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A B S T R A C T

Vigorous experimental and theoretical programs are underway to study the behaviour

of strongly interacting systems in extreme conditions of temperature and density. The

only practical way to create such systems in terrestrial laboratories is to collide nuclei

at relativistic energies. This is done at accelerator facilities such as the LHC (CERN,

Geneva) and RHIC (Brookhaven National Laboratory, USA). These collisions of heavy

ions contain so much energy in such a small volume that the colliding nuclei "melt"

into a plasma of quarks and gluons. This creates an exotic form of nuclear matter: the

quark-gluon plasma (QGP), which exists but for a fleeting moment, and can be studied

through the particles that stream to the detectors. Two such particles are leptons and

photons, which this research will focus on.

As it was discovered that the QGP can be very well modelled by relativistic fluid

dynamics, there has been a large theoretical effort to completely characterize this QGP

and understand its bulk properties. One of the aims of the McGill group is to obtain a

value for the shear and bulk viscosities of the plasma: those are transport coefficients

linked to fundamental properties of quantum chromodynamics (QCD), the theory of

the nuclear strong interaction. The production of photons and dileptons can be used as

probes to study these transport coefficients as they are emitted throughout the out-of-

equilibrium evolution of the QGP medium, as well as within thermal equilibrium.

In order for such studies to be done, the electromagnetic signal from the pre-equilibrium

phase needs to be quantified, which is the topic of this thesis. Using kinetic theory, the

production rate of dileptons and photons was calculated for both thermal equilibrium

and pre-equilibrium cases. In the thermal equilibrium case, results of the numerical in-

tegration of the differential dilepton and photon production rates were matched to the

analytical solution. For the out-of-equilibrium case, transport equations derived within

the diffusion approximation of the Boltzmann equation were solved numerically to study

the thermalization of quarks and gluons in quark-gluon plasma.
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R É S U M É

Un vigoureux programme de recherche, à la fois expérimental et théorique, est actuelle-

ment en cours afin d’étudier le comportement, dans des conditions de température et

pression extrêmes, les systèmes régis par l’intéraction nucléaire forte. Le seul moyen pra-

tique de créer de tels systèmes dans les laboratoires terrestres est la collision de noyaux

atomiques à des niveaux d’énergie relativistes. Ceci est réalisé dans des accélérateurs

tel que le LHC (CERN, Genève) et le RHIC (Brookhaven National Laboratory, USA).

Ces collisions d’ions lourds possèdent une énergie telle que les noyaux « fondent » en

un plasma de quarks et de gluons menant à la formation d’une forme exotique de la

matière nucléaire : le plasma de quarks-gluons (Quark-Gluon Plasma, QGP). Ce dernier,

n’existant que pour un instant fugace, peux être étudier par le truchement des particules

mesurées par les détecteurs. Parmi ces particules, deux types sont les objets de ce projet

de recherche : les leptons et les photons.

Alors qu’il a été découvert que le QGP peut être modélisé de manière convaincante

en utilisant une version relativiste de la dynamique des fluides, un effort théorique im-

portant a été entrepris afin de le caractériser intégralement et de comprendre ses pro-

priétés globales. L’un des objectifs du groupe à McGill est d’obtenir une valeur pour

les viscosités de cisaillement et de volume. Ces dernières sont des coefficients de trans-

ports liées aux propriétés fondamentales de la chromodynamique quantique (Quantum

Chromodynamics, QCD), la théorie liée à l’interaction nucléaire forte. La production de

photons et de dileptons peut être utilisée afin de sonder les coefficients de transport alors

que les particules sont émises de façon continue durant l’évolution du QGP.

Dans le but de réaliser ces études, le signal électromagnétique de la phase pré-équilibre

doit tout d’abord être quantifié. Ceci est l’objet de cette thèse. Prenant appui sur une

théorie cinématique, les taux de production de dileptons et de photons ont été calculés

pour le cas à l’équilibre et hors d’équilibre. Dans le cas de l’équilibre thermal, les résultats

de l’intégration numérique des taux de productions différentiels pour les dileptons et les
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photons ont été comparés aux solutions analytiques. Pour la situation hors équilibre, les

équations de transport dérivées dans le cadre de l’approximation dite « de diffusion »

de l’équation de Boltzmann ont été résolues numériquement avec l’objectif d’étudier la

thermalisation des quarks et des gluons dans le plasma.

v





A C K N O W L E D G E M E N T S

Most importantly, I would like to thank my supervisor Charles Gale for his patience

and dedication to my research. I would also like to thank Li Yan for his immeasurable

contributions to establishing the groundwork for this thesis and for helping me overcome

many of the computational issues which arose throughout this work. Thanks should also

be given to Sangyong Jeon for his sage advice, to Alina Czajka for her helpful suggestions

and friendship, and to all the members of my research group for their constructive

feedback.

I would like also like to thank Matthew Heffernan for useful discussions, specifically

during the painstaking phase space derivation and the many snack breaks we took as a

result. Finally, I would like to thank my friends and family for continually supporting

me.

vii





C O N T E N T S

i introduction and background information 1

1 introduction 3

1.1 Theory of Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Heavy-Ion Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Simulations of Relativistic Heavy-Ion Collisions . . . . . . . . . . . . 8

1.3 Dilepton and Photon Production in Quark-Gluon Plasma . . . . . . . . . . . 8

1.4 This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

ii the boltzmann equation 11

2 introduction to kinetic theory 13

2.1 The Relativistic Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Rates in Kinetic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Number and Energy Density . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Number Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Energy Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 solution to the boltzmann equation 19

3.1 Background Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Transport Equations in a Quark-Gluon Medium . . . . . . . . . . . . . . . . 21

3.2.1 The Diffusion Approximation . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Transport Equations for Spatially Homogeneous Systems . . . . . . 23

3.3 Thermodynamics of Quark-Gluon Plasma . . . . . . . . . . . . . . . . . . . . 25

3.4 Toward a Thermal QGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iii calculation of the production rate and yield of dileptons

and photons in qgp 27

4 dilepton production in thermal equilibrium and pre-equilibrium

qgp 29

ix



x contents

4.1 Dilepton Production Rate in Pre-Equilibrium QGP . . . . . . . . . . . . . . . 29

4.2 Dilepton Production Rate in Thermal QGP . . . . . . . . . . . . . . . . . . . 34

4.3 Comparison Between Thermal and Pre-Equilibrium Production Rates . . . 37

4.3.1 Ensuring consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 dilepton yield in thermal equilibrium and pre-equilibrium qgp 45

5.1 Dilepton Yield in Pre-Equilibrium QGP . . . . . . . . . . . . . . . . . . . . . 45

5.2 Dilepton Yield in Thermal QGP . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Comparison Between Thermal and Pre-Equilibrium Yields . . . . . . . . . . 47

6 photon production in thermal equilibrium and pre-equilibrium

qgp 49

6.1 Photon Production Rate in Pre-Equilibrium QGP . . . . . . . . . . . . . . . . 49

6.2 Photon Production Rate in Thermal QGP . . . . . . . . . . . . . . . . . . . . 52

6.3 Comparison Between Thermal and Pre-Equilibrium Production Rates . . . 59

7 photon yield in thermal equilibrium and pre-equilibrium qgp 63

7.1 Photon Yield in Pre-Equilibrium QGP . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Photon Yield in Thermal QGP . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.3 Comparison Between Thermal and Pre-Equilibrium Yields . . . . . . . . . . 65

8 conclusion 67

iv appendix 69

a appendix a 71

a.1 Energy Density - Maxwell-Boltzmann Statistics . . . . . . . . . . . . . . . . . 71

a.2 Energy Density - Fermi-Dirac/Bose-Einstein Statistics . . . . . . . . . . . . . 73

b appendix b 75

b.1 Number Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

bibliography 77



L I S T O F F I G U R E S

Figure 1 Phase diagram of quantum chromodynamics, taken from [3], which

shows the phases of matter at extreme temperature T and density,

represented by the chemical potential µ. The locations of quark-

gluon plasma, color-flavor-locked (CFL) quark matter, neutron star

matter, as well as ordinary matter such as hadrons are shown. . . . 4

Figure 2 The strong coupling αs as a function of the momentum transfer

Q = pT, taken from [5]. . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 3 The various stages of heavy-ion collisions, taken from [12]. The

evolution from the initial state of color-glass condensate (CGC) to

the final process of hadronization and freeze-out into hadrons is

shown. This thesis will focus on the pre-equilibrium glasma and

thermalized quark-gluon plasma (QGP) stages. . . . . . . . . . . . 7

Figure 4 Feynmanns diagram depicting the Born leading-order dilepton

production through quark/anti-quark annihilation. Time runs from

left to right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 5 Feynman diagram depicting the Born leading-order photon pro-

duction via Compton scattering of a quark and gluon (left) and

quark/anti-quark annihilation (right). . . . . . . . . . . . . . . . . . 9

Figure 6 The temperature evolution plotted as a function of time for Qs =

1 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 7 The chemical potential evolution plotted as a function of time for

Qs = 1 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xi



xii List of Figures

Figure 8 The pre-equilibrium dilepton production rate plotted for the timesteps

2/Qs, 12.5/Qs, and 25/Qs, which correspond to the temperatures

218 MeV, 160 Mev, and 140 Mev for Qs = 1 GeV (left) and 436

MeV, 320 MeV, and 280 MeV for Qs = 2 GeV (right). The dilepton

invariant mass is set to M = 3 GeV in both cases. . . . . . . . . . . . 41

Figure 9 The dilepton production rate in thermal equilibrium is plotted

and compared to the pre-equilibrium rate calculated using the

timestep 2/Qs which corresponds to the same temperature. For

Qs = 1 GeV (left), the temperature T = 218 MeV and T = 436 MeV

for Qs = 2 GeV (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 10 The number density of quarks and gluons in thermal equilibrium

compared to that in the pre-equilibrum case computed using the

methods described in Chapter 3 for Qs = 1 GeV. . . . . . . . . . . . 42

Figure 11 The ratio of the number density of thermal quarks/gluons to pre-

equilibrum quarks/gluons (shown in blue) and the ratio of the

number density of quarks to gluons in both the thermal and pre-

equilibrium QGP (shown in orange) are compared for Qs = 1 GeV. 43

Figure 12 The dilepton production rate in thermal equilibrium is plotted and

compared to the pre-equilibrium rate as a function of time for both

Qs = 1 GeV (left) and Qs = 2 GeV (right). In this plot, the values of

both Q⊥ and M are taken to be 1 GeV. . . . . . . . . . . . . . . . . . 43

Figure 13 The dilepton production rate as a function of mass in thermal

equilibrium is plotted and compared to the pre-equilibrium rate

calculated using the timestep 2/Qs. On the left Qs = 1 GeV and on

the right Qs = 2 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 14 The dilepton yield for the thermal and pre-equilibrium cases are

plotted for Qs = 1 GeV (left) and Qs = 2 GeV (right). . . . . . . . . . 47

Figure 15 The analytical solution of the thermal photon rate is plotted and

compared to the numerical integration of equation 6.53 using T =

200 MeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



List of Figures xiii

Figure 16 The analytical solution of the thermal photon rate given by 6.65

is plotted and compared to the rate determined using the small-

angle approximation given by 6.66 for T = 200 MeV. A value of

L = 0.75 was chosen to best match the two results. . . . . . . . . . . 58

Figure 17 The analytical solution of the thermal photon rate (eq. 6.65) is plot-

ted and compared to the analytical solution (eq. 6.66) and the nu-

merical integration of the rate (eq. 6.67) determined using small-

angle approximation for a fixed pz = 0.5 GeV. . . . . . . . . . . . . . 58

Figure 18 The analytical solution of the thermal photon rate for a fixed

pz = 0.5 GeV (eq. 6.65) is plotted and compared to the analyt-

ical solution (eq. 6.66) and the numerical integration of the pre-

equilibrium rate determined using small-angle approximation (eq.

6.21) for Qs = 1 Gev, T = 160 MeV (left) and Qs = 2 Gev, T = 320

MeV (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 19 The photon production rate in thermal equilibrium is plotted and

compared to the pre-equilibrium rate as a function of time for

Qs = 1 GeV (left) and Qs = 2 GeV (right) with fixed pz, pT = 0.5

GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 20 The photon yield for the thermal and pre-equilibrium cases are

plotted for Qs = 1 GeV (left) and Qs = 2 GeV (right) for a fixed

value of pz = 0.5 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 21 The contribution to the thermal and pre-equilibrium photon yield

from the Compton scattering and quark/anti-quark annihilation

channels are compared to the total photon yield, the sum of these

channels, for Qs = 1 GeV and a fixed value of pz = 0.5 GeV. . . . . . 66

Figure 22 The temperature evolution as a function of τ for Qs = 1 GeV (left)

and Qs = 2 GeV (right) is plotted in comparison with the temper-

ature evolution given by the Bjorken solution. . . . . . . . . . . . . 72



Part I

I N T R O D U C T I O N A N D B A C K G R O U N D I N F O R M AT I O N

The first section of this thesis serves as an introduction to important top-

ics discussed and referenced throughout the work. Such topics include an

introduction to quantum chromodynamics, heavy-ion collisions, and the for-

mation of quark-gluon plasma. The motivation for this work as well as a brief

overview are outlined.





1

I N T R O D U C T I O N

Approximately 13.7 billion years ago, just after the Big Bang, the universe was filled

with an extremely hot and dense “soup” dominated by quarks and gluons, fundamental

constituents of matter. This “soup”, referred to as quark-gluon plasma (QGP), existed

only for a tiny fraction of a second, but is the origin from which all matter has been

created. It is also theorized to possibly make up the interior of astrophysical bodies such

as neutron stars and supernova as they are in similar states of extreme temperature and

density, as shown in figure 1. Therefore, it is an important area of research for both

nuclear physics and astronomy. However, it is impossible to recreate events such as the

Big Bang and the astrophysical bodies are much too distant to analyze under controlled

conditions. Thus, the only means of studying QGP on Earth is through its creation in the

collision of large nuclei at relativistic energies, referred to as heavy ion collisions.

1.1 theory of quantum chromodynamics

There are four known fundamental forces in existence: the gravitational and electromag-

netic forces, as well as the strong and weak nuclear forces. However, the discovery of

the W and Z bosons [1] elevated the weak interaction to the level of a gauge theory.

This force is referred to as the electro-weak interaction and is a unified description of

electromagnetism and the weak interaction.

When considering quark-gluon plasma, the most relevant of these forces is the strong

nuclear force which governs the structure of hadrons such as protons and neutrons, the

constituents of atomic nuclei. The strong force, mediated by gluons, is fundamentally
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4 introduction

described by the theory of quantum chromodynamics (QCD) which has the Lagrangian

[2]

LQCD = ψ̄(i/∂ −M− g /AaGa)ψ− 1
4

Fµν
a Fa

µν. (1.1)

In this equation, the first term gives the kinetic energy of the quarks (ψ), the second term

is the quark mass matrix, the third term is the minimal coupling of quarks to gluons,

and the last term is the gauge invariant gluon field strength tensor. The field strength

Fµν
a = ∂µ Aν

a − ∂ν Aµ
a − g fabc Aµ

b Aν
c (1.2)

is given in terms of the gluon fields Aν
a , where a is the colour index, and the group

structure constant fabc [2]. This field strength differs from the QED field with the addition

of the last term which carries the gluon self-coupling g.

