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Abstract

Access to graphical information on the internet remains a significant barrier for blind or

visually impaired individuals, particularly when it comes to data visualizations like charts.

This thesis explores how recent advancements in artificial intelligence can enhance

accessibility through innovations in chart summarization, the process of automatically

extracting information from a chart and compiling it into a textual summary intelligible to

screen readers.

The thesis focuses on two main areas of research. First, it applies the emerging

architecture of large language model agents to the task of chart summarization, a novel

application in this domain. This approach combines recent advancements in chart

information extraction with the reasoning and planning capabilities of large language

models. By leveraging natural language processing technologies, it reduces the need for

curation of annotated datasets traditionally required to train vision AI models. An

implementation of this agent-based approach is developed and evaluated, demonstrating its

effectiveness in generating chart summaries.
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Second, the thesis addresses the challenge of evaluating chart summarization systems.

Adapting approaches from the field of text summarization, it introduces a framework of

criteria to assess various aspects of chart summaries quality. This framework serves to

identify user preferences while enabling accurate measurement and classification of various

chart summarization systems. The framework is assessed through a comparative study with

human evaluators, providing insights into its effectiveness for evaluating automated chart

summarization systems.

The results of this research will hopefully inform future developments in chart

summarization techniques and user-adaptive accessibility solutions.
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Abrégé

L’accès aux informations visuelles sur internet demeure un obstacle majeur pour les personnes

aveugles ou malvoyantes, en particulier concernant les visualisations de données telles que

les graphiques. Cette thèse explore comment les récents progrès en intelligence artificielle

peuvent améliorer l’accessibilité grâce à des innovations dans la synthèse de graphiques, un

processus d’extraction automatique d’informations à partir d’un graphique et de compilation

en un résumé textuel intelligible pour les lecteurs d’écran.

La thèse se concentre sur deux principaux axes de recherche. Premièrement, elle

applique l’architecture émergente des agents basés sur les grands modèles de langage à la

tâche de synthèse de graphiques, une application novatrice dans ce domaine. Cette

approche combine les avancées récentes en extraction d’informations graphiques avec les

capacités de raisonnement et de planification des grands modèles de langage. En

s’appuyant sur les technologies de traitement du langage naturel, elle réduit le besoin de

curation des jeux de données annotés traditionnellement nécessaires pour entraîner les

modèles de vision par intelligence artificielle. Une implémentation de cette approche basée
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sur des agents est développée et évaluée, démontrant son efficacité dans la génération de

résumés de graphiques.

Deuxièmement, la thèse aborde le défi de l’évaluation des systèmes de synthèse de

graphiques. En adaptant des approches du domaine de la synthèse de texte, elle introduit

un des critères pour évaluer divers aspects de la qualité des résumés de graphiques. Ces

critères permettent d’identifier les préférences des utilisateurs tout en permettant une

mesure et une classification précises des différents systèmes de synthèse de graphiques.

Cette méthode est appliquée dans une étude comparative avec des évaluateurs humains,

révélant son utilité pour comparer les modèles et identifier les préférences entre différents

groupes d’utilisateurs.

Les résultats de cette recherche pourront, nous l’espérons, éclairer les futurs

développements dans les techniques de synthèse de graphiques et les solutions

d’accessibilité adaptatives pour les utilisateurs.
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Contributions

This thesis applies LLM-based agent architecture to chart summarization, addressing

dataset scarcity in this domain. The approach combines chart information extraction

techniques with large language model reasoning capabilities, offering a modular solution for

generating summaries without relying on annotated datasets. While not outperforming the

closed-source GPT-4-Vision, our method demonstrates competitive results, particularly in

linguistic aspects, and surpasses the previous open-source state-of-the-art, Unichart. This

contribution provides academia and open-source developers a pathway to potentially match

proprietary model performance through improved information extraction and advanced

open-source LLMs like LLAMA-3.

Our research also identifies differences in chart summary preferences between expert and

novice users. Experts value a balance of linguistic and data-centric aspects, while novices

prioritize relevance. These findings contribute to understanding diverse user needs in chart

summarization and indicate potential for developing adaptive systems tailored to varying

levels of expertise.
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Chapter 1

Introduction

Artificial intelligence (AI) is significantly impacting industries and creating new possibilities

across diverse domains. From healthcare and education to transportation and beyond, AI is

driving substantial innovation and efficiency improvements. Two subfields at the forefront

of this development are computer vision and natural language processing. Computer vision

focuses on enabling machines to interpret and understand visual information, while natural

language processing aims to teach computers to comprehend and communicate in human

language.

The advancements in computer vision and natural language processing have created new

opportunities for AI-driven accessibility solutions. An important challenge at the intersection

of these fields is the automatic summarization of visual data representations, particularly

charts and graphs. While graph summarization has seen significant progress, largely due
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to advancements in image captioning techniques and the availability of large-scale datasets

such as Common Objects in Context (COCO) [1] and Flickr30k [2], the summarization of

charts presents unique challenges that warrant further research .

Charts are a prevalent means of conveying complex data and relationships in a visual

format, used extensively in scientific publications, business reports, and online media.

Unlike graphs, which primarily represent relationships between entities, charts often

combine visual elements, textual information, and numerical data values. This multimodal

nature makes chart summarization challenging, requiring advanced AI techniques to

interpret and synthesize information accurately. This challenge is notable in the context of

accessibility for blind and visually impaired (BVI) individuals. While the text surrounding

a chart may provide some context, it often doesn’t fully capture the information presented

in the visual representation. Despite recent progress in chart summarization techniques,

many current solutions still struggle to fully convey the depth of information in a format

accessible to BVI users [3, 4]. This gap in accessibility leaves BVI users potentially

excluded from accessing important information, limiting their ability to fully engage with

data-rich content.

Generating comprehensive and accurate summaries of charts is a challenging AI task,

requiring an understanding of diverse chart types, data encodings, and represented topics. A

key bottleneck in developing effective chart summarization systems is the need for large, high-

quality training datasets. The intricacy and variety of charts demand substantial amounts of
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labeled examples to train models that can generalize well to the vast space of unseen charts.

However, collecting such datasets through manual human annotation is a time-consuming

and expensive process. Despite recent progress in chart summarization techniques, many

current solutions still struggle to fully convey the depth of information in a format accessible

to BVI users [3, 4]. This presents a significant challenge for progress in this area, as the cost

and effort required to build suitable training data are often considerable.

The first key objective of this thesis is to develop a novel paradigm for chart

summarization that harnesses the power of large language models (LLMs). By leveraging

the extensive general knowledge and reasoning capabilities of LLMs, this approach aims to

reduce the reliance on large labeled training datasets, thus overcoming a critical limitation

of prior work.

While prior research has made strides in extracting information from charts, less attention

has been devoted to the equally important task of synthesizing this information into coherent,

insightful summaries that align with user preferences. The lack of well-defined, measurable

attributes for assessing summary quality has hindered progress in understanding what makes

a chart summary truly effective and valuable to users. To address this gap, the second key

objective of this thesis is to establish a framework of quantitative criteria for evaluating

the quality of chart summaries. Inspired by recent advancements in text summarization

evaluation, we propose a set of criteria, each rated on a 1-5 scale, that capture essential

aspects of summary quality.
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To address these objectives and present our research, this thesis is organized into five

chapters

Chapter 2: Background reviews the current state of chart understanding. It examines

recent developments in computer vision and natural language processing techniques, while

also discussing the limitations of existing chart summarization approaches, with particular

attention to the scarcity of high-quality datasets.

Chapter 3: Design of LLM Agent for Chart Summarization introduces the

primary contribution of this thesis: an LLM-based agent architecture for chart

summarization. It provides a detailed description of the brain, perception, and action

modules that constitute this system.

Chapter 4: System Evaluation assesses the performance of the proposed approach

against relevant baselines. It introduces a quality criteria framework adapted from text

summarization and presents a user study demonstrating its efficacy in capturing nuanced

differences in summary quality across models and user groups.

Chapter 5: Discussion analyzes the key findings on LLM-based chart summarization.

It considers the limitations of the proposed approach and identifies potential future research

directions. The chapter concludes by revisiting the initial objectives and exploring their

implications for improving access to visual data.
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Chapter 2

Background

2.1 Advances in Computer Vision and Natural

Language Processing for Chart Understanding

2.1.1 The Importance of Chart Understanding in Improving

Accessibility for Blind or Visually Impaired People

Chart understanding is a subfield of image understanding focused on automatically

extracting and interpreting information from charts to facilitate user comprehension. It has

a long history of research interest due to its importance in making complex data more

understandable. Early work included knowledge-based systems like WERP in the 1980s [5],

which generated weather reports from charts, and efforts in the 2000s [6] to associate text
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and graphics in scientific charts for more comprehensive semantic understanding .

Chart understanding is important for increasing accessibility for blind or visually

impaired people (BVIP), who face significant challenges when accessing visual information

in charts. While BVIP rely on assistive technologies like screen readers to navigate digital

content, these tools often struggle to convey the full depth of insights and nuances

contained within complex visual representations. The surrounding text may provide some

context, but it rarely captures all the information encoded in the visual elements, such as

trends, patterns, data points relationships, and intended message. Consequently, BVIP are

frequently excluded from accessing critical information, hindering their ability to fully

engage with the content and participate in data-driven discussions [7].

To address this accessibility gap, researchers have explored various approaches to

extracting meaningful information from charts and presenting it in alternative formats that

are more accessible to BVIP. These efforts include developing techniques for automatically

parsing and analyzing chart images to identify key components such as axes, labels, and

data points; a task commonly known as chart understanding [8, 9, 10, 11, 3]. By extracting

this structured information, it becomes possible to generate alternative renderings of charts

that convey the same insights through non-visual modalities, such as audio signals,

vibrotactile feedback or force feedback haptics [12, 13]. The ultimate goal is to create a

seamless and engaging experience for BVIP by combining these alternative renderings into

a coherent and informative format [14, 15, 16].
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Image-to-text chart understanding is a promising approach to bridging the accessibility

gap for BVIP by translating chart images into textual representations. It encompasses

three main tasks: chart visual question answering (CVQA), chart derendering, and chart

summarization. CVQA involves providing accurate answers to natural language questions

about a chart, requiring an understanding of both visual elements and textual content.

Chart derendering, also known as chart-to-table, converts a chart image into a structured

data table by identifying and extracting components such as bars, lines, legends, and axes.

Chart summarization, the primary focus of this thesis, generates concise textual summaries

that capture the key insights and salient information in a chart by analyzing visual and

textual elements to produce a narrative highlighting the most important aspects of the data.

Among these tasks, chart summarization has received less attention in the research

community but provides significant value for BVIP. By generating informative,

well-articulated text summaries encapsulating the main takeaways of a chart, chart

summarization enables BVIP to access and comprehend the essential information conveyed

in visual representations. This thesis aims to advance chart summarization methods by

developing new methods in summary generation and evaluation.

The methods employed in image-to-text chart understanding, particularly in chart

summarization, draw inspiration from advancements in the field of image understanding

[17]. The next section will present the evolution of image captioning and chart

summarization methods, exploring the architectures and techniques that have been
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adapted from image understanding to tackle the challenges of extracting and conveying

information from charts in a textual format.

2.1.2 Evolution of Image Understanding and Chart

Understanding Methods

A comprehensive survey on image captioning methods, a task closely related to chart

summarization, provides theoretical insights into the architectures used in image

understanding systems [18]. The image captioning pipeline typically consists of two main

components: a visual detector for extracting factual information from visual elements, and

a description generator for producing descriptions, answers, or tables based on the

extracted visual information.

Over the years, the implementation of these components has evolved significantly. Early

machine learning-based approaches included template-based methods [19], which relied on

predefined templates and statistical language models to generate captions using object

detectors. This approach was applied to chart summarization, using a combination of

neural networks for visual detection and three-part templates for description generation

[10], consisting of a premier (describing basic shape and factual information), a core

(conveying the intended meaning of the chart), and a wrapper (providing additional details

for certain chart types). However, these methods were limited by their reliance on

manually defined features and templates, restricting their generalization capabilities.
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Retrieval-based methods focused on ranking existing captions or images based on their

similarity to the input, selecting the most relevant ones from a predefined dataset [20]. The

limitations here were the dependency on dataset diversity and size for caption relevance

and novelty, and the reliance on large labeled datasets with simple, short captions, making

them unsuitable for chart summarization.

In recent years, there has been a paradigm shift towards deep learning-based approaches

for image captioning. Encoder-decoder models, inspired by machine translation systems,

encode visual information using convolutional neural networks (CNNs) and decode it into

textual descriptions with recurrent neural networks (RNNs) [21, 22, 23]. This end-to-end

approach allows for more flexible and contextually relevant captions by learning features

directly from data. It has been applied to chart summarization in works like STLCQA

[24]. Attention-based models further refine the encoder-decoder architecture by enabling the

model to focus on specific parts of the image while generating each word of the caption,

mimicking human visual attention [25]. This approach leads to more detailed and accurate

descriptions and has been extensively used for CVQA and chart derendering models, such

as ChartQA [26], MatCha [11], and DePlot [27] models, but also in chart summarization as

in the Chart-to-Text [4] and UniChart models [3].
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2.1.3 Dataset Scarcity in Chart Summarization

While Deep Learning methods have become the dominant approach in image captioning,

CVQA, and chart derendering, they require large amounts of high-quality labeled data to

reach their full potential. Unfortunately, as highlighted in a review on chart classification

and captioning [17], the main limitation in applying these techniques to chart

summarization is the scarcity of such datasets. Fredriksson et al. (2022) [28] found that

annotation costs vary significantly with task complexity and required domain expertise.

