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Abstract

Cooperative transmission acts as a distributed solution for providing robust wireless com-

munications. It pools available resources, such as power and bandwidth, across the network.

The relay network is the simplest information theoretic model for a cooperative wireless

network and a full understanding of communication limits over such a network can poten-

tially shed light on the design of more efficient wireless networks. However, the capacity of

the relay network is still unknown. As a step towards the goal of calculating the capacity,

we derive the capacity bounds for a single-source single-destination relay network based on

partial decode-forward.

In the first part of the thesis, we review existing bounds on the capacity of the discrete

memoryless relay channel. We also review decode-forward and partial decode-forward in

the relay network.

In the second part of the thesis, we first introduce a discrete memoryless relay network

model consisting of one source, one destination and N relays. We then design a scheme

based on partial decode-forward relaying. The source splits its message into one common

part and N+1 private parts which are to be decoded at different relays. The source encodes

split message parts using length-N block Markov coding, in which each private message part

is independently superimposed on the common parts of the current and N previous blocks.

Using joint sliding window decoding, each relay fully recovers the common message part and

its intended private message part with the same block index, then forwards them together

to the following nodes in the next block. We derive the achievable rate of this scheme in

a compact form. The result is a generalization of and can be particularized to a known

decode-forward lower bound for anN -relay network and partial decode-forward lower bound

for a two-relay network. We then apply our proposed scheme to a Gaussian relay network

and obtain its capacity lower bound considering power constraints at transmitting nodes.

In the third part of the thesis, we introduce the concept of exhaustive message splitting

for partial decode-forward in a single-source single-destination relay network with N relays,

in which the relays are divided into subsets, and each different relay subset has a distinct

private message part to decode. We study this scheme in more depth in a three-relay

network based on block Markov encoding. We derive its achievable rate. Finally, we

apply this scheme to a Gaussian three-relay network and show that our scheme generalizes

network decode-forward and the private message splitting scheme as shown in the second



ii

part.
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Abrégé

La transmission coopérative agit comme étant une solution diffusée, permettant de fournir

une communication sans fil très robuste. Elle regroupe les ressources disponibles, comme

la puissance et la bande passante, à travers le réseau. Le réseau à relais est le modèle

théorique le plus simple pour un réseau sans fil coopératif et la compréhension des limites

de communication à travers de ce réseau permet potentiellement de saisir la conception d’un

réseau sans fil plus efficace. Par contre, la capacité du réseau à relais est encore inconnue.

Dans cette thèse, nous adressons la conception du schéma du decode-forward partiel dans

un réseau à relais ayant une source et une destination unique.

Dans la première partie de cette thèse, nous révisons le réseau à relais. Nous révisons

aussi le decode-forward ainsi que le decode-forward partiel dans les réseaux à relais.

Dans la deuxième partie de cette thèse, nous introduisons un réseau à relais san-

s mémoire composé d’une source, d’une destination et de relais N . Par la suite, nous

concevons un schéma à partir du réseau decode-forward partiel. La source divise son mes-

sage en une partie commune et en parties privées N + 1 qui sont destinées à des relais

diffée length-N black Markov, dans lequel chaque partie du message privé est superposé

indépendamment sur les parties communes du bloc actuel et des blocs précédents N . En

utilisant le décodage conjoint fenêtre coulissante, chaque relais récupère la partie du mes-

sage commune et sa partie du message privé ayant le même index bloc, et les envoi par la

suite ensemble aux nœuds du bloc suivant. Nous dérivons son taux réalisable dans un for-

mat compact. Le résultat permet de réduire la borne inférieure connue du decode-forward

d’un réseau à N -relais et la borne inférieure du decode-forward partiel pour un rseau à

deux relais. Nous appliquons par la suite notre schéma propositionnel à un réseau à relais

gaussien et d’obtenir sa capacité de borne inférieure en prenant en compte les contraints

de puissance aux nœuds émetteurs.

Dans la troisième partie de cette thèse, nous introduisons le fractionnement exhaustif des

messages pour le decode-forward partiel ayant une source et une destination unique dans un

réseau à relais ayant N relais, dans lequel chaque sous-ensemble diffrent du relais contient

un message priv distinct à décoder. Nous étudions profondément ce schéma dans un réseau

à trois relais basé sur le codage un bloc Markov. Nous dérivons son taux réalisable. Nous

fournissons un graphique orienté qui détaille le superpositionnement de la structure du

codebook afin d’aider le lecteur à comprendre la hiérarchie de la génération du codeword.
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Finalement, nous appliquons ce schéma à un réseau à trois relais gaussien et nous montrons

que notre schéma généralise le relais decode-forward et le schéma du fractionnement du

message privé comme démontré dans la seconde partie.
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Chapter 1

Introduction

1.1 Background

With the rapid development of wireless networks, cooperative communication is becom-

ing more and more popular. In a wireless network with several active nodes including a

source and a destination, due to the broadcast nature of wireless communication, several

nodes in the network might overhear the signal transmitted from the source. If the di-

rect transmission between the source and destination fails, those nodes which have copies

of the transmitted signal can help to re-establish or enhance the coomunication between

the intended source-destination pair. Nodes that take part in the transmission are called

relays1. When relays cooperate, source messages are conveyed via multiple paths.

The relay channel was first introduced by van der Meulen [1]. It consists of a source aim-

ing to communicate with a destination with the help of a relay. In [2], Cover and El Gamal

innovatively introduce the cutset bound and two coding strategies, namely decode-forward

and compress-forward, for the classical three-node relay channel. In decode-forward, the re-

lay fully decodes the message, which requires high communication channel quality between

the source and the relay. By allowing the relay to decode only a part of the transmitted mes-

sage, partial decode-forward has the potential of yielding achievable rate gains through

a better exploitation of the relay channel. Partial decode-forward can be considered as the

1In this thesis, we regard a node that has its own message to send as the source. We also regard the
node that is interested in the message transmitted from the source as the destination. We assume that no
message originates from the relay, and that the relay is not the intended destination of the transmitted
message.
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generalization of decode-forward as well [2], [3].

In this thesis, we are dedicated to extending the classical one-relay channel to a gen-

eral relay network consisting of N communicating parties. An immediate question which

emerges from the setup in the relay network is how to generalize decode-forward relaying

to a general N -node relay network, for example, how to distribute split message parts a-

mong multiple relays. The main theme of this thesis is to investigate this question. In

this thesis, we explore coding schemes based on partial decode-forward for a single-source

single-destination relay network with N relays.

1.2 Thesis Contributions

In this thesis, we focus on how to extend partial decode-forward to a single source single

destination relay network with N relays. We design two schemes based on the way the

source splits its original message among different relays and the destination. Each split

message part is conveyed through certain pre-assigned supposed relays, while other relays

do not help the transmission of this message part.

We categorize our schemes into two schemes, namely, private message splitting scheme

and exhaustive message splitting scheme.

In private message splitting scheme, the source splits its original message into N + 1

private parts and one common part. The word private means that only one relay is

supposed to decode and re-transmit this specific message part while other relays do not

decode it. On the other hand, the destination intends to decode all split message parts. We

use this terminology throughout this thesis. The whole transmission process is over multiple

transmission blocks2. The transmitter sends an n-symbol codeword in each block. Blocks

are indexed consecutively. In this scheme, each relay fully recovers the common message

part and its intended private message part of the current block, then forwards them to

the following nodes when the last common message part of the same block index arrives.

In exhaustive message splitting scheme, the source splits its original message considering

all possible split message parts decoding situations that can occur between the destination

and all relays. We use the term exhaustive to denote that each possible subset of relays

has a distinct message part to decode, while any other relay subsets do not decode it. In

2The concept of block is illustrated in [4]. If we divide the whole transmission into nb channel uses and
let each block consists of n channel uses, we then will have b transmission blocks.
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this scheme, all relays are pre-separated to different subsets and each relay subset helps to

decode a distinct split message part.

1.3 Thesis Organizations

This section outlines the thesis and summarizes main contributions.

Chapter 2

In Chapter 2, we review the capacity results for the discrete memoryless relay channel

and the N -relay network. We first formally define the discrete memoryless relay channel

and derive the cutset bound on capacity of the discrete memoryless relay channel. Next,

we introduce four lower bounds on capacity of the relay channel. In the second half of

Chapter 2, we review the capacity results for the single-source single-destination discrete

memoryless relay network. These capacity results are based on decode-forward and partial

decode-forward. Finally, we state the motivation of this thesis.

Chapter 3

In Chapter 3, we first introduce a discrete memoryless N -relay network model. We then

propose a partial decode-forward scheme based on private message splitting in a single-

source single-destination relay network with N relays. The source splits its message into

one common part and N + 1 private parts. Each relay decodes the common part and its

supposed private part. This scheme includes Aref’s scheme [5] and Xie’s scheme [6] as

special cases. In the second half of this chapter, we first provide a Gaussian relay network

model. We then derive our capacity results in the Gaussian relay network model and

compare our scheme with full decode-forward.

Chapter 4

In Chapter 4, we first propose a partial decode-forward scheme based on exhaustive message

splitting scheme for a discrete memoryless three-relay network. The source splits its message

into eight parts. Each possible relay subset has its own private message part to decode. We

then derive the capacity results of this scheme and show that it includes decode-forward

as a special case. Next, we discuss the block Markov encoding structure of this scheme
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when it is extended in an N -relay single-source single-destination relay network. Finally,

we derive the capacity result in the Gaussian three-relay network model and compare it

with scheme shown in Chapter 3.

Chapter 5

Chapter 5 concludes this thesis.

1.4 Notations

In this thesis, we use the following notation conventions.

M A set of messages.

m A message to be transmitted.

m̂ A detected message when m is transmitted.

p(x) probability mass function (pmf) of the random variable X.

p(x, y) joint pmf of the random variables X and Y .

p(x|y) conditional pmf of the random variable X given Y = y.

X ∼ p(x) The random variable X is distributed according to p(x).

(X , p(y|x),Y) The channel with input alphabet X , output alphabet Y ,

and pmf p(y|x) where x ∈ X and y ∈ Y .

H(X) Entropy of the discrete random variable X.

H(X, Y ) Joint entropy of the discrete random variables X and Y .

H(X|Y ) Conditional entropy of the discrete random variable X given Y .

I(X;Y ) Mutual information between the random variables X and Y .

I(X;Y |Z) Conditional mutual information between the random variables X and Y given Z.

N (µ, α2) Gaussian pdf with the mean µ and the variance α2.

xn (x1, x2, . . . , xn).

[1 : n] The set {1, 2, . . . , n}.
T (n)
ε ε-typical sequences of length n (see Appendix A).

A ⊆ B B includes A.

|A| Cardinality of the set A.

X × Y Cartesian product of X and Y .

||x|| The Euclidean norm of the vector x.
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x A vertical vector (bold-face lower case letter) .

A A matrix (bold-face capital letter).

min Minimum.

max Maximum.

sup Supremum.
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Chapter 2

Literature Review

Recently, cooperative communication through relay networks has received considerable

research interests due to its potential for increasing wireless coverage and transmission

reliability. The classical relay channel (RC) consists of three communicating parties: one

source, one destination and one relay aiming to help the communication between the source

and the destination [1]. This concept can be extended to large-scale network configuration.

Due to the broadcasting nature of wireless communications, more than one relay in the

network might overhear the transmitted signals from the source. They can cooperate with

each other to strengthen the source-destination pair communication. The relay network

(RN) is a general network consisting of multiple communicating parties, which can act as

either sources, relays or destinations.

In this thesis, we study partial decode-forward schemes in single-source single-destination

relay networks with N relays through different message splitting schemes. Message split-

ting was first introduced in [7], where the source splits its original message into two inde-

pendent messages and uses superposition coding to superimpose one message onto another

corresponding message.

Up to now, partial decode-forward in relay networks has not yet been studied much in

the literature. But it has tight relationships with a number of coding schemes in classical

relay channels and single-source single-destination relay networks, which will be reviewed

in this chapter.

The arrangement in this chapter is as follows:

• In Section 2.1, we define the classical three-node relay channel and review several
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important capacity bounds in classical relay channel. The key coding strategies are:

block Markov superposition encoding, backward decoding, sliding window decoding,

binning and message splitting (for partial decode-forward). We will use these tech-

niques as the fundamental tools in our relay networks analysis.

• In Section 2.3, we review works on extending decode-forward and partial decode-

forward to single-source single-destination relay networks with more than one relay.

The key coding strategy is joint sliding window decoding. This coding strategy sheds

light on the coding scheme design that we will propose in Chapter 3 and Chapter 4.

• In Section 2.4, we review our contributions in this thesis and the improvements of

our schemes over existing results.

2.1 Classical Relay Channel

In this section, we review the classical three-node relay channel and discuss several capacity

bounds in classical relay channel. These bounds constitute the building blocks of capacity

results in relay networks.

In our notations, a discrete random variable U is assumed to take values u in a finite

set U . We use |U| to denote the cardinality of U , and p(u)1 to denote the probability mass

function (PMF) of U on U . Vectors with length-n are denoted with lower-case letters, e.g.

xn, where the ith element of a vector xn is denoted by xi.

The discrete memoryless relay channel (DM-RC) was first introduced by Van der Meulen

in 1971 [1]. The communication situation consists of three nodes: one source-destination

pair and one relay node. We assume that the relay has no message to send and its role

is just to assist the communication between the source and the destination. Figure 2.1

illustrates a relay channel consisting of four finite sets: two input finite sets X and Xr, two

output finite sets Y and Yr and a probability mass function (PMF) p(y, yr|x, xr), which

represents the stochastic input-output property over the channel. The n-symbol input

sequences of the source and the relay are denoted as xn and xnr respectively. After n uses

of the channel, the output sequences at the destination and the relay are denoted as yn

and ynr . The channel is assumed to be discrete memoryless and thus the channel transition

1For brevity, we denote pmf pU (u) as p(u) when there is no risk of confusion
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function is:

p(yn, ynr |xn, xnr ) =
n∏
i=1

p(yi, yri|xi, xri),

which means that the received signals at the relay and the destination at time index i only

depend on the transmitted signals from the source and the relay at time index i.

A (2nR, n) code for a DM-RC consists of the following: a message set M = [1 : 2nR],

from which the message m is uniformly drawn; an encoding function that assigns a length-

n codeword xn(m) to each message m ∈ [1 : 2nR]; a set of relay functions such that

xri = fi(yr1, yr2, . . . , yr,i−1),∀i ∈ [1 : n]; a decoder function that maps the received signal

yn to an estimate of the message m̂ or reports an error message e. The average probability

of error is P
(n)
e = P{m̂ 6= m}.

The rate R is said to be achievable if there exists a sequence of (2nR, n) codes with

P
(n)
e → 0 as n → ∞. The capacity C of the relay channel is the supremum of the set of

achievable rates. The exact capacity of the relay channel is not known in general.

The rest of this section is organized as follows. In Section 2.1.1, we introduce cutset

upper bound, which is up to now the best known upper bound on the capacity of the relay

channel. We then present several best known lower bounds on the capacity in the relay

channel: In Section 2.1.2, we introduce the direct transmission lower bound. In Section

2.1.3, we introduce the two hop lower bound. In Section 2.1.4, we introduce the decode-

forward lower bound and corresponding coding techniques such as block Markov encoding,

backward decoding and sliding window decoding. In Section 2.1.5, we introduce the partial

decode-forward lower bound and message splitting scheme.

Relay Encoder

Source 
Encoder

Source 
Encoder

Destination 
Decoder

Destination 
Decoder

n

ryn

rx

nx
ny

 
1

, ,
n

i ri i ri

i

p y y x x


m m̂

Fig. 2.1 Block diagram of Relay Channel.
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n

rx

nx
ny

n

rx

nx
ny

:n

ry

Multiple-access subchannelBroadcast subchannel

Fig. 2.2 Illustration of cutset upper bound.

2.1.1 Cutset Upper Bound

In this part, we present an upper bound on the capacity of the DM-RC. This upper bound

of DM-RC is known as max-flow min-cut or cutset bound and it consists of two terms [2]:

• Broadcast subchannel bound: C ≤ I(X;Y, Yr|Xr).

• Multiple-access subchannel bound: C ≤ I(X,Xr;Y ).

Figure 2.2 illustrates the two bounds above. In the broadcast subchannel, the relay

performs as another receiver. While in the multiple-access subchannel, the relay plays the

role of another transmitter as it helps the message transmission from the source to the

destination. Combining these two bounds, we would have:

C ≤ max
p(x,xr)

min{I(X,Xr;Y ), I(X;Y, Yr|Xr)} (2.1)

The cutset bound itself is the best known upper bound on the capacity of the relay

channel.

2.1.2 Direct Transmision Lower Bound

If we do not use the relay in the communication protocol and just let it transmit a fixed

symbol over all the blocks, which is Xri = xr for all i ∈ [1 : n], then, the channel becomes

the standard point-to-point DMC as in [4]. By using random coding argument [4], we can

get the lower bound as:
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C ≥ max
p(x),xr

I(X;Y |Xr = xr). (2.2)

This simple strategy achieves the capacity if the channel can be decomposed as reversely

degraded relay channel, which means that the received signal at the relay is a degraded

version of the received signal at the destination. This, loosely speaking, means that the

quality of the source-destination link is fairly good and thus the destination receives a better

copy of the transmitted message than the relay. The channel pmf can be decomposed as:

p(y, yr|x, xr) = p(y|x, xr)p(yr|y, xr),

which means X → (Y,Xr)→ Yr forms a Markov chain or equivalently X → Y → Yr forms

a Markov chain conditioned on Xr. Note that by this definition bound in (2.1) simplify to

I(X;Y |Xr) and the rate obtained by direct transmission hence coincides with the cutset

bound.

2.1.3 Two-hop Lower Bound

The direct transmission scheme in Section 2.1.2 can be improved by placing a relay in

the middle of the source and the destination. Assume that the relay decodes the received

signals in each block and then retransmits the decoded message in the next block. Assume

also that there is no direct link between the source and the destination. This yields a lower

bound on the capacity of DM-RC [8]:

C ≥ max
p(x)p(xr)

min{I(Xr;Y ), I(X;Yr|Xr)}. (2.3)

This bound is tight if the channel consists of two cascaded DMCs, i.e., p(y, yr|x, xr) =

p(yr|x)p(y|yr). We can improve this two-hop coding scheme by letting the source and the

relay coherently cooperate with each other in transmitting their codewords, which gives

another lower bound that has the same formula as (2.3), but its maximization is over the

joint distribution p(x, xr) over the input sets X ×Xr instead of the individual input PMFs

p(x) and p(xr).
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2.1.4 Decode-forward Lower Bound

The Decode-Forward (DF) scheme combines the information received through the direct

link (Section 2.1.2) with the information received from the relay (Section 2.1.3), which

leads to a tighter lower bound in DM-RC. The DF lower bound does not coincide with the

cutset upper bound in Section 2.1.1 for a general DM-RC.

