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Abstract 

The priee of anarchy, a concept întroduced by Koutsoupias and Papadimitriou [9], is 

the main topic of this thesis. It is a measure of the loss of efficiency that occurs when 

there is no central control over a system consisting of many "selfish" agents. We will 

be particularly interested in this in the context of network games, which can be used 

to model congestion in traffic and communication networks. 

After an introduction of the relevant concepts and review of related work, we 

proceed with the new results of this thesis. We provide a new upper bound for 

the priee of anarchy in the case of atomie unsplittable agents with polynomial cost 

functions, and demonstrate that it is tight by an explicit construction. We then 

introduce a new model for network routing that introduces priorities; users with a 

higher priority on a link will be able to traverse the link more quickly. Our model 

is fairly general, and allows various different priority schemes for modelling different 

situations. Oneparticularly interesting version, which we have dubbed the timestamp 

game, assigns priorities according to the order of arrivaI at the st art of the link. 

We derive tight upper bounds for the price of anarchy in our model in the case 

of polynomial cost functions and nonatomic agents. We also obtain tight results in 

the unsplittable case with linear cost functions, and an upper bound with polynomial 

cost functions. 

While we concentrate on network games, most of the results carry through to the 

more general class of congestion games, which we also discuss. 
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Résumé 

Le prix de l'anarchie, un concept présenté par Koutsoupias et Papadimitriou, est la 

matière principale de cette thèse. Il s'agit d'une mesure de la perte d'efficacité qui se 

produit quand il n'y a aucun contrôle central d'un système se composant de beaucoup 

d'agents "égoïstes". Nous serons particulièrement intéressés par ce concept dans le 

contexte des jeux de réseau, qui peuvent être employés pour modéliser la congestion 

dans les réseaux du trafic et de transmission. 

Après une introduction des concepts essentiels et une révision de la littérature 

pertinente, nous introduirons les nouveaux résultats de cette thèse. Nous fournirons 

un nouveau majorant dans le cas des agents indivisibles avec fonctions polynomiales 

de coût, et démontrerons, au moyen d'une construction explicite, que ce majorant 

exact. Nous présenterons alors un nouveau modèle pour le cheminement de réseau 

qui présente des priorités; les utilisateurs ayant une priorité plus élevée sur un lien 

pourront traverser le lien plus rapidement. Notre modèle est assez général, et permet 

divers arrangements prioritaires pour modéliser différentes situations. Une version 

particulièrement intéressante, que nous avons nommée le "timestamp game", assigne 

des priorités selon l'ordre d'arrivée au début du lien. 

Nous dériverons les majorants exacts pour le prix de l'anarchie dans notre modèle, 

dans le cas de fonctions polynomiales de coût et des agents non-atomiques. Nous 

obtiendrons également des résultats exacts dans la situation indivisible avec des fonc­

tions linéaires de coût, et un majorant avec des fonctions polynomiales de coût. 
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Bien que nous nous concentrions sur les jeux de réseau, la plupart des résultats se 

généralisenz à la catégorie plus large des jeux de congestion. 
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Introduction 

We begin with an example aU too familiar to many: traffie. As eities expand, traffie 

congestion has beeome an inereasing ineonvenience to many motorists, partieularly 

those driving to and from work during heavy rush-hour traffie. A Statistics Canada 

survey found that the average daily commute for residents of greater Montreal was 

76 minutes in 2005, eompared to 62 minutes in 1992.1 Time spent in a traffie jam is 

typically unproductive; the time could be better spent for work or reereation. Fuel 

efficiency is also decreased, leading to higher fuel costs (and pollution). So not only 

is traffic an annoyance, it has a clear-cut economic and environmental costs. 

So what strategies should be eonsidered for reducing commute times? An obvious 

answer is to build more (or wider) roads. But surprisingly, there is increasing evidence 

suggesting that, quite often, this can increase traffic congestion rather than reduce it. 

We will return to this in the next section with an emphatic example in the context 

of a simplified mathematical model. 

Another approaeh is to attempt to change the behaviour of the road users. There 

are a number of ways to do this, for example by instigating sorne form of tax or fee. A 

prominent example of this is the London congestion charge; motorists are charged a 

fee for entering within the Central London area. Part of the effeet of sueh a fee might 

be to reduce the total amount of traffie, by eneouraging the use of public transport, 

cycling, etc. But let us assume for the purpose of argument that we cannot reduce the 

1 Source: http://www.statcan.ca/Daily/English/060712/d060712b.htm 
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total amount of traffic - perhaps the public transport system is already at capacity. 

If we can manipulate motorists and somehow control the routes they take, can we 

increase the overall efficiency of the traffic system? For example, by reducing the 

traffic on a central artery? 

Let's think about this from another perspective; suppose you are driving home 

from work at the end of a long day. All other things being equal, you will take the 

quickest way home. Note "quickest" , not "shortest"; you will take a detour if it means 

avoiding a particularly busy road. When considering the various routes available to 

you, your fellow motorists are unlikely to be in your thoughts. It's possible that taking 

a slightly longer, but less popular route would reduce the average commute times, by 

slightly reducing the congestion on a well-used road, and hence slightly reducing the 

journey time of many motorists. But you are selfish, in the sense that your concern is 

your own commute time, not the total commute time experienced by everyone. This 

gives us a more quantitative way of phrasing the question of the previous paragraph. 

How much of an improvement can we obtain if we are allowed to tell drivers which 

route to take, compared with the situation obtained if we allow everyone to behave 

selfishly? Or, to flip this around, how much do we lose if we lack control? This is 

the essential ide a of the so-called priee of anarchy, which is a central concept used 

throughout this thesis. A rigorous definition will be provided in the first chapter. 

The explosion of telecommunications networks yields another motivation for the 

study of network routing. As the internet increasingly becomes the communication 

tool of choice for all types of media, including Voice over IP and streaming video, 

bandwidth and latency requirements are increasing. Changes to the current routing 

protocols and systems may be required to keep up with these changes. 

Broadly speaking, this thesis will be concerned with the mathematical treatment, 

using tools such as game theory, of selfishness in network routing. The problem is not 

a new one; Roughgarden [14] provided a very accessible and comprehensive review of 
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the subject. However, this thesis contributes a number of novel results. 

This thesis is organised as follows. In Chapter 1, we review sorne fairly reeent 

results, and in partieular we will discuss and rigorously define the priee of anarchy, 

and provide proofs of sorne standard results in the nonatomic case of selfish routing. 

In Chapter 2, we discuss the atomie unsplittable case of the classical model. We 

begin with the linear case, and review the results previously obtained by Awerbuch 

et al. [1]. We then present sorne novel results for unsplittable flow with polynomial 

cost functions: 

• We present a new construction whieh has a price of anarchy higher than previous 

lower bound constructions. 

• We prove an upper bound on the priee of anarchy that matches our construction. 

• We also consider the unweighted case, and again derive an upper bound and 

mat ching lower bound construction. 

In Chapter 3, we define a new model which we have called the fiow-free model. 

This model tries to capture a very simple observation: a car in traffic causes delay for 

vehicles behirid it, but not in front of it. We define and discuss various properties of 

the model, and find exact values or bounds for the priee of anarchy in various cases: 

• In the nonatomic case, we obtain a tight result for polynomial cost functions 

(including linear cost functions). 

• In the atomic case for linear cost functions, we obtain tight results for weighted 

and unweighted agents. 

• In the atomic case for polynomial cost functions, we find an upper bound (al­

though not a tight one). 
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• In the single-commodity case under certain conditions, we show that the price 

of anarchy is 1, in contrast to the classical model. 

The conclusion deals principally with a discussion of opportunities for further 

work. 
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Chapt~r 1 

Selfish Routing 

1.1 The model 

The model which we describe here has been around for a long time - it was discussed 

qualitatively by Pigou in 1920 [11], and much work was do ne in the 1950s by Wardrop 

[19] and others. The model, while fairly simple, captures a number of properties of 

road networks as described in the introduction. 

We will represent the network as a directed graph G, with vertex set V and arc set 

E; we will allow multiple arcs. There will be sorne set of pairs {(Sj, tj) : 1 ~ j ~ n} 

which are origin-destination pairs for sorne motorists (which we will henceforth refer 

to as users, agents, and later, players). Many users might be making the same journey, 

originating from the same origin and travelling to the same destination. 80 let the 

proportion of traffic corresponding to a particular pair (Sj, tj) be Wj. Let us suppose 

that there is sufficient traffic that a single car, on its own, is alIllost insignificant. 

We can approximate this by regarding each car as being infinitesimally small; this 

of course means we must have an infinite number of cars. If the traffic flow really 

is large enough, this approximation will be fairly good. We will return to the case 

where the users have non-negligible size later. 
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We now need to model the congestion on an edge, by defining how long it takes for 

agents to traverse an edge. Here we will make a significant simplifying assumption: 

all players traversing an edge experience the same delay. It is by no means clear that 

this assumption is reasonable in aIl situations, and in fact this is a primary motivation 

for a new model which we will introduce in Chapter 3. 

Given this assumption, it is very reasonable to require that the delay experienced 

on an edge depends on the amount of traffic using that edge, and nothing else. This 

can of course be different for different edges; a three lane highway will have very 

different characteristics from a narrow street. 80 for each edge e E E, we define the 

cost Junction Je (x) which gives the delay on edge e as a function of the amount of 

traffic on that edge. We will require aIl cost functions to be non-negative, increasing 

and continuous. We will use the term "latency function" interchangeably with "cost 

function" . 

Let n j be the set of Sj - t j paths, and let n = U'J=lnj. For any path PEn, 

let x P be the proportion of agents using path P. Then the total fiow on an edge e is 

simply Xe = LPE'R:eEP Xp. The delay experienced by users on edge e under this fiow 

will then be simply !e(xe). The average journey time over aIl users, which we will 

denote C (x), is then 

C(x) = L L !e(xe)xp 
PE'ReEP 

= L L !e(xe)xp 
eEE PE'R:eEP 

(1.1 ) 
eEE 

Here, x is just the vector of aIl the Xe 's. This seems like a good candidate for a 

value measuring the overall "social" cost of the routing. Although we have so far 

measured in terms of the fraction of an agents, this is just a normalisation - setting 

L7=1 Wj = 1. This is not necessary, and we will often for example talk about, for 
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1 

Figure 1.1: Pigou's example. The edge labels give the cost functions. 

example, the "total" social cost; this will differ from the average journey time only 

by a factor of L: Wj. Equation (1.1) then gives the total social cost; dividing through 

by L: Wj yields the average journey time. 

