
Oscillatory Flows in Periodically Interrupted 

Rectangular Passages in Beat Exchangers 

by 

Alexandre Lamoureux 

Department of Mechanical Engineering 

McGill University 
Montréal, Québec, Canada 

August, 2006 

A thesis submitted to McGill University 
in partial fulfilment of the requirements for the degree of 

Master of Engineering 

© Alexandre Lamoureux, Montréal, Québec, Canada, 2006 



1+1 Library and 
Archives Canada 

Bibliothèque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de l'édition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

ln compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page cou nt, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre référence 
ISBN: 978-0-494-28601-2 
Our file Notre référence 
ISBN: 978-0-494-28601-2 

L'auteur a accordé une licence non exclusive 
permettant à la Bibliothèque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par télécommunication ou par l'Internet, prêter, 
distribuer et vendre des thèses partout dans 
le monde, à des fins commerciales ou autres, 
sur support microforme, papier, électronique 
et/ou autres formats. 

L'auteur conserve la propriété du droit d'auteur 
et des droits moraux qui protège cette thèse. 
Ni la thèse ni des extraits substantiels de 
celle-ci ne doivent être imprimés ou autrement 
reproduits sans son autorisation. 

Conformément à la loi canadienne 
sur la protection de la vie privée, 
quelques formulaires secondaires 
ont été enlevés de cette thèse. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



11 

ABSTRACT 

Computational and experimental studies of fluid flow and heat transfer phenomena in 

interrupted-surface passages are presented. The computational investigation was focused 

on developing and fully-developed (spatially and temporally) laminar flow and heat 

transfer in essentially two-dimensional regions of the following passages: 1) a straight 

rectangular duct with spatially periodic in-line plate inserts; and 2) staggered-plate arrays. 

A second-order finite-volume method was developed, validated, and used to solve these 

problems. Time-mean modular friction factors and Colbum factors were obtained from 

the domain inlet to the spatially-periodic fully-developed region for a Reynolds number 

range of 100 to 600, thus exploring the laminar steady and unsteady regimes. 

Additionally, various cyclic domains were investigated. In the experimental investigation, 

single hot-wire measurements were used to obtain ensemble-averaged power spectrums 

and Strouhal numbers in the fully-developed region of the rectangular duct with spatially 

periodic in-line plate inserts, for Reynolds numbers ranging from 2000 to 30000. 
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RÉSUMÉ 

Cette œuvre présente des études numériques ainsi qu'expérimentales d'écoulements et 

d'échanges thermiques dans des géométries à surfaces discontinues. Les études 

numériques visèrent à simuler des écoulements dans les passages bidimensionnels 

suivants: 1) un conduit rectangulaire interrompu par des plaques périodiquement 

espacées; 2) des matrices de plaques décalées. Une méthode des volumes finis du second 

ordre fut développée et validée. Les simulations permirent d'obtenir les facteurs de 

friction et de Colburn des modules, de l'entrée jusqu'à la région d'écoulement développé, 

pour des nombres de Reynolds de 100 à 600, explorant ainsi les régimes laminaires 

permanents et non permanents avec divers domaines cycliques. Les études 

expérimentales eurent pour objectif d'obtenir des mesures au fil chaud dans la région 

d'écoulement développé d'un conduit rectangulaire interrompu par des plaques 

périodiquement espacées afin de calculer des spectres de puissance et les nombres de 

Strouhal pour des nombres de Reynolds de 2000 à 30000. 
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CHAPTER 1 - INTRODUCTION 

1.1 MOTIVATION AND OVERALL GOAL 

This thesis is an endeavor of the author and his supervisor to contribute to the ongoing 

worldwide efforts to develop compact heat exchangers with significant performance 

enhancements, compared to that of currently available versions of these devices. The 

overall goal of this work is to facilitate improvements of existing cost-effective 

computational tools for the thermofluid design of such heat exchangers, by conducting 

complementary numerical and experimental investigations. 

The present thesis focuses on flow and heat transfer phenomena present in the cores of 

compact heat exchangers. These cores are defined as compact when they possess a 

surface area to volume ratio superior to 700 m2/m3
• This compactness makes these heat 

exchangers quite desirable for numerous applications: examples include automobile 

radiators, coolers for electronic device, industrial gas turbine recuperators, HV AC 

(heating, ventilating and air-conditioning) systems, and aircraft oil coolers [McDonald 

(1972, 2000); Timmerhaus and Flinn (1989); Manglik and Bergles (1995); Shah et al. 

(2001); Kakaç and Liu (2002)]. Due to their enviable characteristics, these heat 

exchangers have grown in popularity and a lot of research efforts have been deployed to 

enhance and predict their performance. 

A wide variety of compact heat exchanger core geometries are currently used. The 

configuration of interest in this work is the rectangular plate-fin design. It is generally 

composed of superimposed parallel plates separating layers of hot and cold fluids 

exchanging heat. To augment heat transfer, fins are positioned in between these plates. 

Multiple types of fins exist, the most popular having the following shapes: continuous, 

rectangular offset, zigzag, chevron, perforated and louvered fins [Kays and London 

(1984)]. They provide desirable heat transfer effects by increasing the heat exchange 

surfaces, inducing flow mixing, interrupting boundary layers, and inducing vortex 
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shedding. The fins may also serve as structural reinforcements. However, the associated 

heat transfer improvements are likely to be accompanied by increases in pressure drop for 

the same fluid flow rates. 

In this thesis, the numerical and experimental investigations are focused on two 

interrupted-surface geometries: the offset-fin geometry shown in figure 1.1; and the 

rectangular interrupted-plate duct portrayed in figure 1.3. The fluid flow in the 

rectangular interrupted-plate duct of figure 1.3 has features akin to those that occur in the 

highlighted flow passage shown in figure 1.1. 

Figure 1.1 Core of an offset-fin compact heat exchanger. 

The offset-fin core, shown above with sorne of its dimensional characteristics, is 

composed of multiple fin rows in between pairs of parallel plates. The fins are not 

continuous, as each row is offset with respect to the previous one, thus explaining its 

name. In this work, the dimensional parameters of such a core are denoted as follows: L 

represents the length of a fin row in the main flow direction; 2t denotes the thickness of 

the fins; b symbolizes the plate spacing; and 2H is the inverse of the fin pitch. This 
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geometry is usually manufactured by bending metal strips into fin rows that are 

subsequently brazed with the plates to form the core assembly: this type of configuration 

is referred to as an "offset strip fin" (shown below in figure 1.2). 

Figure 1.2 Core of an offset strip fin heat exchanger. 

(Hughes-Treitler Manufacturing Corporation). 

Numerous experimental investigations have been performed [Kays and London (1964, 

1984)] on the offset-fin core configuration to obtain empirical data useful for design and 

accurate performance predictions. Measurements have been made on actual heat 

exchangers, full-scale models, and representative models, such as the aforementioned 

rectangular interrupted-plate duct. Correlations for pressure drop and heat transfer 

coefficients have been formulated based on the acquired empirical data. Sorne analytical 

solutions have also been presented. 

Numerous numerical investigations of fluid flow and heat transfer in models of offset-fin 

cores have also been carried out over the last few decades. The first of such investigations 

simulated two-dimensionallaminar steady flows in a simplified geometry, in which fin 

thickness was nil and the computational domain was limited to a single module with 

cyc1ic axial and lateral boundaries [Sparrow et al. (1977); Patankar and Prakash (1981)]. 

Later simulations were more sophisticated and inc1uded flow unsteadiness [Zhang et al. 

(1997)], fin thickness [Patankar and Prakash (1981)], turbulence effects [Sebben (1996)], 

three-dimensionality [Kelkar and Patankar (1989)], and influences of multiple modules 
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[Sebben (1996)]. However, there is a lack of modem computational analyses of 

developing flows in such geometries. Therefore, one of the author's objectives in this 

work was to contribute to the ongoing research efforts by simulating unsteady laminar 

flows and heat transfer from the entrance of the core to the temporally and spatially 

periodic fully-developed conditions. Additionally, various cyclic domains were 

investigated. 

In order to maximize heat transfer and reduce pressure losses in the cores of compact heat 

exchangers, researchers and designers must investigate the influence of geometric and 

thermofluid parameters. The long-term goal in this regard is to develop mathematical 

models and numerical solution methods that are able to accurately predict flows and heat 

transfer in such heat exchanger cores for any flow regime (laminar, transitional, and 

turbulent), a feat that still remains largely unattained. The aim in this thesis to contribute 

to the efforts directed at achieving this goal. 

In order to validate and refine new mathematical models of fluid flow and heat transfer in 

the cores of compact heat exchangers, precise experimental data are needed. Accurate 

local measurements are hard to obtain on real exchangers. Therefore, researchers have 

leaned towards experiments on model geometries. Such investigations have been carried 

out by Cur and Sparrow (1978), McBrien and Baliga (1988), Sekulic (1989), Amon et al. 

(1992), and Grosse-Gorgemann et al. (1995). One of these models, the rectangular 

interrupted-plate duct, is shown in figure 1.3. It consists of a rectangular duct with evenly 

spaced plates inserted along its central (y-z) plane. The geometry of this duct mimics (to 

sorne extent) a section of the offset fin heat exchanger core, highlighted in figure 1.1. 

Additionally, flows in this model duct reproduce the heat transfer enhancing mechanisms 

observed in real cores, such as vortex shedding and boundary layer interruption. 

However, the ability to obtain precise local measurements is the main advantage ofusing 

such mode! geometries. Therefore, the interrupted-plate duct is a convenient and effective 

geometry to gather the experimental data required to refine the aforementioned 

mathematical models and numerical solution methods. 
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Figure 1.3 Schematic illustration of a rectangular interrupted-plate duct. 

Sorne key numerical contributions in this area include the works of Sparrow et al. (1977) 

and Patankar et al. (1977), in which the concept of a spatially periodic Jully developed 

flow regime, explained in further detail in chapter 2, was proposed. Curr and Sparrow 

(1978, 1979) have experimentally investigated the developing length (from the inlet) that 

is required for the establishment of the spatially periodic fully developed regime. 

McBrien and Baliga (1988) have provided accurate wall static pressure measurements for 

turbulent flows in rectangular interrupted-plate ducts similar to that shown in figure 1.3. 

Candanedo et al. (2003) extended the work of McBrien and Baliga (1988) by providing 

highly accurate time-mean intramodular pressure measurements for a wide range of flow 

parameters and geometric configurations. However, empirical data on turbulence 

statistics, which could be potentially useful for the validation of mathematical models and 

numerical solution methods suitable for computer simulations of unsteady turbulent flows 

in interrupted-surface geometries, for example, direct numerical simulation (DNS) and 

large eddy simulation (LES), are scarce in the literature. Therefore, the experimental part 

of this thesis is devoted to complementing and building on the work of Candanedo et al. 

(2003), by performing single hot-wire anemometry measurements at multiple locations in 

a rectangular interrupted-plate duct (similar to that in figure 1.3) for a wide range of 

Reynolds number. The aim in this part of the work is to use such measurements to obtain 

turbulence power spectrums and Strouhal numbers (when oscillatory flows, including 

vortex shedding, occur). 
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1.2 LITERA TURE REVIEW 

The objective in this section is to present a concise review of the major contributions in 

the pub li shed literature directly relevant to the present thesis work. The review surveys 

two principal research subjects: first, past investigations of flows and heat transfer in 

actual offset fin exchanger cores and analogous model geometries; and then, important 

research contributions on flow and heat transfer in model interrupted-surface ducts. 

FinaIly, important textbooks and classical works related to heat exchangers as weIl as 

computationa1 fluid dynamics and heat transfer are mentioned. 

1.2.1 INVESTIGATIONS OF FlUID FLOW AND HEAT TRANSFER IN 

OFFSET FIN CORES AND ANAlOGOUS MODEl GEOMETRIES 

1.2.1.1 EXPERIMENTAL AND ANAL YTICAL INVESTIGATIONS 

London and Shah (1968) conducted one of the first experiments on actua1 offset-fin 

cores. They investigated flow and heat transfer in eight different configurations. Heat 

transfer measurements were made with a steam-to-air steady test method for seven of the 

eight cores and a transient method for the last core. The authors used their measurements 

for calculating fanning friction factors and Colburn factors at multiple Reynolds number 

values. Their results were 1ater incorporated into a book by Kays and London (1984). 

After analyzing their results, London and Shah (1968) recommended sorne desirable 

geometrical parameters, such as a small fin 1ength (L), a small fin thickness (2t), and a 

large aspect ratio (b/2H). FinaIly, they warned that the processes used to manufacture the 

core must be strictly controlled since slight deviations, such as burred fin edges, might 

cause sorne significant performance departures from the predicted results. 

Kays (1972) presented one of the first analytical models of laminar flows in offset-fin 

cores. By adapting the boundary layer solution of flow over a flat plate [Schlichting 
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(1968)] to the offset-fin geometry, he devised a model for predicting frictions factors and 

heat transfer performance. 

Wieting (1975) proposed the first empirical correlations for predicting friction and 

Colbum factors for offset-fin heat ex changer cores. He correlated flow friction and heat 

transfer data gathered from 22 different cores by other researchers. Wieting believed that 

the development of empirical relationships obtained by correlating empirical data was the 

best method available to predict heat exchanger performance. He proposed two such 

correlations, one for friction factors and another for Colbum factors. Each of the se 

correlations is a function of geometric variables and the Reynolds number. Wieting 

correlated data for laminar and turbulent flows separately. Therefore, the values of the 

coefficients and exponents in his correlations depend on the flow regime, itself estimated 

in accordance with prescribed limits on the values of Reynolds number. To predict 

performance in the transitional range, Wieting proposed two "threshold" Reynolds 

number formulas, indicating which of the laminar or turbulent correlations should be 

used. Wieting's correlations have been widely used by designers, and they are regarded 

as a simple, yet relatively accurate, method of predicting heat exchanger performance. 

His work is also considered to be one of the most significant milestones is this field of 

research. 

Webb and Joshi (1982) later tried to improve on the work of Wieting (1975) by 

performing experiments on a scaled-up model of an offset strip fin core. They sought 

accurate empirical data for a wider range of dimensional parameters. The authors argued 

that such measurements should be made on scaled-up arrays in which geometrical 

dimensions can be strictly controlled and the effects of imperfections, such as burred 

edges, may be isolated. Webb and Joshi obtained friction factor data for eight different 

cores for the lower range of Reynolds number: they used an aqueous ethylene glycol 

mixture as the test fluid since it generated pressure drops large enough to be measured 

accurately with manometers. These authors developed a new friction factor correlation, 

which is, in their opinion, more accurate than that of Wieting (1975). Finally, their 

correlation, developed with their model data, also precisely predicted friction factors 
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measured in real heat exchanger cores. Therefore, they stated that the effects of burred 

edges and other dimensional deviations on the flow are relatively insignificant. 

Mullisen and Loehrke (1986) investigated the flow mechanisms that enhance heat 

transfer in certain compact heat exchanger cores. They used flow visualization in scaled­

up models to identify various flow regimes present in the following geometries: in-line 

plates, staggered offset plates, and perpendicular plates. Measurements were performed 

in a wind tunnel for a total of eight different dimensional configurations over a range of 

Reynolds number, based on the Kays and London (1984) definition, of 100 to 10000. 

Mullisen and Loehrke observed three different flow regimes prevailing in the arrays: 

steady, general unsteady, and periodic unsteady. The first was characterized by 

continuous boundary layers over the plates and the interstices; the second displayed flow 

unsteadiness growing in the downstream direction; and the last was characterized by 

synchronized vortex shedding from the trailing edges of the upstream plates and was 

always accompanied by audible tones. Interestingly, the periodic unsteady flow regime 

was not encountered in the perpendicular plate arrays, but no explanation was given for 

this finding. Lastly, the authors also assessed the quantitative performance improvements 

of interrupted surface arrays over that of continuous plate geometries. In particular, they 

obtained friction factors and heat transfer coefficients with measurements from a 

transient technique and found that enhancements of over 100 percent in the average heat 

transfer coefficients may be atlained by incorporating surface interruptions. 

Joshi and Webb (1987) proposed analytical models to predict the friction factors and 

Colbum factors of offset-fin heat exchanger cores. They defined two flow regimes, 

laminar and turbulent, formulated a different model for each, and presented an equation 

predicting the transitional Reynolds number. Their laminar flow model was based on the 

numerical solution of Sparrow and Liu (1979). For the turbulent regime, a semi-empirical 

model was proposed. These authors validated their analytical friction factor model with 

their own experimental data, obtained for eight model core configurations. The friction 

factor predictions feU within ± 20 % of their experimental data. The Colbum factor 

predictions were compared with experimental heat transfer data gathered by multiple 
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authors: the predictions were within ± 20 % of the measured data for 19 of the 21 

selected cores. They also conducted visualization experiments to investigate flow regimes 

and validate their transition-point formula. With increasing values of Reynolds number, 

the flow departed from a smooth laminar appearance to a vortex-shedding regime. 

Finally, Joshi and Webb proposed empirical correlations similar to those of Wieting 

(1975), in conjunction with their flow regime transition limit formula. 

Mochizuki et al. (1988) investigated pressure drops and turbulence intensity in model 

heat exchanger cores. They studied 18 different test cores of three types of geometry: 

plain fin, offset fins, and slotted fins. The test cores were installed in a suction type wind 

tunnel fitted with pressure taps and three hot-wire probes at different locations along the 

airflow path. Static pressure distributions were obtained for a wide range of Reynolds 

number based on the Kays and London (1984) definition (3500 to 13000). These authors 

observed that the pressure drops increased almost linearly along the core and also noticed 

that shorter fin lengths generated higher pressure losses. They also pointed out that the 

turbulence intensity in offset strip fin cores was not uniform throughout the core at lower 

Reynolds numbers, the turbulence intensity was low in the entry zone and gradually 

increased downstream. For higher values of Reynolds number, the turbulence intensity 

was found to be approximately uniform across the core. The authors also performed flow 

visualization experiments in a water tunnel with dye injection to observe flow structures. 

Lastly, they recommended that model core geometries should always possess the same 

number of fin rows as the actual heat exchangers of interest to accurately recreate their 

flow patterns. 

Manglik and Bergles (1995) reviewed past experimental data on fluid flow and heat 

transfer performance and proposed new correlations with the hope of surpassing existing 

ones. They sought to overcome sorne weaknesses of available correlations, such as the 

poor description of the transitional regime and the absence of sorne pertinent geometrical 

parameters in the equations. They also criticized sorne analytical models for either 

oversimplifying the problem or being too cumbersome for efficient use. The authors 

gathered a wide range of data and proposed a set of correlations based on the Reynolds 
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number and dimensions such as fin thickness, length, width, and spacing. Each 

correlation is composed of two formulas, one for each flow regime. They also proposed 

another correlation consisting of a single equation devised with an asymptote-matching 

technique in order to include aIl flow regimes. Their correlations predicted friction and 

heat transfer performance within 20% for the vast majority of data surveyed in their 

work, making it one of the most significant contributions in this field ofresearch. 

Dejong and Jacobi (1997) investigated the local convective effects in offset strip fin 

geometries. They used a sublimation technique on models installed in a wind tunnel to 

obtain local plate Sherwood numbers for three different geometries. Their results 

displayed the importance of vortex shedding on heat transfer performance. In steady 

flows, the maximum value of the local Sherwood number was observed at the leading 

edge of the fin, while in flows characterized by vortex shedding, it peaked at 20% of the 

fin length downstream from the leading edge. These distributions shed sorne light on the 

importance of flow mechanisms such as vortex shedding and boundary layer interruption. 

The authors also performed flow visualization experiments to relate observable flow 

structures with their local measurements. They were able to identify the position of the 

onset of vortex shedding, which started downstream and moved upstream with increasing 

Reynolds number. 

Smotrys et al. (2003) investigated the potential of introducing vortex generators into 

offset strip-fin cores. They performed mass transfer measurements using a naphthalene 

sublimation technique to observe increases in heat transfer performance. These 

experiments were conducted in a wind tunnel on a model core for Reynolds numbers 

ranging from 400 to 3700. Two types of geometries were studied: two arrays with delta­

wing type vortex generators attached to the first row of plates; and a baseline array used 

for comparison purposes. The authors presented data on the enhancement of the 

Sherwood number, which is clearly noticeable (up to 17%) for a good portion of the 

Reynolds number range. However, this increase in performance was found to be rather 

modest for a Reynolds number range of 1000 to 1600. Smotrys et al. also conducted flow 

visualization and PlV experiments to investigate flow structures in the spanwise and 
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streamwise directions. These additional investigations enabled the authors to assert that 

the performance drop observed in the transitiona1 Reynolds number range is caused by 

the presence of destructive interactions between spanwise and streamwise vortices in the 

flow. Unfortunately, no data on the related increases in pressure drop of these enhanced 

cores was glven. 

Michna et al. (2005) investigated the performance of offset strip-fin heat exchangers in 

the high Reynolds number range (up to 120 000). They used a single modeled geometry 

in a special open-Ioop tunnel supporting pressures up to 6.8 atmospheres. Fanning 

friction factor distributions were obtained and compared with those obtained in past 

works, and also with those predicted by the correlation of Manglik and Bergles (1995). 

For Reynolds number values below 20 000, the experimental data is within 10% of the 

aforementioned correlation. Above that value, the friction factor distribution forms a 

plateau with slight oscillations, suggesting, according to the authors, a radically different 

flow regime. Mass transfer experiments were also conducted with a naphthalene 

technique. These data are presented in the form of a modified Colburn factor and are 

shown to be about twice the values predicted by the extrapolation of available 

correlations. 

1.2.1.2 NUMERICAL INVESTIGATIONS 

Sparrow, Baliga, and Patankar (1977) conducted one of the first numerical investigations 

of flows in offset-fin geometries. Their analysis assumed zero-thickness fins and two­

dimensionallaminar and steady flow. They used the boundary layer equations in which 

the streamwise diffusive terms were omitted, thus making the problem parabolic. The 

Prandtl number value was set to 0.7. The authors compared the offset-fin geometries with 

a parallel plate channel with continuous surfaces. As expected, both pressure drop and 

heat transfer increased with the presence of surface interruptions for the same Reynolds 

number and heat transfer area. Their investigation also included a heat transfer 

comparison of both geometries for a fixed pumping power: it showed appreciable 

improvements in performance (approximately 80%). When compared to experimental 
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data, the numerical analysis overpredicted heat transfer by 20 to 35% and underpredicted 

the friction factor by 10 to 20% for Reynolds numbers under 900. The authors attributed 

these deviations to the presence of burred edges on actual fins and the lack of fin 

thickness in their analysis. Still, such relatively good agreement is impressive considering 

the computing facilities and numerical methods available in those years. Finally, the 

analysis predicted the onset of a periodic fully-developed regime after the fifth row of 

fins. 

Sparrow and Liu (1979) extended the work of Sparrow et al. (1977). In addition to 

staggered offset and parallel plate channels, they investigated the performance of in-line 

plate arrays. They provided basic heat transfer and pressure drop information and 

compared these results for all three geometry types. The superior performance of 

interrupted-surface geometries was confirmed once more by their results. The staggered 

plate array was shown to offer superior heat transfer performance for the same pumping 

power. 

