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Abstract 

A normed space of input-output mappings equipped with two products, one 

,lobaI and the other local, called a normed double algebra (NDA), is introduced for the 

frozen-time analysis of stabilization ~d optim.ization of a c1ass of slowly time-varying 

systems. Local-global relations within a normed double algebra are established, in the 

time and freq\Jency, domains, in systems which vary slowly. The local-global relations, 

applied to system properties such as stability, coprime factorization and optimization, 

enable global properties to be deduced from the local Ol1>!S, especially in the frequency 

domain, by methods which are complltationally tractable, at least in principle. Classical 

frozen-time stability is reinterpreted in terms of a relation between local and global 

resolvents in the NDA. Relations between local and global coprime fadorizations and 

their implications to local and global robust stability are obtained . 

An explicit double algebraic expression for adaptive BIBO sensitivity reduc­

tion is established. Notions of adaptive and robust (non-adaptive) sensitivity mini­

mization are applied to an example involving rejection of narrowband disturbances of 

uncertain bandwidth and center frequency. The double algebra symbolism is employed 

to show that adaptive minimization can give better sensitivity than BOO optimal robust 

minimization. 

To implement a design strategy of global sensitivity optimization using local 

BOO interpolation, Lipschitz continuity of optimal Hoo interpo]ants on data is investi­

lated. White optimal BOO interpolants in general do not depend Lipschitz continuously 

on data, 6-suboptimal interpolants based on AAK '8 maximal entropy solutions satisfy 

an appropriate Lipschitz continuity condition. These, applied to alowly time-varying 
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systems, achieve approximations to the globally opt:mal interpolants, which become 

accurate as the rates of variation approach zero. 
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R'sum' 

Un espace normé de relation entrée-sortie muni de deux produits, un global et 

un local, appelé l un temps donné double algèbre normé (ADN), est présenté pour une 

analyse et l'optimisation d'une classe de sy! ~èmes variant lentement dans le temps. Les 

relations local-global, appliqués aux propriét~ du système tel que stabilité, factorisation 

première et optimisation, rendent possible la déduction des propriétés globales à partir 

des propriét~ locales, en particulier dans le domaine fréquentielle, par des méthodes 

en principe calculables par ordinateur. La classique stabilité l un temps donné est 

réinterprétée en termes de relation entre les solutions globale et locale dans l'ADN. Les 

relations entre les factorisations premières globale et locale et leur implication avec la 

stabilité robuste, locale et globale, en résultent. 

Une double expression algébrique pour la réduction de sensibilité adaptative 

(entrée et sortie bornées) est explicitement établie. Les notions de minimisation de sen­

sibilité adaptative et robuste (non adaptative) sont appliquées à. un exemple comprenant 

la rejection de perturbations à bande étroite d'une largeur de bande incertaine et dJune 

fréquence-centre. La symbolique d'algébre double est employé pour montrer que la min­

imisation adaptative peut donner une meilleure sensibilité que la minimisation robuste 

et optimale dans Hoo. 

Pour mettre en place une stratégie pour la conception d'une optimisation en 

sensibilité globale utilisant une interpolation locale dans HOC, la continuité Lipschitz 

d'interpolateun optimaux dans Hoo est étudiée. Ceci, appliqué aux systèmes variant 

lentement df.ns le temps, résulte dans l'approximation d'interpolateurs globalement op­

timaux, qui deviennent précis lorsque les taux de variation tendent vers zéro. 
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Notation 

R, V, ?l denote the reals, complex numbers and integers. The complex 

conjugate of any xE C is x. 

][{n and ]({nxn denote n-vectors and n x n matrices over a ring 1K. en 

is viewed as a Euclidean spacej for x E en the conjugate transpose is x· and norm 

Ixl = (z·x)1/2. For a matrix K E [;nxn, IKI is its largest singu}ar value. 

l~[a, b], 1 ~ p ~ 00, 0 ~ 0, denotes the space of sequences u(t), t = 

a,a + 1, ... ,b, tE ?l, either of vectors in en or n x n matrices in vnxn for which 

for 1::; p < 00; 
(0.1) 

for p = 00. 

The dimension n will be fixed and omitted in notation except where it is to 

be emphasized, where the notation (l~[a, blt or (l~[a, bD nXn will be used. 

Hg, 1 ~ p ~ 00, q > 0, denotes the HP space of of Vn-vector or cnxn• 

matrix functions K(z) on the disk 1%1 < 0 for which 

(0.2) 

Hg is viewed as a subspace of L~, the space of V (Lebesque-p spaces) functions of the 

circle of radius o. 

Note that for p = 2, q = l, K E (H2) nxn, the Banach norro employed in 

this thesis is 

(0.3) 
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which is different from the USUSl.l definition of n 2-norm (Hilbert norm) 

IIKII2 = (2~ f" Trace (K.(';8)K(ei9 ») d8) 1/2. 

"'bere Trace(A) = Er=:1 aii for A = [ai;] E Vnxn. 

Nevertheleas, due to the matrix inequalities 

for any A E IJnxn, 1I·IIH 2 and 11·112 are equivalent norms. 

l (u) E Lg den otes the z-transform of any u E l~ ( - 00, 00 ), 

00 

.e(u)(z) = L u(t)zt, Izl = (1. 

t=-oo 

(0.4) 

(0.5) 

(0.6) 

leu) will also be represented by û. When 11. E l~[O,oo), C(u) has a,nalytic continuation 

into the disk of radius 0", i.e., .e(u) EH; . .e-1(K) E l; denotes the inverse transform 

of any K E L~ defined for t E (-00,00), t E 1J., by 

.e-1(K)(t) = (1-t (2~ fo Z1f 
K((1é8)e-i8td8) . (0.7) 

H K E H~, then .e-1(K)(t) = 0 for t < O. Functions in l~ will be denoted by lower case 

letters, in Hg by capitals, and operators in either space by holdface capitals. 

nh t E 1J., denotes the truncation operator which maps any f E l~( -00,(0) 

into le, where ft(r) = 1er) for r < t and 0 elsewhere. 

The following constants (as a function of (1 > 1) are fixed in the thesis: 

1 
= -- for p = 00. 

u-1 

(0.8) 
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Chapter 1 Introduction 

Our objective in this research is to develop a common systems framework for 

the frozen-time analysis and optimization of slowly time-varying MIMO systems. The 

main idea is to aehieve stability and optimality (or near optimality) by means of notions 

of "local" stability and "local" optimality, especially in the frequeney domain. 

1.1 Problem and Approach 

In order to get a nontriviéa.l theory of adaptive stabilization and optimization 

for time-varying systems, the effect of persistent disturbances. say in 100
, and causality 

constraints, i.e., causal dependence of control on tim .... varying data, have to he consid­

ered. Apart fr~m some existence results for a relatea ;2 disturhance rejection prohlem 

without eausality eonstraints ([FeilJ[Fei2]), there is at present no such complete theory. 

Sinee it would appear that the ability to adapt or Iearn from experienee is limited to 

those aspects of data which persist or, at most, vary slowly with time, it seems worth­

while to single out features of optimization which are peculiar to slowly time-varying 

systems. 

There are conditions for the BIBO stability of slowly time-varying systems 

based on the ideas of frozen-time analysis and exponentially weighted 12 spaces, going 
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1. Introduction 

back to the 60's [Frej [Desl]. It became apparent in the course of this research that 

certain features in these results could be abstracted and generalized to derive a cammon 

algebraic framework for frozen-time analysis of stability and optimization. 

The framework introduced bere involves the notion of a normed double alge­

bra (NDA), i.e., a normed space of input-output mappings on which two products are 

defined, one local and the other global. 

Local-global relations within a normed double algebra are established, in 

the time and frequenc:y domains, in systems which vary sufficiently slowly. The local­

global relations applied to system properties sucb as stability, coprime factorization and 

optimization, enable global versions of these properties to be deduced from the local 

ones, especiaIJy in the frequency domain, in a way which is computationally tractable at 

least in principle. Classical frozen-time stability is reinterpreted in terms of a relation 

between local and global resolvents in the NDA. Relations between local and global 

coprime factorizations and their implication to local and global rohust stability are 

obtained. 

One approach to solving a persistent disturbance rejec:tion problem is to use 

direct 11-kernel optimization. However, it might he desirable in systems analysis and 

synthesis to employ qualitative information provided by spectral data in the frequency 

domain, which would be lost in the 11-kernel approach. Our alternative is to establish 

an "approximate isometry" between certain frequency and time domain norms to ap­

proximately evaluate 11-kernel behavior from related Hoo properties in the frequency 

domaine 

An explicit double algebraic expression for adaptive BIBO sensitivity reduc­

tion is established. To implement a design strategy of global sensitivity optimization 

4 
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usina local Hoo interpolation, Lipschitz continuity of optimal H oo interpolants on data 

is investigated. While optimal Boo interpolants in general do not depend Lipschitz con­

tinuously on data, cS-suboptimal interpolants which satisfy a suitable Lipschitz condition 

can be obtained usina AAK's maximal entropy solutions [Ada21. These achieve an ac­

ceptable approximation to the globally optimal interpolants in systems whose variation 

rates are small enough. 

Notions of adaptive and robust (non-adaptive) sensitivity minimization of 

[Zam4,6] are applied to an example involving rejection of narrowband disturbances of 

uncertain bandwidth and center frequency. The double algebra symbolism is employed 

to show that adaptive minimization can give better sensitivity than Hoo optimal robust 

minimization. 

1.2 A Brief Literature Review 

Frozen-time stability analysis of slowly time-varying systems has been devel­

oped since the 60's, in both the frequency and the time domains. The "approximate 

isometry" based on exponential weighting was introduced by Zames [Zam11 to obtain an 

LOO version of the cirde criterion. Freedman and Zames [Frej introduced the notion of 

"frozen-time" analysis in an input-output setting, using a method of averaging for 8yS-

tems with exponentially decaying memories and slowly time-varying gains. Closely re­

lated results in astate space setting were obtained by Desoer [Desl] and Narendra[Nar], 

extending an early result of Rosenbrock [Ros1. Their results were later extended by stu­

dents of Desoer, e.g., Barman [Bar] to nonlinear systems. The NDA scheme introduced 

in this thesis provides a unified framework for frozen-time stability analysis of slowly 

varying systems, which is capable of incorporating the previous work. 

5 
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Algebraic approaches to input-ouput feedback go back to the 60's-70's, cul­

minating in operator-norm sensitivity minimization of Zames [Zam2) and generalized 

coprime-factorization of Desoer (Des3). [Zam2] and its further development (see [FraI)), 

now collectively known as "HOO sensitivity optimization", forms a basis for "local" 

synthesis in the NDA. In fact, one motivation for the current work is to extend H oo 

optimization ideas to slowly time-varying systems. 

Although the NDA framework is suitable for stability analysis, the main 

interest here is in performanclJ analysis and system synthesis, especially sensitivity opti­

mization in adaptive systems. Feintuch and Francis [Fei11[Fei2], employing the Arveson 

distance formula [Arv], proved the existence of an optimal controller in a 12 distur­

bance rejection problem for linear time-varying systems. Their result does not include 

a causality &8sumption on the dependence of control on data. Bali, Foias, Helton, and 

Tannenbaum [Ball][BaI2][BaI3], using local Volterra operator expansions, investigated 

the nonlinear sensitivity optimization problem. Major differences between these works 

and the present thesis is that they make no causality assumption, and are not concerned 

with persistent disturbances. 

A simple example (chapter 5) shows that optimal Hoo interpolants in general 

do not depend Lipschitz continuously on data, and hence local Hoo optimal interpola-

tion May yield a fast-varying feedback controller even though the plant and weighting 

are slowly time-varying. This problem is resolved here by using AAK's 6-suboptimal 

maximal entropy interpolants, which are shown to be Lipschitz continuously dependent 

on data. Smith [Smil) discussed the norm sensitivity of BOO interpolants with respect 

to pp.rturbations in data, and provided conditions for the well-posedness of BOO opti­

mization. In Kreisselmeier [Kre], Dahleh and Dahleh [Dab], Cantalloube [Canl] [Can2], 
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1. Introduction 

the continuity constraint is imposed as a hypothesis in their ad"ptive algorithms for 

alowly time-varying systems. 

The relations between stability and coprime factorization are obtained in gen­

eral setting developed by Francis, Schneider and Vidyasagar [Fra3] [Vid], and Desoer et 

al [Dea3]. Although these approachea are well developed for time invariant systems, their 

counterparts for time-varying systems are not weil understood. In the NDA framework, 

relations between local and global versions of robust stability and coprime factorization 

are obtained for systems which vary sufliciently slowly. Some related results were ob-

tained by my colleagues Cantalloube, and Nahum and Caines [Cant] [Can2]. Recently, 

Verma [Verl) established relations between robustness and coprime factorization for 
• 

nonlinear systems. 

Some preliminary results of this thesis were preaented in [Want] IWan2] 

[Wan3] [Wan4]. 

1.3 Outline of the Thesis 

The thesis is organized as follows. Chapter 2 introduces the concept of a 

normed double algebra and its basic properties. The local-global coupling operator \l 

is introduced. Local-global relations within a NDA are established. An application of 

the NDA symbolism in Section 2.6 to state space models provides a unified framework 

for some previous frozen-time time-domain stability results. Then, in Chaptt'r 3, an 

auxiliary frequency-domain norm 1'0'(.) and a time-domain norm Il'IIa(a) are introduced. 

Local frequency-domain bounds on the time-domain behavior are provided in Props. 

3.6-3.9. An immediate application of the NDA framework is a unification of several 

classical frozen-time frequency-domain stability results for slowly time-varying systems, 
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by 4leans of a local-global resolvent relation in Corollary 3.1. Lower bounds on the time­

domain norms 11-114(<<1) in terms of the frequency-domain norms #'«1 ( .) are established in 

frop. 3.10 and 3.11. An "asymptotic isometry" between 11-114(<<1) and 1'«1(-) is provided 

in frop. 3.12. 

Chapter '" consists of a preliminary investigation of sensitivity optimization 

for feedback systems with slowly time-varying stable plants, using the local-global ap­

proximations established in Chapter 2 and 3. An explicit double algebra expression for 

adaptive BIBO aensitivity reduc:tion is obtained. Notions of adaptive and robust (non­

adaptive) senaitivity minimization are applied to an example, and the NDA symbolism 

is employed to show that adaptive minimization can give better sensitivity than HOC 

optimal robust minimization. The local sensitivity minimization problem is studied in 

Chapter 5. An example is first introduced to show that HOC optimal interpolants need 

not depend Lipschitz continuously on data. A controller construded from slowly vary­

ing plants and weightings using optimal local interpolation may be quickly-varying and 

therefore not be amenable to frozen-time analysis. To avoid this difficulty, the issue 

of Lipschitz continuity is investigated and a 6-suboptimal interpolant which satisfies a 

suitable Lipschitz condition is achieved using the central (maximum entropy) solution 

in AAK 'a parametrization. 

Coprime factorizations of unstable plants under assumptions of robustness 

are studied in both Chapter 6 and Chapter 7. General results are first presented, within 

the general framework of Francis, Schneider and Vidyasagar [Fra3] lVid], and Desoer, 

Liu, Murray and Saeks [Des31, in Chapter 6 where relations among robust stabiIity, 

lIeparate coprimeness and joint coprimeness are explored in a general Banach algebra 

(Theorem 6.1). Robustly stabilizable plants in a small neighborhood of a nominal plant 
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are parametrized by a fractional transformation (Theorem 6.2), which displays an equiv­

alence between open and closed loop topologies. Then in a NDA framework, relations 

between local and global versions of robust stability and coprimeness are demonstrated 

in Chapter 7. In particular, we show, for systems which vary 8ufficiently slowly, that 

under certain assumptions there is an equivalence between local and global versions of 

robust stability and existence of a coprime factorization. 

Finally, Chapter 8 summarizes briefty the main results in this thesis and 

points out some further research directions. 

1.4: Main Contributions of the Thesis 

Several mathematical concepts are introduced. It is shown that they can be 

used to pro duce a unified theory of frozen-time analysis. The main new concept is that 

of a normed double algebra of input-output mappings, incorporating local and global 

products, for the analysis of slowly varying systems, i.e., systems whose commutants 

with the shift are smaU. Based on that concept, notions of local stability, localoptimiza­

tion, local spectral and coprime factorization are introduced. It is shown that classical 

frozen-time stability results can be unified in the normed double algebra as relations 

between local and global spectra. 

The thesis employs definitions of robust and adaptive control in an Hoo con­

text to show that under certain conditions adaptive control can achieve better sensitivity 

than an optimally robust control. The actual definitions of adaptive and robust control 

used here, as weil as the idea of a double algebra were provided by Zames [Zam4,6]. 

However, these concepts are worked out here in detail for the first time. 

9 
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New Lipschitz continuity conditions for Boo interpolants are derived. 

New explicit double p..lgebraic expressions for certain adaptive sensitivity op­

timization problems are obtained. 

Relations between local and global coprime factorization and robustness of 

stability are derived. 

10 
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Chapter 2 Preliminary 

Let A denote the Banach Space ofCD-valued functions in ,OO( -00, (0). (Later 

in Chaptel" 3, A will be equipped with certain equivalent auxiliary norms.) Stable 

systems will belong to the Banach space < m > of bounded causal linear operators 

K : A -+ A which have convolution 8um representations, 

t 
(Ku)(t) = L k(t, T')u(,,), te 'Il 

r=-oo 
(2.1) 

where the kernel k: 'Il2 -+ Cnxn is assumed, for each t E 'Il, to satisfy k(t,.) E 

,1(-00,00), 

sup IIk(t, ·)11,1 =: IIKIIB < 00 
tE 'Il 

and k(t,1') = 0 whenever l' > t. 

Unstable systems belong to a Iinear extension < me > of < m >, defined as 

follows. 

Let AD be the subspace of A, 

AO := {u E A : u(t) = 0 for t < tu or t > t~} 

where tu, t~ E 'Il depend on u. (AD)e is the linear space of functions whose truncations 

!lt(u) lie in AD for each t E 'Il. Then < 1Be > is the space of causallinear operators in 
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2. Preliminary 

(AO), which have convolution 8um representations of the form (2.1). An operator G in 

< Il, > is aaid to be bounded if it satisfies that for aU u E (AO)" GITtU E A 'Vt E 'Il 

and 

< m > can be viewed as a subspace of < B, > modulo the following equiv-

alence. 

To each K E < IJ >, assign the unique bounded operator K, E < lB, > 

obtained by first restricting K from A down to AO, and then extending to (AO),; the 

map 1[ --+ K, is an equivalence between bounded operators in < 18 > and < 18, >. 

2.1 Local Systems 

The local behavior of an operator K E < B, > can be described in terms of 

a time-invariant "/rozen-time" operator Kt with the property that K and Kh acting on 

any input in (AO)" produce outputs which coincide at t. 

