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ABSTRACT

An expression for the characteristic polynomial of a graph
is developed, showing the relationship between certain structural
characteristics of the graph and the coefficients of its
polynomial. Among other applications, a bipartite graph is shown
to be characterized by its polynomial. A problem of Collatz is
then investigated and solved for trees, and further results of the
same nature are presented. A theorem on l-factors in trees related
to a theorem of Tutte is proven. It is shown that the polynomial
of a graph yields certain information concerning coverings and line
independence. In particular a formula for the point-covering
number of a tree is established. The graph polynomial is then

applied to problems related to Ulam's conjecture and graph recon-

structions.
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Preface

The polynomial of a graph (as we will use the term) is a
natural outgrowth of the concept of the adjacency matrix of a
graph, which was defined in the pioneer work of Konig (11, p.237)
in 1936. However, the first to actually investigate the
properties of this polynomial were Collatz and Sinogowitz (1) in
a paper published in 1957. Since then it has received more
attention (as we shall see), but very little from the point of view

of combinatorial properties of its coefficients.

Most of this thesis wiil concern itself with such properties.
It is oriented toward obtaining new results rather than exposition
of what has been discovered. The seven theorems and three propositions
proven herein are original. The previous results of which we make use

are of course credited in each case.

Theorem I is a fundamental characterization of the polynomial

of a graph in terms of certain types of its subgraphs.

All the other theorems and propositions rely at least in part
on this Theorem, and one could think of them as applications of it.
We obtain results on bipartite graphs, structure of trees, coverings,
and a problem suggested by Collatz (1). We also apply graph polynomials
to Ulam's conjecture and reconstructions, an application which appears

not to have been known previously.

T would like to thank Professor W. G. Brown for his advice in

the completion of this work.
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I.1. This chapter is meant to serve as an introduction to
the structures and concepts that we shall be using, Notation and
terminology in graph theory have not been standarized to a great
extent. We shall use mostly notation and terminology in accord with
the recent book of Harary (3), indicating any new or uncommon

definitions as they arise later on,

I.2. A graph G consists of a finite set V(G) of p points or
vertices together with a set E(G) of unordered pairs of distinct points
of V(G). Each (unordered) pair (u,v) of points in E(G) 1is a line or
edge of G. We may also label this line by x = (u,v) and we say x joins

u and v. The null-graph f has no points and hence no lines.

Two points u and v of V(G) are adjacent iff(l) (u,v) is in E(G)
(i.e. u and v are joined). Two different edges are incident if they
have one common point, otherwise they are disjoint. An edge and a point
are incident when the point is one of the two points making up that
particular edge. The valency of a vertex is the number of edges incident

to it, We will not allow Zoops (i.e. an edge from a vertex to itself).
Two graphs G and H are isomorphic ( G = H ) if there exists a

one-to-one correspondence f between their points such that fg1 and fg3

are adjacent points in H iff 81 and g, are adjacent points in G.

) iff = if and only if



A subgraph H of G 1s a graph having all of its points and lines
in G. We shall use (this definition is not standard) |G| to mean the

number of points in G, i.e. card (V(G)). A spanning subgraph S of G is

a subgraph of G such that IS] = IG . A graph G is called odd or even

according to whether |G| is odd or even.

When it is possible to partition the points of G into two nonempty
classes such that a vertex from one class is never adjacent to a vertex

from the other, we say G 1is disconnected; otherwise G 1is connected.

A maximal connected subgraph of G 1is called a connected component
of G, or just a component. Graphs are usually represented by diagrams,
points in the diagram corresponding to points of the graph, and a line

segment joining points u and v in the diagram iff (u,v) is in E(G).

Thus for example the graph G whose diagram is shown in figure I.2.1.

below

Figure I.2.1.

is disconnected; its components are simply the three connected "pieces':

‘ the isolated point, the triangle, and the line.



A circuit C with n points (n>3) is the graph represented by an

n-sided polygon.

We unow define a special kind of graph, following the terminology
in (2). A graph L is called a linear graph if each of.its components
is either a single line or a circuit. The graph G of I.2.1. is not a
"linear graph" since one of its components is a point v. However, G - v,
the graph obtained from G by deleting the point v and all lines
adjacent to v, is a linear graph. If we wish to delete only one line x,

we denote the resulting graph by G - x.

G is called bipartite if it is possible to partition V(G) into
two nonempty classes such that no two vertices in the same class are
adjacent. According to Konig's Theorem (11), G is bipartite iff no odd

circuit is a subgraph of G.

A tree is a connected graph with no cycles. The number of edges in

a tree T is |T| - 1 (3, Theorem 4.1).




II.1. Let G be a graph with p points vl,......vp. The adjacency

matrix . A(G) = (a,,) is defined to be the p x p matrix such that aij =1 if

ij
(vi,vj) is an edge of G, and 0 otherwise. In particular, A(G) has

zeroes along its main diagonal, since we have not allowed loops.

If a different ordering of the points of G 1is used, the resulting
matrix is equal to PAP“1 for some permutation matrix P and so the same

characteristic polynomial is obtained, since similar matrices have the

same characteristic polynomial,

Collatz and Sinogowitz (1) used det(A - xI), the characteristic
polynomial of A(G), in their paper. For convenience (as we shall see), we
use det(4& + xI). Henceforth this expression is what will be meant by the

(characteristic) polynomial of a graph G, and we shall denote it by P(G,x).