The DF scheme allows the relay to transmit a fresh codeword by decoding signals

received in the previous blocks. This scheme relies on the successful decoding at the relay

and hence its performance is limited by the quality of the source-relay link. In [9], by

using block Markov encoding at the source and backward decoding at the destination, the

following rate is shown to be achievable with DF:

Theorem 1. [9] For any relay channel (X × Xr, p(y, yr|x, xr), Y × Yr),by using decode-

forward, the capacity C is lower bounded by:

C ≥ max
p(x,xr)

min{I(X,Xr;Y ), I(X;Yr|Xr)}, (2.4)

where I(X,Xr;Y ) is the MAC bound on the capacity and I(X;Yr|Xr) represents the ca-

pacity of the link between source and relay.

The key coding techniques in this scheme are:

• Block Markov encoding: the codeword transmitted in a block depends on the

codewords transmitted in the previous blocks;

• Backward decoding: decoding at the receiver is done backwards after all blocks

are received.

We next briefly outline the achievability proof to illustrate how to apply block Markov

encoding and backward decoding to a DM-RC. This method will be useful in future chap-

ters.

Proof of achievability : In Figure 2.1, consider b transmission blocks, each consisting of

n channel uses. In this scheme, a sequence of b − 1 messages mj
2, uniformly distributed

over [1 : 2nR], for all j ∈ [1 : b−1] is transmitted to the destination. Thus, the transmission

rate is n(b−1)R
nb

, which goes to R as b→∞.

2mj denotes the message to be transmitted in block j.
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Before the communication process, the codebook is generated according to block Markov

encoding and then revealed to all communicating parties. The block Markovity between

the source signal and the relay signal guarantees that the source and the relay coherently

cooperate in transmitting their codewords. In block j, the source broadcasts xn(mj|mj−1)
3

to the relay and the destination. At the end of block j, the relay fully decodes mj according

to the joint typicality lemma (Appendix A) and retransmits it to the destination in the

following block. After receiving signals from all blocks, the destination backward decodes

messages block by block from the end of the last block.

Proof. (1) Codebook generation: Fix p(x, xr) achieving the lower bound in (2.4).

• For j ∈ [1 : b], randomly and independently generate 2nR sequences xnr (mj−1) for all

mj−1 ∈ [1 : 2nR], each according to
∏n

i=1 pXr(xri).

• For each mj−1 ∈ [1 : 2nR], randomly and conditionally independently generate 2nR se-

quences xn(mj|mj−1) for allmj ∈ [1 : 2nR], each according to
∏n

i=1 pX|Xr(xi|xri(mj−1)).

The codebook is then revealed to all the parties.

(2) Encoding : To send mj in block j, the source encoder transmits xn(mj|mj−1). At

the end of block j, the relay has an estimate m̃j of message mj and transmits xnr (m̃j) in

block j + 1.

(3) Decoding :

• Decoding message mj at the relay. At the end of block j, the relay receives ynr (j) and

knows mj−1. It then looks for a unique message m̃j ∈M such that

(xn(m̃j|mj−1), x
n
r (mj−1), y

n
r (j)) ∈ T (n)

ε ,

otherwise it declares an error. By the packing lemma (Lemma 2 in Appendix A),

P (m̃j 6= mj)→ 0 as n→∞ if

R < I(X;Yr|Xr)− δ(ε). (2.5)

3xn(mj |mj−1) denotes a length-n codeword that encodes mj . The generation of this codeword is
dependent on the codeword that encodes message m in block j − 1.
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• The destination waits until it receives all blocks and backward decodes successively

from the end of block b. Assume that destination at the block j knows mj+1 and has

received signal yn(j). It then looks for a unique message m̂j such that

(xn(mj+1|m̂j), x
n
r (m̂j), y

n(j)) ∈ T (n)
ε ,

otherwise, it declares an error. By the packing lemma (Lemma 2 in Appendix A),

P (m̂j 6= mj)→ 0 as n→∞ if

R < I(X,Xr;Y )− δ(ε). (2.6)

Combining (2.5) and (2.6), we can get Theorem 1.

Up to now, there have been three common approaches to realize decode-forward s-

trategies, namely: (a) irregular encoding/sequential decoding; (b) regular encoding/sliding

window decoding; (c) regular encoding/backward decoding [10]. Here regular encoding

refers to block Markov encoding. The irregular encoding is the strategy used in [2], where

the encoding is done using codebooks of different size, hence the name. For many classes of

relay networks [11], the second and third approaches can achieve the same rate, which are

greater than that of the first approach. Furthermore, the second approach creates much

smaller delay than the third one. In short, by far, sliding window decoding is the best

decoding scheme that works in DF.

Sliding window decoding means that the decoder uses multiple consecutive blocks

of channel outputs to decode one single message.

Next, we show how DF realizes sliding window decoding in a DM-RC, where the

destination uses two consecutive blocks of channel outputs to decode the source message

transmitted in the previous block.

Consider the channel configuration as shown in Figure 2.1. The codebook generation,

the encoding operation and the relay decoding follow the same procedures shown in the

earlier proof in this section. The only difference is that the destination uses sliding window

decoding instead of backward decoding:

At the end of block j + 1, upon having received signal yn(j) and yn(j + 1) and having

decoded mj−1, the destination looks for a unique message m̂j such that
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(xnr (m̂j), y
n(j + 1)) ∈ T (n)

ε and

(xn(m̂j|mj−1), x
n
r (mj−1), y

n
r (j)) ∈ T (n)

ε simultaneously.

According to packing lemma (Lemma 2 in Appendix A), the decoding error probability

as n→∞ if

R < I(X;Y |Xr) + I(Xr;Y ) = I(X,Xr;Y )− δ(ε), (2.7)

which is the same as (2.6). As can be understood for the above analysis, DF with sliding

window decoding achieves the same lower bound as with backward decoding, but reduces

decoding delay to only two blocks.

2.1.5 Partial Decode-forward Lower Bound

When the quality of the link between source and relay is worse than that of the link

between source and destination, the channel to the relay can be a bottleneck and DF may

in fact perform worse than direct transmission. In [2], Cover and El Gamal make some

improvements by allowing the relay to decode only a part of the transmitted message, which

is called partial decode-forward (PDF). This provides a more general lower bound on the

capacity:

Theorem 2. [2] For any relay channel (X × Xr, p(y, yr|x, xr), Y × Yr), by using partial

decode-forward, the capacity C is lower bounded by:

C ≥ max
p(u,x,xr)

min{I(X,Xr;Y ), I(U ;Yr|Xr) + I(X;Y |Xr, U)}, (2.8)

where U → (X,Xr)→ (Yr, Y ) forms a Markov chains. The random variable U encodes the

part of the transmitted message that the relay decodes. Note that, by choosing U = X, this

scheme reduces to decode-forward in Theorem 1, and if we choose U = ∅, it simplifies to

direct transmission lower bound in (2.2).

The key coding techniques in this scheme are:
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• Message Splitting: The source splits the message m into two independent messages

m′ and m′′ with rates R1 and R2 respectively, thus R = R1 + R2. Note that m′′ is

decoded only at the destination.

• Superposition coding: The source superposes m′′ onto m′ and broadcasts them

together in the same block.

• Binning: The relay partitions the set of messages m′ into 2nR0 equal size bins. In

block j, the relay decodes m′j and then sends its binning index in the following block.

• Successive cancellation decoding: The destination decodes the stronger signal

first, subtracts it from the combined signal, and extracts the weaker one from the

residue.

We sketch the achievability proof to illustrate how to realize partial decode-forward in

a DM-RC.

Proof of Achievability : In Figure 2.1, consider b blocks of transmission.

Before the communication process, the codebook is generated and revealed to all parties.

The source splits the message m into two independent message parts m′ and m′′, which

are encoded as un(m′j|lj−1)4 and xn(m′′j |m′j, lj−1) respectively. In block j, the source sends

xn(m′′j |m′j, lj−1). At the end of block j, the relay decodes the bin index l̂j of message m′j

and then sends decoded bin index as xnr (l̂j) in the following block j + 1. At the end of

block j+ 1, the destination uses successive cancellation decoding on signals received in the

previous consecutive two blocks to decode bin index l̂j, message part m̂′j and message part

m̂′′j successively.

Proof. (1) Codebook generation: Fix p(u, x, xr) = p(xr)p(u|xr)p(x|u, xr) that achieves the

lower bound in (2.8).

• For each j ∈ [1 : b], generate 2nR0 sequences xnr (lj−1) each i.i.d ∼
∏n

i=1 pXr(xri), where

lj−1 denotes bin index of message part m′j−1.

• For each lj−1, conditionally independently generate 2nR1 sequences un(m′j|lj−1) i.i.d.

∼
∏n

i=1 pU |Xr(ui|xri).
4lj−1 denotes the binning index of message part m′j−1 in block j − 1.
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• For each setm′j×lj−1, conditionally independently generate 2nR2 sequences xn(m′′j |m′j, lj−1)
i.i.d. ∼

∏n
i=1 pX|Xr,U(xi|xri, ui).

Partition the set of messages m′ into 2nR0 equal size bins B(l) = [(l − 1)2n(R1−R0) + 1 :

l2n(R1−R0)], l ∈ [1 : 2nR0 ]. Reveal the codebook and bin assignments to all parties.

(2) Encoding : U carries the message part m′ (with rate R1) to be decoded by the relay

at the end of the current block. X carries the message part m′′ (with rate R2), which is

decoded only by the destination at the end of the following block. R0 denotes the binning

rate at the relay. Let mj = (m′j,m
′′
j ) ∈ [1 : 2nR1 ] × [1 : 2nR2 ] be the message to be sent in

block j and assume that m′j ∈ B(lj). Knowing lj−1, the source sends xn(m′′j |m′j, lj−1). At

the end of block j, the relay has an estimate of m̂′j of message m′j. Assume that m̂′j ∈ B(l̃j),

the relay sends xnr (l̂j) in block j + 1.

(3) Decoding : The decoding procedure for message mj is as follows:

• Upon receiving ynr (j), the relay declare that m̂′j is sent if it is unique message such that

(un(m̂′j|l̂j−1), xnr (l̂j−1), y
n
r (j)) ∈ T nε , otherwise it declares an error. P (m̂′j 6= m′j) → 0

as n→ 0, and correspondingly P (l̂j 6= lj)→ 0 as n→ 0 if

R1 < I(U ;Yr|Xr)− δ(ε). (2.9)

• The destination uses successive cancellation decoding. Upon receiving yn(j), the des-

tination declares that l̂j−1 is sent if there is a unique message such that (xnr (l̂j−1), y
n(j)) ∈

T nε , otherwise it declares an error. P (l̂j−1 6= lj−1)→ 0 as n→ 0 if

R0 < I(Xr;Y )− δ(ε). (2.10)

• After knowing l̂j−1, the destination then declares that m̂′j−1 is sent in block j − 1 if

there is a unique message such that (un(m̂′j−1), x
n
r (l̂j−1), y

n(j)) ∈ T nε and m̂j ∈ B(l̂j),

otherwise it declares an error. P (m̂′j−1 6= m′j−1)→ 0 as n→ 0 if

R1 −R0 < I(U ;Y |Xr)− δ(ε). (2.11)
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• After knowing l̂j−2 and m̂′j−1, the receiver looks for a unique message m̂′′j−1 such that

(xn(m̂′′j−1|m̂′j−1, l̂j−2), un(m̂′j−1), x
n
r (l̂j−2), y

n(j − 1)) ∈ T nε ,

otherwise it declares an error. P (m̂′′j−1 6= m′′j−1)→ 0 as n→ 0 if

R2 < I(X;Y |U,Xr)− δ(ε). (2.12)

Combining the above four equations, we can get the PDF lower bound in Theorem 2.

2.2 Compress-forward Lower Bound

Decode-forward requires that the relay decodes the received signal correctly and therefore

it results in a poor performance if the source-relay link is in poor quality. In the situation

when successful decoding is not possible, the relay can help communication by sending a

description of its received signal to the destination, which means the relay can transmit an

estimate of the received signal ŷr and the destination can first recover the estimate ŷr using

the side information and then decode the transmitted message. The codebook generation

of compress-forward is much more complicated than that of partial decode-forward.

Theorem 3. [12] For any relay channel (X × Xr,p(y, yr|x, xr),Y × Yr),the capacity C is

lower bounded by:

C ≥ max
p(x)p(xr)p(ŷr|xr,yr)

min{I(X,Xr;Y )− I(Yr; Ŷr|X,Xr, Y ), I(X;Y, Ŷr|Xr)}. (2.13)

Proof of Achievability. Assume that R1 is binning rate and R̂1 is compression rate. We

use block Markov superposition encoding and binning. In each block, the source sends a

new message and the relay compresses its received signal and sends the bin index of the

compression index to the receiver.

(1) Codebook generation: Fix p(x)p(xr)p(ŷr|yr, xr) that achieves lower bound.

• For each block j ∈ [1 : b], generate 2nR sequences xn(mj) each i.i.d ∼
∏n

i=1 pX(xi).

• For each block j ∈ [1 : b], generate 2nR1 sequences xnr (lj−1) each i.i.d ∼
∏n

i=1 pXr(xri).
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• For each lj−1 ∈ [1 : 2nR1 ], generate 2nR̂1 sequences ŷnr (kj|lj−1), each i.i.d. ∼
∏n

i=1 pŶr|Xr
(ŷri|xri),

where p(ŷr|xr) =
∑

yr∈Yr p(yr|xr)p(ŷr|yr, xr).

• Partition the set [1 : 2nR̂1 ] into 2nR1 equal size bins B(lj), lj ∈ [1 : 2nR1 ]. Reveal the

codebook and bin assignment to all the parties.

(2) Encoding : Let mj be the message to be sent in block j, the sender sends codeword

xn(mj). Upon receiving ynr (j), the relay finds an index kj such that (ŷnr (kj|lj−1), ynr (j), xnr (lj−1)) ∈
T nε . Assume that such kj is found and kj ∈ B(lj), the relay sends xnr (lj) in block j + 1.

The probability that there there is no such kj tends to 0 as n→∞, if

R̂r > I(Ŷr;Yr|Xr) + δ(ε). (2.14)

(3) Decoding : The receiver uses successive decoding.

• Upon receiving ynj+1, the receiver finds a unique l̂j such that (xnr (l̂j), y
n
j+1) ∈ T nε . Let

lj be the bin index chosen by the relay. P (l̂j 6= lj)→ 0 as n→ 0, if

Rr < I(Xr;Y )− δ(ε). (2.15)

• Knowing l̂j−1 and yn(j), the receiver finds a unique m̂j such that

(xn(m̂j), x
n
r (l̂j−1), ŷ

n
r (k̂j|l̂j−1), yn(j)) ∈ T nε for some k̂j ∈ B(l̂j).

Assume the previous step is correct, that is (l̂j, l̂j−1) = (lj, lj−1) and the relay chooses

the estimate Kj. Define error events: E1(j) = {xn(m̂j), x
n
r (lj−1), ŷ

n
r (Kj|lj−1), yn(j) ∈

T nε for some m̂j 6= mj}. E2(j) = {xn(m̂j), x
n
r (lj−1), ŷ

n
r (k̂j|lj−1), yn(j) ∈ T nε for some k̂j ∈

B(lj), k̂j 6= Kj, m̂j 6= mj}. P (E(j)) ≤ P (E1(j)) + P (E1(j)). Thus, P (E1(j)) → 0 as

n→ 0, if

R < I(X;Y, Ŷr, Xr) + δ(ε) = I(X;Y, Ŷr|Xr) + δ(ε). (2.16)

P (E2(j))→ 0 as n→ 0, if

R + R̂r −Rr < I(X;Y |Xr) + I(Ŷr;X, Y |Xr)− δ(ε). (2.17)
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Combining (2.14), (2.15), (2.17), P (m̂j 6= mj)→ 0 as m→ 0 for all j if

R < I(X,Xr;Y ) + I(Ŷr;X, Y |Xr)− I(Ŷr;Yr|Xr)

= I(X,Xr;Y ) + I(Ŷr;X, Y |Xr)− I(Ŷr;Yr, X, Y |Xr)

= I(X,Xr;Y )− I(Ŷr;Yr|X,Xr, Y ).

This completes the achievability proof.

2.3 Single-source Single-destination Relay Networks

In wireless networks, there can be more than one relay. So far, there have been several

important works on extending decode-forward and partial decode-forward to relay networks

which have more than one relay. Motivated by these works, in this thesis, we are focusing on

finding a coding scheme which generalizes partial decode-forward to a single-source single-

destination relay network with N relays, which provides a more general and tighter partial

decode-forward lower bound that includes previous partial decode-forward lower bounds as

special cases.

2.3.1 Decode-forward in N-relay networks

In [6], Xie and Kumar analyze anN -relay serial network with one source and one destination

and give a new achievable rate for the discrete-memoryless case by using full decode-

forward. Assuming that the relay network has N relays, which are labeled successively

as {1, 2, . . . , N}, the source is denoted as 0 and the destination is denoted as N + 1. In the

serial relay network, all relays are arranged in a feed-forward structure. Thus, messages

transmitted by the ith relay cannot be decoded by the jth relay if j < i. In the schemes

proposed in this thesis, we will adopt such serial relay network structure.

2.3.2 Partial Decode-forward in N-relay networks

In [5], Leila and Aref propose a partial decode-forward scheme for a two-relay serial network

based on regular encoding/joint sliding window decoding and propose a new achievable

rate that is tighter than the achievable rate proposed by the full decode-forward scheme.

The authors split message considering all possible partial decoding states that can occur
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between the different parts of the messages among the source and two relays. Each relay in

the network can partially decode the message transmitted by the sender and the previous

relay. Each relay employs block Markov encoding and joint sliding window decoding to

help the transmission of intended message parts.

The key coding technique in this scheme is joint sliding window decoding, which is

a combination of joint decoding and sliding window decoding. Each decoder uses channel

outputs of multiple consecutive blocks to decode independent splitted message parts jointly.

We use this technique at each relay decoders as well as the destination decoder in this

thesis. This technique facilitates decoding different splitted message parts simultaneously

with the shortest decoding delay.

In [13], partial decode-forward is studied in the Gaussian two-way relay channel, where

each transmitter divides its message into two parts and the relay decodes only one part

of each. The relay then generates a codeword as a function of the two decoded parts and

then broadcasts it. The investigated Gaussian two-way relay channel gives us intuitions on

validating our partial decode-forward schemes in the Gaussian environment.

In [14], the authors study partial decode-forward in a multiple-relay network, where

each relay is parallel to each other. However, this scheme doesn’t consider a non-line-

of-sight or multihop context. In [15], partial decode-forward is tentatively extended to

relay networks, in which all relays successively decode only part of the messages of the

previous relay before they arrive at the destination. However, this scheme doesn’t consider

all possible message splitting conditions that can happen among the source and all relays.

In Chapter 4, we discuss exhaustive message splitting in an N -relay network and show that

our scheme provide a tighter lower bound compared with the result provided in [15] when

N = 3.