Patankar and Prakash (1981) investigated the effects of finite plate thickness on flows in 

offset-fin heat exchangers. The flow was assumed to be laminar and two-dimensional. 

The authors simplified the problem by exploiting the periodic fully-developed regime to 

their advantage, by imposing cyc1ic boundary conditions in the streamwise direction. 

They proposed a new pressure definition compatible with this cyclic domain and imposed 

a pressure gradient which induced the fluid motion. The thermal boundary condition was 

set so that the heat transfer was constant for each fin. This was achieved by increasing the 

temperature of a row of plates by the desired increment over that of the preceding row. 

Multiple plate thickness configurations were analyzed as well as different Reynolds 

number values. The flow fields were found to be quite complex, with recirculation zones 

near the trailing edges of the plates. Patankar and Prakash carefully reduced their data to 

compare their results with previous numerical analyses and available experimental data. 

They discovered that the finite plate thickness strongly increased the friction factor, by 10 

to 16 times above the value found for zero-thickness plates. However, the Stanton 

number did not increase as much as the friction factor with the finite thickness plates (2.4 
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times for the thickest plate, tIH = 0.3). Finally, a companson was made with the 

experimental data obtained by Kays and London (1964, 1984) on a geometrically similar 

core. While the friction factors agreed reasonably well, the Stanton number distributions 

significantly departed from the experimental heat transfer data. Unfortunately, the authors 

did not provide a complete explanation or state the possible causes of these discrepancies. 

Suzuki et al. (1985) conducted complementary numerical and experimental studies of 

flows in vertical staggered plate arrays. They investigated the lower Reynolds number 

range (under 1000) in the mixed (free-forced) convection regime. In the numerical part of 

the work, two-dimensional flows developing across rows of plates were investigated. 

Two methods were used to tackle the elliptic problem. The streamline and vorticity 

method were implemented and compared to the "primitive variables" method, which 

yielded almost identical results. The authors performed an experimental investigation on 

an analogous model array and gathered local Nusselt numbers for comparison. The 

numerical models accurately predicted their experimental measurements. The effects of 

upstream turbulence were also considered and found to have little impact on heat transfer 

results. The numerical model was tested against experimental data obtained from two 

actual geometries by Kays and London (1964, 1984). The numerical predictions agreed 

poorly with the benchmark experimental data, but still displayed a qualitative agreement. 

Lastly, the authors numerically investigated the effects of geometric parameters and 

recommended thin fins, since the modest heat transfer gains caused by added fin 

thickness are generally spoiled by the larger increases in pressure drop. 

Ke1kar and Patankar (1989) studied steady laminar flows in offset strip fin geometries. 

Their numerical study was three-dimensional and investigated the developing region 

from the entrance to the fully-developed regime. The fin thickness was assumed to be 

negligible, thus justifying the use of a parabolic method in the streamwise direction. All 

surfaces were maintained at a fixed temperature. Their results showed that the flow 

development length varied from 5 to 10 modules. The authors also investigated a wide 

range of geometric parameters that influence heat transfer performance. 
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Zhang et al. (1997) performed numerical analyses of flows in paraUel-plate fin heat 

exchangers. U sing powerful computers and paraUel computing techniques, they 

demonstrated the importance of including unsteady effects and three-dimensionality to 

obtain adequate predictions. The computational domain was limited to a single geometric 

module in the fully developed region. Thus, cyclic boundary conditions were used, as 

suggested by Patankar and Prakash (1981). Grid independence checks were performed as 

well as processing performance studies. As expected, both the steady and unsteady 

solutions diverged with increasing Reynolds number. Additionally, the authors compared 

their unsteady solutions with the experimental data of Mullisen and Loehrke (1986). 

While the steady simulations departed from the experimental results once unsteadiness 

appears, the unsteady analyses agreed quite well for both friction and Colburn factors. 

Finally, they showed that intrinsic three-dimensional effects should not be neglected for 

Reynolds number values past the transitional range. 

Saidi and Sundén (2001) recently investigated unsteady and two-dimensional flows in 

offset-fin geometries. The flow problem was simplified by using cyclic conditions across 

a single module in the fully-developed regime. Their objective was to shed sorne light on 

the physical phenomena involved in the heat transfer process. They used an established 

finite volume method along with a very fine grid and focused their efforts on a single 

geometric configuration. First, the friction factor and Colburn factors were compared to 

the experimental results of DeJong et al. (1998), and the deviations were found to be in 

the range of 6 to 8 percent. With these results providing new confidence in their method, 

they observed flow mechanisms such as circulation bubbles commuting along the fins 

and the absence of a classic boundary layer structure over the plates. The authors also 

found that the velocity field had an oscillatory motion (at Re = 993) that was not chaotic 

in appearance. 



1.2.2 INVESTIGATIONS OF FlUID FLOW AND HEAT TRANSFER IN 

MODEl INTERRUPTED-SURFACE DUCTS 

1.2.2.1 EXPERIMENTAL INVESTIGATIONS 

15 

Cur and Sparrow (1978) investigated airflows in a rectangular duct with two plates 

aligned along the centerline. Pressure drop measurements were taken in addition to mass 

transfer measurements with a naphthalene sublimation technique. Another objective of 

the study was to isolate the effects of the mass transfer from the first plate on that from 

the second one. Sherwood numbers were provided for both plates for Reynolds numbers 

between 1000 and 14000. Multiple plate thicknesses and plate spacing were tested. The 

authors noted that heat transfer performance gains caused by thickening the plates are 

accompanied by a larger increase in pressure drop. 

Cur and Sparrow (1979) aimed to surpass their previous efforts (1978) by performing 

experiments on airflows in a rectangular duct with numerous rows of collinear plates. 

Their objective was to prove the existence of a thermally developed condition in 

interrupted geometries. Again, a naphthalene sublimation technique was used to measure 

Sherwood numbers (Sh) for each plate and then infer the corresponding Nusselt numbers 

using the heat-mass transfer analogy. They tested three different plate thicknesses and 

obtained data for Reynolds numbers ranging from 1100 to 13600. The reduced data, in 

the form of Sh/Sco.\ was presented concisely in three figures showing the effect of 

Reynolds number and plate thickness. Once more, increasing fin thickness induced 

higher mass (heat) transfer. The thermally fully developed regime was shown to prevail 

within eight plates, making this investigation the first experimental demonstration of its 

existence. 

Sparrow and Hajiloo (1980) have also carried out an investigation of flows in interrupted­

plate ducts. In this particular study, the duct contained an array of staggered plates 

arranged in five columns, each composed of ten plates. Three plate thicknesses were 

tested over a Reynolds number range of 1000 to 9000. Once more, a naphthalene 
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sublimation technique was employed to gather plate Sherwood numbers. The presence of 

a spatially-periodic fully-developed regime was observed as expected. The Sherwood 

number (and the analogous Nusselt number) increased with the Reynolds number for aIl 

cases. Plate thickness also increased mass (heat) transfer for most cases. The authors 

compared their results with correlations in the literature, such as the one provided by 

Wieting (1975). The data scatter about the predictions obtained with the correlations was 

around 15 to 20 %. These deviations were explained by differences in geometry, such as 

aspect ratio and number of columns. In addition to the mass transfer data, friction factors 

were obtained for the duct. Curiously, the friction factors became constant at high 

Reynolds values while Wieting's correlation predicted a downward trend in that range. 

Roadman and Loehrke (1983) studied regime transition of flows between a pair of plates. 

They varied geometric parameters such as plate thickness and spacing. Dye visualization 

along with hot film anemometry was used in a water channel to determine transition 

thresholds. Experiments were also conducted in a wind tunnel with hot-wire anemometry. 

They found that the critical velocity corresponding to the triggering of transition varied 

strongly with plate spacing for small plate gaps. However, this transitional velocity was 

independent of plate spacing if the plate interval was large. Surprisingly, the transition 

point was found to be insensitive to the level of free stream turbulence. 

Zelenka and Loehrke (1983) extended the experiments of Roadman and Loehrke (1983) 

by investigating heat transfer from two collinear plates. These authors studied the effects 

of plate edge bluntness, plate spacing, and Reynolds number. Heating elements were 

inserted into the plates and copper-constantan thermocouples were used to monitor their 

temperatures. As expected, heat transfer from a single blunt plate depended on its length 

and thickness. Blunt leading edges at low Reynolds numbers where found to inhibit plate 

heat transfer due to the presence of separation bubbles. Such structures were absent for 

flows around a single plate with round edges. At higher Reynolds number, heat transfer 

was enhanced by the turbulence generated in the separated leading edge shear layer. For 

large plate spacings, the heat transfer from the second plate was independent of the edge 

bluntness of the first plate and was solely influenced by its unstable wake. This flow 
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structure enabled the heat transfer coefficient on second plate to approach and even 

surpass that on the first one. Finally, the shape of the second plate only influenced the 

heat transfer from it if the inter-plate spacing and Reynolds number were high. 

McBrien and Baliga (1988) studied flows in interrupted-plate ducts in order to better 

understand the flow complexities and characteristics found in actual heat exchanger 

cores. They investigated a relatively high Reynolds number range (from 5000 to 45000) 

and six different geometric configurations. One of the objectives of this contribution was 

to fill the need for local intramodular flow measurements. Numerous pressure taps on the 

top wall of the duct enabled the authors to obtain locally precise time-mean wall static 

pressure distributions in the spatially-periodic fully-developed region. These distributions 

were plotted and used to calculate modular friction factors. Their results shed sorne light 

on the flow mechanisms affecting pressure drop and provided useful data to validate 

numerical models. The existence of a spatially periodic fully-developed region was 

confirmed in this model geometry. 

Sekulic (1989) conducted experimental investigations of flows in interrupted-plate ducts. 

The main interest of this research was to monitor flow transition between the laminar and 

turbulent regimes. The author used three different core arrangements: two interrupted­

plate geometries and a continuous plate configuration for comparison. Overall friction 

factors were obtained and plotted for the three test cases for Reynolds number values 

ranging from 1000 to 4000. As expected, the presence of the plates increased the pressure 

drop. Though the findings of this research did not bring forth new fundamental 

understanding of such flows, it offered additional test data and further insights on flow 

regime transition. 

McBrien et al. (2000) performed an experimental study of flows in interrupted-plate 

ducts. The objectives ofthis work were to provide detailed time-mean wall static pressure 

distributions along with module friction factors as function of Reynolds number. The 

authors investigated two different geometric configurations for turbulent flows with 

Reynolds numbers ranging from 1700 to 35000. lntramodular pressure distributions were 
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plotted as functions of duct streamwise position to determine module friction factors. 

Additionally, flow visualization experiments were conducted with the use of paints to 

investigate plate-surface streakline patterns. The results showed that the time-mean flow 

was two-dimensional over 80% of the plates in the spanwise direction. They also 

confirmed the existence of flow separation and recirculation at the plate leading edge. 

The trailing edge zone was believed to be a region of low shear or flow reversaI and 

separation probably caused by oscillating wakes. 

Candanedo et al. (2003) carried out experimental investigations of flows in interrupted­

plate ducts. They provided additional time-mean wall static pressure distributions and 

module friction factors for a wide range of Reynolds numbers and additional geometrical 

configurations. Candanedo (2003) extended this research and redesigned the apparatus at 

McGill University to improve its repeatability and accuracy. With this new test rig, wall 

static pressure distributions were measured as weIl as friction factors for a wide range of 

Reynolds number and geometrical parameters. FinaIly, the authors developed a 

generalized correlation predicting module friction factors as functions of the Reynolds 

number. 

Lamoureux et al. (2005) extended the work of Candanedo (2003) by performing single 

hot-wire measurements of flows in interrupted-plate ducts. Turbulence power spectrums 

were provided for many different locations in the duct for a wide range of Reynolds 

number. Dimensionless vortex shedding frequencies were also presented in the form of 

Strouhal numbers. This contribution constitutes the experimental part of this thesis and 

will be explained further in the foIlowing chapters. 

1.2.2.2 NUMERICAL INVESTIGATIONS 

Amon and Mikic (1990) performed numerical investigations of flows in grooved 

channels and interrupted-plate ducts. The analysis was two-dimensional and inc1uded 

unsteady effects. The authors studied laminar flows with self-sustained oscillations and 

their critical onset Reynolds number (Ree). The time discretization was performed with a 

multistep fractional scheme. The convective terms were discretized with a third-order 
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Adams-Bashforth scheme while the pressure and diffusion effects were treated with the 

Euler backward scheme or Crank-Nicolson scheme. A spectral element method was 

chosen to discretize the goveming equations in space. The problem was simplified by 

studying the periodic fully-developed region and by limiting the domain to a single 

module with axial cyclic conditions. Solutions were obtained by marching in time until a 

stable or unsteady flow prevailed. The critical Reynolds number at which unsteadiness 

appears was evaluated at 110. After this threshold, periodic oscillations appeared and heat 

transfer increased significantly. This periodic regime was considered advantageous since 

it required less pumping power to provide the same heat transfer performance. Finally, it 

was shown that heat transfer increased up to three times for the same pumping power in 

interrupted-plate ducts when compared to continuous flat channels. 

Amon et al. (1992) pursued the investigations of Amon and Mikic (1990) by performing 

numerical and experimental studies of flows and heat transfer in interrupted-plate ducts. 

Attention was focused on regime transition and the oscillatory phenomena present in the 

flow. The experimental apparatus was composed of ten plates, each heated with an 

electric foil controlled with DC power inputs. Holographic interferometry was used to 

visualize instantaneous temperature fields. A spectral numericai method, almost identicai 

to the one used by Amon and Mikic (1990), was used to simulate two-dimensionai 

unsteady laminar flows. Flows prevailing in the spatially periodic fully-developed region 

were simplified with the use of a cyclic boundary in the streamwise direction. Reynolds 

numbers ranging between 100 and 400 were investigated with this numerical method. 

The onset of periodic oscillations appeared between Re values of 150 and 200. This 

unsteadiness threshold value was evaluated to be around Re = 200 in the experiments, 

thus corroborating the numericai predictions. As expected, predicted and actual heat 

transfer performance increased with the presence of flow oscillations. This enhancement 

was explained with temperature visualization interferograms. They revealed that the 

unsteady flows had thinner boundary Iayers and enhanced mixing due to vortex shedding. 

The results of this numerical investigation were presented again by Majumdar and Amon 

(1992) in another journal paper which also included new local Nusselt number 
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distributions, phase-plane velocity plots, and an analysis of Reynolds stresses and 

turbulent heat fluxes. 

Suzuki et al. (1994) performed numerical investigation of flows in interrupted-plate ducts 

in order to examine the mechanisms responsible for heat transfer enhancement in such 

geometries. Attention was focused on two-dimensional laminar and unsteady flows in the 

middle Reynolds number range, where self-sustained periodic flows oscillations 

occurred. The computational domain included three consecutive plates. Uniform velocity 

and temperature profiles were imposed at the duct inlet. A two-Ievel multi-grid method 

was used to speed up convergence. The diffusive terms were treated with a central 

difference scheme, while the convective contributions were modeled with the QUICK 

scheme of Leonard (1979). The fully-implicit scheme was chosen to treat the temporal 

effects. The authors presented overall Colburn factors, local Nusselt number 

distributions, plots of Reynolds stresses, maps of vorticity, and instantaneous velocity 

vectors maps. Their results showed that the vortices enhanced heat transfer by mixing the 

temperature excess of the wake with the main stream flow and drawing cool fluid toward 

the hot plates. 

Grosse-Gorgemann et al. (1995) carried out numerical investigations of flows in 

interrupted-plate ducts and other geometries. A numerical code, based on the SIMPLEC 

procedure of Van Doormal and Raithby (1984), was used to solve two-dimensional 

unsteady flow fields. The authors provided Strouhal numbers and validated their results 

with hot-wire measurements obtained in a complementary experimental study. The 

computed Strouhal numbers showed very good agreement with those obtained from the 

measurements (Stexp = 0.19 and Stnum = 0.20). 

Sebben (1996) performed numerical studies of flows in interrupted-plate rectangular 

ducts. Attention was focused on the laminar regime as well as the intermediate Reynolds 

number turbulent regime. The author used a finite volume method to solve unsteady two­

dimensional flows across axially periodic domains containing up to six geometric 

modules. Her study revealed the existence of multiple stable solutions, a major finding of 
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this work. In order to solve the turbulent flow problems, several different turbulence 

models were explored. However, the predictions in the turbulent regime, such as time­

mean friction factors and Strouhal numbers, only followed the behavior of the 

experimental data of McBrien and Baliga (1988) and did not compare weIl quantitatively. 

Valencia (1999) conducted numerical investigations of flows in a geometry similar to the 

interrupted-plate duct: a channel with periodically mounted transverse vortex generators. 

These vortex generators are thick plates (spanning half the height of the channel) of short 

length in the main flow direction. Flow and heat transfer data were obtained for different 

values of the plate spacing for a Reynolds number range of 100-400. The problem was 

simplified by imposing periodic conditions over a single module. Temperature was set 

constant on the channel walls and the temperature of the plate was not fixed. The control 

volume formation employed in this work was inspired by the works of Patankar (1980) 

and incorporated the SIMPLEC scheme along with line Gauss-Seidel solvers based on 

the tri-diagonal matrix algorithm (TDMA). Flow unsteadiness appeared at Re = 150 and a 

single dominant vortex shedding frequency was observed up to Re = 200. At a Reynolds 

number of 300, an additional frequency appeared and both prevailed equally at Re = 400. 

Nusselt number plots and friction factors were provided. FinaIly, it was shown that 

ordered oscillatory flows required less pumping power than turbulent ones for the same 

heat transfer performance. The author explained this observation by stating that laminar 

self-sustained oscillatory flows induce less viscous dissipation than the ones 

characterized by random chaotic turbulent structures, and thus require less pumping 

power to yield the same transport rates. 

1.2.3 TEXTBOOKS, REVIEW ARTICLES, AND OTHER 

CONTRIBUTIONS 

The work of Kays and London (1964, 1984) is pivotaI in the field of compact heat 

exchangers. These authors presented a wide range of experimental data on pressure losses 

and heat transfer performance for many different compact heat exchanger cores. In a 
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recent book by Hesselgreaves (2001), design methodologies for compact heat exchangers 

and correlations for pressure losses and heat transfer in modem cores are presented. This 

book includes discussions on various types of geometry along with their respective 

advantages and drawbacks. Shah et al. (2001) have presented a comprehensive review of 

past computational studies of fluid flow and heat transfer in compact heat exchanger 

cores along with a presentation of potential challenges awaiting researchers in this field. 

Numerical methods used for the prediction of fluid flow and heat transfer in heat 

exchangers are described in books authored by Roache (1976), Patankar (1980), Reddy 

and Gartling (1994), and Ferziger and Peric (1996, 1999), among others. Other important 

works presenting review articles on numerical methods include the following: The 

Handbook of Numerical Heat Transfer edited by Minkowycz, Sparrow, Schneider and 

Pletcher (1988), and the Advances in Numerical Heat Transfer series, edited by 

Minkowycz and Sparrow (1997, 2000). 

Fundamental and practical notions about fluid flow and heat transfer related to heat 

exchangers are presented in several textbooks. Sorne of the key books on these topics 

include those written by the following authors: Rouse (1946, 1978), Streeter (1951, 

1962), Schlichting (1955, 1968, 1979), Landau and Lifshitz (1959, 1987), Bird et al. 

(1960, 2002), Batchelor (1967), Eckert and Drake (1971), White (1974, 1991), Currie 

(1974, 2003), Kays and Crawford (1980, 1993), Incropera and DeWitt (1981, 2002), 

Bejan (1984, 1995), Fox and McDonald (1985, 1998), Churchill (1988), Panton (1996), 

Wilkes (1999), and Cebeci (2002). Shah and London (1978) have provided numerous 

reviews of works on laminar flow and heat transfer in ducts. Finally, the Handbook of 

Heat Transfer Fundamentals edited by Rohsenow et al. (1985) has become a classic as an 

extensive source information on these topics. 

Numerous experimental and numerical investigations have been performed on other types 

of heat exchanger core geometries, such as grooved channels, passages with louvered 

fins, and wavy channels. However, for the sake of conciseness, attention in this review 

was limited to geometries akin to those investigated in this work. Sorne of these other 
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contributions include the following works: Greiner (1991), Kim and Anand (1994), and 

Grosse-Gorgemann (1995), aH on grooved channels; and Blancher et al. (2004), on the 

stability of flows in wavy channels. 

1.3 SPECIFIC OBJECTIVES 

This work is divided into two parts: experimental investigations of turbulent flows in 

rectangular interrupted-plate ducts; and numerical studies of unsteady, two-dimensional, 

laminar flows in staggered-plate arrays, akin to those encountered in offset-fin cores of 

compact heat exchangers. The specifie objectives ofthis work are summarized below. 

The aims of the experimental investigations are the following: 

• Modify an available rectangular interrupted-plate duct, akin to that shown in 

figure 1.3, in order to incorporate a section suitable for single hot-wire 

measurements in the spatially periodic fully-developed flow region. 

• Benchmark the hot-wire probe and anemometer, and confirm the repeatability of 

the related measurements. 

• Investigate the spatial periodicity of the turbulence statistics at multiple 

streamwise locations and examine the two-dimensionality of these statistics 

across the width of the duct. 

• Obtain ensemble-averaged power spectrums at multiple locations in the duct and 

for a Reynolds number range of 2000 to 30000. Obtain Strouhal numbers of the 

principal vortex frequencies by analyzing the power spectrums. 

The objectives in the numerical investigation are the foHowing: 

• Develop a finite volume method (FVM) to simulate laminar, unsteady, two­

dimensional flows of a Newtonian fluid. Implement the QUICK scheme along 

with appropriate iterative solvers, and design the computer pro gram to solve 

unsteady problems with multiple time integration schemes in cyclic and regular 

domains. 
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• Validate the proposed FVM method with two test cases: (1) steady flows in 

staggered plate arrays; and (2) unsteady unconfined flows past a square cylinder. 

• Investigate unsteady, laminar, two-dimensional, developing flows in a rectangular 

interrupted-plate duct. Provide modular time-averaged friction factors and vortex 

shedding Strouhal numbers. 

• Investigate unsteady, laminar, two-dimensional flows and heat transfer in 

staggered plate arrays, representing offset-fin heat exchanger cores. Conduct time 

and grid independence studies. Obtain module time-averaged friction factors, 

Colbum factors, and vortex shedding Strouhal numbers for multiple geometric 

configurations and a Reynolds number range of 100 to 600. Investigate the effects 

of the multiple plate rows in the cyclical domain. 

The numerical investigation is limited to two-dimensional, laminar, Newtonian fluid 

flows, as the corresponding mathematical models are well established and the 

computational costs are quite reasonable. On the other hand, the experiments are focused 

on turbulent Newtonian fluid flows, as the mathematical models are still not well 

established, and reliable experimental data are urgently needed to check and refine 

available models. 