11.2. Elementary properties of the polynomial of a graph.

I1.2.1. Let G and H be vertex-disjoint (i.e. V(G)\V(H) empty),
and let E be their union(z). Then
P(E,x) = P(G,x)P(H,x).
Proof. With a suitable labelling of the vertices, the matrix A(E)+xI

is easily seen to be the direct sum of the matrices A(G)+xI and A(H)+xI. Hence

det (A(E)+xI)
det (A(G)+xI) - det (A(H)+xI)
P(G,x) * P(H,x)

P(E,x)

(2) The union of two graphs A and B, denoted AVUB, is the graph
whose vertex set is V(A) U V(B) and whose edge set is E(A) U E(B).



I1.2.2. If the connected components of G are

n
Gl...Gn, P(G,x) = ? P(Gi,x).
Proof. Use induction and II.2.1.

Proposition 1.
I1.2.3. Let G1 and G2 be vertex—-disjoint, and form H by
adding to the union of Gl and G2 an edge from a vertex Vi in G1 to

a vertex v2 in G2. Then

P(H,x) ==P(G1,x)P(G2,x) - P(Gl - Vl,x)P(G2 - VZ’X)'

Proof. Without loss of generality, we construct the matrix A(H)

+ xI as follows: the block consisting of the intersection of the

first |G1| rows and the first IGll colums 1is precisely A(Gl) + xI,
where the row corresponding to v, is theIGllth row in A(H) + xI. Then
the block consisting of the last }Gzl rows intersected with the last
|G2| colums is precisely A(Gz) + xI, where the row corresponding to

is the(|G1| +1)™ row in A@) + xI. In addition, the fact that vy

V2

and v, are joined results in a 1 being in the ( |G1|, IGll + 1) and

( |G1| + 1,|G1|) positions. Elsewhere the entries are zero (see figure
1I1.3.4.).

Figure 1I1.3.4.



Let us evaluate the determinant of this matrix by the Laplace

Expansion (12, p.l4) using the first |G1| rows. Put IGII + IG2| = k.

Let D be the set of all subsets of {1,2,...k} with |G1| elements.
Let d = {1,2,...|G1| }, and for any h € D, h' = {1,2,...k} - h.
Denote by A the determinant of the matrix obtained from A(H) + xI by

f,g
retaining only the rows numbered in f and the colummns numbered in g,

where f,g < {1,2,...k} and card(f) = card(g).

Define P to equal (—1)V where there are v inversions between

f,8
f and g; i.e. pairs (i,j) such that i € £, j € g, and 1 > j. Then

det(A(H) + xI) =P(H,X) =04 v plp Pppv A4 p ° A4' n' (Laplace).

Let us evaluate this sum. For a given term to be nonzero, h must
take its IGlI columns from the first |G1| + 1, otherwise Ad,h = 0.
However, if h omits one of the first IGll - 1, Ad',h' = 0.
Therefore there are only two choices of h: {1,2,... IGll} and

{1,2,...,]6,| - 1, |G1| + 1}.

|

p— £
Let us denote these hl and h2' Now, Ad,ha det \A(Gl) + xI)

=P (Gl_vl ,X) and

=P(Gl,x). Similarly, Ad =P(G2,x), Ad

',h) .,

Ad',h:'z = P(G2 - vz,x). Also pd,d' = 1’ph1,h; = 1, and phz,hz' = -1,

Therefore det (A(B) + xI) = pd,d' z ph,h' Ad,h . Ad',h’ (only non-

vanishing terms for h =hl or hz) = P(Gl,x) P(Gz,x) - P(Gl-vl,x) P(Gz-vz,x).

Q.E.D.
Using Theorem I, we shall give an easy combinatorial proof of this

result in II.7.



IT.3. Most published work concerning the adjacency matrices
of graphs has involved the magnitude of, and bounds for, the least and
greatest (the liatter called the index) eigenvalues, and changes in

these quantities under imbeddings(B). We shall not be discussing these

considerations.

Hoffman (8) defines "the polynomial of a graph G" to be a
polynomial P of minimal degree that P(A(G)) = J, where J is the matrix
of appropriate size consisting entirely of 1's. However, this is not
related to the polynomial we treat here; in fact, Hoffman proves his

polynomial exists iff G 1is regular and connected.

Harary (2) has conjectured (briefly) that two graphs ¢, and GZ
are isomorphic if their adjacency matrices A1 and A2 have the same set
of eigenvalues (spectrum). However, as he states, several counterexamples
have been found with graphs of sixteen points. He then goes on to ask
what is the minimum number of points in any counterexample, and guesses
sixteen. However, table II in the Appendix to (1) contains two

different trees of eight points with identical spectra. These are shown

in our Appendix.

(3) Hoffman's paper (7) has a comprehensive bibliography for this

type of work,



11.4. Example

3

va Yy
Figure II.4.1.

With the indicated labelling of the points of G (see Figure II.4.1.)

we obtain the adjacency matrix A(G):

The polynomial of G, det(A + xI) is computed to be x4 - 4x2 +2x +1.

G has one spanning linear graph, shown in Figure II.4.2 .
M

Figure II.4.2.