More constrained tasks, such as verification or simple identification, require less time and

resources than open-ended, creative tasks. This particularly impacts chart summarization,

which requires creating coherent, multi-sentence descriptions, compared to CVQA’s brief,

focused answers. With annotation time increasing non-linearly with task length, and

validation costs also rising with complexity, creating high-quality summarization datasets

becomes prohibitively expensive compared to question-answering ones. Recent efforts like

Chart-to-Text [4] have aimed to create a large labeled dataset with over 35k chart

summaries. However, the dataset suffers from issues with the label summaries containing

information not present in the charts, leading to models trained on it exhibiting severe

hallucination problems [29]. These models generate coherent but false information about

new charts, undermining their real-world usability.

To address dataset scarcity, the creators of the UniChart [3] model proposed crafting a

synthetic dataset from a harmonized corpus of real-world charts. They collected 627,000
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charts from various sources, including online databases, publications, and existing datasets.

For charts with available data tables, they utilized existing datasets or extracted data from

SVG elements. They also performed data augmentation by creating new charts from public

data tables using visualization libraries. For charts without data tables, they employed object

detection and optical character recognition (OCR) to extract textual and visual elements.

To generate summaries for the charts, they used a knowledge distillation approach. First,

they used a large language model, InstructGPT [30], to generate summaries for a subset of

charts based on extracted textual information, which were then reviewed and validated by

human annotators. These summaries were used to fine-tune another model, Flan-T5 XL

[31], which subsequently generated summaries for the larger dataset. The model trained on

the larger dataset, using an attention-based encoder-decoder architecture, achieved state-

of-the-art results in chart summarization. However, this large-scale dataset was not made

public, so the problem of dataset scarcity persists.

2.1.4 Opportunities from Chart Visual Question Answering

In contrast to the scarcity of chart summarization datasets, the fields of CVQA and chart

derendering have thrived due to the emergence of multiple high-quality datasets that are

easier to create. Notable CVQA datasets include DVQA [32], FigureQA [33], LeafQA [34],

PlotQA [35], ChartQA [26], and OpenCQA [36]. The availability of these datasets has led

to a proliferation of research on CVQA and chart derendering, ranging from early systems
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combining manual and automated chart specification for exploration and question answering

[37], to more recent work like MatCha [11] and DePlot [27].

MatCha, enhances visual language pretraining with math reasoning and chart

derendering tasks. MatCha is built upon an image-to-text transformer architecture and

learns to extract information from charts by predicting the underlying data table or the

code used to render the chart. Additionally, it is pretrained on math reasoning tasks using

datasets like MATH and DROP, enabling it to perform numerical reasoning on the

extracted information. This pretraining allows MatCha to achieve state-of-the-art results

on several CVQA benchmarks.

DePlot extends the chart derendering capability of MatCha by fine-tuning the model on

a larger dataset of chart-table pairs, achieving even greater accuracy in extracting structured

data from charts. Furthermore, DePlot improves upon MatCha visual language reasoning

capabilities by proposing a modular approach that separates the task into two steps: (1)

chart-to-table conversion using the DePlot model, and (2) reasoning over the extracted table

using a LLM. In the first step, the DePlot model converts the chart image into a structured

table format. The output of this model is then fed into an LLM, which is prompted to

answer questions or perform reasoning tasks based on the extracted table. By leveraging the

few-shot learning capabilities of LLMs, DePlot achieves considerable results on CVQA tasks

with minimal human-labeled examples, highlighting the promise of this modular approach

in scenarios where labeled data is scarce [27].
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Following these works, the UniChart model utilized MatCha pretraining scheme and

DePlot’s fine-tuning method on their private large-scale dataset to reach even higher accuracy

on CVQA and chart derendering tasks.

This presents an opportunity to leverage the advances and resources in CVQA to improve

chart summarization. By integrating highly accurate CVQA and derendering models into an

automated summarization workflow, we can potentially craft more accurate, coherent, and

comprehensive summaries, even in the face of limited labeled summarization datasets.

2.1.5 Conclusion

In conclusion, while chart understanding has progressed significantly, chart summarization

remains challenging due to the scarcity of high-quality labeled datasets. Models from

related fields like CVQA and chart derendering offer promising building blocks, but require

sophisticated integration to generate coherent summaries. Recent advances in LLMs

present an opportunity to bridge this gap through their strong language and cognitive

capabilities. The following section introduces an LLM-based agent architecture designed to

use these components for robust chart summarization.
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2.2 Large Language Model Agents and Machine

Learning Models as Tools

2.2.1 Large Language Models as AI Agents

AI agents are artificial entities that perceive their environment, make decisions, and take

actions to achieve specified goals, with recent advancements in LLMs enabling increasingly

capable implementations [38]. These LLM-based agents rely on a modular architecture,

consisting of a central brain module that interacts with perception and action modules,

to understand and interact with their environment effectively, making them particularly

promising for complex tasks like chart summarization.

2.2.1.1 Brain Module of LLM-based AI Agents

The brain module, centered around an LLM, serves as the hub for various cognitive

capabilities, including natural language interaction, knowledge representation, memory

management, reasoning, planning, and generalization [38]. LLMs excel at engaging in

multi-turn conversations, generating coherent text, and comprehending the intentions

behind language to a certain extent [39]. Instruction tuning enables LLM-based agents to

generalize to new tasks without additional training, a capability known as zero-shot [40], or

few-shot generalization [41]. This flexibility is particularly valuable for tasks like chart

summarization, which may not have been included in the pretraining or fine-tuning data.
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To enhance the reasoning and planning capabilities of LLM-based agents, techniques

such as chain-of-thought [42] prompting, self-consistency [43] methods, and task

decomposition have been developed. Chain-of-thought prompting encourages the model to

explicitly establish a thought process before generating answers, while self-consistency

methods enable the model to explore multiple reasoning paths for optimal decision making.

Task decomposition breaks down complex problems into more manageable sub-tasks,

making problem-solving more efficient and effective.

However, challenges remain in understanding implicit information [44] and mitigating

hallucinations [45], where the model generates inconsistent or factually incorrect content.

Memory management is also a crucial aspect of the brain module, as the amount of memory

an LLM can process at once is limited by the size of its context window. Methods such

as text truncation, input segmentation, attention mechanism modifications, and memory

summarization techniques have been proposed to address this limitation [46].

2.2.1.2 Perception Module of LLM-based AI Agents

The perception module is the component of LLM-based AI agents that enables them to

receive and process information from various sources and modalities [38]. This perceptual

space allows the agents to understand their environment, and make informed decisions .

Textual input is the native modality that LLMs are highly proficient at processing. While

LLMs inherently lack the ability to directly process visual information like images, integrating
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visual perception significantly expands the agent’s understanding of the world. One approach

to enable LLMs to understand visual information is to combine an image encoder, such

as those based on the vision transformer (ViT) [47] architecture, directly with the LLM

to perceive visual content . The image is divided into patches, linearly projected, and

treated as input tokens for the transformer. By calculating self-attention between tokens,

information from the entire image can be integrated. While this end-to-end training of the

visual encoder and LLM can achieve remarkable visual perception abilities, it comes at a

substantial computational cost. Large language models that have been extended with these

visual perception capabilities are referred to as vision large language models (VLLMs). A

prominent example of a VLLM is GPT-4-Vision [48] from OpenAI, which incorporates an

image encoder to gain the ability to natively process and understand visual information.

A more efficient paradigm is to use extensively pre-trained visual encoders and LLMs,

freezing one or both of them during training to balance computational resources and model

performance [49]. However, an extra learnable interface layer is typically required to align

the visual encoder’s output with the LLM’s input embeddings. For example, the querying

transformer (Q-Former) module has been used as an intermediate layer to extract language-

informative visual representations.

Despite these advancements, current methods for visual-linguistic learning in LLMs

tend to overfit to the pretraining dataset and struggle to generalize or few-shot learn in

new domains [38]. This poses a particular challenge for niche applications like chart
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understanding, where large-scale datasets for pretraining a visual encoder are not readily

available [17]. The lack of a sufficiently diverse and comprehensive dataset of charts

hinders the development of a robust visual perception module for this specific domain.

Given these limitations, an alternative approach to expanding the perception space of

LLMs to the visual domain is by utilizing external tools with computer vision capabilities.

This is made possible by the action module of the LLM-based agent, which enables the

agent to interface with specialized visual processing tools to virtually extend its perception

capabilities without the need for large-scale pretraining datasets or computationally intensive

end-to-end training.

2.2.1.3 Action Module of LLM-based AI Agents

While LLMs have demonstrated remarkable abilities in natural language understanding and

generation, they often lack the domain expertise or computational capabilities to directly

complete complex real-world tasks. One promising approach to address these limitations is

enabling LLM-based agents to actively interact with their environment using external tools

[38].

The ReAct framework, proposed by Yao et al. (2023) [50], is a methodology that enables

LLMs to reason about and utilize specialized tools. It achieves this by combining reasoning

and acting. ReAct augments the action space of an LLM agent to include both natural

language generation and tool-specific actions. By interleaving reasoning traces and tool
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interactions, the agent can dynamically compose information, track progress, and adapt

its plans based on the evolving context. The thoughts guide the selection and application

of tools, while the actions interface with the external tools to gather information or effect

changes in the environment. Through this iterative process, the agent can break down

complex tasks, reason about intermediate results, and construct robust and interpretable

task-solving trajectories [51]. Due to its simplicity and impressive performance, the ReAct

framework has been widely adopted in subsequent works [52, 46, 53].

Building upon the ReAct framework, Qin et al. (2023) [54] introduced ToolLLM, a

framework for reinforcing open-source LLMs’ capabilities in tool use through fine-tuning on

a large-scale tool-augmented dataset. Central to the ToolLLM framework is the

construction of ToolBench, an instruction-tuning dataset covering over 16,000 APIs.

ToolBench characterizes each tool to the LLM by providing detailed documentation in a

structured JSON format, including functionality descriptions, required parameters, and

example responses. By pre-training on this rich tool dataset, LLMs can generalize their

tool use capabilities to new, unseen tools through in-context learning, where the new tool is

characterized in the same JSON format used during training. In addition to the fine-tuning

framework, ToolLLM also proposes an alternative to the ReAct reasoning approach called

depth-first search based decision tree (DFSDT) reasoning. In DFSDT, the agent explores

multiple reasoning paths, retracts unproductive steps, and strategically navigates to the

most promising path. While drastically more computationally intensive, this approach
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enhances the planning and reasoning abilities of the LLM. While the ToolLLM framework

has helped open-source models reduce the gap with closed-source models in terms of tool

use capabilities, the latter remain significantly superior. In particular, GPT-4 currently

achieves state-of-the-art results on the ToolBench benchmark, far outperforming

open-source models like ToolLLaMA.

Recent work on Prismer [55] showcases how tool use can enable LLM-based agents to

achieve state-of-the-art performance on vision-language reasoning tasks with orders of

magnitude less data than prior approaches. By leveraging an ensemble of pre-trained

vision, language, and multi-modal expert models as tools, Prismer efficiently pools their

specialized knowledge to bootstrap strong multi-modal reasoning capabilities. The expert

resampler and adaptor modules proposed in Prismer exemplify effective techniques for

integrating multiple expert tools while preserving their pre-trained knowledge. Prismer’s

strong results demonstrate that tool use, when combined with judicious architecture

design, can enable highly sample-efficient learning, robustness to noisy tools, and

impressive zero-shot and few-shot generalization. These findings underscore the promise of

tool use as a paradigm for modularizing multi-modal learning and facilitating knowledge

transfer from pre-training to downstream tasks.

Importantly, the action module provides a means to extend an LLM-based agent’s

perception capabilities beyond its native language modality. By interacting with visual

processing tools, the agent can indirectly perceive and reason about images without
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requiring a specialized visual encoder to be integrated into its core architecture, offering a

pragmatic alternative to the challenging and data-intensive process of directly training an

LLM to encode images.

A prime example of such an LLM-based agent with extended visual perception through

tool use is Visual ChatGPT [56]. This system integrates a diverse set of visual foundation

models (VFMs) spanning vision and vision-language tasks with ChatGPT using a prompt

manager module. The VFMs cover a wide range of visual processing capabilities, including

visual question answering, image captioning, object detection, image generation, and image

editing. The prompt manager, equivalent to the brain module in the framework from Xi et al.

(2023) [38], serves as a bridge between the language and vision modalities, converting visual

information into language instructions for selecting, executing, and chaining the VFMs based

on the dialogue context. This enables Visual ChatGPT to perform tasks such as answering

questions about image content, generating images from textual descriptions, and executing

complex image editing operations.

Through multi-turn discussion experiments and case studies, Visual ChatGPT

demonstrated impressive multimodal conversational and visual reasoning capabilities. It

was able to handle multi-step visual editing instructions by sequencing relevant VFMs. For

example, given a user request to “detect the depth map of the image first, show the depth

image, then generate a new image based on this depth map, and finally describe the final

image”, Visual ChatGPT first used an depth VFM to compute the gradient-based depth of
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the original image, an image-to-image VFM to generate from the depth image a new scene

with the same character and objects, and finally a captioning VFM to describe the new

scene of the image. In other experiments, the system also showed proficiency at answering

questions about image content and style, such as identifying objects, describing their

relationships, and making precise modifications to the image based on language input. The

authors noted that the modular tool-based approach offers flexibility and extensibility

advantages, allowing new VFMs to be easily incorporated to expand the agent’s

capabilities.