1.4 THESIS OVERVIEW 

The motivation behind this work was presented in this first chapter, along with the 

objectives and a concise review of past research contributions in the field of compact heat 

exchangers. Theoretical aspects relevant to the experimental and numerical parts of this 

work are presented and discussed in chapter 2. In chapter 3, the apparatus used in the 

experimental part of this work and the test methodology are described concisely. The 

formulation of the numerical method employed in the computational studies is presented 

in chapter 4. The experimental and numerical results are presented and discussed chapter 

5. Lastly, in chapter 6, the contributions ofthis work are summarized and suggestions are 

made for its extensions. 
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CHAPTER 2 - THEORETICAL CONSIDERATIONS 

The theoretical considerations relevant to the experimental and numerical parts of this 

thesis, such as the goveming equations, the description of the spatially periodic fuIly­

developed regime, the definition of ensemble-averaged power spectrums and related 

Strouhal numbers, and the other nondimensional parameters used in this work, are 

presented in this chapter. 

2.1 GOVERNING EQUA TIONS 

In this thesis, the working fluid is considered to be Newtonian and incompressible, and its 

thermophysical properties are assumed to remain essentially constant at suitably averaged 

values. 

In the problems of interest, the Mach numbers are aIl weIl below 0.1, so the assumption 

of incompressible fluid is quite valid. In the experimental part of this work, the fluid 

temperature was almost constant and the pressure drops were relatively minor compared 

to the values of average absolute static pressure in the ducts, thus justifying the 

assumption regarding constant fluid properties. It is also common in heat exchanger 

design practice to peg the fluid thermophysical properties to average values 

corresponding to mean values of the bulk temperature and the static pressure, and assume 

that these average properties remain essentially constant, at least in the first pass of the 

design process; corrections to account for the variations of the fluid properties are 

incorporated in the second pass of the design process, if needed. Furthermore, the values 

of the Eckert number for the flows of interest are aIl much less than one (unit y), so the 

viscous dissipation is considered negligible. 

The goveming equations are presented in this section in the context of the above­

mentioned assumptions. Furthermore, as the focus in the work is primarily on flow in 

rectangular geometries, the goveming equations are presented with respect to the 

Cartesian coordinate system shown in Figure 1.3. 



2.1.1 GENERAL FORM OF GOVERNING EQUATIONS 

The continuity equation for an incompressible fluid is expressed as follows: 

au av Ow 
-+-+-=0 ax ay az 
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(5.1) 

The gravitational body forces are inc1uded in a reduced static pressure. It is also assumed 

(with no realloss in generality) that the gravitational acceleration vector is directed in the 

negative x direction. Thus, the reduced pressure is defined as follows: 

P = Pstalic + pg(x - Xrejerence) (5.2) 

In this equation, g is the gravitational acceleration; and it is assumed to remain constant 

in the problems of interest. 

Using the reduced pressure defined in equation (2.2), the Navier-Stokes (momentum) 

equations can be expressed as follows: 

(5.3) 

(5.4) 

(5.5) 

The experimental investigation reported in this thesis does not involve heat transfer, but 

the numerical studies do. Therefore, the energy equation is presented below in the context 

of the assumptions stated earlier: 
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(5.6) 

2.1.2 GOVERNING EQUATIONS FOR NUMERICAL INVESTIGATIONS 

In the numerical studies presented in this thesis, only unsteady two-dimensional fluid 

flow and heat transfer problems are considered in the context of the assumptions stated 

earlier. Furthermore, in the nurnerical investigations, the x axis is taken to coincide with 

the main flow direction and y axis is oriented in the vertica1ly upward direction (the 

gravitational acceleration vector is now directed in the negative y direction). Thus, the 

following simplified versions of the continuity, x- and y-momenturn, and energy 

equations apply in the numerical part of this work: 

8u+àv=0 
8x 8y 

2.2 DESCRIPTION OF THE SPA TIALL Y PERIODIC FULL Y­

DEVELOPED REGIME 

2.2.1 GENERAL DEFINITION 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

Flows in geometries with multiple repetitive modules, such as offset-fin cores of compact 

heat exchangers (see Figure 1.1) and rectangular interrupted-plate ducts (see Figure 1.3), 

develop in the streamwise direction and could, if the flow passage is long enough, reach a 
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fully-developed state. However, since the geometry itself varies in the tlow direction 

(albeit in a spatially periodic manner), the classical fully-developed concept of invariance 

of the velocity field in the main tlow direction, does not apply to such tlows. Rather, such 

tlow can reach what is called as a spatially periodic fully-developed state, a concept first 

postulated in a numerical study by Sparrow et al. (1977). This spatially periodic fully­

developed regime is established after a sufficient number of geometric modules 

downstream from the inlet of interrupted-surface tlow passages and is characterized by 

the following features [Sparrow et al. (1977); Patankar et al. (1977); McBrien and Baliga 

(1988)]: the time-mean velocity field repeats identically in each geometrically similar 

module in the tlow direction; and the time-mean static pressure drop between similar 

locations in adjacent geometrically similar modules becomes constant. If the length of the 

spatial period of a single module is denoted A and z is the streamwise direction (with 

respect to Figure 1.3, for example, A = L + s), then the time-mean velocity field in the 

spatially periodic fully-developed region displays the following properties: 

(u)(x,y,z) = (u)(x,y,z+ A) = (u)(x,y,z+ 2A) = (u)(x,y,z+3A) = .. . 

(v)(x,y, z) = (v)(x,y,z + A) = (v)(x,y,z + 2A) = (v)(x,y,z +3A) = .. . 

(w)(x,y,z) = (w)(x,y,z+ A) = (w)(x,y,z+ 2A) = (w)(x,y,z + 3A) = ... 

(5.11) 

(5.12) 

(5.13) 

In this equation set, the brackets < > denote time-mean values. As was mentioned above, 

the drops in time-mean static pressure values between similar locations in adjacent 

geometric modules (separated by the spatial period A in the z direction) are equal, as 

indicated in the following equation: 

(p)(x,y,z )-(p)(x,y,z+ A) = 
(p)(x,y,z+A)-(p)(x,y,z+2A) = 
(p)(x,y,z+ 2A)-(p)(x,y,z +3A) = ... 

(5.14) 

It is also useful to formulate a modular gradient of the time-mean static pressure as 

follows: 



fJ = (p)(x,y,z)-(p)(x,y,z+ A) 
A 
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(5.15) 

This time-mean modular static pressure gradient can be measured experimentally or 

obtained numerically (for flows amenable to computational studies) and presented in the 

form of modular friction factors. 

The spatial period A is specific to the problem being investigated. For the rectangular 

interrupted-plate duct shown in Figure 1.3, this spatial period A is equal to the sum of a 

single plate length (L) and the inter-plate spacing (s): A = L + S . In the case of offset-fin 

core of a compact heat exchanger, a module inc1udes a set of two successive (staggered) 

plates in the flow direction, thus the spatial period A is defined as twice the plate length 

(L): A = 2L. 

The existence of such a spatially periodic fully deve10ped regime has been confirmed for 

offset-fin geometries and rectangular interrupted-plate ducts in several numerical and 

experimental investigations. Such investigation inc1ude the works of Patankar et al. 

(1977), Patankar et al. (1981), Kelkar et al. (1989), Sparrow and Hajiloo (1980), Mullisen 

and Loehrke (1986), and McBrien and Baliga (1988). 

A spatially periodic fully-developed thermal regime can also be defined for flow and heat 

transfer in interrupted-surface geometries [Patankar et al (1977); Patankar and Prakash 

(1981)]. However, since multiple thermal boundary conditions can lead to the 

establishment of such a spatially periodic thermal regime (such as constant plate 

temperature or constant plate heat transfer), the definition of the spatially periodic 

thermal regime must be compatible with the problem being considered. For example, this 

regime can be tied to the establishment of a constant modular heat transfer coefficient at a 

certain point downstream from the inlet; or it could be characterized by self-similar 

temperature profiles in successive modules. For additional details, the reader is referred 

to the works of Patankar et al. (1977) and Patankar and Prakash (1981). 
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2.2.2 GOVERNING EQUATIONS FOR SPATIALLY PERIODIC FULLY­

DEVELOPED LAMINAR TWO-DIMENSIONAL STEADY FLOWS 

Spatially-periodic fully-developed steady flows can be analyzed with reference to just 

one geometrically similar module, with suitable cyc1ic boundary conditions, as described 

in the pioneering work of Patankar et al. (1977). While this strategy is quite 

straightforward for time-mean velocity components, the treatment of pressure requires 

special attention. Due viscous and inertiallosses, pressure has to inevitably drop from the 

inlet plane of a module to its exit. Thus, the pressure itself does not submit to the cyc1ic 

boundary condition. However, as was stated earlier, the modular time-mean pressure drop 

becomes constant in the spatially fully-developed region. Advantage can be taken of 

these characteristics to propose a mathematical model limited to just one geometric 

module. In this section, such a mathematical model is proposed for spatially periodic 

fully-developed laminar two-dimensional steady flows, in preparation for sorne aspects of 

the numerical studies presented later in this thesis. 

Following Patankar et al. (1977), the pressure field in spatially periodic fully-developed 

laminar two-dimensional steady flows can be decomposed into two parts: one of which is 

a linear function of the streamwise coordinate (denoted by x in the two-dimensional 

problems considered in this thesis), and a function that repeats periodically in successive 

modules. Thus: 

p(x,y) = -flx+ p(x,y) (5.16) 

The spatially periodic portion of the pressure field, p(x,y), respects the following 

equation: 

p(x,y) = p(x+A,y) = p(x+2A,y) = ... (5.17) 

This treatment for pressure is used to obtain the following forms of the continuity and 

steady momentum equations: 
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(5.18) 

(5.19) 

(5.20) 

The x-momentum equation given above now has an extra source term, f3. Two strategies 

are commonly used to handle this situation: in one, f3 is treated as a specified parameter 

and the above-mentioned goveming equations are solved for u, v, and ft; in the other, the 

overall mass flow rate is prescribed, and u, v, ft, and f3 are calculated by solving the 

three goveming equations given above, in conjunction with the overall continuity 

equation: m = pUavAc.s. = mspecified' The first of these strategies produces a velocity field 

(hence, an overall mass flow rate) in response to the specified value of f3; the second 

strategy allows the calculation of f3 that is consistent with the specified mass flow rate. 

The temperature field also requires a special treatment. Like pressure, temperature values 

across the cyc1ic boundary are not equal if heat transfer is present in the domain. The 

solution was again proposed by Patankar et al. (1977) and also by Patankar and Prakash 

(1981). It consists of a decomposition of the temperature field into a linearly increasing 

term and a periodically varying part. In this particular treatment, the thermal boundary 

conditions were set to simulate constant plate heat transfer. This was accomplished by 

fixing the temperature of a plate row to uniform values. Each plate row temperature was 

increased by llT above the preceding upstream plate row value. Therefore, in the 

spatially periodic fully-developed region, the fluid bulk temperature also increases by the 

same increment over each plate length (L). Thus, for this specifie problem, the 

temperature is expressed as: 
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T(x,y) = (~ )I1T + t(x,y) (5.21) 

The fluctuating part t ( x, y) is periodic and repeats itself in each successive module in 

the fully-developed region. This decomposed temperature field can now be introduced 

into the energy equation, yielding: 

(5.22) 

The strategy for solving the temperature field is analogous to that used to solve the 

pressure field. 

2.3 ENSEMBLE AVERAGED POWER SPECTRUM AND 

STROUHAL NUMBERS 

As was stated earlier, the objective in the experimental investigation is to undertake 

single hot-wire measurements in a rectangular interrupted-plate duct (see Figure 1.3) and 

use the data collected to obtain turbulence power spectrums and Strouhal numbers for the 

flows of interest. In this work, this experimental data was collected by inserting a single 

hot-wire probe in the spatially periodic fully-developed region. The hot wire was 

maintained perpendicular to the main-flow direction (z) and parallel to the y direction 

(see Figure 1.3). The probe measured the instantaneous velocity perpendicular to its axis, 

denoted here as v, and such measurements were carried out at multiple spatial locations 

in the duct. Details of these hot-wire measurements locations are provided in chapter 3. 

The hot-wire measurements provided blocks of data, which where processed to obtain the 

power spectrums and Strouhal numbers. 

First, the velocity fluctuation, v', about the time-mean value, v , is computed: 

, 
v =v-v (5.23) 
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A Fourier transform is then applied to the velocity fluctuation, as follows: 

00 

H(/) = f v'(t)e-21rifl dt (5.24) 
-00 

Here, fis the frequency in Hz, and H( f) is the Fourier transform of a single block of 8192 

samples (hot-wire measurements) taken at la 000 Hz. A fast Fourier transform (FFT) was 

used along with Hann windowing to compute H (/) using the hot-wire measurements 

[Press et al. (1992)]. The power spectrum was computed as follows: 

[ 
100 2 2] 

PSDm (/) = L -IHblock (/)1 +100 
block;1 I1tblock 

(5.25) 

The power spectrum presented above is obtained by performing an ensemble-average of a 

100 blocks of sample data. In Eq. (2.25), Mblock is the total sampling time of a single 

sample data block. This power spectrum respects the one-side power spectral density 

convention, thus explaining the presence of the multiplying factor of 2 in the equation. 

Depending on the hot-wire (sampling) spatial position, dominant vortex shedding 

frequencies are revealed in the form of peaks when the power spectrums are plotted 

against frequency. This dominant or main frequency, denoted as Iv, was determined by 

applying a least-squares fit of a ninth-order polynomial to a sufficient number of data 

points in the vicinity of the peak in the power spectrum of interest: the frequency is 

determined from the local maximum of this polynomial function. If two spikes are visible 

in the power spectrum, the first (dominant) one is chosen as the main frequency. This 

primary frequency is then used to obtain the corresponding Strouhal number as follows: 

St = _Iv-:::::-( 2-,-t ) 
W 

(5.26) 
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The Strouhal number is based on the plate thickness (2t) and W, the average z-direction 

velocity at the minimum cross-sectional area of the duct. In the next section, other 

dimensionless variables, parameters, and results relevant to this work are discussed. 

2.4 DIMENSIONLESS PARAMETERS 

The dimensionless variables, parameters, and results relevant to the numerical and 

experimental parts of this work are described in this section. 

2.4.1 DIMENSIONLESS PARAMETERS PERTAINING TO 

EXPERIMENTS IN RECTANGULAR INTERRUPTED-PLATE DUCTS 

In the experimental studies of flows in the rectangular interrupted-plate duct shown in 

figure 1.3, for a given geometry, the dimensionless parameter is the Reynolds number. 

This Reynolds number is based on the average time-mean velocity in the streamwise 

direction at the minimum cross-sectional area (W) and a hydraulic diameter (Dh), as 

defined by Kays and London (1984). 

(5.27) 

The hydraulic diameter and the average velocity in this equation are defined as follows: 

4A . Dh = c-s-mm A 
Awefled 

(5.28) 

W= m 
pAc-s-min 

(5.29) 

Here, the spatial period A is equal to the addition of the plate length (L) and plate 

spacing (s) with respect to the notation of figure 1.3. The minimum cross-section area and 

wetted area are given by the following equations, respectively: 



Ac-s-min = 2b(H -t) 

~elled = 2 [ ( 2L + s) b + 2 { L ( H - t) + Hs} + 2btJ 
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(5.30) 

(5.31) 

This definition of Reynolds number was also used by McBrien and Baliga (1988). It was 

employed in the experimental part of this thesis. 

The geometric dimensionless parameters are listed below. The duct height (2H) is used as 

the reference length. 

À=b/2H; L* =L/(2H); s' =s/(2H); t* =2t/(2H)=t/ H (5.32) 

2.4.2 DIMENSIONLESS PARAMETERS PERTAINING TO NUMERICAL 

INVESTIGATIONS OF INTERRUPTED-SURFACE PASSAGES 

The dimensionless parameters used in the numerical part of this work are presented in 

this section. 

2.4.2.1 PARAMETERS RELEVANT TO SIMULATIONS OF FLOWS IN 

RECTANGULAR INTERRUPTED-PLATE DUCTS 

The dimensionless parameters used in the numerical investigation of unsteady laminar 

flows in the rectangular interrupted-plate ducts of interest (see figure 1.3 for a schematic 

representation and the associated nomenclature) were defined in accordance with the 

work of Sebben (1996), mainly in order to facilitate comparisons of the results. Again, 

for a given geometry, the goveming parameter is the Reynolds number, now defined as: 

Re = _pU_---'-( 2_H--"-) (5.33) 
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In equation 2.33, [j denotes the time-mean average velocity based on the nominal cross­

sectional flow area of the duct (2H). It is given by the following equation: 

- m 
U=--

2Hp 
(5.34) 

Once the flows were computed, the time-mean modular pressure gradient was used to 

ca1culate the corresponding friction factor, defined as follows in this problem: 

If = (2H)\Ptodule 
1 -2 
-pU 
2 

(5.35) 

Additionally, vortex shedding frequencies were reduced to dimensionless form as 

follows: 

St = _Iv--=-( 2---"-t) 
U 

(5.36) 

2.4.2.2 PARAMETERS RELEVANT TO SIMULATIONS OF FLOWS AND HEAT 

TRANSFER IN STAGGERED PLATE ARRA YS 

In these numerical investigations, for a given geometry, the goveming parameters are the 

Reynolds number and Prandtl number. In keeping with commonly used terminology in 

the practice of heat exchanger design, the Reynolds number definition is taken from Kays 

and London (1984): 

pUc-sminDh 
Re=----

f.1 
(5.37) 
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In this equation, Uc-smin is the time-mean average velocity at the mInImUm cross-

sectional flow area and Dh is the hydraulic diameter, given by the following equations, 

respectively: 

U . = m 
c-smm (2H -4t)p (5.38) 

Dh = 4Ac_s_min A = 4 (2H -4t) (2L) 
~el/ed 2( 4t + 2L) 

(5.39) 

In equation (2.39), A represents the module length, which is equal to twice the plate 

length (L) in this case. The Prandtl number is given by: 

Pr= /.lCp =0.7 (for air) 
kfluid 

(5.40) 

For this particular problem, the results inc1uded time-mean modular pressure gradients, 

time-mean modular average heat transfer coefficients, and vortex shedding frequencies. 

They were calculated and then expressed as the modular friction factor, the Colbum j 

factor, and the Strouhal number, defined as follows, respectively: 

.If = Dh (/3) module 

1 -2 
-pU 2 c-smin 

j = (il) module Pr 2/3 

PCpUc-smin 

St = Iv (2t) 

U c-smin 

(5.41) 

(5.42) 

(5.43) 

The time-mean module pressure gradient, (p) module' is calculated by first averaging the 

pressure drops across a module in time and then dividing the result by the module length 
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(2L). The value of (fi) is obtained by dividing the time-mean modular heat flux by a 
module 

log-mean temperature difference across the module as follows: 

(fi) = (QmodUle) 

module A LMTD 
H.T. 

In this equation, 

AHT. = 2 ( 4t + 2L) 

(5.44) 

(5.45) 

(5.46) 

(5.47) 

It should be noted here that in the problems of interest, the temperature of the plates, Tw ' 

was a specified constant. 

The heat transfer area is twice the total plate surface area, since each module is composed 

of two plates. The bulk temperatures are computed at the entry and the exit planes of each 

module, at each instant in time, and later time-averaged. The bulk temperature definition 

used in this work is the following (note that the thermophysical properties of the fluid are 

assumed constant): 

LpcpuTdy LuTdy 

TB = Lpcpu dy = Lu dy 
(5.48) 

Again, the values of the bulk temperature are calculated and stored at each time step for 

each module and later are time-averaged. 
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The experimental apparatus and test methodology are described in this chapter. The 

apparatus was originally built by McBrien (1989) and later improved by Candanedo 

(2003). Only an overview of this apparatus is presented here: for a full description, see 

Candanedo (2003). McBrien (1989) designed the first version of the apparatus which he 

used to obtain precise local time-mean wall static pressure distributions. Candanedo 

(2003) improved the test section by redesigning the duct test section and by adding a flow 

visualization section. This flow visualization section was modified in this work to allow 

insertion of a single hot-wire probe at multiple spatial positions. 

3.1 OVERVIEW OF THE EXPERIMENTAL A PPA RA TUS 
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Figure 3.1 Schematic of the experimental apparatus. 

A schematic representation of the experimental apparatus is given in figure 3.1. It is 

composed of these main elements: (i) a test section in which the wall static pressure 

distributions can be measured; (ii) a flow visualization section where the hot-wire 
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measurements were made; (iii) a flow transition section; (iv) a flow metering section; (v) 

a flow control, generation, and exhaust section; and (vi) a data acquisition and processing 

system. A brief description of each component is presented in this section. The hot-wire 

measurement section will be presented in full detail in section 3.2. 

The test section is a straight rectangular duct that can be outfitted with plate inserts with 

sharp edges to form the interrupted-plate duct geometry shown in figure 1.3. Pressure 

taps were drilled along the axial central line of the top wall. The duct walls were 

machined out of aluminum, and the plate inserts were made of precision-ground steel. 

The new design can be easily modified to allow the testing of multiple geometrical 

configurations. Candanedo et al. (2003) tested nine different configurations, and also a 

plain duct with no plate inserts. The hot-wire measurements were performed on a single 

geometry, with dimensionless parameters representative ofthose found in actual compact 

heat exchanger cores (see table 3.1; dimensional uncertainties are less than ± 0.03 mm). 

Table 3.1 Geometric parameters of the test and visualization sections. 

Dimensional parameters (mm) Dimensionless parameters 

2H b 2t L s Dh À t* L* s* 

25.18 152.67 6.36 25.21 25.59 21.32 6.063 0.2526 1.001 1.016 

The dimensionless plate thickness (t*) is roughly twice those commonly found in actual 

cores (Kays & London 1984). This relatively thicker plate configuration was chosen to 

accentuate the vortex shedding phenomenon. 

The total length of the test section is 1524 mm and it contains 30 geometric modules of 

periodic length A = L + s. The flow visualization, 609.6 mm long, is composed of 

another 12 modules. As demonstrated by the works of Sparrow et. al. (1977), Cur and 

Sparrow (1979) and Candanedo et al. (2003), the spatially periodic fully-developed 

regime normally prevails after 12 modules. Therefore, it is assumed that flows in the last 

30 modules of the duct are characterized by this regime. 
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The duct walls were held together with stainless steel bolts and sealed with rubber 

gaskets as well as standard black electrical insulation tape. The walls were poli shed to 

obtain a very smooth finish. Although the surface roughness was not quantitatively 

measured, the walls provided excellent specular reflection thus indicating it is well below 

0.4 !lm, the lower wavelength limit of visible light. 

A flow transition section separates the flow visualization and test sections from the 

metering section. This component is composed of two parts: a flow redevelopment 

section and a diffuser box. The redevelopment section is a straight rectangular duct with 

no plate inserts. Its dimensions are identical to those of the flow visualization section. 

This duct segment reduces any possible end effects that could influence flow in the 

visualization section. The diffuser box decelerates the flow and uniformizes it for the 

metering section. 