II..S.. Given the polynomial of a graph, it is natural to
ask what information can be deduced from the coefficients.
Suppose the polynomial of a graph G 1is P(G,x) = igo ay xP~1
where G has p points. (ollatz and Sinogowitz (1) found the
following geometric interpretations: (we refer to circuits of
length 3, 4, and 5 as triangles, quadrilaterals, and pentagons

respectively).

ao=1

a; = 0 (the number of loops in G)

-a, =q, the number of edges in G.

§a3 = the number of triangles in G (each
set of 3 mutually-joined points is a triangle, and is counted once.)

8 = (the number of pairs of non-

incident edges in G) - (twice the number of quadilaterals in G).
- ias = (the number of pairs consisting of

one tr iangle and a non~-incident edge) - (The number of pentagons in G.)

We shall show in II.6. exactly how all coefficients arise, making
use of some results by Harary (2), which we now summarize. Harary
defines the variable adjacency matriaz A(G,Y) = (a :Lj) of a graph by
assigning to each edge a variable Vi and letting aij =0 if vy and v,
are not adjacent, and putting aij =Yy if vy and v, are joined by a 1line,

that line being Yo

Here Y = (yl,yz...).



The variable determinant of a graph is the determinant of its
variable adjacency matrix. For example, the variable adjency matrix
of the graph shown in Figure II.4.1, and again in Figure II.5.1 with

its lines labelled is

Figure II.5.1.

Harary proves that if the spanning linear subgraphs of G are

Gl""'Gn’ then

II.5.2. det (A(G,Y)) = I det(A(G,,Y))

10.



11.

When G does not have spanning linear subgraphs, det(A(G,Y))

is the empty sum, 0, Further, he proves:

e Cc 2

11.5.3. det(ae,v) =D 2t 1y 7 B

y
YLy g J

where ey = number of even components in Gi

= number of components in G, which are circuits (more than

¢ i

i

two vertices)
L, = set of components in G which are lines

M, = set of remaining components of Gi (circuits)

For example, the graph of Figure II.5.1 has one spanning linear

subgraph, shown in Figure II.5.4.

Yo

Figure II.5.4.

Applying II.5.2 and II.5.3 we deduce det(A(G,y)) = (-1)% 2° y§ yz ,

which is what we had calculated from the variable adjacency matrix.

Setting each y, =1 gives us det (A(G)), the constant term of the

characteristic polynomial, i.e. P(G,0). In this case det(A(G)) =1,

as we had computed in II.4.



It is to be noted here that the only information about P(G,x)
we can garner so far concerns the constant term. However, we shall
extend these results in the next section so that the graph polynomial
is completely determined by its linear subgraphs, and obtain Harary's

result as a corollary.

II1.6. We have just summarized the results in Harary's paper (2).
He mentions, as we do, that the graphs he considers have no loops.
He goes on to say that the extension to graphs having loops is straight-
forward; nowhere in his proofs is used the hypothesgis that loops are
not allowed, i.e., that the main diagonal of A(G) consists of zeroes.
The only modification required is to the definition of a linear graph.
Whereas in graphs without loops the nonzero terms in det (A(G,Y))
correspond to disjoint lines and circuits (which is what prompted the
definition of a linear graph), graphs with loops will provide terms

corresponding to isolated loops as well.

Therefore we define an extended linear graph to be a graph whose
components are either loops, lines or circuits. Although we have
defined a graph so as not include loops, we will use this extension of

Harary's result to graphs with loops, but only in the proof of Theorem I.

Figure II.6.1 gives an example of a graph G with a loop, and

Figure II.6.2 shows the four spanning extended linear graphs of G.

12.



Figure II.6.1.

"1 : —o >
¥y Y2
5 3 M V'3 s
‘ 2 ) ) &——m—mo , 4
¥y Y4 ¥y
G G, G, G,

Figure II.6.2.

Using II.5.3 det(A(Gl,Y)) =+2(y1) (y4. y5.y6)

2 2
det(A(Gz,Y)) =+y3 * Vs
det (A(G5,Y)) =433 - y?

det (A(6,,Y)) = -2y, y5-¥, Y5

We deduce from II.5.2 that

22 22
det (A(G,Y)) 2y,Y5(y1Yg = Yo¥3) + ¥3¥5 + Yo,
=1

Setting each y <
det (A(G)) =2

which can be verified directly from A(G), which is

13,



1 1 1 0
1 0 1 1
1 1 0 1
o 1 1 O

Definition. Let G be a graph.

Define o(G) = (-1)e 2% if G is an extended linear graph with
e even components and c¢ circuits (in particular o(f) = 1), and

0(G) = 0 otherwise.

Theorem I. If G is a graph without loops, P(G,x) = io(L) x
where the sum ranges over all the subgraphs L of G.

Corollary (Harary). P(G,0) = Eao(L)

where the sum ranges over all spanning linear subgraphs of G.

Proof. As before, assign a variable Yi to each line of G.
Furthermore, let us modify G by adding exactly one loop at each
vertex. Call the new graph G*, and assign the variable X, to the
new line forming the loop at the vertex vy

Then, applying Harary's extended result, we have

e o

l6|-|z]

s
I1.6.3.  det(A(G%,1)= I (-1 T2l 2 s y, I ox
ykeLi yjsMi xneNi
* % * *
where Gl’ G2"""Gs are the extended linear spanning subgraphs of G ,

*
Ni is the set of loops in Gi’ and everything else is as previously

defined in II.5.