1.2 The priee of anarehy 

Consider a very simple example. Our network consists only of two nodes, s and t, 

and aIl users need to travel from s to t. There are two roads available. The first is a 

very wide highway, which can accommodate a lot of traffic; however, it isn't quite a 

direct route, and so it takes an hour, no matter what the traffic situation. The second 

is a small road, with only a single lane; however, the route is much more direct. Let's 

assume for simplicity that the time taken on this road is sim ply proportional to the 

amount of traffic on it, and choose fe2(X) = x for this edge. Figure 1.1 shows this 

example, commonly referred to as Pigou's example. 

Assuming aH the players are acting selfishly, what flow will the system settle clown 

to? WeIl, if the fraction of players using the narrow road is less than one, that route 

will be quicker than the highway; thus any players using the highway will switch. 

On the other hand, if aIl agents take the narrow road, nobody will have an incentive 

to switch, since both routes take exactly an hour. In the language of game theory, 
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this flow is a Nash equilibrium. In fact, it is a pure strategy Nash equilibrium (often 

abbreviated PSNE), since each player picks a specific strategy (the narrow road). It 

can be shown [2] that a PSNE always exists in this game. 

So the Nash equilibrium is obtained when aU the players are taking the narrow 

road, in which case everybody takes an hour to get to work. 

Now suppose we are able to force people to take a specific route. What's the most 

efficient solution? Suppose ct is the fraction of traffic that takes the narrow road, so 

a 1 - ct fraction takes the highway. The average commute time is then 

This is minimised when ct = ~, in which case the average commute time is ~ hours. 

So for this specifie instance of the network game, the ratio between the average 

commute time in the Nash equilibrium is ~ the average of the optimal solution. We 

will caU this ratio the priee of anarchy. The concept was first defined in [9], where it 

was dubbed the coordination ratio; the name "price of anarchy" was coined in [10]. 

ActuaIly, there may be more than one Nash equilibrium; we define the price of 

anarchy to be the ratio of the worst (highest cost) Nash over the optimum cost. 1 

The price of anarchy is ~ for Pigou's very simple example. What about different 

networks, and different co st functions? How large can it get? WeU, if we don't 

restrict any further the choice of co st functions, it can be arbitrarily large. To see 

this, consider again Pigou's example, but replace the cost function for the narrow road 

with fe2 (x) = xd , where d is some integer. The Nash equilibrium remains the same, 

with aIl agents taking the narrow road. It can easily be checked that the optimal flow 

x* is obtained by routing a fraction ct = (d + l)-l/d along the lower link, and yields 

a cost of 

C(x*) = 1 - d(d + l)-l-l/d. 

1 Actually, in the network game as defined so far with infinitesimally small agents, aU Nash have 

the same cost [2]. 
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80 the priee of anarchy is (1 - d(d + l)-l-l/d)-I, which tends to infinity as d ~ 00. 

For this reason, we will coneentrate on specifie classes of cost functions. In this thesis, 

most of our attention will be on linear cost functions, and polynomial co st functions 

where sorne maximum degree is prescribed. We define the priee of anarchy of a set of 

functions (such as linear functions) to be the supremum of the priee of anarchy over 

all network games with cost functions in that set. 

1.3 Bounding the priee of anarehy 

In the original paper [16] of Roughgarden and Tardos, the priee of anarchy was derived 

in the nonatomic case for linear cost functions, and in [12] Roughgarden did the same 

for polynomial cost functions. The proofs however are somewhat involved. Correa, 

8chulz and 8tier-Moses [5] give a much shorter proof. A variation of these ideas will 

be used to prove sorne of the novel results of this thesis later, so we demonstrate their 

proof here. 

Theorem 1.1. The priee of anarchy with linear cost functions and nonatomic agents 
. 4 
zs 3. 

Praof. The starting point of the pro of is the variational form of the requirement for 

a Nash equilibrium: A fiow x is a Nash equilibrium iff 

L fe(xe)(xe - x~) :::; 0 for all valid flows x'. (1.2) 
eEE 

This well known result can be found in [18]; we will not rederive it here. 80 let x* be 
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X* e Xe 

Figure 1.2: A visual proof of Equation 1.3 

the optimal flow; we have by the above 

C(x) ~ L fe(xe)x; 
eEE 

eEE eEE 

eEE:x;<xe 

Selfish Routing 

sinee fe is increasing. Now consider Figure 1.2. The area of the greyed rectangle is 

equal to Ue(xe}- fe(x:))x:; this is clearly at most ~ of the area ofthe upper triangle, 

which is in turn at most ~ the area of the large rectangle. This has area fe(xe)xe. 80 

and so 

as required. 

C(x) ~ C(x*) + L ~fe(xe)xe 
eEE:x~<xe 

~ C(x*) + ~C(x), 

C(x) 4 
--<­
C(x*) - 3' 

(1.3) 

(1.4) 

(1.5) 

o 
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80 we see that the very simple example of Pigou actuaIly yields the maximum 

possible priee of anarchy when only linear cost functions are aIlowed, for any network 

topology. 

The same method applies to polynomiallatency functions with non-negative co­

efficents and maximum degree d; sorne calculus is required to calculate the maximum 

ratio of !e(xe)xe to (Je(xe) - !e(x:))x:. The price of anarchy in this case is 

p = (1 - d(d + l)-l-l/d) -1 , (1.6) 

again the same as the two-link example with cost functions a and xd on the two links. 

1.4 Atomic games 

Up until now, we have assumed that an individual agent is infinitesimally smal!. What 

if this is not true? There are two fairly natural ways to modify the model to handle 

this case, although only the first will apply to the example of traffic flow. 

U nsplittable flow 

The first variant is quite straightforward. Instead of an infinite number of infinitesimal 

agents, we have a finite set J of agents (let n = IJI). Each agent is associated with 

a source Sj and sink t j as before. Now however, each agent has a specified non-zero 

size Wj. A feasible routing is then defined as P = {Pl, P2 , ••• , Pn}, where each Pj is 

a path from Sj to tj' 

In this model, the agents are unsplittable; they take only one route from their 

source to their destination. This makes sense for traffic modelling, where each agent 

corresponds to a car. The different sizes Wj might be used to model trucks and buses, 

or aIl the w/s might be set to 1. 
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The flow vector x is easily determined from P: 

Xe = L Wj. 
j:eEPj 

Selfish Routing 

We will define the social cost as in the nonatomic model, by Equation (1.1): 

G(P) = L !e(xe)xe 
eEE 

= L !e(xe) L Wj 
eEE j:eEPj 

= Lfj(P)Wj, (1.7) 
jEJ 

where fj(P) is the latency experienced by player j under routing P. Note that this 

means that players' contribution to the total co st is proportional to their weight. This 

is not the only possible option - one could define the social co st to instead be 

G'(P) = Lfj(P). (1.8) 
jEJ 

Which is appropriate depends on exactly what we are modelling and what the agents 

represent. For example, if agents are cars, and larger Wj 's represent larger vehicles, 

we probably don't want to give extra consideration to larger vehicles in our cost, so 

C' would be the appropriate cost. But suppose each agent represents a large bundle 

of mail, that must be transported as a unit, and the Wj 's represent the number of 

letters in the bundle. In that case, it makes sense to consider the social cost to be 

the average time taken per letter, not per bundle, and C is appropriate. We will only 

consider G as defined in (1.7) for this thesis, following Awerbuch et al. [1]. We will 

spend a lot of time discussing the nonatomic unsplittable case in Chapters 2 and 3. 
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Splittable flow 

In contrast, the agents in this second atomic variation are allowed to split their flow. 

This doesn't make much sense in the context of road networks (at least not if we 

associate each agent with an individual mot orist ), but it has applications in other 

areas. Imagine a number of users downloading sorne large data file over the internet 

(movies for example). The data is not transferred as a single chunk; rather it is split 

into packets, each of which can be routed independently through the network. Each 

user wants to minimise the time required to download the entire file; they are not 

interested in individual packets. This could have an effect on the optimum routing; 

it may be better to route sorne packets along a longer route to reduce congestion for 

the remaining packets. 

The behaviour in this case is somewhat counterintuitive, as can be attested by 

a number of incorrect results in the literature. Intuitively, it might seem that the 

priee of anarchy in this case should be no larger than in the atomic case; a user is at 

least trying to enforce the "social optimum" for the flow under her control. It seems 

plausible that this should push things in the direction of the global social optimum. 

In fact, Roughgarden [15] and Correa et al. [5] both independently published proofs 

that the priee of anarchy in the atomic splittable case could not exeeed that of the 

nonatomic case. As was demonstrated by Cominetti et al. [4] however, the proofs are 

incorrect. They give the following example with linear cost functions where the priee 

of anarchy exceeds 4/3, the upper bound in the nonatomic case. 

Consider Figure 1.3. There are infinitely many nonatomic users with total weight 

1 routing that want to route from SI to tl, and there is one player, controlling 1 unit 

of flow, routing from 82 to t2 . (We have a mixture of atomic and nonatomic users 

in this example; if desired, replacing the nonatomic players with a sufficiently large, 

but finite, number of atomic players will still provide an example exeeeding 4/3). 

It can be verified that the routing where all the flow of the nonatomic players, and 
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Selfish Routing 

Figure 1.3: An atomic splittable game with linear cost functions that has a price of 

anarchy larger than 4/3. 

0.9 of the fiow from the atomic player, is routed through the central edge is a Nash. 

This has co st 3.89. On the other hand, the optimum fiow is obtained by routing 

aIl of the nonatomic players along the left edge, and aIl of the fiow from the atomic 

player through the centre. This has a total cost of 2.9, yielding a price of anarchy of 

approximately 1.341, which is slightly larger than 4/3. 