The flow measurement section is a straight acrylic pipe of circular cross-section (63.22 

mm internaI diameter and 1320.8 mm long). Flow exiting the diffuser box enters this tube 

and the mass flow rate of air is measured with a traversing Pitot tube and two static 

pressure ports. The mass flow rate was initially calculated by measuring dynamic 

pressure according to the ten-point log-linear method of Wintemitz and Fischl (1957). 

This method was simplified by calibrating it with respect to measurements at a single 

point, by Lorena Camargo, a graduate student at McGill University. This new method 

was validated and proven to be highly accurate while considerably reducing the required 

time for mass flow measurements. 

The flow generation and control section is composed of a pipe and valve circuit linking 

the flow measurement section to an air blower. This centrifugaI air blower (Regenair 

R7100A) is driven by a 10 horsepower AC motor rotating at 3450 RPM. Air is drawn 

through the flow metering section and the duct, and then vented to the exterior. The mass 

flow rate is controlled with two valves: a gate valve restricting flow and a ball valve 

operating the air bypass (used to prevent blower starvation). An additional bypass circuit 

was added by Candanedo (2003) to allow a temporary airflow shut off in the duct. Thus, 
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it is possible to shut the airflow in the duct without starving the blower or affecting the 

mass flow rate settings. This flow-circuit arrangement allowed the manipulation of the 

hot-wire probe during test runs without restarting the flow measurement procedure. 

The apparatus is equipped with pressure-sensing instrumentation and a data acquisition 

system. Initially conceived by McBrien (1989) and later redesigned by Candanedo 

(2003), this measuring equipment was used to obtain precise intramodular time-mean 

static pressure distributions. Although not utilized in this thesis work, a brief description 

of the instrumentation and acquisition systems used by Candanedo (2003) is provided. 

The distributions were obtained by measuring the differential between the wall static 

pressure at a given tap and a reference atmospheric pressure. These measurements were 

performed with a differential Barocel pressure transducer, accurate to ± 0.3 Pa 

(Datametrics, Model 590-D-lkPa-2Q8-VIX-4D, capacitance type). An electronic 

barometer (Vaisale PTA 427) with ± 0.1% accuracy was used to measure atmospheric 

pressure. Pressure differentials above 1 kPa could not be accurately measured by the 

Barocel transducer. Therefore, an inclinable reservoir-type manometer (Airflow 

Developments, Type 5) was used for such measurements. 

Pressure taps were sequentially connected to the Barocel transducer by a mechanical 

multiplexor (Scanivalve model 48D9). For each individual tap, 60 discrete pressure 

readings were taken over 15 seconds. These values were then arithmetically averaged and 

recorded. This procedure averaged out the inherent instantaneous static pressure 

fluctuations in the turbulent flow and provided adequate time-averaged pressure values 

[Candanedo (2003)]. A microprocessor-based data acquisition unit (Hewlett-Packard, 

Model 3497 A) was used to record the measured pressure values. These values were then 

sent to a personal computer and processed with an acquisition program. 

3.2 HOT-WIRE TEST SECTION AND INSTRUMENTATION 

The visualization section was redesigned in this work to accommodate a hot-wire probe 

holder. The new top plate has nine holes through which the probe holder can be inserted. 



43 

These holes are shown in figure 3.2 in which the shaded areas represent the plate inserts. 

Three of these holes (H2, H5 and H8) are aligned with the duct longitudinal centerline. 

The other six (H3, H6 and H9; Hl, H4 and H7) are offsets shifted laterally from the 

centerline by 38.1 mm (b/4). Once inserted, the probe holder's bottom surface is flush 

with the top wall of the duct, thus the wetted surface is still continuous. Holes that do not 

contain the probe holder are simply filled with plugs. Since the pressure inside the duct is 

lower than atmospheric, the plugs and holder are held in place due to suction and are 

additionally secured by a close fit with the plate bores. O-rings were incorporated in the 

plugs and holder diameters to seal the holes and prevent leakage into the duct. Sealing 

grease was also applied to offer further sealing. Two of the plugs incorporated pressure 

taps which were used to measure the wall static pressure near the hot-wire position. They 

were positioned at the same streamwise location as that of the probe holder. 

H2 

b 

FLOW---

Figure 3.2 Top view of the visualization section and wire holder insertion holes. 

Three different probe holders were designed to offer additional measuring positions in the 

streamwise direction (z). The vertical position (x) of the single hot wire was also 

adjustable. In total, up to 12 different positions in the x-z plane were investigated for each 

hole. The coordinates of these positions, with respect to the local x-z axes shown in 

figure 3.3, are listed in table 3.2. The uncertainties in the measured positions are lower 

than ± 0.10 mm. 
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Figure 3.3 Positions of the single hot-wire probe in the 

longitudinal cross-section of the duct. 

Table 3.2 Coordinates of the hot-wire positions with reference 

to the local x-z axis (figure 3.3) (in mm). 

Pl P2 P3 P4 P5 

x 12.5 12.5 12.5 9.3 9.3 

z 32.4 39.2 46.1 32.4 39.2 

P7 P8 P9 PlO PlI 

x 6.1 6.1 6.1 3.0 3.0 

z 32.4 39.2 46.1 32.4 39.2 
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P6 

9.3 

46.1 

P12 

3.0 

46.1 

The hot wire was oriented normal to the main flow direction (z) and parallei to the y 

direction at aIl times, thus measuring the magnitude of the cross flow in the x-z plane. 

The single hot-wire probe used was a TSI 1210 - T1.5. The wire is made of platinum 

coated tungsten and has a diameter of 3.81 x 10-3 mm. The sensing region is a small 

portion of the wire (1.27 mm) where the platinum is etched out. The hot wire was 

operated at a constant temperature of 250 oC. It was calibrated once a week with a 

calibration facility kindly supplied by Professor Laurent Mydlarski and Mr. Étienne 

Costa-Patry at McGill University. The probe was calibrated for velocities ranging from 2 

mis to 20 mis at room temperatures of 23.3 oC ± 0.5 oC. Since hot-wire measurements 

Can be influenced by ambient fluid temperature variations, the laboratory room 

temperature was strictly maintained in the aforementioned calibration range. After a week 
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of experiments, the first test runs made with a freshly calibrated probe were repeated, to 

check ifthat the hot-wire measurements had not drifted in time. 

The hot-wire anemometer used was a DISA CTA Bridge 56C16 operated at an overheat 

ratio of 1.825. This anemometer maintained the wire temperature at a constant value by 

supplying the required power to compensate the convective heat transfer losses to the 

flow. The instantaneous cross flow velocity magnitude is thus converted into a voltage 

signal by the anemometer. This signal is then measured with a data acquisition system. 

The voltage signal was acquired with a personal computer equipped with a data 

acquisition card (National Instruments PCI-6036E A/D) and a BNC-211O board. Discrete 

samples of the anemometer signal were obtained at a frequency of la 000 Hz. Low pass 

filtering was set at la 000 Hz to filter out high frequency noise. The periodic flow 

phenomena of interest were always below 1000 Hz: thus, the aforementioned filtering 

and sampling rate were more than adequate for obtaining accurate hot-wire 

measurements. A Lab View program, generously supplied by Professor Laurent 

Mydlarski, was used to acquire and store the discrete signal values. As was mentioned in 

chapter 2, a hundred blocks of data, each composed of 8192 discrete samples, were 

gathered to produce a single power spectrum at a given duct Reynolds number and wire 

position. This combination of block number and block sample size was shown to provide 

smooth spectrums while requiring a reasonable sampling time of 82 seconds per 

spectrum. A FORTRAN code was then used to compute the power spectrums and a 

Matlab program analyzed the spectrums to obtain the main vortex shedding frequencies. 

3.3 SUMMARY OF THE EXPERIMENTAL PROCEDURE 

The test procedure followed to obtain a single power spectrum is presented below. 

1. The air blower and instrumentation were turned on at least an hour before a test run, to 

warm-up and stabilize then. The anemometer was turned on but the hot-wire probe was 

kept "cold" except during sampling to prevent unnecessary oxidation of the sensing area. 
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2. The Barocel pressure transducer was zeroed as much as possible just before starting a 

test run. A mass flow rate measuring code was launched and a tentative Reynolds number 

was given. The static and stagnation pressures of the Pitot tube were fed to the Barocel 

transducer and the pressure differencial was displayed on the data acquisition screen. The 

pro gram indicated the dynamic pressure required to attain the desired mass flow rate. The 

flow control valves were then adjusted until the indicated dynamic pressure matched the 

prescribed value. 

3. The atmospheric pressure and flow temperature were measured and recorded. The two 

Barocel measuring ports were then linked together to measure the "zero pressure". Even 

if no pressure differential was present, the measured value was generally slightly offset 

from zero. This offset value was measured 30 times, averaged, stored and was later used 

to correct future Barocel pressure difference readings. 

4. The difference between atmospheric pressure (Patm) and the wall static pressure on the 

hot-wire holder surface (Phot wire) was measured and corrected by subtracting the "zero 

pressure" from the obtained value. Similarly, the pressure difference between Phot wire and 

the Pitot tube static taps (Pstatic) was recorded and corrected. Thus, absolute values of Phot 

wire and P static were then computed by the mass flow program. Air density at the metering 

and hot-wire sections was computed using the ideal gas law. Pressure differentials above 

1 kPa prompted the code to request a manual pressure measurement with the inclinable 

manometer. 

5. The mass flow rate was computed by measuring the Pitot tube dynamic pressure (Pstag -

P static) at a single point in the metering section tube. The average velocity in the tube was 

then calculated using a previously obtained calibration curve. With the known local air 

density and the area cross of section, the program computed the time-averaged mass flow 

rate. The mean velo city at the hot-wire section was then calculated by dividing the duct 

mass flow rate by the local air density (obtained in step 4) and the corresponding cross­

sectional area. The Reynolds number at the hot-wire position was finally computed with 
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the definition given by Kays and London (1984). These mass flow rate measurements 

were conducted simultaneously with the hot-wire sampling described in step 6. 

6. The hot-wire data acquisition pro gram was launched and the sampling parameters were 

prescribed. The probe was activated and the data sampling was started at the same time as 

the mass flow measurements. Once a hundred blocks of 8192 samples were acquired, the 

power to the hot wire was shut off. 

7. The anemometer voltage samples were converted into velocity with a FORTRAN 

pro gram that uses a relation established during the probe calibration. Another FORTRAN 

code processed the velocity samples and computed the power spectrums. Finally, a 

Matlab program was used to calculate the main vortex shedding frequency (and Strouhal 

number), if one was observable. The results were stored in an individual Excel 

spreadsheet that generated a plot of the power spectrum. 

These steps were repeated for each hot-wire position and mass flow rate combination. 

The wire was calibrated at the beginning of each week. At the end of this period, the first 

test runs of the week, made with a freshly calibrated probe, were repeated to check if the 

hot-wire measurements had not drifted significantly with time. The experimental results 

are presented in chapter 5 along with the results of the numerical investigation. 
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CHAPTER4 

NUMERICAL METHOD 

A finite volume method (FVM) that was developed, tested, and used to investigate the 

two-dimensional flows of interest in this work is presented in this chapter. This FVM is 

inspired by and borrows heavily from the works ofPatankar (1980), Leonard (1979), Van 

Doormal and Raithby (1984), and Setlari and Aziz (1973). This chapter presents an 

overview of this FVM in a complete yet concise manner. 

4.1 GOVERNING EQUA TIONS 

The goveming equations for the laminar, two-dimensional, unsteady flows of interest 

were presented earlier in chapter 2. Here, the appropriate continuity, x-momentum, y­

momentum, and energy equations are recast in the following forms, which are amenable 

to discretization by the proposed FVM: 

ap + a(pu) + a(pv) = 0 

al ax ~ 
(4.1) 

a(pu) + a(puu) + a(pvu) =_ ap +~(f.Lau)+~(f.LauJ+s 
al ax ~ axax ax ~ ay u 

(4.2) 

a(pv) + a(puv) + a(pvv) = _ ap +~(11 8v)+~(11 8vJ+S 
al ax ~ ~ax ax ay ~ v 

(4.3) 

a(pT) + a(puT) + a(pvT) =~(~ aT]+~(~ aT]+Sr 
at ax ay ax cp ax ~ c p ~ 

(4.4) 

The Su and Sv terms represent volumetric forces that may affect the flow, and are retained 

here for the sake of generality of the proposed FVM. However, they are equal to zero in 

the simulations undertaken in this work because no such sources are present in the 

problems investigated here (gravitational effects are absorbed in the reduced pressure, p). 
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The above-mentioned forms of the goveming equations can aIl be recovered from a 

single general advection-diffusion equation, as pointed out by Patankar (1980). This 

general equation is the foIlowing: 

a (prp) + a (purp) + a (pvrp) =~(r arp)+~(r arpJ+s 
at ax 8y ax ;ax 8y;8y ; 

(4.5) 

In this equation, rp is a general specifie (per unit mass) dependent variable; r; is the 

corresponding diffusion coefficient; and S; is the corresponding volumetric source term. 

The use of this general form of the goveming equations facilitates the formulation of 

general FVMs [Patankar (1980)]. 

4.2 DOMAIN DISCRETIZA TION 

4.2.1 TYPES OF DOMAIN 

Two types of calculation domains were considered in this work. To study developing 

laminar unsteady flows in rectangular interrupted-surface ducts, a regular, non-periodic, 

grid was used. For developing laminar unsteady flows in staggered plate arrays, a cyclic 

domain, formed by multiple rows of plates, was chosen to model the spatial periodicity of 

the geometry and the flows. Both these types of domain are planar, two-dimensional, and 

rectangular in shape. 

The cyclic domain is shown in figure 4.1. It is divided into two sections: a series of plate 

modules and a flow exit zone. The boundaries paraIlel to the main flow direction are 

cyclic. An integer numbers of geometricaIly similar modules, each composed of two 

staggered plates, can be combined in both the x and y directions to obtain the desired 

configurations of the calculation domains. 



1 Module 

1'" : ........ : ... 1 ,-
IModule _. 

L 

.............. 

Exit 
zone 

Figure 4.1 Example of a cyclic computation domain. 
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The regular domain used for the computation of developing laminar unsteady flows in 

rectangular interrupted-surface ducts is illustrated in figure 4.2. Each module includes a 

single plate and a gap. Again, an integer number of such modules can be combined in the 

x direction to obtain the desired configurations of the ca1culation domain. 

1 Module Ductwall 
1.... -1 

Exit 
zone 

ty 
m:w_x __ ~ __ ~ ______ ~ __ ~=-~ ______ ~ ______ ~ 

Duct wall 

Figure 4.2 Representation of a regular computation domain. 

Both of the aforementioned types of ca1culation domain are first divided into non­

overlapping and contiguous control volumes (CVs), forming a Cartesian grid of such 

CVs. A node or grid point is then located at the center of each such CV. The nodes are 

then joined by lines in the x and y directions (grid lines) and nodes are also located at 
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points where these lines intersect the domain boundaries. The nodes or grid points are 

locations where every dependent variable is stored and computed. Thus, this FVM is a 

so-called co-Iocated method. It is also an equal-order control-volume-based finite­

difference method [Baliga and Atabaki (2006)], as will become c1ear in later sections of 

this chapters. The resulting computational grid, for a simple cyc1ic domain, is shown in 

figure 4.3: the CV faces are represented by the dashed lines; the nodes are portrayed as 

black dots; and the continuous lines are the grid lines. A set of additional nodes are 

placed where the grid intersects the domain at the non-cyc1ic boundaries: the nodes 

located on non-cyc1ic boundaries do not have a control volume associated with them. At 

the cyc1ic boundaries, the last row of nodes is a duplication of the first one, therefore the 

dependent variables they store are respectively equal. 
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Figure 4.3 Sample grid and node notation indexes for a cyc1ic grid. 
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4.2.2 NODE NOMENCLATURE 

Again, aH the dependent variables and fluid properties are calculated and stored at each 

node. Once the domain is discretized, every no de relates with its neighbors according to 

the nomenclature shown in figure 4.4. The node of interest, here named "P", is related to 

its 8 neighbors (E, EE, W, WW, N, NN, S, SS) by x and y direction grid lines. The points 

where the gridlines intersect the CV faces, and where fluid properties and sorne variables 

are interpolated, are denoted with lower case letters. The notation for inter-nodal 

distances and also the x and y extents of the CV are also shown in figure 4.4. 
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Figure 4.4 CVFDM grid and nomenclature for a node and its related neighbors. 
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4.3 DISCRETIZED CONSERVATION EQUATIONS 

4.3.1 TIME AND SPACE INTEGRATION OF EQUATIONS 

The general advection-diffusion equation (4.5) is integrated over a control volume for 

point P (see figure 4.4) and over a time step, !J.t; then algebraic approximation are 

derived for this integral equation to obtain the discretized equations in the FVM. This 

integral is first approximated as follows: 

(pfjJp - pfjJ~) ~~y + f(Je -Jw +Jn -Js )+ 
(4.6) 

(1- f)( Je - J w + Jn - J s t = JSif'/).x!J.y + (1- f)S;/).x!J.y 

In this equation, Je' J w ' J n , and Js represent rates of advection-diffusion transport 

across the east, west, north, and south faces of the CV surrounding node P (see figure 

4.4). They are approximated by the following equations: 

Je = (pufjJ - r if' !: >le !J.y 

J w = (pufjJ - r if' 8fjJ) Iw !J.y 
8x 

Jn = (pvfjJ - r if' :) ln /).x 

8fjJ 
J, = (pvfjJ - r if' 8y H. /).x 

(4.7) 

The integration in time of the advection and diffusion terms is performed with a 

weighting function "f" that characterizes the evolution of the dependent variable in time. 

The chosen value of "f", which may vary between 0 and l, defines the type of time 

integration scheme used. In the present work, this value is generally set to 0.5 (Crank­

Nicolson scheme): this is equivalent to prescribing a linear variation of fjJ over the time 
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step [Patankar (1980)]. The superscript "0,, denotes the values at CUITent time, t, and terms 

without this superscript represent values at time t + M . 

Equation (4.6) is now recast into a more convenient form for further discretization: 

(4.8) 

With this formulation, multiple time schemes can be invoked, each having their 

advantages and drawbacks. The simplest one is the explicit scheme (f = 0), and it is the 

easiest to implement: since the old value of tjJ is assumed to prevail over the whole time 

step, the new value may computed explicitly, without any reference to its neighbors at the 

new time level. Although simple, this scheme suffers from multiple weaknesses. First, the 

size of the time step is limited by the Courant-Friedrich-Levy (CFL) criterion [Roache 

(1976); Patankar (1980); Ferziger and Peric (1996)] to ensure stability and physically 

realistic results. To satisfy this criterion, every refinement of the spatial grid for precision 

purposes requires an even smaller time step (which, in the two-dimensional problems of 

interest, diminishes as the square of the control volume size). Finally, this scheme is only 

first-order accurate in time [Patankar (1980)]. 

In the fully-implicit scheme (f = 1), tjJ is assumed to be equal to the newly calculated 

value over the whole time step. This scheme offers unconditional stability, meaning that 

there is no stability criterion limiting the size of the time step. However, it is also first­

order accurate in time: thus, it was dismissed, in favor of the more accurate semi-implicit 

Crank-Nicolson scheme (f = 0.5). 

The Crank-Nicolson scheme is implemented by setting the value of f to 0.5. It is 

equivalent to assuming a linear variation of the value of tjJ over the time step, as shown in 

figure 4.5. This scheme is shown to be unconditional stable in classical numerical 
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analysis books. However, in order to avoid spurious (numerical) oscillations of the 

computed dependent variables in time, the time step in this scheme must satisfy a 

criterion analogous to the CFL criterion [Patankar (1980)]. Nevertheless, this scheme is 

second-order accurate in time and also relatively easy to implement. Furthermore, the 

fluid flow problems of interest are unsteady and nonlinear, thus a small time step has the 

advantage of providing quick convergence of iterative solution procedures (needed to 

tackle the nonlinearity) at each time step. Keeping these features in mind, the Crank­

Nicolson scheme was chosen for use in this work. 

ExpUcit 
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time 

Figure 4.5 Evolution of the dependent variable in time. 

4.3.2 APPROXIMATION OF DIFFUSION TRANSPORT TERMS 

Piecewise-linear interpolation of the dependent variables along grid lines between 

adjacent nodes is used to derive algebraic approximations to the derivatives in the 

diffusion transport terms in equations (4.6) and (4.7). Thus, the diffusion transport rates 

at the east and west boundaries of the CV associated with node P in figure 4.4 are 

approximated as follows: 
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(4.9) 

The diffusion coefficient r!ft is interpolated at each volume faces with a conductance 

analogy, as proposed by Patankar (1980). This interpolation procedure is more accurate 

and becomes especially useful in the incorporation of solid regions in the computational 

domain, as explained in further detail in section 4.3.6. Thus, for example, the diffusion 

coefficient at the east face of the CV surrounding node P in figure 4.4 is obtained as 

follows [Patankar (1980)]: 

(4.1 0) 

The expressions for JOiffw, JOiffs, and JOiffn can be obtained in an analogous manner. 

4.3.3 APPROXIMATION OF ADVECTION TRANSPORT TERMS 

The advection terms in equations 4.6 and 4.7 at the east and west faces of the CV 

surrounding node P in figure 4.4 are first written as follows: 

J Adve = (pum~Y )Ie f/Je 

J Advw = (pum~Y l f/Jw 
(4.11) 

The subscript "m" in the previous equations denotes that Um is a "mass-conserving" 

velocity component. These mass flow rates are computed separately by using the so­

called momentum interpolation scheme [Ferziger and Peric (1996)] and stored for later 

use. This procedure is described in more detail in section 4.3.7. 
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There are multiple schemes available in the literature to interpolate the value of tP at the 

desired control-volume face. Sorne popular first-order schemes, like the hybrid difference 

scheme of Spalding (1972) and the power-Iaw difference scheme of Patankar (1980), 

were considered for this work. While relatively robust and easy to implement, these 

schemes are known to cause significant false diffusion when the flow is not paraUel to the 

grid lines. Therefore, the higher-order quadratic upstream interpolation for convection 

kinematics (QUICK) scheme of Leonard (1979) was chosen to model the advection 

transport terms. 

As its name suggests, the QUICK scheme performs a piecewise quadratic interpolation of 

tP between nodes along grid lines. Furthermore, it accounts for the flow direction: the 

nodes for the determination of the coefficients in the quadratic interpolation are chosen in 

accordance with the direction of flow. The interpolation uses the nearest two upstream 

nodes and the closest downstream no de along a grid line for this interpolation. For 

example, with respect to the node cluster shown in figure 4.6, to obtain the value of tPe' 

the values of tPP' tPE' and either tPw or tPEE' whichever lies on the upstream side of the e 

CV face, are interpolated using a quadratic interpolation function [Leonard (1979)]. 
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Figure 4.6 QUICK interpolation scheme of a dependent variable tP. 