2.4 Thesis Motivation and Contribution

In this section, we review our main contributions presented in this thesis: partial decode-

forward in an N -relay network with single source and single destination. According to

the way in which the source splits its original message among different relays and the

destination, we categorize our proposed schemes into two types: private message splitting

scheme and exhaustive message splitting scheme.
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2.4.1 Private Message Splitting Scheme

To the best of our knowledge, up to now, except the work done in [15], no other work has

been done to apply the partial decode-forward to the relay networks with arbitrary number

of relays in which more than one relay partially decodes the message transmitted by the

source.

In our schemes, instead of each decoder using backward decoding as shown in [6], each

transmitter uses block superposition encoding and joint sliding window decoding, which

reduces destination decoding delay to N blocks.

According to Section 2.1.4, backward decoding needs excessive delays to decode mes-

sages, which is difficult to implement in a relay network with more than one relay, thus

we attempt to employ sliding window decoding in our scheme. However, as the number

of relays increases, more independent message parts need to be decoded simultaneously

at each relay, which makes sliding window decoding slow and inefficient in large-scale re-

lay networks. Based on Section 2.3.2, we use joint decoding at each relay to implement

decoding of different message parts simultaneously.

In our scheme, the source splits its message into one common part and N + 1 private

parts. Each relay helps forwarding the common message and the private message intended

for itself. Each relay forwards its message parts to the following nodes when the last

common message of the same block index arrives. We derive the achievable rate in a

compact form to make it possible to plot rate regions and examine how each relay functions.

We also show that this scheme includes network decode-forward of [2] and partial decode-

forward in two-relay network of [5] as special cases. We also analyze an N -relay network

as well as a two-relay network in AWGN environments and provide their achievable rates

respectively.

2.4.2 Exhaustive Message Splitting Scheme

In this scheme, which has been presented in [16], for an N -relay network, we split the source

message in such a way that every relay has its private message and a common message to

decode.

When applying partial decode-forward to a large relay network, a key question is to

identify the number of parts in which to split the message and the method to superimpose

these message parts. Our exhaustive message splitting scheme deals with this problem in
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detail. To answer the first part of this question, we split the original source message in a

way that each possible subset of relays has an individual message part to decode. Denote

the set of all relays as T = {1, . . . , N}, whose each element represents the corresponding

relay index. We assign each relay subset S ⊆ T with a different private message, which

other relay subsets do not decode. Under such arrangement, the source message is split ex-

haustively for partial decode-forward. Enumeration of all possible relay subsets is a simple

combinatorial problem. For an N -relay network with single source and single destination,

the total number of relay subsets is C0
N +C1

N + · · ·+CN
N = 2N , where Cr

N = N !
r!(N−r)! . In relay

networks with one or two relays [2] [17] [5], the private message scheme in [16] is already

exhaustive, thus our focus is on a three-relay network scenario with respect to exhaustive

partial decode-forward.

To answer the second part of the question, we design a block Markov superposition

structure where message parts passing through fewer relays are superimposed on those

passing through more relays and on message parts of all previous blocks which are decoded

by the same relay subset. For ease of understanding, we assign all message parts that are

decoded by the same number of relays to a so called layer. Specifically, a message part mS

located on layer l will be superimposed on all lower layer message parts mS′ of the current

and previous blocks where S ⊂ S ′.
In order to obtain some insights into exhaustive message splitting for partial decode-

forward in a general N -relay network, we study in detail a network with three relays and

consider all possible partial decoding cases that can occur between messages parts at the

source and the relays. We introduce a directed graph to illustrate the superposition coding

structure. The superposition coding structure for an N -relay network can be similarly

obtained by inserting more layers under the bottom layer where messages are decoded by

all relays and by expanding the graph horizontally to accommodate more relays. We also

provide the corresponding achievable rate for the three-relay network and show that the

proposed scheme includes network decode-forward in [6] and the private message splitting

scheme in [16] as special cases.

In chapter 3, we will study the proposed private message splitting scheme in detail. In

chapter 4, we will study the proposed exhaustive message splitting scheme in detail.
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Chapter 3

Partial Decode-forward Scheme for

N-relay Networks

In this chapter, we study partial decode-forward for an N -relay network with single source

and single destination. One of our main contributions is to propose a private message

splitting scheme based on block Markov encoding and joint sliding window decoding. We

derive the achievable rate for this scheme in a compact form and show that this scheme

includes network decode-forward [6] and partial decode-forward for two-relay networks [5]

as special cases.

The remainder of this chapter is organized as follows. In Section 3.1, we present the

discrete-memoryless N -relay network model used in this chapter. In Section 3.2, we illus-

trate the notations specified in this chapter. In Section 3.3, we present the private message

splitting scheme in detail. In Section 3.4, we analyze the capacity results in the AWGN

environments and provide the achievable rates.

3.1 Discrete Memoryless N-relay Network Models

In this section, we introduce the network model that we explore in this chapter. Con-

sider an N -relay discrete memoryless relay network (DM-RN)1 (X0 × X1 × · · · × XN ,

1Note that if the source encoder 0 wants to send a message m to a set of destination nodes D ⊆ [1 : N+1],
the DM-RN becomes a discrete memoryless multicast network (DM-MN), where each decoder k ∈ D assigns
an estimate m̂k to each received sequence ynk ∈ Ynk , or declares an error message e. The DM-RN thus is a
special case of the DM-MN as defined in [8].
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Fig. 3.1 A single-source single-destination network with N relays.

p(y1, y2, . . . , yN+1|x0, x1, . . . , xN), Y1 × Y2 × · · · × YN+1), where source node 0 wants to

send a message m to the destination node N + 1 with the help of relay nodes 1, . . . , N , as

shown in Figure 3.1. A (2nR, n) code for this DM-RN consists of:

• A message set M = [1 : 2nR].

• A source encoder that assigns a codeword xn0 (m) to each message m ∈M.

• A set of relay encoders j ∈ [1 : N ]. At time index i, the relay encoder j transmits a

single symbol based on receiving signals received during time interval 1 to i− 1.

• A destination decoder, which assigns an estimate m̂N+1 to each received sequence

ynN+1 ∈ YnN+1, or declares an error message e.

The average probability of error P
(n)
e is defined as

P (n)
e = P{m̂N+1 6= m}.

The rate of a (2nR, n) code for this DM-RN is said to be achievable if there exists a

sequence of (2nR, n) code such that P
(n)
e → 0 as n→∞. The capacity C of the DM-RN is

the supremum of all achievable rates.

Note that if N = 1, then the DM-RN reduces to the classical DM-RC introduced in

Chapter 2.
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3.2 Notations and Definitions

In this section, in order to make our following analysis more concise and readable, we first

clarify mathematical notations and then introduce definitions, which are used throughout

this chapter.

• Given a random variable M , we introduce the notation M b
a = {Ma,Ma+1, . . . ,Mb},

where b ≥ a. Note that the n-length codeword xnr (appearing in Chapter 2) is an

exception and thus we won’t use n as the upper subscript again in the following

argument.

• Given a nonempty set L of integers and a random variable M , let ML = {Ma}a∈L.

In addition, |L| signifies the cardinality of L, which is the total number of elements

in set L.

• Define T = {1, . . . , N} to be the complete set of all relays.

• Define S to be a subset of T , that is S ⊆ T and Sc = T − S. Either S or Sc can be

empty and the largest S is T .

3.3 Private Message Splitting Scheme

In this section, we present our proposed private message splitting scheme for N -relay net-

works in detail.

Figure 3.1 shows a network consisting of one source, one destination and N relays. All

transmitting nodes are ordered serially. We assume that each relay k, k ∈ T , decodes

information from all nodes below it, (i.e. {1, . . . , k−1}) and forwards information to nodes

above it (i.e. {k+ 1, . . . , N}). In this network, the source (indexed as 0) has direct links to

all relays and the destination (indexed as N + 1). We design a novel transmission scheme

for this relay network based on partial decode-forward.

The new idea of the scheme is in the way it performs rate splitting. The source pre-splits

its message into multiple message parts. Each relay is responsible for the transmission of

a certain distinct subset of split message parts. The destination decodes all the message

parts and recombines them into an intact message. At each block transmission, the source

splits its message into N + 2 parts: one common message part m0 and N + 1 private
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message parts (m1,m2 . . . ,mN+1), where (m1,m2 . . . ,mN) is decoded and re-transmitted

only through the relay whose index is identical to corresponding message subscript (e.g., m1

is decoded and re-transmitted only through relay 1, m2 is decoded and re-transmitted only

through relay 2, . . . ). mN+1 is decoded only at the destination. Each relay fully recovers

the common message part and its own private message part with same block index as the

common message part, then forwards them together in the next block.

Next, we introduce block index into split message parts. Specifically, in block j, let the

source message be split as2 mj = (m0,j,m1,j, . . . ,mN+1,j), where m0,j denotes the common

message part that is forwarded among all relays, mk,j denotes the message part supposed

to be decoded at some relay k, k ∈ T , while other relays do not decode it. mN+1,j denotes

the message part supposed to be decoded only at the destination.

Consider that the whole communication process has b transmission blocks, each con-

sisting of n channel uses. According to the property of block Markov decoding as shown

in Chapter 2, each additional relay incurs one block decoding delay to the destination.

Since there are N relays between the source and the destination, the whole network’s

delay is N blocks. Therefore, in this scheme, a sequence of b − N messages mj =

(m0,j,m1,j, . . . ,mN+1,j), uniformly distributed over [1 : 2nR0 ]× [1 : 2nR1 ]×· · ·× [1 : 2nRN+1 ],

for all j ∈ [1 : b−N ], is transmitted to the destination.

The average rate over b blocks is R(b−N)/b, which goes to R as b→∞. After being

split, the rate becomes R =
∑N+1

i=0 Ri.

Next, we present the achievable rate for this scheme and prove its achievability.

3.3.1 Coding Scheme and Achievable Rate

The coding scheme for this relay network is illustrated in Figure 3.1.

Theorem 4. For a single-source single-destination network with N relays (X0×X1×· · ·×
XN , p(y1, y2, . . . , yN+1|x0, x1, . . . , xN), Y1 × Y2 × · · · × YN+1), by using the partial decode-

forward scheme with private message splitting defined in Section 3.3, the capacity C is

lower bounded by (3.1):

2Among two subscripts of message part mk,j , the front subscript k denotes the message part index and
the back subscript j denotes the block index. This notation is used throughout the thesis.
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C ≥ sup
p

min
S⊆T


I
(
X0, XS , US ;YN+1|XSc , USc ,WN

0

)
+ minj∈Sc I

(
W j−1

0 ;Yj|Xj,W
N
j

)
+
∑

j∈Sc I
(
Uj;Yj|WN

0 , Xj

) (3.1)

where

p = p(UN
1 ,W

N
0 , X

N
0 ) =p(X0|UN

1 ,W
N
0 , X

N
1 )

N∏
k=1

p(Uk|WN
0 , Xk)p(W0|WN

1 )

N∏
k=1

p(Xk|WN
k )p(Wk|WN

k+1). (3.2)

(3.1) gives a lower bound on the capacity of the single-source single-destination network

with N relays as depicted in Figure 3.1. The supremum is taken oven all possible input

distributions defined in (3.2). We relate the message parts with the meaning of random

variables appearing in (3.1) and (3.2) in the following:

• Wk, k ∈ {0} ∪ T , carries common message part m0,j−k from the transmitting node k

in each block j. The codeword wk is generated according to the probability function

p(Wk|WN
k+1).

• Uk, k ∈ T , carries private message part mk,j to be decoded at relay k and not decoded

at other relays in the block j. All uks are transmitted by the source. The codeword uk

is generated according to the probability function p(Uk|WN
0 , Xk).

• Xk, k ∈ T , is sent by the relay k. Xk carries the forwarding of the private message

part contained in Uk and the common message parts contained in all Wl (l ≤ k). The

codeword xk is generated according to the probability function p(Xk|WN
0 ).

• X0 is sent by the source. X0 carries the remaining message part mN+1,j in the block

j, which is decoded only at the destination. The codeword x0 is generated according

to the probability function p(X0|UN
1 ,W

N
0 , X

N
1 ).

Proof. The source sends b − N messages over b blocks of n symbols. Each relay and

the destination use block Markov superposition coding to generate independent codewords
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in each block and employ simultaneous sliding window decoding to decode its supposed

message parts.

Before the communication process, the codebook is generated and revealed to all parties.

For each block j, the source sends3 x0(mN+1,j|mN,j
1,j ,m

0,j
0,j−N , {mk,j−k}k∈T ) (here message

partsmN,j
1,j = {m1,j,m2,j, . . . ,mN,j} and message partsm0,j

0,j−N = {m0,j−N ,m0,j−N+1, . . . ,m0,j}).
x0 is generated conditioned on codewords containing all private message parts in the cur-

rent block and all common message parts in the previous N blocks. At the end of block j,

each relay k decodes m̂k,j−k+1 and m̂0,j−k+1. Then in block j + 1, the relay k broadcasts

xk(m̂k,j−k+1|m̂0,j−k+1
0,j−N+1) (here message parts m̂0,j−k+1

0,j−N+1 = {m̂0,j−N+1, m̂0,j−N+2, . . . , m̂0,j−k+1}),
which contains its private message part m̂k,j−k+1 and previous N − k blocks’ common mes-

sage parts. The destination uses joint decoding simultaneously over signals received in all

previous N blocks. Specifically, it waits until the end of the last block arrives and then

decode all message parts simultaneously using signals received in the last N blocks.

Codebook generation

 0,N j Nw m 

 , 0,N N j N j Nx m m  0, 2
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Fig. 3.2 Encoding diagram of a single-source single-destination network with
N relays in block j.

Figure 3.2 illustrates the superposition encoding of each split message part. In the

3We write n-length codeword xn0 as x0 to avoid confusion with {x0, x1, . . . , xn}.
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figure, codewords are connected by an arrow where the codeword at the end of the arrow

is generated conditioned on the one at the beginning of the arrow. Codewords which

are to be decoded by the same relay are aligned on the same vertical line and kep-

t in the same circle. Following the arrow direction, we can find that: at relay k, the

codeword wk is conditioned upon codewords wk+1, wk+2, . . . , wN ; the codeword xk is con-

ditioned upon codewords wk, wk+1, . . . , wN . At the source, the codeword w0 is condi-

tioned upon codewords w1, w2, . . . , wN ; each codeword uk (k ∈ [1 : N ]) is conditioned

upon codewords xk, wk, . . . , wN ; finally, the codeword x0 is conditioned upon codewords

u1, u2, . . . , uN , x1, x2, . . . , xn, w0, w1 . . . , wN .

Next, we standardize our codebook generation using mathematical notation. We gen-

erate independent codebook for each block according to block Markov encoding. In block

j, after the source splits its message as mj = (m0,j,m1,j, . . . ,mN,j,mN+1,j), the generation

of codebook Cj of block j is as follows:

For every relay k = N, . . . , 1 and corresponding message parts m0,j−k and mk,j−k:

• Randomly and independently generate 2nR0 sequences wk(m0,j−k|m0,j−k−1
0,j−N ) for all

m0,j−k ∈ [1 : 2nR0 ], each i.i.d ∼ p(wk|wNk+1).

• Randomly and independently generate 2nRk sequences xk(mk,j−k|m0,j−k
0,j−N) for allmk,j−k ∈

[1 : 2nRk ], each i.i.d. ∼ p(xk|wNk ).

For source node k = 0 and corresponding message part mN+1,j
0,j :

• For all sequences wk(m0,j−k|m0,j−k−1
0,j−N ) with k ∈ T , randomly and independently gen-

erate 2nR0 sequences w0(m0,j|m0,j−1
0,j−N) for all m0,j ∈ [1 : 2nR0 ] each i.i.d ∼ p(w0|wN1 ).

• For all relays k ∈ T , randomly and independently generate 2nRk sequences

uk(mk,j|m0,j
0,j−N ,mk,j−k) for all mk,j ∈ [1 : 2nRk ], each i.i.d ∼ p(uk|wN0 , xk),

• Randomly and independently generate 2nRN+1 sequences

x0(mN+1,j|mN,j
1,j ,m

0,j
0,j−N , {mk,j−k}k∈T ) for all mN,j ∈ [1 : 2nRN ], each according to

∼ p(x0|uN1 , wN0 , xN1 ).

The above constitutes the codebook Cj of block j. The codebook Cj is then revealed to

all the parties. Likewise, we generate codebooks Cj+1, Cj+2, . . . in the same way.
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Encoding

To send mN+1,j, . . . ,m0j in block j, the source encoder transmits

x0(mN+1,j|mN,j
1,j ,m

0,j
0,j−N , {mk,j−k}k∈T ) from codebook Cj. At the end of block j, each relay

k ∈ T has an estimate m̂k,j−k+1 of message mk,j−k+1 and m̂0,j−k+1 of message m0,j−k+1. In

the block j + 1, each relay k ∈ T transmits xk(m̂k,j−k+1|m̂0,j−k+1
0,j−N+1) from codebook Cj+1.

Decoding

Simultaneous decoding at the first relay

At the end of block j, by knowing m̂0,j−1
0,j−N and m̂1,j−1, the first relay k = 1 will decode m1,j

and m0,j such that:

(
u1(m1,j|m̂0,j

0,j−N+1, m̂1,j−1), w0(m0,j|m̂0,j−1
0,j−N+1), w1(m̂0,j−1|m̂0,j−2

0,j−N),

x1(m̂1,j−1|m̂0,j−1
0,j−N), w2, w3, . . . , wN , y1(j)) ∈ T (n)

ε . (3.3)

In (3.3), the first relay decodes m̂1,j and m̂0,j from output y1(j) when y1(j) is jointly typical

with u1(m1,j|m̂0,j
0,j−N+1) and w0(m0,j|m̂0,j−1

0,j−N+1) given the knowledge of x1, w1, w2, . . . , wN .

According to joint typicality lemma (Appendix A Lemma 1), the decoding error probability

goes to 0 as n→∞, if following rate constraints are satisfied:

R1 < I(U1;Y1|WN
0 , X1), (3.4)

R1 +R0 < I(U1,W0;Y1|X1,W
N
1 ). (3.5)

Simultaneous sliding window decoding at other relays k ∈ [2 : N ]

At the end of block j, by knowing m̂0,j−k
0,j−N−k+1 and m̂k,j−2k+1, the relay node k will decode

mk,j−k+1 and m0,j−k+1 such that the following conditions hold simultaneously:(
wk−1(m0,j−k+1|m̂0,j−k

0,j−N), wk(m̂0,j−k|m̂0,j−k−1
0,j−N ),

xk(m̂k,j−k|m̂0,j−k
0,j−N), wk+1, wk+2, . . . , wN , y

n
k (j)

)
∈ T (n)

ε ,
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and (
wk−2(m0,j−k+1|m̂0,j−k

0,j−N−1), wk−1(m̂0,j−k|m̂0,j−k−1
0,j−N−1),

wk(m̂0,j−k−1|m̂0,j−k−2
0,j−N−1), xk(m̂k,j−k−1|m̂0,j−k−1

0,j−N−1),

wk+1, wk+2, . . . , wN , yk(j − 1)) ∈ T (n)
ε ,

...