1.5 Congestion games 

The games we have considered up until this point have aIl been tied to a network 

structure. Is there a way to generalise these models to versions that don't have 

this underlying structure? There is, and the generalised games are caIled congestion 

games. We will define the congestion game equivalent of the atomic unsplittable 

network game; it will be clear how to generalise other variants. 

80 again we have a set J of players, each with weight Wj. We also have a set 

of items 1 - these should be considered the equivalent of the edges in the network 

model. A co st function fi (x) is associated with each item i El, exactly as in the 
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network game. But now, each player has a set of possible strategies Sj, where each 

strategy is sorne subset of the items. There is no restriction on what subsets can be 

specified as a players allowed strategies, or how many strategies a player may have. 

Now notice that a network game is a special case of a congestion game where the 

strategies of player j are exactly the subsets corresponding to Sj - t j paths. These 

games are normally referred to as weighted congestion games in the literature, since 

congestion games were first considered in the unweighted case where Wj = 1 for an j. 

Essentially aIl of the results we obtain in this thesis will apply to both network 

games and the more general congestion game equivalents. We will generally prove 

results in terms of network games, but it will be clear that the network structure is 

not used. 
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Chapter 2 

U nsplittable Flow 

In this chapter, we consider in detail the atomic unsplittable model defined in the 

previous chapter. After deriving a useful inequality that holds for aIl Nash flows, we 

will review the linear case, where tight results were already available. The bulk of the 

chapter will then be devoted to demonstrating a tight upper bound in the polynomial 

case, which is a new result. 

We will only consider pure Nash equilibria in this chapter. If the cost functions 

are linear, a pure Nash always exists, as was demonstrated using a potential function 

approach [6]. Allowing for more general cost functions, a pure Nash need not exist; 

in Goemans et al. [7] a construction with no pure Nash is given using quadratic cost 

functions. In [1], both pure and mixed strategy Nash equilibria are considered. We 

will only consider pure Nash equilibria; most likely, the results for the polynomial 

case could be generalised to mixed equilibria without too much difficulty. 

2.1 The Nash condition 

Suppose P is a Nash flow. This means that any agent j E J has no incentive to 

switch, since the latency along any Sj - t j path is no smaller than the latency along 
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Pj , the path taken at Nash. If player j tried to switch to some other path P', his 

latency would be 

eEP'\Pj 

since he would increase the fiow along any new edges that weren't already part of Pj. 

Applying this with P' = Pl, the path of agent j at some optimal solution P*, we 

obtain 

Now using (1.7), 

~ L fe(x e + Wj). 
eEPj* 

C(P) = Lfj(P)Wj 
jO 

~ L L fe(xe + Wj)Wj. 
jEJ eEPj* 

(2.1) 

We will sometimes use the notation Cj(P) for the portion of the total cost attribut able 

to player j; this is equal to fj(P)wj. 

2.2 Linear cost functions 

A tight result in the case of linear co st functions was obtained by Awerbuch et al. [1], 

which we briefiy review here. 

Theorem 2.1 (Awerbuch et al. [1]). The priee of anarchy of an atomic unsplittable 

. network game with linear cost functions is no more than (3 + V5)/2. 



2.2 Linear co st functions 

Proof. Let !e(x) = aex + be· 

C(P) ~ L L !e(xe + Wj)Wj 
JEJ eEP;" 

= L L ae(xe + Wj)Wj + bewj. 
eEE j:eEP;" 

C(P) ~ L aexex; + aex;2 + b;x; 
eEE 

= LaeXex; + L(aex; + be)x;. 
eEE eEE 

The second term is just C(P*); apply Cauchy-Schwartz to the first: 

C(P) ~ L aex; L aex:2 + C(P*) 
eEE eEE 

= JC(P)C(P*) + C(P*). 

Write Œ = JC(P)/C(P*); then dividing the above by C(P*), 

Thu8 Œ ~ (V5 + 1)/2, and 80 finally 

C(P) 2 3 + J5 
-=-:-:-'=--'":- = Œ < ---C(P*) - 2 . 
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D 

This upper bound is tight, as is confirmed by the construction shown in Figure 2.1. 

There are four players; the four (Sj, t j , Wj) triplets are, in order, (u, v, 4», (u, W, 4», 
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u 

Figure 2.1: A network game with the largest possible priee of anarchy when restricted 

to linear cost functions. 

(v, w, 1) and (w, v, 1). Here, </; is the golden ratio,(l + /5)/2. It can easily be checked 

that the strategy profile defined by the paths 

Pl = uwv, P2 = UVW, P3 = vuw, 

is a Nash equilibrium, and has cost 4</;2 + 44> + 2. The optimum solution is 

Pt = uv, P; = UW, P; = VW, P; = wv, 

which has cost 2</;2 + 2. The priee of anarchy of this game is thus 

C (P) = 4</;2 + 4</; + 2 = </;2 + 3</; + 2 = A, = 3 + /5 
C(P*) 2</;2+2 </;+2 'P+ 1 

2' 

2.3 Improved bounds for the unsplittable case 

In this section, we consider the unsplittable atomic case with polynomial latency 

functions of maximum degree d. Actually, we consider co st functions in Cd, defined 

as the set of polynomials of maximum degree d with non-negative coefficients. The 

requirement that the coefficients be non-negative will be assumed from here on. 

Awerbuch et al. [1] showed that the price of anarchy is n(ddj 2) and o (2ddd+l ). The 

lower bound by Christodoulou and Koutsoupias [3] of n( dd(l-O(l))) for finite congestion 
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games can also be modified to provide a lower bound for unsplittable network flow. 

Let cp( d) be the positive real root of the equation (x + l)d = xd+!, so that 

(2.2) 

is satisfied. We will write simply cp if there is no confusion over the value of d. We 

will show that cpd+! is a tight upper bound for the value of the price of anarchy, and 

also give constructions that obtain this upper bound. It is interesting to compare 

with the nonatomic case, where the asymptotic behaviour of Equation (1.6) is easily 

found to be 

Pnonatomic = e (1: d) . (2.3) 

Although computing the exact asymptotic behaviour of cpd+l seems to be somewhat 

problematie, it can easily be shown that for any E > 0, 

d d 
lnd < cp < (1 + E)lnd 

for d sufficiently large. It follows that the priee of anarchy in the unsplittable case 

satisfies 

and P = w ((djlnd)d+!). 

80, roughly speaking, P is about the (d + 1) 'th power of Pnonatomic - a considerable 

difference. 

We will require the following identities that follow from the definition of cp: 

cp + 1 = cpHl/d 

1 + cp-l = cpl/d 

cp-l/d + cp-l-l/d = 1 

(2.4) 

(2.5) 

(2.6) 
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2.3.1 The lowerbound construction 

We construct a congestion game with price of anarchy <p( d)d+1. 

Let the set of items be 1 = 10 U 10, where 10 = {a, 1, ... , dl, and 10 = {a, 1, ... , d} 

is a disjoint copy of 10' Let the set of players be J = Jo U Jo, where Jà = {a, 1, ... , d} 

and Jo = {a, 1, ... , dl. We also define a bar operation in the obvious way, so a = 0, 

etc. and {A} = {A}. 

The player weights Wj are defined by 

w. = w'" = (()-(j+l)/d 
J J 't" 

Vj E {a, 1, ... , d - 1} 

The cost functions fi are defined as fi (x) = aixd, where 

ao = aü = 1 

Vi E {1,2,3, ... ,d}. 

The set of allowed strategies for player j E J is Sj = {Sj, S1} where 

Sj = {a, 1, ... , j} 

S3 = {a, 1, ... ,]} 

s; = {j + 1} 

S3 = {j + 1} 

S~ = {a} 

Sj = {a}. 

Vj E Jo 

V] E Jo 

Vj E Jo\{d} 

V] E Jo\{d} 

Let P = {Sj : j E J} and P* = {S1 : j E J}. Once our construction is complete, we 

will show that P is a Nash equilibrium; P* will be the optimal solution. 

Let Xi and x; be the total utilisation of item i under P and P* respectively. We 
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first calculate Xi for i Ela: 

Thus for j E Jo, 

and hence 

k=i 

d 

= L 'P-
k

/ d + 1 
k=i+l 

= 'P-(i+1)/d 'P + 1 
(
1- -(d-i)/d) 

1 - 'P-1/ d 

= 'P-(i+1)/d (1 - 'P-1+
i
/
d

) + 1 
'P-1- 1/ d 

- W·(()d+j/d 
-)r • 
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from (2.6) 

(2.7) 

j=O 

j 2: 1, 

using (2.5) 
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Define p(j) = P\Sj u Sr For j E {a, 1, ... , d - 1}: 

Also, 

Cj(p(j)) = Wji)+1(xj +1 + Wj) 

= Wj1i+l(Xj) 

= Wj(ip + l)jipd-j 

= Wjipj(d+1)/dipd- j 

= Wjipd+j/d. 

by (2.2) 

by (2.2). 

U nsplittable Flow 

Thus Cj(P) = Cj(p(j)) for aIl j E Jo, and so (by symmetry) for aIl j E J. 80 at P, 

no player has an incentive to switch to S1, and so it is a Nash. 

Finally, notice that for aU i E {1, 2, ... ,d}, 

Xi _ ~ _ ipl-i/d _ 

X
'!' - W· - In- i / d - ip. 
~ ~-1 't" 

Additionally, 
Xo ip 
Xô = 1 = ip. 

80 (by symmetry) xd xi = ip for aIl i El, and so the priee of anarchy is 

2:. a·xd+l 2:. a'ipd+lx*d+l 

P 
= tEl t t = tEl t t = Ind+1. 

'" *d+l '" *d+l 't" 
L..iEI ai x i L..iEI ai x i 

The construction can easily be modified to give a network game. Figure 2.2 shows 

a possible construction for d = 2. Arcs labelled 1, l etc refer to the items of the 

original congestion game, and have the same co st functions; dashed arcs have zero 

cost. Each player j E J requires a fiow of Wj from Sj to tj. It is easy to check that 
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Figure 2.2: A network game version of the lower bound construction for d = 2. 

the Sj - tj paths available to player j correspond exactly to the allowed strategies in 

the congestion game construction. It is also easy to see how this can be generalised 

to arbitrary d. 