14.
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Now let us set each Yi =1 and each X, =x. Then

*
det (A(G ,Y)) =P(G,x). It is then clear that what we now have

from 1II.6.3 is

s e c n

I1.6.4 P(G,x) = I(-D) 11,1
*
where n, is the number of loops in Gi

Now, if a particular GI has n, loops, we can see that G: minus
these loops is a linear subgraph Li of G containing |G| - ny
vertices; 1i.e., ng, = lGl - |L1|. Conversely, any linear subgraph
L of G can be made into an extended spanning linear subgraph G: of G*
by adding to L the loop corresponding to each vertex not contained in L

(if indeed there are any to be added).

This estabishes a one-to-one correspondence between the Li and
*
the Gi (where Ll’LZ""'Ls are all linear subgraphs of G). Note also

*
that each corresponding pair Li and Gi have the same number of even

components and circuits, since a loop 1is an odd component and not a

circuit.

e, ¢

=g (Li)

Thus we can rewrite I1I.6.4 as

P(G,x) = Zo(L,) 6l =114l

where the sum ranges over the linear subgraphs of G, and we have used

n, = IGl - |L1|. Since o(L) = O unless L is a linear graph, we could

just as well have the sum range over all subgraphs of G. The corollary

is obtained by setting x equal to O. Q.E.D



16.

1I.7. Applications.

Let us prove 1I.2.3 by means of Theorem I.

What are the linear graphs of H? One type consists of any
linear graph from Gl’ and any from G2. (Letting @ be a linear graph).
Note that if C is the disjoint union of A and B, d(C)=0(A) - o(B). Now

. — le,| -|L I][ l6, -1,
P(Gy,%) * P(Gy,%) [Llécl o(L)) x'"1 1 LzéGz o(L,) x'2 2

= .5 oL UL) LR
1°72
and therefore P(Gl,x)P(Gz,x) is the contribution of this type of linear
graph to P(H,x).
The other type of linear graph in H has the line (vl,vz) = x for one
of its components. Then clearly any further components must be from

Gl -v and G2 - v, (and any will do).

The contribution of this type of linear graph to P(H,x) is then
-P(Gl - vl,x)P(G2 - vz,x) where the minus sign appears because each such

graph contains x, and o(x) =-1.

.. P(H,x) ==P(Gl,x)P(G2,x)-P(G1 - vl,x)P(G2 - vz,x)
Q.E.D.
In the case of a tree T, the only linear graphs contained in T,

besides @, are sets of disjoint edges. This allows an easy interpretation

of P(T,x).



Let e, be the number of different gombinations of 1
disjoint edges in T. If L consists of j disjoint edges, o(L) = (-l)j.
We therefore deduce from Theorem I
- _yi . T2
I1.7.1 P(T,x) i=§o (-1) e X
We shall be using this in section III. This shows a tree
polynomialvhas either odd powers only, or even powers only. However,

this characterizes not trees, but a larger class of graphs.

Theorem II. Let G be a connected graph. G is bipartite iff
P(G,x) has even powers only or odd powers only (i.e. P(G,x) an even

or odd function respectively).

Proof. Suppose G is bipartite. Then by K8nig's Theorem (11, p.170)
G has no odd circuits. Therefore G contains no linear subgraphs with
an odd number of vertices; hence P(G,x) ==Zc(L)x|GI - ILI (Theorem I)

has powers only of the same parity as G.

Conversely, suppose the powers of x in P(G,x) are either all odd
or all even. Then there is no term in leI_B. Since this term has
coefficient equal to twice the number of triangles (by Theorem I) there

are no triangles in G.

17.



18.

Suppose there are no odd circuits of length <€ j in G (j odd).
Any linear subgraph of j+ 2 vertices must contain an odd circuit
(since j+ 2 is odd). But there are no odd circuits of length < j.
Hence the only possible linear subgraphs of j +2 vertices are circuits of
lel -3 -2

length j + 2, and the coefficient of x is twice the number

16l -j-2

of such circuits. But the coefficient of x is 0 by hypothesis.

Hence there are no odd circuits of length j + 2.

This induction shows that G has only even circuits, and hence

is bipartite by the result of Kdnig cited in I.2,
Q.E.D.

III.1. One of the problems suggested by Collatz and Sinogowitz (1)
was to find a geometric interpretation of graphs having 0 in their spectrum.
He called such graphs "non-primitive". However, since tradition
has not yet cemented this definition, we will use the term singular to
refer to a graph G having O in its spectrum, i.e., such that A(G) is
singular, or equivalently P(G,0) = 0. 1In this section we shall
characterize singular trees and give some sufficient geometrical
conditions for graphs to be singular; first some geometrical remarks

and some definitions.

We define a chain of length n to be a point for n=1, a line for

n=2, and for n> 3 the graph obtained by deleting any edge from Cn'




For n 2 3, the two points originally joined by the deleted

edge are called endpoints; for n=1 or 2 all points are endpoints.
Given a connected graph G, we say a chain of length n stems from v
if there exists an edge (u,v) such that G-(u,v) has two components,
one being a chain of length n with u as one of its endpoints. For

instance, in Figure III.l.1 chains of lengths 2 and 3 stem from v.

v

Figure III.1.1.

