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ABSTRACT

Percolation theory is the study of the behaviour of connected clusters in a ran-

dom graph. Due not only to its contribution in the last five decades to numerous

other fields, most notably materials science, but also to its standing as an interesting

topic in theoretical probability in its own right, it continues to be a thriving area

of mathematics. In this thesis, we discuss one model under the percolation frame-

work, where each point connects to a random number of neighbours, and ask the

usual questions of existence and uniqueness of infinite clusters. More specifically, we

consider a Poisson process X in Rd with density 1. We connect each point in X to

its B nearest neighbours, where B is a non-negative integer valued random variable.

The parameter in the model is the distribution function of B. We introduce suffi-

cient conditions for B such that for d large enough percolation occurs almost surely.

Furthermore the infinite cluster will almost surely be unique.

.
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ABRÉGÉ

La théorie de la percolation est l’ étude du comportement de groupements reliés

dans un graphe aléatoire. On peut attribuer son essor continu dans le monde des

mathématiques non seulement à sa contribution des cinq dernières décennies à de

nombreux domaines externes -notamment à la science des matériaux -mais également

en tant que sujet d’intérêt de son propre chef. Dans cette thèse, nous discutons un

modèle dans le cadre de la percolation, où chaque point est connecté à un nombre

aléatoire de voisins, et posons les questions habituelles de l’existence de l’unicité de

groupes infinis. Plus précisément, nous considérons un processus de Poisson X dans

Rd avec densité 1. Nous connectons chaque point de X à ses B voisins immédiats, où

B est une variable aléatoire à valeur entière et positive. Le paramètre dans le modèle

est la fonction de répartition de B. Nous introduisons des conditions suffisantes sur

B tel que pour D une percolation assez importante survient presque sûrement. En

outre, l’amas infini sera presque sûrement unique
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CHAPTER 1
Introduction

1.1 Introduction

Beginning in the second half of the twentieth century and continuing strongly to

this day, percolation theory has received considerable interest from mathematicians

and physicists alike. As an area of theoretical probability, it is concerned with the

formation of infinite clusters in random graphs under a certain rule that connect

points to each other. In physics, chemistry and materials science, however, the term

percolation is used to describe the study the movement and filtering of fluids through

porous materials. The source of the name is a representative question dating back

to a 1957 paper by Broadbent and Hammersley [1]. The question, stated informally,

was the following: If a liquid is poured on top of some porous material, will it make

its way to the bottom?

The mathematical model was a graph with vertex set V = {0, 1, . . . , n}3, represent-

ing points on the integer lattice in three dimensions. For each pair (x, y) such that

x, y ∈ V and |x − y| = 1 an edge is included between x and y with probability p,

independently of any other pair of vertices in V . The question then becomes one of

the presence of an open path from top to bottom. This is now called bond percolation

with parameter p. A closely related model is that of site percolation with parameter

p where, instead of edges, vertices are activated randomly and independently with

probability p and only two vertices x, y ∈ V which are both activated and are such
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that |x − y| = 1 are joined by an edge. One could also consider oriented bond/site

percolation where the edges in the graph are all oriented edges. The behaviour for

large n was of primary interest, and mathematicians typically study the behaviour

of infinite networks to gain insight into the behaviour of large but finite ones. In

this setting the analogue of the initial question of the existence of a top to bottom

path is the existence of a path of infinite length. The event that such a path exists

is equivalent to the existence of an infinite connected component of points, since the

former is implied by the latter and vice versa. If such a component exists we say

that percolation occurs.

More precisely, fix an infinite graph G = (V,E), and write Gp = (V,Ep) for a bond

percolation on G with parameter p. One basic object of study is the critical prob-

ability pc(G) = inf{p : P (Gp contains an infinite component) > 0}. We say G has

a non-trivial percolation phase transition if 0 < pc(G) < 1. Since the event that an

infinite component exists is independent of any finite subset of Gp, it follows by the

Kolmogorov zero-one law that, for any fixed p ∈ [0, 1], the probability of percolation

is either 0 or 1. This, combined with the fact that the probability percolation occurs

is increasing as a function of p, ensures that the critical probability pc is well defined

for any graph G.

Naturally, one may pose the same questions for random graphs other than the one

presented in the introductory example above, and also in dimensions other than 3.

In this thesis we study sufficient conditions for percolation on geometric graphs. A

geometric graph is a graph whose points live in some metric space and a random

geometric graph is a geometric graph in which either the set of vertices, the set of
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edges or both are random. When the graphs of interest live in a discrete geometric

structure such as the lattice Zd, the study of the infinite clusters is referred to as

discrete percolation, and indeed the first percolation model studied, described above,

falls into this category. This thesis however is concerned with a model which falls

under the second category of percolation settings, where the random graph lives in

a continuous space. The analysis of the infinite clusters in this category is referred

to as continuum percolation. Knowledge of the former is critical to the treatment of

the latter, since many of the ideas carry over, and many of the results in continuum

models are analogues of the results in their discrete counterparts. For a thorough

treatment of both percolation models the reader is encouraged to refer to Grimmett

[2] for an in depth discussion of discrete percolation and to Roy and Meester [3] for

one on continuum percolation.

To give the reader an idea of the type of questions that continuum percolation could

be applied to, we consider a useful explanatory example from Meester and Roy [3],

which is that of rain falling on dry ground. When a raindrop falls on the ground,

a wet circular patch is formed. As rain continues to fall the picture changes from

wet islands on dry regions to dry islands inside wet regions. When such a drastic

change takes place in the spatial structure this is referred to as a phase transition.

The parameter in such a model is typically the density of the rain drops rather than

time. As opposed to our introductory example, the dynamics cannot be studied in

a discrete setting without assuming entirely unrealistic behaviour for the rain drops.

Furthermore, though many of the results in continuum models have analogues that
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hold in the discrete setting, many more have analogues which are either false or un-

known in the discrete setting, and multiple results have no discrete analogues at all

and vice versa. In addition, even for the first class of results whose analogues hold,

extra technical complications arise when working in a continuum usually due to the

topological setting or the dependency structure of the models.

Examples in the latter class include the non-triviality of phase transitions and the

uniqueness of unbounded components. Examples in the second class of results, whose

analogues are false in the discrete setting, include possible non-uniqueness of un-

bounded components, and some limit results in continuum fractal percolation. The

third class of results in which no discrete analogue exists is large and includes high

density results like compression and rarefaction, scaling properties and complete cov-

erage results. Thus continuum models prove to be more than a simple extension of

the discrete case, and many of them, including the one we study in this thesis, pro-

vide new insights into the possible behaviour of random graphs.

The RCM and Boolean models

To provide some context to the model discussed in the thesis it is relevant

to introduce two of the continuum percolation models which have received much

attention: The RCM and the Boolean models. For a comprehensive coverage of

those models we refer to Meester and Roy [3]. In both of those models we have a

Poisson point process X with positive density λ in Rd, where d ≥ 1. By this we mean

that X is a random subset of Rd with the following two properties: first, the number

of points of X in a bounded measurable set A follows a Poisson distribution with
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mean λV (A) where V is the d-dimensional Lebesgue measure; second, for disjoint

Borel sets A,B ∈ Rd, |A ∩X| and |B ∩X| are independent. In the Boolean model

we consider a sequence of independent identically distributed (i.i.d) non-negative

random variables r1, r2, . . . which is independent of X and order the Poisson points

according to some rule. We then place a closed ball of radius ri around the i’th

point of X. In an RCM we choose a function g : R → [0, 1] and we connect points

x, y ∈ X with probability g(|x− y|) independently of all other pairs of points. One

of the important properties of both those models is the existence, for d ≥ 2 and

under some additional conditions, of a non-trivial phase transition, a concept which

we tried to make intuitive with the example above.

This means that in the Boolean model there exists a critical density 0 < λc(r1) <∞

which depends on the distribution function of r1, such that for λ < λc(r1) the part of

the space covered by balls consists almost surely of bounded connected components

only, while for λ > λc(r1) the covered section consists of at least one unbounded

component almost surely. The RCM model displays similar behavior with the critical

density being a function of g. It also turns out that when percolation does occur, the

unbounded component is unique in both the RCM and the Boolean case. Although

there are bounds available for the critical densities (see, for example [3]) the exact

values are not known in any of these models.