(
w1(m0,j−k+1|m̂0,j−k

0,j−k−N+2), w2, . . . , wk−1, wk, xk,

wk+1, . . . , wN , yk(j − k + 2)) ∈ T (n)
ε ,

and (
uk(mk,j−k+1|m̂0,j−k+1

0,j−N−k+1, m̂k,j−2k+1),

w0(m0,j−k+1|m̂0,j−k
0,j−N−k+1), w1, w2, . . . , wk−1,

xk, wk, wk+1, . . . , wN , yk(j − k + 1)) ∈ T (n)
ε . (3.6)

In (3.6), k decoding rules should be satisfied simultaneously at the relay k. In the lth

decoding rule (l < k), the relay k decodes m̂k,j−k+1 from output yk(j − l + 1) when

yk(j − l + 1) is jointly typical with wk−l(m0,j−k+1|m̂0,j−k
0,j−N−l+1) given the knowledge of

wk−l+1, . . . , wN , xk. In the last decoding rule, the relay k decodes m̂k,j−k+1 and m̂0,j−k+1

from yk(j−k+1) when yk(j−k+1) is jointly typical with uk(mk,j−k+1|m̂0,j−k+1
0,j−N−k+1, m̂k,j−2k+1)

and w0(m0,j−k+1|m̂0,j−k
0,j−N−k+1) given the knowledge of w1, . . . , wN and xk. The decoding er-

ror probability goes to 0, as n→∞, if

Rk < I(Uk;Yk|WN
0 , Xk), (3.7)

Rk +R0 < I(Uk,W
k−1
0 ;Yk|Xk,W

N
k ). (3.8)

Detailed error analysis of the relay k is in Appendix B.
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Simultaneous sliding window decoding at destination node k = N + 1

At the end of block j, the destination node k = N + 1 will decode mk,j−N for all k ∈
T ∪ {N + 1} and m0,j−N such that the following conditions hold simultaneously:

(
xN(mN,j−N |m0,j−N), wN(m0,j−N), ynN+1(j)

)
∈ T (n)

ε .

...(
xn1 (m1,j−N |m̂0,j−N

0,j−2N+1), w
n
1 (m0,j−N |m̂0,j−N−1

0,j−2N+1),

xn2 , w
n
2 , . . . , x

n
N , w

n
N , y

n
N+1(j −N + 1)

)
∈ T (n)

ε .

There are N expressions in the above decoding rules. The lth expression can be written

as: (
xnN−l+1(mN−l+1,j−N |m̂0,j−N

0,j−N+1−l), w
n
N−l+1(m0,j−N |m̂0,j−N

0,j−N+1−l),

xN−l+1, wN−l+2, . . . , xN , wN , yN+1(j − l + 1)) ∈ T (n)
ε .

And, the last expression is:(
{uk(mk,j−N |m̂0,j−N

0,j−2N , m̂k,j−N−k)}k∈T , x0(mN+1,j−N |mN,j−N
1,j−N , , m̂0,j−N

0,j−2N ,

{m̂k,j−N−k}k∈T ), w0(m0,j−N |m̂0,j−N−1
0,j−2N ),

x1, w1, x2, w2, . . . , xN , wN , yN+1(j −N)) ∈ T (n)
ε . (3.9)

In (3.9), N + 1 decoding rules should be satisfied simultaneously. In the lth decoding

rule (l < N + 1), the destination N + 1 decodes m̂N−l+1,j−N and m̂0,j−N from output

yN+1(j− l+ 1) when yN+1(j− l+ 1) is jointly typical with xN−l+1(mN−l+1,j−N |m̂0,j−N
0,j−N+1−l)

and wN−l+1(m0,j−N |m̂0,j−N
0,j−N+1−l), given the knowledge of wN−l+2, . . . , wN , xN−l+2, . . . , xN .

In the last decoding rule, the destination N + 1 decodes m̂k,j−N for all k ∈ T , m̂N+1,j−N

and m0,j−N from yN+1(j−N) when yN+1(j−N) is jointly typical with uk, x0 and w0 given

the knowledge of w1, . . . , wN and x1, . . . , xN . The decoding error probability goes to 0, as
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n→∞, if

N+1∑
i=0

Ri < I(UN
1 , X

N
0 ,W

N
0 ;YN+1), (3.10)∑

i∈S

Ri +RN+1 < I(X0, XS , US ;YN |XSc , USc ,WN
0 ), (3.11)

RN+1 < I(X0;YN+1|UN
1 , X

N
1 ,W

N
0 ), (3.12)

N+1∑
i=1

Ri < I(UN
1 , X

N
0 ;YN+1|WN

0 ), (3.13)

where S is a subset of T . Detailed error analysis at the destination is in Appendix C.

Combination Process

In this section, we illustrate the combination process of all the inequalities that we have

derived.

We first restate all the rate constraints derived throughout the error analysis:

Rk < I(Uk;Yk|WN
0 , Xk),∀k ∈ T ,

Rk +R0 < I(Uk,W
k−1
0 ;Yk|Xk,W

N
k ),∀k ∈ T ,∑N+1

i=0 Ri < I(UN
1 , X

N
0 ,W

N
0 ;YN+1),∑

i∈S Ri +RN+1 < I(X0, XS , US ;YN |XSc , USc ,WN
0 ),∀S

RN+1 < I(X0;YN+1|UN
1 , X

N
1 ,W

N
0 ),∑N+1

i=1 Ri < I(UN
1 , X

N
0 ;YN+1|WN

0 ).

The combination process is as follows:

From (3.10), we can directly get that:

R < I(UN
1 , X

N
0 ,W

N
0 ;YN+1). (3.14)
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From (3.11), (3.7) and (3.8), we get

R = (RN+1 +
∑
i∈S

Ri) + min
j∈Sc

[(Rj +R0) + (
∑

i∈Sc,i 6=j

Ri)]

< I(X0, XS , US ;YN+1|XSc , USc ,WN
0 ) (3.15)

+ min
j∈Sc

I(W j−1
0 ;Yj|Xj,W

N
j ) +

∑
i∈Sc

I(Ui;Yi|WN
0 , Xi),

for all S ⊂ T and S 6= T .

From (3.7), (3.8), (3.12)and (3.13), we get

2R <
N+1∑
i=1

Ri +RN+1 +
∑
l∈T

Rl

+ min
i,j∈T

[(Ri +R0) + (Rj +R0) +
∑

l∈T ,l 6=i,j

Rl]

< I(UN
1 , X

N
0 ;YN+1|WN

0 ) + I(X0;YN+1|UN
1 , X

N
1 ,W

N
0 )

+ 2 min
j∈T

I(W j−1
0 ;Yj|Xj,W

N
j ) + 2

∑
i∈T

I(Ui;Yi|WN
0 , Xi). (3.16)

However, if we let S = ∅ in (3.15) and double its right-hand-side (RHS) expression,

then we can get a smaller expression than the RHS of (3.16). Thus, (3.16) is redundant.

After this combination process, we can get the rate in (3.1).
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Fig. 3.3 Two-level relay network with partial-decode-forward.
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Fig. 3.4 Decode-forward relay network.

3.3.2 Discussions

If N = 2, we have the partial decode-forward lower bound for a two-relay network as

shown in Figure 3.3, which coincides with the result in [5]. In Appendix D, we show the

Fourier-Motzkin elimination of the rate constraints for a two-relay network in detail.

Corollary 1. For any relay channel (X0×X1×X2,p(y1, y2, y3|x0, x1, x2),Y1×Y2×Y3), the
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capacity C is lower bounded by:

C ≥ sup
p

min{I(U1;Y1|W0,W1,W2, X1) + I(U2,W0,W1;Y2|X2,W2)

+ I(X0;Y3|U1, X1, U2, X2,W0,W1,W2),

I(U1,W0;Y1|X1,W1,W2) + I(U2;Y2|W0,W1,W2, X2)

+ I(X0;Y3|U1, X1, U2, X2,W0,W1,W2),

I(U2,W0,W1;Y2|X2,W2) + I(X0, U1, X1;Y3|U2,W0,W1,W2, X2)

I(U1,W0;Y1|X1,W1,W2) + I(X0, U2, X2;Y3|U1,W0, X1,W1,W2),

I(X0, X1, X2, U1, U2,W0,W1,W2;Y4), } (3.17)

where the supremum is over all joint pmf p(x0, x1, x2, u1, u2, w0, w1, w2) and (U1, U2,W0,W1,W2)→
(X0, X1, X2)→ (Y1, Y2, Y3) forms a Markov chain.

In (3.1), if we set private parts X1 = ∅ and UN
1 = ∅, we can get Xie and Kumar’s [6]

network decode-forward lower bound as shown in Figure 3.4.

Corollary 2. The capacity of the discrete memoryless relay network based on decode-

forward is lower bounded as:

C ≥ max
p(x0,x1,...,xN )

min
k∈[1:N+1]

I(W k−1
0 ;Yk|WN

k ) (3.18)

Furthermore, in (3.18), if N = 1, it reduces to the decode-forward lower bound [2] for

the discrete-memoryless relay channel.

3.3.3 Illustration of Encoding and Decoding

In this section, we present encoding and decoding tables detailing relay operations in a few

blocks to illustrate the message part transmission procedure clearly.

Assume that we have a discrete memoryless relay network consisting of one source

(labeled as 0), one destination (labeled as 200) and 199 relays (labeled consecutively from

1 to 199).

As shown in Table 3.1, in the first block, the source 0 broadcasts codeword xn0 (m200,1|m199,1
1,1 ,m0,1)

to all following relays and all relays of this network remain silent. At the end of the first

block, the first relay decodes message parts m̂1,1 and m̂0,1 from its output while other relays
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Block 1 Block 2

X0 xn0 (m200,1|m199,1
1,1 ,m0,1) xn0 (m200,2|m199,2

1,2 ,m0,2,m0,1,m1,1)

X1 ∅ xn1 (m̂1,1|m̂0,1)
Y1 m̂1,1, m̂0,1 m̂1,2, m̂0,2

Y2 ∅ m̂2,1, m̂0,1

Table 3.1 Message parts transmission in Block 1 and Block 2.

keep their output received in the first block in their memories. In the second block, the

source 0 broadcasts codeword xn0 (m200,2|m199,2
1,2 ,m0,2,m0,1,m1,1) to all following relays while

the first relay broadcasts codeword xn1 (m̂1,1|m̂0,1) to its following relays. At the end of the

second block, the first relay will decode message parts m̂1,2 and m̂0,2 from its output of

current block while the second relay decodes message parts m̂2,1 and m̂0,1 from its outputs

of current and previous blocks.

Block 200

X0 xn0 (m200,200|m199,200
1,200 ,m0,200

0,1 , {ml,200−l}l∈T )

X1 xn1 (m̂1,199|m̂0,199
0,1 )

X2 xn2 (m̂2,198|m̂0,198
0,1 )

. . . . . .

X100 xn100(m̂100,100|m̂0,100
0,1 )

. . . . . .
X199 xn199(m̂199,1|m̂0,1)
Y1 m̂1,200, m̂0,200

Y2 m̂2,199, m̂0,199

. . . . . .
Y100 m̂100,101, m̂0,101

. . . . . .
Y200 {m̂200,1}k∈T ∪{200}, m̂0,1

Table 3.2 Message parts transmission in Block 200.

As shown in Table 3.2, in the 200th block, the source 0 broadcasts codeword

xn0 (m200,200|m199,200
1,200 ,m0,200

0,1 , {ml,200−l}l∈T ) to all following relays while the relay in this net-

work (for example, the relay indexed with k) broadcasts codeword xnk(m̂k,200−k|m̂0,200−k
0,1 )

to its following relays. At the end of the 200th block, the relay k decodes message parts

m̂k,201−k and m̂0,201−k from its outputs of current block and previous k−1 blocks. And, the

destination 200 starts implementing decoding. It decodes message parts {m̂200,1}k∈T ∪{200}
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and m̂0,1 from its outputs of current and previous 199 blocks.

As shown in Figure 3.5, we give an example of message parts transmission in the two-

relay network to illustrate the private message splitting scheme in a smaller network in-

frastructure. Assume that N = 2, so the relay network consists of source 0, relay 1, relay 2

and destination 3. In block j, the source wants to send message parts m0,j, m1,j, m2,j and

m3,j to the destination via the help from two relays. The transmission process of message

parts from block index j spans over three blocks: block j, block j + 1, block j + 2. At

the beginning of block j, the source sends x0(m3,j) to the destination 0, u2(m2,j) to the

relay 2 and u1(m1,j), w0(m0,j) to the relay 1 respectively. By the end of block j, the relay

1 decodes m0,j and m1,j from the received signal y1(j). At the beginning of block j + 1,

the relay 1 sends w1(m0,j) to the relay 2 and x1(m1,j) to the destination respectively. By

the end of block j + 1, the relay 2 decodes m0,j,m2,j from received signals y2(j), y2(j + 1).

Finally, at the beginning of block j + 2, the relay 2 sends w2(m0, j) and x2(m2, j) to the

destination. At the end block j + 2, the destination decodes message parts m0,j, m1,j, m2,j

and m3,j from received signals y3(j), y3(j + 1), y3(j + 2).
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Fig. 3.5 Message parts transmission in the two-relay network.
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3.4 Gaussian Relay Networks

In this section, we investigate our achievable rates in Gaussian relay networks. We also

provide the achievable rate for Gaussian two-relay networks.

3.4.1 Signaling and Rates for Gaussian Relay Networks

The most important continuous alphabet relay network is the Gaussian relay network. The

network infrastructure is shown in Figure 3.1. It is an additive time-discrete relay network,

that is, for any receiver in this network, at time i, the output Yi is the sum of the input Xi

and the noise Zi. The noise Zi is assumed to be independent of the input Xi. Zis in each

time i are drawn identically and independently from a Gaussian distribution with variance

N . This network is a model for some common communication networks, such as wired base

station networks and satellite networks. If the noise variance is zero or there is no power

constraint on the input, each receiver receives the transmitted symbol perfectly.

In our scheme, the Gaussian relay network can be modeled as:

y = Gx + z, (3.19)

where4 y, x and z ∈ <(N+1)×1. y is the received signal vector. x is the transmitted signal

vector. z is the noise vector. G is the channel coefficient matrix, which is a (N+1)×(N+1)

real upper diagonal matrix with all diagonal elements being 0. Each element in z is a noise

signal at the decoder satisfying the Gaussian distribution5 N (0, 1). There is a power

constraint at each transmitting node.

From the codebook generation, we get the following Gaussian signaling:

For each relay k ∈ T ,

Xk = αT
k w + βkkVk, (3.20)

where αk = [0, . . . , 0, αkk, . . . , αk,N ]T and w = [W0, . . . ,WN ]T ∈ <(N+1)×1. [·]T denotes the

vector transpose. In vector w, elements Wl (l ∈ T ∪ {0}) carry the message at the lth

transmitting node which supports the transmission of the common message part m0,j−i.

4Here, we denote vertical vectors using boldface lower case letters to avoid confusion. We denote
matrices using boldface upper case letters.

5N (0, 1) is the Gaussian distribution with mean 0 and variance 1.



3.4 Gaussian Relay Networks 41

Wi is successively superimposed on Wi+1,Wi+1, . . . ,WN . Vk is the codeword sent by the

relay k, which supports the forwarding of the message in Uk (sent by the source) and all

Wl (l ≤ k) respectively. Elements {αkl}l∈[k:N ] and βkk are power allocations satisfying the

following constraint:

||αk||22 + β2
kk = Pk, (3.21)

where Pk is power constraint at the relay k.

For source node k = 0,

x0 = αT
0 w + βT

0 v + φT
0 u, (3.22)

where β0 = [0, β01, . . . , β0,N ]T and v = [V0, . . . , VN ]T ∈ <(N+1)×1. φ0 = [0, φ01, . . . , φ0,N+1]
T

and u = [U0, . . . , UN+1]
T ∈ <(N+2)×1. {Wl}l∈T ∪{0}, {Vl}l∈T and {Ul}l∈T ∪{N+1} are inde-

pendent, normalized Gaussian random variables satisfying N (0, 1) respectively. In vector

u, elements Ul (l ∈ T ) carry private message parts ml, which is decoded by relay l and

not decoded by other relays. Each Ul is superimposed on all Wl. Element UN+1 carries

private message part mN+1, which is decoded at the destination N + 1 and not decoded

by all the relays. UN+1 is superimposed on all Wl and {Uk}k∈T . {α0l}l∈[k:N ], {β0l}l∈T and

{φ0l}l∈T ∪{N+1} are power allocations satisfying the following constraints:

||α0||2 + ||β0||22 + ||φ0||22 = P0, (3.23)

where P0 is the power constraint at the source 0.

By synthesizing Gaussian signaling from (3.20) and (3.22) with Gaussian relay network

model from (3.19), (3.1) will become the lower bound for the capacity of Gaussian relay

networks in the following:

C ≥ min
S⊂T

{
I1 + min

j∈Sc
I2 +

∑
j∈Sc

I3

}
, (3.24)
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where

I1 =
1

2
log

(∑
i∈S

(gN+1,0β0i + gN+1,iβii)
2 + g2N+1,0

(∑
i∈S

φ2
0i + φ2

0,N+1

)
+ 1

)

=
1

2
log
(
||lN+1||22 + g2N+1,0||φ0||2S∪{N+1} + 1

)
,

I2 =
1

2
log

 ||gj0αT
0 +

∑j−1
i=1 gjiα

′T
i ||22∑j−1

i=1 (gj1β1i + gjiβii)
2 + g2j0

(∑N
i=j+1 β

2
0i +

∑N+1
i=1 φ2

0i

)
+ 1

+ 1


=

1

2
log

(
||gj0αT

0 + eT
j GA′||22

||lj||22 + g2j0(||β0||2P + ||φ0||22) + 1
+ 1

)
,

I3 =
1

2
log

 φ2
0jg

2
j0∑j−1

i=1 (gj1β1i + gjiβii)
2 + g2j0

(∑N
i=j+1 β

2
0i +

∑N+1
i=1,i 6=j φ

2
0i

)
+ 1

+ 1

 ,

=
1

2
log

(
φ2
0jg

2
j0

||lj||22 + g2j0(||β0||2P + ||φ0||22 − φ2
0j) + 1

+ 1

)
.

In = I = [e1, . . . , en] is the identity matrix;

A = [α0, . . . , αN ,0]T;

A′ = [0, α′1, . . . , α
′
j−1,0, . . . ,0]T and α′i = [0, . . . ,0, αii, . . . , αi,j−1,0, . . . ,0]T;

lj = [gj1β11 + gj0β01, . . . , gj,j−1βj−1,j−1 + gj0β0,j−1].

We also define ||x||2S =
∑

i∈S x
2
i and P = {j + 1, . . . , N}.