2.3.2 A matching upper bound 

The pro of of the mat ching upper bound requires two steps; we first show that the 

price of anarchy does not decrease if we restrict the cost functions to be in the set 

we then use a sequence of inequalities partially based on the upper bound proof in 

[1] . 

Theorem 2.2. Given an arbitrary weighted finite congestion game G with cost func­

tions in Cd which has a pure Nash equilibrium, there exists another congestion game 

ê with cost functions in Cd where the priee of anarchy is at least as large. 
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Proof. Denote the set of items by E, the players by J, and the set of strategies 

available to player j E J by Sj. As usual, denote the cost functions by Je (x) and the 

player weights by Wj. 

Let the priee of anarchy of G be p. Pick a Nash equilibrium of G with maximal 

cost, i.e. p times the cost of the optimal solution. Let Sj E Sj be the strategy 

that player j plays in this Nash equilibrium, and let S; be the strategy player j 

plays in the optimal solution. Note that any other strategies in Gare superfluous­

discarding them does not affect the priee of anarchy. As usual, let P = {Sj : j E J}, 

P* = {S; : j E J} and p(j) = P\Sj US;. By Equation (3.2), the Nash requirement 

yields Cj(P) ~ Cj(p(j)). 

We now define a new game G. Define 

and 

F = {e E E : Xe < x:}, 

Fj = {e E F : x~) ~ x;} 

FJ = F\Fj. 

Intuitively, at the Nash flow, player j makes a "small" increase (or even a decrease) to 

elements of Fj upon switching to S;, but a "large" increase to elements of FJ (whieh 

also implies that FJ ç Sj). Aiso let 

F' = {e' : e E F} 

be a disjoint copy of F; for any U ç F, we will use U' to denote {e' E F' : e EU}. 

AIso, define a new item tj for every j E J. The item set for G will be 

Ê = E U F' U {t j : j E J}. 
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The cost functions le (X) are defined as follows: 

le(x) = !e(Xe) (:J d 

le(x) = !e(X:) (:J d 

Îe/(X) = !e(Xe) (:Jd - Îe(x) 

Îtj = L !e(x~j)) (~j) d 

eEFJ 

We should verify that leI E Cd; to see this, we first define 

Ve E E\F, 

'Ile E F, 

Ve' E F', 

Vj E J. 

he(x) is dearly a non-increasing function. Now for any e' E F', 

since Xe :::; X; for e E F and so he(xe) ~ he(x;). 
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(2.8) 

(2.9) 

(2.10) 

(2.11) 

Define the strategy set Sj for player j in ê as follows: Sj = {Sj, S;}, where 

Sj = Sj U (F n Sj)', 

S; = S;\FJ U {tj}' 

We now daim that P = {Sj : j E J} is a Nash for the new game. We use the 

notation ê to refer to costs in ê, and x for the Nash fiow vector. 



28 Unsplittable Flow 

Combine the last two terms and apply (2.10): 

= Wj L !e(xe) 
eESj 

Define PU) = P\5j U 5; analogously to pU); the strategy profile where player j 

plays the optimal strategy, and an other players the Nash strategy. 

êj(PU)) = Wj L Je(:î;~j)) 
eES' 

J 

_ [~A (.) A ] - Wj ~ !e(xeJ ) + !tj(Wj) 
eESj\Fj 

= Wj [ L Je(X~)) + L fe(X~)) (~) d] 
eESj\Fj eEFJ 

= Wj [ L !e(Xe) (~) d + L !e(X;) (~) d + L !e(X~j))] , 
eESj\F eEFJ eEFj 

by the definition of Je and since S;\Fj = (S;\F) U FJ. Now since x~j) ;::: Xe for an 

e E S; (and hence S;\F), and x~) ;::: x; for an e E FJ, and he(x) is decreasing, 

êj(P(j)) ;::: Wj [ L fe(x~j)) + L fe(x~j)) + L fe(X~j))] 
eESj\F eEFJ eEFJ 

= Cj(pU)). 

Since Cj(p(j)) ;::: Cj(P) in G by the Nash requirement, êj(P(j)) ;::: êj(P) as required. 

So P is a Nash. 
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Sinee ê(P) = ê(p), to show that the priee of anarehy of â is no smaller than p 

we must show that ê(P*) ::; C(P*). 

êj(P*) = Wj L Îe(x:) 
eE8; 

=Wj [ L Îe(x:)+Îti(Wj)] 
eES;\Fj 

= Wj [ L !e(xe) (~) d + L !e(x:) + L !e(x~j))] . 
eES;\F eEFJ eEFJ 

Now Xe 2:: X; for e E S;\Fand x; 2:: x~) for e E FJ, and so sinee he(x) is decreasing 

we have 

Cj(P*) ::; Wj [ L fe(x;) + L fe(x;) + L fe(x;)] 
eES; \F eEFJ eEFJ 

= Wj L fe{x;) 
eES; 

Thus we have aehieved the required reduction. o 

This means an upper bound on the priee of anarehy with cost funetions in ëd will 

apply to general polynomial cost funetions in Cd, so we restrict our attention to eost 

functions in ëd from now on. We begin with a useful lemma: 

Lemma 2.1. For a, b 2:: 0, d 2:: 1 and 0 < 1 < 1, 

(2.12) 
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Proof. 

(a H)d ~ (, (~) + (1- ,) C ~,))" 
:ô,(~r +(1-,) C~S 
= ,I-dad + (1 _,)I-dbd. 

(by convexity) 

o 

Theorem 2.3. For any weighted congestion game G with cost functions in Cd, the 

priee of anarchy is at most 'Pd+I. 

Proof. We begin with Equation (2.1): 

C(P) ::; 2: 2: fe(xe + Wj)Wj 
eEE j:eEPj• 

= 2: 2: ae(xe + Wj)dWj . 
eEE j:eEP] 

(2.13) 

(2.14) 

We now apply Lemma 2.1, with a = Xe and b = Wj, and, to be determined later: 

C(P) ::; L L [ae,l-dX~Wj + ae(1-,)1-dw1+1] 
eEE j:eEPj• 

::; ,1-d2:aeX~X: + (l_,)I-d2:aex:d+l. 
eEE eEE 

We now apply Hûlder's inequality, 

Œ+,B=l 

to the first term, with Œ = d/(d + 1), ,B = l/(d + 1), Ue = aex~+1 and Ve = aex:d+1 to 

obtain 

C(P) ::; ,I-d (2: aex~+l) d/(d+l) (2: aex:d+1) l/(d+1) + (1 _,)l-dC(p*) 

eEE eEE 

= ,l-dC(p)d/(d+1)C(p*)l/(d+1) + (1 _,)l-dC(p*). (2.15) 
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( 
0(1') ) 1/(d+!) 

Now let z = 0(1'*) and divide by C(P*) to obtain 

let ((z) = zd+! - "fl-d Zd - (1 - "f)I-d. 

We now choose "f = ~. Then 

( 
l)d-l 

((<p) = <pd+l _ <p; <pd _ (<p + l)d-l 

= <pd+! _ (<p + 1) d-l <p _ (<p + 1) d-l 

= <pd+! _ (<p + l)d 

=0 

by the definition of <p, and so <p is a root of (. AIso, 

('(z) = (d + l)zd _ ('P; 1) d-I dz"-I 

= zd-l ((d + l)z - Ld) 
<p+1 

> dzd-l (z - <p) 

2: 0 for z 2: <p. 

Thus <p is the largest root, and in order to satisfy (2.15) we must have 

C(P) < d+! 
C(P*) - <p . 

Combining the two theorems, we obtain 
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D 

Corollary 2.1. Any weighted congestion game with polynomial cost functions has a 

price of anarchy of at most <pd+!. D 
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2.4 Unweighted games 

We now consider the case where we restrict Wj = 1 for an players j. Our bound is 

more precise than the d8 (d) bound of Christodoulou and Koutsoupias [3], and is again 

tight. The construction is actually quite different from the weighted version, which 

is perhaps surprising. 

By writing (2.2) in the form (1 + ip-l)d = ip, it can easily be shown that ip is never 

an integer. Let k = Lip J. Then define a, (3 by 

a = (k + 1)d - kd+1 

(3 = (k + 1)d+l - (k + 2)d. 

(2.16) 

(2.17) 

Sinee x-d . (xd+l - (x + 1)d) = X - (1 + X-l)d is increasing and has ip ~ IN as a root, 

a and (3 are both strictly positive. We will show the following: 

Theorem 2.4. A tight upper bound for the priee of anarchy for unweighted network 

(or congestion) games with cost functions in Cd is 

(2.18) 

Proof. We begin with the lower bound construction. Let the players be J = Jo u Jo, 

with 

Let the items be 1= la U fa, with 
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Define the co st functions as fi = aixd, for aU i E 10 where: 

i~k 

The cost functions for items in io are defined symmetrically. 

We define the strategies for players in Jo as follows: 

SPj = {Ui : i ~ k + 1} 

Sqj = {Vi : i ~ k + 1} 

S;j = {Üj} 

S;j = {Vj} 

. < k J-

. < k J-

Again, for players in Jo we define the strategies in a symmetric fashion. 
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We now show that the strategy distribution P = {Sj : j E J} is a Nash. First, 

for aU j :::; k, 

k+l 

CPj (P) = L au;kd 
i=l 

1 (d ) d 
= (k + l)d (3k . k + a(3 k 

= (3kd
, using (2.16). 

Cpj(p(Pj)) = (3 (k: 1) d (k + l)d 

= (3kd
. 
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Also, 

Finally, 

k+l 
Cqj (P) = L aVi (k + l)d 

i=l 

= a(k + l)d, using (2.17). 

C'lj(pl'lj») = " G:~ r (k + 2)" 

= a(k + l)d. 

Cqk+JP) = a(k + l)d. 

U nsplittable Flow 

Cqk+1 (p(Qk+l) = aUk +1 (k + l)d + aVk+
1 
(k + 2)d 

= af3 + a((k + l)d - (3) 

= a(k + l)d. 

