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Abstract

In the current status quo, electrical systems can be found in an ever-increasing range of products

that we use in our daily lives. With the advances in technology, industries such as the automotive,

communications and medical devices have been disrupted with new electrical and electronic systems.

The innovation and development of such systems with increasing complexities over time has been

supported by the increased use of Electromagnetic (EM) analysis software. Such software enables

engineers to virtually design, analyze and optimize EM systems without the need for building

physical prototypes, thus helping to shorten the development cycles, and consequently, cut costs.

The purpose of this thesis is to develop surrogate models, using Deep Learning (DL), that can

facilitate the application of EM analysis software.

The industry standard for simulating EM problems is using either the Finite Difference Method

(FDM) or the Finite Element Method (FEM). Optimization of the design process using such meth-

ods requires significant computational resources and time. With the emergence of Artificial In-

telligence (AI), along with specialized tools for Automatic Differentiation (AD), the use of Deep

Learning (DL) has become computationally much more efficient and cheaper. These advances in

Machine Learning (ML) have ushered in a new era in EM simulations where engineers can compute

results much faster while maintaining a certain level of accuracy.

In this thesis, I have proposed two different models that can compute the magnetic field dis-

tribution in EM systems. The first model is based on a Recurrent Neural Network (RNN), which

is trained through a data-driven supervised learning method. The second model is an extension

to the first with the incorporation of additional physics-based information to our model. Such a

DL model, which is constrained by the laws of physics, is known as a Physics-Informed Neural
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Network (PINN). The solutions when compared with the ground truth, computed using FEM, show

promising accuracy for our DL models while reducing the computation time and resources required,

as compared to previous implementations in the literature.

This thesis presents a Neural Network (NN) architecture and is trained with two different learn-

ing methodologies, namely, supervised and physics-based. The working of the network along with

the different learning methodologies is validated over several EM problems with varying levels of

complexities. Furthermore, a comparative study is performed regarding performance accuracy and

computational cost to establish the efficacy of different architectures and learning methodologies.
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Dans le statu quo actuel, les systèmes électriques se retrouvent dans une gamme toujours croissante

de produits que nous utilisons dans notre vie quotidienne. Avec les progrès technologiques, des

secteurs tels que l’automobile, les communications et les appareils médicaux ont été perturbés par de

nouveaux systèmes électriques et électroniques. L’innovation et le développement de tels systèmes,

dont la complexités augmente au fil du temps, ont été soutenus par l’utilisation accrue de logiciels

d’analyse électromagnétique (EM). Un tel logiciel permet aux ingénieurs de concevoir, d’analyser et

d’optimiser virtuellement des systèmes EM sans avoir besoin de construire des prototypes physiques,

contribuant ainsi à raccourcir les cycles de développement et, par conséquent, à réduire les coûts. Le

but de cette thèse est de développer des modèles de substitution, utilisant le Deep Learning (DL),

qui peuvent faciliter l’application de logiciels d’analyse EM.

La norme industrielle pour simuler les problèmes EM utilise soit la méthode des différences finies

(FDM) ou la méthode des éléments finis (FEM). L’optimisation du processus de conception à l’aide

de telles méthodes nécessite des ressources de calcul et du temps importants. Avec l’émergence de

l’intelligence artificielle (IA), ainsi que des outils spécialisés de différenciation automatique (AD),

l’utilisation du Deep Learning (DL) est devenue beaucoup plus efficace et moins coûteuse sur le

plan informatique. Ces avancées en matière d’apprentissage automatique (ML) ont inauguré une

nouvelle ère dans les simulations EM où les ingénieurs peuvent calculer les résultats beaucoup plus

rapidement tout en maintenant un certain niveau de précision.

Dans cette thèse, j’ai proposé deux modèles différents permettant de calculer la distribution du

champ magnétique dans les systèmes EM. Le premier modèle est basé sur un réseau neuronal récur-

rent (RNN), formé via une méthode d’apprentissage supervisé basée sur les données. Le deuxième
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modèle est une extension du premier avec l’incorporation d’informations physiques supplémentaires

à notre modèle. Un tel modèle DL, contraint par les lois de la physique, est connu sous le nom de

réseau neuronal fondé sur la physique (PINN). Les solutions, comparées à la vérité terrain, calculées

à l’aide de FEM, montrent une précision prometteuse pour nos modèles DL tout en réduisant le

temps de calcul et les ressources requises, par rapport aux implémentations précédentes dans la

littérature.

Cette thèse présente une architecture de réseau neuronal (NN) et est formée avec deux méthodolo-

gies d’apprentissage différentes, à savoir supervisée et basée sur la physique. Le fonctionnement du

réseau ainsi que les différentes méthodologies d’apprentissage sont validés sur plusieurs problèmes

EM avec différents niveaux de complexités. En outre, une étude comparative est réalisée concernant

la précision des performances et le coût de calcul afin d’établir l’efficacité des différentes architectures

et méthodologies d’apprentissage.
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1
Introduction

1.1 Simulations

Did you watch the latest Worldwide Developers Conference (WWDC) [6], or the Google I/O [7],

or Tesla Investor Day [8, 9], or watch the latest Avatar film [10], or have you played the latest

PlayStation game God of War [11], or perhaps you have watched the launch of the James Webb

Space Telescope (JWST) by National Aeronautics and Space Administration (NASA) [12]. Now,

what do a new product launched by Apple, Google or Tesla, one of the highest grossing movies of all

time, one of the best selling video games and a space telescope could possibly have in common? Even

though it might sound far fetched, but they all do share an integral component in their development

and production phases. It is the application of computer simulations! Simulations are virtual or

computational models that mimic real-world processes or systems to analyze their behavior, test

hypotheses, or make predictions [13]. They have been in use ever since the introduction of computers
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and have grown as computers became more powerful. However, one might argue that (analog)

simulations have existed before the advent of digital computers, such as simulating a scaled-down

airplane in a wind tunnel to test its aerodynamics using analog computers [14]. Nonetheless, in this

thesis, I focus on digital simulations only because experimental based simulation is costly to scale.

Computer simulation originates from World War II [15–17]. If you have watched or heard of

Christopher Nolan’s latest movie, Oppenheimer [18], then you must have an idea of the Manhattan

Project [19]. It was during the Manhattan Project when two mathematicians Jon Von Neumann

and Stanislaw Ulam were trying to analyze the behaviour of neutrons [17]. They used the Monte

Carlo method to create a computer simulation in order to solve problems associated with neutron

diffusion during the design of the hydrogen bomb [15, 17]. Such problems were impossible to solve

analytically then and even now [15].

1.1.1 Case Studies on Real-World Applications of Simulations

Ever since its advent in the 1940s, computer simulations have become a key component in the

advancement of human civilization. Their applications have proliferated in various industries for

various purposes. Simulations have allowed to break the shackles of physical limitations, and push

research and development further than ever before. In this section, I would like to discuss a couple of

such groundbreaking success stories among the many that have been there in the past few decades.

James Webb Space Telescope (JWST)

The first of the success stories is that of the James Webb Space Telescope (JWST) by National

Aeronautics and Space Administration (NASA). It is what NASA refers to as the Next Generation

Space Telescope that will allow astronomers all-over the world to conduct scientific observations

and provide a profound understanding of the origin of the universe [12]. The JWST is the largest,

most advanced and powerful space telescope ever built by NASA till date [20]. Engineers had

to design a structure that could be folded and placed inside a rocket. Launching such a gigantic

telescope into space that needs to travel about 1.5 million km from earth and operate at about

−234◦C presented some unprecedented engineering challenges [21]. Furthermore, it had to undergo

six months of commissioning in space — unfolding its mirrors, sun-shield, and other smaller systems;

cooling down; aligning; and calibrating [20]. Accounting for all these delicate maneuvers, the JWST
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had 344 single-point failures, where each single-point of failure would compromise the whole mission,

making it one of the riskiest missions in history [22]. To mitigate risk and minimize the chances

of failure, engineers had to test the JWST comprehensively. Unfortunately, the sheer size of the

JWST made it extremely difficult to test everything in person, and tests carried out on Earth would

not be sufficient to determine the performance in space. Hence, the only way to ensure the proper

operation of the JWST was through simulation.

Unlike other spacecrafts, the JWST needs to operate at extremely low temperatures. To achieve

that it uses passive cooling system which involves 5 huge sun-shields, each the size of a tennis court

[20, 23]. These shields needed to unfold into shape during the trajectory of the telescope. The light

from the Sun carries momentum, which can potentially push the spacecraft. During the unfolding

process the change in the surface area of the spacecraft will cause a change in the pressure from the

solar radiation [24, 25]. Hence, engineers had to use different simulation models for specific segments

in the mission [24]. For instance, Orbit Determination Tool Kit (ODTK) was used to determine the

optimal orbital path for the JWST [22, 24, 25]. Additional plugin, Solar Radiation Pressure (SRP)

was used to model the pressure on the sun-shields on the telescope from the solar rays [22, 24].

Once the JWST reached the destination point, which is the Libration-point (L2), engineers needed

to simulate complex Design Reference Missions (DRMs) to ensure that the telescope remains in the

correct position [22, 24, 26]. To create such DRMs engineers used Astrogator in Systems Tool Kit

(STK) which simulated the various gravitational forces along with solar radiation pressure at L2

[22].