3.4.2 Signaling and Rates for Gaussian Two-relay Networks

As shown in Figure 3.3, the Gaussian two-relay network can be modeled as:

Y3 = g03X0 + g13X1 + g23X2 + Z3,

Y2 = g02X0 + g12X1 + Z2,

Y1 = g01X0 + Z1, (3.25)
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where Z3, Z2 and Z1 are independent AWGN noise according to the normal distribution

N (0, 1). The signaling at each node can be written as:

x2 = α22W2(w0,j−2) + β22V2(w2,j−2),

x1 = α12W2(w0,j−2) + α11W1(w0,j−1) + β11V1(w1,j−1),

x0 = α00W0(w0,j) + α01W1(w0,j−1) + α02W2(w0,j−2)

+ β01V1(w1,j−1) + β02V2(w2,j−2) + φ01U1(w1,j) + φ02U2(w2,j) + φ03U3(w3,j), (3.26)

where W2, V2, W1, V1, W0, U1, U2, U3 are independent, normalized Gaussian random

variables satisfying N (0, 1) respectively; {α·, β·, φ·} are power allocations satisfying the

following constraints:

α2
22 + β2

22 = P2,

α2
11 + α2

12 + β2
11 = P1,

α2
00 + α2

01 + α2
02 + β2

01 + β2
02 + φ2

01 + φ2
02 + φ2

03 = P0, (3.27)

where P0, P1 and P2 are power constraints at the corresponding node and they can be equal

to each other without loss of generality.

Corollary 3. The capacity for a Gaussian two-relay network in (3.25) is lower bounded

by:

C ≥ min {I1 + I4 + I5, I2 + I3 + I5, I2 + I7, I4 + I6, I8} , (3.28)
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where

I1 =
1

2
log

(
1 +

g201φ
2
01

g201(β
2
02 + φ2

02 + φ2
03) + 1

)
,

I4 =
1

2
log

(
1 +

g202(α00 + φ02)
2 + (g02α01 + g12α11)

2

(g02β01 + g12β11)2 + g202(φ
2
01 + φ2

03) + 1

)
,

I3 =
1

2
log

(
1 +

g202φ
2
02

(g02β01 + g12β11)2 + g202(φ
2
01 + φ2

03) + 1

)
,

I2 =
1

2
log

(
1 +

g201(α
2
00 + φ2

01)

g201(β
2
02 + φ2

02 + φ2
03) + 1

)
,

I5 =
1

2
log
(
1 + g203φ

2
03

)
,

I6 =
1

2
log
(
1 + (g03β01 + g13β11)

2 + g203(φ
2
01 + φ2

03)
)
,

I7 =
1

2
log
(
1 + (g03β02 + g23β22)

2 + g203(φ
2
02 + φ2

03)
)
,

I8 =
1

2
log
(
1 + g203P0 + g213P1 + g223P2

+ 2g03g13(α01α11 + α02α12 + β01β11)

+2g03g23(α02α22 + β02β22) + 2g13g23α12α22) ,

and αij, βij, φij (i ∈ {0, 1, 2},j ∈ {0, 1, 2, 3}) are power allocations satisfying (3.27).

Remark 1. By setting N = 3 in (3.24), we can get the capacity lower bound for Gaussian

two-relay networks in (3.28).

3.4.3 Numerical Comparison

We numerically compare the achievable rates of private message splitting based partial

decode-forward scheme and pure decode-forward scheme in the two-relay network. For both

schemes, we assume that transmitting powers at source 0, relay 1 and relay 2 are the same.

As shown in Figure 3.6, we consider the comparison of two schemes in four possible channel

conditions: all links are in the same condition ( g01 = g02 = g03 = g12 = g13 = g23 = 1,

shown in left upper plot ), the link between two relays is worse than other links ( g01 = g02 =

g03 = g13 = g23 = 1, g12 = 0.3, shown in right upper plot), the source-to-relay links are

better than in-relay links as well as relay-to-destination links ( g01 = g02 = g03 = g12 = 1,

g13 = g23 = 4, shown in left lower plot), the relay-to-destination links are better than
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in-relay links as well as source-to-relay links ( g01 = g02 = 4, g03 = g12 = g13 = g23 = 1,

shown in right lower plot). Such channel condition setups are common communication

scenarios. We also simulate two random channel conditions (g01 = 1, g02 = 2, g03 = 3,

g12 = 4, g13 = 5, g23 = 6 and g01 = 6, g02 = 5, g03 = 4, g12 = 3, g13 = 2, g23 = 1) in Figure

3.7. Note that the private message splitting scheme is depicted with red solid line and

the decode-forward scheme is depicted with blue dashed line. We can see that the private

message splitting scheme outperforms the decode-forward scheme in all channel conditions.

Especially, when the link between two relays suffers from poor channel condition, the private

message splitting scheme performs much better than decode-forward. The reason is that

when common message part transmission is error prone, source will take advantage of the

channel condition by allocating more power transmitting private message parts. This result

agrees with the analysis in Theorem 4 that the private message splitting scheme can result

in a tighter bound than decode-forward.

Message splitting scheme provides us with a feasible way to facilitate partial decode-

forward in the relay network with N relays, while previous literatures are only able to

extend partial decode-forward to the relay network with one or two relays. With private

message splitting scheme, each relay in the network is responsible for the transmission of

a distinct message part. The source pre-splits its message according to the source-relay

channel condition. Thus, if the link between the source and some relay is in poor channel

condition (e.g., deep fading or high noises), the source will split less message parts to

that relay and will re-allocate more message parts to some other relay with better channel

condition to the source. This is the reason that private message splitting scheme provides

a tighter lower bound on capacity than the schemes shown in [5] and [15].

3.5 Summary of The Chapter

In this chapter, we propose partial decode-forward scheme based on private message split-

ting for an N -relay network with single source and single destination. We use block Markov

encoding and joint sliding window decoding at each relay. We derive the achievable rate

for this scheme as shown in Theorem 4. We also show that this result includes network

full decode-forward and two-relay networks as special cases. We next analyze this result in

AWGN environments. We derive capacity results for Gaussian relay networks as shown in

(3.24) and capacity results for Gaussian two-relay networks as shown in (3.28). We then
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compare the private message splitting scheme with pure decode-forward in the Gaussian

two-relay network.



3.5 Summary of The Chapter 47

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

Power

R
at

e 
(b

its
/tr

an
sm

is
si

on
)

g
01

=g
02

=g
03

=g
13

=g
23

=1, g
12

=0.3

 

 

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

Power

R
at

e 
(b

its
/tr

an
sm

is
si

on
)

g
01

=g
02

=g
03

=g
12

=g
13

=g
23

=1

 

 

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

Power

R
at

e 
(b

its
/tr

an
sm

is
si

on
)

g
01

=g
02

=g
03

=g
12

=1, g
13

=g
23

=4

 

 

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Power

R
at

e 
(b

its
/tr

an
sm

is
si

on
)

g
01

=g
02

=4, g
03

=g
12

=g
13

=g
23

=1

 

 

Partial DF
DF

Partial DF
DF

Partial DF
DF

Partial DF
DF

Fig. 3.6 Rate comparison between partial decode-forward and decode-
forward in the two-relay network.
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Fig. 3.7 Rate comparison between partial decode-forward and decode-
forward in the two-relay network.
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Chapter 4

Partial Decode-Forward Scheme for

Three-relay Networks

In this chapter, we mainly study partial decode-forward based on exhaustive message s-

plitting scheme for three-relay networks. In this relay network, we pre-assign each relay to

different relay subsets. Each relay subset is responsible for the transmission of a distinct

message part. This scheme is based on block Markov encoding and joint sliding window

decoding. We then extend this scheme to a single-source single-destination relay network

with multiple relays. We investigate the codebook generation for the multi-relay network.

In the last part of this chapter, we analyze the capacity results of three-relay networks in

the AWGN environment and make comparison with the capacity results from the scheme

in Chapter 3.

4.1 Exhaustive Message Splitting Scheme

In this section, we propose a partial decode-forward scheme for a three-relay network as

shown in Figure 4.1. Different from the private message splitting scheme discussed in

Chapter 3, we consider all possible partial decoding cases that can occur among message

parts at the source and the relays, which is called exhaustive message splitting as shown

in Chapter 1 and Chapter 2.

In each transmission block, the source splits its original message m into eight parts

as shown in Table 4.1. In this table, the subscript of m· denotes the relay indices which

help the transmission of that message part (except that message part m0 is decoded and
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re-transmitted among all relays 1, 2, 3). {W·, Q·, S·, V·, X·} represent the corresponding

codewords for different message parts and their subscripts denote the transmitting node

indices. U· is transmitted directly by the source and its subscript denotes the supposed

helping relay. U· is re-transmitted by X· at each relay.

Then let’s look at Table 4.1 in detail. In the whole communication process, the source

sends X0, V0, Q0, S0, W0 to carry the message parts m4, m12, m23, m13 and m0 respectively.

The source also sends U1, U2, U3 to carry the message parts m1, m2 and m3 respectively.

The relay 1 sends X1, V1, S1, W1 to carry the message parts m1, m12, m13 and m0 respec-

tively. The relay 2 sends X2, V2, Q2, W2 to carry the message parts m2, m12, m23 and m0

respectively. Finally, The relay 3 sends X3, Q3, S3, W3 to carry the message parts m3, m23,

m13 and m0 respectively.

Block Markov superposition coding is used to generate the independent codewords in

each block. To better understand the superposition coding structure, we use a directed

graph (Figure 4.2) to represent the superposition structure among the generated codewords.

Codewords are connected by an arrow where the codeword at the end of the arrow is

superimposed on the one at the beginning of the arrow.

From Figure 4.2, we can find the meaning of all variables in the following:

• wk, k ∈ {0, 1, 2, 3}, carries common message part m0,j−k of different blocks in relay

k. The codeword wk is superimposed upon codewords wk+1, . . . , w3.

• vk, k ∈ {0, 1, 2}, carries private message part m12 to be decoded only at relays {1, 2}.
qk, k ∈ {0, 2, 3}, carries private message part m23 to be decoded only at relays {2, 3}.
sk, k ∈ {0, 1, 3}, carries private message part m13 to be decoded only at relays

{1, 3}. Each codeword {vk, qk, sk} is superimposed on all codewords wl (l ≥ k) and

corresponding codewords {vl} (l ≥ k), {ql} (l ≥ k) and {sl} (l ≥ k) respectively.

• uk, k ∈ {1, 2, 3}, carries private message part mk, which is to be decoded at relay k

and not decoded at other relays. The codeword u1 is superimposed on all codewords

{sl, vl, wl} (l ≥ 1). The codeword u2 is superimposed on all codewords {ql, vl, wl}
(l ≥ 2). u3 is superimposed on all codewords {s3, q3, w3}.

• xk, k ∈ {1, 2, 3}, is the codeword sent by relay k which supports the forwarding of

the message in uk.
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• x0 is the codeword sent by the source which carries the remaining message part m4,

which is to be decoded only at the destination. The codeword x0 is conditioned upon

all codewords {wk, uk, sk, vk, xk, qk} (k ∈ {1, 2, 3}).

Next, we present the achievable rate and prove its achievablity.

1 2
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Relay 
Encoder

Relay 
Encoder
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Fig. 4.1 Partial-decode-forward for three-relay network.

 3 0, 3jw m 

 3 23, 3jq m   3 13, 3js m 

 3 3, 3jx m 

 0 0, jw m

 3 3, ju m

 0 4, jx m

 2 2, ju m

 2 0, 2jw m 

 2 12, 2jv m 

 2 2, 2jx m 

 2 23, 2jq m 

 1 0, 1jw m 

 1 12, 1jv m 

 1 1, 1jx m 

 1 13, 1js m 

 1 1, ju m 0 13, js m  0 12, jv m  0 23, jq m

Fig. 4.2 Coding structure at the source and the relay.
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Table 4.1 Message parts and transmitting relays
Message parts Relays Variables

m0 1,2,3 W0, W1, W2, W3

m3 3 U3, X3

m12 1, 2 V0, V1, V2
m2 2 U2, X2

m23 2, 3 Q0, Q2, Q3

m1 1 U1, X1

m13 1, 3 S0, S1, S3

m4 ∅ X0

4.1.1 Coding Scheme and Achievable Rate

Theorem 5. For a single-source single-destination network with three relays (X0 × X1 ×
X2 ×X3, p(y1, y2, y3, y4|x0, x1, x2, x3), Y1 ×Y2 ×Y3 ×Y4), by using partial decode-forward,

the capacity C is lower bounded as follows:

C ≥ sup
P ∗

min{I33, I1 + I23, I6 + I25, I11 + I27, I6 + I13 + I18, I7 + I11 + I18,

I1 + I12 + I17, I2 + I11 + I17, I1 + I8 + I16, I3 + I6 + I16,

I5 + I6 + I13 + I34, I6 + I3 + I15 + I34, I1 + I8 + I15 + I34,

I1 + I10 + I12 + I34, I5 + I7 + I11 + I34, I2 + I10 + I11 + I34,

I3 + I7 + I12 + I34, I2 + I8 + I13 + I34}, (4.1)
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for some joint distribution that factors as

P ∗ ,p(w3
0, u

3
1, x

3
0, s0, s1, s3, v0, v1, v2, q0, q2, q3)

p(w3)p(q3|w3)p(s3|w3)p(x3|s3, q3, w3)

p(w2|w3)p(v2|w2, w3)p(q2|q3, w2, w3)p(x2|v2, q2, q3, w2, w3)

p(w1|w2, w3)p(v1|v2, w1, w2, w3)p(s1|s3, w1, w2, w3)p(x1|v1, v2, s1, s3, w1, w2, w3)

p(w0|w1, w2, w3)p(q0|q2, q3, w0, w1, w2, w3)p(v0|v1, v2, w0, w1, w2, w3)

p(s0|s1, s3, w0, w1, w2, w3)

p(u3|x3, s0, s1, s3, q0, q2, q3, w0, w1, w2, w3)

p(u2|x2, v0, v1, v2, q0, q2, q3, w0, w1, w2, w3)

p(u1|x1, v0, v1, v2, s0, s1, s3, w0, w1, w2, w3)

p(x0|u1, x1, u2, x2, u3, x3, v0, v1, v2, q0, q2, q3, s0, s1, s3, w0, w1, w2, w3), (4.2)

where Ij are defined in (4.4), (4.6), (4.8) and (4.10), which can be found in the following

Decoding section. (4.1) shows a lower bound on the capacity of the single-source single-

destination three-relay network based on partial decode-forward with exhaustive message

splitting. The supremum is taken oven all possible input distributions defined in (4.2).

Proof. We use a block Markov coding scheme in which the source sends b−3 messages over

b blocks of n symbols each. Each relay and the destination employ simultaneous sliding

window decoding.

Before the communication process, the codebook is generated and revealed to all par-

ties. For each block j, the source sends x0, which contains corresponding message parts in

the blocks j, j−1, j−2 and j−3. At the end of block j, the first relay k = 1 has estimates

m̂0,j, m̂1,j, m̂12,j, m̂13,j of the message partsm0,j,m1,j,m12,j,m13,j, the second relay k = 2 has

estimates m̂0,j−1, m̂2,j−1, m̂12,j−1, m̂23,j−1 of the message partsm0,j−1,m2,j−1,m12,j−1,m23,j−1

and the third relay k = 3 has estimates m̂0,j−2, m̂3,j−2, m̂13,j−2, m̂23,j−2 of the message parts

m0,j−2,m3,j−2,m13,j−2,m23,j−2. In the block j + 1, the relays node j = 1, 2, 3 broadcasts

x1(m̂1,j|m̂12,j, m̂0,j, m̂13,j), x2(m̂2,j−1|m̂23,j−1, m̂12,j−1, m̂0,j−1) and x3(m̂3,j−2|m̂13,j−2, m̂23,j−2, m̂0,j−2)

to their following nodes. The destination uses joint decoding simultaneously over signals

received in all current and previous three blocks.
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Codebook Generation

For relay node k = 3

• For each j ∈ [1 : b − 3], independently generate 2nR0 sequences w3(m0,j−3) each i.i.d

∼ p(w3).

• For each message m0,j−3, randomly and conditionally independently generate 2nR23

sequences q3(m23,j−3|m0,j−3) each i.i.d ∼ p(q3|w3).

• For each message m0,j−3, randomly and conditionally independently generate 2nR13

sequences s3(m13,j−3|m0,j−3) each i.i.d ∼ p(s3|w3).

• For each message set m0,j−3,m13,j−3,m23,j−3, randomly and conditionally indepen-

dently generate 2nR3 sequences

x3(m3,j−3|m13,j−3,m23,j−3,m0,j−3) each i.i.d ∼ p(x3|s3, q3, w3).

For relay node k = 2

• For each message m0,j−3, randomly and conditionally independently generate 2nR0

sequences w2(m0,j−2|m0,j−3) each i.i.d ∼ p(w2|w3).

• For each message set m0,j−3,m0,j−2, randomly and conditionally independently gen-

erate 2nR12 sequences v2(m12,j−2|m0,j−2,m0,j−3) each i.i.d ∼ p(v2|w2, w3).

• For each message set m0,j−3,m0,j−2,m23,j−3, randomly and conditionally independent-

ly generate 2nR23 sequences q2(m23,j−2|m23,j−3,m0,j−2,m0,j−3) each i.i.d∼ p(q2|q3, w2, w3).

• For each message set m0,j−3, m0,j−2, m12,j−2, m23,j−3, m23,j−2, randomly and condi-

tionally independently generate 2nR2 sequences

x2(m2,j−2|m23,j−2,m12,j−2,m0,j−2,m0,j−3,m23,j−3) each i.i.d ∼ p(x2|v2, w2, w3, q2, q3).

For relay node k = 1

• For each message set m0,j−3, m0,j−2, randomly and conditionally independently gen-

erate 2nR0 sequences w1(m0,j−1|m0,j−2,m0,j−3) each i.i.d ∼ p(w1|w2, w3).

• For each message set m0,j−3, m0,j−2, m0,j−1, m12,j−2, randomly and conditionally

independently generate 2nR12 sequences

v1(m12,j−1|m0,j−1,m12,j−2,m0,j−2,m0,j−3) each i.i.d ∼ p(v1|w1, v2, w2, w3).
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• For each message set m0,j−3, m0,j−2, m0,j−1, m13,j−3, randomly and conditionally

independently generate 2nR13 sequences

s1(m13,j−1|m13,j−3,m0,j−1,m0,j−2,m0,j−3) each i.i.d ∼ p(s1|w1, s3, w2, w3).

• For each message set m0,j−3, m0,j−2, m0,j−1, m12,j−2, m12,j−1, m13,j−3, m13,j−1, ran-

domly and conditionally independently generate 2nR2 sequences

x1(m1,j−1|m12,j−1,m12,j−2,m0,j−1,m0,j−2,m0,j−3,m13,j−3,m13,j−1)

each i.i.d ∼ p(x1|v1, v2, w1, w2, w3, s1, s3).

For source node k = 0

• For each message set m0,j−3, m0,j−2, m0,j−1, randomly and conditionally independent-

ly generate 2nR0 sequences w0(m0,j|m0,j−1,m0,j−2,m0,j−3) each i.i.d∼ p(w0|w1, w2, w3).