If K is any linear operator in < B, > defined, for u E (AO)" by a convolution 

sum 
t 

(I[u)(t) = L k(t,O)u(O), te ?L, 
~=-oo 

then the local .ustem of K at r E 1L is the (time-invariant) operator Kr with the same 

domain as K satisfying 

t 

(Kru)(t) = L k (r,r - (t - 0)) u(O), te 1L. (2.2) 
6=-00 

The terms local and frozen-time will be used interchangeably . 

12 
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For any K E < B > and r E 1l, the convolution kernel le (r, r - (.)) of Kr 

has a well-defined transform 

00 

Kr(z) = EIe(r, T -8)z9, Izl < 1 (2.3) 
9=0 

in Boo called the transler funetion of Kr. Jtr will be called the local transler function 

(resp_ 'O(al trans/orml of K (resp_ of Ie(r, r - (-))) a.t T. The notation k(1, T - (.)) = kr (-) 

is used in the sequel. 

2.2 Banach Double Algebra 

We define two products on the space < Be >: (1) The usual operator 

composition product, which will be called the global produd, and denoted explicitly by *, 

although that symbol, as usual, will mostly be suppressed in notation, i.e., F • G = FC; 

and (2) a local proouet, denoted by ® and defined as follows: For any F, K E < lBe >, 

r ® K is the unique operator in < Be > whose local operators satisfy 

Vt E 1l. (2.4) 

We will naturally define the global summation + by the usual operator sum­

mation and the local summation e by means of local operators: (F m Kh = Ft + Kt. 

However, due to our choice of frozen-time systems, F œ K = F + K for any F, K E me, 
and so we will make no distinction between local and global summations. 

A double algebra is any subspace of < me > which is equipped with both 

products and is an algebra with respect to either one. In particular, the space < IDe > 

equipped with both produds is clearly a double algebra which will be denoted by me. 

13 
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A double algebra is normed, called then a normed double algebra (NDA), if 

local and global norms, Il . Il, and 1\ • I\g, are defined on it and satisfy 

IIGKllg ~ IIG/lgilKllgj 

IIG ® KIII ~ IIGII,IIKII" (2.5) 

ln particular, the space < B > equipped with both produds, and with local and global 

norms taken to be equal to II·IIB is a normed double algebra, which will be denoted by 

18. 

HIA is any (normed) double algebra, its restriction to one of its products 

(and normal will be denoted by the prefixes L for local and G for global, as in LIBe 

and Gmt! LB and GB. :LIA and GIA will be called the local (normed) algebra and 

global (normul) algebra respectively. fi LIA and GIA are both Banach algebras then lA 

is a Banaeh double algdra (BDA). B is an example. 

K E lA has a local inverse in IA, denoted by Ke, if Ke is an inverse in LIA, 

i.e. 

(2.6) 

and a global inver8e, denoted by X-l, if X-1 is an inverse in GIA, Le. 

(2.7) 

Similarlyany object defined in lLIA (in GIA) will be termed the loeal (global) 

object in L\. 
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2.3 Banach Double Algebra JEu 

We introduce next a class of operators with exponentially decaying memories, 

called JEu, which forms a Banach double algebra. 

For any q ~ l , introduce the function IIKII(u) of K E JBe defined in terms of 

the kernel k of K. 
t 

IIKII(u) := sup L Ik(t, T)lu(t-T) 
tE1L 1'=-00 

(2.8) 

(which equals SUPCE1L Ilk(t,t - (-))11,1 and may be 00). For any q > 1, let §,. be the 
u 

subspace of JBe consisting of operators K satisfying IIKII(O'k} < 00 for sorne Ok > u, 

where uk depends on K. Clearly Il'II(u) is a norm for~. Let JEu be the closure of lEu 

with respect to 11-I1(u); i.e. K E JEO' iff IIKII(I1) < 00. 

JEu is a Banach space under that norm. We will show in Prop. 2.1 that 

~ is a normed algebra under either product * or 0, and therefore a normed double 

algebra. Simila.rly, lEO' is a Banach double algebra. 

Proposition 2.1 

The space ~ is a normed double algebra, and 1Eu is a Banach double algebra, 

under the norm Il,11(0') and either one of the products * and ®. 
o 

ProoC: In Appendix A. 
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2.4 The Local-Global Coupling 

An e&sential issue in a normed double algebra is relations between its local 

and global properties. As we should proceed to see, a main purpose in introducing 

the normed double algebra symbolism is to address global properties, such as global 

stability and global performance, through local analysis and local synthesis, especially 

in the frequency domaine This strategy is vaIid only arter the local-global coupling in 

the normed double algebra is establisbed. 

The local-global coupling consists of couplings between local and global sum-

mations, products and inversions. While local and global summations are always identi-

cal in our choice of local systems, the local-global product coupling is the main concern, 

which is expressed by the operator 'V. 

Tbe produd-dilference binary operator \l : 1Be X 18e -+ 1Be is defined by 

F 'V X = FX - F ® K. (2.9) 

The 'V operator is also a pivotai element in the local-global inversion cou­

pling, as shown in the following Inversion Lemmas 1 and II. 

Let lA be any Banach double subalgebra of 1Be. In particular 18 and lEu are 

sucb Banach double subalgebras in which both global and local norms are taken to be 

II· liB and Il'II(u)' 

We seek a relation between local and global invertibility in a Banach double 

algebra lA, as this determines stability. Observe first that X E 1Be bas a global inverse 

16 
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in 18e if and only if k(t, t) is invertible in IJnxn for each t E 'll (for then K decomposes 

into the sum of a memoryless invertible operator and a strictly causal one). Conditions 

for local invertibility in lBe are identical to global ones. However, in a general Banach 

double algebra fA this is no longer true, and we get the following development. 

Proposition 2.2 (Inversion Lemma 1) 

(a) If K E lA has a local inverse, Ka E lA, and IIK9 \l KlI g < 1 (or IIK 'V 

K611g < 1), then K has a global inverse in lA, 

K-1 = (KeX) -1 Xe = (1 + Xe \1 K)-lKe if IIXe \l Klig < l, (2.10) 

(or K-1 = Ke (KKe)-1 = Ke(l + K V K 9 r 1 if IIK \l Kel!g < 1). 

Moreover IIK-1I1g is bounded by 

IIK-1I1g ~ IIK9 I1g(l-IiKe \l KlIg)-I, (2.11) 

(or IIK-1 I1g ~ IIK9I1g(I-IIK \1K9119)-1). 

(b) Part (a) remains valid if global norms, products and inverses are inter­

cbanged witb their local counterparts. 
o 

Proof: 

(2.12) 

(KeK)-1 exists in the Banach algebra lA by the contraction principle. Therefore, 

(KeK)-l KeK = I, which proves that K has a globalleft inverse in lA. But as Ke E JA, 

17 
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which ia a lubalgebra of Ile, K has a global inverse in lBe. Therefore the global left 

inverse (KeK) -1 Ke in lA ia in fact a global inverse in lA. The inequalities (2.11) are 

again the results of the contraction princip le. 

(b) The local counterpart is proved by interchanging * and ®, (.)-1 and (.)9, 

as weIl as Il ·lIg and Il . Il,· 
Q.E.D. 

The second Inversion Lemma addresses local-global inversion coupling in a 

normed lubalgebra of me. Let lA be any normed subalgebra of Ile with norm /1 ./1 

lubject to the Norm Charaderization Property 

(Nep) K ElA<=> ntK E lA 'rit E 1L and SUPt /lntK/! < 00 

where {nt, tE Z} is the family of truncation operators. 

Proposition 2.2' (Inversion Lemma Il) 

Suppose lA is an NDA satisfying (Nep) with respect to either 1I·lIg or Il ·11,-

(a) If K E lA has a local inverse Ka E lA, then it has a global inverse 

K-l ElA. whenever either (1) IIKe 'V Kllg < 1, in which case 

(2.13a) 

and 

(2.13b) 

or (2) IIK V Kellg < 1, in which case 

(2.14a) 

18 
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and 

(2.14b) 

(b) Part (a) remains valid under an interchange of global norms, products, 

and inverses with their local counterparts. 
o 

Proor: 

(a) If K9 is in lA, each matrix k(t, t), t E 7L, has an inverse in cnxn 
1 where 

le is the kernel of K. Therefore, K-l exists in Ee. Furthermore, from the identities 

(2.15) 

we get after multiplication by K-l on the right, 

(2.16) 

Subject to the norm characterization property (Nep) and causality of K, the 

usual "amall gain" argument applied in the global algebra GIA gives for aU t E '/1, 

IIITtX-1I1g ~ IIntK9 11g {1-IiITtK9 V' KlIg}-1 

~ IIK9/1g {1-IIK9 V' KlIg} -1, 

(2.17) 

provided IIXe V'KlIg < 1 in which case, Binee the bound (2.17) holds Cor aIl t E '/1" K-l 

is in lA. (2.13a,b) now follows from (2.15) and (2.17). The proof of (2.14a,b) is obtained 

similarly by multiplying KKs by K-l on the leCt. 

(h) The proof remains valid un der the specified interchange. 

Q.E.D. 
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The condition that K 'V G is small will be related to the smallness of the 

commutant of G with the shift, i.e., to slow time variation, and later to slow variation 

in local transfer functions in the frequency domain. First, however, we summarize some 

elementary algebraic identities involving shift-invariant and memoryless operators. 

2.6 Algebraic Preliminaries of 'V Operator 

Let T E me denote the shift, (Ttt)(t) = u(t -1), t E ?l. An operator K E me 
is ,hilt-invoriont iff its eommutant TK - KT vanishes. 

Let (An),. E Ee, r E ?l, denote the projection operator (An),. = IT,.-n,._l' 

An operator r E l3e has no memoru if 

(An),.F = (An),.F(An),., f E 1l. (2.18) 

The following properties are easy to prove. 

Proposition 2.3 

(1) For shift invariant K and arbitrary G in me, 

GK = G ® K, i.e. G" K = O. (2.19) 

(2) Ail operators in lBe are locally shift-invariant, Le., 

K®T- T®K = O. 

(3) For any G, B, and shift-invariant K in 18e, 

(G 'V B)K = G" (BK). (2.20) 
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(4) If r E 1Be has no memory, then for arbitrary G, B in JBe, 

r®G=rG, r~G=o, (rG)~B=r(G~B). (2.21) 

Proof: 

(1) For shift invariant K, Kt = K for aU t. Thus 

(2) It follows from the fact that TKe = KeT for ail t E 1L. 

(3) Sinee K is shift invariant, by (1) we obtain 

(4) Trivial. 

(G~H)K = (GH - G®H) ®K 

= (GH) ®K - G®B®K 

= GBK -G® (B®K) 

= G(HK) - G ® (BK) 

=G~(BK) 

o 

(2.22) 

Q.E.D. 

From Prop. 2.3 part (2), the term shift-invariant in me will be reserved for 

the global property. 

Any r E E can be expressed as a linear eombination of global powers of the 

shift, 

(2.23) 
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where ,Cr) E 18, r = 1,2, ... , are operators with no memory whose kernels satisfy: 

r(r) (t, 1') = I(t, t - r) when l' = t, and 0 elsewhere; and the series converges in weak-/1, 

defined as follows. 

Definition 

A sequence of operators Km E lB weakly-11 converges to K -:: 18 (as m -+ 00) 

jff given any u E 100(-00,00) and any functional ; (with kernel) in 11(-00,00), ; : 

100 (-00,00) --. C, the sequence ;(Kmu) -+ ;(Ku) (as m -+ 00). 
o 

The weak-l1 convergence of 

is proved by considering, for u E 100 

where 9 is a functional with kernel 9 in 11. By Lebesque's dominated convergence 

theorem, 
00 00 

B(Arn) = L g(t) E I(t,t - 1')U(1') -+ 0 
t=-oo r=rn 

as m -+ 00, noting that 

00 

E I(t, t - 1')u(1') < IIfllzlllullzoo 
r=m 

and for every t E 'Il, E~m I(t, t - 1')u(1') -+ 0 as m -+ 00. 

Remarks: 

(a) The expression (2.23) means that misa module spanned by powers of 

T. 
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(b) The weak-11 convergence coincides with the weak operator convergence 

provided the domain of operators in m is taken to be Ao, the subspace of A consisting 

of signaIs z with finite starting time and .z(t) -. 0 as t -. 00, the dual space of Ao being 

11(-00,00). 

We can now express the'\} operator in terms of commutants, after first 

observing that the commutant of an operator in 1Be is precisely the difference between 

local and globa.l products with the shift. 

Proposition 2.4 

T'\}K=TK-KT, for KElBe. (2.24) 

00 

F '\} K = Lr(r)(Tr '\l K), for r, K E lB. (2.25) 
r=O 

where r(r) has no memory, and the series converges wea.kly-11, in lB. 
o 

Proor or Prop. 2.4: 

By Prop. 2.3 parts (1) and (2), 

T \7 K = TK - T ® K = TK - K ® T = TK - KT, 

which proves (2.24). 

From (2.23) we get 

F '\}K = (fr(r)Tr) K - (fr(r)Tr) ®K 
r=O r=O 

00 

= L:r(r) (TfK - Tf ® K) (2.26) 
r=O 
00 

= Lr(r)(Tr '\l K) 
r=O 
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88 r(r) has no memory, and (2.25) follows. The weak-11 convergence of (2.25) follows 

from that of rK and r ® K, which can be easily proved. 

Q.E.D. 

(2.25) suggests that :r \l K will be small whenever K has a small commutant 

and the memory of:r decays sufficiently fast, a motivation to work with lEu, Le. systems 

with exponentially decaying memory. 

2.6 Slowly Time-Varying Systems 

Let TE 1Be denote the shift, (Tu)(t) = u(t - 1), and lEu the Banach double 

algebra defined in section 2.3. X commutes with the shi/t approximately in lEu, with 

rate dt,{K) > 0 if 

du{K) := IITK - XTII(u) S IIXII(u}' (2.27) 

Although the interest here is primarily in H oo -frequency domain conditions 

for slowly time-variation in the sense of (2.27), we note some time-domain results. 

If K commutes with the shift approximately in lEu, and F ElEu has a kernel 

l, we have the estimates: 

Proposition 2.5 

(a) H SUPt E~o I/(t, t - r)l1"u1" := '"'t < 00 then 

(2.28) 
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(h) If J ElEu!, 01 > 0, then 

(2.29) 

(c) For l' and K in lEu 

(d) 

o 

Proor: In Appendix A. 

Most classical frozen-time stability conditions for slowly time-varying systems 

can be encompassed in a statement relating the existence of local and global inverses. 

Time domain conditions are contained in the following. 

Corollary 2.1 

If G and K are in lEuo (00 > 1), and either G has no memory or K is shift­

invariant, then existence of the local inverse (1 + G ® K)9 in lEuo implies that of the 

global inverse (1 + GK)-l in lB, provided that 

dl(G ® K) ~ (e ln(oo)) 11(1 + G ® K)9 ® (1- a)l- QG ® KlIl~~) (2.30) 

for l!Iome Q E R. 
o 
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Proof: 

The assumption that G is memoryless or K is shift-invariant implies that 

G ® K = GK and, by the Inversion Lemma 2.2, the Corollary is true provided that 

(2.31) 

As 1 has no memory and is shift invariant, A 'V B = (A - al) 'V (D -1) for 

any a E R, and (2.31) is equivalent to 

"[(1 + G ® K)9 ® «(1- a)I - aG ® X)] 'V (G ® K)IIB < 1. (2.32) 

By (2.29) (with 01 = 00, 0= 1), (2.30) is sufficient for (2.31). 

Q.E.D. 

Remark: Some of classical frozen-time stability conditions are stated with 

Q = 1. Unfortunately, Corollary 2.1 involves the estimation of the lt-kernel norm of an 

inverse, which is seldom an analytically tractable object, and we therefore move on to 

consider alternative methods in the frequency domain. First, however, an example of 

Desoer [Desl], which is nicely tractable, is included to illustrate the symbolism. 

Example 2.1: 

Stability of the dift'erence equation 

z(t) = Gtz(t - 1) + Ftu(t), tE 1.l (2.33) 

z(t), u(t) E ]Rn; Gt, Ft E m.nxn, is to be deduced from its local properties. fi u E 

loo( -00,(0) and Gh Ft are bounded functions of t E 1L, (2.33) can be expressed in an 

operator form, 

z=GTz+Fu (2.34) 
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with G,l E 13, which has the solution x = (1- GT)-l lu where (1 - GT)-1 E JBe • 

The a priori 88sumption that the frozen-time system is exponentially stable means that 

(1 + G ® T)9 is in Euo for some 0'1), 1 < DO < ).-1, where ). is the supremum of the 

spectral radii of the matrices Ge, t E ?l, ). < 1 being necessary and sufficient for Gt to 

be stable. 

The actual system is lOO-stable if the global inverse (1 + GT)-1 is in JB which, 

by Corollary 2.1 (0 = 1), is ensured whenever the variation rate of G satisfies 

(2.35) 

for some DO E (1,).-1). The norm in (2.35) can be estimated as in [Desl] where it it 

shown that for any Il, À < Il < l, (as G has no memory and Gt is finite dimensional), 

sUPrellll(Gjv)rll(l) =: fJ is a finite constant depending on Il. Therefore 

00 

Il (1 + G ® T)9 ® GII(Do) ~ sup E 1~+IID~ 
tell \=0 

00 

~ p E lIi+lt1b 

1=0 

~ f3v(l - 0'011)-1 

where 0'0 is chosen such that 0'011 < 1. 

(2.36) 

The choice" = 4(1+).),0'0 = 4(1+,,-1) and observation that ln 0'0 > 1-0'01 

give a sufficient condition for stability, d(I)(G) < 2P){I-:J;. If ). = 1-2€ and" = 1-€, 

the rate bound is better than i; . 
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2.7' Nests of Normed Double Algebras 

In preparation for the frequency-domain results, let's axiomatically intro­

duce a concept which is common to the rest of the theory, and is exemplified by the 

parametrized family {Eu} of double algebras. 

Definition 

A Rfl.tt of NDAs is a one-parameter family {JAu, a ~ l} of normed double 

subalgebras of:B with these properties: 

(1) {IAC1} is monotone by inclusion, 

(2.37) 

whenever 1 ~ al < ao, inclusion being strict if 1 =F al i- 0'0. 

(2) For K E JAal' al > a, the local and global norms, IIKII~ and IIKlIg, 
depend continuously on D, and are monotone in CT, i.e., 

IIKII' ~ CORst./lKilg ~ Const·IIKlIg1, 

IIKII~ ~ Con8t·IIKII~ ~ Con8t·IIKII~1' 

the constants being independent of K. 

(2.38a) 

(2.38b) 

(3) Each NDA JAa is either a Banach double algebra or characterized by the 

global norm 1I·"g ~cording to Property (Nep) (Section 2.4). 
o 
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Let us show that {Ea, 1:5 u < uo} is a nest of NDAs. It obviously satisfies 

the conditions (1), (3) and (2.38a,b). As for the continuity of IHI(cr) with respect to (J, 

observe that for K E lE(11 and 1 :5 " < u' < (J1, 

IIktll,1 - IIkt ll ,1 
al a 

00 

= E Ikt (r)I(,,'1" - u1") 
,..=0 

Thus 

IIXII(a/) -IIXII{a) 

~ (1- ;,) (e ln (:!))-lIlXII(al) -+0 as u'-+t1 

which proves the required continuity. 

