0
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(recall k = |p]). It follows by the intermediate value theorem that there is a turning
point of h; in the interval (k,k + 1), ie. zo € (k,k+ 1). We now have that for
r < k, hi(r) < hy(k) = 0 since hy(z) is increasing on [0,k], and for r > k + 1,
 hy(r) € hy(k + 1) = 0 since hy(z) is decreasing on [k + 1,00). So h(r,1) < 0 for all
r € N.

Now consider s > 2. Let h(r, s) = h(r, s)/s%+*.

<0  forZe[0,k]U[k+1,00).

On the other hand, suppose k < £ <k+1. Then ’"—’;1 < k+1 (since, 7, s € N), and

S0

R(rs) < (k+1)%— (g)‘”l v
—(k+1)¢—p ((£>d+1 B kd+1> — (k+ 1)

<0.

Thus h(r, s) = h(r, s)s*tt < 0 for all r, s € N.

Lemma A.l. The series

n

Zj—l (1 1+ %)—1-1/(1)

i=1

is convergent for all d > 1.
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Proof.
1—(1+ %)_1‘1/‘1 <1-(1+ ;1.)_2 since d > 1
2 +1
(7 +1)?
3J
T E+r
Hence

(1-0-9") < G

0<

o] =

and so since

> 3
}:(j+1)2

j=1

converges, the result follows by the comparison test.
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Calculations




71

Bibliography

[1]

2]

3]

[4]

[5]

B. Awerbuch, Y. Azar, and A. Epstein. Large the price of routing unsplittable
flow. In Proceedings of the 87th Annual ACM Symposium on Theory of Comput-
ing, pages 57-66, New York, NY, USA, 2005. ACM Press.

M. J. Beckmann, C. B. Mcguire, and C. B. Winsten. Studies in the Economics
of ﬂansportation. Yale University Press, 1956.

G. Christodoulou and E. Koutsoupias. The price of anarchy of finite conges-
tion games. In Proceedings of the 37th Annual ACM Symposium on Theory of
Computing (STOC), pages 67-73, New York, NY, USA, 2005. ACM Press.

R. Cominetti, J. Correa, and N. Stier-Moses. Network games with atomic players.
In Proceedings of the 83rd International Colloguium on Automata, Languages
and Programming, volume 4051 of Lecture Notes in Computer Science, pages

525-536, January 2006.

J. R. Correa, A. S. Schulz, and N. E. Stier-Moses. On the inefficiency of equilibria
in congestion games extended abstract. In Proceedings of the 11th Conference
on Integer Programming and Combinatorial Optimization (IPCO), volume 3509

of Lecture Notes in Computer Science, pages 167-181, January 2005.

D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish unsplittable flows. Theoret.
Comput. Sci., 348(2-3):226-239, 2005.



72 BIBLIOGRAPHY

[7] M. Goemans, V. Mirrokni, and A. Vetta. Sink equilibria and convergence. In
Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 142-151, 2005.

[8] S. Kontogiannis and P. Spirakis. Atomic selfish routing in networks: A survey.

In Proceedings of the 1st Workshop on Internet and Network Economics, 2005.

[9] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In 16th Annual
Symposium on Theoretical Aspects of Computer Science (STACS), volume 1563
of Lecture Notes in Computer Science, pages 404-413, January 1999.

[10] C. Papadimitriou. Algorithms, games, and the internet. In Proceedings of the
39rd Annual ACM Symposium on Theory of Computing (STOC), pages 749-753,
New York, NY, USA, 2001. ACM Press.

[11] A. C. Pigou. The Economics of Welfare. Macmillan, 1920.

[12] T. Roughgarden. The price of anarchy is independent of the network topology.
In Proceedings of the 34th Annual ACM Symposium on Theory of Computing
(STOC), pages 428-437, New York, NY, USA, 2002. ACM Press.

[13] T. Roughgarden. Selfish Routing. PhD thesis, Cornell University, May 2002.

[14] T. Roughgarden. Selfish Routing and the Price of Anarchy. MIT Press, May
2005.

[15] T. Roughgarden. Selfish routing with atomic players. In Proceedings of the
16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1184-1185, Philadelphia, PA, USA, 2005. Society for Industrial and Applied

Mathematics.

[16] T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of the
ACM, 49(2):236-259, March 2002.



BIBLIOGRAPHY 73

[17] D. Schmeidler. Equilibrium points of nonatomic games. Journal of Statistical

Physics, 7(4):295-300, April 1973.

(18] M. J. Smith. The existence, uniqueness and stability of traffic equilibria. Trans-
portation Research Part B: Methodological, 13:295-304, December 1979.

[19] J. ‘G. Wardrop. Some theoretical aspects of road traffic research. In Proceedings
of the Institute of Civil Engineers, Pt II, volume 1, pages 325-378, 1952.



