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Abstract

The demand for data-intensive services is on the rise. In order to meet the demands,

communication systems must increase their spectral efficiency (i.e., bits/s/Hz/Area). The

more resources (e.g., time, frequency) are shared, the more interference will be present,

but the higher the potential spectral efficiency gains if the interference can be effectively

managed. The focus of this thesis is on the design of scalar and vectored Dynamic Power

Allocation (DPA) transmission techniques to manage interference in severely interference-

limited environments with applications to both wireline and wireless Half-Duplex (HD)

and Full-Duplex (FD) systems. In particular, this thesis focuses on the design of practical,

low-complexity scalar DPA- and precoding-based sum-rate maximization algorithms.

For HD multi-link systems, a low-complexity distributed scalar DPA algorithm is pro-

posed, introducing the concept of a virtual network, to achieve a near-ideal balance between

performance, complexity, and sensitivity to users entering/leaving the system. As well, a

lower-bound on the expected sum-rate is developed to provide better insight into the actual

spectral efficiency of the system than existing models, which can be a useful tool for system

operators to predict achievable data-rates.

For FD systems, a FD Precoding (FDP) transceiver structure is proposed which applies

precoding to jointly control the forward channel precoding and the self-interference cancella-

tion, applicable for both FD MIMO-OFDM (Multiple-Input-Multiple-Output Orthogonal

Frequency-Division Multiplexing) point-to-point and point-to-multi-point systems. The

FDP structure allows for different algorithms and optimization objectives to be developed.

Various separate and joint FDP algorithms are proposed and the results indicate that us-

ing the proposed FDP structure can provide between 1.6 to 1.8 times and between 1.2 to

1.3 times the spectral efficiency of optimized HD systems in a wide-range of practical FD

MIMO point-to-point and point-to-multi-point scenarios, respectively.



ii

Sommaire

La demande pour les services à hauts débits augmente. Afin de répondre à cette de-

mande, les systèmes de communication doivent accrôıtre leur rendement spectral (c.à.d.,

bits/s/Hz/m2). Plus les ressources (par exemple, temps, fréquence) sont partagées, plus

il y aura d’interférence présente; cependant, il y aura aussi plus de potentiel de réaliser

des gains en rendement spectral si l’interférence peut être gérée efficacement. L’objectif

de cette thèse est la conception de techniques de transmission avec allocation scalaire et

vectorielle dynamique de puissance (Dynamic Power Allocation ou DPA) pour les environ-

nements sévèrement limités par l’interférence avec des applications que l’on retrouve dans

les systèmes filaires et sans-fil semi-duplex (Half-Duplex ou HD) et duplex intégral (Full-

Duplex ou FD). En particulier, l’objectif de cette thèse est la conception de DPA scalaire

pratique à complexité-réduite et la conception d’algorithmes de précodage dans le but de

maximiser le débit total.

Pour les systèmes à liaisons multiples HD, un algorithme distribué scalaire à complexité-

réduite est proposé, ce qui introduit la notion de réseau virtuel, qui permet d’obtenir un

équilibre quasi-idéal entre la performance, la complexité et la sensibilité aux usagers entrant

ou sortant du système. De plus, une borne inférieure sur le débit total espéré est dérivée

pour améliorer l’estimation du débit total réel comparativement aux modèles existants, ce

qui peut aider les fournisseurs de services à prévoir leur débit réalisable.

Pour les systèmes FD, une structure émetteur-récepteur radio FD avec précodage (FD

precoding ou FDP) est proposée qui permet de contrôler conjointement le précodage sur le

canal principal et l’annulation de l’auto-brouillage, avec des applications pour les systèmes

de communication FDMIMO-OFDM (multiplexage par répartition orthogonale de la fréquence)

point-à-point et point-à-multi-point. La structure FDP permet la conception de différents

algorithmes ainsi qu’une diversité d’objectifs d’optimisation. Différents algorithmes FDP

séparés et conjoints sont proposés et les résultats indiquent que l’utilisation de la structure

FDP proposée offre une amélioration entre 1.6 à 1.8 fois et entre 1.2 à 1.3 fois supérieure au

rendement spectral du HD optimisé dans une multitude de scénarios FD MIMO pratiques

point-à-point et point-à-multi-point, respectivement.
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Chapter 1

Introduction

1.1 Frequency Reuse and Interference Issues in Multi-User

Systems

This thesis considers multi-user communication systems where users are serviced via an Ac-

cess Point (AP). For example, an AP can refer to a Base Station (BS) for cellular networks

or a Digital Subscriber Line Access Multiplexer (DSLAM) for DSL networks. Each AP

services its respective users, referred to as User Equipments (UEs), in the downlink using

point-to-multi-point communication and in the uplink using multi-point-to-point commu-

nication. For both downlink and uplink, when transmitters send signals over the same

frequency, at the same time, within the same geographical area, the receivers experience

co-channel interference.

A conventional approach to avoiding such interference involves the use of fractional

frequency reuse where nearby groups (e.g., cells or DSLAMs) are allotted different frequency

bands to avoid the more dominant co-channel interference. Conversely, groups which are

sufficiently far may reuse the same frequency band. However, in order to support the

demands for content-rich services, more efficient use of the frequency spectrum is required.

In particular, universal frequency reuse, in which each group shares the same frequencies,

is employed. Universal frequency reuse increases the amount of inter-group interference;

however, if such interference is handled in an efficient manner, the spectral efficiency (i.e.,

bits/s/Hz/Area) can be significantly increased.

The networks under consideration are assumed to be linear interference-limited sys-
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tems, where the main performance degradation is caused by co-channel interference as

opposed to background noise. There are two main approaches to managing interference

in interference-limited environments. The first approach makes use of the fact that the

interference generated is known and can be used to enhance the performance, while the

second approach is that of interference avoidance.

More specifically, the first approach makes use of the interference by applying results

from Multiple-Input-Multiple-Output (MIMO) systems. Using this approach, each user

and Degree of Freedom (DoF, e.g., time, frequency, space) represents one virtual antenna.

Hence, a super-node approach can be taken by applying MIMO beamforming across all

users and all dimensions to maximize the throughput of the overall network.

Beamforming is a signal processing technique that is used to represent the physical

manipulation of the angular direction of transmitted signal energy (i.e., beams), typically

referring to wireless networks. Mathematically, beamforming is implemented using pre-

coding at the transmitter. For DSL networks, since there are no physical beams being

manipulated, the technique is referred to as vectored DSL and it can be applied at either

the transmitter (i.e., downlink) or the receiver (i.e., uplink). Precoding and/or postcoding

are signal processing techniques that can be used to modify the transmission channel for

linear systems (e.g., to remove or minimize the effect of interference). More specifically,

the precoder can be designed at the transmitter to pre-cancel interference, whereas the

postcoder can be designed at the receiver to post-cancel interference.

The second approach attempts to avoid interference through orthogonality. A classic

form of interference avoidance is partitioning the available resources (e.g., time, frequency)

to avoid users sharing the same frequency channel at the same point in time. A more so-

phisticated approach is known as interference alignment. Interference alignment designates

separate signal and interference subspaces at each receiver in order to avoid interference

and will be discussed in greater detail in Section 2.2.

1.2 Point-to-Point and Point-to-Multi-Point Channels

This section briefly describes the channels under consideration. A multi-user channel is

any channel that is shared between multiple users (i.e., UEs). Each channel consists of

nodes which are connected by links. A link can correspond to single or multiple spatial

dimensions (i.e., single or multiple antennas).
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For example, Fig. 1.1 shows an example of a point-to-point or single-user unidirectional

communication channel (i.e., a communication connection between two nodes).

Fig. 1.1 Point-to-point or single-user channel.

Similarly, Fig. 1.2 shows examples of point-to-multi-point (i.e., downlink) and multi-

point-to-point (i.e., uplink) unidirectional communication channels.

(a) Point-to-multi-point or downlink channel. (b) Multi-point-to-point or uplink channel.

Fig. 1.2 Downlink vs. uplink channel.

Finally, Fig. 1.3 shows an example of a unidirectional multi-link point-to-point1 or in-

terference channel (i.e., multi-point-to-multi-point, typically with equal numbers of trans-

mitters and receivers), where each solid link refers to an intended signal and the dashed

links refer to the resulting interference signals.

1Multi-user DSL is an example of a multi-link point-to-point system.
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Fig. 1.3 Multi-link point-to-point or interference channel.

1.3 Half-Duplex vs. Full-Duplex Transmission

Conventional systems apply Half-Duplex (HD) transmission, which provides uplink and

downlink communication using separate time and/or frequency slots. As discussed in Sec-

tion 1.1, universal frequency reuse can be employed to increase the spectral efficiency of the

system. Full-Duplex (FD) communication systems attempt to further increase the spectral

efficiency of the system by increasing the amount of sharing between the uplink and down-

link. In particular, for FD systems, nodes transmit and receive signals simultaneously over

the same frequency at the same time.

FD systems can potentially have a sum-rate “double” that of their HD counterparts

[1, 2]. However, FD transmission incurs additional interference, known as self-interference,

from the transmitter to the receiver of the same node, as shown in Fig. 1.4. Typically, the

self-interference is significantly larger than the received signal strength, which can prevent

the potential “double” sum-rate gains of FD transmission, and hence, calls for effective

self-interference management. The FD approach lends itself well to the concept of small

cells (e.g., picocells or femtocells), since for shorter distances, the received signal-to-self-

interference ratio is larger. The concept of small cells is discussed in Section 1.5.2.
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(a) Half-duplex transmission. (b) Full-duplex transmission.

Fig. 1.4 Half-duplex vs. full-duplex transmission.

1.4 Dynamic Resource Allocation Techniques

The demand for data-intensive services is on the rise. In order to support more sophisticated

services higher data-rates are required. Hence, more efficient spectral efficiency is required.

Resource Allocation (RA) techniques can be employed to achieve this goal. The most basic

form of RA is known as Static RA (SRA). SRA implements a pre-determined and fixed

RA, typically based on a worst-case scenario assumption for all users in the network. This

leads to an inefficient use of resources whenever the scenario is not the worst-case and

consequently leads to highly sub-optimal performance.

Dynamic RA (DRA)2 is a wide field which looks to adaptively apply different RAs for

each user with the intent of improving the resource efficiency of the overall system. DRA

allows for a far more efficient use of the spectrum than SRA does. DRA can be applied

to mitigate interference and/or to apply signal-level coordination to cancel interference.3

Signal level coordination applies precoding and/or postcoding to effectively manage inter-

ference.

1.5 Environments Under Consideration

This thesis provides illustrative results to demonstrate the effectiveness of the derived DRA

techniques. More specifically, in this thesis, illustrative results will correspond to either

wireline or wireless systems. In particular, DSL systems offer a multi-link environment,

2In DSL literature, this is referred to as Dynamic Spectrum Management (DSM).
3When these signal-level coordination techniques are applied to DSL networks they are often referred to

as vectored DSL and when they are applied to wireless networks they are often referred to as beamforming.
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while cellular networks offer point-to-multi-point and multi-point-to-point environments.

The following subsections provide a brief introduction to these environments.

1.5.1 Digital Subscriber Line Networks

DSL makes use of twisted-pair copper telephone wires to transmit digital data. The inter-

ference between lines is known as crosstalk. Generally, DSL direct channels are smooth,

monotonically decreasing functions of frequency, due to the fact that copper-wire attenua-

tion increases with frequency. Conversely, DSL crosstalk frequency responses are typically

very curvy, often containing manly local minima and maxima and typically increase with

frequency relative to the direct channels. Finally, since DSL lines are typically buried

underground, the channel is slow time-varying.

DSL uses Discrete Multi-Tone (DMT) transmission, a scheme which is similar to Or-

thogonal Frequency-Division Multiplexing (OFDM). The basic idea is to transmit the data

in parallel over each frequency sub-carrier. Fig. 1.5 shows a typical DSL network. As

Fig. 1.5 Example of a typical DSL network.

shown in Fig. 1.5, the twisted-pair copper wire is run through binders. Binders can be

shared by various groups of lines causing interference to one another. Binder B in Fig. 1.5

is an example of this type of binder configuration. Binder B is shared between the loop

from the Central Office (CO) to the Customer Premises (CPs) or UEs at the top right of

the diagram and the loop between a DSLAM and the CPs or UEs in the middle of the

diagram.
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Twisted-pair copper wire attenuation increases with length. As such, when the receivers

are in close proximity to the transmitters of another bundle, they receive large amounts of

crosstalk. Hence, effectively managing interference in multi-link systems is a key issue for

DSL systems.

1.5.2 Cellular Networks

A cellular network is a radio network distributed over a land area referred to as a cell. Each

cell is operated by a BS which serves multiple users known as Mobile Stations (MSs) or UEs.

Downlink transmission refers to transmission from BSs to MSs, while uplink transmission

refers to transmission from MSs to BSs. As discussed in Section 1.1, the concept of universal

frequency re-use has emerged. To this end, the concept of small cells has developed. Small

cells are low-powered radio access nodes that are located within a larger cellular network

while sharing the same frequency spectrum and making use of a wired back-haul. There are

two main types of small cells, namely, femtocells and picocells. Fig. 1.6 shows an example

of a cellular network with pico- and femto cells, where the picocells correspond to the larger

of the two small cells.

Fig. 1.6 Example of a cellular network with pico- and femtocells.

Cellular networks suffer from frequency-selective fading. Fading can be caused by many

factors (e.g., signals traveling along different paths, tunnels, hills, large buildings). Due to

the dynamic nature of the wireless channel, the channel coefficients for cellular networks are

highly time-varying. Due to the frequency selective nature of the wireless channel, OFDM

modulation is typically implemented, where the frequency range is split into sub-channels

over which the frequency response is relatively flat.
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Small cell networks encourage shorter transmission to and from the UE which increases

network capacity but can potentially introduce additional co-channel interference. As such,

small cells typically operate with low powers to attempt to reduce additional co-channel

interference. Due to the low power operation of small cells, they are a good candidate for

applying FD transmission.

1.6 Thesis Contributions and Organization

Increasing the amount of resource sharing (e.g., time, frequency) increases the amount of

interference present but also increases the potential spectral efficiency gains provided the

interference can be effectively managed. The focus of this thesis is on the design of scalar

and vectored DRA transmission techniques to manage interference in severely interference-

limited environments with applications to both wireline and wireless systems.

The remainder of this thesis is organized as follows. Chapter 2 reviews the relevant

literature on HD multi-link scalar Dynamic Power Allocation (DPA), HD point-to-point

MIMO precoding, and FD point-to-point and point-to-multi-point systems.

Chapter 3 applies a distributed HD multi-link scalar DPA approach where each user

performs its own resource allocation with some indirect cooperation in mind. This is

achieved by introducing the concept of a virtual network of reference users which provides

approximate global knowledge by taking advantage of the clustered nature of networks to

avoid the super-node structure. The proposed approach is a non-cooperative game theoretic

approach where each user’s utility function is designed with cooperation in mind. That is,

each user operates using a modified water-filling procedure which allows for the algorithm

to be implemented with low-complexity and in a distributed nature with no per-iteration

message passing requirements. Additionally, a method for estimating the spectral efficiency

prior to allocating resources is derived.

Chapter 4 focuses on FD MIMO point-to-point systems. A Full-Duplex Precoding

(FDP) structure is proposed which applies joint beamforming and self-interference cancel-

lation using precoding. The FDP structure allows for many different optimization objec-

tives (e.g., sum-rate maximization, energy efficiency, self-interference minimization) and

for many different algorithms to be developed. Numerous FDP algorithms are proposed

focusing on the objective of sum-rate maximization. In particular, for the FDP structure,

separate and joint optimization techniques are proposed and compared.
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Chapter 5 considers FD MIMO point-to-multi-point systems. The sum-rate maximiza-

tion problem leads to a non-convex optimization problem for which finding solutions is

difficult. A Sequential Convex Programming (SCP) approach is taken to solve the non-

convex optimization problem by constructing and solving a sequence of convex optimization

problems. Two SCP algorithms are developed. The first is based on the difference of convex

functions structure of the optimization problem and the second is a general algorithm we

developed referred to as Sequential Convex Approximations for Matrix-variable Program-

ming (SCAMP). Finally, analytical expressions for the loss in sum-rate incurred due to the

effect of residual self-interference are derived.

Chapter 6 provides some concluding remarks and summarizes the key results of this

thesis.
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Chapter 2

Literature Review

This chapter provides a short literature review of the state-of-the-art approaches in scalar

and vectored DPA techniques for HD and FD systems. Section 2.1 provides a literature

review of the main HD multi-link scalar DPA approaches. Section 2.2 focuses on the main

HD MIMO point-to-point precoding approaches. Finally, Section 2.3 provides a literature

review of the main FD MIMO point-to-point and point-to-multi-point approaches.

2.1 Half-Duplex Multi-Link Scalar Dynamic Power Allocation

In order to improve resource efficiency, effective resource management techniques must be

employed. In this section, we focus on scenarios where users share a particular frequency

band (i.e., multi-carrier or single-carrier). As such, this section focuses on wide- or narrow-

band scalar power allocation techniques. In particular, scalar Dynamic Power Allocation

(DPA) is a wide field which looks to adaptively apply different power allocations for each

user with the intent of maximizing the throughput of the system (or conversely minimize

the total power consumption under fixed rate constraints).

DPA treats each line/antenna independently. As such, the interference is not manipu-

lated, instead the power allocation of each line/antenna is dynamically adjusted to max-

imize the system sum-rate in the presence of interference. Typically, the DPA approach

performs worse than the vectored approach (i.e., precoding).

DPA allows for a far more efficient use of resources than static power allocation. As

a result, many different DPA algorithms have been proposed. The focus of the literature

review in this section will be on HD DPA techniques (i.e., adaptive power control). A
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detailed survey of DPA with specific applications to DSL networks is provided in our

previous work [3]. The rate adaptive DPA problem can be written as follows:

max
pk
f
,∀ f, k

K∑
k=1

wkRk

subject to:
F∑

f=1

pkf ≤ Pk,max ∀ k, (2.1)

0 ≤ pkf ≤ pk,mask
f , ∀ f, k,

where pkf is the transmit power of user k on frequency sub-carrier f , Pk,max is the total

power constraint for user k, pk,mask
f is the per-sub-carrier total power constraint for user k

on sub-carrier f , wk is the weighting function for user k, and Rk is the rate of user k.

The main criteria in comparing different DPA algorithms is their performance and their

complexity. The performance relates how well an approach succeeds at maximizing the

achievable weighted sum-rate as compared to the theoretical optimum. The complexity of

the algorithm is related to the amount of time required to derive the power allocation as

the number of users and frequency sub-carriers increase.

There are two main types of DPA algorithms: centralized and distributed. Centralized

systems require a central hub with full knowledge of the network. In general, this system

allows for better performance at a cost of increasing the complexity and computational

time. On the other hand, distributed systems allow for every user to self-optimize, fully

autonomously, without the need of explicit message passing. In general, distributed systems

reduce the complexity and computational time but often sacrifice some optimality in terms

of performance. The final type of algorithms are semi-centralized DPA algorithms, where

the users self-optimize but require some per-iteration messaging passing with a central hub.

One of the first distributed DPA algorithms was Iterative Water-Filling (IWF) [4].

In IWF, each user selfishly maximizes their own sum-rate. While IWF gives significant

sum-rate improvements over static techniques, in many situations, it leads to sub-optimal

performance. In an attempt to improve the performance of IWF, many heuristic variations

have been proposed (e.g., [5–10]).

A centralized algorithm called Optimal Spectrum Balancing (OSB) [11], which maxi-

mizes the weighted sum-rate across the users, was derived to solve for the globally optimal
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power allocation. OSB uses dual decomposition to solve for the optimal transmit powers for

each user separately on each frequency sub-carrier by exhaustive search. While OSB is not

computationally tractable for many users, it serves as an upper-bound on the performance

of other DPA algorithms for cases with few users. Due to the complexity limitations of

OSB, some lower-complexity near-optimal variations have been proposed (e.g., [12–14]).

Centralized systems are generally harder to implement in practice. It is for this reason

that many other algorithms were introduced. One such algorithm is Autonomous Spectrum

Balancing (ASB) [15, 16]. ASB uses the same problem formulation as OSB but operates

in a distributed fashion without the need for any explicit message passing. ASB uses the

concept of a virtual user (referred to as a reference line/user), which represents the typical

victim in the network. Each user self-optimizes to protect the reference user, and hence,

attempts to better the overall network. Generally ASB cannot find a globally or locally

optimal solution; however, its performance has been shown to be strong in some scenarios

while maintaining a relatively low complexity.

One issue regarding the ASB algorithm is that the update formula can be relatively

time-consuming. It is for this reason that [17] proposed the ASB-2 algorithm. The ASB-

2 algorithm works exactly like the ASB algorithm but uses a slightly different update

formula. This update formula has a significantly lower complexity. ASB and ASB-2 do

not necessarily converge to the same solution; however, the ASB-2 algorithm converges

significantly faster than ASB, especially when the number of users and/or frequency sub-

carriers are very large.

An algorithm called semi-blind spectrum balancing [18] builds on the concepts intro-

duced in ASB. Semi-blind spectrum balancing operates in the same fashion as ASB but also

dynamically updates a unique virtual reference user for each user separately, to more ac-

curately represent the network. The virtual users are updated at a Spectrum Management

Center (SMC) based on message passing to and from the users. This requires the algorithm

to be run in a semi-centralized manner, but generally leads to an improved sum-rate.

Due to the computational complexity of solving for globally-optimal power allocations,

the focus of research has been on semi-centralized locally-optimal power allocations. Dis-

tributed Spectrum Balancing (DSB) [17] and Successive Convex Approximation for Low-

complExity (SCALE) [19, 20] are semi-centralized algorithms which require full channel

knowledge and per-iteration message passing. They can achieve strong performance but

cannot operate in a fully distributed manner.
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DSB writes the objective function as a Difference of Convex functions (DC) and applies

the Karush-Kuhn-Tucker (KKT) conditions directly. With the use of a message passing

system, the DSB algorithm solves for a locally optimal solution in an iterative fashion.

SCALE is an algorithm that applies a series of concave lower-bounds to the maximiza-

tion problem. This enables SCALE to make use of the well-researched area of convex

optimization to maximize the concave lower-bound. Each successive iteration tightens the

lower-bound towards a locally optimal solution.

SCALE is an example of a Sequential Convex Programming (SCP) algorithm (i.e.,

an iterative algorithm which solve a sequence of convex subproblems to find a locally

optimal solution). Another example of a SCP algorithm is the DC Algorithm (DCA)

[21]. DCA is a centralized algorithm that begins by re-writing the non-convex objective

function in terms of the difference of two convex functions (i.e., f = g − h), as in the DSB

approach; however, DCA iteratively creates an affine minorization (multivariate first-order

approximation) of h, denoted by h̃, which is used to make the objective function, f̃ = g− h̃,

convex. Each successive iteration more closely approximates the locally optimal solution.

For any function f , many DC decompositions exist (e.g., g − h = (g + φ) − (h + φ)).

The choice of decomposition has a crucial impact on the convergence speed as well as the

performance. There are still a lot of heuristics regarding the DCA implementation which

have yet to be explored in great detail.

Interested readers are referred to our previous works, [3, 22], for a detailed overview of

DPA algorithms. The most significant DPA algorithms as far as this thesis is concerned

are: IWF, ASB-2, DSB, and SCALE. Typically, DSB and SCALE perform very similarly as

they both search for locally optimal solutions. In particular, the semi-centralized nature of

DSB and SCALE allow for them to make use of more channel knowledge, and hence, lead to

better performance than other approaches. Most of the above mentioned algorithms have

a similar structure. In particular, they are iterative algorithms whereby on each iteration

the power spectrum of each user is adjusted. While SCALE uses a slightly different update

formula, IWF, ASB-2, and DSB all have identical structural roots. More specifically, their

update formulas are of the following form:

pkf =

[
wk

λk +Δλk
f

−
Γintkf

|hk,k
f |2

]pk,mask
f

0

, (2.2)
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where pfk is the transmit power of user k on frequency sub-carrier f , λk is the Lagrange

multiplier associated with the total power constraint for the k-th user, Γ is the Signal-

to-Noise Ratio (SNR) gap, hk,k
f is the direct channel gain of user k on frequency sub-

carrier f , intkf is the interference seen by user k on frequency sub-carrier f , pk,mask
f is the

power constraint associated with the f -th frequency sub-carrier for the k-th user, and

[x]ab = min{max{x, b}, a}.

The difference between the approaches of IWF, ASB-2, and DSB are in the selection of

the parameter Δλk
f . For IWF, Δλk

f = 0, whereas for ASB-2 and DSB, the value of Δλk
f

are adjusted and tuned after each iteration. We refer to this parameter as the Lagrange

multiplier frequency offset. Chapter 3 will investigate and discuss the offset in more detail.

2.2 Half-Duplex MIMO Point-to-Point Precoding

Precoding and postcoding are signal processing techniques which exploit the spatial separa-

tion between the desired signal and its interference [23]. An extensive survey on precoding

and postcoding applied to DSL systems is provided in our previous work [24]. As well, our

previous work, [25], discusses various implementation challenges (e.g., computation load,

memory storage, line management, partial cancellation, and the effects of imperfect channel

knowledge).

For illustrative purposes, consider a single-carrier communication network with a set of

users K = {1, . . . , K}. HD transmissions can be modeled as follows:

y = Hx+ z.

The vector x � (x1, . . . , xK)
T contains the transmitted signals for all users. Similarly,

y � (y1, . . . , yK)
T and z � (z1, . . . , zK)

T contain the received signals and background noise

for all users, respectively. H is a K ×K matrix such that [H](k,l) is the channel gain from

transmitter l to receiver k.

The transmitted signals, x, can be pre-processed using a precoding matrix1, x = Vx̃.

Similarly, the received signal can be post-processed using a postcoding matrix, ỹ = U†y.

1Note that the choice of V will be subject to transmit power constraints.
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Hence, the modified transmission can be written as:

ỹ = U†HVx̃+U†z.

Essentially, the precoding and postcoding matrices “modify” the true channel (i.e., the

original channel, H, is effectively replaced by the modified channel, U†HV). There are

many different techniques for selecting the precoding and decoding matrices. As well, de-

pending on the scenario, it may be more practical to only apply a precoding or a postcoding

matrix, but not both.2

Precoding approaches can be divided into two sub-categories: linear precoding and

non-linear precoding. Non-linear precoding techniques involve operations which affect the

linearity of the system (e.g., a modulo operation). Examples of non-linear precoding tech-

niques include the Tomlinson-Harashima precoder [26–28], and the decision-feedback can-

celler [28]. Non-linear techniques have been shown to be capable of achieving the capacity

region in some scenarios (e.g., using a dirty-paper coding approach) [29] but have a high

computational complexity.

Conversely, linear precoding techniques maintain the linearity of the system. Linear

precoding techniques can often achieve strong performance while operating at a signifi-

cantly reduced computational complexity. Some examples of linear precoding techniques

include Minimum Mean Squared Error (MMSE) filtering [30], the Zero-Forcing (ZF) [30–32]

precoder and canceller, and the Diagonalizing Precoder (DP) [33]. The extent of the sub-

optimality of linear precoding can vary based on the environment and, more specifically,

the channel. For example, it is shown in [32] and [33] that the DSL channel is diagonally

dominant, and hence, linear precoding techniques can lead to near-optimal performance.

The focus of this literature review will be on linear techniques such as MMSE and

ZF [30], since they are more practically applicable. The ZF approach is designed to zero-

out all the interference, whereas the MMSE approach is designed to maximize the received

SNR but not necessarily zeroing-out the interference. Hence, the MMSE approach provides

optimal performance in terms of bit-error rate with increased complexity while the ZF

approach doesn’t achieve as strong performance but operates at a reduced computational

complexity.

2For example, this is the case for DSL systems, where for downstream transmission only precoding is
used and for upstream transmission only postcoding is used.
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The super-node precoding approach (i.e., jointly processing all users) can be a very

effective technique for cancelling the effects of interference between users when the number

of users and the number of DoFs are not too large. More specifically, as the number of users

and the number of DoFs increase, the super-node precoding complexity increases greatly

(e.g., requiring computing the inverse of very large matrices).

In order to tackle this issue, various interference coordination approaches have been

developed whereby the interference is manipulated using precoding and/or postcoding

techniques. Arguably the most popular interference coordination approach in known as

Interference Alignment (IA) [34–43]. IA is a linear precoding technique which aligns the

interference signals into a subspace with respect to the number of DoF (i.e., time, frequency

or space). IA schemes are designed such that users coordinate their transmissions so that

the interference at each receiver lies within a reduced dimensional subspace and can there-

fore be removed using post-processing by applying an appropriate postcoding matrix at

each receiver.

IA was proposed in [34] as a method for removing the effects of interference, where

each user makes use of half the available DoF. Distributed iterative algorithms based on

minimizing leakage interference and maximizing the Signal-to-Interference-plus-Noise Ratio

(SINR, where perfect IA is not guaranteed) were proposed in [36, 44]. The concept of

subspace IA for the application of cellular networks was introduced in [40]. The idea is to

align interference into a multi-dimensional subspace rather than along a single dimension

for simultaneous alignment at multiple BSs. An IA algorithm which selects an alignment

that maximizes the sum-rate given the constraint that perfect IA is achieved was proposed

in [37]. A set of linear precoding designs (both iterative and non-iterative) by selecting

orthonormal basis vectors which maximize the number of DoF at the receiver and maximizes

the weighted sum-rate using a gradient descent approach at the transmitter was proposed

in [38].