58 

If the mass-conserving velo city component in the x direction at e, (um)e, is positive, then 

the interpolation for ifJe is given by the following equation: 

(4.12) 

This expression can be compactly written as follows: 

(4.13) 

If (um)e, is negative, then the interpolation for ifJe is given by the following equation: 

(4.14) 

Again, this expression can be compactly written as follows: 

(4.15) 
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Thus the advection transport rate across the east face of the CV for node P in figure 4.4 is 

approximated as follows (the details of the mass-conserving velocity calculations will be 

presented in section 4.3.7): 

J Adve = ( C 1e+ rpE + C2e+ t/Jw + C3e+ rpp) max [ (pUmL1y)L ,0] + 

(C1e_ rpp + C2e_ rpEE + C3e_ rpE) min [ (pUmL1y)L ,0] 

Likewise, for the west face, the following equation applies: 

J Advw = (C1w+ rpp + C2w+ tAvw + C3w+ t/Jw ) max [ (pUmL1Y t, 0] + 

(C1w_ rpw + C2w_ rpE + C3w_ rpp) min [ (pUmL1Y t, 0] 

(4.16) 

(4.17) 

Additionally, it can be proven that the west-face coefficients for anode 1 are related to 

the east-face ones of the previous node (1 -1), as shown in the following equation: 

Clw+ (I,J)= C1e+(I -l,J) 

C2w+(I,J) = C2e+(I -1,J) 

C3w+(I,J)= C3e+(I -l,J) 

C1w_(I,J) = Cle_(I -1,J) 

C2w_(I,J) = C2e_(I -l,J) 

C3w_ (I,J) = C3e_(I -l,J) 

Similar expressions can be derived for the ca1culation of J Adv n and J Adv s. 

4.3.4 COMPLETE DISCRETIZED EQUATION 

(4.18) 

The complete discretized conservation equation for the dependent variable at node P, rpp, 

is assembled by combining the diffusion, advection, source, and unsteady terms. This 

equation can be arranged in the following form: 

where: 
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aE = (~:t -Cle+ max [ (pUmL\y)le ,0 ]+C2w_ min [ (pUmL\yl ,0 ]-C3e_ min [ (pUmL\y)L ,0] 

aw = [;:{ + Clw_ min [ (pUmL\y l, ° ] -C2e+ max [ (pUmL\y)le ,0] + C3w+ max [ (pUmL\y l, ° ] 
aN = (~~ -Cln+ max [ (pVmL\x)ln ,0 ]+C2s_ min [ (pVmL\x)L ,0 ]-C3n_ min [ (pVmL\x)L ,0] 

as = (;~ +Cls_ min [ (pVmL\x)ls ,0 ]-C2n+ max [ (pVmL\x)L ,0 ]+C3s+ max [ (pVmL\x)ls ,0] 

aEE = -C2e_ min [ (pUmL\y)le , 0] 

aww = C2w+ max [ (pUmL\y l, ° ] 
aNN = -C2n_ min [ (pVmL\x)L ,0] 

ass = C2s+ max [ (pVmL\x )Is ,0] 

" pL\xL\y a P = L..J anb - S p L\xL\y + -'-------==-
, v ,lM 

SteadyStateTerms '-y---J 
UnsteadyTerm 

pL\xL\y 0 (1-1) [" 0 0 0 0 0 ] b = ScL\xL\y + rpp + L..J anbrpnb - a P(SteadySt )rpp + ScL\xL\y 
'--v---' 1 MI' SteadyStateTerm , v ' 

UnsteadyTerms 

(4.20) 

In the previous set of equations, L anb is the summation of the neighboring coefficients 

needed to calculate ap ' Coefficients ap and b are formed by adding the unsteady terms 

to the steady state ones. Lastly, a~(SteadySt.)rp~ represents (Lanb -SpL\xL\y) from the 

previous time iteration. 

It is aiso important to point out that the source term, S;, has been linearized in the 

following way, following the recommendations ofPatankar (1980): 
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(4.21 ) 

As suggested by Patankar (1980), the Sp must be negative to ensure numerical stability 

and realistic solutions. The respective values of Sc, Sp and r" for each dependent 

variable will be discussed in the following sections. First, it is necessary to present a 

modified QUICK scheme required for nodes near a do main boundary with a given flux 

condition. 

4.3.5 MODIFIED QUICK SCHEME FOR GIVEN DIFFUSION FLUX 

BOUNDARY CONDITION 

If the boundary condition is of the glVen diffusion-flux type, the aforementioned 

derivation of the QUICK scheme is modified as discussed in this section. This 

modification is described here for an upper border node (at J=M2), with reference to the 

nomenclature shown in figure 4.7. 

For the case shown in figure 4.7, the approximated southem advection transport rate, 

J Advs , would normally involve a reference to the northem no de rpN if the mass flow at the 

south face of the CV is in the negative y direction. However, if a diffusion flux is 

imposed as the boundary condition at the north face, the aforementioned advection 

transport rate must be calculated with a modified interpolation scheme to prevent any 

reference to the undetermined rpN' A new quadratic interpolation function is derived in 

which the reference to rpN is replaced by accounting for the given diffusion flux. 



jUndesired reference to node N 
1 if B.e. is a given diffusion flux 

Ml --- _______ -:- __ n_n N"--- _:-___ nu -- f 

(oy). 

M2--.-----~--~~---+----~--

M2-1--~----~--~~---+----~--

1 

L
i 

x ---- -------t------- --------r------- ---
Figure 4.7 QUICK scheme referencing to undetermined north node. 
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This modification is only applied when the boundary condition is one of specified (given) 

diffusion flux and the mass flow rate at the southem face of the CV is in the negative y 

direction. If ifJs is interpolated at the lower south boundary with the modified quadratic 

function, the following result is obtained: 

In this case, the south-face advection transport rate, J Advs is given by the following 

equation: 

When the interpolated ifJs is substituted: 

(4.23) 



J Advs = (pvm~)L AI·</Js + 

(pvm~)L [l-AI]</Jp + 

(pvm~)L Fl;in [ Al'(8yt -(8YtJ 

whereAl= ((8Yt +(8Yt+r -(8y)~ 
((8Yt +(8y)J -(8y)~ 
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(4.24) 

Therefore, the contributions of JAdvs to the coefficients as, ap and b of the discretized 

equation for node J = M2 in this particular case are the following: 

as = (pvm~)L Al 

b = (pvm~)L Fl;in [ Al.(8yt -(8YtJ 

ap = as - (pvm~)L 
'------v-----' 
Term will cancel oUI 
al convergence 

(4.25) 

The south CV face mass flow present in ap will cancel out at convergence with other 

similar terms generated by the remaining advection contributions. Therefore, it is not 

necessary to add it to ap. 

The approximation of the north advection transport rate for the lower node (at J = M2 - 1) 

also requires a special treatment in this case, since it too may refer to the undetermined 

boundary nodal value. By using the same modified scheme, the contribution of J Advn to 

the coefficients as, ap and b of the discretized equation for no de J = M2 - 1 now becomes: 



aN = (pvmLlx)L (A2-1) 

ap = aN + {pVmLlx)L 
'--..--' 
Term will cancel out 
al convergence 

con =- {pVmLlx)L Fl;in [A2.(oyt -{oytJ 

where A2 = ({ 0 y tn + { 0 y t+ r -{ 0 y )~n 
({oY)nn +{oy)J -{oY)~n 
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(4.26) 

Again, the modifications described in this section are only applied in the case of a 

specified (given) diffusion flux at the top boundary and when the mass flow rate at the 

south face of the CV in figure 4.7 is in the negative y direction. 

4.3.6 ADDITIONAL DETAILS 

The aforementioned discretized equations must be adapted to solve the velocity and 

temperature variables. The values of r;, Sc' and Sp are specifically assigned and 

modified prior to the calculation of the coefficient in these equations and their solution. 

In the discretized x and y momentum equations (for u and v), r, is set equal to the 

dynamic viscosity of the fluid in regions occupied by the flow. However, it is set to a 

very high value (1030) in the control volumes located in solid regions with zero velocity 

(such as the plates). This strategy, with the use of the conductance analogy, Eq. (4.10), to 

interpolate r" ensures adequate treatment of the diffusion effects at interfaces between 

the fluid and the solid regions [Patankar (1980)]. 

In this work, the term Sp is equal to zero for the velocity components u and v. The 

constant source term Sc contains the volume-averaged pressure gradient force acting on 

the fluid: thus 
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S~ =(_ 8P ) =[pP - PE (Llx~Y)+ Pw - Pp (Llx~Y)]+Ax~Y 
ex Vol.Av. (8xt 2 (8xL 2 

(4,27) 

This equation reduces to: 

su_(_8P) _Pp-PE+Pw-Pp 
c - ex Vol.Av. - 2(8x)e 2(8xL 

(4.28) 

Similarly, the volume-averaged pressure gradient and the Sc term for v are given by: 

sv _ (_ 8P ) _ Pp - PN + Ps - Pp 
c - 8y Vol.Av. - 2(8yt 2(8y)s 

(4.29) 

In the energy equation, r ~ represents the thermal conductivity divided by the specific 

heat at constant pressure: this diffusion coefficient is assigned as follows: 

r - k f1uid z'n fluz'd regz'ons 
~-

cp f1uid 

r - ksolid in solid regions ~---

Cpsolid 

(4,30) 

Once more, Sp is set to zero in the energy equations for the problems of interest in this 

work. If the plate temperature is fixed, Sc is also set to zero, However, for a fixed surface 

heat flux condition, Sc is set to the implied volumetric heat generation value for solid 

volumes: 

S~ =0 For constant plate temperature case, 
(4,31 ) 

For constant plate heat flux case, 
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4.3.7 DISCRETIZED PRESSURE EQUATIONS 

The discretized pressure equations are obtained by discretizing the continuity equation, 

and then amalgamating it with suitable forms of the discretized momentum equations 

derived earlier. The general strategy here consists of defining "pseudo-velocities" using 

the discretized momentum equations and using the continuity relation to form the 

pressure equation, as described by Ferziger and Peric (1996) and Baliga and Atabaki 

(2006). First, the discretized equation for the u velocity component is cast as follows: 

u = La~bUnb ~b~op.cont. +(_ BP) Axa~Y or, 
ap ax Vol.Av P 

U =û+d (_ BP) 
u Bx Vol.Av. 

(4.32) 

Here, û and du are defined as follows: 

(4.33) 

A similar treatment is applied to the discretized y-momentum equations, yielding the 

following relations: 

(4.34) 

The continuity equation is then used to find a pressure field that would induce velocities 

that satisfy mass conservation. The mass-conserving velocity at each CV face, denoted 

with the "m" subscript, is defined as shown in this example for the east CV face: 
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(4.35) 

where the pressure gradient is approximated as follows: 

(4.36) 

In equation (4.35), the values of ûe and (dJ e are obtained by linearly interpolating the 

nodal values to the desired location of the east face of the CV. Similar expressions are 

derived for the other mass-conserving velocities. The continuity equation (4.1) is then 

integrated over the CV for no de P (see figure 4.4) and approximated as follows: 

(4.37) 

The reader might have noticed that no time integration was performed: this is because, as 

the fluid mass density is considered constant in this work, its time derivative is nil in the 

continuity equation. If the mass-conserving velocities are inserted into equation (4,37), 

the discretized pressure equation is obtained. 

(4.38) 

where, 

(4.39) 

,.. " A A 

bP = puw!1y - pue!1y + pVs!1x - pvn!1x 
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These equations are then solved to obtain the new pressure field needed to compute the 

velocities. The mass flow rates at the CV face are subsequently updated by using the 

solved pressure field in the mass-conserving velocities, akin to equation (4.35). These 

mass flow rates are stored and latter used in the calculation of the advection effects in the 

discretized transport equation coefficients. At this stage, aH discretized equations in the 

fluid flow region have been derived. 

4.3.8 TREATMENT OF SOLIO REGIONS 

When control volumes in the FVM grid faH in solid regions, the strategy consists of 

forcing appropriate values of the dependent variable in such regions. This done for the 

velocity components u and v, by modifying the coefficients in the discretized momentum 

equations as foHows: 

aU,v -1 
p -

a~bv = 0 (4.40) 

Thus, the velo city is set to zero throughout the solid control volumes. The treatment for 

discretized pressure equations coefficients is similar, but additional modifications are 

necessary. First, the interpolated values of u, v, du and dv at nodes in the solid regions 

are set to zero. Therefore, any coefficient linking a fluid node to a solid neighbor is 

automaticaHy equal to zero. In other words, the nodal pressure values inside a plate 

region are totally decoupled from the rest of the fluid domain. Thus, pressure in the solid 

region can be fixed arbitrarily to any convenient value. For every solid volume, the 

discretized pressure equations coefficients are modified as foHows: 

(4.41) 

(set arbitrarily) 
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Due to the changes mentioned above, the mass conserving velocities Um and Vm at nodes 

inside solid regions are also forced to zero. Hence the corresponding mass flow rates, 

used in the QUICK scheme to approximate advection effects, are also equal to zero at 

nodes inside solid regions: 

at any solid boundary (4.42) 

Furthermore, the volume-averaged pressure gradient calculation is slightly modified for 

control volumes adjacent to solid regions. Since the pressure stored at nodes inside solid 

regions has no physical relevance, the average gradient is computed using only the values 

at nodes in the fluid regions: thus, for example, 

W = 0 for a solid control volume 

W = 1 for a fluid control volume 

and, similarly, for the derivative with respect to y: 

where, 

(4.43) 

(4.44) 

The coefficients in the discretized equations for temperature are treated with respect to 

the type of problem being solved. If the plate temperature is considered to be at a fixed 

value, the following modifications are applied in the solid regions: 

(4.45) 

If the plate heat transfer is specified, no modifications are required in the solid regions. 
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4.4 SOLUTION OF THE DISCRETIZED EQUA TIONS 

4.4.1 OVERVIEW OF SOLUTION PROCEDURE 

A modified version of the iterative sequential iterative variable adjustment (SIV A) 

procedure developed by Masson, Saabas and Baliga (1994) is used to solve the 

discretized equations. This method is summarized below. 
~ 

1: Provide initial values of the dependent variables u, v, P and T. Also set u = u, v = v, 

du = 0 and dy = O. Compute mass flow rate at CV faces. 

2: Start calculations to advance the solution from t to t + l1t . 

3: Calculate coefficients in the discretized u equations, without accounting for the 

contributions of the pressure gradient terms. Store a; and b:op.cont.' which are needed to 

~ 

compute u and du. 

4: Add pressure contribution to bU; under-relax coefficients; and modify coefficients for 

control volumes in solid regions. 

5: Calculate the new u velocity field, using the block-correction algorithm and the 

appropriate solvers (standard line-by-line penta-diagonal matrix algorithm (PDMA) or 

cyclic PD MA depending on the type of domain). 
~ 

6: Compute u and du. 

7: Calculate coefficients in the discretized v equations, without accounting for the 

contribution of the pressure gradient terms. Store a; and b;opcont' which are needed to 

~ 

compute v and dy • 

8: Add pressure contribution to bV
; under-relax coefficients; and modify coefficients for 

control volumes in solid regions. 

9: Calculate the new v velocity field, using the block-correction algorithm and the 

appropriate solvers (standard line-by-line PDMA or cyclic PDMA depending on the type 

ofdomain). 
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A 

10: Compute v and dv• 

Il: Calculate coefficients in the discretized pressure equations; do not apply under­

relaxation; and modify coefficients for control volumes in solid regions. 

12: Calculate the new pressure field, using the block-correction algorithm and the 

appropriate solvers (standard line-by-line tri-diagonal matrix algorithm (TDMA) or 

cyclic TDMA depending on the type of domain). 

13: Update mass-conserving velocities and calculate the new mass flow rates at the CV 

faces. 

14: Update the pressure field with under-relaxation. 

15: Calculate coefficients in the discretized temperature equation; modify these 

coefficients for control volumes in solid regions, if needed. 

16: Calculate the new temperature field, using the block-correction algorithm and the 

appropriate solvers (standard line-by-line PDMA or cyclic PDMA depending on the type 

ofdomain). 

17: Inspect normalized residues and other convergence monitoring variables against 

specified convergence criteria. If convergence is attained, store aIl converged dependent 

variable values rjJ into the "old" variable array rjJ0; start computations for the new time 

step (go to Step 2). However, if convergence for the CUITent time step has not been 

reached, continue computations by restarting a new internaI iteration from step 3. 

This strategy efficiently solves the non-linear discretized equations by seeking full 

convergence at each time step. The method has proven to be rugged enough to solve 

various types of problems, involving steady and unsteady flows. Under-relaxation is 

applied to the velocity and temperature coefficients to provide stability of this iterative 

solution procedure. However, the discretized pressure equations are not under-relaxed 

prior to solving: the new pressure field is solved without any under-relaxation. Only 

afterwards, a modified under-relaxation is applied [Baliga and Atabaki (2006)]. The 

block-correction algorithm and the line-by-line solvers used in this procedure are 

presented in the next subsection. 
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4.4.2 DESCRIPTION OF UNE-BY-UNE CYCUC SOLVERS 

The dependent variables are computed iteratively by solving the linearized and decoupled 

discretized equations using multi-directional sweeping line-Gauss Seidel solvers. The line 

sweeps head back and forth over the domain, altemately in the x and y directions as 

shown in figure 4.8. 

Ml 

M2 

J 

2 

L~ 

PDMA AND TDMA 
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1 ... 1 1 

- -r --- --;--- ---;-- --i --r-;-l 
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1 Til 1 1 liT 1 

-t--+-+-- --f-
: 1 1 

- - -~---~--i--- ---+-- --f---t--t 
: : 1 1 : 
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1 1 : 1 T 1 --+---'---~--- ---t-- --+--,---1 
1 1 1 1 1 

1 .:. 1 1 1 1 1 1":' 1 

1 1 1 1 1 1 1 1 

-LJ---L--
1 1 1 1 

--L-J--l 1 1 1 1 
---1- - - --1--- ---~--- ---1---

1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 l 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
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1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
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1 1 1 1 1 1 1 1 
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Figure 4.8 Sweeps in the line-by-line iterative solvers. 

!CPDMAAND 
ClDMA 

In the discretized pressure equations, each node is linked to just two neighbors along the 

grid lines. Therefore, a line-by-line tridiagonal matrix algorithm (TDMA) is used to solve 

the equations over non-cyclic domains; for sweeps over cyclic domains, a line-by-line 

cyclic tri-diagonal matrix algorithm (CTDMA) is used. 
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In the discretized velocity and temperature equations assembled using the QUICK 

scheme, anode could be linked with up to four neighbors, two each in the positive and 

negative directions along a grid line. Thus, a line-by-line pentadiagonal matrix algorithm 

(PD MA) solver is used to solve these equations over non-cyclic domains; for sweeps 

over cyclic domains, a line-by-line cyclic PDMA (CPDMA) is used. 

The TDMA and CTDMA techniques are well-known and are commonly used [Patankar 

(1980); Press et al. (1992)]. The PDMA and CPDMA, inspired from the TDMA and 

CTDMA, have been derived by Sebben and Baliga (1995). Since the descriptions ofthese 

algorithms are quite extensive, the reader is referred to the aforementioned journal paper 

for a complete presentation. 

To speed up convergence, a block-correction algorithm is used before performing the 

above-mentioned line sweeps. This procedure is presented in the next subsection. 

4.4.3 BLOCK-CORRECTION PROCEDURE 

The block -correction method is a simple and efficient way to speed up convergence of 

the line-by-line iterative solvers. It consists of adding uniform corrections to each line of 

the unconverged variable field (fA:)) prior to the application of the line-by-line solver. A 

correction value ~ is obtained for each line and applied uniformly over the whole ith grid 

line fA:) values. Similarly, ~ corrections are computed and applied for every fh line. For 

additional details and the rationale behind these methods the reader is referred to the 

works ofPatankar (1980) and Kelkar and Patankar (1989). The coefficients and equations 

for line corrections <Pi and <p) are described below. 

The details of the equation for ~ are presented below. The dependent variable is first 

expressed as follows: 
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<Pi,} = <Pi:} + ~ . ~,} 
~.j = 0 for a solid control volume (4.46) 

~.j = 1 for a jluid control volume 

The previous expression is introduced into the discretized equation for <P, and the 

following relation for ~ is obtained: 

In this equation, 

M2 

Ai = L ( ap i,) • ~,} - aNN i,} • ~,}+2 - aN i,} • ~,}+1 - aSS i,} • ~,}-2 - as i,} • ~,}-1) 
}=2 

M2 

B="aE " 
1 L... I,J 

}=2 

M2 

C="aEE , , 
1 L... I,J 

}=2 

M2 

D, = LaWi,} 
}=2 

M2 

E="aww ' , 
1 L... I,J 

}=2 

M2 

F = "(" aNB , ''''N'B' ,+b ,-ap ' ,"'* ,) 
1 L... L... l,J'Y. I,J I,J ',J'Y',J 

}=2 

(4.47) 

(4.48) 

The equation for <Pi is solved using CPDMA or PDMA algorithms. Zero corrections are 

imposed at the boundaries with prescribed values of the dependent variables. The ~ 

corrections are subsequently added to the individual values of <Pi:} over each solved line. 

An expression for the <p} correction equation is derived, solved, and applied using the 

similar steps. 
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The block-correction algorithm for the discretized pressure equations is simpler, as these 

equations involve fewer neighbors. Thus, these equations can be solved using TDMA or 

CTDMA algorithms [Sebben and Baliga (1995)]. 

4.4.4 UNDERRELAXA TION 

In order to ensure convergence ofthe aforementioned iterative solution procedures for the 

sets ofthe nonlinear, coupled, discretized equations, implicit underrelaxation is applied to 

the coefficients in these equations, following the proposaI ofPatankar (1980): 

(4.49) 

In this equation, tjJ; denotes the value of tjJp from the previous inner iteration and a 

represents the underrelaxation factor, which may have a value ranging from 0 to 1. For 

pressure, a different type of underrelaxation (explicit) is implemented to update the field. 

It is applied only after newly calculated pressure field is computed: 

p = apNC +(l-a )p' (4.50) 

In this equation, pNC is the newly calculated pressure field, obtained by solving the 

discretized pressure equations without underrelaxation; and p' is the unconverged value 

of p from the previous iteration. 

Individual values of a are prescribed for each dependent variable. These underrelaxation 

parameters are set the highest possible value that can be used without incurring 

divergence of the iterative schemes. Since there is no straightforward way to determine 

the optimal values for a, they must be set in accordance with previous experience or 

based on heuristic (trial) calculations. In this work, relatively high values of a (0.75 to 

1.0) were used to solve the unsteady problems. 
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CHAPTER 5 - RESULTS AND DISCUSSION 

The results of the experimental and numerical investigations are presented in this chapter. 

5.1 RESULTS OF THE EXPERIMENTAL INVESTIGATIONS 

As was stated earlier in the thesis, the emphasis in this experimental investigation was on 

single hot-wire measurements in the spatially periodic fully-developed region ofturbulent 

flows in a rectangular interrupted-plate duct, akin to that shown schematically in Figure 

1.3. Specifically, the aim was to obtain turbulence power spectrums and Strouhal 

numbers for the aforementioned flows. The results of this experimental investigations are 

presented and discussed in this section. 

5.1.1 BENCHMARKING OF HOT-WIRE APPARATUS AND 

PRELIMINARY EXPERIMENTS 

The hot-wire equipment was benchmarked by measuring the frequency of vortices shed 

from a cylinder in unconfined cross flow. A lot of experimental data are available for this 

particular unsteady flow, since this is a classic problem in fluid mechanics. 

