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Abstract

A normed space of input-output mappings equipped with two products, one
global and the other local, called a normed double algebra (NDA), is introduced for the
frozen-time analysis of stabilization and optimization of a class of slowly time-varying
systems. Local-global relations within a normed double algebra are established, in the
time and frequency domains, in systems which vary slowly. The local-global relations,
applied to system properties such as stability, coprime factorization and optimization,
enable global properties to be deduced from the local onas, especially in the frequency
domain, by methods which are compatationally tractable, at least in principle. Classical
frozen-time stability is reinterpreted in terms of a relation between local and global
resolvents in the NDA. Relations between local and global coprime factorizations and

their implications to local and global robust stability are obtained.

An explicit double algebraic expression for adaptive BIBO sensitivity reduc-
tion is established. Notions of adaptive and robust (non-adaptive) sensitivity mini-
mization are applied to an example involving rejection of narrowband disturbances of
uncertain bandwidth and center frequency. The double algebra symbolism is employed
to show that adaptive minimization can give better sensitivity than H®® optimal robust

minimization.

To implement a design strategy of global sensitivity optimization using local
H*®® interpolation, Lipschitz continuity of optimal H® interpolants on data is investi-
gated. While optimal H® interpolants in general do not depend Lipschitz continuously
on data, §-suboptimal interpolants based on AAK’s maximal entropy solutions satisfy

an appropriate Lipschitz continuity condition. These, applied to slowly time-varying
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systems, achieve approximations to the globally optimal interpolants, which become

accurate as the rates of variation approach zero.
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Résumé

Un espace normé de relation entrée-sortie muni de deux produits, un global et
un local, appelé & un temps donné double algébre normé (ADN), est présenté pour une
analyse et 1’optimisation d’une classe de sy: .2mes variant lentement dans le temps. Les
relations local-global, appliqués aux propriétés du systéme tel que stabilité, factorisation
premilre et optimisation, rendent possible la déduction des propriétés globales & partir
des propriétés locales, en particulier dans le domaine fréquentielle, par des méthodes
en principe calculables par ordinateur. La classique stabilité & un temps donné est
réinterprétée en termes de relation entre les solutions globale et locale dans 'ADN. Les
relations entre les factorisations premiéres globale et locale et leur implication avec la

stabilité robuste, locale et globale, en résultent.

Une double expression algébrique pour la réduction de sensibilité adaptative
(entrée et sortie bornées) est expliciternent établie. Les notions de minimisation de sen-
sibilité adaptative et robuste (non adaptative) sont appliquées & un exemple comprenant
la rejection de perturbations & bande étroite d'une largeur de bande incertaine et d’une
fréquence-centre. La symbolique d’algébre double est employé pour montrer que la min-
imisation adaptative peut donner une meilleure sensibilité que la minimisation robuste

et optimale dans H®,

Pour mettre en place une stratégie pour la conception d'une optimisation en
sensibilité globale utilisant une interpolation locale dans H®, la continuité Lipschitz
d’interpolateurs optimaux dans H® est étudiée. Ceci, appliqué aux systimes variant
lentement dzns le temps, résulte dans I’approximation d'interpolateurs globalement op-

timaux, qui deviennent précis lorsque les taux de variation tendent vers zéro.
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Notation

R, €, Z denote the reals, complex numbers and integers. The complex

conjugate of any z € C is Z.

K" and IKK"*"™ denote n-vectors and n x n matrices over a ring K. C"
is viewed as a Euclidean space; for z € C" the conjugate transpose is z* and norm

lz| = (z‘x)l/ 2, For a matrix K € C"*", |K| is its largest singular value.

i8la,b], 1< p < o0, o >0, denotes the space of sequences u(t), ¢ =
a,a +1,...,b, teZ,either of vectors in C™ or n x n matrices in C™**" for which

[Ehalu@lo] P <o, for 1<p <o

lullp = (0.1)

SUPse[q | [u(t)|0* < oo, for p=oo.

The dimension n will be fixed and omitted in notation except where it is to

be emphasized, where the notation (I5(a,])" or (Ble, b])"x" will be used.

HP, 1<p<o0, o>0, denotes the HP space of of C"-vector or L"*"-

matrix functions K(z) on the disk |z| < o for which

2r ) 1/p
IKC)lgg = 1K@ mr = (5 [ [k as) . o2

27

HY is viewed as a subspace of L, the space of L? (Lebesque-p spaces) functions of the

circle of radius o.

Note that for p = 2,0 =1, K € (H2)"x", the Banach norm employed in
this thesis is

Kl = (o [ x| ao) " (03)




( which is different from the usual definition of H2-norm (Hilbert norm)

x /
K|z = (51; 02 Trace (K‘(e‘e)K(cw)) dd) v , (0.4)

where Trace(A) = Y7, a;; for A = [a;;] € T,

Nevertheless, due to the matrix inequalities
|A]2 < Trace(A*A) < n|AJ? (0.5)

for any A € C™", || || 42 and || - ||2 are equivalent norms.

L(u) € LY denotes the z-transform of any u € I2(—00, 00),
o0

L(u)(2) = Z u(t)2t, [2| = . (0.6)

t=—00

L(u) will also be represented by @. When u € {2[0, 00), £(u) has analytic continuation
into the disk of radius o, i.e., £(u) € H2. L~1(K) € I2 denotes the inverse transform

( of any K € L2 defined for ¢ € (—00,00), ¢ € Z by

K2 . .
L7YEK)) =07" (—1— / K(oe'o)e—‘“dﬂ) . (0.7)
2w 0
If K € H2, then £L~1(K)(t) = 0 for t < 0. Functions in !5 will be denoted by lower case

letters, in HE by capitals, and operators in either space by boldface capitals.

¢, t € Z denotes the truncation operator which maps any f € 15(—o0, o0)

into f;, where f;(r) = f(7) for r <t and O elsewhere.

The following constants (as a function of o > 1) are fixed in the thesis:

o 12
\ - . a
1 Ko = (E" 2’) = =i

| i=0 "=
00 1/2
. 0.8
lcf, = (E 1'20"2') : (0.8)
1=0
1
( :cc(,p)=lcf, for 2 < p < o0; =-—3 for p = oo.




Chapter 1 Introduction

Our objective in this research is to develop a common systems framework for
the frozen-time analysis and optimization of slowly time-varying MIMO systems. The
main idea is to achieve stability and optimality (or near optimality) by means of notions

of “local” stability and “local” optimality, especially in the frequency domain.

1.1 Problem and Approach

In order to get a nontrivial theory of adaptive stabilization and optimization
for time-varying systems, the effect of persistent disturbances. say in [®°, and causality
constraints, i.e., causal dependence of control on tim-~.varying data, have to be consid-
ered. Apart fr~mn some existence results for a relatea {? disturbance rejection problem
without causality constraints ([Feil][Fei2]), there is at present no such complete theory.
Since it would appear that the ability to adapt or learn from experience is limited to
those aspects of data which persist or, at most, vary slowly with time, it seems worth-
while to single out features of optimization which are peculiar to slowly time-varying

systems.

There are conditions for the BIBO stability of slowly time-varying systems

based on the ideas of frozen-time analysis and exponentially weighted {2 spaces, going




1. Introduction

back to the 60’s [Fre] [Desl]. It became apparent in the course of this research that
certain features in these results could be abstracted and generalized to derive a common

algebraic framework for frozen-time analysis of stability and optimization.

The framework introduced here involves the notion of a normed double alge-
bra (NDA), i.e., a normed space of input-output mappings on which two products are

defined, one local and the other global.

Local-global relations within a normed double algebra are established, in
the time and frequency domains, in systems which vary sufficiently slowly. The local-
global relations applied to system properties such as stability, coprime factorization and
optimization, enable global versions of these properties to be deduced from the local
ones, especially in the frequency domain, in a way which is computationally tractable at
least in principle. Classical frozen-time stability is reinterpreted in terms of a relation
between local and global resolvents in the NDA. Relations between local and global
coprime factorizations and their implication to local and global robust stability are

obtained.

One approach to solving a persistent disturbance rejection problem is to use
direct /1-kernel optimization. However, it might be desirable in systems analysis and
synthesis to employ qualitative information provided by spectral data in the frequency
domain, which would be lost in the {}-kernel approach. Our alternative is to establish
an “approximate isometry” between certain frequency and time domain norms to ap-
proximately evaluate /}-kernel behavior from related H® properties in the frequency

domain.

An explicit double algebraic expression for adaptive BIBO sensitivity reduc-

tion is established. To implement a design strategy of global sensitivity optimization

4
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1. Introduction i

using local H* interpolation, Lipschitz continuity of optimal H*° interpolants on data "

¢4

is investigated. While optimal H® interpolants in general do not depend Lipschitz con-
tinuously on data, §-suboptimal interpolants which satisfy a suitable Lipschitz condition
can be obtained using AAK’s maximal entropy solutions [Ada2]. These achieve an ac-
ceptable approximation to the globally optimal interpolants in systems whose variation

rates are small enough.

Notions of adaptive and robust (non-adaptive) sensitivity minimization of
[Zam4,6] are applied to an example involving rejection of narrowband disturbances of
uncertain bandwidth and center frequency. The double algebra symbolism is employed
to show that adaptive minimization can give better sensitivity than H°° optimal robust

minimization.

3

1.2 A Brief Literature Review

¢

Frozen-time stability analysis of slowly time-varying systems has been devel-
oped since the 60’s, in both the frequency and the time domains. The “approximate
isometry” based on exponential weighting was introduced by Zames [Zam1] to obtain an
L version of the circle criterion. Freedman and Zames (Fre] introduced the notion of
“frozen-time” analysis in an input-output setting, using a method of averaging for sys-
tems with exponentially decaying memories and slowly time-varying gains. Closely re-

lated results in a state space setting were obtained by Desoer [Desl] and Narendra[Nar],

extending an early result of Rosenbrock [Ros]. Their results were later extended by stu-

dents of Desoer, e.g., Barman [Bar] to nonlinear systems. The NDA scheme introduced
in this thesis provides a unified framework for frozen-time stability analysis of slowly

varying systems, which is capable of incorporating the previous work.

$




1. Introduction

Algebraic approaches to input-ouput feedback go back to the 60’s-70s, cul-
minating in operator-norm sensitivity minimization of Zames {Zam2] and generalized
coprime-factorization of Desoer [Des3]. [Zam2] and its further development (see [Fral]),
now collectively known as “H° sensitivity optimization”, forms a basis for “local”
synthesis in the NDA. In fact, one motivation for the current work is to extend H*®

optimization ideas to slowly time-varying systems.

Although the NDA framework is suitable for stability analysis, the main
interest here is in performance analysis and system synthesis, especially sensitivity opti-
mization in adaptive systems. Feintuch and Francis [Feil][Fei2], employing the Arveson
distance formula [Arv], proved the existence of an optimal controller in a {2 distur-
bance rejection problem for linear time-varying systems. Their result does not include
a causality assumption on the dependence of control on data. Ball, Foias, Helton, and
Tannenbaum [Ball)[Bal2][Bal3], using local Volterra operator expansions, investigated
the nonlinear sensitivity optimization problem. Major differences between these works
and the present thesis is that they make no causality assumption, and are not concerned

with persistent disturbances.

A simple example (chapter 5) shows that optimal H* interpolants in general
do not depend Lipschitz continuously on data, and hence local H*® optimal interpola-
tion may yield a fast-varying feedback controller even though the plant and weighting
are slowly time-varying. This problem is resolved here by using AAK’s §-suboptimal
maximal entropy interpolants, which are shown to be Lipschitz continuously dependent
on data. Smith {Smil) discussed the norm sensitivity of H* interpolants with respect
to perturbations in data, and provided conditions for the well-posedness of H*® opti-

mization. In Kreisselmeier [Kre], Dahleh and Dahleh [Dah], Cantalloube [Can1] [Can2],
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the continuity constraint is imposed as a hypothesis in their adaptive algorithms for

slowly time-varying systems.

The relations between stability and coprime factorization are obtained in gen-
eral setting developed by Francis, Schneider and Vidyasagar [Fra3] [Vid], and Desoer et
al [Des3]. Although these approaches are well developed for time invariant systems, their
counterparts for time-varying systems are not well understood. In the NDA framework,
relations between locai and global versions of robust stability and coprime factorization
are obtained for systems which vary sufficiently slowly. Some related results were ob-
tained by my colleagues Cantalloube, and Nahum and Caines [Canl] [Can2]. Recently,
Verma [Verl] established relations between robustness and coprime factorization for

nonlinear systems.

Some preliminary results of this thesis were presented in [Wanl] [Wan2]

[Wan3] [Wan4].
1.3 Outline of the Thesis

The thesis is organized as follows. Chapter 2 introduces the concept of a
normed double algebra and its basic properties. The local-global coupling operator 7
is introduced. Local-global relations within a NDA are established. An application of
the NDA symbolism in Section 2.6 to state space models provides a unified framework
for some previous frozen-time time-domain stability results. Then, in Chapter 3, an
auxiliary frequency-domain norm p.(:) and a time-domain norm |[|-||4(5) are introduced.
Local frequency-domain bounds on the time-domain behavior are provided in Props.
3.6-3.9. An immediate application of the NDA framework is a unification of several

classical frozen-time frequency-domain stability results for slowly time-varying systems,

7




1. Introduction

by .neans of a local-global resolvent relation in Corollary 3.1. Lower bounds on the time-
domain norms |||} a(0) in terms of the frequency-domain norms p,(-) are established in
Prop. 3.10 and 3.11. An “asymptotic isometry” between ||-|| o(c) 8nd po () is provided
in Prop. 3.12.

Chapter 4 consists of a preliminary investigation of sensitivity optimization
for feedback systems with slowly time-varying stable plants, using the local-global ap-
proximations established in Chapter 2 and 3. An explicit double algebra expression for
adaptive BIBO sensitivity reduction is obtained. Notions of adaptive and robust (non-
adaptive) sensitivity minimization are applied to an example, and the NDA symbolism
is employed to show that adaptive minimization can give better sensitivity than H®
optimal robust minimization. The local sensitivity minimization problem is studied in
Chapter 5. An example is first introduced to show that H* optimal interpolants need
not depend Lipschitz continuously on data. A controller constructed from slowly vary-
ing plants and weightings using optimal local interpolation may be quickly-varying and
therefore not be amenable to frozen-time analysis. To avoid this difficulty, the issue
of Lipschitz continuity is investigated and a é-suboptimal interpolant which satisfies a
suitable Lipschitz condition is achieved using the central (maximum entropy) solution

in AAK’s parametrization.

Coprime factorizations of unstable plants under assumptions of robustness
are studied in both Chapter 6 and Chapter 7. General results are first presented, within
the general framework of Francis, Schneider and Vidyasagar [Fra3] |Vid], and Desoer,
Liu, Murray and Saeks [Des3|, in Chapter 6 where relations among robust stability,
separate coprimeness and joint coprimeness are explored in a general Banach algebra

(Theorem 6.1). Robustly stabilizable plants in a small neighborhood of a nominal plant

P
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1. Introduction
are parametrized by a fractional transformation (Theorem 6.2), which displays an equiv-
alence between open and closed loop topologies. Then in a NDA framework, relations
between local and global versions of robust stability and coprimeness are demonstrated
in Chapter 7. In particular, we show, for systems which vary sufficiently slowly, that
under certain assumptions there is an equivalence between local and global versions of

robust stability and existence of a coprime factorization.

Finally, Chapter 8 summarizes briefly the main results in this thesis and

points out some further research directions.

1.4 Main Contributions of the Thesis

Several mathematical concepts are introduced. It is shown that they can be
used to produce a unified theory of frozen-time analysis. The main new concept is that
of a normed double algebra of input-output mappings, incorporating local and global
products, for the analysis of slowly varying systems, i.e., systems whose commutants
with the shift are small. Based on that concept, notions of local stability, local optimiza-
tion, local spectral and coprime factorization are introduced. It is shown that classical
frozen-time stability results can be unified in the normed double algebra as relations

between local and global spectra.

The thesis employs definitions of robust and adaptive control in an H* con-
text to show that under certain conditions adaptive control can achieve better sensitivity
than an optimally robust control. The actual definitions of adaptive and robust control
used here, as well as the idea of a double algebra were provided by Zames [Zam4,6|.

However, these concepts are worked out here in detail for the first time.




1. Introduction

( New Lipschitz continuity conditions for H*® interpolants are derived.

New explicit double algebraic expressions for certain adaptive sensitivity op-

timization problems are obtained.

Relations between local and global coprime factorization and robustness of

stability are derived.

10
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Chapter 2 Preliminary

Let A denote the Banach Space of £®-valued functions in [°°(—-o0, 00). (Later
in Chapter 3, A will be equipped with certain equivalent auxiliary norms.) Stable
systems will belong to the Banach space < IB > of bounded causal linear operators
K : A — A which have convolution sum representations,

t
(Bu)(t) = Y k(t,r)u(r), teZ (2.1)

7=—00
where the kernel k : Z2 — C™™ is assumed, for each t € Z, to satisfy k(t,") €

1}(~o00, 00),

sup [[k(t,){|,1 =: |K|lp < oo
teZl

and k(t,7) = 0 whenever 7 > t.

Unstable systems belong to a linear extension < B, > of < B >, defined as

follows.

Let AC be the subspace of A,
AV :={ucAd:u(t)=0 fort <ty or t>t}}

where ty,t), € Z depend on u. (A%), is the linear space of functions whose truncations
u

M¢(u) lie in A? for each t € Z. Then < IB, > is the space of causal linear operators in




2. Preliminary

(A®). which have convolution sum representations of the form (2.1). An operator G in

< B, > is said to be bounded if it satisfies that for all u € (4%),, GIju € A Vi€ Z

and
GII
sup sup |GTTpufj;00
 uea), Meuljoo
< B > can be viewed as a subspace of < B, > modulo the following equiv-
alence.

To each K € < B >, assign the unique bounded operator K, € < B, >
obtained by first restricting K from A down to A%, and then extending to (AO),; the

map K — K, is an equivalence between bounded operators in < 1B > and < B, >.

2.1 Local Systems

The local behavior of an operator K € < IB, > can be described in terms of
a time-invariant “frozen-time” operator K; with the property that K and K;, acting on

any input in (A%),, produce outputs which coincide at ¢.

If K is any linear operator in < B, > defined, for u € (A°)., by a convolution

sum

(Ku)(t) = i k(t,0)u(8), t€ Z,

=—00

then the local system of K at 7 € Z is the (time-invariant) operator K, with the same

domain as K satisfying

t
(Bru)(t) = ) k(rnr-(t—0)u(6), teZ. (2.2)

f=—o00

The terms local and frozen-time will be used interchangeably.