Another interference control approach is known as Interference Pricing (IP) [45–49].

IP was first introduced in [45] as a method for increasing network throughput through

user cooperation. Typically, “prices” are Lagrange multipliers for a constrained resource,

whereas with the IP approach, the prices represent the interference among users. With the

IP approach, users exchange price signals that indicate the “cost” of receiving interference.

Based on the exchanged prices, each user self-optimizes their power allocation using a

modified objective function which balances its own rate gain and the interference it causes
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to others. The interference caused to others is represented by each user’s pricing function,

which is the marginal decrease in its own utility due to interference.

The modified utility function for each user is written out as follows:

Uk = Rk −
∑
l �=k

πlIl,k,

where Rk is the achievable rate for user k which is a function of the transmit powers of all

users, Il,k is the interference generated from user k to user l and πl is the marginal decrease

in the l-th user’s rate due to interference and is computed as:

πl = −
∂Rl

∂INTl
,

where INTl =
∑

i�=l Il,i.

IP was applied to wireless Orthogonal Frequency-Division Multiplexing (OFDM) net-

works in [46] and extended to non-separable utility functions. IP was applied to updating

precoding matrices for a two-user MIMO interference channel in [47]. First, MMSE receivers

are fixed while the precoding matrices and powers are optimized. The MMSE receivers and

interference prices are updated on every iteration. The approach was generalized in [48] to

multi-user peer-to-peer wireless networks with MIMO channels using rank one precoding

matrices (i.e., beamforming vectors). Finally, a sub-optimal beamforming algorithm for

the multiple-input-single-output interference channel was presented in [49].

2.3 Full-Duplex MIMO Point-to-Point and Point-to-Multi-Point

Systems

Three main types of FD systems, namely FD relay, FD MIMO point-to-point, and FD

MIMO point-to-multi-point, have been considered.3 Research on precoding design for FD

relay networks typically focuses on the suppression of self-interference (e.g., [50–54]).

Antenna selection [50] selects the precoding and postcoding matrices as scaled row and

column selection matrices. The approach is to simply select the antenna pairs which lead to

3This thesis will not consider FD relay networks; however, most of the existing literature on FD self-
interference management has been focused on relay networks. As such, a brief discussion is provided in
this section.
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a minimal residual self-interference. Beam selection [50, 55] first applies the singular value

decomposition to diagonalize the self-interference channel and selects the precoding and

postcoding matrices by applying antenna selection on the resulting diagonalized channel.

The null-space projection method [50, 56–60] is an IA approach that selects the precod-

ing and postcoding matrices such that the transmitter and receiver operate in different

subspaces. More specifically, the transmit signals are projected into the null-space of the

self-interference channel via the postcoding matrix. MMSE filtering [50, 54, 61] selects the

postcoding matrices to minimize the distortion while reducing the self-interference.

A Signal-to-Interference Ratio (SIR) maximization [51] approach was designed for the

FD relay network. The approach designs the postcoder to maximize the ratio of the source-

to-relay and self-interference links and designs the precoder to maximize the ratio of the

relay-to-destination and self-interference links. One limitation of the SIR maximization

approach is that it is unable to give priority to either the forward channel or the self-

interference channel, causing issues in the high interference and high SNR regimes. Finally,

the algorithm is designed for FD relay systems, and hence, is not directly applicable to

other FD models.

For FDMIMO point-to-point systems, [62] proposed a time-domain beamforming method

for self-interference cancellation. A precoding design for a partial analog interference can-

cellation model combined with self-interference and additional transmit power constraints

was proposed in [63]. A beamforming design which minimizes the required transmit power

subject to total SINR constraints and self-interference constraints was proposed in [64].

While modeling the dynamic-range limitations explicitly, [65] applies pilot-aided channel

estimates to perform transmit/receive beamforming using a gradient projection method. A

low-complexity distributed version of [65] was proposed in [66] using a null-space projection

method.

FD MIMO point-to-multi-point systems where APs operate in FD-mode while UEs

operate in HD-mode are studied in [67] and [68]. In order to simplify the derivations, the

interference caused by uplink transmission to downlink UEs was ignored in [67] and [68].

Two precoding schemes were presented in [67] to approximate the solution of the non-convex

optimization problem. More specifically, [67] presented a sequential precoding scheme which

first selected a downlink precoding scheme and then optimized the uplink precoding scheme

assuming the fixed downlink precoding. As well, [67] presented a joint precoding scheme

by applying a first-order approximation to the DC objective function. The work in [67] was
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extended in [68] to incorporate both spectral and energy efficient designs. On the other

hand, the interference caused by uplink transmission to downlink UEs is considered in [69],

where the effect of large-scale MIMO systems on FD is investigated by selecting the ratio

between the number of transmit and receive antennas at the AP.

While recent research has focused on precoding design techniques, more typical FD

transceiver design approaches focus on either passive (e.g., [70–73]) or active (e.g., [74,75])

cancellation techniques. Passive cancellation is typically done at the antenna level (e.g.,

using a circulator [70, 76]).

The active cancellation approach involves subtracting an estimate of the self-interference

at the receiver. Active cancellation can be performed in either the analog domain, digital

domain, or both (e.g., [77], [78], and [79], respectively).

The passive and active cancellation approaches focus solely on the cancellation of self-

interference. The approaches are additive in the sense that the passive cancellation sup-

presses some of the self-interference at transmission, while the active cancellation attempts

to further suppress the self-interference at the receiver.

Applying active cancellation in the MIMO-case requires the self-interference from each

transmit antenna be replicated and subtracted at each receiver. As well, in the MIMO case,

the active cancellation approach requires a separate beamformer for forward transmission,

as shown in Fig. 2.1.

Fig. 2.1 shows an example of a MIMO FD active analog cancellation structure. Fig. 2.1

shows that the active cancellation approach makes use of auxiliary paths from the trans-

mitter to the receiver controlled by a self-interference replica generator.

2.4 Concluding Remarks

In this chapter, we have provided a survey of the state-of-the-art techniques for scalar

and vectored HD and FD DRA. For HD multi-link systems, it was seen that many of the

proposed scalar DPA algorithms have a similar structure. In particular, it was discussed

that the per-iteration Lagrange multiplier tuning process increases the performance but,

typically, requires many iterations to converge.

For HD MIMO point-to-point systems, the concepts of precoding, postcoding, IA, and

IP were discussed. The concepts are relevant for both HD and FD precoding design. Effec-

tive precoding-based interference control is essential in realizing the potential performance
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Fig. 2.1 A example of a MIMO FD active cancellation structure.

benefits of the interference-limited communication systems under consideration in this the-

sis.

Finally, for FD point-to-point and point-to-multi-point systems, many of the proposed

approaches focus solely on the suppression of self-interference and algorithms which allow

for an effective trade-off between maximizing the forward channel and suppressing the

self-interference are necessary.

The above literature review provides some motivation for the research topics presented

in this thesis. More specifically, Chapter 3 develops a low-complexity HD multi-link scalar

DPA algorithm, while Chapters 4 and 5 develop effective sum-rate maximization-based

algorithms for FD MIMO point-to-point and point-to-multi-point systems, respectively.
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Chapter 3

Interference Coordination in a

Multi-Link Environment1

3.1 Introduction

As discussed in Chapter 2, the performance benefits of DRA over SRA techniques are

well known. In IWF [4], each user selfishly maximizes their own sum-rate until a, typi-

cally, sub-optimal point is reached. Due to the computational complexity of solving for

globally-optimal power allocations, the focus of research has been on locally-optimal power

allocations (e.g., DSB [17] and SCALE [19, 20]). DSB and SCALE are semi-centralized

algorithms which require full channel knowledge and per-iteration message passing. They

can achieve strong performance but cannot operate in a fully distributed manner.

On the other hand, ASB [16] and ASB-2 [17] are fully distributed algorithms where each

user self-optimizes while attempting to minimize the damage done to a virtual reference

user (representative of a typical victim). The authors of [16] and [17] discuss the use of

a single reference user and only allude to the fact that Multiple Reference Users (MRU)

could also be used. Moreover, a systematic approach for the reference user selection is still

an open question.

ASB-2, DSB, and SCALE use water-filling-like transmit power update formulas, where

the Lagrange multiplier is modified by frequency-selective offsets. The offsets represent

1Parts of Chapter 3 have been presented at the 2010 IEEEGlobal Communications Conference (GLOBE-
COM) [80], the 2011 IEEE GLOBECOM [81, 82], published in the IEEE Transactions on Signal Process-
ing [83], and accepted to be published in an IGI Global book chapter [22].
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per-frequency sub-carrier penalties and are updated on a per-iteration basis using message

passing and central computations. By iteratively updating the offset values, the algorithms

improve their performance on a per-iteration basis; however, many iterations are typically

required to properly tune the offsets until they converge. Between each iteration, the users

must take new interference measurements, which can be time-consuming.

The first part of this chapter focuses on the use of MRU and introduces a systematic

method for selecting the reference users and their respective parameters that can be blindly

applied to practical networks. In the MRU case, the set of reference users can be viewed as

a virtual network, representative of the true network. Intuitively, in the proposed approach,

users self-optimize with approximate global knowledge introduced by the virtual network,

representative of both the disturbers and the victims. This chapter also introduces the

constant offset ASB-MRU algorithm, where the Lagrange multiplier frequency offsets are

calculated based on the virtual network and are fixed, and hence, do not need to be tuned

on a per-iteration basis. The offsets act as per-sub-carrier quotas for each user and are

computed during an initialization phase prior to the optimization phase. The proposed

algorithm runs at a near-IWF complexity and avoids the need for per-iteration message

passing (as is required for DSB and SCALE); hence, the algorithm is able to converge in

significantly fewer iterations by avoiding the Lagrange multiplier frequency offset tuning

process. Finally, the proposed constant offset ASB-MRU algorithm can be implemented

using locally available information.

The constant offset ASB-MRU algorithm is a hybrid distributed and semi-centralized

approach, which takes advantage of the strengths of both approaches. In particular, when

optimizing, the algorithm runs in a fully distributed manner; however, it makes use of a

semi-centralized initialization phase to guide the distributed optimization. By making use

of this one-time semi-centralized initialization phase, substantial performance increases can

be made while avoiding the costly per-iteration semi-centralized computations and signaling

overhead.

The illustrative results in this chapter consider DSL systems. In particular, DSL systems

provide a multi-link point-to-point environment resulting in an interference channel, where

multiple users are served by multi-links. As such, DSL systems are more practically suitable

for the work presented in this chapter than wireless systems. Typically, current practical

wireless systems are point-to-point, point-to-multi-point, or multi-point-to-point systems.

Hence, while the work could still be applied to wireless systems, it is not applicable to
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current practical wireless environments.

The second part of this chapter deals with the issue of estimating the spectral efficiency

of the system. System operators require estimates of their expected spectral efficiency in

order to predict service levels. Previous efforts made use of various analytical worst-case

channel models in order to calculate or estimate the spectral efficiency of systems. While

some worst-case models are based on experimental measurements, they are also based on

worst-case scenarios, and as such can lead to overly pessimistic results.

As such, we estimate the spectral efficiency of a DSL binder channel under Gaussian

interference and thermal noise by lower-bounding the expected sum-rate. The derived

lower-bound is evaluated and compared using two sets of measurement data. The first

consists of twenty-five 500-m (1640-ft) co-located users and the second consists of six 183-

m (600-ft) co-located users. The 500-m and 183-m test cases are very significant from a

Very high bit-rate DSL (VDSL) practical implementation standpoint. In particular, the

500-m measured data corresponds to a typical Fiber-To-The-Node (FTTN) deployment

and the 183-m network corresponds to a Fiber-To-The-Curb (FTTC) deployment.

3.2 System Model

Consider a system with a set of users K � {1, . . . , K} and a set of frequency sub-carriers

F � {1, . . . , F}. Using DMT/OFDM modulation, transmission can be modeled indepen-

dently on each sub-carrier, f , as follows:

yf = Hfxf + zf ,

where the vector xf � {xk
f , k ∈ K} contains the transmitted signals for all users on fre-

quency sub-carrier f where xk
f is the signal transmitted by user k on frequency sub-carrier

f . Similarly, yf � {ykf , k ∈ K} where ykf is the received signal for user k on frequency

sub-carrier f . Likewise, zf � {zkf , k ∈ K} where zkf is the additive noise seen by user

k on frequency sub-carrier f which contains thermal noise, alien interference, and radio

frequency interference. Hf is a K ×K matrix such that [Hf ](k,l) is the channel gain from

transmitter l to receiver k on frequency sub-carrier f , and is defined as hk,l
f . The transmit

power of user k on frequency sub-carrier f is defined as pkf � E[|xk
f |

2]. The vector containing

the transmit power of user k on all frequency sub-carriers is defined as pk � {pkf , f ∈ F}.
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When the number of users is large enough, the interference is well approximated by

a Gaussian distributed random variable, and hence, the achievable bit rate of user k on

sub-carrier f is defined as:

bkf � log2

(
1 +

1

Γ

|hk,k
f |2pkf∑

l �=k |h
k,l
f |2pkf + σk

f

)
, (3.1)

where Γ is the SNR gap which is a function of the desired bit error rate, coding gain, and

noise margin [84], and σk
f is the noise power seen by user k on sub-carrier f . The achievable

data-rate for user k is therefore Rk = fs
∑

f b
k
f , where fs is the DMT/OFDM symbol rate.

This chapter will focus on the rate adaptive optimization problem for somew � {wk, k ∈

K}. wk is a weighting factor which represents the importance of user k. The rate adaptive

optimization problem is outlined in (3.2):

max
pk, k∈K

∑
k∈K

wkRk

subject to:
∑
f∈F

pkf ≤ Pk, ∀ k

0 ≤ pkf ≤ pk,mask
f , ∀ f, k.

(3.2)

The first constraint limits user k’s total transmit power to Pk and the second constraint

provides a per-frequency sub-carrier total transmit power of pk,mask
f .

3.3 Varying Offset ASB-MRU

This section briefly describes a semi-centralized MRU implementation which requires a pre-

defined virtual network and per-iteration message passing. With multiple reference users,

each user solves a (1 +KR)-user sum-rate optimization problem where KR is the number

of reference users used. Let R be the set of KR reference users in the virtual network

(i.e., |R| = KR). Any algorithm which solves a general K-user and F -sub-carrier sum-rate

maximization problem can be used to derive an ASB-like algorithm with MRU; however,

the transmit power and channel characteristics of the KR reference users are unknown.

In this sub-section, it is assumed that the virtual network of reference users and their

respective parameters are already provided (e.g., previously heuristically determined). A
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systematic approach for the selection of these parameters will be provided in Section 3.4.

ASB-DSB is a MRU version of ASB that uses DSB as its root algorithm. The adaption

process transforms the semi-centralized DSB algorithm into a fully-distributed algorithm

that each user runs using locally-available information. Such information includes the

measured interference and the reference users’ channel and transmit power. The following

maximization problem is constructed for each user k:

max
pk

wkRk +
∑
r∈R

w̃rR̃r

subject to:
∑
f∈F

pkf ≤ Pk

0 ≤ pkf ≤ pk,mask
f , ∀ f,

(3.3)

where w̃r and R̃r are the weighting factor and data-rate of the r-th reference user, respec-

tively.

Each user, k, solves (3.3) with their own respective virtual network of reference users.

Following the same derivation as DSB in [17], the transmit power update formula for the

k-th user is given by:

pkf =

⎡
⎢⎢⎣ wk

λk +
∑

r∈R

(
w̃r|h

r,k
f |2

(
1

intref,r
f

− 1

recref,r
f

)) −
Γintkf

|hk,k
f |2

⎤
⎥⎥⎦
pk,mask
f

0

(3.4)

where

intref,rf = |hr,k
f |2pkf +

∑
q∈R\r

|hr,q
f |2pqf + σr

f ,

recref,rk = intref,rf +
|hr,r

f |2

Γ
prf ,

and intkf is the interference user k sees on sub-carrier f . Note that the prf terms do not

need to be updated because they are the transmit power of reference users and are assumed

to be fixed. Hence, in both intrf and recrf , only pkf varies after each iteration. When no

reference users are used (i.e., R = ∅), the update formula in (3.4) reduces to the water-

filling update formula. Thus, ASB-DSB adds 7FKR floating point operations per user, per
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iteration, to the number of computations required by water-filling.2 This brings the overall

computational complexity3 of ASB-DSB to K × O(FKR) = O(FKKR), which is similar

to DSB’s overall computational complexity of O(FK2), but smaller since KR < K.

3.4 Constant Offset ASB-MRU

This section builds on the ASB-DSB algorithm by presenting the constant offset ASB-

MRU algorithm. The transmit power update formula using a Lagrange multiplier offset,

Δλk
f , for user k on frequency sub-carrier f is given by (2.2). The transmit power update

formula, (2.2), generalizes the transmit power update formulas of IWF, DSB, ASB-2, and

ASB-DSB. The IWF transmit power update formula can be recovered as a special case

when Δλk
f = 0 for all f and k. In the update formulas for DSB, ASB-2, and ASB-DSB,

the offsets are updated at every iteration, requiring per-iteration message passing. SCALE

uses a different transmit power update formula, but it also contains offsets that must be

tuned on a per-iteration basis. The tuning process is responsible for the slow convergence

of DSB and SCALE relative to IWF.

Fast Lagrange multiplier offset convergence is typical with the ASB-DSB algorithm (i.e.,

when using non-constant offsets). This is due to the fact that the virtual network param-

eters are constant. As such, the interference and received transmit powers of the virtual

users are only lightly modified by the real user’s transmit power. Hence, the non-constant

offsets can be considered almost constant. This observation motivated the constant offset

ASB-MRU algorithm.

Assuming that the virtual network of reference users is representative of the overall

network, the Lagrange multiplier offsets can be approximately pre-computed before the

optimization is run. As such, the Lagrange multiplier offsets become constant. By applying

constant offsets, the offset tuning process is removed and IWF-like convergence is obtained.

The virtual network of reference users is used to obtain offsets that well-approximate the

converged offsets generated by other algorithms (e.g., DSB).

2The inversion and subtraction of recrf and intrf requires 5 operations, multiplication by the weighted
channel gains requires an additional operation. The 6 operations are computed KR times and added
together with λk. This is repeated for all F sub-carriers resulting in F [6KR + (KR − 1) + 1] = 7FKR

operations in addition to what IWF requires.
3A brief overview of computational complexity analysis and big-O notation is provided in Appendix

A.1.
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The constant offset ASB-MRU algorithm can be broken up into several steps:

1. Setup virtual reference user network.

2. Select parameters for each virtual reference user.

3. Determine the Lagrange multiplier offset for each user.

4. Each user iteratively updates their transmit power using (2.2) until convergence.

Once the virtual network of reference users is constructed, the transmit power of each

reference user is estimated and then used to compute the per-sub-carrier offsets for each

user. The power allocation of each user is computed based on their respective per-sub-

carrier offsets in a distributed fashion. The above steps are discussed in the subsections

that follow.

3.4.1 Setup Virtual Reference User Network

Clustering is used to determine how many and which reference users should be selected

using a systematic approach that can be applied to any arbitrary network topology. Once

the clusters are computed, each cluster is replaced by the mean representative reference

user. The weight of the reference user, w̃r, is selected as the mean of the user weights

within its cluster.

Note that for a few selected test cases, the clustering algorithm results in only one clus-

ter. Such networks can be accurately represented by only a single reference user; however,

due to the construction of the ASB-MRU algorithm, each reference user requires other

representative reference users to accurately estimate the Lagrange multiplier offset (this

coincides with guideline three for selecting reference users, as outlined in [80]). As such,

when the clustering algorithm returns only one reference user, that reference user is doubled

(i.e., the result becomes two identical reference users).

The above techniques specify how to select the reference users based on the clusters. In

order to cluster the users, an appropriate payoff function (metric) must be determined. By

design, this payoff function should produce a numerical value to represent how weak the

user is. That is, the larger the payoff function value, the weaker the user.

Typically, weaker users can be characterized as having a larger received interference-

plus-noise with respect to their direct signal power. As such, the payoff function should



3 Interference Coordination in a Multi-Link Environment 28

be proportional to the interference-plus-noise that a user experiences, and inversely pro-

portional to the user’s direct signal power. In other words, the payoff function should be

proportional to the ratio
(
σk
f +

∑
l �=k |h

k,l
f |2plf

)
/
(
|hk,k

f |2pkf
)
for a given frequency sub-carrier

f . Hence, the payoff function for user k, fpay(k), should be a summation over all the

sub-carriers, implying equal (unit) weights for all frequency sub-carriers,

fpay(k) =

F∑
f=1

f

(
σk
f +

∑
l �=k |h

k,l
f |2pfixedf

|hk,k
f |2pfixedf

)
,

where f(·) is a monotonically increasing function and pfixedf = min{Pk}/F is a fixed value

representing an equal transmit power for all users on all frequency sub-carriers.

The goal of the payoff function is to classify users based on their relative strengths and

weaknesses. It is far more important to identify differences between strong users than it is

between weak users, since there is no significant benefit to differentiating between one victim

and another. Hence, the objective of the payoff function is to easily differentiate between

strong users to penalize them accordingly while not overly penalizing weaker users that

may be slightly stronger than other weak users. Therefore, the function, f(·), must act as

a compression function and should be selected such that it is very effective at differentiating

between slight changes for small values and is relatively insensitive to slight changes for

large values. This naturally led to the selection of the logarithmic function. In order to

ensure that each term in the summation remains positive it is necessary to add a bias

term, b ≥ 1. b = 1 is a natural choice to ensure that when the ratio is equal to zero, the

compression function value is also zero, resulting in:

fpay(k) �
F∑

f=1

log

(
1 +

σk
f +

∑
l �=k |h

k,l
f |2pfixedf

|hk,k
f |2pfixedf

)
=

F∑
f=1

log

(
(recpay)

k
f

|hk,k
f |2pfixedf

)
, (3.5)

where (recpay)
k
f � |hk,k

f |2pfixedf + σk
f +

∑
l �=k |h

k,l
f |2pfixedf . (recpay)

k
f represents the full received

signal for user k on sub-carrier f when pfixedf is transmitted by each user. Therefore,

fpay(k) represents the relative strengths and weaknesses of users based solely on the channel

conditions. A summary of the algorithm for selecting the virtual network is shown in

Algorithm 3.1.

The payoff function can be computed with local channel knowledge by making use
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Algorithm 3.1: Setup virtual reference user network.

fpay(k) =
∑

f log
(

(recpay)kf

|hk,k
f

|2pfixed
f

)
, ∀ n;

Cluster users into groups. Let fpay,cluster(i) and E[fpay,cluster(i)] represent the vector of
fpay values for the i-th cluster and its mean, respectively ;
foreach cluster i do

Add one reference user as the user corresponding to:
argmink∈cluster(i)

{∣∣[fpay,cluster(i)]k −E
[
fpay,cluster(i)

]∣∣} ;

w̃i = E [wk] , k ∈ cluster(i) ;

end

of already available standard channel measurements, and hence, does not add any extra

complexity. In particular, only the power-sum of the interference channel gains are needed,

not the individual interference channel gains.4 During an initialization phase, every user

transmits an identical pilot signal (with known transmit power) and measures the received

sum of interference plus noise, (int)kf � σk
f +

∑
l �=k |h

k,l
f |2plf .

During the initialization phase, the payoff function for the k-th user can be computed

using (recpay)
k
f = |hk,k

f |2pkf + (int)kf , where (int)kf is the measured interference power-sum

value for user k on frequency sub-carrier f . As such, fpay(k) can be computed using only

locally available information.

Once the payoff functions are computed, an effective clustering algorithm is required.

Two clustering algorithms are presented. For each clustering algorithm, the payoff function

values of each user were normalized, as follows:

f̃pay(k) =
fpay(k)

maxk {fpay(k)}
,

where f̃pay(k) ∈ [0, 1].

Clustering by Percentage

This clustering technique breaks up the normalized payoff function values into groupings

by percentage. More specifically, since f̃pay(k) ∈ [0, 1], each user’s normalized payoff func-

tion can be thought of as a percentage of the maximum payoff function value. For a fixed

4For DSL and LTE systems, interference measurements can be collected using dual-ended line testing [85]
and received interference power measurements [86], respectively.
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clustering percentage, clusters are formed by grouping users whose normalized payoff func-

tions lie in one of the predefined uniformly distributed ranges. For example, clustering by

10% can form up to 10 clusters (i.e., corresponding to normalized payoff function values of:

0–0.1, 0.1–0.2, ..., 0.9–1.0), whereas clustering by 5% can form up to 20 clusters (i.e., cor-

responding to normalized payoff function values of: 0–0.05, 0.05–0.10, ..., 0.95–1.0). After

assigning the payoff functions to each grouping, all the empty groupings are discarded.

Agglomerative Hierarchical Clustering

The agglomerative hierarchical clustering algorithm constructs an agglomerative (bottom-

up) cluster using the normalized payoff function values. The first step is to calculate the

pairwise Euclidean distance between all the pairs of normalized payoff function values.

More specifically, since there are K normalized payoff function values, there will be
(
K
2

)
one-dimensional Euclidean distances calculated.

An agglomerative hierarchical cluster tree is constructed using the Euclidean distances

calculated. The hierarchical cluster tree begins with each element in a separate cluster

and then successively groups them into larger clusters based on the single linkage (near-

est neighbour) algorithm using the Euclidean distances calculated. Once the hierarchical

cluster tree is constructed, clusters are formed when a node and all of its sub-nodes have

an inconsistent value less than one. The inconsistent value characterizes every link in the

cluster tree by comparing its height with the average height of other links at the same level

in the hierarchy. The higher the inconsistent value, the less similar the objects connected

by the link.

3.4.2 Select Parameters for Each Virtual Reference User

Once the virtual network of reference users is generated, standard channel models can be

used to generate the channel gains for each reference user. The only remaining parameters

to be computed are the transmit powers of each reference user.

For the original ASB algorithm [16], only one reference user was used and, as such,

its transmit power was estimated using single-user water-filling, assuming no inter-user

interference. This inherently sets the transmit power of the reference user considerably

higher than what a typical user would actually use. In the MRU case, this would cause

some reference users to use significantly more power than they should and lead to poor
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performance. In order to solve this problem, the resulting transmit powers generated

by single-user water-filling can be manually scaled back to more accurately represent the

transmit power that a real user would use. In this subsection, we present a systematic

approach to effectively scale back the single-user water-filling levels.

Algorithm 3.2 systematically estimates an appropriate reference user transmit power

by making use of the payoff function discussed in Section 3.4.1. In particular, fpay(r) is

evaluated for each reference user, r. fpay(r) is defined exactly as in Section 3.4.1 except

it only uses the virtual network of reference users. The resulting transmit power for each

reference user, r, is given by single-user water-filling (ignoring inter-user interference) and

scaled down by the ratio fpay(r)/maxr∈R{fpay(r)}. During the single-user water-filling

Algorithm 3.2: Select parameters for each reference user.

Generate channel gains using standard models for each reference user r ∈ R ;

fpay(r) =
∑F

f=1 log
(

(recpay)rf
|hr,r

f
|2pfixed

f

)
, ∀ r ∈ R ;

foreach reference user r do
prf = Apply single-user water-filling algorithm (no inter-user interference) ;

prf = prf ×
fpay(r)

maxr∈R{fpay(r)}
;

end

step of Algorithm 3.2, each reference user uses their maximum transmit power. The post-

water-filling scaling allows for weaker reference users to use a higher total power than

stronger reference users, resulting in transmit powers that are more representative of what

actual users might transmit. It is important to note that the exact values of the reference

user transmit powers do not need to be accurate; they just need to be “proportional enough”

so that when the offsets are computed, they can more accurately estimate what the per-

sub-carrier quota should be for each user. This allows for a more accurate approximation

of the Lagrange multiplier offsets, and therefore, leads to better overall performance.

3.4.3 Determine the Lagrange Multiplier Offset for Each User

After selecting the reference user parameters, the computation of the Lagrange multiplier

offset is fairly straightforward. In particular, the Lagrange multiplier offset formula corre-

sponds to the ASB-DSB Lagrange multiplier offset formula given by (3.4). The method is

outlined in Algorithm 3.3.
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Algorithm 3.3: Solve for the Lagrange multiplier offset for user k and sub-carrier f

foreach reference user r do
intrf = σk

f +
∑

u∈R\r |h
r,u
f |2puf ;

recrf = intrf + |hr,r
f |2prf/Γ ;

end

Δλn
k =

∑
r∈R w̃r|h

r,k
f |2(1/intrf − 1/recrf) ;

3.4.4 Run the Constant Lagrange Multiplier Offset Algorithm

Once the Lagrange multiplier offsets are generated for each user, they are fixed for the du-

ration of the optimization. As such, in each iteration, each user simply performs frequency-

selective water-filling, as shown in Algorithm 3.4. The constant Lagrange multiplier offset

Algorithm 3.4: Run the constant offset algorithm.

repeat
foreach user k and frequency tone f do

Apply (2.2) using Δλn
k from Algorithm 3.3 ;

end

until Transmit powers converge;

algorithm adds one operation per iteration to the number of computations required by

water-filling. As such, after an initialization phase, the constant offset ASB-MRU algo-

rithm has the same computational complexity per iteration as IWF.

