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ABSTRACT 

Master in Science 

An expression for the characteristic polynomial of a graph 

is deve1oped, showing the relationship between certain structural 

characteristics of the graph and the coefficients of its 

polynomia1. Amang other applications, a bipartite graph is shown 

to be characterized by its polynomial. A problem of Collatz is 

then investigated and solved for trees, and further results of the 

same nature are presented. A theorem on l-factors in trees related 

to a theorem of Tutte is proven. It is shown that the polynomial 

of a graph yields certain information concerning coverings and line 

independence. In particular a formula for the point-covering 

number of a tree is established. The graph polynomial is then 

app1ied to problems related to Ulam's conjecture and graph recon­

structions. 
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Prefaae 

The polynomial of a graph (as we will use the term) is a 

natural outgrowth of the concept of the adjacency matrix of a 

graph, which was defined in the pioneer work of Konig (11, p.237) 

in 1936. However, the first to actually investigate the 

properties of this polynomial were Collatz and Sinogowitz (1) in 

a paper published in 1957. Since then it has received more 

attention (as we shall see), but very little from the point of view 

of combinatorial properties of its coefficients. 

Most of this thesis will concern itself with such properties. 

It is oriented toward obtaining new results rather than exposition 

of what has been discovered. The seven theorems and three propositions 

proven herein are original. The previous results of which we make use 

are of course credited in each case. 

Theorem l is a fundamental characterization of the polynomial 

of a graph in terms of certain types of its subgraphs. 

AlI the other theorems and p-ropositions rely at least in part 

on this Theorem, and one could think of them as applications of it. 

We obtain results on bipartite graphs, structure of trees, coverings, 

and a problem suggested by Collatz (1). We also apply graph polynomials 

to Ulam's conjecture and reconstructions, an application which appears 

not to have been known previously. 

l would like to thank Professor W. G. Brown for his advice in 

the completion of this work. 
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1.1. This chapter is meant ta serve as an introduction to 

the structures and concepts that we shall be using. Notation and 

terminology in graph theory have not been standarized to a great 

extent. We shall use mostly notation and terminology in accord with 

the recent book of Harary (3), indicating any new or uncommon 

definitions as the y arise later on. 

1.2. A graph G consists of a finite set V(G) of p points or 

vertices together with a set E(G) of unordered pairs of distinct points 

of V(G). Each (unordered) pair (u,v) of points in E(G) is a Zine or 

edge of G. We may also label this line by x = (u,v) and we say x joins 

u and v. The nuZZ-graph P has no points and hence no lines. 

Two points u and v of V(G) are adjacent iff(l) (u,v) is in E(G) 

(i.e. u and v are joined). Iwo different edges are incident if they 

have one common point, otherwise the y are disjoint. An edge and a point 

are incident when the point is one of the two points making up that 

particular edge. The vaZency of a vertex is the number of edges incident 

to it. We will not allow Zoops (i.e. an edge from a vertex to itself). 

Two graphs Gand H are isomorphic ( G = H ) if there exists a 

one-to-one correspondence f between their points such that fg l and fg2 

are adjacent points in H iff gl and g2 are adjacent points in G. 

(1) iff = if and only if 

1. 



A subg~ph H of G is a graph having aIl of its points and lines 

in G. We shall use (this definition is not standard) IGI to mean the 

number of points in G, i.e. card (V(G». A spanning subgraph S of G is 

a subgraph of G such that Isi = IGI. A graph G is ca lIed odd or even 

according to whether IGI is odd or even. 

When it is possible to partition the points of G into two nonempty 

classes such that a vertex from one class is never adjacent to a vertex 

from the other, we say G is disaonneated; otherwise G is aonneated. 

A maximal connected subgraph of G is ca lIed a aonneated aomponent 

of G, or just a aomponent. Graphs are usually represented by diagrams, 

points in the diagram corresponding to points of the graph, and a line 

segment joining points u and v in the diagram iff (u,v) is in E(G). 

Thus for example the graph G whose diagram is shown in figure 1.2.1. 

below 

o 

Figure 1.2.1. 

is disconnected; its components are simply the three connected "pieces": 

the isolated point, the triangle, and the line. 

2. 



1 3. 

A circuit C with n points (n>3) is the graph represented by an 
n 

n-sided polygon. 

We hOW define a special kind of graph, following the terminology 

in (2). A graph L is called a Zinear graph if each of its components 

is either a single line or a circuit. The graph G of 1.2.1. is not a 

"linear graph" since one of its component s is a point v. However, G - v, 

the graph obtained from G by deleting the point v and aIl lines 

adjacent to v, is a linear graphe If we wish to delete only one line x, 

we denote the zesulting graph by G - x. 

G is called bipartite if it is possible to partition V(G) into 

two nonempty classes such that no two vertices in the same class are 

adjacent. According to KBnig's Theorem (11), G is bipartite iff no odd 

circJit is a subgraph of G. 

A tree is a connected graph with no cycles. The number of edges in 

a tree T is ITI - 1 (3, Theorem 4.1). 



II.1. Let G be a graph with p points vl' •••••• vp • The adjacency 

matrix. A(G) = (aij ) is defined to be the p x p matrix such that a ij = 1 if 

(vi,vj ) is an edge of G, and 0 otherwise. In particular, A(G) has 

zeroes along its main diagonal, since we have not allowed loops. 

If a different ordering of the points of G is used, the resulting 

-1 matrix is equal to PAP for some permutation matrix P and so the same 

characteristic polynomial is obtained, since similar matrices have the 

same characteristic polynomial. 

Collatz and Sinogowitz (1) used det(A - xl), the characteristic 

polynomial of A(G), in their paper. For convenience (as we shall see), we 

use det(A t xl). Henceforth this expression is what will be meant by the 

(characteristic) polynomial of a graph G, and we shall den ote it by P(G,x). 

