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Abstract

This thesis examines hidden Markov filter models and their applications in speech
segmentation. A method of segmenting the speech waveform is proposed. This
method uses the Baum-Welch reestimation algorithm applied to the hidden filter
models. Since speech signals are handled at the sample level, the amount of compu-
tations needed is very large. We will show how this issue can be dealt with effectively
by using a staircase approach in the trellis calculations.

The hidden Matkov filters are used to segment speech signals. Test results show
very consistent locations of phone boundaries. The hidden filter model fits vocalic
segments very well (with normalized prediction errors of less than 0.01), but performs
less well on consonants (with normalized prediction errors of up to 0.3).

The speech segmentation by hidden filters is applied to a large vocabulary speaker
dependent isolated-word recognizer at the preprocessing stage. The performances of
the recognizer with and without preprocessor are compared. The resvlts show small

improvements in the recognition accuracy.
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Sommaire

Cette these présente une étude sur les modeles de filtre de Markov cachés et leurs
applications a la segmentation de parole. 1l propose une méthode de segmentation
des signaux de parole gui utilise algorithme de Baum-Welch appliqué aux modeles
de filtre cachés. Comme analyse du signal est faite a chaque échantillon, la quantité
de calcul est ti1es grande. Nous mortrons comment ce probleme est 1ésolu par une
approche d'échelon dans ie caleul en treillis.

Les tests de segmentation sont réalisés avee les bandes de données de parole
continue et de mots isolés, Les résultats de segmentation sont tres consistents au
point de vue de placement des marques de fronticre phonétique. Le modele de filtre
cache représente tres bien les vovelles (avec les erveurs de prédiction plus petites que
0.01) mais il est moins bon pour les consonnes (aves les erreurs jusqu’a 0.3).

La segmentation des signaux acoustiques par filtre caché est appliquée au systeme
de reconnaissance de parole sous forme d’un module de prétraitement. Les résultats de
test avee et saus prétraitement sont comparés. Le prétraitement aconstigne appotte

une légere amdcliotation a la précision du systeme de reconnaissance,
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Chapter 1 Introduction

Applications of automatic speech processing based upon hidden Markov models
(IIMDMs) have made considerable progress in the past few years. The technigue of
Markov modeling has heen developed in a number of directions such as linear predic-
tive HIMMs, hidden filter HMMs and mixture autoregressive HMMs. These TIMNMs
have been implemented in speech segmentation, enhancement, and 1ecognition.

This thesis is a study of an automatic segmentation processor hased upon hidden
filter models with application to a large vocabulary speaker dependent isolate-word
recognizer.

In this chapter, we first veview the theory ol hidden Markov models. We focus on
one class of NN, namely the linear predictive HMMs, and describe the fundamen-
tals of the hidden filtcr moddls. Finally we will focus our attention to the problem of

speech segmentation and feature extraction using the hidden filter models.

1.1 Fundamentals of Hidden Markov Models

The basic theory of idden Markov model was first publishied in a classic paper by
Baum [1]. .\ hidden Maikov model is a collection of unobservable states conneeted by
transitions. Fach transition of the model is characterized by a transition probabihty.
The evolution ol these states (called the Markov chain) produces observable outputs.

Depending on the type of observation outputs, different Markov models are de-

fined: a discicte HHNIM or a continuous HIMM.
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In o discrete maodel, the observations are discrete symbols emitted from a finize
alphabet.Au ontput probability distribution defines a conditional probability of
emitting an ontput symbol given that a transition is taken (in which case we speak of
a hansiion-based model) o1 given that a state is occupied (in which case we speak
ol a stale-bascd model).

ina continuous model, the observations are continuous symbols, or more generally,
continnons vectors The discrete probability distribution is replaced by a probability
density function (pdf). The probability density function defines the conditional prob-
ability that an observation vector lies between a certain range given that a transition
is taken (a transition-based continuous model) or given that a state is occupied (a
state-based continious model).

Fig 1.1 illustrates a simple example of a state-based discrete IMM with two states
sp and sy and two ontput symbols, A and B. When the Markov chain is in state 81,
the symbol Vs observed with probability 0.8 while B is observed with probability
0.2, 1f the Markov cha is in state sy, we can observe A with probability 0.3 and B
with probability 0 7. While in s}, the probability of staying is 0.6 and the probability

of the transition to sy is 0.1. Once in s9, it will stay there forever.

A0S A03
B 0.2 oa\ | BOT

Fig. 1.1 A simple state-based discrete HMM with two states S1,
2 and two output symbols A and B.

Generath o a hidden Markov model is defined by:
o Alinite set of states {s} = (s],89,..., sy).

e .\ set of iransition probabilities [ai;] where ajy = P(sy = sj|sy—1 = s;) is the
probability of taking a transition from state 1 to state J. This probability is

[
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idependent of time, i P(sp = sjlai-y = 5,) = P(s)ls)) for every tnme ¢,

The transition probabilities define a first-order Markov chain: at cach « lock
tie £oa new state is entered based upon a transition probability distitbution
which depends only on the previous state, (s = Slsicr = spspmn =50 ) =

,)(‘I = .\J‘s’_l = \s'\

;e

o .\ set of ontput probability distributions or density functions:

Fou the transition-based discrete model: the probability of emitting

suinbol & when taking a transition from state 1 to »tate j, [b,, (k)]

o o the state-based discrete model: the output probability of emitting

svmbol A when state 7 of the model is occupied, [b,(4)] .

o Lo the transition-based continuous model: the probability that the
observation vector lies between x and x + dx when taking a transition

hrom state 2 1o state g, b, j(x)dx.

¢ Lo the state-based continuous model: the probability that the observa-

Lo vector lies between x and x 4+ dx when staying in state 7, b,(x)dx

A hidden Marvhov model may be ergodic: every state of the model can be 1eached
fronr every other state in a finite number of steps. Fig.1.2h illustrates an example of
a J-state ergodic IIMAML

A special type of HIMM has been developed for speech recognition {2] This model
is called a lefi-to-right model, because the underlying state sequence associated with
the model has the property that as time increases, the state index increases (or stays
the same). IMig.1 2a illustrates a first-order 4-state left-to-right HMM with a special
skip trausition

In 1983, Rabiner. Levinson and Sondhi [2], [3] at Bell Laboratories presented an
approach to speaker-independent isolated words recognition with the use of phoneme-

based HMNMs. Left-to-right HMMs with state-based discrete svimbols were used
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s] 59 83 S4

(b) %3

Fig. 1.2 Illustration of two types of HMMs. (a) A four-state
left-to-right model.(b) A three-state ergodic model

their recognizer. I'he HMM's discrete symbols were obtained using the vector quan-
tization (VQ) of lincar predictive coding (LPC) analysis.

The 8-pole LPC analysis by autocorrelation technique was performed on 45ms
frames, each being spaced 10ms apart. Using an iterative reestimation technique,
these parameters were trained to provide the codebook entries of the vector quan-
tizer and the model coelficients of each word HMM. Then using the Viterbi scoring
algorithm [1]. a probability score and a decision rule (which chooses the word whose
model gives highest probability) were applied to the unknown word at the recognition
stage.

Theit initial experiments with this framework (in [2]) were restricted to a vocab-
ulary of 10 chgits. Recognition rates from 93% to 96% were recorded. Extended tests
to a medium-size vocabulary of 129 words (in [3]) have shown that the recognition
accuracy was a hction of the IIMM parameters: increasing the number of states in
the model and/or the size of the VQ codebook improved performances of the HMM

reCOgZer.
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1.2 Linear Predictive Hidden Markov Models and Hidden
Filter Models

For the applications in speech processing, especially in speech recognition, it
would be advantageous to use HMMs with continuous observation densities because
the observations ate continuous signals. A very interesting class of continuous HHMMs
that is particulaily applicable to speech recognition is the class of lincar predictive
(or autoregressive) HINMs,

In this model, a speech waveform Y = (yq, ..., yp;) of length Ty is decomposed into
a sequence of T observation vectors (or T' segments) of length Al (T =T x M), i.c.
Yo= (1) = (Y0200 Yp) where g, £ = 1,2, T is an observation veetor
with components (. Yrarg1s s Yug)ar—1)- Each segment ¥y is selected from a
set of S all-pole recursive filters driven by S corresponding GGaussian noise sources
N(0,0%).« = 1....5. The filters are defined by polynomials A, of some degree N,
e, Ay =(by,....by ). withs=1...,5and N <M. Thus:

N
Yi ==Y b, Y, te,
i=1
where ¢f.. 1 = 1....T. « = 1,.....8 are Gaussian independent identically distributed
random variables with zero mean and variances a2, The likelihood of the observation
sequence Y is delined as:

T-1
IJ()) = Z H s, _ 15, D(Y}IA.S7U&)
« =0

with

2 — Ay R(Y}) A
D(Yi|Ag, 04) = ~ exp *‘)(2‘) s
rog Ty

where A} denotes the matrix transpose of As, R(Y:) is the antocorrelation of Yy,
ds,_,s, 38 the transition probability, w = (sg,...,sp_1) is any 7" long sequence of
states and 3 means the summation over all possible paths w.