• For each message set m0,j−3, m0,j−2, m0,j−1, m0,j, m23,j−3, m23,j−2, randomly and

conditionally independently generate 2nR23 sequences

q0(m23,j|m23,j−2,m23,j−3,m0,j,m0,j−1,m0,j−2,m0,j−3)

each i.i.d ∼ p(q0|q2, q3, w0, w1, w2, w3).

• For each message set m0,j−3, m0,j−2, m0,j−1, m0,j, m12,j−2, m12,j−1, randomly and

conditionally independently generate 2nR12 sequences

v0(m12,j|m12,j−1,m0,j,m0,j−1,m12,j−2,m0,j−2,m0,j−3)

each i.i.d ∼ p(v0|v1, w0, w1, v2, w2, w3).

• For each message set m0,j−3, m0,j−2, m0,j−1, m0,j, m13,j−3, m13,j−1, randomly and

conditionally independently generate 2nR13 sequences

s0(m13,j|m13,j−1,m0,j,m13,j−3,m0,j−1,m0,j−2,m0,j−3)

each i.i.d ∼ p(s0|s1, w0, w1, s3, w2, w3).

• For each message set m0,j−3, m0,j−2, m0,j−1, m0,j, m13,j−3, m13,j−1, m13,j, m23,j−3,

m23,j−2, m23,j, randomly and conditionally independently generate 2nR3 sequences

u3(m3,j|m3,j−3,m13,j−3,m13,j−1,m13,j,m23,j−3,m23,j−2,m23,j,m0,j−3,m0,j−2,m0,j−1,m0,j)

each i.i.d ∼ p(u3|x3, s0, s1, s3, q0, q2, q3, w0, w1, w2, w3).

• For each message set m0,j−3, m0,j−2, m0,j−1, m0,j, m12,j−2, m12,j−1, m12,j, m23,j−3,

m23,j−2, m23,j, randomly and conditionally independently generate 2nR2 sequences



56 Partial Decode-Forward Scheme for Three-relay Networks

u2(m2,j|m2,j−2,m12,j−1,m12,j−2,m12,j,m23,j−3,m23,j−2,m23,j,m0,j−3,m0,j−2,m0,j−1,m0,j)

each i.i.d ∼ p(u2|x2, v0, v1, v2, q0, q2, q3, w0, w1, w2, w3).

• For each message set m0,j−3, m0,j−2, m0,j−1, m0,j, m12,j−2, m12,j−1, m12,j, m13,j−3,

m13,j−1, m13,j, randomly and conditionally independently generate 2nR1 sequences

u1(m1,j|m1,j−1,m12,j−1,m12,j−2,m12,j,m13,j−3,m13,j−1,m13,j,m0,j−3,m0,j−2,m0,j−1,m0,j)

each i.i.d ∼ p(u1|x1, v0, v1, v2, s0, s1, s3, w0, w1, w2, w3).

• For each message set m2,j, m23,j, m13,j, m3,j, m1,j, m1,j−1, m0,j−3, m0,j−2, m0,j−1,

m0,j, m12,j−2, m12,j−1, m12,j, m13,j−1, m2,j−2, m23,j−2, m3,j−3, m13,j−3, m23,j−3, ran-

domly and conditionally independently generate 2nR4 sequences

x0(m4,j|m2,j,m23,j,m13,j,m3,j,m0,j,m12,j,m1,j,m1,j−1,m12,j−1,m0,j−1,m12,j−2,m0,j−2,

m0,j−3,m13,j−1,m2,j−2,m23,j−2,m3,j−3,m13,j−3,m23,j−3)

each i.i.d ∼ p(x0|u1, u2, u3, x1, x2, x3, w0, w1, w2, w3, v0, v1, v2, s0, s1, s3, q0, q2, q3).

The above constitutes the codebook Cj of block j. The codebook Cj is then revealed to

all the parties. The codebook is then revealed to all parties.

Encoding

To send m0,j, m3,j, m12,j, m2,j, m23,j, m1,j, m13,j and m4,j in block j, the source sends

x0(m4,j|m2,j,m23,j,m13,j,m3,j,m0,j,m12,j,m1,j) from codebook Cj. At the end of block j, the

first relay k = 1 has an estimate m̂0,j, m̂1,j, m̂12,j, m̂13,j of the message m0,j,m1,j,m12,j,m13,j,

the second relay k = 2 has an estimate m̂0,j−1, m̂2,j−1, m̂12,j−1, m̂23,j−1 of the message

m0,j−1,m2,j−1,m12,j−1,m23,j−1 and the third relay k = 3 has an estimate m̂0,j−2, m̂3,j−2, m̂13,j−2,

m̂23,j−2 of the message m0,j−2,m3,j−2,m13,j−2,m23,j−2. In the block j + 1, the relays node

j = 1, 2, 3 transmits x1(m̂1,j|m̂12,j, m̂0,j, m̂13,j), x2(m̂2,j−1|m̂23,j−1, m̂12,j−1, m̂0,j−1) and

x3(m̂3,j−2|m̂13,j−2, m̂23,j−2, m̂0,j − 2) respectvely from codebook Cj+1.
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Decoding

Simultaneous decoding at the first relay

At the end of block j, the first relay k = 1, will decode m̂0,j, m̂1,j, m̂12,j, m̂13,j such that:

(w0(m̂0,j), v0(m̂12,j|m̂0,j), s0(m̂13,j|m̂0,j), u1(m̂1,j|m̂12,j, m̂13,j, m̂0,j),

w1(m̂0,j−1), v1(m̂12,j−1|m̂0,j−1), s1(m̂13,j−1|m̂0,j−1), x1(m̂1,j−1|m̂12,j−1, m̂0,j−1, m̂13,j−1),

w2(m̂0,j−2), v2(m̂12,j−2|m̂0,j−2), w3(m̂0,j−3), s3(m̂13,j−3|m̂0,j−3), y1(j)) ∈ T (n)
ε .

(4.3)

In (4.3), the first relay decodes m̂1,j, m̂12,j, m̂13,j and m̂0,j from output y1(j) when y1(j)

is jointly typical with w0(m0,j), v0(m12,j|m0,j), s0(m13,j|m0,j) and u1(m1,j|m12,j,m13,j,m0,j)

given the knowledge of w1, w2, w3, v1, v3, s1 and s3. According to joint typicality lemma

(Appendix A Lemma 1), the decoding error probability goes to 0 as n → ∞, if following

rate constraints are satisfied:

R0 +R12 +R13 +R1 < I(W0, V0, S0, U1;Y1|W1,W2,W3, S1, S3, V1, V2, X1) , I1,

R12 +R1 < I(V0, U1;Y1|W0,W1,W2,W3, S0, S1, S3, V1, V2, X1) , I2,

R13 +R1 < I(S0, U1;Y1|W0,W1,W2,W3, S1, S3, V0, V1, V2, X1) , I3,

R12 +R13 +R1 < I(V0, S0, U1;Y1|W0,W1,W2,W3, S1, S3, V1, V2, X1) , I4,

R1 < I(U1;Y1|W0,W1,W2,W3, S0, S1, S3, V0, V1, V2, X1) , I5. (4.4)

Simultaneous sliding window decoding at the second relay

At the end of block j + 1, the second relay k = 2, will decode m̂0,j, m̂2,j, m̂12,j, m̂23,j such

that:

(v1(m̂12,j|m̂0,j), w1(m̂0,j), w2(m̂0,j−1), v2(m̂12,j−1|m̂0,j−1),

q2(m̂23,j−1|m̂0,j−1), x2(m̂2,j−1|m̂23,j−1, m̂12,j−1),

w3(m̂0,j−2), q3(m̂23,j−2|m̂0,j−2), y2(j + 1)) ∈ T (n)
ε ,
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and,

(w0(m̂0,j), v0(m̂12,j|m̂0,j), q0(m̂23,j|m̂0,j), u2(m̂2,j|m̂12,j, m̂23,j, m̂0,j),

w1(m̂0,j−1), v1(m̂12,j−1|m̂0,j−1), w2(m̂0,j−2), v2(m̂12,j−2|m̂0,j−2),

q2(m̂23,j−2|m̂0,j−2), x2(m̂2,j−2|m̂23,j−2, m̂12,j−2, m̂0,j−2),

w3(m̂0,j−3), q3(m̂23,j−3|m̂0,j−3), y2(j)) ∈ T (n)
ε . (4.5)

In (4.5), two decoding rules should be satisfied simultaneously at the second relay. In the

first decoding rule, the second relay k = 2 decodes m̂12,j and m̂0,j from output y2(j + 1)

when y2(j + 1) is jointly typical with v1 and w1 given the knowledge of w2, w3, v2, q2, x2

and q3,. In the second decoding rule, the second relay k = 2 decodes m̂12,j, m̂23,j, m̂2,j and

m̂0,j from y2(j) when y2(j) is jointly typical with w0, v0, q0 and u2 given the knowledge of

w1, v1, w2, v2, q2, x2, w3 and q3. The decoding error probability goes to 0, as n→∞, if

R0 +R12 +R23 +R2 < I(W0,W1, V0, V1, Q0, U2;Y2|W2,W3, V2, Q2, Q3, X2) , I6,

R12 +R2 < I(V0, V1, U2;Y2|W0,W1,W2,W3, V2, Q0, Q2, Q3, X2) , I7,

R23 +R2 < I(Q0, U2;Y2|W0,W1,W2,W3, V0, V1, V2, Q2, Q3, X2) , I8,

R12 +R23 +R2 < I(V0, V1, Q0, U2;Y2|W0,W1,W2,W3, V2, Q2, Q3, X2) , I9,

R2 < I(U2;Y2|W0,W1,W2,W3, V0, V1, V2, Q0, Q2, Q3, X2) , I10. (4.6)

Simultaneous sliding window decoding at the third relay

At the end of block j + 2, the third relay k = 3, will decode m̂0,j, m̂3,j, m̂13,j, m̂23,j such

that:

(w2(m̂0,j), q2(m̂23,j|m̂0,j), w3(m̂0,j−1), q3(m̂23,j−1|m̂0,j−1), s3(m̂13,j−1|m̂0,j−1),

x3(m̂3,j−1|m̂13,j−1, m̂23,j−1, m̂0,j−1), y3(j + 2)) ∈ T (n)
ε ,
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and,

(s1(m̂13,j|m̂0,j), w1(m̂0,j), w2(m̂0,j−1), q2(m̂23,j−1|m̂0,j−1),

w3(m̂0,j−2), q3(m̂23,j−2|m̂0,j−2), s3(m̂13,j−2|m̂0,j−2),

x3(m̂3,j−2|m̂13,j−2, m̂23,j−2, m̂0,j−2), y3(j + 1)) ∈ T (n)
ε ,

and,

w0(m̂0,j), ) s0(m̂13,j|m̂0,j), q0(m̂23,j|m̂0,j), u3(m̂3,j|m̂13,j, m̂23,j, m̂0,j),

w1(m̂0,j−1), s1(m̂13,j−1|m̂0,j−1), w2(m̂0,j−2), q2(m̂23,j−2|m̂0,j−2),

w3(m̂0,j−3), q3(m̂23,j−3|m̂0,j−3), s3(m̂13,j−3|m̂0,j−3),

x3(m̂3,j−3|m̂13,j−3, m̂23,j−3, m̂0,j−3), y3(j)) ∈ T (n)
ε . (4.7)

In (4.7), three decoding rules should be satisfied simultaneously at the third relay. In

the first decoding rule, the third relay k = 3 decodes m̂23,j and m̂0,j from output y3(j + 2)

when y3(j + 2) is jointly typical with w1 and q2 given the knowledge of w3, q3, s3 and x3.

In the second decoding rule, the third relay k = 3 decodes m̂13,j and m̂0,j from y3(j + 1)

when y3(j + 1) is jointly typical with w1 and s1 given the knowledge of w2, q2, w3, q3, s3

and x3. In the third decoding rule, the third relay k = 3 decodes m̂13,j, m̂23,j, m̂3,j and

m̂0,j from y3(j) when y3(j) is jointly typical with w0, q0, u3 and s0 given the knowledge of

w1, s1, w2, q2, w3, q3, s3 and x3. The decoding error probability goes to 0 as n → ∞, if

(4.8) is satisfied.

R0 +R13 +R23 +R3 < I(W0,W1,W2, S0, S1, Q0, Q2, U3;Y3|W3, S3, Q3, X3) , I11,

R23 +R3 < I(Q0, Q2, U3;Y3|W0,W1,W2,W3, S0, S1, S3, Q3, X3) , I12,

R13 +R3 < I(S0, S1, U3;Y3|W0,W1,W2,W3, S3, Q0, Q2, Q3, X3) , I13,

R13 +R23 +R3 < I(S0, S1, Q0, Q2, U3;Y3|W0,W1,W2,W3, S3, Q3, X3) , I14,

R3 < I(U3;Y3|W0,W1,W2,W3, S0, S1, S3, Q0, Q2, Q3, X3) , I15, (4.8)
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Simultaneous sliding window decoding at the destination

At the end of block j + 3, the destination k = 4, will decode

m̂0,j, m̂1,j, m̂2,j, m̂3,j, m̂4,j, m̂12,j, m̂13,j, m̂23,j such that:

(w3(m̂0,j), q3(m̂23,j|m̂0,j), s3(m̂13,j|m̂0,j), x3(m̂3,j|m̂13,j, m̂23,j, m̂0,j), y4(j + 3)) ∈ T (n)
ε ,

and,

w2(m̂0,j), v2(m̂12,j|m̂0,j), q2(m̂23,j|m̂0,j), x2(m̂2,j|m̂23,j, m̂12,j, m̂0,j),

w3(m̂0,j−1), q3(m̂23,j−1|m̂0,j−1), s3(m̂13,j−1|m̂0,j−1),

x3(m̂3,j−1|m̂13,j−1, m̂23,j−1, m̂0,j−1), y4(j + 2)) ∈ T (n)
ε ,

and,

(s1(m̂13,j|m̂0,j) w1(m̂0,j), v1(m̂12,j|m̂0,j), x1(m̂1,j|m̂12,j, m̂13,j, m̂0,j),

w2(m̂0,j−1), v2(m̂12,j−1|m̂0,j−1), q2(m̂23,j−1|m̂0,j−1), x2(m̂2,j−1|m̂23,j−1, m̂12,j−1, m̂0,j−1),

w3(m̂0,j−2), q3(m̂23,j−2|m̂0,j−2), s3(m̂13,j−2|m̂0,j−2),

x3(m̂3,j−2|m̂13,j−2, m̂23,j−2, m̂0,j−2), y4(j + 1)) ∈ T (n)
ε ,

and,

(w0(m̂0,j) s0(m̂13,j|m̂0,j), q0(m̂23,j|m̂0,j), v0(m̂12,j|m̂0,j), u3(m̂3,j|m̂13,j, m̂23,j, m̂0,j),

u2(m̂2,j|m̂12,j, m̂23,j, m̂0,j), u1(m̂1,j|m̂12,j, m̂13,j, m̂0,j),

x0(m̂4,j|m̂2,j, m̂23,j, m̂13,j, m̂3,j, m̂0,j, m̂12,j, m̂1,j),

w1(m̂0,j−1), s1(m̂13,j−1|m̂0,j−1), v1(m̂12,j−1|m̂0,j−1), x1(m̂1,j−1|m̂12,j−1, m̂0,j−1, m̂13,j−1),

w2(m̂0,j−2), q2(m̂23,j−2|m̂0,j−2), v2(m̂12,j−2|m̂0,j−2), x2(m̂2,j−2|m̂23,j−2, m̂12,j−2, m̂0,j−2),

w3(m̂0,j−3), q3(m̂23,j−3|m̂0,j−3), s3(m̂13,j−3|m̂0,j−3),

x3(m̂3,j−3|m̂13,j−3, m̂23,j−3, m̂0,j−3), y4(j)) ∈ T (n)
ε .

(4.9)

In (4.9), four decoding rules should be satisfied simultaneously at the third relay. In

the first decoding rule, the destination decodes m̂23,j, m̂13,j, m̂3,j and m̂0,j from output
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y4(j + 3) when y4(j + 3) is jointly typical with w3, q3, s3 and x3. In the second decoding

rule, the destination decodes m̂23,j, m̂12,j, m̂2,j and m̂0,j from y4(j + 2) when y4(j + 2) is

jointly typical with w2, q2, v2 and x2 given the knowledge of w3, q3, s3 and x3. In the

third decoding rule, the destination decodes m̂13,j, m̂12,j, m̂1,j and m̂0,j from y4(j+1) when

y4(j + 1) is jointly typical with w1, v1, x1 and s1 given the knowledge of w2, v2, x2, q2, w3,

q3, s3 and x3. In the last decoding rule, the destination decodes m̂23,j, m̂13,j, m̂12,j, m̂1,j,

m̂2,j, m̂3,j, m̂4,j and m̂0,j from y4(j) when y4(j) is jointly typical with w0, s0, q0, v0, u3,

u2, u1 and x0 given the knowledge of w1, s1, v1, x1, w2, v2, x2, q2, w3, q3, s3 and x3. The

decoding error probability goes to 0 as n→∞, if (4.10) is satisfied:

R3 +R4 < I(X3, U3, X0;Y4|W 3
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In combination process, by applying Fourier-Motzkin elimination to (4.4), (4.6), (4.8) and

(4.10), the rate in Theorem 5 is achievable.

Remark 2. In order to simultaneously decode different message parts, each relay waits

until all its intended message parts with the same block index arrive.

Remark 3. We can interpret this scheme from another perspective, called repetitive mes-

sage splitting scheme.

We maintain relay network infrastucture as shown in Figure 4.2.

In this scheme, m0 is the common message part that is decoded by all the nodes. Message

part mij is decoded and re-transmitted only at relay nodes i and j.

In the first stage, for the purpose of transmiting message m to the destination, the

source splits messages into five parts, each message part is directed to its following nodes

independently:

m = m01 +m02 +m03 +m04 +m0.

Thus, the source broadcasts m01, m02, m03, m04 simultaneously.

In the second stage, the first relay k = 1 decodes m01 and m0. It then splits m01 further

into three parts:

m01 = m12 +m13 +m14.

Relay node 1 then broadcasts m0, m12, m13 and m14 simultaneously. After this stage, the

rate R01 = R12 +R13 +R14.

In the third stage, the second relay k = 2 decodes m0,m02,m12 and splits m02 further

into two parts:

m02 = m23 +m34.

Relay 2 then sends m12, m23, m24 and m0 simultaneously. After this stage, the rate R02 =

R23 +R24.

In the fourth stage, the third relay k = 3 decodes m03,m13,m23,m0 and retransmits m03
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as:

m03 = m34.

Relay 3 sends m0, m13, m23 and m34 simultaneously. The rate R03 = R34.

In the last stage, the destination decodes m04, m14, m24, m34, m12, m13, m23, m0 and

recombines them together to get the source-intended originl message:

m = m04 +m14 +m24 +m34 +m12 +m13 +m23 +m0.

We can see that we still have eight message parts in total and this repetitive scheme

achieves the same rate as the exhaustive scheme.