3.4.5 Sufficient Conditions for the Convergence, Existence, and Efficiency of

the Constant Offset ASB-MRU Algorithm

Theorem 3.1. If maxf,k,l �=k

(
Γ|hk,l

f
|2

|hk,k
f

|2

)
< 1

(K−1)
, the constant offset algorithm using fixed

weights will converge to a fixed point.

Proof. The proof is provided in Appendix A.2.

Theorem 3.1 provides sufficient conditions for the convergence and existence of a solu-

tion to the constant offset ASB-MRU algorithm. While these conditions are not met for

every system, convergence issues have not been encountered over a wide-range of network

topology simulations.
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Theorem 3.2. If maxf,k,l �=k

(
Γ|hk,l

f
|2

|hk,k
f

|2

)
< 1

(K−1)
and there exists a point satisfying the KKT

conditions of the rate adaptive optimization problem outlined in (3.2), then there exists a

set of constant offsets, {Δλn
k}, such that the constant offset algorithm will converge to that

point.

Proof. The proof is provided in Appendix A.3.

Theorem 3.2 shows that with an appropriate choice of constant offsets, convergence

to a KKT-point can be achieved. The constant offset ASB-MRU algorithm provides an

approximation to this KKT point. If the virtual network of reference users accurately

approximates the true network, the constant offset ASB-MRU algorithm will provide a

solution very close to the true KKT point. With the assumption that the virtual network

is representative of the overall network, Algorithm 3.3 approximates the modified version

used for Theorem 3.2. This can be verified by the illustrative results presented in Section

3.4.7.

3.4.6 Practical Implementation

The key practical implementation aspects for DRA algorithms include the computational

complexity and amount of signaling (message passing) required. An overview of big-O

notation and derivations of the computational complexity and message passing require-

ments of IWF, SCALE, and DSB are provided in Appendix A.1. The IWF, DSB, SCALE,

and constant offset ASB-MRU algorithms are compared in Table 3.1 in terms of computa-

tional complexity and message passing during the initialization phase and the optimization

phase. The initialization phase performs computations required to setup the variables for

the optimization phase. The optimization phase consists of computations performed by

the users and computations performed by the SMC. Note that the initialization complexity

and signaling are one-time costs, whereas the optimization complexity and signaling are

per-iteration costs.

For the constant offset ASB-MRU algorithm, computing the payoff function requires

O(F ) computations per user. The clustering algorithm complexity is dominated by the

computation of the pair-wise Euclidean distances of the payoff functions which requires

O(K2) computations. Generating the virtual network requires a total complexity ofO(FKKR).
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Table 3.1 Comparison of DRA algorithm practical implementation.

DRA Complexity Messages/User

Algorithms Initial SMC / Iter User Initial Per Iter

IWF – – O(F ) – –

SCALE – O(FK2) O(F ) – 2F

DSB – O(FK2) O(F ) – 2F

Constant
O(FKKR) – O(F ) 2F –Offset

ASB-MRU

Computing the pair-wise interference for the virtual network requires O(FK2
R) computa-

tions. Finally, computing the offsets requires O(FKKR) computations. Hence, the initial-

ization phase requires a total complexity of O(FK + K2 + FKKR + FK2
R + FKKR) =

O(FKKR), since K > KR and typically, F > K.

During the initialization phase, each user sends their F -dimensional payoff function to

the SMC and the SMC sends the F -dimensional offsets to each user. Hence, the initializa-

tion phase requires a total of 2F messages be sent. The optimization phase is implemented

in a fully distributed manner with the same computational complexity as IWF, O(F ) per

user. The constant offset ASB-MRU algorithm provides a strong balance between complex-

ity and signaling. Due to the fact that the offsets are constant, the optimization process

can be run without the need for message passing. This is a significant practical advantage

over DSB and SCALE, which both require message passing, full channel knowledge and

recomputing the offsets after every iteration.

Furthermore, as will be shown using illustrative results in Section 3.4.7, the constant

offset ASB-MRU re-initialization phase does not need to be run every time a user be-

comes active or inactive. Once the virtual network of reference users is constructed, the

initialization phase only consists of computing the offset for the new users.

In particular, the constant offset of each user is computed using only knowledge of the

virtual network of reference users. As such, the constant offsets for current users do not need

to be recomputed whenever a new user becomes active or a current user becomes inactive.
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Assuming that after the actual network changes, the virtual network is still somewhat

representative of the overall network, the algorithm will still achieve strong performance.

Thus, once the virtual network of reference users is initially constructed, if existing users

leave the system, no initialization is required, since the current users already have their

Lagrange multiplier offsets. Similarly, if new users enter the system, the initialization phase

only consists of computing the offset for the new users. Hence, the initialization phase for

the practical constant offset ASB-MRU algorithm only requires computing the offset of the

new users entering the system, which has a computational complexity ofO(FKRKN ), where

KN is the number of users entering the system. Therefore, from a practical implementation

point-of-view, the initialization phase of the constant offset ASB-MRU algorithm may not

be a significant source of algorithmic complexity. Note that the virtual network of reference

users should still be updated periodically.

Section 3.4.7 provides illustrative results demonstrating the ability of the constant offset

ASB-MRU algorithm to adapt to users entering and leaving the system when the virtual

network of reference users remains constant. In particular, the illustrative results support

the claim that the virtual network of reference users only needs to be updated periodically.

3.4.7 Constant Offset ASB-MRU Illustrative Results

This section provides some simulation results to illustrate the performance of the constant

offset ASB-MRU algorithm with respect to the existing state-of-the-art in a DSL environ-

ment. More specifically, first, this section discusses two 48-user Monte-Carlo test cases.

The test cases assume that the distribution of each user’s line lengths are uniform unless

otherwise stated. The first test case represents a typical FTTC deployment, and the second

test case represents a typical FTTN deployment.

Each random test case consists of 1000 uplink and 1000 downlink network realizations.

The FTTC and FTTN test cases are summarized in Table 3.2. The notation “X users

from A – [B, C] m” specifies that the X users are offset by A m and their line length is

distributed between [B − A, C −A] meters.

This section also compares the performance of different clustering algorithms for the

cases of uniformly and exponentially distributed line length. In particular, four 25-user

Monte-Carlo test cases consisting of 100 uplink and 100 downlink network realizations are

presented.
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Table 3.2 Summary of FTTC and FTTN test cases.

FTTC
24 users from 0 – [100, 500] m
24 users from 250 – [350, 750] m

FTTN 48 users from 0 – [100, 1000] m

All test cases use the American National Standards Institute (ANSI) model [87] and

assume that 26-gauge (0.4 mm) lines are used. The target symbol error probability, coding

gain, and noise margin are 10−7, 3 dB, and 6 dB, respectively. The frequency sub-carrier

spacing is Δf = 4.3125 kHz, and the DMT symbol rate is fs = 4 kHz. The weight of

each line is set to one. Transmit power masks are applied using VDSL Profile 17a band

plan [88]. A maximum transmit power of 11.5 dBm is applied to each user.

For each random network realization, DSB, SCALE, IWF, and the constant offset ASB-

MRL algorithms are compared. The clustering algorithm for the constant offset ASB-MRU

algorithm in the FTTC and FTTN test cases is Matlab’s “clusterdata” agglomerative

hierarchical clustering function.

The performance of the algorithms is compared based on the Percentage of the Max-

imum (PoM) weighted sum-rate each algorithm achieves, on a per-realization basis. For

comparison purposes, the maximum and minimum values of the PoM are also provided,

on a per-realization basis. These quantities represent the possible variation in results from

one network realization to another.

The results also provide the number of iterations required. The limiting factor in terms

of practical runtime is the number of iterations, since each user must take new interference

measurements after each iteration. As well, the semi-centralized algorithms (i.e., DSB and

SCALE) require per-iteration message passing and central computations. The number of

iterations required for each algorithm to achieve 98% of their final converged rate is also

given. This value is relevant for practical dynamic systems where the spectrum is updated

on a per-iteration basis. The value of 98% is selected since it was observed that using 99% or

100% required a prohibitively large number of iterations for DSB and SCALE (hundreds).

FTTC Test Case

The FTTC test case represents a typical FTTC deployment scenario where two small

DSLAMs, each servicing 24 customers, share a cable binder. Table 3.3 summarizes the
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results of the FTTC test case. Table 3.3 shows that the constant offset ASB-MRU algo-

Table 3.3 Summary of FTTC test case results.
FTTC Uplink

DSB SCALE IWF
Constant Offset

ASB-MRU
Avg PoM 99.2 100.0 79.4 97.9
Avg # iters 303.3 351.6 6.7 8.8

Avg # iters (98%) 36.4 37.8 1.9 1.0
Max PoM 100.0 100.0 86.0 100.0
Min PoM 93.2 97.8 72.1 91.1
Avg # Refs – – – 15.8

FTTC Downlink

DSB SCALE IWF
Constant Offset

ASB-MRU
Avg PoM 99.5 99.8 94.0 99.7
Avg # iters 323.4 490.6 74.3 46.8

Avg # iters (98%) 6.9 47.5 1.7 1.0
Max PoM 100.0 100.0 96.8 100.0
Min PoM 97.1 98.6 90.8 98.4
Avg # Refs – – – 15.1

rithm achieves near-DSB and -SCALE performance for both uplink and downlink FTTC

transmissions, while requiring significantly fewer iterations to converge. More specifically,

the constant offset ASB-MRU outperforms DSB in 17.1% and 63.3% of the realizations for

uplink and downlink transmissions, respectively. Note that it is possible for the constant

offset ASB-MRU algorithm to outperform DSB and SCALE since many locally optimal

points exist and due to the initialization phase of the constant offset ASB-MRU algorithm,

the starting point of the algorithms are typically not the same. Fig. 3.1 shows the conver-

gence of the algorithms for both uplink and downlink transmission for a typical realization.

Beyond what is shown in Table 3.3 for uplink transmission, the minimum percentage

difference between the constant offset ASB-MRU and IWF is 11.4%, the maximum per-

centage difference is 26.0%, and the average percentage difference is 18.5%. Beyond what is

shown in Table 3.3 for downlink transmission, the minimum percentage difference between

the constant offset ASB-MRU and IWF is 2.1%, the maximum percentage difference is

9.0%, and the average percentage difference is 5.7%.



3 Interference Coordination in a Multi-Link Environment 38

(a) Uplink (b) Downlink

Fig. 3.1 Convergence rate comparison.

The constant offset ASB-MRU simulation results shown in Table 3.3 and the con-

vergence plots shown in Fig. 3.1 suggest that only one iteration of the constant offset

ASB-MRU algorithm is required to obtain strong performance. In order to validate this

claim, Table 3.4 shows the simulation results after only one iteration of the constant offset

ASB-MRU algorithm relative to the final converged results of the other algorithms.

Table 3.4 FTTC: Constant offset ASB-MRU algorithm after one iteration.
Uplink Downlink

Avg PoM 98.1 99.7
Max PoM 100.0 100.0
Min PoM 92.4 98.7
Avg # Refs 15.8 15.1

When comparing the results of Tables 3.3 and 3.4, one iteration of the constant offset

ASB-MRU provides a higher average PoM than the final converged constant offset ASB-

MRU result for uplink transmission and provides an identical average PoM for downlink

transmission. This result is extremely relevant from a practical implementation point-of-

view since there is a significant reduction in the number of interference measurements re-

quired (i.e., number of iterations). Hence, the constant offset ASB-MRU algorithm achieves

near-DSB and -SCALE performance after only one iteration. The ability of the constant off-

set ASB-MRU algorithm to achieve such strong performance after just one iteration allows
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for the algorithm to very quickly adapt to changes in the network (i.e., active lines going

inactive or inactive lines becoming active), provided that the virtual network of reference

users is still somewhat representative of the overall network.

In order to demonstrate, simulations were run to test the sensitivity of the constant

offset ASB-MRU algorithm to changes in the number of users. In particular, a single

realization of the FTTC test case with K users is constructed, DSB and the constant

offset ASB-MRU are used to evaluate the transmit power of each user in the system. The

virtual network of reference users for the constant offset ASB-MRU is constructed based

on the K user system. A new network is then constructed with K ′ = K +ΔK users (e.g.,

ΔK = ±6,±12,±24,±36), and the offsets for the “new” ΔK users are generated using the

virtual network of reference users based on the K user system. The offsets for the existing

users remains unchanged.

Two sets of simulations are provided, one where ΔK > 0 and one where ΔK < 0,

corresponding to lines becoming active and lines becoming inactive, respectfully. The

value of K is selected as 48 for the lines becoming inactive case, and is selected as 24

for the lines becoming active case. For both sets of simulations, the users entering and

leaving the system are randomly selected. The results from one hundred trials for each set

of simulations are averaged. Table 3.5 shows the results of the simulations relative to the

ΔK = 0 DSB sum-rates.

Table 3.5 shows that the constant offset ASB-MRU algorithm leads to near-DSB per-

formance for both uplink and downlink transmission, even when the number of active

lines fluctuates greatly (i.e., ΔK = −0.75K, . . ., 1.5K). The results of this section show

that the constant offset ASB-MRU algorithm achieves near-DSB and -SCALE performance

after just one iteration and is capable of adapting to various different number of users en-

tering/leaving the network, using the original virtual network of reference users. This

demonstrates the robustness of the algorithm from a practical implementation standpoint.

FTTN Test Case

The FTTN test case represents a typical FTTN network where a medium-sized DSLAM is

deployed. Table 3.6 summarizes the results of the FTTN test case.

Similar to the FTTC test case, Table 3.6 shows that the constant offset ASB-MRU algo-

rithm achieves near-DSB and -SCALE performance for both uplink and downlink transmis-
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Table 3.5 Summary of FTTC results for K ′ = K +ΔK users.

K ′ = 48 + ΔK

K ′ ΔK ΔK/K
Average Average

Uplink PoM Downlink PoM
48 0 0.00 % 99.8 99.6
42 -6 -12.5 % 99.8 99.7
36 -12 -25.0 % 99.8 99.7
24 -24 -50.0 % 99.8 99.5
12 -36 -75.0 % 99.5 99.0

K ′ = 24 + ΔK

K ′ ΔK ΔK/K
Average Average

Uplink PoM Downlink PoM
24 0 0.00 % 97.8 98.6
30 6 25.0 % 97.1 98.9
36 12 50.0 % 96.9 99.1
42 24 100 % 96.7 99.2
48 36 150 % 96.6 99.3

sion. Beyond what is shown in Table 3.6, for uplink transmission, the minimum percentage

difference between constant offset ASB-MRU and IWF is 23.8%, the maximum percent-

age difference is 42.3%, and the average percentage difference is 32.5%. Furthermore, the

constant offset ASB-MRU algorithm provides performance increases over IWF for each

realization, while operating at a comparable complexity.

Similar to Section 3.4.7, the constant offset ASB-MRU simulation results shown in Table

3.6 suggest that only one iteration of the constant offset ASB-MRU algorithm is required to

obtain strong performance. Table 3.7 shows the simulations results after only one iteration

of the constant offset ASB-MRU algorithm relative to the final converged results of the

other algorithms.

When comparing the results of Tables 3.6 and 3.7, it is seen that for both uplink and

downlink transmission, one iteration of the constant offset ASB-MRU algorithm provides an

average PoM greater than the final converged constant offset ASB-MRU result. Similarly

to the results of Section 3.4.7, the one-iteration results demonstrate a large benefit from

a practical implementation standpoint. Hence, the proposed algorithm achieves near-DSB

and -SCALE performance after only one iteration.
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Table 3.6 Summary of FTTN test case results.
FTTN Uplink

DSB SCALE IWF
Constant Offset

ASB-MRU
Avg PoM 100.0 100.0 66.0 98.4
Avg # iters 267.7 225.5 5.1 10.8

Avg iters (98%) 35.9 10.9 2.0 1.0
Max PoM 100.0 100.0 75.9 99.8
Min PoM 100.0 100.0 56.1 93.8
Avg # Refs – – – 15.9

FTTN Downlink

DSB SCALE IWF
Constant Offset

ASB-MRU
Avg PoM 100.0 99.9 96.0 99.2
Avg # iters 158.3 500.0 12.6 12.0

Avg # iters (98%) 2.0 74.4 1.0 1.0
Max PoM 100.0 100.0 97.6 99.7
Min PoM 100.0 99.7 95.0 97.5
Avg # Refs – – – 14.6

Table 3.7 FTTN: Constant offset ASB-MRU algorithm after one iteration.
Uplink Downlink

Avg PoM 98.5 98.7
Max PoM 99.5 99.6
Min PoM 95.8 96.9
Avg # Refs 15.9 14.6

In order to demonstrate the ability of the algorithm to adapt to changes in the network,

simulations are provided to test the sensitivity of the constant offset ASB-MRU algorithm

to changes in the number of users, as in Section 3.4.7. Two sets of simulations are provided,

one where ΔK > 0, and one where ΔK < 0. As in Section 3.4.7, the value of K is selected

as 48 for the lines becoming inactive case, and is selected as 24 for the lines becoming active

case. For both sets of simulations, the users entering and leaving the system are randomly

selected. The results of one hundred trials for each set of simulations are averaged. Table

3.8 shows the results of the simulations relative to the ΔK = 0 DSB sum-rates.

Table 3.8 shows that the constant offset ASB-MRU algorithm leads to near-DSB per-

formance for both uplink and downlink transmission, even when the number of active lines
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Table 3.8 Summary of FTTN results for K ′ = K +ΔK users.

K ′ = 48 + ΔK

K ′ ΔK ΔK/K
Average Average

Uplink PoM Downlink PoM
48 0 0.00 % 99.6 99.3
42 -6 -12.5 % 99.6 99.3
36 -12 -25.0 % 99.5 99.3
24 -24 -50.0 % 99.3 99.3
12 -36 -75.0 % 98.7 98.9

K ′ = 24 + ΔK

K ′ ΔK ΔK/K
Average Average

Uplink PoM Downlink PoM
24 0 0.00 % 98.1 99.2
30 6 25.0 % 98.4 99.3
36 12 50.0 % 98.6 99.3
42 24 100 % 98.6 99.3
48 36 150 % 98.7 99.3

fluctuates greatly (i.e., ΔK = −0.75K, . . ., 1.5K). Similarly to Section 3.4.7, the results

of this section show that the constant offset ASB-MRU algorithm achieves near-DSB and

-SCALE performance after only one iteration and is capable of adapting to various dif-

ferent number of users entering/leaving the network, using the original virtual network of

reference users. Along with Section 3.4.7, this further demonstrates the robustness of the

algorithm from a practical implementation standpoint.

Clustering Algorithm Comparison

This subsection compares the performance of three clustering algorithms, namely clustering

by 5%, 10%, and agglomerative hierarchical clustering. Three different types of simulations

are provided where the difference lies in the distribution of user line lengths. In particular,

the first simulation assumes the line lengths to be uniformly distributed (i.e., the number

of users that have longer line lengths is similar to the number of users that have short line

lengths), while the two other simulations assume it to be exponentially distributed (i.e.,

more users have longer line lengths than short line lengths or vice-versa).
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For each type of simulation, four 25-user Monte-Carlo test cases are simulated. The

scenarios are described in Table 3.9. The notation “X users from A – [B, C] m” specifies

that the X users are offset by A m and their line lengths are distributed (either uniformly

or exponentially) between [B−A, C −A] m. The results of the four test cases scenario, in

terms of PoM, are averaged.

Table 3.9 Summary of uniformly vs. exponentially distributed simulation
test cases.

Uniformly Distributed Exponentially Distributed

25 users from 0 – [457, 914] m 25 users from 0 – [457, 1219] m
25 users from 0 – [152, 914] m 25 users from 0 – [152, 1219] m
13 users from 0 – [304, 609] m 13 users from 0 – [304, 1219] m
12 users from 152 – [457, 762] m 12 users from 152 – [457,1341] m
9 users from 0 – [304, 609] m 9 users from 0 – [304, 1219] m
8 users from 152 – [457, 762] m 8 users from 152 – [457, 1341] m
8 users from 304 – [457, 762] m 8 users from 304 – [457, 1341] m

Table 3.10 summarizes the average results for the uniformly distributed simulations.

The results show that for uniformly distributed line length, clustering by percentage pro-

vides the best performance. For these scenarios, clustering by 5% and 10% provide nearly

identical performance. Intuitively, selecting the clustering percentage trades-off between

complexity and performance where, typically, for smaller cluster percentages a better per-

formance can be achieved at a higher complexity due to additional reference users in the

virtual network. As well, the performance of the agglomerative hierarchical clustering

algorithm was very close to that of the clustering by percentage algorithms.

For each exponentially distributed test case, the rate parameter are varied so that

the majority of the lines are short (respectively, long), but that at least a few lines were

long (respectively, short). Any line lengths generated larger than the maximum allowable

length were automatically reduced to the maximum allowable value. Tables 3.11 and 3.12

summarize the average results for the exponentially distributed simulations with more

shorter line lengths and more longer line lengths, respectively.

Tables 3.11 and 3.12 show that the agglomerative hierarchical clustering algorithm

provides performance benefits over the clustering by percentage algorithms when the line

length distributions are exponential. This is due to the fact that the user distributions

are skewed, and hence, clustering by percentage will result in some groupings having many
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Table 3.10 Summary of uniformly distributed results.
Uniformly Distributed Uplink

DSB SCALE IWF
Constant Offset ASB-MRU

Hierarchical Cluster by 10% Cluster by 5%
Avg PoM 100.0 100.0 69.4 98.6 98.9 99.0
Avg # Refs – – – 8.6 7.5 10.4

Uniformly Distributed Downlink

DSB SCALE IWF
Constant Offset ASB-MRU

Hierarchical Cluster by 10% Cluster by 5%
Avg PoM 99.9 99.3 91.6 99.1 99.4 99.3
Avg # Refs – – – 7.9 6.4 9.6

Table 3.11 Summary of exponentially distributed results (more short line
lengths).

Exponentially Distributed Uplink (more short lines)

DSB SCALE IWF
Constant Offset ASB-MRU

Hierarchical Cluster by 10% Cluster by 5%
Avg PoM 100.0 100.0 70.1 97.6 95.6 96.3
Avg # Refs – – – 8.6 6.4 8.2

Exponentially Distributed Downlink (more short lines)

DSB SCALE IWF
Constant Offset ASB-MRU

Hierarchical Cluster by 10% Cluster by 5%
Avg PoM 99.7 100.0 90.7 98.3 99.4 99.1
Avg # Refs – – – 7.3 7.0 10.7

users while most others have very few or none. This is observed by comparing the average

number of reference users in Tables 3.10, 3.11, and 3.12. In particular, on average, the

number of reference users for the agglomerative hierarchical clustering algorithm remains

relatively constant, while the clustering by percentage algorithms result in significantly

fewer reference users for the exponentially distributed scenarios.

Therefore, while the clustering by percentage algorithms provide slight performance

improvements when the line length distributions are uniform, they are unable to effectively

capture the network architecture when the line length distributions are exponential. Con-

versely, the agglomerative hierarchical clustering algorithm is capable of effectively adapting

its clustering algorithm based on the network architecture.
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Table 3.12 Summary of exponentially distributed results (more long line
lengths).

Exponentially Distributed Uplink (more long lines)

DSB SCALE IWF
Constant Offset ASB-MRU

Hierarchical Cluster by 10% Cluster by 5%
Avg PoM 93.5 99.3 66.0 91.8 83.7 84.1
Avg # Refs – – – 7.4 5.7 7.6

Exponentially Distributed Downlink (more long lines)

DSB SCALE IWF
Constant Offset ASB-MRU

Hierarchical Cluster by 10% Cluster by 5%
Avg PoM 99.8 98.2 89.6 91.2 94.3 94.2
Avg # Refs – – – 5.2 6.1 9.5

3.5 Spectral Efficiency Estimation

System operators that make use of twisted-pair copper wire to transmit digital data re-

quire spectral efficiency estimates in order to predict service levels. Previous efforts make

use of various analytical worst-case channel models in order to calculate or estimate the

spectral efficiency of the system. While some worst-case models are based on experimental

measurements, they are also based on worst-case scenarios, and as such can lead to overly

pessimistic results. In this section, we estimate the spectral efficiency of a DSL binder

channel under Gaussian interference and thermal noise by applying a lower-bound on the

expected value of the sum-rate based on measured data.

3.5.1 Expected Spectral Efficiency Lower-Bound

For a DSL binder scenario with identical lines based on the ANSI [87,88] model, each line

has identical channel gains (both direct and crosstalk); however, in practical systems, this

is not the case. As such, two sets of channel measurements will be used to justify the

assumptions governing the lower-bound. In particular, a 6× 183-m 24-AWG system and a

25× 500-m 26-AWG system are discussed.

Signals were applied on a line one at a time, and the corresponding direct and crosstalk

transfer functions were measured on the receiver side. The 183-m channel measurements

consisted of 524, 288 measurements (from approximately -8.5 to 69.5 MHz). The 500-m

channel measurements were taken from 0 to 30 MHz with a spacing of 8× 4.3125 kHz, the
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intermediate values were interpolated.

Fig. 3.2 shows that the direct channel gains are much stronger than the crosstalk gener-

ated by the lines. As such, it is assumed that the optimal solution is obtained by frequency-

sharing, as opposed to frequency-partitioning.

(a) 6×183-m 24-AWG. (b) 25×500-m 26-AWG.

Fig. 3.2 Full channel measurements.

Fig. 3.3 shows the similarity between the direct power gains of the lines. Hence, the

direct channel power gains of each line can be well-approximated by the mean of the direct

channel power gains of all the lines on a per-sub-carrier basis. Based on this assumption

and the fact that all lines are of equal length, the transmit powers for all users will be

similar (i.e., pkf ≈ plf for all l and k).

Using the above assumptions, the bit-loading for line k on frequency sub-carrier f , given

by (3.1), can be approximated by:

bkf (H
k,xt
f ) ≈ log2

(
1 +

1

Γ

Hdir
f

Hk,xt
f + σk

f/p
k
f

)
,

where Hdir
f � 1

K

∑K
k=1 |h

k,k
f |2, is the mean of the direct channel power gains of each line on

frequency sub-carrier f , and Hk,xt
f �

∑
l �=k |h

k,l
f |2 is a random variable representing the sum

of the interference seen by line k on sub-carrier f . Therefore, bkf (H
k,xt
f ) is a different function

for each k and f , that takes a random variable as an input. As such, the approximate data-

rate for each line, k, is Rk ≈ fs
∑

f b
k
f(H

k,xt
f ), where fs is the symbol rate of 4 kHz.
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(a) 6×183-m 24-AWG. (b) 25×500-m 26-AWG.

Fig. 3.3 Direct channel measurements.

The expected sum-rate can then be written as:

E

[∑
k

Rk

]
≈ fsE

[∑
f,k

bkf(H
k,xt
f )

]
. (3.6)

It can be shown that the second derivative of bkf(H
k,xt
f ) with respect to Hk,xt

f is:

d2
(
bkf(H

k,xt
f )

)
d
(
Hk,xt

f

)2 =
Hdir

f (pkf )
3
(
2ΓHk,xt

f pkf + 2Γσk
f +Hdir

f pkf

)
(
Hk,xt

f pkf + σk
f

)2 (
ΓHk,xt

f pkf + Γσk
f +Hdir

f pkf

)2

ln(2)
. (3.7)

Since all the variables in (3.7) must be greater than or equal to zero for all k and f , the

second derivative of bkf (H
k,xt
f ) with respect to Hk,xt

f is always greater than or equal to zero.

Therefore, bkf (H
k,xt
f ) is convex over the region of interest.

As such, Jensen’s inequality (i.e., for a convex function f(·), and a random variable

X, E[f(X)] ≥ f(E[X ])) can be applied to (3.6) to derive a lower-bound on the expected

sum-rate, as follows:

fsE

[∑
f,k

bkf (H
k,xt
f )

]
≥ fs

∑
f,k

bkf

(
E
[
Hk,xt

f

])
.
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The lower-bound on the expected sum-rate can be maximized using a water-filling

approach to solve for the optimal pkf , resulting in the following optimization problem:

max
pk,k∈K

fs
∑
f,k

bkf

(
E
[
Hk,xt

f

])
subject to:

∑
f∈F

pkf ≤ Pk, ∀ k

0 ≤ pkf ≤ pk,mask
f , ∀ f, k

The lower-bound was maximized by writing out the Lagrange function and incorporat-

ing the total power constraint, as follows:

L = fs
∑
f,k

log2

⎛
⎝1 +

1

Γ

Hdir
f

E
[
Hk,xt

f

]
+ σk

f/p
k
f

⎞
⎠−

∑
f,k

λk

(
pkf − Pk

)
,

where λk is the Lagrange multiplier for line k. The per-sub-carrier power constraints are

dealt with by evaluating and enforcing the boundary conditions after solving for the optimal

pkf . λk is chosen such that the KKT conditions are satisfied. Since λk ≥ 0, this reduces to:

λk

(∑
f

pkf − Pk

)
= 0, ∀ k.