The first application of lincar predictive HMMs was presented by Poritz [5)
in 1982. In his work, Poritz proposed a method of modeling speech signals by
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a G-state ergodie linear predictive state-based HMM. In finding a Markov model
A= AlailyApa}o ey = 1,08 which maximizes L(Y) by an iterative hill climbing
technique. Poritz fonnd a very close relationship between states of the model and
traditional classes of speech events. His experiment with T = 4000 frames, M = 100
of 10 seconds of 12-bit PCM speech sampled at 10 kHz and with a model having
S =5 and N = 3 (that is, 3-order autoregressive filters) showed that the power
spectiafor each all-pole filter could be associated to strong wvoicing, silence, nasal
(hquid), slop burst and fricatron. The result of this paper strongly suggested that
lincar predictive HMNMs may be used to encapsulate important informations about
the speech wavelforms,

While Poritz only considered a single Gaussian autoregressive density per state,
Juang ¢ al [6] further expanded this initial work to the case of multivariate Gaussian
autoregressive densities (a mixture autoregressive hidden Markov model). Denote A
the number of mixture components in the model, the ohservation density bj(x) now
has the form

N
by(x) = 3 cjpbjr(x)
k=1
where ¢ is the weight of the Ath inixture component and bjr(x) is the basic Gaussian
pdl for the kth mixture component, all related to state J. The mixture weight Cjk
satisfies the stochiastic constraint
K
doep =1, j=1,2,.,N
k=1
Parameters of the model to be estimated include A = {laij], Aiyoi}, 4,5 =1,...,8
ana [('JA.].J =l....Nand k = 1,..., K. Their extensive tests of speaker independent,
isolated digit recognition that employed highly constrained left-to-right HMMs and
mixture autoregressive densities have scored average digit error rates from 1.2% to
9.2%.  Although these results were good, Juang pointed out that the model was
not as good as the continuous Gaussian density models based upon the cepstral

representation of the signal.
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ln the field of speech enhancement, Yphraim [7], [8] proposed a new approach for

enhancing speech signals— which have been degraded by statistically independent
additive noise using HMMs. The process is basically an estimation problem in
which a given function of the clean speech (e.g. speech waveform, DF'T or sample
spectrumy) is estimated from a sample function of the noisy speech so as to minimize
a distorsion measure (e.g. mean-square errors) hetween the clean and the estimated
speech signals, Solutions to that estimation problem require an estimate of the joint
probability distributions (PDs) of the speech signal and the noise process. Yphraim
accomplished this task by modeling the PD of the clean speeck by HMMs with mixture
ol Gaussian autoregiessive output, and by modeling the noise process with single
Gaussian autoregressive model, The parameter set of the HMMs is estimated by a
minimun tean square error (MMSE) approach in [8], and by a maximum a posteriori
approach (NLAP) in [7]. In his experiments, the estimation stage was performed with
a training sequence using 100 sentences of clean conversation speech spoken by 10
speakers using a telephone handset. The enhancement tests were performed on 8
sentences spohen by L speakers (vecorded in a similar manner). Typical signal to
noise ratio (SNR) improvements achieved by a MMSE approach were 4.5 5.5dB at
10dB input SNR [8], while SNR improvements achieved by a MAP approach were
4.0-6.0dB at 10dB input SNR [7].

Recently. Kenny «f al. {9] developed a new type of Markov model to account for
the correlations between successive frames of the speech signal. This model treats
the sequence of frames as a non-stationary autoregressive process whose parameters
arc controlled by a left-to-right hidden Markov chain. Fach transition in the Markov
chain is associated with a set of regression coefficients together with a mean vector
and a covariance matrix which serve to characterize the distribution of the prediction
error. This lincar predictive model has been implemented with several variants in
a large-vocabulary speaker-dependent isolated-word recognizer. With a set of eight

mel-based cepstral coefficients (Cy, ..., C7) calculated every 10 ms using a window of
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length 25 s, a leatue vector (€', ..., C7,ACy, ..., AC7) was formed (AC; was the
difference between (Y over an interval of length 40 ms). Performances ranging from
T8.9% 1o 83.0% . depending on the variant of model, were recorded with a test set of
399 words of text These tesults showed that the model performed better than the
standard multivariate Gaussian IMM when it is incorporated into a large-vocabulary
isolated-word 1ecognizer,

The models proposed by Kenny [9] are formally very similar to the hidden fil-
ler madels defed by Poritz in [10]. However, in [9] the speech signal is han-
dled at the frame level instead of the sample level as in [10]. In fact, the hid-
den filter maodels considered the signal waveform ¥ = (Y=N+1r-2 Y0y -+ YT) @S a
time series generated by a set of S states, each determined by an all-pole filter
As = (ay(s)ea(s)oian(s)). s = 1,..., 8 of degree N and a positive gain factor

a? such that

N
Z Jt-J + uy

where wp ~ V(0.02). The pair (As,ag) is referred as a hidden filter.

1.3 Speech Segmentation and Feature Extraction Using
Hidden Filter Models

While the linear-predictive IIMMs have been proved to perform well in the task
of antomatic speech recognition, they also presented some weaknesses. One of the
weaknesses observed in automatic speech recognition using vector-valued observations
is the use of uniform fived-length windows to segment, words into phones.

Generallv, at the front end of a recognizer, the speech samples are blocked into
sequence of fixed length segments (e.g. 10ms window). These segments are pa-
rameterized cither by linear predictive coefficients or by cepstrum coefficients. The
recognizer will use these acoustic segments to construct the phoneme models and to

compute the likehihood scoring of the acoustic data.
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The medhanics of blocking and mapping acoustic segments do not take into ac-
count the phone bhoundaries (e.g. boundaries hetween stops and sonorants, affricates
and sonorants, ete). The changing statistical characteristics of speech signal at these
boundaries fall often into one segment. This ereates difficulties and erroneous in map-
p.g acoustic segments into phoneme models because the recognizer must map the
segment to one of the phones.

On the other hand, the hidden filter models do not assume any fixed frame size
in their formulation (they wotk on a sample basis). Qur strategy is to use the hidden
filter models to eliminate the above weakness inherent in the vector-valued HMMs by
windowing the speech waveform with variable frame length windows. The process is
basically an automatic segmentation. It uses the hidden filter models to automatically
segment the sequence of speech samples into successive frames of variable lengths,
taking into account the total likelihood of the observation speech sequence,

Our filter models, parameterized by linear prediction polynomials and ervor vari-
auces, handle the speech signal at the sample level. The Markov chain used is a
state-based continuous HMM with no skip transitions. We do not allow skip transi-
tions because all the states of the Markov model must be visited in a monotonically
increasing mannet (that means left-to-right order), and the number of visits to ecach
state will he used as segiment indication of the sequence of speech samples. The num-
ber of states. in this framework, corresponds to the number of frames for a sequence
of speech samples.

In order to segment the speech waveform, we proceed as follows: first a uniform-
window LP(' analysis is performed on the input samples of speech. These LPC
cocllicients are used as initial values for our filters. The Baum-Welch algorithm is
used to adjust the filter coefficients so as to increase the likelihood of the speech data.
The reestimation process terminates when the likelihood converges. The segmentation
of the data is lound using a maximal a posteriori {(MAP) criterion. In the process

of automatic segmentation, the LPC features of cach segment are _enerated as a by

-9-
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Since our aim is to improve segment boundaries between phones during recog-
nition. we try to implement our hidden filter models at a preprocessing stage of a
targe-vocabulary speaker-dependent isolated-word recognizer. Although it is a con-
venient idea. we also remark that the problem of real-time implementation persisted.
In fact, our experimentations in automatic segmentation with an average 20 ms win-
dow of speech Tand 12-o1der LPC on a DEC station 2100 computer showed that an
average 5 minuates of CPU time was needed to provide acoustic segments of one word.

The organization of the thesis is as follows. In chapter 2, we will develop the basic
forward-hachward and Baum-Welch algorithm for our hidden filter models. In chapter
3, we will look at some implementation issues for the training of the models and
illustrate how the speech segmentation is obtained as a by-product of the reestimation
procedure. We will also show some segmentations of continuous speech and isolated
word data in this rhapter. Chapter 4 describes how the hidden filter models can be
used as a featnre-extractor in speech recognition. It also reports experimental results
on avery large vocabulary speaker-dependent isolated-word recognition task. Finally,
chapter 5 discusses the results of our work, the drawbacks of our model and the ways

in which the hidden filter model preprocessor could be improved.