Furthermore, the JWST uses 18 hexagonal mirrors to serve as one big primary mirror [21]. The

mirrors were segmented so that it could be folded up into the rocket. To determine the feasibility of

connecting such segmented mirrors edgewise, while considering the natural vibrational frequencies

of the components holding them together, engineers used Ansys Mechanical simulator [27]. Another

simulation software, Ansys Zemax was used to design and test the process to precisely align all the

mirror segments to function as a monolithic mirror [22]. Engineers built a physical test bed of the

telescope that’s one-seventh the real size [22]. They used Ansys Zemax to simulate the alignment

process before implementing it on the real hardware. To simulate the on-orbit conditions for the test

bed telescope flight models were incorporated in Ansys Zemax. Such models provided probabilistic

state of the mirror segments at each step of the alignment procedure along with the best and worst
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case scenarios, which allowed the engineers to design the mirror actuators accordingly [22, 24].

Moreover, the JWST is a very sophisticated spacecraft which required its different components

built in specific specialized facilities. These delicate components then had to be brought together

for assembly and testing. The final testing took place at a Northrop Grumman factory in Redondo

Beach, California [28], before it was shipped to its launch-site in French Guiana [29]. Engineers

had to make sure that all these sensitive components and the final structure remain safe during the

various transportation phases. As a result, they had to examine the vibrations from the different

vehicles used and how the spacecraft components would react to them [30, 31]. Furthermore, they

needed to examine how the rocket would handle such a heavy payload and safely launch into space

without damaging it [30]. To handle such a crucial task engineers used Siemens’ Simcenter Femap

software to simulate the various transportation environments [30, 31]. It allowed them to design

the components such that the real-world vibrations are well within the safety margin.

Another challenge was the extremely low operating temperatures of the JWST in space. On one

end the sun-shield reaches about 110◦C and on the other end the instruments operate at around

−236◦C, creating a sharp temperature gradient in the telescope [23]. This possesses an extremely

difficult challenge in the form of Coefficient of Thermal Expansion (CTE) [30]. CTE characterizes

the expansion of a material upon heating and vice versa [32]. Different materials have specific CTE

which means that they would expand or contract at different rates. This could cause stress and

strain in the structure of the telescope comprised of various materials, where the best case scenario

would be a distorted image and the worst case would be a component coming off from the spacecraft

[30]. Engineers handled this problem by carefully selecting materials that have similar CTE and then

using their properties to simulate how the whole structure would behave in space at all the possible

operating temperatures [30, 31]. Femap simulation allowed to ensure that the different components

of the telescope would stress and strain in harmony and not cause any structural damage throughout

the entire mission [30, 31].

The colossal size of the JWST, the sheer length of its trajectory, the extreme operating temper-

atures, and the harsh conditions of space pushed simulations of all sorts to their limits. However,

those simulations made it possible to predict and visualize the whole mission way ahead of its launch,

allowing engineers and scientists to minimize the possibilities of failure. Furthermore, NASA has

made an almost real-time simulation of the mission available to the public to appreciate the leap in
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scientific and technological advancement the JWST has achieved [33].

Airbus A380

Another impactful example of computer simulation in a real-world engineering project is the case of

the Airbus A380, the largest commercial passenger aircraft [34]. Simulation played a vital role in the

aerodynamic design of the A380, particularly in optimizing its wings. The aircraft’s size and weight

required innovative design solutions to ensure fuel efficiency and performance. Computational Fluid

Dynamics (CFD) simulations were extensively employed to model the airflow around various wing

configurations, allowing engineers to analyze the aerodynamic performance and identify areas for

improvement.

1. Fuel Efficiency Improvement: The aerodynamic refinements achieved through simulations

contributed to a remarkable improvement in fuel efficiency [35]. Airbus reported that the A380

consumes up to 8 − 20% less fuel per seat compared to its closest competitor, making it one

of the most fuel-efficient aircraft of its size [34, 36].

2. Noise Reduction: Simulations also assisted in reducing the aircraft’s noise emissions during

takeoff and landing. The A380 incorporates advanced wing designs and other aerodynamic

features, leading to a 50% reduction in perceived noise at airports compared to previous-

generation aircraft [34].

3. Increased Payload and Range: The aerodynamic enhancements allowed the A380 to carry

more passengers and cargo over longer distances. With a typical seating capacity of around 550

passengers, the A380 has a range of approximately 8, 000 nautical miles (14, 800 kilometers)

[34, 37].

4. Structural Optimization: In addition to aerodynamics, simulations were employed in struc-

tural analysis to optimize the aircraft’s design. Finite Element Analysis (FEA) simulations

helped ensure the structural integrity and safety of critical components, reducing overall weight

while maintaining structural strength [38].

By leveraging simulations in the design process, Airbus successfully developed an aircraft that rev-

olutionized long-haul air travel. The A380’s fuel efficiency, range, and passenger capacity made it
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a game-changer in the aviation industry. The impact of simulations in this engineering project led

to significant improvements in aircraft performance, cost-effectiveness, and environmental sustain-

ability.

1.1.2 Classification of Simulations

As we have seen for the JWST, there are various simulations that are deployed to solve real-

world problems. As such, simulations can be categorized in many different ways. Sometimes they

are classified based on the different fields of application that they are being used in, such as the

aerospace industry, film industry, gaming industry, service industry, economic studies, scientific

studies, etc. However, they can be broadly categorized based on the type of the model and the

way it progresses through time that the simulation is implementing [14, 39]. The different types of

simulations are illustrated in Figure 1.1 and discussed below:

• Deterministic vs Stochastic Simulation: If the model consists of all the input and output

variables that are deterministic, i.e., without any randomness then it’s a deterministic sim-

ulation [14, 39]. Exact mathematical functions are used to describe the models. Otherwise,

if the model consists of at least one variable that is random then it’s a stochastic simulation

[14, 39]. A probabilistic function is used to describe the randomness in the variable.

• Static vs Dynamic Simulation: If the model doesn’t change with time, i.e., the model’s

state remains constant then it’s a static simulation [14, 39]. Monte Carlo Model is an example

of a static simulation. Otherwise, if the model changes with time, i.e., the model’s state varies

with time then it’s a dynamic simulation [14, 39]. For instance, a conveyor system in an

airport.

• Continuous vs Discrete Simulation: If the model’s state change can occur continuously

with time then it’s a continuous simulation [14, 39]. The simulation advances time with a

constant rate, i.e., a fixed time slice. Otherwise, if the model’s state change can occur only at

discrete time points then it’s a discrete simulation [14, 39]. Usually the change is event-based,

which is why it’s also called discrete-event simulation.
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Figure 1.1: Classification of simulations

1.1.3 Why is Simulation Necessary?

Simulations serve as indispensable tools across diverse fields and industries, playing a pivotal role

in expediting research and development. Their significance lies in enhancing the pace of progress

and innovation within these domains:

1. Predicting and Planning: Simulations provide the means to model intricate systems and

processes, thereby facilitating the prediction of their behavior under diverse conditions. This

valuable capability proves instrumental in strategizing future actions, making well-informed

decisions, and mitigating potential risks [40, 41].

2. Cost-Effectiveness: Performing real-world experiments entails significant expenses, con-

sumes considerable time, and occasionally poses safety hazards. Simulations present a cost-

effective alternative, empowering researchers and engineers to examine hypotheses and scenar-

ios within a virtual environment, thereby circumventing the necessity for physical resources.

For example, simulating crash tests for vehicles or testing the durability of materials can save

time and resources [40, 41].
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3. Safety and Risk Assessment: In fields like aviation, medicine, and engineering, simulations

are used to evaluate potential risks and safety concerns without endangering human lives

or causing damage to the equipment. Furthermore, some environments are challenging or

impossible to access physically, such as outer space, the deep ocean, or microscopic scales.

Simulations enable researchers to study and understand phenomena in such environments

[40, 41].

4. Training and Education: Simulations are widely used for education and training purposes

for various applications such as medical procedures, aviation maneuvers, and military opera-

tions. They offer a safe and controlled environment for learners to gain practical experience,

refine their skills, and develop confidence before dealing with real-world situations [40].

5. Design and Optimization: Simulations offer a multifaceted advantage in engineering and

research: they facilitate iterative improvement through immediate feedback, enable the cre-

ation of virtual prototypes, reducing reliance on physical ones and accelerating the design

process, and aid in designing and optimizing products, processes, and systems by allowing en-

gineers and designers to explore numerous virtual configurations to identify the most efficient

and effective solutions [42, 43].

6. Entertainment: Simulations are the foundation of modern video games, interactive enter-

tainment, and the mesmerizing visual effects in movies. They create immersive and realistic

virtual worlds for users to enjoy and/or engage with. No experiment or place in the world

could replace them, making simulations indispensable. For instance, the latest Avatar movie

required about 18.5 petabytes of data, weeks of simulation, and millions of Central Processing

Unit (CPU) hours for the Computer-Generated Imagery (CGI) [44].

Overall, simulation offers a controlled and versatile tool to understand and analyze complex systems,

and predict outcomes in a wide range of fields, making it an indispensable component of modern

research, development, and decision-making processes.
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1.1.4 Applications of Simulations

Given the variety of types of simulation, the range of its applications is vast. The fundamental

reason behind this is the fact that simulation is not just a specific application of a technique or

algorithm, such as a linear program, but rather an approach for solving any real-life problem.