12
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2. Preliminary

For any K € < B > and r € Z, the convolution kernel k(7,7 — (-)) of K,

has a well-defined transform
00
R:(z) = ) k(r,7-0)d, || <1 (2.3)
=0
in H™ called the transfer function of K,. K, will be called the local transfer function
(resp. local transform) of K (resp. of k(r,7 — (:))) at 7. The notation k(r,7 —(-)) = k, ()

is used in the sequel.

2.2 Banach Double Algebra

We define two products on the space < B, > : (1) The usual operaior
composition proauct, which will be called the global product, and denoted explicitly by *,
although that symbol, as usual, will mostly be suppressed in notation, i.e., F * G = FG;
and (2) a local product, denoted by ® and defined as follows: For any F,K € < B, >,

F ® K is the unique operator in < IB. > whose local operators satisfy

(F ® K)t =K, Vie ZL. (2.4)

We will naturally define the global summation + by the usual operator sum-
mation and the local summation @ by means of local operators: (F ® K); = F; + K;.
However, due to our choice of frozen-time systems, F® K = F + K for any F, K € B,,

and so we will make no distinction between local and global summations.

A double algebra is any subspace of < B, > which is equipped with both
products and is an algebra with respect to either one. In particular, the space < IB, >

equipped with both products is clearly a double algebra which will be denoted by 1B..

13




2. Preliminary

A double algebra is normed, called then a normed double algebra (NDA), if

local and global norms, || - ||; and || - J|g, are defined on it and satisfy
IGK|lg < |GllglIK|lg;

G ® Kl < |GILIX]. (2.5)

In particular, the space < B > equipped with both products, and with local and global
norms taken to be equal to || ||g is a normed double algebra, which will be denoted by

B.

If IA is any (normed) double algebra, its restriction to one of its products
(and norms) will be denoted by the prefixes IL for local and G for global, as in LB,
and GB,, LB and GB. LLIA and GIA will be called the local (normed) algebra and
global (normed) algebra respectively. If ILIA and GIA are both Banach algebras then A

is a Banach double algebra (BDA). IB is an example.

K € 1A has a local inverse in A, denoted by K€, if K® is an inverse in LIA,
i.e.

KRK® =K° QK =], (2.6)

and a global inverse, denoted by K~1, if K~! is an inverse in GIA, i.e.

EK~ 1=K 1K =1 (2.7)

Similarly any object defined in ILIA (in GIA) will be termed the local (global)
object in 1A.

14
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2.3 Banach Double Algebra E,

We introduce next a class of operators with exponentially decaying memories,

called IE,, which forms a Banach double algebra.

For any o 2> 1, introduce the function ||K||(;) of K € B, defined in terms of
the kernel k of K.

t
1 lle) := sup 3 k(o7 (2.8)

T=-00

(which equals sup,cz ||k(t,t — (-))|l;; and may be co). For any o > 1, let E, be the
(4

subspace of B, consisting of operators K satisfying "K”(Uk) < oo for some o, > o,

where o} depends on K. Clearly H-"(a) is a norm for [E,. Let IE, be the closure of [E,

with respect to [|-[|(;); ie. K € Eq iff ||K[|() < o0.

IE, is a Banach space under that norm . We will show in Prop. 2.1 that
EE, is a normed algebra under either product * or ®, and therefore a normed double

algebra. Similarly, IE, is a Banach double algebra.

Proposition 2.1

The space JE; is a normed double algebra, and IE,; is a Banach double algebra,

under the norm ||-||(,) and either one of the products * and ®.

Proof: In Appendix A.

15




2. Preliminary

2.4 The Local-Global Coupling

An essential issue in a normed double algebra is relations between its local
and global properties. As we should proceed to see, a main purpose in introducing
the normed double algebra symbolism is to address global properties, such as global
stability and global performance, through local analysis and local synthesis, especially
in the frequency domain. This strategy is valid only after the local-global coupling in

the normed double algebra is established.

The local-global coupling consists of couplings between local and global sum-
mations, products and inversions. While local and global summations are always identi-
cal in our choice of local systems, the local-global product coupling is the main concern,

which is expressed by the operator <.

The product-difference binary operator 7 : B, x B, — B, is defined by

FvK=FK-FgK. (2.9)

The 7 operator is also a pivotal element in the local-global inversion cou-

pling, as shown in the following Inversion Lemmas I and II.

Let JA be any Banach double subalgebra of IB,. In particular B and IE, are

such Banach double subalgebras in which both global and local norms are taken to be

- llp and || - li(s)-

We seek a relation between local and global invertibility in a Banach double

algebra IA, as this determines stability. Observe first that K € B, has a global inverse

16
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in B, if and only if k(t,t) is invertible in £L"*" for each t € Z (for then K decomposes

o
into the sum of a memoryless invertible operator and a strictly causal one). Conditions

for local invertibility in IB, are identical to global ones. However, in a general Banach

double algebra IA this is no longer true, and we get the following development.

Proposition 2.2 (Inversion Lemma I)

(a) If K € 1A has a local inverse, K® € 1A, and |[K® VK||g < 1 (or |K ¥
K®||g < 1), then K has a global inverse in 1A,

K~!= (K®K)'K® = (1+K® vK)"!K® if |K® vK|, <1, (2.10)

(or K~1=E°(KK®)'=KO(1+KvEK®! if |[KyK®|,<1)

Moreover [K~1||y is bounded by

-

<

K=l < [K®fg(1 - IK® v Kljg) 7, (2.11)

(or 1115 < IE®501 - IR TE]) ).

(b) Part (a) remains valid if global norms, products and inverses are inter-

changed with their local counterparts.

Proof:
(a) ¥ |K® VK|g <1,as
K°K =1+ K°®K - K°®K =1+K°® ¥k, (2.12)

(KeK)"1 exists in the Banach algebra IA by the contraction principle. Therefore,

(KeK)“1 KOK = I, which proves that K has a global left inverse in JA. But as K© € 1,

17
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whick is a subalgebra of B,, K has a global inverse in IB,. Therefore the global left

-

inverse (K®K) 1 K® in 1A is in fact a global inverse in JA. The inequalities (2.11) are

again the results of the contraction principle.

(b) The local counterpart is proved by interchanging * and ®, () ~* and (-)®,
as well as || - ||g and || - ||

Q.E.D.

The second Inversion Lemma addresses local-global inversion coupling in a
normed subalgebra of IB.. Let IA be any normed subalgebra of B, with norm | - ||

subject to the Norm Characterization Property

(NCP) KelA <= IIK € ]A Vt € Z and sup, ||II;K|| < 0o

! where {Il;, t€ Z} is the family of truncation operators.

Proposition 3.2’ (Inversion Lemma II)

Suppose A is an NDA satisfying (NCP) with respect to either || ||g or || - |1;.

(a) If K € A has a local inverse K® € IA, then it has a global inverse
K~! € 1A whenever either (1) ||K® v K||; < 1, in which case

K= (K®K)"1K® = (1+ K® v K)"1K® (2.13q)

and

(- -1
K1y < |IK®|g {1 - |K® ¥ K|}, (2.13b)

or (2) ||[K v K®||y < 1, in which case

{ K~! = K9(EKK®)~! =K°(1+ K y K®)~! (2.14a)

18
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and

IK=lp < KO, {1 ~ 1K v KO}~ . (2.148)

(b) Part (a) remains valid under an interchange of global norms, products,

and inverses with their local counterparts.
]

Proof:

(a) If K® is in IA, each matrix k(t,t), t € Z, has an inverse in £"*", where

k is the kernel of K. Therefore, K—! exists in IB,. Furthermore, from the identities
EK°K =1+ K°K-K° @K =1+ K® ¢K, (2.15)
we get after multiplication by K~! on the right,

K '=K®- (K®yvK)K~L (2.16)

Subject to the norm characterization property (NCP) and causality of K, the

usual “small gain” argument applied in the global algebra GIA gives for all t € Z
ImeB="ly < [[TE®]g {1 - [LE® ¥ K[}~ o)
< IB® {1 - K v K,} ", |
provided ||K© v K|y < 1 in which case, since the bound (2.17) holds for all t € Z, K~!
is in IA. (2.13a,b) now follows from (2.15) and (2.17). The proof of (2.14a,b) is obtained

similarly by multiplying KK© by K~! on the left.
(b) The proof remains valid under the specified interchange.

Q.E.D.

19




2. Preliminary

The condition that K 57 G is small will be related to the smallness of the
commutant of G with the shift, i.e., to slow time variation, and later to slow variation
in local transfer functions in the frequency domain. First, however, we summarize some

elementary algebraic identities involving shift-invariant and memoryless operators.

2.6 Algebraic Preliminaries of v Operator

Let T € B, denote the shift, (Tu)(t) = u(t—1), t € Z. An operator K € B,

is shift-invariant iff its commutant TK — KT vanishes.

Let (AIl); € B,, 7 € Z, denote the projection operator (AIl), = IT,—TII,_,.

An operator F € B, has no memory if

(ATI)F = (AIl),F(AI);, 1€ Z. (2.18)

The following properties are easy to prove.

Proposition 2.3

(1) For shift invariant K and arbitrary G in B,

GEK =G®K, ie. GVE=0. (2.19)

(2) All operators in BB, are locally shift-invariant, i.e.,

EK@T-T®K =0.

(3) For any G, H, and shift-invariant K in B,

(G v H)K = G v (HK). (2.20)
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(4) If F € BB, has no memory, then for arbitrary G, H in B,,
FRG=FG, FyG=0, (FG)vH=F(GVH). (2.21)
0
Proof:
(1) For shift invariant K, K; = K for all ¢. Thus
(GK): = (G¢K)¢ = (GK¢): = (G K),
(2) It follows from the fact that TK; = KT for all ¢t € Z.
(8) Since K is shift invariant, by (1) we obtain
(GVH)K = (GH-G®H) K
-~ (GH)EK-G@H®K
=GHEK -G® (H®K) (2.22)
= G(HK) -G® (HK)
=G v (HK)
(4) Trivial.
Q.E.D.

From Prop. 2.3 part (2), the term shift-invariant in B, will be reserved for

the global property.

Any F € B can be expressed as a linear combination of global powers of the

(o
F~) FOTF (2.23)

r=0
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where F() € B, r=1,2,..., are operators with no memory whose kernels satisfy:

F(r) (t,7) = f(t,t — r) when r = t, and 0 elsewhere; and the series converges in weak-i?,

defined as follows.
Definition

A sequence of operators K, € B weakly-I! converges to K = B (as m — o0)
iff given any u € I®°(—o00,00) and any functional ¥ (with kernel) in /1(—o0,00), ¥ :
1%°(—o00,00) — T, the sequence F(Kmu) — 7(Ku) (as m — o0).

D

The weak-i! convergence of

F ~ f: FO)r

r=0

is proved by considering, for u € |*°

m-—1
g (F -3 F(')T'u) =: 6(Am),

r=0

where § is a functional with kernel g in 1. By Lebesque’s dominated convergence

theorem,
§(Am)= D 9(®) ) flt,t—r)u(r) -+ 0
t=—00 r=m

as m — 00, noting that

Y. 1t —r)u(r)

=m

< {11 Heeflioo

and for every t € Z, 322 f(t,t — 7)u(r) = 0 as m — oo.
Remarks:

(a) The expression (2.23) means that B is a module spanned by powers of
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(b) The weak-I! convergence coincides with the weak operator convergence

provided the domain of operators in BB is taken to be Ag, the subspace of A consisting
of signals z with finite starting time and z(t) — 0 as t — oo, the dual space of Ay being

1}(—o0, 00).

We can now express the 7 operator in terms of commutants, after first
observing that the commutant of an operator in IB, is precisely the difference between

local and global products with the shift.

Proposition 2.4

TvK=TK -KT, for K€ B.. (2.24)
o0
FyK=) F)(T'UK), for F, KeB. (2.25)
r=0
where F(") has no memory, and the series converges weakly-/1, in IB.
O
Proof of Prop. 2.4:
By Prop. 2.3 parts (1) and (2),
TVE=TEK-T®@K=TK-KQ®T=TK -KT,
which proves (2.24).
From (2.23) we get
00 o0 .
FyuK = (Zr('):r') K - (23%*) ®K
r=0 r=0
o0
=Y PO (T'K - T @ K) (2.26)
r=0
o0
=Y ¥(r vE)
r=0
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as F(") has no memory, and (2.25) follows. The weak-I1 convergence of (2.25) follows

from that of FK and F ® K, which can be easily proved.

Q.E.D.

(2.25) suggests that F 7 K will be small whenever K has a small commutant
and the memory of F decays sufficiently fast, a motivation to work with IE,, i.e. systems

with exponentially decaying memory.

2.6 Slowly Time-Varying Systems

Let T € IB. denote the shift, (Tu)(t) = u(t — 1), and IE; the Banach double
algebra defined in section 2.3. K commutes with the shift approzimately in IE,, with
rate dy(K) > 0 if

dy (K) = | TK — KT < K]l (2.27)

Although the interest here is primarily in H*°-frequency domain conditions

for slowly time-variation in the sense of (2.27), we note some time-domain results.

If K commutes with the shift approximately in IE;, and F € IE, has a kernel

J, we have the estimates:

Proposition 2.5

(a) If sup; 3224 |f(t,t — 7)|r0” := v < co then

¥ v Kll(5) < 7ds(K)o1. (2.28)

24



R 4

2. Preliminary
(b) ¥ F € E,,,0; > 0, then
¥ 7 Kll(5) < IFll(g,)40(K) (¢ In(o1/0))" o~ (2.29)
(c) For F and K in E,
dy(FK) < ||F|()do (K) + |[Kl|(o)do (F).
(4)
do(K) = osup ke — ke_y]lz.
t o
O

Proof: In Appendix A.

Most classical frozen-time stability conditions for slowly time-varying systems
can be encompassed in a statement relating the existence of local and global inverses.

Time domain conditions are contained in the following.

Corollary 2.1

If G and K are in [E;;, (dp > 1), and either G has no memory or K is shift-
invariant, then existence of the local inverse (I + G ® K)© in Eq, implies that of the

global inverse (I + GK)~! in B, provided that

d{(G®K) < (ein(o)) ||[I+ GOK)®°®[(1-a)I-aG® K]“(—d:)) (2.30)

for some a € RR.
0
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Proof:

The assumption that G is memoryless or K is shift-invariant implies that

G ® K = GK and, by the Inversion Lemma 2.2, the Corollary is true provided that

lI+GRK)°P v (I+GR®K)|p<1. (2.31)

As I has no memory and is shift invariant, A VB = (A — al) 7 (B - I) for

any a € R, and (2.31) is equivalent to
[T+ G eK)®°®((1-a)l -aG®K)] V(GO K)||g < 1. (2.32)
By (2.29) (with oy = 0g, 0 = 1), (2.30) is sufficient for (2.31).

Q.E.D.

Remark: Some of classical frozen-time stability conditions are stated with
a = 1. Unfortunately, Corollary 2.1 involves the estimation of the /1-kernel norm of an
inverse, which is seldom an analytically tractable object, and we therefore move on to
consider alternative methods in the frequency domain. First, however, an example of

Desoer [Des1], which is nicely tractable, is included to illustrate the symbolism.
Example 2.1:

Stability of the difference equation
z(t) = Gyz(t — 1) + Fu(t), teZ (2.33)

z(t),u(t) € R G, F; € R"*", is to be deduced from its local properties. If u €
[*°(~o0,00) and Gy, F; are bounded functions of t € Z, (2.33) can be expressed in an
operator form,

r=GTz+Fu (2.34)
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with G,F € B, which has the solution £ = (I- GT)™! Fu where (I- GT)"! € B..
The a priori assumption that the frozen-time system is exponentially stable means that
I+6G ®'l‘)e is in g, for some 0y, 1 < 0g < A-1, where A is the supremum of the

spectral radii of the matrices G¢,t € Z, A < 1 being necessary and sufficient for G; to

be stable.

The actual system is [°-stable if the global inverse (I + GT)! is in IB which,

by Corollary 2.1 (a = 1), is ensured whenever the variation rate of G satisfies
-1
d(3)(G) < (elnog) [(I+ G @ T)® @G|, (2.35)

for some 0g € (1,A"1). The norm in (2.35) can be estimated as in [Des1] where it it
shown that for any v, A < v < 1, (as G has no memory and G; is finite dimensional),

sup, 7 || (G /u)'ll(l) =: f is a finite constant depending on v. Therefore

o0
| @+ 68 T)® 86|, < sup Y (G}
teZ 1=0
< ﬂ i ut"f'lo.a (2.36)
1=0
< Br(1 - oqv)™?

where oy is chosen such that ogv < 1.

The choice v = %(1+4\), 0o = 3(1+v7!) and observation that Inog > 1-0;!

Y-
give a sufficient condition for stability, d(y (G) < 5% 1-v

v (TTy JHA=1-2candv =1-c¢,

. 2
the rate bound is better than 54‘-’3-.
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2.7 Nests of Normed Double Algebras

In preparation for the frequency-domain results, let’s axiomatically intro-
duce a concept which is common to the rest of the theory, and is exemplified by the

parametrized family {IE;} of double algebras.
Definition

A nest of NDAs is a one-parameter family {IA,;, o > 1} of normed double

subalgebras of IB with these properties:

(1) {IAs} is monotone by inclusion,
whenever 1 < 07 < gy, inclusion being strict if 1 # oy # 0p.

(2) For K € A5, 01 > 0, the local and global norms, ||K||, and |K||J,

depend continuously on o, and are monotone in o, i.e.,
IK[l§ < Const.|K|[3 < Const.|K|3,, (2.380)

IK|ip < Const.{E[l, < Conat.|K|l}. (2.385)

the constants being independent of K.

(3) Each NDA IA, is either a Banach double algebra or characterized by the

global norm || - ||7 according to Property (NCP) (Section 2.4).
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Let us show that {IE;, 1< 0 < gp} is a nest of NDAs. It obviously satisfies
the conditions (1), (3) and (2.38a,b). As for the continuity of [Ill() with respect to o,

observe that for K € IE;; and 1 <o <0’ <0,

lkelln = kel
U'I (4

= Z [le(7)(o"" — ")

- S i (£) (- (5))

-fZ_})"‘t(’)l"l( 2) (-5 (1+(G)++ ()7 e
(1——)glkt(r)|ol( )

<(t-3) (e w(%) ey,

IA

(1-2) (= (2)) " 1Bl

Thus
Il o1y ~ IEll0)

< (1—5;) (e In (Zl)) “Kll(al) —0 as o' -0

which proves the required continuity.