2.2.2 Conclusion

In conclusion, LLM-based agents have emerged as a promising solution for autonomous

tasks requiring cognitive capabilities, such as chart understanding and summarization. These

agents operate through three specialized modules: a brain module for reasoning and decision-

making, a perception module for processing various input modalities, and an action module

for interfacing with external tools. Recent systems like Visual ChatGPT and Prismer have

demonstrated the remarkable effectiveness of this approach.
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2.3 Limits of Chart Summarization Evaluation

Methods

2.3.1 Current Evaluation Methods in Chart Summarization and

Their Limitations

Evaluation is central in validating research hypotheses and driving progress in any field. In

chart summarization, evaluation aims to measure the quality of generated summaries, but

faces significant challenges in deriving reliable, well-aligned metrics from this objective. This

section examines current evaluation approaches in chart summarization, their limitations,

and opportunities for improvement.

At its core, an evaluation procedure optimizes an objective - in this case, generating high-

quality chart summaries. Abstractive text summarization aims to compress long textual

documents into a short, human-readable form that contains the most important information

from the source by detecting salient parts and paraphrasing them to form the final output,

a concept that extends well to chart summarization [57]. However, measuring this objective

poses difficulties. Effective metrics should be specific, aligning closely with the objective,

and reliable, producing consistent results under identical conditions.

Evaluation methods for chart summarization fall into two main categories: quantitative

heuristic scores and human evaluator pairwise comparisons. Heuristic metrics, such as
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Bilingual Evaluation Understudy (BLEU), Recall-Oriented Understudy for Gisting

Evaluation (ROUGE), and Consensus-based Image Description Evaluation (CIDEr), assess

a candidate summary against a reference summary by comparing words or word groups [4].

While highly interpretable, these metrics heavily penalize paraphrasing and alternative

word choices, limiting their flexibility. BERTScore [58] offers an alternative by comparing

vector embeddings from a pre-trained BERT model, aiming to capture semantic similarity

over exact wording. However, the opacity of neural networks renders this method less

interpretable. All these metrics also require labeled reference summaries, which are scarce

in chart summarization datasets. Consequently, heuristic scores often align poorly with the

evaluation objective and show weak correlation with human judgments of summary quality

[3, 59].

Human evaluator pairwise comparison, the second primary approach, is considered the

gold standard in chart summarization evaluation [10, 4, 3]. Evaluators view a chart image and

two candidate summaries, selecting their preferred summary. However, this method’s high

cost often constrains study size, failing to account for evaluator variability and chart diversity.

Most studies, such as Chart-to-Text and UniChart, also do not specify the preference criteria

given to evaluators, obscuring the basis for their judgments and compromising the method’s

specificity and objective alignment [4, 3].

The challenges in creating reliable and objective-aligned evaluation metrics for chart

summarization are similar to those encountered in the more mature field of text
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summarization. Text summarization has a longer history and greater resources, which have

led to the development of strategies to address these common challenges. In the next

section, we will explore how these strategies from text summarization evaluation could be

adapted and applied to improve the evaluation of chart summaries.

2.3.2 Inspiration and Opportunities from Text Summarization

Evaluation

Text summarization aims to compress long documents into shorter forms that capture the

most important information. Two main approaches exist: extractive summarization, which

selects and concatenates key sentences from the source text, and abstractive summarization,

which generates new sentences that convey the essence of the original document [60]. As

chart summarization more closely resembles abstractive summarization, this section focuses

on evaluation methods in that domain.

Compared to chart summarization, text summarization benefits from a wealth of large-

scale datasets. Notable examples include DUC 2004, containing 500 news articles paired

with human-written summaries; CNN/DailyMail, featuring 300,000 articles with author-

written highlight summaries; and XSum, a collection of 230,000 articles with single-sentence

summaries. These large datasets have first pushed towards the development of automated

evaluation metrics like ROUGE, BLEU, CIDEr, and BERTScore, which have subsequently

been adopted in chart summarization. However, it was also noted in text summarization
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literature that these metrics often poorly align with human judgments of summary quality

[59].

To address these limitations, recent text summarization research has shifted towards more

informative human evaluation protocols. While they used to only be pair-wise comparison,

they now involve expert annotators grading specific quality criteria (QC) on a 5-point Likert

scale, as proposed by, later reinforced in the SummEval meta-evaluation of metrics’ quality

[57, 59]. The four key criteria are:

• Coherence: Assessing the overall structure and logical flow of the summary.

• Fluency: Rating the grammatical correctness and readability of the summary.

• Consistency: Evaluating the factual alignment between the summary and source.

• Relevance: Determining if the summary captures the most important information from

the source.

Introducing these evaluation criteria to chart summarization benchmarks has the

potential to significantly enhance the informativeness and reliability of quality assessments.

While this approach is considered the gold standard in text summarization, it is

resource-intensive and currently difficult to automate, as highlighted by both Kryscinski et

al. (2019) [57] and Fabbri et al. (2021) [59].
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2.3.3 Conclusion

In conclusion, current chart summary evaluation methods face significant limitations.

Heuristic metrics like BLEU, ROUGE, and CIDEr often poorly align with human

judgments, while human evaluator pairwise comparison lacks insight into specific quality

attributes. Drawing from text summarization research, we propose addressing these

challenges through quality criteria assessment by human annotators, enabling more reliable

and informative quality measurements.
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Chapter 3

Design of Large Language Model

Agent for Chart Summarization

The field of chart summarization has seen significant advancements in recent years, primarily

driven by end-to-end vision models such as UniChart. These models, while demonstrating

promising results, rely heavily on extensive labeled datasets comprising chart-summary pairs.

The creation and maintenance of such datasets present substantial challenges in terms of cost,

time, and scalability, limiting the broader applicability of these approaches in real-world

scenarios.

This chapter presents a paradigm for chart summarization that aims to address these

limitations. Our proposed method leverages the expansive general knowledge, reasoning

capabilities, and tool utilization proficiency of LLMs, combined with the precision and
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domain-specificity of chart visual question answering (CVQA) and chart derendering

models. This approach forms an autonomous framework centered around an LLM “brain”,

capable of interpreting and summarizing charts without relying on expensive labeled

datasets.

The primary objective of this chapter is to detail the design and architecture of a chart

summarization system that circumvents the need for extensive labeled data. In doing so, we

address the following research question: How can an LLM-based agent architecture effectively

leverage domain-specific models as tools to enable chart summarization without labeled

data? Our exploration focuses on a modular architecture comprising a brain module powered

by an LLM and specialized tool modules, designed to enable flexible and efficient chart

summarization.

The chapter is structured as follows: Section 3.1 provides an overview of the agent

architecture and its key components. Section 3.2 presents the detailed implementation of

each module, including the brain, action, and perception modules. Section 3.3 concludes with

a discussion of the key design aspects, potential strengths and limitations of our approach,

setting the stage for the empirical evaluation in the subsequent chapter.

3.1 Architecture Overview

The chart summarization system proposed in this thesis employs an autonomous agent type

of architecture, inspired from works such as Prismer [55] and Visual ChatGPT [56], and
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Figure 3.1: Architecture overview of the summarization system

following the guidelines established by Xi et al. (2023) [38], which combines the reasoning

capabilities of LLMs with the precision of specialized visual processing tools. This approach

aims to overcome the limitations of current end-to-end deep learning methods by leveraging a

modular, tool-based design that enhances flexibility, improves sample efficiency, and increases

interpretability. The architecture of the agent can be observed in Figure 3.1.

The system operates through an iterative process of information extraction,

interpretation, and reasoning. The complete process follows this sequence: First, the brain

module formulates plans and instructions based on its current understanding of the chart.

Then, the action module executes these instructions by interacting with the appropriate

tools. Next, the perception module receives and formats the extracted information,

providing the brain module with formatted text for further analysis and decision-making.

This cycle continues until the brain module determines that sufficient information has been

gathered to generate a comprehensive chart summary, or until the predetermined iteration
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limit is reached.

This modular design allows for the integration of various specialized tools, such as chart

visual question answering (CVQA) models, chart derendering tools, and code interpreters.

These tools can be queried and utilized as needed by the action module under the guidance

of the brain module.

The design choices for this architecture are motivated by several key rationales. Firstly,

this modular tool-based approach offers significant theoretical advantages over traditional

end-to-end deep learning methods. Firstly, it enhances flexibility and extensibility by

allowing the system to adapt to new tools without the need for retraining. Tools are

provided to the model in a few-shot learning style, accompanied by concrete explanations

and examples. This adaptability enables the seamless integration of new machine learning

models as they emerge, outperforming existing ones in specific domains of chart

information retrieval such as label extraction, trend recognition, chart derendering, or

CVQA. The section dedicated to the action module will present how and why we selected

the specific tools used in our architecture.

Moreover, our approach has the potential to improve sample efficiency and accuracy by

leveraging domain-specific deep learning models as tools, thereby reducing the demand for

high-quality labeled data typically required to train end-to-end summarization deep learning

models. Chart summarization is a complex task that demands strong capabilities in both

visual information extraction and language understanding. Traditional approaches would
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require an extensive dataset of chart-summary pairs, potentially in the order of millions,

which is both costly and time-consuming to produce. In contrast, our agent framework

could allow for the use of smaller, more specialized models trained on simpler tasks, such as

CVQA and chart derendering, leaving the complex natural language summarization to the

large language model. This division of labor potentially leads to improved sample efficiency,

accuracy and reduced reliance on large-scale labeled datasets.

Finally, this approach can offer greater interpretability and controllability. Rather than

relegating the reasoning and summary generation process to the abstract mechanisms of

an end-to-end neural network, we leverage the agent’s explicit reasoning capabilities. This

allows for a more transparent identification of the information used to generate summaries

and how it was interpreted to derive the high-level message conveyed by the chart. Such

transparency facilitates easier error diagnosis, model improvement, and potentially, greater

trust in the system’s outputs.

The subsequent sections will dive deeper into each component of the architecture,

delineating their functionalities, interactions, and the rationale behind their design choices.
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3.2 Modules Implementation

3.2.1 Perception Module

The perception module serves as an abstraction layer that translates diverse outputs from the

action module’s chart analysis tools into a format suitable for the brain module’s processing.

More concretely, in our implementation, the perception module is a set of functions which

format tool outputs into a consistent string structure with predefined fields: a tool call ID,

the tool’s name, any arguments passed to the tool, and the tool’s output which is prefixed

with a standard “Observation:” marker. This structured information is then added to the

LLM’s prompt for the next iteration of brain reflection, ensuring consistent processing by the

LLM while maintaining a traceable record of the agent’s decision-making process through

its logs

The capabilities of the perception module are inherently bounded by the underlying

transformer architecture employed in our system. As most transformer-based LLMs during

this research did not support direct image processing, our system processes chart images

indirectly by converting visual information into text-based descriptions. Additionally, the

transformer’s context window limitation, typically ranging from 8,000 to 16,000 tokens [61],

constrains the amount of information that can be processed simultaneously, leading us to

implement a rolling summarization memory mechanism that will be detailed in the brain

module section.
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With this understanding of how our system processes and formats input information, we

now turn to examine its core reasoning component: the brain module.

3.2.2 Brain Module

The brain module uses GPT-4 (checkpoint 0613) as its core language model, selected for its

superior performance in complex reasoning tasks and function calling capabilities [62].. This

latter ability was essential for our tool-based chart analysis approach.

The second core component of the brain module is the system prompt that guides the

model’s reasoning process. This prompt instructs the LLM to analyze charts through

alternating “Thought” and “Action” steps: reflection phases where it evaluates current

information and identifies gaps, followed by action phases where it generates JSON

commands for specific tools. Our Python backend parses and executes these commands

and appends the results to the context for the next iteration. The effectiveness of this

iterative process relies heavily on the prompt engineering techniques we examine next.

3.2.2.1 Prompt Engineering Techniques

The brain module implements a combination of chain-of-thought (COT) [42], ReAct

framework [50], and task decomposition as the main prompt engineering techniques. The

system prompt structures the LLM’s analysis process into explicit reasoning steps through

task decomposition and iterative cycles of analysis.
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When analyzing a chart, the brain module first breaks down the task of chart

understanding into specific questions about visual elements, data points, and trends. Each

sub-task then triggers a cycle of COT reasoning and tool interaction: the module reflects

on what information is needed, selects appropriate tools to gather this information, and

evaluates the results to inform its next steps. For instance, it might first reason about

identifying the chart type and key elements, then systematically query tools about titles,

labels, and specific data points, building a comprehensive understanding through each

iteration."

The integration of these techniques in our prompt engineering serves multiple purposes.

Task decomposition manages complexity by breaking down chart analysis into manageable

components. COT reasoning ensures explicit and traceable decision-making in tool

selection and information interpretation. The ReAct framework provides a structured way

to interleave this reasoning with concrete actions, reducing potential hallucinations by

grounding the LLM’s analysis in tool-verified data. Central to this approach is the

module’s ability to effectively select and utilize appropriate tools throughout the analysis

process, which we examine next.

3.2.2.2 Tool Learning and Utilization

A major aspect of the brain module’s functionality is its ability to effectively use a variety of

tools for chart analysis. This capability is primarily achieved through ICL, a powerful feature
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of large language models that allows them to adapt to new tasks based on instructions and

examples provided in their input prompt.