The NDAs in tbis thesis ail satisfy an additional inequality, linking rates of 

change in local norm to global behavior, which however is not part of the nest definition: 

(2.40) 

the constant being independent of F, K. 

An extension of the Inversion Lemmas to certain nest will be required. 
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Proposition 2.8 (Extended Inversion Lemma) 

If {JAer} is a nest of NDAs, and JAo. is the normed double subalgebra of {JAu}, 

}Aq = {K E JAer : K E JAero for some 0'0> u} 

where 0'0 May depend on K, then the Inversion Lemmas hold with lA :::: JAo.. 
o 

Proof: 

If K and Ke are in JAo., they are certainly in !Au. By Inversion Lernrna 1 

or II, K-l is in IAer and satisfies the inequalities (2.11) or (2.13b). AIl that rernains to 

be shown is tha.t K-l is actually in }Aq. Under our hypothesis, K and Ke are in sorne 

1-\0'0' 0'0 > 0'. There exists sorne O'b 0' < 0'1 < 0'0, such that either I/X 'V K9 11g < 1 

implies IIK \l K911g1 < 1 by continuity of Il ·lIg or, alternatively, IIKe \l K"gl < 1. In 

either case, the Inversion Lemmas imply that K-1 E JAu!, and therefore K-l E JAo.. 

Q.E.D. 
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Chapter 3 Frequency Domain Auxiliary N orms 

We would like to employ local frequency domain methods to obtain bounds 

on global time domain behavior. For this purpose, two kinds of auxiliary norms will 

now be introduced; one on lEu, evaluated in the frequency domain and computable in 

local operations; the second on lB :::> JEq , evaluated in the time-domain and computable 

..... in global operations. For slowly time-varying systems the two will be related . 

3.1 The Local Algebra 1LJEq 

As described in Section 2.1, for any K E lB (or 1Eq ), its local transfer functions 
..... 

satisfy Kr E Hoc (or Hgo) for aIl T and 

sup Il:Kr llHoo < 00, 
r 

Although operators in lB (or in 1Eu) have local transfer functions in Hoo (or 

in Hgo) the reverse is not true. lB and 1Eq have no precise characterizations in terms of 

transfer functions. To deal with operators initially specified in the frequency domain, 
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3. Frequency Domain Auxiliary Norms 

we turn instead to the normed double 8ubalgebras L of m, defined in Section 2.3, 

which have luch a specification. 

For 2 ~ p ~ 00, (1 ~ 1, define the functions of operators J[ E 1EtT 

pY') (X) := sup IIKtIlHP, 
te7L tT 

and in the cue ,,= 00 omit the superscript, i.e. PC7(K) := p~oo)(K). 

Proposition J.l 

(3.1) 

(a) The space L consista prec:isely of those operatofs K E 18e with the 

property that for some (10 > (1 each local transform Kt. t E ?L, is in H~ and J'C7o (K) < 

00. 

(b) < LL, PtT ( .) > is a normed algebra. 
o 

Proof of Prop. J.l: 

(a) The hypothesis that K E L implies that for some Uo > u, the kernel 

/ct of Kt is in l!o' Vt E 7L, and IIKII(C7o) < 00. Therefore the conclusion that it E 

H~, l'tTo (X) < 00 is true. 

Conversely, PtTo(X) < 00 implies that p~~(K) ~ PC7o(K) < 00. For each 

tE 7L, Kt E L~o implies that kt E 1;0 and, by Parseval's Theorem, IIkt ll,2 = lIi tllH2 . 
170 170 

For any Ul in (u,uo) we have 
00 

Ilktll,l := E Ikt(i)uil 
tT1 Î=O 

{ 

00 • 2 00 • } 1/2 

~ ~ Ik,(i)abl ~ ("1/"0)20 

= Il kt Il ,2 "(171/170) 
tTO 

~ "(C7l/tTO)"'C70(K) 

(3.2) 
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and u this is true 'Vt E Z, K E ~. 

(b) It follows from the inequality 

(3.3) 

Q.E.D. 

Although the space L has equivalent descriptions in tenDS of the kernel 

norm Il,11(17) and transform norm IIa(')' 1-'17(') yields a closure of L different from lEa , 

and is weIl behaved with respect to the local product only. 

Henceforth assume L to be equipped with the global norm 11-11(17) and local 

norm I-'D'(')' Let Lit, denote the restriction of lEu to its local product ®, and LlEa the 
,.. 

subalgebra of Ee consisting of operators K E Ile with the property that Kt E H:' for 

ail t E 1.l and IIa(K) < 00. LlEa will be abbreviated as lEa when the local product is 

not emphasized. We have the following obvious relations. 

Proposition 1.2 

For (1 > 1, 

and lEao c L for (1 < 0'0. (3.4) 

o 
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Remark : There is a precise time-domain condition for an operator K to be 

in EO', namely that its kernel k satisfies k(t, t - .) E l! uniformly in t E 1l. However 

in the frequency domain there is only the sufficient condition that Kt E H~ for sorne 

0'0 > (l, uniformly in t, which amounts to assuming that K EL. 

Of the three spaces ~,EO' and EO', only ~ is a normed double algebra with 

both Ume and frequency domain characterization. Therefore, for problems requiring 

mixed local and global operations, ~ will be the algebra of choice. As we should 

proceed to see, local frequency norms p.O' ( .) in &r provide approximants and bounds to 

global norm behaviors. 

3.2 The Global Algebra ClB With An Auxiliary Time Domain 

Norm 

Ultimately the interest here is in the time domain behavior of operators in 

ClEO' viewed as mappings from inputs in 100 (-00,00) =: A to outputs in A, Le., viewed 

as elements of the larger li,lgebra Cl8 of such mappings, Cl8 :::> ClEO'. 

The normed double algebra &r has equivalent descriptions in the time do­

main via the kernel norm Il'11(0') and in the frequency domain via the transfer-function 

norm #'0'(.). However, these norms are incommensurate, and inconvenient for the esti­

mation of 100(-00,00) time domain behavior from local frequency domain properties, 

unlike, e.g., the time-invariant situation in 12(-00, (0), where Parseval's theorem pro­

vides an isometry between kernel and transform representations. Instead, we intro­

duce an auxiliary time-domain norm on E, denoted by " '110(0')' which is equivalent to 

100 (-00,00) induced operator norm on lB. 
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3. Frequency Domain Auxiliary Norms 

This topology was introduced by Zames in [Zaml] and applied to slowly 

time-varying systems by Freedman and Zames in [Frej. This weighs down the remote 

past and is accessible from the frequency domain, as fo]]ows. 

Equip the space A (i.e., '00(-00,00» with the family of auxiliary norms 

( 

t ) 1/2 
lIullo(17) = ft;l sup L \"(1)0-(t-r) 1

2 
, 

tE1L "=-00 
(3.5) 

where ftC7 := (E~oo-2n)1/2 = (1- 0-2)1/2 depending on the parameter 0, 1 < 0 ~ 

00. Here Il''110(00) is interpreted as equal to lIuliloo . 

The Il,,lIa(17) norm is the 100 norm ofthe convolution of u with an exponential, 

smoothing kernel, the kernel normalized to have unit 12(-00,00) norm. The norms in 

this family obtained for various 0 are equivalent to each other, Le., for any 02 > Dl > l, 

(3.6) 

and to the ,00 normi indeed, 

(3.7) 

Each 11-110(17) norm on A induces an auxiliary operator norm on the linear 

space IJ of operatol8; for K E 18, Il K 110(17) := sup{IIKulla(17) : u E A,lIulla(C7) :::; l}. 

Assume the space 18 as weil as the global algebra Gm to be equipped with this family of 

auxiliary operator norms which, again, are equivalent to each other and to the principal 

norm II·IIB on B. The latter is the ,oo-induced norm, on operators K E lB, which equals 

the 8upreme of the ,1 norms of their kernels kt, i.e., 

IIKIIB = IIKlla(oo) = sup II ktllll­
t 

(3.8) 
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3. Frequeney Domain Auxiliary Nonna 

The following is obvious. 

Proposition a.a 

The global algebra cm is a Banach algebra under the" ·/10(17) norm , 1 < (1 ~ 

00. (However, as the constant in the inequality IIK ® CIIO(C1) < Const.IIKlla(C1)/lCllo(C1) 

differs from unit y, the local algebra LlB is not a normed algebra under Il'1I0(C1)') 
o 

The auxiliary norms are bounds on an operator which are uniform in time. 

Occasionally, we shall relate these to certain finer bounds emphasizing particular times. 

The (exponentially weighted) recent past seminorms IIKlla(C1jt) of K E lB are defined by 

IIK/lo(C1jt) := lC;l(1-t sup{llrrtKull,~ : u E A, lIulla(C1) ::5 I},t E '/1,. 

Then IIKllo(C1) = SUPt IIK llo(C7jt)· 

3.3 Slowly Time-Varying Transfer Fonctions 

Our point in introducing the auxiliary II· 1I0(C1) and #'17(') norms, is that the 

former Î8 tractable for systems with persistent time-domain perturbations, the latter is 

computable in the frequency domain and, as we shall proceed to show, the latter gives 

an approximation on the former, i.e., 1lC1(K) - Q ~ IIKlla(C1) ~ Pa(K) + fJ where p -+ 0 

88 the variation rate p of the local transfer funetions of K approaches zero (in the sense 

of Section 3.6), and Q --+ 0 as p --+ 0 and (1 -+ 1. 
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Definition: 

An operator K E ECT has a slowly time-var"ing transler lunetion with rate 

a1,P)(K) if 

2 $ p < 00. (3.9) 

Denote a~oo) (K) by aCT(K). (a~) (K) williater be assumed sman in relation 

to certain additional constants.) 
o 

For BmaU enough a!!') (K), the variation rate of the local transfer function of 

K provides a tractable sufficient condition for K to commute approximately with the 

shift, as weil as a computable bound on the time-domain rate dCT(K). 

Proposition 1.4 

For any Uo > u ~ 1 and p ~ 2, if X E lECTO has a slowly time-varying 

local transfer function with rate a!J:l (X), then for a!J:l (I) small enough, X commutes 

approximately with the shift in lECT (i.e. (2.27) holds), and 

(3.10) 

o 

Proof oC Prop. 1.4: 

Dy Prop. 2.5 part (d), 

IITK - XT!I(CT) = usupllkt - kt-lllil' 
t CT 

(3.n) 
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00 

II kt - kt-lll ,! = L Ikt(r) - kt -l(r)1 uf" 
a ,.=0 

00 

= L Ikt(r) - kt-l(r)1 Ub (u/UO)" 
1'=0 

S IIkt - kt-lll,2 It(aola) by Schwartz Inequality 
aD 

(3.12) 

= IIKe - Ke-IIlB2 lt(aO/a) by Parseval's Theorem 
ao 

5 IIKt - Kt-IIlBp "(aola) P ~ 2. aa 
The proof is completed after taking SUPt of both sides. 

Q.E.D. 

The time domain norm IHlca(a) is bounded by frequency domain auxiliary 

norms Pa (.) through inequalities listed in the following propositions. The first one gives 

inequalities not dependent on slow variation: 

p ~ (0) . 

Proposition 1.5 (rate-independent bounds on K) 

For any K E 1E0' and r E 1.l, the following inequalities hold, (1 < u S 00, 2 ~ 

IIK rlla(O'it) 5 IIKrIlBgo· 

IIKrlla(oo) :5 ltaIlKrIlH ,,· 
0' 

(3.13) 

(3.14) 

(3.15) 

o 
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Proof: In Appendix B . 

The following inequalities depend on rates of time variation. AU operators 

G,K,I in Props. 3.6-3.9 are assumed to he in lEC1' Let 2 ~ p :5 00, 1 < (1 :5 00, 

It~ := (Ete:l i2(1-2i) 1/2. 

Proposition S.8 (rate-depending hounds on K) 

(a) For any p ~ 2, 

IIKlla(C1;t) :5 J.'C1(Ktl + 1t~8!!) (K). (3.16) 

(h) For p = 00, 

1 
IIKlla(C1;t) :5 J.'C1(Kt ) + «(1 -1) 8C1(K). (3.17) 

o 

ProoC: In Appendix B. 

Proposition S., (hounds on K 'V F) 

(a) For any p ~ 2, 

IIK \7 Flla(C1) ~ 1tC11t~I-'~) (K)8!!) (F). (3.18) 

(h) For p = 00, 

1 
IIK 'V IlIo(C1) ~ 1tC1 «(1 _ 1) I-'C1(K)8C1 (F). (3.19) 

(c) If K is slowly time-varying, 

IIK 'V Flla(C1) < (u ~ 1) [I-'0'(K)8C1 (F) + 80'(K) IIF Il a(C1) + 8C1 (K ® Il] . (3.20) 

o 
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3. Frequency Domain Auxiliary Nanna 

Proor: In Appendix B. 

Proposition a.8 (local bounds on GK + 1) 

For slowly time-varying X, 1, let S = GX + 1 and Si = G ® K + F. 

(a) For any p ~ 2, 

(b) For p = 00, 

1 1 ( 1 ) IISlItJ(ujt) - l'u(St) ~ (u _ 1) ltul'u(G)8u(K) + au(S) . (3.22) 

(c) If G is slowly time-varying, 

IISlItJ(ujt)-lIu(Sl) ~ (u ~ 1) {l'u(G)au(K) + au(G) [lIu(K) + (u ~ 1) au(K)] + au(F) } . 

(3.23) 

ProoC: In Appendix B. 

Proposition 1.9 (bounds on a!f) (.))(3.1) 

For any p > 2, 

8!f)(K ® P) < 1'C7(K)a1P) (P) + 1'C7(p)a!!) (X), 

ai.P) (Ke) ~ [l'C7(Ke)] 2 ai.P) (X). 

o 

(3.24~ 

(3.25) 

o 

(3.1) The bouDda (3.25) remain valid for certain DODcaullai operaton Ke j lIee the definition 4.1. 
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Proof: In Appendix B. 

In 8ummary , the global algebra GEer equipped with the Il-Ila(a) norm can be 

used to describe the global time domain behavior; the local algebra LEer, CI > 1 equipped 

with the lia ( .) norm can be used to generate local frequency domain approximants to 

that behavior. 

3.4 Lower Bounds on IHla(er;t) 

While Prop. 3.8 gives upper bounds of the global norm IHla(a) by the local 

frequency auxiliary norm lIer(')' lower bounds on Il'IIa(er) remains to be established, 

which, applied to local sub-optimal interpolations of sensitivity operators in Chapters 

4 and 5, guarantee that the 8ub-optimal solution is actually near-optimal. 

The first lower bound of l\'I\a(a) in Prop. 3.10 is valid for anyahift.invariant 

and slowly time-varying Si. The second one in Prop. 3.11 depends on the radial growth 

property of Si. 

Proposition 1.10 

If the operators S, Si defined in Prop. 3.8 are in lEa, then 

1'1(S1) -1t~)ô!l')(SI) -IIG \l KIIG(a) < IISlla(a;t) < l'a(Si) + ItW)ôW) (SI) + IIG \l Klla(a) 

(3.26) 

where 1t1f) = It~ if 2 ~ p < 00 and er~l if p = 00. 
o 
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Proor: 

By the triangle inequality, 

By Prop. 3.6, 

(3.28) 

Thus the upper bound is established as S - Si = G 'V K. 

It remains only to prove 

(3.29) 

Assume #'l(S!) is achieved(3.2) by P1(Sl) = IIS!lInoo = IS!(é lJ ) 1 for sorne 

, E [-w t w) with the largest (unit norm) singular vector u E en. Then the inequality 

(3.29) is obtained by noting that for exponential inputs "0 E 100 ( -00,00), UO(1') = 

uexp(i',.), 1'E 7L, the output is 

By (B.5) in Appendix B, it follows that 

lt;la- t /lnt (Y8 - ~(é8)U8) Il,~ = le;;la-t IInt (il(é8) - ~(é8)) u911,~ 

< le!!') a!f) (Si) lIulI4(u) 

< le!!') a!!) (s)) 

(3.2) A limilar proof applies Ü "'l(S') ùl)n)y approached but not achieved. 
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as lIulla(7) = 1, which implies that 

IIYella(O'it ) ~ lt;lO'-t IlntYell,2 
fT 

~ lt;lO'-t IlntS1(eie )uell ,2 - 1t~)a~)(SI) 
(7 

= 1'1 (S~) - It~) a!!) (SI) 

by the manipulation 

IlntS1(ie)ue ll'3 = 11~(e,e)ntuell,~ = 1'1 (S~) IIntuell'3 

and ,,;1(1-t IIntuell,2 = 1. 
(7 

Thus 

Q.E.D. 

We introduce next the concept of uniform radial growth, which will relate 

1'(7(') to 1'1('), As a result, the lower bound in Prop. 3.10 can be expressed with respect 

to 1'0'(.) instead of 1'1('), 

If K is in H~, (10 > 1, K ::j: 0, Hardy's Convexity Theorem (Duren [Dur!) 

implies the radial growth condition, 

(3.30) 

where Il = IIKIIHgo/IIKIlHoo and 1 < (1 < 0"0-

K E 1E(7o has unaïorm (in t) radial growth with constant lIao(K) ifr 
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in w hich case 

(3.32) 

Proposition 3.11 

If the operator S, Si, defined in Prop. 3.8, are in JEO'o' 0'0 > 1, and Si has 

uniform radial growth, then 

Il S Il.(a;!) ;>: 1'a(SIl-P 1 (Sil { lIao (Si) (J!:':a) - 1 } - ,Jf) 81.") (Si) -II G 'il K Il.(a)' (3.33) 

o 

Proor: 

Q.E.D. 

Remarks: We can show that 1l0'(') norm is a continuous function of (J. Indeed, 

for K E Eu!, 1 ~ 0' < u' < ah 

However 

11Lu'(K) - #lO'(K) 1 ~ sup I"KtIHoo -IIKtIlHool· 
t 0" q 

IlIitllHoo -IIKtlIHool (i 0' 
00 00 

= sup L kt {r)(u')1" é81" - sup L kt {r)O''' é81" 
6 ~o 9 ~O 

00 

< sup E kt(r) ((0")'" - a'") e'9," 
8 ,.=0 

00 

< L Ikt{r) 1 ((u')'" - ur) 
r=O 

< (1- ;) (eln(:!))-lIlKII(O'l) 
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by (2.39). ACter taking SUPt of the inequality, we obtain 

l~u,{K) - ~u(K) 1 

~ (1- ;,) (eln(:!))-lI\KI\(u!)-+O as a' -+ (J, 

which proves the continuity oC ~,,(.) with respect to u. ThereCore as the rates of G, K, F, 

and S' approach zero ,in the sense oC Section 3.6) and (1 -+ l, (3.26) (which is indepen­

dent of radial growth condition) implies that the auxiliary time-domain norm IISlIa(ujt) 

approa.ches the transfer-function norm ~u{st); in this sense, the former norm is asymp­

totically isometric to the latter. 