P The average time length of 20 ms is computed by dividing the total length of the sequence of
speech to the number of states associated to that sequence This 1s not a fixed window

- 10 -




A

Chapter 2 The Hidden Filter Models

The hidden hlter hidden Markov models were first developed by Potitz [10] to
model speech wavelorms.  Using autoregressive polynomials and ertor variances {o
parameterize the ontput speech samples, Poritz derived a version of Bawm-Welch
reestimation fornnlas for his model parameters. In this chapter, we will give a math-
ematical description of the model and explain how its parameters can be estimated

from speech data

2.1 Hidden Filter Markov Models

Let us consider a time signal ¥ = (y),...,y7) which is a sequence of speech
samples. We treat it as the output of a doubly stochastic process (8,1} ) where
S = (s).o8y ) is a sequence of unobservable states (the hidden Markov chain). For
our purposes. we will asstine that these states are selected from a first-order le fi-1o-

right Markov chain characterized as follows:

.

I- There is a linite number, say N, of states in the model {s} = (1,2,...,N).
The state 1is called the initial statc and the state N is called the final state,
The Markov chain must enter the model by the initial state and must, leave
the model by the final state. Once the Markov chain leaves a state, that state
cannot be revisited at a later time.

-1/ -
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At cachi dock time 1, a new state is entered based upon a first-order Markovian

property
Pls = gls—1 = tosi—g = L) = Plsg = jlsi—y =) = P(j|1) = a;,

If «,, > 0. the process may remain in the state occupied at time ¢ — 1 (the
self-loop transition in the illustrated figure 2.1). The transition probabilities
a,, obey

h’

Za;J=l ¢j; 20

=1
Iurthermore, we assume that our left-to-right model does not have any skip
transitions in the chain, This assumption is required to assure that all the

states of the model will be visited, and the number of visits will determine the

secgmentation ol the sequence of speech samples as shown later in chapter 3.
8 { l

3+ Inaddition to the states 1, ..., N there is astate N +1 called the sink state . The
ohservation sequence (yy, ..., y77) terminates when the sink state is reached, i.e.
syl = V4 Lso there is no acoustic distribution or transition probabilities

associated with the sink state,

- Associated with each state s of the model (other than the sink state), we define
a hidden lilter (B,,.rr:f), where Bs is the set of regression coefficients of an all-
pole filter of degree p, and ag is the gain factor of this filter. When the Markov
chain is in state s at time ¢, it generates an output sample y¢ by applying the
filter to the most recent samples of the sequence Y = (y1, y9,...yr) and adding
a sample ol Gaussian noise of zero mean whose variance o depends on the

state ~ (thus, our Markov model is a state-hased HMM).

IMgute 2.1 illustrates the model topology we are assuming,.
Now, suppose that we are at time ¢t and at state s, the sample y; is therefore
o= hSp-r+ blsly—2+ o 4 bp(s)yi—p + e (2.1.a)
(¢~ N(0.0%)) (2.1.b)



¢

AN N+1

3 N -1

\ 1\' + |

Fig. 2.1 A standard first-order left-to-right HMM.

We assume that ¢ at diffcrent times are independent (i.e. uncorrelated with each
other). Define

. A
= (.’/I—lw--*!/l—;)) (2.2)

AW
B2 (br(s).ba(s)s i by(#)) (2.3)

where 3* denotes the matriy transpose of 3. Then we can write:
A ..
y = X¢By + ¢ (2.1)

Let POYOSTA ) be the joint Bikelihood of Y = (y). .. yp) and S = (s009),
i.e. the event that 4y is emitted at time ¢ = 1 at state sy, a transition occurs from
81 1o s Loy s emitted at time 1 = 2 at state sy, ete, given an imtial observation
XNp= (=1 u—p)

Similatly we use P(Y15,.X) to stand for the conditional likelihood.

Since ¢4 15 a Gaussian noise N(O.af) we have:

Pl = — e esp (G4 (25)
() = oxp (— 2.5
t Ireorl { 202
From the definition of ¢4
Pyl X)) = Pl ~ XiB3s) (2.6.0)
5 —(y — XiBy)?
= (1/\/2rad)exp Lt 57 t5:) (2.6 b)
20¢
g L(X¢ yys) (2.6.¢)

Hence, with idependent residuals ¢ we get:
"

POVIS XY = T WXy s0) (2.7)
1=1

-1 -
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The probalility of the state sequence § = (s1, 89.., 87, s741) is
T+1
PSIXY) = JI Plselse=1) (2.8)
=2

The total likelihood of the observation sequence Y for the given state sequence S

P(Y.S|X)) = P(Y|S, X])P(S|X]) (2.9)
Thus
POINY) = Y PY,S|X)) (2.10.a)
S
T+1 T
= 2T Plstlse-1) TT L(Xesp1,0)] (2.10.6)
S =2 =1

where 376 means the summation over all possible state sequences,

Direet calcnlation of (2.10.h) involves on the order of ?.TNT(p + 4)T calculations
(not_counting the exponential evaluation) [L1]. This calculation is computationally
mfeasible even for small values of p, N and T. For example, with 7= 100, N = 5,p =
6 there are on the order of 2 x 100 x 5100 x 19100 — 1172 computations. Clearly, a
mote eflicient procedure is required to compute the total likelihood of the observation
sequence o Such a procedure exists and is sometimes called the forward-backward
algorithm,

The forward-bhackward algorithm uses two probability variables in a lattice calcu-
lation to compute the total likelihood of the observation. These variables are called

forward and backward probabilities.

2.2 Forward-Backward Probabilities

Strictly speaking. only the forward probabilities are needed to compute the total
likelihood of data However, we will introduce the backward probabilities in this sec-
tion since they will he used to compute the posterior probabilities in the reestimation

formulas (see section §2.3).
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Consider the torward probability a, (1), defined for every state ¢ = 1,.. . N and

for every timef = 1., . 7T as
ar(e) = Plag =0 y1cues ] Xy) (2.11)

That is. a1} is the joint probability of the partial observation sequence (until
time £) and the event that state 2 is occupied at time #, conditioned on \7y.
I a sinnlar manner, consider the backward probability 3;(:). defined for every

state r = 1. . Vand ot every time = 1,...,7 = | as

() = Plyggrenyrlsr = 0,Xp) (:

[N
—_
e
~—

e 3 (a) is the probability of the partial observation sequence from £+ § to the end,
given the joint event that state 7 is occupied at time £ and Xy is observed.

The forward probabilities can be calculated recursively from this formula

v
o)) =10 st Plse = jlsi—r = ) 1Nt e y) (2.13)
=1
where Z:\:l means the simmation over all possible states in the model. Recall that
L(Xy y0) is the likeliliood of emitting the sample gy and the event that the state ¢
Is occupicd at time /. given the p previous observation samples ((2.6.¢))

This is how (2 13) is computed: since ag—((¢) is the probability of the jont event
that gy, . .y are observed and the state ¢ is occupied at time + = 1, the produet
ar— ()P0~ = j{~—1 = 1) is then the probability of the joint event that gy, ...y -1
are obsetved and state g is reached at time { via state ¢ at time # — 1. Sunimng this
product over all the V opossible states ¢ at time ¢ — 1 results in the probability of
at time £ with all the accompanying previous partial observations. Once this s done
and J is known. it is casy to see that ag(g) is obtained by multiplying the summed
quantity with the likelihood L(X¢ y. 7).

The total hikelihiood of the observation sequence ¥ ((2.10.h)) is the joint probabnl-

ity of the observation sequence (yy.yp....yr) and the event that state N is occupied

- 15 -
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at time [Tand state N | (the sink state) occupied at time T + 1;

Py

.\,1) = O']'(IV) AN N+1 (214)

(again. we rennd that the forward probabilities are sufficient to calculate the total
lihelihood ol data),
On the other hand, the backward probabilities can be calculated recursively from

this formula
A\v

BV =32 B PCsigr = glse = D) L( Xy 1, Yi4157) (2.15)
J=1

Again, the reason for (2.15) is as {ollows: in order to have been in state i at time
I, and to acconnt lor the rest of the observation sequence, we had to make a transition
to every one of the N possible states at time ¢+ 1, account for the observation sample
Yr+i 1 that state and then account for the rest of the observation sequence.

In term ol the backward probabilities,
P(Y[X1) = Bo(1) (2.16)

We nse (2.160) in the forward-backward algorithm as a checkpoint: the forward
computation and the backward calculation must arrive to the same result which is
POYIN).