These experiments were performed in an open-circuit wind tunnel in the Aerodynamics 

Laboratory at Mc Gill University. The test section of this tunnel is 0.914 meter wide by 

0.610 meter high. The turbulence intensity was under 1 %, thanks to a well-designed inlet 

section. A stainless steel cylinder, l-inch (2.54 cm) diameter and 0.914 meter long, was 

installed vertically and in the center of the test section of this wind tunnel. The blockage 

area was negligible: so no correction was applied to the measured freestream velocity, 

which was varied from about 1.35 mis to 26.17 mis. This freestream velocity was 

measured with a pitot tube installed at the same axial position as that of the cylinder. The 

dynamic pressure required to compute this velocity was measured with a highly accurate 

Askania-type manometer. The atmospheric pressure was obtained with a mercury-in­

glass barometer and the air temperature was measured with a thermocouple installed in 
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the laboratory. The fluid density and kinematic viscosity were computed with the ideal 

gas law and the Sutherland law, respectively. For these conditions, the Reynolds number, 

based on the cylinder diameter and the freestream velocity, varied from 2220 to 43350. 

The single hot wire was oriented paralle1 to the cylinder axis and measurements were 

obtained at two positions, 1.5 and 4.5 diameters downstream from the center of the 

cylinder. Instantaneous ve10city measurements were acquired digitally, and they were 

used to ca1culate ensemble-averaged power spectrums and obtain the corresponding 

vortex shedding frequencies (as described in chapter 2). These frequencies were then 

used to calculate the Strouhal numbers based on the cylinder diameter and the freestream 

velocity. Results of this benchmarking experiment are presented and compared to the 

data ofNorberg (1993) in figure 5.1. 
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Figure 5.1 Strouhal number of vortex shedding from a cylinder 

in unconfined crossflow. 
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The largest discrepancy between the results obtained in this work and those of Norberg 

(1993) is a 9.5% relative difference of the Strouhal number at the lowest value of the 

Reynolds number. The average relative difference between these results is of the order of 

5%. As the Reynolds number increases, the differences between these sets of results 

decrease appreciably. Considering the large scatter in the published results for this test 

case [Schlichting (1955); Norberg (1993)], and also differences in the test parameters 

such as wire sampling positions and a different length-to-diameter ratio (LID) of the 

cylinder, these results were considered satisfactory. 

Once the hot-wire apparatus and sampling methods were validated in the aforementioned 

benchmarking experiments, attention was focused on establishing the repeatability of 

measurements in the rectangular interrupted-plate duct. With respect to the notation in the 

schematics given on the right-hand side of figure 5.2, the hot-wire probe was inserted in 

hole H2 at position P8 and many power spectrums were obtained at essentially same 

values of the Reynolds number (Kays and London definition; see chapter 2). Sample 

results from three repeatability runs for a nominal Reynolds number of 20000 are shown 

in figure 5.2. 
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Figure 5.2 Power spectrums showing repeatability (H2, P8, Re ::::: 20000). 
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The results provided in Figure 5.2 show that aH three spectrums are essentiaHy identical, 

thereby confirming that repeatable measurements and results are provided by the hot-wire 

apparatus and procedures used in this work. 

Once the results were shown to be repeatable, the vertical symmetry of the measurements 

was investigated. With reference to notation in the schematics on the right-hand side of 

figure 5.3, the power spectrums were obtained from measurements with the probe in hole 

H2 at position P5 and also at its mirror vertical symmetry point on the other side of the 

duct centerline in the x direction. The results are presented in figure 5.3 and 5.4 for 

Reynolds numbers of 5000 and 20000 (nominal), respectively. These experiments were 

performed to assess the geometric precision of the assembled ducts, the precision of the 

wire positioning method, and the blockage effects of the hot-wire probe. 

1.0E-01 

1.0E-02 

-J!! 1.0E-03 
N 

E 
~ 1.0E-04 
c 
~ 1.0E-05 

l s 

i 2 t i, 

~~ji' 
z 

10.0 100.0 1000.0 10000.0 
Frequency (Hz) 

Figure 5.3 Power spectrums showing vertical symmetry 

(H2, P5, and mirror position): Re ;:::: 5000. 

The power spectrums for positions P5 and P5 (Vert-Sym) are essentially identical in both 

figures 5.3 and 5.4. These results confirm that the interrupted-plate duct was assembled 
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with excellent precision, the hot-wire positioning system is also very precise, and effects 

offlow blockage by the hot-wire probe are essentially negligible. 
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Figure 5.4 Power spectrums showing vertical symmetry 

(H2, P5, and mirror position): Re;::; 20000. 

5.1.2 RESULTS OF LATERAL SYMMETRY AND SPATIAL 

PERIODICITY INVESTIGATIONS 

s 

Once the hot-wire apparatus was benchmarked and the aforementioned preliminary 

experiments were finished, the symmetry of the turbulence statistics was investigated in 

the lateral direction (y direction with respect to the schematic in figures 5.2) of the duct. 

The hot-wire probe was inserted at three different lateral positions (holes Hl, H2, and 

H3) at location P8. These investigations were conducted at two different nominal values 

of the Reynolds numbers: 5000 and 20000. The resulting power spectrums and their 

respective sampling positions are shown in figures 5.5 and 5.6. 
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Figure 5.5 Power spectrums showing lateral symmetry (P8): Re ~ 5000. 
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Figure 5.6 Power spectrums showing lateral symmetry (P8): Re;::: 20000. 

The power spectrums are essentially identical for all three lateral positions (H 1, H2, and 

H3), for both Reynolds number values. Thus, these results show that time-mean turbulent 

flows of interest here are two-dimensional over at least the central 76.3 mm (b/2) portion 
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of the duct. Past flow visualization experiments (done using paint streakline patterns on 

the surface of the plates) conducted by McBrien et al. (2000) in the same Reynolds 

number range also showed this two-dimensionality of the flow over about 80% of the 

width of the duct. The precise hot-wire measurements undertaken in this work confirm 

this flow behavior with quantitative results for the first time. 

The next objective was to investigate the spatial periodicity of the turbulence statistics in 

consecutive modules. Power spectrums were obtained in three successive modules (ho les 

H2, H5, and H8) at position P8. Figures 5.7 and 5.8 show the resuIts of this spatial 

periodicity study for nominal Reynolds number values of 5000 and 20000, respectively. 
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Figure 5.7 Power spectrums showing spatial periodicity in the 

axial direction (P8): Re :::: 5000. 

s 

The power spectrums obtained for these three modules are almost identical, for both 

Reynolds number values, thereby confirming the spatial periodicity of the turbulence 

statistics in the hot-wire measurement section. The existence of this flow regime in 

interrupted-surface geometries has been established in earlier experiments involving 

time-mean heat transfer data [Jo shi and Webb (1987)] and wall static pressure 



83 

measurements [McBrien and Baliga (1988), Candanedo et al. (2003)]. However, this is 

the first time that it has been shown experimentally that the turbulence power spectrums 

also display spatially periodic behavior in such flows. 
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Figure 5.8 Power spectrums showing spatial periodicity in the 

axial direction (P8): Re::::; 20000. 

5.1.3 TURBULENCE POWER SPECTRUMS 

After the completion of the time-mean flow two-dimensionality and spatial periodicity 

investigation, as demonstrated in the previous subsection, ensemble-averaged power 

spectrums were obtained for aIl 12 positions in the longitudinal cross-sectional plane of 

the duct (see figures 3.3 and 5.2) in hole number H2, for Reynolds numbers ranging from 

2000 to 30000. For the sake of conciseness, only a selection of these power spectrums is 

presented in this section. 
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Figure 5.9 Power spectrums at position P5 and hole H2. 
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Figure 5.10 Power spectrums at position P8 and hole H2. 

Figures 5.9, 5.10, and 5.11 show power spectrums measured at positions P5, P8, and PlI, 

respectively, aU with the probe in hole H2. Each figure contains four curves showing the 

ensemble-averaged power spectrums obtained at four different values of Reynolds 

number. The sampling positions are shown on the schematics on the right of these 
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figures. An additional subset schematic, provided in figure 5.10, shows how the power 

spectrums were locally curve-fitted using a ninth-order polynomial function and a least­

squares regression method in order to find the precise dominant vortex shedding 

frequency. This procedure was necessary because even the ensemble-averaged spectrums 

are not sufficiently smooth to provide an unambiguous value of dominant vortex 

shedding frequency by a simply visual examination. 
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Figure 5.11 Power spectrums at position PlI and hole H2. 

The illustrated power spectrums possess a single peak, or spike, which denotes the main 

vortex shedding frequency. As expected, this frequency increases with the Reynolds 

number. 

Sorne power spectrums did not show the presence of vortex shedding: when plotted, they 

do not reveal any spike or dominant vortex shedding frequency. An example of such 

spectrums, in this case obtained at position PlO, is illustrated in figure 5.12. Spectrums 

showing no or barely discemible vortex shedding were also measured at positions P3, P6 

and P7. 
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Figure 5.12 Power spectrums at position PlO and hole H2. 

At sorne locations, the spectrums are characterized by the presence of two peaks, as 

shown in figures 5.13 and 5.14 for positions Pl and P2. In such cases, the magnitude of 

the first peak (lower frequency) generally surpasses the value of second one. An 

exception to this observation occurs at position PI and at a high Reynolds number value 

of 29888, where both peaks attain almost equal magnitudes. Another exception is 

observed at position P2 and Reynolds number of 29800 (figure 5.14), where the first 

frequency peak is barely discernable. In all cases, the frequency of the second peak is 

essentially twice that of the first one. Such double-peak power spectrums are observed 

only at positions Hl, H2, and H3, along the duct centerline. The double peaks are present 

when the hot-wire probe is exposed to counter-rotating vortices that are alternatively shed 

from the bottom and top trailing edges of the plates. The previously shown single-spike 

power spectrums were sampled at positions lower than the duct centerline, for which the 

effects of the vortices shed from the top edge were absent or not significant enough to be 

picked up in these measurements. 
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Figure 5.13 Power spectrums at position Pl and hole H2. 
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Figure 5.14 Power spectrums at position P2 and hole H2. 

AIl power spectrums obtained in these experiments were analyzed to obtain the 

corresponding dominant vortex shedding frequencies. If two spikes were present in a 
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spectrum, the lower frequency peak was chosen since its magnitude is generally superior 

to that of the second peak. These frequencies were then used to calculate the Strouhal 

numbers: these results are presented in the next section. 

5.1.4 VORTEX SHEDDING STROUHAL NUMBERS 

The dimensionless vortex shedding frequencies, obtained by analyzing the power 

spectrums, were plotted as functions of the Reynolds number and probe position. These 

results are presented in figures 5.15, 5.16 and 5.17 for positions where the dominant 

frequencies were observable over most of the Reynolds number range explored in this 

work. Each figure displays the Strouhal numbers sampled at probe positions with 

identical axial locations (z): figure 5.15 shows these values for positions Pl and P4; 

figure 5.16 shows results for positions P2, P5, P8, and PlI; and figure 5.17 displays 

results for positions P9 and P12. Strouhal numbers were not plotted for positions P3, P6, 

P7, and PlO because the vortex shedding frequencies were either absent from the 

spectrums or too weak to be picked up over most of the Reynolds numbers investigated. 
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Figure 5.15 Strouhal numbers at positions Pl and P4, in hole H2. 
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Figure 5.16 Strouhal numbers at positions P2, P5, P8, and PlI, in hole H2. 
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Figure 5.17 Strouhal numbers at positions P9 and P12, in hole H2. 

The Strouhal number behavior is made quite clear by the three figures shown above. In 

most of the cases considered, the values decrease monotonically and asymptote to a 
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constant value at high Reynolds numbers. An exception is observed at positions Pl and 

P4, where the Strouhal number distributions show a slightly increasing trend at high Re 

values. 

Additionally, the vortex shedding frequencies are not monochromatic: they depend on 

sampling position and on the Reynolds number. For same duct axial positions, the 

Strouhal number distributions shown above do not display any c1ear dependence on the 

vertical position. However, if the Strouhal numbers are plotted on a single figure and 

presented with respect to their axial location, their dependence on the axial position 

becomes apparent. Figure 5.18 shows such a variation of Strouhal numbers with respect 

to axial position. 
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Figure 5.18 Variation of vortex shedding Strouhal numbers with 

respect to axial position (z), in hole H2. 
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As shown in the previous figure, a frequency dependence on axial position is observable 

for Reynolds numbers above 5000. Strouhal numbers sampled at upstream positions (PI, 

P4) are slightly higher than those measured at central axial positions (P2, P5, P8 and Pli) 

which are, in turn, higher than those at the downstream positions (P9, PI2). For Reynolds 

number less than 5000, this dependence on axial position could not be clearly ascertained 

due to the higher scatter in these results. It is difficult to offer an explanation for these 

features of the flows based on an examination of the available results, other than to say 

that in the regions where the hot-wire measurements were made, the flows reflect a rather 

complex interaction of four shear layers, two off the top and bottom surfaces of the 

plates, and another two on the top and bottom walls of the duct. 

As a concluding remark in this section, the author would like to express the hope that the 

turbulence power spectrums and Strouhal numbers provide by the hot-wire measurements 

would serve as checks on the predictions of mathematical models and numerical solution 

methods for unsteady turbulent flows in interrupted-surface geometries, and thus prove 

useful to researchers who are currently developing such models and methods. 

5.2 RESUL TS OF THE NUMERICAL INVESTIGA TIONS 

The results of the numerical investigations are presented in this section. The problems 

were solved with a FORTRAN 77 computer pro gram based on the finite volume method 

(FVM) described in chapter 4. AIl computations were performed on personal computers 

equipped with Pentium IV processors. The FVM and the computer pro gram were first 

validated by solving many benchmarking test problems. Two such test problems were the 

following: (1) steady spatially-periodic fully-developed laminar flow and heat transfer in 

staggered plate arrays; and (2) unsteady unconfined laminar flow past a square cylinder. 

The first ofthese test problems evaluated the overall validity of the code and its ability to 

solve flow and heat transfer problems in cyc1ic domains. The second test problem 

validated the capability of the code to simulate unsteady flows. Finally, the two main 

problems of interested were tackled: (1) unsteady laminar developing flow in interrupted­

plate ducts; (2) unsteady laminar developing flow in staggered-plate arrays. 



5.2.1 TEST PROBLEM #1: STEADY SPATIALLY-PERIODIC FULLY­

DEVELOPED LAMINAR FLOW AND HEAT TRANSFER IN 

STAGGERED PLATE ARRAYS 

5.2.1.1 PROBLEM OVERVIEW 

92 

The objective of this investigation was to validate the numerical method by comparing 

the friction factors and Colbum factors results with those obtained by Sebben (1996). 

This problem was first solved by Patankar and Prakash (1981). Sebben (1996) later 

solved the problem with a modem staggered grid method. Thus, the recent results of 

Sebben (1996) are used to check the results obtained with the FVM developed in this 

work. Attention is focused on code benchmarking rather than providing a detailed 

analysis of the flows in this problem, which is already available in the aforementioned 

references. The computational domain is shown in figure 5.19 as a dotted area 

comprising a half-module. 
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Figure 5.19 Cross-sectional view of a staggered plate array and 

the computational domain. 
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The computational domain may be limited to a half-module, since for such spatially­

periodic fully-developed steady flows, the flow symmetry can be exploited. The top and 

bottom boundaries are lines of symmetry, while cyclic conditions are imposed on the left 

and right boundaries. Special equations for this specific cyclic problem are used and are 

presented in section 2.2.2. In this problem, a dimensionless overall modular pressure 

gradient term t/ is imposed, and this drives the flow to a corresponding Reynolds number 

or mass flow rate. Multiple values of this parameter were investigated, for three different 

geometrical configurations: tIR = 0.1, 0.2 and 0.3. In all cases, LlH was set equal to 2. 

The resulting Reynolds numbers varied from approximately 100 to 1200. The Prandtl 

number was set equal to 0.7. 

The boundary conditions for the flow problem are the following: velocities are nil on the 

plate surfaces; v is set to zero and au = 0 on the top and bottom symmetry lines; and 
ay 

periodic conditions apply to the velo city components on the left and right boundaries. 

The boundary conditions for the periodic temperature variable t (derived in section 

2 2 2) "1 at 0 1 h d b l' d' d' .. are Slml ar: - = a ong t e top an ottom symmetry mes; an peno IC ay 

conditions prevail on the cyclic domain boundaries. Following the discussions in section 

2.2.2, t in the first and second plates is given by the following expressions, respectively: 

-\ (x) T =Tw -I1T -
Firsl Plaie L 

(4.51) 

-\ (x) T = T. + I1T -I1T -
SecondPlale W L 

The dimensionless parameters involved in this study are defined with respect to the 

nomenclature used by Patankar and Prakash (1981) and Sebben (1996): 
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(4.52) 

p(](4H) P(4H) h 
Re= ; ff= ; St=-_-

fi 2pU2 pUCp 

(4.53) 

In the previous equations, (] is the average velocity based on the nominal height of the 

half-module H, and h is the average heat transfer coefficient over the module. These 

variables are defined as follows: 

(] =~. h = Qmodu/e 

pH' AH.TLMTD 
(4.54) 

where m is the calculated mass flow rate per unit depth, and Qmodu/e is the total rate of 

heat transfer in the half-module per unit length. These heat transfer quantities are again 

defined with respect to the work ofPatankar and Prakash (1981): 

Qmodu/e = mcp (2ilT) 

AHT. =2L 

LMTD= !1T 

m(l+ Tw -T~: ___ J 
(4.55) 

In the definition of LMTD (the log-mean temperature difference), TBmid-domain is the bulk 

temperature calculated along the vertical mid-domain line formed by joining points A and 

B in figure 5.19. The bulk temperature definition used by Patankar and Prakash (1981) is 

based on the absolute value of velocity and is described by the following expression for 

constant property flows: 

(4.56) 
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Additionally, with the aforementioned equations, the Stanton number, St, may be 

expressed as follows: 

St = 1 t1.T 
2LMTD 

(4.57) 

Finally, the heat transfer results are expressed in the form of the module Colburnj factor: 

j = St p r 213 (4.58) 

5.2.1.2 COMPUTATION DETAILS 

The calculations were performed with three different orthogonal uniform grids: (1) 

281X72 CYs; (2) 401XI02 CYs; and (3) 481X122 CYs. Identical grids were used by 

Sebben (1996). In the computations, convergence was considered to be achieved when 

the two following criteria were met: (1) the absolute values of the normalized residues for 

every CV and dependent variable are lower than 10-8
; and (2) the relative change in the 

calculated Reynolds number between two consecutive iterations is lower than 10-8
. The 

first convergence criterion may be expressed as: 

for every volume (4.59) 

where the reference transport rates (Reftrn) for a single CV is defined as follows: 

(4.60) 

The second criterion may be expressed as: 

IReo 
- Rel 

CRITRe = ~ 10-8 

Re 
(4.61) 
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Relaxation coefficients were automatically adapted by the pro gram to prevent divergence 

during the solution process. In all cases, under-relaxation was applied and the relaxation 

coefficients, a, varied from 0.5 to 0.75 for aU dependent variables. 

5.2.1.3 RESULTS 

The same problem parameters as those studied by Sebben (1996) were investigated. 

Three different values of p* were considered for each geometrical configuration. The 

resulting Reynolds numbers, friction factors, and Colbum j factors are listed in tables 5.1, 

5.2, and 5.3 for the geometrical configurations with tIH values of 0.1, 0.2, and 0.3, 

respectively. The relative differences (absolute values) between these and the 

corresponding results of Sebben (1996) are also inc1uded. 

Table 5.1: Results for test problem #1: Values of Re, ff andj for tIH = 0.1 

Results of present study Relative difference with Sebben( 1996) 

fJ* grid Re ff j Re ff j 

4687.5 1 1151.36 0.11315 0.02765 0.180% 0.359% 0.713% 
4687.5 2 1149.79 0.11346 0.02768 0.144% 0.287% 0.651% 

4687.5 3 1149.08 0.11360 0.02770 0.122% 0.244% 0.624% 

1953.125 1 534.45 0.21881 0.05527 0.199% 0.396% 0.640% 
1953.125 2 533.44 0.21964 0.05544 0.138% 0.275% 0.400% 

1953.125 3 533.05 0.21996 0.05532 0.115% 0.230% 0.642% 

312.5 1 107.56 0.86442 0.22266 0.147% 0.294% 1.351% 
312.5 2 107.33 0.86805 0.22349 0.101% 0.203% 1.007% 

312.5 3 107.25 0.86943 0.22321 0.084% 0.167% 1.136% 

Table 5.2: Results for test problem #1: Values of Re, ff andj for tIH = 0.2. 

Results of present study_ Relative difference with Sebben(1996) 

fJ* grid Re ff j Re ff j 

9687.5 1 1063.80 0.27393 0.03668 0.276% 0.548% 0.692% 
9687.5 2 1061.95 0.27489 0.03671 0.227% 0.453% 0.686% 

9687.5 3 1061.05 0.27535 0.03685 0.197% 0.392% 0.359% 

4687.5 1 584.14 0.43961 0.06143 0.376% 0.747% 0.927% 
4687.5 2 582.72 0.44175 0.06155 0.273% 0.544% 0.788% 

4687.5 3 582.08 0.44271 0.06161 0.226% 0.451% 0.732% 

625 1 107.40 1.73396 0.28017 0.301% 0.601% 1.891% 
625 2 107.03 1.74580 0.28130 0.199% 0.397% 1.553% 

625 3 106.89 1.75034 0.28176 0.160% 0.320% 1.412% 
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Table 5.3: Results for test problem #1: Values of Re, ff andj for tIR = 0.3. 

Results of present study Relative difference with Sebben( 1996) 

Ji* grid Re ff j Re ff j 

32500 1 NIA NIA NIA 
32500 2 no convergence obtained NIA NIA NIA 
32500 3 NIA NIA NIA 

14218.75 1 585.20 1.32862 0.08456 0.492% 0.978% 1.367% 
14218.75 2 583.51 1.33634 0.08513 0.391% 0.777% 0.780% 

14218.75 3 582.74 1.33989 0.08416 0.338% 0.673% 1.956% 

1562.5 1 105.81 4.46583 0.38261 0.569% 1.129% 2.830% 
1562.5 2 105.25 4.51405 0.38520 0.370% 0.737% 2.271% 

1562.5 3 105.02 4.53299 0.38486 0.297% 0.591% 2.405% 

As expected, the resulting Reynolds number increases with the overall pressure gradient 

term p*. The friction factors decrease with increasing Reynolds numbers, a behavior 

confirmed in numerous experimental investigations. Similarly, the Colbum factors follow 

the same trend, as expected. Sample streamline plots are presented in figure 5.20 for the 

flow fields computed with the finest grids for a tlH ratio of 0.2. 