The NDAs in this thesis all satisfy an additional inequality, linking rates of

change in local norm to global behavior, which however is not part of the nest definition:
IFVE|S < Const.llF”f,olelg . (K) o9>0 (2.40)

the constant being independent of F,K.

An extension of the Inversion Lemmas to certain nest will be required.
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i Proposition 2.6 (Extended Inversion Lemma)

If {IA,} is a nest of NDAs, and JA,, is the normed double subalgebra of {IA,},
N,={BE€clA;: K€IA,, for some op>o0}

where op may depend on K, then the Inversion Lemmas hold with 1A = A .

Proof:

If K and K© are in JA,, they are certainly in JA,. By Inversion Lemma I

| or II, K~! is in JA, and satisfies the inequalities (2.11) or (2.13b). All that remains to
be shown is that K~! is actually in IA,. Under our hypothesis, K and K® are in some

’ IAgy, 0o > 0. There exists some 01, ¢ < 01 < 0y, such that either |[K v K®||] < 1
{ implies |K v Keﬂgl < 1 by continuity of || - ||3 or, alternatively, |K® v K|, <1l In

either case, the Inversion Lemmas imply that K~! € A5, , and therefore Kle IA,.

Q.E.D.
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Chapter 3 Frequency Domain Auxiliary Norms

We would like to employ local frequency domain methods to obtain bounds
on global time domain behavior. For this purpose, two kinds of auxiliary norms will
now be introduced; one on IE,, evaluated in the frequency domain and computable in
local operations; the second on B D IE;, evaluated in the time-domain and computable

in global operations. For slowly time-varying systems the two will be related.
3.1 The Local Algebra LE,

As described in Section 2.1, for any K € B (or IE; ), its local transfer functions

satisfy K, € H® (or H®) for all 7 and

sup || K[| goo < o0,
T
(or sup I]ﬁr"}]g" < o0 ) .
T

Although operators in B (or in IE;) have local transfer functions in H* (or
in H3°) the reverse is not true. B and IE, have no precise characterizations in terms of

transfer functions. To deal with operators initially specified in the frequency domain,




3. Frequency Domain Auxiliary Norms

we turn instead to the normed double subalgebras JE, of BB, defined in Section 2.3,

which have such a specification.

For 2 < p< 00, 0 2 1, define the functions of operators K € IE,

plP)(K) := sup | &4l . (3.1)
teZZ d

and in the case p = co omit the superscript, i.e. po(K) := p¢(,°°) (K).

Proposition 3.1

(a) The space E, consists precisely of those operators K € B, with the
property that for some o9 > o each local transform K;teZ,isin Hgg and pqy(K) <

00.

(b) < LE,,po(:) > is a normed algebra.

Proof of Prop. 3.1:

(a) The hypothesis that K € E, implies that for some gg > o, the kernel
k: of K; is in l,l,o,Vt € Z, and ||K||(¢,o) < 0o. Therefore the conclusion that K; ¢

Hgg, oo (K) < o0 is true.

Conversely, poo(K) < co implies that p%)(K) < pog(K) < oco. For each
tez, K € L?,o implies that k; € l?,o and, by Parseval’s Theorem, ||k¢l|z = (4] B2
o0 o0

For any o0y in (0,0p) we have

o0
lkelly = |ke(i)o}
]

=0

o, e N
< {Zlkt(i)obl 2(01/00)2'} (3.2)

=0 1=0

= "kt"lgon(dlloo)
< (o1 /og)Hoo(K)
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and as thisistrue Vt € Z, K € E,.

(b) It follows from the inequality
IC®K):l oo < IIGe!l oo IKsll oo (3.3)
Q.E.D.
Although the space E, has equivalent descriptions in terms of the kernel
norm ||-[|(;) and transform norm uo(-), po(-) yields a closure of IE, different from IEo,
and is well behaved with respect to the local product only.
Henceforth assume E, to be equipped with the global norm ||||(,) and local
norm o (). Let LIE, denote the restriction of IE, to its local product ®, and LIE, the
on subalgebra of B, consisting of operators K € B, with the property that ﬁt € H® for
- all t € Z and py(K) < 00. LE; will be abbreviated as E, when the local product is
not emphasized. We have the following obvious relations.
Proposition 3.2
Foro > 1,
E,CE,CE,cBCE;, and E,cE, for o<op. (3.4)
A D
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g& Remark : There is a precise time-domain condition for an operator K to be

in E;, namely that its kernel k satisfies k(¢,t — ) € 11 uniformly in t € Z. However

in the frequency domain there is only the sufficient condition that K, € Hgg for some

0g > 0, uniformly in ¢, which amounts to assuming that K € IE,.

Of the three spaces [E,, IE, and IE,, only IE, is a normed double algebra with

both time and frequency domain characterization. Therefore, for problems requiring
mixed local and global operations, IE, will be the algebra of choice. As we should
proceed to see, local frequency norms uq(-) in [E, provide approximants and bounds to

global norm behaviors.

3.2 The Global Algebra @B With An Auxiliary Time Domain

Norm

Ultimately the interest here is in the time domain behavior of operators in
G, viewed as mappings from inputs in [°°(—o00, 00) =: A to outputs in A, i.e., viewed

as elements of the larger algebra &G IB of such mappings, GIB D GIE,.

R o L A L

The normed double algebra [E, has equivalent descriptions in the time do-

é main via the kernel norm ]]-]l(‘,) and in the frequency domain via the transfer-function
norm po(-). However, these norms are incommensurate, and inconvenient for the esti-
: mation of /°°(—o00,00) time domain behavior from local frequency domain properties,
; unlike, e.g., the time-invariant situation in 12(—oo,oo), where Parseval’s theorem pro-
vides an isometry between kernel and transform representations. Instead, we intro-

duce an auxiliary time-domain norm on 1B, denoted by || - llage)> Which is equivalent to

1°°(—o0,00) induced operator norm on BB.
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This topology was introduced by Zames in [Zaml] and applied to slowly
time-varying systems by Freedman and Zames in [Fre]. This weighs down the remote

past and is accessible from the frequency domain, as follows.

Equip the space A (i.e., I%°(—00,00)) with the family of auxiliary norms

12
) , (3.5)

where K := (350 ,072") 172 _ (1-072%) 1/2 depending on the parameter 0, 1 < ¢ <

t
© o =n;1 1 ( —(t-'f)
Ielotey = 55" sup { 3 utr)o

1=—00

oo. Here ||u|;(o) is interpreted as equal to ||uf/jeo .

The ||ul|3(;) norm is the I°® norm of the convolution of u with an exponential,
smoothing kernel, the kernel normalized to have unit 12(—oo,oo) norm. The norms in

this family obtained for various o are equivalent to each other, i.e., for any oy > a1 > 1,

”u"a(ol) < Cons""u"a(oz) < Con“'"u"a(al) (3‘6)

and to the /°° norm; indeed,

l[ellag) < llellico < Kolluflage)- (3.7

Each || - ||5(s) norm on A induces an auxiliary operator norm on the linear
space B of operators; for K € B, |K||;(5) := sup{|Ku[g() : v € 4, [lull,0) < 1}.
Assume the space IB as well as the global algebra @GIB to be equipped with this family of
auxiliary operator norms which, again, are equivalent to each other and to the principal
norm |- || on B. The latter is the /°°-induced norm, on operators K € IB, which equals

the supreme of the i1 norms of their kernels kq, i.e.,
IEllB = 1K|lae0) = sup llkellja- (3.8)
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The following is obvious.

Proposition 3.8

The global algebra @B is a Banach algebra under the ||-[|4(;) norm,1 <o <
co. (However, as the constant in the inequality |K ® Gll;(,) < Const.|Kfl;(5)[|Glla(0)

differs from unity, the local algebra ILB is not a normed algebra under ||-[/5(,).)

The auxiliary norms are bounds on an operator which are uniform in time.
Occasionally, we shall relate these to certain finer bounds emphasizing particular times.

The (exponentially weighted) recent past seminorms ||K||4(,¢) of K € IB are defined by
IK|la(o;e) = x;lo—t sup{HHgKuH,g 14 € A, |ulg0) <1}, € Z.

Then “K“a(a) = Bupy ”K”a(a;t)°
3.3 Slowly Time-Varying Transfer Functions

Our point in introducing the auxiliary || - [|5(s) and 4o () norms, is that the
former is tractable for systems with persistent time-domain perturbations, the latter is
computable in the frequency domain and, as we shall proceed to show, the latter gives
an approximation on the former, i.e., yo(K) — a < ||K||a(,) < po(K) + 3 where f# — 0
as the variation rate p of the local transfer functions of K approaches zero (in the sense

of Section 3.6),and a +0asp —+0and o — 1.
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3.  Frequency Domain Auxiliary Norms

Definition:

An operator K € E, has a slowly time-varysing transfer function with rate
3l (k) if
OV ®) i= oup |&e ~ Ryl gp S uPR) 259500 (59)
te

Denote 8¢(,°°) (K) by 9,(K). (8,(,p ) (K) will later be assumed small in relation

to certain additional constants.)
]

For small enough a!," ) (K), the variation rate of the local transfer function of
K provides a tractable sufficient condition for K to commute approximately with the

shift, as well as a computable bound on the time-domain rate do(K).

Proposition 3.4

For any 09 > ¢ > 1 and p > 2, if K € o, has a slowly time-varying
local transfer function with rate 6,(,'2 (K), then for Bc(,%) (K) small enough, K commutes

approximately with the shift in E, (i.e. (2.27) holds), and

do(E) < 0% /)25 (K). (3.10)

Proof of Prop. 3.4:
By Prop. 2.5 part (d),

ITK — KT{|(4) = o sup|k; — ke—1l} 1. (3.11)
t o
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: )
( e = ke-allpy = > " lke(7) = key (7)o

r=0

=Y _ |ki(r) ~ ke—s(r)] of (0/00)"

r=0

, (3.12)
< |lke = kg1 2, K(op/o) by Schwartz Inequality
_ ~ _ ~ !
= || K¢ — K¢q|| Hgo'c("o /o) by Parseval’s Theorem
| < 1B; — Rpal HS Mloofe) P22
| The proof is completed after taking sup, of both sides.
|
f Q.E.D.

The time domain norm ||-f|4(,) is bounded by frequency domain auxiliary
norms uq(-) through inequalities listed in the following propositions. The first one gives

(” inequalities not dependent on slow variation:

Proposition 3.5 (rate-independent bounds on K)

For any K € IE, and 7 € Z, the following inequalities hold, (1 < 0 < 00,2 <

p< ).
"Kf“a(a;t) < "ﬁf”Hg" (3.13)
I+ llagoe) < KolRrll - (3.14)
1K llafor) < monl® (B) < mona(K). (3.19)
]
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3. Frequency Domain Auxiliary Norms

Proof: In Appendix B.

The following inequalities depend on rates of time variation. All operators

Proposition 3.8 (rate-depending bounds on K)

(a) Forany p > 2,
1K lafese) < b0 (Ke) + 0% ().
(b) For p = oo,

”K”a(a;t) < po(Ky) + 7——=<85(K).

(1)

Proof: In Appendix B.

Proposition 8.7 (bounds on K 7 F)

(a) For any p > 2,

IE ¥ Fllygo) < monbu (K)0P) (F).

(b) For p = oo,

1
K 9 Flla0) < Ka'(-;-:'i')'

(¢) If K is slowly time-varying,

po(K)3, (F).

Ty [ I3 (B) + 20 () [Flye) + 2o (R O )]

G,K,F in Props. 3.6-3.9 are assumed to be in I[E,. Let 2 < p< 00,1 < 0 < 00,

= (Trmaito)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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8. Frequercy Domain Auxiliary Norms

Proof: In Appendix B.

Proposition 8.8 (local bounds on GK + F)

For slowly time-varying K,F, let S = GK + F and S!=G®K +F.

(a) For any p > 2,

I8lla(ose) — Ho(8E) < b (on? ()02 (R) + 8P (81) . (3.21)
(b) For p = oo,
1
I8lla(o;e) — po(St) < e=1) (Naﬂa(G)aa(K) + ao(sl)) . (3.22)

(c) If G is slowly time-varying,

ISl o 8}) £ o5 { o @126 (B) + 25(6) [ﬂa(K) s )aa(x)]+aa(r)}.

(3.23)
0
Proof: In Appendix B.
Proposition 3.9 (bounds on 8% ())(3-1)
For any p 2 2,
2PV (K ® F) < po(K)0P) (F) + 1o (F)0P (K), (3.24)
3 (K®) < [0 (K®)]* o) (). (3.25)
O

(3-1) The bounds (3.25) remain valid for certain noncausal operators K©; see the definition 4.1.
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3. Frequency Domain Auxiliary Norms

Proof: In Appendix B.

In summary , the global algebra GIE, equipped with the ||-||4(;) norm can be

used to describe the global time domain behavior; the local algebra LIE,,0 > 1 equipped

with the ug(-) norm can be used to generate local frequency domain approximants to

that behavior.

3.4 Lower Bounds on |/,(;

While Prop. 3.8 gives upper bounds of the global norm ||-[|4(s) by the local
frequency auxiliary norm po(), lower bounds on |||;(;) remains to be established,
which, applied to local sub-optimal interpolations of sensitivity operators in Chapters

4 and 5, guarantee that the sub-optimal solution is actually near-optsmal.

The first lower bound of ||-[|4(s) in Prop. 3.10 is valid for any shift-invariant

and slowly time-varying S¢. The second one in Prop. 3.11 depends on the radial growth
property of st.

Proposition $.10

If the operators S, S defined in Prop. 3.8 are in IE,, then

u1(5%) ~ xPoP (8Y - |G V Klly(p) < Illafos) < o(8)) + xPoP (SY) + 16 v Klly(,)

(3.26)
where nt(,p)=nf, if2< p<ooand zlyif p=oo.
0
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Proof:

By the triangle inequality,

"Sl"a(d;t) -1I8- Sl"a(c;t) < "s"a(a;t) < ”sl"a(a;t) +18 - sl"a(a;t)° (327)
By Prop. 3.6,
1oy < o (Sh) + w0l (s1). (3.28)

Thus the upper bound is established as S — §' = G VK.

It remains only to prove

11(81) < 18] a(oye) + xP 0P (8Y). (3.29)

Assume p;(S}) is achieved(3-2) by p1(Sh) = ISk goo = I‘S\é(c"") for some

0 € [-x,x) with the largest (unit norm) singular vector u € €". Then the inequality
(3.29) is obtained by noting that for exponential inputs uy € I1°(—o00,00), ug(r) =

uexp(10r), 7 € ZZ, the output is

vs(r) = (8'ug)(r) = BL(c*)uy(r).

By (B.5) in Appendix B, it follows that
w50~ e (un - 8L ug) | = 5707 e (81 - 8he)) wa]
< n((’p)a‘(’p) (Sl)”“"a(a)

< K.gp) a‘(’P) (Sl)

(8.2) A similar proof applies if 4y (sl) is only approached but not achieved.
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3.  Frequency Domain Auxi'iary Norms

-~ as ||u|l4(s) = 1, which implies that

llvs ”a(a;t) 2 'c;la_t ||nwo||,3
> x;lg™t “mgi (Cw)"o”,z _ ,c‘(’p) a},"’ (sY
= m(8}) - =)ol (8

by the manipulation

[meSeyue] = [}t ten] = w51y Il

and ;107 II]’Ituglllg =1.

Thus
18aose) 2 (%) — xPlafP)(sh.
Q.E.D.
~ We introduce next the concept of uniform radial growth, which will relate
peo(+) to pi(-). As aresult, the lower bound in Prop. 3.10 can be expressed with respect
to po () instead of uy(-).
If K is in Hgg, oo > 1, K # 0, Hardy’s Convexity Theorem (Duren [Dur])
implies the radial growth condition,
( Ino )
1Kl grgo /1K || oo < v B0 (3.30)
where v = "K“Hgg/"K"H‘” and 1 < ¢ < 0p.
K € E;, has uniform (in t) radial growth with constant vo,(K) iff
Voo(K) = su% {"ﬁgnﬂgg/”ﬁt”}!m : ﬁg # 0} < 00, (3.31)
te
-
I
L g
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8. Frequency Domain Auxiliary Norms
in which case

Ing
Ho(K) < "(1)(K)VU(OE;0_) - (3.32)

Proposition 3.11

If the operator S, Sl, defined in Prop. 3.8, are in Eqy, 0p > 1, and S! has

uniform radial growth, then

Ino

I8llaose) = #o(SE) — pa(8}) {uao(s')(m) - 1} ~ PP (8 - |G v K] 5(,). (3.33)

O
Proof:
(3.33) follows immediately from Prop. 3.10 and (3.32), noting that
21(S}) = po (S) + #1(S1) — uo(S})
1 Qe ! ! (Ilﬁn‘a‘)
> po(Sy) + w1(St) — 11(St)veg(87) V907,
Q.E.D.

Remarks: We can show that yz,(-) norm is a continuous function of o. Indeed,

for K€ By ,1<0 <0 <ay,

|15t (E) — 1o (K)| < sup Hﬁtuﬂgy ~ ||Rell oo

However

[Relse ~ I Relmse
o

[+ <] 0
= |sup Zkt(r)(a')’c‘a" — sup Zkt('r)a'eiaf
8 lr=0 ® ir=0
m .
< sup Z ke(r) ((0')T — o7) &7
8 {r=0

< DIkl (") - o)

r=0

< (1-2) (n (%)) =iy
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by (2.39). After taking sup, of the inequality, we obtain
|#ol (K) — Ho (K)‘

< (1 - 5) (e In (%}-))_l Kllg) =0 as o - o,
which proves the continuity of g (-) with respect to 0. Therefore as the rates of G, K, F,
and S! approach zero {in the sense of Section 3.6) and o — 1, (3.26) (which is indepen-
dent of radial growth condition) implies that the auxiliary time-domain norm [|8||4,)

approaches the transfer-function norm ug (S{); in this sense, the former norm is asymp-

totically isometric to the latter.
3.6 Applications to Frozen-Time Analysis

Although the main interest here is in adaptive optimization, we note in pass-
ing that many classical frequency domain stability conditions of the frozen-time variety

(mainly linear systems with a time-varying gain matrix) can be summed up in a state-

ment linking local and global resolvents, as follows.

The resolvent set Respy (K) of an operator K in a normed algebra 1A is the

set {A eC:(M+K) e IA}, and the ~y-sublevel set of that resolvent (y > 0) is

Resy(K) = {A € Resy (K) : | (M + K) ™ ||u < '1} , (3.34)

Let G, K be operators in E;, where G has no memory and K is shift invariant.

Take the local and global norms to be uo(-) and || - [|5(,) respectively.