3.5 Applications to Frozen-Time Analysis 

Although the main interest here is in adaptive optimization, we note in pass-

ing that many classical frequency domain stability conditions of the frozen-time variety 

(mainly linear systems with a time-varying gain matrix) can be summed up in a state­

ment linking local and global resolvents, as follows. 

The resolvent set ResJA (K) of an operator K in a normed algebra lA is the 

set {~E C : (.xl + K)-1 ElA}, and the 1-sublevel set of that resolvent b > 0) is 

ResJAi'Y(K) = {À E Resl\(K) : Il (~I + K)-lIlJA ~ 1} . (3.34) 

Let G, K be operators in ~, where G has no memory and li is shift invariant. 

Take the local and global nOrIns to be ~u(·) and Il'I\o(u) respectively. 

Corollary S.l 

ReSL.§ri'Y(G ® K) c ResGB(GK), 

provided 8,,(G) ~ (a - 1)/ b~u(K) (1 + 11-',,(G)~u(K))]. 

(3.35) 

o 
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Proor or Corollary 1.1: 

Write ,). := (.\1 + G ® K). If ~ E Re8LL;'Y(G ® X) then #lO'(F). e) ~ ,.., 

by definition of Re8LE(7;'Y' Now as X is shift-invariant G ® X = GX; by the Inversion 

Lemma 2.2, (~I + GK)-l existe in lB, proving the Corollary, provided IIF). 9 \7r). 110«(7) < 

1. Let us evaluate this. 

As K is shift-invariant and ~I has no memory, by (3.20) 

IIr). e "V r).lIo«(7) = IIr). e "V (G ® K)lIo«(7) 

~ (0- - 1)-I[I'(1(r). e)a(7(G ® X) (3.36) 

+ a(1(r). 9)IIG ® xllo(O') + ô(7(F). e ® F).)]. 

The last term in (3.36) is null. The other terms are bounded, as K is shift-

invariant, 

a(7(G ® K) ~ Ô(1(G)I'(7(K); 

a(1(r). e) ~ ,..,2a(7(I).) ~ ,..,2a(7(G)#l(7(K) 

by (3.25). As X is shift-invariant and G has no memory. 

by (3.13). 

which implies the Corollary. 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

Q.E.D. 
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3.6 Variable Rates Approaching Zero 

In adaptive problems, the variation rate of a system il often adjustable. We 

wish to describe the behavior of such a clus of oystems with variable rates as rates 

approach zero. 

Definition 

A slowly time-varying system G E Ea has variable rates 81.")(.) (or du(-)) 

apprOGching zero if there exists an operator-valued function G(p) of the parameter p 

(variable rates) such that 

(1) p takes values in R+ (:= [0,00)) with zero as a Iimit point; G(p) E lEu 

for ail p and for Bome Pl, 

(2) Io'a(G(p)) and Io'l(G(P» (or IIG(P)II(a» are invariant with p. 

(3) 

or 

81) (G(p)) < p 

dt1(G(p» ~ p. 

(3.42) 

(3.43) 

(3.44) 

o 
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It is not specified in the previous definition the way to achieve G(p), which 

may come a priori from problem settings and can be complicated. An example of 

embedding G in lome G(p) is via convex interpolation. 

For G E Ea with normalized a!!') (G) = 1 (or da(G) = 1), take m E 1.l, 

m ~ 1, define Pm = ~ and G(pm} as follows: 

- t t 
Gt(Pm) = (a + 1 - - )Ga + (- - a)Ga+h 

m m 
t E 'IL, (3.45) 

where CI = l.!.J, the largest integer below ~. 

For this choice of G(Pm), it is obvious that 

(3.46) 

and G(Pm) E E., for ail m, Pm -+ a as m -+ 00. So the axiom (1) is satisfied. For 

mE 'IL, m > 1, by definition (3.45) (Gt = Gmt(Pm),t E 1L) 

On the other hand, 

which, together with (3.47), implies 

Similarly 

Thus tbe &xiom (2) is valid. lt is easy to show from (3.45) that 

..., 1 
or da(G(Pm» = -d(1(G) = Pm, 

m 

(3.47) 

(3.49) 

(3.50) 
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which verifies the axiom (3). 

The main purpœe in introducing the concept of "variable rates approach­

ing zero" is to discuss the local-global coupling in the Iimit as rates of time variation 

approa.ch zero and system memories approa.ch infinity. 

Let S, Si E Eao be defined as in Prop. 3.8, (repla.cing lEc:r by ]EDO)' and 

G(p),i(p),i(p) the operator-valued functions embedding G,X,r respectively, as in the 

previous definition. Define 

S(p) = G(p)K(p) + pep), S'cp) = G(p) ® K(p) + P(p). 

Proposition 3.13 

fi the operators G,K,r in Prop. 3.10 have variable rates approa.ching zero, 

then (3.26) has a limit version as 

lim lim !IIS(P)!lII(a'C) -l'O'(st(pnl = 0 uniform in t. (3.51) 
O'-lp-O ' 

o 

Proof: 

Applying (3.26) to Sep), 

#JI (Sf(p») -1t1f)ô!f)(SI(p» -IIS(p) - SI(P)lIa(O') 

~ IIS(P)IIII(ajc) < J.'D(S!(P» + It~)a!!) (SI (p» + IIS(p) - SI(P)lIa(u)' (3.52) 

As a!f)(i(p» -+ 0 as p -+ 0, and 80, by Prop. 3.7, 

IIS(p) - Sl(p) III1(u) = IIG(p) 'Çl i(p) 1111((7) ..... 0 as p ..... O. 
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3. Frequency Domain Auxiliary Nortns 

Thererore after taking limp_o, we obtain 

(3.53) 

Now (3.51) followB as 

as (1-+1 uniform in t, 

Bince 1'0'(.) norm is a continuous fundion of t1 (recall S' E lEC70 ) (see the remark after 

Prop. 3.11). 

Q.E.D. 

Prop. 3.12 may be interpreted as asymptotic isometry between Il-Ila(u) and 

A possible application of the concept is adaptive design problems, where the 

variation rate of a system is often adjustable (e.g., to achieve slow adaptation). The 

simplest example is systems with a time-varying gain (matrix), its variation rate heing 

reduced without changing its maximum value. Another application, as examplified by 

convex interpolation, is time-scaling technique, which has been used in adaptive systems 

and sampling data systems. 

Sinee every G E JEC7 can be embedded in a class of operators with variable 

rates approaching zero, e.g. via convex interpolation technique, Prop. 3.12 is a general 

coupling property between the global norm Il-Ila(l7) and the local norm l'u (.) rather than 

a property of an individual operator. 
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Chapter 4 
Adaptive Design by Local Interpolation: 

Results for Stable Plants 

The double algebra provides a symbolism in terms of which global stability 

and performance can be evaluated explicitly through local approximations. A simple 

example of this involves the stability analysis and the norm evaluation of a global 

sensitivity operator S := (1 + G)-1, GE Eu (hence an open-Ioop stable system), from 

frequency-domain properties of its local approximant, Si := (1 + G)e. We have the 

following stability result, which is an immediate corollary to Props. 2.2 and 3.7. 

Let 2 ~ p ~ 00. 

Proposition 4.1 

H G and Si are in lEu and the variation rate of G satisfies a!f) (G) < 

[1t1.") Ita"~) (SI)] -1, then S is in :8, 

S = (I+SlyrG)-lSI (4.1) 

and 

IISII,,(a) ~ (1- 0)-1"a(SI) 

where 0 := Itult!.") ,,~) (SI) ai.") (G). 

(4.2) 

o 



( 

~ 

i 
1 

( 

1 

( 

l 

4. Adaptive Design by [,ocal Interpolation: Resulta for Stable Plantas 

Although Prop. 4.1 provides an illustrative application of the double algebra 

symbolism, it il still little use in feedback system analysis, as a feedback system is 

often open-Ioop unstable. Instead, we seek global adaptive design via approximations 

by local interpolation. Again the double algebra symbolism is employed to describe the 

approximations. We start, in this chapter, with the case of stable plants. 

4.1 Global Design by Local Interpolatic,.Q 

The main concern here is with the synthesis of a global sensitivity from a 

prescribed local (possibly locally optimal or suboptimal) behavior, as follows. 

Suppose that Wl, W2 E ~ (and Wï1 E L) represent two weightings, 

and GEL represents a strictly causal plant. It is standard that the feedback con-

troUera r E :Be atabilizing in L, i.e., maintaining ail closed-Ioop operators in ~, can 

be parametrized by a compensator Q E &, which gives a sensitivity (1 + GF)-1 -

(1- GQ), and a weighted sensitivity S E~, 

(4.3) 

(Q = r (1 + Gr)-1 is itself a c10sed loop operator). 

Denote W 2G by Gw and suppose that it has a local factorization 

Gw = U® Gout (4.4) 

where U and Gout are locally inner and 10cal1y outer in L, i.e., for each t E 7l, 

Û,(O'(')) E Boo is inner and (êout)t(O'(·)) E Boo is outer. We are given a sensitivity 

Si e L which locaUy interpolates W := W 2 ® W 1 at U in ~c,., i.e., for which there 

exista QI E & such that 

{4.5) 
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where Si is 888umed to be smaller than W in p.a(·) norm to avoid the trivial case QI = 0, 

Q is now chosen to locatly realize Si, i.e., to satisfy 

(4.6) 

To describe the operator Q explicitly in the local algebra 1LL, we need to 

extend LL to include (bounded) noncausaloperators with kernels ~ E l!( -00,(0). 

Definition 4.1 

t~ consists of (time-varying convolution sum) operators K (possibly non­

causal) with uniformly (in t) bounded frozen-time kernels kt E 11,(-00,00) for all u' in 
a 

an open interval (depending on k) containing u. The local product, local inverse etc. - -.... are extended to LL in an obvious way. For K E L~ 

o 

-... -.... 
Then K E LL ifr K E LL and K is causal, or equivalently K E ILL and 

.... 
Kt E H~ for a11 t. 

With the designated extension, the choice of Q is explic:itly given in iL by 

(4.7) 

where GWe E iL. 
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The problem is to determine whether (4.7) is stabilizing and makes Si a good 

approximant to the (true global) senaitivity S for slowly time-varying G, Wi (i = 1,2), 

and S'. 

AllumptSonl for Theorem 4.1: 

(a) S'loca11y interpolates W at U in ~. 

(c) (cout)9 ELand Ûï1 is uniformly bounded in an annulus 0' < Izl ~ ua 

for some 0'0 > 0', i.e. 

(4.8) 

Theorem 4.1 

(a) Q defined by (4.7) stabilizes G in m. 

(b) If Gw, and Gw9 , and Si are slowly time-varying, then the weighted 

sensitivity S E L is explicitly given by 

(4.9) 

where M := W - S· and GW ::: U ® Gout 

Moreover, S satisfies, for 2 < p ~ 00, 

where 

(4.10) 
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and 

where 

(c) If in addition S' has uniform radial growth 11I70(S'), 0'0 > 0', then 

IIISII.la;.) - ,...(sl) 1 $ l'I(SI) {"ao(S') (Jl:':o) - 1 } + (J + ~lr)a1) (SI). (4.12) 

(d) If Wh W2' U, Gout have variable rates approaching zero, then 

lim lim I"S(P)la(u.t) - l'C1(S!(pnl = 0 uniform in t 
C1-1p ..... O 1 

o 

Proor: 

(a) If Q satisSes (4.7) then 

(4.13) 

Assumption (c) ensures that (GOUi)9 EL. Also Wï1 EL by hypothesis. 

It is enough therefore to establish that 

(4.14) 

is in L to prove that Q EL, which would mean that Q stabilizes G. 
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Nowas S' locally interpolates W at U in L by Assumption (a), Ût divides 

(W - Sl)t in H:: for lome Dl > u, for each t E 'Il, and therefore Kt E H:t. To 

conclude that X ELit is enough to show that 1'0'1 (X) < 00 for some 0'1 > 0'. This 

followl from the existence of lome U1 > D in which 1'0'1 (Ue ) < 00 by Assumption (c), 

#0'1 (W - SI) < 00 as W = W 1 ® W 2 and S' E &,., and the inequality holds 

where PO'1 (Ue) := SUPtE7L IIÛ~IIL~. Therefore Q E L, as claimed. 

(b) From (4.3) and (4.6) the identities 

(S - SI) = WSWI - Wa ® Wl + GWQWl - Gw ® (QWl) 

= W2 "J W1 + Gw "J (QW1) 

holds. Therefore, (4.9) follows as QWl = GWe ® M, and 

liS - slllo(C7) ~ IIGw \l (Gw9 0M)lIo(O') + II W2 "J Wllla (O') 

(4.15) 

(4.16) 

< 1CC71C~) [#1.")(Gw)a~)(Gw9 ®M) + 1'1.") (W2)ai,P) (W1)] (by Prop. 3.7). (4.17) 

From which (4.10) follows, and (4.11) follows by Prop. 3.10. 

{cl (4.12) follow8 from Prop. 3.11. 

{dl It follows from Prop. 3.12. 

Q.E.D. 

By Theorem 4.1, global synthesis of the sensitivity operator Scan be ap­

proximately realized by slowly time-varying local interpohmts SI. 
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4.2 Local BOO Adaptive Optimization 

A natural idea for adaptive compensation is to make the sensitivity St at time 

tE Z depend on the local behavior Ge of the plant and (W,h of the weightings, which 

are either found by identification schemes, or given a priori. In frozen-time adaptive 

design a local approximation S~ to St is generated by local interpolation for which the 

adaptive relationship can be represented by a map Si : Z x H~ x H~ x H~ -+ H~, 
~l 1 A • 

DO > D, SC = S (t, Uh W1h W2C) as ln (4.5). 

Theorem 4.1 provides a buis for frozen-time designs to be va.lid, provided 

that Si varies slowly. A sufficient condition for slow variation of Si, when U, W 1 and 

W2 are slowly time-varying in PD'(') norm, is that at each tE 'Il, S'(t,.,.,.) be Lipschitz 

continuous in its variables, i.e., there are constants "Y~!, "Y~~ and "YW) such that for ail 

tE Z 

IIS~ - S~-II1HP ~ "YW)I\Ût - Ût-ll1Hgo 
D'O 0 

(p) 11- - Il (p) 11- - Il + "YWl W lt - W l(t-l) H~ + 1W2 W 2t - W 2(t-l) H~' 
(4.18) 

where 2 ~ p ~ 00. 

In particular, we may try to design Si by local H~ optimization, which gives 

a local optimal weighted sensitivity S~Pt satisfying 

(4.19) 

for each t E ?l, or 

(4.20) 

However it will be shown in Chapter 5 that Si obtained in this way is not 

always Lipschitz continuous in the sense of (4.18), and therefore not a suitable candidate 
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for frozen-time design. Nevertheless it will be shown that for any 6 > 0, the central 

(maximum entropy) interpolant in AAK's parametrization provides an adaptive scheme 

8'(6) in E C70 which is 6-suboptimal, i.e., 

(4.21) 

and is Lipschitz continuous, with constants "Y~! (6), "Y~! (6), "Y~l (6), whose dependence 

on 6 will be evaluated. 

For such a 6-suboptimal adaptation scheme we get the following. 

Corollary 4.1 

Given any 6' > 6, the global sensitivity 8 E ~ (realized using such a 6-

suboptimal Lipschitz continuouslocal interpolation by (4.7) as well as (4.3» satisfies 

(4.22) 

provided that 

where W = W2 ® Wl and 

o 
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Proor: 

(4.22) follows immediately from (4.23) and Theorem 4.1, inequality (4.11), 

noting that 

al2) (GW9 ® M) < ~o (Gw9 )al2) (M) + ~u(M)al2) (GW9 ), 

al2} (M) < al2) (W) + al2} (Si) 

< 8l
2
)(W) + "u(W2h~!8u(Wl) + l'U(Wl)'"Y~!8u(W2) + 'Y~)(6)au(U), 

8l2)(W) $ l'u(Wl)8l2)(W2) + l'u(w2)al2) (W1), 

Q.E.D. 

(4.23) is satisfied for small enough rates 8u(W1), 8u(W2), and 8u(U). In 

other words, for slow-enough systems, the upper bound (4.22) on the global sensitivity 

approximates the supreme of the local Hgo minima. 

4.3 Robust vs Adaptive Sensitivity Minimization 

Information about uncertain perturbations or disturbances is represented by 

a weighting operator W E Eu, (1 > 1. At time t, disturbance pasts are assumed to lie in 

the image under W t of the unit ban of t~( -00, t) in the case of noise, or of Hgo in the case 

of transfer function uncertainty. We distinguish apriori information at sorne starting 

time to, and apo8teriori Îllformation at time T ~ to represented by opera tors WO and W T
• 

The difference between WO and W'" represents a reduction of uncertainty or acquisition 

of information in the interval [to, Tl, and this reduction is refleded in a shrinkage of 

weighting, I(W")e{z)1 < I(WO)e(z)1 for at least some t > T and z in sorne subset of the 
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circle Izl = (1 of non-zero length. A sensitivity reduction scheme will he called robust 

or adaptive if based on apriori or aposteriori information respectively. A controller 

which achieves a sensitivity whieh is better than an optimal robust one is necessarily 

adapt.ive, and the qcestion arises how much advantage adaptation provides. For slowly 

time-varying systems, this can he answered independently of bow the information \Vas 

obtained. 

Example 4.1: 

We will introduce a family of "narrow band" disturbance weighting functions 

whose center frequencies become known with increasing accuracy, and whose envelope 

is easy to compute. 

Let 1(·) : [0,7\"]- Il he a differentiable monotone decreasing function satis­

(ying 1(0) = 1,/(6) = e for 6 ~ I7\", where 0 < e < 1, 0 < Q« 1 are constants, f(·) 

will be fixed. 

., T (1 

Let 0'0 > 1 be tixed. A narrowband weigbting V(80) E H~, 0'0 > 1 with center 

80,I7\" < 80 ~ (1 - I)7\" is a function such that V(80)(OO(')) is outer in Boo, defined in 
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terms of its boundary magnitude by 

for 0 ~ 6 $ 11', 

for -1r ~ 9 $ O. 

-, 

Narrowband disturbances with uncertain center frequencies will be repre-

sented as elements of a famUy of such narrowband weightings, 

The center frequencies lie in an interval with midpoint c and width {3; !3 is a measure 

of uncertainty about center frequencies. 