Figure 1: Phase diagram of quantum chromodynamics, taken from [3], which shows the phases

of matter at extreme temperature T and density, represented by the chemical potential µ.

The locations of quark-gluon plasma, color-flavor-locked (CFL) quark matter, neutron

star matter, as well as ordinary matter such as hadrons are shown.

QCD states that quarks and gluons carry colour charge such that hadrons can be

constructed without violating the Pauli exclusion principle. Partonic matter is assigned
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one of three possible colour "charges", namely the three primary colours of light, which

are red, green, and blue. In contrast, anti-matter comes in either anti-red, anti-green, or

anti-blue. At low temperatures and densities, the lower left corner of the diagram in fig-

ure 1, quantum chromodynamics dictates that quarks must form colourless hadrons [4].

As baryons have three valence quarks, this implies that they must contain three quarks

of three different colours/anti-colours. Similarly for mesons which have two valence

quarks, they must have one quark and one anti-quark of the same colour/anti-colour.

Since gluons are also coloured particles, they interact among themselves as well with

quarks. This causes the theory of QCD to become much more complicated than theories

such as quantum electrodynamics (QED) as electromagnetic interactions are mediated

by photons which, unlike gluons, do not carry charges themselves.

Figure 2: The strong coupling αs as a function of the momentum transfer Q = pT, taken from [5].

One of the main properties of QCD is how the strength of the force changes as a func-

tion of energy. The strength of the force is determined by what is known as a coupling

constant, which in this case is the strong coupling constant αs = g2/4π. Specifically, as

shown in figure 2, αs decreases asymptotically as the energy scale increases. This is re-

ferred to as "asymptotic freedom". As mentioned, quarks cannot be found in isolation at

low temperatures and densities and must bind together to form colourless hadrons. This

phenomena is termed “confinement”. In this regime, the force is strong and therefore

its properties are more difficult to calculate. At extreme temperatures and densities, the
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strength of QCD is weaker, and quarks and gluons become asymptotically free under

these conditions. This means that they can propagate over macroscopic distances and

can then form quark-gluon plasma [2].

There are many approaches to studying QCD, two of which are perturbative QCD

(pQCD) and lattice QCD. Perturbative QCD is used to study QCD at high energies as

the strong coupling constant αs is small in this region, thus allowing the application

of perturbation techniques. This method, however, is invalid at low energies as αs is

large. Instead, this region is studied using lattice QCD where Feynman path integrals

are evaluated numerically on a discrete space-time lattice [6]. This method can only give

precise results for thermal QCD at zero net baryon density and is much more difficult to

calculate in other regimes [7]. At temperatures around 200 MeV1 [8], quarks and gluons

are deconfined into quark-gluon plasma, but QCD is still strongly interacting. As this is

the region of heavy ion collisions, it is therefore the focus of this thesis.

1.2 heavy-ion collisions

As mentioned, the only means of studying quark-gluon plasma here on Earth is through

its creation in relativistic heavy-ion collisions. These experiments take place at both the

Relativistic Heavy-Ion Collider (RHIC) at the Brookhaven National Laboratory and the

Large Hadron Collider (LHC) at the European Organization for Nuclear Research, CERN.

In these experiments, there is evidence to suggest that when heavy-ions such as gold

(Au) and lead (Pb) are accelerated to relativistic speeds, they collide with one another

with such high energy that the nuclei “melt” and form tiny droplets of QGP [9]. These

QGP droplets exist for a fraction of a second before they cool and expand, causing them

to form hadrons which fly off into detectors. The process, shown in figure 3, can be

simplified into three main stages: pre-equilibrium and thermalization (which this thesis

will focus on), hydrodynamics, and hadronization.

1 In this thesis, natural units where h̄ = c = kB = 1 were used throughout all calculations. Therefore,

temperature is given in units of energy. Physical units were restored at the end of calculations. Additionally,

the mostly negative Minkowski metric signature (+,−,−,−) was used.
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The pre-equilibrium stage refers to the medium created just after the two nuclei col-

lide which initially consists almost entirely of gluons, sometimes referred to as "glasma"

for gluon-plasma [10]. This medium evolves as quarks and anti-quarks are created until

it eventually reaches a state of quark-gluon plasma close to thermal equilibrium. During

this time, the quark-gluon plasma behaves as a fluid and can be modelled using hydro-

dynamics. The magnitude of the transport coefficients, shear and bulk viscosity, indicate

that this is a nearly ideal fluid [11]. Shortly after this phase, as the system continues to

cool, the temperature drops below the allowed temperature for quasi-free quarks and

gluons to exist and they begin to bind together into hadrons. This process is known

as hadronization, where the hadrons continue to interact until they "freeze-out". The

following subsection describes in more detail how these stages are simulated.

It is important to note that pairs of quarks and anti-quarks are created throughout the

evolution of these collisions which allow for both Compton scattering and quark/anti-

quark annihilation to take place within the medium. Through these processes, photons

and dileptons are produced which can be used as a probe to study the QGP. A descrip-

tion of how this is done is discussed in the next section.

Figure 3: The various stages of heavy-ion collisions, taken from [12]. The evolution from the

initial state of color-glass condensate (CGC) to the final process of hadronization and

freeze-out into hadrons is shown. This thesis will focus on the pre-equilibrium glasma

and thermalized quark-gluon plasma (QGP) stages.
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1.2.1 Simulations of Relativistic Heavy-Ion Collisions

Relativistic hydrodynamics simulations of heavy-ion collisions are often used as a means

of investigating and understanding QGP as it behaves like a near-ideal fluid. These sim-

ulations are first given a set of initial conditions, determined by the underlying physics

of the nuclear wave function sampled at relativistic energies [13], which are then evolved

using hydrodynamics. Studies continue to be successful in describing this medium us-

ing relativistic hydrodynamics, implying that the QGP formed in these collisions is close

to thermal equilibrium. However, as the system is not quite an ideal fluid, assuming

local thermal equilibrium and using ideal hydrodynamics is insufficient. Instead, a non-

equilibrium viscous evolution of fluid dynamics is used with an equation of state taken

from lattice QCD [14] . As the QGP cools and hadrons are formed, hydrodynamics is no

longer valid due to the rapid expansion and growing mean-free paths, and the fluid must

be converted into hadrons by sampling its momentum distribution [15]. These hadrons

scatter [16] and fly off and are quantified by the simulation which can then be compared

to experimental results.

1.3 dilepton and photon production in quark-gluon plasma

Since QGP is not a final state, but rather exists only for a brief period of time in the

evolution of heavy-ion collisions, it cannot be studied directly. Therefore, a means of

probing this medium is needed. Throughout the process of these collisions, both quarks

and anti-quarks are created. Because of this, both Compton scattering and quark/anti-

quark annihilation can take place. Shown in figures 4 and 5, these processes produce

both dileptons and photons. This allows photons and dileptons to be used as probes to

investigate the fluid. As they only interact with the medium electromagnetically, they

are radiated throughout the entire course of the collision. In contrast, hadrons can also

be used to study QGP. However, as they are produced as the medium cools and expands,

they can only give complementary information about the later stages of QGP. Addition-

ally, as hadrons are comprised of quarks and gluons, they interact very strongly with

the medium. This means that they cannot escape the medium without undergoing sig-
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nificant interactions with it. Owing to the relative size of the electromagnetic interaction,

αEM/αs, photons and dileptons are able to easily escape the medium and can therefore

give direct information about it, making them ideal probes for studying QGP.

Figure 4: Feynmanns diagram depicting the Born leading-order dilepton production through

quark/anti-quark annihilation. Time runs from left to right.

Figure 5: Feynman diagram depicting the Born leading-order photon production via Compton

scattering of a quark and gluon (left) and quark/anti-quark annihilation (right).

Another reason photons and dileptons are useful probes of QGP is due to the fact

that they are produced from many different sources such as through jets, radiation, and

hadronic sources [17, 18]. However, this thesis will focus on those produced in both early

times of heavy-ion collisions, as well as those produced once the medium has reached

local thermal equilibrium.

1.4 this work

The purpose of this thesis is to use the production of dileptons and photons as a means of

studying the very early quark-gluon plasma. Specifically, the production rates and yields

of these particles are calculated using kinetic theory for early times of heavy-ion colli-

sions. These calculations required the use of particle distribution functions determined

computationally using an approach described in [19]. The results of these calculations
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are then compared to that of the thermal case. The thermal production rates and yields

are calculated using methods developed in [20] for photons and [21] for dileptons.

If the system of quarks and gluons is in thermal equilibrium, the particle distri-

bution functions can be determined using either Maxwell–Boltzmann, Bose–Einstein,

or Fermi–Dirac statistics. This thesis primarily uses Maxwell–Boltzmann statistics un-

less otherwise stated, meaning that all particle distribution functions are of the form

f (E) = e−E/T. However, deviations from the Maxwell-Boltzmann distributions were

studied and will be discussed.

The following chapters of this thesis are organized as follows: Part II contains the nec-

essary background information on kinetic theory, as well as the Boltzmann equation and

how its solution yields the required particle distribution functions. Within this section,

Chapter 2 gives an introduction to kinetic theory and how it is used to determine pro-

duction rates of particles in addition to a derivation of the Boltzmann equation. Chapter

3 provides a discussion of the method of computing a solution to the Boltzmann equa-

tion and serves as a summary of the work presented in [19]. Part III is comprised of

the results for the production rates and yields of the mentioned particles for both the

thermal equilibrium and pre-equilibrium cases. Chapters 4 and 5 are dedicated to the

dilepton calculations, whereas Chapters 6 and 7 contain the results for photons. Finally,

the results of the thesis are summarized in Chapter 8 in Part IV.



Part II

T H E B O LT Z M A N N E Q U AT I O N

This section provides an introduction to kinetic theory, as well as a detailed ex-

planation of the Boltzmann equation and its derivation. Particle distribution

functions and a computational method of solving the Boltzmann equation are

also discussed.





2

I N T R O D U C T I O N T O K I N E T I C T H E O RY

Kinetic theory is the theory used to describe the physical properties of matter in terms

of the particles within it. The fundamental equation in this theory is the Boltzmann

equation, which describes the statistical behaviour of a thermodynamic system out of

equilibrium. To understand its derivation, it is first important to define what is known

as a distribution function. In the context of kinetic theory, a distribution function is a

function that describes the number of particles per unit volume in a particular phase

space location. The goal of kinetic theory is to determine these distribution functions

knowing the form of the particle interactions and the initial conditions. These distribu-

tion functions are obtained as solutions to the Boltzmann equation.

In this thesis, particle distribution functions are primarily given in terms of either en-

ergy f (E) or momentum f (px, py, pz, t) = f (p⊥, pz, t), where p⊥ = (px, py) is the trans-

verse momentum, pz is the longitudinal momentum, and τ is the proper time. However,

for the purposes of this derivation, the distribution function is given by f (x, p), where x

and p denote the position and momentum of the particle respectively.

2.1 the relativistic boltzmann equation

The two basic assumptions involved in the derivation of this equation are that collisions

are events between only two particles which interact simultaneously and that they are

distributed statistically. In heavy-ion collisions, the Boltzmann equation is often used to

describe the underlying physics. Using the notation in [22] and [23], an overview of its

derivation is presented as follows.

The focus of this derivation will be on the left-hand side of the Boltzmann equation

as the right-hand side is only added to describe the effect of collisions between particles.

The quantity d3σµ is a time-like four vector which is a volume element of a plane space-

13
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like surface σ, where ∆3σ is a small segment at a point x. As mentioned, the distribution

function used is given as f (x, p) such that f ∆3σ∆3p describes the number of particles in

the phase space segment ∆3σ with momenta in the range ∆3p about x, p.

This derivation begins by first considering a gas in which each molecule is subject

to an external force Fµ(x, pµ). In this notation, the superscript µ denotes a four-vector,

such that pµ = (p0, p1, p2, p3) = (E, px, py, pz) and Fµ = ∂pµ

∂τ = ( ∂E
∂τ , ∂p

∂τ ). In the time

∆τ, it is assumed that all particles do not undergo a collision as the momentum of the

particles changes from pµ to pµ + Fµ∆τ as it travels from the three-surface segment ∆3σ

to ∆3σ̄. Given that there were no collisions after the time interval ∆τ, the exact same

number of particles would be found in the three-surface segment ∆3σ̄. Thus, the particle

distribution function needs to be modified as

f (x, p)→ f (x, pµ + Fµ∆τ) (2.1)

where the associated proper time interval is determined using the equation for the en-

closed four-volume ∆4x

∆4x = ∆τ
pµ

m

∫
∆3σ

d3σµ. (2.2)

If the number of particles crossing a segment ∆3σ with momenta in the range ∆3p

around p is given by

∆N(x, p) =
∫

∆3σ

∫
∆3 p

d3σµd3p f (x, p), (2.3)

the number of particles crossing the segment ∆3σ̄ sometime later is∫
∆3σ̄

∫
∆3 p

d3σµ
d3p
p0 pµ f (x, p)−

∫
∆3σ

∫
∆3 p

d3σµ
d3p
p0 pµ f (x, p) = 0. (2.4)

In the case of the external force, this becomes∫
∆3σ̄

∫
∆3 p

d3σµ
d3p
p0 pµ f (x, pµ + Fµ∆τ)−

∫
∆3σ

∫
∆3 p

d3σµ
d3p
p0 pµ f (x, p) = 0. (2.5)

After a Taylor expansion and the application of Gauss’ theorem,

∆4x
∆3p
p0

[
pµ∂µ + mFµ(x, p)

∂

∂pµ

]
f (x, p) = 0, (2.6)

where ∂µ = ∂/∂xµ. Assuming the function is smooth, this can be written as∫
∆4x

∫
∆3 p

d4x
d3p
p0

[
pµ∂µ + mFµ(x, p)

∂

∂pµ

]
f (x, p) = 0, (2.7)
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Thus, the equation

pµ∂µ + mFµ(x, p)
∂

∂pµ f (x, p) = 0 (2.8)

is deduced for the collisionless case. In the presence of collisions, this is modified as

pµ∂µ + mFµ(x, p)
∂

∂pµ f (x, p) = C(x, p) (2.9)

where C(x, p) is the collision term which accounts for particles which may have entered

or left the volume element after having undergone a collision. This term, sometimes

written as Rcoll, describes the rate of collisions between particles and is discussed further

in the next section.