The KKT point can be found by taking the derivative of the Lagrange function inde-

pendently for each line k and sub-carrier f and setting it equal to zero, since transmission

is assumed to be synchronized (i.e., all sub-carriers are independent). This results in a

quadratic equation (for each f and k) of the form:

A(pkf)
2 +B(pkf) + C = 0, (3.8)

where the final value of pkf , denoted here as (pkf )
∗, is given by: (pkf )

∗ = [pkf ]
pk,mask
f

0 , and where
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A, B, and C are defined as follows:

A � λk ln(2)

[
Γ
(
E
[
Hk,xt

f

])2

+
(
E
[
Hk,xt

f

])
Hdir

f

]
,

B � λk ln(2)σ
k
f

[
2Γ

(
E
[
Hk,xt

f

])
+Hdir

f

]
,

C � λk ln(2)
(
σk
f

)2
Γ− fsH

dir
f σk

f .

A procedure to solve for the optimal Lagrange multiplier, λk, and the corresponding

optimal transmit powers, pk ∀ k, is outlined in Algorithm 3.5.

Algorithm 3.5: Algorithm to find the optimal λk and pk for line k.

Initialize λmin = 0, λmax = 220 ;
Update pkf ∀ f using (3.8) with λk = λmax ;

while
∑

f p
k
f > Pk do

λmin = λmax ;
λmax = 2λmax ;
Update pkf ∀ f using (3.8) with λk = λmax ;

end
while 1 do

λk = (λmax + λmin)/2 ;
Update pkf ∀ f using (3.8) with λk ;

if
∑

f p
k
f > Pk then

λmin = λk ;
else if Pk −

∑
f p

k
f ≤ 10−10 then

Break ;
else

λmax = λk ;
end

end

The bisection algorithm, shown in Algorithm 3.5, is performed independently for each

k until the total power constraint is met with equality. Once the final value of λk is found,

the corresponding pk, is selected as the transmit powers for line k.

The technique presented in this section evaluates a lower-bound on the expected sum-

rate that can provide an analytical framework from system operators to help evaluate the

performance of their systems. In particular, this technique allows for system operators to
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take limited measurements and gain knowledge of the channel statistics (expected values)

in order to gain better estimates for their expected spectral efficiency.

3.5.2 Expected Spectral Efficiency Illustrative Results

In this section, channel measurements are used to evaluate the lower-bound on the expected

sum-rate of the 6×183-m DSL system using 24-AWG cables and the 25×500-m DSL sys-

tem using 26-AWG cables. The 183-m channel measurements were taken using a signal

generator on the transmitter side and a network analyzer on the receiver side. Signals

were applied on a line one at a time, and the corresponding direct and crosstalk transfer

functions were measured by the network analyzer on the receiver side. The 183-m channel

measurements consisted of 524, 288 measurements (from approximately -8.5 to 69.5 MHz).

The 500-m channel measurements were taken using a signal generator and network ana-

lyzer, as in the 183-m case; however, the 500-m measurements were taken from 0 to 30

MHz with a spacing of 8× 4.3125 kHz, the intermediate values were interpolated.

In VDSL, 1147 uplink and 2285 downlink frequency sub-carriers are used (varying from

276 kHz to 17.6 MHz with a sub-carrier-spacing of 4.3125 kHz) [88]. The measured data

was interpolated in order to more accurately represent the frequency sub-carriers used in

practical DSL systems.

Two separate types of simulations are compared. The first is based on the measured

data taken from actual channel measurements and the second is based on a standard DSL

channel model (i.e., the ANSI model which operates on a worst-case scenario assumption).

The simulations for both the measured data and the ANSI model used transmit power

masks according to VDSL Profile 17a [88]. As well, the background noise for the 183-m

and 500-m test cases were measured, while the ANSI model assumes a noise floor of −140

dBm/Hz.

One SRA (i.e., flat power) and two DRA (i.e., IWF and DSB) algorithms are applied

to both the measured data and the ANSI models. As well, the derived lower-bound was

evaluated for the measured data.

500-m Simulation Results (25 lines)

A typical DSL bundle contains 25 lines. As such, the 25×500-m scenario provides a very

accurate representation of a typical FTTN cable bundle. A summary of the simulation
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results is shown in Table 3.13 for the 25×500-m case. It is interesting to note that flat power

outperforms IWF. This is due to the fact that for this specific scenario, the ratio between

the crosstalk and the direct channel gains (see Fig. 3.2(b)) remains relatively constant,

thus marginally favoring the flat power approach. Conversely, for the 183-m scenario (see

Fig. 3.2(a)), the ratio between the crosstalk and the direct channel gains changes slightly,

which is more common in practice. As such, in Section 3.5.2, IWF outperforms flat power.

Table 3.13 Sum-rates (Mbps) for the 25×500-m scenario with the measured
data and ANSI models.

Measured ANSI
Data Model

Flat Power 2152.1 986.5
IWF 2145.7 943.8
DSB 2196.8 986.8

Derived
2186.9 N/A

Lower-Bound

The results of Table 3.13 show that each algorithm achieves similar sum-rates for both

the measured data and the ANSI models; however, there is a very large discrepancy between

the ANSI model and the measured data sum-rates (i.e., more than double the final sum-

rate). By using the lower-bound in this scenario, system operators could predict over double

the throughput than if the ANSI model was used. This supports the claim that using the

99% worst-case models to evaluate the expected spectral efficiency of a system can lead to

overly pessimistic results.

The simulations show that the derived lower-bound could provide a useful analytical

framework to evaluate the performance of the system due to the fact that the lower-bound’s

sum-rate is significantly larger than the maximum achievable value using the ANSI model.

Therefore, while the lower-bound is too loose to provide a significant bound for the measured

data system, it provides an indication of the type of performance which is achievable

using state-of-the-art DRA algorithms. Hence, the lower-bound could be used by system

operators in scenarios where the actual channel measured data is not available, but the

statistics of the channel are.
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183-m Simulation Results (6 lines)

The 183-m scenario provides an indication of the performance of a typical FTTC system

cable bundle when 6 lines are active. A summary of the simulation results is shown in

Table 3.14 for the 6×183-m case.

Table 3.14 Sum-rates (Mbps) for the 6×183-m scenario with the measured
data and ANSI models.

Measured ANSI
Data Model

Flat Power 670.8 543.6
IWF 670.9 543.6
DSB 710.8 543.6

Derived
672.9 N/A

Lower-Bound

Based on the results of Table 3.14, it can be seen that DSB achieves a larger sum-rate

than the other techniques for the measured data scenario. This is due to the fact that in a

practical scenario, some lines are stronger than others and by adjusting the transmit power

of the stronger users to help protect the weaker users, DSB improves the sum-rate.

In an ideal case (i.e., equal channel gains), IWF, DSB, and flat power achieve similar

results, as seen by comparing the ANSI model sum-rates. It is also important to note the

increase in sum-rate for the measured data scenario over the ANSI model scenario. In this

case, the ANSI model would predict only an overall throughput of 543.6 Mbps, whereas

the derived lower-bound would indicate that an overall throughput of at least 672.9 Mbps

was achievable.

As discussed for the 500-m case, the simulation results show that the derived lower-

bound can provide a reasonable analytical framework for system operators to evaluate the

performance of their system when only the channel statistics are known. This could be the

case in a wide-variety of practical DSL systems.

3.6 Concluding Remarks

There is an important relationship between the achievable sum-rate (performance) and

the complexity of an algorithm. This chapter presented the constant offset ASB-MRU

algorithm in an attempt to achieve a more favourable trade-off between performance and
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complexity. The constant offset ASB-MRU algorithm relies heavily on the use of a payoff

function to represent the relative strengths and weaknesses of each user in the system.

The construction and development of the payoff function was discussed. By clustering the

payoff function values, the constant offset ASB-MRU algorithm systematically constructs

a virtual network of reference users. The virtual network represents approximate global

channel knowledge that can be obtained during an initialization phase using local channel

knowledge. The payoff function is also applied to the virtual network of reference users

to more accurately approximate the transmit power of each reference user. Sufficient con-

ditions for convergence, existence, and efficiency of the constant offset algorithm are also

provided.

Extensive simulation results show that the constant offset ASB-MRU algorithm achieves

near-DSB and -SCALE sum-rates after only one iteration (i.e., requiring only one set of

interference measurements). As well, the constant offset ASB-MRU algorithm using a fixed

virtual network of reference users also provides near-DSB and -SCALE performance with

large fluctuations in the number of users entering or exiting the system. Therefore, the

constant offset ASB-MRU algorithm results in a near-ideal balance between performance,

complexity, and sensitivity to users entering or leaving the system.

This chapter also derives a lower-bound on the expected sum-rate of a DSL binder

channel using Jensen’s inequality. The lower-bound is maximized using a water-filling

approach to optimize the transmit power. Using two measured-data based scenarios, it was

shown that the analytic worst-case model leads to overly pessimistic results when compared

to full measured data. In particular, for the 25×183-m case, the lower-bound predicts over

double the sum-rate than the ANSI model predicts. Hence, while the derived lower-bound

is conservative, it provides better insight into the actual spectral efficiency of the system

than the ANSI model.

The lower-bound could be a useful tool for system operators to predict achievable data-

rates based on limited measurements in order to determine estimates for the channel statis-

tics (i.e., expected values). Providing system operators with better estimates for the spec-

tral efficiency of the network could allow for more accurate service level predictions, and

therefore, lead to better overall services.
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Chapter 4

Full-Duplex MIMO Point-to-Point

Precoding1

4.1 Introduction

Chapter 3 considers HD multi-link transmission. This chapter focuses on FD systems,

where signals are transmitted and received simultaneously over the same frequency at the

same time, as discussed in Chapter 1. In particular, this chapter focuses on the case of

sum-rate maximization for FD MIMO point-to-point systems which can also be viewed as

a FD SU-MIMO system.

The FD MIMO point-to-point sum-rate maximization problem formulation leads to a

non-convex optimization problem for which finding solutions is difficult. SCP [97] is a well-

known practical approach to solving non-convex optimization problems by constructing

and solving a sequence of convex optimization problems.

In Chapter 5, two SCP-based algorithms are derived for solving the non-convex FD

MIMO point-to-multi-point sum-rate maximization problem directly. In this chapter, we

present the corresponding FD MIMO point-to-point SCP-based algorithms, which can be

recovered as special cases of the algorithms derived in Chapter 5. As such, a detailed

derivation of the DC-based and SCAMP algorithms is provided in Chapter 5.

1Parts of Chapter 4 have been presented at the 2013 IEEEGlobal Communications Conference (GLOBE-
COM) [89], the 2014 IEEE International Conference on Communications (ICC) [90], accepted to be pub-
lished in the IEEE Wireless Communications Letters [91] and the IEEE Transactions on Vehicular Tech-
nology [92], and have been submitted for publication to the IEEE Transactions on Wireless Communica-
tions [93]. Finally, parts of Chapter 4 have been disclosed in the following U.S. patent applications [94–96].
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This chapter also proposes a FD Precoding (FDP) structure which makes use of MIMO

precoding to jointly precode the forward transmission and cancel the self-interference [94].

As such, the self-interference cancellation is done by matrix precoding at the transmitter.

The FDP Structure makes use of auxiliary paths to increase the dimensionality at the

transmitter. The precoding design takes advantage of the increased dimensionality by

jointly preprocessing the transmit signals for a more effective trade-off between the forward

channel precoding and the self-interference suppression.

The proposed FDP structure provides a more generalized framework for the optimiza-

tion of both FD MIMO point-to-point and point-to-multi-point transceivers, allowing for

different optimization objectives rather than solely minimizing the self-interference (e.g.,

sum-rate maximization, energy efficiency). Specifically, in this thesis, we focus on the ob-

jective of sum-rate maximization. As such, this chapter proposes separate and joint FDP

algorithms for the sum-rate maximization objective. A comparison between the separate

and joint design approaches from both an analytical and a simulation perspective are pro-

vided.

This chapter also develops a Self-Interference Pricing (SIP)-based algorithm which re-

places the direct non-convex sum-rate maximization problem by creating four pricing-based

sub-problems to more consistently provide a favorable trade-off between forward chan-

nel maximization and self-interference cancellation using both precoding and postcoding.

Therefore, the SIP algorithm must assume some active and/or passive cancellation to ensure

the linearity of the Low-Noise Amplifier (LNA) and Analog-to-Digital Converter (ADC) at

the receiver. As such, this chapter also proposes a SIP-based FDP (FDP-SIP) algorithm

using only precoding at the transmitter. Hence, since the self-interference cancellation ef-

fectively takes place prior to the LNA and ADC, the linearity of the system can be ensured.

Finally, this chapter also presents the Self-Interference Threshold (SIT) algorithm which

can be applied with or without making use of the FDP transceiver structure.

Extensive simulations using both channel models and experimentally measured data

demonstrate that the proposed FDP structure offers significant performance improvements

and compares the performance of the proposed algorithms.

The illustrative results in this chapter consider wireless systems. The FD design al-

gorithms presented in this chapter could be applied to both wireless and wireline systems

(e.g., cable systems). Moreover, the designs are applicable to both multi-link or point-to-
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point systems2; however, for telephony systems, FD communication already exists in the

form of echo cancellation. Echo cancellation was developed in the 1950s to economize the

use of the wire for both transmitting and receiving, which was practical but could only pro-

vide 20-30 dB of isolation. Wireless environments require more cancellation to manage the

strong self-interference which occurs due to transmission over greater distances. In order to

effectively manage the strong self-interference, sophisticated FD designs are required (e.g.,

precoding). As such, the requirements are more stringent, and hence, this chapter focuses

on wireless systems.

4.2 System Model

4.2.1 Full-Duplex MIMO Point-to-Point System

The FD SU-MIMO system model, shown in Fig. 4.1, represents a point-to-point link be-

tween two nodes where each node operates in FD mode. Since both nodes communicate

in FD-mode, each node suffers from the effects of self-interference. The matrix of channel

gains from node i to node j is denoted by Hi ∈ CNR×NT and the self-interference at node i

is denoted by Gi ∈ CNR×NT , where both nodes have NT transmit and NR receive antennas,

respectively.

Fig. 4.1 FD MIMO point-to-point system model.

Let Vi ∈ CNT×di be the precoding matrix for the i-th node, where di ≤ NT is the

dimensionality of the transmit signal (i.e., xi ∈ Cdi×1). Typically, in this chapter, it is

2Note that the point-to-point MIMO system discussed in this chapter can be considered a FD version
of the HD multi-link system discussed in Chapter 3. Furthermore, Chapter 5 focuses on wireless point-to-
multi-point systems where UEs can be either FD or HD.
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assumed that di = NT . The received signal at the i-th node is:

yi = HjVjxj +GiVixi + zi,

where zi ∈ CNR×1 is the noise at the i-th node. The first term represents the intended

signals, while the second term represents the self-interference incurred by operating in FD

mode. Let the covariance matrices of the direct and self-interference signals at the i-th

receiver be given by:

Ci,j = HjQjH
†
j,

Ci,i = GiQiG
†
i ,

where Qi = ViSiV
†
i and Si = E[xix

†
i ]. The achievable rate at the i-th node is given by:

Ri = log2
∣∣INR

+ (Σi +Ci,i)
−1Ci,j

∣∣ ,
where Σi = E[ziz

†
i ].

The self-interference channels, Gi (i = 1,2), are assumed to be estimated, while the

forward channels, Hi (i = 1,2), are assumed to be known perfectly, in order to more

easily compare with the HD case. As well, by assuming imperfect self-interference channel

knowledge, we can study the effects of residual self-interference on the achievable sum-rate.

More specifically, it is assumed that:

Gi = Ĝi +ΔGi,

where Gi is the true channel matrix, Ĝi is the estimated channel matrix, and ΔGi is the

estimation error channel matrix, with zero mean and covariance matrix σ2
errINR

. As such,

we model the imperfect self-interference channel knowledge as ΔGi for analysis (i.e., we

model the performance of the estimator).

Let the estimated achievable rate at the i-th node be given by:

R̂i = log2

∣∣∣∣INR
+
(
Σi + Ĉi,i

)−1

Ci,j

∣∣∣∣ ,
where Ĉi,i = ĜiQiĜ

†
i .
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The FD MIMO point-to-point sum-rate maximization problem can be written as:

max
Q1,Q2

R̂1 + R̂2

subject to: Tr[Qi] ≤ Pmax,i, i = 1, 2,

Qi � 0, i = 1, 2,

(4.1)

where the constraints on the transmit covariance matrices to be positive semi-definite ensure

the feasibility of the solution. Optimization problem (4.1) is non-convex, and hence, difficult

to solve directly.

Once the covariance matrices are solved for, the corresponding precoding matrices can

be recovered using the Cholesky decomposition. In particular, Qi = LiL
†
i , and hence, the

precoding matrices can be computed as:

Vi = LiS
−1/2
i . (4.2)

4.2.2 Full-Duplex Precoding (FDP)

The FDP block diagram [94] is shown in Fig. 4.2. The FDP structure (Fig. 4.2) differs from

the active cancellation structure (Fig. 2.1) in that precoding is applied to jointly perform the

forward transmission precoding and the self-interference cancellation. This joint approach

allows for additional transmit dimensions and is capable of being optimized with respect to

many different objectives as opposed to solely suppressing the self-interference. The FDP

structure can also be optimized with the objective of suppressing the self-interference, and

hence, it allows for a more general optimization framework for which various objectives

and algorithms can be developed. In particular, in this chapter, we focus on the objective

of sum-rate maximization.

The FDP structure is designed such that all antennas simultaneously transmit and

receive signals, and hence, the number of antennas are assumed to be NT = NR = M . As

shown in Fig. 4.2, M transmit signals are precoded into 2M paths, each path includes a

Digital-to-Analog Converter (DAC). M of them, used for forward transmission paths (one

per antenna), also include a Power Amplifier (PA) and a circulator, while the other M are

auxiliary paths. In the transmit direction, the circulator feeds to a single-port antenna

and in the receive direction, the circulator of each antenna combines with its respective
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auxiliary path.3 The combined signals are passed through a LNA and an ADC. The self-

interference channel is slow time-varying, and hence, estimated channel information can be

obtained during periodic HD transmission training phases.4

Fig. 4.2 MIMO full-duplex precoding structure.

For comparison, a typical HD transmission structure consists of M separate transmit

and receive paths. M transmit signals are passed through an M ×M precoder where each

of the M output paths consists of a DAC and PA. Each of the M receive paths consist of

a LNA, ADC, and a forward transmit/receive channel estimator.

As shown in Fig. 4.2, M paths are used for forward transmission, while 2M paths affect

the self-interference. In fact, the group of M paths to the combiners5 actually form an

3In the remainder of this thesis, the paths are numbered so that the first M paths correspond to
the forward transmission paths and the last M paths correspond to the auxiliary paths, for notational
convenience.

4Since the self-interference channel is slow time-varying, it can be estimated using the following training
procedure. Start by operating in HD-transmission mode and while transmitting, measure the resulting self-
interference channel gain. Then, the system can switch into FD-transmission mode with self-interference
channel knowledge (which was measured during the HD-transmission phase). This procedure can be
repeated periodically to re-update the self-interference channel knowledge.

5A coupling combiner is used to avoid degradation in the receiver noise figure.



4 Full-Duplex MIMO Point-to-Point Precoding 60

equivalent active canceller although the objective of the precoding is not necessarily to

focus on minimizing the self-interference. As such, the 2M ×M precoder is a joint forward

transmission precoder and self-interference canceller. Additionally, a separate approach can

be taken where one M ×M precoder is applied to the forward channel and another M ×M

precoder is applied to the self-interference channels. Note that the separate approach,

discussed in Section 4.4, is similar to a matrix-version of the active cancellation approach

where the cancellations are computed via precoding.

4.2.3 Full-Duplex Precoding Applied to OFDM Systems

Fig. 4.3 illustrates the functional block diagram of a MIMO-OFDM transceiver using the

proposed FDP structure. After the Series-to-Parallel (S/P) converter, the signals are mod-

ulated on a per-frequency basis. The output of the modulators is passed to the 2M ×M

per-frequency precoding matrices. Each of the 2M output paths from the precoding block

is passed to a unique Inverse Fast Fourier Transform (IFFT) block. In particular, each

of the M antennas has a corresponding transmission IFFT and auxiliary IFFT. After the

IFFT, a cyclic prefix is added and all paths then pass through a DAC, as in Fig. 4.2. The

auxiliary paths are then fed to the receiver, as shown in Fig. 4.3. The transmission paths

are transmitted as in Fig. 4.2 using a PA and a circulator. The output of the circulator,

corresponding to the received signal and the residual self-interference after the circulator’s

isolation, is passed to the receiver.

On the receiver side, the received and auxiliary paths are combined and then passed

through a LNA and ADC. After the ADC, the cyclic prefix is removed and a FFT is applied.

Finally, the signals are sent to the decoder.
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Fig. 4.3 Block diagram of a MIMO-OFDM transceiver using the proposed
full-duplex precoder.
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4.2.4 Full-Duplex Precoding for FD MIMO Point-to-Point Systems

The FD SU-MIMO system model, shown in Fig. 4.1, represents a point-to-point link be-

tween two nodes where each node operates in FD mode with M physical antennas. Let

Hj ∈ CM×2M be the matrix of channel gains from the 2M antenna paths of the j-th node

to the M antennas of the i-th node (i 	= j). Hence, Hj has the following structure6:

Hj =
[
H̃j 0M

]
,

where H̃j ∈ CM×M and it is assumed that the paths are numbered such that the first M

paths correspond to forward transmission, while the second M paths correspond to the

auxiliary paths (i.e., the paths which are not transmitted).

Similarly, let Gi ∈ CM×2M be the self-interference matrix of channel gains for the i-th

node. Hence, Gi has the following structure7:

Gi =
[
G̃i,a αIM

]
,

where G̃i,a ∈ CM×M and α is a scalar representing the gain of each cancellation path.

The transmission equations and sum-rate expressions are identical to those in Section

4.2.1 with these new definitions of Hi and Gi (with the corresponding appropriately sized

matrices and vectors). As in Section 4.2.1, G̃i,a is assumed to be estimated while α is

assumed to be known perfectly since it would be specified by the service provider based on

the allowable power consumption, and hence, its exact effects can be measured off-line.

4.3 Sequential Convex Programming

In this section, SCP is applied to approximate the solution to the non-convex optimiza-

tion problem (4.1). The derivation of the two SCP algorithms for FD MIMO point-to-

multi-point systems is given in Chapter 5, where the FD MIMO point-to-point equations

presented in this section can be recovered as special cases. As such, in this section, the

derivations of the DC-based and SCAMP algorithms are omitted, and instead, only the

6The 0M component of Hj is due to the fact that the auxiliary paths do not correspond to forward
transmission.

7Since the interaction between auxiliary paths is negligible, αIM represents the gain of the auxiliary
paths. Additionally, the gain of each path, α, can be measured off-line.
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final equations are provided.

4.3.1 FD MIMO Point-to-Point: DC-Based Algorithm

The DC-based algorithm avoids the original non-convex optimization problem, (4.1), by

instead solving a sequence of the following convex optimization problems:

min
Q1,Q2

f̃SU−DC(ν)

subject to: Tr[Qi] ≤ Pmax,i, i = 1, 2,

Qi � 0, i = 1, 2,

(4.3)

where f̃SU−DC(ν) is given by:

f̃SU−DC(ν) = g1 + g2 − h̃1(ν)− h̃2(ν), (4.4)

where gi and h̃i(ν) (i = 1, 2) are given by:

gi = − log2

∣∣∣Σi + ĜiQiĜ
†
i +HjQjH

†
j

∣∣∣ ,
h̃i(ν) =

−1

ln(2)
Tr

[(
Σi + ĜiQ

(ν)
i Ĝ†

i

)−1

Ĝi

(
Qi −Q

(ν)
i

)
Ĝ†

i

]
− log2

∣∣∣Σi + ĜiQ
(ν)
i Ĝ†

i

∣∣∣ , (4.5)

where Q
(ν)
i refers to the transmit covariance matrix of the i-th node associated with the

ν-th iteration. f̃SU−DC(ν) is a convex approximation to the original objective function

f = −R̂1 − R̂2 around the point Q
(ν)
i (i = 1, 2). As such, the non-convex optimization

problem (4.1) can be locally approximated, around the point Q
(ν)
i (i = 1, 2), by the convex

optimization problem (4.3).

The resulting Algorithm 4.1 iteratively updates the objective function approximation,

f̃SU−DC(ν), and solves the convex approximation until convergence. Note that the convex

optimization problem can be solved using cvx, a package for solving disciplined convex

programs in Matlab [98, 99].
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Algorithm 4.1: FD MIMO point-to-point: DC-based algorithm.

Randomly initialize Q
(0)
1 ,Q

(0)
2 ;

Initialize ν = 0 ;
repeat

Update h̃1(ν), h̃2(ν) using (4.5), using Q
(ν)
1 ,Q

(ν)
2 ;

Update f̃SU−DC(ν) using (4.4) ;
Solve (4.3) for Q�

1,Q
�
2 ;

ν = ν + 1 ;

Update Q
(ν)
i = Q�

i , i = 1, 2 ;

until f̃SU−DC(ν) converges ;

Apply Cholesky decomposition: Q�
i = LiL

†
i , i = 1, 2 ;

Solve for Vi using (4.2), i = 1, 2

4.3.2 FD MIMO Point-to-Point: SCAMP Algorithm

The SCAMP algorithm avoids the original non-convex optimization problem, (4.1), by

instead solving a sequence of the following convex optimization problems:

min
Q1,Q2

f̃SU−SCAMP(ν)

subject to: Tr[Qi] ≤ Pmax,i, i = 1, 2,

Qi � 0, i = 1, 2,

(4.6)

where f̃SU−SCAMP(ν) is given by:

f̃SU−SCAMP(ν) =

2∑
i=1

{
ηi + ϕ̃i(ν) +

1
ln(2)

t̃i(ν)− βi

}
, (4.7)
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where ηi, ϕ̃i(ν), t̃i(ν), and βi are given by:

ηi = − log2

∣∣∣HjQjH
†
j

∣∣∣ ,
ϕ̃i(ν) = log2

∣∣∣Υ(ν)
i

∣∣∣ + 1

ln(2)
Tr

[(
Υ

(ν)
i

)−1

Ĝi

(
Qi −Q

(ν)
i

)
Ĝ†

i

]
(4.8)

t̃i(ν) =−Tr

[((
Υ

(ν)
i

)−1
HjQ

(ν)
j H†

jΦi

(
Υ

(ν)
i

)−1)†(
Ĝi

(
Qi−Q

(ν)
i

)
Ĝ†

i

)]

+ Tr

[(
Φi

(
Υ

(ν)
i

)−1
)†

Hj

(
Qj −Q

(ν)
j

)
H†

j

]
(4.9)

+ Tr

[
Φi

(
Υ

(ν)
i

)−1

HjQ
(ν)
j H†

j

]
,

βi = log2
∣∣INR

+X(ν)

∣∣+ 1
ln(2)

Tr

[
X−1

(ν)

(
INR

+X−1
(ν)

)−1
]
− log2

∣∣X(ν)

∣∣ ,
where Υ

(ν)
i , Φi, and X(ν) are given by:

Υ
(ν)
i = Σi + ĜiQ

(ν)
i Ĝ†

i ,

Φi = X−1
(ν)

(
I+X−1

(ν)

)−1

X−1
(ν),

X(ν) =
(
Υ

(ν)
i

)−1

HjQ
(ν)
j H†

j.

By construction, the objective function f̃SU−SCAMP(ν) is a convex function. Note that

optimization problems (4.3) and (4.6) differ only in the selection of the convex objective

function approximation (i.e., f̃SU−DC(ν) and f̃SU−SCAMP(ν)).

The SCAMP algorithm, described in Algorithm 4.2, iteratively updates the objective

function approximation, f̃SU−SCAMP(ν), and solves the convex approximation until con-

vergence. As in Section 4.3.1, the convex optimization problem can also be solved using

cvx [98, 99].

4.4 Separate Full-Duplex Precoding

In this section, the FDP structure is applied, where the forward precoding and self-

interference cancellation are designed separately. More specifically, Vi ∈ C2M×M is re-
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Algorithm 4.2: FD MIMO point-to-point: SCAMP algorithm.

Randomly initialize Q
(0)
1 ,Q

(0)
2 ;

Initialize ν = 0 ;
repeat

Update ϕ̃i(ν), t̃i(ν) (i = 1, 2) using (4.8) and (4.9), using Q
(ν)
1 ,Q

(ν)
2 ;

Update f̃SU−SCAMP(ν) using (4.7) ;
Solve (4.6) for Q�

1,Q
�
2 ;

ν = ν + 1 ;

Update Q
(ν)
i = Q�

i , i = 1, 2 ;

until f̃SU−SCAMP(ν) converges ;

Apply Cholesky decomposition: Q�
i = LiL

†
i , i = 1, 2 ;

Solve for Vi using (4.2), i = 1, 2

written as:

Vi =

[
Vi,F

Vi,S

]
.