Given a vertex v in a tree T with k edges incident to it, it is
easy to see that the fact that a tree has no circuits means that the
remaining vertices of T are partitioned into k disjoint classes.

(These are also said to stem from v.)

Definition: We say v is of type 1 (12 0) if 1 odd classes stem
from v. The type of v is denoted t(v). Note that if T is odd, P(T,x)
has only odd powers of x (Theorem II) and hence P(T,0) = 0 necessarily.

Thus any odd tree is singular.

19,



20.

Lemma 1. The maximum cardinality of a set of disjoint

edges in a tree T is [[ITI/ZH (4).

Proof. Suppose there exists a set with H|T|/2H+k edges.
Then |T|3 2 ( [[lrl/z]] +k) > 2k € ITI-ZI][TI/ZE <i
+ k<0

Q.E.D.

Lemma 2. In any tree T, |T|z 3, there exists v such that

at least two chains stem from v.

Proof. The case |T|=3 is trivial. Assume the result for
|T|=n (@m=3). Suppose |T|=n+ 1. Any tree has an endpoint
(a point incident with only one edge) (3, Corollary 4.1A). Remove
from T one endpoint e and the edge incident to it, obtaining T-e.
Since IT - e| =z n, T-e has a point v with the required property.
Replace e and the edge incident to it. If v still has two or more
chains stemming from it, we are through. Otherwise, e has been
joined to a point p on a chain stemming from v and now p clearly has

two chains stemming from it.

Q.E.D.

(4) [[xﬂ is the greatest integer less than or equal to x.



21.

Theorem III. Let |T| be even. The following are

equivalent:
(<) T is non-sgingular
(i) T has a set of |T|/2 disjoint edges
(1iz) For every vel, t(v) = 1

Proof. We prove ii»iii, iii+ii and ieii:
ije>iii Clearly for any v, there must be at least one odd
class stemming from v, since |T|-1 is odd (i.e., t(v)%1).

Suppose there are more than one for some Vs 8O that t(vo)> 1.

odd class, c pts.

X

v odd class, d pts.
",y
A
4 Vo
I
)
remaining |T|-1-c~d pts.

Figure II

See Figure II, where edges x and y both lead to sets of points of

cardinalities ¢ and d respectively, where c and d are supposed odd.



How large a set of disjoint edges can T contain?
According to Lemma 1, the x-class can yield no more than
(c-1)/2 disjoint edges, and the y-class no more than
(d-1)/2. Also the remaining classes can contribute no more than
[(|T|-c-d-1)-1] /2 edges. In addition, it is conceivable that
one of the edges incident to v, can be chosen. The maximum
number of disjoint edges is then

(¢-1)/2 + (d-1)/2 + (IT)-c-d-2)/2+ 1 = IT]/2 - 1

contrary to assumption.

iii+ii Induction on |T| (the case |T|= 2 is trivial).

Assume iii+ii whenever |T|=n (n even)

Now let |T| = n + 2

By Lemma 2, there exists a v, from which at least two chains
stem. Since t(vo)'<2 by assumption, there 1s at least one even
chain stemming from V. Choose one of these even chains, and delete
from it the endpoint not adjacent to v, and the point adjacent to this
endpoint (and of course the two edges incident to the two deleted
points). The resulting graph T' has n vertices, t(v) = 1 for all
veT, and so a set of n/2 disjoint edges exists in T'. To this same
set in T, add the previously deleted edge incident to the endpoint

(this edge cannot be incident with T'). We now have a set of (n 4 2)/2

disjoint edges.
Q.E.D.
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iierdi According to our interpretation of P(T,x) (II.7.1),
P(T,x) has a nonzero constant term (i.e., P(T,0)#0) iff there exists

a set of |T|/2 disjoint edges.

Q.E.D.

Theorem III is related to a theorem of Tutte (14) concerning

1-factors (A set of |G|/2 independent lines in G is a l-factor of G.)

Tutte's theorem states:

A graph G has a l-factor iff |G| is even and there is no set of

points S such that the # of odd components of G-S exceeds card (8).

Applying this to an even tree T, we deduce that T can have a
1-factor (i.e., |T|/2 independent lines) only if for each veT, T-v has
one odd component. This would then be an alternate way of proving the

necegsity of condition (iii) in Theorem III.

I1I.2 Theorem IV. Suppose for every vertex v in T, t(v) = 1.

Then p(1,0) = (-1)|71/2

Proof. Let e be an endpoint of T. Since only one class stems

from e, and t(e) = 1 by hypothesis, |T|-1 is odd and consequently |T|

is even.

23.



By Theorem III, there exists at least one set of |T|/2
independent edges. Our interpretation of a tree polynomial

(II.7.1) according to Theorem I tells us that P(T,0) = (—l)ITI/ZeITI/2

where elTl/z is the number of different sets of |T|/2 independent

edges.

Therefore there remains cnly to prove that e ITI /2 < 1, which we

do by induction (for |T| even).

The case |T| = 2 is trivial.
Assume for any tree T such that ]TI = 2n (n>1), we have

£ = .
e|z[/2 § 1. Now let |T| = 2(n + 1)

Suppose T has two sets Sl and S2 of |T|/2 = n + 1 independent

edges. We must show Sl= 32 .