2.2 rates in kinetic theory

Throughout the derivation of the left-hand side of the Boltzmann equation presented in

the previous section, it was assumed that there were no collisions occurring between par-

ticles. Conversely, the term on the right-hand side of the equation is introduced purely to

account for particles that have undergone collisions which may enter or leave the volume

element of the phase space. This term is referred to as the collision term and is denoted

as either Rcoll(x, p) or C[ f i
p] depending on the notation. It is such that Rcolld4xd3p/p0 is

the average change of the number of particles having momenta between p and p + dp in

the four-volume d4x at a given space-time point x.

The number of collisions per unit volume and per unit time at the space-time point

x is obtained using the assumption that the particles interact only within a short range.

In this assumption, the interactions of these particles can be described by f (x, p) which

does not vary significantly over the interaction distance. If the collision occurs such

that (p, p + dp), (p1, p1 + dp1) → (p′, p′ + dp′), (p′1, p′1 + dp′1), the total loss of particles

having momenta (p, p + dp) in the space-time volume d4x is obtained by multiplying
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by d4x and integrating over the final momenta p′, p1 and the momentum of the collision

partner p1. Thus, the expression for Rcoll(x, p) can be written as

Rcoll = N
∫ d3p

2p0(2π)3
d3p1

2p0
1(2π)3

fp(x, p) fp1(x, p1)(2π)4δ(pµ + pµ
1 − p‘µ − p1‘µ)

× |Mi|2
d3p‘

2p‘0(2π)3
d3p1‘

2p1‘0(2π)3 [1± fp‘(x, p‘)][1± fp1‘(x, p1‘)], (2.10)

where |Mi|2 is the amplitude for a particular interaction i, N is a degeneracy factor, and

the ± in the distribution function of the particle in the final state accounts for either a

Bose-enhancement or a Pauli-suppression. For dilepton production from particle/anti-

particle annihilation, for example, the rate of production can be written as [21]

R(a+a− → l+l−) =
∫ d3p1

(2π)3E1
f (p1)

∫ d3p2

(2π)3E2
f (p2)vrelσ(a+a− → l+l−; p1p2) (2.11)

where f (p1) and f (p2) are the distribution function of particles 1 and 2, the degeneracy

factorN is absorbed into the interaction cross-section σ, and the relative velocity between

the particles is given by

vrel =

√
p1 · p2 −m4

a
E1E2

. (2.12)

In the case of a photon producing reaction, the rate of production is given by [2]

R(1+ 2→ 3+γ) = N
∫ d3p1

(2π)32E1

d3p2

(2π)32E2
f1(E1) f2(E2)(2π)4δ4(p1 + p2− p3− pγ)

× |Mi|2
d3p3

(2π)32E3

d3pγ

2E(2π)3 [1± f3(E3)]. (2.13)

In the above equaitons, R denotes the number of collisions per unit space-time. Thus,

it can be expanded as R = dN/d4X, where d4X is the space-time volume element. This

volume element can be further expanded as d4X = τdτdηd2x⊥ [24]. In this expansion,

d2x⊥ is the transverse area of the collision with the coordinate x⊥ = (x, y) and the space-

time rapidity η =arctanh(z/t) describes the angle between the particle in position space

and the positive direction of the beam axis where z is the angular dependence. In a

longitudinally expanding system [24], the proper time τ is given as τ =
√

t2 − z2.

In a later chapter of this thesis, it is shown how the above rates can be converted

from total rates to differential ones by inserting a δ4-function and rewriting as dR/d4Q

in the case of the dilepton production rate, or rearranging the photon production rate
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such that it can be written as EdR/d3p. Again, the expression for these rates can be

written using R = dN/d4X. However, these expressions can be further expanded as

d4Q = MdMdyd2Q⊥ and d3p/E = dyd2p⊥. In this notation, the center-of-mass energy is

denoted by M, the transverse momentum Q⊥ = (Qx, Qy), and the momentum rapidity

is given by y =arctanh(pz/E) which is related to the angle between the particle three-

momentum p and the positive direction of the beam axis. These expansions are used

later for converting from production rates to yields of dileptons and photons.

2.3 number and energy density

In this section, the kinetic theory definition of two useful concepts known as number den-

sity and energy density are discussed. These concepts are used to quantify the number of

particles and the amount of energy contained in a system. In the following subsections,

the equations for calculating these quantities are derived.

2.3.1 Number Density

Number density is defined as the number of particles per unit volume at a specific space-

time location. The expression for the number density can be derived from the particle

four-flow given by the equation

Nµ =
N

∑
k=1

ck

∫ d3pk

(2π)3p0
k

pµ
k fk(pk, τ). (2.14)

The number density is defined as the 0th component of Nµ

N0 =
N

∑
k=1

ck

∫ d3pk
(2π)3 fk(pk, τ) (2.15)

which is simply the integral over the distribution function in the volume element [22]. In

this equation, the coefficient ck is used to denote potential degeneracy factors. Thus, in

the case of a two-species ensemble, this expression becomes

n(τ) = c1

∫ d3p1

(2π)3 f1(p1, τ) + c2

∫ d3p2

(2π)3 f2(p2, τ), (2.16)
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which can be written as

n(τ) = νg

∫ d3p
(2π)3 fg(p, τ) + νq

∫ d3p
(2π)3 fq(p, τ) (2.17)

if the particles considered are quarks and gluons. Anti-quarks are treated in the same

manner as quarks, so they have been absorbed into νq as an additional factor of 2.

2.3.2 Energy Density

Energy density describes the amount of energy contained in a given system or region

of space per unit volume. The expression for energy can be derived starting with the

energy-momentum tensor

Tµν(τ) =
N

∑
k=1

ck

∫ d3pk

(2π)3p0
k

pµ
k pν

k fk(pk, τ) (2.18)

which is used to describe the density and flux of energy and momentum in spacetime.

The energy density is determined when µ, ν = 0. Again, in the case of a two-species

ensemble,

T00(τ) = c1

∫ d3p1

(2π)3 p0
1 f1(p1, τ) + c2

∫ d3p2

(2π)3 p0
2 f2(p2, τ), (2.19)

which, for quarks and gluons, becomes

ε(τ) = νg

∫ d3p
(2π)3 p0 fg(p0, τ) + νq

∫ d3p
(2π)3 p0 fq(p0, τ). (2.20)
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S O L U T I O N T O T H E B O LT Z M A N N E Q U AT I O N

In order to compute production rates of particles from the equations in the previous

section, the particle distribution functions must first be determined. This becomes com-

plicated when the particles are not in thermal equilibrium. In this case, they must be

determined by solving the Boltzmann equation. As this thesis focuses on the compar-

ison between particle production rates and yields in thermal equilibrium versus pre-

equilibrium, the out-of-equilibrium distribution functions are essential. This becomes

additionally complicated in the case of heavy ion collisions as the system is rapidly

evolving, and therefore the distribution of particles changes as a function of time. How-

ever, a method of numerically calculating these distribution functions was determined by

[19]. This chapter is dedicated to describing the procedure required for this calculation.

3.1 background information

In the very early stages of a relativistic heavy ion collision, a dense system consisting

almost entirely of gluons is theorized to exist [25]. The comparatively large population of

gluons is also conserved in the phenomenologically-extracted parton distribution func-

tions [26]. This system is produced in a time scale of order t ∼ 1/Qs, where Qs is the

saturation momentum which characterizes the initial wave functions of the nuclei [27].

The gluons present in this initial state having momentum p . QS have an occupation

number f0 which could be as large as 1/αs, where αs is the strong coupling constant

which determines the strength of the strong interaction.

As the system thermalizes, there has been evidence to suggest that a Bose-Einstein con-

densate (BEC) could develop [28, 29]. However, whether or not a transient BEC emerges

is beyond the scope of this work. Instead, the effects of inelastic processes which cause

a variation in the number of gluons are studied as they can lead to the creation of

19
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quark/anti-quark pairs. In this work, qq̄ pairs are formed by gluon fusion. The inverse

reaction is also included.

Initially after heavy ion collisions, the medium created contains a negligible amount of

quarks and anti-quarks in comparison with the large number of gluons present. This will

become evident in figure 10 where it is clearly shown that the number density of gluons

vastly outweighs that of quarks/anti-quarks at very early times. In contrast, quarks and

anti-quarks account for about 66% of the energy density of thermalized quark-gluon

plasma, where the equation is given by

ε = 3P =
[
16 +

21
2

N f

]π2

30
T4, (3.1)

so the evolution of this medium as it thermalizes from a dense system of gluons is im-

portant to study. In this equation, N f (taken as NF = 3 by RHIC and LHC) is the number

of flavours of massless quarks/anti-quarks, T is the temperature, and it is assumed that

quarks and gluons are non-interacting. If N f = 3, the equation reduces to equation A.19.

The total number of gluons in the system is decreased through the production of

quarks. As the total number of partons are conserved in the processes included in the

Boltzmann equation, a chemical potential develops as the system evolves. Assuming

that the initial number of gluons is not too large, this situation is denoted as under-

population. In contrast, if the initial number of gluons is large enough, the situation of

over-population occurs.

In order to study the evolution towards thermal equilibrium, two coupled kinetic equa-

tions, transport equations, for both gluons and quarks/anti-quarks are needed. These

are obtained using the Boltzmann equation in the diffusion approximation with the as-

sumption that all scatterings are small angle scatterings [30]. The collision term used

contains only 2 ↔ 2 processes between quarks and gluons and all other processes are

neglected. The baryon number density is set to zero, therefore, quarks and anti-quarks

are described using the same transport equation. This transport equation is coupled to

that of gluons and solved numerically. The details of this solution are described in the

following sections.
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3.2 transport equations in a quark-gluon medium

To study the evolution of the medium created in relativistic heavy ion collisions, a de-

scription of quark and gluon degrees of freedom in terms of phase space distributions is

required. These colour and spin averaged distribution functions are denoted as f (t, x, p)

for gluons and F(t, x, p) for quarks. As anti-quarks are treated in the same manner as

quarks, their distribution functions are the same. In a thermal bath of quarks and gluons,

the amount of quarks and gluons having thermal masses larger than the temperature T

is negligible compared to the amount of light quarks and gluons. Therefore, only light

quarks and gluons are considered and they are taken to be massless for simplicity. Ad-

ditionally, it is assumed that the baryon number density is small (taken to be zero) and

there are no external forces exerted on the partons.

3.2.1 The Diffusion Approximation

The Boltzmann equation is used to describe the evolution of the phase space distribution

function. It can be written as

Dt f a
p ≡

( ∂

∂t
+ v · ∇x

)
f a
p = C[ f a

p] (3.2)

where Dt is the covariant derivative, C[ f a
p] is the collision term, and f a

p is the distribution

function of different species denoted by the superscript a. This collision term includes

all 2↔ 2 scattering processes from QCD and takes the form

C[ f a
p] =

1
2Epνa

∑
b,c,d

1
scd

∫ d3p′

(2π)32Ep‘

d3k
(2π)32Ek

d3k‘
(2π)32Ek‘

(2π)4δ4(P + P‘− K− K‘)

× |Mab
cd|

2[ f c
k f d

k‘(1 + εa f a
p)(1 + εb f b

p‘)− f a
p f b

p‘(1 + εc f c
k)(1 + εd f d

k‘)], (3.3)

where is the degeneracy factor νa represents the spin and colour degrees of freedom and

corresponds to the average over the initial state of particle a given as νa = 2(N2
c − 1)

for gluons and νa = 2Nc for quarks/anti-quarks. Additionally, εa is used to distinguish

between fermions and bosons, taking εa = 1 for bosons and εa = −1 for fermions, and

scd is a symmetry factor. Furthermore, a and b denote incoming particles, and outgoing

particles are denoted by c and d.
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In a medium consisting almost entirely of gluons, the differential cross-section gg ↔

gg diverges if the transferred momentum q is significantly smaller than that of the two

scattering gluons. Thus, the system is dominated by low momentum transfer or small

angle scatterings. This allows for the Boltzmann equation to be treated in a diffusion

approximation, so a Fokker-Planck equation [31] can then be used

Dt f = −∇p · J (3.4)

where J is an effective current due to the small angle collisions which is proportional

to the integral

L ='
∫ qmax

qmin

dq
q

. (3.5)

In this equation, the lower bound qmin is of the order of the screening mass [32] and the

upper bound qmax is of the order of the largest momentum in the system.

Conversely, in a system consisting of both quarks and gluons, the small angle scatter-

ings of both qq̄ and qg/q̄g must also be considered. Therefore, there are two additional

currents denoted as Jg for gluons and Jq for quarks. The processes qq̄ ↔ gg, qg ↔ qg,

and q̄g ↔ q̄g contribute to the source terms Sg for the production of gluons, and Sq for

the production of quarks. From this, two diffusion-like equations are obtained

Dt f = −∇p · Jg + Sg (3.6)

DtF = −∇p · Jq + Sq (3.7)

which have the currents

Jg = −4πα2
s NcL

[
Ia∇p f + Ib

p
p

f (1 + f )
]

(3.8)

Jg = −4πα2
s CFL

[
Ia∇pF + Ib

p
p

F(1− F)
]

(3.9)

and the sources are

Sg =
4πα2

s CFN fLIc

p
[F(1 + f )− f (1− F)] (3.10)

Sq = −
4πα2

s C2
FLIc

p
[F(1 + f )− f (1− F)] (3.11)
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with

Ia =
∫ d3p

(2π)3 [Nc f (1 + f ) + N f F(1 + F)] (3.12)

Ib = 2
∫ d3p

(2π)3
1
p
(Nc f + N f F) (3.13)

Ic =
∫ d3p

(2π)3
1
p
( f + F). (3.14)

In the above equations, CF is the square of the Casimir operator of the colour SU(Nc)

group in the fundamental representation and is given by CF = (N2
c − 1)/(2Nc). For the

derivations of these equations, see Appendix A of [19].

3.2.2 Transport Equations for Spatially Homogeneous Systems

In a spatially homogeneous system of quarks and gluons, the spatial dependence of the

phase space distribution can be ignored, thus Dt =
∂
∂t , and the momentum distributions

are assumed to be isotropic. A new time variable is then introduced

τ =
2α2

s NcL
π

t. (3.15)

With this, equations 3.6 and 3.7 can be rewritten as

ḟ = − 1
p2 (p2 Jg)‘ +

CFN f

Nc
Sg = − 1

4πp2Fg‘−
CFN f

Nc
Sq (3.16)

Ḟ = −CF

Nc

1
p2 (p2 Jq)‘ +

C2
F

Nc
Sq = −

CF

Nc

1
4πp2Fq‘ +

C2
F

Nc
Sq, (3.17)

where the overdots and primes denote derivatives with respect to τ and p respectively.