Hence, in this section, Vi is optimized using a two-step procedure. First, Vi,F ∈ CM×M

is optimized to maximize the sum-rate assuming zero self-interference. Next, Vi,S ∈ CM×M

is optimized in order to suppress the self-interference as much as possible.

The self-interference-free rate formula for the i-th node, R̃i, can be written as:

R̃i = log2
∣∣IM +Σ−1

i Ci,j

∣∣ ,
where the covariance matrix Ci,j can be re-written as: Ci,j = HjQ̃jH

†
j, where Q̃j =

Vi,FSiV
†
i,F.

The precoding matrix Vi,F (i = 1, 2) can be optimized by first optimizing Q̃i and using

the Cholesky decomposition to recover the corresponding optimal Vi,F. In particular, let

Q̃i = LiL
†
i , and hence, the precoding matrix can be computed as:

Vi,F = LiS
−1/2
i . (4.10)
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The following optimization problem can be formulated to solve for each Q̃i (i = 1, 2).

max
Q̃1,Q̃2

R̃1 + R̃2

subject to: Tr[Q̃i] ≤ Pmax,i, i = 1, 2

Q̃i � 0, i = 1, 2

(4.11)

Optimization problem (4.11) is convex, and hence, can be solved using cvx. Next, Vi,S

is optimized so that ĜiVi ≈ 0M . By re-writing Ĝi as follows:

Ĝi =
[
Ĝi,a Ĝi,b

]
,

the corresponding Vi,S can be derived by solving optimization problem (4.12) for the i-th

node. Note that for the FDP structure presented in Section 4.2.4, Ĝi,b = αIM but here the

separate approach is presented in its most general form.

min
Vi,S

∣∣∣∣∣∣ĜiVi

∣∣∣∣∣∣2
F

subject to: Tr[Vi,SV
†
i,S] ≤ Pmax,i.

(4.12)

Optimization problem (4.12) can be solved by writing out the Lagrangian as follows:

Li = Tr

[(
Ĝi,aVi,F + Ĝi,bVi,S

)(
Ĝi,aVi,F + Ĝi,bVi,S

)†
]
+ λi

(
Tr

[
Vi,SV

†
i,S

]
− Pmax,i

)
.

The gradient of the Lagrangian can be derived using the concept of matrix differentials

[100, 101] to be:

∇Li = 2V†
i,FĜ

†
i,aĜi,b + 2Ĝ†

i,bĜi,bVi,S + 2λiVi,S.

By setting ∇Li = 0M , the optimal Vi,S is given by:

Vi,S = −
(
Ĝ†

i,bĜi,b + λiIM

)−1

Ĝ†
i,bĜi,aVi,F,

where λi is the water-filling level and can be optimized using a bisection search. Note that

when λi = 0, corresponding to the case of infinite cancellation power, Vi,S = −Ĝ−1
i,b Ĝi,aVi,F.
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4.5 Joint Full-Duplex Precoding

In this section, the FDP structure is applied, where the forward precoding and self-

interference cancellation are jointly designed using precoding. In particular, the Vi (i =

1, 2) are optimized jointly. The joint FDP optimization problem is identical to optimiza-

tion problem (4.1), where the difference lies in the dimensionality of the matrices involved.

More specifically, where Hi and Gi are given by the equations presented in Section 4.2.4,

and Qi = ViSiV
†
i .

Since we directly optimize the 2M × 2M covariance matrices, it becomes difficult to

recover the optimal 2M ×M precoding matrices. In order to avoid this issue, the vector

of transmitted signals for the i-th node, x, can be re-written as:

x̃i =

[
xi

0M

]
,

and hence, the precoding matrices, Vi, become 2M × 2M matrices which can be easily

recovered once optimization problem (4.1) is solved using the Cholesky decomposition.

Note that since the last M elements of x̃i are zero, the 2M ×M precoding matrices can be

recovered by applying the Cholesky decomposition to the 2M × 2M precoding matrices.

As discussed in Section 4.3, SCP can be used to efficiently solve optimization problem

(4.1). Hence, two joint FDP algorithms, FDP-DC and FDP-SCAMP are proposed, corre-

sponding to the DC-based and SCAMP algorithms, respectively. The resulting derivation

of the FDP-DC and FDP-SCAMP algorithms are identical to those of Sections 4.3.1 and

4.3.2, respectively, where the only difference lies in the dimensions of the matrices.

4.6 Separate vs. Joint Full-Duplex Precoding

This section provides an analytical comparison between the separate and joint FDP schemes.

In particular, it investigates conditions under which separate FDP is optimal and condi-

tions under which joint FDP has the potential to improve the performance over the separate

approach.

Theorem 4.1. Separate FDP is optimal if and only if α ≥ E
[∣∣∣∣∣∣Ĝi,aVi,Fxi

∣∣∣∣∣∣
2

]
/
√
Pmax,i.

Proof. The proof is provided in Appendix B.1.
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4.7 Self-Interference Pricing

In this section, a utility function-based approach is applied to manage self-interference in

FD systems, corresponding to the system model in Section 4.2.1 while also applying post-

coding matrices.8 In order to avoid solving the difficult non-convex sum-rate maximization

problem, the utility function-based approach defines a new utility function (i.e., instead

of attempting to directly maximize the sum-rate). The new utility function is designed to

be easier to solve and the objective is that the result will still provide significant sum-rate

improvements. Hence, the goal is for the sum-rate to be improved, while operating at a

lower complexity. For this algorithm, both precoding and postcoding are applied. As such,

the algorithm must assume some active and/or passive cancellation to ensure the linearity

of the LNA and ADC.

The presented approach alternates between fixing and optimizing the precoding and

postcoding matrices. The postcoding matrices are applied at the receiver-side after the

LNA and ADC. Assuming fixed precoding matrices, Vi ∈ CNT×di , i = 1, 2, the following

optimization problem can be formulated for the i-th postcoding matrix, Ui ∈ CNR×di , i =

1, 2:

max
Ui

Ui

subject to: U†
iUi = Idi ,

(4.13)

where the number of DoF at the i-th node is typically selected as di = �min{NT , NR}/2�

so that SIP can make use of a subspace maximization approach. The objective function is

defined as:

Ui � E

[∣∣∣∣∣∣U†
iHjVjxj

∣∣∣∣∣∣2
2

]
− μiE

[∣∣∣∣∣∣U†
iĜiVixi

∣∣∣∣∣∣2
2

]
, (4.14)

where j 	= i and μi is a weighting factor that balances the effects of the forward and self-

interference channels. Similarly, for fixed postcoding matrices Ui, i = 1, 2, the following

optimization problem can be formulated for the i-th precoding matrix:

max
Vi

Ũi

subject to: V†
iVi = Idi ,

(4.15)

8Postcoding was discussed in Section 2.2.
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where the objective function is defined as:

Ũi � E

[∣∣∣∣∣∣V†
iH

†
iUjxj

∣∣∣∣∣∣2
2

]
− μ̃iE

[∣∣∣∣∣∣V†
iĜ

†
iUixi

∣∣∣∣∣∣2
2

]
, (4.16)

where j 	= i and μ̃i is a weighting factor that balances the effects of the forward and

self-interference channels. Note that the objective functions for optimizing the precoding

matrices are in terms of the reverse channels.

For fixed values of μi and μ̃i, optimization problems (4.13) and (4.15) can be solved

using a subspace maximization approach [102, p.45], as follows. Ui can be re-written as:

Ui = Tr

⎡
⎢⎣U†

i

⎛
⎜⎝HjVjSjV

†
jH

†
j − μiĜiViSiV

†
iĜ

†
i︸ ︷︷ ︸

Ξi,j

⎞
⎟⎠Ui

⎤
⎥⎦ . (4.17)

Hence, for fixed Vi and Si (i = 1, 2), the optimal Ui (i = 1, 2) is selected as the matrix

of eigenvectors corresponding to the di largest eigenvalues of Ξi,j. Similarly, Ũi can be

re-written as:

Ũi = Tr

⎡
⎢⎢⎣V†

i

⎛
⎜⎜⎝H†

iUjSjU
†
jHi − μ̃iĜ

†
iUiSiU

†
iĜi︸ ︷︷ ︸

Ξ̃i,j

⎞
⎟⎟⎠Vi

⎤
⎥⎥⎦ . (4.18)

Hence, for fixed Ui and Si (i = 1, 2), the optimal Vi (i = 1, 2) is selected as the matrix of

eigenvectors corresponding to the di largest eigenvalues of Ξ̃i,j. Clearly, the selection of μi

and μ̃i (i = 1, 2) will affect the performance of the utility function-based approach.

We propose weighting factors to improve the sum-rate of the system based on a self-

interference pricing approach. As such, the weighting factors were re-defined as: μi = πi/ψi

and μ̃i = π̃i/ψ̃i. Note that πi, ψi, π̃i, ψ̃i (i = 1, 2) are referred to as pricing functions. This

is equivalent to re-writing the objective functions as:

Ui = Tr
[
ψiU

†
iCi,jUi − πiU

†
iĈi,iUi

]
,

Ũi = Tr
[
ψ̃iV

†
iC̃i,jVi − π̃iV

†
iC̃i,iVi

]
,



4 Full-Duplex MIMO Point-to-Point Precoding 71

where Ci,j and Ĉi,i are defined in Section 4.2.1 and

C̃i,j = H†
iUjSjU

†
jHi,

C̃i,i = Ĝ†
iUiSiU

†
iĜi.

The pricing functions are selected to reflect the effect of each covariance matrix on the

achieved sum-rate. In particular, ψi and ψ̃i represent the sum of squares of marginal gains

in sum-rate at node i due to transmission from each antenna pair, respectively. Similarly,

πi and π̃i represent the sum of squares of marginal losses in sum-rate at node i due to

transmission from each antenna pair. Mathematically, these quantities can be defined as:

πi �

∣∣∣∣∣
∣∣∣∣∣−∂Ri

∂Ĉi,i

∣∣∣∣∣
∣∣∣∣∣
2

F

, π̃i �

∣∣∣∣∣
∣∣∣∣∣−∂R̃i

∂C̃i,i

∣∣∣∣∣
∣∣∣∣∣
2

F

,

ψi �

∣∣∣∣
∣∣∣∣ ∂Ri

∂Ci,j

∣∣∣∣
∣∣∣∣2
F

, ψ̃i �

∣∣∣∣∣
∣∣∣∣∣ ∂R̃i

∂C̃i,j

∣∣∣∣∣
∣∣∣∣∣
2

F

,

where R̃i = log2

∣∣∣∣INT
+
(
Σi + C̃i,i

)−1

C̃i,j

∣∣∣∣. The pricing functions require computing the

derivative of a scalar function with respect to a matrix (i.e., computing the derivative of

the sum-rate with respect to a covariance matrix). As such, the optimized pricing functions

can be derived using the concept of matrix differentials [100, 101] to be:

πi =

∣∣∣∣
∣∣∣∣ 1

ln(2)
Φ−1

N,iCi,j

[
INR

+Φ−1
N,iCi,j

]−1
Φ−1

N,i

∣∣∣∣
∣∣∣∣2
F

, (4.19)

π̃i =

∣∣∣∣
∣∣∣∣ 1

ln(2)
Φ̃−1

N,iC̃i,j

[
INT

+ Φ̃−1
N,iC̃i,j

]−1

Φ̃−1
N,i

∣∣∣∣
∣∣∣∣2
F

, (4.20)

ψi =

∣∣∣∣
∣∣∣∣ 1

ln(2)

[
INR

+Φ−1
N,iCi,j

]−1
Φ−1

N,i

∣∣∣∣
∣∣∣∣2
F

, (4.21)

ψ̃i =

∣∣∣∣
∣∣∣∣ 1

ln(2)

[
INT

+ Φ̃−1
N,iC̃i,j

]−1

Φ̃−1
N,i

∣∣∣∣
∣∣∣∣2
F

, (4.22)

where ΦN,i = Σi+ Ĉi,i and Φ̃N,i = Σi+ C̃i,i. The derivations of (4.19) and (4.21) are given

below. The derivations of (4.20) and (4.22) can be similarly derived.

Using the fact that d(ln |X|) = Tr[X−1d(X)] [101] and that d(X−1) = −X−1d(X)X−1
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[101], the differential of −Ri with respect to Ĉi,i can be written as:

d(−Ri) =
1

ln(2)
Tr

[(
IN +Φ−1

N,iCi,j

)−1
Φ−1

N,id(Ĉi,i)Φ
−1
N,iCi,j

]
=

1

ln(2)
Tr

[
Φ−1

N,iCi,j

(
IN +Φ−1

N,iCi,j

)−1
Φ−1

N,id(Ĉi,i)
]
,

which gives (4.19), since dy = Tr (AdX) implies that A is the Jacobian of y with respect

to X [101]. Similarly, the differential of Ri with respect to Ci,j can be written as:

d(Ri) =
1

ln(2)
Tr

[(
IN +Φ−1

N,iCi,j

)−1
Φ−1

N,id(Ci,j)
]
,

which gives (4.21). The SIP algorithm is summarized in Algorithm 4.3.

Algorithm 4.3: FD MIMO point-to-point: self-interference pricing algorithm.

Initialize Vi i = 1, 2 to random unitary matrices. ;
repeat

Fix V1 and V2 ;
Compute πi and ψi using (4.19) and (4.21), respectively ;
Update U1 and U2 from (4.17) ;
Fix U1 and U2 ;

Compute π̃i and ψ̃i using (4.20) and (4.22), respectively ;
Update V1 and V2 from (4.18) ;

until Ui and Ũi converge;

4.8 Self-Interference Pricing Using Full-Duplex Precoding

In this section, the SIP utility function-based approach presented in Section 4.7 is adapted

to take advantage of the FDP structure. In order to avoid solving the difficult non-convex

sum-rate maximization problem, the SIP approach defines a new utility function. In the

original, SIP algorithm, both precoding and postcoding were applied. As such, the original

SIP algorithm must assume some active and/or passive cancellation to ensure the linearity

of the LNA and ADC. In this section, only precoding is applied since the FDP structure

provides additional transmit dimensions. As well, since the cancellation effectively takes

place prior to the LNA and ADC, the linearity of the system can be ensured.
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The FDP-SIP optimization problem at the i-th node is defined as:

max
Vi

Ui

subject to: V†
iVi = IM ,

(4.23)

where Vi ∈ C2M×M and the objective function is defined as:

Ui � ψi ||HiVi||
2
F − πi

∣∣∣∣∣∣ĜiVi

∣∣∣∣∣∣2
F
, (4.24)

where ψi and πi are weighting factors that balances the effects of the forward and self-

interference channels and j 	= i.

Note that (4.24) can be re-written as:

Ui � Tr
[
V†

iΞiVi

]
, (4.25)

where Ξi = ψiH
†
iHi − πiĜ

†
iĜi.

For fixed values of ψi and πi optimization problems (4.23) can be solved using a subspace

maximization approach [102, p.45], where the optimal Vi (i = 1, 2) is selected as outlined

in Algorithm 4.4.

Algorithm 4.4: Subspace maximization algorithm.

The optimal Vi (i = 1, 2) is selected as the matrix of eigenvectors corresponding to
the M largest eigenvalues of Ξi = ψiH

†
iHi − πiĜ

†
iĜi.

Similarly to in Section 4.7, the weighting factors are selected to improve the sum-rate of

the system based on a self-interference pricing approach. The pricing functions are selected

to reflect the effect of each covariance matrix on the achieved sum-rate. Mathematically,

these quantities can be defined as:

πi �

∣∣∣∣∣
∣∣∣∣∣−∂Ri

∂Ĉi,i

∣∣∣∣∣
∣∣∣∣∣
2

F

, ψi �

∣∣∣∣
∣∣∣∣ ∂Ri

∂Ci,j

∣∣∣∣
∣∣∣∣2
F

.

The pricing functions require computing the derivative of a scalar function with respect

to a matrix (i.e., computing the derivative of the sum-rate with respect to a covariance

matrix). Following the derivation in Section 4.7, the optimized pricing functions can be



4 Full-Duplex MIMO Point-to-Point Precoding 74

derived to be (4.19) and (4.21) for πi and ψi, respectively, where the difference lies in terms

of the dimensionality of the matrices involved. A summary of the FDP-SIP algorithm for

the i-th node is given in Algorithm 4.5.

Algorithm 4.5: FD MIMO point-to-point: FDP-SIP algorithm for node i.

Initialize Vi to a random unitary matrix. ;
repeat

Update πi and ψi using (4.19) and (4.21), respectively ;
Update Vi from (4.25) ;

until Ui converges ;

4.9 Self-Interference Threshold Using Full-Duplex Precoding

This section presents the Self-Interference Threshold (SIT) algorithm which can be applied

with or without using the FDP structure, where the difference lies in the dimensionality

of the matrices involved. For consistency, when the SIT algorithm is applied to the FDP

structure, the algorithm is referred to as FDP-SIT. The SIT approach introduces a maxi-

mum self-interference constraint for each node, referred to as the self-interference threshold

value, θi for i = 1, 2.

The SIT optimization problem is defined as:

max
Q1,Q2

Rth
1 +Rth

2

subject to: Tr[Qi] ≤ Pmax,i, i = 1, 2,

Tr[ĜiQiĜ
†
i ] ≤ θi, i = 1, 2,

Qi � 0, i = 1, 2,

(4.26)

where θi is a fixed self-interference threshold value and Rth
i is defined as:

Rth
i = log2

∣∣IM + (Σi +Θi)
−1Ci,j

∣∣ ,
where j 	= i and Θi is the M×M matrix with each entry equal to θi/M for i = 1, 2. Hence,

a component-wise upper-bound is applied to the self-interference covariance matrix. Note

that for fixed values of θi (i = 1, 2), optimization problem (4.26) is convex, and hence, can
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be solved using any convex optimization software (e.g., cvx).

The SIT algorithm performs a nested bisection search to optimize the threshold values.

Without loss of generality, assume the outer loop performs bisection over θ1. Then, for

a fixed θ1, Algorithm 4.6 provides a bisection search algorithm for θ2, where Rth(θ2) =∑2
i=1 R

th
i when θ2 is applied.

The full SIT algorithm is summarized in Algorithm 4.7. The outer loop performs a

bisection search over θ1. For each value of θ1, a bisection search over θ2 must be performed.

Optimization problem (4.26) must be solved after each outer and inner loop update (i.e.,

after updating the value of θ1 or θ2).

For each fixed value of θ1, the bisection search over θ2 provides a monotonically in-

creasing rate function; however, since after each θ1 update, a new bisection search over θ2

must be run, it is possible that the sum-rate may temporarily drop before monotonically

increasing. In other words, the SIT approach exhibits a piece-wise monotonically increasing

rate function, where each discontinuity corresponds to an update of the θ1 parameter (i.e.,

the start of a new bisection search over θ2). From an outer-loop perspective (i.e., focusing

on the sum-rate changes with respect to changes in θ1), the SIT algorithm is monotonically

increasing, and hence, convergence of the algorithm is guaranteed.

In this chapter, we distinguish between the SIT and the FDP-SIT algorithms. Both

SIT and FDP-SIT apply Algorithm 4.7, where the difference lies only in terms of the

dimensionality and elements of the channel matrices, as specified in Section 4.2.1.
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Algorithm 4.6: SIT: bisection search for θ2.

Given: θ1 ≥ 0 ;
Initialize: θ2,min = 0, θ2,max = 23 ;
Step 1: Determine max and min bisection values ;
while 1 do

if Rth (θ2,min) ≥ Rth (θ2,max) then
break ;

else
θ2,max = 2× θ2,max ;
if Rth (θ2,max) ≤ Rth (θ2,max/2) then

θ2,min = θ2,min/2 ;
break ;

else
θ2,min = θ2,max ;

end

end

end
Step 2: Perform Bisection ;
repeat

θ2 = (θ2,min + θ2,max) /2 ;
Solve (4.26) using θ1 and θ2 for Rth (θ2) ;
if Rth (θ2,min) ≤ Rth (θ2) ≥ Rth (θ2,max) then

dmin = Rth (θ2)−Rth (θ2,min) ;
dmax = Rth (θ2)−Rth (θ2,max) ;
if dmin < dmax then

θ2,max = θ2,max − (θ2,max − θ2) /2 ;
else

θ2,min = θ2,min + (θ2 − θ2,min) /2 ;
end

else if Rth(θ2,min) ≤ Rth(θ2) ≤ Rth(θ2,max) then
θ2,min = θ2 ;

else if Rth(θ2,min) ≥ Rth(θ2) ≥ Rth(θ2,max) then
θ2,max = θ2 ;

else
if Rth (θ2,max) > Rth (θ2,min) then

θ2,min = θ2 ;
else

θ2,max = θ2 ;
end

end

until θ2 converges ;
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Algorithm 4.7: FD MIMO point-to-point: self-interference threshold.

Initialize: θ1,min = 0, θ1,max = Λmax ;
repeat

θ1 = (θ1,min + θ1,max) /2 ;
Find optimal θ2 for fixed θ1 using Algorithm 4.6 ;
Solve (4.26) using θ1 and θ2 for Q�

i ;
Apply the same bisection search updates as in Algorithm 4.6 on θ1,min and θ1,max ;

until θ1 converges ;

Apply Cholesky decomposition: Q�
i = LiL

†
i , i = 1, 2 ;

Solve for Vi = LiS
−1/2
i , i = 1, 2
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4.10 Illustrative Results

This section provides some illustrative results to compare the various FD MIMO point-to-

point algorithms and to demonstrate the effectiveness of the proposed FDP structure. For

all simulations, the PAs are assumed to have a 30 dB gain, the circulators are assumed to

have a 20 dB isolation and the variance of the inter-antenna self-interference is assumed

to be 20 dB below that of the direct self-interference paths which affect the signal-to-self-

interference ratio and self-interference-to-noise ratio.

Note that in terms of computational complexity, for all SCP algorithms, the main source

of algorithm complexity is in solving the convex sub-problems and not in terms of computing

the objective function approximations regardless of whether or not the FDP structure is

applied. As such, the complexity of computing the objective function approximations is

negligible.

4.10.1 FD MIMO Point-to-Point Simulation Results

For MIMO point-to-point systems, the HD optimization problem is convex, and hence, can

be easily solved using cvx. The noise was normalized such that E[ziz
†
i ] = IM (i = 1, 2).

Hence, the forward channels, H̃i (i = 1, 2), were generated as zero-mean complex Gaus-

sian random variables with a variance equal to the SNR. Conversely, the self-interference

channels, G̃i,a (i = 1, 2), were generated as zero-mean complex Gaussian random variables

with a variance equal to the self-Interference-to-Noise Ratio (INRin), where SNR/INRin

represents the Signal-to-self-Interference Ratio at the receiver input (SIRin) before self-

interference cancellation. The simulations assume M = 4, and that each node uses an

identical power (normalized to one).

Fig. 4.4 shows the FD-to-HD sum-rate ratio vs. α with SNR = 5 dB, SIRin = −40

dB and σ2
err = 1. The results show that for α < 15 dB the FDP-SCAMP algorithm (i.e.,

joint FDP) provides significant performance improvements over the other FD algorithms

and optimized HD. For α < 7 dB, the FDP-DC algorithm slightly outperforms the FDP-

SCAMP algorithm; however, the FDP-DC algorithm tends to have a negative slope with

respect to increasing α. This is caused by the fact that the DC approximation significantly

approximates the self-interference-plus-noise terms. As such, the FDP-DC algorithm leads

to an objective function which has a very poor approximation of the self-interference matrix,

which includes the auxiliary cancellation path; hence, the algorithm fails to take advantage
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of the potential performance benefits offered by the FDP structure and, instead, becomes

destructive as α increases. Conversely, while the FDP-SCAMP algorithm approximates all

of the direct, self-interference, and noise signals, the approximations are more spread out,

and hence, the FDP-SCAMP algorithm can take advantage of the FDP structure. Due to

the inaccuracy of the FDP-DC approximation, it was not included in the remainder of the

simulation results.

For α ≥ 15 dB, there is sufficient power available to cancel the self-interference, and

hence, by Theorem 4.1, the separate and joint (i.e., FDP-SCAMP) FDP algorithms have

the same performance. The FDP-SIT algorithm provides a sum-rate in between that of the

separate FDP and FDP-SCAMP algorithms; however, due to the bisection searches, the

FDP-SIT algorithm tends to require many iterations to converge. This will be discussed

further in Section 4.10.2. Fig. 4.4 also shows that for sufficiently-large α, the FDP-SIP

algorithm provides performance improvements over the SIP algorithm.

α

Fig. 4.4 MIMO point-to-point FD-to-HD sum-rate ratio vs. α with SNR =
5 dB, SIRin = −40 dB, σ2

err = 1.

Based on Fig. 4.4, it can be seen that the FDP-SCAMP algorithm exhibits some peaks

for α values between 6 and 12 dB. These peaks are due to the inaccurate channel knowledge.

Depending on the specific inaccurate channel knowledge, some values of alpha may be more
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optimal than others; however, it is impossible to know ahead of time which value of α will

be more favourable. However, Fig. 4.4 shows that, in general, the joint FDP-SCAMP

algorithm can provide significant sum-rate improvements over the separate FDP algorithm

when α is not sufficiently large.

Fig. 4.5 shows the FD-to-HD sum-rate ratio vs. α with SNR = 5 dB, SIRin = −40

dB and σ2
err = 1e-4 (i.e., ideal channel knowledge). This demonstrates the limitations of

the various algorithms due only to the amount of available cancellation power (i.e., α), as

opposed to Fig. 4.4 which shows the limitations due to both limited cancellation power and

channel knowledge imperfections. As shown in Fig. 4.5, with near-perfect channel knowl-

edge, for sufficiently large α, the algorithms achieve two times the sum-rate of optimized

HD, as expected. Note that the FDP-SIP algorithm fails to achieve two-times the opti-

mized HD sum-rate due to the fact that it solves a modified optimization problem which

is not directly related to the original non-convex optimization problem. As well, with ideal

channel knowledge, the peaks for the FDP-SCAMP algorithm for α between 6 and 12 dB,

seen in Fig. 4.4, do not occur.

α

Fig. 4.5 MIMO point-to-point FD-to-HD sum-rate ratio vs. α with SNR =
5 dB, SIRin = −40 dB, σ2

err = 1e-4.

Fig. 4.6(a) shows the FD-to-HD sum-rate ratio and FD sum-rate vs. SNR with SIRin =
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−40 dB, α = 15 dB, σ2
err = 1. The results indicate that for low SNR the separate FDP

algorithm provides identical performance to the joint FDP-SCAMP algorithm, but as the

SNR increases, the performance of the separate approach decreases rapidly. This is caused

by the fact that α and SIRin remain fixed. Hence, as the SNR increases, so too does the

INRin, but the value of α remains fixed. Therefore, the amount of cancellation power

remains fixed while the magnitude of the interference increases.

The joint FDP-SCAMP algorithm can offer a better trade-off between the forward

channel sum-rate maximization and the self-interference suppression by adjusting the power

allocated to the forward precoding and self-interference cancellation. Effectively trading-off

between the two is crucial, especially in the high SNR regime, where higher self-interference

is present since α and SIRin remain fixed.

Fig. 4.6(b) indicates that the achieved sum-rate of the separate FDP algorithm increases

with SNR for SNR < 10 dB, and then decreases with SNR for SNR > 10 dB. This is due to

the fact that as the SNR increases, the quality of the forward channel increases; however,

since α and SIRin remain fixed, the interference increases, as well. In particular, the separate

FDP algorithm fails to effectively cancel the strong self-interference and since the forward

precoder is designed separately, the achievable sum-rate suffers.

Fig. 4.7 shows the FD-to-HD sum-rate ratio vs. SIRin with SNR = 10 dB, α = 15 dB,

σ2
err = 1. The results show that when the SIRin is sufficiently large the separate FDP and

joint FDP-SCAMP algorithms offer the same sum-rate (i.e., when α = 15 dB is sufficiently

large to fully cancel the self-interference, as outlined in Theorem 4.1). Likewise, for smaller

values of SIRin, corresponding to transmission over greater distances, the benefits of the

joint FDP-SCAMP algorithm are significant over the separate FDP, FDP-SIP, FDP-SIT,

and the non-FDP approaches (i.e., SCAMP and DC). Intuitively, the joint FDP algorithm

allows for the forward paths to assist in the cancellation of the very strong self-interference

which results in significant performance improvements over the separate FDP algorithm.

Fig. 4.8 shows the FD-to-HD sum-rate ratio vs. σ2
err with SNR = 10 dB, SIRin = −45

dB, α = 18 dB. The results show that the performance of the FDP-based algorithms are

more heavily influenced by the effects of imperfect channel knowledge.

While the FDP structure allows for the potential to cancel more self-interference, as

σ2
err becomes large, inaccurate channel knowledge can lead to inefficient use of the FDP

structure, which may result in larger residual self-interference.
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(a) FD-to-HD sum-rate ratio

(b) Sum-rate (b/s/Hz)

Fig. 4.6 MIMO point-to-point sum-rate vs. SNR with SIRin = −40 dB, α
= 15 dB, σ2

err = 1.
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Fig. 4.7 MIMO point-to-point FD-to-HD sum-rate ratio vs. SIRin with SNR
= 10 dB, α = 15 dB, σ2

err = 1.