In our system, each tool is described to the brain module through a structured sub-

prompt that includes a clear description of the tool’s functionality, its input parameters, and

the expected format of its output. We also provide several examples of the tool being used

correctly in various scenarios, allowing the brain module to generalize from these examples

to novel situations without requiring extensive training or fine-tuning. For instance, our

“Python Code Interpreter” tool, which is useful for analyzing data from charts, might be

described as follows:

“The ‘PythonCodeInterpreter’ tool executes Python code on a pandas dataframe

representation of the chart data. It has access to numpy, pandas, and scipy libraries, as

well as a pre-defined ‘df’ dataframe containing the chart data, obtained from the

‘ChartDerendering’ tool. A custom ‘get_slope’ function is available for trend analysis. The

tool takes Python code as input and returns the printed output. Example usage: Input:

print(df[’Value’].mean(), get_slope(df, ’Value’, window_size=2)), Output: 42.5, 0.75.”

This approach is particularly valuable for tools like the Python Code Interpreter, which

need to perform a wide range of data analysis tasks, from simple statistical calculations to

complex trend analyses, adapting their approach based on the specific characteristics of each

chart.
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3.2.2.3 Memory Mechanism

As mentioned in the section about the perception module, the brain module of our LLM-

based agent faces a significant challenge in the form of context length limitations. The GPT-4

checkpoint (0613) employed in our system has a maximum context length of approximately

8,000 tokens (about 6,000 words). This constraint poses a potential issue for our chart

summarization task, which often requires multiple rounds of reasoning and tool interactions.

As the analysis progresses, there’s a risk of “forgetting” valuable information from earlier

rounds, potentially compromising the quality and coherence of the final summary.

To address this challenge, we explored several memory management strategies. Initially,

we considered selective information retention, which involved filtering the types of

information kept in memory. However, our experiments revealed that preserving both

reasoning traces and tool calls was central for maintaining coherence between reasoning

rounds and enhancing the agent’s overall performance. We also explored information

compression by using an LLM to summarize reasoning traces, but this approach led to a

slight decline in inter-round coherence and significantly increased processing time due to

additional LLM calls.

Based on our experimental results, we adopted a rolling window with summarization

strategy. This approach offers a balance between memory conservation and information

retention. As the agent progresses through reasoning cycles, it accumulates information in

its working memory. When the accumulated information approaches the context length
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limit (approximately 7,000 tokens in our implementation), the oldest information is

summarized into a concise yet insightful paragraph. This summary replaces the original

detailed information, freeing up memory space while preserving key insights. The process

repeats as necessary throughout the chart analysis task.

In practice, our agent rarely encounters situations where it exceeds the context window, as

most chart analyses can be completed within the available token limit. Still, for particularly

complex or data-rich charts that do approach this limit, this approach proves effective. While

this method works well in maintaining coherent reasoning, it inevitably results in some loss

of detail through the summarization process.

It is worth noting, however, that newer language models have been developed with

significantly longer context windows [61], largely mitigating the need for such complex

memorization strategies.

3.2.2.4 Summary Generation

The summary generation phase is implemented through a prompt distinct from the

information extraction phase. This prompt receives all previously collected information;

including tool calls, their inputs and outputs, and reasoning traces; and instructs the LLM

to generate a coherent summary. The effectiveness of this phase heavily relies on careful

prompt engineering, which we detail in this section.

Using COT reasoning, the LLM analyzes the compiled information to plan and structure
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the summary, ensuring systematic integration of all relevant details. Our prompting strategy

builds on Kintsch and van Dijk’s model of text comprehension [63], which emphasizes the

importance of information organization for effective understanding. The prompt provides

specific instructions for the summary structure: an overview of the chart’s main topic, key

trends or data points, and notable implications. This structured approach ensures both

consistency across chart types and deep understanding of the chart’s message.

The prompt also includes explicit quality criteria to guide the generation of the LLM.

These criteria encompass coherence, consistency, fluency, and relevance. By explicitly stating

these criteria, we guide the LLM towards producing summaries that not only convey factual

information but also present it in a clear, well-structured, and meaningful manner.

To further enhance quality and consistency across various chart types, we leverage few-

shot learning [41] by incorporating three manually crafted and carefully reviewed examples

of high-quality summaries into our prompt. These examples serve as implicit templates,

demonstrating the practical application of our structural approach and quality criteria for

different chart types and complexities.

Drawing on Miller’s seminal work on cognitive limitations [64], we implement a target

word count of 50-70 words per summary in our generation process. This constraint serves

multiple purposes: it ensures conciseness while aligning with human cognitive processing

capacity; it compels the system to prioritize the most salient information; and it maintains

consistency across diverse chart types, facilitating user familiarity and expectations.
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In situations where the brain module cannot discern a clear overarching message from

the extracted information, such as when the data points are highly uncorrelated or

contradictory, we employ a specialized prompting strategy. The LLM is instructed to

analyze the available data and generate a summary that explicitly acknowledges the

uncertainty of its conclusions. For instance, the summary might begin with phrases like

“The chart presents varied data points without a clear trend...” or “While the information

is inconclusive, possible interpretations include...”. This approach mitigates the risk of

hallucination by encouraging the model to express uncertainty rather than fabricate

connections. Moreover, by explicitly stating uncertainty in certain situations, we

implement a form of negative framing that, according to MacLeod et al. [65], encourages

appropriate skepticism in BVIP towards AI-generated content.

After the initial summary generation, we implement a self-reflection mechanism inspired

by recent research on AI self-improvement [46]. This approach relies on the LLM’s capability

to critically evaluate its work against the established quality criteria. Based on this self-

assessment, the LLM revises and regenerates the summary. Our experimental tests have

shown improvement after the first iteration of this process, but diminishing returns thereafter,

leading us to limit the process to a single iteration that balances quality with computational

efficiency.

While this approach aims to produce informative and accessible summaries, the quality

of the initially extracted information significantly impacts the model’s ability to generate
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insightful content. The action module, which executes the brain’s instructions and interfaces

with external tools, is therefore crucial to the overall summarization process.

3.2.3 Action Module

The action module serves as the third core component of our LLM-based agent

architecture, acting as the interface between the brain module and external tools for

information extraction. It extends the agent’s perception capabilities by managing tool

interactions: handling API requests, error management, load balancing, and parallel

execution of tool operations.

During system initialization, the action module provides the brain module with

information about available tools, including their parameters and usage instructions. This

modular design allows for easy integration of new tools. This section details the

implementation of the action module and provides a comprehensive overview of the

integrated tools.

3.2.3.1 Tool Interaction Protocol

The action module implements a standardized JSON-based protocol for communication

between the brain and action modules. The protocol defines a simple structure: a tool

identifier and a parameters dictionary containing the necessary information for the tool’s

function. For instance, the brain module might provide the following execution instruction
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for the UniChart ClosedCQA tool:

{

"tool_id": "unichart_closedcqa",

"parameters": {

"question": "What is the highest value in the chart?",

"chart_image": [image_data]

}

}

The action module would then process this instruction, make the appropriate call to the

UniChart ClosedCQA tool, and return the result to the brain module. The output might

look like this:

{

"status": true,

"answer": "125 million sales",

"error_message": null

}

For reliable operation, we implemented error handling in the action module. It first

validates all inputs before execution, ensuring required parameters are present and correctly

formatted. For potential failures, the system implements a retry mechanism with increasing

delays between attempts, allowing up to three retries within a 30-second window to prevent

tool overload. The module maintains detailed logs of all interactions, facilitating system

improvement and troubleshooting.
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The action module implements several optimization techniques to enhance performance.

When the brain module requests multiple independent tool executions, these are processed in

parallel to reduce overall execution time. The system also implements a caching mechanism

that stores summaries alongside chart hash signatures, enabling quick retrieval of previously

analyzed charts. Additionally, multiple independent calls to the same tool are batched and

executed together for improved efficiency.

3.2.3.2 Tools List

The action module integrates several domain-specific tools for chart analysis. We selected

the tools based on three factors: quality of extracted information, coverage of different

information types, and ability to cross-verify information through complementary

capabilities.

The UniChart model forms our toolset’s backbone, providing multiple modes: CVQA,

chart derendering, and chart summarization. These modes share the same self-supervised

pretraining checkpoint, obtained through standard encoder-decoder pretraining [47], but

are fine-tuned for specific tasks. We utilize the CVQA and chart derendering modes to

decompose complex chart summarization into manageable sub-tasks. This approach

achieves sample efficiency in two ways: the pretraining leverages readily available unlabeled

chart images from the internet, while the fine-tuning only utilizes established CVQA and

chart derendering labeled datasets, thus avoiding the need for expensive chart summary
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annotations.

The UniChart ClosedCVQA mode complements the OpenCVQA mode by answering

close-ended questions about specific chart values and attributes. It’s capable of extracting

definite facts and provides high-confidence responses for quantitative information. One of

its limitations is that, when identifying the highest value, it might return only one instance

even if multiple exist. It may also struggle with questions requiring contextual understanding

beyond explicit data.

The UniChart Chart Derendering mode converts visual chart data into structured,

tabular format. To enhance its capabilities, we implemented a post-processing step using

an LLM that cleans the table and creates consistent formatting across chart types,

addressing output variability in the original model. Empty values are cleaned and

appropriate value conversions are performed for compatibility with Python and Pandas

libraries. Since data table extraction is typically required for each chart, we precompute it

during system initialization, allowing immediate access through the Python Pandas

Interpreter tool. While this mode may struggle with unusual chart designs and dense data

points, it provides essential raw data accessibility.

The Python Pandas Interpreter tool executes custom Python code on the dataframe

generated by chart derendering. It utilizes Pandas and NumPy libraries for advanced

statistics and derived insights. We implemented a custom function that fits a linear model

to two series and returns the fitting score and proportionality coefficient, addressing a
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common need in chart interpretation. Safe code execution is ensured through a

combination of prompt engineering and a restricted Docker environment that runs without

privileged access, filesystem writes, or network connectivity.

All tools are implemented as Python applications with HTTP endpoints, containerized

using Docker for standardized interaction and reproducibility. The models are served on a

single GPU with 8GB of VRAM.

3.3 Discussion

3.3.1 Design Choices and Trade-offs

Our modular LLM-based agent architecture addresses a fundamental challenge in chart

summarization: the scarcity of high-quality chart-summary pairs. Rather than relying on

extensive labeled datasets, we leverage the general knowledge and reasoning capabilities of

LLMs combined with specialized chart analysis tools. This design choice achieves sample

efficiency through strategic decomposition of the summarization task: utilizing pre-trained

LLMs for reasoning and specialized tools for specific chart analysis tasks avoids the need

for end-to-end training on chart-summary pairs. The efficiency extends to practical

deployment, where new chart types or domains can be handled by updating individual

tools or prompts rather than retraining an entire system.

When compared to end-to-end approaches like UniChart or VLLMs like GPT-4V, our
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system offers distinct trade-offs. While potentially more complex in terms of system

integration, this complexity is balanced by greater flexibility and interpretability. Each

component can be independently improved or replaced, allowing the system to evolve with

technological advances. End-to-end models, though providing seamless integration between

visual understanding and language generation, require large amounts of task-specific

training data and offer limited flexibility for improvement. VLLMs, while powerful,

demand even more extensive datasets and typically remain inaccessible for open-source

development due to their size and computational requirements.

The primary technical challenge lies in coordinating multiple specialized tools while

ensuring consistent information flow. Each tool introduces its own limitations and

potential biases, which must be carefully managed through robust error handling and

cross-verification mechanisms. The effectiveness of the system heavily relies on the brain

module’s ability to select and utilize appropriate tools for each chart type. However, LLMs

have demonstrated strong capability in reconciling potentially inconsistent information

from various sources, making them well-suited for this coordination role.

The use of AI for chart summarization, particularly for BVIP users, raises important

ethical considerations that influenced our design choices. Potential biases in LLMs or

domain-specific tools could disproportionately affect BVIP users who rely entirely on the

generated summaries. We address this through specific mechanisms: explicit uncertainty

communication in unclear cases, verification of extracted information through multiple
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tools, and careful prompt engineering to encourage balanced and accurate reporting. This

transparency is particularly valuable in applications for BVIP users, where understanding

the system’s limitations and behavior is crucial for building trust and ensuring reliable

usage.

3.3.2 Future Directions and Implications

Our modular approach demonstrates how complex AI systems can be designed without

relying on extensive task-specific datasets, with broader implications for developing AI

accessibility tools where labeled data is often scarce but the need for reliable and

transparent solutions is crucial.

Several promising research directions emerge from this work. The integration of emerging

multimodal LLMs could enhance direct visual understanding while maintaining our system’s

flexibility. Specialized tools could be developed for specific chart types or domains, such as

scientific publications or financial reports. The prompt engineering techniques we developed

could be formalized into reusable patterns for similar modular AI systems. Additionally,

investigating methods for automated tool selection and execution optimization could further

improve the system’s efficiency.

While our architectural analysis suggests potential advantages, empirical validation is

essential. The next chapter evaluates our system’s performance, focusing particularly on

summary quality and accessibility for BVIP users.
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Chapter 4

System Evaluation

Building upon the foundation laid in Chapter 3, where we introduced a novel LLM-based

agent architecture for chart summarization, this chapter aims to provide a thorough

evaluation of our proposed system against relevant baselines, namely UniChart and

GPT-4-Vision. The evaluation process is designed not only to gauge the performance of

our system but also to contribute to the broader discourse on effective assessment

methodologies in the field of chart summarization.

Traditional evaluation approaches in chart summarization face significant limitations.