Let e be an endpoint of T, where x is the edge incident to e, and
e' the vertex adjacent to e. If x ¢ Sl’ T-e has nt+ 1 independent edges.
But Lemma I asserts T-e can have no more than n independent edges.

Therefore x ¢ Sl" Similarly x ¢ 32 .

let T'= T-e-e'. Since |T'| = 2n, the induction hypothesis
asserts that T' can have no more than one set of n independent edges.
Since none of the edges incident to e' except x can be in Sl or SZ’
Sl—{x} and Sz-{x} are both sets of n independent edges from T' .

Therefore Sl—{x} = Sz—{x} and it follows that 81:—' 82 .

Q.E.D.

24,



' Theorems III and IV settle Collatz' proposed problem
|
| in the case of trees, but we have found no such characterization

for singularity of general graphs. It seems unlikely that one

e c
exists, since P(G,0) = (-1) 1 2 i and this sum happens to

"cancel out" apparently at random. Perhaps further progress in
this direction can only hope to proceed on special kinds of graphs
(as we did on trees). However, there are sufficient but not
necessary conditions under which we can state that a graph is

singular.

Proposition 2. Suppose G satisfies one of these conditions:

(a) There exists a vertex v, from which stem at least two
odd chains, or

(b) There exist two unjoined vertices vy and v, which are

adjacent to exactly the same vertices.
Then G is singular.

Proof. (a) We will show such a graph can have no spanning

linear subgraphs, and hence P(G,0) = 0

Let two odd chains stemming from v, have as vertex sets

{Vl"""vi} and {vi......v'} (1, j odd) where v, and v! are

J 1

. - '
adjacent to Vs Vi adjacent to Vi1 and vk+l(22k£i 1) and Ve

adjacent to v, . and v' . (22ksj-1)

. k-1 k+l
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If there is to be a spanning linear subgraph L, it must

contain the vertex v,, and it can only do so if the edge (vi—l’ vi)

i’
is a component of L. Similarly Vo can be in L only if the edge
(Vi-3’vi—2) is a component of L. Eventually we reach the conclusion

that (vo,vl) must be a component of L. Similarly, (vo,vi) must be a

component of L.
But this is impossible since these two edges are not disjoint.

(b) In the matrix A(G), the two rows (or columns)

corresponding to vl'and v, are the same, hence det (A(G)) = P(G,0) = 0 .

Q.E.D.

I11.3 A point and a line are said to cover each other if
they are incident.

A set of points which covers all the lines of a graph G is
called a point cover for G, while a set of lines which covers all
the points of G is a line cover.

The smallest number of points in any point cover for G is
called its point covering number and is denoted ao(G) or & .
Similarly al(G) or a, is the smallest number of lines in any line

cover of G and is called its line covering number.



The largest number of mutually non-adjacent points in G
is called the point independence number of G, denoted BO(G)
or BO . The largest number of independent (vertex-disjoint)

lines in G is the line independence number Bl(G) or Bl .
Gallai (see 3, Theorem 10.1) proved:

I11.3.1. For any nontrivial connected graph G,

0> %t Bl = |al
Konig (10) proved:

I11.3.2., If G is bipartite, Bl= @

We shall now see that P(G,x) can in certain cases yield

information regarding these numbers.

Theorem V. Let the lowest power of x to appear in P(G,x)

be 22 .
(a) If G is a tree, a; = 8= el + d)
0,0: 81: é(IGI -d)
(b) If G is bipartite, o,z 8 ¢ #(|¢| + d)

a = B, 2 ile| - d)
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Proof. (a) From our previous interpretation of a tree
polynomial (II.7.1), the last term in P(G,x) is (—1)ieix|G|_21
where i is the largest number of independent lines in G. By
definition, i = Bl(G), and by hypothesis d = |G|-21. We deduce
B,(6) = 2(|G|-d). The other equations follow from III.3.1 and

I1I.3.2,

(b) Since there is a term cxd in P(G,x) we know by
Theorem I that there must be at least one linear subgraph L of G
with IGl-d vertices. By Theorem II, we know L consists of lines
'and/or even circuits. From any even circuit with k vertices,
it is possible to extract k/2 independent lines. Hence from L
we can derive a set of #(|G|-d) independent lines. Hence
Bl(G) b4 %(|G|-d). Once again the other equations follow from

IT1.3.1 and III.3.2.

The problem of finding a maximal set of independent lines

in a graph(s) has been the subject of much investigation(6) .

(5) This is usually called the "maximum matching" problem.
(6) See for instance Chapter 7 in Theory of Graphs by

0. Ore, Amer. Math. Society, Providence, 1962.

Q.E.D.
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Although algorithms for obtaining such sets have been developed(7),

no formulas for the number of lines in such sets (i.e.,.ﬁl) seem to
have been published. Theorem V yields such a formula for trees, as
well as a lower bound in the case of bipartite graphs. The basic

data required is the adjacency matrix of the graph.