II.2. EZementary properties of the poZynomiaZ of a graphe 

II.2.1. Let Gand H be vertex-disjoint (i.e. V(G)OV(H) empty), 

and let E be their union (2) • Then 

P(E,x) = P(G,x)P(H,x). 

Proof. With a suitable labelling of the vertices, the matrix A(E)txI 

4. 

is easily seen to be the direct sum of the matrices A(G)+xI and A(H)+xI. Hence 

P(E,x) = det(A(E)+xI) 
= det(A(G)+xI) • det(A(H)+xI) 
= P(G,x) • P(H,x) 

(2) The union of two graphs A and B, denoted AVB, is the graph 

whose vertex set is V(A) U V(B) and whose edge set is E(A) U E(B). 



II.2.2. If the connected components of Gare 

Proof. Use induction and II.2.1. 

Proposition l. 
II.2.3. Let Gl and G2 be vertex-disjoint, and form H by 

adding to the union of Gl and G2 an edge from a vertex vI in Gl to 

a vertex v 2 in G2 • Then 

Proof. Without loss of generality, we construct the matrix A(H) 

+ xl as follows: the block consisting of the intersection of the 

first IGII rows and the first IGII columns is precisely A(Gl ) + xl, 

where the row corresponding to vI is thelGllth row in A(H) + xl. Then 

the block consisting of the last IG21 rows intersected with the last 

IG21 columns is precisely A(G2) + xl, where the row corresponding to 

v 2 is theflGll ... l)th row in A(H) ... xl. In addition, the fact that VI 

and v 2 are joined results in a 1 being in the ( IGll, IGII + 1) and 

( IGII ... 1,IGll) positions. Elsewhere the entries are zero (see figure 

11.3.4.) • 

x 

-'G 0 
1 , 

'x'l - - - - fi x - -- - - - --~ , 
-'x 

o 

Figure II. 3.4. 

'G 
2. 

x 
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o 
Let us evaluate the determinant of this matrix by the Laplace 

Expansion (12, p.14) using the first IGII rows. Put IGII + IG21 =k. 

Let D be the set of aIl subsets of {1,2, ••• k} with IGII eleme!1ts. 

Let d = {1,2, ••• IG11 }, and for any h e:: D, h' = {1,2, ••• k} - h. 

Denote by Af the determinant of the matrix obtained from A(H) + xl by ,g 

retaining only the rows numbered in f and the columns numbered in g, 

where f,g c {1,2, ••• k} and card(f) =card(g). 

v 
Define Pf to equal (-1) where there are v inversions between ,g 

f and g; i.e. pairs (i,j) such that i e:: f, j e:: g, and i > j. Then 

det (A(H) + xl) =: P(H,x) = Pd d' , h~D Ad,h • Ad' ,h' (Laplace). 

Let us evaluate this sumo For a given term to be nonzero, h must 

take its IGII columns from the first IGII + 1, otherwise Ad,h = O. 

However, if h omits one of the first IGII - 1, Ad',h' = O. 

Therefore there are only two choices of h: {1,2, ••• IGll} and 

{1,2, ••• ,I Gl l - 1, IGII + H. 

Let us denote these hl and h2• Now, Ad h =det(A(Gl )+ xl) , ~ 

Also Pd d' = l,Ph h' _ 1, and Ph h' =-1. 
, l' 1 2, "2 

Tberefore det(A(H) + xl) = Pd,d' E Ph,h' Ad,h· Ad',h' (only non-

vanishing terms for h =h
1 

or h2) = P(Gl,x) P(G2,x) - P(Gl-vl,x) P(G2-v2,x). 

Q.E.D. 

Using Theorem l, we shall give an easy combinatorial proof of this 

result in II. 7. 

6. 



II.3. Most published work concerning the adjacency matrices 

of graphs has involved the magnitude of, and bounds for, the least and 

greatest (the iatter called the index) eigenvalues, and changes in 

these quantities under imbeddings(3). We shall not be discussing the se 

considerations. 

Hoffman (8) defines "the polynomial of a graph G" to be a 

polynomial P of minimal degree that P(A(G» = J, where J is the matrix 

of appropriate size consisting entirely of l's. However, this is not 

related to the polynomial we treat here; in fact, Hoffman proves his 

polynomial exists iff G is regular and connected. 

Harary (2) has conjectured (briefly) that two graphs Gl and G2 

are isomorphic if their adjacency matrices Al and A2 have the same set 

of eigenvalues (spectrum). However, as he states, several counterexamples 

have been found with graphs of sixteen points. He then goes on to ask 

what is the minimum number of points in any counterexample, and guesses 

sixteen. However, table II in the Appendix to (1) contains tvo 

different trees of eight points with identical spectra. These are shown 

in our Appendix. 

(3) Hoffman's paper (7) has a comprehensive bibliography for this 

type of work. 

7. 



8. 

II. 4. Examp te 

",U----Q "., 

Figure 11.4.1. 

With the indicated labelling of the points of G (see Figure II.4.1.) 

we obtain the adjacency matrix A(G): 

010 0 

1 0 1 1 

o 1 0 1 

o 110 

The polynomial of 4 2 G, det(A + xl) is computed to be x - 4x + 2x + 1 • 

G has one spanning 1inear graph, shown in Figure II.4.2 • 

1
'" 
Va. 

\1, 0 0 \1" 
Figure II.4.2. 



ILS. Given the polynomial of a graph, it is natural to 

ask what information can be deduced fram the coefficients. 