Let V(P,c) E H~ denote the entlelope weighting of the family, V(l~,c)(oo(')) 

outer in Hoo, and satisfying 

Apriori information about the disturbances is that they belong to the family 

1'(Po, co). (The apriori weighting is assumed to be time invariant.) 
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Sensitivity is to be minimized in a SISO time-invariant plant G E Euo' whose 

inner part consista of one zero at the origin. For 1 < U < uo, the inner factor in JEu is 

U(z) = u-1z. A robust control based on the apriori envelope, \VO = V(Po,co) achieves 

-J.&o(Sr6,t) = inf #lu(Wo - UQ) = WO(O) 
QEEcr 

(4.24) 

ln an interval [0, tJ, additional information is received about the disturbances, 

and results in a shrinkage in aposteriori uncertainty about the center frequency param­

eter, i.e., (Jt is monotone decreasing as t --. 00. An adaptive local optimization of the 

worst case tcnsitivity, based on the aposteriori envelope 

based on Theorem 4.1, achieves 

for t ~ 0, 

for t ~ 0, 

and the resulting adaptive sensitivity achieved is 

(4.26) 

The constants in (4.24-4.25) can be expressed in terms of the logarithmic bandwidth 

4>(t) of the envelope at time t, defined by 

10g4>(t) = :'Ir L: IOgIV(pc,cd(uoe
i9

)ldtl. 

From the assumption that 1(6) = e for 6 > ~'" and the fact that W(Po,co)(')1 is a 

widening of IV(Pc,ct)(')1 by (/10 - (Jt), we deduce that 

log 4>(t) = log 4>(0) + (/Jo - (Je) log e. 

By Jensen's Theorem, 

(4.26) 
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Let US evaluate the lecent past norma Il . lIa(C7it ) or the sensitivity ror the 

rohust and adaptive contlollers. In the rohust case 

In this simple example, the Io'a(Srbat) norm is independent of a and we get, rrom (4.24) 

and (4.26) 

IISrhltIlCl(C7) = 4>(0). (4.27) 

In the adaptive case, (4.25) and (4.26) live 

(4.28) 

Suppose now that {Jt and Ct change slowly, IPt - {Je-II ~ Pp, ICt - Ct-II $ Pc, 

and 1 ~ 1 $ p /. The rates or W and S!dpt are 

As S!dpt depends Lipschitz continuously (LOO -+ LOO) on W, the rate of the local optimal 

sensitivity hecomes small as p -+ 0, and we can hase our solution on it rather than on 

the 6-suhoptimal one. To evaluate the upper bound in Theorem 4.1, we note that 
..... ..... -1 ..... 
GW(z) = U(z) = a z, l'a(GW} = l, 

..... t. 
'(oo,a) = 80 (F) ~ 8C7 (W) + 8C7 (SCldpt) 

~ 2p 

which lives 

(4.29) 
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A lower bound ia computed using (3.26), giving 

(4.30) 

As 1J.t1 is independent of CI in (4.29-4.30), and using (4.28), 

and by (4.27), 

(4.31) 

In the limit of slow time variation, as p -+ 0, (4.31) shows that adaptive sensitivity 

ia better than robust sensitivity by a factor e(Po-Ptl, where (Po - (Jt) is the reduction 

in log-bandwidth of the disturbance weighting resulting from extra information about 

disturbances acquired in the intervening interval [0, tJ. 
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Chapter 6 6-suboptimal Lipschitz Continuous Designs 

Theorem 4.1 and its corollary suggest that the global synthesis of the sensitiv­

ity operator can be approximately realized by slowly time-varying local interpolants. A 

sufficient condition for slow variation is that S' defined in (4.5) be Lipschitz continuous 

with respect to W (= W2 ® WI) and U, i.e., 

(5.1) 

Since a change of variable from z to ooz will transfer the results on Hoc 

to H:g, we will concentrate here on Hoc. Thus assume W, U E lEI and U is locally 

inner in El (i.e., Û;(ei9)Ût(é9) = 1 for 6 E 1-11',11")). The Hoo-norm 1I·IIHoo will be 

abbreviated as 1/·1/00 in this chapter. 

Suppose now S' is a local interpolant of W at U in 1EI, i.e., there exists 

Q E El suc:h that 

s' = W - U®Q. (5.2) 

Si is said to be a local optimal interpolant of W at U if S~ is in fact the 

optimal solution to the local interpolation problem, 

te 7L. (5.3) 
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We are interested here in the Lipschitz continuity of the local optimal or 

aub-optimalaolution Si = W - U ® Q with respect to W and U. 

5.1 Lipschitz Continuity and Lipschitz Continuity In Norm 

Given W, U E El with U 10cally inner in El' Suppose S' is a local inter­

polant of W at U in lEI' 

s' is said to be Lip,chitz continuou, (LOO -+ L2) with constants "fW and "YU 

if constants "yw and "YU can be found for which 

\/t E 1.l. (5.8) 

H we have only 

""",...... ...-.... .......... ....... ....... 

IIIStlloo -IISt-lllool ~ "YWIIWt - Wt-illoo + ~YUIiUt - Ut-ill oo , (5.9) 

then Si ia aaid to be Liplchib continuoui in norm with constants "YW and "YU. 

The problem (5.3) can be transferred into an equivalent Nehari distance 

problem in LOO: 

(5.10) 

where Û: denotes the complex conjugate and transpose of Ût. 

We will show later in section 5.3 that the local optimal interpolant Si is 

Lipschitz continuous in norme But for the moment, we will demonstrate by an example 

that the local optimal interpolant S' is in general not Lipschitz continuous. 
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Example &.1: 

Conaider the problem of optimally interpolating (Ww, U) in H oo , where 

U E Hoo is fixed, U(z) = :t.~l ::;~l' 0 < {Ji < l, (i = 1,2), and Ww E Hoo is 

variable depending on a parameter w > O. By the Nevanlinna-Pick theory, the optimal 

interpolant of (W"" U) has the form 

(a - z) 
Sw =~(az-1)' lai < l, ~ E R, (5.11) 

where S", satisSes the interpolation constraints Sw(I1.&) = W",,(fI,), i = 1,2. Consider 

any W", for which the ratio ti'",(fJ2)/W",(,81) =: p", approaches 1 as w - 0, and which 

satisfies the inequalit,; 

I
dP", 1 > ,lIdWlI 
dw - Idwl' ,> O. 

For example, W", := 1 +wW', where W' E H oo , "W'Hoo < l, W'(Pl) = 0, W'(P2) > 0 

will have these properties. We will show that as w --+ 0, IIdSwllH2/11dW",IIoo -+ 00, 

implying that the optimal interpolant is not Lipschitz. 

As w - 0 we get 

(5.12) 

where S,W,a,,,, all depend on w. The term proportional to dl' is ~ 1 for Izi ~ 1, 

so it is enough to establish the unboundedness of the term proportion al to dOL. Now 

w - 0 implies that p", - 1 which, it is not hard to show, implies that Q - -1 from the 

right, and Ida/dwl- 1,82 - Pll-1V(I- pi)(1 - fJf)W'(fl2) > O. Therefore, for w small 

enough 

IdS(z) 1 

IIdWlloo 1 
(z2 - 1) da dw 1 

> IL (az -1)2 dw IIdWlloo - 1 

Iz2 -11 
~ Const·

IQZ 
_ 112 - 1, Izi :5 l, (5.13) 
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as dw/lldWlloo = (IIW'lIoo)-l. Contour integration now gives 

(5.14) 

which Irows without bound as Cl ~ -1, and therefore as w ~ o. 
o 

In this example, the optimal sensitivity S becomes very sensitive to pertur­

bations in U and W when W takes values close to each other at the zeros of the plant 

inside the unit disk. How leneral this phenomenon is will be a task of future research. 

This example shows that the local optimal interpolant is not a suitable candidate for 

the local interpolation outlined in Chapter 4. 

Althoulh the optimal solution is not Lipschitz continuous in general, we 

will show that a 6-suboptimal Lipschitz continuous solution can be constructed. This 

suboptimal solution is based on the AAK's parametrization, which will be presented in 

the next section. 

6.2 Lipschitz Continuity of AAK's Suboptimal Central 

Interpolants 

Defore the description of AAK's parametrization of optimal and suboptimal 

interpolants to the Nehari distance problem (5.10), an important operator will first be 

introduced. 

Suppose M E LOO. Then the following (negative Fourier) coefficients mk E 

Cnxn (k = 1,2, .•. ) are weil defined, 

1 1'" . k . mk = - e" M(e")d6 
211' _'" 

k = 1,2,···. 
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An operator rM : l~ -t I~ (I~ := 12[0,(0)) il called an Hankel operator with symbol 

M if it is detined by an (infinite) Hankel matrix, 

j,le E (1,00). (5.15) 

Hankel opera.torl play an important role in harmonie analysis of the functions 

in LOO. By Nehari theorem, the distance between an function ME LOO and the space 

HOC ia precisely the norm of the Hankel operator with Iymbol M, i.e., 

(5.16) 

For & > 0, a function S E LOO is said to be a &-suboptimal interpolant of 

M E LOO in (5.16) if 

1 f'" ''''k . - e'v S(e")d6 = m_k 
211" _'" 

1e=1,2,'" 

and 

(5.17) 

Adamjan, Arov and Krein [Ada2] give a complete parametrization of ail 0-

suboptimal interpolants of M E LOO. To describe the parametrization, we will first 

define, following AAK's notation, the following operators. Let M E Loo, 0 > 0, p = 
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p. + 6, where ~ is defined in (5.16). 

r := r M: ,~ --+ ,~; 

B. 2 = (p21_ rtr)-t : 
p 

i 2 = (p21_ rrt}-t : 
p 

t 
G(r,p) = [IJEnRpzlcnJ-! : 
_ _ 1 

G(r,p) = [IJEnRp21cnr2 : 

,2 --+,2. + +, 

,2 --+ 12. + +, 

P = pRpJG(r,p): Vn 
--+ ,~; 

Q = TrR JG(r,p): en --+ l~j p 

(5.18) 

where Ile" is the projection operator from ,2 onto en, T is the right shift operator in 

,~: for u E ,~, (Tu)(t) = u(t - 1) for t ~ 1 and 0 for t = 0, and (p21_ r·r)-l (and 

(p2J - rr t )-l) exists ainee p > IIrll. For the same reason G(r,p) (and G(r,p)) exists. 

For simplidty of notation, write R = Rp2; i = Rp2; G = G(r,p); G = G{r,p), in the 

rest of Chapter 5. 

Let l[x], for x E l~, denote the usual z-transform of x, i.e., if x = {xm, m = 

0,1,···} then .f[xl(z) = E::o xmzm, Izl = 1. Then for P (similarly for Q,P, Q) defined 

in (S.lS), llPh] defines an operator from en to L2. If {eh e2,"', en} is the axis for en 

(i.e., el = (1,0,0, ... ,O}T, e2 = (0,1,0, ... ,OlT, etc.), then 

P+(z} := [l[P6}(z), ... , .f [pen] (z)] Izi = 1 (5.19) 

defines uniquely (in L2.senae) an funetion P+ in L2 which satisfies 

P+(z)h = l[Ph)(z) h E en, Izi = 1. (5.20) 
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Similarly, we define functions Q+, P_, Q_ E L2 via, for 1.11 = l, h E Un 

Q+(z)h = .l!IQh](z), 

P_(z)h = .l![Ph](!), 

Q- (z)h = .c[Qh](!). 

(5.21) 

p+, Q+ have analytic continuation into the unit disk, and hence P+, Q+ e H2• Similarly 

P_,Q_ E L2 e B?, the orthogonal complement of H2 in L2• 

By AAK [Ada2,pI50j, the following identity holds: for 1.11 = 1 

P+'(z)P+(z) - Q~(z)Q+(z) = 1 a.e. (in Lebesque measure), (5.22) 

which implies that for any E e Boo, IIEIIHoo < 1, P+(z) and P+(z) + Q+(z)E(z) are 

invertible (a.e. 1.11 = 1), and also 

(a.e). (5.23) 

From now on, the specification "a..e." (almost everywhere in Lebesque mea­

sure) will be dropped from ::otation. 

By Adarnjan, Arov and Krein [Ada2, Theorem 6.1], the formulae 

where E e Boo and IIElloo ~ 1 gives a complete parametrization of aIl 6-suboptimal 

(p = JI + cS) interpolants SE E LOC of M E LOO in (5.16). 

Take especially E = 0, called the centre solution (or the maximum entropy 

solution) by AAK, we have 

1%1 = 1. (5.25) 

71 



( 

( 

( 

S. 6 •• uboptimal Lip.chits ContinuouB Designs 

Next, let M be a va.riable in a subset M c Loo. Define a mapping ~ : 

R+ X Id -+ Loo by 

t(6,M) = SeM) (5.26) 

where SeM) is a 6-suboptimal interpolant of M. 

I)c-,.) is said to be Lipschitz continuous in Id c Loo if a constant 'Y6 can be 

found for which 

The mapping .(-,.) is called central, denoted by ~o(-,·), if 

where So(M) is the 6-suboptimal central interpolant of M defined in (5.25). 

Let 6> 0 and 

Theorem 6.1 

I-'M = inf IIM - qllLoo, 
QeHoo 

PM = II-M + 6, 

II- = sup l'M, 
MeM 

P = II- + 6. 

The central mapping toc-,·) is Lipschitz continuous with constant 

(5.28) 

o 
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Tu prove the theorem we need some intermediate results. 

First of aU, the expression of $o(z) in (5.25) can be simplified. Define 

po = pRie" En -+ l~, 
(5.29) 

Then 

(5.30) 

where G: en -+ En is memoryless and henee admits a matrix representation G E enxn. 

Similar to (5.19), (5.21), define 

Then for Izi = 1, 

Now 

PO(z) := [l[PO 61(z), ... , .c[PO en](z)) 

QO(z) := [l[Qoel](Z), ... ,.c[Qoe,,}(z)) 

P+(z) = PO(z)G, 

Q_ (z) = QO(z)G. 

80 {z) = pQ_{z)p.;l(z) 

= pQO(z)(po(z))-l. 

lzl = 1, 

Izl = 1. 

(5.31) 

(5.32) 

(5.33) 

The subseript 0 in Bo(z) will be omitted in the rest of the ehapter sinee the ceùtral 

solution is the only solution involved. 

To simplify notation, we will always use Il . Il to den ote operator norms al· 

though its precise meaning will depend on individual input-output spaces. 

Lemma 5.1 

Suppose K : en -+ l~ and K(z)h = ..c[Kh](z), or K(z)h . .:: l[Kh](z), Izl = 

1, h E un. Then the following norm inequality holds: 

(5.34) 

o 

73 



6. 6 •• uboptimal Lipachitl Continuous Designs 

Proof: 

By definition, (or any h E e" 

K(z)h = ![Kh](z) E L2• 

By Parseval 's theorem 

(5.35) 

Thus 

(5.36) 

{ 
We must prove that 

From the matrix inequalities: for any A E Vnx" 

we obtain 

( 
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whieh proves the lemma. 

Q.E.D. 

In the rest of this section, the subseript i (i = 1,2) in ail operators defined 

in (5.18) and (5.29) indieates the operators eorresponding to the symble M, E Loo, and 

Without loss of generality, assume P2 ~ Pl in this section. 

Lemma 5.2 

For the operators pO,P~,P2' defined in (5.29), 

IIpOIl ~ i, 
IIPo _ pOli ~ 1 ! (1 + #1-1 + 3~2) II r2 - rill. 

1 2 P2 + Jl2 6 6 

Proof: 

By definition, 

po =pRlcn. 

Binee for z E l~, 

lI(p21- r*r)zll,2 > p2l1zll_ ~211zl1 
+ 

= (p2 _ ~2)lIzll, 

by Banach algebra inverse mapping theorem, 

(5.37) 

(5.38) 

o 

(5.39) 

(5.40) 

(5.41) 
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Now, by (S.39) and (S.41), as weil as p - IJ. = cS, 

IIpO II = IIpRle,,1I 

~pIIRII 

< P 
- p2 -1'2 

- P 
- ,s(p + l') 
<~ 
- D' 

which proves (5.37). 

Then 

To prove (S.38), define 

..., 1. 
Ki = -2rT, i = 1,2. 

p. ' , 

1 ,.., 1 1 ..., 1 
P2R2 - PIRt = -(1 - K2)- - -(1 - K1)-

P2 Pl 
1 1 ..., 1 1 [ ..., 1 ,.., 1] = (- - -)(1 - K2)- + - (1- K2)- - (1 - Kl)- . 

P2 Pl Pl 

The RHS of (S.44) is bounded via, 

II(~ _ 2:..)(1_ i 2)-lll $ Ip2 - Pli 1 
P2 Pl P2PI 1 _ ~ 

P2 

11'2 - Pli P2 = 2 2 Pl P2 - 1'2 

Ip2 - Pli P2 -
Pl cS(P2 + IJ.2) 

1 
$ cS( ) II r 2 - rlll, 

P2 + 112 

by the inequalities P2 ~ Pl and 

Ip2 - Pli = 1IJ.2 - IJ.II 

= III r 211- IIr l"l 

< 11f2 - rII!· 

(S.42) 

(S.43) 

(S.44) 

(S.45) 

(S.46) 
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Also 1 
\ 

1 [ - 1 - 1] - Il Pl (1- )[2)- - (1- K1)- Il 
1 - 1 - 1--~ Pll1(l- )[2)- 1111(1- )[1)- IIIIK2 - Ktll 

2 2 1 Pt P2 ,.., -
~ --2 2 2 211K2 - Klii (5.47) 

Pl Pl - 1J.1 P2 - 1J.2 
2 

< Pl P2 Iii i Il 
- 6(P1 + IJ.I) 6(P2 + 1J.2) 2 - 1 

1 P1P2 ,.., -:s 62 IIK2 - )[111, 
P2 + 1J.2 

as P2 ~ Pl ~ Pl +#'1· 

However 

PIP211K2 - Klii 

= P1P211
1
2 r;r2 - 12rir111 

P2 Pl 

$ PIP2 [ 
1 1 l'~ + 1211r;r2 - rIrtll] P~ - P~ Pl 

... " 
< [1P2-Pll(P2+Pl) 2+ P1 +Il2I1r -r Il] _. P1P2 2 2 1J.2 2 2 1 (5.48) P2Pl Pl 

~ [lp2 - PI1
P2 + PIIJ.~ + (1J.1 + #'2; P211r2 - r I II] 

PlPI Pl 

~ [lp2 - Pli#'2 (1 + P2)#'2 + (IJ.I + #'2)lIr2 - r lll] 
P2 Pl 

:s [lp2 - P112#'2 + (1J.1 + #'2)lI r 2 - r1111 

~ (#'1 + 3#'2)l!r 2 - rill 

by (5.43) and the inequalities 1J.2 ~ P2, P2 :s Pl and IIr,1I = l',. 

Therefore, from (5.44), (5.45) and (5.48), 

I\P2R2 - PIRIII 

1 1-'1 + 31-'2 
< 6(P2 + #'2) II r 2 - rili + 62(P2 + 1-'2) IIr 2 - r 11! (5.49) 

- 1 ( 1-'1 + 31J.2 ) 

...... = 6(P2 + #'2) 1 + 6 ur2 - rll!· 

77 



6. 6.auboptimal Liplchita Continuoui Designs 

Now, (5.38) follows from (5.49) as 

(5.50) 

Q.E.D. 