80 the Nash requirements are satisfied. The optimal flow is obtained by taking aH of 

the S; strategies, where every item is used only once. Thus the priee of anarchy is 

as required. 

",~+l a .kd+l + ",~+l a . (k + l)d+l 
L......t=l u. L......t=l v. 

P = ",k+l ",k+l 
L......i=l aUi + L......i=l aVi 

f3k d+l + a(k + 1)d+1 

-
f3+a 

There is some intuition behind this construction. There are two groups of items; 

the ui's are used by k players at Nash, and the vi's by k+ 1 players. Because k+ 1 > 'P, 

the qj players can't quite fit their optimal strategies within the Vi group; on the other 

hand, because k < 'P, the Ui group has sorne "extra space" available. The cast 

functions are scaled in the different groups to match the "exeess" of the Vi 's with the 

amount of "extra spaee" from the Ui group. 

We now provide a matching upper bound. First a lemma; the proof is annoyingly 

technical, and has been relegated to the appendix. 
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Lemma 2.2. For all r, sEIN, 

where 

(k + 2)d - (k + l)d 
Il = (k + l)d+l _ kd+1 ' 
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We will again assume that the transformation of the previous section has been 

applied, so that all cost functions can be written !e(x) = aexd • We begin again with 

(2.13): 

Now 

C(P) :::; L L !e(xe + Wj)Wj 

jEJ eEP; 

eEE 

:s; L ae (IlX~+1 + vx:d+1 ) 
eEE 

= IlC(P) + vC(P*). 

(k + 2)d - (k + l)d 
Il = (k + l)d+1 _ kd+1 

(k + l)d+1 - {3 - (k + l)d 
-

(k + l)d+1 - kd+1 
a:+{3 

= 1 - (k + l)d+1 _ kd+1 
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Thus 

C(P) < _v_ 
C(P*) - 1 - JL 

(k + l)d - JLkd+l 

1-JL 
Œ + (1 - JL)kd+l 

1-JL 

(k + l)d+l - kd+l 
= Œ + kd+l 

Œ+f3 
= _Œ_(k + l)d+l + _f3_kd+l. 

Œ+f3 Œ+f3 

This matches the lower bound construction. 

Unsplittable Flow 

D 
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Chapter 3 

The Flow-free Model 

In this chapter, we will consider a new variation on the "classical" model that we have 

considered so far. We will first motivate and define the model, and then proceed to 

sorne results on the price of anarchy, first for nonatomic agents and then for atomic 

agents. We will consider linear and polynomial cost functions, and most of our results 

will be tight. 

3.1 The model 

The classical model considered in the previous chapter has the property that aIl 

players using an edge experience the same latency. This makes sense if we think of 

the players as continuously routing flow. For example, the model is a reasonable one 

for users streaming audio or video across the internet. But suppose we are interested 

in rush hour traffie. Here, the assumption of equal lateney is no longer as reasonable; 

cars that use a road earlier will cause congestion to later traffic, but not the reverse. 

We provide a very simple modification to the classical model which incorporates 

this effect. We will first give an informaI description of the model in the nonatomic 

case, where aIl players are infinitesimaIly small. In the classical model, on an edge 
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Figure 3.1: The cost is defined by the area of the greyed region in our new model, as 

opposed to the area of the large rectangle. 

with utilisation Xe, an players paya rate of fe(xe), giving a total cost of fe(xe)xe for 

that edge. In our new model, the players on an edge have sorne priority ranking. For 

example, the priority could be based on the time at which the agents arrived at the 

start of the edge; agents who arrive earlier get higher priority. For any agent j, let 

x~j) be the amount of flow with higher priority than j along edge e; this depends on 

the current routing of the players. We now dictate that player j's latency on edge e is 

not fe(xe) as in the classical model, but fe(x~j)). The total contribution to the social 

co st by edge e will then be J;e fe(z)dz. See Figure 3.1 for a pictorial representation. 

The area of the greyed region is exactly the above integral. 

We now define the model rigorously. We begin with the atomic unsplittable case, 

since this is actually easier to define (although more difficult to analyse). 

The atomic case 

As before, we have a directed network G = (V, E), and n players J = {l, 2, ... , n}. 

Player j wishes to route traffic of size Wj from vertex Sj to vertex tj. As before, each 

edge has an associated cost functions fe (x). But in addition, we must define sorne 
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kind of priority scheme on the edges. We will allow this to be very general - the 

priority ordering on an edge can depend arbitrarily on the current routing P. Later 

we will look at special cases for the priority scheme. If player i has lower priority 

than playerj on edge e under routing P, we write i -<e,p j. For a fixed e and P , the 

relation -<e,P must define a total ordering of the players using edge e; this is the only 

restriction we impose. If it is clear from the context what edge or routing is being 

referred to, we will omit it to avoid notational clutter. 

Let us now consider sorne particular priority schemes that seem natural. 

The global priority game: This is the simplest possible case; the ordering is in­

dependent of the routing, and is also the same for aU edges. In other words, there is 

a fixed priority ordering of the players. 

The fixed priority game: A more general model than the global priority one, here 

we still insist that the priorities are independent of the routing, but we aUow different 

orderings on different edges. 

The timestamp game: This particular variant was the inspiration for the flow-free 

model. The priorities of agents are determined by their arrivaI times at the start of 

the edge. Associate with each agent j an additional value Tj that represents the 

starting time of that agent. Now take a specific routing P = {Pl, ... , Pn}. The time 

agent j arrives at a vertex u E Pj is then Tj plus the time taken to traverse aU the 

edges on the subpath of Pj from Sj to u, denoted lj[Sj, u]. Of course, the latency of 

player j along an edge in Pj [Sj , u] depends on the priority of j on that edge, which 

in turn depends on the start times of other agents. 80 it is not perhaps completely 

clear that we have enough information to uniquely determine the priorities. To see 

that we do, imagine simulating the game. If we take the player j with the smaUest 

value of Tj, that player must have the highest priority on the fir~t edge el of her 

path. 80 we can imagine moving her to u, the second vertex of her path Pj. Her 

timestamp at u will be Tj + JoWj Jel (z)dz. Now we continue by again taking the player 
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with the lowest timestamp (this could be the same player as in the first step, if the 

updated timestamp is stilliower than that of the other players). When a player moves 

in our simulation, she will always have a priority lower than any players who have 

already moved along that edge, but higher than those yet to move along it. When 

the simulation terminates, we have the priorities we require. 

There is also the small difficulty of ties - two agents taking the same edge who hap­

pen to have the same timestamp. We resolve this by simply prescribing a tie-braking 

or der on the players. Alternatively, perturbing the starting times by sufficiently small 

values will break the ties without modifying the orderings. 

We can also consider the congestion game generalisation of this flow-free model. 

The generalisation is exactly analogous to the classical case - we sim ply remove the 

network structure and allow strategies to be arbitrarily specified subsets of items. Of 

the three specifie models mentioned ab ove , the first two generalise to this context; 

the timestamp game does not have a natural generalisation. 

As in the informaI discussion, let x~j) (P) be the amount of flow on edge e with a 

higher priority than player j (under routing P), Le. 

x~j) (P) = L Wi· 

i:i~e,pj 

Cj (P) is again the portion of the total cost attributable to player j, which is 

(3.1) 

For P ta be a Nash, we must have for any player j and any Sj - t j path P', 

(3.2) 

where P' = P\Pj U P'. This is simply a restatement of the condition that player j 

cannot switch to a cheaper route. 
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The nonatomic case 

In the limit as max Wj -+ 0, we obtain the nonatomic case, where the agents are 

negligibly small. Intuitively, there is not much difficulty here, and aIl of the specifie 

models defined above for the atomic case would seem to carry over easily to the 

nonatomic case. We have to be somewhat careful if we are to define this rigorously 

however. Our treatment, which requires a little measure theory, is inspired by a 1973 

paper by Schmeidler [17], which first discussed nonatomic games. 

We denote the set of players R by an interval [0, N], where N E IR+. The choice 

of N is completely irrelevant, and could be normalised to 1 if desired. We also have 

two measurable functions s, t : R -+ V, which specify the origin and destination of 

each player respectively. Finally, we define a priority scheme exactly as before; for a 

specified routing P, -<e,P is a relation defining a total ordering on edge e. 

The value xir)(p), the amount of flow on edge e with higher priority than player 

r under routing P, still makes sense in the nonatomic case, although we must define 

it differently: 

x~r) (P) = r Je dJl, (3.3) 
JLr 

where Lr = {q ER: q 'r e,P r}. The integral is a Lebesgue integraP The total 

latency experienced by player r, i.e. the time taken for the player to traverse from 

the source to the sink, is 

(3.4) 
eEPr 

Analogously to the atomic case, the requirement for P to be a Nash equilibrium is 

that for any r E Rand any Sr - tr path P', 

(3.5) 

where P' = P\Pj U P'. 

lWe need Lr to be Lebesgue measurable, which implies a requirement on the ordering ?-j any 

even remotely reasonable ordering will satisfy this very technical requirement however. 
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The above is more complicated than the definition of the nonatomic case of the 

classical model. There is a good reason for this. In the classical model, aIl agents 

with the same origin-destination pair are essentially indistinguishable. Because of 

this, essentially everything of importance can be defined in terms of the fiow vector 

x. In our model, this is not the case; there is no way to formulate the Nash condition, 

for instance, in terms of just the fiow, since the priority scheme can encode very 

complicated dependence on the routing. Hence our model is more reminiscent of 

general nonatomic games. 

Generalising to congestion games is done analogously to the atomic case. 

Existence of pure Nash equilibria 

We mention a few existence and nonexistence results regarding pure Nash equilibria. 

First, an unsurprising negative result. In the atomic unsplittable case, allowing gen­

eral priority schemes, there need not be a pure Nash. In particular, the following is 

an example in the fixed priority game. Consider the network shown in Figure 3.2. 

The edges in this network are undirected, and fiow in either direction contributes to 

the conges.tion on an edge (we will return to this point shortly). There are two users, 

each of size 1, with source-destination pairs (SI, h) and (S2, t2) respectively. AlI edges 

have cost function !e(x) = x. The priorities on each edge are shown in the figure. 