Automated metrics like BLEU and ROUGE, while widely used, rely on expensive labeled

datasets and often fail to capture the subtle aspects of summary quality, particularly in

visual-textual contexts. Human evaluator rankings, though valuable, are resource-intensive,

limited in scale, and provide little insight into the reasons behind preferences. To address
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these challenges, we adapt quality criteria from text summarization to provide a more

informative and multifaceted assessment of chart summaries. This adaptation allows us to

precisely characterize chart summaries and investigate the key criteria influencing user

satisfaction across different user groups.

In this chapter, we aim to address two research questions that are central to our evaluation

of chart summarization systems and methodologies. First, we seek to determine how our

modular LLM-based agent approach compares to end-to-end visual-language training and

VLLMs in terms of summarization quality. Second, we seek to explore the key factors that

influence user satisfaction across different groups, as assessed by our adapted quality criteria.

The remainder of this chapter provides an evaluation of our chart summarization

system, addressing the aforementioned research questions through a structured approach.

We begin by examining the dataset used for evaluation in Section 4.1, focusing on its

characteristics and relevance to real-world scenarios. Section 4.2 then outlines the baseline

methods selected for comparison, justifying their inclusion based on performance and

relevance. Our evaluation methodology is detailed in Sections 4.3 and 4.4. The former

introduces the quality criteria framework adapted for this study, explaining each criterion

and its application. The latter describes the design and implementation of our user study,

encompassing participant selection, materials preparation, and data collection procedures.

Section 4.5 presents an analysis of the evaluation results, examining both system

performance and user preferences. The chapter concludes with Section 4.6, which discusses
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the implications of our findings, acknowledges limitations, and proposes directions for

future research in chart summarization evaluation.

4.1 Dataset

(a) Democrats’ support for Keystone XL pipeline
over time

(b) Opinions on vaccine requirements for
schoolchildren

Figure 4.1: Examples of Charts from Pew Chart2Text Subset

For the evaluation of our chart summarization system, we utilized the Pew subset of the

Chart-to-Text dataset [4]. This choice was motivated by several factors that align with our

research objectives and the real-world applicability of our proposed LLM-based AI agent

approach.
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(a) Topics in the Pew Chart2Text subset (b) Chart types in the Pew Chart2Text subset

Figure 4.2: Distributions of topics and chart types in the Pew subset of Chart2Text dataset

The Pew subset comprises 10,000 real-world charts extracted from articles published by

the Pew Research Center. For our study, we focused specifically on the 1,200 charts from

the test split, ensuring a robust evaluation of our system on unseen data. This dataset

offers a diverse and representative sample of charts encountered in actual research and

journalism contexts, making it particularly suitable for assessing the performance of our

chart summarization system in practical scenarios.

One of the key strengths of this dataset is its topical diversity. The charts span 12 distinct

categories, covering a wide range of subjects typically addressed in social and economic

research. This variety is crucial for evaluating our system’s ability to generate accurate and

contextually appropriate summaries across different domains, a capability that is essential for

a versatile chart summarization tool. In terms of chart types, the dataset primarily consists

of bar and line plots, which together account for over 90% of the total number of charts.

Additionally, it includes pie charts, area plots, and scatter plots, albeit in smaller proportions.

This distribution reflects the prevalence of different chart types in real-world publications
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and allows us to assess our system’s performance across various visual representations of

data.

Each chart in the dataset is accompanied by rich metadata, including the chart title, chart

type classification, bounding boxes around main visual elements, and the underlying data

table of values represented in the chart. While the dataset also includes captions for each

chart, previous research has identified significant limitations in their quality. These captions,

generated through automated heuristics that selected relevant surrounding paragraphs, often

miss important information or include details not present in the chart itself, potentially

leading to serious hallucination problems for models trained on these captions [4]. Given

these limitations, we have made a deliberate decision to exclude these captions from our

evaluation process. Instead, our research will focus exclusively on the chart images and the

aforementioned metadata annotations. This approach allows us to leverage the most reliable

components of the dataset, ensuring that our evaluation is based on accurate information.

The selection of this dataset and its components allows us to assess our chart

summarization system’s performance in a context that closely mirrors real-world scenarios.

With this robust dataset in place, we can now turn our attention to establishing

appropriate evaluation baselines, which will serve as crucial reference points for measuring

the effectiveness of our proposed approach.
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4.2 Baselines

In order to evaluate the effectiveness of our proposed chart summarization system, we have

selected two state-of-the-art models as baselines for comparison: UniChart and GPT-4V.

UniChart [3] is an end-to-end visual-language model specifically designed for chart

understanding and summarization. It was trained on a large, diverse dataset of over

627,000 charts using a multi-stage learning approach. The model’s architecture consists of

a visual encoder to process chart images and a text decoder to generate outputs.

UniChart’s training procedure involved an initial pretraining phase on multiple

chart-related tasks, including data table generation, numerical and visual reasoning,

open-ended question answering, and chart summarization. This comprehensive pretraining

strategy aimed to imbue the model with a broad understanding of chart elements and their

relationships. Following pretraining, UniChart was fine-tuned to create three specialized

models, each focusing on a different aspect of chart understanding: chart visual question

answering, chart derendering, and chart summarization. These models were fine-tuned on a

public benchmark dataset, specifically the Chart-to-Text corpus, which includes charts

from sources like Statista and Pew Research Center. This fine-tuning phase allowed each

model to specialize in its respective task while building upon the foundation established

during pretraining. This model held the state-of-the-art position in chart summarization

until late 2023.

We chose UniChart as our first baseline due to its direct relevance to the chart
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summarization task and its impressive performance. However, it is important to note that

UniChart’s reliance on a large, labeled dataset of chart-summary pairs highlights one of the

key motivations for our research: to develop a system that can perform well without the

need for extensive, task-specific labeled data.

The second baseline we selected is GPT-4V [48], a large-scale pretrained VLLM by

OpenAI. Released in late 2023, GPT-4V extends the capabilities of the GPT-4 language

model to include visual understanding. While the exact details of its training procedure are

not publicly available, it is reasonable to assume that GPT-4V was trained on a vast

corpus of text and images, likely largely surpassing the scale of UniChart’s training data.

GPT-4V was selected as a baseline due to its state-of-the-art performance in

visual-language tasks and its potential suitability for chart summarization. Given the scale

of its pretraining, it likely encountered numerous chart images, and considering the base

GPT-4 model’s proficiency in text summarization, we can reasonably infer GPT-4V’s

capability in chart summarization. This combination of visual understanding and

presumed summarization skills makes GPT-4V a compelling baseline, despite the lack of

transparency regarding its specific training on chart-related tasks.

By comparing our proposed system against both UniChart and GPT-4V, we aim to

evaluate its performance from different perspectives. UniChart provides a comparison

against a specialized, end-to-end supervised model, while GPT-4V offers a benchmark for

performance against a general-purpose, large-scale VLLM. This dual comparison will help
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us assess the effectiveness of our approach in leveraging AI agents with domain-specific

tools for chart summarization.

While these baselines offer strong points of comparison, effectively evaluating chart

summarization models requires a tailored approach. Traditional text summarization

metrics may not fully capture the nuances of chart summarization, where visual elements

play a crucial role. To address this, we adapt an existing quality criteria evaluation

framework from the field of text summarization to the context of charts. In the following

section, we present this adapted framework.

4.3 Quality Criteria Evaluation Framework

The evaluation of chart summarization presents unique challenges that require a

specialized framework. While text summarization has established evaluation protocols,

chart summarization methods are comparatively underdeveloped. This section presents a

quality criteria evaluation framework for assessing chart summaries.

The motivation for adapting text summarization criteria to chart summarization stems

from several factors. Traditional metrics such as BLEU and ROUGE have shown poor

correlation with human judgment of summary quality in the context of charts [59]. These

metrics often fail to capture details that significantly impact summary quality [66].

Moreover, their reliance on labeled data, which is scarce and expensive to obtain for chart

summarization, limits their scalability and applicability in this domain.
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While pairwise comparison of summaries by human evaluators is considered the gold

standard in chart summarization evaluation due to its reliability, it lacks granularity in

explaining preferences and characterizing summary styles. To address these limitations, we

propose adapting the quality criteria framework from text summarization, as defined by

Kryscinski et al. (2019) [57], to the context of chart summarization.

The framework comprises four key criteria: coherence, fluency, consistency, and relevance.

In the context of chart summarization, these criteria are defined as follows:

• Coherence: Collective quality of the sentences made the overall structure and logical

flow of the summary.

• Fluency: Quality of individual sentences as in the grammatical correctness and

readability of the summary.

• Consistency: Factual alignment between the summary and the source.

• Relevance: Selection of the most important information from the source.

To adapt this framework for chart summarization, we simply redefine the “source” as

the chart image, rather than the text documents typically used in traditional summarization

tasks.

Fabbri et al. (2021) [59] established a protocol for applying the quality criteria

framework in text summarization evaluation. Their process began with the random

selection of 100 articles from the CNN/DailyMail test set, a widely used benchmark

dataset for text summarization consisting of news articles paired with human-written
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summaries, ensuring a diverse sample. For evaluator recruitment, they adopted a dual

approach: engaging crowd-sourced annotators with professional English proficiency and a

proven annotation track record, while also involving three expert annotators with academic

experience in summarization. This strategy balanced scalability with expertise. The

evaluation was conducted on an online platform where annotators rated

computer-generated summaries on a 5-point Likert scale for each quality criterion, with

each summary assessed by eight different evaluators to ensure reliability. Their analysis

utilized Krippendorff’s alpha coefficient to measure inter-annotator agreement and

computed correlation scores between human ratings and automated metrics. This

methodology revealed that while most automated metrics correlated poorly with human

judgment, the proposed criteria showed high correlation with human preference, were

interpretable, and measured distinct aspects of summary quality. By averaging scores for

each criterion, Fabbri et al. compared model performance across these dimensions,

demonstrating the framework’s utility for evaluation purposes.

The quality criteria framework, adapted from text summarization, provides a

structured approach to evaluating chart summaries. The following section describes the

design of our user study, which employs this framework to compare the performance of

chart summarization models.
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4.4 User Study

To evaluate the effectiveness of our proposed LLM-based AI agent approach for chart

summarization, we conducted a user study with three primary objectives. First, we aimed

to collect quantitative data on the quality of model outputs using the adapted quality

criteria framework described in Section 4.3. This assessment would provide insights into

how well each model performs across the dimensions of coherence, fluency, consistency, and

relevance. Second, we sought to gather data on user preferences by having participants

rank summaries from different models. By comparing these rankings with the quality

criteria ratings, we could identify which factors most strongly influence user satisfaction.

Finally, we collected demographic and expertise data to investigate whether domain

knowledge impacts user preferences and quality assessments of chart summaries.

Ethical considerations were important in the design and execution of our study. We

obtained approval from the university’s research ethics board (REB) prior to commencing

the study. Participants were provided with clear information about the study’s purpose,

duration, and the nature of their involvement, and were offered a compensation of $15 for

their participation. Informed consent was obtained from all participants, and they were

assured of their right to withdraw at any time without penalty. To protect participant

privacy, all data collected was anonymized and stored securely. Participants were informed

that the study carried risks similar to those involved in participating in any video conference

or regular computer use, including potential discomfort when discussing feelings related to
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technology use.

4.4.1 Participant Selection and Categorization

An important part of our study design was the comparison of responses between expert

and novice users in the domain of the charts being summarized. This focus was motivated

by previous research in text summarization, which suggests that experts and novices may

have differing preferences and needs when it comes to summary content and style [67]. We

hypothesized that similar differences might exist in the context of chart summarization.

Understanding these potential differences is valuable for the development of summarization

systems that can effectively serve diverse user groups.

Given the range of topics covered in the Pew Research Center Dataset, we selected

“Economy & Work” as our primary domain of study. This choice was driven by several

factors. First, the field of economics often requires specialized terminology, understanding

of complex relationships between multiple variables, and substantial background knowledge,

making it an ideal domain to distinguish between expert and novice users. Second, this topic

offered sufficient diversity in chart types, allowing us to evaluate our system’s performance

across various visual representations of data. Lastly, economic data is often complex and

intricate, presenting a challenging test case for our summarization system.

To recruit participants with varying levels of expertise, we targeted different university

departments. For potential experts, we reached out to the departments of Economics,
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Management in Data Analytics, Finance, and Politics. To recruit novices, we approached

faculties less likely to have extensive economics knowledge, such as the Faculty of Arts in

which subjects of literature, art, and philosophy are taught and studied. This strategy

aimed to ensure a diverse pool of participants with a range of domain knowledge.

To objectively classify participants as experts or novices, we developed a knowledge

questionnaire comprising 15 multiple-choice questions of varying difficulty levels: four easy,

seven medium, and four hard. For each question, participants had to choose one answer

among four possibilities. The questionnaire was designed to ensure its validity in assessing

economic knowledge. To discourage random guessing on harder questions, which reward more

points, we included an “I don’t know” option for the hard questions only. We did not offer

this option for medium and easy questions to encourage participants to think through these

questions rather than immediately selecting “I don’t know” when unsure. Correct answers

were awarded points based on their difficulty: one point for easy questions, two points for

medium questions, and three points for hard questions. The questionnaire’s difficulty levels

were verified and calibrated with input from a doctoral student in the Economics department.

The expertise score was calculated using the following formula:

Expertise Score =
e × 1 + m × 2 + h × 3

4 + 7 × 2 + 4 × 3
× 10

Where e, m, and h represent the number of correct answers in the easy, medium, and hard

categories, respectively. This scoring system yields a range from zero (minimal expertise) to
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ten (maximum expertise). We classified participants as novices if they scored four or below,

experts if they scored seven or higher, and intermediate for scores between four and seven.