In these equations, the rescaled currents Jg and Jq with corresponding fluxes Fg and Fq

have been introduced such that

Fg

4πp2 ≡ Jg = −Ia f ‘− Ib f (1 + f ) (3.18)

Fq

4πp2 ≡ Jq = −IaF‘− IbF(1− F). (3.19)

The source terms are also rescaled as

Sg = −Sq =
Ic

p
[F(1 + f )− f (1− F)]. (3.20)
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In these equations, the integrals Ia, Ib, and Ic are given as

Ia = 2π2Ia =
∫ ∞

0
dpp2[Nc f (1 + f ) + N f F(1− F)] (3.21)

Ib = 2π2Ib = 2
∫ ∞

0
dpp(Nc f + N f F) (3.22)

Ic = 2π2Ic =
∫ ∞

0
dpp( f + F). (3.23)

Parton number density n, and energy density ε, can now be defined in terms of the

distribution functions f and F as

n = 4Nc

∫ d3p
(2π)3 (CF f + N f F) ≡ ng + nq (3.24)

ε = 4Nc

∫ d3p
(2π)3 p(CF f + N f F) ≡ εg + εq. (3.25)

The entropy density of both gluons sg and quarks sq can also be defined in terms of f

and F as

sg ≡ −4NcCF

∫ d3p
(2π)3 [ f log f − (1 + f ) log(1− f )] (3.26)

sg ≡ −4NcCF

∫ d3p
(2π)3 [F log F + (1− F) log(1− F)] (3.27)

where the total entropy density of the system is given by s = sg + sq. Taking the deriva-

tives of n, ε, and s with respect to time yields the time evolution of these quantities given

by

ṅ = − 1
2π3 CF(NcF + g + N fFq)

∣∣∣p=∞

p=0
(3.28)

ε̇ = − 1
2π3 CF[p(NcFg + N fFq) + Ia4πp2(Nc f + N f F)]

∣∣∣p=∞

p=0
(3.29)

ṡ =
CF

2π3

[
Nc

(
Fg log

f
1 + f

− 4πp2 Ib f
)
+ N f

(
F log

F
1− F

− 4πp2 IbF
)]∣∣∣p=∞

p=0

+
2CF

π2

∫ ∞

0
dpps+(p),

(3.30)

where s+(p) is the non-negative function

s+(p) ≡ p
Ia

( Nc J2
g

f (1 + f )
+

N f J2
q

F(1− F)

)
+ CFN f Ic[F(1 + f )− f (1− F)] log

F(1 + f )
f (1− F)

. (3.31)

Following the procedure in [31], the slight temperature dependence of L is neglected.

This allows for equations 3.16 and 3.17 to be invariant under the scaling transformation

Qs → cQs, τ → τ

c
, p→ cp. (3.32)
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Therefore, the chemical potential µ, temperature T, and all momenta can be expressed

in units of Qs and time in units of 1/Qs.

3.3 thermodynamics of quark-gluon plasma

As only 2↔ 2 processes are included in the collision term of the transport equations, this

conserves the total parton number implying that in equilibrium, gluons and quarks/anti-

quarks have the same chemical potential. The solutions to equations 3.16 and 3.17 are

the thermal equilibrium distributions of the form

feq =
1

e(p−µ)/T − 1
, Feq =

1
e(p−µ)/T + 1

(3.33)

where T and µ are the temperature and chemical potential respectively.

The QGP can be described in terms of its thermodynamic properties which are de-

termined by the total energy density ε0 and the total parton number density n0. In an

under-populated system, solving the equations

εeq = ε0, neq = n0 (3.34)

can yield the values of T and µ < 0, where the values of εeq and neq can be obtained by

inserting feq and Feq into equations 3.24 and 3.25. In contrast, an over-populated system

has a value of n0 so large that there is no real solution to the above equations. The

thermal distribution functions, feq and Feq, are found with µ = 0 and a temperature

determined from ε0,

T =

√
2
π

(15ε0)
1/4

(8NcCF + 7NcN f )1/4 (3.35)

which reduces to equation A.20 if N f , Nc = 3. Using equation 3.24, neq, the total number

of partons with p > 0, can be calculated. The number density of the condensed gluons

is determined using

N0 = n0 − neq, (3.36)

and a Bose-Einstein condensate (BEC) may form from excess gluons.
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3.4 toward a thermal qgp

In [19], three different patterns of thermalization are studied. In the first case, a BEC is

formed when f0 > f0c. In the second case, there is no BEC in the equilibrium state when

f0 < f0c, where f0c denotes the transition from under to over-population. However, when

quarks are present in the case of f0 < f0c, a BEC may appear for a short time which is

caused by the over-population of low momentum gluons. In this thesis, however, only

the path to thermalization is explored. The exact means of thermalization is still the

subject of much research.

Using the diffusion approximation of the Boltzmann equation, two coupled transport

equations for the gluon distribution f and the quark distribution F have been derived.

These transport equations are solved numerically to study how the system evolves from

an initial gluon distribution given by

f (0, p) = f0θ
(

1− p
Qs

)
, (3.37)

which is inspired by the colour glass picture [31], to the thermalized state of quark-gluon

plasma.

To do this, code was developed which outputs these distributions, f and F, as a func-

tion of momentum and time such that f = fg(p⊥, pz, τ) and F = fq(p⊥, pz, τ). Starting

with τ0 = 1/Qs and running until τ = 25/Qs, this code is used to study the evolution

of the quark and gluon distribution functions throughout the process of thermalization.

Additionally, the energy density for every timestep is also given. From this, the tempera-

ture as a function of τ, T(τ), can be calculated (see appendix A). With these distribution

functions, the pre-equilibirum production rate of dileptons and photons can be deter-

mined and compared to that of the thermal case using the temperature calculated from

the well defined energy density, which is the focus of this thesis.



Part III

C A L C U L AT I O N O F T H E P R O D U C T I O N R AT E A N D

Y I E L D O F D I L E P T O N S A N D P H O T O N S I N Q G P

Now that the background information for this thesis has been presented, this

section is dedicated to specific calculations of dilepton and photon production

rates and yields. The production rates and yields were calculated for the pre-

equilibrium case and compared to the well-known thermal equilibrium case,

which has also been derived in this thesis to ensure an accurate comparison.





4

D I L E P T O N P R O D U C T I O N I N T H E R M A L

E Q U I L I B R I U M A N D P R E - E Q U I L I B R I U M Q G P

A dense system of quarks and gluons known as quark-gluon plasma forms after the

relativistic collision of heavy ions which cannot be studied directly as it is very short

lived. However, probes such as pairs of leptons, referred to as dileptons, can be used as

a means of investigating the underlying physics as they are produced in both thermal

and pre-equilibrium QGP.

This chapter starts by deriving the pre-equilibrium dilepton production rate in terms

of both dR/d4Q as well as dR/dM2. The dilepton production rate in thermal equilibrium

is then derived and compared to the pre-equilibrium case.

4.1 dilepton production rate in pre-equilibrium qgp

Discussed in Chapter 2, relativistic kinetic theory gives the rate of production of collid-

ing particles. This rate is known as the collision term and is the right-hand side of the

Boltzmann equation. In the case of qq̄ → l+l− (figure 4), where dileptons are produced

through quark/anti-quark annihilation, the rate at which this occurs can be derived

starting with

dR
d4Q

=
∫ d3p1

(2π)3
d3p2

(2π)3 f (p1) f (p2)vqq̄σqq̄(M)δ(4)(Q− P1 − P2), (4.1)

which is the number of dileptons produced per space-time volume and four dimensional

momentum-space volume. In this equation, the relativistic relative velocity is

νqq̄ =

√
(p1 · p2)2 −m4

q

E1E2
=

M2

2
(4.2)

29
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and the total cross section is given by

σqq̄ = Fqσ̃(M) (4.3)

where

Fq =
[

Nc(2s + 1)2 ∑
f

e2
f

]
(4.4)

σ̃(M) =
4π

3
α2

EM
M2

(
1 +

2m2
l

M2

)(
1−

4m2
l

M2

)1/2
. (4.5)

Thus,

σqq̄ =
80π

9
α2

EM
M2 (4.6)

where, for the purposes of this derivation, only u and d massless quarks are used and it

is assumed that the rest mass of the leptons is much less than M, which is the centre-of-

mass energy and the dilepton invariant mass. As this is the pre-equilibrium case, thermal

distribution functions cannot be used. Therefore, the distribution functions must come

from the out-of-equilibrium solution to the Boltzmann equation (see Chapter 3), where

the resulting distribution functions are given in terms of p⊥, pz, and τ. The rate can

therefore be written as

dR
d4Q

=
5α2

EM
72π5

∫ d3p1

E1

d3p2

E2
fq(p1⊥, p1z, τ) fq̄(p2⊥, p2z, τ)δ(4)(P1 + P2 −Q). (4.7)

Knowing that four-vectors can be expanded in terms of energy and momentum, the

δ(4) function can be rewritten as δ(4)(P1 + P2 − Q) = δ(3)(p1 + p2 −Q)δ(E1 + E2 − E).

After inserting this and integrating over p2, the equation becomes

dR
d4Q

=
5α2

EM
72π5

∫ d3p1

E1E2
fq(p1⊥, p1z, τ) fq̄( ¯p2⊥, ¯p2z, τ)δ(E1 + E2 − E). (4.8)

In the above equation, new variables are introduced and defined as

¯p2⊥ =
√

Q2
⊥ + p2

1⊥ − 2Q⊥p1⊥ cos φ1 and ¯p2z = Qz − p2z, such that the integral is no

longer dependent on p2.

In order to integrate over the final delta function, the Jacobian must first be determined.

Using the equation

J = δ(φ1 − φ̄1)
1

| ∂g
∂φ1
|
= δ(φ1 − φ̄1)

1

| ∂g
∂ ¯p2⊥

∂ ¯p2⊥
∂φ1
|
, (4.9)
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where g is the argument inside the function, the Jacobian can be calculated by rewriting

the delta function in terms of the variables ¯p2⊥ and ¯p2z

δ(g) = δ(E1 + E2 − E) = δ
(

E− E1 −
√

¯p2⊥2 + m2
q + ¯p2z

2
)

, (4.10)

In doing so, the Jacobian is given by

J = δ(φ1 − φ̄1)
E2

Q⊥p1⊥| sin φ1|
. (4.11)

which is then used to rewrite the rate

dR
d4Q

=
5α2

EM
72π5

∫ d3p1

E1E2
fq(p1⊥, p1z, τ) fq̄( ¯p2⊥, ¯p2z, τ)δ(φ1 − φ̄1)

E2

Q⊥p1⊥| sin φ1|
. (4.12)

Recalling that the integration measure can be expanded as d3p1 = p1⊥dp1⊥dp1zdφ1, an

integration over φ1 can then be performed yielding

dR
d4Q

=
5α2

EM
72π5

∫
dp1⊥dp1z

1
E1Q⊥

1
| sin φ̄1|

fq(p1⊥, p1z, τ) fq̄( ¯p2⊥, ¯p2z, τ). (4.13)

However, | sin φ̄1| still needs to be determined. This can be done using the argument

of the energy delta function. In this case, the energy E2 is expressed in terms of the

variables ¯p2⊥ and ¯p2z, giving E− E1 = E2 =
√

¯p2⊥2 + m2
q + ¯p2z

2, which can be used to

determine an expression containing a factor of cos φ̄1. After squaring both sides of the

equation and expanding, the expression

E2 + E2
1 − 2EE1 = Q2

⊥ + p2
1⊥ − 2Q⊥p1⊥ cos φ̄1 + Q2

z + p2
1z − 2Qz p1z + m2

q (4.14)

is obtained, which can be simplified using the invariant mass equations E2
1 = p2

1⊥+ p2
1z +

m2
q and E2 = Q2

⊥ + Q2
z + M2 and rearranged such that cos φ̄1 is isolated

cos φ̄1 =
2EE1 −M2 − 2Qz p1z

2Q⊥p1⊥
. (4.15)

Recalling the basic trigonometric identity sin φ̄1 =
√

1− cos2 φ̄1, an expression for sin φ̄1

is finally obtained

sin φ̄1 =

√
4Q2
⊥p2

1⊥ − (2EE1 −M2 − 2Qz p1z)2

2Q⊥p1⊥
. (4.16)
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Returning to the integral, the pre-equilibrium dilepton production rate can be written

as

dR
d4Q

=
5α2

EM
72π5

∫
dp1⊥dp1z

2p1⊥
E1

1√
4Q2
⊥p2

1⊥ − (2EE1 −M2 − 2Qz p1z)2
fq(p1⊥, p1z, τ)

× fq̄(
√

Q2
⊥ + p2

1⊥ − (2EE1 −M2 − 2Qz p1z), Qz − p1z, τ). (4.17)

However, this can once again be rewritten using the known identities

E =
√

M2 + Q2
⊥ + Q2

z =
√

M2 + Q2
⊥ cosh(y) (4.18)

and

Qz =
√

M2 + Q2
⊥ sinh(y). (4.19)

In the case of boost-invariance, meaning that the system remains unchanged if a Lorentz

transformation is applied, the rapidity may be set to y = 0. Thus, the identities simplify

to

E =
√

M2 + Q2
⊥ (4.20)

Qz = 0. (4.21)

Therefore, the final expression for the pre-equilibrium dilepton production rate becomes

dR
d4Q

=
5α2

EM
72π5

∫
dp1⊥dp1z

2p1⊥
E1

1√
4Q2
⊥p2

1⊥ − (2EE1 −M2)2
fq(p1⊥, p1z, τ)

× fq̄(
√

Q2
⊥ + p2

1⊥ − (2EE1 −M2),−p1z, τ). (4.22)

Now the limits of integration need to be determined. For p1z, the integration limits

can be determined from cos φ̄1 as

cos φ̄1 = |2EE1 −M2 − 2Qz p1z

2Q⊥p1⊥
| ≤ 1. (4.23)

Taking the argument of the cosine to be negative, possible limits of integration for p1z

are given by

−b1 −
√

b2
1 − 4a1c1

2a1
≤ p1z ≤

−b1 +
√

b2
1 − 4a1c1

2a1
. (4.24)
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where

a1 = 4(E2 −Q2
z) (4.25)

b1 = −4Qz(M2 − 2Q⊥p1⊥) (4.26)

c1 = −(M2 − 2Q⊥p1⊥)
2 + 4E2p2

1⊥ + 4E2m2
q. (4.27)

However, taking the argument of the cosine to be positive yields the limits

−b2 −
√

b2
2 − 4a2c2

2a2
≤ p1z ≤

−b2 +
√

b2
2 − 4a2c2

2a2
(4.28)

where

a2 = 4(E2 −Q2
z) (4.29)

b2 = −4Qz(M2 + 2Q⊥p1⊥) (4.30)

c2 = −(M2 + 2Q⊥p1⊥)
2 + 4E2p2

1⊥ + 4E2m2
q. (4.31)

The limits of integration for p1⊥ come from

¯p2⊥ =
√

Q2
⊥ + p2

1⊥ − (2EE1 −M2), (4.32)

such that the argument under the square root must be greater than zero. After some

algebraic manipulation, this equation becomes

p1⊥ ≤
√

E2 − Emq. (4.33)