Corollary 3.1
ResLg,;7(G ® K) C Resgp(GK), (3.35)
provided 35(G) < (o — 1)/ [0 (K) (1 + Y10(G)1s (K))). 5
4
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Proof of Corollary 3.1:

Write ) := (\MI+G®K). If A € Resy g ;+(G ® K) then uo(F)®) < v
by definition of ResyE,;y- Now as K is shift-invariant G ® K = GK; by the Inversion
Lemma 2.2, (Al + GK)~! exists in B, proving the Corollary, provided ||F\® UF, || afo) <

1. Let us evaluate this.

As K is shift-invariant and AI has no memory, by (3.20)
“rke v l‘)‘"a(o) = "FAe vEe K)”a(a)
< (06— 1) ko (F2®)9: (G ®K) (3.36)

+ ad(FAe)llG ® K”a(c) + aﬂ(Fa\e ® F,)).

The last term in (3.36) is null. The other terms are bounded, as K is shift-

invariant,
#o(Fr®) <; (3.37)
35(G ® K) < 85(G)uo(K); (3.38)
85(F)°) £ 1%80(P) < v*90(G)uo(K) (3.39)

by (3.25). As K is shift-invariant and G has no memory.
16 ® Kllo(e) < o(Cio (E) (3.40)
by (3.13).
Therefore [|[F)® v Fy[|g(0) < 1 if

(0 = 1) {yus(K) (1 + 10(C) 1o (K))} 83(G) < 1, (3.41)

which implies the Corollary.
Q.E.D.
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3.6 Variable Rates Approaching Zero

In adaptive problems, the variation rate of a system is often adjustable. We
wish to describe the behavior of such a class of systems with variable rates as rates

approach zero.
Definition

A slowly time-varying system G € E, has variable rates 6,(,” ) (+) (or do(+))
approaching zero if there exists an operator-valued function &(p) of the parameter p

(variable rates) such that

(1) p takes values in R4+ (:= [0,00)) with zero as a limit point; G(p) € E,

for all p and for some pq,

G(p) =G. (342)

(2) uo(G(p)) and u3(G(p)) (or l|§(p)||(,)) are invariant with p.

(3)
P @E(e) < » (3.43)
or  ds(G(p)) < p. (3.44)
D
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3. Frequency Domain Auxiliary Norms

It is not specified in the previous definition the way to achieve C:(p), which
may come a priori from problem settings and can be complicated. An example of

embedding G in some &(p) is via convex interpolation.

For G € E, with normalized 8% (G) = 1 (or do(G) = 1), take m € Z,

m > 1, define py, = -,li and é(pm) as follows:
~ t t
Gt(pm) = (a +1- ;n")Ga + (; - ﬂ)Ga+1, te E, (3.45)

where a = [-,%J, the largest integer below %

For this choice of E(pm), it is obvious that
G(p1) =G (3.46)

and G(pm) € E, for all m, py, — 0 as m — co. So the axiom (1) is satisfied. For

m € Z, m > 1, by definition (3.45) (G; = Gye(om),t € Z)
to(G(om)) > uo(G). (3.47)
On the other hand,
1Ge(om)lluge < (a+1~ 5)@allggo + (= — )@urlggo <o(G),  (3.48)
which, together with (3.47), implies
#o(G(pm)) = #s(G). (3.49)
Similarly
#1(Glom)) = 81(G),  |1G(om)ll(6) = IGll(e)-
Thus the axiom (2) is valid. It is easy to show from (3.45) that
P @(on)) = 0P (G) = pm,  or do(&(pm) = do(G) = pm,  (3:50)
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which verifies the axiom (3).

The main purpose in introducing the concept of “variable rates approach-
ing zero” is to discuss the local-global coupling in the limit as rates of time variation

approach zero and system memories approach infinity.

Let S,S' € IEo, be defined as in Prop. 3.8, (replacing IEs by lan), and
&(p),i(p),f(p) the operator-valued functions embedding G, K, F respectively, as in the

previous definition. Define

S(o) =G(K(p) +F(0),  §(o) = G(p) ®K(p) +F(p).

Proposition 3.12

If the operators G,K,F in Prop. 3.10 have variable rates approaching zero,

then (3.26) has a limit version as

Jim im |[8(6)lla(o;e) ~ 4o@L(e))| =0 uniform in ¢ (3.51)
|
Proof:
Applying (3.26) to §(p),
u1 (84(0)) - xEP o E(0)) - 8(0) - 80} la0)
< 18P} lagost) € Bo L) + £P8P B ) +18(6) - B (O)lage)  (352)
As 3P (E(p)) — 0 as p — 0, and 5o, by Prop. 3.7,
I8(0) - 8'(0)llago) = 1G(p) VE (D) o) =0 a8 p—0.
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3. Frequency Domain Auxiliary Norms

Therefore after taking lim,_,g, we obtain

tim 1 (51(6) < lim 1B Mot < limy 1o (BL(e). (359

Now (3.51) follows as
uo(S(0) = 81(8}(p)) as o—1  uniformin ¢,

since po(-) norm is a continuous function of o (recall 8! € IEg,) (see the remark after

Prop. 3.11).
Q.E.D.

Prop. 3.12 may be interpreted as asymptotic isometry between ||-||4(o) and

Ho(:):

A possible application of the concept is adaptive design problems, where the
variation rate of a system is often adjustable (e.g., to achieve slow adaptation). The
simplest example is systems with a time-varying gain (matrix), its variation rate being
reduced without changing its maximum value. Another application, as examplified by
convex interpolation, is time-scaling technique, which has been used in adaptive systems

and sampling data systems.

Since every G € IE; can be embedded in a class of operators with variable
rates approaching zero, e.g. via convex interpolation technique, Prop. 3.12 is a general
coupling property between the global norm ||-|| afo) and the local norm () rather than

a property of an individual operator.
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Adaptive Design by Local Interpolation:
Results for Stable Plants

Chapter 4

The double algebra provides a symbolism in terms of which global stability
and performance can be evaluated explicitly through local approximations. A simple
example of this involves the stability analysis and the norm evaluation of a global
sensitivity operator 8 := (I + G)_l, G € E, (hence an open-loop stable system), from
-— frequency-domain properties of its local approximant, st .= (X+ G)e. We have the

following stability result, which is an immediate corollary to Props. 2.2 and 3.7.
Let 2 <p < o0.

Proposition 4.1

K G and S' are in IE, and the variation rate of G satisfies 6.‘," )(G) <
-1
[n.(,")u,ugp) (s‘)] , then § is in 1B,
-1
s=(1+s've) s (4.1)
and
us"a(a) < (1 - a)—l“c(sl) (4'2)

© where o := n,:c.(,’ ’m‘," ’(s')a,‘," ) (G).




4. Adaptive Design by Local Interpolation: Results for Stable Plants

Although Prop. 4.1 provides an illustrative application of the double algebra
symbolism, it is still little use in feedback system analysis, as a feedback system is
often open-loop unstable. Instead, we seek global adaptive design via approximations
by local interpolation. Again the double algebra symbolism is employed to describe the

approximations. We start, in this chapter, with the case of stable plants.
4.1 Global Design by Local Interpolaticn

The main concern here is with the synthesis of a global sensitivity from a

prescribed local (possibly locally optimal or suboptimal) behavior, as follows.

Suppose that Wy, W, € E, (and W'l'1 € EE,) represent two weightings,
and G € E, represents a strictly causal plant. It is standard that the feedback con-
trollers F € B, stabilizing in E,, i.e., maintaining all closed-loop operators in IE,, can
be parametrized by a compensator Q € [E, which gives a sensitivity (I+ GI")"1 =

(I - GQ), and a weighted sensitivity S € E_,
§ = Wy(I-GQ)W; = W2 W; - WGQW,, (4.3)

(Q = F (I+ GF)~! is itself a closed loop operator).

Denote W2G by Gw and suppose that it has a local factorization
Gw=U® Gout (4.4)

where U and G°% are locally inner and locally outer in E,, ie., for each t € Z,
U¢(o(-)) € H® is inner and (G°")¢(o(-)) € H™ is outer. We are given a sensitivity
st e E, which locally interpolates W := Wy ® Wy at U in E,, i.e., for which there
exists Q; € E, such that

S'=W-U®Q, {4.5)
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where S/ is assumed to be smaller than W in y,(-) norm to avoid the trivial case Q; =0,

Q is now chosen to locally realize 8!, i.e., to satisfy
S'=W-U®G™ e (QW,) (4.6)
(e, Q1 = G ® (QWy) or Q = ((6°**)° & Q)W D).
To describe the operator Q explicitly in the local algebra ILIE,, we need to
extend ILEE, to include (bounded) noncausal operators with kernels x € I1(—o0, o).
Definition 4.1
i]Ed consists of (time-varying convolution sum) operators K (possibly non-
causal) with uniformly (in t) bounded frozen-time kernels k; € li,(—-oo, o) for all o' in
an open interval (depending on k) containing 0. The local product, local inverse etc.
= are extended to I:]:E:, in an obvious way. For K € ]I:T_E;
A (K) o= oup (Rl p,
B (K) o= oup |, ~ Re-sllp.
]
Then K € LE, iff K € ITE, and K is causal, or equivalently K € If:Eo and
K; € H® for all .
With the designated extension, the choice of Q is explicitly given in ]l:_E:7 by
Q:= [Gwe ® (W - s wit (4.7)
-~ where Gy ® € I:E:,
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The problem is to determine whether (4.7) is stabilizing and makes §' a good

approximant to the (true global) sensitivity S for slewly time-varying G, W; (i = 1,2),
and 8.

Assumptions for Theorem 4.1:
(a) S! locally interpolates W at U in E,.
(b) Wi’l and W;l are in E,.

(c) (6°**)® € E,, and U;! is uniformly bounded in an annulus o < |2| < 0

for some o > o, i.e.

sup{|U0;}(2)| : o < |2| < 0p,t € Z} < 0. (4.8)

Theorem 4.1
(a) Q defined by (4.7) stabilizes G in IB.

(b) If Gw, and Gw®, and §' are slowly time-varying, then the weighted

sensitivity S € JE, is explicitly given by
S=8'+Gw vV (GWOP M)+ Wy v W, (4.9)

where M := W — §! and Gy = U ® GO

Moreover, S satisfies, for 2 < p < o0,

"S - sl"a(a) < ﬂ’

where

8= xonl?) [uo(Gw®)oP) (Gwo M) + uP (W)oP (W) (a0
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and
u1(Sh) - £PAPV(S) - B < [Sllagey) < wo(8)) +ePoPSY) 48, (a11)
where
P (M) < 8P (W) + 8P (8Y) < o (W3)alP (W1) + o (W)l (W2) + 8P (")
and pg (M) < po(W) + io(8') < 20 (W2)ho (Wy).

(c) If in addition S! has uniform radial growth V,,O(S'), g9 > o, then

Ing

181laos) — o (8Y)]| < ma(s}) {uao(s') (¥5) _ 1} +B+aPloP(sY).  (a12)

(d) If Wy, W3, U, G have variable rates approaching zero, then
I Y al _ . .
lim lim [15(p) (s — 4o ®l(o))| =0 uniform in

- -~

where S(p) = W1(p)W2(0) — Gw (0)Q(p) W1 (p).

Proof:
(a) If Q satisfies (4.7) then
Q= [(ct’“‘)e @UO @ (W — s')] wil, (4.13)
Assumption (c) ensures that (G°*)° € E,. Also W;! € E, by hypothesis.
It is enough therefore to establish that
K:=U° g (W-§} (4.14)

{{‘ is in E, to prove that Q € IE,, which would mean that Q stabilizes G.
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Now as 8! locally interpolates W at U in [E, by Assumption (a), U; divides
(W-8!), in H3; for some oy > o, for each t € Z, and therefore K ¢ HZ. To
conclude that K € E, it is enough to show that ug,(K) < oo for some oy > ¢. This
follows from the existence of some oy > o in which s, (UP) < oo by Assumption (c),

poy (W —8!) < 0o as W = W; ® W; and §! € E,, and the inequality holds
poy (K) < Figy (U)o, (W — 81 (4.15)
where jig, (U®) := sup,g "f]?ll I Therefore Q € IE,, as claimed.
(b) From (4.3) and (4.6) the identities

(S —8') = WaW; — W3 @ W; + GwQW; - Gw ® (QW;) (4.16)

=Wz ¥ W1+ Gw vV (QW;)
holds. Therefore, (4.9) follows as QW; = Gw® ® M, and
IS - 8Yla0) < IGw V (CW® @ M)lg(o) + IW2 ¥ Wily(q)
< konl?) [P (Gw)olP) (Gw® & M) + ulP (We)ol (Wy)]  (by Prop. 3.7). (417)
From which (4.10) follows, and (4.11) follows by Prop. 3.10.

(<) (4.12) follows from Prop. 3.11.

(d) It follows from Prop. 3.12.

Q.E.D.

By Theorem 4.1, global synthesis of the sensitivity operator S can be ap-

proximately realized by slowly time-varying local interpolants sl
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4.2 Local H*® Adaptive Optimization

A natural idea for adaptive compensation is to make the sensitivity S; at time
t € Z depend on the local behavior G; of the plant and (W,); of the weightings, which
are either found by identification schemes, or given a priori. In frozen-time adaptive
design a local approximation Sﬁ to S; is generated by local interpolation for which the
adaptive relationship can be represented by a map §! : Z x Hgg X Hgg X Hgg —- H®

00’
oo > 0, 8t = §'(t,0,, Wy, Wy,) as in (4.5).

Theorem 4.1 provides a basis for frozen-time designs to be valid, provided
that S! varies slowly. A sufficient condition for slow variation of s!, when U,W,; and
W are slowly time-varying in u(-) norm, is that at eacht € Z, § ‘(t, *++) be Lipschitz
continuous in its variables, i.e., there are constants 'y(P ) o) and 18’) such that for all

Wy Wy
teZ

I8 - 8i-algp. <% ~ Dol (
W2t~ Fyge_oylmgs + W5 Was = Foge_yyge,

where 2 < p < 00.

In particular, we may try to design S! by local Hgg optimization, which gives

a local optimal weighted sensitivity Sf,pt satisfying

st = inf ||W,-0,Q 4.19
Il( opt)tllygg G,lenﬂgg W :Qzllygg (4.19)
for each t € Z, or
Hog(Sepe) = Inf piag(W - U®Q). (4.20)
QeEq

However it will be shown in Chapter 5 that § ! obtained in this way is not

always Lipschitz continuous in the sense of (4.18), and therefore not a suitable candidate
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for frozen-time design. Nevertheless it will be shown that for any 6 > 0, the central
(maximum entropy) interpolant in AAK’s parametrization provides an adaptive scheme

Sl(ﬁ) in an which is 6-suboptimal, i.e.,
rog(84(8)) < Iloo(sipc) +4 (4.21)

and is Lipschitz continuous, with constants '7&2,1 (), 1&2,; (6), 'yg ) (6), whose dependence

on 4 will be evaluated.
For such a é-suboptimal adaptation scheme we get the following.

Corollary 4.1

Given any &' > §, the global sensitivity S € IE, (realized using such a é-

suboptimal Lipschitz continuous local interpolation by (4.7) as well as (4.3)) satisfies
ISllage) < #o(Sept) + 6's (4.22)
provided that
wawyul) (Gw) [2ue (W) (W2)35) (Gw®) + 8] + mamul (W) < 85, (4.23)
where W = Wy ® Wy and

B = fio (Gw®) [u,(wl)a,(w) (1 + 1&2) + 1o(W2)0(W1) (1 + '1531) + 3a(U)'1§12)] :
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Proof:

(4.22) follows immediately from (4.23) and Theorem 4.1, inequality (4.11),
noting that

37 (Gw® & M) < 7 (Gw®)BE) (M) + i (M)3L) (Gw®),
o) (m) < P (w) + 8 (s
< 8P (W) + o (W2)153) 86 (W1) + o(W1) 7531 30 (W2) + 1) (8)26 (U),
AN (W) < o(W1)08) (W) + 1o (W2)al (W),
Ho(M) < 2ug(W) < 2u0(W1)uo (W2).

Q.E.D.

(4.23) is satisfied for small enough rates 9,(W;), 8,(Wz), and 8,(U). In
other words, for slow-enough systems, the upper bound (4.22) on the global sensitivity

approximates the supreme of the local H® minima.

4.3 Robust vs Adaptive Sensitivity Minimization

Information about uncertain perturbations or disturbances is represented by
a weighting operator W € [E;, o > 1. At time ¢, disturbance pasts are assumed to lie in
the image under W, of the unit ball of £2(—oo, t) in the case of noise, or of H% in the case
of transfer function uncertainty. We distinguish apriort information at some starting
time t,, and aposteriors information at time 7 > ¢, represented by operators W and W',
The difference between W° and W7 represents a reduction of uncertainty or acquisition
of information in the interval [¢o,7], and this reduction is reflected in a shrinkage of

weighting, |(W7)¢(2)| < |(W°)¢(2)] for at least some t > 7 and z in some subset of the
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circle |z| = o of non-zero length. A sensitivity reduction scheme will be called robust
or adaptive if based on apriori or aposteriors information respectively. A controller
which achieves a sensitivity which is better than an optimal robust one is necessarily
adaptive, and the question arises how much advantage adaptation provides. For slowly
time-varying systems, this can be answered independently of how the information was

obtained.
Example 4.1:

We will introduce a family of “narrow band” disturbance weighting functions
whose center frequencies become known with increasing accuracy, and whose envelope

is easy to compute.

Let f(-) : [0,7] — IR be a differentiable monotone decreasing function satis-
fying £(0) =1, f(6) = £ for 6 > §x, where 0 < £ € 1, 0 < a < 1 are constants, f(:)
will be fixed.

% i)

Let o9 > 1 be fixed. A narrowband weighting V(ﬂo) € Hgg, oo > 1 with center

00, §7 < 8 < (1 — §)7 is a function such that V(go)(oo(-)) is outer in H®, defined in
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terms of its boundary magnitude by ‘

£(10 - 6o)) for0 <8<,

Vigo) (e0e™)| = .
(4070 ) IV(OO)(ooe“o)l for —-mr < 0<0.

A IV e fo0e” )

| -

=

oy o A - e - o o

a
b+ v
2

> ¢ !

- 90_"7,, [

>

Narrowband disturbances with uncertain center frequencies will be repre-

sented as elements of a family of such narrowband weightings,

- -

Fl(G,¢) = {V(ao)eﬂg(?:lao—CISﬂsl—a}- y

The center frequencies lie in an interval with midpoint ¢ and width 8; 8 is a measure

of uncertainty about center frequencies.