Remark 4. By setting {S·} = {V·} = {Q·} = ∅, the rate in Theorem 5 reduces to the rate

in Chapter 3, where no message parts are decoded by more than one relay. In addition, by

setting {U·} = {X·} = ∅, it reduces to the decode-forward lower bound in [6].

4.2 Implications on Relay Networks

In the previous analysis of three-relay networks, we introduce a directed graph to explain

how block Markov superimposition is implemented among exhaustively split message parts.

In this section, by expanding this graph, we show block Markov superimposition structure

of exhaustive split message parts in an N -relay single-source single-destination network.

Define:

• Let T = {1, 2, . . . , N} be the complete relay set.

• For any relay index k ∈ T , let Ok = T − {k} be the set of other relays.

• Let S to be a subset of T , that is S ⊆ T .

• In block j, let message part mk,S(j − k) be the message re-transmitted by relay k.

Note that the union of the message indices, {k} ∪ S, denotes a specific relays group

that will help the transmission of this message part. For example, in block j + 1, the

relay k+ 1 sends mk+1,S∪{k}−{k+1}(j − k) to help the re-transmission of message part

mk,S(j − k).
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Next, we introduce the construction of directed graph in block j:

• Graph layer: Assume that the codebook graph of the N -relay networks has N layers.

We index each of them as l = 1, . . . , N successively, beginning from the top. We

insert each message mk,S(j−k) into layer l when the cardinality of the union {k}∪S
equals to layer index l, that is l = |{k} ∪ S|. Note that k ∈ T ,S ⊆ Ok. Thus, in

general, layer index l means that for each message part in the layer l, l relays will

help to transmit such certain message part.

• Among adjacent layers, assume that message part mk,S(j − k) is located at layer l

and message part mk,S′(j − k) is located at level l + 1, there exists an directed edge

from mk,S′(j − k) to mk,S(j − k) if S ⊂ S ′.

• In the same layer l, there exists an directed edge from mk+1,S∪{k}−{k+1}(j − k− 1) to

mk,S(j − k) for any k ∈ T , which means mk,S(j − k) is successively superimposed on

messages of previous blocks.

After we have above superposition coding strucutre, we can get the codeword generation

for this relay network in the following.

The codeword generation at relay k ∈ T in block j is:

• For each message part mk,S(j − k) at layer l, where l ∈ [1 : N ], generate 2nR{k}∪S

sequences vk,{k}∪S [mk,S(j − k)], which is superposed on all codewords whose message

parts have a path to mk,S(j − k) along with entire edge directions.

• Generate xk(j−k) as the function of all codewords vk,{k}∪S [mk,S(j−k)] for all S ⊆ Ok.

The codeword generation at source 0 in block j is:

• Generate 2nR{k}∪S sequences u{k}∪S [mk,S(j − k)], which is superimposed on all relay

codewords vk′,{k′}∪S′ [mk′,S(j − k′)] that help the transmission of message part mk,S

where (k ∪ S) = (k′ ∪ S ′) and on source codewords u{k′}∪S′ [mk′,S′(j − k′)] for all

(k ∪ S) ⊂ (k′ ∪ S ′).

• Generate x0(j) as the function of codewords u{k}∪S [mk,S(j − k)] for all {k} ∪ S = T .

Remark 5. By setting N = 2, the codebook generation in [5] can be deduced from our

superposition directed graph. By settting N = 1, this graph reduces to partial decode-forward

structure for the classical one-relay channel.



4.3 Gaussian Three-relay Networks 65

After we have the above codebooks, we then reveal them to all the communication

parties in the N -relay network. Each nodes in the relay network use this universally

generated codebooks to do encoding and decoding message parts. We will then make

error analysis at each receiving node to deduce achievable rates inequalities. Finally, we

synthesize all achievable rates inequalities to get the capacity results of exhaustive message

splitting scheme in a single-source single destination relay network with N relays.

4.3 Gaussian Three-relay Networks

In this section, we will see capacity results in a continuous alphabet relay network, Gaus-

sian relay network. Following the network infrastructure shown in Figure 4.2, we study

exhaustive message splitting scheme for Gaussian three-relay network in detail here. This

network is a model for simple source-destination communication networks with three relays.

There is energy or power constraint on the input of each transmitting node.

4.3.1 Signaling and Rates for Gaussian Three-relay Networks

As shown in Figure 4.2, the Gaussian three-relay network can be modeled as:

Y4 = g04X0 + g14X1 + g24X2 + g34X3 + Z4,

Y3 = g03X0 + g13X1 + g23X2 + Z3,

Y2 = g02X0 + g12X1 + Z2,

Y1 = g01X0 + Z1, (4.11)

where Z4, Z3 and Z2, Z1 are independent AWGN noise according to the normal distribution

N (0, 1). An achievable rate for the Gaussian three-relay network can be obtained by

applying Theorem 5 with the following signaling:
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x3 = α33W3(w0,j−3) + γ33Q3(w23,j−3) + δ33S3(w13,j−3) + β33T3(w3,j−3),

x2 = α23W3(w0,j−3) + α22W2(w0,j−2) + ρ22V2(w12,j−2) + γ23Q3(w23,j−2)+

γ22Q2(w23,j−2) + β22T2(w2,j−2),

x1 = α11W1(w0,j−1) + α12W2(w0,j−2) + α13W3(w0,j−3) + ρ12V2(w12,j−2)+

ρ11V1(w12,j−1) + δ13S3(w13,j−3) + δ11S1(w13,j−1) + β11T1(w1,j−1),

x0 = α00W0(w0,j) + α01W1(w0,j−1) + α02W2(w0,j−2) + α03W3(w0,j−3)+

γ03Q3(w23,j−3) + γ02Q2(w23,j−2) + γ00Q0(w23,j) + ρ02V2(w12,j−2)+

ρ01V1(w12,j−1) + ρ00V0(w12,j) + δ03S3(w13,j−3) + δ01S1(w13,j−1)+

δ00S0(w13,j−0) + β03T3(w3,j−3) + φ03U3(w3,j) + β02T2(w2,j−2)+

φ02U2(w2,j) + β01T1(w1,j−1) + φ01U1(w1,j) + φ04V4(w4,j), (4.12)

where {W·, Q·, U·, S·, T·, V·} are independent, normalized Gaussian random variables satisfy-

ing N (0, 1). {α·, γ·, δ·, ρ·, β·, φ·} are power allocation coefficients, which satisfy the following

power constraints at each relay:

α2
33 + γ233 + δ233 + β2

33 =P3,

α2
23 + α2

22 + ρ222 + γ223 + γ222 + β2
22 =P2,

α2
11 + α2

12 + α2
13 + ρ212 + ρ211 + δ213 + δ211 + β2

11 =P1,

α2
00 + α2

01 + α2
02 + α2

03 + γ203 + γ202 + γ200 + ρ202 + ρ201

+ρ200 + δ203 + δ201 + δ200 + β2
03 + φ2

03 + β2
02 + φ2

02 + β2
01 + φ2

01 + φ2
04 =P0, (4.13)

where P0, P1, P2 and P3 are power constraints at the corresponding nodes k = 0, k = 1,

k = 2 and k = 3, which can be made equal to each other without loss of generality.

By considering (4.11) and (4.12) in (4.1), we can get the lower bound for the capacity

of a Gaussian three-relay network in the following:
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C ≥ min{I33, I1 + I23, I6 + I25, I11 + I27, I6 + I13 + I18, I7 + I11 + I18, I1 + I12 + I17,

I2 + I11 + I17, I1 + I8 + I16, I3 + I6 + I16, I5 + I6 + I13 + I34, I6 + I3 + I15 + I34,

I1 + I8 + I15 + I34, I1 + I10 + I12 + I34, I5 + I7 + I11 + I34, I2 + I10 + I11 + I34,

I3 + I7 + I12 + I34, I2 + I8 + I13 + I34}, (4.14)

where

I33 ≤ F
(
(g04α01 + g14α11)

2 + (g04α02 + g14α12 + g24α22)
2

+ (g04α03 + g14α13 + g24α23 + g34α33)
2 + (g04γ02 + g24γ22)

2

+ (g04γ03 + g24γ23 + g34γ33)
2 + (g04ρ01 + g14ρ11)

2

+ (g04ρ02 + g14ρ12 + g24ρ22)
2 + (g04δ01 + g14δ11)

2 + (g04δ03 + g14δ13 + g34δ33)
2

+ (g04β03 + g34β33)
2 + (g04β02 + g24β22)

2 + (g04β01 + g14β11)
2

+g204(α
2
00 + γ200 + ρ200 + δ200 + φ2

03 + φ2
02 + φ2

01 + φ2
04)
)
,

I16 ≤ F
(
(g04β03 + g34β33)

2 + g204φ
2
03 + g204φ

2
04

)
,

I17 ≤ F
(
(g04β02 + g24β22)

2 + g204φ
2
02 + g204φ

2
04

)
,

I18 ≤ F
(
(g04β01 + g14β11)

2 + g204φ
2
01 + g204φ

2
04

)
,

I23 ≤ F
(
(g04γ02 + g24γ22)

2 + (g04γ03 + g24γ23 + g34γ33)
2+

(g04β03 + g34β33)
2 + (g04β02 + g24β22)

2 + g204(γ
2
00 + φ2

03 + φ2
02 + φ2

04)
)
,

I25 ≤ F
(
(g04δ01 + g14δ11)

2 + (g04δ03 + g14δ13 + g34δ33)
2

+(g04β03 + g34β33)
2 + (g04β01 + g14β11)

2 + g204(δ
2
00 + φ2

03 + φ2
01 + φ2

04)
)
,

I27 ≤ F
(
(g04ρ01 + g14ρ11)

2 + (g04ρ02 + g14ρ12 + g24ρ22)
2

+(g04β02 + g24β22)
2 + (g04β01 + g14β11)

2 + g204(φ
2
02 + φ2

01 + φ2
04 + ρ200)

)
,

I34 ≤ F
(
g204φ

2
04

)
,

I1 ≤ F

(
g201(α

2
00 + ρ200 + δ200 + φ2

01)

g201(γ
2
03 + γ202 + γ200 + β2

03 + β2
02 + φ2

03 + φ2
02 + φ2

04) + 1

)
,



68 Partial Decode-Forward Scheme for Three-relay Networks

I2 ≤ F

(
g201(ρ

2
00 + φ2

01)

g201(γ
2
03 + γ202 + γ200 + β2

03 + β2
02 + φ2

03 + φ2
02 + φ2

04) + 1

)
,

I3 ≤ F

(
g201(δ

2
00 + φ2

01)

g201(γ
2
03 + γ202 + γ200 + β2

03 + β2
02 + φ2

03 + φ2
02 + φ2

04) + 1

)
,

I5 ≤ F

(
g201φ

2
01

g201(γ
2
03 + γ202 + γ200 + β2

03 + β2
02 + φ2

03 + φ2
02 + φ2

04) + 1

)
,

I6 ≤ F

(
g202(α

2
00 + ρ200 + γ200 + φ2

02) + (g02α01 + g12α11)
2 + (g02ρ01 + g12ρ11)

2

1 + (g02δ01 + g12δ11)2 + (g02δ03 + g12δ13)2 + g202(δ
2
00 + β2

03 + β2
01 + φ2

03 + φ2
01 + φ2

04)

)
,

I7 ≤ F

(
g202(ρ

2
00 + φ2

02) + (g02ρ01 + g12ρ11)
2

1 + (g02δ01 + g12δ11)2 + (g02δ03 + g12δ13)2 + g202(δ
2
00 + β2

03 + β2
01 + φ2

03 + φ2
01 + φ2

04)

)
,

I8 ≤ F

(
g202(γ

2
00 + φ2

02)

1 + (g02δ01 + g12δ11)2 + (g02δ03 + g12δ13)2 + g202(δ
2
00 + β2

03 + β2
01 + φ2

03 + φ2
01 + φ2

04)

)
,

I10 ≤ F

(
g202φ

2
02

1 + (g02δ01 + g12δ11)2 + (g02δ03 + g12δ13)2 + g202(δ
2
00 + β2

03 + β2
01 + φ2

03 + φ2
01 + φ2

04)

)
,

I11 ≤ F

(
g203(α

2
00 + δ200 + γ202 + φ2

03) + (g03α01 + g13α11)
2 + (g03α02 + g13α12 + g23α22)

2

1 + (g03ρ01 + g13ρ11)2 + (g03ρ02 + g13ρ12 + g23ρ22)2 + g203(ρ
2
00 + β2

02 + β2
01 + φ2

02 + φ2
01 + φ2

04)

+
(g03δ01 + g13δ11)

2 + (g03γ02 + g23γ22)
2

1 + (g03ρ01 + g13ρ11)2 + (g03ρ02 + g13ρ12 + g23ρ22)2 + g203(ρ
2
00 + β2

02 + β2
01 + φ2

02 + φ2
01 + φ2

04)

)
,

I12 ≤ F

(
g203(γ

2
02 + φ2

03) + (g03γ02 + g23γ22)
2

1 + (g03ρ01 + g13ρ11)2 + (g03ρ02 + g13ρ12 + g23ρ22)2 + g203(ρ
2
00 + β2

02 + β2
01 + φ2

02 + φ2
01 + φ2

04)

)
,

I13 ≤ F

(
g203(δ

2
00 + φ2

03) + (g03δ01 + g13δ11)
2

1 + (g03ρ01 + g13ρ11)2 + (g03ρ02 + g13ρ12 + g23ρ22)2 + g203(ρ
2
00 + β2

02 + β2
01 + φ2

02 + φ2
01 + φ2

04)

)
,

I15 ≤ F

(
g203φ

2
03

1 + (g03ρ01 + g13ρ11)2 + (g03ρ02 + g13ρ12 + g23ρ22)2 + g203(ρ
2
00 + β2

02 + β2
01 + φ2

02 + φ2
01 + φ2

04)

)
,

and F (x) = 1
2

log (1 + x).

4.4 Numerical Comparison

We numerically compare the achievable rate of the exhaustive message splitting scheme

with the achievable rate of private message splitting scheme introduced in Chapter 3 in the

three-relay network. For both schemes, we assume that transmitting powers at source 0,

relay 1, relay 2 and relay 3 are the same. As shown in Figure 4.3, we consider two schemes

in four possible channel conditions: all link conditions are equal ( g01 = g02 = g03 = g04 =
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g12 = g13 = g14 = g23 = g24 = g34 = 1, shown in the first plot ); the source-to-relay and

source-to-destination links are stronger than any other links (g12 = g13 = g14 = g23 = g24 =

g34 = 1, g01 = g02 = g03 = g04 = 3, shown in the second plot); the relay-to-destination

links are stronger than any other links (g01 = g02 = g03 = g04 = g12 = g13 = g23 = 1,

g14 = g24 = g34 = 3, shown in the third plot); the in-relay links are stronger than any other

links ( g01 = g02 = g03 = g04 = g14 = g24 = g34 = 1, g23 = g12 = g13 = 3, shown in the last

plot). Note that the exhaustive message splitting scheme is depicted with red solid line

and the private message splitting scheme is depicted with blue dashed line. We can see

that the exhaustive message splitting scheme results in a tighter bound than the private

message splitting scheme does in all channel conditions.

As shown in the last plot of Figure 4.3, when in-relay links are stronger than any

other links, exhaustive message splitting scheme produces the same lower bound as private

message splitting scheme does with increasing transmitting power. In such case, we may

prefer private message splitting scheme since it has less split message parts with decreased

encoding/decoding complexity. As shown in the second plot of Figure 4.3, when the source

has stronger links to relays and the destination as well as encoding/decoding complexity

is tolerable, we may prefer the exhaustive message splitting scheme since the gap between

two bounds is large under such channel conditions. In short, in different communication

scenarios, we can adopt a combined scheme depending on different channel conditions.

4.5 Summary of the Chapter

In this chapter, we analyze partial decode-forward scheme based on exhaustive message

splitting in a three-relay network. We derive its achievable rate as shown in Theorem 5 and

provide corresponding achievability proof. We show that this scheme can include Chapter

3’s results on network partial decode-forward as special cases. We next propose partial

decode-forward scheme based on private message splitting for an N -relay network with

single source and single destination. We discuss the superposition coding structure and

codebook generation for the N -relay network. We next analyze the discrete-memoryless

capacity results in AWGN environments. We derive capacity results for Gaussian three-

relay networks as shown in (4.14). Finally, we compare the exhaustive message splitting

scheme and private message splitting scheme in the three-relay network.
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Fig. 4.3 Rate comparison between exhaustive message splitting scheme and
private message splitting scheme in the three-relay network.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, we have proposed two new coding schemes for partial decode-forward relaying

in a single-source single-destination network with N relays. These two schemes are based

on message splitting, block Markov encoding and joint sliding window decoding.

First, we review capacity results in the classical relay channel and the discrete memo-

ryless relay network. We also introduce several coding schemes used throughout the thesis,

including block Markov encoding, backward decoding, sliding window decoding, message

splitting, joint decoding and superposition coding.

We then design a scheme in which each relay forwards the common message part and

a specific private part to the following nodes. The achievability proof is based on block

Markov encoding and joint sliding window decoding. When extending to larger relay net-

works, we introduce the idea that each relay decodes and forwards its private part only

when the last common part with the same block index arrives, which reduces the decoding

delay in the destination to be linearly proportional with the number of relays. We then

obtain the achievable rate for this scheme and novelly express the achievable rate in a

compact form over all cutsets of relays. The capacity result is shown to contain existing

results for an N -relay network with decode-forward and a two-relay network with partial

decode-forward considering all message splitting cases.

We further study exhaustive message splitting scheme in a three-relay network and

provide the corresponding achievable rate. We show that this scheme generalizes all existing

decode-forward results. We also provide a graphical illustration to make the block Markov
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encoding structure easily understandable. Finally, we expand this graphical illustration to

accommodate more relays in the N -node relay network, which makes exhaustive message

splitting based partial decode-forward in the multi-relay network feasible.

5.2 Conclusions

Message splitting scheme provides us with a flexible way to facilitate partial decode-forward

in the relay network with N relays, while previous literatures are only able to extend partial

decode-forward to the relay network with one or two relays. With private message splitting

scheme, each relay in the network is responsible for the transmission of a separate message

part. The source pre-splits its message depending on the source-relay channel condition.

Thus, if the link between the source and some relay is in poor channel condition (e.g., deep

fading or high noises), the source will devote fewer message parts to that relay and will re-

allocate more message parts to some other relay with better channel condition to the source.

This is the reason why private message splitting scheme provides a tighter lower bound on

capacity than the schemes shown in [5] and [15]. In the three-relay network, when the

source has stronger links to relays and the destination , we can use the exhaustive message

splitting scheme since it outperforms private message splitting scheme in terms of capacity

bound. However, when in-relay links are stronger than any other links, exhaustive message

splitting scheme produces the same lower bound as private message splitting scheme does.

In such case, we may prefer private message splitting scheme since it has fewer split message

parts with decreased encoding/decoding complexity. In short, in different communication

scenarios, we can adopt a combined scheme depending on different channel conditions.