1. Manufacturing Applications: Used to simulate various manufacturing processes. These

could help to analyze the impact of failure at different points in the whole process, and

minimize synchronization delays of prefabricated parts before assembly [40].

2. Automobile Applications: Used to simulate the production process of automobiles. Design

and analyze different automobile models [40].

3. Military Applications: Used to train soldiers under various conditions. Design and analyze

new weapons [40].

4. Aerospace Applications: Used to simulate different models of plane, helicopters, etc. Flight

simulators allow training new pilots without the use of actual planes [40].

5. Financial Applications: Used to to analyze how changes in policies, market conditions, or

other factors might impact the economy [40].

6. Gaming Applications: Used to create virtual worlds with their own rules and physics,

allowing players to interact with them [45].

7. Medical Applications: Used to enhance the efficiency of hospital management. Helps to

analyze various diseases and allow early preventive measures [40].

8. Scientific Applications: Used to analyze various natural phenomena and design scientific

experiments [16].

9. Film Applications: Used to create various visually pleasing scenes. Simulations used in

movies are often referred to as CGI [46].
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1.2 Different Approaches for Simulations

Simulations can be a very powerful tool for understanding complex systems, making predictions,

and testing hypotheses in a controlled environment. To perform a simulation, we usually need to

follow the procedures given below:

1. Define the system we are simulating.

2. Create a mathematical or computational model.

3. Set Initial Conditions (ICs).

4. Use algorithms to iterate through time steps, observing how the system evolves.

Now, the model, in step 2, that is used to capture the essence of the real-world system, can be

developed using more than just one approach. These techniques play a crucial role in determining

the overall performance, evaluation, and interpretability of the simulation. Essentially, there are

two different ways of constructing a model, and therefore, the simulation — using the first-principle

or the data-driven approach.

1.2.1 First-Principle Simulation

A first-principle model, often referred to as a first-principle simulation or calculation, is a computa-

tional approach used in various scientific and engineering fields to understand, predict, and simulate

the behavior of complex systems based on fundamental physical or mathematical principles [47–49].

This approach is also known as ab initio modeling or physics-based modeling. The term first prin-

ciple refers to the fundamental laws, equations, and principles that govern the behavior of a system.

In the context of physics and engineering, these principles typically include the laws of physics, such

as Newton’s laws of motion, Maxwell’s equations for Electromagnetics (EMs), the laws of thermo-

dynamics, and quantum mechanics, among others. The first-principle models for EMs are discussed

in details in Section 2.3. The pros and cons of first-principle approach are discussed below [47, 48]:

Advantages:

• Accuracy: In situations where the underlying physics are well understood and controlled,

first-principle models can be highly accurate.

10



1.2. Different Approaches for Simulations

• Generalization: First-principle models can extrapolate well beyond the range of test data,

unlike empirical models that should be limited within the ranges of data used in their devel-

opment.

• Transparency: First-principle models are highly interpretable because they are based on

well-established physical laws and principles, and can be easily inspected for accuracy or

completeness.

Disadvantages:

• Complexity and Computational Cost: First-principle models can be complex and may

require specialized knowledge to develop and maintain. Furthermore, they can be computa-

tionally expensive to solve, especially for large-scale systems.

• Data Requirements: In practice, it’s often necessary to combine first-principle models with

empirical data to improve accuracy, which can be complex and time-consuming. Furthermore,

estimating parameters in first-principle models can be challenging, as accurate values may not

always be readily available, requiring additional experimentation or calibration.

• Initial Development Time: Creating a first-principle model from scratch can be time-

consuming, especially when detailed knowledge of the system’s physics is needed.

1.2.2 Data-Driven Simulation

A data-driven model, also known as an empirical model or black-box model, is a type of mathematical

or computational model that is built primarily based on observed data, without explicit considera-

tion of the underlying physical or mechanistic principles governing the system [47, 49]. Instead of

relying on fundamental equations or first-principles, data-driven models use statistical and Machine

Learning (ML) techniques to analyze and make predictions from data patterns. They are valuable

when the underlying mechanisms governing a system are not well understood or when empirical

data is the primary source of information. They are widely used in industries and research areas

where large datasets are available and accurate predictions are needed. In this era of Big Data

and Artificial Intelligence (AI), data-driven models form the core of ML, especially Deep Learning
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(DL), which are discussed in depth in Section 2.5. The pros and cons of data-driven approach are

discussed below [50]:

Advantages:

• Efficiency: Data-driven models can be very efficient at processing large amounts of data and

extracting valuable insights, often outperforming traditional models in complex systems.

• Flexibility: Data-driven models can be flexible and adaptable to changing conditions, as

they can be updated with new data as it becomes available.

• Improved Decision-making: By providing accurate and timely information, data-driven

models can help organizations make better decisions.

Disadvantages:

• Data Quality and Quantity: Data-driven models require a substantial amount of high-

quality data to perform well. If the data is inaccurate or incomplete, the model’s predictions

may be unreliable.

• Complexity and Overfitting: Data-driven models can be complex and may require spe-

cialized knowledge to develop and maintain. Furthermore, they can be prone to overfitting,

where they memorize noise in the training data rather than capturing the underlying patterns.

• Transparency: Data-driven models are seen as “black boxes,” i.e., they lack interpretability,

making it challenging to understand how they arrive at their predictions.

1.2.3 Hybrid Simulation

In the recent years, there has been a focus towards a third type — the hybrid approach. Hybrid

modeling refers to the integration of ML and AI technologies with physical modeling, based on first

principles [51]. This approach combines first-principle-based models with data-driven models into

a joint architecture, supporting enhanced model qualities, such as robustness and explainability.

Figure 1.2 illustrates all the three approaches for simulations.
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Hybrid modeling can be used to improve the accuracy and efficiency of simulations by combining

the strengths of both first-principle and data-driven approaches [52, 53]. For example, a hybrid

model might use ML to predict the behavior of a complex system in situations where it is difficult

to derive an accurate physics-based model, while still relying on first principles to ensure that

the predictions are physically plausible. Hybrid modeling is an active area of research, and new

techniques and applications are being developed all the time [52, 53]. It has the potential to

revolutionize many fields by enabling more accurate and efficient simulations, and by providing new

insights into complex systems.

Figure 1.2: Different approaches for simulations

1.3 A Deep Learning (DL) Approach for Simulation

The focus of this thesis is to explore both the data-driven and the hybrid techniques for Compu-

tational Electromagnetics (CEM), i.e., simulation for EMs. Here, I have implemented both the

approaches using Deep Learning (DL) to solve EM problems. The aim is to combine the strengths

of both the first-principle methods, such as the Finite Element Method (FEM), the Finite Difference

Method (FDM), etc., and the data-driven methods, like Neural Network (NN), Recurrent Neural

Network (RNN), etc., to create a hybrid model, Physics-Informed Recurrent Neural Network (PI-

RNN). Both the data-driven and the hybrid models are intended to reduce the computation costs
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associated with conventional FEA solvers, and act as surrogates for them. Both the approaches are

rigorously tested using different EM problems of varying complexities to examine their robustness

and performance.

1.4 Thesis Overview

The rest of the thesis is organized in four chapters. Chapter 2 talks about all the necessary back-

ground knowledge required to assess and analyze the methodologies used in this work. Here the

basics of EMs, CEM, and DL are discussed in details. Chapter 3 forms the core of this thesis as

it illustrates the methodologies used. Here both the data-driven and the hybrid approaches using

DL are described in depth. Chapter 4 talks about the experimental results of both the types of

techniques, which are evaluated against the first-principle-based model solutions. The performances

are then compared with that of a previous data-driven model in the literature, used as a benchmark.

Finally, I conclude the thesis with Chapter 5.
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2
Background

2.1 Electromagnetics (EMs)

In today’s modern world, the most widely used electronic device is a mobile phone (also known

as a cell phone). According to the data from 2022, about 96.1% of the global consumers own

one [54]. However, the first cellular mobile phone was built only less than 50 years ago by Dr.

Martin Cooper and his team in Motorola in 1973 [55]. These devices communicate using Radio

Frequency (RF) waves. The foundation for this long-distance wireless communication was laid out

by Nobel Prize laureate Guglielmo Marconi. In 1895, he built a system to send the first message

using radio waves over a distance of several kilometers [56, 57]. Just as Marconi’s telegraph system,

most of the electronic gadgets encompassing our daily lives from television, computers, washing

machines to electric cars, satellites and all forms of wireless communication are all predicated on

the fundamentals of the Electromagnetic (EM) theory.
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2.1.1 Evolution of the EM Theory

The evolution of the EM theory could be traced back to as early as 1785 with the publication of

Coulomb’s law [58]. Charles Augustin de Coulomb, a colonel in the Engineering Corps of the French

Army and an experimentalist in electricity and magnetism, formulated the law of electric forces on

charges [58]. It states that the magnitude of the forces between two charged bodies are directly

proportional to the product of their charges, and inversely proportional to the square of the distance

between them. It further mentions that like charges experience forces of attraction and opposite

charges experience forces of repulsion. Coulomb’s law led to the quantification of charges, with the

unit being named in his honour (C for coulomb), which was crucial to the development of the EM

theory [59].