(7) e.g. M.L. Balinski,"Labelling to obtain a maximum matehing”,
appears in Combinatorial Mathematics and its applications, Univ. of

North Carolina Press, Chapel Hill, 1969.
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IV.1. Ulam's Conjecture

For any graph G, there are|G|graphs of the form G-v, one for
each vertex v in G. Ulam's well-known conjecture (15) in its
graph-theoretical form states that this collection of|G| graphs
uniquely determines G. Formally, let G have points'{vi} and H have
points {ui} with |G| = |H| = 3. 1If for each i the graphs Gyy= G-vy

are isomorphic, then the graphs G and H are isomorphic.

and H, = H-u
(W R)

i
The graphs (%

i
,ve call the Ulam subgraphs of G. Kelly (9) has

i
succeeded in proving Ulam's conjecture for trees(s).

If we label the edges of G by xl.....xq, the line form of Ulam's

1)
conjecture states that G is characterized by the q graphs Gi= G-x 1

A problem intimately related to Ulam's conjecture is that of
reconstruction. Given n graphs Gys GyseeveG of n-1 points each, when
can we find a graph G (called a reconstruction) with n points VyeeoeoVos

such that G, = G-v:L (L= 1% n). Ulam's conjecture can then be stated:

i
Given such a set of graphs there exists at most one reconstruction for it.

The current state of knowledge concerning reconstruction is

summarized in (13).

(8) Kelly's result antedated Ulam's conjecture and is generally
thought to have motivated it. In (9) Kelly verified the conjecture for
graphs with up to six points; and Harary and Palmer in (6) for graphs

of seven points.
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1v.2 Definition: The two graphs G and H are Ulam-related

if for each i (with a suitable ordering) Qif'%i>'

Note that the definition impies two Ulam-related graphs have

(1) )
the same number of vertices. If instead GiC:Hi for each i, we call

the graphs G and H Ulam-line-related.

It is important to realize that if we are considering a set of
(possibly non-distinct) graphs {Gi}(li_iSIQ and searching for a
reconstruction G, the graphs Gi are not jointly labelled. For
instance, we have no way of determining, (in general) which vertices

in G, are which in G, . It is uncertain whether or not graph polynomials

1 2

can be of any use in proving (or disproving) Ulam's conjecture. However,
we shall show how they can yield circumstantial evidence and how they
indicate that graphs with certain properties might be proven to obey
Ulam's conjecture. For instance, since Ulam's conjecture holds for trees,
we should be able to prove, and we do,that two Ulam-related trees have

the same polynomial. If we then find other types of graphs for which
being Ulam-related implies having the same polynomial, these types of
graphs seem like good candidates to satisfy Ulam's conjecture. Of course,

they may not, since we have not proven that two graphs which are

Ulam-related and have the same polynomial are isomorphic.
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This last statement, if proven, would, as we shall see,
yield several classes of graphs satisfying the conjecture. It

may be worthy of further investigation.

We shall show that when G and H are Ulam-related, P(G,x)
and P(H,x) are quite similar and possibly always the same. If a
case were found where these polynomials were different, we would
have a counterexample for Ulam's conjecture, since isomorphic

graphs have identical polynomials (only the labelling is different).

In addition, we shall show that two Ulam-line-related graphs
always have identical polynomials. This may indicate that the

line~-form of the conjecture is a simpler problem.

Iv.3 We now prove that the polynomials of two Ulam-related

graphs differ by a constant,

Theorem VI. Let the graph G have Ulam subgraphs %1;""?n> .

Then for some constant e,

X 7
Iv.3.1 P(G,x)‘é' }fP(C('i,,t) dt +c

Proof. Consider a linear subgraph L of G with |L|< le] .
The graph L is a subgraph of a particular %i)= G—vi iff the vertex vy
is not contained in L. Thus, L i1s a subgraph of exactly IGI - ILI
Ulam subgraphs of G, If L has |G| vertices, it is not a subgraph of

any ?i)' Let us then consider the expression
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IV.3.2 oz O(L)xn-lLJ'(n-ILl)
i=1 LeG,

where the second sum is over all linear subgraphs of qi)including

@ and qi)itself.

From Theorem I,

P(Gd).t) =7 o(L)tIcii)|“|L|

Le¢s)
=3 o(L)t:’“"L"l
x s st
We deduce AP(qh,t)dt = 7 o(L)x / (~|L])

Substituting in IV.3.2 we get the equivalent expression

nx
Iv.3.3 I{ P(G,,t)dt

Now let us return to IV.3.2.

Bearing in mind that a subgraph of G with j¢ n vertices is a subgraph
of exactly n - j Ulam subgraphs, we see that IV.3.2 is equal to
Iv.3.4 : o xl€-IT
LeG
L[ <|e]

But this is precisely P(G,x) - P(G,0) (Theorem I and its corollary).




We therefore have an equality between P(G,x) - P(G,0) and the

expression IV.3.3:

x
Thus P(G,x) - P(G,0) = é P(‘%i)’t) dt
or P(G,x) = [ (Z P(G(i),t))dt + ¢
where ¢ = P(G,0) Q.E.D.
d -
Corollary Iz P(Gx) =1L P(Gm,x)
Theorem VII.

Let G and H be Ulam-related graphs satisfying any one of these

conditions:

(a) Either G or H is known to be a tree of at least three
points.

(b) G and H are both singular.

(c) det A(G) = det A(H).

(d) G and H each have a pair of adjacent vertices which

are adjacent to exactly the same points.

(e) G and H each have a pair of non-adjacent vertices which
are adjacent to exactly the same vertices

(f) G and H each have a vertex from which stem at least two

odd chains.