σ

Fig. 4.8 MIMO point-to-point FD-to-HD sum-rate ratio vs. σ2
err with SNR

= 10 dB, SIRin = −45 dB, α = 18 dB.



4 Full-Duplex MIMO Point-to-Point Precoding 84

4.10.2 FD MIMO Point-to-Point with 2x2 MIMO Measured Data

In this sub-section, the performances of the various algorithms using measured data are

compared. The elements of the forward channel matrix, Hi, and self-interference channel

matrix, Gi, for both nodes were obtained from the measurement of an experimental FD

2x2 MIMO point-to-point system, where the nodes were separated by 5 m. The measured

data represents one snap shot during the daytime (i.e., with students moving around) on

the 2.5 GHz carrier. The circulators used had a 20 dB isolation and a 0.2 dB insertion loss.

The vector network analyzer transmit power was -10 dBm, the radio frequency amplifier

gain was 14.76 dB, the switch insertion loss was 1.9 dB; hence, the transmit power at the

circulator input was +2.86 dBm.

As before, it was assumed that the self-interference measurements had an associated

zero-mean Gaussian estimation error with a variance, σ2
err. Fig. 4.9 shows the FD-to-HD

sum-rate ratio vs. α using the measured data with σ2
err = 1.

α

Fig. 4.9 MIMO point-to-point FD-to-HD sum-rate ratio vs. α using mea-
sured data on the 2.5 GHz carrier at a distance of 5 m with σ

2
err = 1.

The results show that for smaller values of α, the FDP-SIP and FDP-SIT algorithms

provide the best performance. When α is small, an increased sum-rate is achieved by

effectively trading-off between the maximization of the forward and minimization of the
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self-interference channels. As such, the FDP-SIP algorithm is able to more effectively

balance between them, due to the fact that it does not apply an approximation to its

objective function. Likewise, the bisection search of the FDP-SIT algorithm is able to

effectively adjust the self-interference threshold value to more effectively balance between

them. Conversely, while the joint FDP-SCAMP algorithm attempts to maximize its sum-

rate, it must overcome both the insufficient cancellation power (i.e., relatively small α) and

the fact that its objective function is approximated.

As α increases, the FDP-SCAMP algorithm can more effectively take advantage of the

additional cancellation power, and offers performance improvements over the other algo-

rithms. Clearly, when α is sufficiently large, the separate FDP and joint FDP-SCAMP

algorithms become equivalent (i.e., corresponding to α ≥ 20 dB, on average, in this sce-

nario).

It is interesting to note that based on the simulation results shown in Section 4.10.1,

the FDP-DC algorithm is a decreasing function of α, while based on the measured results

the FDP-DC algorithm is an increasing function of α. This could be due to the fact that

the measured data corresponds to transmission over a short distance (i.e., 5 m), while most

of the simulation results assume more pessimistic SIRin values.

A convergence comparison of the various algorithms with respect to the final converged

optimized HD sum-rate based on a particular realization is given in Fig. 4.10. The FDP-

SIP approach required very few iterations to converge (typically ranging from three to six)

and the FDP-SIT approach required many iterations for the nested bisection search to

converge.

The FDP-SIT approach exhibits a step-like convergence, which is caused by the nested

bisection search. In particular, for each fixed value of θ1, the bisection search for θ2 pro-

vides a monotonically increasing function until it begins to level-off; however, after each

additional outer-loop iteration, the bisection search for θ2 is re-initialized, often resulting in

a sudden drop in rate followed by a monotonic increase until it levels-off once again. Due to

the nested bisection search, the FDP-SIT approach requires many iterations to converge.

Table 4.1 shows the average number of iterations until convergence for each algorithm

(while varying α from 15 dB to 22 dB over multiple realizations). Note that objective

function convergence is specified in terms of the number of iterations required for the

algorithm’s objective function to converge, while sum-rate convergence is specified in terms

of the number of iterations required for the algorithm’s sum-rate to converge. In either case,
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Fig. 4.10 MIMO point-to-point convergence comparison using measured
data on the 2.5 GHz carrier at a distance of 5 m with α = 19 dB and σ

2
err = 1.

convergence was defined as when the percentage change between two consecutive iterations

was less than 1e-4 (e.g., for the objective function case: |(f (ν) − f (ν−1))/f (ν−1)| < 1e-4,

where f (ν) is the objective function value at the ν-th iteration).

The results show that the FDP-SIP algorithm converges much faster than the other

algorithms, on average. It is interesting to note that based on the 2x2 MIMO point-to-point

measured data on the 2.5 GHz carrier at a distance of 5 m, the FDP-SIP algorithm provides

a very competitive sum-rate while operating at a very low computational complexity and

requiring very few iterations to converge.

However, the results of Section 4.10.1 show that the FDP-SCAMP algorithm can pro-

vide significant performance gains over the FDP-SIP algorithm in many scenarios. More

measured data-based scenarios (e.g., at longer distances, more antennas) need to be ex-

plored to better compare the FDP-SIP and FDP-SCAMP algorithms and to see what types

of performance benefits the FDP-SCAMP can provide in those environments.
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Table 4.1 Average number of iterations until convergence for each algorithm
for the 2x2 MIMO point-to-point measured data on the 2.5 GHz carrier at a
distance of 5 m with σ

2
err = 1.

Algorithm
Average Number of Iterations

Objective Function Sum-Rate
Convergence Convergence

FDP-SCAMP 70.2 57.1
FDP-DC 219.8 19.3
FDP-SIP 3.8 3.8
FDP-SIT 290.0 289.6
SCAMP 37.6 38.8

DC 299.0 52.4

4.11 Concluding Remarks

This chapter presented a full-duplex precoding transceiver structure which applies joint

precoding to control the forward channel precoding and the self-interference cancellation.

The new MIMO-OFDM FDP structure allows for different algorithms and optimization

objectives to be developed rather than just the typical self-interference minimization. In

particular, separate and joint sum-rate maximization design algorithms are proposed. The

separate FDP algorithm is similar to a typical adaptive self-interference canceller, where

here the cancellation is done by precoding rather than a self-interference replica generator.

The joint FDP-SCAMP algorithm make use of sequential convex programming.

This chapter also presented the SIP and SIT (respectively, FDP-SIP and FDP-SIT)

algorithms for the FD MIMO point-to-point scenario. The SIP-based algorithms apply a

utility-function based approach to avoid the non-convex optimization problem. The SIT-

based approaches simplify the non-convex optimization problem by introducing a maximum

interference threshold constraint which convexifies the optimization problem. A nested

bisection search is performed as part of an outer-loop to optimize the choice of threshold

values.

It is shown both analytically and through extensive simulations that when there is suf-

ficient cancellation power at the transceiver (i.e., α is sufficiently large), the separate and

joint designs offer a similar sum-rate performance; however, when the amount of cancella-

tion power is limited, the joint approach can provide significant performance improvements.

The simulation results showed that FDP-SCAMP provides between 1.6 and 1.8 times
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the spectral efficiency of optimized HD for many of the tested FD MIMO point-to-point

scenarios. In conclusion, extensive simulation results using both standard channel models

and measured data show that the proposed FDP structure and corresponding algorithms

can provide very significant sum-rate improvements over optimized HD for MIMO point-

to-point systems.
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Chapter 5

Full-Duplex MIMO Point-to-Multi-Point

Precoding1

5.1 Introduction

Chapter 4 considers precoding design for FD MIMO point-to-point (i.e., FD SU-MIMO)

systems. This chapter focuses on precoding design for sum-rate maximization while con-

sidering the effects of residual self-interference for FD MIMO point-to-multi-point (i.e., FD

MU-MIMO) systems. The FD MIMO point-to-multi-point system presented in this chapter

is applicable to the cases of FD UEs, HD UEs, and mixed FD/HD UEs.

The FD MIMO point-to-multi-point system with HD UEs in this chapter generalizes the

system model used for precoding design in [67,68]. In particular, while the configuration is

similar, the environment is different and more realistic since we include the interference from

uplink transmission to downlink UEs. Furthermore, we consider the effects of imperfect

channel knowledge. The FD MIMO point-to-multi-point problem formulation leads to a

non-convex matrix-variable optimization problem, where we consider two SCP approaches

to develop efficient sum-rate maximization algorithms.

The first algorithm takes advantage of the DC structure of the non-convex optimization

problem by directly looking at the objective function decomposition. The form of the

original objective function naturally lends itself to this choice of DC decomposition. In

particular, the MIMO point-to-multi-point DC-based algorithm derived in this chapter

1Parts of Chapter 5 have been accepted to be published in the IEEE Transactions on Vehicular Tech-
nology [103] and submitted for publication to the IEEE Transactions on Wireless Communications [93].
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generalizes the joint precoding scheme presented in [67] and the FD MIMO point-to-point

DC-based algorithm presented in Chapter 4, which can be recovered as special cases.

The second algorithm called Sequential Convex Approximations for Matrix-variable

Programming (SCAMP) is developed for solving general non-convex matrix-variable op-

timization problems with logarithmic objective functions. In this chapter, we apply the

SCAMP algorithm to FD MIMO point-to-multi-point systems. The SCAMP algorithm

approximates the non-convex objective function by first applying a lower-bound and then

applying an upper-bound on one of the terms in the lower-bound. The result is a non-convex

approximation of the original non-convex objective function. First-order approximations

are applied to the non-convex terms of the approximation function in order to ensure that

the approximate objective function satisfies the Disciplined Convex Programming (DCP)

ruleset [104]. The FD MIMO point-to-point SCAMP algorithm presented in Chapter 4 can

be recovered as a special case.

Finally, analytical expressions for the loss in sum-rate incurred due to the effect of the

residual self-interference are derived. The residual self-interference results due to the effects

of imperfect channel knowledge.

The illustrative results in this chapter consider a wireless cellular environment. Chapter

4 only considers FD point-to-point systems, whereas in this chapter, we focus on FD point-

to-multi-point systems, where a FD BS services UEs which can operate in either HD or

FD mode. In particular, the point-to-multi-point system with a FD BS and HD UEs has

very practical applications, specifically to cellular systems. For such systems it is beneficial

to let the MSs operate in HD mode. Specifically, it is very rare that the MS uses the

whole frequency allocated to the system and requiring FD UEs provides significantly more

challenges from both a design and an implementation perspective. Conversely, it is quite

feasible to consider BSs operating in FD mode while using its antennas to serve various HD

users. The illustrative results demonstrate the effectiveness of the proposed SCP algorithms

for FD MIMO point-to-multi-point systems, while exploring the effects with and without

the FDP structure presented in Chapter 4.

5.2 System Model

This section presents the FD MIMO point-to-multi-point system model which is applicable

to FD MIMO point-to-multi-point systems with HD, FD, or mixed FD/HD UEs.
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5.2.1 Full-Duplex MIMO Point-to-Multi-Point System with HD UEs

The FD MU-MIMO system, shown in Fig. 5.1, is a point-to-multi-point system with a FD

MIMO BS serving a number of HD UEs. Let the number of downlink UEs be KDL and

the number of uplink UEs be KUL. It is assumed that each of the UEs are equipped with

NUE,T transmit and NUE,R receive antennas, respectively. Hence, it is assumed that the BS

is equipped with NBS,T = KDLNUE,R transmit and NBS,R = KULNUE,T receive antennas,

respectively.2

Fig. 5.1 Full-duplex MIMO point-to-multi-point system with HD UEs.

The received signal at the BS can be written as:

yBS =
∑
u∈IU

[HUL]uVUE,uxUE,u +
∑
k∈ID

GBSVBS,kxBS,k + zBS, (5.1)

where IU denotes the set of uplink UEs, ID denotes the set of downlink UEs, [HUL]u ∈

CNBS,R×NUE,T is the channel matrix from the u-th UE to the BS, VUE,u ∈ CNUE,T×NUE,T is

the precoding matrix for the u-th UE, xUE,u ∈ CNUE,T×1 vector of uplink data symbols for

the u-th UE, GBS ∈ C
NBS,R×NBS,T is the BS self-interference matrix, VBS,k ∈ C

NBS,T×NBS,T

is the precoding matrix for the k-th user at the BS, xBS,k ∈ CNBS,T×1 vector of transmitted

symbols from the BS to the k-th UE, and zBS ∈ CNBS,R×1 is the additive white Gaussian

noise.

2This assumption implies that the scheduling has been previously completed.
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Similarly, the received signal at the k-th UE (k ∈ ID) can be written as:

yk = [HDL]kVBS,kxBS,k +
∑

l∈ID\{k}

[HDL]kVBS,lxBS,l +
∑
u∈IU

[GUE]k,uVUE,uxUE,u + zk, (5.2)

where [HDL]k ∈ CNUE,R×NBS,T is the channel matrix from the BS to the k-th UE, [GUE]k,u ∈

CNUE,R×NUE,T is the interference matrix from the u-th uplink UE to the k-th downlink UE,

and zk ∈ CNUE,R×1 is the additive white Gaussian noise. Note that it is assumed that

k ∈ ID.

Hence, the downlink sum-rate can be written as:

RDL =
∑
k∈ID

log2

∣∣∣∣INUE,R +
(
Σk + C̃DL,k

)−1

CDL,k

∣∣∣∣ ,
where Σk = E[zkz

†
k], C̃DL,k and CDL,k are the downlink receive covariance matrices for the

interference and direct channels, respectively, defined as:

CDL,k = [HDL]kQBS,k[HDL]
†
k,

C̃DL,k =
∑

l∈ID\{k}

[HDL]kQBS,l[HDL]
†
k +

∑
u∈IU

[GUE]k,uQUE,u[GUE]
†
k,u,

where the transmit covariance matrices QBS,k and QUE,u are defined as:

QBS,k = VBS,kSBS,kV
†
BS,k, k ∈ ID,

QUE,u = VUE,uSUE,uV
†
UE,u, u ∈ IU ,

where SBS,k = E[xBS,kx
†
BS,k] and SUE,u = E[xUE,ux

†
UE,u]. Similarly, the uplink sum-rate can

be written as:

RUL = log2

∣∣∣∣INBS,R
+
(
ΣBS + C̃UL

)−1

CUL

∣∣∣∣ ,
where ΣBS = E[zBSz

†
BS], C̃UL and CUL are the uplink receive covariance matrices for the
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interference and direct channels, respectively, defined as:

CUL =
∑
u∈IU

[HUL]uQUE,u[HUL]
†
u,

C̃UL =
∑
k∈ID

GBSQBS,kG
†
BS.

The self-interference channels, GBS and GUE, are assumed to be estimated, while the

forward channels, HDL and HUL, are assumed to be known perfectly, in order to more easily

compare with HD transmission. More specifically, it is assumed that:

GBS = ĜBS +ΔGBS,

GUE = ĜUE +ΔGUE,

where GBS and GUE are the true channel matrices, ĜBS and ĜUE are the estimated channel

matrices, and ΔGBS and ΔGUE are the channel estimation error matrices, with zero mean

and variance σ2
err. Similarly, R̂DL and R̂UL are the estimates of RDL and RUL and are defined

as:

R̂DL =
∑
k∈ID

log2

∣∣∣∣INUE,R
+
(
Σk + ĈDL,k

)−1

CDL,k

∣∣∣∣ ,
R̂UL = log2

∣∣∣∣INBS,R
+
(
ΣBS + ĈUL

)−1

CUL

∣∣∣∣ ,
where ĈDL,k and ĈUL are the estimates of the covariance matrices C̃DL,k and C̃UL, respec-

tively, and are given by:

ĈDL,k =
∑

l∈ID\{k}

[HDL]kQBS,l[HDL]
†
k +

∑
u∈IU

[ĜUE]k,uQUE,u[ĜUE]
†
k,u,

ĈUL =
∑
k∈ID

ĜBSQBS,kĜ
†
BS.
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The non-convex sum-rate maximization problem can be written as:

max
VBS,k,VUE,u,
k∈ID, u∈IU

R̂DL + R̂UL

subject to: Tr
[
VUE,uSUE,uV

†
UE,u

]
≤ Pmax,u, u ∈ IU∑

k∈ID

Tr
[
VBS,kSBS,kV

†
BS,k

]
≤ Pmax,BS.

(5.3)

5.2.2 Full-Duplex MIMO Point-to-Multi-Point System with FD UEs

The FD MIMO point-to-multi-point system model with FD UEs is shown in Fig. 5.2. In

this system, a FD BS services K FD UEs. The received signals at the BS and UEs are

identical to that of (5.1) and (5.2), respectively, when IU = ID = {1, . . . , K}. As such, the

FD MIMO point-to-multi-point system with FD UEs can be recovered as a special case of

the FD MIMO point-to-multi-point with HD UEs derivations provided in this chapter.

Furthermore, a system where the BS operates in FD-mode while some UEs operate

in HD-mode and some UEs operate in FD-mode (i.e., a mixed HD/FD UE scenario) can

also be recovered as a special case of the FD MIMO point-to-multi-point with HD UEs

derivations provided in this chapter, where each FD UE is an element of the set IU ∩ ID.

Fig. 5.2 Full-duplex MIMO point-to-multi-point system model with FD
UEs.
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5.2.3 Full-Duplex Precoding for MIMO Point-to-Multi-Point Systems

The FD MIMO point-to-multi-point system model using the FDP structure is very sim-

ilar to the system model in Section 5.2.1, where the main differences are in terms of the

dimensionality of the matrices involved. It is also assumed that the BS is equipped with

M = NBS,R = NBS,T physical antennas, where M = KDLNUE,R = KULNUE,T .

Hence, when using the FDP structure, [HUL]u ∈ CM×NUE,T , VBS,k ∈ C2M×M is the FDP

matrix for the k-th user at the BS, and GBS ∈ CM×2M is the FDP BS self-interference

matrix which, as in Chapter 4, has the following form:

GBS =
[
G̃BS,a αIM

]
,

where G̃BS,a ∈ CM×M and it is assumed that the paths are numbered such that the first

M paths correspond to forward transmission, while the second M paths correspond to the

auxiliary paths (i.e., the paths which are not transmitted). As in Section 4.2.4, G̃BS,a is

assumed to be estimated while α is assumed to be known perfectly since its exact effects

can be measured off-line.

Similarly, [HDL]k ∈ CM×2M is the FDP channel matrix from the BS to the k-th UE

which has the following form:

[HDL]k =
[
[H̃DL]k 0M

]
,

where [H̃DL]k ∈ CM×M since it is assumed that the paths are numbered such that the first

M paths correspond to forward transmission, while the second M paths correspond to the

auxiliary paths (i.e., the paths which are not transmitted).

The transmission equations and sum-rate expressions are identical to those in Section

5.2.1 with these new definitions of [HDL]k (k ∈ ID) and GBS (with the corresponding

appropriately sized matrices and vectors).
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5.2.4 Full-Duplex MIMO Point-to-Multi-Point: Sum-Rate Maximization

Optimization problem (5.3) can be re-written as:

max
QBS,k,QUE,u,
k∈ID, u∈IU

R̂DL + R̂UL (5.4a)

subject to: Tr [QUE,u] ≤ Pmax,u, u ∈ IU , (5.4b)∑
k∈ID

Tr [QBS,k] ≤ Pmax,BS, (5.4c)

QBS,k � 0, k ∈ ID, (5.4d)

QUE,u � 0, u ∈ IU , (5.4e)

where the constraints on the transmit covariance matrices (i.e., (5.4d)-(5.4e)) to be posi-

tive semi-definite ensure the feasibility of the solution. Once optimization problem (5.4) is

solved, the corresponding precoding matrices can be recovered using the Cholesky decom-

position. In particular, QUE,u = LUE,uL
†
UE,u, QBS,k = LBS,kL

†
BS,k, and hence, the precoding

matrices can be computed as:

VUE,u = LUE,uS
−1/2
UE,u, (5.5)

VBS,k = LBS,kS
−1/2
BS,k . (5.6)

This section presents the DC-based and SCAMP SCP algorithms for FD MIMO point-

to-multi-point systems. As discussed in Section 5.2.2, the derivation applies to the cases of

FD MIMO point-to-multi-point systems with HD UEs, FD UEs, and mixed FD/HD UEs.

As well, the algorithms also generalize the DC-based and SCAMP algorithms for the FD

MIMO point-to-point system, presented in Chapter 4, which can be recovered as a special

case when ID = IU = {1}.

5.3 FD MIMO Point-to-Multi-Point: DC-Based Algorithm

This section presents the DC-based SCP algorithm for FD MIMO point-to-multi-point

systems. As discussed in Section 5.2.2, the derivation applies to the cases of MIMO point-

to-multi-point systems with HD UEs, FD UEs, and mixed FD/HD UEs. As well, the

algorithm also generalizes the DC-based algorithm for the FDMIMO point-to-point system,
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presented in Chapter 4, which can be recovered as a special case when ID = IU = {1}.

The DC-based algorithm applies SCP by writing the non-convex optimization problem

as a DC (i.e., f = g−h, where g and h are convex) and applying a first-order approximation

to h to make the objective function convex. The objective function lends itself naturally

to a particular choice of DC decomposition. First, we re-write the objective function as a

minimization problem:

min
QBS,k,QUE,u,
k∈ID, u∈IU

f

subject to: (5.4b)− (5.4e)

(5.7)

where f = −R̂DL − R̂UL and where R̂DL and R̂UL are the estimates of RDL and RUL and

are defined in Section 5.2.1.

f is a non-convex function but can be written as a difference of convex functions by

writing −R̂DL and −R̂UL as a difference of convex functions. −R̂DL can be re-written as:

−R̂DL =
∑
k∈ID

log2

∣∣∣Σk + ĈDL,k

∣∣∣− ∑
k∈ID

log2

∣∣∣Σk + ĈDL,k +CDL,k

∣∣∣
= gDL − hDL

where gDL and hDL are defined as follows:

gDL= −
∑
k∈ID

log2

∣∣∣∣∣Σk +
∑
l∈ID

[HDL]kQBS,l[HDL]
†
k +

∑
u∈IU

[ĜUE]k,uQUE,u[ĜUE]
†
k,u

∣∣∣∣∣ ,
hDL = −

∑
k∈ID

log2

∣∣∣∣∣∣Σk +
∑

l∈ID\{k}

[HDL]kQBS,l[HDL]
†
k +

∑
u∈IU

[ĜUE]k,uQUE,u[ĜUE]
†
k,u

∣∣∣∣∣∣ ,
where both gDL and hDL are convex (since log |X| is concave for X � 0, |X| 	= 0); however,

their difference, −R̂DL, is not. Similarly, −R̂UL can be re-written as:

−R̂UL = gUL − hUL,
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where gUL and hUL are defined as follows:

gUL = − log2

∣∣∣∣∣ΣBS +
∑
l∈ID

ĜBSQBS,lĜ
†
BS +

∑
u∈IU

[HUL]uQUE,u[HUL]
†
u

∣∣∣∣∣
hUL = − log2

∣∣∣∣∣ΣBS +
∑
k∈ID

ĜBSQBS,kĜ
†
BS

∣∣∣∣∣ ,
where both gUL and hUL are convex; however, their difference, −R̂UL, is not.

Hence, f can be written as a difference of convex functions, f = g − h, where

g = gDL + gUL (5.8)

h = hDL + hUL. (5.9)

On the ν-th iteration, the DC-based algorithm approximates f by f̃MU−DC(ν) = g−h̃(ν),

where h̃(ν) is the first-order Taylor’s series approximation [105, p. 69] of h corresponding to

the ν-th iteration. The first-order Taylor’s series approximation for the function log2 |A+X|

is given by (5.10):

log2 |A+X| ≥ log2 |A+X0|+
1

ln(2)
Tr

[
(A+X0)

−1 (X−X0)
]
. (5.10)

Hence, h̃(ν) can be written as:

h̃(ν) = h̃DL(ν) + h̃UL(ν), (5.11)

where the expressions for h̃DL(ν) and h̃UL(ν) are obtained by applying (5.10) to hDL and

hUL, respectively, centered around the point
(
Q

(ν)
BS,k,Q

(ν)
UE,u

)
for k ∈ ID and u ∈ IU , where

the superscript (ν) refers to the covariance matrix associated with the ν-th iteration, and
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are given by:

h̃DL(ν) =
∑
k∈ID

Tr

[
(ΩDL,k(ν))

−1

ln(2)

∑
u∈IU

[ĜUE]k,u

(
QUE,u−Q

(ν)
UE,u

)
[ĜUE]

†
k,u

]

+
∑
k∈ID

Tr

⎡
⎣(ΩDL,k(ν))

−1

ln(2)

∑
l∈ID\{k}

[HDL]k

(
QBS,l −Q

(ν)
BS,l

)
[HDL]

†
k

⎤
⎦−

∑
k∈ID

log2 |ΩDL,k(ν)| ,

h̃UL(ν) = − log2 |ΩUL(ν)|− Tr

[
(ΩUL(ν))

−1

ln(2)

∑
k∈ID

ĜBS

(
QBS,k−Q

(ν)
BS,k

)
Ĝ†

BS

]
,

and where ΩDL,k(ν) and ΩUL(ν) are given by:

ΩDL,k(ν) = Σk +
∑

l∈ID\{k}

[HDL]kQ
(ν)
BS,l[HDL]

†
k +

∑
u∈IU

[ĜUE]k,uQ
(ν)
UE,u[ĜUE]

†
k,u,

ΩUL(ν) = ΣBS +
∑
l∈ID

ĜBSQ
(ν)
BS,lĜ

†
BS.

f̃MU−DC(ν) is a convex function since it is the difference between a convex function, g,

and an affine function, h̃(ν). As such, the non-convex optimization problem (5.7) can be

locally approximated, around the point
(
Q

(ν)
BS,k,Q

(ν)
UE,u

)
for k ∈ ID and u ∈ IU , by convex

optimization problem (5.12).

min
QBS,k,QUE,u,
k∈ID, u∈IU

f̃MU−DC(ν)

subject to: (5.4b)− (5.4e)

(5.12)

The DC-based algorithm is described in Algorithm 5.1. A sequence of convex semi-

definite programming optimization problems are solved where the objective function is

updated for each iteration to locally approximate the original non-convex optimization

problem. Note that each convex sub-problem can be solved using cvx [98,99]. Convergence

to a local optimum is guaranteed since after each iteration the objective function is non-

increasing and the optimization problem is bounded below (i.e., the negative of the total

system sum-rate).
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Algorithm 5.1: DC-based algorithm.

Randomly initialize Q
(0)
BS,k, k ∈ ID ;

Randomly initialize Q
(0)
UE,u, u ∈ IU ;

Initialize ν = 0 ;
repeat

Update h̃ using (5.11), around the point
(
Q

(ν)
BS,k,Q

(ν)
UE,u

)
, k ∈ ID, u ∈ IU ;

Update f̃MU−DC(ν) = g − h̃(ν) ;

Solve (5.12) for
(
Q�

BS,k,Q
�
UE,u

)
, k ∈ ID, u ∈ IU ;

ν = ν + 1 ;

Update Q
(ν)
UE,u = Q�

UE,u, u ∈ IU ;

Update Q
(ν)
BS,k = Q�

BS,k, k ∈ ID ;

until f̃MU−DC(ν) converges ;

Apply Cholesky decomposition: Q�
UE,u = LUE,uL

†
UE,u ;

Apply Cholesky decomposition: Q�
BS,k = LBS,kL

†
BS,k ;

Solve for VUE,u using (5.5), u ∈ IU ;
Solve for VBS,k using (5.6), k ∈ ID ;

5.3.1 FD MIMO Point-to-Multi-Point: SCAMP Algorithm

This section presents a scheme developed for solving general non-convex matrix-variable

optimization problems with logarithmic objective functions applied to the FD MIMO point-

to-multi-point scenario. The SCAMP algorithm results in an alternate objective function

approximation to the DC-based algorithm. As discussed in Section 5.2.2, the derivation

applies to the cases of MIMO point-to-multi-point systems with HD UEs, FD UEs, and

mixed FD/HD UEs. As well, the algorithm also generalizes the SCAMP algorithm for the

FD MIMO point-to-point system, presented in Chapter 4, which can be recovered as a

special case when ID = IU = {1}.

The SCAMP approximation is derived by combining the first-order Taylor’s approxi-

mations [105, p. 69] of the functions log2 |A+X|, given by (5.10), and log2 |X|, which can

be expressed as:

log2 |X| ≥ log2 |X0|+
1

ln(2)
Tr

[
X−1

0 (X−X0)
]
. (5.13)
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The inverse of a sum of two matrices can be written as [106]:

(A+X0)
−1 = X−1

0 −X−1
0

(
I+AX−1

0

)−1
AX−1

0 . (5.14)

Hence, substituting (5.14) into (5.10) gives:

log2 |A+X| ≥ log2 |A+X0|+
1

ln(2)
Tr

[
X−1

0 (X−X0)
]

− 1
ln(2)

Tr
[
X−1

0

(
I+AX−1

0

)−1
AX−1

0 (X−X0)
]
.

(5.15)

Next, by substituting for the common term Tr
[
X−1

0 (X−X0)
]
, (5.13) and (5.15) can

be combined to give:

log2 |A+X| ≈ log2 |X| − 1
ln(2)

Tr [ΦX] + β, (5.16)

where Φ and β are given by:

Φ = X−1
0

(
I+AX−1

0

)−1
AX−1

0 , (5.17)

β = log2|A+X0|+
1

ln(2)
Tr

[
X−1

0

(
I+AX−1

0

)−1
A
]
− log2|X0| . (5.18)

The following definitions will assist in the derivation of the FD MIMO point-to-multi-

point SCAMP algorithm.