1.2 The NN(d, k) and NN(d,B) models

There are other natural ways to connect the Poisson points. A simple and intu-

itive method to connect them is given by the NN(d, k) model which has been studied

extensively and provides the motivation for the NN(d,B) model that is the subject
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of this thesis. NN stands for nearest neighbour, d describes the dimension and k is the

parameter of the model. The connection rule in this model is to connect every point

to its k nearest neighbours. In other words, the vertices of the NN(d, k) model are

the points X of a Poisson process in Rd and there is a directed edge from each point

to its k nearest neighbours; the graph NN(d, k) is almost surely, well defined since

with probability 1, there are no points x, y, z ∈ X for which d(x, z) = d(y, z), where

d is the standard Euclidean metric. Note that the density of the Poisson process

plays no role in this model, since the connection rule is based on relative distance. It

was shown by Häggström and Meester [4] that for d large enough, percolation occurs

almost surely in the NN(d, 2) model.

The model we consider here we can call NN(d,B), where again NN stands for

nearest neighbour, d is the dimension of the space and B is a random variable taking

values in the non-negative integers. In this model, we work in the same framework as

the NN(d, k) model but instead of connecting each point to its k nearest neighbours

for some fixed k, the number of nearest neighbours each point connects to is random

and drawn from the distribution of B independently of the sample of B used to

determine the number of neighbours for any other point. More precisely we will start

with a sequence (Bi : i ≥ 1) of i.i.d copies of B, and order the Poisson process points

in some way x1, x2, . . . . Each point xi will then connect to its Bi nearest neighbours

under standard Euclidean distance in Rd. We will provide conditions on B under

which percolation occurs almost surely for large enough dimension. Furthermore it
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will turn out that under the same conditions the infinite cluster formed is almost

surely unique.
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CHAPTER 2
Infinite Cluster in High Dimensions

Definition 2.0.1. From here on, unless otherwise stated, B is an almost surely

bounded random variable whose support is a subset of the non-negative integers.

Our main result is the following theorem.

Theorem 2.0.2. If E[B] > 2 then there exists a positive integer d0 < ∞ such that

for all d ∈ N, d ≥ d0 percolation occurs almost surely in the NN(d,B) model.

It suffices to prove the theorem under the additional assumption that B is almost

surely bounded since E[B] > 2 if and only if E[Bχ(B < n)] > 2 for some n ∈ N where

χ denotes the indicator random variable of an event. We provide a short outline of

the proof to give the reader an intuitive idea of how the result is obtained. We take

d large and assume there is a point at the origin. This assumption is easy to remove

but simplifies the exposition. We then provide a sequential construction of a subset

of the cluster containing the origin via a modified breadth-first search exploration.

Furthermore we will consider only directed paths starting at the origin for simplicity.

The breadth-first search exploration allows us to locally approximate the behavior of

the sequential process using a branching process which, for a given B with E[B] > 2

and for d large enough, proves supercritical. The approximation relies on projecting

the branching process on R2 and then making a coupling based comparison with

oriented site percolation on the lattice L = {(i, j) ∈ Z2 : i ≥ 0, |j| ≤ i, (i+ j)/2 ∈ Z}

with oriented edges from (i, j) to (i + 1, j ± 1). For d sufficiently large the oriented
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site percolation will be supercritical which will imply the existence of an infinite

connected component in NN(d,B) via the coupling.

2.1 The Sequential Search and the Branching Process

We begin by mentioning and proving two basic but important lemmas, whose

statements can be found in [4], and which are crucial for our arguments. Let {Xd :

d ≥ 1} be a sequence of homogeneous Poisson processes such that for all d ≥ 1, Xd

is a Poisson process in Rd with rate λ(d) = Γ(d/2+1)

πd/2 , where Γ is the gamma function.

In other words, the rate is chosen such that the expected number of points in a ball

of radius 1 is 1. Fix some arbitrary positive integer k, and, for d ≥ 1, let Yk(Xd) be

the position in Rd of the k’th nearest neighbour to the origin in Xd.

Lemma 2.1.1. As d→∞ we have

|Yk(Xd)| → 1

in probability. For any d we have furthermore that, in polar co-ordinates writing

Yk(Xd) = (R,Θ), then the conditional distribution of Θ given that R ∈ H where H

is any Borel subset of [0,∞), is uniform over the d − 1-sphere. That is to say, for

a Borel subset A of the (d-1)-sphere Sd−1, P (Θ ∈ A|R ∈ H) =
∫
A
dSd−1V where

dSd−1V is the volume element of the (d-1)-sphere.

Proof. The first part of the lemma is seen by noting that for any 0 < ε < 1,

P (|Yk − 1| > ε) = P (Yk > 1 + ε) + P (Yk < 1− ε)

= P (Q((1 + ε)d)) < k) + P (Q((1− ε)d)) ≥ k)

9



where Q(λ) is a Poisson process with rate λ, and this expression goes to 0 as d

approaches infinity. For the second part of the lemma, consider a random element O

chosen uniformly from Sd−1. By this we mean that if µ is the surface measure on Sd−1

then O is distributed according to µ∗ = µ/µ(Sd−1). Now let O′ be the associated

rotation operator. O′(Xd) is still a Poisson process since the two conditions for a point

process to be Poisson are still satisfied. Hence the distribution of Θ is unchanged

by the rotation. However, note that the distribution of Θ in O(Xd) is now uniform

over the (d-1)-sphere since the space underwent a uniformly chosen rotation. We

conclude that the distribution of Θ in Xd is thus uniform over the (d-1)-sphere.

Lemma 2.1.2. Let Sd1 and Sd2 be balls in Rd of radii r1 and r2 ∈ [0.9, 1.1]. Suppose

furthermore that for all d, Sd1 and Sd2 are centered at least 0.9 units apart. Then

V (Sd1 ∩ Sd2)

V (Sd1)
→ 0

as d→∞.

Proof. Note that under the given conditions we can bound the fraction given above

by the worst case scenario which is when the balls are centered 0.9 units apart, Sd1

has radius 0.9 and Sd2 has radius 1.1. This can be seen by noting that without loss

of generality Sd1 can be assumed to have radius 0.9 by symmetry and since a uniform

scaling of space leaves the ratio
V (Sd

1∩Sd
2 )

V (Sd
1 )

unchanged. Now Sd2 having the closest

possible distance to Sd1 and having the largest possible radius maximizes the volume

of the intersection of the two balls. Then the volume of the intersection is the sum

of the volumes of two spherical caps.

Using the Pythagorean theorem and basic Euclidean geometry we obtain that the

10



height of the spherical cap arising from Sd1 is bounded below by 0.672 and the height of

the spherical cap arising from Sd2 is bounded below by 0.4278. We utilize a formula for

the volume of spherical caps in n dimensions as a function of the radius r and height

h, found in many multi-variable calculus textbooks, for example in [8]: V cap
n (r, h) =

π(n−1)/2

Γ(n/2+1/2)

∫ cos−1((r−h)/r)

0
sinn(t)dt. We also note that the volume of the n-sphere as a

function of the radius r is Vn(r) = πn/2/Γ(n/2+1)rn. This yields after simplification,

V (Sd1 ∩ Sd2)

V (Sd1)
≤ V cap

d (0.9, 0.672) + V cap
d (1.1, 0.4278)

Vd(0.9)

≤ Γ(d/2 + 1)√
πΓ(d/2 + 1/2)

(∫ 1.32

0

sind(t)dt+ (11/9))d
∫ 0.92

0

sind(t)dt

)
≤ Γ(d/2 + 1)√

πΓ(d/2 + 1/2)

(
(1.32) sind(1.32) + (0.92)(11/9 sin(0.92))d

)

where the second inequality follows from cos−1((0.9−0.672)/0.9) < 1.32 and cos−1((1.1−

0.4278)/1.1) < 0.92. The final expression goes to 0 as n approaches infinity, since

sin(1.32) and 11/9 sin(0.92) are both strictly less than 1.

We now formally describe the sequential construction of our cluster containing

0 in dimension d. We consider the Poisson process Xd and analyse X ′d = Xd ∪ v∅

where v∅ is the origin. We will need a short lemma.

For d large enough, under the connection rule introduced in the NN(d,B) sec-

tion of chapter 1, where each point x in the Poisson process is assigned an independent

copy of B, Bx. Consider the graph G(Xd) with vertex set Xd, and an edge between

two points x, y ∈ Xd, if y is one of the Bx neighbours of x or x is one of the By

nearest neighbours of y.
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Definition 2.1.3. Let X be a Poisson process in Rd, for some positive integer d.