P* = 9687.5 
Re= 1061.05 

P* = 4687.5 
Re= 582.08 

Figure 5.20 Streamline plots for tlH = 0.2 and /3* values of 9687.5,4687.5 and 625. 
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As shown by the results in tables 5.1, 5.2 and 5.3, the agreement between both set of 

results is excellent. Convergence was not achieved for p* values of 32500 and the tIH = 

0.3 geometry. Sebben (1996) also encountered sorne convergence problems for this 

particular case. The maximum discrepancy, a 2.83% relative difference in Colbum factor, 

occurs at a p* value of 1562.5 and a tlH ratio of 0.3 for the coarsest grid. 

5.2.2 TEST PROBLEM #2: UNSTEADY LAMINAR FLOW PAST A 

SQUARE CYLINDER 

5.2.2.1 PROBLEM OVERVIEW 

This test problem involves unsteady unconfined laminar flows across a cylinder of square 

cross-section. The domain is two-dimensional and flows in the laminar-unsteady regime 

are studied: Reynolds numbers of 100, 200 and 300, based on the freestream velocity and 

the square height, were investigated. The results of this study are compared with those of 

the numerical investigations of Sebben (1996) and Franke et al. (1990), as weIl as the 

experimental results of Davis and Moore (1982) and Okajima (1982). 

The regular (non-cyc1ic) computational domain dimensions were chosen to be identical to 

those used by Sebben (1996) for comparison purposes: the domain width is 12 times the 

square cylinder height (D), while its length was set to 40 D. The front face of the cylinder 

was positioned at 4.5 D from the flow entry boundary. This computational domain, its 

dimensions, and the problem boundary conditions are shown in figure 5.21. 

As shown in the figure 5.21, the imposed boundary conditions are: inflow velocity Uo 

entering from the left boundary; au = v = 0 on the top and bottom boundaries; and 
ay 

outflow condition imposed at the right boundary. Velocities were set equal to zero on the 

square cylinder surfaces. The top and bottom boundary conditions were chosen to 

approximate freesteam conditions. The initial condition corresponds to an impulsive start 
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of the fluid from rest. In aH cases investigated, vortex shedding appeared sorne time from 

after initiation, without any need for numerical perturbation of the flow field. 

1 .. 

u=uo 

v=O 

D 
1++1 

4.5D IIID 

Flow 

au 
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8y 

au 
-=v=O 
8y 
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Figure 5.21 Computational domain, dimensions, and boundary 

conditions for Test Problem # 2. 

12 D 

The dimensionless parameters involved in this study are defined with respect to the 

nomenclature used by Sebben (1996), in order to facilitate comparisons of the results: 

Re = pUoD . St = /"D . C = FD • C = FL 

, U'D l 'L 1 
f.1 0 _pU2 D _pU2 D 

2 0 2 0 

(4.62) 

The form (or pressure) drag and viscous force components were computed and stored 

separately, FD in equation 5.12 includes both these components. 

5.2.2.2 COMPUTATION DETAILS 

Three different grids where used in the investigations: 201X123, 251X161, and 301X181 

CV s. At least a hundred time steps per cycle of vortex shedding were used in the 
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simulations: preliminary computations showed that the results changed insignificantly 

with smaller values of the time step. 

Convergence was considered to be achieved when the two following criteria were met: 

(1) the absolute values of the normalized residues for every CV and dependent variable 

are lower than 10-8
; and (2) the relative change in the ca1culated Reynolds number 

between two consecutive inner iterations (in the same time step) is lower than 10-8
. The 

first convergence criterion may be expressed as: 

for every volume (4.63) 

The reference transport rates (Reftm) for a single CV is defined as: 

Re+trnu,v = riz ~y U . Re+trnP = riz ~y 
:JO 12D 0,:J° 12D (4.64) 

The second criterion is expressed as follows: 

IReo -Rel 
CRITRe = ~ 10-8 

Re 
(4.65) 

Again, relaxation coefficients were automatically adapted by the program to prevent 

divergence during the solution process. However, in unsteady problems with small time 

steps such as this one, the initial guess variable field is already close to the converged 

solution for the next time step. Therefore, there is little or no need for under-relaxation. 

Thus, in all cases, under-relaxation was not required by the program and the relaxation 

coefficients a were maintained at 1.0 for all dependent variables. 
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The code monitored and recorded the vertical velocity component (v) at a point located 

on the domain horizontal centerline and one-D downstream from the cylinder in the axial 

direction. When periodic oscillations of this monitored velocity were observed, the 

program started the data recording when the oscillations displayed constant amplitude 

within ±0.1 % between successive cycles. The pro gram then recorded 20 cycles of vortex 

shedding. If the velocity oscillations were chaotic (notably for Re = 300), the data 

recording was started when the time-averaged result were shown to have reached 

constant values. Additionally, this monitored velocity was used to compute the vortex­

shedding frequencies with the same algorithm as that used for the calculations of 

turbulence power spectrums in the experimental investigations. However, these power 

spectrums were smooth and the curve-fitting method (used to process the experimental 

results) was not required to determine the vortex shedding frequency. 

5.2.2.3 RESULTS 

First, it must be pointed out that results for this problem are known to be very sensitive to 

the numerical treatment of the cylinder corners and even slight differences in boundary 

conditions. On the experimental side, the results are strongly influenced by the alignment 

and sharpness of the cylinder corners. Therefore, a fair amount of scatter in the results is 

generally observed in the literature. This detail should be kept in mind when the 

experimental and the numerical results are reviewed and compared. 

The calculated Strouhal numbers and time-mean total drag coefficients (form and shear 

forces) are first compared to the available numerical data of Sebben (1996) and Franke et 

al. (1990). These results are listed in table 5.4. 

Table 5.4: Results for test problem #2: Values of St and Co. 

Present calculations Franke et al. (1990) Sebben (1996) 

Re St CD St CD St CD 
100 0.156 1.612 0.154 1.61 0.156 1.57 
200 0.144 1.699 0.157 1.60 0.166 1.66 

300 0.140 1.922 0.13 1.83 0.147 1.86 
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The overall agreement between the present results and those of Franke et al. (1990) and 

Sebben (1996) is good. At Re = 200, the highest percentage relative difference in the 

Strouhal number values is 15.68% and 9.4% compared to the corresponding results of 

Sebben (1996) and Franke et al. (1990), respectively. The average differences (absolute 

values) with reference to the results of both Sebben (1996) and Franke et al. (1990) are 

6.29% for Strouhal numbers and 3.1 % for the drag coefficients. 

The results were also compared with the experimental Strouhal number data of Okajima 

(1982) and Davis and Moore (1982). Both sets are shown in figure 5.22 along with 

results of the numerical investigations of Sebben (1996) and Franke et al. (1990). 

0.200 

0.150 

ti) 0.100 

o Present Calculation 

o Franke et al. (1990) 

o Sebben (1996) 0.050 
[:=::J Okajima (1982) (exp.) 

cz::::zJ Davis and Moore (1982) (exp.) 

0.000 

10 100 1000 10000 

Re 
Figure 5.22 Strouhal number as function of Reynolds number. 

The main striking feature observed in figure 5.22 is the difference between the two sets of 

experimental results of Okajima (1982) and Davis and Moore (1982). This appreciable 

difference of Strouhal numbers supports the earlier statement suggesting a strong 

sensitivity of such flows to slight variations in test parameters. Nevertheless, the results 

of the present ca1culation show very good agreement with the data of Okajima (1982), 

especially at Reynolds number values of 200 and 300, where they lie within in the 
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experimental scatter. Other numerical investigations of Sebben (1996) and Franke et al. 

(1990) show inferior agreement with the experimental results of Okajima (1982). None of 

the numerical ca1culations replicate the overall trend of the experimental data of Davis 

and Moore (1982), and the present computations show only average agreement with their 

experimental results. 

5.2.3 NUMERICAL INVESTIGATION #1: UNSTEADY LAMINAR 

DEVELOPING FLOW IN INTERRUPTED-PLATE DUCTS 

5.2.3.1 PROBLEM OVERVIEW 

This problem involves unsteady two-dimensional developing laminar flows in 

interrupted-plate ducts akin to the one shown in figure 1.3. The objective ofthis study is 

to solve flows from the duct inlet plane downstream to the spatially-periodic fully­

developed region. Modular time-mean friction factors are provided along with vortex 

shedding Strouhal numbers. The results are also compared with those of Sebben (1996), 

who investigated the unsteady spatially-periodic fully-developed flow regime by 

inc1uding multiple modules in an axially-cyclic domain. The computational domain is 

similar to the one shown in figure 4.2, except that the number of geometric modules 

inc1uded in the calculation domain in the axial direction was varied from 6 to 20. 

The ca1culations are divided into two parts: (1) the effects of the number of modules 

inc1uded in the computational do main are investigated for a single geometrical 

configuration with tIH = 0.32; and (2) different Reynolds number values are investigated 

for two geometrical configurations with tlH = 0.20 and 0.32. In the first part of this 

numerical investigation, the Reynolds number, based on the duct height (2H) and the 

time-mean average axial velocity tJ, was kept at 382.65 and the number of modules was 

set to 6, 8, 10, and 20. The second set of calculations was performed with 10 modules in 

the axial direction and the Reynolds number was instead varied: Re values of 300 and 

400 were explored for tlH = 0.32; and Re values of 239.04 and 484.58 were investigated 
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for tiR = 0.20. These Reynolds number values were specifically chosen to allow 

comparison with the results of Sebben (1996). The following geometrical parameters 

were kept constant: L/R = 2 and sIR = 2. 

The boundary conditions for this problem are the following: a uniform inlet velocity 

profile at the left boundary; zero velo city (u = v = 0) on the top and bottom walls as weIl 

as on the plate surfaces; and outflow conditions (au = av = 0 ) at the right boundary. The ax ax 
initial condition is equivalent to fluid at rest and an impulsive start was applied at the first 

time step. Flow unsteadiness appeared spontaneously without any need for numerical 

perturbations of the flow field. 

In order to facilitate the comparison of results, the dimensionless parameters involved in 

this study are defined with respect to the nomenclature used by Sebben (1996). They 

were listed and discussed in section 2.4.2.1. They are listed here again for convenience: 

Re = pU (2H) ; U = ~; fi = (2H)(pLodule ; St = Iv (2t) 
p 2Hp 1 U-2 U -p 

2 

(4.66) 

The Strouhal number was computed by selecting the vortex shedding frequency observed 

in the power spectrums: the vertical velocity component (v), located along the duct 

centerline and at a quarter-plate length (L/4) behind the last plate, was monitored and 

stored; and then the power spectrums were computed with the same routine that was used 

in the experimental investigations. It should be noted that these power spectrums were 

smooth; thus the curve-fitting method (used earlier to process the experimental results) 

was not required to determine the vortex shedding frequency in this case. 

5.2.3.2 COMPUTATION DETAILS 

The objective of the CUITent investigation is to complement and extend the past efforts of 

Sebben (1996) by simulating developing flows from the duct inlet plane downstream to 

the spatially-periodic fully-developed region. Sebben (1996) used a staggered grid 

method and an axially-cyclic domain comprising 1 to 6 modules. She performed 
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numerous grid and time step independence studies. Precious computing time was saved 

by assuming that the grids and time steps used by Sebben (1996) were adequate for the 

present numerical method. This assumption is justified by the similarities of both 

numerical methods and investigated parameters. Thus, the computations were performed 

with uniform grids (~x = ~y). Such grids are known to ensure adequate simulation of 

oscillating recirculation zones and shear-Iayers. The grid was composed of 100X50 CVs 

per module. A flow exit section, consisting of a plain duct of same height 2H, was added 

after the last plate module in order to prevent flow reversaI at the exit boundary of the 

calculation domain. This exit section accounted for 300X50 CV s and its length was set 

equal to 7A=7(L+s): the x extent ofthis section was divided into three adjacent segments 

of lengths A, 2A, and 4A, and 100X50 CV s were distributed uniformly in each of these 

segments, making the exit section grid non-uniform. Therefore, a 10 module domain is 

composed of 1000X50 CV in the plate section, and an additional 300X50 CV s in the exit 

section, and would measure 17 A long. The simulations were performed with the same 

time steps as those used by Sebben (1996). 

Convergence of at each time step was considered to be achieved when the two following 

criteria were met: (1) the absolute values of normalized residues are lower than 10-6 for 

every CV and dependent variable; (2) the relative change in the calculated Reynolds 

number between two consecutive inner iterations (in the same time step) is lower than 

10-8
. The first convergence criterion is expressed as follows: 

for every volume (4.67) 

The reference transport rates (Reftrn) for a single volume were defined as follows: 

R ,{; uv· ~y U- R'{; P • ~y ejtrn' = m- . ejtrn = m-
2H ' 2H 

(4.68) 

The second criterion is expressed as follows: 
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IReo -Rel 
CRITRe = ~ 10-8 

Re 
(4.69) 

Under-relaxation was not invoked by the pro gram and the relaxation coefficients, a, 

were maintained at 1.0 for aH dependent variables. The results were recorded when the 

oscillation of the aforementioned monitored velocity displayed a constant amplitude 

within ±0.1 % between consecutive cycles. The pro gram then recorded data for at least 10 

vortex shedding cycles. 

5.2.3.3 RESULTS 

In the first part of the investigation, the Reynolds number was kept constant and the 

number of modules in the computational domain was varied. Time-mean module friction 

factors (fi) were computed for Re = 382.65 and t/H = 0.32. Results were obtained for 

domains with 6,8, 10 and 20 modules and are listed in table 5.5. It must be noted that the 

last module friction factor is not relevant since it is affected by the flow exit section. 

Table 5.5: Time-mean module friction factors for Re = 382.65 and tIH = 0.32. 

ff 

Module 6 modules 8 modules 10 modules 20 modules 

1 1.4564 1.4564 1.4564 1.4564 
2 1.1116 1.1114 1.1114 1.1115 

3 1.1593 1.1592 1.1590 1.1593 
4 1.1584 1.1583 1.1580 1.1584 

5 1.1538 1.1537 1.1533 1.1538 

6 1.1530 1.1525 l.l531 

7 1.1531 1.1526 l.l531 
8 1.1527 1.1532 

9 1.1529 1.1532 

10 1.1532 
11 1.1532 

12 1.1532 

13 1.1532 

14 1.1532 

15 1.1532 

16 1.1532 

17 1.1532 

18 1.1532 

19 1.1533 
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The overa11 behavior of the modular friction factors is the same for a11 four domains. The 

values of ff at the duct entry are high and they asymptote to a constant value as the 

spatia11y-periodic fully-developed regime starts to get established. The underlined friction 

factors denote modules where the flow is essentia11y fully-developed. The 6-module 

domain did not include enough modules to display the existence of the spatia11y-periodic 

fu11y-developed regime with confidence. On the other hand, this regime was shown to 

prevail in the 8-,10-, and 20-module calculation domains, where essentia11y equal 

modular friction factors are observable after sorne distance from the inlet. For these three 

calculation domains, the fully-developed friction factors are essentially identical, the 

relative difference between results being lower than 0.1 %. For this Reynolds number 

value (382.65), the fu11y-developed regime is shown to prevail after the fifth module. 

Thus, it was judged that the 10-module domain was adequate for future simulations. 

Additionally, the results obtained with 10 modules are nearly identical to those provided 

by the computationa11y expensive 20-module domain. Computed Strouhal numbers are 

identical for aIl four calculation do mains and are equal to 0.3336. 

Sebben (1996) performed calculations for the same geometrical configuration and 

Reynolds number. However, the computational domain was limited to a single module in 

the fully-deve1oped region with the use of a cyclic do main similar to the one shown in 

test case 1. The time-mean modular friction factor was equal to 1.1403, a value very close 

the fully-developed values obtained in the present study. This very good agreement 

shows that the cyclic domain simplification used by Sebben (1996) yields similar results 

to those obtained by simulating a complete duct, and it also confirmed at the same time 

the validity of the numerical method used in this work. Unfortunately, no Strouhal 

number value was provided by Sebben (1996) for this case. 

The second part of this numerical study consisted of investigating different geometrical 

configurations and multiple Reynolds number values with the adopted 10-module 

domain. The time-mean module friction factors are listed in table 5.6 for tIH = 0.32 and 

in table 5.7 for tIH = 0.20. 
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Table 5.6: Time-mean module friction factors for tIH = 0.32. 

ff 

Module Re = 300 Re =400 

1 1.6101 1.4337 
2 1.1888 1.1017 
3 1.2099 1.1554 
4 1.2083 1.1546 
5 1.2058 1.1493 
6 1.2053 1.1486 
7 1.2052 1.1487 

8 1.2052 1.1488 

9 1.2051 1.1489 

Table 5.7: Time-mean module friction factors for tIH = 0.20. 

ff 

Module Re = 239.04 Re = 484.58 

1 1.1292 0.7667 
2 0.6839 0.4561 

3 0.6698 0.4736 
4 0.6690 0.4906 
5 0.6689 0.4948 
6 0.6689 0.4940 

7 0.6689 0.4925 

8 0;6689 0.4920 

9 0.6689 0.4919 

Once more, the spatially-periodic fully-developed regime is shown to prevail after sorne 

distance downstream from the duct inlet. Friction factors showing the existence of this 

regime are again underlined. As expected, these results also reveal that the development 

length increases with the Reynolds number for both geometries. In both cases, the fully­

developed friction factor values decrease with Re. It must be noted that for Re = 239.04 

and tlH = 0.20, the flow remained completely steady. An instantaneous streamline plot is 

presented in figure 5.23 for Re =300 and tlH = 0.32. 
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Figure 5.23 Instantaneous streamline plot for Re = 300 and tJH = 0.32. 

In the figure 5.23, the 10-module duct is split into two parts, and the exit section is 

omitted: the flow enters from the top-Ieft boundary and exits from the bottom right 

boundary; flow exiting the upper right corner enters the bottom left one. This plot reveals 

sorne flow features such as vortex shedding from the trailing edge of the plates and 

recirculation bubbles rolling down the plate horizontal surfaces. The figure also displays 

the vortex shedding phase variation between different modules. It can be seen that a 

complete vortex shedding cycle is not observed in the whole domain. Therefore, more 

modules should be included in the domain to determine if the flow would then display an 

unsteady cYclic behavior over a certain number of modules in the fully-developed region. 

Next, the fully-developed module friction factors were compared with the results of 

Sebben (1996). For the tirst geometry (tJH = 0.32), Sebben (1996) performed multiple 

calculations for each Re value by including from one to six modules in the cyclic domain. 

The full range of friction factors is listed in table 5.8 and compared to the fully-developed 

values of the present investigation for both Re values. For the second geometrical 

configuration (tJH = 0.20), the results are compared in table 5.9 with those obtained by 

Sebben (1996) with a six module cyclic domain. 



Table 5.8: Fully-developed module friction factors (tIH = 0.32) 

compared with results of Sebben (1996). 

Fully-developed values of ff 

Re Current cale. Sebben (1996) 
min max 

300 1.2051 1.1916 1.2222 
400 1.1489 1.1034 1.1720 

Table 5.9: Fully-developed module friction factors (tIH = 0.20) 

compared with results ofSebben (1996). 

Fully-developed values of ff 

Re Current cale. Sebben (1996) 

239.04 0.6689 0.7000 
484.58 0.4919 0.4770 
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Again, the agreement between the results of both investigations is good. The fuIly­

developed module friction factor values of the CUITent calculation fall in the range of the 

results obtained by Sebben (1996) for tIH = 0.32. Good agreement is also observed for 

the second geometry (tlH = 0.20): for a Re value of239.04 and tlH = 0.20, the agreement 

remained good even if steady flow was obtained with the CUITent method whereas 

unsteadiness was present in the cyclic domain of Sebben (1996). In general, the 

comparison of results suggests that the cyclic model used by Sebben (1996) provides 

very similar fully-developed friction factors without the need to simulate a complete duct. 

The computed Strouhal number values are listed in tables 5.10 for tIH = 0.32 and tIH = 

0.20, along with the results of Sebben (1996). 

Table 5.10: Strouhal numbers compared with results of Sebben (1996). 

St 

tIH Re Current cale. Sebben (1996) 

0.32 300 0.3280 0.332 - 0.375 

400 0.3344 0.333 - 0.409 

0.2 239.04 NIA 0.215 

484.58 0.2337 0.212 
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In table 5.10, no Strouhal number value for tlH = 0.2 and Re = 484.58 is listed, since 

steady flow prevailed in the CUITent calculations. As mentioned earlier, Sebben (1996) 

performed multiple calculations with 6 different domains for tIH = 0.32. A range of 

Strouhal numbers is thus listed for this geometry. At first glance, the agreement between 

both set ofresults looks very good for tlH = 0.32. However, the range ofresults provided 

by Sebben (1996) is quite wide, the largest difference between two Strouhal number 

values being as large as 22.8% for Re = 400. Thus, it is difficult to assess with precision 

the agreement between Strouhal numbers for this geometry. 

For the second geometry, tIH = 0.20, different flow regimes were obtained for Re = 

239.04. The flow remained steady in the present calculations while unsteadiness was 

present in the calculations of Sebben (1996). For Re = 484.58, the agreement between 

Strouhal number values is average, the difference between corresponding results being 

10.2%. 

5.2.4 NUMERICAL INVESTIGATION #2: UNSTEADY LAMINAR 

DEVELOPING FLOW AND HEAT TRANSFER IN STAGGERED-PLATE 

ARRAYS 

5.2.4.1 PROBLEM OVERVIEW 

This problem involves unsteady two-dimensional developing laminar flows and heat 

transfer in staggered-plate arrays. The Reynolds number, based on the Kays and London 

(1984) definition, was varied from 100 to 600, and the Prandtl number was set equal to 

0.7 (air). The calculation domain, shown in figure 4.1, is portrayed again in figure 5.24 

for convenience. The calculations were performed with multiple domains comprising: (1) 

6 modules in the axial direction and 1 module in the lateral direction; (2) 6 modules in the 

axial direction and 2 modules in the lateral direction; (3) 10 modules in the axial direction 

and 1 module in the lateral direction. The laminar steady and time-periodic unsteady flow 

regimes are investigated. Calculations were performed for a single geometry with the 
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following geometrical parameters: LlH = 2 and tIH = 0.25. The LIH ratio lS 

representative of actual plate-fin heat ex changer cores. However, the chosen plate 

thickness ratio tIH is roughly twice as large as common values. This value was 

intentionally selected to accentuate vortex shedding and shorten the flow deve10ping 

length. Time-mean module friction factors, time-mean module Colbum factors, and 

vortex shedding Strouhal numbers were obtained. 

1 Module 

1" ,-
IModule _. 

L 

...... ~ ... I 

Exit 
zone 

,Cy~liC 
Boundary 

Figure 5.24 Cross-sectional view of staggered-plate array and computational domain. 