Originally, electricity and magnetism were considered independent fields of study. In April

of 1820, it was a Danish physicist, Hans Christian Oersted who first discovered the connection

between these two forces [58]. During the preparation for a classroom demonstration Oersted

observed that the current in a wire would deflect the needle of a nearby compass. Later, upon

further investigation he concluded that an electric current produces a magnetic field, giving rise

to the concept of electromagnetism. Furthermore, he illustrated that not only a current deflects a

magnetic needle, but a magnetic field deflects a current carrying wire. Oersted’s demonstration of

this connection between electricity and magnetism is considered pioneering to the modern study of

electromagnetism.

Inspired by Oersted’s findings, by the end of September 1820, French mathematician and physi-

cist Andre-Marie Ampere, made some ground breaking discoveries on magnetic forces on current

carrying wires [58]. He demonstrated that two parallel wires carrying current in the same direction

attract each other, and repel if in the opposite direction. His experiments conceptualized the science

of magnetic fields generated through electric current, showing how the magnetic fields encircle a

wire with current. In November of 1820, he introduced his circuital law of addition of magnetic

forces which was the basis of the general equation known today as Ampere’s (circuital) law [58].

It states that the line integral of the magnetic flux density vector around a closed loop is directly

proportional to the total electric current flowing through that enclosed loop. Ampere is honoured

by the use of ampere (A) as the unit for electric current.
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In September of 1821, Micheal Faraday, an English physicist and chemist, repeated Oersted’s

experiments [58]. In the process, he revealed that the magnetic field around a straight current wire

is circular. Influenced by observing the patterns formed by iron fillings around a magnet, Faraday

introduced the concepts of electric and magnetic field lines which provided a new perspective of

research on electricity and magnetism. One of his most popular experiments was the one conducted

in August 29, 1831, where he wound two coils on a single iron ring [58]. He observed that changing

the current in one coil induced a current in the other. He, therefore, concluded that the change in

magnetic field with time leads to the creation of electric current, hence, discovered EM induction.

Faraday’s induction ring was essentially the world’s first electric transformer. Further experiments

led to the invention of Faraday’s wheel, the first dynamo, i.e., electric generator. Faraday used his

concept of field lines to explain his experimental observations. He proposed that the magnitude of

the induced current in a conductor is directly proportional to the number of magnetic field lines

being cut by the conductor per unit time. This hypothesis is consistent with the more mathematical

formulation of the phenomenon, currently known as Faraday’s law of EM induction. It was this

discovery that played a pivotal role in converting electricity from merely a scientific fascination to a

powerful technology in the remainder of the 19th century. The unit of capacitance is named farad

(F) in his honour.

Finally, collecting all the discoveries in the field of electricity and magnetism up until his time,

it was James Clerk Maxwell, a Scottish physicist, who connected all the dots and conceptualized

the EM theory [58]. It all began with his fascination of Faraday’s experiments and theoretical

speculations. He published two of his famous papers — "On Faraday’s Lines of Forces" (1856) and

"On Physical Lines of Force" (1861), where he formulated the mathematical model of Faraday’s

hypothesis of field lines [58]. Later in 1873, in his famous book "A Treatise on Electricity and Mag-

netism", he introduced the complete classical EM theory [58]. Here he summarized and synthesized

all the research and experiments performed by his predecessors such as Coulomb, Oersted, Ampere,

Faraday and many others, into a unified mathematical framework to explain the fundamental laws

governing electricity and magnetism. The framework consists of four fundamental equations which

are known today as Maxwell’s equations, discussed in Section 2.1.2, and is used as the basis of EM

theory. He is considered the greatest name in EM theory, and often referred to as the father of

electromagnetism. Even Albert Einstein mentioned, “the formulation of these equations is the most
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important event in physics since Newton’s time” [58]. Through his mathematical model, Maxwell

derived that a changing electric field with time must always be accompanied by a changing magnetic

field with time. This was achieved through the introduction of displacement current, which was one

of Maxwell’s biggest contributions. Furthermore, it led to the conceptualization of EM waves, and

the hypothesis of a possible family of them with varying frequency and wavelength. Furthermore,

he identified light as an EM radiation, and calculated its speed from his equations.

In his publications, Maxwell’s mathematical model for EM theory was defined in Cartesian co-

ordinates. This led to long complex equations in order to express certain phenomena such as the curl

and the divergence of a flux. Few years later, it was an English electrical engineer, mathematician,

and physicist, Oliver Heaviside who introduced the vector notation in Maxwell’s equations [58, 60].

Heaviside used scalar and vector products along with other operators such as the grad, div, and

curl to re-write Maxwell’s model with a compact set of four equations leading to its modern version,

discussed in Section 2.1.2 [60]. Furthermore, Heaviside laid out the mathematical foundation of the

guided EM waves theory in his series of publications in the 1880s and in his book "Electromagnetic

Theory" in 1893 [58].

However, it was only after Maxwell’s death that his EM theory was confirmed by the German

physicist Heinrich Rudolf Hertz in 1887 [58]. Hertz was the first to experimentally prove and

showcase EM waves and EM radiation. In his famous laboratory experiment in 1887, Hertz created

the first radio (wireless) link, and demonstrated the transmission and reception of radio (EM) waves

over several meters [58]. Thus, verifying Maxwell’s formulation of electromagnetism. The unit of

frequency, measured in cycles per second, of waves is named hertz (Hz) to honour his contributions.

After the groundbreaking discovery of radio waves, Guglielmo Marconi, in 1895, took this tech-

nology and other subsequent radio engineering inventions to develop the wireless communication

over several kilometers. Marconi kept on improving his pioneering wireless system, and his con-

tributions in laying the foundation for wireless telegraphy led him to his Nobel Prize in physics

in 1909 [56, 57]. Ever since, the radio science has evolved through the decades and has become

an essential component of modern technology for wireless communication used by systems ranging

from satellites in the orbit to smart phones in our hands.
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2.1.2 Maxwell’s Equations

Modern EM theory is essentially predicated on Maxwell’s equations. Research on electricity and

magnetism culminated in Maxwell’s book "A Treatise on Electricity and Magnetism", in 1873,

leading to a coherent set of equations [58]. Maxwell summarized the fundamental laws governing

electromagnetism with his four equations. However, they are also simultaneously referred to by the

name of the scientist who had discovered the individual phenomenon in the first place. Maxwell’s

equations can be applied to any scenario of electromagnetism, with the most general form being for

a rapidly time-varying EM field in arbitrary EM media, which is discussed as follows:

Maxwell’s 1st Equation — Faraday’s Law

Maxwell’s 1st equation originates from Faraday’s law of EM induction. Faraday’s law states that

the rate of change of a magnetic flux induces a directly proportional electromotive force, leading to

a flow of electric current. Maxwell’s equation further elaborates that a time-varying magnetic field

gives rise to an electric field circulating around it. The integral form is given by Equation 2.1, and

the differential form is given by Equation 2.2:

∮︂
C

E · dl = −
∫︂
S

∂B
∂t

· dS, (2.1)

curl E = ∇× E = −∂B
∂t

, (2.2)

where E is the electric field vector and B is the magnetic flux density vector. Here, the curl of E is

proportional to the rate of change of the surrounding B. Equation 2.3 describes the general relation

between the magnetic flux density vector, B and the magnetic field vector, H:

B = B(H) (2.3)

Furthermore, Equation 2.4 describes the relation for a linear material, based on the magnetic per-

meability, µ, as shown below:

B = µH (2.4)
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Maxwell’s 2nd Equation — Ampere’s Law

Maxwell’s 2nd equation is predicated on Ampere’s Circuital law. Ampere’s law states that the

sum of the magnetic field along an enclosed arbitrary path, C is numerically equal to the electric

current flowing through the surface, S enclosed by the path. However, the law couldn’t explain

the phenomenon for rapidly time-varying fields in certain scenarios, such as a capacitor with high-

frequency current. Maxwell corrected and completed Ampere’s law with his hypothetical entity

known as displacement current. The revised equation now not only takes the electric current but

also the change in the electric flux density into consideration, as shown in Equations 2.5 (integral

form) and 2.6 (differential form):

∮︂
C

H · dl =
∫︂
S

(︃
∂D
∂t

+ J
)︃
· dS, (2.5)

curl H = ∇× H =
∂D
∂t

+ J, (2.6)

where H is the magnetic field vector, D is the electric flux density vector (due to displacement

current), and J is the electric current density vector. Equations 2.7 and 2.8 show the general

relation of D and J with E, the electric field vector, respectively:

D = D(E) (2.7)

J = J(E) (2.8)

Furthermore, for linear materials the relation is described using Equations 2.9 and 2.10:

D = ϵE, (2.9)

J = σE, (2.10)

where ϵ is the permittivity, and σ is the conductivity of linear materials.
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Maxwell’s 3rd Equation — Gauss’ Law

Maxwell’s 3rd equation, also known as Gauss’ law, states that the total amount of electric charges

present within the volume of an enclosed surface is equal to the total electric flux flowing out of

the enclosed surface, and is given by Equation 2.11. In terms of vector notation, it can be stated

that the divergence of the electric flux density vector, D at any given point is equal to the volume

electric charge density, ρv, as shown in Equation 2.12.