Suppose the polynomial of a graph G is 
_ P p-i 

P(G,x) - i~o ai x 

where G has p points. Collatz and Sinogowitz (1) found the 

following geometric interpretations: (we refer to circuits of 

length 3, 4, and 5 as triangles, quadrilaterals, and pentagons 

respectively) • 

a = 1 o 
al = 0 (the number of loops in G) 

-a
2 

= q, the number of edges in G. 

~a3 = the number of triangles in G (each 

set of 3 mutually-joined points is a triangle, and is counted once.) 

a 4 = (the number of pairs of non-

incident edges in G) - (twice the number of quadilaterals in G). 

- laS = (the number of pairs consisting of 

one tr .iangle and a non-incident edge) - (The number of pentagons in G.) 

We shall show in II.6. exactly how aIl coefficients arise, making 

use of some results by Harary (2), which we now summarize. Harary 

defines the variabZe adJaaenay matri~ A(G,Y) = (aij ) of a graph by 

assigning to each edge a variable Yk' and letting aij = 0 if vI and v2 

are not adjacent, and putting aij =Yk if vI and v2 are joined by a line, 

that line being Yk. 

Here Y 

9. 



10. 

The variabZe deter.minant of a graph is the determinant of its 

variable adjacency matrix. For example, the variable adjency matrix 

of the graph shown in Figure II.4.1, and again in Figure II.5.1 with 

its lines labelled is 

0 Y4 0 0 

Y4 0 YI Y2 

0 YI 0 Y3 

0 Y2 Y3 0 

and its variable determinant is 2 2 
Y3 • Y4 • 

Figure II. 5.1. 

Harary proves that if the spanning Zinear subgraphs of Gare 

Gl ••••• Gn ' then 

II.5.2. det(A(G,Y» 



When G does not have spanning linear subgraphs, det{A(G,Y» 

is the empty sum, O. Further, he proves: 

II.5.3. 
e c 

det(A{Gi,Y) = (-1) i 2 i ~ Yk2 
YkE~i 

where e i =number of even components in Gi 

ci =number of components in Gi which are circuits (more than 

two vertices) 

Li = set of components in G which are lines 

Mi = set of remaining components of Gi (circuits) 

For example, the graph of Figure II.5.1 has one spanning linear 

subgraph, shown in Figure II.5.4. 

I~ 
0------0 

~ 

Figure II.5.4. 

App1ying II.5.2 and II.5.3 we deduce det(A(G,y» = (_1)2 2° y; Y! ' 

which is what we had ca1cu1ated from the variable adjacency matrix. 

Setting each Yk = 1 gives us det(A{G», the constant term of the 

characteristic polynomial, i.e. P(G,O). In this case det{A{G» = 1, 

as we had computed in II.4. 

Il. 



1t is to be noted here that the only information about P{G,x) 

we can gamer so far concerns the constant terme However, we shall 

extend these results in the next section so that the graph polynomial 

is completely determined by its linear subgraphs, and obtain Harary's 

result as a corollary. 

II.6. We have just summarized the results in Harary's paper (2). 

He mentions, as we do, that the graphs he considers have no loops. 

He goes on to say that the extension to graphs having loops is straight­

forward; nowhere in his proofs is used the hypothesis that loops are 

not allowed, i.e., that the main diagonal of A{G) consists of zeroes. 

The only modification required is to the definition of a linear graphe 

Whereas in graphs without loops the nonzero terms in det{A{G,Y» 

correspond to disjoint lines and circuits (which is what prompted the 

definition of a linear graph), graphs with loops will provide terms 

corresponding to isolated loops as welle 

Therefore we define an extended Zinear gPaph to be a graph whose 

components are either loops, lines or circuits. Although we have 

defined a graph so as not include loops, we will use this extension of 

Harary's result to graphs with loops, but only in the proof of Theopem I. 

Figure II.6.1 gives an example of a graph G with a loop, and 

Figure II.6.2 shows the four spanning extended linear graphs of G. 

12. 



Figure II. 6 .1. 

yIQ 6 
Y2 

5 Y3 

) ) 0 

Y4 Y4 

Gl G2 G3 
Figure II. 6.2. 

Using II.5.3 det(A(Gl,Y» = +2 (YI) (Y4'Y5'Y6) 

2 2 
det(A(G2,Y» =+Y3 . Y5 

det (A(G3 , y» = +Y~ , Y~ 

det(A(G4 ,Y» = - 2Y2'Y3'Y4'Y5 

We deduce from II.5.2 that 

det(A(G,Y» 

1 Setting each Yi = , 

det (A(G» =2 

0 

0 

which can be verified directly from A(G), which ia 

13. 

Y2 

~3 Y5 

) 
It 

Y4 

G4 



111 0 

1 0 1 1 

1 1 0 1 

o 110 

Definition. Let G be a graph. 

Define a(G) = (_l)e 2c if G is an extended 1inear graph with 

e even components and c circuits (in particu1ar a(~) ~ 1), and 

a(G) = 0 otherwise. 

Theopem I. If G is a gmph 1JJithout loops, P(G,x) = EarL) xIGI-ILI 

whepe the sum panges ovep aZZ the subgPaphs L of G. 

CopoZtary (HaPary). P(G,O) :: Ea(L) 

whepe the sum panges ovep aZZ spanning Zinea:r> subgpaphs of G. 

Proof. As before, assign a variable Yk to each 1ine of G. 

Furthermore, let us modify G by adding exact1y one loop at each 

* vertex. Ca11 the new graph G , and assign the variable xi to the 

new 1ine forming the loop at the vertex vi • 

Then, app1ying Harary's extended resu1t, we have 

11.6.3. 

* * * * where G1 , G2, ••••• Gs are the extended 1inear spanning subgraphs of G , 

* Ni is the set of loops in Gi , and everything e1se is as previous1y 

defined in 11.5. 