ΥDL,k = Σk + ĈDL,k, (5.19)

ΥUL = ΣBS + ĈUL, (5.20)

where ĈDL,k and ĈUL are defined as in Section 5.2.1 to be the estimates of C̃DL,k and C̃UL,

respectively.

As well, Υ
(ν)
DL,k, Ĉ

(ν)
DL,k, C

(ν)
DL,k, Υ

(ν)
UL, Ĉ

(ν)
UL, and C

(ν)
UL refer to each respective expression

evaluated at the point
(
Q

(ν)
BS,k,Q

(ν)
UE,u

)
for k ∈ ID and u ∈ IU , where ν refers to the

covariance matrix associated with the ν-th iteration.

On the ν-th iteration, applying the SCAMP approximation, (5.16), to R̂DL gives the



5 Full-Duplex MIMO Point-to-Multi-Point Precoding 102

following equation:

−R̂DL ≈
∑
k∈ID

{
ηDL,k + ϕDL,k +

1
ln(2)

tDL,k − βDL,k

}
,

where βDL,k is defined as in (5.18) with A = I and X0 =
(
Υ

(ν)
DL,k

)−1

C
(ν)
DL,k. As well, ηDL,k,

ϕDL,k, and tDL,k are defined as follows:

ηDL,k = − log2 |CDL,k| , (5.21)

ϕDL,k = log2 |ΥDL,k| , (5.22)

tDL,k = Tr

[
ΦDL,kΥ

−1
DL,kCDL,k

]
, (5.23)

where ΦDL,k is given by (5.17) with A = I and X0 =
(
Υ

(ν)
DL,k

)−1

C
(ν)
DL,k.

In order to ensure that the convex approximation to −R̂DL satisfies the DCP ruleset

[104], on the ν-th iteration, ϕDL,k and tDL,k were replaced by their respective first-order

Taylor’s series approximations. The Taylor’s series approximations applied are given by

(5.10) for ϕDL,k, and by (5.24) for tDL,k.

Tr
[
AX−1Y

]
≈ Tr

[
AX−1

0 Y0

]
+ Tr

[(
AX−1

0

)†
(Y−Y0)

]
− Tr

[(
X−1

0 Y0AX−1
0

)†
(X−X0)

]
,

(5.24)

which can be computed using the concept of matrix differentials [100, 101].

Hence, the Taylor’s series approximations of ϕDL,k and tDL,k, on the ν-th iteration,

centered around the point
(
Q

(ν)
BS,k,Q

(ν)
UE,u

)
, for k ∈ ID and u ∈ IU , are denoted by ϕ̃DL,k(ν)

and t̃DL,k(ν) and are given by (5.25) and (5.26), respectively.

ϕ̃DL,k(ν) =log2

∣∣∣Υ(ν)
DL,k

∣∣∣+Tr

⎡
⎢⎣
(
Υ

(ν)
DL,k

)−1

ln(2)

(
ĈDL,k−Ĉ

(ν)
DL,k

)⎤⎥⎦, (5.25)

t̃DL,k(ν) = t
(ν)
DL,k + Tr

[(
ΦDL,k

(
Υ

(ν)
DL,k

)−1
)†(

CDL,k −C
(ν)
DL,k

)]

− Tr

[((
Υ

(ν)
DL,k

)−1

C
(ν)
DL,kΦDL,k

(
Υ

(ν)
DL,k

)−1
)† (

ĈDL,k − Ĉ
(ν)
DL,k

)]
, (5.26)
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where t
(ν)
DL,k refers to (5.23) evaluated at the point

(
Q

(ν)
BS,k,Q

(ν)
UE,u

)
, for k ∈ ID and u ∈ IU .

Hence, on the ν-th iteration, the DCP approximation to R̂DL, denoted by R̃DL(ν), is

given by:

−R̃DL(ν)=
∑
k∈ID

{
ηDL,k + ϕ̃DL,k(ν) +

1
ln(2)

t̃DL,k(ν)− βDL,k

}
, (5.27)

where ηDL,k is given by (5.21), ϕ̃DL,k(ν) is given by (5.25), t̃DL,k(ν) is given by (5.26), and

βDL,k is given by (5.18) with A = I and X0 =
(
Υ

(ν)
DL,k

)−1

C
(ν)
DL,k.

Similar to the downlink case, on the ν-th iteration, applying the SCAMP approximation,

(5.16), to R̂UL gives the following equation:

−R̂UL ≈ ηUL + ϕUL +
1

ln(2)
tUL − βUL,

where βUL is defined as in (5.18) with A = I and X0 =
(
Υ

(ν)
UL

)−1

C
(ν)
UL. As well, ηUL, ϕUL,

and tUL are defined as follows:

ηUL = − log2 |CUL| , (5.28)

ϕUL = log2 |ΥUL| , (5.29)

tUL = Tr
[
ΦULΥ

−1
ULCUL

]
, (5.30)

where ΦUL is given by (5.17) with A = I and X0 =
(
Υ

(ν)
UL

)−1

C
(ν)
UL.

Similar to the downlink case, on the ν-th iteration, in order to ensure that the con-

vex approximation to R̂UL satisfies the DCP ruleset, ϕUL and tUL were replaced by their

respective first-order Taylor’s series approximations.

ϕ̃UL(ν)= log2

∣∣∣Υ(ν)
UL

∣∣∣+ 1
ln(2)

Tr

[(
Υ

(ν)
UL

)−1(
ĈUL − Ĉ

(ν)
UL

)]
, (5.31)

t̃UL(ν) = t
(ν)
UL + Tr

[(
ΦUL

(
Υ

(ν)
UL

)−1
)†(

CUL −C
(ν)
UL

)]
(5.32)

− Tr

[((
Υ

(ν)
UL

)−1

C
(ν)
ULΦUL

(
Υ

(ν)
UL

)−1
)†(

ĈUL − Ĉ
(ν)
UL

)]
,

where t
(ν)
UL is given by (5.30) evaluated at the point

(
Q

(ν)
BS,k,Q

(ν)
UE,u

)
, k ∈ ID, u ∈ IU .
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Hence, on the ν-th iteration, the DCP approximation to R̂UL, denoted by R̃UL(ν), is

given by:

−R̃UL(ν) = ηUL + ϕ̃UL(ν) +
1

ln(2)
t̃UL(ν)− βUL, (5.33)

where ηUL is given by (5.28), ϕ̃UL(ν) is given by (5.31), t̃UL(ν) is given by (5.32), and βUL

is given by (5.18) with A = I and X0 =
(
Υ

(ν)
UL

)−1

C
(ν)
UL.

Note that the SCAMP optimization problem can be written as:

min
QBS,k,QUE,u,
k∈ID, u∈IU

f̃MU−SCAMP(ν)

subject to: (5.4b)− (5.4e),

(5.34)

where f̃MU−SCAMP(ν) = −R̃DL(ν) − R̃UL(ν). Note that optimization problems (5.12) and

(5.34) only differ in the selection of their convex objective function approximations (i.e.,

f̃MU−DC(ν) and f̃MU−SCAMP(ν), respectively).

By construction, optimization problem (5.34) is convex and satisfies the DCP ruleset.

The SCAMP algorithm is described in Algorithm 5.2. As with the DC-based algorithm,

optimization problem (5.34) can be solved using cvx [98, 99]. As well, it can be seen that

the SCAMP algorithm converges to a locally optimal point of the original non-convex

optimization problem by using a similar argument to that of Section 5.3.

5.4 Effect of Estimation Error on the Sum-Rate

This section investigates the effect of channel estimation error on the achievable sum-rate.

The derivation is provided in Appendix C.1. In particular, it provides analytical results

to express the loss incurred due to inaccurate channel knowledge resulting in residual self-

interference.

Let the superscript � refer to the particular matrices corresponding to the transmit

covariance matrices
(
Q�

BS,k,Q
�
UE,u

)
, for k ∈ ID and u ∈ IU . Then, the true sum-rate

corresponding to the transmit covariance matrices
(
Q�

BS,k,Q
�
UE,u

)
, for k ∈ ID and u ∈ IU

can be written as:

R� = R̂� +ΔR,

where ΔR is the loss incurred due to inaccurate channel knowledge resulting in residual
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Algorithm 5.2: SCAMP algorithm.

Randomly initialize Q
(ν)
BS,k, k ∈ ID ;

Randomly initialize Q
(ν)
UE,u, u ∈ IU ;

Initialize ν = 0 ;
repeat

Update Υ
(ν)
DL,k, Ĉ

(ν)
DL,k, C

(ν)
DL,k, Υ

(ν)
UL, Ĉ

(ν)
UL, and C

(ν)
UL centered around the point(

Q
(ν)
BS,k,Q

(ν)
UE,u

)
, k ∈ ID, u ∈ IU ;

Update ϕ̃DL,k(ν) using (5.25), t̃DL,k(ν) using (5.26), ϕ̃UL(ν) using (5.31), and
t̃UL(ν) using (5.32). ;

Update −R̃DL(ν) using (5.27) and −R̃UL(ν) using (5.33) ;

Solve (5.34) for
(
Q�

BS,k,Q
�
UE,u

)
, k ∈ ID, u ∈ IU ;

ν = ν + 1 ;

Update Q
(ν)
UE,u = Q�

UE,u, u ∈ IU ;

Update Q
(ν)
BS,k = Q�

BS,k, k ∈ ID ;

until f̃MU−SCAMP(ν) converges ;

Apply Cholesky decomposition: Q�
UE,u = LUE,uL

†
UE,u ;

Apply Cholesky decomposition: Q�
BS,k = LBS,kL

†
BS,k ;

Solve for VUE,u using (5.5), u ∈ IU ;
Solve for VBS,k using (5.6), k ∈ ID ;

self-interference derived in Appendix C.1 to be:

ΔR = ΔRUL +
∑
k∈ID

ΔRDL,k,

where ΔRUL and ΔRDL,k are given by:

ΔRUL = log2

∣∣∣∣INBS,R
−Ψ−1

UL

(
INBS,R

+ΔC̃�
ULΥ

−1
UL

)−1

ΔC̃�
ULΥ

−1
ULC

�
UL

∣∣∣∣ ,
ΔRDL,k = log2

∣∣∣∣INUE,R
−Ψ−1

DL,k

(
INUE,R

+ΔC̃�
DL,kΥ

−1
DL,k

)−1

ΔC̃�
DL,kΥ

−1
DL,kC

�
DL,k

∣∣∣∣ ,
where ΨUL = ΥUL

(
I+Υ−1

ULC
�
UL

)
, ΥUL = ΣBS + Ĉ�

UL, ΨDL,k = ΥDL,k

(
I+Υ−1

DL,kC
�
DL,k

)
,

and ΥDL,k = Σk + Ĉ�
DL,k.
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5.5 Illustrative Results

This section provides some illustrative results for FD MIMO point-to-multi-point systems

with HD UEs. In particular, Section 5.5.1 provides some simulation results that compare

the SCP algorithms without using the FDP structure. Section 5.5.2 provides simulation

and environmental comparisons between the FD MIMO point-to-point and point-to-multi-

point environments. Finally, Section 5.5.3 demonstrates the potential benefits of including

the FDP structure for FD MIMO point-to-multi-point systems.

As in Chapter 4, for all SCP algorithms, the main source of algorithm complexity is in

solving the convex sub-problems, and as such, the complexity of computing the objective

function approximations is negligible.

5.5.1 FD MIMO Point-to-Multi-Point without FDP Structure

This sub-section compares the performance of the DC-based and SCAMP algorithms with-

out using the FDP structure to the optimized HD and the joint design proposed in [67]

for the MIMO point-to-multi-point system with HD UEs shown in Fig. 5.1. Note that

for the MIMO point-to-multi-point system with HD UEs, the HD optimization prob-

lem is non-convex and can be solved by using SCP. The noise was normalized such that

E[zBSz
†
BS] = INR,BS

and E[zkz
†
k] = INR,UE

, for k ∈ ID, and HDL and HUL were generated

as zero-mean complex Gaussian random variables with a variance equal to the SNR. Con-

versely, the self-interference channel, GBS, was generated as a zero-mean complex Gaussian

random variable with a variance equal to the self-Interference-to-Noise Ratio at the Base

Station (INRBS,in), where SNR/INRBS,in represents the Signal-to-self-Interference Ratio at

the BS receiver input (SIRBS,in) before interference cancellation.

Similarly, [GUE]k,u for k ∈ ID, u ∈ IU was generated as a zero-mean complex Gaussian

random variable with a variance equal to the co-channel Interference-to-Noise Ratio at

the UE (INRUE,in), where SNR/INRUE,in represents the Signal-to-co-channel-Interference

Ratio at the UE receiver input (SIRUE,in) before interference cancellation. Note that since

the BS antennas are co-located, they suffer from very strong self-interference, whereas

since the downlink and uplink UEs are geographically separated, they suffer from a weaker

interference. Hence, INRBS,in > INRUE,in.

The simulations assume Kdl = Kul = 3, NUE,T = NUE,R = 2, NBS,R = NBS,T = 6,

Pmax,u = 23 dBm for all u ∈ IU , and Pmax,BS = 30 dBm in accordance with the 3GPP LTE
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(Release 9) simulation baseline parameters for a picocell deployment [107, p.59].

Fig. 5.3 shows the FD-to-HD sum-rate ratio vs. SNR with SIRBS,in = −15 dB, SIRUE,in =

−5 dB, and σ2
err = 1. The results show that the SCAMP algorithm can offer 15–25%

sum-rate improvements over optimized HD for a wide-range of realistic SNR values. In

particular, it is interesting to note that the SCAMP algorithm outperforms the DC-based

algorithm for all SNR values.

Fig. 5.3 FD-to-HD sum-rate ratio vs. SNR with SIRBS,in = −15 dB,
SIRUE,in = −5 dB, and σ

2
err = 1.

Fig. 5.4 shows the FD-to-HD sum-rate ratio vs. SIRBS,in with SNR = 5 dB, SIRUE,in =

−5 dB, and σ2
err = 1. The results show that the SCAMP algorithm provides about 20–

30% sum-rate improvements over optimized HD for a wide-range of SIRBS,in values. In

particular, for SIRBS,in > −25 dB, the SCAMP algorithm provides significantly better

sum-rate than the other candidate SCP algorithms. Furthermore, with SIRBS,in = −40 dB,

the SCAMP algorithm still provides performance improvements over the optimized HD

approach.

Fig. 5.5 shows the FD-to-HD sum-rate ratio vs. σ2
err with SNR = 5 dB, SIRBS,in = −20

dB, and SIRUE,in = −5 dB. The results show that the SCAMP algorithm is capable of

achieving more than 20% sum-rate improvements over optimized HD for some reasonable
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Fig. 5.4 FD-to-HD sum-rate ratio vs. SIRBS,in with SNR = 5 dB, SIRUE,in =
−5 dB, and σ

2
err = 1.

values of σ2
err. In addition, when σ2

err = 10, corresponding to large inaccuracies in the

channel knowledge, the SCAMP algorithm was still capable of providing 5% performance

improvements over optimized HD.

Fig. 5.6 shows the convergence of the SCP algorithms compared to the converged op-

timized HD value for two different realizations with SNR = 5 dB, SIRBS,in = −20 dB,

SIRUE,in = −5 dB, and σ2
err = 1. It is important to note that the optimized HD also

requires multiple iterations; however, here we only show the final converged value of the

optimized HD approach to highlight the convergence of the FD SCP-based algorithms.

The results show that the DC-based algorithm tends to initially outperform the SCAMP

algorithm but, in general, the SCAMP algorithm outperforms the DC-based algorithm at

convergence. As well, it was observed that the SCP algorithms periodically have a step-

like convergence where the algorithm will level-off for some iterations before increasing

significantly and beginning to level-off again. This is due to the internal convex optimization

solver, since occasionally cvx [98,99] will fail to find an optimal point or will return a point

which is considered an inaccurate solution; however, after slightly tuning the initial points

to the convex solver (i.e., after several more iterations), an optimal point can be found,
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σ

Fig. 5.5 FD-to-HD sum-rate ratio vs. σ2
err with SNR = 5 dB, SIRBS,in = −20

dB, and SIRUE,in = −5 dB.

resulting in a sudden sum-rate increase and the step-like convergence.
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(a) Realization 1

(b) Realization 2

Fig. 5.6 Convergence comparison for SNR = 5 dB, SIRBS,in = −20 dB,
SIRUE,in = −5 dB, and σ

2
err = 1.



5 Full-Duplex MIMO Point-to-Multi-Point Precoding 111

5.5.2 Comparison with FD MIMO Point-to-Point

It is interesting to note that in Section 5.5.1, for each FD MIMO point-to-multi-point

scenario tested, the SCAMP algorithm outperformed the DC-based algorithm. However,

results in Chapter 4 without using the FDP structure indicate that the DC-based algorithm

offers a better sum-rate than the SCAMP algorithm for the FD MIMO point-to-point

scenario.

This is due to the method by which the DC-based and SCAMP algorithms approximate

their respective objective functions. In particular, the DC-based algorithm only approx-

imates the interference-plus-noise terms, and hence, has a perfect approximation of the

forward channels. Conversely, the SCAMP approach approximates each of the forward,

interference, and noise terms but it spreads out the approximations over multiple terms.

As such, for FD MIMO point-to-point systems, where there is fewer sources of interference

(self or otherwise), an accurate forward channel is more important, leading to superior

performance for the DC-based algorithm (i.e., the DC-based algorithm better approxi-

mates the FD MIMO point-to-point system than the SCAMP algorithm). However, for

FD MIMO point-to-multi-point systems, there are many forms of interference (e.g., many

self-interference terms and uplink co-channel interference) which results in the SCAMP

algorithm better-approximating the FD MIMO point-to-multi-point environment than the

DC-based algorithm.

Note that when applying the FDP structure for FD MIMO point-to-point systems, the

FDP-SCAMP algorithm outperformed the FDP-DC algorithm. The potential benefit of

the FDP structure is embedded in the modified self-interference matrix, and as such, the

SCAMP algorithm is better suited to leverage its potential. This observation can be further

extended to FD MIMO point-to-multi-point systems with the FDP structure, and hence,

the FDP-DC algorithm was omitted from the simulations provided in Section 5.5.3.

5.5.3 MIMO Point-to-Multi-Point with FDP Structure

This sub-section provides some illustrative results to demonstrate the effectiveness of the

proposed FDP structure for FD MIMO point-to-multi-point systems. In particular, the

performance of FDP-SCAMP (i.e., the SCAMP algorithm when using the FDP structure

from Chapter 4) is compared to optimized HD and the DC-based and SCAMP algorithms

without using the FDP structure for FD MIMO point-to-multi-point systems with HD
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UEs. For this scenario, only the joint FDP structure was applied since even when applying

a separate design, the resulting optimization problem is non-convex. Thus, the separate

approach would require a similar computational complexity to the joint approach. As well,

the HD optimization problem is non-convex, and hence, was also optimized using SCP.

The simulation parameters are set up as in Section 5.5.1, with the following exceptions.

The elements of [H̃DL]k (k ∈ ID) were generated as zero-mean complex Gaussian random

variables with a variance equal to the SNR. The elements of the self-interference channel,

G̃BS,a, were generated as zero-mean complex Gaussian random variables with a variance

equal to INRBS,in, where SNR/INRBS,in represents the SIRBS,in before interference cancel-

lation. As well, the PAs are assumed to have a 30 dB gain, the circulators are assumed to

have a 20 dB isolation and the variance of the inter-antenna self-interference is assumed to

be 20 dB below that of the direct self-interference paths.

Fig. 5.7 shows the FD-to-HD sum-rate ratio vs. SNR with SIRBS,in = −40 dB, SIRUE,in =

−5 dB, α = 15 dB, σ2
err = 1. The results show that the FDP structure provides a significant

performance improvement over the non-FDP algorithms over a wide-range of SNR values

(e.g., approximately 8% at low SNR and 10% at high SNR).

Fig. 5.7 MIMO point-to-multi-point FD-to-HD sum-rate ratio vs. SNR with
SIRBS,in = −40 dB, SIRUE,in = −5 dB, α = 15 dB, σ2

err = 1.
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Fig. 5.8 shows the FD-to-HD sum-rate ratio vs. SIRBS,in with SNR = 10 dB, SIRUE,in =

−5 dB, α = 15 dB, σ2
err = 1. The results show that the FDP structure provides an

approximately 10% sum-rate improvement over the non-FDP algorithms.

Fig. 5.8 MIMO point-to-multi-point FD-to-HD sum-rate ratio vs. SIRBS,in

with SNR = 10 dB, SIRUE,in = −5 dB, α = 15 dB, σ2
err = 1.

Fig. 5.9 shows the FD-to-HD sum-rate ratio vs. σ2
err with SNR = 5 dB, SIRBS,in = −40

dB, SIRUE,in = −5 dB, α = 15 dB. The results indicate that even for larger values of

σ2
err the FDP structure provides a performance improvement over the non-FDP approaches

without substantially increasing the complexity.

5.6 Concluding Remarks

This chapter presented two SCP-based algorithms for solving the non-convex sum-rate

maximization problem with matrix variables for FD MIMO point-to-multi-point systems.

The DC-based algorithm is based on the fact that the structure of the problem naturally

lends itself to a particular DC decomposition. The SCAMP algorithm is a general tech-

nique proposed for solving non-convex optimization problems with a logarithmic objective

function which is applied to FD MIMO point-to-multi-point systems. The SCAMP algo-
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σ

Fig. 5.9 MIMO point-to-multi-point FD-to-HD sum-rate ratio vs. σ2
err with

SNR = 5 dB, SIRBS,in = −40 dB, SIRUE,in = −5 dB, α = 15 dB.

rithm is a multi-step procedure that begins by applying a non-convex approximation to the

non-convex objective function and then proceeds to convexify the non-convex approxima-

tion. The two SCP-based algorithms result in two different convex approximations to the

non-convex sum-rate maximization problem. An analytical expression for the estimation

error of the sum-rate was derived, which provides an analytical result to express the loss

incurred due to inaccurate channel knowledge resulting in residual self-interference.

Illustrative results with and without the FDP structure showed that the SCAMP al-

gorithm provides approximately 1.2–1.3 times the sum-rate of optimized HD in a wide-

range of FD MIMO point-to-multi-point system scenarios. Hence, even in the presence of

high self-interference, the SCAMP algorithm is capable of providing significant sum-rate

improvements over existing optimized HD techniques for FD MIMO point-to-multi-point

systems.
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Chapter 6

Concluding Remarks

6.1 Summary

Increasing the amount of resource sharing in a system generates additional interference

but, at the same time, offers potential spectral efficient benefits if the interference can be

effectively managed. As such, effective interference management for interference-limited

systems will play a critical role in the development of next-generation wireless and wireline

communication systems. This thesis focused on the design of HD and FD scalar and

vectored DRA algorithms for improving the spectral efficiency with specific applications to

DSL and FD wireless systems.

In Chapter 3, a HD near-optimal low-complexity distributed scalar DRA algorithm

referred to as the constant offset ASB-MRU was developed. The constant offset ASB-

MRU introduces the concept of a virtual network of reference users to provide approximate

global channel knowledge using only local channel knowledge resulting in a near-ideal bal-

ance between performance, complexity, and sensitivity to users entering/leaving the system.

Sufficient conditions for convergence, existence, and efficiency of the constant offset algo-

rithm were provided. Chapter 3 also derived a lower-bound on the expected sum-rate

which provides better insight into the actual spectral efficiency of the system than existing

models.

In Chapter 4, a MIMO-OFDM FDP transceiver structure was proposed which applies

precoding to jointly control the forward channel precoding and the self-interference cancel-

lation. The FDP structure allows for different algorithms and optimization objectives to

be developed. In particular, focusing on the objective of sum-rate maximization, separate
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and joint design algorithms were proposed. Simulation results using both standard channel

models and measured data showed that using the proposed FDP structure, between 1.6 to

1.8 times the spectral efficiency of optimized HD systems is achievable in a wide-range of

FD MIMO point-to-point scenarios.

In Chapter 5, two SCP-based algorithms for solving the non-convex sum-rate maxi-

mization problem with matrix variables for FD MIMO point-to-multi-point systems were

developed. In particular, the SCAMP algorithm is a general technique proposed for solving

non-convex optimization problems with a logarithmic objective function which is applied to

FD MIMO point-to-multi-point systems. Chapter 5 also derived an analytical expression

for the estimation error of the sum-rate, which provided an analytical result to express the

loss incurred due to inaccurate channel knowledge resulting in residual self-interference.

Simulation results indicated that the SCAMP algorithm provides between 1.2 to 1.3 times

the sum-rate of optimized HD in a wide-range of FD MIMO point-to-multi-point system

scenarios.

6.2 Potential Future Work

The main focus of this Ph.D. thesis has been on improving the spectral efficiency of wireless

and wireline communication systems. This section discusses some potential future work

related to the work proposed in this thesis.

The FDP structure proposed in Chapter 4 allows for different optimization objectives to

be developed rather than solely focusing on self-interference minimization. This thesis fo-

cused on the optimization objective of sum-rate maximization, and hence, all the developed

algorithms solve sum-rate maximization-based optimization problems. Areas of potential

future work include alternative optimization objectives (e.g., power minimization, energy

efficiency, bit-error rate minimization). Several approaches similar to those proposed in

this thesis, as well as many approaches unique to the specific optimization objective, could

be developed for each optimization objective.

Furthermore, the results of Chapter 5 showed that the SCAMP algorithm is an effec-

tive tool for solving non-convex matrix variable optimization problems with a logarithmic

objective function. In particular, Chapter 5 showed that the SCAMP algorithm effectively

solved the non-convex sum-rate maximization problem for FD MIMO point-to-multi-point

systems. The SCAMP algorithm is a general scheme, and as such, it may be a useful tool
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to efficiently solve many different optimization problems in many different fields of study,

including other communication systems, and potentially, to solve non-convex optimization

problems in other disciplines, as well.

While the SCAMP algorithm was shown to converge fairly quickly for FD MIMO point-

to-point systems in Chapter 4, the main limitation of the SCAMP algorithm in FD MIMO

point-to-multi-point systems (i.e., for more complicated systems) is that often many itera-

tions were required for the algorithm to converge. An interesting area for future work would

be investigating methods to reduce the computational time of the SCAMP algorithm and,

more generally, SCP-based algorithms. One particularly interesting area of research would

be investigating the choice of starting point. More specifically, the complexity benefits of

the constant offset ASB-MRU algorithm from Chapter 3 come from its initialization phase

and, essentially, the fact that it generates a very efficient starting point for the algorithm,

leading to fast convergence. Perhaps a more complicated and/or similar approach can be

implemented for the SCAMP algorithm, whereby the choice of initial point can be vastly

improved to significantly reduce the number of iterations required, and hence, improve its

practical implementation benefits for FD MIMO point-to-multi-point systems.
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Appendix A

A.1 Computational Complexity Analysis

The computational complexity represents the number of operations required for the execu-

tion of an algorithm. In particular, it demonstrates the behaviour of different algorithms

as the parameters (e.g., number of users, sub-carriers) increase. This is represented us-

ing big-O notation (i.e., O(·)), which shows the limiting behaviour of a function when

the arguments tend towards infinity. Mathematically, the big-O notation is described as

follows:

f(x) = O(g(x)) ⇐⇒ |f(x)| ≤ c|g(x)| ∀ x > x0,

where c > 0 is some constant and x0 ∈ R. Suppose two algorithms are dependent on a

variable X , where one algorithm has a complexity of O(X) while the other has a complexity

of O(X2). Then, the big-O notation implies that the O(X) algorithm will converge faster

than the O(X2) algorithm for sufficiently large X. The convergence time of an algorithm

is said to be exponential if it is O(aX) and is said to be polynomial if it is O(Xa) for

some a > 1. In algorithmic terms, exponential time is generally significantly slower than

polynomial time. One key factor which the big-O notation fails to capture is the value

of the constants in front of the key terms (e.g., the number of iterations required for the

algorithm to be run) since it only looks at the behaviour of the algorithms as the parameters

tend towards infinity. Hence, for a fixed value of X, it is possible for a O(X) algorithm

to take longer to converge than a O(X2) algorithm. More specifically, for a fixed value of

X , suppose the number of iterations required to run the O(X) algorithm is denoted by ν1

and the number of iterations required to run the O(X2) algorithm is ν2. It is possible that

ν1X > ν2X
2, for some values of X ; however, for sufficiently large X , the O(X) algorithm
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will run faster than the O(X2).

For DRA purposes, there are two main parameters: the number of users K, and the

number of frequency sub-carriers, F . Hence, almost all the algorithms will be of the form

O(f(K,F )) for some function f(K,F ). The only exception is the constant offset ASB-

MRU algorithm, which also has the parameter for the number of reference users in the

virtual network, denoted as KR, hence it will be of the form O(f(K,F,KR)).

Due to the total power constraint, the coupling between sub-carriers requires the trans-

mit powers be searched for jointly over all frequency sub-carriers. Solving anX-dimensional

exhaustive search has a computational complexity of O(aX), assuming a discrete search

space of a elements for each dimension. Therefore, solving the DRA optimal resource

allocation using an exhaustive search over both the number of users and the number of

sub-carriers has a complexity of O(aKF ), which is computationally intractable for large K

and/or F .