∮︂
S
D · dS =

∫︂
v
ρvdv (2.11)

div D = ∇ · D = ρv (2.12)

It can be inferred from Gauss’ law that positive electric charges act as sources of an electric field,

and negative charges as sinks. Furthermore, an electric field always starts from a positive charge

and diverges away from it, and converges toward a negative charge and stops at it.

Maxwell’s 4th Equation — Gauss’ Law for Magnetism

Maxwell’s 4th equation, also known as Gauss’ law for magnetism, is analogous to his 3rd law except

that it describes the magnetic field instead of the electric field. It states that the net amount of

magnetic flux entering a region of space is equal to the net amount leaving, as given by Equation 2.13.

Therefore, the divergence of the magnetic flux density vector, B at any given point is always equal

to zero, as shown in Equation 2.14.

∮︂
S
B · dS = 0 (2.13)

div B = ∇ · B = 0 (2.14)

The inference from Gauss’ law for magnetism is that there are no equivalent "magnetic charges", for

magnetic fields, to the electric charges for electric fields. In fact, magnets always occur in dipoles —

north and south. Furthermore, magnetic fields, away from magnetic dipoles, always flow in closed
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loops.

2.1.3 Poisson’s Equation for Magnetic Field

The goal of this thesis is to evaluate the magnetic flux density distribution in various slowly time-

varying (low-frequency) EM systems. Here, I would like to focus on what these systems are and how

we can conceptually perceive the magnetic field distributions in them. In order to realize how the

magnetic flux is generated in a low-frequency EM system we need to focus on Maxwell’s 2nd equation

(also known as Ampere’s law), previously discussed in Section 2.1.2. For a slowly time-varying field,

the displacement current can be ignored, resulting in Equation 2.15:

∮︂
C

H · dl =
∫︂
S
J · dS (2.15)

We can use the right-hand rule to find the relative directions –– the thumb pointing the current

flow and the other fingers pointing the contour.

For the problems addressed in this work, I prefer to use the differential form of Ampere’s law

which relates the field vectors at a point to the corresponding field sources at the same point, given

by Equation 2.16:

curl B = ∇× B = µJ, (2.16)

where the magnetic field vector, H has been replaced by the magnetic flux density vector, B using

the relation given by Equation 2.4. We can further simplify the equation by using the relationship

between magnetic flux density vector, B and magnetic vector potential, A given by Equation 2.17.

This leads to the final form of the equation, also known as Poisson’s equation for magnetic field,

relating A and J as shown in Equation 2.18.

curl A = ∇× A = B (2.17)

−∇2A = µJ (2.18)

When dealing with any magnetic material, we need to consider the relative permeability of the
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material, µr along with the permeability of vacuum, µ0, which results in Equation 2.19 shown

below:

−∇2 1

µrµ0
A = J (2.19)

2.2 Computational Electromagnetics (CEM)

Computational Electromagnetics (CEM) is essentially a branch of EMs that focuses on using compu-

tational methods and numerical techniques to solve EM field problems. It involves the application

of mathematics, physics, and computer science to simulate and analyze EM phenomena. Generally,

any EM problem can be defined by the EM theory, discussed in Section 2.1.1, i.e., through Maxwell’s

equations. The most accurate solution of those equations can be attained through analytic methods

such as separation of variables, series expansion, conformal mapping, etc. [3]. Unfortunately, in

most real-world scenarios it’s extremely difficult to impossible to find the closed-form solutions of

Maxwell’s equations analytically due to a multitude of reasons, as mentioned below [61]:

• The Partial Differential Equation (PDE) is non-linear and cannot be linearized without com-

promising the result.

• The solution region is too complex.

• The Boundary Conditions (BCs) are of mixed types.

• The BCs depend on time.

• The medium is inhomogeneous or anisotropic.

However, computational methods used to solve the EM problems can overcome these issues. Hence,

CEM plays a crucial role in the design, analysis, and optimization of various EM devices, systems,

and structures.

The foundation of CEM lies in Maxwell’s equations, a set of four partial differential equations

that describe how electric and magnetic fields interact, as discussed in Section 2.1.2. CEM involves

simulating the behavior of EM fields, including electric and magnetic fields, EM waves, and radi-

ation patterns. This can be done in various frequency domains such as static, low-frequency, RF,

23



2.2. Computational Electromagnetics (CEM)

microwave, and optical. However, the focus of this thesis will be on low-frequency EM simulations,

as mentioned in Section 2.1.3. CEM relies on numerical methods to discretize and solve Maxwell’s

equations. Common numerical techniques include Finite Difference Method (FDM), Finite Differ-

ence Time-Domain (FDTD), Finite Difference Frequency-Domain (FDFD), Method of Moments

(MoM) and Finite Element Method (FEM), among others [62–64].

2.2.1 A Brief History of CEM

The use of simulations in EMs, also known as Computational Electromagnetics (CEM), can be traced

back to the development of computers and computational methods. The field of electromagnetism

itself dates back to the 19th century, as discussed in Section 2.1.1. However, the application of

computational simulations to solve EM problems started to become more prominent in the latter

half of the 20th century. Here are some key milestones:

• 1940s and 1950s: Until the 1940s, people used to find ingenius ways to solve complex

EM problems using the analytic methods [3]. The earliest attempts at simulating EM fields

were made using analog computers [17]. Engineers and scientists used physical models and

electronic circuits to represent EM phenomena. These early simulations were limited in scope

and accuracy.

• 1960s: With the advent of digital computers, numerical methods for solving EM field equa-

tions started to emerge [3]. The FDM [2] and the FEM [65, 66] were among the early techniques

used for EM simulations. These methods allowed for the approximate solution of Maxwell’s

equations in various practical applications.

• 1970s: As computer technology improved, simulations in electromagnetism began to address

more complex problems. Early applications included modeling microwave propagation and

antenna design. One notable development was the MoM [67], which was particularly well-

suited for problems involving wire antennas and scattering from conducting bodies.

• 1980s: The FDTD method was introduced [68], revolutionizing EM simulations. FDTD al-

lowed for the direct numerical solution of Maxwell’s equations in both time and space domains.

24



2.2. Computational Electromagnetics (CEM)

This method quickly gained popularity and is still commonly used today for a wide range of

EM problems.

• 1990s: Commercial software packages dedicated to EM simulations, such as Infolytica MAG-

NET [69] and Ansys Maxwell [70] became available. These tools provided engineers and

researchers with user-friendly interfaces and powerful simulation capabilities for designing

and optimizing microwave and RF components, antennas, and more.

• 2000s: The use of EM simulations continued to grow in various industries, including telecom-

munications, aerospace, automotive, and electronics. Simulation tools such as COMSOL [71]

played a crucial role in the development of advanced technologies like metamaterials, photonic

devices, and wearable electronics.

• 2010s and Present: Today, EM simulation is an essential tool in the design and analysis of

a wide range of devices and systems, from integrated circuits and antennas to radar systems

and optical devices. The simulations have become more accurate and efficient, thanks to

advancements in computational techniques and hardware. Furthermore, the advent of ML

has ushered in a new era in EM simulations [72–74].

Simulations in EMs have evolved from basic analog models to sophisticated numerical methods run-

ning on high-performance computers. The development of specialized software and tools dedicated

to EM simulations, like the widely used application software packages such as Infolytica MAGNET

[69], Ansys Maxwell [70], Ansys High-Frequency Structure Simulator (HFSS) [75], COMSOL Mul-

tiphysics [76] and CST Studio Suite [77], has significantly advanced the field. These tools have

enabled engineers and researchers to tackle complex EM problems, optimize designs, and develop

innovative technologies that have transformed various industries.

Computational Electromagnetics (COMPEM) Laboratory at McGill

The history of EM simulations cannot be discussed without mentioning my Computational Elec-

tromagnetics (COMPEM) lab at McGill, the birthplace of CEM in Canada [78]. It was established

by Prof. Peter Peet Silvester, who began his academic career in Electrical Engineering department

at McGill in 1964, shortly after receiving his PhD [78]. Prof. Silvester was the first to apply FEM
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on EMs [65], consequently earning him the global recognition as a pioneer in the simulation of EM

fields. He co-authored the seminal book "Finite Elements for Electrical Engineers" in 1983 [79],

along with Prof. Ronald Leslie Ferrari, which is the first textbook dealing specifically with the

application of the FEM to problems in electrical engineering. This book, in its third edition, is

still considered the Bible of FEM for electrical engineers [80]. Prof. Silvester’s contributions in the

field were later summarized by Prof. Ronald L. Ferrari in [66]. Furthermore, the first textbook on

Computer-Aided Design (CAD) for magnetics, published by Prof. Silvester and Prof. David A.

Lowther [81], is another example of contribution from my lab. Over the past decades, the professors

and students from the COMPEM lab have carried the torch of Prof. Silvester’s legacy, and thrived

in the field of CEM. One such notable achievements is that of Zoltan J. Cendes who founded Ansoft

Corporation that developed the Electronic Design Automation (EDA) software[82].

2.2.2 Applications of CEM

Even though the fundamental purpose of CEM still remains to solve a given EM problem for any

irregular geometry, which makes it a very strong and powerful tool, CEM is used for a wide range

of applications:

1. Design and Analysis: It is used as the primary tool for the design and analysis of complex

EM structures and systems, such as antennas, microwave circuits, integrated circuits, printed

circuit boards, metamaterials, and photonic devices [62–64].