Il we examine the computation involved in the calculation of at(z) or Bi(i), 1 <
< T 1 <0< Viowesee that it requires on the order of N2T calculation rather than
TN ax vequited by the diteet caleulation (11]. For N =5, T = 100 the difference
is abont 3000 versus 1072,

To complete the vecursion formulas, we need to define the boundary conditions

for ay(+) and 4, (). By definition of the forward probabilities
a1(t) = P(sy = i,y1|X)) (2.17)

For our standard left-to-right MM, since we require the first observation sample to

be generated while the Markov chain is in the initial state, we have

al() = { L(X1,y1,1) if i =1 (initial state) (2.18)

0 otherwise;
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This setves as an initialization for the forward probability calculations. The intial-
ization for the hackward probability calculations is given by

3 = {(,,\"NH if : = N (final state)

. 2.19
0 otherwise; ( )

This is how we can wiite (2.19): fiest, by definition (2.12) of the backwatd probability

Sy (0) = Plyrlspor = 0, Xp_y) (2.20.a)

=a;n (X7, ur, Nay N41 (2.20.b}

because, given that the state 7 is occupied at time 7' = 1 and that the final state N
must be occupied at time T, the probability to observe yy is a, 5 (which accounts for
the trtansition from ¢+ to V). times L(Xp, y7, N) (which accounts for the hikelihood of
yp at state V) times @y vy (which accounts for the event that the sink state must

he reached to tetminate the sequence).

On the other hand, bringing (2.19) and (2.15) together gives

N

Spi(0) = >0 (D Plsp = jlspoy = DX yp,d) (221.a)
J=1

= 3 (N)P(sp = Nisp_| = DL(Xp s N) (2.21.h)

=ay Ny14N (X, yr, N) (2.21.¢)

which shows the correet values of gp_ (7).

The evaluation of P(Y1.X1) can be viewed as the score of a given filter model. The
filter model is specified by the parameter set ({a,,}, {(Bi,aH)}). The score indicates
how well that model matches the observation sequence. This viewpoint raises another
question. given the sequence Y, how do we adjust the model parameters to best match
the observations ! I'he answer to this question is the reestimation algorithm. Again,
to use this algorithm effectively, we need to define two new probability variables: the

postetior probabilities 54(7, ) and 54(7).

- 17-
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2.3 The Posterior Probabilities

We will define the posterior probabilities 44(z, 7) and 4¢(7) that will be used later
in the reestimation algorithm,

Let (1. ) be the probability of being in state i at time ¢t — 1 and making a
transition to state y at time ! for every time ¢ = 1,...,T, given the observation
sequence Y, That s

(i, J) = Plsi—1 = 1,8 = 5|, X1) (2.22)

We also define the probability of being in state ¢ at time ¢ for every t = 1,..., T, given

the observation sequence Y, as
(i) = P(sy = I|Y, X1) (2.23)

In terms of the forward and backward probabilities:

(i) = Q=1 0)ay G b1, 5)
M= P(Y]X))

(2.24)

because the joint likelihood of Y and the event that the system is in state 7 at time
{— 1 and instate j at time { is ag_ () (which accounts for the first ¢ — 1 observations
ending in state v at time  — 1), times a;; L(X,y1,7) (which accounts for the local
transition from state ¢ Lo state j), times B¢(j) (which accounts for the path being
i state jat time [ and then being unconstrained until the end of the observation
sequence),

On the other hand, we can relate (z) to 4(Z,j) by summing (i, j) over j,

giving
N
(@) = Y, 4) (2.25)

Another way to compute (i) is

oy = at(2)Be(7)




since ag{2) accounts for yp, ... yp and state zat time ¢, and g¢(1) accounts for ypy 1, ..., yp
given state ¢ at time £ The normalization factor P(Y]X|) makes 44(2) a conditional

probability so that

—_—
[
8
-1

~—

AY
Yo () =1
i=1

In the nest section we will show how we use the posterior probabilities to provide

an algorithm for the reestimation procedure.

2.4 The Reestimation Formulas

Ideally the hidden Markov filter parameters ({a;;}, {(B,,rf?)}) would be chosen
s0 as to maximize the probability of the observation sequence P(Y|Xy) given the
model S, There is no closed form solution to this problem. An iterative solution,
which leads to a local maximum of the likelihiood function, is obtained by maximizing

the following ausiliary function:

QMo M) =) Po(8)In P(Y, S| Xy, M) (2.28)
S

Here M, My e two models corresponding to different choices for the parameter

values, and 4(5) is the probability of S conditioned on the observation sequence:
Py(S) = P(S|Y, X1, My) (2.29)

The following lemmais a simple consequence of the convexity of the logarithmic
function [12):

Lemma o
POYIX AT

hu P(Y|Xy, M)

2 Q(My, M) — Q(My, My)

The point of this inequality is that if My is the model corresponding to an initial
estimate of the parameters, the likelihood of the observation sequence can be increased

by choosing the new parameters of the new model M so as to maximize Q( My, M ).
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From (2.9) we have,

T+1 T
POCSIA L M) = T Plselsi— H L(X¢t,y1,5¢) (2.30)
=2 t=1
Thus.
T+1
I POLSINL M) = D7 InP(sylsg—) +ZlnL (X1, 9ty 5¢) (2.31)
=2 t=1
and
T+1
QM. V) = Z Z In P(sq]|sy—1) + Z In L(Xy, ye, st )] (2.32)
S 1=2 =1

Breaking the brackets and manipulating the first term I of the right-hand-side of

(2.32) gives the [ollowing:

T+1 T+1
I= Z H(S) Z In Plsglsi—1) Z Z Z Po(S5)ds,,jbs,_,,i) In aij (2.33)
S (=2 1j =2 S

where

- A1 ifsp =1
si i = { Lot="t (2.34)

0 otherwise;

Using the definition of 5¢(z, y) we can identify the expression hetween the parentheses

as:
Y Po(S)os, 6,0 = iy J) (2.35)
5
Therefore:
T+1
I= Z Z (¢, 7) Ina;; (2.36)
iy t=

I a similar manner, manipulating the second term IT of the right-hand-side of

(2.32) gives

”
IT= 3 P(8) Y I L(Xp,yp,80) = 3 Z’n (7,5) In L(X4, yt, 5) (2.37)

S =1 v]t
Hence,
T+1 T
QUUp ) =Y 3 i i) nay+ X Y i) In LXpp0,5)  (2.38)
1y 1=2 7 t=1
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The two terims Tand IT can be maximized independently of cach other since they

depend on disjoint subsets of the model parameters.

We state here a useful femma to help solving the maximization problem (the proof
of this lemma can be found in [13]).

Lemma 2:

Ife, >0 =1.... N then subjeet to the constraint ¥y, = 1, the function
Fe) = Z cilnar;
[/

allans s wnque global maximum when

G
2ici

Now in the lemma 20 let ¢, be the sum of (e, j), i.c.

T,

T+1
o= i, j) (2.39)
t=2

and let a; = a,,. The first term Tis maximized if

- S (i, |1 My)

a; = - . (2.10)
le)vzl Z[I:‘Bl ’)’((l,])l/”())
where 541,y Wy) denotes the posterior probability (i, j) of the model M.
Let us now consider the second term
T
M) = Z Z Ye(3, 7|1 M) In L{X¢,94.0) (2.41)
1j (=1
Since In L(\y.yr. ) is independent of ¢, (2.41) reduces to
T
M) = Z‘y{(i)lnL(X',y(,z) (2.42.a)
=1
T ’ 2
- . l - A [}
= 3" u(i)[~zIna? - (—y‘————.j—'—)—] (2.42.h)
2 Do ¢
(=1 1
To maximize V(1) we set dM/IB; = 0, which gives
T
YO Xf (g — XiB;) =0 (2.43)

=1
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Therelore

T T
B = [3 w() X %07 [ )Xl (2.44)
=1 i=1
Likewise, setting M /do, =0 gives
T ’ 2
- . 1 - 4X B'
S (it S XBRy (249
=1 1 )
Henee )
= _ [ ml) e — XB)? 2.4
o, = T . ( . 6)
Zl:l 7t(l)

Aninteresting detail is that the reestimation formula of the filter cocfficients B; in
cquation (2.13) has the form of the LPC solutions by least-square covariance method

([11] page 103). In fact, the equation of the LPC solutions by covariance method is:

p
> brd(é, k) = 4(4,0) (2.47)
k=1
for every + = 1.2...., p. where
K—i-1
o(i, k) = Z YmYmti-k (2.48)
m=-i

(K is the time interval inside which the signal is considered). Thus

L KN—-i-1 K-i-1
Sh( X ymym+i—k] = . YmYmyi (2.49)
k=1 m=-i m=—i
or
KN—i-1 p
Z Ym (!/m+i - E blcym+i—k] =0 (2.50)
m=-—i k=1

Let £ = m 4 and K = p, then we can write (2.50) as
Xy — X1 Bi) =0 (2.51)

The only difference between (2.50) and (2.43) is the factor ):;F:l 4¢(2). This factor
is a weighting factor. It takes into account the probability that the state i is occupied
at time £, Since there is a similarity between (2.43) and (2.50), we will see (in the next
chapter) that the value of the filter gain computed by covariance method is similar
to the value of our filter variance o2 given by (2.46).
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The equation (2.10) gives the reestimation formula for the transition probabilities,
Equations (2.11) and (2.16) are the reestimation formulas for the filter cocflicients
and the ciror vatiances. Together they produce a set of new model parameters M =
({ai)}. {(I},.rr;z)}) based upon the previous model parameters Ay, Therefore, if we
iteratively use M in place of My and repeat the above reestimation calculation, we
can improve the likelihood of the data Y on each iteration. The result is the estimated
model. This leads to the following iterative algorithm (referred as forward-backward

or Baum-\Welch training procedure):

L. Guess an initial set of parameters ({a;;}, [3,,0;2).

2. Compute @5 B and rf;z according to the reestimation formulas in Fq.(2.10),

(2.11) and (2.16).
3. Set ayy toay. By to B; and 0';2 to alz
1. I some convergence criteria are not met, go to step 2.