Lemma &.S 

I(PO)-I(z)1 ~ .j p2 + 11-2 Izl = 1. (5.51) 

0 

Proof: 

~( By (5.32), P+(z) = PO(z)G, then 

(po(z))-l = GP+l(z) Izl = 1. (5.52) 

From (5.25) 

IP.;l(z) 1 ~ 1 1%1 = l. (5.53) 

Since G is memoryless and self-adjoint, 

IGI = IIGII 
1 

= II[IIvnRlvn]-~1I 
1 

= IllIIcnRlcnrll1~ 
(5.54) 

= plIlIltJn(l- ~r*rrllcnrill. 
p 

2 - 1 - 1 For Q:= '!Ï < l, K := :Ir*r, (1- K)- can be written as 
p p 

( (1- i)-l = 1 2 (1 - K) 
l-Q 

(5,55) 
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where K is self-adjoint and IIKII ~ Q. 

Therefore 

Let KI = IIcnKlvn. Then 

IHIIcn(l- i)-1Icnr111 = (1 - 0 2)11(1 - K 1)-111 

1- 0 2 

~ -1 ---'1::-=1 K"""'7:111 
1- 0 2 

<-...,.,.--"",,"" 
- l-IIKII 

1- 0 2 
<-­- 1-0 

=1+0. 

IGI ~ pv'1 + 0 

=pK 
= VP2 + ",2. 

(5.56) 

(5.57) 

Now, (5.51) follows from (5.52) and (5.57). 

Q.E.D. 

Proof of Theorem 5.1: 

Consider the cent.: al solution (5.33), 

8,(z) = p,Q~(z)(Pt(z)rl Izl = 1, i = 1,2. (5.58) 

82(Z) - 81(Z) = (pIQî(z) - P2Q~(z»)(Pf(z))-1 + P2Q~(Z) (Pf(z))-1 - (P2'(z))-l) 

= [(PIQ~(Z) - P2Q2(Z» + P2Q2(Z)(P2'(z»-1 (P2'(z) - Pï(z))] (Pf(z))-l. 

(5.59) 

Recall that for Izi = 1, 

(5.60) 
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By Lemma 5.3 and (5.59), (5.60), 

By Lemma 5.1, 

But 

Then 

So 

11 82 - SlllL2 

< nl/2vp~ + ~i [IIPIQï - P2Q~1I + P211Pï - Pîlll· 

P·Q9 = Tr·p9 " - 1 2 Il Il -,. 

IIPIQî - P2Q~1I 

= IITrlPî - Tr2P~1I 

< IIPîllllr l - r211 + ~211Pî - P211· 

11 82 - 8111 L2 

5 n l/2Jpi + I-'i [IIPîllllrl - rzll + (P2 + ~z)IIP~ - Pîlll· 

Finally, by Lemma 5.2, 

11 82 - SlllL2 

< n1/2vpi + Ili [i + i(l + ~l ~ 3~2)) IIrl - r211 

< n l
/
2VPi + l'ii [2 + 1-'1 ~ 31-'2] IIrl - r211, 

(5.62) 

(5.63) 

(5.64) 

(5.65) 

which proves the theorem after bounding Pi and I-'i by their maximum values P and Il, 

respectively. 

Q.E.D. 

80 



..... 

-

5. 6.luboptimal Lipachita Cont.inuoua Deaisna 

5.3 Application to Adaptive Design 

Buk to the design problem (5.10). 

ProposItIon 5.1 

The local optimal interpolant Si of W at U in lEI is Lipschitz continuous in 

. -norm wlth 'lW = 1 and 'lU = kw := SUPt IIWt lloo. 
o 

ProoC: 

Let Mt = Û:Wt E LOO. It is easy to show that for Mh M2 E LOO, IIrMllI ~ 

IIM IIILoo and rMl - rM2 = rMl-M2' Tftlerefore 

IIrt - rt-lll ~ IIÛ:Wt - Û:_l Wt-lllLoo 

= II(Û: - Û:_1)Wt + Û:_1(Wt - Wt- 1) Il LOO 

...... ". ..............-.... 
~ kW Il Ut - Ut-IIiLoo + IIWt - Wt-11l 00 

(5.66) 

= kwllÛt - Ût-illoo + IIWt - Wt-illoo . 

We have the inequality 
.... 1 .... 1 

IIIStlloo -IISt-ll\ool = IlIrtll-lirt-llll 
$lIrt - rt-lll (5.67) 

$ kwllÛt - Ût-l!!oo + IIWt - Wt-1lloo 

88 required. 

Q.E.D. 

Consider now the local BOO adaptive optimization problem in Chapter 4. 

The main concern here is to synthesize a sensitivity Si E L which locally interpolates 

W (:= W2WI ) at U in)Eq, i.e., for which there exists QI E &,. such that 

(5.68) 
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and also Si is Lipschitz continuous in the sense of (4.18). 

Since W, U e L, there exists some 00 > 0 for which W, U E 1Eero' Hence 
_.... 00 ..... - 00 

for euh t E 1Z, We, Ue e Bero' Define Mt = Ut Wt E Lero' and 

p = p. + 6, 

for sorne 6 > O. 

For each t E 7l, let (So)t(oo(cot)) be the central cS-suboptimal interpolant of 

Mt in LOO as defined in (5.25). Thus, there are Qt E BOO such that 

(5.69) 

which means that 

(5.70) 

has analytic continuation into the unit disk, Le., Ût(oo(·))(Solt(oo(')) E Hoo, \ft E 'IL. 

Since 

\ft E 'TL, 

the operator QI E 1Be defined by the frozen-time formula 

.... ,., 1 
Q1t(.) = Qt(uo (.)) (5.71) 

is in Eero cL. Then a sensitivity S' E Eero C ~ can be construded via 

S'=W-U®Qlt (5.72) 
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which, by definition, locaUy interpolates W at U in L, and also, by construction, 

locally 6-suboptimal in JE170• 

Let 'Ys be the Lipschitz constant in (5.28). 

Theorem 5.2 

The local central 6-suboptimal interpolant st of W at U in ~, constructed 

in (5.72), is Lipschitz continuous in the sense of (4.18) with constants 

"Y~) = J.'17o(Whs + p ~ #170 (Wl)J.'I7O (W2bc5 + p, 

"YW~ = J.'l7o(W2)"Ys, 

"YW! = J.'l7o(W1)'Yc5' 

ProoC: 

~ ~ - -IISt - St-l11H2 = IIU,(80), - Ut - 1 (SOlt-l IIL2 
/70 /70 

:5 !I (Solt Il Loo /lÛt - Ût-l11L2 + !I(Solt - (SO)t-lIlL2 170 170 170 

:5 pllÛt - Ût -l11 H2 + "YsIIÛ;Wt - Û;_l Wt-lllLoo 
170 170 

by Theorem 5.1 and {5.66} 

< pllÛt - Ût-lIIHOO + "YsJ.'17o(W)IIÛt - Ût-lllHoo - 170 170 

+ 'Yc5I1Wt - Wt-IIIHoo 170 
(2)'" - - -= 'YU !IUt - Ut -lilHIXI + 'YsIIWt - Wt-lIlHoo. 

/70 170 

Sinee W = W2 ® Wl' 
........... ~ ...................... ",...,. .......... 

I!Wt - Wt-l!lHgg = II W2tWlt - W2,t-lWl,t-lIIHGG 
.......... ......... ...-.... ~ 

:5 J.'170(W2)IIWlt - Wl,t-lIlH3g + #170(Wl)IIW2t - W2,t-lIlH8g' 

o 
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l which proves the theorem. 

Q.E.D. 

( 

j 
; 

( 
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Chapter 6 Coprimeness V 8. Robustness: Generalities 

In this c,hapter some preliminary algebraic and topological results on unstable 

plants will be developed. The development proet.~ds within the general topologie al and 

algebraic framework of Francis, Schneider and Vidyasagar [Fra3) [Vid), and Desoer et 

al [Des3]. For related work on the relation between robustness and coprimeness, see 

Verma. [Verl]. 

First, the properties of 1Be on which these results depend will be abstracted. 

Let lA be a normed algebra with identity l, contained in some larger algebra lAe. The 

elements of lA and lAe represent stable and possibly unstable systems. lAe is the direct 

sum of two subalgebras of elements called memoryless and strictly causal, and denoted 

by {lAe}nm and (JAe)ac respectively, with the following properties: If K E (IAe}3c then 

(1 + K)-l exists in lAe, and for any G E lAe, KG as weIl as GK are in (lAe)sct i.e., the 

strictly causal elements form an ideal in lAe; the memoryless subalgebra {lAe)nm is a 

proper subalgebra of lAe containing the identity 1 and (KG)nm = (K)nm(G)nm for any 

K, G E IAei if K E lA then the memoryless and strictly causal components of K are in 

lA. 

It follows from these assumptions that K E lAe has an inverse in lAe iff the 

memoryless component of K has such an inverse, whereupon ((K)nm)-l = (K-1)nm. 



( 

( 

6. Coprimneu VI. Robultnesl: Generalities 

1A1 will denote the set of operators in lA which have inverse in lAe. An operator G E lAe 

has a ri,ht ItJdoriztJtion in lA. if G = ND-l, where (N,D) E lA x 1A1. The factorization 

as weil as the pair (N,D) are ",ht coprime in lA if for sorne (X, Y) E L\. x lAI 

{XN + YD)-l E lA. (6.1) 

Similarly, F E lAe has a lelt lactorization in lA if F = y-lX for sorne (X, Y) E 

lA x lA]. The fadorization and pair (X, Y) are lelt coprime in lA if (6.1) holds with 

some (N,D) E lA x 1A1 . The pairs (N,D) and (X, y) as well as the corresponding 

factorizations are called joint/~ right-lelt eoprime if (6.1) holds, or joint/y coprime when 

there is no ambiguity. A coprime factorization is normalized if the inverse (6.1) equals 

the identity 1. 

Note that if G (or F) E lAe is strictly causal, th en the condition "Y E IAl' 

(or D E JA]) can be replaced by "y E lA" (or D E IA) in the right (or left) coprimeness 

definition. Indeed, if G E (lAe}.,c, then N E (lAe)"c (as (N)nm = (G)nm(D)nm = 0), 

which implies iN E (lAe}.,c. Bence, 1- iN = YD is invertible in lAe , and 1'-1 = 

( 
_) -1 "'" 

D 1-XN E lAe, i.e., Y E IA]. The left coprime counterpart can be argued simi-

larly. 

The interconnection of a feedback F and plant G in lAe is weil posed if ail 

four operators in the matrix 

_ .. '_ (I+FG)-1 G(I+FG)-1) 
K - [K'31·- F (1 + GF)-1 (1 + GF)-l (6.2) 

are in IAe, and lA-stable iff aIl four operators are in lA. If such an interconnection is 

stable then G can be expressed as a ratio of the closed-Ioop operators appearing in 

(6.2) in two ways, i.e., has right and left factorizations in lA, G = ND-1 = fi-IN, and 
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similarly r = y-li = Xy-l. G and J can therefore be represented, albeit nonuniquely, 

by pairs of elements of JA, which will be denoted by G l'V (N,D),r l'V (X, i) in the case 

of, e.g., the right factors of G and left factors of r. 

6.1 Robustness of Stability 

Suppose the plant G "'" (N, D) E lA x lA 1 is stabilized by a feedback F. F 

is held fi.xed while GI l'V (NltDI) is allowed to vary in some neighbourhood of (N,D). 

View the plant representations (NbDI) as elements of lA x JA] under the open-ioop 

norm 

II(N,D)lIo1(JA) = max(llNIIL\, IIDII1\)' (6.3) 

Deftne K E JA 2x2 (of closed loop operators specified in (6.2)) to be IIKllcl(L\) := 

maJei,;=I,2I1KijlllA.' Denote the map from plant pairs to closed loop operators by 

K : JA2 -+ lA', K(N,D) = K. 

Definition 6.1 

Stabilization of G by F is robust in the II· ilIA nor'm if there is a neighborhood 

in 1\ x 1\1 of (N,D) in the open-loop IHlol(IA) norm such that for any (N I ,D1) in it a 

constant (J can be found such that K(NI,DI) E 1A2x2 and 
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6. Coprimnell VI. Robult.nell: Generalitiea 

8.2 A Coprimenes8 vs. Robustne8S Result 

Although not every operator in L\e admits a fact Jrization, every stabilizable 

plant G E lAe (and feedback controller r E L\e) has, as described in (6.2), right and left 

fa.ctorizations in lA. We will denote by JA! the subset of lAe consisting of aH operators 

admitting both left and right factorizations in lA. For linear time-invariant systems, it is 

weil understood that joint coprimeness is suflid~nt for robust stability. Receutly, using 

the Corona Theorem, Smith [Smi2] showed that in Boo aU stabilizable systems admit 

coprime factorizations. However, a linear time-varying operator may admit no coprime 

factorization even if it is robustly stabilizable. For the discussion of coprimeness vs. 

robustness in the following sections, we restrict our plants and feedback controllers to 

those admi~ting some (possibly unknown) coprime factorizatio'ls. 

Let IA~ be the subset of lA! consisting of ail operators admitting sorne (pos­

sibly unknown) left and right coprime factorizations in lA. (6.1) Operators in L\~ has 

the following division property. 

Proposition 1.1 (6.2) 

(1) If G E L\~ p~d has factorization representations (not assumed coprime) 

G = ND-1 = fi-IN, then there exist Q, Q E lA] such that 

(6.5) 

where (No, Do) is right coprime, and (No, Do) left coprime. 

(6.1) See IDeaS] and IVid] for .orne examplea of ~~. 

(6.2) For (1), He aIJo IDea3] property 2. 
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(2) If in addition, (D);~ E lA (or (D);Js ElA), then (Q);~ E lA (or (Q);~ E 

lA). 
o 

Proor: 

(1) Since G E IA~, there exist some (No, Do), (No, Do) E lA X lA] for which 

-1 --1-G = NoDo = Do No and 
XoNo + YoDo = l, 

NOXO + DoYo = 1 

with (Xo, Vol, (Xo, Yo) E lA x lAI. 

(6.6) 

Define Q = D01D, Q = DDol, both invertible in lAe. We only need to verify 

that Q, ij E lA. But 
Q = (ioNo + YoDo)Q 

= XoNoQ + YoDoQ 

= XoN + YoD ElA 

where the identity NoDal = ND-l has been used. Similarly Q E lA. 

(2) It follows the hypothesis and the identities: 

(Q);;~ = (Q-l )nm 

= (D-1Do)nm 

= (D-1)nm(Do)nm 

"" -1 - - -1 and (Q)nm = (Do)nm(D)nm· 

(6.7) 

Q.E.D. 

The following results are stated in the ease of left factors of Gand right 

factors of r, but the results hold alter interchanging "left" and Io;right". 
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Proposition 8.1(6.3) 

Suppose G = D-lN and r = Xy-l are separately eoprime in lA, i.e., there 

exist (Xo, Yo), (No,ijo) E lA x lAI sueh that 

NXo + DYo = 1, 

NOX + DoY = 1. 

Then the following statements are equivalent. 

(1) G and F are mutually stabilizing. 

(2) G and F are mutually robustly stabilizing. 

(3) G and r are jointIy eoprime. 

Prool: 

(3) ====> (2): If G and F are jointly eoprime, then 

a-l = (NX + Dy)-l ElA. 

Sinee [Ki;1 ean be expressed as 

(
I-Xa-IN Va-lN) 

[Ki;1 = xa-Iî) ya-Ijj' 

(6.8) 

o 

(6.9) 

(6.10) 

(2) follows, noting that every eomponent Ki; in (6.10) depends on its variables contin­

uously. 

(2) ====> (1): By definition. 

(6.3) See alao Lemma 3.1 in IVid). 
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(1) => (3): If 

then 

which means G and r are jointly coprime. 

Q.E.D. 

For G, l' E IA~, a stronger result holds. 

Theorem 8.1 

Suppose G, , E IA~ and have factorization representations G = ND-l = 

fi-IN, l' = Xy-l = y-lX (not assumed coprime) with (D);;Ja, (D);;Ja, (Y);;Ja, (Y);;Ja E 

lA. Then the following statements are equivalent. 

(1) G and r are mutually robustly stabilizing. 

(2) The factorizations of Gand r are jointly coprime. 
o 

Proof: 

(2) => (1): This is Prop. 6.2, part (3) => (2). 

(1) => (2): Let RI = NX+DY and R2 = XN+ YD. We will prove Rï l E IA. 

The proof for I.ïl E lA is similar. 
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Sinee D-1, y-l E Be, and (1 + GF)-l E JA, 

(6.12) 

From this identity, we obtain 

(6.13) 

Sinee G, P E IA~, by Prop. 6.1, there are Q, Q E JA] such that 

x = XoQ, y = YoQ, N = QNo, D = QDo, (6.14) 

where (XO, Vol, (No,î>o) E lA x JAl are coprime. 

After substitution, noting Q-l, ij-l E IAe, 

(6.15) 

As Q, Q E lA, robustness of (1 + GF)-l with respect to perturbations in 

(X, Y,N,D) implies that with respect to (Xo, Yo,No,Do). By Prop. 6.2, robustness 

plus separate eoprimeness imply joint coprimeness, and henceforth Ro = NoXo + Do y 0 

has inverse in lA. Without loss of generality, assume Ro = 1. We will prove that 

ij-l ElA (similarly Q-l ElA) which means that (N, D) is in fact coprime. 

Now, robustness of 

K = (1-~NX t j)Y)-~N Y(NX + DY)-IN) 
X(NX + Dy)-ln Y(NX + j)y)-Ij) 

with respect to (X, Y,N,D), 

robustness of 

(6.16) 
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._ (MU M12 \ 

.- M21 M22) 

with respect to (Xo, Yo,N,D) (as Q ElA), 

~ robustness of 

No(Mll)Xo + fioM12XO + NoM21 Yo + DoM22 Yo 

=Ro 

= (NXo + DYo)-lij 

(as Ro = 1) with respect to (Xo, Yo,N.D). 

Consider the special perturbation 

fi + 6Do 

(6.17) 

(6.18) 

(6.19) 

- -1 with small non-zero 6 E lR. By Prop. 6.1 part (2), (Q)nl\'1 E lA. By contraction 

principle, for amall enough 6, (Q + 61);-~ E lA, which implies (\q + 61) E JAl. Define 

L(6) = (N+6No)Xo+(D+6Do)Yo)-lij 

= (Q + 61)-lQ 

or Q (1- L(6» = 6L(6). 

(6.20) 

By robustness, L(6) is a continuous function of 6 and L(O) = J. Thus by 

contraction principle and continuity, for amall 6 'f:. 0, 6-1L -1(6) E lA and 

(6.21) 

Since (1- L(6» 6-1L -1(6) E JA, ij-l E JA and (N,D) is coprime. 

By reciprocity, (X, Y) is also coprime. By Prop. 6.2, we conclude that the 

factorizations of G and r are mutually coprime. 

Q.E.D. 
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A fundamental question in this development is: what kind of plants are in 

JA~? While there is at present no complete &nswer to this question, we will restate a 

known result, which daims that any plant, which is stabilizable by a feedback with a 

coprime fa.ctorization representation, must be in IA~. 