Therefore, for massless quarks, the limits of p1⊥ are

0 ≤ p1⊥ ≤ E. (4.34)

The pre-equilibrium dilepton production rate can also be written in terms of mass

distribution knowing that

dR
d4Q

=
dR

MdMdyd2Q⊥
, (4.35)

where, MdM = 1
2 dM2 and, as before, y = 0. Therefore, by integrating over Q⊥, an

alternate expression for the rate is given by

dR
dM2 =

5α2
EM

72π5

∫
dp1⊥dp1zdQ⊥

2p1⊥
E1

Q⊥√
4Q2
⊥p2

1⊥ − (2EE1 −M2)2
fq(p1⊥, p1z, τ)

× fq̄(
√

Q2
⊥ + p2

1⊥ − (2EE1 −M2),−p1z, τ). (4.36)
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4.2 dilepton production rate in thermal qgp

Starting with the same equation as before,

dR
d4Q

=
∫ d3p1

(2π)3
d3p2

(2π)3 f (p1) f (p2)vqq̄σqq̄δ(4)(Q− P1 − P2), (4.37)

the dilepton production rate can be determined for the case when the quark-gluon

plasma is in thermal equilibrum. In this case, Maxwell-Boltzmann statistics are used

for the thermal distribution functions such that

f (p1) f (p2) = e−(E1+E2)/T = e−E/T = e−βE. (4.38)

After the distribution functions, cross-section σqq̄, and the expression vqq̄ have been in-

serted, the rate equation is given by

dR
d4Q

=
40π

9
α2

EM

∫ d3p1d3p2

(2π)6E1E2
e−βEδ(4)(Q− P1 − P2). (4.39)

Knowing that the δ(4) function can be expanded into it’s energy and momentum compo-

nents,

dR
d4Q

=
40π

9
α2

EM

∫ d3p1d3p2

(2π)6E1E2
e−βEδ(E− E1 − E2)δ

(3)(Q− p1 − p2), (4.40)

From the three-momentum delta function, is it known that p2 = Q− p1. Therefore, the

energy delta function can be rewritten knowing that

E2 = E− E1 = |p2| =
√

Q2 + p12 − 2|Q||p1| cos θ (4.41)

After integrating over p2, the above expression is substituted into the energy delta func-

tion yielding

dR
d4Q

=
40π

9
α2

EM

∫ |p1|2dp1dzdφ

(2π)6E1(E− E1)
e−βEδ

(
E− E1 −

√
Q2 + p12 − 2|Q||p1|z

)
, (4.42)

where d3p1 has been as |p1|2dp1dzdφ and dz is the angular dependence such that cos θ =

z. Now the Jacobian from the energy delta function must be determined. This can be

computed using the equation

J =
δ(z− z0)

f ′(z0)
, (4.43)
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which gives a Jacobian of

J =
E− E1

2|Q|E1
. (4.44)

Therefore, after integrating over φ, which gives a factor of 2π, z can also be integrated

over which gives

dR
d4Q

=
80π2

9
α2

EM

∫ dp1

(2π)6
e−βE

2|Q| . (4.45)

In order to complete the last integral over p1, the limits of integration must be deter-

mined. This can be done from the energy delta function where

E− E1 =
√

Q2 + p12 − 2|Q||p1|z. (4.46)

After expanding this expression and isolating for p1

p1 =
E2 −Q2

2(E∓ |Q|) , (4.47)

the limits of integration are therefore given as

E2 −Q2

2(E + |Q|) < p1 <
E2 −Q2

2(E− |Q|) . (4.48)

Performing this integration, the final expression for the thermal dilepton production rate

is given by

dR
d4Q

=
5α2

EMe−βE

72π4 . (4.49)

Alternatively, as in the case of [21], the thermal dilepton production rate can be written

in terms of its invariant mass distribution by inserting a delta function

dR
dM2 =

∫ d3p1d3p2

(2π)3(2π)3 σ(M) f (p1) f (p2)

√
(P1 · P2)2 −m4

a
E1E2

δ(M2 − (P1 + P2)
2) (4.50)

where ma denotes the rest mass of quarks/anti-quarks. Using the Maxwell-Boltzmann

statistics or the particle distribution functions as before, f (p1) f (p2) → e−β(E1+E2), the

rate becomes

dR
dM2 =

∫ d3p1d3p2

(2π)6 σ(M)

√
(P1 · P2)2 −m4

a
E1E2

e−β(E1+E2)δ(M2 − (P1 + P2)
2). (4.51)
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The differential reaction rate can be rewritten using P1 · P2 = E1E2 − p1p2z and (P1 +

P2)
2 = 2m2

a + 2(E1E2 − |p1||p2|z). Therefore, the equation becomes

dR
dM2 =

σ(M)

(2π)6

∫
d3p1d3p2e−β(E1+E2)

√
(E1E2 − |p1||p2|z)2 −m4

a
E1E2

×δ(M2 − 2m2
a − 2E1E2 + 2|p1||p2|z). (4.52)

Expanding the integration measures as d3p1 = |p1|2dp1dΩ and d3p2 = |p2|2dp2dzdφ

and integrating over dφ and dΩ gives

dR
dM2 =

(2π)(4π)

(2π)6 σ(M)
∫
|p1|2dp1|p2|2dp2dz

√
(E1E2 − |p1||p2|z)2 −m4

a
E1E2

×e−β(E1+E2)δ(M2 − 2m2
a − 2E1E2 + 2|p1||p2|z) (4.53)

where the delta function can be rewritten in terms of z and z0 = 2E1E2+2m2
a−M2

2|p1||p2|
which

yields a Jacobian of J = 1
2|p1||p2|

such that the equation becomes

dR
dM2 =

(2π)(4π)

(2π)6 σ(M)
∫
|p1|2dp1|p2|2dp2dz

√
(E1E2 − |p1||p2|z)2 −m4

a
E1E2

×e−β(E1+E2)
δ(z− z0)

2|p1||p2|
. (4.54)

After integrating over z, the expression can be written as

dR
dM2 =

(2π)(4π)

(2π)6
σ(M)

4
M
√

M2 − 4m2
a

∫
dE1dE2e−β(E1+E2). (4.55)

where the integration variables have been converted using pdp = EdE. Now, define the

variables E1 + E2 = x and E1 − E2 = y, which gives a Jacobian of J = 1
2 . Using these

variables to rewrite the equation

dR
dM2 =

(2π)(4π)

(2π)6
σ(M)

4
M
√

M2 − 4m2
a

2

∫
dxdye−βx. (4.56)

To compute this integral, the limits of integration must be determined. For y, the limits

are determined from the delta function as 2|p1||p2| ≤ 2E1E2 + 2m2
a−M2. Expanding this

equality and rewriting in terms of the varibles x and y, the in integration limits for y are

obtained

y ≥ ± 1
M

√
(x2 −M2)(M2 − 4m2

a) (4.57)

Performing the intergration over y yields

dR
dM2 =

σ(M)

2(2π)4 (M2 − 4m2
a)
∫ ∞

xmin

dxe−βx M

√
x2

M2 − 1. (4.58)
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Recognizing that the integral over x is a Bessel function of the second kind, the equation

becomes

dR
dM2 =

σ(M)

2(2π)4 (M2 − 4m2
a)

M
β

K1(βM). (4.59)

After inserting the total cross-section and taking all particles to be massless, the final

expression for the thermal dilepton production rate is given by

dR
dM2 =

5α2
EM

18π3 MTK1

(M
T

)
. (4.60)

This can be converted from a differential to total rate by integrating over dM2

R(T) =
∫ ∞

0

5α2
EM

18π3 MTK1

(M
T

)
dM2 (4.61)

=
∫ ∞

0

5α2
EM

18π3 MTK1

(M
T

)
2MdM (4.62)

Defining the variable z = M
T where dz = 1

T dM, the integral becomes

R(T) =
10α2

EM
18π3

∫ ∞

0
T4z2K1(z)dz. (4.63)

After an integration over z, the total reaction rate is given by

R(T) =
10

9π3 α2
EMT4 (4.64)

which agrees with the expression derived in [21].

4.3 comparison between thermal and pre-equilibrium pro-

duction rates

4.3.1 Ensuring consistency

In the above derivations, it was assumed that only massless up and down quarks were

used. However, in the procedure used to solve the Boltzmann equation, N f = 3 was

used, meaning that strange quarks were also included. The equation

Fq = Nc(2s + 1)2 ∑
f

e2
f (4.65)
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which sums over the spin and flavour of quarks yields the factor Fq = 20/3 for up

and down quarks and Fq = 24/3 if strange quarks are also included, which would

increase the rate by 20%. Therefore, multiplying the equations by a factor of 6/5 modifies

the rates to account for the additional quark. Additionally, when using the Boltzmann

equation solving procedure to obtain the pre-equilibrium distribution functions, a non-

zero chemical potential was used. Thus, the thermal distribution functions must also

be modified to include the chemical potential as e−(E1−µ)βe−(E2−µ)β = e−(E1+E2−2µ)β =

e−(E−2µ)β.

With these considerations in mind, the expressions for the pre-equilibrium dilepton

production rate become

dR
d4Q

=
α2

EM
12π5

∫
dp1⊥dp1z

2p1⊥
E1

1√
4Q2
⊥p2

1⊥ − (2EE1 −M2)2
fq(p1⊥, p1z, τ)

× fq̄(
√

Q2
⊥ + p2

1⊥ − (2EE1 −M2),−p1z, τ) (4.66)

dR
dM2 =

α2
EM

12π5

∫
dp1⊥dp1zdQ⊥

2p1⊥
E1

Q⊥√
4Q2
⊥p2

1⊥ − (2EE1 −M2)2
fq(p1⊥, p1z, τ)

× fq̄(
√

Q2
⊥ + p2

1⊥ − (2EE1 −M2),−p1z, τ), (4.67)

and

dR
d4Q

=
α2

EMe−(E−2µ)/T

12π4 (4.68)

dR
dM2 =

α2
EM

3π3 e2µ/T MTK1

(M
T

)
. (4.69)

for the thermal production rate. By enforcing that the energy and number density for

the pre-equilibrium (εnum, nnum) are equal to the thermal case at every time step, solving

the system of equations

εnum = νg

∫ d3p
(2π)3 E

1
e(E−µ)/T − 1

+ νq

∫ d3p
(2π)3 E

1
e(E−µ)/T + 1

(4.70)

nnum = νg

∫ d3p
(2π)3

1
e(E−µ)/T − 1

+ νq

∫ d3p
(2π)3

1
e(E−µ)/T + 1

(4.71)

numerically can determine the temperature and chemical potential as a function of time

as shown in figures 6 and 7 respectively.
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Figure 6: The temperature evolution plotted as a function of time for Qs = 1 GeV.
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Figure 7: The chemical potential evolution plotted as a function of time for Qs = 1 GeV.
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4.3.2 Comparison

The pre-equilibrium system created immediately after a heavy ion collision evolves from

a dense system containing mostly gluons as pairs of quarks and anti-quarks are created.

For the purposes of this study, only very early times starting with an initial time given

as 1/Qs and evolved until 25/Qs are investigated. As described in [33], the value of Qs

can range from 1-2 GeV. Thus, the values of Qs = 1 GeV and Qs = 2 GeV were chosen

to investigate how the rate is affected. In the first case, the pre-equilibrium evolution

begins with an initial temperature T ∼ 240 MeV and studied for the duration of ∼ 5

fm/c. However, as time is given in units of 1/Qs and temperature is given in units of Qs,

doubling the value of Qs to 2 GeV results in doubling the initial temperature to T ∼ 480

MeV but decreases the evolution duration by half to ∼ 2.5 fm/c.

The expression for the dilepton rate for the pre-equilibrium case, derived in the pre-

vious section, is given by equation 4.66. This equation was numerically integrated using

the distribution functions calculated using the methods in [19]. Figure 8 shows the re-

sults of the numerical integration for various timesteps corresponding to different points

in the evolution of the QGP. The temperatures listed were computed as described in

the previous subsection. As shown, higher temperatures are generally equated with a

larger production rate, especially for low transverse momentum. This is to be expected

as higher temperatures mean that particles have higher energies and therefore more

energy is available for particle production.

It is also interesting to note that at larger transverse momentum, the rate calculated

from the highest temperature plotted dips below the rate calculated using the second

highest temperature chosen since it would be expected that a higher temperature would

correspond to a larger production rate. However, because the QGP starts out as a system

consisting of mainly gluons, and as the higher temperature corresponds to such an early

time (2/Qs) in the evolution, there was insufficient time to create enough quark/anti-

quark pairs to produce dileptons, especially those with large transverse momentum. The

finiteness of the quark phase space, owing to their small number, becomes clear. This

is evident in figure 12 which shows that the production rate is very low at times less

than 0.5 fm/c when Qs = 1 Gev and times less than 0.25 fm/c when Qs = 2 GeV. This
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Figure 8: The pre-equilibrium dilepton production rate plotted for the timesteps 2/Qs, 12.5/Qs,

and 25/Qs, which correspond to the temperatures 218 MeV, 160 Mev, and 140 Mev for

Qs = 1 GeV (left) and 436 MeV, 320 MeV, and 280 MeV for Qs = 2 GeV (right). The

dilepton invariant mass is set to M = 3 GeV in both cases.

observation is in fact one of the main findings of this work. The low fermion population

makes it very difficult for the electromagnetic signal to shine.

The results for the pre-equilibrium case were compared to the known expression for

the thermal equilibrium case, also derived previously, which is given by equation 4.68.

In order to ensure a meaningful comparison, the temperature and chemical potential

in both the thermal and pre-equilibrium cases should be equal. For the pre-equilibrium

case, the timestep 2/QS was chosen which corresponds to T = 218 MeV, µ = −0.29 GeV

for Qs = 1 GeV and T = 436 MeV, µ = −0.58 GeV for Qs = 2 GeV, so these values were

used in the expression for the thermal rate. As shown in figure 9, the thermal dilepton

production rate is about one to two orders of magnitude larger than that of the pre-

equilibrium case for Qs = 1 GeV and more than four orders of magnitude when Qs =

2 GeV. This is due to the fact that the pre-equilibrium case is still evolving from mainly

gluons towards thermal quark-gluon plasma, which is evident in figures 10 and 11 as the

pre-equilibrium number densities are initially very different but asymptotically tend to

the ordering of the thermal equilibrium number densities. As there are less quark/anti-
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Figure 9: The dilepton production rate in thermal equilibrium is plotted and compared to the

pre-equilibrium rate calculated using the timestep 2/Qs which corresponds to the same

temperature. For Qs = 1 GeV (left), the temperature T = 218 MeV and T = 436 MeV for

Qs = 2 GeV (right).

quark pairs present, there are less dileptons produced from their annihilation, so the

production rate is much lower.
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Figure 10: The number density of quarks and gluons in thermal equilibrium compared to that in

the pre-equilibrum case computed using the methods described in Chapter 3 for Qs =

1 GeV.
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Figure 11: The ratio of the number density of thermal quarks/gluons to pre-equilibrum quark-

s/gluons (shown in blue) and the ratio of the number density of quarks to gluons in

both the thermal and pre-equilibrium QGP (shown in orange) are compared for Qs =

1 GeV.

Figure 12: The dilepton production rate in thermal equilibrium is plotted and compared to the

pre-equilibrium rate as a function of time for both Qs = 1 GeV (left) and Qs = 2 GeV

(right). In this plot, the values of both Q⊥ and M are taken to be 1 GeV.