Then P(G,x) = P(H,x)
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35.

Proof. By Proposition 2 (II.2) conditions (e) and (f)
imply that P(G,0) = P(H,0) = 0. In addition, Theorem VIimplies
that P(G,x) and P(H,x) differ by a constant. We therefore deduce
P(G,x) = P(H,x). The same reasoning yields the sufficiency of

conditions (b) and (c).

If G and H satisfy (d), the matrices corresponding to P(G,l)
and P(H,1) each have two identical rows. Thus, P(G,1) = P(H,1) = O,

and again we conclude that P(G,x) = P(H,x).

Proof of (a):

Suppose G is a tree. Then there are at least two connected
Ulam subgraphs (corresponding to the removal of an endpoint).
Therefore H must be connected, or else two Ulam subgraphs of.H never
could be connected (since |H|=|G|>3). Also, H has the same number
of edges as G (by Theorem VI). Hence H is also a tree. If |G| = |H|
is odd, we know from Theorem II that P(G,0) = P(H,0) = 0 and hence
that P(G,x) = P(H,x). If G is even, we examine the Ulam subgraphs
{Gi}(which are the same as the {Hi}). We conclude from Theorem IV
that P(G,0) = P(H,0) = 0 if some G, has more than one odd component,
GV 2

and that P(G,0) = P(H,0) = (—19 otherwise. In either case it then

follows from Theorem VIthat P(G,x) = P(H,x).
Q.E.D.



Theorem VII suggests six types of graphs for which it may
be possible to prove Ulam's conjecture. As mentioned, Kelly (9)
has proven it for trees. In the above proof for (a), we could
have appealed to this result after proving H was necessarily a tree,

deduced G = H and hence P(G,x) = P(H,x).

Finally, we prove two Ulam line-related graphs have identical

polynomials, or equivalently:

Proposition 3. Let G be a non-linear graph with q lines and

(1) (q)
with Ulam line-subgraphs Gl.....Gq. Then P(G,x) is given by

q -
IV.3.5 2 zmcr(L)xIGI 1L/ (qeewy)
l 1eG

where e(L) = the number of edges in L

Proof. Any subgraph L of G with e(L) edges is a subgraph of
exactly q-e(L) Ulam line-subgraphs. Thus the sum in IV.3.5 is

equal to I or(I)xIGI'-ILI .

LeG
#
By Theorem I, this equals P(G,x) -o0(G) .

By hypothesis however, o(G) = 0. Hence we deduce 1V.3.5.

Q.E.D.
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37.

IV.4, Theorem VI may furnish a useful tool in the

problem of reconstruction defined in IV.1.

Given a collection of n graphs Gl""'Gn with n-1 points
each, an existence problem arises. Do these graphs admit a
reconstruction? Very little progress has been made on this
problem. If there exists a reconstruction G, we can easily
determine what its polynomial Q(x) should be (up to a constant)

using Theorem VI.

Thus if we had a set of necessary conditions for a polynomial
to be a graph polynomial, we could apply this knowledge to see

whether Q(x) can be a graph polynomial. This problem seems to be

untouched, however.

Example. Do the five graphs of Figure IV.4.1 have a

reconstruction G?

I l T [ o -] [ ]
Gl G2 G3 G4

Figure IV.4.1.

v
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Using Theorem 1 we calculate:

P(Gl,x)
P(Gz,x)
P(G3,x)

P(Gs,x)

Thus, if G exists, P(G,x)

But this is clearly not

reconstruction exists.

a

P(GA,x) = xﬁ - 3x2 +1
4 2

X - 3x

x4 - 3x2 + 2x

é (EP(Gi’t))dt 4+ C

x 4 2
5 (5t =13t~ + 2t + 2)dt

xs - 13/3 x3 + x2 +2x 4+ ¢

graph polynomial, hence no

+

C
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APPENDIX

An Example of Two Graphs with Identical Spectra

S 6 0
o
& _J\ Q

We find that each of these graphs has:

7 edges
9 pairs of disjoint edges

0 sets of k2 3 disjoint edges

Using II.7.1 the common polynomial is computed:

x8 —7x6+-9x4
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TABLE I

The connected graphs with up to four points, with their polynomials
and spanning linear subgraphs, if any.

*———oH—0 x3 -2x

x4-6x + 8x +3

o—0
o——0
P o—9
N xl*-Sx2 + 4x

b o———0
o D =0

X -4x

- 5 0———o

x4—3x

e——o——o—ox4'3x2 +1 o—90 o—=o



42.

TABLETII

The trees with 4, 5 and 6 points, and their polynomials. An
even tree either has at least one vertex of type greater than 1
(shaded in the diagram) or a l-factor. In the latter case the
edges of the l-factor are indicated.

S
>

-5x + 3x
X -3x2 +1
X -5x + 4x
-4x
-5x +5x -1
-—4x + 2x |
—5x +5x
[ o ——— -O- —_ -0 OO0
xj-4x3 + 3x

x6-5x + 6x2—1




Some further tabulations may be found in (1).

Collatz and Sinogowitz have listed for each connected
graph with up to five points, a polynomial(g) which
in our notation is * P(G,-x), and the roots of this
polynomial. They also 1list this polynomial for the

trees with 6, 7 and 8 vertices.

)  Ssee 11.1
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