14. 



Now let us set each Yk = 1 and each 

* 
x = x • 

n 
Then 

det{A{G ,Y» = P{G,x). It is then c1ear that what we now have 

from II.6.3 is 

II.6.4 P{G,x) 
s e 

= t{-l) i 
1 

* where ni is the number of loops in Gi 

* * Now, if a particu1ar Gi has ni 10ops, we can see that Gi minus 

these 100ps is a 1inear subgraph Li of G containing IGI - n i 

vertices; Le., ni :: IGI ILil. Converse1y, any 1inear subgraph 

* * L of G can be made into an extended spanning 1inear subgraph Gi of G 

by adding to L the loop corresponding to each vertex not contained in L 

(if indeed there are any to be added). 

This estabishes a one-to-one correspondence between the Li and 

* the Gi (where L1'L2 ••••• Ls are aZZ 1inear subgraphs of G). Note a1so 

* that each corresponding pair Li and Gi have the same number of even 

components and circuits, since a 100p is an odd component and not a 

circuit. 

Thus we can rewrite II.6.4 as 

where the sum ranges over the 1inear subgraphs of G, and we have used 

ni = IGI - ILi l . Since a{L) : 0 un1ess L is a 1inear graph, we cou1d 

just as weIl have the sum range over aIl subgraphs of G. The corol1ary 

is obtained by setting x equa1 to O. Q.E.D. 

15. 



II.7. AppZications. 

Let us prove II.2.3 by means of Theorem 1. 

What are the linear graphs of H? One type consists of any 

linear graph from Gl , and any from G
2

• (Letting ~ be a linear graph). 

Note that if C is the disjoint union of A and B, a(C)=a(A)· a(B). Now 

= L a (L 0 L ) xl H 1 - 1 LIU L21 
Ll ,L2 1 2 

and therefore P(Gl ,x)P(G2 ,x) is the contribution of this type of linear 

graph to P(H,x). 

The other type of iinear graph in H has the iine (vi ,v2) =x for one 

of its components. Then ciearly any further components must be from 

Gl - vi and G2 - v2 (and any will do). 

The contribution of this type of linear graph to P(H,x) is th en 

-P(GI - vi ,x)P(G2 - v 2,x) where the minus sigu appears because each such 

graph contains x, and a(x) =_-1. 

. . 
Q.E.D. 

In the case of a tree T, the only linear graphs contained in T, 

besides ~, are sets of disjoint edges. This allows an easy interpretation 

of P(T,x). 

16. 



Let e i be the number of different éombfnatlétts of i 

disjoint edges in T. If L consists of j disjoint edges, a{L) : (-l)j. 

We therefore deduce from Theorem l 

II. 7.1 i jTj-2i P{T x) = E (-l) ex· , i- 0 i 

We shall be using this in section III. This shows a tree 

polynomial has either odd powers only, or even powers only. However, 

this characterizes not trees, but a larger class of graphs. 

Theorem II. Let G be a aonneated g~h. G iB bipartite if! 

P(G.,x) haB ev en pOlJJerB onZy 01' odd p07JJerB onZy (i.e. P(G,x) an even 

01' odd funation reBpeativeZy). 

Proof. Suppose G is bipartite. Then by KHnig's Theorem (Il, p.170) 

G has no odd circuits. Therefore G contains no linear subgraphs with 

an odd number of vertices; hence P{G,x) = Ea{L)x IGI - ILl (Theorem 1) 

has powers only of the same parity as G. 

Conversely, suppose the powers of x in P{G,x) are either aIl odd 

or aIl even. Then there is no term in x IGI - 3 • Since this term has 

coefficient equal to twice the number of triangles (by Theorem 1) there 

are no triangles in G. 

17. 
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Suppose there are no odd circuits of length ~ jinG (j odd). 

Any linear subgraph of j + 2 vertices must contain an odd circuit 

(since j + 2 is odd). But there are no odd circuits of length ~ j. 

Hence the only possible linear subgraphs of j + 2 vertices are circuits of 

length j + 2, and the coefficient of xl G 1 - j - 2 is twice the number 

of such circuits. But the coefficient of xlGl-j-2 is 0 by hypothesis. 

Hence there are no odd circuits of length j + 2. 

This induction shows that G has only even circuits, and hence 

is bipartite by the result of K8nig cited in 1.2. 
Q.E.D. 

111.1. One of the problems suggested by Collatz and Sinogowitz (1) 

was to find a geometric interpretation of graphs having 0 in their spectrum. 

He ca lIed such graphs "non-primitive". However, since tradition 

has not yet cemented this definition, we will use the term 8ingu~ tà 

refer to a graph G having 0 in its spectrum, i.e., such that A(G) is 

singular, or equivalently P(G,O):: O. In this section we shall 

characterize singular trees and give some sufficient geometrical 

conditions for graphs ta be singular; first some geometrical remarks 

and some definitions. 

We define a ahain of length n to be a point for n:: 1, a line for 

n :. 2, and for n ~ 3 the graph obtained by deleting any edge from C • n 



For n ~ 3, the two points originally joined by the deleted 

edge are called endpoints; for n=l or 2 aIl points are endpoints. 

Given a connected graph G, we say a chain of 1ength n stems from v 

if there exists an edge (u,v) such that G-(u,v) has two components, 

one being a chain of 1ength n with u as one of its endpoints. For 

instance, in Figure 111.1.1 chains of 1engths 2 and 3 stem from v. 

Figure 111.1.1. 

Given a vertex v in a tree T with k edges incident to it, it is 

easy to see that the fa ct that a tree has no circuits means that the 

remaining vertices of Tare partitioned into k disjoint classes. 