It is easy to see that no matter which direction each of the two players choose to 

route their fiow, the player with lower priority on the single edge these routes have 

in common will have an incentive to change to the other route. Thus the game has 

no pure Nash. 

Of course, we have not explicitly allowed undirected edges in our model. But we 

can replace each of the undirected edges in the construction with the widget shown 

in Figure 3.3. 

Now for a positive result: in the global priority model, even in the atomic un-



3.1 The model 

S'r2rlîS2 
IL2rlJ

2 
t2 t1 

43 

Figure 3.2: A fixed-priority game with no pure Nash equilibria. 

'1' , , , , , , , , , , , , , , v,, f1(X) )~w 
, , , , , , , , , , , , , , , , , , 

Figure 3.3: Widget to imitate an undirected edge e 

(dashed arcs have zero cost). 

(v, w) with directed edges 

splittable case, there is always a pure Nash (as long as the cost functions are at least 

non-negative and increasing). This can be seen in the atomic case by an explicit 

algorithm to construct the Nash: simply go through the agents in priority order, and 

route each along a short est path given the congestion effects of the higher priority 

agents that have already been routed. 

It should be possible to show existence in the nonatomic case under some weak 

assumptions on the priority scheme. In particular, we conjecture that a pure Nash 

always exists, as long as the priority scheme is such that x~r) depends continuously 

on the flow P, for every edge e and player r. 
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A correspondence with the classical model 

The optimal flows in the flow-free model can be linked quite nicely with the classical 

model, especially in the nonatomic case: 

Lemma 3.1. Given an instance G = (V, E) of the (atomic or nonatomic) fiow-free 

network game with cost functions fe, optimal fiows are exactly the same as the optimal 

fiows in the classical game on the same network, but with cost functions 

A 11X 

fe(x) = - fe(z)dz. 
x 0 

(3.6) 

Pro of. This follows by noting that the cost of a flow x in the flow-free model, 

is exactly the same as the cost induced in the classical model with cost functions fe: 

ê(x) = L le{xe)xe = L l xe 

fe(x)dx. 
eEE eEE 0 

o 

Corollary 3.1. In a nonatomic fiow-free game, the optimal fiows are exactly the 

Nash equilibria of the classical network game on the same network, with the same 

cost functions. 

Proof. The result follows directly from the following characterisation of optimal flows 

in the classical game, an old result [2, 11] also discussed in Roughgarden's book [14, 

Section 2.4]: A flow x is optimal for a classical nonatomic game with continuously 

differentiable, semiconvex2 cost functions Je iff it is a Nash for a game on the same 

network, where the cost functions are replaced by 

f:(Y) = ~ (Y' Je(Y)). 

But if the Je'S are defined as in Equation (3.6), then f;(Y) = fe(Y), and the result 

follows. o 
2 A function f (y) is semiconvex iff y f (y) is convex. 
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3.2 The priee of anarehy of nonatomie agents 

We begin by considering the case of nonatomic agents, Le. where there are an infinite 

number of players, each controlling an infinitesimal amount of flow. We will obtain 

tight bounds for linear and polynomial co st functions. First a useful inequality: 

Theorem 3.1. For any Nash flow P, under any priority scheme, 

C(P) ~ L !e(xe)x:. (3.7) 
eEE 

Proof. Let P* = {P: : r E R} be sorne assignment of paths to players that obtains 

an optimum flow x* (so formally, it is a valid routing such that fr:eEP; 1 dJ1 = x:). 

Apply (3.5) with P: = P:: 

er(p) ~ er(p(r») 

= L fe (x~r)(p(r»)) , 
eEP; 

where p(r) = P\Pr U P:; we have used Equation (3.4). Now clearly dr)(p(r») ~ Xe, 

so 

er(p) ~ L fe(xe). 
eEP; 

Thus 

C(P) = l er(p)dr 

~ 1 L fe(xe)dr 
R eEp; 

= L !e(Xe) r (leEP; )dr 
eEE JR 

= L fe(xe)x:. 
eEE 

D 
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Let us now find an upper bound in the case of linear cost functions. The result 

is superseded by the more general polynomial case considered next, but the pro of in 

the linear case is more transparent. 

Theorem 3.2. In the nonatomic case with linear cost functions, and for any priority 

scheme, 4 is an upper bound on the priee of anarchy. 

Proof. Let fe(x) = aex + be for aIl e E E. Note the following, for any fiow vector x': 

= 2C(x/). (3.8) 

Beginning with the result of Theorem 3.1, we again use the technique from [5]. 

C(P) ::; L fe(xe)x; 
eEE 

eEE eEE 

:::; 2C(P*) + L Ue(xe) - !e(x;)) x; from (3.8). 
eEE:xe~x~ 

Following exactly Equation (1.3), we obtain 

1 
C(P) :::; 2C(P*) + 4; L fe(xe)xe 

eEE 

:::; 2C(P*) + ~C(P), 

again using (3.8) in the final step. Thus C(P)jC(P*) :::; 4, as required. o 

We now extend this result to polynomial co st functions. This requires a generali­

sation of the technique used for Theorem 3.2 and Theorem 1.1. 
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Theorem 3.3. For the nonatomic case with polynomial cost functions of maximum 

degree d, (d + 1)d+1 is an upper bound for the priee of anarchy. 

Praof. The proof uses a generalisation of the technique used to prove Theorem 3.2. 

Let a 2 1 be a constant to be chosen later. We have 

eEE 

eEE eEE 

s; a(d + l)C(P*) + 

Now consider: 

Let g(cjJ) = cjJ - acjJd+1. Sinee g'(cjJ) = 1- a(d + l)cjJd, the maximum value of 9 occurs 

at cjJm = (a(d + l))-l/d, giving 

d 1 
g(cjJ) S; d + 1 . (a(d + l))l/d' 

Thus 

Ue(Xe) - afe(x;))x; S; d! 1 . (a(d: l))1/d . !e(xe)xe , 

and sinee 2:eEE !e(xe)xe S; (d + l)C(P), 

C(P) S; a(d + l)C(P*) + d! 1 . (a(d: l))l/d . (d + l)C(P), 
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t 

Figure 3.4: Lower bound construction for polynomial cost functions. 

yielding 
C(P) < a(d + 1) 
C(P*) - 1 - d(a(d + l))-l/d' 

Now set a = (d + l)d-l; this gives 

C(P) < (d + l)d+1 
C(P*) - , 

completing the proof. o 

Having obtained an upper bound, we now show that it cannot be improved, by 

demonstrating how to eonstruct agame with priee of anarehy arbitrarily close to this 

upper bound. 

Theorem 3.4. For the nonatomic case with polynomial cost functions of maximum 

degree d, (d + l)d+l is a lower bound on the priee of anarchy in the global priority 

model. 

Pro of. Consider a network of the form shown in Figure 3.4. There are two types of 

lateney function in the network. Each link of the form (Si, SHl) has latency zero, 

and each link ei = (Si, t) has latency le(x) = xd li. We have a large number of 

infinitesimally sm aIl agents, aIl trying to get to t from one of the si's. The total 

amount of traffie originating at eaeh Si is unity. In addition, for aIl j < i aIl agents 

originating at Si have higher priority than agents originating at Sj. Agents originating 
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at the same vertex are indistinguishable, exeept for some fixed priority ordering among 

them. 

Let us calculate the priee of anarchy for this network. Any agent is unaffected by 

the choiees of lower priority agents, so we can calculate the Nash by working from the 

highest priority agents (i.e those starting from sn) to the lowest (starting at SI)' Let 

Xi,j be the fiow on the edge (Si, t) after an the players with origins in {Sj, Sj+!' ... ,Sn} 

have played (Xi,n+! := 0). Let Yj = fej(xj,j)' It is easy to see that the Nash condition 

implies that 

for an i ::; j. 

Inverting this gives 

for an i ::; j. 

Now sinee the total fiow from Sj is 1, we have 'Li=1 (Xi,j - Xi,j+!) = 1, so 

j 

L ((iYj)l/d - (iYj+!)I/d) = l. 
i=1 

l/d h-1 + l/d 
Yj = j Yj+!' 

Thus 
n 

l/d _ "'"' h-1 
Yj - ~ k , 

k=j 

as Yn+! = O. 

Sinee the sequence (i1/d){=1 is increasing, we have the bound 

l
k+! d 

h < Xl/ddx = --(k + 1)1+1/d. 
k_ 0 d+l 
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Hence 

y~/d 2: d: 1 t(k + 1)-(1+1/d) 

k=j 

~ d; 1 l n
+1 (x + l)~(l+1/d)dx 

= (d + 1)((j + It1/d - (n + 2)-1/d) 

We can now get a lower bound on the cost of the Nash flow P. Since the flow from 

81,82, ... , 8j-l does not use edge ej, the total flow along edge ej at Nash is Xj,j. Thus 

n 

= (d + l)d L:l/d[(j + l)-I/d - (n + 2)-I/d]d+1. 
j=l 

We can rewrite the statement of Lemma 2.1 as 

ad 2: 'Yd- 1(a + b)d _ (_'Y_)d-l bd. 
1-'Y 

(3.9) 

Apply this to (3.9) with a = (j + 1)-l/d - (n + 2)-1/d, b = (n + 2)-1/d and d = d + 1 

to obtain, for any constant 0 < 'Y < 1, 
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We deal with each term separately. We have 

(n + 2)-1-1/d 'i:)1/d = (n + 2t1 t (~) 1/d 
j=1 j=1 n + 

n 

< (n + 2)-1 :L 1 
j=1 

< 1, 

and so the second term is (] (1). For the first term, we have 

n n n 
:Lj-1(1 + y)-1-1/d = :Lj-1 - :Lj-1 (1- (1 + y)-1-1/d) 
j=1 j=1 j=1 

= Hn + (] (1). 