Then by G(X) we mean the graph whose vertices are X and whose edge set is deter-

mined by the rule described above. Furthermore, assign v∅ another independent copy

of B, which we call B∅. Then by C(X) we mean the largest connected subset of the

vertices of G(X ∪ v∅) containing v∅.

Lemma 2.1.4.

P (There is an infinite component in G(Xd))

= P (There is an infinite component in G(X ′d))

Proof. We will see that the degree of any vertex in the graph is almost surely finite

in both G(Xd) and G(X ′d), and so the addition or removal finitely many vertices

cannot affect the existence of an infinite component. If, for positive integers R we let

AR be the region enclosed between the balls of radii R and R − 1, and consider the

random objects Xd
R, defined as the restriction of Xd to AR, we can see that the Xd

R’s

are independent, by the independence property of disjoint sets in a Poisson process.

Furthermore the event that an infinite component exists in G(Xd) is a tail event of

the X ′Rs. Using the Kolomogorov zero-one law, we can deduce that the probability

on the left hand side is either 0 or 1, and the same argument can be applied to X ′d.

Therefore the only way which the two sides of the equation can be unequal is when

one of the sides is 1 and the other is 0. Adding a point cannot delete an infinite

component if it exists, hence we need only consider the possibility that the RHS

is 1 and the LHS is 0. Consider the set of points ω of the underlying probability

space such that G(Xd(ω)) has no infinite component but G(X ′d(ω)) has an infinite
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component. Such a set must have the property that in G(X ′d) the origin is connected

to infinitely many points. Since E[B] is finite, the directed edges coming out of the

origin are finite almost surely.

Hence, we must conclude that in this situation there exist infinitely many points

v such that the origin is amongst the Bv nearest neighbours of v, where Bv is the

associated integer random variable for v which determines how many of its nearest

neighbours v connects to. Let V be the number of such points v and let Ox,y denote

the open ball centered at x with radius y. Let |A| denote the cardinality of a set A,

Furthermore, let χ(E) denote the indicator random variable of an event E and B∅

denote the copy of B associated with the origin.

E[V ] = E

[∑
x∈Xd

χ(Bx > |Ox,||x|| ∩Xd|)

]

=

∫
Rd

P (Bx > |Ox,||x|| ∩Xd|)λ(d)dx

=

∫
Rd

P (B∅ > |O0,||x|| ∩Xd|)λ(d)dx

= E

[∑
x∈Xd

χ(B∅ > |O0,||x|| ∩Xd|)

]
< E[B] <∞

where the third equality follows by translation invariance, and the second to last

inequality follows since E
[∑

x∈K χ(B∅ > |OBx,||x|| ∩K|)
]

is the expected number of

points which are amongst the B∅ nearest neighbours of the origin, which is bounded

above by E[B]. Hence V is finite almost surely.
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2.1.1 Sequential Search Process

We now analyze X ′d. Recall that for each point in X ′d, we have an associated

copy of B independent of the rest of the copies, starting with B∅ associated with the

origin. We view the B∅ nearest neighbours v1, v2, . . . , vB
∅

of v∅ sorted in increasing

order of modulus as its children and v∅ as their parent. In general when we use

the terms parent and child we mean that the children are the nearest neighbours to

the parent (edges are oriented from parent to child). We then relabel the children’s

random variables as B1, . . . , BB∅ . These points are said to belong to generation 1.

Then for each 1 ≤ i ≤ B∅ in turn, we label the Bi − Ci nearest neighbours of vi,

vi1, vi2, . . . , vi(B
i−Ci), again in order of increasing modulus (where Ci is the number

of points amongst vi’s first Bi neighbours which have been encountered previously

in the search process). We then relabel the random variables associated with vi’s

children Bi1, Bi2, . . . , Bi(Bi−Ci). These vertices are then said to belong to generation

2.

In general, if construction up to generation n is complete then each vertex in gener-

ation n has a label L which is a string of n positive integers which is also common to

its random variable BL. We order the strings in lexicographic order. For each string

L we search amongst the BL nearest neighbours of vL for points which have not

been previously encountered, and label them vL1, . . . , vL(BL−CL) in increasing order

of modulus, (where CL is the number of points amongst vL’s nearest BL neighbours

which have been encountered previously in the search process). Completing this

process for every string L in generation n yields generation n+ 1. By drawing edges

between a point and its children as defined above, we obtain a graph whose vertex
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set is a subset of the Poisson process.

Definition 2.1.5. Let P be a Poisson Process in Rd. SSP(P) is defined as the vertex

set of the graph obtained by applying the sequential search procedure described above

to P ∪ v∅, where v∅ is the origin.

Note that SSP (X ′d) is a subset of the largest connected component containing

the origin, C(Xd). The dependence of SSP (P ) on the marks Bv is implicit. The

next corollary follows directly.

Corollary 2.1.6.

P (|C(Xd)| =∞) ≥ P (|SSP (Xd)| =∞)

For the remainder of our analysis we will thus focus on proving that SSP (X ′d)

is infinite with positive probability. For fixed L, the distribution of the rank of the

parent of vL among the BL nearest neighbours depends sensitively on the distance

between vL and its parent, and this effect does not vanish as d→∞.

For this reason we study the distribution of the scaled distance as d → ∞. For

any point x ∈ Rd we consider the true Euclidean distance to the k’th nearest

neighbour of x in Xd, which we will denote by Yk(x,Xd). Hence Yk(x,Xd) =

inf{r; |B(x, r) ∩ Xd| ≥ k} where B(x, r) is the open ball of radius r centered at

x. For d ≥ 1, let Zk(x,Xd) = (Yk(x,Xd) − 1) · d where d is the dimension. We call

Z(x,Xd) the scaled distance from x to its k’th nearest neighbour in Xd. We will

also define Zk as a random variable whose distribution is the limit as d approaches
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infinity of the distribution of Zk(x,Xd), which we will see exists.

Lemma 2.1.7. Let x ∈ R. Then as d→∞

{Zk(x,Xd)}k≥1 → {Pk}k≥1

in distribution, where {Pk}k≥1 is an inhomogeneous Poisson process on R with rate

λ(t) = et

Proof. Let x ∈ R. We prove the convergence of the finite-dimensional distributions

P (Z1(x,Xd) ≤ z1, Z2(x,Xd) ≤ z2, . . . , Zn ≤ zn), where n ∈ N and z1 < z2 < · · · <

zn ∈ R. Note that if l < m and x > y then P (Zl(x,Xd) ≤ x, Zm(x,Xd) ≤ y) =

P (Zm(x,Xd) ≤ y). Thus the condition z1 < z2 < · · · < zn is without loss of

generality. Let Q(λ) denote a Poisson distribution with parameter λ. Whenever

Q(λ) is mentioned it is referring to the same random variable. Furthermore, let

Bd(x, r) denote the ball in Rd with centre x and radius r.

P (Z1(x,Xd) ≤ z1, Z2(x,Xd) ≤ z2, . . . , Zn ≤ zn)

= P (Y1(x,Xd) ≤ z1/d+ 1, Y2(x,Xd) ≤ z2/d+ 1, . . . , Yn(x,Xd) ≤ zn/d+ 1)

=
n∏
k=1

P

(
Yk(x,Xd) ≤ zk/d+ 1

∣∣∣∣∣
k−1⋂
j=1

Yj(x,Xd) ≤ zj/d+ 1

)
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by the chain rule for conditional probability. Now for any fixed k we have

P

(
Yk(x,Xd) ≤ zk/d+ 1

∣∣∣∣∣
k−1⋂
j=1

Yj(x,Xd) ≤ zj/d+ 1

)

= P

(
|Bd(x, zk/d+ 1) ∩Xd| ≥ k

∣∣∣∣∣|Bd(x, zk−1/d+ 1) ∩Xd| ≥ k − 1

)

since the k nearest neighbour of x having distance less than zk/d + 1 from x, is

precisely the event that the ball of radius zk/d+ 1 centered at x contains k or more

points of the Poisson process. Furthermore, this event is conditionally independent

of the smaller balls given the number of points in Bd(x, zk−1/d + 1) ∩ Xd. We can

further condition on the number of points in Bd(x, zk−1/d + 1) being exactly k − 1,

to obtain that the above expression is equal to:[
P

(
|Bd(x, zk/d+ 1) ∩Xd| ≥ k

∣∣∣∣∣|Bd(x, zk−1/d+ 1) ∩Xd| = k − 1

)