Step | requires a good initialization technique in order to speed up the convergence
of steps 2.3 and 1 and to avoid the problem of short segments. Furthermore, the
calculation of the posteriori probabilities 4(z, j) and y¢(7) requires some mathematical
manipulations that reduces the computation load. All these implementation issues of

the algorithim will be discussed in the next chapter.




s

Chapter 3 Speech Segmentation

Segmenting a sequence of speech samples consists of finding a sequence of seg-
ments (or states) that has the highest likelihood of generating the observation speech
samples. This chapter will show how we use the Baum-Welch algorithm in speech
segmentation, It also discuss some problems that arise in implementing the Baum-
Welch algotithm, The results of segmentation tests on continuous speech and isolated

word speech data will he presented.

3.1 Segmentation Approaches

The segmentation problem consists of finding the optimal state sequence S asso-
ciated with the given observation sequence Y. The most widely used approach is to
find the the state sequence (path) S for which the posterior probability P(S]Y, M)
is maximal. This is equivalent to maximizing P(S, Y |M) (the total likelihood of the
observation sequence Y of the model AL,

A formal technique for finding this best state sequence exists, based on dynamic
programming methods, and is called the Viterbi algorithm [4]. We will briefly present
the steps of this algorithm here (without any proofs). Interested readers are directed
to [1] for a more fundamental development of the Viterbi procedure.

Deline the quantity &(:) for every i = 1,..., Nand t = 1,...,T as

o(i) = max  P(sy1s9..51 = 1, y1y9..y1| M) (3.1)

51,82..81
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i.e. o(i) is the score on the state sequence ending in state ¢ at time ¢ which best
accounts for the list # observations. An array ¢(j) (also defined for everyr =1, N
and t = 1.....T) is used to keep track of the argument which maximizes & (1) for cach

t and j. The complete Viterbi procedure can now be stated as follows:

I-Initialization:

by(1) = { LOX[,y1,0) ife =1 (initial state)
=0 otherwise;

I if ¢ =1 (initial state)
0 otherwise;

orli) = {
2-Recursion for2 <t <Tand 1 £ < N:
o1(j) = [1'5";?& d1—1(D)ay, ] L(X1 y1,7)
or(y) = [drglg%\}v bi—1 ()] L(Xe 91, ))
3-State sequence backtracking: the optimal state sequence is 41547 where
(ﬁv =N

and for 1 <t <71 —|

4t = d1+1(9741)

It should be noted that the Viterbi algorithm is similar (except, for the backtrack-
ing step) in implementation to the forward-backward training procedure of chapter 2.
However, a maximum over previous states is used in place of the summing procedure
used previously.

An alteruative segmentation approach — which we use in this thesis s to employ
the posterior probability 4;(7) (which is the probability of being in state 1 at time t):
we will choose the state sequence S that maximizes 4 (2) at every time { = 1,2,..., 7.
More precisely. at every time t = 1,2, ..., T we select the state s; whose posteriori

probability 4;(s¢) is highest, i.c.

S o= arglgnizgv 7 (2) (3.2)




Since 5(0) is computed at each time ¢ for every state: = 1, ..., N, the segmentation
nsing 5 (¢) is antomatically a by-product of our forward-backward training algorithm.

There is a problem that might occur with the segmentation by (3.2): the state
sequence S is chosen without regard to the neighboring (in time) states. The result is
then S might be a non-valid left-to-right Markov chain, because there is no constraint
on the event that the state i must appear in S before state j (under the condition 7 < j,
of course). In other word, while it seems appropriate to have a result segmentation
as

S = (31,81, $2,82,52,53,53, 84, ---,SN)

mathematically we might end up having a sequence
N = (81.51,51, 33,53, 53,52, 89, 85500y SN )

that does not fit to our model. However, several of our experiments have shown that
the unsuperrised result of segmentation of the forward-backward algorithm always
yield a valid left-to-tight Markov chain that satisfies all the constraints stated earlier
in chapter 2.

A motie serious problem common to both the segmentation using posterior prob-
abilities and the Viterbi segmentation is that artificially short segments may be pro-
duced as a 1esult of the Baum-Welch training procedure. The point is that the
likelihood of the data may be made very large by using a very small number of sam-
ples to estimate the variances associated with some of the state (see [15], pp. 198-202
{or a discussion of this problem in connection with the variances of the components
of mixture distributions).

One of the various techniques that can be used to solve the problem of short
segments is to start the Baum-Welch training with a good initial estimate for the
parameter set ({a,, }, 13,',0;-2) ([15] page 201). In fact, our experiences indicated that
when we initiated the filter parameter with an ordinary LPC analysis performed on

the input speech samples, the problem of short segments has not occured.
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To be more specihie, the speech waveforn is first windowed to N uniform segments
(N is the number of states in the model). Linear predictive coefficients and the noise
variance of cach segment are then computed. These values are used as initial values
for the hidden filters.  Assuming a reasonable amount of training data exist, this
initialization method shows fairly conclusive that it is sufficient.

Another fact in our experiences is that the average ratio samples-per-state (T'/N)
has a direct effect on the problem of short segments. The fewer number of states allo-
cated for a sequence of speech samples results in longer segments of speech. However,
fewer states might lead to long segments that overview the characteristics of some
short phones of speech (e.g stops, fricatives). Several of our experiments show that
with the average 1atio of 320 samples/state (at 16kHz sampling frequency), no short

segments are obsenved.

3.2 Implementation Issues

In this seetion. we present some problems that avise in the implementation of the
Baum-Welcli algorithm. They include initialization method, approximative compu-

tation, staitcase approach and segment duration.

3.2.1 Initialization

We have not addressed in previous section the issue of how the statistics and
the filter parameters are initialized for the forward-backward training.  While the
forward-backward algorithm guarantees an improvement every iteration, it requires
a good initial estimate for the parameter set ({«;;}, B, a;z) to avoid the problem of
short segnients (also called the problem of singular maximum likelihood) and to speed
up the convergence of the training procedure.

The transition probabilities [a;;] are initialized by equal distiibution such that

ajj = {0") y=ror =il (3.3)

0  otherwisc;
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‘The hlter coefhcients and error variance are initialized as follows: first, the speech
sequence Y = (yy.....yp) is uniformly segmented to N equal segments (the number
of states Nis chosen according to the length of the sequence and the speech sampling
frequency as discussed later in this chapter). The linear-predictive coefficients and
the variance of cach segment are then computed. This set of parameters are used as
initial values of the filter parameters.

Our tests have shown that this simple initialization technique was sufficient to
avoid the problem ol short segments. It also helped the training algorithm to converge
after 3 5 iterations with a threshold of the total likelihood P(Y)X7) fixed at 30 dB.
The threshold 6 is defined by a difference in log domain of the total likelihood of the

observation sequence Y recorded in two successive iterations, i.e.

b =In Py (Y]X1) = In Po(Y]X1) (3.4)

where PL(Y].\)) is the total likeliliood of observation recorded at the kth iteration.

3.2.2 Log. Compression and Approximative Computing

The evalnation of ay(7) and By(i) for 1 < ¢ < T and 1 <1 < N in the recursive
formulas shows that as 7" — oo,ap(7) — 0 and #1(i) — 0 in exponential fashion.
In practice the number of observations necessary to adequately train a model or
compute its probability will result in underflow of any real computer if a4(i) and
Ar(1) are evaluated divectly, Therefore, a scaling procedure is necessary to avoid this
underflow,

An alternative approach which we use is to represent probabilities by their loga-
rithms to deal with underflowing probabilities. If we represent probability P with its
log, log 1. we vould get more precision in computing. To multiply two numbers, we

simply add their logarithms. To add two numbers, we proceed as follows:




s 2

|ugb( [)1 -+ 1)2) = l()gb[blogb P + l,logb Pg]

= l()gb[bl‘)gb P (1 + plogs P2—log, P )
= ]()gb Py + ]ogb(] + b‘ogb Pa—log, P )
If P is many orders of magnitude smaller than Py, adding two numbers will just

result in P},

3.2.3 Staircase Approaches

The forward and hackward probabilities a; (1), Bi(1) and the posterior probabilities
(1, 7). 3(1) are computed for every time ¢ and every state ¢ of the model. With a
typical speech sentenee of | see and a sampling rate of 8 kllz, the time 7" is 32000,
Morcover, ordinairy speech contains on average 15-20 phones per second, cach phone
could be acenrately modeled by 3 segments. Therefore, for the 4 sec speech sentence,
one iteration of our algorithm has to handle up to 3 x 20 x 1 = 200 segments (1 < <
200) and 32000 units of time (1 < ¢ < 32000). These dimensions would apply to all
vectors ag(i). 3(2). (2. j)s and 4;(7). It clearly overflows the capacity of computer.