Let V(ﬂ,c) € Hgg denote the envelope weighting of the family, V(ﬂ,c) (00(+))

outer in H%, and satisfying

iO)

|l7( 8,¢)(o0e V(ooe')

= sup , — <0<

VeF(B.)

Apriori information about the disturbances is that they belong to the family

<1

F(Bo,¢0). (The apriori weighting is assumed to be time invariant.)
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Sensitivity is to be minimized in a SISO time-invariant plant G € IEs,, whose
inner part consists of one zero at the origin. For 1 < o < gy, the inner factor in IE, is

U(z) =o~'z. A robust control based on the apriori envelope, Wo = ‘7(50"_.0) achieves

Ho(Srbet) = inf po(Wo —UQ) = Wo(0) (4.24)

In an interval [0, t], additional information is received about the disturbances,
and results in a shrinkage in aposteriori uncertainty about the center frequency param-
eter, i.e., §; is monotone decreasing as t — 0o. An adaptive local optimization of the

worst case ccnsitivity, based on the aposteriori envelope

wt = { ‘:(ﬁt,"t) for ¢ 2 0,
ViBorcg) Tort=0,

based on Theorem 4.1, achieves
¢ . -~ _ ~ A _ -
o [(2am),| = ginf, IWe — Eulgo = () (4.26)
and the resulting adaptive sensitivity achieved is
Sadpt = Stape + UV (Ue ® (W — s‘)).

The constants in (4.24-4.25) can be expressed in terms of the logarithmic bandwidth

#(t) of the envelope at time ¢, defined by

1 (" | :
log ¢(t) = 2 /_ loglV(ﬂMt) (aoe'a)ldﬂ.

From the assumption that f(6) = ¢ for # > §nx and the fact that li;(ﬁo,co)(')l is a

widening of Vg, ,)(:)| by (8o — B), we deduce that
log ¢(t) = log 4(0) + (Bo — Bt) log €.
By Jensen’s Theorem,
i?( Bec) (@) = elo8#(t) — g(0)¢lfo—Pe). (4.26)
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Let us evaluate the recent past norms || - [|5(g;) of the sensitivity for the

robust and adaptive controllers. In the robust case

1 (Sebat) < ”srbat”a(a) < bo(Sypee) = ¢(0).
In this simple example, the j15(S,4,;) norm is independent of o and we get, from (4.24)
and (4.26)
"Srb:t"a(a) = ¢(0). (4.27)

In the adaptive case, (4.25) and (4.26) give

o | (L45e) | = #(0)¢lPo=A0). (4.28)

Suppose now that §; and c; change slowly, |8; — B:_1] < pg,lee = ¢¢-1] < o,

and Iéé(}ll < p;. The rates of W and Sidpt are

aa(w) <p:= Pf(Pﬂ + Pc)

35(8L4pe) = 3o (V(g, 0 (0)) < 8o (W).

As Sﬁ dpt depends Lipschitz continuously (L™ — L) on W, the rate of the local optimal
sensitivity becomes small as p — 0, and we can base our solution on it rather than on

the é-suboptimal one. To evaluate the upper bound in Theorem 4.1, we note that

Gw(2) =0(2) =072, po(Bw) =1,

6(c0,0) = 3a(f) < 95(W) + aa(sfldpt)

<2

which gives

"sadpt"a(a;t) < “a'(sﬁdpz) + P"c(roo)ll + 2"0]- (4.29)
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A lower bound is computed using (3.26), giving
I8adpellafo;) = #1(SEape) — ox) (1 + 265). (4.30)
As ug is independent of o in (4.29-4.30), and using (4.28),
ISadptlagort — $(0)€P020)| < ol 1 + 2]
and by (4.27),

“sadpt "a(a;t)

< £Bo=B) & o1 + 26,67 1(0). 3
"srbat"a(a;t) =t T [ T ]¢ ( ) (4 1)

In the limit of slow time variation, as p — 0, (4.31) shows that adaptive sensitivity
is better than robust sensitivity by a factor £(50—5t), where (Bo — B:) is the reduction
in log-bandwidth of the disturbance weighting resulting from extra information about

disturbances acquired in the intervening interval [0,].
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Chapter & é-suboptimal Lipschitz Continuous Designs

Theorem 4.1 and its corollary suggest that the global synthesis of the sensitiv-
ity operator can be approximately realized by slowly time-varying local interpolants. A
sufficient condition for slow variation is that S! defined in (4.5) be Lipschitz continuous

with respect to W (= W2 ® W) and U, i.e.,

IS¢ - st—x";,apo <y [We - wt-1||Hgg +y’ 10 - Ut—l“Hgg VteZ. (5.1)

Since a change of variable from z to ogz will transfer the results on H*
to H,‘,’S, we will concentrate here on H®. Thus assume W, U € [E; and U is locally
inner in E; (ie., fJ,‘(c"o)ﬁg(cm) = Ifor 8 € [—x,7)). The H*®-norm || - || goo will be

abbreviated as ||-||oo in this chapter.

Suppose now s! is a local interpolant of W at U in I, i.e., there exists

Q € E; such that
s'=w-UgQ. (5.2)

S! is said to be a local optimal interpolant of W at U if Si is in fact the
optimal solution to the local interpolation problem,

Bt = _ inf "Wt - ﬁgat"w te Z. (5.3)
QeH®
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We are interested here in the Lipschitz continuity of the local optimal or

sub-optimal solution 8! = W — U ® Q with respect to W and U.

5.1 Lipschitz Continuity and Lipschitz Continuity In Norm

Given W, U € E; with U locally inner in ;. Suppose §' is a local inter-
polant of W at U in IE;.

8! is said to be Lipschitz continuous (L™ — Lz) with constants v and vy

if constants v and 4y can be found for which
I8¢ — Se-1ll 2 < WwlWe — Welloo + 0/ 0 — Uil Vi€ (5.8)
If we have only
18elloo = I8e-1llool < W IWe — We—glloo + 10710 — Tifloo, (5.9)
then S! is said to be Lipschitz continuous in norm with constants vy and ~y.

The problem (5.3) can be transferred into an equivalent Nehari distance

problem in L*:

ue=_inf |W;—0,Qelleo
QeH>®
= inf |0, (O;W, - Q)10
10019, -2) 610
= _inf | (OWe-Q)lIw  tez
QeH®

where ﬁ: denotes the complex conjugate and transpose of flt.

We will show later in section 5.3 that the local optimal interpolant §' is
Lipschitz continuous in norm. But for the moment, we will demonstrate by an example

that the local optimal interpolant S! is in general not Lipschitz continuous.
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Example 5.1:

Consider the problem of optimally interpolating (W,,,U) in H*, where
U € H® is fixed, U(2) = 311;__—;3-22,_—1,0<ﬁ,<1 (s =1,2), and W,, € H® is

variable depending on a parameter w > 0. By the Nevanlinna-Pick theory, the optimal

interpolant of (W,,U) has the form

S,,,:uw((a )), la| <1, pw € R, (5.11)

where S, satisfies the interpolation constraints S, (8;) = W, (8;), ¢ = 1,2. Consider
any W, for which the ratio W, (82)/W.(B;1) =: p» approaches 1 as w — 0, and which

satisfies the inequalit;

Idwl
For example, W, := 1 +wW', where W/ € H®, |W/||, <1, W/(8;) =0, W'(§;) >0
will have these properties. We will show that as w - 0, ||dS,|l y2/||dWu|lee — oo,

implying that the optimal interpolant is not Lipschitz.

As w — 0 we get

ds (z -1) da + (a—2) dp
Wil ' (az - D2 Wl * (az — 1) [dW]oq

(5.12)

where S,W, a,u, all depend on w. The term proportional to du is < 1 for |z] < 1,
so it is enough to establish the unboundedness of the term proportional to da. Now
w — 0 implies that p, — 1 which, it is not hard to show, implies that & — —1 from the
right, and |da/dw| — |82 — ﬂll‘l\/(l — B2)(1 — B})W'(B2) > 0. Therefore, for w small

enough

(22 -1) da dw
> — -1
ldWlloo — |“(otz--l)zdwlldv" ”ooI

ZContl ll

eTE-b sy (513
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as dw/||dW ||, = (IW']lc) 1. Contour integration now gives
1
S| g2/ 1dW |l > Const.(1 - a®)"% -1, (5.14)

which grows without bound as a — —1, and therefore as w — 0.

In this example, the optimal sensitivity S becomes very sensitive to pertur-
bations in U and W when W takes values close to each other at the zeros of the plant
inside the unit disk. How general this phenomenon is will be a task of future research.
This example shows that the local optimal interpolant is not a suitable candidate for

the local interpolation outlined in Chapter 4.

Although the optimal solution is not Lipschitz continuous in general, we
will show that a §-suboptimal Lipschitz continuous solution can be constructed. This
suboptimal solution is based on the AAK’s parametrization, which will be presented in

the next section.

5.2 Lipschitz Continuity of AAK’s Suboptimal Central

Interpolants

Before the description of AAK’s parametrization of optimal and suboptimal
interpolants to the Nehari distance problem (5.10), an important operator will first be

introduced.

Suppose M € L. Then the following (negative Fourier) coefficients m; €
Ccnx" (k= 1,2,---) are well defined,

L .
my = L R M()de k=1,2,...
2% J_x
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An operator Ty : 12 — li (12 := 120, 00)) is called an Hankel operator with symbol

M if it is defined by an (infinite) Hankel matrix,

Py =[mjpk—q] 5.k €[1,00). (5.15)

Hankel operators play an important role in harmonic analysis of the functions
in L. By Nehari theorem, the distance between an function M € L°° and the space

H®™ is precisely the norm of the Hankel operator with symbol M, i.e.,

= inf - = |ITprl. .
b= gt IM ~ Qlle = Pl (5.16

For § > 0, a function S € L™ is said to be a §-suboptimal interpolant of

M € L™ in (5.16) if

L .
1 kS(edd =m_,  k=1,2,---
27 J-x

and

ISlizoo < u+ 6. (5.17)

Adamjan, Arov and Krein [Ada2| give a complete parametrization of all §-
suboptimal interpolants of M € L. To describe the parametrization, we will first

define, following AAK’s notation, the following operators. Let M € L*°, 6 > 0, p =
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4 + &, where u is defined in (5.16).
[:=Tp: 1210

B;= (P1-r'r)-1: 12 12,

fo= (M-I 12 il

G(T,p) = [TignR 3|pn]”

G(T,p) = [Mignk 2lcn]”

P=pR, G(,p): C"— 12,

;) : C" -0
P.oono ch; (5.18)
Q=TIR,G(T,p): C"— 2;
P= pRpg&(l‘,p) S i L ¥
Q= TI"ﬁpgé(I‘,p) : O l?}.,
where Ilpin is the projection operator from 12 onto £", T is the right shift operator in
12: foruei%, (Tu)(t) =u(t—1) fort > 1 and 0 for t =0, and (p*I - I'*T')~! (and
(021 — TT*)~1) exists since p > ||T||. For the same reason G(T,p) (and G(T, p)) exists.
For simplicity of notation, write R = sz; R= ﬁpz; G = G(T,p); G= &(I‘, p), in the

rest of Chapter 5.

Let L[z],for z € 1_2“ denote the usual z-transform of z, i.e., if z = {zm, m =
0,1,---} then £[z](z) = 3°%°_g Zm2™, |2| = 1. Then for P (similarly for Q,P,Q) defined
in (5.18), L[Ph) defines an operator from L™ to L2. If {¢;, €3, +, €n} is the axis for C"
(ie., & = (1,0,0,---,0)T, & =(0,1,0,--,0)7, etc.), then

Pi(2) :=[L[P&](2), -+, LIPLnl(2)] 2| =1 (5.19)
defines uniquely (in Lz-sense) an function P4 in L? which satisfies

Py(2)h= L[Ph)(z) hel", |z|=1. (5.20)
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5. 6-suboptimal Lipschits Continuous Designs
Similarly, we define functions Q4+, P, Q- € L2 via, for lz|=1,heC®
Q+(2)k = LIQA)(2),
P_(2)h = L[Ph|(2), (5.21)
Q-(2)h = L[QA|(2).
Py, Q+ have analytic continuation into the unit disk, and hence Py, Q+ € H2, Similarly

P_,Q-¢ L?© H?, the orthogonal complement of H2 in L2.
By AAK [Ada2,p150], the following identity holds: for |z| = 1
Pl(2)P4+(2) - Q4 (2)Q+(2) =1  a.e. (in Lebesque measure), (5.22)

which implies that for any E € H®, ||E|goo < 1, P+(2) and P(2) + Q+(2)E(2) are

invertible (a.e. |z| =1), and also
lP;l(z)l <1 (ae). (5.23)

From now on, the specification “a.e.” (almost everywhere in Lebesque mea-

sure) will be dropped from zotation.

By Adamjan, Arov and Krein [Ada2, Theorem 6.1}, the formulae
SE(2) = p(Q-(2) + P-(2)E(2)) (P+(2) + Q+(2)E(z)) ™" (5.24)

where E € H® and ||E|lcc < 1 gives a complete parametrization of all §-suboptimal

(p = s + 6) interpolants Sg € L® of M € L* in (5.16).

Take especially E = 0, called the centre solution (or the maximum entropy

solution) by AAK, we have

So(2) = PQ-(2)P;'(2) |2l =1. (5.25)
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Next, let M be a variable in a subset M C L. Define a mapping @ :
R+ xM— L™ by
o(6, M) = S(M) (5.26)

where S(M) is a 6-suboptimal interpolant of M.

®(-,-) is said to be Lipschitz continuous in M C L* if a constant 5 can be

found for which
12(6,My) — ®(6, M3)| ;2 < ¥5IITM; — Tyl VM1, Mz € M. (5.27)
The mapping ®(:,) is called central, denoted by &q(,-), if
®o(8, M) = So(M)
where Sy(M) is the 6-suboptimal central interpolant of M defined in (5.25).

Let 6§ >0 and
= inf ||M - ,
uag = it M - Qoo
pPM =M + 56,
K = sup Hlpy,

MeM
p=p+é.

Theorem 5.1

The central mapping ®o(-, ) is Lipschitz continuous with constant

v Tz
ng = 2nl/2ME T E 6+ b [1 + 27“] . (5.28)
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To prove the theorem we need some intermediate results.

First of all, the expression of Sy(z) in (5.25) can be simplified. Define
P° = pRICn cr - 1.2*,,

o __ n 2 (5'29)
Q°=TIRjpn C" 14,

Then
P = P°G, Q=Q°G (5.30)
where G : L" — " is memoryless and hence admits a matrix representation G € C™**".

Similar to (5.19), (5.21), define
P°(2) == [L[P°t1](2), -+, LIP4n](2)] 2| =1,

(5.31)
Q°(2) :=[L[Q°61)(2),- -, LIQ%&](2)] |2l =1.
Then for |2| =1,
P.(z) = P°(2)G,
(5.32)
Q-(2) =Q°(2)G.
Now So(2) = pQ (z)P'l(z)
T (5.33)

= pQ°(:)(P°(2) .

The subscript o in Sy(2) will be omitted in the rest of the chapter since the ceatral

solution is the only solution involved.

To simplify notation, we will always use || - || to denote operator norms al-

though its precise meaning will depend on individual input-output spaces.

Lemma 5.1

Suppose K : " — 12 and K(z)h = L[Kk|(2), or K(2)h -= L[KR](Z), |2| =
1, h € €". Then the following norm inequality holds:

1Kl 2 < n/2K]. (5.34)
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Proof:
By definition, for any h € C"

K(2)h = L|KAR|(z) € L2

By Parseval’s theorem

51; /_’; B K () K () hdd = A* (2% /_: K‘(e‘”)K(e")do) N

= || Kh]% .
+

Thus
R LN
K2 = |-— / K'(e")x(e"’)dal .
2r J_»

We must prove that

o [ 1K () K () o

<n

1 [™ e ibypeq.if

- /_”x () K () a| .

From the matrix inequalities: for any A € L"™*"
|A|2 < Trace(A*A) < n|A|2,

we obtain
1 (™ ) 0y g
2 | KK () a8

x . :
<2 [ Trace (K ‘(&K (c‘a)) do

T2xr J_ o
1 x . .

= —Trace ( / K‘(e")K(e")dﬂ)
2r .

L . .
L[ g (e'o)K(c‘o)dol :
-

<n
2r

(5.35)

(5.36)
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which proves the lemma.

Q.E.D.

In the rest of this section, the subscript ¢ (s = 1,2) in all operators defined

in (5.18) and (5.29) indicates the operators corresponding to the symble M, € L, and
AK :=K; - K;.

Without loss of generality, assume p; < p; in this section.
Lemma 5.2

For the operators P°,P{,PJ, defined in (5.29),

Pl < 3, (5.37)
- 1P - Pyl < 1 (14 3 i, oy (5.38)
0
Proof:
By definition,
P° = pR|pn. (5.39)

Since for z € 12+,

1(o%1 - I"N)zlz 2 o llzll - #tli]

(5.40)
= (o - u?))zl,
by Banach algebra inverse mapping theorem,
e - 1
IR}l = {l(p*1 - P*T)~!}| < p (5.41)
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Now, by (5.39) and (5.41), as well as p — u = §,

Pl = [|oR|gn |
< pl|Rj
P
- P
6(p+ 1)
1
<=
- 6!
which proves (5.37).
To prove (5.38), define
~ 1., i
K; = —21"-1‘.' t=1,2.
P
Then
1 2 \~1 1 & 1
pRz — p1By = —(1-Kg)7" - —(1-K,;)
P2 P1
1 1 -1, 1 = -1 2 V-1
=(—-—)1-K;) '+ = |a-K;) - (1- K.
(o= =Ep) 4~ [~ Bp) ™~ (1~ K]

The RHS of (5.44) is bounded via,

1 1 & -1y o 12— P
— - )1-K,) Y <
I~ )BTl < = —

_lm—p1] b2

© o P} ud
_lea—p1] 2

T op1 b(p2+ p)

1
< ———r_— JilTy =T ,
B 6(!’2 +l‘2) " 2 l"

by the inequalities py < p; and
lo2 — p1] = [pg — p1]
= |([T2ll = [Tl

< ||Tp = Iyl

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)
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- >

. Also 1 ‘
~ I [a- &)~ - - &)
1 - -
< p—”(l Ka) 2|11 (x - Ky) 2|, - Ky
1 5 =
< —- K, - K, .
1 pl — ”% P - ug | I (5.47)
P1 &
- K
= 8(p1 + m1) 5(02 + H3) IRz ~ Ry
1 pip
< —= K,-K ,
- 6202+“2I| 2 1”
as p2 < p1 < Py + M1
However
p1e2|K; — K|
1er 1.,
= p1p2||5T2l2 -~ 5Tl
05 P
< pip 11 1 Sid+ ST r‘r||J
- = P12 2 2t2—4Hia
-m L pz pl 2
o2 — Pll(Pz + Pl) 2, M1 +#2
< P92 ua + 2 — T
| Pgl’l P1 Ir | (5.48)
< [1o2= 112283 + g + 3 20y - |
2P
< [l = 21220+ 2 + G + vy = Tl
< [lp2 - ﬂ1|2u2 + (ul +u2)|IT2 ~ T4l]
< (p1+3u2)|IT2 =Ty ||
by (5.43) and the inequalities ug < pg, pg < py and ||T;|| = .
Therefore, from (5.44), (5.45) and (5.48),
lo2R2 — p1R4 ||
1 ﬂ1 + 3#2
< ————|Ty=T4|| + 57—z =T
1 p1+ 3#2)
- Gy (1557 2T

77




5. 6-suboptimal Lipschits Continuous Designs

Now, (5.38) follows from (5.49) as

|aP%) = [|A(pR)|pnll < A (pR)].