4.4.2 Materials Preparation

(a) Original chart image. (b) Modified chart image.

Figure 4.3: Comparison of original and modified charts.

The preparation of materials for this study involved three primary components: the

selection and modification of charts, the generation of chart summaries using different

systems, and the compilation of these elements into the evaluation form.

For this study, we selected ten charts from the Pew Research Center test set, specifically
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from the “Economy & Work” category. The selection comprised four bar charts and six

line charts, presenting a variety of styles and content. This mix was intended to provide a

comprehensive assessment of the summarization models’ capabilities across different chart

types commonly used in economic reporting.

The decision to limit the study to ten charts was based on considerations of participant

fatigue and time constraints. Our preliminary assessments indicated that evaluating and

ranking three summaries for each chart would be a cognitively demanding task. We

determined that ten charts would strike an optimal balance between gathering sufficient

data and maintaining the quality of participant responses, while keeping the total study

completion time to approximately one hour per participant.

Each selected chart underwent minimal modifications. We only cropped the original titles

from the charts, as these often explicitly stated the main message of the visualization. This

decision was motivated by two factors: firstly, it more closely simulated real-world scenarios

where charts may not always have clear, descriptive titles; secondly, it presented a more

challenging task for the summarization systems, requiring them to derive the main message

solely from the visual elements and data presented in the chart. Figure 4.3 illustrates this

preprocessing step, showing an example of an original chart and its cropped version.

Following the chart preparation, we generated summaries using the three systems

described in Section 4.2: UniChart, GPT-4-Vision, and our proposed LLM-based

summarization agent. The process for each model was as follows:
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• UniChart: This neural network model received the cropped charts as direct input and

generated summaries based on its training.

• GPT-4-Vision: We provided this model with the same prompt designed for the

summary generation phase of our agent (as detailed in Section 3.2.2.4).

• LLM-based Summarization Agent: Our proposed model processed the cropped charts

following the multi-step approach described in Chapter 3, which involves information

extraction using domain-specific tools followed by summary generation using a LLM.

The prepared charts and their corresponding summaries were then assembled into an

online Microsoft Form. This form was structured in two main parts to facilitate a

comprehensive evaluation process. The first part began with a brief demographic

questionnaire, designed to assess participants’ familiarity with data visualizations and their

primary sources of knowledge about economic topics. The expertise assessment quiz, as

described in Section 4.4.1, was also integrated into this introductory section of the form.

The second part of the form focused on the evaluation of chart summaries. This section

presented the chart images alongside their corresponding summaries for preference ranking

and quality criteria rating. The specific layout and methodology for this evaluation process

will be elaborated in the following section on data collection procedures.



4. System Evaluation 63

4.4.3 Data Collection Procedures

Prior to the evaluation, participants received a detailed email outlining the study

procedures. This communication served to prepare them for the task and ensure consistent

understanding across all evaluators. The email informed participants about the study’s

purpose of improving access to visual data for visually impaired individuals through

automated chart summarization. It also set clear time expectations, advising that the

evaluation would take approximately one hour, with 10-15 minutes allocated for the initial

questionnaire and 45-50 minutes for the main evaluation of chart summaries.

An important component of the preparation was the introduction of the four quality

criteria: coherence, fluency, consistency, and relevance. Each criterion was presented with

its definition and accompanying guiding questions for participants to consider during their

evaluations. To further enhance understanding of the grading process, participants were

provided with a sample chart image and examples of poor summaries for each quality

criterion. This approach was chosen to calibrate participants’ expectations and ensure

more consistent evaluations across the study. The email also provided instructions for

participants to rank the summaries based on their personal preference.

To minimize external variables and ensure focus, participants were asked to complete the

evaluation in a quiet setting and in one sitting. Contact details for technical or procedural

support were provided, along with information about the $15 compensation upon completion,

acknowledging participants’ time and effort.
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The evaluation process was structured to collect both quantitative ratings and

qualitative feedback for each chart summary, while minimizing potential biases. To avoid

order effects, all charts were presented to participants in a randomized sequence. For each

chart, participants were first shown the image and instructed to thoroughly understand its

main message before proceeding. This step ensured that evaluators had a solid grasp of the

chart’s content, enabling more accurate assessments of the summaries.

Following this, all summaries for a given chart were presented simultaneously in a

randomized order, without identifying which model generated each summary. This blind

presentation method was chosen to minimize bias and encourage objective comparisons

between summaries. To ensure consistent evaluation across all charts and summaries,

participants were reminded of the quality criteria definitions before each assessment.

The quantitative assessment consisted of two components. First, participants rated

each summary on a 5-point Likert scale (1 = poor, 5 = excellent) for each of the four

quality criteria. In addition, after completing the individual ratings, participants ranked

the summaries in order of preference. To capture the reasoning behind these rankings,

participants were then invited to optionally leave a comment explaining their thought

process or sharing any observations about the summaries themselves.

This process was repeated for all charts in the study. Upon completion of the entire

evaluation, participants were thanked for their time and valuable input. To facilitate a more

in-depth exploration of participants’ experiences, they were asked if they would be willing
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to participate in a follow-up interview. However, none of the target participants, expressed

willingness to engage in these interviews, so they did not take place. Finally, participants

were given the opportunity to leave a comment about their overall experience with the study

or share any additional thoughts they had.

Section 4.5 presents an analysis of the collected data. This analysis encompasses the

performance evaluation of different models across the established quality criteria and an

investigation of user preferences.

4.5 Results

This section presents the outcomes of our user study on chart summarization, focusing on the

performance of our proposed LLM Agent compared to two baseline models: GPT-4-Vision

and UniChart.

Our study involved twenty participants: two novices, twelve intermediates, and six

experts in fields related to economics and data analysis, as determined by the expertise

questionnaire. The slight skew towards higher expertise levels can be attributed to the fact

that many respondents were graduates from fields targeted for expert recruitment. The

gender distribution was relatively balanced, with eleven men and nine women. Each

participant evaluated summaries for ten different charts, each generated by three distinct

models. This process yielded a total of 600 individual summary evaluations, providing a

comprehensive dataset for analysis.
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In the following subsections, we examine the user preferences (Section 4.5.1) and quality

criteria (Section 4.5.2) in detail. These analyses offer insights into model performance across

various dimensions of summary quality and user satisfaction, considering the impact of

participant expertise levels on these assessments.

4.5.1 User Preferences

As part of our comprehensive evaluation, we analyzed user preferences to gain insights into

how participants ranked the different chart summarization systems.

Figure 4.4 presents the distribution of rankings for each model across all charts and

participants. The bar chart illustrates the number of times each model (GPT-4V, LLM

Agent, and UniChart) was ranked first, second, or third in the evaluation process.

As observed on the figure, GPT-4V consistently received the highest number of

first-place rankings, indicating a strong overall preference among participants. LLM Agent

predominantly received second-place rankings, while UniChart was most frequently ranked

third.

To quantify the level of agreement among raters and assess the statistical significance

of these preferences, we employed several statistical tests. First, we calculated Kendall’s W

coefficient to measure the degree of agreement among raters across all scenarios. The average

Kendall’s W value was 0.3317, indicating a moderate level of agreement among participants.

This suggests that while there is some consensus in the rankings, there is also a degree of
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Figure 4.4: Ranking Distribution of Chart Summarization Models Across Evaluation

Criteria. This figure illustrates how often GPT-4V, LLM Agent, and UniChart achieved

each rank (1st, 2nd, or 3rd) in the evaluation. GPT-4V most frequently achieves the first

rank, the LLM Agent predominantly occupies the second rank, and UniChart is most often

placed third.

variability in individual preferences.

To determine whether the observed differences in rankings were statistically significant,

we conducted a Friedman test. The test yielded a statistic of 107.49 with a p-value of 10−24,

which is well below the conventional significance level of 0.05. This result provides strong

evidence of statistically significant differences in the rankings of the three models.

Given the significant result of the Friedman test, we proceeded with a post-hoc analysis

to identify specific pairwise differences between models. We employed the Nemenyi post-hoc

test, which is specifically designed for use after a Friedman test and provides a conservative
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Comparison p-value Significant

GPT-4V vs. LLM Agent 10−4 Yes
GPT-4V vs. UniChart 10−4 Yes
LLM Agent vs. UniChart 10−4 Yes

Table 4.1: Nemenyi Post-hoc Test Results

approach to control for family-wise error rate in multiple comparisons. The results of the

Nemenyi test are presented in Table 4.1.

The Nemenyi test results reveal that all pairwise comparisons between models show

significant differences (p < 0.05). This finding corroborates the visual interpretation of

Figure 4.4, confirming that the ranking distributions for all three models are statistically

different from each other.

To further investigate potential differences in preferences between experts and novices in

the domain of “Economy & Work”, we employed an aligned rank transform (ART) ANOVA.

This method was chosen for its ability to handle non-parametric data in factorial designs,

making it particularly suitable for our ranking data. The ART ANOVA allows us to examine

main effects and interactions while accounting for the within-subject nature of our design

across different scenarios. Table 4.2 presents a comprehensive summary of the ART ANOVA

results, including all main effects and interactions tested in our study.

The analysis revealed a highly significant main effect of model (F (2, 227) = 39.72, p <

0.001), confirming our earlier findings from the Friedman test. Interestingly, we found no

significant main effect of Group (expert vs. novice) (F (1, 227) = 0, p = 1.000), indicating that
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Factor/Interaction Test Statistic p-value Significant

Model F(2, 227) = 39.72 10−15 Yes
Group (expert vs. novice) F(1, 227) = 0 1.0 No
Scenario F(9, 227) = 0 1.0 No
Group × Model F(2, 227) = 35.59 10−14 Yes
Group × Scenario F(9, 227) = 0 1.0 No
Model × Scenario F(18, 227) = 0.01 1.0 No

Table 4.2: ART ANOVA results showing significant effects for Model and Group × Model

interaction, with no significant effects for other factors or interactions. This indicates

preference differences between experts and novices across summarization models, consistent

across scenarios.

overall, experts and novices did not differ in their rankings across all models and scenarios.

However, a significant Group × Model interaction was observed (F (2, 227) = 35.59, p <

0.001), suggesting that the ranking patterns for the three models differ between experts and

novices.

To better understand this interaction, we conducted a detailed post-hoc analysis using

Mann-Whitney U tests with Bonferroni correction for multiple comparisons. Table 4.3

presents the mean ranks and effect sizes for each model, comparing experts and novices.

While none of the individual comparisons between experts and novices for each model

reached statistical significance after Bonferroni correction, the effect sizes suggest differences

in how LLM Agent and UniChart are perceived by the two groups. Specifically, GPT-4V was

consistently ranked highest by both experts and novices, with very little difference between

the groups (effect size r = 0.0335). LLM Agent tended to be ranked lower by novices
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Model
Mean Rank

Effect Size (r) Adjusted p-value Significant
Expert Novice

GPT-4V 1.45 1.50 0.0335 0.7289 No
LLM Agent 1.98 2.30 0.1826 0.0720 No
UniChart 2.57 2.20 0.1640 0.0870 No

Table 4.3: Comparison of model rankings between experts and novices. Effect sizes (r)

indicate the magnitude of difference between groups, with values closer to 0 suggesting

smaller differences. Adjusted p-values are after Bonferroni correction.

compared to experts (mean ranks 2.30 vs. 1.98, effect size r = 0.1826). UniChart tended

to be ranked lower by experts compared to novices (mean ranks 2.57 vs. 2.20, effect size

r = 0.1640).

The lack of a significant scenario effect (F (9, 227) = 0, p = 1.000) in our ART ANOVA

indicates that the performance of the models and the differences between expert and novice

ratings were consistent across different types of charts. This suggests that the observed

preferences are not dependent on specific chart types.

In conclusion, our analysis reveals differences in the perceived quality of chart summaries

generated by different models, with GPT-4V consistently receiving the highest rankings

across both experts and novices. The expertise level of the evaluators appears to influence

the perception of LLM Agent and UniChart, but not GPT-4V, although these differences did

not reach statistical significance in our post-hoc tests. Specifically, participants considered

experts in the field of “Economy & Work” tended to rank LLM Agent higher, while novices

tended to rank UniChart higher.
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To understand the underlying reasons for these preferences, our next section examines

the quality criteria, offering insights into each model’s strengths and weaknesses for a more

comprehensive evaluation of chart summarization performance.

4.5.2 Quality Criteria

Building upon our initial user preferences evaluation, this section presents a detailed analysis

of model performance using the established quality criteria. As a brief reminder, the four

key criteria are defined as follows: coherence measures the logical flow and organization of

the summary; consistency evaluates the alignment between the summary and the original

chart; fluency assesses the linguistic quality and readability of the summary; and relevance

gauges how well the summary captures the essential information from the chart.

To compare the performance of GPT-4V, our LLM Agent, and UniChart across these

criteria, we first conducted a descriptive analysis. Figure 4.5 presents the average scores and

standard deviations for each model across all four criteria. The chart reveals that GPT-4V

consistently achieved the highest average scores across all criteria, followed by our LLM

Agent, with UniChart generally scoring the lowest. However, to determine the statistical

significance of these differences, we employed a more rigorous statistical analysis.