× P (Bd(x, zk−1/d+ 1) ∩Xd| = k − 1|Bd(x, zk−1/d+ 1) ∩Xd| ≥ k − 1)

]
+ P (Bd(x, zk−1/d+ 1) ∩Xd| ≥ k|Bd(x, zk−1/d+ 1) ∩Xd| ≥ k − 1)

Since if Bd(x, zk−1/d+1) contains k or more points then so does Bd(x, zk/d+1). The

number of points in the region enclosed between the two balls is Poisson with rate

(zk/d + 1)d − (zk−1/d + 1)d, and the number of points in Bd(x, zk/d + 1) is Poisson
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with rate (zk−1/d+ 1)d. Therefore we obtain that the above expression equals[
P (Q((zk/d+ 1)d − (zk−1/d+ 1)d) ≥ 1)

× P (Q((zk−1/d+ 1)d) = k − 1|Q((zk−1/d+ 1)d) ≥ k − 1)

]
+ P (Q((zk−1/d+ 1)d) ≥ k|Q((zk−1/d+ 1)d) ≥ k − 1)

→ P (Q(ezk − ezk−1) ≥ 1)P (Q(ezk−1) = k − 1|Q(ezk−1) ≥ k − 1)

+ P (Q((ezk−1) ≥ k|Q((ezk−1) ≥ k − 1)

as d→∞. Thus we have that

P (Z1(x,Xd) ≤ z1, Z2(x,Xd) ≤ z2, . . . , Zn(x,Xd) ≤ zn)

→
n∏
k=1

(
P (Q(ezk − ezk−1) ≥ 1)P (Q(ezk−1) = k − 1|Q(ezk−1) ≥ k − 1)

+ P (Q((ezk−1) ≥ k|Q((ezk−1) ≥ k − 1)

)

=
n∏
k=1

P

(
Pk ≤ zk

∣∣∣∣∣
k−1⋂
j=1

Pj ≤ zj

)
= P (P1 ≤ z1, . . . , Pn ≤ zn)

and we are done.

Definition 2.1.8. Let {Zk}k≥1 be an inhomogeneous Poisson process on R with rate

λ(t) = et, and the atoms listed in increasing order.

By the preceding lemma, {Zk(v∅, Xd)}k≥1 converges in distribution to {Zk}k≥1

as d approaches infinity. Here v∅ indicates the origin in Rd. The result, however,

also holds with v∅ replaced with any set of points {xd}k≥1 with xd ∈ Rd.
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2.1.2 Defining the Branching Process

We can can approximate the behavior of the true sequential process search

process in Rd using a multi-type branching process which we will denote Gd.

Definition 2.1.9. Let T =
⋃∞
n=1 Nn, where N denotes the set of natural numbers

and N0 is the empty string ∅. This is the set of all finite strings of positive integers

as well as the empty string ∅. The Ulam-Harris tree is the infinite rooted tree with

labelled node set T where ∅ is taken as the root, and with an edge joining i1 . . . ik and

i1, . . . , ik+1 for any k ≥ 0 and i1, . . . , ik+1 ∈ N.

For a node v = i1 . . . ik its children are the strings v1, v2, v3, . . . and we or-

der them accordingly so that U is an infinite ordered rooted tree. The parent of

i1 . . . ik(k > 0) is i1 . . . ik−1. By generation of a node v = i1 . . . ik, denoted |v|, we will

mean the length of the string which is k. Let Sd = Rd×R+×{0, 1}. Sd is called the

type space and the three components of its elements correspond to position, distance,

as well as a binary mark indicating whether the point is “alive” or “dead”, in the

sense of being amongst an appropriate number of its parent’s nearest neighbours.

The random object Gd is an S-valued function on the nodes of T drawn from the

sample space STd . Gd(v) is called the type of node v ∈ T . An element of Sd has the

form s = (w, x, b) where w ∈ Rd, x ∈ R+ and b ∈ {0, 1}. For a node with type s

we call x the position of the node and y its unscaled distance from its parent. A

child will be referred to as a ghost if the third co-ordinate is 0.

For v ∈ T , the types of its children are determined based on an associated

distribution which depends on the type of v. Let Fd = SN
d and for f ∈ F write
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f = (f1, f2, . . . ). The children of an individual have types which are described by an

element f ∈ F where f1 is the type of the first child, f2 is the type of the second

child and so on, and the f ′ks are sorted in ascending order of distance. A kernel

Ps(df), from Sd to F specifies the reproduction mechanism; we will describe the

kernels shortly. Thus, the governing distribution for the children of a node of type s

is Ps and the corresponding expectation is denoted by Es.

The family tree is produced in the usual way from the distributions. Given the

family history up to generation n, individuals in the generation reproduce indepen-

dently of each other with family distributions for each parent’s type. The law for the

branching process is constructed from the kernel Ps(df) by using the Ionescu Tulcea

extension theorem, which allows us to construct infinite dimensional distributions

from a family of finite dimensional distributions if those finite dimensional distri-

butions can be defined recursively through applications of probability kernels. This

theorem can be found, for example, in [9]. The law here begins from an initial root

of type (v∅, 1, 1). In other words, the root corresponds to an initial individual at the

origin in Rd, with parent at distance 1 (though the root has no parent, some “parent

distance” must be chosen so that the root has type within the type space; the value

chosen is unimportant for future arguments), and the last co-ordinate indicates that

the root is alive. Thus, to describe Gd fully, we need only provide the transition

kernels, which depend only on the type. We describe the evolution of Gd directly,

leaving the kernels implicit but their definition easily derivable from what follows.
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We now describe the transition kernels {Ps : s ∈ S}. Every vertex v is assigned

an independent copy Bv of B, and an independent copy Xd,v of Xd, the d dimensional

Poisson process. For i ≥ 1 write Dvi for the position of the i’th nearest neighbour of

the origin in Xd,v.

For a ghost vertex v, with type Gd(v) = (w, x, 0), for k ≥ 1 the child vk has type

(w+Dvk, |Dvk|, 0). Note that all the children of ghost vertices are also ghost. Given

a vertex v ∈ T with a non-ghost type Gd(v) = (w, x, 1) its children’s types are deter-

mined as follows. If |DvBv | < x, let Gd(vk) = (w+Dvk, |Dvk|, 1) for 1 ≤ k ≤ Bv, and

(w+Dvk, |Dvk|, 0) for k > Bv. Otherwise |DvBv | ≥ x, let Gd(vk) = (w+Dvk, |Dvk|, 1)

for 1 ≤ k ≤ Bv − 1, and (w + Dvk, |Dvk|, 0) for k > Bv − 1. Intuitively, a node v

of type (w, x, 1) has distance x from its parent, so if DvBv > x, one edge leaving v

attaches to an already explored node. In this case we explore only Bv−1 rather than

Bv children. For n ≥ 0 we can define Fdn = σ(Gd(v), |v| ≤ n + 1), where σ denotes

the sigma algebra generated by the random objects of interest, and again |v| denotes

the length of the string or, in other words, the generation of v. Now, note that for

all v with |v| ≤ n, Bv as well as the offsets of v’s children is measurable with respect

to Fn. We are now in a position to give a formal definition of Gd.

Definition 2.1.10. Gd is a random Sd-valued function on T , i.e, a random element

of STd whose law is determined based on the transition kernels described above.

Note that since B is bounded, we may equally view Gd as an Sd-valued function

on
⋃∞
n=0{1, . . . ,m}n, where m = sup{k : P(B ≥ k) > 0}. The survival of Gd is the

event that there does not exist a generation n such that all vertices in generation
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n are ghosts. Extinction is the complement of this event. We will use survival

and non-extinction interchangeably. The probability of survival depends only on

the number of non-ghost children each point gives birth to, which depends on the

distance aspect of the type. Therefore we can, for the analysis purposes of bounding

the extinction probability, consider the multi-type branching process G′d obtained

from Gd by projection onto the second “distance” co-ordinate and scaling it, so G′d

has type space R× {0, 1} and tracks only scaled distances.