Lemma §.3

(P (2) S P2+ o] =1.

Proof:
By (5.32), P+(2) = P°(2)G, then
(P°())"'=GP{Hz) o =1.

From (5.25)
IPFY2) <1 Jo|=1.

Since G is memoryless and self-adjoint,
Gl =Gl
= g Rignl 2|
= |NgnRigs] 2

= l{Fign(t - 51Ty gl .

2 ~ ~
For a := %2- <1, K:= ;IZI“I‘, (I — K)~! can be written as

1
)

(-%)'=——0-K)

(5.50)

Q.E.D.

(5.51)

(5.52)

(5.53)

(5.54)

(5,55)
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where K is self-adjoint and ||K|| < e

L

Let K; = chxlcu. Then

IMgn (X — ) pn] ™! = (1 - @)X - Ky)~2|

(5.56)

Therefore

|G| < pV1+a

M2
=p\1+ p_2 (5.57)

. =y/p? + ul.

. Now, (5.51) follows from (5.52) and (5.57).

Q.E.D.

Proof of Theorem 5.1:
Consider the cent: al solution (5.33),

5i(2) = ;Q¢2)(P2(2))™! el =1, i=1,2. (5.58)
52(2) = 51(2) = (P1Q1(=) ~ 2@} (P{ () + 22Q3(2) ((P7()) - (P3()) 1)

= [(103() ~ £203(2)) + Q30 (P32 (P5(2) - Pi)] (o)
(5.59)
Recall that for [2| =1,

L

1p2Q3(2)(P5 (2))7!| = S2(2)] < pa. (5.60)
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5. &-suboptimal Lipschits Continuous Designs

By Lemma 5.3 and (5.59), (5.60),

1152 = Stll g2 < [l101QS - £2@3ll 2 + p2llPS — PYll 2] /0% + w2. (5.61)
By Lemma 5.1,
152 — S1ll 2
" (5.62)
<nl/ Vet +udlle1Q] - p2Q3 | + p2l[P5 — PY].
But
p,'Q:? = TI‘,-P:? 1 =1,2 (5.63)
Then
llp1Q] — P2Q3l|
= ||TT4P{ — TTyP3|| (5.64)
< PNITy = Toll + p2||P§ — P3|.
So

|52 — S1lf 2

(5.65)
< n/2 /o2 + 2 (IPYIITy - Tll + (pz + a) PG — B4

Finally, by Lemma 5.2,
1S2 = Sl 2
1/2 1 1 #1 + 3ug
<l oT 4 [+ 30+ 0 ey

1 3
<n2\ /iy [+ 522 iy -y,

which proves the theorem after bounding p; and u; by their maximum values p and g,
respectively.

Q.E.D.
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5. &-suboptimal Lipschits Continuous Designs

5.3 Application to Adaptive Design

Back to the design problem (5.10).

Proposition 5.1

The local optimal interpolant ! of W at U in IE; is Lipschitz continuous in

norm with v =1 and vy = kw := sup; | Wy ||o.
O

Proof:
Let M; = ﬁ:W; € L, It is easy to show that for M;, M; € L, T a ll <

|| M1]|foo and Pyy—T'my = er“M2' Therefore
ITe = Teall < NOTWe — Bf_y We_yffpoo

. = ”(ﬁ: - ﬁ:—l)wt + ﬁ:—-l(wt - w\c-1)||L°°

SN — (5.66)
" < kw||Ug — Ug_q]lpoo + |[We — Wit ]loo

= kw |0t — Ve—1lloo + [We — Wi_1loo-
We have the inequality
IW8tlleo — 8- 1llool = IITell = T eyl
< |IT¢ — Teyll (5.67)
< k|0 = Te—floo + Wt = Wi_ylloo
as required.
Q.E.D.

Consider now the local H*® adaptive optimization problem in Chapter 4.
The main concern here is to synthesize a sensitivity ste IE, which locally interpolates

W (:= WyW;) at U in JE,, i.e., for which there exists Q; € IE, such that

S'=WwW-U®Q, (5.68)

-
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and also 8/ is Lipschitz continuous in the sense of (4.18).

Since W, U € E,, there exists some og > o for which W, U € IE;,. Hence

foreacht € Z, Wg, ﬁg € Hgg. Define M; = ﬁ;iv‘, € ng, and
p=_inf [[03(c0())We(o0()) - Qllcos
QeH>®
r= m:p bt

p=u+té,

for some 6 > 0.

For each t € Z, let (Sg):(0p(cot)) be the central §-suboptimal interpolant of
My in L as defined in (5.25). Thus, there are Q; € H® such that

(So)e(oo(+)) = Tf (00(-))We(oo (")) - @ € L™, (5.69)

which means that

Ti(00())(So)e(o0()) = We(oo(-)) — Ve(oo(-)) @ (5.70)

has analytic continuation into the unit disk, i.e., U¢(00(-))(So)¢(o0(")) € H®, Vt € Z.

Since . -
1Qcll oo < [IWell mrgg + ll(So)ell e

the operator Q; € B, defined by the frozen-time formula

Qui()) = Qulog () (5.71)
is in Epy C E,. Then a sensitivity §' € IEq, C E, can be constructed via

s'=Ww-UgQ;, (5.72)
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which, by definition, locally interpolates W at U in JE,, and also, by construction,
-
locally 6-suboptimal in Eqy.
Let 4; be the Lipschitz constant in (5.28).
Theorem 5.2
The local central é-suboptimal interpolant S! of W at U in E,, constructed
in (5.72), is Lipschitz continuous in the sense of (4.18) with constants
2
'1},) = pag(W)s + 2 < Bog(W1)kag (W2)1s + o,
2
'réyi = poy(W2)7s,
2
'vsyl = pay(W1)1s.
D
- Proof:
st 8! = ||T — Uy_1(So)s-
I8¢ — 8¢l B, U¢(So)t — Up—1(So)e-1l| 12,
< U, - U, S0)¢ — (So):-
< lI(So)ell g [Ue ~ Ut 1|ng0 + 1(So)t — (So): 1||L30
<ol0e - Trall g2+ W, — T, W1 g0
o0 0
by Theorem 5.1 and (5.66)
<o|0; - ﬁt—lllngg + Ystiap (W) | - ﬁt-lllﬂgg
+ ]| We ~ We1ll ggo
_ (2) -~ ~ , - _ —~~
=y Ut — Ussll g + 16l We — Wes |l rge.
Since W = W3 ® Wy,
IWe = We_allggo = IWaeWie — Woe 1 Wi el g
i < tog(W2)||Wye - Wl,t—luﬂga + Hog(W1)[|Wae — w2,t-—-1"}1§8v
83




5. &6-suboptimal Lipschits Continuous Designs

i which proves the theorem.
Q.E.D.
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Chapter 6 Coprimeness Vs. Robustness: Generalities

In this chapter some preliminary algebraic and topological results on unstable
plants will be developed. The development proceeds within the general topological and
algebraic framework of Francis, Schneider and Vidyasagar [Fra3] [Vid], and Desoer et
al [Des3]. For related work on the relation between robustness and coprimeness, see

Verma [Verl].

First, the properties of B, on which these results depend will be abstracted.
Let ]A be a normed algebra with identity I, contained in some larger algebra IA.. The
elements of A and IA. represent stable and possibly unstable systems. IA. is the direct
sum of two subalgebras of elements called memoryless and strictly causal, and denoted
by (IAe)nm and (TA¢)sc respectively, with the following properties: If K € (IA¢)sc then
X+ K)-1 exists in JA,, and for any G € IA¢, KG as well as GK are in (JA¢)sc, i.e., the
strictly causal elements form an ideal in IA.; the memoryless subalgebra (IA¢)nm is a
proper subalgebra of 1A, containing the identity I and (KG)nm = (K)nm(G)nm for any
K,G € IA,; if K € ]A then the memoryless and strictly causal components of K are in
1A,

It follows from these assumptions that K € A, has an inverse in A iff the

memoryless component of K has such an inverse, whereupon ((K)nm)~! = (K™ 1)pm.
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6. Coprimness Vs. Robustness: Generalities

IA ; will denote the set of operators in IA which have inverse in JA.. An operator G € IA,,
has a right factorization in 1A if G = ND~1, where (N, D) € IA x JA;. The factorization

as well as the pair (N, D) are right coprime in 1A if for some (i,?) €A xIA;

(XN + YD) € A. (6.1)

Similarly, F € IA. has a left factorization in 1A if F = Y —1X for some (i,?) €
A x IA;. The factorization and pair (X, Y) are left coprime in 1A if (6.1) holds with
some (N,D) € 1A x JA; . The pairs (N,D) and (i,?) as well as the corresponding
factorizations are called jointly right-left coprime if (6.1) holds, or jointly coprime when
there is no ambiguity. A coprime factorization is normalized if the inverse (6.1) equals

the identity I.

Note that if G (or F) € IA. is strictly causal, then the condition “Y € IA”
(or D € IAf) can be replaced by “¥ € IA” (or D € IA) in the right (or left) coprimeness
definition. Indeed, if G € (IA¢)sc, then N € (IAe)se (as (N)nm = (G)nm(D)nm = 0),
which implies XN € (IA¢)sc. Hence, I - XN = ¥D is invertible in IA¢, and ¥-1 =
D (I - iN) - € A, ie., Yen 1- The left coprime counterpart can be argued simi-

larly.

The interconnection of a feedback F and plant G in IA. is well posed if all

four operators in the matrix

(I+FG)~! G+ FG)"1> (62)

K = |K;;| =

1K1 (F(I+GF)‘1 1+ GF)™?
are in IA,, and JA-stable iff all four operators are in JA. If such an interconnection is
stable then G can be expressed as a ratio of the closed-loop operators appearing in

(6.2) in two ways, i.e., has right and left factorizations in IA,G = ND~! = D-IN , and
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6. Coprimness Vs. Robustness: Generalities

similarly F = ¥-1X = XY~1. G and F can therefore be represented, albeit nonuniquely,
by pairs of elements of IA, which will be denoted by G ~ (N,D),F ~ (X, Y) in the case
of, e.g., the right factors of G and left factors of F.

6.1 Robustness of Stability

Suppose the plant G ~ (N,D) € IA x IA} is stabilized by a feedback F. F
is held fixed while G; ~ (N1,D;) is allowed to vary in some neighbourhood of (N, D).
View the plant representations (N1,D;) as elements of A x IA; under the open-ioop

norm

(N, D){|orm) = max(||N||n, [[D]ln). (6.3)

Define K € 1]A%*2 (of closed loop operators specified in (6.2)) to be ||K|| cl(]A) i=

max; ;12 ||K;;|lu- Denote the map from plant pairs to closed loop operators by
K : A2 - A%, K(N,D) =K.

Definition 6.1

Stabilization of G by F is robust in the || - |, norm if there is a neighborhood
in JA x JAf of (N, D) in the open-loop ||-||,;u) norm such that for any (Ny1,Dy) in it a
constant 3 can be found such that K(N;,D;) € IA?%2 and

1K (N1,D1) = K(N,D)|lym) < BlI(N1,D1) = (N, D)|loyna)- (6.4)
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6.2 A Coprimeness vs. Robustness Result

Although not every operator in 1A, admits a fac{ ,rization, every stabilizable
plant G € A, (and feedback controller F € IA.) has, as described in (6.2), right and left
factorizations in JA. We will denote by IA{ the subset of IA. consisting of all operators
admitting both left and right factorizations in IA. For linear time-invariant systems, it is
well understood that joint coprimeness is sufficient for robust stability. Receutly, using
the Corona Theorem, Smith [Smi2] showed that in H® all stabilizable systems admit
coprime factorizations. However, a linear time-varying operator may admit no coprime
factorization even if it is robustly stabilizable. For the discussion of coprimeness vs.
robustness in the following sections, we restrict our plants and feedback controllers to

those admiiting some (possibly unknown) coprime factorizations.

Let IAS be the subset of IA{ consisting of all operators admitting some (pos-
sibly unknown) left and right coprime factorizations in IA. (6.1) Operators in IA{ has

the following division property.

Proposition 6.1(62)

(1) If G € IAS »d has factorization representations (not assumed coprime)

G=ND1= ﬁ‘lﬁ, then there exist Q, 6 € 1A} such that
N=NoQ, D=D,Q, N=@qN, D =QqQD, (6.5)

where (Np,Do) is right coprime, and (ﬁo,ﬁo) left coprime.

(6.1) See [Des3) and [Vid] for some examples of AS.
(6.2) por (1), see also [Dea3] property 2.

-




6. Coprimne s Vs. Robrstness: Generalities

(2) If in addition, (D), € A (or (ﬁ),‘.’,}, € 1A), then (Q);1 € 1A (or (Q);} €
A).
D

Proof:

(1) Since G € IAS, there exist some (Ng, Dg), (No, Do) € 1A x IA; for which

G= Nonal = ﬁalﬁo and

i()No + fono =1,
(6.6)
NoXo+ DoYo=1

with (XO,YO), (i()’?O) €ENxIAy.

Define Q = Dy Ip, 6 = ﬁﬁa l, both invertible in JA.. We only need to verify

that Q, @ € A. But _ _
Q = (XoNo + YoDo)Q

= XoNoQ + ¥oDoQ (6.7)

=XN+¥D €
where the identity NoDg 1 — ND! has been used. Similarly 6 € 1A.

(2) It follows the hypothesis and the identities:
(Qnm = (@7 )am
= (D™!Dg)nm
= (D™)am(Do)nm

and (Q)rh = (BO)nm(ﬁ);r%-
Q.E.D.

The following results are stated in the case of left factors of G and right

factors of F, but the results hold after interchanging “left” and “right”.
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6. Coprimness Vs. Robustness: Generalities

Proposition 6.3(6:3)

Suppose G = D~IN and F = XY ! are separately coprime in IA, i.e., there
exist (Xo, Yo), (ﬁo,ﬁo) € A x A such that

NXo+ DYy =1,
N N (6.8)
NoX+DgoY =1

Then the following statements are equivalent.
(1) G and F are mutually stabilizing.
(2) G and F are mutually robustly stabilizing.

(3) G and F are jointly coprime.

.-~ Proof:

(3) = (2): If G and F are jointly coprime, then

R7! = (NX+DY) ! e A (6.9)

Since [K,;] can be expressed as

(6.10)

K] = I-XR-IN YR™IN
27\ XR-ID YR-ID )

(2) follows, noting that every component K,; in (6.10) depends on its variables contin-

uously.

(2) => (1): By definition.

(6-3) See also Lemma 3.1 in [Vid].




6. Coprimness Vs. Robustness: Ceneralities
(1)=@3): I

4 _(1-XRIN YR-IN 2%2
[K"]‘( XR-1H Yn—lﬁ)em ,

then
R1= ﬁo(l - K31)Xo + ﬁoKuXo + ﬁoKnYo + ﬁngzYo €lA, (6.11)
which means G and F are jointly coprime.

Q.E.D.

For G, F € IAS, a stronger result holds.
Theorem 6.1

Suppose G, F € JAS and have factorization representations G = ND—1 =
D-IN, F = XY~! = ¥-1X (not assumed coprime) with (D)}, (D)1, ()L, (YL €

IA. Then the following statements are equivalent.
(1) G and F are mutually robustly stabilizing.

(2) The factorizations of G and F are jointly coprime.

Proof:
(2) = (1): This is Prop. 6.2, part (3) = (2).
(1) = (2): Let Ry = NX+DY and R; = XN+¥D. We will proveRy! € A

The proof for Ry 1 € 1A is similar.
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Since D—1, Y~1€ B, and (I1+ GF)"' e 1A,

R{!=Y1(1+GF)'D!eB.. (6.12)
From this identity, we obtain
@+6F)~! = YR;'D = Y(Nx + DY) ~'D. (6.13)
Since G, F € IA¢, by Prop. 6.1, there are Q, Q € A} such that
X=X0Q, Y=Y0Q, N=QqQN,, D =QqD,, (6.14)
where (Xo, Yo), (No, Do) € 1A x IA} are coprime.
After substitution, noting Q~1, 6"1 €A,
(I+ GF)—1 =Yp (ﬁoXo + ﬁoYo)_lﬁo. (6.15)
As Q, Q € 1A, robustness of X+ GF)_1 with respect to perturbations in
(X,Y,ﬁ,ﬁ) implies that with respect to (Xo,Yo,ﬁo,ﬁo). By Prop. 6.2, robustness
plus separate coprimeness imply joint coprimeness, and henceforth Ry = ﬁoxo + f)oYo
has inverse in JA. Without loss of generality, assume Ry = I. We will prove that
Qlen (similarly Q! € IA) which means that (ﬁ,ﬁ) is in fact coprime.
Now, robustness of
K — (1-X(NX+DY)"IN Y(§x+§Y)-11§) (6.16)
X(NX+DY)"1D Y(NX+DY)-1D '
with respect to (X,Y,ﬁ,ﬁ),
= robustness of
- M= (xo(iixo +DYo)~!N Yo(NXo + l:J'Yo)_llS)
N Xo(NXo + DY) 'D Yo(NXp +DYo)~!D
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6. Coprimness Va. Robustness: Generalities

= (Mu Mis )
Mz M)

with respect to (Xo,Yo,ﬁ',ﬁ) (as Q € ),

(6.17)

= robustness of
No(M;1)Xo + DoM;2Xo + NoMg; ¥o + BoM2 Yo

=Ry (6.18)
= (NXo + D¥0)~'Q

(as Rg = 1) with respect to (Xg, Yo, N.D).