Given our study design, which involved repeated measures (multiple evaluations by each

participant) and ordinal data (Likert scale ratings), we chose the Friedman test as our initial

statistical method. The Friedman test is particularly suitable for this scenario as it can
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(a) Coherence scores (b) Consistency scores

(c) Fluency scores (d) Relevance scores

Figure 4.5: Comparison of Chart Summarization Model Performance Across Quality

Criteria. This figure presents scores for GPT-4V, LLM Agent, and UniChart across

four quality criteria: coherence, consistency, fluency, and relevance. GPT-4V consistently

achieves the highest scores, followed by the LLM Agent, with UniChart generally scoring

lowest. The performance gap is most pronounced in fluency and relevance. These results

indicate GPT-4V’s overall superiority, while highlighting the LLM Agent’s competitive

performance, particularly in linguistic aspects.
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Criterion Chi-square (χ2) p-value Significant

Coherence 17.3947 10−4 Yes
Consistency 14.8462 10−4 Yes
Fluency 24.3377 10−6 Yes
Relevance 16.3000 10−4 Yes

Table 4.4: Friedman Test Results for Differences in Quality Scores Between Models. This

table presents the chi-square values, p-values, and significance for four key quality criteria:

coherence, consistency, fluency, and relevance. All criteria show statistically significant

differences (p < 0.001) between the models

detect differences between three or more related groups (in our case, GPT-4V, LLM Agent,

and UniChart) without assuming normality in the data distribution. Table 4.4 presents the

results of the Friedman test for each quality criterion.

The Friedman test results indicate statistically significant differences (p < 0.05) among

the models for all four quality criteria. This confirms that the choice of model indeed impacts

the quality of chart summaries across all evaluated aspects. To identify specific pairwise

differences between models, we conducted a Nemenyi post-hoc test. We selected this test

due to its conservative nature in controlling for family-wise error rates, which is necessary

when performing multiple comparisons. Table 4.5 summarizes the results of the Nemenyi

post-hoc test, including p-values, mean rank differences, and standardized differences for

each model pair across all criteria.

GPT-4V emerges as the leader in chart summarization, consistently outperforming

UniChart across all criteria with statistically significant differences (p < 0.05) and large
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Criterion Model Pair p-value Significant Mean Rank Diff. Std. Diff.

Coherence
GPT-4V vs. LLM Agent 0.646000 No 0.27500 0.86963
GPT-4V vs. UniChart 0.001000 Yes 1.22500 3.87379
LLM Agent vs. UniChart 0.007508 Yes 0.95000 3.00416

Consistency
GPT-4V vs. LLM Agent 0.083060 No 0.67500 2.13454
GPT-4V vs. UniChart 0.001000 Yes 1.20000 3.79473
LLM Agent vs. UniChart 0.220962 No 0.52500 1.66020

Fluency
GPT-4V vs. LLM Agent 0.099311 No 0.65000 2.05548
GPT-4V vs. UniChart 0.001000 Yes 1.52500 4.82247
LLM Agent vs. UniChart 0.015617 Yes 0.87500 2.76699

Relevance
GPT-4V vs. LLM Agent 0.019684 Yes 0.85000 2.68794
GPT-4V vs. UniChart 0.001000 Yes 1.25000 3.95285
LLM Agent vs. UniChart 0.416890 No 0.40000 1.26491

Table 4.5: Nemenyi Post-hoc Test Results for Pairwise Comparisons of Chart

Summarization Models. The table shows statistical significance (p-value < 0.05), mean rank

differences, and standardized differences across four quality criteria, quantifying performance

gaps between GPT-4V, LLM Agent, and UniChart.

standardized mean rank differences. The gap between GPT-4V and UniChart is

particularly pronounced, with standardized differences ranging from 3.79473 to 4.82247

across the four criteria. This substantial performance difference suggests that GPT-4V’s

multimodal capabilities provide a significant advantage in interpreting and summarizing

chart data, allowing it to excel in both linguistic and data-centric aspects of the task.

Our LLM Agent demonstrates a varied performance profile, showing strengths in certain

areas while facing challenges in others. In language-related criteria, specifically coherence

and fluency, the LLM Agent significantly outperforms UniChart (p = 0.007508 and p =

0.015617, respectively), with large standardized differences of 3.00416 and 2.76699. This
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strong performance in linguistic aspects indicates that our strategy of leveraging GPT-4’s

language capabilities in the agent’s design has been effective. Moreover, the differences

between GPT-4V and our LLM Agent are not statistically significant for these criteria (p =

0.646000 for coherence and p = 0.099311 for fluency), suggesting that our agent achieves

comparable linguistic quality to GPT-4V in generating summaries.

However, the LLM Agent faces challenges in data-centric aspects of chart

summarization. In terms of consistency and relevance, our agent shows no significant

difference from UniChart (p = 0.220962 and p = 0.416890, respectively), with relatively

small standardized differences of 1.66020 and 1.26491. This similarity in performance is not

unexpected, as our agent utilizes UniChart’s chart derendering and CVQA capabilities for

information extraction (see section 3.2.3.2 on tools used by the action module). The

contrast becomes more apparent when comparing the LLM Agent to GPT-4V in these

areas. GPT-4V significantly outperforms our agent in relevance (p = 0.019684,

standardized difference = 2.68794) and shows a near-significant difference in consistency

(p = 0.083060, standardized difference = 2.13454). These results highlight that data-centric

aspects are areas where GPT-4V’s native multimodal capabilities provide a distinct

advantage.

While the Friedman and Nemenyi tests provided valuable insights into the overall

performance differences between models, they do not account for individual participant

variability or the relative importance of each criterion in determining model rankings. To
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address these limitations and gain a more complete understanding of how experts and

novices value chart summaries, we conducted an additional analysis using participant-level

data.

This supplementary analysis employed two complementary statistical approaches:

Spearman correlations with 95% confidence intervals and mixed-effects models. By using

participant-level means for each model and criterion, we were able to preserve individual

differences while reducing noise in the data. The Spearman correlations allow us to

quantify the strength and direction of the relationship between each criterion and the

overall model rankings, while the mixed-effects models account for both fixed effects

(criteria) and random effects (participants). Table 4.6 presents the results of this analysis

for both groups.

The results for the expert group demonstrate strong negative correlations between all

criteria and model rankings, with values ranging from -0.618 to -0.724. The relatively small

range of these correlation values suggests that experts value all four criteria almost equally

in appreciating chart summaries. This finding is further supported by the narrow confidence

intervals and highly significant p-values (all p < 0.001) obtained from the mixed-effects

models.

Interestingly, while coherence shows the strongest overall correlation (-0.724), the

mixed-effects model, which accounts for individual participant differences, reveals that

relevance and consistency have the largest coefficients (-0.5210 and -0.5041, respectively).
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Group Criterion Correlation 95% CI Mixed-Model Coef. p-value

Expert

Coherence -0.724 [-0.890, -0.388] -0.402 1.01e-05
Consistency -0.687 [-0.874, -0.325] -0.504 3.84e-14
Fluency -0.618 [-0.842, -0.213] -0.458 3.63e-04
Relevance -0.665 [-0.864, -0.287] -0.521 1.79e-26

Novice

Coherence -0.116 [-0.848, 0.768] -0.154 6.52e-01
Consistency -0.721 [-0.967, 0.219] -1.032 9.77e-02
Fluency -0.319 [-0.898, 0.665] -0.319 5.91e-01
Relevance -0.588 [-0.948, 0.427] -2.697 3.62e-12

Table 4.6: Spearman Correlation and Mixed-Effects Model Analysis Comparing Expert and

Novice Evaluations of Summarization Models. The table presents correlation coefficients,

95% confidence intervals, mixed-model coefficients, and p-values across the four quality

criteria, quantifying the relationship between criteria scores and overall model rankings for

expert and novice evaluators.

This discrepancy suggests that when individual preferences are controlled for, data-centric

criteria (relevance and consistency) emerge as more important in expert appreciations of

chart summaries. However, the strong individual correlation for coherence indicates that

some expert participants place high value on linguistic criteria.

The results for the novice group reveal a more complex picture. The correlations between

criteria and rankings are generally weaker and not statistically significant, as evidenced by

the wide confidence intervals that include zero. However, the mixed-effects model yields

an intriguing result for relevance, showing a strong negative coefficient (-2.6970) with high

statistical significance (p = 3.62e − 12).

This discrepancy between the correlation and mixed-effects model results for novices,

particularly regarding relevance, warrants careful interpretation. The strong effect of
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relevance in the mixed-effects model suggests that when accounting for individual

differences, relevance may play a crucial role in novice evaluations of chart summaries.

This finding could explain our previous observation: novices do not differentiate in their

preference between UniChart and our LLM Agent, as these models have similar relevance

scores (see Table 4.1). In contrast, experts, who appear to value linguistic properties of

chart summaries more highly, do distinguish between UniChart (with lower linguistic

quality scores) and our LLM Agent (with higher linguistic scores). This pattern suggests

that while novice users might primarily value data-centric criteria, particularly relevance,

expert users consider both data-centric and linguistic aspects in their appreciations.

However, it is important to note that the small sample size for the novice group (n = 2)

limits the reliability of these findings and necessitates further investigation with a larger

cohort to confirm these patterns and the implied differences in evaluation priorities

between novices and experts.

4.6 Discussion

This study aimed to evaluate the performance of our proposed LLM-based agent for chart

summarization, compare it with existing baselines, and investigate the factors influencing

user satisfaction across different expertise levels. Additionally, we sought to assess the

effectiveness of our adapted quality criteria framework. The results of our user study and

statistical analyses provide valuable insights into these research questions.
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Addressing our first research question, the comparison between our LLM-based agent

and the baselines (GPT-4V and UniChart) revealed a diverse performance profile. GPT-4V

consistently outperformed both our agent and UniChart across all quality criteria,

demonstrating the superiority of VLLMs in chart summarization tasks. However, our

LLM-based agent showed promising results, particularly in linguistic aspects of

summarization. The agent significantly outperformed UniChart in coherence and fluency,

with no statistically significant difference from GPT-4V in these criteria. Importantly, our

agent achieved these results without relying on a dataset of labeled chart summaries, which

was a primary goal of this thesis. In terms of overall preference, our model successfully

outperformed UniChart, validating our approach’s effectiveness. These findings suggest

that our strategy of leveraging GPT-4’s language capabilities in the agent’s design

effectively enhanced the linguistic quality of the generated summaries while maintaining

independence from costly labeled datasets.

Nevertheless, our LLM-based agent faced challenges in data-centric aspects of

summarization, specifically consistency and relevance. In these criteria, our agent’s

performance was comparable to UniChart but significantly lower than GPT-4V. This

limitation in data extraction and interpretation is not surprising, considering that our

system relies on UniChart’s CVQA and chart derendering components for these tasks.

Consequently, our proposed method offers a tangible advantage: improvements in chart

summarization performance can be achieved by training more accurate and powerful
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CVQA and chart derendering models, without ever requiring costly labeled chart

summaries.

Regarding our second research question on factors influencing user satisfaction, we

observed notable differences between expert and novice evaluators. Experts demonstrated a

balanced appreciation for all four quality criteria, with strong negative correlations between

each criterion and model rankings. This suggests that experts value a holistic approach to

chart summarization, considering both linguistic and data-centric aspects almost equally.

Interestingly, when accounting for individual differences through mixed-effects modeling,

relevance and consistency emerged as slightly more influential in expert evaluations. This

finding indicates that while all expert participants shared a common emphasis on

data-centric criteria, some individuals valued linguistic criteria particularly highly.

In contrast, novice evaluators showed a distinct preference pattern. While correlation

analyses for novices were inconclusive due to small sample size, the mixed-effects model

revealed a strong influence of relevance on their appreciations of the summaries. This

finding suggests that novice users prioritize the inclusion of key information from the chart

over linguistic sophistication. These differences between expert and novice preferences

highlight the need for further investigation into how various user groups value different

aspects of chart summaries, which could inform the development of more targeted and

effective summarization systems.

The effectiveness of our adapted quality criteria framework is evident in its ability to
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capture these fine differences in user preferences. By extending traditional text

summarization criteria to the visual-textual domain of chart summarization, we were able

to provide a more comprehensive and informative assessment of summary quality. The

framework’s ability to distinguish between linguistic and data-centric aspects of summaries

proved particularly valuable in identifying the strengths and weaknesses of different models

and understanding user preferences across different user groups.

Based on these findings, we propose several design recommendations for chart

summarization systems. First, developers should focus on creating systems that can adapt

to the needs of different user groups. The observed differences between experts and novices

highlight a spectrum of user preferences that may vary across other groups as well. Further

investigation using the quality criteria framework could reveal additional insights into these

diverse needs. Second, with the advent of powerful text-based large language models like

LLaMA 3, achieving GPT-4V level performance in chart summarization may be possible

by focusing efforts on developing stronger CVQA and chart derendering tools. These

components are likely easier to train than open-source VLLMs at the level of GPT-4, and

improvements in these areas would directly enhance the performance of modular systems

like our LLM-based agent. Finally, the integration of diverse quality criteria in the

development and evaluation processes can lead to more robust and user-centric

summarization systems, allowing for targeted improvements and more informative

performance assessments.
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Chapter 5

Discussion

5.1 Summary of Themes and Key Findings

This thesis investigates the application of LLM-based agents for chart summarization,

focusing on enhancing accessibility for visually impaired individuals and addressing the

scarcity of labeled datasets in this domain. The research yields several findings that

contribute to the field of AI-assisted data interpretation and accessibility technologies.