(The se are also said to stem from v.) 

Definition: We say v is of type i (i~ 0) if i odd classes stem 

from v. The type of v is denoted t(v). Note that if T is odd, P(T,x) 

has on1y odd powers of x (Theorem II) and hence P(T,O) = 0 necessari1y. 

Thus any odd tree is singu1ar. 

19. 



Lerrm:z 1. The rna:J:imum cardinaZity of a set of disjoint 

edges in a tzoee T is [/T//2 ~ (4) • 

Proof. Suppose there exist s a set with IT/ T / /2 TI + k edges. 

Then /T/~ 2 ( IDT/I1) +k) -+ 2k ~ /TI-2ŒTI/2TI ~i 

Q.E.D. 

Lemma 2. In any tpee T~ ITI~ 3~ thepe exists v such that 

at Zeast two chains stem fPOm v. 

Proof. The case ITI: 3 is trivial. Assume the result for 

ITI= n (n~3). Suppose ITI:: n+ 1. Any tree has an endpoint 

(a point incident with only one edge) (3, Corollary 4.IA). Remove 

from T one endpoint e and the edge incident to it, obtaining T-e. 

Since IT - el: n, T-e has a point v with the required property. 

Replace e and the edge incident to it. If v still has two or more 

chains stenuning from it, we are through. Otherwise, e has been 

joined to a point p on a chain stemming from v and now p clearly has 

two chains stemming from it. 

Q.E.D. 

(4) [xTI is the greatest integer less than or equal to x. 
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21. 

TheOI'em III. Let ITI be even. The foZZo1JYÏ,ng a!'e 

equivaZent: 

(i) T is non-singu~ 

(ii) T has a set of ITI/2 disjoint edges 

(iii) FoI' every vET~ t(v) : 1 

Proof. We prove 11+111, 111+11 and 1&11: 

11-.111 Clearly for any v, there must be at least one odd 

elass stemming from v, sinee ITI-l 1s odd (i.e., t(v)~l). 

Suppose there are more than one for some v , so that t(v » 1. 
o 0 

odd elass, e pts. 

vo~ , . '. odd elass, d pts. 

, l '. , . , , 
rema1ning /T/-l-e-d pts. 

Figure II 

See Figure II, where edges x and y both lead to ~ets of points of 

eardinal1t1es e and d respect1vely, where e and d are supposed odd. 



How large a set of disjoint edges can T contain? 

According to Lemma 1, the x-c1ass can yie1d no more than 

(c-1)/2 disjoint edges, and the y-c1ass no more than 

(d-1)/2. A1so the remaining classes can contribute no more than 

~ITI-c-d-l)-lJ/2 edges. In addition, it is conceivable that 

one of the edges incident to v can be chosen. The maximum o 

number of disjoint edges is then 

(C-l)/2 + (d-l)/2 + (1 Tt-c-d-2)/2 + 1 = ITI/2 - 1 

contrary to assumption. 

iii+ii Induction on ITI (the case ITI: 2 is trivial). 

Assume iii+ii whenever ITI=n (n even) 

Now let 1 T 1 = n + 2 

By Lemma 2, there exists a v from which at least two chains 
o 

stem. Since t (v ) < 2 by assumption, there is at least one even 
o 

chain stemming from v. Choose one of these even chains, and delete 
. 0 

from it the endpoint not adjacent to v and the point adjacent to this 
o 

endpoint (and of course the two edges incident to the two deleted 

points). The resu1ting graph TI has n vertices, t(v) = 1 for a1l 

v€T, and so a set of n/2 disjoint edges exists in TI. To this same 

set in T, add the previously deleted edge incident to the endpoint 

(this edge cannot be incident with TI). We now have a set of (n + 2)/2 

disjoint edges. 

Q.E.D. 
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ii~i According to our interpretation of P(T,x) (11.7.1), 

P(T,x) has a nonzero constant term (i.e., p(T,O)fO) iff there exists 

a set of ITI/2 disjoint edges. 

Q.E.D. 

Theorem III is re1ated to a theorem of Tutte (14) concerning 

1-faators (A set of IGI/2 independent 1ines in G is a 1-factor of G.) 

Tutte's theorem states: 

A graph G has a 1-factor iff IGI is even and there is no set of 

points S such that the # of odd components of G-S exceeds ca rd (S). 

App1ying this to an even tree T, we de duce that T can have a 

1-factor (i.e., ITI/2 independent lines) on1y if for each v€T, T-v has 

one odd component. This would then be an a1ternate way of proving the 

necessity of condition (iii) in Theorem III. 

111.2 Theorem IV. Suppose for evepy vertex v in T~ t(vJ : 1. 

Then P(T,OJ = (_lJITI/2 

Proof. Let e be an endpoint of T. S1nce on1y one c1ass stems 

from e, and t(e) = 1 by hypothesis, ITI-1 1s odd and consequent1y ITI 

i8 even. 
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By Theorem III, there exists at 1east one set of ITI/2 

independent edges. Our interpretation of a tree polynomial 

(11.7.1) according to Theorem 1 tells us that P(T,O) :: ITI/2 
(-1) el 1 T 12 

where el T I/2 is the number of different sets of ITI/2 independent 

edges. 

Therefore there remains on1y to prove that el T I /2 ~ 1, which we 

do by induction (for ITI even). 

The case ITI ~ 2 is trivial. 

Assume for any tree T such that ITI = 2n (n ~ 1), we have 

el T I/2 ~ 1. Now let ITI:: 2(n + 1). 

Suppose T has two sets SI and S2 of IT1/2: n ~ 1 independent 

edges. We must show SI = S2 • 

Let e be an endpoint of T, where x is the edge incident to e, and 

e' the vertex adjacent to e. If x t SI' T-e has nT 1 independent edges. 