Consider the special perturbation
N+6Ny, D+6Dy (6.19)
with small non-zero § € R. By Prop. 6.1 part (2), (6);,},‘ € IA. By contraction
principle, for small enough 6, (Q + 61);;} € IA, which implies ( + 61) € A 1. Define
~r fod ~ ~ _1 -~
L(6) = ((N+6Np)Xg+ (D +6Dg)Y
() (( 0)Xo + ( 0) o) Q (6.20)
=(@Q+6D7'Q
or Q (I - L{§)) = 6L(¢).

By robustness, L(6) is a continuous function of 6§ and L(0) = I. Thus by

contraction principle and continuity, for small § # 0, 6~1L~1() € A and

QUI-L(8)s L (6) =1 (6.21)

Since (I-L(6)) 6~ 1L-1(6) € A, @~ € A and (N, D) is coprime.

By reciprocity, (X,Y) is also coprime. By Prop. 6.2, we conclude that the

factorizations of G and F are mutually coprime.

Q.E.D.
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A fundamental question in this development is: what kind of plants are in

JAS? While there is at present no complete answer to this question, we will restate a
known result, which claims that any plant, which is stabilizable by a feedback with a
coprime factorization representation, must be in IA{.
Lemma 6.1 [Des3][Vid
IfF =XY~! = ¥-1X are coprime in ]A and G € IA, is stabilized by F, then
GeIAf.
]
Proof: See [Des3] or Lemma 3.2 of [Vid].
Corollary 6.1
o FF=XY"!=¥"1X are coprime in A and G € IA,, then the following
statements are equivalent:
(a) G = ND~! is robustly stabilized in IA by F = ¥1X.
(b) ND~! and ¥~1X are jointly coprime in IA.
0
Proof:
(b) => (a): Theorem 6.1.
(a) => (b): Since G is stabilized by F, by Lemma 6.1, G € IA{. The
implication follows from Theorem 6.1.
Q.E.D.
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6.3 Characterization of Robustly Stabilizing Operators

Consider a plant G € IA{ with factorizations G = ND~! = D-IN (not as-
sumed coprime) and a feedback controller F € JA{ with (separately but not assumed

jointly with G) coprime factorizations F = XY~1 = ¥-1X.
A — Notation

In the following theorem if Gy ~ (N3,D3), Gy ~ (N3,D3) are any two given
plants and M = F(N;,D;) is any functior. of pairs (N;,D;) € IA%, the notation AM
represents

F(Ny,Dyq) — F(N2,Dz). (6.22)

We want to characterize all plants in a small neigtbourhood which can be

robustly stabilized by F.
Theorem 6.2

If G is robustly stabilized by F, then there is a neighbourhood of (N,D) €
IA x Ay of radius § > 0 in the open loop norm ||-||;ym) in which any two operators

G; ~ (N;,D;), ¢ =0,1, stabilized by F, are related by
G; = (No + YW)(Dp - XwW)—? (6.23)
where W € A, and the inequality
Wi < AlAK]|¢yn) (6.24)

holds for some constant A > 0, where AK denotes the difference in the corresponding

closed-loop operator matrices, which are defined in (6.2).
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Moreover there are normalized representations
G~ (NRLDR ) elMAxA; §=1,2 (6.25)

for some R; € IA;, which are unique and satisfy
IA(NR™L, DR™)| ) < Const.||AK||yu) < Const.|A(NR™, DR™Y)|| )

< Const.||A(N, D)||,u)-
(6.26)

O

Remarks: In Theorem 6.2 the factorizations of G and G; are assumed to be
right, and those of F left. However the theorem obviously holds with right and left

interchanged.

- -

In preparation for the proof, a lemma will first be introduced.

Lemma 6.2

For any G; € IA. with factorization G, = NlDl_1 satisfying the assumptions
of Theorem 6.2, and for which (I+ FG;)~! exists in IA,, the relation (6.23) holds
with W € IA.. W is expressible as a linear form (see (6.40) below) in the closed-loop

perturbations AK;; € IA,, with coefficients in IA.

O
Proof of Lemma 6.2:
Denote (N,D) by (Np,Dp) and let
XN, + YD, =:R;, i=0,1. (6.27)
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i RS ! exists in JAe, as R; = ?i(l + FG;)D;, whence
’ ~ — ~ -
1 XNR T+ YDR =1 (6.28)
=  X(N;By!-NoR;!) = —¥(D;R7! — DoR;?)
(6.29)
= XY }N;R[!-NoRj!) = —-(D1R{! - DoR3?)
as Y1X = XYL Let
W:= Y 1(N;R;! - NoR;)Ro. (6.30)
It follows from {6.29) that
—(D1R; ! — DRy YRy = XW (6.31)
and
( NiR7! = NoRj1+ YWRG, (6.32)
DR ! = DoR;! - XWR; . (6.33)

Obviously Dy - XW = DIR;IRO has an inverse in IA,. From which (6.23) follows with

W e A..
Next, the closed loop perturbations [AK;,| will be related to W. We have
from (6.2)
Ky :=(I+FG)~! =1+ ¥ 1 XND1)-!
=D(XN + ¥p) -1¥ (6.34)
=DR™'Y.

Similarly, 5
K2 :=G(I+FG)"l = NR71Y,

Ky :=F(I+ GF)"! = DR™IX, (6.35)

-

Ky :=(I+GF)'=1-NR"IX.
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By separate coprimeness of (X, Y), there are (Ng,Df) € IA x A such that

Therefore

6. Coprimness Vs. Robustness: Generalities

Since X and ¥ are fixed,

ARy = (A(RY) ¥,

N (A(Nn-l)) ¥,
AKg; = (A(DR“)) X,
ARy = (A(N R Y) X,

From (6.32) and (6.33),
XW = -AK;;Dg - AK7;Ny,

YW = AK;3Dg + AK23Np.

ﬁpx+ﬁFY=I.

W= —ﬁrAKnDo - ﬁpAKleo + ﬁpAKuDo + ﬁpAKzzNo,

which means W € IA provided [AK;;] € IAZ*Z,

Proof of Theorem 6.2:

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

Q.E.D.

The proof will be carried out as a series of implications. In the rest of the

proof omit the IA subscript from all norms, ie. ||| = |- llu, || - llect =1l - llco(m)» ete-

By Corollary 6.1, robust stability of (G,F) implies the joint coprimeness of

.- ND~!and ¥~1X, i.e., B! € IA. For small enough § = 0 and ||(AN)|| < &, [|(AD)| < &,
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6. Coprimness Vs. Robustness: Generalities

Ry I,Ri'l are also in JA, which implies that AK;; € 1A for i, J = 1,2. It follows from
(6.40) that W € IA. As the parametrization (6.23) has been shown to hold with W € 1A,
it now holds with W € 1A.

From (6.40) and the fact that |K;,|| < ||K||.;, we get after some rearrange-
ment

IWI < (INoll + Dol (INFll + DI AK ] (6.41)

which implies (6.24).

By (6.30) and (6.31) it now follows that
|ANR™Y|| = ||YWR6'1|| < Const.||W|| < Const.|AK||,y, (6.42)

|ADR"!|| < Const.| AK|. (6.43)

The reverse of inequalities (6.42-6.43) also hold by (6.36) and the bounds on

IIR'T'l”c;, ¢t =0,1. For example

|AEy = || (a(DR™Y)) ¥ < | F]|ANR, DR, (6.44)

Similar bounds on the remaining || AK;,|| hold also. Moreover,

lANR™Y)| := [N1RT — NoRg|
<INy — No)R7| + N1 (BT — B
< Const.|AN|| + Const.|AR|| (6.45)
< Const.||AN|| + Const.|AD||

< Const.]| A(N, D) ;.

A similar bound on |A(DR~1)| gives (6.26). Uniqueness of the representa-
tion follows from the fact that ||AK|| = 0 = A(NR~!1,DR~!) =0, by (6.26).

{ Q.E.D.
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Chapter 7 Local vs. Global Coprimeness and Stability

We return now to the operator double algebra IB.. The strictly causal (resp.
invertible) elements of IB. are those G € IB, whose kernels satisfy k(t,t) = 0 (resp.
[k(t,)]" € €**") for all t € Z.

The normed double algebra in this chapter will be JE,. Let (IE,)s denote
operators D in JE, with memoryless part invertible in JE,, i.e., the kernel of D satisfies

|d(t,2)"1| < Const. forallt € z.(71)

An operator K € BB, has a global right factorization (resp. K!' € B, has a
local right factorization) in IE, iff K has the form K == N3 (resp. iff K! has the form
K! = N® D®) where (N,D) is in E, x (E,);.

More generally, any object defined on the global algebra GIE, (resp. local
algebra LIE ) will be designated as the global object (resp. local object) in the double

algebra E;. For example the global factorization K = ND~! (resp. local factorization

(7:1) Note that the stronger condition (Dnm)~! € E, rather than (Dpm)~! € B (as in
Chapter 6) is used here in definition.




7. Local va. Global Coprimeness and Stability

Kl=Ng@ D®) is globally (resp. locally) right coprime in IE, if there are operators

X, Ye E, for which the following inverse exists
o ~_\-1
globally (Xn+ ¥D) " e E,, (7.1)

Lo P e
(resp. locally (XeN+¥eD)" €E,). (7.2)

Let G, F € B, represent plant and feedback operators, respectively. Their
feedback interconnection is well-posed in B, if all four operators in either one of the

matrices (7.3 - 7.4) are in B,

(I+FG)! G@I+FG)!?

Globally : K = [K,;] := ( F(I+GF)™ (1+GF)~! ) , (7.3)

© ©
Locally : x':[xf.j],=( I+F®G)° G®(I+F®G) )

FR(I+GO®F)° (I+G@F)° (7-4)

There is no distinction between local and global well-posedness, the two are
equivalent.(7'2) Let JA be a normed double subalgebra of B.. F and G globally (resp.
locally) stabilize each other in IA if all four operators in (7.3) (resp. in (7.4)) are in IA.

In general, local and global stabilization may not be equivalent.

The matrices (7.3) and (7.4) will be termed the global and local matrices

respectively.

(7-2) A suficient condition for well-posedness is that the memoryless part of I + FG be invertible
in B,.
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7. Local vs. Global Coprimeness and Stability

Global robustness in E, of stabilization is defined as in Chapter 6, as neigh-
bourhood boundedness of the global open-to-closed-loop map K (-, ), with the algebra IA
identified as [E;. Similarly, local robustness in E, is defined as neighbourhood bound-
edness of the map K ! which takes open-loop plant pairs into closed-loop matrices, i.e.,

Kt:E2 - E2*?2 KY(N,D) = K/, the matrix K/ specified by (7.4).

It should be noted that the maps K and K! coincide for shift invariant op-
erators and therefore K '(Ng,l)g) = K(N¢,D¢) for each t € Z. Consequently local stabi-
lizations and local robustness are in fact properties of the global map K(-,-) restricted

to shift-invariant variables.

7.1 Relations between Local and Gloual Froperties

Consider a strictly causal plant G € B, which is to be stabilized in IA
by a feedback F € B,., and which therefore necessarily has a factorization in IA, say
G = ND~1. The stabilization is to be designed on the basis of a local approximation
to G, G! := N ®D®, which is used to select a feedback F! := ¥© ® X which locally
stabilizes G!. We would like to answer the following question for slowly time-varying G
and F: Do local properties of (G’,F’), such as joint coprimeness and robust stability,

extend to global properties of (G, F)?

As pointed out in Chapter 6, strict causality of G € IB, implies that of N. It

follows that for any i,f € E, satisfying the Bezout equation
XeN+¥eD=1, or XN+¥D=1,

we have
(¥)am(D)am = (1 - XN)am =1.
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7. Local va. Global Coprimeness and Stability

Thus (¥);}, = (D)am € E,, i, (¥)am € (EE,)s. Henceforth, the verification of

(Y)nm € (E,)s will be omitted in the following discussion.

A pair (N, D) in E, x E, will be said to satisfy the uniform corona conditions
if there is o9 > o such that for all t € Z and for each vector ¢;, 1 = 1,:--,n of an

orthonormal basis in C®,

[Re(2)ei| + De(2)eil 2 @ J2] < oo (7.5)

We may wish to consider coprimeness in a variable rate situation defined in
Chapter 3, in which N,D,i, Y are embedded in sets of operators N(v),D(%), i('y), ?('y),
in some subalgebra IA of B, and depending on a parameter 4 > 0. If (N(v),D(%)),
(i('y),f('y)) € IA x IA; are jointly coprime for all 4 in some (0,p), joint coprimeness
will be called uniform in rate on (0,7o] if || (X(7)N() + ¥(7)D(7))~|ln is bounded
on (0,~p); similarly, robust stabilization will be called uniform in rate if the constants

appearing in the definition (6.4) is independent of 4, 7 € (0, 7).

Assumptions for Theorem 7.1: (Assumptions for the case of variable rates

are expressed as (and ---) in parentheses).

1 € 0 < gy are constants. For the operators N,D,i,? in JE,, the maximal

variation-rate of either their transforms, (2 < p < o0)

~?) = max {a&’f} (K):Ke {N,D,X,#}}, (7.6)
or their kernels,
d = max {dyo(K) : K € {N,D,%, ¥} } (7.7)
is equal to vo.
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Recall that (GE,)¢ (or (LIE,)¢) is the subset of IB, consisting of operators

admitting some (maybe unknown) coprime factorization representations in GE, (or in

LE,).
Theorem 7.1

(1) The following statements (a), (b) and (c) are equivalent in ILIE,.
(a) G! and F are in (LE,)¢ and have factorizations (and uniform in rate)
G!l=NegD®, F=¥90%, (7.8)

which are mutually robustly stabilizing in the local algebra ILEE, (and uniform in rate).

(b) The factorizations (7.8) are jointly coprime in LIE, (and uniform in

rate).

(c) (N,D) and (X, ¥) satisfy the uniform corona conditions and are mutu-

ally stabilizing (and with constants independent of «).
(2) The following statements (d) and (e) are equivalent in GIE,.

(d) The factorizations
G=ND"! and FP=Y¥"1X (7.9)

are jointly coprime in the global algebra GIE, (and uniform in rate).

(¢) G and F are in (GE,); and have factorizations (7.9), and G and F are

mutually giobally stabilizing in @I, (and uniform in rate).

(3) There exists a variation-rate bound 4p > 0 for which (1) and (2) are

equivalent (and uniform in rate).
O
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7. Local vs. Global Coprimeness and Stability

Two lemmas will proceed the proof of Theorem 7.1. Since G is assumed

strictly causal, N is strictly causal.
Lemma_7.1("3)

For (N,D) in E, x (E, ), if the uniform corona conditions (7.5) are satisfied

then (N,D) is right coprime in ILIE,. Converse is also true.
o

Proof of Lemma 7.1:

By Fuhrmann-Vasyunin Theorem |Nik, p293], under the uniform corona con-

ditions, there exist X and ¥ in Eg, such that
XeN+¥YeD=1, (7.10)

and for a defined in (7.5), 8 := a/(u?,o(N) + (ugo(D))l/ 2 <1, po(X) and po(Y) are
bounded by

(W3 (X) + 30 (V)2 < v ( [,z,.(7\/1°z ; +2°'°8;,:)

(see [Nik, pp. 292-293]) i.e., (N, D) is right coprime in LE,,, and hence in LE,.

Conversely, if X@ N+ ¥ ® D =1 for (X,¥),(N,D) € LE, x (LE,), then
there exists gp > o such that (X, ¥),(N,D) € LEo, x (LEs) . Thus for any unit

vector e € C", and 2| < 0y

e = X;(2)Ni(2)e + Yi(2)D¢(2)e.

(7:3) For related work on the relation between corona condition and robust stability, see (Can1,2]
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7. Local vs. Global Coprimeness and Stability

Therefore, - N
1 < pa(X)|Ne(2)e| + po(Y)|De(2)e]

< max { pog(X), oo () } (Ne(2)el + IDe(2)el).

As max {u,o(i),uao (Y’)} > 0 (by the Bezout equation (7.10)), the conclusion follows.

Q.E.D.
In the following lemma, let ¢ > o and N,D,i,? € [Ey, with
k = max{[IX[| (503 1 ¥ll 50+ INll()s Pl gp) }
v = max{dy(X), ds(¥), do (N), do (D)},
XeN+YeD =R, (7.11)
XN+¥D =R, (7.12)

Lemma 7.2

(a) If R? exists in IE;, then R;l € IE, provided the following inequalities
hold

IR v BP0y <1, (7.13)
IKvN+Y DR () <1. (7.14)

Moreover (7.13) and (7.14) are valid provided
0<ay(l-p7)" <1 (7.15)

-1
where a = 2 (e In (%Q)) a’lkllklell(a), g = 4k2a||nf9n(,), and certainly for small

enough rate 4.
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(b) ¥R 1 exists in E,, then R,e € E,, provided the following inequalities

hold:
IRs v B3 Yy < 1, (7.16)

IXKvN+¥vD)®RY|() <1. (7.17)

Moreover (7.16) and (7.17) are valid provided (7.15) is satisfied with RP

replaced by B 1,
8]

Proof of Lemma 7.3:

a): The existence of R)® € IE, and (7.13) implies the existence of R)~! € E,
1 1

by Prop. 2.2 provided ||R; ¥ Rle”(a) < 1. Therefore, as
By=RB;+XvN+YvD

= [1+ &N+ T vD)R; R,

by the contraction principle, (7.14) ensures existence of Rg"l € IE,, where

~ ~ —1
R, =R 1+ @uN+ T vD)R;Y] . (7.18)

Now by Prop. 2.5 (b),

-1
IRy v BRlg) < (1 {22)) ™ 0~ Ry o) do (RF)

_ (7.19)
2 o90\\~! 1
<2k (el (2)) 7 o714, (m).
By Prop. 2.5 (d) and the fact that (RP); = (X;N; + ¥;D;)~1,
o™ ds(RP) < [RPF,) supl(ry)e — (ri)e-1ll,a
¢ ? (7.20)

< Hnle”%g)a—l“k%
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where r; is the kernel of R;. Therefore
IRy v nle"(a)
3 %\ —1ypeyz ..
< 8k (e In (-;)) o "Rle"(a)'7 = By (7.21)
<1 for small enough ~,

-1
where 8 = 8k3 (e In (%Q)) 0'1![1119 ||%a). By Prop. 2.2,

IR o) < (1= By)? IR} (0)- (7.22)
(7.22) implies, by Prop. 2.5 (b) again,
I (ii VN+¥y D) B M)
<2 (et (2)) 7 oYy (1 - o)~ RO (7.23)
= oy (1- )7

-1
where a = 2 (eln (%Q)) o"lkllkle”(a). Therefore, (7.13) and (7.14) are satisfied
provided (7.15) is valid.

b) The proof is similar to that of part (a), with R® replaced by R 1 the
{ g

global product * by ® etc., and also
ds(Rg") < IR, k.
Q.E.D.
Proof of Theorem 7.1
Suppose N,D, X, ¥ are fixed in E, and v € (0,7 is a constant.