Lemma 6.1 [Des3J[Vidj 

If r = Xy-l = y-li are coprime in lA and GElAt is stabilized by F, then 

G E JA~. 
o 

ProoC: See [Des3} or Lemma 3.2 of [Vid}. 

CoroUary 6.1 

If r = Xy-l = y-li are coprime in lA. and G E JAe, then the foltowing 

statements are equivalent: 

(a) G = ND-l is robustly stabilized in lA by , = y-li. 

(h) ND-l and y-li are jointly coprime in lA. 
o 

Proor: 

(b) => (a): Theorem 6.1. 

(a) => (h): Sinee G is stahilized by r, by Lemma 6.1, G E IA~. The 

implication follows from Theorem 6.1. 

Q.E.D. 
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6.3 Characterization of Robustly Stabilizing Operators 

Consider a plant GElA! witlt factorizations G = ND-1 = fi-IN (not as­

lumed coprime) and a feedbac:k controller F E IA~ with (separately but not assumed 

jointly with G) coprime factorizations P = Xy-l = y-lX . 

.6 - Notation 

In the following theorem if Gl - (NltDl),G2 ..... (N2,D2) are any two given 

plants and M = l(Nit Dd is any functiOl .. of pairs (Nit Di) E lA 2, the notation ~M 

represents 

(6.22) 

We want to charac:terize ail plants in a small neigl-bourhood which can be 

robustly stabilized by P. 

Theorem 8.2 

HG is robustly stabilized by P, then there is a neighbourhood of (N,D) E 

lA x lA] of radius D > 0 in the open loop norm Il'IIo1(IA) in which any two operators 

G, - (N"D,), i = 0,1, stabilized by F, are related by 

"" "" 1 GI = (No + YW)(Do -XW)- (6.23) 

where W E lA, and the inequality 

(6.24) 

holds for lome constant .\ ~ 0, where AK denotes the difference in the corresponding 

cl08ed.loop operator matrices, which are defined in (6.2). 
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MClreover there are normalized representations 

i = 1,2 (6.25) 

for 80me Rs E L\], which are unique and satisfy 

lI~lNR-l,DR-l)lIol(~) ~ Con"t.1I4Kllcl(~) ~ Const.IIA(NR-l,DR-l)lIol(~) 

~ Const·1I4(N,D)llol(~)· 
(6.26) 

o 

Remarks: In Theorem 6.2 the factorizations of C a.nd Ci are assumed to be 

right, and those of F left. However the theorem obviously holds with right and left 

interchanged. 

In prepara.tion for the proof, a lemma will first be introduced. 

Lemma 8.2 

For any Cl E lAe with fa.ctoriza.tion Cl = NIDll satisfying the assumptions 

of Theorem 6.2, and for which (1 + FGl)-l exists in lAe, the relation (6.23) holds 

with W E lAe. W is expressible as a linear form (see (6.40) below) in the c1osed-loop 

perturbations AKi; E lAe, with coefficients in lA. 
o 

Proof' of Lemma 8.2: 

Denote (N,D) by (No, Do) and let 

i == 0,1 . (6.27) 
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,., -1 ,., -1 
XNiRi + YDiRi = 1 

X(NIRïl - NoRal) = - Y(DlRï l - DoRai) 

Xy-l(NlRil - NoRol) = -(DIRï1 - DoRol) 

It follows from (6.29) that 

NIRII = NoRal + YWRal , 

DIRïl = DoRai - XWRal. 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

Obviously Do - XW = DIRï1Ro has an inverse in IA.e• From which (6.23) follows with 

W E JAe• 

from (6.2) 

Next, the closed loop perturbations [âKij] will be related to W. We have 

Similarly, 

Ku := (1 + lG)-1 = (1 + y- l iND-1)-1 

= D(XN + iD) -li 

= DR-IY. 

K12 := G(I + lG)-1 = NR-li, 

K21 := l(1 + Gl)-I = DR-lX, 

K22 := (1 + Gl)-l = 1 - NR-IX. 

(6.34) 

(6.35) 
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Since i and Y are fixed, 

~Kll := (A(DR-1») Y, 

~K12:= (A(NR-1») Y, 

~K21:= (A(DR-1») X, 

âK22 := (A(NR-1») X. 

From (6.32) and (6.33), 

XW = -AKllDo - AK21NO, 

By separate coprimeness of (X, Y), there are (NF, fi F) E lA x lAI such that 

Therefore 

which means W E lA provided [~Ki;l E 1A2X2. 

Proof of Theorem 8.2: 

(6.36) 

(6.37) 

(6.38) 

(6.39) 

Q.E.D. 

The proof will be carried out as a series of implica.tions. In the rest of the 

proof omit the lA subscript from ail norms, i.e. 11·11 = II·IIIA, Il 'lIel = Il . IIcl(JA) , etc. 

By Corollary 6.1, robust stability of (G, P) implies the joint coprimeness of 

ND-l and y-lX, i.e., R-1 E lA. For small enough 6 = 0 and Il (LlN) Il ::; 0, lI(aD) Il ~ 6, 
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6. Coprimneu Vs. Robustness: Generalities 

RO'"l,Rïl are a!so in lA, which implies that ~Kii E lA for i,j = 1,2. It follows from 

(6.40) that W E lA. As the parametrization (6.23) has been shown to hold with W E L\.e, 

it now holde with W EL\.. 

From (6.40) and the fact that "Kii" ~ IIKllelt we get after sorne rearrange-

ment 

(6.41) 

which irnplies (6.24). 

By (6.30) and (6.31) it now follows that 

IIANR-III = IIYWRO'"lil ~ Const.IIWil ~ Const.II~Klleh (6.42) 

II~DR-III ~ Const.II~Kllel' (6.43) 

The reverse of inequalities (6.42-6.43) also hold by (6.36) and the bounds on 

IIR;lllch i = 0,1. For example 

IIAKuli = Il (~(DR-I)) l'II ~ IIVIIIIA(NR-1,DR-1)lIol. (6.44) 

Similar bounds on the remaining II~Kiill hold also. Moreover, 

IIA(NR-1)1I := IINIRïl - NoRa 1 Il 

~ II(NI - No)Rï1 11 + IINl(Rï1 - ROI) Il 

~ Const.IIANII + Const·IIARII 

~ Const.IIANII + Const.IIADIi 

~ Const·IIA(N,D) 1101' 

(6.45) 

A similar bound on IIA(DR-I)II gives (6.26). Uniqueness of the representa.­

tion follows from the fact that IIAKII = 0 => A(NR-1,DR-I ) = 0, by (6.26). 

Q.E.D. 
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Chapter 7 Local vs. Global Coprimenes8 and Stability 

We return now to the operator double algebra me. The strictly causal (resp. 

invertible) elements of me are those G E me whose kernels satïsfy k(t, t) = 0 (resp. 

[k(t, t)r l E cnxn) for aU tE 'IL. 

The normed double algebra in this chapter will be~. Let (~b denote 

operators D in ~ with memoryless part invertible in ~, i.e., the kernel of D satisfies 

Id(t, t)-ll ~ Const. for aIl t E 'IL,C7.I) 

An operator K E me has a global right lactorization (resp. K' E me has a 

local right lactorization) in 1ma Hf K has the form JI = h "J--'. (resp. iff K' has the form 

Kl = N ® De) where (NI D) is in ~ x (JEo.b. 

More generally, any object defined on the global algebra <C;~ (resp. local 

algebra 1L1Eo-) will be designated as the global object (resp. local object) in the double 

algebra~. For example the glob~l factorization K = ND-1 (resp. local factorization 

(7.1) Note tbat tbe stronger condition (Dnm)-l E L ratber than (Dnm)-l E Be (as in 
Chapter 6) is used here in de6nition. 
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7. Local VI. Global Cop~ene •• and Stability 

K' = N ® De) is globally (resp. locally) right coprime in L if there are operators 

it y E L for which the following inverse exists 

globally (7.1) 

(resp. locally (7.2) 

Let Gt F E Ee represent plant and feedback operators, respectively. Their 

feedback interconnection is well.pOled in Ee if aIl four operators in either one of the 

matrices (7.3 - 7.4) are in Ile 

Globally: 

Locally: 

_ ... _ ((I+ FGr l G(I+FG)-l) 
K - [K,,].- l (1 + GF)-l (1 + Gl)-l , (7.3) 

(7.4) 

There ie no distinction between local and global well-posedness, the two are 

equivalentJ7.2) Let lA be a normed double subalgebra of me. F and G globally (resp. 

locally) stabilize each other in lA if ail four operators in (7.3) (resp. in (7.4)) are in lA. 

In general, local and global stabilization may not be equivalent. 

The matrices (7.3) and (7.4) will be termed the global and local matrices 

respectively. 

(7.2) A lufflcient condition for well-posednell ÏI that the memoryleas part of 1 + FG be invertible 
in Be. 
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7. Local VI. Global Coprimeneu and Stability 

Global robustness in L of stabilization is defined as in Chapter 6, as neigh­

bourhood boundedness ofthe global open-to-cl08ed-loop map K (" .), with the algebra lA 

identified as L. Similarly, local robustness in &, is defined as neighhourhood hound­

edness of the map K' which takes open-loop plant pairs into cloaed-loop matrices, i.e., 

K' : g -+ g)(2,Je'(N,D) = K', the matrix K' specified by (7.4). 

It should be noted that the maps Je and K' coincide for shift invariant op­

erators and therefore K'(Ne,De} = K(Ne,De) for each t E 7L. Consequently local stabi­

lizations and local robustness are in fact properties of the global map K(.,·) restricted 

to shift-invariant variables. 

1.1 RelatioDs between Local and Glob~! PH,perties 

Consider a strictly causal plant G E Ee which is to he stabilized in lA 

by a feeciback , ElBe, and which t,herefore necessarily has a factorization in lA, say 

G = ND-l, The stabi1i1.ation ia to be designed on the basis of a local approximation 

to G, C' := N ® ))9, which is used to select a feedback JI := ye ® i which locally 

stabilizes G'. We would like to answer the following question for slowly time-varj'ing G 

and J: Do local properties of (G' ,,'), such as joint coprimeness and robust stability, 

extend to global properties of (G, ')1 

As pointed out in Chapter 6, strict causality of G E lBe implies that of N. It 
,.., ,.., 

follow8 that for any X, Y E L satisfying the Bezout equation 

we have 

(Y)nm(D)nm = (1 - iN)nm = 1. 
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1. Local VI. Global Coprimeneu and Stability 

Thus (Y);;J, = (D)nm E L, i.e., (Y)nm E (Lb. Benceforth, the verification of 

(Y)nm E (&')J will be omitt(,d in the following discussion. 

A pair (N, D) in L x L will be aaid to satisfy the uniform corona conditions 

if there is DO > (J' such that for ail t E 1L and for each vector eit i = 1,"', n of an 

orthonormal buis in en, 

(7.5) 

We may wish to consider coprimeness in a variable rate situation defined in 

Chapter 3, in which N,D,X, Y areembedded in sets ofoperators Nb),D(-y),X(-y), Yb), 

in lome subalgebra lA of lBe, and depending on a parameter 1 > O. If (N(1),Db)), 

(X (-y) , y (-y)) E lA x lA] are jointly coprime for all1 in some (0,10], joint coprimeness 

will be called una10rm in rate on (0,10] if II(X(-y)Nb) + Yb)Db))-lll~ is bounded 

on (0,10); limilarly, robust stabilization will be called uniform in rate if the constants 

appearing in the definition (6.4) is independent of 1, 1 E (0,10], 

ASlumptionl Cor Theorem '.1: (Assumptions for the case of variable rates 

are expressed as (and ... ) in parentheses). 

1 S D < DO are constants. For the operators N,D,X, Y in~, the maximal 

variation-rate of either their transforms, (2 ~ p < (0) 

(7.6) 

or their kernels, 

d = max {dO'o(K) : K E {N,D,X, Y}} (7.7) 

is equal to 10' 
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1. Local VI. Global Coprimeneu and Stabili',y 

Recall that (CL)~ (or (LL)~) is the Bubset of lB" consisting of operators 

admitting Bome (maybe unknown) coprime factorization representations in CL (or in 

LL)· 

Theorem f.l 

(1) The following Btatements (a), (b) and (c) are equivalent in lL1Ea. 

(a) G
' 

and ri are in (L~)~ and have factorizations (and uniform in rate) 

(7.8) 

which are mutually robustly stabilizing in the local algebra L~ (and uniform in rate). 

(b) The factorizations (7.8) are jointly coprime in lL~ (and uniform in 

rate). 

(c) (N,D) and (X, Y) satisfy the uniform corona conditions and are mutu­

ally stabilizing (and with constants independent of "1). 

(2) The following statements (d) and (e) are equivalent in G~. 

(d) The factorizations 

G = ND-l and r = y-li (7.9) 

are jointly coprime in the global algebra GL (and uniform in rate). 

(e) G and' are in (GL)~ and have factorizations (7.9), and Gand Fare 

mutually globally stabilizing in G~ (and uniform in rate). 

(3) There exists a variation-rate bound "10 > 0 for which (1) and (2) are 

equivalent (and uniform in rate). 
o 
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7. Local VI. Global Coprimenell and Stability 

Two lemmas will proceed the proof of Theorem 7.1. Sinee G is assumed 

strictly causal, N is strictly causal. 

Lemma ,.1(7.3) 

For (N, D) in &, x (L) J, if the uniform corona conditions (7.5) are satisfied 

then (N,D) is right coprime in LL. Converse is also true. 
o 

Proor of Lemm.a 7,1: 

By Fuhrmann-Vasyunin Theorem [Nik, p293], under the uniform corona con­

ditions, there exist i and Y in Euo sueh that 

(7.10) 

and for a defined in (7.5), (J := a/{#~o{N) + (#~O(D))1/2 ~ 1, pu(i) and #u(Y) are 

bounded by 

2 - 2 - 1/2 _ ï- ( 1 1 _ r.:::r 1 ) (#uo (X) + #uo (Y)) ~ v R {Jn + {J2n (7 V log li" + 20 log (Jn) 

(8ee [Nik, pp. 292-293]) i.e., (N,D) is right coprime in LlEuo' and hence in L~. 

Conversely, if i ® N + Y ® D = 1 for (i, Y), (N,D) E L.JEo. x {lL.JEo.)J, then 

there exists 00 > (1 such that (i, Y), (N,D) E LlEuo x (lLEuo)}' Thus for any unit 

vector e E Vn , and /z/ < 00 

e = it(z)Nt(z)e + Yt{z)Dt{z)e. 

(7.3) For related work on the relation between corona condition and robult etability, see !Can1,2] 
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7. Local VI. Global Coprirnentaa and Stability 

Therefore, 
1 ~ pcr(X)INt(z)el + pu(Y)IDt(z)el 

~ max {puo(X),puo(Y)} (lN,(z)el + ID,(z)el). 

As max {Puo(X),Puo(Y) } > 0 (by the Bezout equation (7.10)), the conclusion follows. 

hold 

In the following lemma, let 0'0 > 0' and N,D,X, Y E Euo with 

Lemma '1.2 

1 = max{dcr(X),dcr(y),dcr(N),dcr(D)}, 

X®N+Y®D=Rb 

XN+YD =Rg. 

Q.E.D. 

(7.11) 

(7.12) 

(a) If R? exists in JEu, then Rg1 E JEu provided the following inequalities 

IIRI V nr Il (u) < 1, 

Il (X \7 N + Y \7 D)Rï111(u) < 1. 

Moreover (7.13) and (7.14) are vaUd provided 

(7.13) 

(7.14) 

(7.15) 

where Q = 2(eln(~))-1 O'-lkIlRrll(u)' (J = 4k2aIlRrll(cr)' and certainly for sman 

enough rate 1. 
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hold: 

7. Local VI. Global Coprimeneas and Stability 

(b) If R;I exista in Eu, then Rr E E"" provided the following inequalities 

IIR, 'V RglIl (u) < l, 

/I(i 'V N + Y 'V D) ® R~/I(u) < 1. 

(7.16) 

(7.17) 

Moreover (7.16) and (7.17) are valid provided (7.15) is satisfied with Rr 

replaced by 1.; 1. 
o 

Proof of Lemma 7.2: 

(a): The existence of Rie E JEu and (7.13) implies the existence ofRI-1 E Eu 

by Prop. 2.2 provided /lRI 'V Rr Il (u) < 1. Therefore, as 

Rg = R, + X 'V N + Y 'V D 

= [1 + (X 'V N + Y 'V D)Rll] R, 

by the contraction principle, (7.14) ensures existence of R,-1 E Eu, where 

Now by Prop. 2.5 (b), 

/IR} 'V I.r/l(u) ~ (eln (::)) -1 (7-IIIRI II(u)du(Rr) 

~ 2k2 (e ln (::)) -1 (7-1du(Rr). 

By Prt>p. 2.5 (d) and the fact that (Rrle = (XtNt + YtDt)-l, 

(7-1du(l.r) ~ 1I1.~lIru) s~p Il (rdt - (r,)t-lll,! 

~ "R~lIru)(7-14k1, 

(7.18) 

(7.19) 

(7.20) 
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1. Local VI. Global Coprimeneu and St.abUit.y 

where ri is the kernel of R" Therefore 

IIR1 V Rrll(cr) 

< 8les (e ln (~)) -1 u-1 I1ltrllf(7)'Y := {J'Y 

< 1 for small enough '1, 

where {J = 8les (e ln (~)) -1 u-lI1R~lIfcrr Dy Prop. 2.2, 

(7.22) implies, by Prop. 2.5 (b) again, 

lI(i VN + Y \ID) Rï l ll(C7) 

~ 2 (e1n (~)) -1 u-1k'Y (1- {J'Y)-lI1Rrll(cr) 

= Q'Y (1 - {J"f)-1 

(7.21) 

(7.22) 

(7.23) 

where Q = 2 (eln (~))-1 u-lk"R~II(C7)' ThereCore, (7.13) and (7.14) are satisfied 

provided (7.15) is valide 

(b) The proof is similar to that of part (a), with R~ repla.ced by RgI, the 

global product * by ® etc., and also 

(J.E.n. 

Proot ot Theorem r.l: 

Suppose N,D,i, Y are fixed in L and 1 E (0,10] is a constant. 

(1) (a) *=> (b): This is Theorem 6.1, part (a) *=> (b), and with the algebra 

lA. identified as LL. 

(b) <==> (c): This Collows from Lemma 7.1 and Prop. 6.2. 
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7. Loe&l VI. Global Coprimeneaa and Stabiliiy 

(2) (d) ~ (e): This is Theorem 6.1 with the identification of lA as G.I!tr. 

(3) For Imall 'la, 

(1) => (2): If (b) is true, then there exists (10 > (11 > 0' such that (7.6,7.7) 

are defined and Rf E EC71 • Lemma 7.2 part (a) (replacing CT by 0'1 in Lemma 7.2 and 

noting that "y ~ 'la) implies that for small enough '10, Rgl E lEC71 C G~. 80 (d) is 

true. 