However, in the left-to-right ITIMM, at time ¢ close to T, the initial state | (and pet-
haps states 2.3....) is certainly not visited, so there is no need to evaluate ay(1), i (1)...
at that time. To optimally use our reestimation algorithm in that situation, we in-
troduce the staitcase approach.

We assunie that cach state 1 of the Markov model can only occupy a limit number
of samples, say A/,. This occupation can only start at some time 7,. Therefore, the
probabilities ay(¢) and (i) of the state i are zero outside the interval {13, 7, + Aty].
We will only evaluate these probabilities inside that time interval, thus reduce the
dimension of the vectors,

The crucial point is how we choose the starting time T3 and the length Al,. Qur
tests indicated that overlapped time intervals are necded to assure the same result as

the original model. More precisely, we use the intervals defined as follows: for every
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r= 100N we defline
v x T
N

T, = (3.5)

and
711
Alij=Al= N (3.6)

and the time mtervals are [T+ At} [Ty — At Ty + Aty .y [Ty_g — A, Ty _1 +

AL [Ty 2 = A1) Figuie 3.1 illustrates the state occupation we are assuming.

sy L | ]

[ ]
[ ]
a3 ,
. [ |
- | |
! ’ | ’l .
0 I' I Tnoy Ty=T

Fig. 3.1 The staircase approach

3.2.4 Segment Duration

The segiment duration problem consists of constraining the minimum number of
samples per segment. I the number of samples allocated to a segment is close to the
order p of the hidden filter, we could have a local maximum because the prediction
ertots ate very small For example, a 10 ms stop burst of speech recorded at 16000
[z is vepresented by 160 samples. With a minimum required 3 segments (or 3 states)
per phone (one soutee, one stationary and one end), that stop burst has on average
5060 samples/segment. If we pick a female speaker with a pitch frequency 320 Hz
(hence one pitch period has 16000/320=50 samples), the 60-sample segment will cover

a length of 60/50=1.2 pitch, barely enough to perform an LPC analysis with p = 12.
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In our hrst nuplementation of the forward-backward algorithm, we did not use

any complex duration constraint methods, We just simply isolated a sequence of
specch samples. allocated on average 20 phones per second of speech and a fixed 3
states/phone (that gives on average 60 states/second), then ran the training pro-
gram. At the output segmentation, we checked all the segment lengths.  If any
scgment having fewer than 50 samples was observed (the 50-sample level was used
in both continuous-speech and isolated-word database), we reduced the number of
states (usuallv by | or 2 states) of the mod~l and reran the training,.

Our segmentation tests on the isolated-word data with an average 26ms per seg-
ment shows that about 5% of the words requires the reruns of the forward-backward
algorithm.

In the nest section, we will show the test results of speech segmentation using

the postetior probabilities.

3.3 Experimental Results

The segmentation approach using the posterior probabilities (1) was examined
in segmenting speech waveforms of two categories of speech: continucus-speech and
isolated-word.

The speech material used for the continuous-speech category includes the follow-
ing sentences:

[- Qak is strong and also gives shade.

2- Add the sum to the product of these three.

The fivst sentence was spohen by a male and the second sentence by a female,
The sampling 1ate of these sentences is 8 kllz.
The data used in the isolated-word category include 427 words spoken by a native

English female speaker with a pause of at least 150 ms between words. The words
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cotrespond to paragraphs selected from magazines, books and newspaper articles.
The sampling lrequency is 16 kHz.

We apply the forward-backward training procedure to the speech data with an
order of hidden filter p = 12 (i.e 12 poles). This choice of p is based on previous LPC
analysis ([11] pp 119 120): generally 2 poles per kiloHertz due to the vocal tract
contribution plis 3 1 poles to represent the source excitation and the radiation load.

Figures 3.2 and 3.3 show the result of our segmentation approach when it is

applied to the two sentences of continuous speech. The graphics display

(a)- The signal time wavelorms along with the segment boundaries (vertical bars)

chosen by maximizing 44(2).
(b)- The normalized prediction error E of each segment (variable lenght).
(¢)- The normalized prediction error E of the uniform segments.

We present the normalized prediction error E because it is a very useful parameter
for the determmation of the optimal number of poles p and for the measure of the
spread of the data [16]. The normalized prediction error E of an LPC filter is defined
as the estimated variance of the filter scaled by the average of the square of the
segment amplitude,

To be more specifie. let (yy...., ypr) be M samples of a segment having a Gaussian

. Y . o .
notse source N {U.a7). then the normalized prediction error E of that segment is

o3

T A 2
M Z:t=l Ut
Since the mean of the segment amplitude of speech is very small (= 0), this normalized

E= (3.7)

crior also cortesponds to the variance of the filter output scaled by the variance of

the segment speech signal rrﬁ:

2
o
It is easy to see that the prediction gain P of the filter (in dB) is
1
P =10logyo(%) (3.9)
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Recall that there is a similarity between our filter coeflicients and the filter coefti-
cients computed by covariance method. The comparisons of our filter's normalized
prediction ctrors and the normalized prediction errors computed by the covariance
method should give similar results.

In Figure 3.2.(a) and 3.2.(b), the speech waveform of OQak 1s... with segment,
boundarics and their corresponding notmalized prediction errors are shown. The
speech sequence has 3021 samples in 23 segments (average 16.4ms/segment). The
[k/ burst, located in the interval 0.22-0.25sec, is characterized by thiee segments of
100,78 and 181 samples (at 8 kllz sampling frequency) respectively, with a peak error
recorded for about 10ms. The vowel O/, started at 0.04sec and ended at 0.2scc,
occupies 12 segments with normalized prediction errors 17 < 0.01. The period of
silence at the beginning of the sequence has small ervor 15 while the silence between
words has lairger civor I, With an average 131 samples/segment (16.4ms/segment),
the shortest segment (2nd from left) has 53 samples and the longest segment. (belong,
to the vowel /0/) has 239 samples. Figure 3.2.(c) shows the normalized prediction
errors ol the 16, Ims uniform segments, It is casy to see that the wniform window
produces higher normalized prediction errors for the stop /k/.

Figure 3.3.(a) and 3.3.(b) show the waveform of Add the... with segments and the
corresponding normalized prediction crrors. There are 3360 samples in 28 segiments
(average 20ms/segment). Moderate amplitudes of normalized prediction errors 19
are observed at the transition from silence to vowel /A/. High values of normalized
prediction criors ate seen at the fricative /0/ (in the word “the”) and again at the
silence at the end of sequence. We can see in Figure 3.3.(c) that the normalized
ptediction errors of the 20ms uniform segments are generally higher than the errors
of the vatiable frane length segments,

It is interesting to note from these figures that the normalized prediction errors
E’s for unvoiced speech (e.g. stops, fricatives) is significantly higher than for voiced

speech (\owels. diphthiongs). In fact, the normalized prediction error enrves show
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20ms uniform segments. There are 3360 samples in 28 segments
{average 20ms/segment) In {b), moderate amphitudes of error I
are observed at trausition from silence to vowel /A7 High values of
F ate seen at the fricative /8/ (in the word “the”) and at the end of
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a very small range of error £7(0.005-0.01) for voiced speech (such as vowels /O/ in
“Oak™, /1] in "gives"or voiced fricative /v/ in “of”) and a high level of error E (0.12-
0.25) for unvoiced speech (e.g. stop /k/ in “Oak™, fricative /</ in “sum”). Also the
lengths of segments associated to voiced speech are generally longer than the lengths
of segments associated to unvoiced speech.

The 1eason for the above observations is that voiced speech is usually longer
(in time) than nnvoiced speech (e.g.  several pitch periods in vowels) and it has
a predictably wavelorm pattern which helps the linear predictive filters to perform
better. On the other hand, the silence may have large error E because it has very
small signal amplitudes which are in the same order of the Gaussian noise source of
the filter,

A comparison of these values of normalized errors Es with previous studies on
speech analysis by linear prediction [14], pp. 426-429, shows that our errors are
within the order of the ordinary prediction errors by covariance method.