(1) (a) <=> (b): This is Theorem 6.1, part (a) <=> (b), and with the algebra
IA identified as LE,.

(b) <= (c): This follows from Lemma 7.1 and Prop. 6.2.
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(2) (@) <=> (e): This is Theorem 6.1 with the identification of A as GIE,,.
(3) For small 4,

(1) = (2): If (b) is true, then there exists oy > o1 > o such that (7.6,7.7)
are defined and R,e € Eg,. Lemma 7.2 part (a) (replacing o by o; in Lemma 7.2 and
noting that 4 < «g) implies that for small enough #~y, R;l € E;; C GE,. So (d) is

true.

(2) => (1): Similarly applying Lemma 7.2 part (b) to (d), we conclude
that RP € LE,.

Q.E.D.
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Chapter 8 Conclusion

8.1 A Discussion of the Results

The problem of robust stabilization and sensitivity optimization for slowly
time-varying systems has been investigated in this thesis. The problem formulation
reflects three main features of adaptive systems: persistent external noises, time-varying
plant model and disturbance data, and causal dependence of feedback controller design

on that data.

The local-global double algebra symbolism, introduced for the first time in
this research, provides a common framework for stability and performance analysis in
slowly time-varying systems. Within this framework, the coupling between local and
global properties is described via a 7 operator, which is small for small rates of time

variation.

Slowly time-varying systems are characterized as operators with small com-
mutants (with the shift). The norm of the commutant is bounded by the variation rate
of a local transfer function, which is tractable in the frequency domain. For systems with

small variation rates in local transfer functions, the validity of the local-global coupling




8. Conclusion

is established. Within certain prescribed limits, stability and performance analysis can

be carried out locally in the frequency domain.

Although details are worked out for discrete-time systems and certain sensi-
tivity optimization problems, the normed couble algebra symbolism provides a general
approximation framework for slowly time-varying systems. The symbolism can be ap-
plied to other system settings provided the axioms of the normed double algebra are
satisfied and smallness of the 7 operator is established. As for performance criteria,
the sensitivity optimization imposed in this thesis serves as only one choice (though
not an unimportant one) for analysis and synthesis. Other design criteria can certainly
be employed, such as mixed sensitivity minimization, ex., Jonckheere and Verma [Jon],
parameter optimization, etc. A critical issure in such synthesis problems is that of
Lipschitz dependence on data, which is resolved in this thesis by using é-suboptimal

maximum entropy solutions.

8.2 Some Further Research Directions

Other design criteria, especially mixed sensitivity or general four block sen-

sitivity optimization, may be worth considering in the NDA framework.

A task complementary to this research is to develop modeling and identi-
fication schemes compatible with the underlying design problem. Integration of these
schemes with the local-global double algebra would be a major step towards compre-

hensive operator-system adaptive theory.
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Appendix A. Proofs of Props. 2.1 and 2.5

Appendix A. Proofs of Props. 2.1 and 2.5

(1) Proof of Prop. 2.1:

For any F,K € E,, let M :=FK, M! ;= F @ K and denote the kernels of

l

those operators by m, f,k and m’. F and K have a common oy (09 > o) for which

IFll(og) < o0 lIKll(gy) < 00 by hypothesis. We will show that for any o) < g9

IMll(zy) < IFll(gy) 1Kl (g4)s (4.1)

which means that M € E,,. Therefore IE, is a normed algebra under x.

To prove (A.1) observe that as f,k € l}l, the following changes of summation

and bounds are valid.

00

(Mu)(t) = (FEu)(®) = D f(t.,m) Y k(n,0)u(6)

n=-00 f=-00

=y (Z f(tm)k(n,0)) u(0).
f=—00 \n=-—00

Thus, m, the kernel of M, is

m(t,0)= i f(tsﬂ)k(ﬂvo)r

n=-—00
and
Y imoe = S| S ftn)kn, 0) 0"
f=~o00 f=—00 |#=—00
< |f(:,n)|a“"" S kmo)l? (a2

f=—00

, o] FKl ).

n

MS |I‘M8

'l
After taking sup,.z of (A.2) we get (A.l).
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Pk As for the local operation ®, we will prove the inequality

¥ ® Kll(;) < IFli(oy) Kl (oy)- (4.3)

In fact, for any u € (A9),,
(F ® K)u(t) = (F & K)u(t)
= (Ft @ K;)u(t)

= Y f(t,n) Y, k(t,t—(n—6)u(0)
n=—00 §=—00

= Z f(tyn)k (¢,t — (n — 6)) u(6).

f#=—00 n=—00

So the kernel m'(t,6) of F ® K is

-

ml(t,0)= Y flt.mk(t,t—(n-0)).

n=-00

As a result,
00

Y im(t,0)od"

0=~c0
o0

= (t-9)
= fit,n)k(t,t—(n—20
og_:m 2 (t,n)k (t,t — (n — 6))| 0y (4.4)

< Y lrenie™ Y ket - - 0)o?

n=—=00 0=—w

< ¥l o) 1Kl (o)

(A.3) follows after taking sup,cz of (A.4). Therefore E, is a normed double

algebra. By replacing o) with o in (A.1) and (A.3), we conclude that IE; is also a

normed double algebra.

g

-
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Appendix A. Proofs of Props. 2.1 and 2.5

To prove E, is a Banach algebra, it remains only to show that IE, is a
Banach space under the ||-l(;) norm (note here || |l = || - i = || - ||¢), which is true

since I} is a Banach space under || - || ;1 norm. This completes the proof.
(14

Q.E.D.
(2) Proof of Prop. 2.5:
(a)
t-1
(TE-KT)u)(t) = Y (k(t—1,0) - k(t,0 +1)) u(6)
oy
= E m(t, 6)u(0),
f=—00
where
k1t —1-0)—k(t-1-6), 0<t—1;
m(t,0) = {
0, elsewhere.
The hypothesis ||TK — KT||(,,) < po(K) implies that
t-1
Y lkeoa(t — 1-0) — ky(t — 1 - 6)] o(t-1-9)
0=_:1 (¢-6) ,—1
= oo™
X Imtt.0) »
t—1
<ol Y Im(t,0)|0t0)
f=-o0
< U-IPa(K)-
Now
(FIE)) (&)=Y f(t.7) Y (ke(r - 6) — ke(r — 6)) u(0)
=00 f=00
=) ( 3 1.7 (ke (7 — 0) — ke(r - o))) u(0)
#=00 \7=00
= Y _ n(t,0)u(6)
0=00
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Appendix A. Proofs of Props. 2.1 and 2.5

n(t,0) = ) f(t.r) (ke(r — ) - ks(r - 0)).

=00

o0
Y In(t,8)[ot=")

§=00
< Y WA Y (kelr = 6) = ku(r - 0)[ '),
=00 f=c0

By (A.5) and the hypothesis

< Y 177t |t - 7jo oo (K)

=00

< 10~ 1p,(K). (A.6)

The inequality (2.28) follows after taking sup, of (A.6).

(b) Note that under the conditions of (b)

¢

3 et -1

=oot
= Y 1ol (o /o)1t - 7|

P ) t (A7)
< Z;, £t,m)loy' ™" sup (o/or)*="1t 1))

t-r
< ¥l sup ((o/o0)* "1t = 11)

< [Fllisy) (eln(on/a)) 2.

By taking sup; of (A.8), (2.29) follows from the inequality (2.28).
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(c)
dy(FK) = |TFK - FKT||(,)
= |(TP - PT)K + F(TE — KT),)
< IK}l()ITF — FT|(,) + [|F|j(o) I TE — KT

= ||Fl|(5)do (K) + ||K||(5)do (F).
(d) Since for u € I°°,

t-1
(T - ET)u)(t) = — Y (kelt —1-7) — kg1t — 1= 1))u(r)

r=-00

the kernel g; of (TK — KT), is

o, T <0;
q(r) = {

ke(r —1) —kyy(r—1), 72>1.

Thus
|ITE ~ KTl|(5) = suplgtll,y

0
= st:pz lke(r — 1) — kgy (1 — 1)|0"

r=1
o0
= osup E |ke(r = 1) — kg1 (7 — 1)|o"?
t =1
= osup ks — kg1l 2.
t o

Q.E.D.
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Appendix B.  Proofs of Props. 3.5. 3.9
Appendix B. Proofs of Props. 3.5 - 3.9

(1) Proof of Prop. 3.5:
Inequality 3.183:

For any ¢, € Z and u € A we get, for 6 < ¢,

(T¢Kru)(0)o’ = (I, K, I,u)(6)0’

0
' = Y [kl0 - mo®] (@u)m)on) (54)

n=-oo0
where k; is the kernel of K, and causality of K, has been used. This is a convolution

of kr(n)o™ and y(n) := (MMyu)(n)o("). By Parseval’s Theorem we therefore have

1/2

1 2% . e 12

Ink g = {5 [ fotoee)* )
< IRrll ol 2 (B2)
= ||ﬁr||Hg°N“wH,g ,

(3.13) is obtained.
Inequality (3.14):

We have, for t, r € Z, u € A,

t
(Era)O) = 3 kelt ~m)uln)
n=—00
12 12
1> "’(‘"”)”("""2) ( > lu(ﬂ)a"(‘-n)lz) (B3)
\n=—00 oo

< Ilk‘f"(‘%”a”u"a(d)'
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Appendix B. Proofs of Props. 3.5 - 3.9

Therefore, as || - lla(oo) coincides with || - [ljeo,
||K,-||a(°°) < nallffll H2 by Parseval’s Theorem
o
~ (B.4)
< NUIIKTIIHP for P 2 2,
(-4

which proves (3.14).
Inequality (3.15):

As [[Kru)ly() < IErtlg(a0)s (3.15) also follows from (B.3) and the inequality
WP (K) < bo(K).

Q.E.D.
(2) Proof of Prop. 3.6:
We prove first the following inequality:

(K - EeJull g™ < ronfP o ) ullygo (8.5

A\ 1/2
where nS,P’ =Kk, = (Ef_‘;_l 520‘2‘) / for 2 < p < o0 and ;1 for p = oco. For

2<p<oo,7<t

la—t (K ~K)u) (r)l =07t N (ke(r — &) — ke(r — €)) u(€)
§=—00
=0t 3 -0 -kr - ) C-Ouig] P
§=-00

< 0—‘||Kr - Kt”}{%“”"“"u(d)'
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i It follows that

t 2 1/2
I (8 — KoJulgo~* s~,( > (oo IKe ~ Kell ) ) l9lla)

r=-—00
t—1 2\ /2 .
s~,( Y (a““'”lt—rl)) o) (K) lullo) (B.7)

< xorh 3% () lulla(o)

< £onl,0F) (B)llul o(o)-

For p = oo, II;(K — K;) can be resolved into a sum and then summed by

parts,
t
M(K—K) = ) All(K-K)
=—00

(B.8)
t
= lm M.(K, ~K)~ ) T,_1(E-K,_1)
T==-00
where ATl = IT,—IT;_, and lim denotes a weak-I! operator limit, which is null. Observe
that the weak-I! convergence implies that for u € A lims——oo ||TI¢ (K, — K¢)u| 2 =0,
o
which will be implicitly used in the following proofs to reach required norm inequalities.

Therefore, for u € Ay, by causality of K, and the inequality ||TT,u|| 2 < 'Caat”“”a(a)’

t
IMe(K — Koullz < 37 NM—y(Kr — Kra)ullp

r=—00
t
= E 1Ty (Kr — Kr—l)nr—l"”ﬂ (B.9)
r=—00 ?
¢
< kg Z ar—l"xr - Kr—l"Hg° “u”a(a)’
r=—00

which yields (B.5).
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Inequality (8.16) and (3.17):
w5 | (TEu) ;20"

< w7 (M)l 207 + 557 ITL(K ~ Ke)ul g™

(B.10)
< ~;‘II(H:K¢II¢u)II,3v"‘ + x5 || TL(K — Kt)“",g"_t
< tio (Be)llull(o) + 508 (K) ulla(o)
by (B.5).
Thus for p > 2
1K la(ore) < #o(Be) + P () 511
< uo(Be) + niP) o) (),
which proves (3.16) and (3.17).
Q.E.D.
(3) Proof of Prop. 3.7:
Inequality (3.18):
Foranyu€ A, lety := (KR YF)u = (KF - K ® F)u
t T
W@l =| 3 k1) Y (felr - €)= fulr - &) u(€)
r=-—<00 e:—-w
¢ T
< X k)l { D (5rlr = &) = fulr — )] ol Ou(g)o~(r=8) § o=l=7),
r=—00 €=—m
(B.12)

The part in { }-brackets in (B.12) is bounded using Schwartz’s inequality

and Parseval’s theorem:

T r 1/2
{ > |titr - € = silr - )00 o8 3 (lu(€)|a"("-f))2}

§=—o00 f=—00
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Appendix B.  Proofs of Props. 3.5 3.9

= ||Fr — %) m2eollullaqo) < mo@Z(E)t - rlljullyy. (B.13)
From (B.12) and (B.13) we get

t
1v(t)] < %o8PIE) 3 [k(t, )0t — rlo~ = u] )

(2) t -2 §= —(t-r))? e (B.14)
<sodl)®) ( 3 kot " T (= riot)")  fully

r=—00 r=-00

= o0l () Bel g2l

by Schwartz’s inequality. We now get
Wlage) < 1¥llagon) < #oxbdE) (B)l) (E) ullago)
< rordP (B () o), (B.15)
which implies (3.18).
Inequality (3.19):
Since [[ylla(e) < lvllico = sups o~*(ATL)(u)]| 3, we obtain
|(& ¥ F)ullo) = supo™(ATI) (& v F)ull. (B.16)

However,

t
)(K v F = [[(ATIe)K M,y (Fr — Fr_y)u
{ATI)(E v F)ullz = ||(ATE) c,gw 1( el (517

1 #o(K)3s (F) ""”a(a)

< koot
—_ o 0_1

by (B.5) and the fact that ||K;|| H < #o(K). (3.19) follows from (B.16) and (B.17).

Q.E.D.
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Before going on to the rest of the proofs, we will first show the following

series expansions for G V K and GK - (G @ K),.

t t
11, [GK - (G QK)t] = -G, Z nf—-l(KT - Kr-—l) - E Hr—l(Gf - Gr-—l)K,
r=-—00 r=—00

(B.18)
t
IL[G VK| =1 [GK - (G®K),]+ ) I,_,(GK,-G, K, 1), (B.19)

T=—00

(AT;) [GK — (G ® K),] = (AIl;)(G V K)

¢ (B.20)
= (AT)G; Y T,_y(K, — K,_y),
r=—00
and the series of operators are weakly-I1 convergent.
To prove the series expansions, observe the identities,
II; [GK — (G ®@K),] = I [(G — G;)K + G;(K - K;)]
(B.21)

¢ ¢
= Y (AIL)(G - G)K+ILG; ) (ATL)(E -K,)

T=~00 r=—00

where IT; has been resolved into 3 All,. Now for any F € B, (AIl),F = (AIl),F,, so
G and K can be replaced by G, and K, in the sums, which can be summed by parts
to give (B.18), after the observation that I, (G, — G;) and I, (K, — K;) both weakly-I1

converge to 0 as 1 — —o0.

By definition of ¥,

IL|G VK| =TI [(GK - (G ®K),) — (G ® K ~ (G ® K);)]. (B.22)

Resolution followed by partial summation gives

t
~IL[(GRK - (GO®K))]= Y (All)(GK, - G¢K;)

r=-00
¢ (B.23)
= Z Hr—l(GrKr" Gr-—lxr-—l)'
{ f=—00
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(B.23) app'ied to (B.22) proves (B.19).

(B.20) is obtained from the identities
All; (GK - (G ® K);) = AN, ((GK): — (G ® K),)
= All; (G v K)

= AILGIL(K — Ky)

followed by resolution and summation by parts.
Inequality (3.20):

By the definition of 57 and the triangle inequality,

(K v F)ullz = |TT(KF ~ K © F)ul

(B.24)
< |[Te (KF — (K @ F)e) w2 + [Tl (R @ F ~ (K @ F)) u .

e

The first norm is bounded by
It (BF — (& @ F)s) g

t t
<kolRillgee Y oI — Fryullyo) + 00 Y, oV (Kr - Kroy)Fully(p)-

r=—00 r=—00
(B.25)
The series are summed, and the inequalities
I1Kell groo < o(K),  [|(Kr — Er_1)Fully(p) < o(K)[[Fullq()
used, to obtain the bound:
< k00— { 4o (K)36 (F) + 8 () [Fllat0) } [ lago)- (B.26)
S K0 7 Mo o 4 a(o) a(o)
After bounding the second norm using (B.5), we get (3.20).
Q.E.D.
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(4) Proof of Prop. 3.8:
Ineqalities (3.21) and (3.23):

By the triangle inequality,
IT(GE + F)uljz — (G ® K + Fullg
< |M(GK - G® K)ullz + I [(GOK +F) - (G O K + F)e]ulp (B.27)
< MG v K)ullz + xoo'nP 8 (G O K + B)|ulla(y

(by the definition of 7 and (B.5)). By prop. 3.7,
(6 v E)loe) < monPulP(6)o) k), (B.28)
and we obtain (3.21) and (3.22).
Inequality (3.23):

By the triangle inequality,
T (GE + B)ally

(B.29)
< |IM(G @ K + Fleu||;2 + |[Me (GE - (G @ K)e) ul;2 + [Te(F — Fe)ull2.

On the RHS, the first norm is bounded by x,0'us(G ® K + F)|lulla(e)-

By (B.26) and (3.17), the second norm is bounded by

I (GK - (G & K)e) ulg

. 1 (B.30)
< K00 ——7 1 #o(G)3o(K) + 90 (C) | #o(K) + ~—700(K) | ¢ ||ula(c)-
The third is bounded by .0t ;179,(F) by (B.5), and (3.23) is obtained.
Q.E.D.
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(5) Proof of Prop. 3.9:

.

Inequality (3.24):

For any t, r € Z, we have, for p > 2,

. I(E@F): — (KSF),-|| 7]
= || KR — e 1Fe1),p

A A (B31)

= [|Be(Re — Fey) + (K¢ ~ K, 1)F, 4| 74

< uo(K)P) (F) + o (F)0P) (K),
which proves (3.24).

Inequality (3.25):

It is implied by the following inequality,

- I8 - 82.1lp = 187(@ - €-1)82, I p
S NG N gpllGe = Geoall Lol G4 Il g
which holds for all t € ZZ.

Q.E.D.
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