Definition 2.1.11. For v ∈ T , define G′d as follows. If Gd(v) = (w, x, b) where

w ∈ Rd, x ∈ R, b ∈ {0, 1} then G′d(v) = ((x− 1) · d, b).

2.1.3 Survival of G′d

Survival for G′d is defined the same way as it is for Gd, that there exists no

generation such that for all v in that generation the binary mark is 0. We also refer

to those vertices whose binary mark is 0 as ghosts. We will also refer to the first

component of the type in G′d as the distance, which is a slight abuse of notation,

but from the context it becomes clear whether we are talking about G′d or Gd. The

probability of survival/extinction for both Gd and G′d are identical. Hence, we will

analyse G′d and give a full mathematical description of the number of non-ghost

children of each object given the distance aspect of its type. Let x ∈ R and recall

from section 2.1.1 the definitions of the scaled and unscaled distances Zk(x) and

Yk(x) respectively.

We can now define a branching process G′, which can be viewed as the d → ∞

distributional limit of the processesG′d. The type space is R×{0, 1} and the transition

kernels are such that the probability a point of type (x, 1) gives birth to more than k
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non-ghost points of distance less than or equal to y for y < x is P (Zk(x) < y)P (B ≥

k). We have already determined, in Lemma 2.2.3, that the law of Zk(x)’s is that

of a Poisson process on R with rate λ(t) = et. Thus, if y > x this probability is

P (Zk(x) < x)P (B ≥ k) + P (Zk(x) > x ∩ Zk+1(x) < y)P (B ≥ k + 1) since the

encountered parent does not count as one of the children. Furthermore G′ maintains

the usual Galton-Watson independence structure and the offsets are independent for

different sibling groups. This completely describes our transition kernels, and we now

need to ask if the branching process is supercritical or not. To this end we define a

family of measures Mx on R.

Definition 2.1.12. Let x ∈ R, and A ⊂ R. Define M(A) = |i ∈ N : G′d(i) ∈

A× {1}|. Then Mx(A) = Ex[M(A)].

Thus Mx(A) is the expected number of alive children a node of type (x, 1) gives

birth to, whose distance s fall within A. Of interest in studying supercriticality is

the operator T defined as follows.

Definition 2.1.13. For a measurable function f : R→ R, f ∈ L1(Mx) for all x,

Tf(x) =

∫
R
f(y)dMx(y)

The following result is due to a corollary to Theorem 14.1 in [5].

Lemma 2.1.14. If the greatest eigenvalue of the operator T is strictly greater than

1, then the probability that G′d survives is non-zero.

To analyze the operator spectrum it will be useful to calculate the densities

of the family of measures Mx with respect to Lebesgue measure. Let M(≤ y) be
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the number of children within distance y of the parent. Also let Q(λ) be a Poisson

random variable with parameter λ.

Proposition 2.1.15. In formal differential notation, there exists m(x, y) such that

dMx(y) = m(x, y)dy and

m(x, y) = ey


∑∞

k=0
ekye−ey

(k)!
P (B > k) if y < x∑∞

k=1
e−ey

k!
P (B > k)(eky − ekx) if y ≥ x

Proof. Case 1: y < x.

Mx(≤ y] =
∞∑
k=1

Px(M(≤ y) ≥ k)

=
∞∑
k=1

P (Zk(x) ≤ y)P (B ≥ k)

=
∞∑
k=1

P (Q(ey) ≥ k)P (B ≥ k)

=
∞∑
k=1

(
1−

∫∞
ey
tk−1e−tdt

(k − 1)!

)
P (B ≥ k)

= E[B]−
∞∑
k=0

∫∞
ey
tke−tdt

(k)!
P (B ≥ k + 1)

Differentiating with respect to y we get

ey
∞∑
k=0

ekye−e
y

(k)!
P (B ≥ k + 1)
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Case 2: y ≥ x. Similarly we have

Mx(≤ y) =
∞∑
k=1

Px(M(≤ y) ≥ k)

=
∞∑
k=1

P (Zk(x) ≤ x)P (B ≥ k) +
∞∑
k=1

P (Zk(x) > x ∩ Zk+1(x) < y)P (B ≥ k + 1)

The first sum’s evaluation is identical to what was done above, and does not involve

y and so does not play when we differentiate. As for the second sum we have.

∞∑
k=1

P (Zk(x) > x ∩ Zk+1(x) < y)P (B ≥ k + 1)

=
∞∑
k=1

k−1∑
j=0

P (Q(ex = j))P (Q(ey − ex) ≥ k + 1− j)P (B ≥ k + 1)

=
∞∑
k=1

k−1∑
j=0

ejxe−e
x

j!

(
1−

∫∞
ey−ex t

k−je−tdt

(k − j)!

)
P (B ≥ k + 1)

Differentiating we get

∞∑
k=1

k−1∑
j=0

ejxe−e
x

j!
ey

(ey − ex)k−jeex−ey

(k − j)!
P (B ≥ k + 1)

=
∞∑
k=1

eye−e
y

k!
P (B ≥ k + 1)

k−1∑
j=0

(
k

j

)
ejx(ey − ex)k−j

=
∞∑
k=1

eye−e
y

k!
P (B ≥ k + 1)(eky − ekx)
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Hence in formal differential notation dMx(y) = m(x, y)dy where

m(x, y) = ey


∑∞

k=0
ekye−ey

(k)!
P (B > k) if y < x∑∞

k=0
e−ey

k!
P (B > k)(eky − ekx) if y ≥ x

Proposition 2.1.16. If E[B] > 2 then G′ has a positive probability of survival.

Proof. Using the function f : y 7→ 1 we can verify that Tf(x) > f(x) for all x ∈ R

and thus the maximal eigenvalue for the operator is strictly greater than 1. G′ thus

has a non-zero probability of never going extinct. To see this note that for any fixed

x ∈ Rd, and rewriting m(x, y) appropriately we can see that∫
m(x, y)dy =

∫ ∞
−∞

∞∑
k=0

e(k+1)ye−e
y

(k)!
P (B > k)dy −

∫ ∞
x

∞∑
k=0

ey
e−e

y

k!
P (B > k)ekxdy

=
∞∑
k=0

P (B > k)

k!

∫ ∞
0

tke−tdt−
∞∑
k=0

P (B > k)ekx

k!

∫ ∞
ex

e−tdt

=
∞∑
k=0

P (B > k)−
∞∑
k=0

P (B > k)
ekxe−e

x

k!

= E[B]−
∞∑
k=0

P (B > k)
ekxe−e

x

k!

which is greater than 1 if 2 < E[B] <∞.

2.2 Existence of an Infinite Component

Definition 2.2.1. Define the linear mapping

L : Rd → R2

L(x1, . . . , xd) =
√
d(x1, x2)
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Recall the definition of the sequences of displacements {Dvi}i≥1 for v ∈ T intro-

duced in page 19, which we used to define the process Gd.

Definition 2.2.2. Define a new process G∗d on T with type space R2×R+×{0, 1} as

follows. If Gd(vi) = (w, x, b) and Dvi = (a1, . . . , ad) then let G∗d(vi) = (L(w),
√
d||(a1, a2)||2, b).

In other words, given the process Gd we can define a new process G∗d whose type

space is R2×R+×{0, 1} by mapping the position of the points in Gd to R2 using L

and calculating the R2 Euclidean distance accordingly to obtain the distance aspect

of the type. The binary mark is identical to what it is in Gd. We will now require

the use of a result from Penrose [6].

Lemma 2.2.3. Suppose U = (U1, U2, . . . , Ud) is uniformly distributed on {x ∈

R||x| = 1} according to the scaled spherical measure. Then, as d approaches infinity,

the random vector L(U) converges in distribution to the bivariate normal distribution

N(0, I) with zero mean and covariance matrix I.

Corollary 2.2.4. The offsets of G∗d converge weakly to i.i.d with distribution N(0, I)

as d approaches infinity.

This follows directly from lemmas 2.1.1 and 2.2.3. We will write G∗ for the

process started at the origin with initial type ((0, 0), 1, 1) and G∗y for the limiting

process started at y ∈ R2, with initial type (y, 1, 1). By limiting process we mean

that the transition kernels of G∗ are the limit as d approaches infinity of the transition

kernels of G∗d. In particular, writing (Lv, Dv, bv) for the type of a node v, the offsets

Dv are 2 dimensional N(0, I) random variables. By Proposition 2.1.15, the process

G′ has a positive probability of non-extinction and hence there must exist d large

enough such that G′d (and thus Gd) has positive probability of survival as well. Since
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the subtree of T induced by the set of alive nods is the same in Gd and in G∗d, G
∗
d must

also have a uniformly positive probability of survival for d large enough. Since the

transition kernels converge to those of G∗, G∗ must have positive survival probability.