But Lemma 1 asserts T-e can have no more than n independent edges. 

Therefore x € Sl0. Simi1ar1y x € S2 • 

Let T' = T-e-e'. Since 1 T' 1 := 2n, the induction hypothesis 

asserts that T' can have no more than one set of n independent edges. 

Since none of the edges incident to et except x can be in SI or S2' 

Sl-{x} and S2-{x} are both sets of n independent edges from Tt • 

Therefore Sl-{x} := S2-{x} and it fo11ows that SI:: S2 • 

Q.E.D. 
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Theorems III and IV settle Collatz' proposed problem 

in the case of trees, but we have found no such characterization 

for singularity of general graphs. It seems unlikely that one 
e i ci 

exists, since P{G,O) = (-l) 2 and this sum happens to 

"cancel out" apparently at random. Perhaps further progress in 

this direction can only hope to proceed on special kinds of graphs 

(as we did on trees). However, there are sufficient but not 

necessary conditions under which we can state that a graph is 

singular. 

Proposition 2. Suppose G satisfies one of these conditions: 

(a) There exists a vertex v from which stem at least two 
0 

odd chains, or 

(b) There exist two unjoined vertices vI and v2 which are 

adjacent to exactly the same vertices. 

Then G is singular. 

Proof. (a) We will show such a graph can have no spanning 

linear subgraphs, and hence P{G,O) : 0 

Let two odd chains stemming from v have as vertex sets 
o 

{vl' ••••• vi } and {vi •••••• vj} (i, j odd) where vI and vi are 

adjacent to vo' vk adjacent to vk- l and vk+l{2~k~i-l) and vk 
adjacent to vk_l and vk+l (2~k~j-l) 
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If there is to be a spanning linear subgraph L, it must 

contain the vertex vi' and it can only do so if the edge (vi_l' vi) 

is a component of L. Similarly vi - 2 can be in L only if the edge 

(v
i
_3 'V

i
_2) is a component of L. Eventually we reach the conclusion 

that (vo'vl ) must be a component of L. Similarly, (vo,vi) must be a 

component of L. 

But this is impossible sinee these two edges are not disjoint. 

(b) In the matrix A(G) , the two rows (or columns) 

corresponding to vI and v2 are the same, hence det(A(G» = P(G,O) = 0 • 

Q.E.D. 

111.3 A point and a line are said to cover each other if 

they are incident. 

A set of points which covers aIl the lines of a graph G is 

called a point cover for G, while a set of lines which covers aIl 

the points of G is a Zine cover. 

The smallest number of points in any point cover for G is 

called its point covering number and is denoted a (G) or a 
o 0 

Similarly al(G) or al is the smallest number of lines in any line 

cover of Gand is ca lIed its Zine covering number. 
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The 1argest number of mutua11y non-adjacent points in G 

is ca11ed the point independence numbep of G, denoted a (G) 
o 

or a . The largest number of independent (vertex-disjoint) 
o 

1ines in G is the Zine independence numbep a
1

{G) or al • 

Gallai (see 3, Theorem 10.1) proved: 

III.3.1. For any nontrivia1 connected graph G, 

a 0 + a 0 -:; al + al:: 1 G 1 

Konig (10) proved: 

III.3.2. If G is bipartite, al:: ao 

We sha11 now see that P{G,x) can in certain cases yie1d 

information regarding these numbers. 

Theopem V. Let the Zowest powep of x to appeaP in P(G~x) 

d he x • 

( a) If G is a tpee ~ al :: a 0:: i ( 1 G 1 + d) 

a 0:: al = i ( 1 G 1 - d) 

(h) If G is biparti te ~ al := a 0 ~ i ( 1 G 1 + d) 

a - al ~ i ( 1 G 1 - d) 0-
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Proof. (a) From our previous interpretation of a tree 

i !G!-2i polynomial (11.7.1), the 1ast term in P(G,x) is (-1) eix 

where i is the 1argest number of independent 1ines in G. By 

definition, i = a1 (G), andpy hypothesis d = !G!-2i. We deduce 

al (G) = l(! G!-d). The other equations fo11ow from III.3.1 and 

III.3.2. 

(b) 
d Since there is a term cx in P(G,x) we know by 

Theorem l that there must be at 1east one 1inear subgraph L of G 

with !GI-d vertices. By Theorem II, we know L consists of 1ines 

and/or even circuits. From any even circuit with k vertices, 

it is possible to extract k/2 independent 1ines. Hence from L 

we can derive a set of i(!G!-d) independent 1ines. Hence 

a1 (G) ~ i(IG!-d). Once again the other equations fo11ow from 

111.3.1 and 111.3.2. 

The prob1em of finding a maximal set of independent 1ines 

in a grapheS) has been the subject of much investigation(6) • 

(5) This is usua11y ca11ed the "maximum matching" prob1em. 

(6) See for instance Chapter 7 in Theory of Graphs by 

O. Ore, Amer. Math.Society, Providence, 1962. 
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Although algorithms for obtaining su ch sets have been developed(7), 

no formulas for the number of lines in such sets (i.e., ~l) seem to 

have been published. Theorem V yields such a formula for trees, as 

weIl as a lower bound in the case of bipartite graphs. The basic 

data required is the adjacency matrix of the graph. 

cl) e.g. M.L. Ba1inski,"Lab~ZUng to obtain a maximum matahing", 

appears in CombinatoriaZ Mathematias and its appZiaations, Univ. of 

North Caro1ina Press, Chapel Hill, 1969. 
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IV.!. UZam's Conjecture 

For any graph G, there arelGlgraphs of the form G-v, one for 

each vertex v in G. U1am's we11-known conjecture (15) in its 

graph-theoretica1 form states that this collection oflGI graphs 

unique1y determines G. Forma11y, let G have points {vi} and H have 

points {ui } with 1 GI : IHI ~ 3. If for each i the graphs qiJ== G-vi 

and ~~= H-ui are isomorphic, then the graphs Gand H are isomorphic. 