Alternatively, the production rate can be written in terms of mass distribution as in

equation 4.67 for the thermal case and equation 4.69 for the pre-equilibrium case. As
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before, the temperature was matched using the timestep 2/Qs which corresponds to

T = 218 MeV, µ = −0.29 GeV for Qs = 1 GeV and T = 436 MeV, µ = −0.58 GeV

for Qs = 2 GeV to be used in the thermal case. The comparison is shown in figure 13,

where it is again evident that thermal QGP has a larger dilepton production rate than

the pre-equilibrium case.

Figure 13: The dilepton production rate as a function of mass in thermal equilibrium is plotted

and compared to the pre-equilibrium rate calculated using the timestep 2/Qs. On the

left Qs = 1 GeV and on the right Qs = 2 GeV.
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D I L E P T O N Y I E L D I N T H E R M A L

E Q U I L I B R I U M A N D P R E - E Q U I L I B R I U M Q G P

In heavy ion collisions, analyzing the rate at which particles are produced can be a

very useful tool for understanding how the system evolves. Experimentally, however,

the rate of production cannot be directly observed. Only the actual number of particles

produced, the yield, can be measured by detectors. In this section, the dilepton yield for

both thermal equilibrium and pre-equilibrium cases are derived and compared.

5.1 dilepton yield in pre-equilibrium qgp

As previously determined, the pre-equilibrium dilepton production rate is given by

dR
dM2 =

α2
EM

12π5

∫
dp1⊥dp1zdQ⊥

2p1⊥
E1

Q⊥√
4Q2
⊥p2

1⊥ − (2EE1 −M2)2
fq(p1⊥, p1z, τ)

× fq̄(
√

Q2
⊥ + p2

1⊥ − (2EE1 −M2),−p1z, τ) (5.1)

where massless u, d, and s quarks have been taken into consideration. Now recall that

rate can be expanded as

dR
d4Q

=
dN

d4Xd4Q
=

dN
MdMdyd2Q⊥d2x⊥τdτdη

=
dN

1
2 dM2dyd2Q⊥d2x⊥τdτdη

(5.2)

where an integration over Q⊥, x⊥, and τ would leave only dN/MdMdydη on the left-

hand side. Also recall that dR/d4Q was derived for the case where y = 0. Therefore, the

pre-equilibrium dilepton yield can be determined using

dN
dM2dη

=
1
2

∫
d2Q⊥d2x⊥τdτ

dR
d4Q

, (5.3)

where d2Q⊥ = Q⊥dQ⊥ and the integration over x⊥ is simply taken to be the overlapping

area of the two colliding nuclei. For perfectly central collisions, this area is given by πR2
T

45
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where RT = 1.2A1/3 [34] is the radius of the nucleus in the transverse plane. Thus, the

pre-equilibrium dilepton yield can be determined from the expression

dN
dM2dη

=
1
2

πR2
T

∫
τdτ

α2
EM

12π5

∫
dp1⊥dp1zQ⊥dQ⊥

2p1⊥
E1

1√
4Q2
⊥p2

1⊥ − (2EE1 −M2)2

× fq(p1⊥, p1z, τ) fq̄(
√

Q2
⊥ + p2

1⊥ − (2EE1 −M2),−p1z, τ). (5.4)

The integral over τ must be converted to a summation to sum over all timesteps from

1/Qs to 25/Qs, so the final expression for the pre-equilibrium dilepton yield becomes

dN
dM2dη

=
1
2

πR2
T ∑

i
τi∆τ

α2
EM

12π5

∫
dp1⊥dp1zQ⊥dQ⊥

2p1⊥
E1

1√
4Q2
⊥p2

1⊥ − (2EE1 −M2)2

× fq(p1⊥, p1z, τ) fq̄(
√

Q2
⊥ + p2

1⊥ − (2EE1 −M2),−p1z, τ). (5.5)

5.2 dilepton yield in thermal qgp

For thermal quark-gluon plasma, recall that the thermal dilepton production rate previ-

ously derived is given by

dR
dM2 =

α2
EM

3π3 e2µ/T MTK1

(M
T

)
(5.6)

where only massless u, d, and s quarks have been taken into consideration. As in the pre-

equilibrium case, this rate can be expanded as dR/dM2= dN/d4XdM2 = dN/d2x⊥τdτdηdM2.

Therefore, the expression for the thermal dilepton yield can be written as

dN
dM2dη

= πR2
T

∫
τdτ

α2
EM

3π3 e2µ/T MTK1

(M
T

)
(5.7)

where the factor of πR2
T again comes from the integration over x⊥. The τ integral can

now be converted to a sum as the temperature is a function of τ as described in section

4.3.1, therefore it changes every timestep and can be used to directly compare to the

pre-equilibrium yield. Thus, the final expression for the thermal dilepton yield is given

by

dN
dM2dη

= πR2
T ∑

i
τi∆τ

α2
EM

3π3 e2µ/T(τi)MT(τi)K1

( M
T(τi)

)
. (5.8)
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5.3 comparison between thermal and pre-equilibrium yields

Figure 14 shows the comparison between the thermal and pre-equilibrium dilepton yield.

The pre-equilibrium evolution starts at the time 1/Qs and is evolved until 25/Qs. This is

duration is equivalent to ∼ 0.2− 5 fm/c for Qs = 1 GeV and ∼ 0.1− 2.5 fm/c for Qs = 2

GeV.

As shown, the thermal yield is greater than the pre-equilibrium yield by approximately

two orders of magnitude for the Qs = 1 GeV case and between two to seven orders of

magnitude larger when Qs = 2 GeV. As before, this is due to more quark/anti-quark

Figure 14: The dilepton yield for the thermal and pre-equilibrium cases are plotted for Qs = 1

GeV (left) and Qs = 2 GeV (right).

pairs present at the time of thermalization in comparison to the pre-equilibrium case.

The large difference between the thermal yield for the Qs = 1 GeV and Qs = 2 GeV

cases is a result of equation 5.8 being heavily temperature dependent. Thus, when the

temperatures are doubled as in the Qs = 2 GeV case, the yield is significantly affected.
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P H O T O N P R O D U C T I O N I N T H E R M A L

E Q U I L I B R I U M A N D P R E - E Q U I L I B R I U M Q G P

In addition to dileptons, another useful probe of early-time quark-gluon plasma dynam-

ics are photons. In a system comprised of only quarks and gluons, both dileptons and

photons are produced through the annihilation of a quark with an anti-quark. However,

there is an additional process which produces photons. This is the Compton scattering

process shown in figure 5 in which a quark or anti-quark scatters with a gluon. As with

dileptons, photons are also very useful as they too only interact electromagnetically with

the medium.

This chapter starts by deriving the pre-equilibrium photon production rate in terms

of EdR/d3p. The photon production rate in thermal equilibrium is also derived and

compared to the pre-equilibrium case.

6.1 photon production rate in pre-equilibrium qgp

The rate of production of particles created through collisions of other particles can be

determined from kinetic theory using the collision term, which is the right-hand side

of the Boltzmann equation. In the case of photons, this production rate can be derived

starting with the expression for the production of on-shell photons,

E
d3R
d3p

=
∫ d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

1
2(2π)3 |Mi|2(2π)4

×δ4(P1 + P2 − P3 − P) f1(p1) f2(p2)[1± f3(p3)], (6.1)

where the degeneracy factor N is absorbed into the amplitude |Mi|2. Following the

procedure outlined in [24], the expression for the pre-equilibrium photon production

rate can be derived using the small-angle approximation which assumes low momentum

49
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transfer between scattering particles. Only the pair annihilation process is considered

first, where the amplitude is given by

|M| =
160
9

16π2ααs

(u2 + t2

ut

)
(6.2)

As the t-channel and u-channel contribute equally, only the t-channel is considered and

a factor of two is added to account for the missing u-channel. Inserting the amplitude

into the expression gives

E
d3R
d3p

=
1

2(2π)3
320
9

16π2ααs

∫
p1,p2,p3

u
t
(2π)4δ4(P1 + P2− P3− P) fq(p1) fq(p2)[1+ fg(p3)]

(6.3)

where ∫
p
=
∫ d3p

(2π)32Ep
. (6.4)

Expanding kinematic variables in terms of exchanged momentum q = p− p1 yields the

equations

p =
√
(p1 + q)2 = p1 + q · v1 +O(q2) (6.5)

p3 =
√
(p2 + q)2 = p2 − q · v2 +O(q2), (6.6)

where v1,2 = p1,2/p1,2. These expressions can be used to rewrite the Mandelstam vari-

ables and the sum of the momenta as

s = (P1 + P2)
2 = 2p1p2(1− v1 · v2) (6.7)

t = −Q2 = −q2 + (q · v1
2) +O(q3) (6.8)

u = −s− t = −s +O(q3) (6.9)

p1 + p2 − p3 − p = q · (v2 − v1) +O(q2). (6.10)

The delta function is then divided into is energy and momentum components as δ(P0
1 +

P0
2 − P0

3 − P0))δ3(p1 + p2− p3− p) which allows the expression to be integrated over p3

E
d3R
d3p

=
1

2(2π)3
320
9

16π2ααs

∫ d3p1

(2π)32p0
1

d3p2

(2π)32p0
2

2π

2(p0
2 − q · v)

u
t

×δ(P0
1 + P0

2 − P0
3 − P0) fq(p1) fq(p2)[1 + fg(p3)], (6.11)
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where p0
3 = p0

2− q · v. Now, after rewriting the remaining energy delta function in terms

of the new kinematic variables defined above

δ(p0
1 + p0

2 − p0
3 − p0) = δ(p0

1 + p0
2 − (p0

2 − q · v2)− (p0
1 + q · v1)) (6.12)

= δ(q · (v1 − v2)), (6.13)

the expression becomes

E
d3R
d3p

=
1

2(2π)3
320
9

16π2ααs

∫ d3p1

(2π)3
d3p2

(2π)3
2π

4(p0
2 − q · v)

(1− v1 · v2)

−q2 + (q · v1)2

×δ(q · (v1 − v2)) fq(p1) fq(p2)[1 + fg(p3)] (6.14)

where the new expression for the Mandelstam variables u and t have also been inserted.

Using q = p− p1 to rewrite the p1 integration as an integration over q, the expression

becomes

E
d3R
d3p

=
20

9π3 ααs

∫
d3q

∫ d3p2

(2π)3
1
p2

1− v · v2

q2 − (q · v)2 δ(q · (v2 − v))

× fq(p1) fq(p2)[1 + fg(p3)] (6.15)

as v ∼ v1 +O(q). The q integration is indepentent of v and v2, it can be expressed as

2πL ≡
∫

d3q
1− v1 · v2

q2 − (q · v1)2 δ(q · (v2 − v)) = 2π
∫ dq

q
(6.16)

where the logarithmic divergence is given by

L =
∫ ΛUV

ΛIR

dq
q

= log
ΛUV

ΛIR
. (6.17)

The IR cutoff is given by the the Debye mass scale mD ∼ g2T2 and the UV cutoff is

given by the temperature T, which come from thermal field theory. This simplifies the

expression such that the production rate from the annihilation process is given by

E
d3R
d3p

=
40

9π2 ααsL fq(p)
∫ d3p′

(2π)3
1
p′

fq(p′)[1 + fg(p′)]. (6.18)

For Compton scattering contribution, a similar derivation can be performed which yields

the expression

E
d3R
d3p

=
40

9π2 ααsL fq(p)
∫ d3p′

(2π)3
1
p′

fg(p′)[1 + fq(p′)], (6.19)
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where the s-channel contribution is neglected in this approximation. Summing the Comp-

ton and annihilation contributions gives the expression

E
d3R
d3p

=
40

9π2 ααsL fq(p)
∫ d3p′

(2π)3
1
p′
[ fg(p′) + fq(p′)]. (6.20)

Knowing that p = (p⊥, pz) and d3p = p⊥dp⊥dpzdφ, an integral over φ can be performed,

and the final expression for the pre-equilibrium photon production rate is given by

E
d3R
d3p

=
40

9π2 ααsL fq(p⊥, pz)
∫ p′⊥dp′⊥dp′z

(2π)2
1√

p′2⊥ + p′2z
[ fg(p′⊥, p′z) + fq(p′⊥, p′z)] (6.21)

where the value of L is determined at the end of the next section.