Let q be the probability of extinction for G∗. The following lemma will be required.

For a positive number M let Sij(M) = [M(i− 1
2
),M(i+ 1

2
)]× [M(j − 1

2
),M(j + 1

2
)].

Then

Lemma 2.2.5. Given ε > 0 there exists a positive integer N0, a positive number

M , and a positive integer N such that given N points x1, x2, . . . , xN ∈ Sij(M), the

probability that there exists xi, 1 ≤ i ≤ N such that generation N0 of G∗xi contains at

least N points with position in Si+1,j−1 and at least N points with position in Si+1,j+1

exceeds 1− ε, where N is such that 1− qN >
√

1− ε.

Proof. For simplicity we give the proof for i = j = 0 although the argument is trans-

lation invariant. Conditional on non-extinction the (non-ghost) generation size in

G∗ tends to ∞ almost surely, due to, for example, theorem 11.2 in [5]. Pick N such

that 1 − qN >
√

1− ε, and consider x1, x2, . . . xN ∈ S0,0. With probability greater

than
√

1− ε there exists 1 ≤ i ≤ N such that G∗xi does not go extinct. Conditional

on G∗xi ’s survival we can pick N1 such that the probability that generation N1 has

at least K individuals which are themselves root nodes of surviving subtrees exceeds
√

1− ε, where K is to be specified shortly.

By the preceding sentence, P (AN1,K,M) >
√

1− ε for M sufficiently large. Let

AN1,K,M denote the event that at least K non-ghost individuals in generation N1

are within distance M from xi and are root nodes of surviving subtrees. Let M ′ =

inf{m : P (AN1,K,m) >
√

1− ε} and let M = dM ′e. Let N2 = M2 and N0 = N1 +N2.
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For any vertex v in generation N1 which is itself a root of a surviving subtree, the

position of any of its descendants w with |w| = N0 is the sum of N2 N(0, I) random

variables. With such a Gaussian random walk, call it (Hk, k ≥ 0) starting from

position H0 = y with y ∈ R2 and |y − xi| < M , we can bound the probability that

HN2 ∈ S1,−1 by noting that HN2 has distribution N(y,N2I). Note that the maximum

distance between any point in S0,0 and any point in S1,−1 is the distance between

the 2 furthest corners at M(−1/2, 1/2) and M(3/2,−3/2) = 2M
√

(2). The furthest

possible distance between x ∈ S0,0 and y is M , hence, by the triangle inequality,

|z − y| ≤M(1 + 2
√

(2)) < 4M . Let ||y − S0,0||2 = infx∈S0,0 ||y − x||2. Then we have

that

P (HN2 ∈ S1,−1) ≥ inf
y:||y−S0,0||2<M

∫
S1,−1

1

2πN2

e
− |z−y|2

2N2 dz ≥M2 1

2πN2

e−
42

2 =
1

2π
e−8

The ancestors of different individuals of generation N1 move independently. Hence,

conditional on AN1,K,M we can consider K individuals of interest in generation N1

and say an individual is a success if it has at least one descendent in generation N0

with position in S1,−1. By the above calculation, for any individual at distance at

most M from x the probability of success is at least 1− 1
2π
e−8. Hence, we have that

given AN1,K,M .

P (less than N individuals in generation N0 in S1,−1|AN1,K,M) ≤
N∑
l=0

(
K

l

)(
1− 1

2π
e−8

)K−l
which can be made arbitrarily small for K large enough and fixed N and similarly

for S1,1. Hence,

P (at least N point in generation N0 in each of S1,−1 and S1,1|AN1,K,M) ≥
√

(1− ε)
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and we conclude that

P (at least N point in generation N0 in each of S1,−1 and S1,1) ≥
√

1− ε
√

1− ε

= 1− ε

and we are done.

The Approximation Algorithm

As a final step towards using Gd to approximate the behaviour of the sequential

search procedure we will need to define an algorithm. The algorithm consists of steps

(i, j) where (i, j) ∈ L the lattice defined at the beginning of chapter 2. We can order

the elements of L lexicographically, i.e for (i, j) and (i′, j′) ∈ L, (i, j) < (i′, j′) if

i < i′ or i = i′ and j < j′. The steps are carried out in ascending order according

to this ordering. A step (i, j) is carried out if at least one of the steps (i− 1, j − 1)

and (i − 1, j + 1) is carried out successfully. The algorithm is said to be successful

if infinitely many steps are successful. Let pc be the critical value for independent

oriented site percolation on the lattice L. It is known in the literature that pc < 1,

see for example [10]. Choose ε > 0 such that 1− 7ε > pc. It will be useful to define

functions for position and distance.

Definition 2.2.6. Define

pos :
∞⋃
d=1

Rd × R× {0, 1} →
∞⋃
d=1

Rd

((x1, . . . , xd), r, b) 7→ (x1, . . . , xd)
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and

dist :
∞⋃
d=1

Rd × R× {0, 1} → R

((x1, . . . , xd), r, b) 7→ r

Choose N0 as in lemma 2.2.5 and R0 large enough so that

P (∃ v ∈ T , |v| ≤ N0, v alive|pos(G∗(v)− (0, 0)| > R0) < ε

Let πd be the volume of the d-dimensional unit ball, and define the family of

events {Er}r>0 as Er = {∃ v ∈ T , 1 ≤ |v| ≤ N0, v non-ghost, pos(Gd(v)) /∈ Br(v)},

where Br(v) is the ball of volume rπd centered at the position of the parent of v.

Then we define W as follows:

W = inf{r > 0 : P (Er) < ε)}

W is independent of d and the radius of the ball in Rd of volume Wπd is W 1/d

which goes to 1 as d approaches infinity. In the algorithm, when searching for out-

neighbours of a vertex v we only search for points whose is position is within radius

W 1/d of v’s position.

Predictable Subtrees

Predictable subtrees 1) If we write T ⊂ T we mean that T is a rooted subtree

of T . For any S ⊂ T , write

FS = σ(Gd(v), v ∈ S).
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2) If S ⊂ T is random, we say S is predictable if for any rooted subtree T of T , we

have {T ⊆ S} ∈ FT . If S is a predictable set then we let

FS = σ(
⋃
T⊂T

{E ∩ {T ⊆ S}).

This is similar to the σ-algebra generated a random process stopped at a stopping

time. All the random subsets of T considered here are predictable.

Seeds and explored Subtrees

Seeds and explored subtrees For each lattice site (i, j) we shall define a set

Σi,j ⊂ T ∗ which is, informally, the subtree of T ∗ explored before step (i, j). We

will also define a set σi,j ⊂ Σi,j of seeds for step (i, j), which may be empty, with

the property that v is alive and that |v| = iN0 for all seeds v ∈ σi,j. The set σi,j

comprises the nodes from which step (i, j) of the search procedure begins.

We will also maintain the property that for each (i, j) ∈ L, if (i′, j′) follows (i, j)

in the total order of L then all nodes v ∈ Σi,j satisfy that iN0 < |v| ≤ (i + 1)N0.

More strongly, Σi′,j′ \ Σi,j induces a (possibly empty) forest, each tree of which is

rooted at a node of σi,j and has height at most N0

The lexicographic order on T induces a total order of Σi′,j′ \Σi,j; combined with

the total order of L, this yields a total order of T ∗ :=
⋃

(i,j)∈LΣi,j, and we list the

elements of T ∗ in this order as (vk, k ≥ 1). (In fact, in the search procedure it is

possible that T ∗ turns out to be finite, but is notationally convenient to ignore this.)

A key property of the search process is that for all ` ≥ 1, the nodes v1, . . . , v` form

a rooted subtree of T .
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Explored regions

For any sequence of vertices (vk, k ≥ 1) with vk ∈ T for all k, and with v1 = ∅,

define the following quantities. For the root v1 = ∅ ∈ T , let A(v1) be the ball

centered at the origin in Rd with radius W 1/d. Let I(v1) = A(v1). For k ≥ 2,

• r(vk) is the minimum of W 1/d and the distance to I(vk−1).