A key theme that emerged is the efficacy of the LLM-based agent approach in chart

summarization. By leveraging the general capabilities of LLMs in conjunction with domain-

specific tools, this method demonstrates the potential to advance the field without relying

on extensive labeled datasets, addressing a significant challenge in chart summarization

research.
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The study also introduces the application of quality criteria from text summarization to

chart summarization. This approach provides a framework for evaluation, offering insights

into the assessment of chart summary quality and user preferences. The criteria, which

include coherence, consistency, fluency, and relevance, allow for a multifaceted evaluation of

generated summaries. This framework proved valuable in differentiating model performance

across linguistic and data-centric aspects, as well as in identifying preference patterns among

different user groups.

The empirical evaluation compared the performance of the LLM-based agent to two

baselines: GPT-4V and UniChart. GPT-4V consistently outperformed both the LLM-based

agent and UniChart across all quality criteria. However, the LLM-based agent demonstrated

competitive performance in linguistic aspects, specifically coherence and fluency, where it

matched GPT-4V and outperformed UniChart. In data-centric aspects such as consistency

and relevance, the LLM-based agent performed similarly to UniChart but fell short of GPT-

4V’s capabilities.

Analysis of user preferences revealed differences between expert and novice evaluators.

Experts demonstrated a balanced appreciation for all quality criteria, valuing both

linguistic and data-centric aspects of summaries. In contrast, novices placed higher

emphasis on relevance. A trend emerged suggesting that experts tended to prefer the LLM

agent’s summaries, while novices leaned towards UniChart’s outputs, although this

difference did not reach statistical significance.
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5.2 Implications and Practical Applications

The findings suggest a promising path forward for academia and open source to reach

GPT-4 level performance, particularly as models like Meta’s LLAMA-3-70B approach this

benchmark. This strategy involves developing targeted, domain-specific models to enhance

information extraction from charts, including improvements to chart derendering, CVQA,

and new tools such as specialized OCR models.

The observed differences in preferences between expert and novice users reveal

opportunities for customizable summary generation. In educational environments, systems

could provide detailed explanations for novices while offering concise, insight-focused

summaries for experts. This flexibility, achievable through prompt engineering in

LLM-agents, could extend to various user categories, enabling personalized chart

interpretation experiences.

Our quality criteria framework demonstrates value beyond evaluation, serving as a

potential golden standard alongside user preference rankings in chart summarization

research. These criteria not only enable precise performance comparison but also provide

clear direction for future development efforts.
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5.3 Limitations

A primary limitation of this study is the sample size and diversity of participants, particularly

in the user evaluation phase. The focus on economic charts, while providing consistent

context, may limit generalizability to other domains. Additionally, our evaluation primarily

measured user preference rather than task-specific usefulness, limiting our understanding of

practical effectiveness.

The current implementation faces technical constraints: increased processing time due to

sequential GPT-4 API calls prevents real-time usage, and the static nature of summarization

doesn’t allow for interactive discovery. While our modular approach offers flexibility, it

introduces system complexity and maintenance challenges.

5.4 Future Research Directions

To advance the field, we propose three key research directions:

First, enhancing evaluation through automated methods. Adapting frameworks like G-

EVAL [68] could enable large-scale assessment of quality criteria, while employing LLMs

for preference ranking could provide cost-effective evaluation. These methods would require

validation against human judgments specifically for chart summarization.

Second, improving technical performance through enhanced tool utilization.

Implementing tree of thoughts [69] reasoning, integrating VLLMs as specialized tools, and
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optimizing with smaller, distilled models like LLAMA-3 [70] could enhance both

performance and efficiency.

Third, developing interactive summarization systems. Creating versions that allow

follow-up questions could enhance user engagement and comprehension, particularly

valuable for educational applications and professional analysis.

5.5 Conclusion

This thesis advances the field of AI-assisted data interpretation through its investigation of

LLM-based agents for chart summarization. While our agent did not surpass GPT-4V, it

demonstrated the viability of modular, tool-based approaches in addressing dataset scarcity.

The developed quality criteria framework and insights into user preferences provide valuable

foundations for future research.

The path forward involves improving data extraction capabilities, developing efficient

LLM integration methods, and creating adaptive systems for different user needs. Most

importantly, this work establishes a framework for developing accessible chart summarization

systems that can serve diverse user groups while advancing the field through open-source

and academic contributions.
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Appendix A

Expertise Questionnaire

1. Which of the following best describes the relationship between inflation and

unemployment rates in the short run? (Medium)

a) No relationship

b) Direct, positive relationship

c) Inverse relationship, as described by the Phillips Curve

d) Always move in the same direction

2. How does the Consumer Price Index (CPI) measure inflation? (Easy)

a) Tracking price changes in a fixed basket of goods/services

b) Measuring quarterly changes in GDP

c) Calculating average price of a changing basket of goods/services

d) Surveying consumers on perceived living costs
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3. Which of the following is a potential cause of cost-push inflation? (Medium)

a) Increasing consumer demand

b) Rising wages due to labor shortages

c) Expansionary monetary policy

d) Increasing global competition

4. Which of the following is NOT a component of GDP? (Easy)

a) Consumer spending

b) Government spending

c) Stock market performance

d) Net exports

5. Central banks can indirectly influence which of the following? (Hard)

a) Government tax rates

b) Bank lending rates

c) Corporate hiring decisions

d) Stock market valuations

6. Which of the following is an example of a progressive tax system? (Medium)

a) A flat income tax rate for all taxpayers

b) Higher income tax rates for lower-income earners

c) Lower sales tax rates on luxury goods
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d) Higher income tax rates for higher-income earners

7. The unemployment rate is calculated as: (Easy)

a) # unemployed / total population

b) # unemployed / labor force

c) # employed / labor force

d) # unemployed / # employed

8. Which of the following would be considered a discouraged worker? (Hard)

a) A person who is actively seeking work but unable to find a job that matches their

qualifications

b) A person who wants a job but has given up looking due to lack of

opportunities

c) A person who is working part-time but wants to work full-time for better pay and

benefits

d) A person who is unemployed and not actively seeking work due to family

responsibilities

9. A bear market refers to: (Easy)

a) A period of rising stock prices

b) A period of falling stock prices

c) High volatility in the housing market
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d) Rapid growth in the money supply

10. Which of the following best describes the primary goal of monetary policy? (Medium)

a) Achieving price stability and sustainable economic growth

b) Balancing the government budget

c) Increasing government spending on infrastructure

d) Encouraging foreign investment in domestic markets

11. Which of the following is generally considered a leading indicator for the housing market?

(Medium)

a) New home sales

b) Existing home sales

c) Housing starts

d) Home price appreciation

12. Which of the following is most likely to contribute to increasing wealth inequality? (Hard)

a) Regressive taxation policies that benefit high-income earners

b) Increasing prevalence of part-time and contract work arrangements

c) Stock market gains accruing primarily to the wealthy

d) Uneven access to healthcare and health insurance based on socioeconomic status

13. The labor force participation rate measures: (Medium)

a) The percentage of the total population that is employed
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b) The percentage of the working-age population that is either employed or

actively seeking work

c) The percentage of the working-age population that is employed

d) The percentage of the total population that is unemployed

14. Which of the following best describes the impact of rising interest rates on the housing

market? (Hard)

a) Encourages more people to buy homes before interest rates increase further

b) Decreases affordability and demand for homes

c) Leads to a higher supply of homes as builders rush to complete projects

d) Increases the number of adjustable-rate mortgages as buyers seek lower initial

payments

15. Which of the following is an example of expansionary fiscal policy? (Medium)

a) Raising taxes

b) Cutting government spending

c) Increasing government spending on infrastructure projects

d) The central bank selling government bonds
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Appendix B

Summary Generation Example

Figure B.1: Percentage of U.S. adults’ cash purchases by income level
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Chart Analysis

This appendix presents an example of our LLM-based agent generating a summary for the

chart on Figure B.1.

Action
Action: Calling ’pandas-code-interpreter’
Arguments:

pr in t ( df )

Observation:

C h a r a c t e r i s t i c Value
0 Al l or almost a l l o f t h e i r purchases 0 .29
1 Less than $30K 0.29
2 $30K−$74 ,999 0 .17
3 $75K or more 0 .07
4 None o f t h e i r purchases 0 .18
5 Less than $30K 0.18
6 $30K−$74 ,999 0 .30
7 $75K or more 0 .41

Thought

The dataframe head provides a glimpse into the data that the chart is likely based on.
It appears to be related to some form of purchasing behavior or financial data, given the
references to “All or almost all of their purchases” and income brackets such as “Less than
$30K,” “$30K-$74,999,” and “$75K or more.” The ’Value’ column seems to represent a
percentage or a proportion, as suggested by the decimal format, which is typical for such
data.
To better understand the chart, I need to establish the following: 1. The overall topic or
subject of the chart. 2. The specific entities or categories being compared or tracked. 3.
The range and distribution of values to understand the scale and significance of differences.
4. Any trends or patterns that might be evident from the data. 5. The context or
demographic information that might explain the purchasing behavior or financial data.
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Action
Action: Calling ’unichart-opencqa’
Arguments: question = “What is the chart about?”
Observation: Around three-in-ten Americans (29%) say they make less than $30,000
a year ago, making those earning less than $75,000 or more a year ago. Only 6% of
Americans say they have purchases less than $30,000 a year ago, making those earning
more than $75,000 or more a year ago.

Thought

While this gives us some initial context about income levels and purchasing behavior, we
need to understand the specific nature of these purchases and when this data was collected.
This temporal and contextual information will be crucial for properly interpreting the
patterns we’re seeing.

Action
Action: Calling ’unichart-opencqa’
Arguments: question = “What is the specific context of these purchases and when was
this data collected?”
Observation: This data shows the percentage of U.S. adults who make purchases using
cash in a typical week, based on a survey conducted from September 24 to October 7, 2018.
The data excludes respondents who did not provide an answer or gave other responses.

Thought

The responses from the ’unichart-opencqa’ functions have provided valuable context. The
chart examines cash purchasing behavior among Americans, based on a 2018 survey. The
specific focus on cash transactions adds an important dimension to our understanding. To
further analyze the relationships shown in the chart, I need to: 1. Confirm the categories
or groups being compared in the chart. 2. Understand the specific values associated with
each category. 3. Determine the relationship between income levels and cash purchasing
behavior. 4. Identify any trends or patterns in the data, such as whether higher income
correlates with certain cash payment patterns.
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Action
Action: Calling ’unichart-closedqa’
Arguments & Observations:

Q: “What are the categories being compared in the chart?”
→ [All or almost all of their purchases, Less than $30K]
Q: “What is the value associated with the category ’Less than $30K’?”
→ 29
Q: “What is the value associated with the category ’$75K or more’?”
→ 41

Thought

The responses from the ’unichart-closedqa’ function have provided some specific details.
The categories being compared in the chart include “All or almost all of their purchases”
and income levels such as “Less than $30K.” The value associated with the category “Less
than $30K” is 29, and the value for the category “$75K or more” is 41. These values
represent percentages of cash purchases, given the context provided earlier.
With this information, it is becoming clearer that the chart is comparing the percentage
of Americans in different income brackets and their cash payment behaviors. The data
suggests a possible correlation between income levels and cash usage patterns, with higher
income brackets showing different tendencies.

Action
Action: Calling ’pandas-code-interpreter’
Arguments:

pr in t ( df [ ’ Value ’ ] . mean ( ) )
p r i n t ( df [ ’ Value ’ ] . s td ( ) )

Observation:

0.23624999999999996
0.10582161539928542
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Thought

Final Anwer: The chart appears to be comparing the cash purchasing behavior of
Americans across different income levels, based on a 2018 survey. The dataframe reveals
four categories of purchasing behavior: “All or almost all of their purchases” and “None of
their purchases,” with corresponding income brackets “Less than $30K,” “$30K-$74,999,”
and “$75K or more.”
The mean value across these categories is approximately 23.62%, with a standard deviation
of about 10.58%. This suggests that there is some variation in the cash purchasing behavior
across different income levels, but not an extremely wide dispersion.
The specific values for each category are as follows:

• “All or almost all of their purchases” using cash corresponds to 29% for “Less than
$30K,” 17% for “$30K-$74,999,” and 7% for “$75K or more.”

• “None of their purchases” using cash corresponds to 18% for “Less than $30K,” 30%
for “$30K-$74,999,” and 41% for “$75K or more.”

From this data, we can infer that as income increases, the percentage of people who
make “All or almost all of their purchases” using cash decreases, while the percentage of
people who make “None of their purchases” using cash increases. This could suggest that
higher-income individuals are less likely to use cash as their primary payment method.

Generated Summary

Based on the extracted information and analysis above, the system generated the following

reasoning and summary. While both are shown here for completeness, only the final summary

would be provided to the user:
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Summary

Reasoning: The chart data indicates a relationship between Americans’ income levels
and their cash purchasing behavior, based on a 2018 survey. The categories include ’All or
almost all of their purchases’ and ’None of their purchases,’ across three income brackets:
’Less than $30K,’ ’$30K-$74,999,’ and ’$75K or more.’ The mean value of 23.62% and
standard deviation of 10.58% suggest moderate variation across categories. Higher income
correlates with a lower percentage of ’All or almost all of their purchases’ using cash (7%
for ’$75K or more’) and a higher percentage of ’None of their purchases’ using cash (41%
for ’$75K or more’). This trend inverses for lower income levels, indicating that income
influences cash payment preferences.
Summary: The chart illustrates a correlation between income levels and cash payment
behavior in America as of 2018. Higher-income earners are less likely to make ’All or
almost all of their purchases’ using cash compared to lower-income earners, who report
a higher percentage of such purchasing behavior. Conversely, higher-income individuals
report a greater percentage of ’None of their purchases’ using cash, suggesting income-
based disparities in payment method preferences.
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