In a second test, we apply the segmentation procedure to the isolated word
database. These words have been segmented into phones (of a set of 44 phones) by an
experimental large-vocabulary-speaker-dependent isolated-word recognizer (described
indetail in [17]). The normalized prediction errors E’s of each phone are computed for
20 phones of the set and are presented in Table 3-1 (the number of occurrences of each
phone used to compute the average values is given in parentheses beside the phone
m the table). Again, by comparison with data in [14] pp. 426-429, the normalized
prediction errors 1°s show very accurate measurements of the phone’s characteristic.

The segmentation using hidden filter model shows that it performs exceedingly
well on the difficult task of locating short phones of speech. Since our aim is to im-
prove segment boundaries between phones during recognition, we try to implement
the segmentation at a preprocessing stage of a large-vocabulary speaker-dependent
isolated-woud tecognizer. The next chapter will describe how the hidden filter models

can be used in the vecognizer. It also reports experimental results of speech recogni-
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tion.

Table 3.1

Phone Normalized Error F
(x1079)
/A] (35) 3.03
/1] (104) 9.09
U/ (6) 3.59
JE/ (48) 8.07
/O] (14) 0.978
Jaj/ (23) 4.52
Ji/ (70) 4.79
[u/ (40) 1.44
¢/ (30) 8.07
Jo/ (18) 1.51
/*/ (68) 1.01
/&7 (9) 6.81
/f] (31) 72.81
Jt] (129) 38.38
/p/ (33) 42.43
/s] (100) 136.69
/d] (78) 20.04
/K] (53) 21.93
/r/ (128) 2.16
/9] (21) 6.47

Results of segmentation of the isolate-word database
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Speech Recognition

Chapter 4 with the

Hidden Filter Preprocessor

Several large-vocabulary recognizers have been developed in the past few years
[18], [17]. Speaker independence and continuous speech pose the greatest chal-
lenges for these tecognizers. Speaker independence was the most difficult constraint
to overcome because most parametric representations of speech are highly speaker-
dependent. and a set of 1eference pattern suitable for one speaker may perform poorly
for another speaker, On the other hand, continuous speech recognition is significantly
mote difficult than isolated word recognition, resulting from problems of word bound-
ary, coarticulatory effects and word emphasizing.

In our first recognition tests, we choose to work only with a speaker-dependent
isolated-word recognizer. This chapter will show how we apply the forward-backward
training and segmentation procedure to a large vocabulary speaker dependent isolated
word recognizer. ‘I'he segmentation is used as a feature-extractor at the preprocessing

stage ol the tecognizer.

4.1 Overview of the 60000-Word Recognizer

The 1ecognizer we ave using is a 60000-word vocabulary speaker trained isolated-
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word recognizer which uses a phonemic Markov model approach to speech recognition,

The goal of the recognizer is to transcribe text spoken as a sequence of isolated word.

For each spoken word, the recognizer uses acoustic information and rongh like-
lihoods in a fast search algorithm to narrow the possible word hypotheses from the
60000 words in the total vocabulary to a sequence of lexically valid, most likely
phoneme stiings. together with their likelihood. One Markov model per phone for
the 44 phones is used in recognition.

The fast scarch algorithm of the recognizer is an A* admissible heuristic (devel-
oped by Kenny [19]) for rapid lexical access. It is capable, on demand, of generat-
ing multiple recognition hypotheses from a lexicon and a dictionary of 60000 words.
Phone duration constraints are also incorporated in the recognizer to improve the
accuracy and the speed of the search.

The acoustic information (or acoustic features) is extracted from the speech wave-
form by the parameter estimation module of the recognizer. These features are sets of
15-dimensional feature vector computed every 10 ms from the speech waveform using
25.6 ms overlapped window. The 15-dimensional vector consists of seven mel-hased
cepstrum coelhcients (C'q. ..., C7) and eight dynamic parameters (ACY, ..., AC7).

The static copstial coefficients (Cy,...,C7) are computed by fitst dividing the
spectrun between 0 and 8 kllz into 24 channels spaced according to the mel scale
of frequency. The center frequencies for the first ten channels are spaced 100 Hz
apart, while the remaining 11 channels are spaced logarithmically. The energy in
cach channel is computed by summing a triangularly weighted spectrum located at
the center of the channel. Taking the log of the channel energies yields the log channel

energies. The cosine transform of the vector of 24 log channel energies given by
24
=Z (e(j —0.5)- 4) i=1,2,..7 (4.1)

where £, is the log channel energies of the jth channel, gives us the cepstrum coeffi-
cients.
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(y is computed as the weighted sum of the log channel energies
24
Co=)_ W;E; (4.2)
j=1
where the weights W, =1,..., 24 are (0.0016, 0.0256, 0.1296, 0.4096, 1.0,..., 1.0).
The eight dynamic parameters (ACy, ..., ACy) are obtained by taking signed dif-

[erences hetween the corresponding static cepstral values 40ms apart. The resulting

I5-dimensional feature vector (C'y, ...,C7, ACY, ..., AC7) is computed every 10ms.

4.2 Hidden Filter Preprocessor

The construction of acoustic segments every 10ms does not take into account the
phoue boundaries (¢.g. boundaries between stops and sonorants, affricates and sono-
rants cte). The changing statistical characteristics of speech signal at these boundaries
fall often into one segiment. This creates difficulties and erroneous in mapping acous-
tic segments into phoneme models because the recognizer must map the segment to
one of the phones.

Our strategy is to replace the parameter estimation module by a preprocessor
which generates sets of 15-dimensional feature vectors based upon hidden filter mod-
cls. More precisely, for cach spoken word in the training and test sets of the recognizer,
the preprocessor performs the forward-backward reestimation to provide segments of
speech characterized by variable time lengths, 12th order linear predictive coefficients
(B,) and normalized errors K.

The lincar predictive coeflicients are translated to cepstrum coefficients (Cr,k =
L.....T) using the formula (sce [20] pp. 229-231 for a development of this formula):

o0
mA(z) == Cpz*F (4.3)
k=1
where A(z) = 1 =hys=l —poz=2 - — biaz~12 is the impulse response of the segment

filter. We choose to work with cepstrum coefficients as acoustic features because they
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have been shown to give improved recognition performance compared to a number of
other feature parameters used in speech recognition [21].

Only the first seven cepstrum coefficients are retained from (1.3) to form the
static cepstrum coeflicients (Ch, ..., C7). Cg is defined as log magnitude of the filter
variance ([20] page 230), i.e.

Co=Ino? (4.1)

These coellicients are called LPC-based cepstrum coefficients since they are com-
puted from the linear predictive coeflicients.

The cight dynamic parameters (ACy, ..., AC7) are obtained by taking signed dif-
ferences hetween the corresponding static cepstral values.

The seven LPC-based cepstrum cocflficients (Cy, ..., ("7) and the eight dynamic
parameters (A, ..., A('7) are put together to form a I5-dimensional feature vector
(Cpy e C7.2Cy. 0 ACT).

Although thete is no fixed-time window when we compute our 15-dimeusional
feature vectors (..., C'7, ACY, ..., AC7), the number of segments allocated for each
word in the training and test sets of the recognizer result on average 20ms per seg-
ment. The 20ms length is chosen to compromise the calculation time used by the
preprocessor to complete the segmentation, the computer load to sustain all arrays
declared in the Jorward-backward training program and the minimum duration of 50
samples per segment as stated in §3.2.4.

The preprocessor runs with either a maximum of 8 reestimation iterations or
a scoring thieshold ¢ of 30dB. which ever comes first.  Under these conditions, we
observe that the CPU time needed to provide acoustic segments of one word is 5

minutes on average on a DEC station 2100 computer.

4.3 Experimental Results

The expetimental setup consists of different sentences read in a quiet room by a

female native Inglish speaker. The sentences are read from texts with pauses of at
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least 150ms hetween the words. The texts are selected frorn magazines, books and
newspaper articles, Part of the texts is used for training the phone models while
the remaining is used for estimating the recognition accuracy of the system. Of
the approximately 2200 words involved in the experiment, 1299 words are used for
training the model,

Table LT shows the recognition results with the 15-dimensional variable length
LPC-based cepstrum coefficient feature vectors. With 808 words of the test set, the
recognizer conectly identifies only 441 words (54.6% of accuracy).

Several possible causes could lead to this poor performance:

e Theaverage 20ms per segment could result in some misrepresentations of phone
characterizations, especially if the segment of one phone covered samples be-

long to uther phones.

e ‘The number of segments allocated for each word may, in some cases, come to
[ewer segments associated to a phone than the minimum number of states of
that phone in the recognition phone models.