2. Optimization: It is used for optimizing the performance of EM devices and systems by

iterating through various design parameters to achieve desired specifications [62–64]. This is

crucial in industries like telecommunications, aerospace, and electronics.

3. Electromagnetic Compatibility (EMC) Analysis: EMC is the ability of an electrical or

electronic system to operate as intended without either being affected by its EM environment

or causing EM pollution itself [83].

4. Electromagnetic Interference (EMI) Analysis: EMI is the unwanted noise/interfer-

ence/disturbance in an EM system originating from an external source [83].
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5. Signal Propagation Studies: It is used to study scattering and radiation patterns of objects,

which is essential in fields like radar, remote sensing, and satellite communication [62–64].

6. Material Characterization: It is employed in determining the EM properties of materials,

which is crucial for designing and analyzing EM devices [62–64]. This includes modeling

material properties like permittivity, permeability, and conductivity.

7. Coupled Physics Problems: It can be extended to solve coupled physics problems, where

EM fields interact with other physical phenomena such as thermal, mechanical, or acoustic

effects [63].

8. Biomedical Applications: It is used to model the interaction of EM waves with different

parts of human body. Use cases include microwave breast tumor detection and monitoring,

light propagation through retinal photoreceptors, absorption of electromagnetic power from

the cellular telephone by the human head tissues, and many others [63, 84]. Furthermore,

it facilitates the design of medical devices such as the Magnetic Resonance Imaging (MRI)

scanners [63, 85].

9. Education and Research: It is a vital tool for researchers and educators in EMs and related

fields. It allows students and scientists to explore and understand complex EM phenomena

and develop new solutions and technologies [84].

CEM has become increasingly important in modern technological development and research, en-

abling engineers and scientists to tackle complex EM problems and design innovative devices and

systems with greater accuracy and efficiency. It is heavily used in numerous industries, including

telecommunications, electronics, aerospace, defense, and photonics, among others [62–64].

2.3 Classification of Computational Electromagnetics (CEM)

Methods

Ever since the initiation of CEM in the 1960s, there have been various software applications devel-

oped for solving a variety of real-world EM problems. However, these software are essentially based

on certain specific techniques to tackle the problems. These techniques can be broadly categorized
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Figure 2.1: Classification of Computational Electromagnetics (CEM) methods [2]

based on the type of the EM problem under consideration. Classification of the CEM methods is

illustrated in Figure 2.1 and discussed below:

• High vs Low Frequency: High frequency methods solve Maxwell’s equations through sim-

plifying hypothesis, which is only applicable if the wavelength is much smaller than the size

of the object being modeled [2]. On the other hand, low-frequency methods, more commonly

known as full-wave methods, are used where the wavelength is comparable to the geometrical

characteristics of the object being modeled [2].

• Field Based vs Current Based: Field based techniques evaluate the scattered EM field

given the incident field and a complex object. On the other hand, current based techniques

try to approximate the currents induced on the object by the impinging field [2].

• Time vs Frequency Domain: Time-domain methods focus on how a signal changes over

time, while frequency-domain methods focus on how the signal is distributed over a range of

frequencies [2].
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For high-frequency field based EM problems, methods like Geometrical Optics (GO) [2], Geomet-

rical Theory of Diffraction (GTD) [86], or the upgraded Uniform Geometrical Theory of Diffraction

(UTD) [86] frameworks are used. And for current-based problems, methods like Physical Optics

(PO) [87] or the enhanced Physical Theory of Diffraction (PTD) [88] are used. However, as men-

tioned earlier in Sections 2.1.3 and 2.2, in this thesis my focus is on low-frequency EM problems.

Hence, the low-frequency or full-wave methods have been discussed in further details.

2.3.1 Finite Difference Method (FDM)

The FDM was first introduced by A. Thom in the 1920s as "the method of squares" to solve

nonlinear hydrodynamic equations [89]. However, it wasn’t until around 1962, when FDM had its

initial applications in EM field by Frederick C. Trutt [90].

Figure 2.2: Finite Difference Method (FDM) mesh for two independent variables — x and t [3].

The FDM is a numerical technique used for solving differential equations, particularly PDEs and

Ordinary Differential Equations (ODEs). The method owes its name to the process of approximating

the derivatives of a function by replacing them by finite difference equations [3]. By doing so, it

transforms the continuous differential equation into a system of algebraic equations that can be
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solved numerically on a computer (or manually) [3]. The FDM connects the value of the dependent

variable at any given point to its neighbouring points in the solution space, as shown in Figure 2.2.

The steps required to solve any given EM problem using FDM are as follows [3]:

1. Discretization: The first step is to discretize the domain of the problem. For example,

in a one-dimensional case, the interval of interest is divided into a series of discrete points.

Similarly, for two or three-dimensional problems, a grid of nodes is created.

2. Approximation of Derivatives: The derivatives in the differential equation are approxi-

mated using finite difference formulas. This leads to a system of algebraic equations involving

the values of the function at discrete points. The most common approximations include [3]:

(a) Forward-Difference: Approximates the derivative at a point using values at that point

and a nearby point ahead, given by Equation 2.20:

f
′
(xo) ≃

f(xo +∆x)− f(xo)

∆x
(2.20)

(b) Backward-Difference: Approximates the derivative at a point using values at that

point and a nearby point behind, given by Equation 2.21:

f
′
(xo) ≃

f(xo)− f(xo −∆x)

∆x
(2.21)

(c) Central-Difference: Approximates the derivative at a point using values at that point

and points on both sides, given by Equation 2.22:

f
′
(xo) ≃

f(xo +∆x)− f(xo −∆x)

2∆x
(2.22)

3. Solving the Algebraic System: The resulting algebraic system can be solved using var-

ious numerical methods, such as Gaussian elimination, iterative methods like the Jacobi or

Gauss-Seidel method, or specialized solvers for certain types of problems. While solving the

equations, the BCs and/or ICs of the given problem need to be taken into account.

The specifics in the all three steps are determined based on the nature of the problem, the solution
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region, the BCs and the ICs. The choice of discretization scheme and grid size can significantly

impact the accuracy of the results, and care must be taken to ensure stability and convergence.

2.3.2 Finite Difference Time-Domain (FDTD)

The FDTD was first introduced in 1966 by Kane S. Yee [91] as Yee’ Finite Difference Algorithm

[3]. However, the acronym FDTD was coined by A. Taflove in 1980 when he published the first

validated FDTD models of sinusoidal steady-state EM wave penetration into a 3D metal cavity [68].

Yee’s algorithm was further developed by A. Taflove and others over the subsequent decades leading

to the modern version of FDTD as we know today [68, 92–97]. One notable upgrade to FDTD was

with the introduction of the Perfectly Matched Layer (PML) in 1994 by Jean-Pierre Berenger [98]

for 2D problems, which allowed the simulation of open, infinite domains. Afterwards, the PML

was extended to handle 3D problems by D.S. Katz and others [99]. A. Taflove has summarized the

evolution of FDTD in his journal in 2022 [100].

The FDTD is a variant of the FDM which is used to solve Maxwell’s time-varying field equations

[3]. The distinction in the way the mesh, called the Yee’s lattice, is generated in FDTD can be

seen in Figure 2.3. The figure shows the positions of the field components in a unit cell of the Yee’s

lattice. Due to its ability to solve EM problems in both space and time domains FDTD is crucial

for the study of EM waves. It is used for various applications in the EM field such as designing

antenna, waveguides and optical devices, analyzing EMC/EMI, studying EM wave scattering and

so on.

2.3.3 Finite Volume Time-Domain (FVTD)

The Finite Volume Time-Domain (FVTD) method is a computational simulation technique that was

first applied to EM problems in the early 1990s [101–103]. It’s a derivation from the FDTD method,

and is based on Maxwell’s curl equations in their conservative form [103]. The FVTD method solves

Maxwell’s equations numerically by integration over small elementary volumes. Because there are

no limitations for selecting the shape of the elementary volumes, the FVTD is well suited for

implementation with unstructured meshes [103]. It has become a powerful alternative to the FDTD

method for EM problems where conformal meshing is advantageous.
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Figure 2.3: Positions of the field components in a unit cell of the Yee’s lattice [3].

2.3.4 Method of Moments (MoM)

Although the name MoM was first used by R. F. Harrington in the western literature [104], its

origin can be traced back to the Russian literature [105, 106]. The details of the MoM’s advent

and its subsequent evolution are fully documented by R. F. Harrington [107]. However, it was only

after the works of Richmond in 1965 [108] and R. F. Harrington in 1967 [109], that the application

of MoM in the field of EMs became widespread [3]. A history of its development can be found in

[107, 110].

The MoM is a technique used for solving problems related to systems of equations, especially

when dealing with integral equations [3]. It involves taking "moments" by multiplying with ap-

propriate weighing functions and integrating, and thus the name. Essentially, it converts integral

equations into algebraic equations, which can then be solved numerically. The application of the
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MoM essentially involves the following steps [3]:

1. Integral Equation Formulation: Most EM problems can be described by integral equa-

tions, where the unknown function or distribution appears within integrals. These equations

often arise when dealing with fields or quantities that depend on the values over an entire

domain.