6.2 photon production rate in thermal qgp

As in the pre-equilibrium case, the derivation for the thermal photon production rate

starts with the general expression for production rate from kinetic theory given by

E
d3R
d3p

=
∫ d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

1
2(2π)3 |Mi|2(2π)4

×δ4(P1 + P2 − P3 − P) f1(p1) f2(p2)[1± f3(p3)] (6.22)

This equation can be rewritten in terms of the Mandelstam variables by inserting the

delta functions s = (p1 + p2)
2 and t = (p1 − p3)

2

E
d3R
d3p

=
∫

dsdt
d3p1d3p2d3p3

16(2π)8E1E2E3
|Mi|2e−E/Tδ4(p1 + p2 − p3 − p)

×δ(s− (p1 + p2)
2)δ(t− (p1 − p3)

2) (6.23)

where Maxwell-Boltzmann statistics have been used for the particle distribution func-

tions. Recall the identity d3p3 → d4p3θ(E3)δ(p2
3 − m2

3)2E3, which allows the expression

to be written as

E
d3R
d3p

=
∫

dsdt
d3p1d3p2

8(2π)8E1E2
|Mi|2d4p3e−E/Tδ(p2

3 −m2
3)θ(E3)δ

4(p1 + p2 − p3 − p)

×δ(s− (p1 + p2)
2)δ(t− (p1 − p3)

2) (6.24)

The delta function δ(p2
3 − m2

3) can be rewritten by integrating over d4p3 using p3 =

(E1 + E2 − E)− (p1 + p2 − p)

E
d3R
d3p

= =
∫

dsdt
d3p1d3p2

8(2π)8E1E2
|Mi|2e−E/Tδ(s− (p1 + p2)

2)δ(t− (p1 − p3)
2)

×δ((E1 + E2 − E)2 − (p1 + p2)
2 − p2 + 2p · (p1 + p2)−m2

3) (6.25)
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which can be further simplified using s = (E1 + E2)
2 − (p1 + p2)2 and p2 = E2

E
d3R
d3p

=
∫

dsdt
d3p1d3p2

8(2π)8E1E2
|Mi|2e−E/Tδ(s− (p1 + p2)

2)δ(t− (p1 − p3)
2)δ((E1 + E2 − E)2

−(E1 + E2)
2 + s− E2 + 2pp1cosθ1 + 2pp2cosθ2 −m2

3) (6.26)

The energy delta function can be expanded as

(E1 + E2 − E)2 − (E1 + E2)
2 + s− E2 + 2pp1cosθ1 + 2pp2cosθ2 −m2

3

= s− 2EE1 − 2EE2 + 2pp1cosθ1 + 2pp2cosθ2 −m2
3, (6.27)

and the t delta function as

t− (p1 − p3)
2 = t−m2

2 + 2EE2 − 2pp2cosθ2, (6.28)

Rearranging this expression to isolate cosθ2

cosθ2 =
t−m2

2 + 2EE2

2pp2
(6.29)

gives a Jacobian of J = 1
2Ep2

. The s delta function is also expanded as

s− (p1 + p2)
2 = s−m2

1 −m2
2 − 2E1E2 + 2p1 · p2 (6.30)

Substituting these back into the integral

E
d3R
d3p

=
∫

dsdt
d3p1d3p2

8(2π)8E1E2
|Mi|2e−E/Tδ(s− 2EE1 + 2pp1cosθ1 −m2

3 + t−m2
2)

×δ(s−m2
1 −m2

2 − 2E1E2 + 2p1 · p2), (6.31)

where p1 · p2 = p1p2[cosθ1cosθ2 + sinθ1sinθ2cos(φ1 − φ2)]. From the energy delta func-

tion,

cosθ1 =
2EE1 + m2

2 + m2
3 − s− t

2pp1
, (6.32)

which gives a Jacobian of J = 1
2Ep1

. Now rewrite the integration measure as d3p =

p2dpdcosθdφ

E
d3R
d3p

=
∫

dsdt
p1dp1dφ1p2dp2dφ2

8(2π)8E1E2
|Mi|2e−E/T 1

4E2 × δ(s−m2
1 −m2

2 − 2E1E2

+2p1p2[cosθ1cosθ2 + sinθ1sinθ2cos(φ1 − φ2)]). (6.33)
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Setting φ2 = 0, the delta function gives

cosφ1 =
m2

1 + m2
2 + 2E1E2 − s− 2p1p2cosθ1cosθ2

2p1p2sinθ1sinθ2
=

A
B

(6.34)

which gives a Jacobian of J = 1
2p1 p2sinθ1sinθ2sinφ1

. Using the well known trigonometric

identity sin2φ1 + cos2φ1 = 1, the Jacobian can be written in terms of the variables A an

B as J = 1√
B2−A2 where

B2 = 4(E2
1 −m2

1)(E2
2 −m2

2)(1− cos2θ1)(1− cos2θ2) (6.35)

and

A = m2
1 + m2

2 + 2E1E2 − s−
(2EE1 + m2

2 + m2
3 − s− t)(t−m2

2 + 2EE2)

2E2 . (6.36)

To simplify these expressions, new variables are defined as

β = s−m2
1 −m2

2 (6.37)

α = m2
2 − t (6.38)

γ = s + t−m2
2 −m2

3. (6.39)

such that A and B2 become

A = 2E1E2 − β− (2EE1 − γ)(2EE2 − α)

2E2 (6.40)

B2 = 4(E2
1 −m2

1)(E2
2 −m2

2)
(

1− (2EE1 − γ)2

4E2(E2
1 −m2

1)

)(
1− (2EE2 − α)2

4E2(E2
2 −m2

2)

)
(6.41)

After some algebraic manipulation, it can be shown that
√

B2 − A2 =
√

a′E2
2 + b′E2 + c′,

where

a′ =
−γ2

E2 (6.42)

b′ =
2βEγ + 2αE1γ− 4αEm2

1
E2 (6.43)

c′ =
−β2E2 + 2αβEE1 − α2E2

1 − αβγ + α2m2
1 − 4EE1γm2

2 + γ2m2
2 + 4E2m2

1m2
2

E2 ,(6.44)

Finally, the Jacobian can be written as

1√
B2 − A2

=
E√

aE2
2 + bE2 + c

(6.45)
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where

a = −(s + t−m2
2 −m2

3)
2 (6.46)

b = 2(s−m2
1 −m2

2)(s + t−m2
2 −m2

3)E + 2(m2
2 − t)(s + t−m2

2 −m2
3)E1

−4(m2
2 − t)Em2

1 (6.47)

c = c2E2
1 + c1E1 + c0 (6.48)

(6.49)

and

c2 = −(m2
2 − t)2 (6.50)

c1 = 2(m2
2 − t)(s−m2

1 −m2
2)E− 4(s + t−m2

2 −m2
3)m

2
2E (6.51)

c0 = −(s−m2
1 −m2

2)
2E2 − (m2

2 − t)(s−m2
1 −m2

2)(s + t−m2
2 −m2

3)

+(m2
2 − t)2m2

1 + (s + t−m2
2 −m2

3)
2m2

2 + 4E2m2
1m2

2. (6.52)

Returning to the integral using p1dp1 → E1dE1, p2dp2 → E2dE2 and integrating over φ1

E
d3R
d3p

=
N

(2π)7
1

16E

∫
dsdtdE1dE2|Mi|2e−E/T 1√

aE2
2 + bE2 + c

. (6.53)

where the additional factor of 2 comes from the fact that cosφ1 will be satisfied twice

with φ0 and −φ0 when integrating from φ = 0 to φ = 2π.

Now the limits of integration are to be calculated. For E2, the limits come from the

fact that the arguement inside the square root must be greater than zero. Therefore, this

gives the limits

−b−
√

b2 − 4ac
2a

≤ E2 ≤
−b +

√
b2 − 4ac

2a
(6.54)

where E1 + E2 − E ≥ 0. As s has no restrictions from the equation, the lower limit is

chosen such that it cannot be lower than the sum of the masses of the incoming particle

or lower than the mass of the outgoing particle. Therefore, smin = (m1 + m2)
2, m2

3 and

smax = ∞ as there is no strict upper limit.

Using the cosθ1 expression determined earlier, the limits of E1 can be determined such

that

cosθ1 =
∣∣∣2EE1 + m2

2 + m2
3 − s− t

2pp1

∣∣∣ = ±1. (6.55)
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which gives

t = 2EE1 + m2
2 + m2

3 − s± 2Ep1. (6.56)

From the expression
√

s =
√

m2
1 + p12 +

√
m2

2 + p12, E1 can be written as

E1 =
s + m2

1 −m2
2

2
√

s
(6.57)

and p1 can be rewritten from p2
1 + m2

1 =
(s+m2

1−m2
2)

2

4s as

p1 =
λ1/2(s, m2

1, m2
2)

2
√

s
. (6.58)

after some algebraic manipulation. Inserting these expressions for E1 and p1 back into

expression for t gives

t± = m2
2 + m2

3 − s + E
( s + m2

1 −m2
2√

s

)
± E

(λ1/2(s, m2
1, m2

2)√
s

)
. (6.59)

However, knowing that t = (p1 − p3)
2, this an can be expanded as

t = m2
2 − 2EE2 + 2p · p2. (6.60)

Also knowing that
√

s = E +
√

m2
3 + p32, E can be rewritten as

E =
s−m2

3
2
√

s
. (6.61)

Inserting these into the t± expression, the limits for t are obtained

t± = m2
2 + m2

3 − s +
(s−m2

3)(s + m2
1 −m2

2)

2s
±

(s−m2
3)λ

1/2(s, m2
1, m2

2)

2s
. (6.62)

where t+ represents the upper limit and t− denotes the lower limit.

The limits for E1 can be determined from the cosθ1 such that 2Ep1cosθ1 = m2
2 + m2

3 −

t− s + 2EE1. This gives a lower limit on E1 of

E1 ≥
s + t−m2

2 −m2
3

4E
+

Em2
1

s + t−m2
2 −m2

3
(6.63)

and the upper limit is taken to infinity. Similarly, the limits for E2 come from the cosθ2

expression such that t−m2
2 + 2EE2 = 2Ep2cosθ2. This gives a lower limit for E2 of

E2 ≥
m2

2 − t
4E

+
E2m2

2
m2

2 − t
. (6.64)
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and the upper limit is again taken to infinity. Also note that the equalities m2
2 − t ≥ 0

and E1 + E2 − E ≥ 0 must be satisfied so as to ensure energy conservation.

After accounting for infrared contributions, an analytical solution for the thermal pho-

ton production rate, taken from [20], is given by

E
dR
d3p

=
5
9

αEMαs

2π2 T2e−E/Tln
(2.912

g2
E
T
+ 1
)

(6.65)

which assumes that E� T. Figure 15 shows how this solution compares to the numerical

integration of equation 6.53 using a temperature of 0.2 GeV. For energies greater than 0.4

GeV, the analytical solution matches the results of the numerical integration.
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Figure 15: The analytical solution of the thermal photon rate is plotted and compared to the

numerical integration of equation 6.53 using T = 200 MeV.

The analytical solution to the thermal photon rate was then used to compare to that

determined from small-angle approximation, taken from [24], which is given by

E
d3R
d3p

=
10
9

αEMαs

2π2 T2Le−E/T. (6.66)

which again assumes that E � T, where the value of L still needs to determined. How-

ever, L contains cutoff scales which cannot be determined from first principles. Therefore,

this derivation was done by adjusting the value of L until a good match between the an-

alytical solution given by 6.65 and 6.66 was achieved. A value of L = 0.75 was chosen

and the comparison is shown in figure 16.
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Figure 16: The analytical solution of the thermal photon rate given by 6.65 is plotted and com-

pared to the rate determined using the small-angle approximation given by 6.66 for

T = 200 MeV. A value of L = 0.75 was chosen to best match the two results.
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Figure 17: The analytical solution of the thermal photon rate (eq. 6.65) is plotted and compared

to the analytical solution (eq. 6.66) and the numerical integration of the rate (eq. 6.67)

determined using small-angle approximation for a fixed pz = 0.5 GeV.
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The thermal photon production rate can also be plotted as a function of transverse

momentum, where E =
√

p2
⊥ + p2

z in equations 6.65 and 6.66, and the equation

E
d3R
d3p

=
40

9π2 ααsLe
√

p2
⊥+p2

z/T
∫ p′⊥dp′⊥dp′z

(2π)2
1√

p′2⊥ + p′2z
e
√

p′2⊥+p′2z /T (6.67)

can be ne numerically integrated to test the accuracy of the computation. This compari-

son is shown in figure 17, where is it clear that both the analytical solution as well as the

numerical integration of the thermal photon rate calculated from the small-angle approx-

imation are comparable to the analytical solution calculated without the approximation.

6.3 comparison between thermal and pre-equilibrium pro-

duction rates

In the previous section, it was shown that the small-angle approximation yields a rea-

sonable solution to the thermal photon production rate. Therefore, this solution is also

used for the pre-equilibrium photon production rate. As in the dilepton case, the pho-

ton production rates were derived assuming only massless up and down quarks, so a

factor of 6/5 is again used to modify these rates for account for the additional quark

included in the procedure for solving the Boltzmann equation. The chemical potential

was also added to the thermal rate to ensure consistency with the pre-equilibrium case.

The modified expression for the pre-equilibrium rate is

E
d3R
d3p

=
16

3π2 ααsL fq(p⊥, pz)
∫ p′⊥dp′⊥dp′z

(2π)2
1√

p′2⊥ + p′2z
[ fg(p′⊥, p′z) + fq(p′⊥, p′z)] (6.68)

and

E
d3R
d3p

=
4
3

αEMαs

2π2 T2Le−(E−2µ)/T (6.69)

E
dR
d3p

=
2
3

αEMαs

2π2 T2e−(E−2µ)/Tln
(2.912

g2
E
T
+ 1
)

(6.70)

are the modified expressions for the thermal photon production rate with and without

the small-angle approximation.
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The pre-equilibrium evolution starts with an initial time 1/Qs and is evolved until

25/Qs. The expression given by 6.68 was numerically integrated using the distribution

functions calculated by [19]. As before, in the case of dileptons, the timestep 2/Qs was

chosen for the pre-equilibrium case which corresponds to T = 218 MeV, µ = −0.29

GeV for Qs = 1 GeV and T = 436 MeV, µ = −0.58 GeV for Qs = 2 GeV which were

calculated by solving the system of equations described in section 4.3.1. As expected

from the dilepton results, the pre-equilibrium photon production rate is lower than the

thermal equilibrium rate by about one to two orders of magnitude. This is again due to

the lack of quarks/anti-quarks present in the pre-equilibrium case, as shown in figure

10.
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Figure 18: The analytical solution of the thermal photon rate for a fixed pz = 0.5 GeV (eq. 6.65)

is plotted and compared to the analytical solution (eq. 6.66) and the numerical inte-

gration of the pre-equilibrium rate determined using small-angle approximation (eq.

6.21) for Qs = 1 Gev, T = 160 MeV (left) and Qs = 2 Gev, T = 320 MeV (right).

The thermal photon production rate can also be plotted as a function of proper time τ

where each timestep for the pre-equilibrium case corresponds to a different temperature

in the thermal case. The results of this comparison are shown in figure 19. This fig-

ure shows low production rate at very early times due to the lack of quark/anti-quark

pairs present in the medium. Once a sufficient number of quarks/anti-quarks have been

produced, the pre-equilibrium photon production rate remains about one order of mag-
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Figure 19: The photon production rate in thermal equilibrium is plotted and compared to the

pre-equilibrium rate as a function of time for Qs = 1 GeV (left) and Qs = 2 GeV (right)

with fixed pz, pT = 0.5 GeV.

nitude lower for Qs = 1 GeV and about two to three orders of magnitude lower for

Qs = 2 GeV throughout the evolution of the medium.
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P H O T O N Y I E L D I N T H E R M A L E Q U I L I B R I U M

A N D P R E - E Q U I L I B R I U M Q G P

Studying the rate at which particles are produced after a heavy ion collision has occured

is useful for investigating the evolution of the system. Experimentally, only the yield of

produced particles is measurable, and the rate of production cannot be directly observed.

In this section, the photon yield for both thermal equilibrium and pre-equilibrium cases

are derived and compared.

7.1 photon yield in pre-equilibrium qgp

In order to calculate the photon yield, the photon production rate must be converted

using

E
d3R
d3p

= E
dN

d4Xd3p
=

dN
τdτd2x⊥dηdypd2p⊥

. (7.1)

This means that an integral over η and τ is needed in order to obtain an expression of

the form dN/dypd2p⊥.

Previously, in the photon production rate calculation, it was assumed that η = 0.