The pro of that the second term is convergent is given in the appendix. Thus 

51 

The optimal fiow P* is clearly obtained by routing aIl of the fiow from Si through 

ei for each i. This yields a cost of 

C(P*) = _1_t ~ = Hn . 
d + 1 i=1 i d + 1 

We thus get a bound for the priee of anarchy: 

C(P) > ,d(d + l)dHn + (] (1) 
C(P*) - (d + 1)-1Hn 

= ,d(d + l)d+1 + 0(1). 

Thus letting n --+ 00, we find that ,d(d + l)d+1 is a lower bound for the price of 

anarchy. FinaIly, since , was an arbitrary constant strictly less than 1, we send 

, --+ 1 to obtain (d + 1 )d+1 as a lower bound. o 
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Note that the priority ordering used in the above construction can also easily be 

produced in the time-stamp case. Let any agent originating at Si have an earlier 

start-time Ti than any agent originating at Sj, for all j < i. The relative ordering 

of time-stamps for agents originating at the same vertex is unimportant. We may 

assume that that start-times are measured to an arbitrary precision 80 that ties do 

not arise. 

Combining the previous two theorems, we have an exact value of (d + l)d+l for 

the priee of anarchy of our model with polynomial latency functions. 

3.3 Unsplittable atomic agents 

In this section, we will present a tight upper bound for the linear case, as well as 

a number of matching lower bound constructions for different priority schemes. For 

polynomial cost functions, we will only provide an upper bound. 

We begin with a use fuI inequality that holds for any Nash fiow P. As usuallet P 

be a Nash fiow, P* be an optimal fiow, and define pU) = P\Pj U P/, where everyone 

follows P except player j. Using equations (3.1) and (3.2), 



3.3 Unsplittable atomic agents 53 

Summing over aH j yields 

(3.10) 

3.3.1 Linear cost functions 

Theorem 3.5. In the unsplittable case with linear latency functions, the priee of 

anarchy is at most 3 + 2V2. 

Praof. Let P and P* be a Nash flow and an optimal flow respectively. Writing 

Equation (3.10) in the linear case with fe(x) = aex + be, we obtain 

C(P) :::; L L [(aeXe + be)Wj + ~aeWJ] 
eEE j:eEPj* 

:::; L [(aexe + be)x; + ~aex;2] 
eEE 

= L aexex; + L(~aex; + be)x;. 
eEE eEE 

We now apply the Cauchy-Schwarz inequality to the first term to obtain 

C(P):::; L aex; . L aex;2 + C(P*) 
eEE eEE 

:::; .j2C(P) . 2C(P*) + C(P*). 

Let 0: = gg::). The above gives us 0:2 
:::; 20: + 1, whence the priee of anarchy is at 

most 3 + 2V2 ~ 5.828. 0 

We now provide sorne matching lower bounds for various game variants. We begin 

with a weighted congestion game construction. We will require different priority 

orderings on different edges. . 
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Let the set of items be l = {1, 2, 3, 1, 2, 3}, and the players be J = {1, 2, 3, 1, 2, 3}. 

One should think of the barred items as mirror copies of the originals, and the barred 

players as reflected copies. We also define 1 = 1, etc. and {A} = {A}. 

We define the set of strategies for player j E J as 5j = {Sj, Sj} where 

SI = {1, 2, 3} 

S2 = {1, 2} 

S3 = {1, 2} 

and 5-] = 5j for j = 1,2,3. 

The player weights Wj are given by 

Wl = Wï = W2 = W2 = 1, 

W3 = W3 = J2 - 1. 

The priority ordering is 

S: = {1} 

S; = {2} 

S; = {3} 

1>-2>-3>-1>-2>-3 

1>-2>-3>-1>-2>-3 

for items 1,2,3 

for items 1,2,3 

The cost function for item i is fi(X) = aix where 

2V2 a - a--
1 - 1 - 3 + 2J2' 

3 
a - a- - ----= 

2 - 2 - 3 + 2j2' 

a3 = a3 = 2V2 - 1. 

(3.11) 

(3.12) 

(3.13) 

We claim that if aH players pick strategy Sj, we have a Nash. To show this, we need to 

show that no player has an incentive to switch to S;. Note that the priority ordering 

is such that a player would have the lowest priority on an item if they switched. 
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Let the cost for player j when aH players are playing Sj be Cj . Then: 

- -
2 

Let Cj be the cost player j pays upon switching. Then 

l
W-+W-+W-+W2 _ 1 2 3 

C2 = h(x)dx 
Wï+W:z+Wa 

1
'-"2+2 3 

= xdx 
'-"2+1 3 + 2V2 

3 
- -

2 
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1 

, , , 

1 
1 

1 

1 
1 

Figure 3.5: A network game construction with a price of anarchy of 3 + 2V2. 

l
wr+w3 

C3 = Wï f3(x)dx 

J,
v'2 

= 1 (2v2 - l)xdx 

1 
= v2 --. 

2 

80 none of players 1,2,3 have an incentive to switch, and by symmetry neither do 

players 1,2,3. 80 we do have a Nash equilibrium. The optimal strategy is for aU 

players to play S1. N ow notice that the utilisation of each item under the Nash is 

exactly 1 + V2 times the utilisation under the optimal strategy. It follows that the 

price of anarchy is (1 + V2)2 = 3 + 2V2. 
We can turn this into a network game, as shown in Figure 3.5. The dashed arcs 

have zero cost, and the remaining arcs are labelled to correspond with the items of the 

congestion game, and have the same co st functions, and the same priority orderings. 

The sources Sj and destinations t j of the players are also labelled. It can easily be 

verified that this network game reduces to the above congestion game, and so also 

has a priee of anarchy of 3 + 2V2. 
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While the ab ove construction uses different priorities on different edges, we can 

use the basic ide a for constructions with other priority schemes. First, let's go back 

to the congestion game formulation and consider the global priority game. Let N be 

sorne large integer. Let the players be 

J = {jr,s : 1 ~ r ~ 3, 1 ~ s ~ N} 

and the items be 

l = {ir,s : 1 ~ r ~ 3, 1 ~ s ~ N + 1}. 

We now set, for 1 ~ s ~ N, 

The weights are 

Sh,. = {i1,s, i2,s} 

Sia,. = {i1,s, i 2,s} 

The global priority ordering is 

S;2,. = {i2,s+1} 

S;2,. = {i3,s+1} 

jl,N >- j2,N >- j3,N >- jl,N-l >- j2,N-l ... >- j2,1 >- j3,1. 

For s ~ N, we set the cost functions as before, Le. fir,. = ar for r = 1,2,3, with the 

ar defined in (3.11) through (3.13). The exception is the final group of items, which 

nobody plays at Nash; thus we have to make it more expensive to ensure that players 

jl,N, j2,N and j3,N do not have an incentive to switch. So simply set 

Without this imperfection, the price of anarchy would be exactly as before, since we 

would simply have N copies instead of two. The addition of the final group reduces 
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the price of anarchy slightly. However, as we increase N to infinity, the effect of this 

on the total social cost becomes negligible. 80 we have a construction that yields a 

price of anarchy of 3 + 20 - E, for any E > 0; thus the upper bound is still tight in 

the global priority game. 

This construction can be turned into a network game fairly easily, in much the 

same way as before. We will not demonstrate the exact construction here, since it is 

somewhat complicated and not very edifying. Once we have this, we also can obtain 

a timestamp game construction by judicious choice of starting times. In particular, 

if we set the start times as 

Til,; = (N - i)K, Ti2,; = (N - i)K + 1, Ti3,; = (N - i)K + 2, 

where K is sufficiently large, we clearly end up with the same priority ordering. 

We can also consider the unweighted case, where Wj = 1 for aU players j. We give 

a tight result here also. 

Theorem 3.6. For unweighted agents, the priee of anarehy is at most 1;. 

Proof. We need the foUowing lemma: 

Lemma 3.2. Let i, j 2: 0 be integers. Then 

(3.14) 

Pro of. Note that 

2( ' 5 ')2 > 5 . 9·2 
'l- 2) - ) - 2) . (3.15) 

To see this, note that if j 2: 2 the right hand side is negative; if j = 1 it is ~, and the 

1eft hand side is at 1east ~ because i is an integer. 8imp1ifying this equation yie1ds 

the result. o 
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Now: 

C(P) ~ I)aeXe + be)x; + I: I: ~aewi 
eEE eEE j:eEP; 

. 2 usmg Wi = W i 
eEE eEE 

< '" la (~X2 + 17 x*2) + '" b X* -L....J2e5e 5e L....Jee using Lemma 3.2 
eEE eEE 

~ ~C(P) + V C(P*). 

Thus 
C(P) < 17/5 17 
C(P*) - 1 - 2/5 3 

The following construction shows that this upper bound is tight. Let 

1 = {1, 2, 3, 4, I, 2, 3, 4} and J = {1, 2, 3, I, 2, 3} 

be the items and players respectively. The strategies are 

SI = {1,2,3,4} 

S2 = {1,2,3,4} 

S3 = {1, 2} 

Sr = {2,3} 

S; = {4} 

Si = {I} 

and SJ = Sj for j = 1,2,3. The priority ordering is 

1>-2>-3>-1>-2>-3 

1>-2>-3>-1>-2>-3 

on items 1,2,3,4 

on items 1,2,3,4 

The cost function for item i is fi(X) = aiX where 

59 

D 
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(and symmetrically for the remaining items). 

Defining P and P* as usual, it can easily be verified that 

Cl(P) = ~ = Cl(P*) 

C2 (P) = ~ = C2 (P*) 

C3(P) = ~ = C3 (P*) 

Renee P is a Nash. The priee of anarchy is 

as required. 

(al + a2H .32 + (a3 + a4)~ . 22 

(al + a2 + a3 + a4H . 12 

Again, it is straightforward to convert this to a network game. Variations for more 

restrictive priority schemes are possible using the same approach as for the weighted 

case. 

3.3.2 Polynomial cost functions 

We will give only an upper bound for the polynomial case. For the lower bound, we 

will simply note that the (d + 1 )d+l value obtained in the nonatomic case still applies, 

sim ply using the same construction with sufficiently small agents. Clearly a better 

construction is possible, and the upper bound is also unlikely to be tight. We will 

not discuss the unweighted variations here. 