2. Moment Representation: The MoM involves approximating the unknown function or dis-

tribution by a set of basis functions or a finite set of discrete points (called collocation points).

These basis functions or collocation points are chosen in a way that simplifies the integral

equation.

3. Approximation of Unknown Function: The integral equation is then transformed into a

system of algebraic equations by applying the chosen approximation. This system of equations

relates the coefficients (or values) of the basis functions or collocation points to the values of

the integral equation at those points.

4. Solving for Coefficients: Solve the resulting system of algebraic equations to determine the

coefficients of the basis functions or the values at the collocation points. These coefficients

represent the approximate solution to the integral equation.

The obtained coefficients or values can be used to compute other relevant quantities or make predic-

tions about the physical system being studied. Post-processing may include evaluating fields, finding

fluxes, or estimating other derived parameters. The MoM is particularly suitable for problems that

involve BCs and Interface Conditions (I/FCs), where integral formulations are more natural than

differential equations. It’s often employed in EM simulations, such as Finite Element Analysis

(FEA) of antennas and scattering problems.

2.3.5 Finite Element Method (FEM)

The FEM was formally formulated in 1943 by Richard L. Courant [111], the father of Finite Elements

(FEs) [112]. Although it was initially developed for the field of structural analysis [2, 3, 111], FEM is

widely applied in various fields such as engineering, physics, and computer science. However, it was

first applied to solve EM problems by Peter P. Silvester in 1968-1969 [2, 3, 65, 80, 112]. Although
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FEM was developed to solve problems in the frequency domain, it expanded to the time domain in

the 80s [113]. The detailed history of its evolution can be found in [112, 114].

Figure 2.4: Finite Element Method (FEM) mesh, using triangular elements, for a current carrying
coil inside a cylindrical domain.

The FEM is a numerical technique used for solving differential equations, particularly PDEs

[3]. Similar to the FDM, the FEM segments the solution space into sub-domains called FEs [3].

It then uses piecewise polynomials across these elements to approximate the solution of the given

PDE [3]. However, unlike that in the FDM, the grid of elements is non-uniform and unstructured

in the FEM, which can be observed in Figure 2.4. The steps involved are formalized below [115]:

1. Discretization: The first step in the FEM is to discretize the domain of interest into smaller,

finite-sized subdomains called elements. These elements are typically simple shapes like tri-

angles or quadrilaterals in 2D, or tetrahedra or hexahedra in 3D. The domain is broken down

into a mesh composed of these elements.

2. Approximation of Field Variables: In FEM, the field variables (such as displacement,

temperature, stress, etc.) are approximated within each element using piecewise interpolation

functions known as element shape functions [3]. These shape functions describe how the

variable varies within each element and are typically chosen to be continuous within each
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element but discontinuous between adjacent elements. The differential equation describing

the physical problem is transformed into a system of algebraic equations by integrating it over

each element using the approximated field variables. This process results in a set of linear

equations for each element, which are then arranged in a matrix form known as the element

coefficient matrix or stiffness matrix [3].

3. Assembling: The next step involves assembling the equations from all the elements into

a global system of equations, leading to global coefficient matrix [3]. This process involves

accounting for the connectivity between elements and properly combining the contributions

from each element into the global system. BCs are applied to the global system to incorporate

constraints or known values at specific locations or on certain boundaries of the domain. These

conditions are essential for obtaining a unique solution.

4. Solving the Algebraic System: The global system of equations, which includes both the

differential equation and BCs, is solved numerically using methods like direct solvers (e.g.,

Gaussian elimination) or iterative solvers (e.g., conjugate gradient method). The solution

provides the values of the field variable at discrete points within the domain.

The FEM is highly versatile and can handle complex geometries and material properties [3]. The

accuracy of the FEM solution can be controlled by adjusting the mesh density (refining or coarsening

the mesh) and using higher-order shape functions. However, it can be computationally intensive for

large-scale problems and requires careful consideration of various factors, including element types,

mesh quality, and solver choices.

2.4 Electromagnetic (EM) Actuators

The primary objective of this research is to evaluate the performance of both a data-driven and

a hybrid approach for solving practical EM problems, as mentioned in Section 1.3. Hence, I have

chosen two problems of varying complexities for this work — a coil and a C-core actuator, discussed

in Sections 3.2.1 and 3.2.2, respectively.

An actuator is a component of a device that serves the general purpose of controlling mechanical

movements within the device. Essentially, it converts a given form of input energy, such as electrical,
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hydraulic, pneumatic, thermal, mechanical or human power, into some form of physical motion [116].

To initiate any movement, an actuator requires a feedback through a control signal from a control

system. There are various kinds of actuators that produce varying motions, and use different power

sources for the control signal. In fact, they are classified based on the type of the input energy they

use — electrical, mechanical, hydraulic, pneumatic, etc., and the type of motion they produce —

linear or rotary. Once it has power, an actuator creates specific motions depending on the purpose

of the machine. For example, in the JWST, actuators are used to align the 18 hexagonal mirror

segments to serve as one big primary mirror [22, 24]. Their applications can be found in various

industries such as aerospace, automotive, healthcare, gaming, and many more [117–120].

An EM actuator is a device that converts electrical energy into mechanical motion and vice versa,

using the interaction of magnetic fields [121, 122]. The basic principle of an EM actuator is based

on Maxwell’s equations, specifically Faraday’s law, Ampere’s law, as discussed in Sections 2.1.2

and 2.1.2, respectively, Lorentz force of EM forces, and Biot-Savart’s law [121]. The EM actuator

consists of two main components: a coil and an armature. The coil is a loop or a solenoid of wire

that carries an electric current. The armature is a movable part that is attached to a spring or a

lever. The armature can be made of iron or another ferromagnetic material, or it can be another coil

or even a permanent magnet. When an electric current flows through the coil it creates a magnetic

field around it. This magnetic field attracts or repels the armature, depending on its polarity and

orientation. The armature moves towards or away from the coil, creating a mechanical motion.

This motion can be controlled by moderating the current, voltage, frequency, or waveform of the

electric signal applied to the coil.

2.4.1 EM Analysis of a C-core Actuator

An EM C-core actuator is a type of a linear actuator that uses a C-shaped stator (C-core) and a

moving component (armature) [123, 124]. A 2D version of such an actuator is shown in Figure 2.5,

as seen in [125]. From the figure, we can observe that the C-core is wrapped around by a copper coil

with N turns, and the armature is placed close to the C-core without making any physical contact.

Current, I is passed through the coil which generates a magnetic field around it. This magnetic

field gets concentrated in the ferromagnetic C-core (made of iron), turning it into a magnet. This

causes the C-core to attract the armature towards it, resulting in a linear motion.
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Figure 2.5: An Electromagnetic (EM) C-core actuator

For this EM problem, we can assume the magnetic materials to be linear, and flux leakage and

fringing are negligible. To solve it analytically, we begin with the generalized Ampere’s law, as

explained in Section 2.1.2, which gives us Equation 2.23:

NI = Hclc + 2 ∗Hglg +Hala, (2.23)

where N and I are the number of wire turns and the current in the coil, respectively, Hc, Hg, and

Ha are the magnetic field intensities, and lc, lg, and la are the magnetic flux path lengths in the

C-core, air gap, and armature, respectively. Here, the product NI is called the magnetomotive force

(MMF). Furthermore, we can find the relation between the total magnetic flux, ϕ and the MMF

from Equation 2.24 [58]:

ϕ = BS = µHS =
µNIS

l
=

NI

R
, (2.24)

where R is the total reluctance of the magnetic circuit. Using this we can derive the equivalent
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Figure 2.6: The equivalent electric circuit for the C-core problem.

electric circuit for the given magnetic circuit problem, as shown in Figure 2.6. From the circuit, we

can observe that R is given by Equation 2.25:

R = Rc + 2 ∗Rg +Ra, (2.25)

where Rc, Rg, and Ra are the reluctances of the C-core, air gap, and armature, respectively. They

are given by Equations 2.26, 2.27, and 2.28, respectively:

Rc =
lc

µcSc
, (2.26)

Rg =
lg

µgSg
, (2.27)

Ra =
la

µaSa
, (2.28)

where µc, µg, and µa are the magnetic permeabilities, and Sc, Sg, and Sa are the cross-sectional

surface areas of the C-core, air gap, and armature, respectively. Using the values of these parameters

we can compute R, and from Equation 2.24, we can find ϕ using R and NI. Finally, we can
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compute the magnetic flux densities in the C-core (Bc), air gap (Bg), and armature (Ba) using

Equations 2.29, 2.30, and 2.31, respectively:

Bc =
ϕ

µcSc
(2.29)

Bg =
ϕ

µgSg
(2.30)

Ba =
ϕ

µaSa
(2.31)

Furthermore, we can find the energy stored, W in the magnetic field using Equation 2.32 [58]:

W =

∫︂
V

B2
g

2µo
dv =

B2
g

2µo
· 2Sglg (2.32)

Moreover, we can compute the magnetic force, F on the armature using Equation 2.33 [58]:

F =
dW

dx
=

B2
g

µo
· Sgdx

dx
=

B2
gSg

µo
, (2.33)

where F is the force in Newtons, dW is the change energy in Joules, and dx is the change in

distance between the C-core and the armature in meters. This formula assumes that the actuator

operates in the linear region of the magnetic circuit, where the magnetic flux density is proportional

to the current. If the actuator operates in the saturation region, where the magnetic flux density

reaches a maximum value, then the force will be reduced. To avoid saturation, the actuator should

have a large air gap and a low current. Another factor that affects the force of a C-core actuator is

the detent force, which is the residual force caused by the attraction between the permanent magnet

(used as the armature) and the stator (C-core) [126]. The detent force can reduce the efficiency and

accuracy of the actuator. To minimize the detent force, some design techniques can be used, such

as adding auxiliary slots or arc-teeth to the stator [126].