Therefore, the η dependence needs to be restored for non-zero values of η. To do this, a

change of variables from pz(η) = p̃z = p⊥ sinh(yp − η) is performed. However, this can

be further rewritten knowing that pz = p⊥ sinh(yp), so that change of variables becomes

p̃z = p⊥ sinh(sinh−1(pz/p⊥)− η) (7.2)
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such that pz(0) = pz returns the original equation. Thus, upon performing this change of

variables and noting that the distribution functions are also a function of τ, an integration

over η and τ gives

dN
d2x⊥dypd2p⊥

=
16

3π2 ααsL
∫

τdτdη fq(p⊥, p̃z, τ)
∫ p′⊥dp′⊥dp′z

(2π)2
1√

p′2⊥ + p′2z
×[ fg(p′⊥, p′z, τ) + fq(p′⊥, p′z, τ)], (7.3)

where the p′ integral is independent of both η and yp and does not require a change of

variables. As in the dilepton case, the integration over x⊥ is simply the overlapping area

of the two colliding nuclei which is given by πR2
T for prefectly central colisions where

RT = 1.2A1/3 [34] is the radius of the nucleus in the transverse plane. The expression for

the pre-equilibrium photon yield can therefore be written as

dN
dypd2p⊥

=
16R2

T
3π

ααsL
∫

τdτdη fq(p⊥, p̃z, τ)
∫ p′⊥dp′⊥dp′z

(2π)2
1√

p′2⊥ + p′2z
×[ fg(p′⊥, p′z, τ) + fq(p′⊥, p′z, τ)]. (7.4)

Finally, this must be converted to a sum over all timesteps from 1/Qs to 25/Qs, so the

final expression for the pre-equilibrium photon yield is given by

dN
dypd2p⊥

=
16R2

T
3π

ααsL∑
i,j

τi∆τ∆η fq(p⊥, p̃z, τi)
∫ p′⊥dp′⊥dp′z

(2π)2
1√

p′2⊥ + p′2z
×[ fg(p′⊥, p′z, τi) + fq(p′⊥, p′z, τi)]. (7.5)

7.2 photon yield in thermal qgp

As in the previous section, the thermal photon rate can be converted to a yield using

E
dN

d4Xd3p
=

dN
τdτd2x⊥dηdypd2p⊥

, (7.6)

where, once again, an integral over η and τ is needed in order to obtain an expression

of the form dN/dypd2p⊥. As before, the η and τ dependence can be restored to the

expression using

p̃z = p⊥ sinh(sinh−1(pz/p⊥)− η) (7.7)
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so the thermal photon yield equation becomes

dN
dypd2p⊥

=
16R2

T
3π

ααsL
∫

τdτdηe−(
√

p2
⊥+ p̃z

2−µ)/T
∫ p′⊥dp′⊥dp′z

(2π)2
e−(
√

p′2⊥+p′2z −µ)/T√
p′2⊥ + p′2z

(7.8)

where the factor of πR2
T is from the integration over x⊥. The τ and η integrals can now

be converted to a sum where temperature is a function of τ and therefore changes every

timestep. Thus, the final expression for the thermal photon yield is

dN
dypd2p⊥

=
16R2

T
3π

ααsL∑
i,j

τi∆τ∆ηe−(
√

p2
⊥+ p̃z

2−µ)/T
∫ p′⊥dp′⊥dp′z

(2π)2
e−(
√

p′2⊥+p′2z −µ)/T√
p′2⊥ + p′2z

. (7.9)
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Figure 20: The photon yield for the thermal and pre-equilibrium cases are plotted for Qs = 1 GeV

(left) and Qs = 2 GeV (right) for a fixed value of pz = 0.5 GeV.

The thermal and pre-equilibrium photon yields are plotted in figure 20 for Qs = 1 GeV

and Qs = 2 GeV. The yields were modified by the factor 6/5 as before to account for

the addition of the strange quark. In the Qs = 2 GeV case, the thermal photon yield is

commensurate with other calculations of the thermal yield [17], and the pre-equilibrium

results for both Qs values are lower than the thermal case as expected. As before, this
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is due to more quark/anti-quark pairs present in thermal equilibrium in comparison to

the pre-equilibrium case.
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Figure 21: The contribution to the thermal and pre-equilibrium photon yield from the Compton

scattering and quark/anti-quark annihilation channels are compared to the total pho-

ton yield, the sum of these channels, for Qs = 1 GeV and a fixed value of pz = 0.5

GeV.

Interestingly, for the Qs = 1 GeV case, the pre-equilibrium yield is of the same or-

der of magnitude as the thermal yield, specifically for pT ≥ 2 GeV. As the number

density of quarks in the thermal medium is consistently larger than the gluon number

density (figure 10), the dominant contribution to the thermal photon yield comes from

quark/anti-quark annihilation. In contrast, the pre-equilibrium medium has consistently

larger gluon number density than the thermal medium, and initially has a very low

number density of quarks. Due to the lack of quark/anti-quark pairs, the annihilation

channel is much lower than the thermal case, therefore causing the Compton scattering

channel to become the dominant contribution to the pre-equilibrium photon yield. This

is evident in figure 21 which shows that although the Compton scattering channel in

both the pre-equilibrium and thermal cases are approximately equal, the contribution

from quark/anti-quark annihilation is much lower in the pre-equilibrium case, causing

the total pre-equilibrium photon yield to be consistently lower than the thermal case.
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C O N C L U S I O N

When two heavy ions collide, a plasma is created which exists for a very brief period

of time. This plasma starts out as a system comprised almost entirely of gluons and

evolves as quarks and anti-quarks are created. Eventually, this system reaches a state

near thermal equilibrium before the process of hadronization takes place. Probes such

dileptons and photons are used to investigate the underlying physics. These particles

make excellent probes as they are created throughout the entirety of the evolution and

they interact with the medium only electromagnetically, meaning they can escape the

medium without undergoing significant interactions with it and can therefore provide

information directly.

In this thesis, the dilepton and photon production rates were calculated for both the

pre-equilibrium and thermal equilibrium cases. In addition, the photon and dilepton

yields were also computed. The focus of this work was to investigate the nature of the

particle production rates and yields in the pre-equilibrium case in comparison to that of

the thermal case. The effect of the saturation momentum Qs was also studied.

In the procedure for calculating the pre-equilibrium distribution functions by solving

the Boltzmann equation described in Chapter 3, a non-zero value of the chemical poten-

tial µ was assumed and massless up, down, and strange quarks were used. However, in

the derivation of the thermal rates and yields, the chemical potential µ was set to zero for

simplicity and only massless up and down quarks were used. For the case of non-zero µ,

the thermal distribution functions are modified as e−E/T → e−(E−2µ)/T, thus yielding an

additional factor of e2µ/T. By enforcing that the number and energy density are the same

in both the pre-equilibrium and thermal cases, the numerical value of this factor was

determined. Additionally, both the thermal and pre-equilibrium rates were modified by

a factor of 6/5 to account for the extra quark.
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In almost all cases, the pre-equilibrium results were several orders of magnitude lower

than the thermal results. By analyzing a plot of the number density of quarks and gluons,

it was shown that the pre-equilibrium quark-gluon plasma initially had a significantly

lower number density of quarks and a greater number density of gluons than the thermal

case. This explains why the thermal production rates and yields are much larger than

the pre-equilibrium cases as there are simply not enough quarks present to interact and

produce dileptons and photons. This is in spite of the large energies which characterize

the very early times.

The photon yield for Qs = 1 GeV showed interesting results as the pre-equilibrium

yield was of the same order of magnitude as the thermal yield for pT > 2 GeV. This

was found to be caused by the large number density of gluons and small initial number

density of quarks in the pre-equilibrium medium which allowed the Compton scattering

contribution of the pre-equilibrium and thermal photon yield to be approximately equal

while the annihilation contribution was much less in the pre-equilibrium case. Therefore,

after summing the two channels, the total pre-equilibrium yield was only slightly less

than the thermal yield.

Additionally, the effect of the Qs value on the production rates and yields was studied

and was shown to have significant effects on the results. Specifically, doubling the value

from 1 to 2 GeV had drastically increased these results, especially for the thermal cases.

This was due to the implicit temperature and chemical potential dependence of the

thermal equations, as both of these quantities doubled with the doubling of Qs, therefore

significantly increasing the rates and yields.

Future work involves extending the model described in Chapter 3 to a more realistic,

three-dimensional model. This work can also be used in hydrodynamic calculations to

account for the pre-equilibrium electromagnetic radiation. Furthermore, these results are

useful for calculations of photon and dilepton elliptic flow v2 [35].
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A
A P P E N D I X A

a.1 energy density - maxwell-boltzmann statistics

From relativistic kinetic theory, the energy density is given by

ε = νg

∫ d3p
(2π)3 p0 fg(p0) + νq

∫ d3p
(2π)3 p0 fq(p0), (A.1)

where νg/q and fg/q the degeneracy factors and particle distribution functions for gluons

and quarks respectively. Using Maxwell-Boltzmann statistics, the distribution functions

are of the form

fq/g = e−p0/T (A.2)

where the same distribution function is used for both quarks and gluons. Inserting this

into the above equation gives

ε = νg

∫ d3p
(2π)3 p0e−p0/T + νq

∫ d3p
(2π)3 p0e−p0/T. (A.3)

To simplify the integral, a change of variables to p̃ = p0/T is performed

ε = νgT4
∫ d3 p̃

(2π)3 p̃e− p̃ + νqT4
∫ d3 p̃

(2π)3 p̃e− p̃. (A.4)

Recalling that d3 p̃ = | p̃|2dp̃dΩ and that the integral over the solid angle yields a factor

of 4π, the expression becomes

ε = νgT4(4π)
∫ | p̃|2dp̃

(2π)3 p̃e− p̃ + νqT4(4π)
∫ | p̃|2dp̃

(2π)3 p̃e− p̃. (A.5)

After factoring out the degeneracy factors, the remaining integral over p̃ can be com-

puted from

ε = (νg + νq)
T4

2π2

∫ ∞

0
| p̃|3e− p̃dp̃ (A.6)

= (νg + νq)
6T4

2π2 . (A.7)
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If the degeneracy factors are given by

νg = 8colour × 2spin = 16 (A.8)

νq = 2qq̄ × 2spin × 3 f lavour × 3colour = 36, (A.9)

the final expression becomes

ε =
156T4

π2 . (A.10)

If the energy density is well defined as a function of the proper time τ, the equation

can be rearranged

T =
( ε(τ)

156/π2

)1/4
(A.11)

to determine the temperature at a given time in the evolution. If the units of the mo-

mentum are given in terms of Qs and the units of the energy density are given as Q4
s ,

therefore, T has units of Qs. The plot in figure 22 shows the temperature evolution as a

function of τ for two values of Qs.
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Figure 22: The temperature evolution as a function of τ for Qs = 1 GeV (left) and Qs = 2 GeV

(right) is plotted in comparison with the temperature evolution given by the Bjorken

solution.
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a.2 energy density - fermi-dirac/bose-einstein statistics

The energy density can also be calculated using Fermi-Dirac and Bose-Einstein statistics,

in which case, the distribution functions are of the form

fq/g =
1

ep0/T ± 1
(A.12)

where the + sign is for quarks (fermions) and the - sign is for gluons (bosons). Inserting

these into the energy density equation given by A.1

ε = νg

∫ d3p
(2π)3 p0 1

ep0/T − 1
+ νq

∫ d3p
(2π)3 p0 1

ep0/T + 1
. (A.13)

As before, a change of variables to p̃ = p0/T is performed

ε = νgT4
∫ d3 p̃

(2π)3 p̃
1

e p̃ − 1
+ νqT4

∫ d3 p̃
(2π)3 p̃

1
e p̃ + 1

. (A.14)

Changing the integration measure to d3 p̃ = | p̃|2dp̃dΩ and integrating over solid angle

gives

ε =
νgT4

2π2

∫ ∞

0

| p̃|3dp̃
e p̃ − 1

+
νqT4

2π2

∫ ∞

0

| p̃|3dp̃
e p̃ + 1

. (A.15)

The final integration over p̃ yields the expression

ε = νg
π2T4

30
+ νq

7π2T4

240
. (A.16)

If the degeneracy factors are again given by

νg = 8colour × 2spin = 16 (A.17)

νq = 2qq̄ × 2spin × 3 f lavour × 3colour = 36 (A.18)

the energy density becomes

ε =
19π2T4

12
. (A.19)

After rearranging this expression, the temperature at any given time in the evolution can

be determined from

T =
( ε(τ)

(19/12)π2

)1/4
. (A.20)

The temperature evolution computed using Maxwell-Boltzmann statistics was com-

pared to that computed using Fermi-Dirac/Bose-Einstein for Qs = 1 GeV. As the temper-

ature obtained through Fermi-Dirac/Bose-Einstein statistics is only approximately 10%

larger than that of Maxwell-Boltzmann statistics, the latter was used.





B
A P P E N D I X B

b.1 number density

From relativistic kinetic theory, the number density is given by

ng(τ) = νg

∫ d3p
(2π)3 fg(p0) (B.1)

for gluons and

nq(τ) = νq

∫ d3p
(2π)3 fq(p0) (B.2)

for quarks, where νg/q and fg/q the degeneracy factors and particle distribution functions

for gluons and quarks respectively. Using Fermi-Dirac and Bose-Einstein statistics, the

distribution functions are of the form

fq/g =
1

ep0/T ± 1
(B.3)

Inserting this into the above equation gives

ng(τ) = νg

∫ d3p
(2π)3

1
ep0/T − 1

(B.4)

nq(τ) = νq

∫ d3p
(2π)3

1
ep0/T + 1

. (B.5)

As in the energy density calculation in Appendix A, a change of variables to p̃ = p0/T

is performed the integration measure becomes d3 p̃ = | p̃|2dp̃dΩ

ng(τ) = νgT3
∫ p̃2dp̃dΩ

(2π)3
1

e p̃ − 1
(B.6)

nq(τ) = νqT3
∫ p̃2dp̃dΩ

(2π)3
1

e p̃ + 1
(B.7)

where integrating over solid angle gives

ng(τ) =
νgT3

2π2

∫ ∞

0

p̃2dp̃
(2π)3

1
e p̃ − 1

(B.8)

nq(τ) =
νqT3

2π2

∫ ∞

0

p̃2dp̃
(2π)3

1
e p̃ + 1

. (B.9)
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The final integration over p̃ yields the expressions

ng(τ) = 2νgζ(3)T3 (B.10)

nq(τ) = νq
3ζ(3)T3

2
(B.11)

where ζ(3) is the Riemann zeta function. If the degeneracy factors are once again given

by

νg = 8colour × 2spin = 16 (B.12)

νq = 2qq̄ × 2spin × 3 f lavour × 3colour = 36 (B.13)

the number densities become

ng(τ) = 32ζ(3)T3 ≈ 38.4658T3 (B.14)

nq(τ) = 54ζ(3)T3 ≈ 64.9111T3 (B.15)

Summing these two expressions gives the total number density of quarks and gluons in

the QGP

n(τ) = ng(τ) + nq(τ) (B.16)

= 86ζ(3)T3 (B.17)

≈ 103.377T3. (B.18)
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