• A(vk) is the ball centered at pos(Gd(vk)) with radius r(vk)

• I(vk) is the set
⋃
j≤k:vj 6=p(v) A(vj)

where p(v) is the parent of v. It is possible that r(vk) = 0, in which case A(vk) is a

the single point pos(Gd(vk)).

Nodes scanned in step (i, j)

If the set σi,j of seeds has |σi,j| < Nand (i, j) 6= (0, 0) then step (i, j) is null.

Otherwise, we define the set of nodes scanned in step (i, j) as follows. Inductively

suppose the nodes v1, . . . , vk have already been defined. Then vk+1 is the lexico-

graphically least alive node v of T satisfying the following properties.

1) v is a descendant of some node in σi,j, with iN0 ≤ |v| ≤ (i+ 1)N0

2) p(v) ∈ {v1, . . . , vk}

2) The distance from pos(Gd(v)) to
⋃
j≤k:vj 6=p(v) pos(Gd(vj)) is at least W 1/d.

3) |pos(G∗d(v)− (Mi,Mj)| < R0.

4) |pos(Gd(v))− pos(Gd(p(v)))| < W 1/d
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New Seeds

New seeds At the end of Step (i, j), let σi+1,j+1 be the set of nodes v scanned

in Step (i, j) with|v| = (i + 1)N0, and with pos(G∗d(v) ∈ Si+1,j+1; define σi+1,j−1

similarly.

Explored Regions and Points

The region of space explored in step k is Rk = A(vk) \
⋃
j<k A(vj). By the

definition of the search process, A(vj) is disjoint from
⋃
j≤k:vj 6=p(v) A(vj), so Rk =

A(vk) \A(p(vk)). The set of points discovered in step k is Pk = {pos(Gd(v)) : p(v) =

vk, pos(Gd(v)) ∈ Rk}. We write Qk =
⋃
j≤k Pj and Uk =

⋃
j≤k Rj =

⋃
j≤k A(vj).

Definition 2.2.7. Let k(i, j) = time step (i, j) completes. We say step (i, j) is

successful if

• |Qk(i,j) ∩ Si+1,j+1| ≥ N

• |Qk(i,j) ∩ Si+1,j−1| ≥ N

Definition 2.2.8. We also define the sigma algebras Fi,j generated by Gd(v) for v

with pos(Gd(v)) ∈ Qk(i,j).

We now formally describe a coupling of the algorithm and the sequential search

process. The true sequential search process described in section 2.1 defines a subset

of the process X ′d, which we will call SSP (Xd). We can define another point process

on the same underlying probability space using our algorithm.

Definition 2.2.9. Let U∞ =
⋃
k≥1 Uk and Q∞ =

⋃
k≥1Qk.

Using U∞ we can define a new point process P on Rd, such that on U c
∞, P = Xd

and on U∞, P = Q∞.

Proposition 2.2.10. P is a Poisson point process and Q∞ ⊂ SSP (P )
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Proof. We first show that P is a Poisson process. U∞ is a countable union of balls

A(vk)’s where vk is scanned. Let Gn = σ(Un), and let G∞ denote σ(U∞).

Lemma 2.2.11. Let S be a Borel set in Rd, and define the event En(S) = {Un ⊂ S}.

Then En(S) is measurable with respect to P ∩ S.

Proof. We prove this lemma by induction. For n = 1, A∅ is just the ball of radius

W 1/d centered at the origin and thus {U1 ⊂ S} is just the event that {x, |x| ≤

W 1/d} ⊂ S, which is clearly P ∩ S-measurable. Now assume that the hypothesis is

true for some n ∈ N. Note that En+1 = En∩{A(vn+1) ∈ S}. En is P ∩S-measurable

by the induction hypothesis. The order of exploration is P ∩ Un-measurable, since

it is discernible from the distances of points from their parents. The n+ 1’th vertex

to be scanned is thus P ∩ Un-measurable, and so is the radius of exploration since

it depends only on Un. Therefore if En(S) does not hold then En+1 clearly does

not hold, otherwise if En(S) holds then, {A(vn+1) ∈ S} is P ∩ Un-measurable and

therefore P ∩ S-measurable.

We can thus conclude that for S Borel, E(S) = {U∞ ⊂ S} is P ∩S-measurable,

since {U∞ ⊂ S} =
⋂∞
n=1E

n(S), and since En(S) ∈ σ(P ∩ S) for all n, by the

countable union property of σ-algebras we can conlude that {U∞ ⊂ S} ∈ σ(P ∩ S).

Lemma 2.2.12. P ∩ (Rd \ U∞) is conditionally independent of P ∩ U∞ given U∞,

and is distributed as a Poisson processes on Rd \ U∞.

Proof. For the rest of the proof Q(m) denote a Poisson random variable with rate

λ(d)m, recalling that λ(d) is the rate of the Poisson process Xd. Let D1, . . . , Dn be

disjoint Borel sets in Rd, and for 1 ≤ i ≤ n let Xi = |(Di \ U∞) ∩ P |. Let C be the
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set of all finite unions of balls in Rd with rational radii and centres. Finally let Leb

denote the Lebesgue measure on Rd. We wish to show that almost surely that for

non-negative integers k1, . . . , kn,

P

(
n⋂
i=1

Xi ≥ ki|G∞
)

=
n∏
i=1

P (Q(Leb(Di \ U∞)) ≥ ki)

Note that for all C ∈ C, and all 1 ≤ i ≤ n,

Xi = |(Di \ U∞) ∩ P |

= sup
C∈C
|(Di \ C) ∩ P |χ(U∞ ⊂ C)

≥ |(Di \ C) ∩ P |χ(U∞ ⊂ C)

Therefore we have that for all C ∈ C, almost surely

P

(
n⋂
i=1

Xi ≥ ki|G∞
)

= E

[
χ

(
n⋂
i=1

Xi ≥ ki

)∣∣∣∣∣G∞
]

≥ E

[
χ

(
n⋂
i=1

|(Di \ C) ∩ P | ≥ ki

)
χ(U∞ ⊂ C)

∣∣∣∣∣G∞
]

= E

[
χ

(
n⋂
i=1

|(D \ C) ∩Xd| ≥ ki

)
χ(U∞ ⊂ C)

∣∣∣∣∣G∞
]

=
n∏
i=1

P (Q(Leb(Di \ C)) ≥ ki)χ(U∞ ⊂ C)

since D \ C is a deterministic set and Xd is a Poisson process. Since this holds for

all C, we can conclude that

P (X ≥ k|G∞) ≥ P (Q(Leb(D \ U∞)) ≥ k)
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almost surely. Similarly, an analogous argument considering the infimum over a

union of increasing balls contained in U∞ yields that

P (X ≥ k|G∞) ≤ P (Q(Leb(D \ U∞)) ≥ k)

and the result is shown.

Lemma 2.2.13. For all n, P ∩ Un is a Poisson Process on Un conditional on Gn.

Proof. We proceed by induction on n. P ∩U1, is distributed as a Poisson process on

U1, since U1 is just the ball around the origin of radius W 1/d and P ∩ U1 is just the

intersection of the U1 with an independent Poisson process X∅, as the distribution

of Gd entails. Assume the claim holds true for Un. The radius and center of A(vn+1)

are both measurable with respect to P ∩Un, and by lemma 2.2.12 P ∩ (A(vn+1)\Un)

is conditionally independent of P ∩ Un given Un. By the production mechanism of

Gd, conditional on Un, P ∩ (Av \ Un) is distributed according to the intersection of

(A(vn+1) \ Un) and an associated independent Poisson process, Xv and so P ∩ Un+1

is thus again a Poisson process on Un+1.

It follows directly from the above lemma that P ∩U∞ is distributed as a Poisson

process on U∞ given G∞, since if S ⊂ U∞, then S ⊂ Un for some n, and therefore

P ∩ S is distributed as a Poisson process on S.

Lemma 2.2.14. Let V1, V2, . . . , Vn be disjoint Borel subsets of Rd. Then for k1, . . . , kn

non-negative integers, we have that

P

(
n⋂
i=1

|Vi ∩ P | = ki

)
=

n∏
i=1

pki(Leb(Vi))
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where mi = Leb(Vi) and pk(m) = P (Q(m) = k).

Let N = {(l1, . . . , ln) ∈ (N ∪ 0)n : 0 ≤ li ≤ ki for 0 ≤ i ≤ n}.