For example,in the recognizer, the Markov mori- for the phone /k/ had
6 states. .\ left-to-right Markov chain with skip transitions for that 6-state
model is illustrated in figure 4.1, As one can see, the minimum number of
states (or segments) required to go through this Markov chain is 4; either a
path through sy~ 5 — sq — s or 8] — s3 — 54 — sg or 8] — 89 — s5 — 36. A
survey of the segmentation at the preprocessor showed that, over 53 segmented
phones /k/. 12 phones had only 3 segments per phone, less than the required

minimum number of states. Thus the phone model for /k/ was not accurate.

o Therecognizer does not take into account the length of each segment calculated
at the preprocessor, It treats the sequence of 15-dimensional feature vectors

as a sequence of uniform-time vector-valued observations.
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Fig. 4.1 The Markov model for a 6-state phone.

l'cature vectors Total words Acoustic
input to recognition
recoghnizer Training | Test accuracy

vatiable-length
LPC-based cepstrum 1299 308 41 (54.6%)

Table 4.1 Recognition results with LPC-based cepstrum
Preprocessor.

To correctly interpret the results of the recognizer with variable-length Li*C-based
coefficients in Table L1, we performed another recognition test, where 20ms-uniform
LPC-based cepstrim coefficients are used to evaluate the recognition accuracy. To ob-
tain the 20ms-uniform LP(-based cepstrum coefficients, we window the input speech
waveform to scveral segments of 20ms (uniform) and compute their lincar predictive
coefficients by covatiance method. We then translate these coefficients to cepstrum
coefficients and form the 15-dimensional vectors as we did with the variable-length
LPC-based cepstium coeflicieuts.

Agaiu, we run the recognizer with the 20ms-uniform LPC-based cepstrum coeffi-
cients and compate the vesults with Table 4.1, Table 4.2 shows the output of this test.
Final results proves that the preprocessor actually increases the recognition accuracy
from 129 to 111 (3344 to 51.6%). Broken down to each text, the variable-length
model outpetfornms the 20ms-uniform model (in term of recognition accuracy) by a
score of 3:2. i.e. in five of the seven text files used in the test set, the variable-length

model scores higher accuracy 1ates than the 20ms-uniform model.
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Acoustic recog accuracy
Text Total words
20ms-uniform variable-length

Hitman 105 50 (47.6%) 58 (55.2%)
lta 102 59 (57.8%) 60 (58.8%)
Reptiles 110 48 (43.6%) 49 (44.5%)
Riot 135 74 (54.8%) 6 (56.3%)
Soap 142 81 (57.0%) 84 (59.2%)
Spv 11 61 (54.9%) 60 (54.1%)
Women 103 56 (54.4%) 54 (52.4%)
Average 808 429 (53.1%) 441 (51.6%)

Table 4.2 Recognition results with the 20ms-uniform LPC-based
model and with the variable-length LPC-based
cepstrum model.

A close analysis of the results in Table 4.2 shows that wheu the recognizer with
20ms-uniform cocfhicients correctly identifies the word, most of the time, the recog-
nizer with variable-length coefficients also correctly identifies the word. In particular,
for the data of the texts “Hitiman”and “Ira”, Table 4.3 shows some differences between
the top word choices of the recognizer with two set of acoustic features.

Among the words correctly identified by the recognizer with variable-length co-
efficients (the preprocessor) and incorrectly identified by the recognizer with 20ms-
uniform coefhcients. we find some long words such as “privileges”, “police”, “in-
former™, and some simple words such as “since”, “other”, “jail”., The errors made
by the recognizer without preprocessor are usually stops (confusion with nasals or
[ricatives) and fricatives (confusion with stops).

The tesults of this test show fairly conclusively that, if placed in the same context
(i.e. 20ms hzed window versus average 20ms segment length), the preprocessor lightly
improves acoustic accuracy of the speaker-dependent isolated-word recognizer. The

improvement comes generally from stops, nasals and fricatives, i.e. short phones.

In simmary. the comparison of the results of recognition with and without pre-
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Words

(with true

transcriptions)

Recognizer with
variable-length
LPC-based coeff.

Recognizer with
20ms-uniform
LLPC-based coefl,

/" Dr/

/" Dr/

murder murder (C) burder (W)
/mrdr/ /mrdr/ [brdr/
simee since (C) sits (W)
[sIns/ [sIns/ /slts/
jail jail (C) tell (W)
/dzel/ /dzel/ [tel/
machine machine (C) ercier (W)
/m*Siu/ /m*Sin/ [ErSic/
crime crime (C) crine (W)
[Rrajm/ [krajm/ Jkrajn*®/
police police (C) felice (W)
/plis/ /p*lis/ [Mis/
other other (C) under (W)

/“ndr/

mformer

informer (C)

enter (W)

[slid/

[skt/

/ w0/ /*nfOmr/ [Entr/
privileges privileges (C) pledges (W)
JprivitdZrz/ [privi*dZ*z/ [plEdZ*s/
has hanes (W) has ((")
/haz/ [hans/ [hazf
hecame akeen (W) became (C)
/b kem/ /*kIn/ /b*kem/
said set (W) said ()

[skd/

Table 4.3 (‘omparisons of some differences of the top word
choices in the texts “Hitman”and “Ira”.

processor iudicates that the preprocessor achieves the objective of improving the
recognition tate, but only at a modest margin. Theie is a discouraging finding on the
accuracy of recognition with the LPC-based cepstrum coeflicients. This points out,

that the phone mocdels built from the 20ms updating analysis window (either fixed or
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vatiable) 1s not a 1eliable model.

An obvions solution to this problem is to increase the number of states allocated
for the phones while segmenting the speech signal. Since this could lead to the problem
of shott segments. a dynamic duration constraint technique should be employed in the
segmentation algorithm. Nonetheless, more extensive experimentations with various
window time lengths should be performed to achieve an optimal procedure which
assures the improvement of recognition accuracy without too much computation at
the preprocessar.

Another detail overlooked at the preprocessing stage of the recognizer is the
threshold Tevel nsed to stop the forward-backward reestimation algorithm. Although
the chosen thueshold (30 dBB) is enough to guarantee the convergence of the likelihood
of data (I”(Y |.V})). a few more iterations should be made to lower the difference § to
35 dB before determining the segment boundaries and performing the recognition
procedure. What also remains to be determined is whether a more complex method
(in the vecognizer) that accounts for the variable time length of each segment could

give greatly improved performance,
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Chapter 5 Conclusions

In this thesis we have shown that the technique of linear predictive modeling
and hidden tlter maodels can be combined in a simple straightforward manner to
implement an automatic speech segmentation. We have also shown the application of
this antomatic segmentation to a large-vocabulary isolated-word speaker-dependent
recognizZer as a preprocessor unit.,

In speech segmentation, the normalized prediction ervors of the hidden filters are
compated with the normalized prediction errors of the covariance lincar predictive
filters. The comparisons show that the hidden filters provides smaller normalized
prediction errors (which means higher prediction gain), especially when they are ap-
plied to segment of stop burst and aveolar fricative of speech.

The segmentation stage performs exceedingly well on the difficult task of locating,
short phones ol speech. The fact that some segments have very few samples ap-
pears 1o he primarily because of no dynamic duration constraint method had been
implemented in the algorithm. Moreover, the time interval At = T[N used by the
staircase approacl might contribute to the prablem of short segments, presuming that
the interval boundaries do not match the phone boundaries.

The overall petformance of the recognizer runming with LPC-based cepstium
cocfficients and the preprocessor is somewhat poorer than the performance of the
recognizer running with original mel-based cepstrum coefficients. The fact that the

15-dimensional feature vectors of our model are computed differently with the feature
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vectors of the mmel-based cepstium model might contribute to the overall performance.
The dynamic cocfhicients in the mel-based cepstrum model are computed by 40ms
intervals while o model does not have any fixed-time intervals. Furthermore, the
loudness Cy v the mel-based cepstrum model is computed by weighting the sum of
the log channel energies while the variable Cy of our model is simply the log filter
vatiance,

The recognition petformance of our tests also suggests that the chosen 20ms
(average time) window i< inadequate to obtain a good Markov model for the phone.
This suggestion is made plausible by considering the results of the recognition test
with 20ms-uniform LPC-based cepstrum coeflicients.

A second suggestion that can be drawn from the results is that a lower level of
threshold should be used to inerease the number of iterations in the preprocessor. This
tequires a substantial increase in CPU time: an average 1 minute per iteration per
word is calculated at the preprocessor. With 2200 words of the experiment, lucreasing
one iteration of coraputation will require almost 40 hours of CPU. However, since the
training procedure needs to be done only once, the expense of CPU time is worthwhile.

An important fact in implementing the recognizer with preprocessor is that we
have not exploited the variable window length of each segment. In our experimen-
tations, the recognizer only treats the sequence of 15-dimensional feature vectors
(variable length) as a sequence of uniform (in time) vector-valued observations. To
determine whether considering vatiable time length leads to improving recognition
accuracy, we have to rewtrite all the structure of the recognizer. Such a task exceeds
the scope of this thesist however we could answer this question by further experimen-

tations.
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