The graphs G
i 

we ca11 the UZam subgraphs of G. Kelly (9) has 
( ) 

succeeded in proving U1am's conjecture for trees(8} • 

If we label the edges of G by x1 ••••• x
q

, the Zine form of U1am's 

'i) conjecture states that G is characterized by the q graphs G == G-xi • 

A prob1em intimate1y re1ated to U1am's conjecture is that of 

reconstruction. Given n graphs G1 , G2, ••••• Gn of n-1 points each, when 

can we find a graph G (ca11ed a reconstruction) with n points v1 ••••• vn ' 

such that ~i = G-v i (1 ~ i ~ n). U1am's conjecture can then be stated: 

Given such a set of graphs there exists at most one reconstruction for it. 

The current state of know1edge concerning reconstruction is 

summarized in (13). 

(8) Ke11y's resu1t antedated U1am's conjecture and is genera11y 

thought to have motivated it. In (9) Kelly verified the conjecture for 

graphs with up to six points; and Harary and Palmer in (6) for graphs 

of seven points. 
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IV.2 Definition: The two graphs Gand H are UZam-reZated 

if for each i (with a suitab1e ordering) Gi = Hi • 
t) () 

Note that the definition impies two U1am-re1ated graphs have 

the same number of vertices. 
li) <i) 

If instead G ~H for each i, we ca11 

the graphs Gand H UZam-Zine-reZated. 

It is important to rea1ize that if we are cons ide ring a set of 

(possib1y non-distinct) graphs {Gi }(1~ i ~ h) and searching for a 

reconstruction G, the graphs Gi are not joint1y 1abe11ed. For 

instance, we have no way of determining, (in genera1) which vertices 

in G
1 

are which in G2 • It is uncertain whether or not graph po1ynomia1s 

can be of any use in proving (or disproving) U1am's conjecture. However, 

we sha11 show how they can yie1d circumstantia1 evidence and how they 

indicate that graphs with certain properties might be proven to obey 

U1am's conjecture. For instance, since U1am's conjecture ho1ds for trees, 

we shou1d be able to prove, and we do,that two U1am-re1ated trees have 

the same polynomial. If we then find other types of graphs for which 

being U1am-re1ated imp1ies having the same polynomial, these types of 

graphs seem 1ike good candidates to satisfy U1am's conjecture. Of course, 

they may not, since we have not proven that two graphs which are 

U1am-re1ated and have the same polynomial are isomorphic. 
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This last statement, if proven, would, as we shall see, 

yield several classes of graphs satisfying the conjecture. It 

may be worthy of further investigation. 

We shall show that wh en Gand H are Ulam-related, p(G,x) 

and P(H,x) are quite similar and possibly always the same. If a 

case were found where these polynomials were different, we would 

have a counterexample for Ulam's conjecture, since isomorphic 

graphs have identical polynomials (only the labelling is different). 

In addition, we shall show that two Ulam-line-related graphs 

always have identical polynomials. This may indicate that the 

line-form of the conjecture is a simpler problem. 

IV.3 We now prove that the polynomials of two Ulam-related 

graphs differ by a constant. 

TheOT'em VI. Let the gT'aph G have U~ subg~phs G1 ••••• G ( , ln> 

Then foT' some constant c~ 

IV.3.l dt +c 

Proof. Consider a linear subgraph L of G with ILl < IGI • 

The graph L is a subgraph of a particular qi'= G-vi iff the vertex vi 

is not contained in L. Thus, L is a subgraph of exactly IGI - ILl 

Ulam subgraphs of G. If L has IGI vertices, it is not a subgraph of 

any ~iJ. Let us then consider the expression 

32. 



IV.3.2 

where the second sum is over aIl linear subgraphs of Gd)including 

o and Gd) itself. 

From Theorem l, 

- E a(L)tn-ILI-I 

We deduce ~P(Gdl' t)dt ,-- E a (L)xn- I LI / (n-I LI) 

Substituting in IV.3.2 we get the equivalent expression 

n x 
IV.3.3 f {, P (qu' t)dt 

Now let us return to IV.3.2. 

Bearing in mind that a subgraph of G with j (' n vertices ia a subgraph 

of exactly n - j Ulam subgraphs, we see that IV.3.2 is equal to 

IV.3.4 

But thia ia preciaely P(G,x) - P(G,O) (Theorem land ita corollary). 
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We therefore have an equality between P{G,x) - P{G,O) and the 

expression IV.3.3: 
x 

Thus P{G,x) - p{G,O) - E! P{Gi,t) dt o ( 1 

or 

where c =P{G,O) 

CoroZZaPy 

Theorem VII. 

P{G,x) ! {E P{Gi , t»dt 
( ) 

+ c 

Q.E.D. 

Let G and H be UZam-reZated graphs satisfying any one of these 

aonditions: 

(a) Either G or H is known to be a tree of at Zeast three 

points. 

(b) G and H are both singuZar. 

(a) det A(G) : det A(H). 

(d) G and H eaah have a pail' of adJaaent vertices which 

are adJaaent ta exaatZy the same points. 

(e) G and H eaah have a pail' of non-adJacent vertiaes whiah 

are adJaaent to exaatZy the same vertiaes 

([) G and H eaah have a vertex from whiah stem at Zeast two 

odd ahains. 