5.3 Future works

We have split source messages exhaustively in Chapter 4. Although the approach provides

more general lower bound on the capacity, the question remains as to whether there exist

other solutions with fewer split message parts but achieving the same lower bound. The

increasing number of relays boosts the number of split message parts quickly, which adds

to the decoding complexity at the destination. More message parts decoding at the higher-

index relay may put more constraints on the final achievable rate as well. We will first

derive a compact form of the achievable rate in the single-source single-destination N -
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relay network with exhaustive message splitting scheme. We then try simplifying this rate

by employing mutual information property or other mathematical approximation tools.

By observing the simplified achievable rate, it should be possible to determine redundant

variables and its corresponding message parts. We will also relate the final result with relay

network infrastructure.

We will need to compare the private message splitting scheme with exhaustive message

splitting scheme in the Gaussian relay network scenario. We will analyze the channel

conditions between the source and each relay to see under which conditions one scheme

outperforms the other one in order to decide whether the system should adopt the combined

scheme. This becomes an optimization problem. []
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Appendix A

Joint Typicality Lemma and Packing

Lemma

In this section, we define ε-typical and jointly ε-typical sequences. The definitions and

lemmas in this section can be found in [4] and [8].

Definition 1. (ε-typical sequences) Let X ∼ p(x) be a random variable with finite alphabet

X . Let xn be a sequence with elements drawn from X . Define the empirical pmf of xn as

π(x|xn) =
1

n
|{i : xi = x}|,∀x ∈ X . (A.1)

Let ε > 0. Then the set T (n)
ε (X) of ε-typical sequences of length n is defined as1

T (n)
ε (X) = {xn : |π(x|xn)− p(x)| ≤ ε · p(x),∀x ∈ X} . (A.2)

Definition 2. (Jointly ε-typical sequences) Let (X, Y ) ∼ p(x, y) be a pair of random

variables with finite alphabets X × Y . Let (xn, yn) be a pair of sequences with elements

drawn from X × Y . Define the joint empirical pmf as

π(x, y|xn, yn) =
1

n
|{i : (xi, yi) = (x, y)}|,∀(x, y) ∈ X × Y . (A.3)

1For brevity, we denote T (n)
ε (X) as T (n)

ε in the analysis.
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Let ε > 0. Then the set T (n)
ε (X, Y ) of jointly ε-typical sequences of length n is defined as2

T (n)
ε (X, Y ) = {(xn, yn) : |π(x, y|xn, yn)− p(x, y)| ≤ ε · p(x, y),∀(x, y) ∈ X × Y} . (A.4)

We then show some consequences of the above definitions.

Lemma 1. (Joint typicality lemma) Let X and Y be random variables with joint pmf

p(x, y) and ε > 0. If xn and ŷn are distributed according to the joint pmf p(xn)p(ŷn), where

p(xn) =
∏n

i=1 p(xi) and p(ŷn) =
∏n

i=1 p(yi), each with the same marginal pmf as that of

p(x, y), then for n sufficiently large, there exists a function δ(ε)→ 0 as ε→ 0 such that

Pr{(xn, ŷn) ∈ T (n)
ε (X, Y )} ≤ 2−n(I(X;Y )−δ(ε)) (A.5)

Lemma 2. (Packing lemma) Let X and Y be random variables with the joint pmf p(x, y)

and ε > 0. Let yn be distributed according to an arbitrary pmf p(yn) over alphabet Y.

Let xn(m), m ∈ M where |M| ≤ 2nR be random sequences, each distributed according to∏n
i=1 p(xi). Assume that xn(m) is independent of yn. Then there exists a function δ(ε)→ 0

as ε→ 0 such that

Pr{(xn(m), yn) ∈ T (n)
ε (X, Y ), for some m ∈M} → 0, (A.6)

as n→ 0, if R < I(X;Y )− δ(ε).

2For brevity, we denote T (n)
ε (X,Y ) as T (n)

ε in the analysis.
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Appendix B

Error analysis at the relay k in

private message splitting scheme

Following the standard proof in [4], assume without loss of generality that (mk,j−k+1,m0,j−k+1) =

(1, 1) is sent in block j.

We first define the following events:

• Ei(mk,j−k+1,m0,j−k+1) for all i ∈ [0 : k − 1], where only the ith decoding rule is

satisfied. We simplify the event notation as Ei in the following analysis.

• E(mk,j−k+1,m0,j−k+1) such that all the decoding rules are satisfied simultaneously.

Then, by the union of event bounds, the probability of error is bounded as:

P (n)
e ≤ P (Ec(1, 1))

+
∑

mk,j−k+1 6=1,m0,j−k+1=1

P (E(mk,j−k+1, 1))

+
∑

mk,j−k+1 6=1,m0,j−k+1 6=1

P (E(mk,j−k+1,m0,j−k+1)),

where P is the conditional probability given that (1, 1) was sent.

By the law of large numbers1, P (Ec(1, 1))→ 0 as n→∞.

1In weak law of large numbers, for any nonzero margin ε, within a sufficiently large sample, the sample
average X̄n converges in probability to the expected value µ, that is, limn→∞ P (|X̄n − µ| > ε) = 0
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By the joint typicality lemma, we have∑
mk,j−k+1 6=1,m0,j−k+1=1

P (E(mk,j−k+1, 1))

≤ 2nRk × 2−n(I(Uk;Yk|WN
0 ,Xk)−δ(ε)).

Thus, decoding error goes to 0 as n→∞, if

Rk < I(Uk;Yk|WN
0 , Xk)− δ(ε).

Since according to the random code construction, mk,j−k+1 represented by Xk is su-

perimposed onto m0,j−k+1 represented by Wk, it is impossible to correctly decode mk,j−k+1

when m0,j−k+1 is not decoded correctly. And, the joint PMFs of the tuple (Uk,W
N
0 , Xk, Yk)

in events E(1,m0,j−k+1) and E(mk,j−k+1,m0,j−k+1) are the same.

According to independence of the codebooks and the joint typicality lemma,∑
mk,j−k+1 6=1,m0,j−k+1 6=1

P (E(mk,j−k+1,m0,j−k+1))

= P (∪mk,j−k+1 6=1 ∪m0,j−k+16=1
(E0 ∩ E1 ∩ · · · ∩ Ek−1))

≤
∑

mk,j−k+1 6=1

∑
m0,j−k+16=1

P (E0)× P (E1)× · · · × P (Ek−1)

≤ 2nRk × 2nR0 × 2−n(I(Wk−1;Yk|Xk,W
N
k )−δ(ε))

× 2−n(I(Wk−2;Yk|Xk,W
N
k−1)−δ(ε)) × · · ·×

2−n(I(W1;Yk|Xk,W
N
2 )−δ(ε)) × 2−n(I(Uk,W0;Yk|Xk,W

N
1 )−δ(ε)),

which tends to 0 as n→∞ if

Rk +R0 < I(Uk,W
k−1
0 ;Yk|Xk,W

N
k )− kδ(ε).
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Appendix C

Error analysis at destination

k = N + 1 in private message scheme

Assume without loss of generality that ({mk,j−N}k∈T ,m0,j−N ,mN+1,j−N) = (1, 1, . . . , 1) is

sent in block j.

We first define the following events:

• Ei({mk,j−N}k∈T ,m0,j−N ,mN+1,j−N), i ∈ [1 : N + 1], where only the ith decoding rule

is satisfied. We simplify each event notation as Ei in the following analysis.

• E({mk,j−N}k∈T ,m0,j−N ,mN+1,j−N), such that all theN+1 decoding rules are satisfied

simultaneously.

In this appendix, we define the set S to be the set of wrongly decoded relay private

messages and the set Sc to be the set of correctly decoded relay private messages. Then,

by the union of event bounds, the probability of error is bounded as in (C.1), where P is

the conditional probability given that ({mk,j−N}k∈T ,m0,j−N ,mN+1,j−N) = (1, 1, . . . , 1) was

sent.

P (n)
e ≤P (Ec({1}N+1, 1)) +

∑
{mi,j−N}i∈T ,mN+1,j−N ,m0,j−N 6=1

P (E({mi,j−N}i∈T ,mN+1,j−N ,m0,j−N))

+
∑

{mi,j−N}i∈S 6=1,{mi,j−N+2}i∈Sc=1,mN+1,j−N 6=1,m0,j−N=1

P (E({mi,j−N}i∈S , {1}|Sc|,mN+1,j−N , 1))

(C.1)
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By the law of large numbers, P (Ec({1}N+1, 1))→ 0 as n→∞.

According to the random code construction, {mk,j−N}k∈T represented by {Uk, Xk}k∈T is

superimposed onto m0,j−N represented by {Wk}k∈{1}∪T , it is impossible to correctly decode

any of {mk,j−N}k∈T when m0,j−N is not decoded correctly. The joint PMFs of the tuple

(UN
1 ,W

N
0 , X

N
1 , YN+1) in events E({mi,j−N}i∈S , {1}|Sc|, 1,m0,j−N),

E({mi,j−N}i∈S , {1}|Sc|,mN+1,j−N ,m0,j−N), E({1}|S|, {1}|Sc|,mN+1,j−N ,m0,j−N),

E({mi,j−N}i∈S , {mi,j−N}i∈Sc ,mN+1,j−N ,m0,j−N), E({mi,j−N}i∈S , {mi,j−N}i∈Sc , 1,m0,j−N) are

the same. According to independence of the codebooks and the joint typicality lemma, we

can get (C.2), which tends to 0 as n→∞ if

N+1∑
i=1

Ri +R0 < I(UN
1 , X

N
0 ,W

N
0 ;YN+1)− (N + 1)δ(ε).

∑
{mi,j−N}i∈T ,mN+1,j−N ,m0,j−N 6=1

P (E({mi,j−N}i∈S , {mi,j−N}i∈Sc ,mN+1,j−N ,m0,j−N))

= P (∪m{k,j−N}k∈T ∪{N+1}
6=1 ∪m0,j−N 6=1 (E1 ∩ E2 ∩ · · · ∩ EN+1))

≤
∑

m{k,j−N}k∈T ∪{N+1}
6=1

∑
m0,j−N 6=1

P (E1)× P (E2)× · · · × P (EN+1)

≤ 2nR1 × 2nR2 × · · · × 2nRN+1 × 2nR0 × 2−n(I(XN ,WN ;YN+1)−δ(ε))×
2−n(I(XN−1,WN−1;YN+1|XN−2,WN−2)−δ(ε))

× · · · × 2−n(I(X1,W1;YN+1|XN
2 ,W

N
2 )−δ(ε)) × 2−n(I(U

N
1 ,X0,W0;YN+1|XN

1 ,W
N
1 )−δ(ε)) (C.2)
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∑
{mi,j−N}i∈S 6=1,{mi,j−N}i∈Sc=1,mN+1,j−N 6=1,m0,j−N=1

P (E({mi,j−N}i∈S , {1}|Sc|,mN+1,j−N , 1))

= P (∪{mi,j−N}i∈S 6=1 ∪mN+1,j−N 6=1 (∩i∈SEi ∩ EN+1))

≤
∑

{mi,j−N}i∈S 6=1

∑
mN+1,j−N 6=1

∏
i∈S

P (Ei)× P (EN+1)

≤
∏
i∈S

{2nRi} × 2nRN+1 ×
∏
i∈S

2−n(I(Xi;YN+1|WN
i ,XN

i+1)−δ(ε)) × 2−n(I(X0,US ;YN+1|WN
0 ,XN

1 ,USc )−δ(ε))

≤
∏
i∈S

{2nRi} × 2nRN+1 × 2−n(I(X0,XS ,US ;YN+1|XSc ,USc ,WN
0 )−(|S|+1)δ(ε)), (C.3)

Similarly, it is impossible to correctly decode mN+1,j−N if any of {mk,j−N}k∈T isn’t

decoded correctly. According to independence of the codebooks and the joint typicality

lemma, the third term in (C.1) becomes (C.3), which tends to 0 as n→∞ if∑
i∈S

Ri +RN+1 <I(X0, {Xi, Ui}i∈S ;YN+1|{Xi, Ui}i∈Sc ,WN
0 )− (|S|+ 1)δ(ε).
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Appendix D

Fourier-Motzkin Elimination for the

two-relay network

The Fourier-Motzkin elimination gives a systematic procedure for finding the system of a

tuple of linear inequalities (see [18] for details). In this thesis, we apply Fourier-Motzkin

elimination to a group of linear rate inequalities. After such elimination process, we will

find the capacity results of the relay network with N relays. In this Appendix, for example,

we use Fourier-Motzkin elimination to find the achievable rate R from split message part

rates R0, R1, R2 and R3 in a two-relay network. This example can extend to a larger tuple

of linear rate inequalities associated with more relays.

From the error analysis in two-relay network, we have the following rate constraints:

R1 < I(U1;Y1|W0,W1,W2, X1) , I1,

R1 +R0 < I(U1,W0;Y1|X1,W1,W2) , I2,

R2 < I(U2;Y2|W0,W1,W2, X2) , I3,

R2 +R0 < I(U2,W0,W1;Y2|X2,W2) , I4,

R3 < I(X0;Y3|U1, X1, U2, X2,W0,W1,W2) , I5,

R3 +R1 < I(X0, U1, X1;Y3|U2,W0,W1,W2, X2) , I6,

R3 +R2 < I(X0, U2, X2;Y3|U1,W0,W1,W2, X1) , I7,

R3 +R1 +R2 < I(X0, X1, X2, U1, U2;Y3|W0,W1,W2) , I8,

R3 +R1 +R2 +R0 < I(X0, X1, X2, U1, U2,W0,W1,W2;Y3) , I9.
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Next, we show the Fourier-Motzkin Elimination procedure for the above rate constraints

step by step. The standard Fourier-Motzkin elimination is illustrated in [8].

Step 1 Eliminate R0

Rearrange rate constraints, we have

R < I9,

and,

R1 +R0 < I2,

R2 +R0 < I4,

R−R2 −R0 −R3 < I1,

R−R1 −R0 −R3 < I3,

R−R1 −R2 −R0 < I5,

R−R2 −R0 < I6,

R−R1 −R0 < I7,

R−R0 < I8,

Then, we get

R +R1 −R2 −R3 < I1 + I2,

R−R3 < I2 + I3,

R−R2 < I2 + I5,

R +R1 −R2 < I2 + I6,

R < I2 + I7,

R +R1 < I2 + I8,

R−R3 < I4 + I1,

R +R2 −R1 −R3 < I4 + I3,

R−R1 < I4 + I5,

R < I4 + I6,

R +R2 −R1 < I4 + I7,

R +R2 < I4 + I8,

Step 2 Eliminate R1

Rearrange rate constraints, we have

R <I9,

R <I2 + I7,

R <I4 + I6,

and,

R−R3 < I2 + I3,

R−R3 < I4 + I1,

R +R1 −R2 −R3 < I1 + I2,

R +R1 −R2 < I2 + I6,

R +R1 < I2 + I8,

R +R2 −R1 −R3 < I4 + I3,

R−R1 < I4 + I5,

R +R2 −R1 < I4 + I7,

R−R2 < I2 + I5,

R +R2 < I4 + I8,

Then, we get
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R−R3 <I2 + I3,

R−R3 <I4 + I1,

2R− 2R3 <I1 + I2 + I4 + I3,

2R−R2 −R3 <I1 + I2 + I4 + I5,

2R−R3 <I1 + I2 + I4 + I7,

2R−R3 <I2 + I6 + I4 + I3,

2R−R2 <I2 + I6 + I4 + I5,

2R <I2 + I6 + I4 + I7,

2R +R2 −R3 <I2 + I8 + I4 + I3,

2R <I2 + I8 + I4 + I5,

2R +R2 <I2 + I8 + I4 + I7,

R−R2 <I2 + I5,

R +R2 <I4 + I8,

Step 3 Eliminate R2

Rearrange rate constraints, we have

R <I9,

R <I2 + I7,

R <I4 + I6,

2R <I2 + I8 + I4 + I5,

and,

R−R3 <I2 + I3,

R−R3 <I4 + I1,

2R−R3 <I1 + I2 + I4 + I7,

2R−R3 <I2 + I6 + I4 + I3,

2R− 2R3 <I1 + I2 + I4 + I3,

2R−R2 −R3 <I1 + I2 + I4 + I5,

2R−R2 <I2 + I6 + I4 + I5,

R−R2 <I2 + I5,

2R +R2 −R3 <I2 + I8 + I4 + I3,

2R +R2 <I2 + I8 + I4 + I7,

R +R2 <I4 + I8,

Then, we get

R−R3 <I2 + I3,

R−R3 <I4 + I1,

2R−R3 <I1 + I2 + I4 + I7,

2R−R3 <I2 + I6 + I4 + I3,

2R− 2R3 <I1 + I2 + I4 + I3,

4R− 2R3 <I1 + I2 + I4 + I5 + I2 + I8 + I4 + I3,

4R−R3 <I1 + I2 + I4 + I5 + I2 + I8 + I4 + I7,

3R−R3 <I1 + I2 + I4 + I5 + I4 + I8,

4R−R3 <I2 + I6 + I4 + I5 + I2 + I8 + I4 + I3,

4R <I2 + I6 + I4 + I5 + I2 + I8 + I4 + I7,

3R <I2 + I6 + I4 + I5 + I4 + I8,

3R−R3 <I2 + I5 + I2 + I8 + I4 + I3,

3R <I2 + I5 + I2 + I8 + I4 + I7,

2R <I2 + I5 + I4 + I8,
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Step 4 Delete redundant rate con-

straints

After deleting redundant rate constraints, we

have

R <I9,

R <I2 + I7,

R <I4 + I6,

2R <I2 + I8 + I4 + I5,

R−R3 <I2 + I3,

R−R3 <I4 + I1,

2R−R3 <I1 + I2 + I4 + I7,

2R−R3 <I2 + I6 + I4 + I3,

4R−R3 <I1 + I2 + I4 + I5

+ I2 + I8 + I4 + I7,

3R−R3 <I1 + I2 + I4 + I5 + I4 + I8,

4R−R3 <I2 + I6 + I4 + I5 + I2

+ I8 + I4 + I3,

3R−R3 <I2 + I5 + I2 + I8 + I4 + I3,

Step 5 Add R3 back

After adding R3 < I5 to each rate con-

straints, we have

R <I9,

R <I2 + I7,

R <I4 + I6,

2R <I2 + I8 + I4 + I5,

R <I2 + I3 + I5,

R <I4 + I1 + I5,

2R <I1 + I2 + I4 + I7 + I5,

2R <I2 + I6 + I4 + I3 + I5,

4R <I1 + I2 + I4 + I5 + I2 + I8 + I4 + I7 + I5,

3R <I1 + I2 + I4 + I5 + I4 + I8 + I5,

4R <I2 + I6 + I4 + I5 + I2 + I8 + I4 + I3 + I5,

3R <I2 + I5 + I2 + I8 + I4 + I3 + I5,

Step 6 Delete redundant rata con-

straints

After deleting redundant rate constraints, we

have

R <I9,

R <I2 + I7,

R <I4 + I6,

R <I2 + I3 + I5,

R <I4 + I1 + I5.
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