Another source of algorithm complexity is the message passing requirements, depending

on structure of the algorithm (i.e., centralized, semi-centralized, or distributed). In general,

centralized algorithms require some initial message passing to gain global channel knowl-

edge from all users, semi-centralized algorithms require per-iteration message passing, and

distributed algorithms require no message passing.

A.1.1 IWF Computational Complexity

The IWF algorithm is a distributed algorithm which consists of two loops. The outer loop

cycles through all the K users, while the inner loop performs water-filling for the k-th

user over the F sub-carriers. The water-filling process involves a simple bisection search.

Assuming the number of outer iterations required for convergence is ν and assuming the

bisection loop is run until an accuracy of ε is achieved, the total number of iterations

required will be ν × log2(1/ε). Therefore, the overall complexity of the IWF algorithm is

ν × log2(1/ε)×K × F , which implies:

CIWF = O(FK).
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A.1.2 SCALE Computational Complexity

The SCALE algorithm complexity is broken down into the complexity at each user and

the complexity at the SMC. Each user optimizes their transmit power, measures their

total interference-plus-noise and sends the corresponding F values to the SMC. Each user

then waits for an F -dimensional message from the SMC before re-updating their transmit

power. Hence, the SCALE algorithm requires the exchange of 2F messages per-iteration.

Assuming that ω is the number of operations required to update each user’s transmit power,

the complexity at each user is given by ωF .

The SMC receives a message from each user and generates the messages required for

each user. Generating the message for each user requires F × K additions. This process

must be repeated for each of the K users. Hence, the complexity at the SMC is given by

FK2. Therefore, assuming the number of iterations for the transmit powers of each user

to converge is ν, the overall complexity of the SCALE algorithm is ν× (FK2+ωK), which

implies:

CSCALE = O(FK2).

A.1.3 DSB Computational Complexity

The DSB algorithm consists of each user measuring their channel and sending an F -

dimensional message to the SMC (one per sub-carrier). On each iteration, the SMC com-

bines the received messages from all K users and computes each user’s updated Lagrange

multiplier offset for each sub-carrier. Each user then updates their transmit power on each

of the F sub-carriers using the updated received offset values. Hence, the DSB algorithm

requires the exchange of 2F messages per-iteration. The process is repeated until the offset

values for each user on each sub-carrier converge. Assuming the ω is the number of oper-

ations required to update each user’s transmit power, the complexity at each user is given

by ωF .

Calculating the message that the SMC sends to each user requires a summation over

K − 1 users of the product between the corresponding interference channel gain and the

received message from that particular user. Hence, the generation of the message for each

user requires F×(K−1) additions. The process is repeated for each of the K users, leading

to a complexity of FK2 −FK at the SMC. Therefore, aassuming the number of iterations

for the transmit powers of each user to converge is ν, the complexity of the DSB algorithm



A 121

is ν × (FK2 − FK + ωF ), which implies:

CDSB = O(FK2).

A.2 Proof of Theorem 3.1

The proof provided in this section generalizes the convergence proof of the ASB-S2 algo-

rithm (ASB algorithm with a high SNR approximation), derived in [15] for the symmetric

transmission case (and [16] for the asymmetric transmission case). In particular, the con-

vergence of the ASB-MRU, IWF, and ASB-S2 algorithms can be recovered as special cases.

The convergence proof is obtained by showing that there exists a norm for which the

sequence of constant offset iterates forms a Cauchy sequence, and hence, converges to a

fixed point. Intuitively, a Cauchy sequence is a sequence whose elements become arbitrarily

close to each other as the sequence progresses, with respect to some distance metric (e.g.,

some norm). More formally, a Cauchy sequence is defined below, where d(·, ·) defines some

distance measure.

Definition A.1. A sequence {x(t)} is a Cauchy sequence if and only if for all ε > 0 there

exists a T , such that for all t, τ ≥ T , d(x(t), x(τ)) < ε.

The following proposition will assist in proving that the sequence of constant offset

iterates forms a Cauchy sequence.

Proposition A.1. Suppose that for some feasible fixed initial value x(0): ||x(t+ 1)− x(t)|| ≤

ξ ||x(t)− x(t− 1)|| for all t ≥ 1, where ξ ∈ [0, 1). Then, x(t) is a Cauchy sequence.

Proof.

||x(t + 1)− x(t)|| ≤ ξ ||x(t)− x(t− 1)|| , (A.1)

for all t ≥ 1, where ξ ∈ [0, 1). This implies that:

||x(t+ 1)− x(t)|| ≤ ξt ||x(1)− x(0)|| ,
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for all t ≥ 0. Therefore, for every t ≥ 0 and Δt ≥ 1, we have:

||x(t +Δt)− x(t)|| =

∣∣∣∣∣
∣∣∣∣∣
Δt∑
i=1

{x(t + i)− x(t+ i− 1)}

∣∣∣∣∣
∣∣∣∣∣ (A.2)

≤
Δt∑
i=1

||x(t+ i)− x(t + i− 1)|| (A.3)

≤
Δt∑
i=1

ξt+i−1 ||x(1)− x(0)||

= ξt
(
1 + ξ + · · ·+ ξΔt−1

)
||x(1)− x(0)||

≤
ξt

1− ξ
||x(1)− x(0)|| , (A.4)

where (A.2) is obtained by adding and subtracting all the terms in between x(t + Δt)

and x(t), (A.3) follows from the triangle inequality, and (A.4) comes from the fact that∑∞
i=1 ξ

i = 1
1−ξ

, hence
∑a

i=1 ξ
i ≤

∑∞
i=1 ξ

i = 1
1−ξ

for any a. Suppose ε > 0 is given. Since

ξ ∈ [0, 1), we can always find a T is large enough so that for all t > T , the following is

satisfied:

ξt <
ε(1− ξ)

||x(1)− x(0)||
.

Then by setting τ = t +Δt, we have for for all t, τ ≥ T :

||x(τ)− x(t)|| ≤
ξt

1− ξ
||x(1)− x(0)|| < ε.

Hence, the sequence {x(t)} is a Cauchy sequence, and therefore, converges to a fixed point,

if (A.1) is satisfied for some norm.

Next, we define our sequence of constant offset iterates.

Definition A.2. For any iteration, v ≥ 1, the transmit power of user k on frequency

sub-carrier f is given by: pk,vf =

[
wk

λv
k
+Δλk

f

−
Γ(

∑
l�=k pk,v−1

f
|hk,l

f
|2+σk

f
)

|hk,k
f

|2

]pk,mask

f

0

.

Next, we must select an appropriate norm. Since the choice of norm in this proof is

unusual, we will formally prove that it is, in fact, a valid norm. Lemma A.1 will be used

in the proof of Claim A.1, that the choice of norm is valid.
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Lemma A.1. If A,B,C,D ≥ 0, then max{A+B,C +D} ≤ max{A,C}+max{B,D}

Proof. There are four cases:

Case 1. If A ≥ C and B ≥ D, max{A,C}+max{B,D} = A+B = max{A+B,C +D}.

Case 2. If A ≤ C and B ≤ D, max{A,C}+max{B,D} = C +D = max{A+B,C +D}.

Case 3. If A ≥ C and B ≤ D, max{A,C}+max{B,D} = A+D

=⇒ max{A+B,C+D} ≤ max{A+D,A+D} = A+D = max{A,C}+max{B,D}.

Case 4. If A ≤ C and B ≥ D, max{A,C}+max{B,D} = C +B

=⇒ max{A+B,C+D} ≤ max{C+B,C+B} = C+B = max{A,C}+max{B,D}.

Claim A.1. d : RF → R defined as: d(x) = max
{∑

f [xf ]0,
∑

f [−xf ]0

}
defines a norm.

Proof. Let d : RF → R be a function defined as: d(x) = max
{∑

f [xf ]0,
∑

f [−xf ]0

}
. d(x)

is a norm if it satisfies the following three properties:

1. d(ax) = |a|d(x), for all a ∈ R.

2. d(x+ y) ≤ d(x) + d(y), for all x,y ∈ RF .

3. d(x) = 0 if and only if x = 0.

Proof of 1.

d(ax) = max

{∑
f

[axf ]0,
∑
f

[−axf ]0

}

= max

{∑
f

|a|[xf ]0,
∑
f

|a|[−xf ]0

}
(A.5)

= |a|max

{∑
f

[xf ]0,
∑
f

[−xf ]0

}

= |a|d(x)
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where (A.5) holds because if a > 0,
∑

f max(±axf , 0) = |a|
∑

f max(±xf , 0), and if a < 0,∑
f max(±axf , 0) = |a|

∑
f max(∓xf , 0).

Proof of 2.

d(x+ y) = max

{∑
f

[xf + yf ]0,
∑
f

[−(xf + yf)]0

}

≤ max

{∑
f

[xf ]0 + [yf ]0,
∑
f

[−xf ]0 + [−yf ]0

}
(A.6)

= max

{∑
f

[xf ]0 +
∑
f

[yf ]0,
∑
f

[−xf ]0 +
∑
f

[−yf ]0

}

≤ max

{∑
f

[xf ]0,
∑
f

[−xf ]0

}
+max

{∑
f

[yf ]0,
∑
f

[−yf ]0

}
(A.7)

= d(x) + d(y)

where (A.6) holds since [a + b]0 ≤ [a]0 + [b]0 and (A.7) holds by Lemma A.1.

Proof of 3.

d(x) = 0 ⇐⇒ max

{∑
f

[xf ]0,
∑
f

[−xf ]0

}
= 0

⇐⇒ max(xf , 0) = max(−xf , 0), ∀ f (A.8)

⇐⇒ xf = 0, ∀ f

where (A.8) holds since [±xf ]0 = max{±xf , 0} ≥ 0.

Now that we have proven that it is a valid norm, for the remainder of this proof, let

||x|| = max
{∑

f [xf ]0,
∑

f [−xf ]0

}
. Next, we need to prove that the sequence of constant

offset iterates forms a Cauchy sequence (i.e., using Proposition A.1) for each user. The

following lemmas will assist in proving that the sequence is Cauchy.

Lemma A.2. Let f(x) and g(x) be non-increasing and non-decreasing functions, respec-

tively. If there exists an x∗ such that f(x∗) = g(x∗), and f(x) and g(x) are strictly decreas-

ing and strictly increasing at x = x∗, respectively, then x∗ = argminx{max{f(x), g(x)}}.
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Proof. For Δx > 0, f(x∗ +Δx) < f(x∗) = g(x∗) < g(x∗ +Δx).

For Δx < 0, f(x∗ +Δx) > f(x∗) = g(x∗) > g(x∗ +Δx).

Therefore, as Δx → 0+,max{f(x∗ +Δx), g(x∗ +Δx)} = g(x∗ +Δx)

and as Δx → 0−,max{f(x∗ +Δx), g(x∗ +Δx)} = f(x∗ +Δx)

As such, when we solve the min-max problem: argminx max{f(x), g(x)},

if f(x) < g(x), we minimize max{f(x), g(x)} = g(x) by decreasing the value of x (since

g(x) is a non-decreasing function) until we reach x∗, since afterwards f(x) > g(x).

When f(x) > g(x), we minimize max{f(x), g(x)} = f(x) by increasing the value of x (since

f(x) is a non-increasing function) until we reach x∗, since afterwards f(x) < g(x).

Therefore, the optimal point will be: x∗ = argminxmax{f(x), g(x)}.

Lemma A.3. Some properties of [x]0:

(i) [[x]0 − [y]0]0 ≤ [x− y]0

(ii) [−([x]0 − [y]0)]0 ≤ [−(x− y)]0

Proof. The proofs are shown below:

(i) There are four possible cases:

Case 1. If x ≥ 0 and y ≥ 0, then [[x]0 − [y]0]0 = [x− y]0.

Case 2. If x ≤ 0 and y ≤ 0, then [[x]0 − [y]0]0 = 0 ≤ [x− y]0.

Case 3. If x ≥ 0 and y ≤ 0, then [[x]0 − [y]0]0 = x ≤ x− y = [x− y]0.

Case 4. If x ≤ 0 and y ≥ 0, then [[x]0 − [y]0]0 = 0 = [x− y]0.

(ii) [−([x]0 − [y]0)]0 = [[y]0 − [x]0]0 ≤ [y − x]0 = [−(x− y)]0,

where the inequality holds from part (i).

Lemma A.4. maxk max
{∑

f

[
pk,v+1
f − pk,vf

]
0
,
∑

f

[
−
(
pk,v+1
f − pk,vf

)]
0

}
≤

maxk max

{∑
f

[∑
l �=k

|hk,l
f

|2

|hk,l

f
|2

(
pl,vf − pl,v−1

f

)]
0

,
∑

k

[
−

(∑
l �=k

|hk,l
f

|2

|hk,k

f
|2

(
pl,vf − pl,v−1

f

))]
0

}



A 126

Proof. To begin, we define:

fk,v(x) �
∑
f

[[
wk

x+Δλk
f

−
Γ(
∑

l �=k p
l,v
f |hk,l

f |2 + σk
f )

|hk,k
f |2

]
0

− pk,vf

]
0

gk,v(x) �
∑
f

[
−

([
wk

x+Δλk
f

−
Γ(
∑

l �=k p
l,v
f |hk,l

f |2 + σk
f )

|hk,k
f |2

]
0

− pk,vf

)]
0

Clearly, fk,v(x) is non-increasing in x, since as x increases, wk

x+Δλk
f

decreases, shrinking

the magnitude of the expression (which is positive). Similarly, gk,v(x) is non-decreasing in

x, since as x increases, wk

x+Δλk
f

decreases, causing the expression to become less negative.

If λv+1
k has not yet converged, then fk,v(x) is strictly increasing at x = λv+1

k and gk,v(x)

is strictly decreasing at x = λv+1
k .

max
k

max

{∑
f

[pk,v+1
f − pk,vf ]0,

∑
f

[−(pk,v+1
f − pk,vf )]0

}

= max
k

max
{
fk,v(λv+1

k ), gk,v(λv+1
k )

}
(A.9)

≤ max
k

max
{
fk,v(λv

k), g
k,v(λv

k)
}
, (A.10)

where (A.9) follows from the definition of fk,v(x) and gk,v(x), and (A.10) follows from

Lemma A.2 and the fact that: λv+1
k = argminx{max{fk,v(x), gk,v(x)}}, thus:

max{fk,v(λv+1
k ), gk,v(λv+1

k )} ≤ max{fk,v(x), gk,v(x)} ∀ x,

where here we substitute x = λv
k. Let X and Y be defined as follows:

X �
wk

λv
k +Δλk

f

−
Γ(
∑

l �=k p
l,v
f |hk,l

f |2 + σk
f )

|hk,k
f |2

,

Y �
wk

λv
k +Δλk

f

−
Γ(
∑

l �=k p
l,v−1
f |hk,l

f |2 + σk
f )

|hk,k
f |2

.
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Then, by construction, fk,v(λv
k) and gk,v(λv

k) can be re-written as:

fk,v(λv
k) =

∑
f

[([X ]0 − [Y ]0)]0

≤
∑
f

[(X − Y )]0, by Lemma A.3-i.

gk,v(λv
k) =

∑
f

[−([X ]0 − [Y ]0)]0

≤
∑
f

[−(X − Y )]0, by Lemma A.3-ii.

Hence, applying the above upper-bounds to (A.10), we get:

max{fk,v(λv
k), g

k,v(λv
k)}

≤ max

{∑
f

[(X − Y )]0,
∑
f

[−(X − Y )]0

}

= max

⎧⎨
⎩∑

f

[
−
∑
l �=k

Γ|hk,l
f |2

|hk,k
f |2

(
pl,vf − pl,v−1

f

)]
0

,
∑
f

[∑
l �=k

Γ|hk,l
f |2

|hk,k
f |2

(
pl,vf − pl,v−1

f

)]
0

⎫⎬
⎭

= max

⎧⎨
⎩∑

f

[∑
l �=k

Γ|hk,l
f |2

|hk,k
f |2

(
pl,vf − pl,v−1

f

)]
0

,
∑
f

[
−
∑
l �=k

Γ|hk,l
f |2

|hk,k
f |2

(
pl,vf − pl,v−1

f

)]
0

⎫⎬
⎭

Therefore, applying the above upper-bound to (A.10) gives:

max
f

max

{∑
f

[
pk,v+1
f − pk,vf

]
0
,
∑
f

[
−
(
pk,v+1
f − pk,vf

)]
0

}
≤

max
f

max

⎧⎨
⎩∑

f

[∑
l �=k

Γ|hk,l
f |2

|hk,k
f |2

(
pl,vf − pl,v−1

f

)]
0

,
∑
f

[
−

(∑
l �=k

Γ|hk,l
f |2

|hk,k
f |2

(
pl,vf − pl,v−1

f

))]
0

⎫⎬
⎭

Finally, we are ready to prove Theorem 3.1. By Proposition A.1, if we show that

maxk ||p
k,v+1 − pk,v|| ≤ maxk ||p

k,v − pk,v−1||, then pk is a Cauchy sequence for all k, and
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therefore, each user’s transmit power will converges to a fixed point.

max
k

∣∣∣∣pk,v+1 − pk,v
∣∣∣∣

= max
k

max
{[

pk,v+1 − pk,v
]
0
,
[
−
(
pk,v+1 − pk,v

)]
0

}
≤ max

k
max

⎧⎨
⎩∑

f

[∑
l �=k

Γ|hk,l
f |2

|hk,k
f |2

(
pl,vf −pl,v−1

f

)]
0

,
∑
f

[
−

(∑
l �=k

Γ|hk,l
f |2

|hk,k
f |2

(
pl,vf −pl,v−1

f

))]
0

⎫⎬
⎭ (A.11)

≤ max
k

max

{∑
f

[
(K − 1)max

l �=k

Γ|hk,l
f |2

|hk,k
f |2

(
pl,vf −pl,v−1

f

)]
0

,

∑
f

[
−

(
(K − 1)min

l �=k

Γ|hk,l
f |2

|hk,k
f |2

(
pl,vf −pl,v−1

f

))]
0

}

≤ max
k

max

{
(K−1)max

l �=k

(
Γ|hk,l

f |2

|hk,k
f |2

∑
f

[
pl,vf −pl,v−1

f

]
0

)
,

(K−1)min
l �=k

(
Γ|hk,l

f |2

|hk,k
f |2

∑
f

[
−
(
pl,vf −pl,v−1

f

)]
0

)}

≤ (K − 1)max
f,k

max
l �=k

(
Γ|hk,l

f |2

|hk,k
f |2

max

{∑
f

[
pl,vf − pl,v−1

f

]
0
,
∑
k

[
−
(
pl,vf − pl,v−1

f

)]
0

})

≤ (K − 1) max
f,k,l �=k

(
Γ|hk,l

f |2

|hk,k
f |2

)
max

l

(
max

{∑
f

[
pl,vf − pl,v−1

f

]
0
,
∑
f

[
−
(
pl,vf − pl,v−1

f

)]
0

})

< max
l

max

{∑
f

[
pl,vf − pl,v−1

f

]
0
,
∑
f

[
−
(
pl,vf − pl,v−1

f

)]
0

}
(A.12)

= max
k

∣∣∣∣pk,v − pk,v−1
∣∣∣∣

where (A.11) holds because of Lemma A.4, and (A.12) holds by assumption. This completes

the proof of Theorem 3.1 since we have shown that maxk
∣∣∣∣pk,v+1 − pk,v

∣∣∣∣ < maxk
∣∣∣∣pk,v − pk,v−1

∣∣∣∣,
which based on Proposition A.1 implies that each user’s transmit power sequences are

Cauchy, and therefore, converge to a fixed point.
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A.3 Proof of Theorem 3.2

Let the set of converged offsets and converged transmit powers at the KKT point of the

rate adaptive optimization problem outlined in (3.2) be given by {Δλk,KKT
f } and {pk,KKT

f },

respectively. By Theorem 3.1, for a fixed set of offsets, the constant offset algorithm

(Algorithm 3.4) will converge to a fixed point. Hence, there is a one-to-one correspondence

between {Δλk,KKT
f } and {pk,KKT

f }.

Suppose that the virtual network for each user is constructed using the other K − 1

users. That is, each interfering user l 	= k is represented by a unique reference user.

Furthermore, suppose that the transmit power of the reference users are selected as the

transmit powers corresponding to their respective pk,KKT
f . Let the set of constant offsets,

{Δλk
f} (corresponding to the converged set of points {(pkf)

∗}), be computed based on the

virtual network as in Algorithm 3.3, with the following modification:

intrf = σk
f +

∑
u∈R\r

|hr,u
f |2puf + |hr,k

f |2pk,KKT
f .

By construction, for each user, the set of reference users perfectly represent the other K−1

users and their corresponding transmit power at the KKT point. Hence, for each user, the

constant offsets generated by Algorithm 3.3 (i.e., {Δλk
f}) will correspond to that of the

final converged offset (i.e., {Δλk,KKT
f }). Therefore, {(pkf)

∗} will correspond to {pk,KKT
f }.
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Appendix B

B.1 Proof of Theorem 4.1

As before, let Ĝi =
[
Ĝi,a αIM

]
. First, we remark that Separate FDP is optimal if and

only if the cancellation power constraint is sufficiently large (i.e., the total power constraint

is sufficiently large so that solving the unconstrained optimization problem is equivalent to

solving the constrained optimization problem).

For the forward direction of the remark we use a transposition argument (i.e., equivalent

to proving that when the cancellation power constraint is not sufficiently large, separate

FDP is not optimal). When the cancellation power constraint is not sufficiently large, after

optimizing both Vi,F and Vi,S there will be some residual self-interference. As such, the

assumption of no self-interference when Vi,F was optimized is no longer valid. Hence, a

new optimization problem for Vi,F could be constructed whereby the objective function

includes this residual self-interference and the optimization of Vi,F could further balance

between forward channel maximization and self-interference suppression. As such, the

optimal solution to the modified optimization problem will provide an improvement over

the separate approach. This implies that the separate FDP approach is not optimal.

For the reverse direction of the remark, if the cancellation power constraint is sufficiently

large, all self-interference can be cancelled by Vi,S alone. Hence, since Vi,F is optimized to

maximize the forward channel sum-rate assuming no self-interference and Vi,S can cancel

all the self-interference, separate FDP is optimal.

Following the remark, separate FDP is optimal if and only if α is large enough such that

all cancellation can be done by using only Vi,S (i.e., we are not limited by the cancellation

power constraint). That is equivalent to λi = 0 since when λi = 0 the total power constraint
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does not need to be satisfied.

Tr
[
Vi,SSiV

†
i,S

]
=

α2

(α2 + λ2
i )

2Tr
[
Ĝi,aVi,FSiV

†
i,FĜ

†
i,a

]
≤Pmax,i,

where substituting λi = 0 gives:

α2 ≥ Tr
[
Ĝi,aVi,FSiV

†
i,FĜ

†
i,a

]
/Pmax,i

α2 ≥ Tr
[
Ĝi,aVi,FE

[
xix

†
i

]
V†

i,FĜ
†
i,a

]
/Pmax,i

α2 ≥ E
[
Tr
[
Ĝi,aVi,Fxix

†
iV

†
i,FĜ

†
i,a

]]
/Pmax,i

α2 ≥ E

[
Tr

[(
Ĝi,aVi,Fxi

)(
Ĝi,aVi,Fxi

)†
]]

/Pmax,i

α ≥

√
E

[∣∣∣∣∣∣Ĝi,aVi,Fxi

∣∣∣∣∣∣2
2

]
/
√
Pmax,i, (B.1)

where the inequality in (B.1) is obtained using the fact that for a vector a, ||a||22 =∑
j [a]j [a]

†
j = Tr

[
aa†

]
. Then, using the fact that for a random variable X (i.e., X =∣∣∣∣∣∣Ĝi,aVi,Fxi

∣∣∣∣∣∣
2
in this case), we have:

E
[
X2

]
= E [X ]2 +Var(X)

=⇒ E
[
X2

]
≥ E [X ]2

=⇒
√

E [X2] ≥ E [X ] .

Substituting for X gives:

√
E

[∣∣∣∣∣∣Ĝi,aVi,Fxi

∣∣∣∣∣∣2
2

]
≥ E

[∣∣∣∣∣∣Ĝi,aVi,Fxi

∣∣∣∣∣∣
2

]
, which can be

substituted into (B.1), resulting in:

α ≥ E
[∣∣∣∣∣∣Ĝi,aVi,Fxi

∣∣∣∣∣∣
2

]
/
√

Pmax,i.
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Appendix C

C.1 Effect of Estimation Error on the Sum-Rate

Let R�
DL and R̂�

DL (respectively, R�
UL and R̂�

UL) be the downlink (respectively, uplink) true

and expected sum-rates corresponding to the transmit covariance matrices
(
Q�

BS,k,Q
�
UE,u

)
,

for k ∈ ID and u ∈ IU .

Similarly, let C�
DL,k and C̃�

DL,k (respectively, C�
UL and C̃�

UL) be the downlink (respec-

tively, uplink) transmit covariance matrices corresponding to the transmit covariance ma-

trices
(
Q�

BS,k,Q
�
UE,u

)
, for k ∈ ID and u ∈ IU . Hence, C̃

�
DL,k and C̃�

UL are given by:

C̃�
DL,k = Ĉ�

DL,k +ΔC̃�
DL,k,

C̃�
UL = Ĉ�

UL +ΔC̃�
UL,

where Ĉ�
DL,k, ΔC̃

�
DL,k, Ĉ

�
UL, and ΔC̃�

UL are given by:

Ĉ�
DL,k =

∑
l∈ID\{k}

[HDL]kQ
�
BS,l[HDL]

†
k +

∑
u∈IU

[ĜUE]k,uQ
�
UE,u[ĜUE]

†
k,u,

ΔC̃�
DL,k =

∑
u∈IU

{
[ΔGUE]k,uQ

�
UE,u[ΔGUE]

†
k,u + [ĜUE]k,uQ

�
UE,u[ΔGUE]

†
k,u

+ [ΔGUE]k,uQ
�
UE,u[ĜUE]

†
k,u

}
,

Ĉ�
UL =

∑
k∈ID

ĜBSQ
�
BS,kĜ

†
BS,

ΔC̃�
UL =

∑
k∈ID

{
ΔGBSQ

�
BS,kΔG†

BS +ΔGBSQ
�
BS,kĜ

†
BS + ĜBSQ

�
BS,kΔG†

BS

}
.
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Hence, the uplink sum-rate can be written as:

R�
UL = log2

∣∣∣∣INBS,R
+
(
ΣBS + Ĉ�

UL +ΔC̃�
UL

)−1

C�
UL

∣∣∣∣ .
Using (5.14),

(
ΣBS + Ĉ�

UL +ΔC̃�
UL

)−1

can be re-written as:

(
ΥUL +ΔC̃�

UL

)−1

= Υ−1
UL −Υ−1

UL

(
INBS,R

+ΔC̃�
ULΥ

−1
UL

)−1

ΔC̃�
ULΥ

−1
UL,

where ΥUL = ΣBS + Ĉ�
UL. As such, R

�
UL can be re-written as:

R�
UL = log2

∣∣∣∣∣∣∣INBS,R
+Υ−1

ULC
�
UL︸ ︷︷ ︸

A

−Υ−1
UL

(
INBS,R

+ΔC̃�
ULΥ

−1
UL

)−1

ΔC̃�
ULΥ

−1
ULC

�
UL︸ ︷︷ ︸

B

∣∣∣∣∣∣∣ . (C.1)

Then, using the fact that log2 |A−B| = log2 |A| + log2 |I−A−1B|, (C.1) can be re-

written as:

R�
UL = log2

∣∣INBS,R
+Υ−1

ULC
�
UL

∣∣+log2

∣∣∣∣INBS,R
−Ψ−1

UL

(
INBS,R

+ΔC̃�
ULΥ

−1
UL

)−1

ΔC̃�
ULΥ

−1
ULC

�
UL

∣∣∣∣ ,
whereΨUL = ΥUL

(
INBS,R

+Υ−1
ULC

�
UL

)
. Therefore, the uplink estimation error term is given

by:

ΔRUL = log2

∣∣∣∣INBS,R
−Ψ−1

UL

(
INBS,R

+ΔC̃�
ULΥ

−1
UL

)−1

ΔC̃�
ULΥ

−1
ULC

�
UL

∣∣∣∣ ,
Following a similar derivation, the estimation error term for transmission to the k-th

downlink UE (k ∈ ID), ΔRDL,k, is given by:

ΔRDL,k = log2

∣∣∣∣INUE,R
−Ψ−1

DL,k

(
INUE,R

+ΔC̃�
DL,kΥ

−1
DL,k

)−1

ΔC̃�
DL,kΥ

−1
DL,kC

�
DL,k

∣∣∣∣ ,
where ΨDL,k = ΥDL,k

(
INUE,R

+Υ−1
DL,kC

�
DL,k

)
and ΥDL,k = Σk + Ĉ�

DL,k. Therefore, the loss

incurred due to inaccurate channel knowledge resulting in residual self-interference is given

by:

ΔR = ΔRUL +
∑
k∈ID

ΔRDL,k.
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