Theorem 3.7. The priee of anarchy is 0 (2d dd
) in the unsplittable atomic case with 

polynomial cost functions of maximum degree d. 
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Proof. Begin from Equation (3.10): 

C(P) ::; L L l x

e+
Wj 

fe(x)dx 
eEE j:eEP

j
* Xe 

~ L L fe(xe + Wj)Wj 
eEE j:eEP] 

d 

= L L ae,OWj + L L L ae,i(Xe + Wj)iWj . 
eEE j:eEP; eEE i=l j:eEP; 

Now apply Lemma 2.1, with a = Xe and b = wh and, to be determined later: 

d 

C(P) ~ L L ae,Owj + L L L [ae,i11-iX~Wj + ae,i(1 - ')')l-iW~+1] . 
eEE j:eEP; eEE i=l j:eEP; 

d 

C(P) < '"' a x* + '"' '"' [a .'V1- dxi x* + a ·(1 - 'V)l-dx*i+l] _ ~ e,O e ~ ~ e,t 1 e e e,t 1 e 

eEE eEE i=l 
d 

< '"' '"' [a .'V1- dXi X* + a .(1 - 'V)l-dx*i+l] - ~ ~ e,t 1 e e e,t 1 e 
eEE i=O 

eEE eEE 

::; ,1-d L fe(xe)x: + (1 - ,)l-d(d + I)C(P*). 
eEE 

The technique used for the nonatomic case is applicable to the first term (see the 

proof of Theorem 3.3). We thus obtain, for any a 2:: 1 and a < ')' < 1, 

C(P) ~ ,1-d (a(d + I)C(P*) + d(a(d + l)t1/dC(P)) + (1 - ')')l-d(d + I)C(P*). 

Thus 
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Now set a = 2d dd and "/ = 1 - 2
1
d. Then 

Thus 

,,/l-d = (1 _ 2~)1-d ::; (e-1/ 2d)1-d ::; e1/ 2 

-,---,_d---:--:~ = 2-1d1/d(d + l)-l/d < ! 
(a(d + l))l/d - 2· 

3.4 Single-commodity networks 

o 

Single-commodity networks refer to the case where aIl agents have the same source 

s and destination t. It is reasonable to expect the price of anarchy to perhaps be 

reduced in this case; this is indeed true, at least for some choices of priority schemes. 

We only require the co st functions be continuous, non-negative and increasing for the 

following results. 

First, a lemma: 

Lemma 3.3. For a single-commodity game with nonatomic agents, any fiow x where 

aU of the s - t paths with non-zero fiow are shortest paths, where length is determined 

by the metric le = fe(xe), is an optimal fiow. In other words, for any s - t path P 

with Xp > 0, and all s - t paths pl, 

L fe(xe) ::; L fe(xe). (3.16) 
eEP eEP' 

Proof. This follows directly from CoroIlary 3.1, since x is clearly a Nash in the classical 

version of the game. o 
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A particularly simple class of networks of this type are parallei link networks, 

which consist only of a source node, a sink node, and sorne number of links between 

them. We show the following: 

Theorem 3.8. For parallellink networks with nonatomic agents and any choice of 

priority scheme, the priee of anarchy is one. 

Proof. Let P be an arbitrary Nash. Consider Equation (3.5). In our case, it can be 

written 

for aIl e' E E, (3.17) 

for aIl players r. Now for each link e, either Xe = 0 or there is a player r such that 

Pr = e and dr) = Xe. Equation (3.17) then yields 

for aIl e' E E. 

Rence the result follows by Lemma 3.3. o 

We can obtain a similar result for general single-commodity networks if we restrict 

the priority scheme: 

Theorem 3.9. The nonatomic versions of both the global priority and timestamp 

games have a priee of anarchy of one in single-commodity networks. 

Proof. We first show that in the single-commodity case, the timestamp game is ex­

actly equivalent to the global priority game. Take any two players r, s E R whose 

routes in the Nash routing P intersect, and where the start times satisfy Tr < Ts . 

Then for any edge e E Pr n Ps, r must arrive at the start of this edge earlier than 

s-for if not, r could change her route to be the same as s's route until edge e, hence 

arriving earlier and contradicting the Nash requirement. 

80 we need consider only the global priority game. Take any path P on which 

P has non-zero fiow. Consider player r, the lowest priority agent that takes path 
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Figure 3.6: A single-commodity game with priee of anarchy larger than one. 

P. Since we are at Nash, this player has no incentive to switch; hence in particular, 

er(p) :::; 2:eEPI !e(xe) for any s - t path P'. Thus Lemma 3.3 applies, and P is an 

optimal routing. o 

The previous theorem does not hold if we consider fixed priority games instead. 

Consider the simple network shown in Figure 3.6. Take R = [0,1] for the set of 

players, and set all the cost functions to x. For those edges marked >, the priorty 

ordering is defined by r >- s iff r > s; for the edge marked <, r >- s iff r < s. It can 

easily be checked that the routing which sends an players in [0,1/3] along the bottom 

path and an players in (1/3,1] along the top path is a Nash. This has a social cost 

larger than the optimum obtained by splitting the flow evenly between the two paths. 

These results are in strong contrast to the classical model, where Pigou's two-link 

network yields the largest possible priee of anarchy in most cases [12]. 
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Conclusion 

In this thesis, we have proved sorne new results on the price of anarchy of the classical 

game in the case of atomic and unsplittable flow. We have also introduced and 

analysed a new model that takes priorities of agents into account. 

Plenty of questions remain, and there is plenty of scope for further work. Here we 

mention sorne of the more interesting avenues for exploration. 

We have very little inthe way of existence or uniqueness results in our model. It 

should be possible to prove existence in the nonatomic case under sorne fairly general 

restrictions on the priority scheme. It would be interesting to know if the timestamp 

game always has a Nash in the atomic case. In those cases where a pure Nash need 

not exist, it may be possible to extend our results to handlemixed strategy Nash 

equilibria. Another avenue would be to investigate the so calIed "p'rice of sinking" 

introduced by Goemans et al. [7]. 

We have not considered the atomic splittable case in the flow-free model. There 

are sorne indications that, unlike for the classical model, the price of anarchy may be 

no larger than for the nonatomic case. 

We have considered only linear and polynomial latency functions. Other cast 

functions are of course possible, and may be of interest. AlI of the cast functions we 

have considered are convex; for certain applications, concave cost functions might be 

interesting. 

In the nonatomic case, we have shown that the price of anarchy is one for single-
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commodity flow in the global priority and timestamp games. On the other hand, our 

construction that maximised the price of anarchy required taking a limit where the 

number of sources tends to infinity. 80 a natural question to ask is whether we can 

obtain bounds that depend on the number of source-destination pairs. 

We have captured the simple ide a that a car only causes congestion to traffic 

behind it, rather than before it, in the timestamp game. But this is very crudej a 

car will only cause congestion to ears a short time behind itj rush-hour traffie in the 

morning has no effect on rush-hour traffic in the evening. It may be possible to model 

a car's effect as sorne kind of "hump" which decays with time. 

While we have concentrated almost exclusively on calculations of the priee of 

anarehy in this thesis, there are other aspects of our model that eould be investigated. 

For instance, in sorne situations the addition of an arc or arcs to a network can increase 

the price of anarchy. This rather eounterintuitive behaviour is called Braess 's paradox. 

This feature has received substantial attention in the classieal model, and it would be 

interesting to see how similar (or different) the behaviour is in the flow-free model. 

Roughgarden [14J has a thorough review on the topie. 
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Calculations 

Praof of Lemma 2.2. Let 

where 

(k + 2)d - (k + l)d 
J.1 = (k + l)d+l _ kd+1 ' 

v = (k + l)d - J.1kd+1. 

67 

We must show h(r, s) :::; ° for aH r, sEN. We first consider the case s = 1, so let 

h1(r) = h(r, 1). Then 

h~ (x) = d(x + l)d-l - (d + 1)J.1xd 

= X
d- 1 [d(1 + ~)d-l - (d + 1)J.1x] . 

Thus h~(x)/xd-l is clearly decreasing for x > 0, positive at x = 0, and negative for 

x sufficiently large; let Xo be the unique positive zero. Then (by multiplying through 

by X
d- 1

) it is clear that h~(xo) = 0, h~(x) > ° for x E (O,'xo), and h~(x) < ° for 

x E (xo, 00). N ow notice that by the choice of J.1 and v, 
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(recaU k = LIP J). It foUows by the intermediate value theorem that there is a turning 

point of hl in the interval (k, k + 1), i.e. Xo E (k, k + 1). We now have that for 

r ::; k, hl(r) ::; hl(k) = 0 since hl(X) is increasing on [0, k], and for r 2: k + 1, 

h1(r) ::; h1(k + 1) = 0 since h1(x) is decreasing on [k + 1, (0). 80 h(r, 1) ::; 0 for aU 

r E N. 

Now consider s 2: 2. Let h(r, s) = h(r, S)jSd+I. 

_ (r + l)d (r)d+l h(r,s)= -s -J-l ~ -v 

::; (~+ l)d _ IL (~)d+1 - v 

= hl (;) 

:=:; 0 for ~ E [0, k] U [k + 1,(0). 

On the other hand, suppose k < ; < k + 1. Then r~l ::; k + 1 (since, r, SEN), and 

so 

_ (r)d+1 h(r,s):=:;(k+l)d-J-l ~ -v 

= (k + l)d - IL ( (~) d+l - kd+l) - (k + l)d 

::; O. 

Thus h(r,s) = h(r,s)sd+1
::; 0 for aU r,s E N. 

o 

Lemma A.1. The series 

n 

Lj-l (1 - (1 + y)-l-l/d) 
j=l 

is convergent for aU d 2: 1. 



Proof. 

Hence 

and so since 

1- (1 + ;)-l-l/d:s; 1- (1 + ;)-2 

2j + 1 
(j + 1)2 

3· < J 
- (j + 1)2· 

since d ~ 1 

o < ~ (1 - (1 _ ~)-l-l/d) < 3 
- j J - (j + 1)2' 

00 3 

f; (j + 1)2 

converges, the result follows by the comparison test. 
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o 
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