P

(
n⋂
i=1

|Vi ∩ P | = ki

)

=
∑
l∈L

P

(
n⋂
i=1

{|Vi ∩ P ∩ U∞| = li} ∩ {|Vi ∩ P ∩ U c
∞| = ki − li}

)

For l = (l1, . . . , ln) ∈ N let H l be the event
⋂n
i=1{|Vi ∩ P ∩ U∞| = li} ∩ {|Vi ∩ P ∩

U c
∞| = ki − li}. Conditioning on G∞ yields P (H l) = E[χ(H l)] = E[E[χ(H l)|G∞]].

Examining the internal conditional expectation yields,

E[χ(H l)|G∞] = E[E[χ(H l)|G∞, P |U∞c ]G∞] (2.1)

but by the previous lemma and noting that for all i, |P∩Vi∩U c
∞| is P |Uc

∞-measurable,

we have that

E[χ(H l)|G∞, P |cU∞ ] = E

[
n∏
i=1

χ(|Vi ∩ P ∩ U∞| = li)χ(|Vi ∩ P ∩ U c
∞| = ki − li)

∣∣∣G∞, P |Uc
∞

]

=
n∏
i=1

pli(Leb(Vi ∩ U∞))
n∏
i=1

χ(|Vi ∩ P ∩ U c
∞| = ki − li)

Finally, returning to (2.1) we get

E[χ(H l)|G∞] = E

[
n∏
i=1

pli(Leb(Vi ∩ U∞))
n∏
i=1

χ(|Ai ∩ P ∩ U c
∞| = ki − li)

∣∣∣G∞]

=
n∏
i=1

pli(Leb(Vi ∩ U∞))
n∏
i=1

pki−li(Leb(Vi ∩ U c
∞))
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Hence we have that by the above evaluation,

P

(
n⋂
i=1

|Vi ∩ P | = ki

)
= E

[∑
l∈N

E[χ(H l)|G∞]

]

= E

[∑
l∈N

n∏
i=1

pli(Leb(Vi ∩ U∞))
n∏
i=1

pki−li(Leb(Vi ∩ U c
∞))

]

= E

[
n∏
i=1

pki(Leb(Vi ∩ U∞) + Leb(Vi ∩ U c
∞))

]

= E

[
n∏
i=1

pki(Leb(Vi))

]

=
n∏
i=1

pki(Leb(Vi))

That Q∞ ⊂ SSP (P ) is now clear since a point is only in Q∞ if it’s part of

a successful step, which in turn implies that it is part of the directed connected

component of G(P ) rooted at the origin.

Corollary 2.2.15. Recall from Def 2.1.3 the definition of C(P ).

P (|C(P )| =∞) ≥ P (|Q∞| =∞)

This follows from the previous proposition and corollary 2.1.6. We now direct

our attention towards proving that the algorithm has a positive probability of being

successful, using a comparison to percolation on the lattice L.

Lemma 2.2.16.

P (Step (i, j) is successful |Fi,j) > pc

where pc is the critical probability for site percolation on L.
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Proof. Consider the following types of failures

• There exists a vertex v scanned in Step (i, j) such that v is not in the set of

explored nodes because v was born in the previously explored region.

• There exists a vertex v scanned in Step (i, j) such that pos(Gd(v)) was within

distance W 1/d of a previously scanned node w such that w 6= p(v).

• |pos(G∗d(v)− (Mi,Mj)| < R0.

• |pos(Gd(v))− pos(Gd(p(v)))| < W 1/d

We recall that 1 − 7ε > pc by choice. The probability that the set of vertices

scanned in step (i, j) contain less than N points in Si+1,j+1 or less than N points in

Si+1,j−1 given that one of the steps (i − 1, j − 1) and (i − 1, j + 1) was successful,

is upper bounded independently of Fi,j as a direct result of lemma 2.2.5 by ε for all

sufficiently large d. The same holds for failures of type (3) by definition of R0 and

for failures of type (4) by definition of W . Thus to prove the result we need only

bound the probabilities that a failure of types 1 or 2 occurs.

Next it remains to bound failures of types 1-2. First we consider a failure of types

1-2 due to step (i′, j′) with M
√

(i− i′)2 + (j − j′)2 < R where R is to be determined

later. Here we’re including the possibility that (i′, j′) = (i, j). Both failures are

subsets of the event that a point in step (i′, j′) is within distance 2W 1/d of a point

in step (i, j). The number of individual points born in such steps of the algorithm

is bounded as a function of R and the bound on the integer mark B. Hence we can

use lemma 2.1.2 to deduce that we can make the probability of this happening less

than ε by taking d large.
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Now we consider failures of type 1-2 due to a step (i′, j′) withM
√

(i− i′)2 + (j − j′)2 ≥

R.

Consider a failure of type 1 due to a step (i′, j′) with

bM
√

(i− i′)2 + (j − j′)2c = Q

where bxc denotes the smallest integer greater than or equal to x. The total volume

scanned in step (i′, j′) is uniformly bounded by construction, since B is bounded and

so are the radii of the Mv’s. Now note that by condition 4, the projected distance

between a point in step (i, j) and a point in step (i′, j′) around which scanning has

taken place is at least Q− 2R0. It follows from this and from Lemma 2.2.3 and the

super-exponential decay of the normal distribution that the fraction of the volume

scanned in step (i′, j′) whose projection falls into S((Mi,Mj), R0) is less than 2pidε
Q3

for all sufficiently large Q. The number of points (i′, j′) with

bM
√

(i− i′)2 + (j − j′)2c = Q

is bounded by a constant times Q. Hence for any δ > 0 we can make the total such

volume from all points (i′, j′) with M
√

(i− i′)2 + (j − j′)2 ≥ R smaller than πdδ

by choosing R large enough. Choose R such that this volume is small enough such

that each individual of the Gd in step (i, j) has probability at most ε/C of landing

there, where C is the maximum possible number of individuals in step (i, j). C is

dependent on the bound on B. The probability that there exists individual in step

(i, j) which lands in such a volume is thus less than ε. The probability of a failure

of types 2 due to steps (i′, j′) with M
√

(i− i′)2 + (j − j′)2 ≥ R can be bound by ε
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using an analogous argument. We obtain the lemma by summing up the probabilities

of failure.

Using a comparison to percolation on L we can conclude that the probability

that the algorithm is successful is positive for d large enough. Thus for such d the

probability that Q∞ is infinite is positive, and the component containing the origin

in C has positive probability of being infinite by corollary 2.2.15.
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CHAPTER 3
Open Problems and Further Research Possibilities

Our analysis provides a condition under which there exists a dimension where

percolation occur for all greater dimensions in the NN(d,B) model. This adds to

previous literature by incorporating a randomness factor in the number of points

each point connects to, but leaves some questions open that arise naturally from our

results. The first such question is whether or not the bound given is tight. Formally,

the question can be stated as follows: Does there exist a constant 0 < M < 2 such

that, for all non-negative integer valued random variables B with M < E[B] < ∞,

there exist d0 such that for d ≥ d0 percolation occurs almost surely in the NN(d,B)

model?

A possible path to tackling this question could be an examination of the opera-

tor T defined in chapter 2 in an attempt to learn more about its eigenspace, and its

dependence on the properties of B. If one could show that the eigenspace necessarily

contains a value greater than 1 if M < E[B] < ∞ then this would relax the bound

stated in the theorem. Furthermore, we could question if the expectation bound

stated could be relaxed if further conditions on B are imposed, such as bounds on

the variance or the decay of the distribution’s tail. This would yield an interesting
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perspective on the general NN(d, k) model, by allowing us to think, albeit infor-

mally, of the critical k as not necessarily an integer value.

Another natural question that arises from our work is, whether or not we can

provide any similar expectation conditions to ensure percolation occurs in specific

finite dimensions. While the work we have done proves the existence of a dimension

beyond which percolation occurs under certain conditions, the dimension remains

unknown, and the behaviour of the model in low dimensions remains open to explo-

ration.

Finally there exists the ambitious question of necessary conditions. Namely, if B

is such that percolation occurs in the NN(d,B) model for high enough dimensions,

what is necessarily true of B? Answering this question gives a more comprehensive

understanding of the model, as well as offering the prospects of shedding light on the

more studied model with a deterministic number of connections per point.
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