(2) => (1): 8imilarly applying Lemma 7.2 part (b) to (d), we conclu de 

that Rf E LL· 
Q.E.D. 
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Chapter 8 Conclusion 

8.1 A DiscUSIJion of the Results 

The problem of robust stabilization and sensitivity optimization for slowly 

time-varying systems has been investigated in tbis thesis. The problem formulation 

reflects three main features of adaptive systems: persistent external noises, time-varying 

plant model and disturbance data, and causal dependence of feedback controUer design 

on that data. 

The local-global double algebra symbolism, introduced for the first time in 

this research, provides a common framework for stability and performance analysis in 

slowly time-varying systems. Within this framework, the coupling between local and 

global properties is described via a " operator, which is small for small rates of time 

variation. 

Slowly time-varying systems are characterized as operators with small com­

mutants (with the shift). The norm of the commutant is bounded by the variation rate 

of a local transfer function, which is tractable in the frequency domain. For systems with 

amall variation rates in local transfer functions, the validity of the local-global coupling 
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8. Conclullion 

Î8 established. Within certain prescribed limits, stability and performance analysis can 

be carried out locally in the frequency domaine 

Although details are workt:d out for discrete-time systems and certain sensi­

tivity optimization problems, the normed C:t)uble algebra symbolism provides a general 

approximation framework for slowly time-varying systems. The symholism can he ap­

plied to other system settings provided the axioms of the normed double algebra are 

satisfied and smallness of the '1 operator HI established. As for performance criteria, 

the sensitivity optimization imp08ed in this thesis serves as only one choice (though 

not an unimportant one) for analysis and synthesis. Other design criteria can certainly 

be employed, such as mixed sensitivity minimization, ex., Jonckheere and Verma [Jon], 

parameter optimization, etc. A critical issure in such synthesis prohlems is that of 

Lipschitz dependence on data, which is resolved in this thesis by using 6-suboptimal 

maximum entropy solutions. 

8.2 Sorne Further Research Directions 

Other design criteria, especially mixed sensitivity or general four block sen­

sitivity optimization, May he worth considering in the NDA framework. 

A task complementary to this research is to develop modeling and identi­

fication schemes compatible with the underlying design problem. Integration of these 

schemes with the local-global double algebra would be a major step towards compre­

hensive operator-system adaptive theory. 
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Appendix A. Proofs of Props. 2.1 and 2.5 

(1) Proof of Prop. 2.1: 

For any r, K E L, let M := rK, M' := r ® K and denote the kernels of 

th08e operators by m, l, k and m'. r and K have a common 0'0 (0'0 > 0') for which 

11111(170) < 00, Il][11(170) < 00 by hypothesis. We will show that for any 0'1 ~ 0'0 

(A.!) 

which meus that MEL. Therefore Lis a normed algebra under *. 

To prove (A.t) observe that as l, k E 1!1' the following changes of summation 

and bounds are vaUd. 
00 00 

(Mu)(t) = (rKu)(t) = L l(t,11) L k(f7,9)u(9) 
'1=-00 '=-00 

= ,!;"" (.t= .. /(I, q )k(q, '») ut')· 

Thus, m, the kernel of M, is 

00 

m(t,6) = E I(t, f7)k('1, 9), 
'1=-00 

and 
00 00 00 

E Im(t,9)10'1t
-

9
) = E L /(t,'1)k('1,B) O'it -

8
) 

9=-00 '=-00 '1=-00 
00 00 

~ E I/(t, f7)IO'it -'1) E Ik(f7,9)10'1,,-8) (A.2) 
'1=-00 8=-00 

00 

~ E I/(t,f7)10'It-'1)\lKII(C71)' 
'1=-00 

After taking BUPceZ of (A.2) we get (A.1). 
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As for the local operation ®, we will prove the inequality 

(r ® K)u(t) = (r ® K)tu(t) 

= (rt ® Kt)u(t) 
00 00 

= E I(t, '7) E k(t,t-('7- I ))u(I) 
'1=-00 6=-00 

00 00 

= E E f(t,'7)k(t,t-(,,-I))u(8). 
8=-00 ,,=-00 

So the kernel m'Ct, 1) of r ® K is 

00 

m'(t,l) = E j(t,'l)k (t,t - ('7- 1)). 
'1=-00 

As a result, 
00 

L Im(t,I)lult -
6) 

8=-00 

00 00 

= L E I(t, '7)k (t,t - ('7- 1)) ult -
8

) 

'=-00 "=-00 

00 00 

< L I/(t,'7)lult-,,) L Ik (t,t - ('7- 1))lu1,,-6) 
'7=-00 (J=-oo 

(A.3) 

(A.4) 

(A.3) follows aCter taking sUPee1l of (A.4). ThereCore Lis a normed double 

algebra. By replacing 0'1 with u in (A.t) and (A.3), we conclude that Eu is a180 a 

normed double algebra. 
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Appendix A. Proofa of Propa. 2.1 and 2.5 

To prove ED' is a Banach algebra, it remains only to show that JEu is a 

Banach space under the 11-11(0') norm (note here Il ·lIg = Il,11, = Il '110')' which is true 

since II is a Banach space under Il,11,1 norme This completes the pro of. 0' 

where 

(2) Proor of Prop. 2.5: 

(a) 
t-l 

((TX - KT),,) (t) = L (k(t - 1,1) - k(t,1 + 1)) ,,(1) 
9=-00 
t-l 

= L m(t, 6),,(9), 
9=-00 

{ 

kt-l(t - 1 - 9) - kt(t -1 - Il), 6:5 t - 1; 
m(t,l) = 

0, elsewhere. 

The hypothesis IITX - KTII(u) ~ PD'(X) implies that 
t-l 

Now 

E Ikt-t(t - 1 - 6) - kt(t - 1- Il)1 q(t-I-9) 
9=-00 

t-l 
= L Im(t,II)lq(t-9)q-l 

9=-00 
t-l 

:5 q-l E Im(t,I)lq(t-9) 
9=-00 

:5 q-l pO'(X). 

00 00 

((1 'V X)u) (t) = E I(t, r) E (k7"(r - 6) - kt(r - 6» ,,(6) 
7"=00 9=00 

= ,f:. (~f(t")(k.(. - Il - kIl' - Ill) u(II 

00 

= E n(t,6)u(6) 
9=00 

Q.E.D. 

(A.S) 
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00 

n(t,I> = E I(t,r)(k,.(r - 1) - kt(r - 'n. 
"=00 

00 E In(t, 1) ICT(t-6) 
6=00 

00 00 

< E I/(t,r)lo(t-r) E Ik,.(r - 6) - kt(r - 6)lo~,.-8). 
,.=00 8=00 

By (A.5) and the hypothesis 

00 

< L I/(t, T)lo(t-,.) It - rlo-1pq(K) 
r=oo 

The inequality (2.28) follows after taking SUPt of (A.6). 

(h) Note that under the conditions of (h) 

t 
E I/(t, T)lo(t-r) It - TI 

,.=00 

t 

= E I/(t, T)ICTlt- r) (o/CTl)t-rlt - ri 
r=oo 

t 

~ E I/(t,r)ICTlt-,.) sup (CT/ol)t-rlt - TI) 
"=00 rSt 

~ IIFH{O'd Sup (CT/O'l)t-"It - ri) 
,.St 

~ IIFII(O'l) (e In(O'l/o))-l • 

By taking SUPt of (A.8), (2.29) follows &om the inequality (2.28). 

(A.6) 

(A.7) 
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(c) 

4(PK) = IITPK - fXTI/(C7) 

= II(TP - rT)K + I(TI - KT) Il (C7) 

S IIKII(C7) Il Tf - PTII(O') + Il
'

II(C7)IITK - KTII(C7) 

= IIr ll(C7)dO'(X) + IIKII(O')dC7 (r). 

(d) Since f~r u E 100
, 

t-l 

((TI - KT)u)(t) = - L (kt(t -1- 1') - kt-l(t - l-1'))u(1') 
7'=-00 

-the kernel qt of (TK - KT), is 

Thus 

{ 

0, 
qt(1') = 

kt(1' - 1) - kt-l(1' - 1), 

l' <o· - , 

l' >1. 

IITK - ITII(C7) = sup IIqtll,l 
t C7 

00 

= BUp L Ikt(1' -1) - kt-l(1' - 1)10'7' 
t 7'=1 

00 

= DSUp E Ikt(1' - 1) - kt-l(1' - 1)IO'r -
l 

t 1'=1 

= DSUp Il kt - kt-lll,l' 
e C7 

Q.E.D. 
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Appendix B. Proofs ofProps. 3.6 - 3.g 

(1) Proof of Prop. 1.5: 

InequaUty a.lS: 

For any t,T' E 1L and u E A we get, for 6 < t, 

(neKr u)(B)a6 :: (lltR"ntu)(lJ)a' , 
= E [kr(1J - ")(7(6-'1)] [(ntu)(,,)a'l] 

'1=-00 

(B.I) 

where kT is the kernel of K" and causality of K" has been used. This is a convolution 

of k,,(")(7('1) and !I(") := (n,u)(")(7('1). By Parseval's Theorem we therefore have 

{l t 2 ( IIntK"ull,~ = 2'11" 0 /ir (ae;6)y(ei9)! dO 

~ IIKrllHgollYIIL2 (B.2) 

= IIKrIlHoollntulI,2' 
(1 tT 

(3.13) is obtained. 

Inequality (3.14): 

We have, for t, l' E 7L, u E A, 

, 
I(K"u)(t)1 = L kr(t - ,,)u(,,) 

'1=-00 

(' f2(, f2 :5 .~..Ik,.(t - q )a('-'l /2 .~..IU(q)D -('-.1/2 (B.3) 

S IIkrll,2 1t(1llulla(tT)' (1 
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Therefore, as Il . 110(00) coincides with Il . Il,00 , 

IIKrlla(oo} < ICCTIIK,.IIH! 

< ICCTIIK,.IIH" CT 

which proves (3.14). 

lDequallty (a.l&): 

by Parseval'. Theorem 

for p ~ 2, 
(B.4) 

As IIKrUlla((1} < IIKrUlla(oo)' (3.15) a180 follows from (B.3) and the inequality 

l'~} (K) < l'/T(K). 

Q.E.D. 

(2) Proof of Prop. 3.8: 

We prove first the following inequality: 

(B.S) 

where 1t1f) = It~ = (Ei~l i20-2i) 1/2 for 2 < p < 00 and /T:I for p = 00. For 

2 ~ P < 00, l' ~ t 

r 

10 -& ((K - Kc)u) (1')1 = 0-& L (kr (1' - e) - kt(1' - e)) u(e) 
e=-oo 

r 

= o-t L (kr (1' - e) - kt(T - e)) or-eo-(r-e)u(e) 
(B.6) 

e=-oo 
~ o-tllKr - KeIlH21t(1llulla(CT). 

CT 
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It folloW8 that 

IIn.(x - K.)ulle"-· < ... Ct .. ("-''''lIx, -X'"H,i)2) 1/2 I1UII0('J 

< ... C~ .. (,,-('-'J It - r l)2) 1/2 a,l.2)(K)lIull.(.) (B.7) 

< 1tC7It~al2) (K) lIulla(u) 

< 1tC7It~al") (K)lIulla(u) 0 

For p = 00, nt(R - Kt) can be resolved into a sum and then summed by 

parts, 
t 

nt(K - Kt) = E ~nr(K - Kt) 
1'=-00 (Bo8) t 

= Hm nr(Kr - Kt) - E nr-l(K" - Kr-l) 1'--00 
"=-00 

where ~nt = ne-nt-l and lim denotes a weak-11 operator limit, which is null. Observe 

that the weak-l1 convergence implies that for u E A limr_-oo IIll1'(K1' - K t )u!l,2 = 0, 
u 

which will be implicitly used in the following proofs to reach required norm inequalitieso 

Therefore, for u EAu, by causality of K,. and the inequality IIntull,2 $ Ituotllulla(u), 
C7 

t 

IInt(1[ - Kt)u1l12 < E IIn,,-I(K1' - Kr-l)uIl12 
u u 

which yields (BoS). 

"=-00 
t 

= E IlII"_I(K" - K"-I)ll"-lUll ,2 C7 1'=-00 
t 

< 1tC7 E o"-IIIK" - K"-lIlHgo lIulla(u), 
1'=-00 

(B.9) 
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by (B.S). 

Inequality (S.18) and (S.lr): 

,,;111 (ntXu) Il,2 U-
t 

tr 

~ ,,;1 Il (ntXtntU) Il,20'-t + 1t;lllnt(:K - Xt}ull,2u-t 
tT (T 

~ l'tr(Kt)lIulla(tr) + ,,~)a12)(K)lIulla(tr) 

Thus for p ~ 2 

IIXlla(trjt) ~ #LtT(Kt) + ,,~)a12) (K) 
1 

~ #LtT(Kt} + ,,~)a1P) (K), 

which proves (3.16) and (3.17). 

(3) Proof of Prop. I.r: 

lnequaUty (S.18): 

For any u E A, let 11 := (X \l F)u = (XF - X ® F)u 

t f' 

IJ/(t)1 = E k(t,1') L (1,.(1' - e) -lt(1' - e)) u(e) 
,.=-<00 e=-oo 

(B.IO) 

(B.ll) 

Q.E.D. 

~ r=t .. Ile (t, rI I".(t-r) Ct .. I(!, (r - el - !k - m 1"'( ,-el u( el'" -(, - e) } ". - (t-,) . 

(B.12) 

The part in { }-brackets in (B.12) is bounded using Schwartz's inequality 

and Parseval 's theorem: 
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From (8.12) and (D.13) we get 

t 

lu(t)1 ~ 1CD'8~2) (r) L Ik(t, 'T) lu(t-,.) It - 'Tlu-(t-,.) Ilull/J(D') 
1'=-00 

by Schwartz's inequality. We now get 

lIulla(O') $ 111I1Ia(oo) ~ 1tD'1t~8~2) (F)I'~2) (K) lIulla(O') 

< ICO'It~8i,P) (F)l'iP) (K) lIulla(O'}, 

which implies (3.18). 

Jnequallty (3.19): 

However, 

t 

1I(~nt)(K \l1)uIl12 = 1I(~nt)Kt L n,._l(F,. - F,.-1)uIl12 
D' D' ,.=-00 

$ ICO'(Jt_1-#'O'(K)8D' (F) IlullafD') 
(J -1 \ 

(B.13) 

(B.14) 

(B.lS) 

(B.16) 

(B.17) 

by (B.S) and the fact that IIKtllHgo ~ #-,O'(K). (3.19) follows from (B.16) and (B.17). 

Q.E.D. 
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Before going on ta the rest of the proofs, we will first show the following 

series expansions for G \l X and GX - (G ® X)t. 

t t 

I1t [GX - (G ® X)t] = - I1tGt E Il,.-1 (X,. - X,.-l) - L Il,.-1 (Gr - Gr-I)X, 
,.=-00 r=-oo 

, 
nt[G \l X] = I1t [GX - (G ® X),] + L I1r-I(GrXr - Gr-IXT- I), 

r=-oo 

(~I1t) [GX - (G ® X),] = (~I1t)(G \l X) 
t 

= (~I1t)Gt E Il,._I(K,. - X,.-l), 
1'=-00 

and the series of operators are weakly-ll convergent. 

Ta prove the series expansions, observe the identities, 

I1t [GX - (G ® X)t] = I1t [(G - Gt)X + Gt(K - Kt)] 
t t 

= L (~I1,.)(G - Gt)X + I1tGt L (~I1r)(K - Kt) 
,.=-00 ,.=-00 

(B.18) 

(B.19) 

(B.20) 

(B.21) 

where I1t has been resolved into EAnr . Now for any F E 18, (~I1h·F = (Arr)TFr , 50 

G and X can be replaced by G,. and Kr in the sums, which can be summed by parts 

ta give (B.1S), aCter the observation that IIr(Gr - Gt) and I1r(Kr - Kt) both weakly-ll 

converge to 0 as r -+ -00. 

By definition of \l, 

rrt[G \l X] = I1t [(GX - (G ® X)t) - (G ® K - (G ® Xh)]. 

Resolution followed by partial summation gives 

t 

-lIt [(G ®K - (G ® Xh)] = L (~rrr)(GrXr - GtKt) 
r=-oo 

t 

= L II''-I(G,.Kr - G"-IKr-d· 
,.=-00 

(B.22) 

(B.23) 
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(B.23) app1ied to (B.22) proves (B.19). 

(B.20) is obtained from the identities 

Alle (GX - (G ® K)e) = Alle «GKlt - (G ® Xlt) 

= Alle(GV1X) 

= AlltGllt(K - Kt) 

followed by resolution and summation by parts. 

Inequality (3.20): 

By the definition of V1 and the triangle inequality, 

< IIlle (XF - (X ® P}e) ull,2 + IIlle (K ® F - (K ® F)e) UIl,2' 
q q 

The first norm is bou~ded by 

IIlIe (XF - (K ® Fh) Ull,2 
q 

t t 

(B.24) 

~ IeqllKtllHgo L o(1'-l)\lF1' - F,.-IU lla(q) + leq E a(1'-l)!I{X1' - Kr- 1)l!'ull a(q)· 
1'=-00 1'=-00 

(B.25) 

The series are summed, and the inequalities 

used, to ob tain the bound: 

After bounding the second norm using (B.5), we get (3.20) . 

Q.E.D. 
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( (4) Proo! of Prop. 1.8: 

lDeqalitiea (I.~l) ud (I.~~): 

By the triangle inequality, 

IInt(GK + l)ull,2 - Iint(G ® K + r)eull,2 
~ cr 

< IInt(GK - G ® K)ull,2 + IIne [(G ® K + r) - (G ® K + rh] ull,2 (B.27) 
~ ~ 

~ IInt(G v K)ull'J + It~Delt~) a~) (G ® K + r)lIulla(~) 

(by the definition of V and (B.5». By prop. 3.7, 

(B.28) 

and we obtain (3.21) and (3.22). 

( lDequallty (1.23): 

By the triangle inequality, 

(B.29) 

On the RHS, the first norm is bounded by It~Dtll~(G ® K + F)lIuIlG(~)' 

By (B.26) and (3.17), the second norm is bounded by 

IIne (GK - (G ® Kle) ull,2 
~ 

< It~Dt t7 1 1 {,,~(G)Ber(K) + Ber(G) (IIer(K) + t7 1 1 a~(K») } lIu llca(er)' 
(B.30) 

The third is bounded by K,~t7t er~la~(r) by (B.5), and (3.23) is obtained. 

( Q.E.D. 
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(5) ProoC or Prop. I.G: 

lDequaUty (I.J4): 

For any t, r E 1L, we have, for p > 2, 

- -11(1[ ® rh - (1[ ® Ph-lliLg 

= lIi,le - Ke-lle-lIlLP 
fT 

= I\it{ft - fe-I) + (Kt - it-l)ft-lIiLP 
tI 

(B.31) 

~ l'tI(K)a1'') (P) + #loti (l')a~) (K), 

which proves (3.24). 

lnequaUty (1.2&): 

It il! implied by the following inequality, 

....... 
(B.32) 

which holds for a11 t E Z. 

Q.E.D. 
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