The flow problem boundary conditions are the following: uniform ve10city Uc-smin 

entering from the left boundary; outflow conditions at the right boundary (Bu = av = 0); 
Bx Bx 

and cyclic conditions imposed on the top and bottom boundaries. Velocities are forced to 

zero on the plate surfaces. The thermal conditions were fixed as follows: entering flow is 

at a constant temperature; outflow conditions at the right boundary (Br = 0); and cyclic 
Bx 

conditions at the horizontal boundaries. The plate temperature was set to a constant value 

T w, different from the inlet fluid temperature, thus the fluid exchanges heat with the 

plates as it travels down the array. 
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The dimensionless parameters involved in this study are listed and discussed in detail in 

section 2.4.2.2. The key parameters are listed again for convenience: 

Re = pUc-sminDh • fi = Dh (fi) module. J' = (Ji) module Pr2l3. St = Iv (2t) 
, 1 - ' , 

f.l _ pU2 . pc pU c-smin U c-smin 
2 c-smm 

(4.70) 

The Strouhal number is computed with the vortex shedding frequency observed in the 

power spectrums. A vertical velocity component (v), located a quarter-plate length (L/4) 

behind the top aft plate of the second-Iast module and aligned with this plate centerline, 

was monitored. The power spectrums were calculated with the same procedures as those 

used in the previous problems. 

5.2.4.2 COMPUTATION DETAILS 

Grid and time-step independence studies were conducted prior to the main calculations. 

The time-step independence investigation was carried out first. These studies were 

performed with a Reynolds number of 1000, a value substantially higher than the 

maximum value of 600 investigated in the main calculations. If time-step independence is 

ensured for Re = 1000, it would also apply for the lower Re values, as the time period of 

the vortex shedding phenomenon reduces as Re is lowered. The time-step independence 

studies were performed with a 6X 1 module domain. Each module was discretized into 

80X40 CYs forming a uniform grid. The results are listed in table 5.11. The smallest time 

step investigated, noted here as 8tmin, serves as the reference value. Again, the last 

module data is not relevant since it is affected by the flow exit section and thus is not 

taken into account. 
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Table 5.11: Time-step independence study: values of ff and j factors for Re = 1 000. 

ff j 

Time step 1 2 3 4 5 1 2 3 4 5 

Llt.mn 0.5212 0.5411 0.5076 0.5103 0.4897 0.0252 0.0248 0.0255 0.0259 0.0255 
2Lltmin 0.4998 0.5451 0.5074 0.5169 0.4996 0.0252 0.0246 0.0253 0.0259 0.0257 

5 Lltmin 0.4859 0.5528 0.5230 0.5326 0.4895 0.0252 0.0244 0.0253 0.0261 0.0260 

10Lltmin 0.4736 0.5489 0.5817 0.5281 0.4424 0.0251 0.0244 0.0247 0.0260 0.0256 

The results became essentially independent of time-step when it was less than or equal to 

2~tmin. For this case, the largest discrepancy with the smallest time step ~tmin calculations 

is a 4.11 % relative difference between the first module friction factors. The remaining 

differences between the other friction and Colbum factors are less than 2.0%. The 

calculations performed with a 5~tmin time step yielded less satisfactory results with 

relative differences as high as 6.76% in the first module friction factor. The 10ôtmin 

calculations are obviously inadequate with discrepancies as high as 14.62%. Thus, the 

main calculations were performed with time steps equal to or less than 2ôtmin. Typically, 

more than 300 time steps per vortex shedding cycle were used. 

Spatial grid independence studies were also performed at a Reynolds number of 1000 

with a time step value of 2~tmin and a 6Xl module domain. Again, a high Re value was 

chosen as an added precaution. The boundary layers become generally thinner with 

increasing Reynolds number. Therefore, the grids must be refined with increasing Re 

values and it is preferable to assess grid independence for such stringent conditions. 

Calculations were performed for four different uniform grids, for which each plate 

module is composed of: (1) 64X32 CYs; (2) 80X40 CYs; (3) 96X48 CYs; and (4) 

112X56 Cvs. The results ofthis investigation are given in table 5.12. 

Table 5.12: Grid independence study: values offf andj factors for Re =1000. 

ff j 

grid 1 2 3 4 5 1 2 3 4 5 

112X56 0.5003 0.5445 0.5623 0.5098 0.4884 32.0269 33.2816 33.8692 34.1893 33.9481 
96X48 0.5001 0.5402 0.5650 0.5291 0.4881 32.0254 32.6284 32.7817 34.5636 33.9284 
80X40 0.5001 0.5448 0.5081 0.5158 0.4906 31.9996 31.2049 32.1369 32.8136 32.7463 

64X32 0.4966 0.4900 0.3626 0.6241 0.5535 31.2942 31.3598 28.2145 30.8144 33.6573 
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Calculations performed with the finest grid (112X56 CYs per module) required 

substantial computing time, thereby preventing the investigation of finer grids. 

Fortunately, these results were found to be relatively grid independent for the second­

fine st grid (96X48): the largest discrepancy between the results obtained with the 

reference 112X56 grid and the 96X48 grid is 3.8% for the fourth module friction factor. 

For the friction and Colburn factors, the average of differences between corresponding 

results obtained with these grids is 1.14%. Therefore, the 96X48 grid was chosen for the 

subsequent calculations. The 80X40 and 64X32 grids were discarded. Finally, the 64X32 

grid is inadequate. It is also assumed that the time-step independence studies performed 

with the 80X40 grid also apply for the chosen 96X48 grid. 

Again, a flow exit section was required to prevent flow reversaI at the exit boundary. This 

exit section accounted for 288X48 CYs and its length was set equal to 7A=7(2L): the x 

extent of this section was divided into three adjacent segments of lengths A, 2A, and 4A, 

and 96 X 48 CV s were distributed uniformly in each of these segments, making the exit 

section grid non-uniform. Thus, a 6 module domain is composed of 576X48 CYs in the 

array section, an additional 288X48 CYs in the exit section, and would measure 13A in 

totallength. The Crank-Nicolson scheme was employed for the time integrations. 

Convergence at each time step was considered to be achieved when the three following 

criteria were met: (1) the absolute values of the normalized residues are lower than 10-6 

for every CV and dependent variable; (2) the relative change in the calculated Reynolds 

number between two consecutive inner iterations (in the same time step) is lower than 

10-6
; and (3) the difference between the target Reynolds number and the ca1culated value 

at the domain vertical centerline is less than 10-6. The first convergence criterion is 

expressed as: 

a" -" a" -b" CRI]'," = p ~ nb ~ 10~ 
N.R. Reftrn" 

for every volume (4.71) 
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The reference transport rates (Reftm) for a single CV are defined as follows: 

where n is the number of modules in the transverse (y) direction. 

The second criterion is expressed as follows: 

IReo - Rel 
CRIT

Re 
= ::;; 10-6 

Re 
(4.73) 

The third criterion is defined as: 

1
Re -Re 1 CRIT

Re 
= cale. target::;; 10-6 

Retarget 
(4.74) 

Once more, under-relaxation was not invoked by the pro gram and the relaxation 

coefficients, a , were kept equal to 1.0 for an dependent variables. 

Results were recorded when the oscillation of the aforementioned monitored velocity 

displayed a constant amplitude, to within ±0.1 %, between successive cycles. The 

pro gram then recorded data for at least 20 vortex shedding cycles. 

5.2.4.3 RESULTS 

The first set of calculations were performed for a single geometry (tIH = 0.25 and L = 

2H) and the Reynolds number was varied from 100 to 600. Time-mean module friction 

factors and Colbum factors were obtained as well as vortex shedding Strouhal numbers. 

This first set of calculations was performed with 6Xl module domains and also 6X2 

module domains to investigate the effects of an added second module row in the 
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transverse direction. For Re values equal to or lesser than 300, the flows remained steady. 

Time-periodic unsteadiness was observed for Re values of 400, 500 and 600. The results 

are presented in table 5.13. As expected, for steady flows, calculations performed with a 

6X2 domain yielded identical results to those obtained with a 6Xl domain. Therefore, 

results are only presented for the 6Xl module domain for steady flow cases. Multiple 

solutions were discovered with the 6X2 module domain for unsteady flows. The first 

stable solution (sol. 1) is obtained by introducing the 6Xl solution twice into the 6X2 

domain. The second stable solution (sol. 2) is attained by running the calculations from 

scratch. Once more, last module data is not relevant since it is altered by the flow exit 

section and is omitted in table 5.13. 

Re Domain 

600 6Xl 
600 ~X2 sol. 1 
600 ~X2 sol. 2 

500 6Xl 
500 kiX2 sol. 1 
500 ~X2 sol. 2 

400 6Xl 
400 kiX2 sol. 1 

400 6X2 sol. 2 

300 6Xl 

250 6Xl 

200 6Xl 

100 6Xl 

Table 5.13: Values of ff, j factors, and Strouhal numbers 

for tlH = 0.25 and L = 2H. 

ff j factor 

1 2 3 4 5 1 2 3 4 

0.5240 0.4459 0.4487 0.4749 0.4508 0.0327 0.0312 0.0305 0.0314 
0.5241 0.4461 0.4486 0.4747 0.4510 0.0327 0.0312 0.0306 0.0314 

0.5240 0.4458 0.4487 0.4746 0.4511 0.0327 0.0312 0.0305 0.0314 

0.5404 0.4598 0.4495 0.4616 0.4582 0.0359 0.0340 0.0340 0.0342 
0.5404 0.4598 0.4495 0.4616 0.4583 0.0359 0.0340 0.0340 0.0342 

0.5388 0.4592 0.4499 0.4612 0.4582 0.0359 0.0339 0.0340 0.0342 

0.5299 0.4706 0.4606 0.4600 0.4604 0.0398 0.0374 0.0383 0.0382 
0.5299 0.4706 0.4606 0.4600 0.4604 0.0398 0.0374 0.0383 0.0382 

0.4702 0.3343 0.3358 0.3391 0.3985 0.0378 0.0308 0.0313 0.0315 

0.5128 0.4007 0.4006 0.4006 0.4006 0.0464 0.0386 0.0388 0.0388 

0.5757 0.4596 0.4593 0.4593 0.4593 0.0533 0.0454 0.0456 0.0456 

0.6666 0.5435 0.5432 0.5432 0.5432 0.0632 0.0554 0.0555 0.0555 

1.0797 0.9205 0.9202 0.9202 0.9202 0.1083 0.1014 0.1014 0.1014 

St 
5 

0.0306 0.2172 
0.0306 0.2173 

0.0306 0.2172 

0.0343 0.2209 
0.0343 0.2209 

0.0343 0.2210 

0.0383 0.2216 
0.0383 0.2216 

0.0336 NIA 

0.0388 steady 

0.0456 steady 

0.0555 steady 

0.1014 steady 

The overall behavior of the module friction factor and Colbum factor is similar for all 

calculations. The module ff and j factors are initially high when flow enters the array and 

bec orne essentially constant as flow travels downstream. The high entry values of ff are 

explained by the high pressure drops induced by the developing velocity profile. Further 

downstream, time-mean module friction factors approach constant values as the flow 

progresses towards the spatially-periodic fully-developed regime. For similar reasons, 
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entry Colbum factors are high adjacent to the inlet plane, and they head towards constant 

values as the thermal fully-developed condition is approached. 

As expected, the first solution (sol. 1) obtained with 6X2 domains yields results that are 

identical to those obtained with the 6X1 domain. In this solution, the instantaneous 

velocity and temperature fields in each of the two horizontal module rows are identical to 

one another. An instantaneous streamline plot is shown in figure 5.25: flow features such 

as vortex shedding from the plate trailing edges and the presence of recirculation bubbles 

are noticeable. 

Figure 5.25 Instantaneous streamline plot for Re = 600 and 6X2 module domain (sol. 1). 

The second solution (sol. 2) is distinct from the first with regard to the corresponding 

instantaneous velocity and temperature fields, but yields similar time-averaged results for 

Re values of 500 and 600. In such cases, the vortices shed from the top and the bottom 

module plates at the same axial position are slightly out of phase. The second solution 

(sol. 2) for a Re value of 400 is different from the first (sol. 1) and also the 6X1 domain 

solution: for solution 2, vortex shedding occurs in the last two modules whereas it is 

present in every module for solution 1 and also the 6X1 domain solution. Furthermore, 

solution 2 did not approach the spatially-periodic fully-developed regime and, thus, no 

Strouhal number was obtained for this case (indicated by NIA in table 5.13). 

The vortex shedding Strouhal numbers are quite close to each other for the three 

Reynolds numbers at which flow unsteadiness is present. Adding an additional module 

row in the lateral direction did not affect the values of St. The multiple solutions obtained 

with 6X2 domains provided essentially identical Strouhal number values. 
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Therefore, it can be stated that adding a second module row generally induced no 

discernable effects on the computed results. An exception is observed for a Re value of 

400, for which the flow is different for the 6Xl and 6X2 domains (sol. 2). 

With the aforementioned calculation domains, fully-developed values of ff and j factor 

were obtained for Reynolds number up to 400; however, for Reynolds numbers of 500 

and 600, these factors do not quite reach their fully-developed values. Additional 

calculations were performed with a lOXl module domain to check if ff and j would then 

reach their fully-developed values: the results of these additional investigations for Re 

values of 400 and 500 are listed in table 5.14, with the fully-developed values underlined; 

no fully-developed values were obtained for Re = 600. The Strouhal numbers ca1culated 

with the 10Xl module domain were essentially identical to those obtained with the 

previous domains. 

Table 5.14: Values offf,j factors, and Strouhal numbers for 

tlH = 0.25 and L = 2H. 

Re =400 Re = 500 

module ff j ff j 

1 0.5299 0.0398 0.5403 0.0359 
2 0.4706 0.0374 0.4597 0.0340 
3 0.4606 0.0383 0.4494 0.0340 
4 0.4600 0.0382 0.4615 0.0342 
5 0.4604 0.0383 0.4582 0.0343 
6 0.4603 0.0383 0.4604 0.0342 
7 0.4603 0.0383 0.4598 0.0342 
8 0.4603 0.0383 0.4601 0.0341 
9 0.4604 0.0383 0.4601 0.0341 

It is interesting to observe the variations of the fully-developed values of ff and j factor 

with Reynolds number, as plotted in figure 5.26. 
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Figure 5.26 Fully-developed ffandj factors as functions of Re (tIH = 0.25 and L = 2H). 

As can be seen in figure 5.26, on a log-log plot, the friction and Colbum factors vary 

linearly with Re in the steady flow regime: thus it can deduced that the variations of both 

ff and j factor with Reynolds number in this flow regime can be represented by a power­

law function: this behavior of ff and j factor has also been observed in numerous 

experiments on actual cores [Kays and London (1984)]. At higher values of Re, flow 

unsteadiness appears and the values of ff and j factor depart from this power-Iaw 

function, the enhanced mixing due to vortex shedding is accompanied by an increase in 

pressure loss, consequently augmenting the values of ff; and the corresponding heat 

transfer is also enhanced, thereby increasing the Colbum factor above the implied steady­

state values. This increase in heat transfer and pressure loss due to unsteady effects was 

also observed by Kays and London (1984). Unfortunately, no direct quantitative 

comparisons are possible with experimental data for the following reasons: (1) the 

calculations were performed with an idealized two-dimensional geometry whereas flow 

three-dimensionality is present in actual heat exchangers cores; (2) the investigated plate 

thickness is about twice the actual values encountered in the tested heat exchanger cores; 

and (3) the majority of experiments were done with complete heat exchangers, thus fully­

developed values of module ff and j factor cannot be extracted from the data provided. 
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This is the first investigation, to the author's know1edge, in which unsteady developing 

flow and heat transfer in such geometries have been simulated from the inlet plane to the 

spatially-periodic fully-deve10ped region. AIso, these investigations have quantified, for 

the first time, the effects of adding of a second module row to the domain in the 

transverse direction. 
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CHAPTER 6 - CONCLUSION 

This final chapter contains: (1) a brief review of this thesis and its main contributions, 

and (2) a few suggestions regarding possible extensions of this work. The portions of the 

text pertaining to the contributions of the thesis are highlighted by presenting them in 

italics. 

6.1 REVIEW OF THE THESIS AND ITS MAIN CONTRIBUTIONS 

In the first chapter, the motivation and the overall aim of this work were presented. The 

past numerical and experimental contributions on flow and heat transfer in interrupted 

passages were reviewed. The main objectives of the numerical and experimental 

investigations conducted in this work were listed concisely. 

In chapter 2, the theoretical considerations involved in the experimental and numerical 

investigations were discussed and presented. The goveming equations relevant to this 

work were presented and the related assumptions were justified. The concept of a 

spatially-periodic fully-developed flow regime was presented and discussed. A variant of 

the goveming equations was specially derived for the simulation of steady, laminar, 

spatially-periodic fully-developed flow in axially cyclic computational domains. The 

definitions of the turbulence power spectrums and Strouhal numbers were presented. 

Finally, the dimensionless parameters involved in the experiments and the main 

numerical simulations were listed. 

The experimental apparatus and procedures were briefly described in chapter 3. An 

overview of the interrupted-plate duct test rig and instrumentation was presented along 

with its dimensions and performance characteristics. A summary of the experimental 

procedure was also provided. The hot-wire section that was designed in the course ofthis 

work was described along with the anemometry equipment. The design, realization, and 

validation of this hot-wire measurement section is considered to be one of the 
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contributions of this thesis. This new test section and the single hot-wire set-up and 

instrumentation, after being validated with a benchmarking investigation, were used to 

investigate the turbulence power spectrums and vortex shedding frequencies in the 

interrupted-plate duct at numerous positions. 

Chapter 4 was devoted to the presentation of the finite volume method (FVM) used in the 

numerical investigations. First, the goveming equations were recast to facilitate the time 

and space integration. Then, the two types of domain that were used in the simulations of 

flows and heat transfer in interrupted surface geometries were described. The integrated 

forms of the goveming equations were then presented along with the numerical schemes 

used to approximate the diffusion and advection rates of transport. Special attention was 

given to the description of the QUICK scheme that was used to model the advection 

effects. Additional computational details, such as the treatment of solid regions, special 

domain boundary calculations, and underrelaxation were described. Then the discretized 

pressure equation was as derived. The overall solution procedure was presented along 

with the line-solver and block-correction algorithms. The development, implementation, 

and validation of this second-order FVM are collectively considered to be one of the 

main contributions of this thesis. This FVM was used to perform numerical investigations 

of flow and heat transfer in interrupted-plate ducts and staggered-plate arrays. In the 

future, it may also be used to simulate various other flows with very few modifications. 

The results of the experimental investigations were presented in chapter 5. Preliminary 

test results were presented first, starting with the benchmarking investigation of 

unconfined flows past cylinders. The hot-wire instrumentation and related procedures 

were validated by measuring vortex shedding Strouhal numbers and comparing the data 

to other experimental results. For the interrupted-plate duct, repeatability and vertical 

symmetry were first established, and then the two-dimensionality and spatial periodicity 

of the turbulence power spectrums were investigated. The demonstration of the two­

dimensionality and spatial periodicity of the turbulence power spectrums is considered to 

be an important contribution of this thesis. It is the jirst time these characteristics of this 

flow property have been quantitatively established for this geometry. The power 
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spectrums and the corresponding vortex shedding Strouhal numbers were obtained at 

multiple positions in the duct. These experimental data are considered to be one of the 

main contributions of this work. The turbulent power spectrum measurements and 

dimensionless vortex shedding frequencies are potentially useful for checking and 

refining future mathematical models and numerical methods for the simulations of su ch 

jlows. 

Additionally, in chapter 5, the results of the preliminary and main numerical 

investigations were presented. The numerical method was validated successfully with 

two test problems. First, steady spatially-periodic fully-developed laminar flow and heat 

transfer in staggered plate arrays were investigated and the results were compared with 

those of Sebben (1996). The excellent agreement of results confirmed the capability of 

the method to solve cyclic problems. The second test problem, involving unsteady 

laminar flow past a square cylinder, was then solved. The calculated Strouhal numbers 

and drag coefficients were in good agreement with the experimental and numerical data 

found in the literature, thus validating the implemented Crank-Nicolson time scheme. 

The first main problem of interest, unsteady laminar developing flow in interrupted-plate 

ducts, was then tackled. Time-mean modular friction factors and vortex shedding 

Strouhal numbers were obtained and showed good agreement with those calculated with 

an axially-cyclic domain by Sebben (1996). Multiple domain types were investigated and 

the modular friction factors established the existence of the spatially-periodic fully­

developed regime after sorne distance downstream from the inlet. This simulation of 

developing unsteady jlows in interrupted-plate ducts is considered to be one of the main 

contributions of this work. This is the first time, to the author 's knowledge, that unsteady 

laminar jlows were simulated from the duct entry down to the spatially-periodic fully­

developed region without the use of a cyclical domain approximation. Finally, the results 

of the last main problem, unsteady laminar developing flow in staggered-plate arrays, 

were presented. Grid and time step independence studies were first conducted. Modular 

friction and Colburn factors were then obtained along with vortex shedding Strouhal 

numbers. The spatially-periodic fully-developed regime was shown to prevail after sorne 

distance from the inlet for most of the investigated Reynolds number range. For a 
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Reynolds number of 600, a larger domain was found to be necessary to establish the 

existence of this regime with high confidence. Numerous domains were investigated and 

multiple solutions were discovered when two module rows were included in the lateral 

direction (6X2 modules domain). The first of these stable solutions was obtained by 

introducing the 6Xl do main solution twice in the 6X2 domain. The second one was 

obtained by starting the simulation from scratch. This is deemed as the last of the main 

contributions of this thesis. The existence of multiple solutions was discovered for 

domains containing two modules in the lateral direction. AIso, this is the first time to the 

author's knowledge that unsteady laminar flows were solved .!rom the array inlet plane 

downstream to the spatially-periodic fully-developed region. 

6.2 SUGGESTIONS FOR EXTENSIONS OF THIS WORK 

A few suggestions for improvements and extensions of this thesis work are listed in this 

section. 

The first logical extension of this work consists of gathering experimental data on friction 

factors in the fully-developed region of the rectangular interrupted-plate duct for the 

range of Reynolds numbers investigated in the numerical studies, for comparison 

purposes. Since the minimum flow rate limit of the apparatus is at the moment dictated 

by the lowest measurable differential pressure capability of the available transducer, it 

would be interesting to acquire a new transducer with enhanced capabilities and the 

extend the current experimental investigation to laminar steady, laminar unsteady, and 

transitional regimes. 

It would also be interesting to perform additional numerical investigations of flows and 

heat transfer in staggered-plate arrays. The effects of including more modules in the 

lateral domain direction could be investigated when available computational power will 

make such simulations possible. Additionally, the spatially-periodic fully-developed 

regime could be investigated with domains having both axial and lateral cyclic 

conditions. Finally, geometries with smaller plate thicknesses values, representative of 
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actual heat exchanger cores, could be investigated. Since such geometries require much 

finer grids and longer domains to attain the fully-developed condition, these 

investigations could be performed when the required computing resources would be 

readily available. 

In addition, the power spectrums and Strouhal numbers obtained in the experimental part 

of this work could be used to validate turbulence models for flows in interrupted-surface 

geometries. It would be interesting to perform simulations of turbulent flows in 

interrupted-plate ducts with suitable turbulence models, such as large eddy simulations 

(LES), and compare the calculated power spectrums and Strouhal numbers with the 

experimental data gathered in this work. 

Finally, the author hopes that this thesis work will contribute to the refinement of co st­

effective mathematical models and numerical methods potentially useful for designing 

the next generation of optimized compact heat exchanger cores. 
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