Then P(G~x) = P(H~x) 
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Proof. By Proposition 2 (II.2) conditions (e) and (f) 

imply that P{G,O) = P(H,O) = O. In addition, Theorem Vlimplies 

that P(G,x) and P(H,x) differ by a constant. We therefore deduce 

P{G,x) = P(H,x). The same reasoning yields the sufficiency of 

conditions (b) and (c). 

If Gand H satisfy (d), the matrices corresponding to P{G,I) 

and P(H,I) each have two identical rows. Thus, P(G,I) = P(H,I) = 0, 

and again we conclude that P(~,x) = P(H,x). 

Proof of (a): 

Suppose G is a tree. Then there are at least two connected 

Ulam subgraphs (corresponding to the removal of an endpoint). 

Therefore H must be connected, or else two Ulam subgraphs of H never 

could be connected (since 1 H 1 = 1 G 1 ~ 3) • Also, H has the same number 

of edges as G (by Theorem VI). Hence H is also a tree. If IGI = IHI 

is odd, we know from Theorem II that P(G,O) -= P(H,O) = ° and hence 

th~t P(G,x) = P(H,x). If G is even, we examine the Ulam subgraphs 

{Gi}(which are the same as the {Hi})' We conclude from Theorem IV 

that P(G,O) = P(H,O) = ° if some Gi has more than one odd component, 

and that P(G,O) ~ P(H,O) = (_I~GV2 otherwise. In either case it then 

follows from Tbeorem Vlthat P(G,x) : P(H,x). 

Q.E.D. 
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Theorem VII suggests six types of graphs for which it may 

be possible to prove Ulam's conjecture. As mentioned, Kelly (9) 

has proven it for trees. In the above proof for (a), we could 

have appealed to this result after proving H was necessarily a tree, 

deduced G ~H and hence P(G,x) = P(H,x). 

Finally, we prove two Ulam line-related graphs have identical 

polynomials, or equivalently: 

Ppoposition 3. Let G be a non-linear graph with q lines and 

lI> Cq) 
with Ulam line-subgraphs G ••••• G. Then P(G,x) is given by 

IV.3.5 

where e(L) = the number of edges in L 

Proof. Any subgraph L of G with e(L) edges is a subgraph of 

exactly q-e(L) Ulam line-subgraphs. Thus the sum in IV.3.5 is 

equal to E a(~xIGI-ILI • 
L€G 
~ 

By Theorem l, this equals P(G,x) -a(G) • 

By hypothesis however, a(G) : O. Hence we deduce IV.3.5. 

Q.E.D. 
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IV.4. Theorem VI may furnish a useful tool in the 

problem of reconstruction defined in IV.I. 

Given a collection of n graphs GI ••••• Gn with n-l points 

each, an existence problem arises. Do these graphs admit a 

reconstruction? Very little progress has been made on this 

problem. If there exists a reconstruction G, we can easily 

determine what its polynomial Q(x) should be (up to a constant) 

using Theorem VI. 

Thus if we had a set of necessary conditions for a polynomial 

to be a graph polynomial, we could apply this knowledge to see 

whether Q(x) can be a graph polynomial. This problem seems to be 

untouched, however. 

ExampZe. Do the five graphs of Figure IV.4.1 have a 

reconstruction G? 

U IÎ\ ~ U. l • 

o 

Figure IV.4.1. 
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Using Theorem l we calculate: 

P(Gl,x) = P(G4 ,x) = 4 2 x - 3x + 1 

P(G2,x) 

P(G3 ,x) 

P(GS'x) 

Thus, if G exists, P(G,x) 

4 
=x 

= x 

= x 

x 
=/ o 

4 

4 

- 3x 
2 

2 - 3x of- 2x 

2 - x 

(EP(Gi,t»dt ... c 

x 
= 6 (St4 _13t2 ... 2t + 2)dt ... c 

= xS _ 13/3 x3 ... x2 ... 2x ... c 

But this is clearly not a graph polynomial, hence no 

reconstruction exists. 
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APPENDIX 40. 

An Example of Two Graphs with Identical Spectra 

We find that each of these graphs has: 

7 edges 

9 pairs of disjoint edges 

o sets of k ~ 3 disjoint edges 

Using II.7.1 the common polynomial is computed: 

8 6 4 x -7x + 9x 



T A BLE l 

The connected graphs with up to four points, with their polynomia1s 

and spanning 1inear subgraphs, if any. 

0 x 

2 
0 0 x -1 0 0 

6 3 x -3x + 2 ~ 
0 0 0 

3 x -2x 

0 4 2 x -4x D:~: l l 
I>- 4 2 

x -4x + 2x + 1 l 0--0 

~ 
4 2 x -3x 

4 2 1 0 0 0 ex -3x + o~-o 0--0 
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T A BLE II 

The trees with 4, 5 and 6 points, and their polynomials. An 

even tree either has at least one vertex of type greater than 1 

(shaded in the diagram) or a l-factor. In the latter case the 

edges of the l-factor are indicated. 

4 2 x -3x 

o-.... -co ... -----<o ! C
2 x -3x + 1 

5 3 x -4x 

1 

6 4 x -Sx 

42. 

642 x -Sx + 4x 

x6_Sx4 +Sx2-l 
o , 0 

x6_Sx4 ... Sx2 
a----~o----~oo----~o~---=o~ > " 0 D 

xS_4x3 + 3x 

x6_Sx4 ... 6x2-l 
CI 1 0 o 1 0 D 1 D 



Some further tabulations may be found in (1). 

Collatz and Sinogowitz have listed for each connected 

graph with up to five points, a polynomial(9) which 

in our notation is ± P(G,-x), and the roots of this 

polynomial. They also list this polynomial for the 

trees with 6, 7 and 8 vertices. 
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