In this work, I have tried to solve for the magnetic field distribution, B in a current carrying

coil problem, discussed in Section 3.2.1, and in a C-core actuator problem, as illustrated above and

further discussed in Section 3.2.2, as proof-of-concepts (POCs) for my methodologies.
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2.5 Machine Learning (ML)

The word "Artificial Intelligence (AI)" was first coined by John McCarthy, who is considered the

father of AI, in 1956 [127]. He won the Turing Award in 1971 for his contributions to the research

of AI [128]. AI refers to the study of simulation of human cognition in machines. John McCarthy

defined AI as follows [129]:

“It is the science and engineering of making intelligent machines, especially intelligent computer

programs. It is related to the similar task of using computers to understand human intelligence, but

AI does not have to confine itself to methods that are biologically observable.”

He further elaborated on what he meant by intelligence [129]:

“Intelligence is the computational part of the ability to achieve goals in the world.”

Machine Learning (ML) is a subset of AI, as shown in Figure 2.7, which refers to the science

and art of developing computer algorithms that can learn from past experience, i.e., data, without

explicit programming or human assistance. It was first defined by AI pioneer Arthur Samuel in

1959 as follows [130, 131]:

“[Machine Learning is the] field of study that gives computers the ability to learn without being

explicitly programmed.”

Decades later, in 1997, Tom M. Mitchell provided a more technical definition of ML, given as follows

[130–132]:

“A computer program is said to learn from experience E with respect to some class of tasks T

and performance measure P , if its performance at tasks in T , as measured by P , improves with

experience E.”

Currently, ML is at the forefront of the tech industry: powering all the high-tech products such

as smartphones, laptops; auto-piloting cars; ranking web searches; suggesting recommendations

for movies and music; recognizing people’s faces; completing sentences; determining credit scores;

predicting stock markets; and doing much more. The first worldwide mainstream ML application

was the spam filter, introduced in the 1990s [131]. The spam filter learned from the labelled data

(emails marked as spam by users, and other regular emails) to accurately flag any new spam email

without any explicitly defined rules.

ML’s burgeoning application in different domains can be attributed to its ability to formulate
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the underlying relationships between large sets of data with their respective target outcomes. Com-

putationally, ML tries to learn a generic hypothesis/function that can map some input data to its

corresponding output data. This function is not well-defined, and ML learns it from the training

data through calculating the errors. As a result, ML can generalize any hypothesis and make pre-

cise predictions using new unseen data. Furthermore, ML has the inherent characteristics to evolve

along with new data and capture the changes in the process. This adaptability to disruptions makes

it extremely versatile. Thus, ML can be applied to domains ranging from simple spam filtering to

voice recognition to bio-informatics.

2.5.1 Classification of ML

ML models can be classified in more than one way. For instance, if the model is trained through

human supervision or not, if it can be trained on instances on the fly or on mini-batches, if the

model makes predictions based on comparison of the new data with the training ones or if it learns

a predictive function, etc. However, ML models are broadly categorized, based on the method of

training, in the following ways:

I Supervised Learning — The training set consists of input data and the corresponding labels

(target outcomes). The model tries to learn a function mapping the inputs to the respective

outputs.

II Unsupervised Learning — The training dataset is not labelled and the target outcome is

unknown. The model tries to learn hidden patterns within the input data.

III Semi-Supervised Learning — The training set contains partially labelled data. Usually a

small portion of the dataset contains a target value, and the larger portion is unlabelled. The

model uses a combination of both supervised and unsupervised learning during the training

process.

IV Reinforcement Learning (RL) — The model is called an agent, which tries to learn a se-

quence of actions that will earn it the highest reward while performing within an environment.

The agent (model) takes the observations from the environment as its input and updates its

policy of choosing the best action at any given point.
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Figure 2.7: Artificial Intelligence (AI) vs Machine Learning (ML) vs Deep Learning (DL)

2.5.2 Origin of ML

Even though ML might seem to have emerged in the past decade or so, its origin dates back to as

early as the 1940s. The first ever theoretical ML model conceptualized was a Neural Network (NN),

discussed in Section 2.6. Published in 1943, it was a mathematical modelling of human brain cells

(neurons), used to create algorithms mimicking human thought process [133]. Few years later, in

1949, Donald Hebb introduced theories of how neurons in the brain interact with one another and

what excites them in his book "The Organization of Behavior: A Neuropsychological Theory" [134],

which went on to become one of the crucial components in ML development. The very next year, in

1950, Alan Mathison Turing, one of the founding fathers of AI and the father of computer science,

published the seminal paper "Turing Test", also known as "The Imitation Game", which laid out

the basis to determine the intelligence of a machine [135]. He introduced the construct that if a
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machine can imitate a human closely enough that it can’t be differentiated one from the other, then

the machine is considered intelligent. In 1952, computer scientist Arthur Samuel developed the first

ever ML program [136]. The program was written for an IBM computer to play the game of checkers,

and learn to improve every time it played. From this simple program of playing checkers, ML has

come a long way, in the form of AlphaGo, to beating the world champion in the sophisticated game

of GO in 2016 [137].

2.5.3 Deep Learning (DL)

Over the course of time, various types of ML models were introduced such as the Nearest Neighbour

Algorithm, Support Vector Machine (SVM), etc., but they still lacked the true essence of human

intelligence. Eventually, in order to solve more complex problems, scientists decided to keep on

stacking multiple layers of Artificial Neurons (ANs), discussed in Section 2.6.1, to evolve a Neural

Network (NN) into a Deep Neural Network (DNN). This led to a new subset of ML known as Deep

Learning (DL), as shown in Figure 2.7. DL refers to the field studying DNNs, essentially models

with a consortium of multiple ("deep") computational layers. DNNs are structured in a hierarchical

manner where a layer at a higher level learns from the layer below it, representing information

from the dataset in multiple levels of abstraction. One of the first DNNs was the "Neocognitron",

introduced by Fukushima in 1980, which could recognize patterns in images [138]. This was further

extended by the A.M. Turing Award Laureate [139], Yann LeCun and his team in 1998 [140], in

the form of LeNet − 5, a pioneering 7-level Convolutional Neural Network (CNN), discussed in

Section 2.7, which was used for handwriting recognition. However, with increasing number of layers

in the NNs, the demand for computational resources to successfully train such models also kept

rising. Due to the technological limitations during the 1990s, it was impossible to train DNNs

causing a decline in research interest, and hence, turning DL into a lost art [131].

However, it wasn’t until 2006, when another A.M. Turing Award Laureate [141], Geoffrey Hinton

actually coined the term "Deep Learning (DL)" and branded this technique [130, 131]. In their paper

[142], Geoffrey Hinton, Simon Osindero and Yee-Whye Teh were able to train a DNN capable of

recognizing handwritten digits with state-of-the-art precision (>98%). Their success attracted new

attention to the field and gave momentum to the study of DL. Furthermore, the technological

development in the computation hardware and software architectures such as TensorFlow [143],
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Theano [144] and PyTorch [145] has further facilitated the research progress. This enthusiasm led

to the exploration of newer fields such as Computer Vision [146], Natural Language Processing

(NLP) [147], Financial Forecasting [148], etc. The key reasons leading to the DL Tsunami can be

listed as follows:

• Availability of Sufficient Data — real or fabricated.

• Enhanced Hardware Capacity — Graphics Processing Units (GPUs), Tensor Processing

Units (TPUs), Solid-State Drives (SSDs).

• Easy-to-use Software Libraries and Framework — Scikit-Learn [149], Pandas [150],

TensorFlow [143], PyTorch [145].

• Affordable Cloud Computing Services — Amazon Web Services (AWS), Google Cloud

Platform (GCP), Microsoft Azure, Git.

• Advanced DL Architectures — Convolutional Neural Network (CNN), Recurrent Neural

Network (RNN), Autoencoders (AE), Generative Adversarial Network (GAN).

With such factors coming into play [151, 152], the number of units (neurons) in NNs has doubled

in every 2-3 years [153].

Now, provided this surge in research towards DL, one would come up with the indispensable

question of why it is so popular over the traditional ML algorithms. The answer is twofold: DL

can solve complex problems much better than the latter; and it doesn’t require feature engineering.

Complex problems tend to have a higher number of features (input variables). Simple NNs or other

ML algorithms can’t always extract the relevant information from them. Whereas in DNNs, the

hidden layers learn different features incrementally in a hierarchical manner. For instance, if we are

dealing with a facial recognition problem, the first layer would learn to detect edges, the next would

use the edges to learn different shapes like eyes, nose, etc., which could be used by the next layer to

identify the face. Removal of a single layer can be detrimental to such a model’s performance [154].

On the other hand, DNNs don’t require explicit feature extraction by a domain expert. They solve

problems in an end-to-end method, whereas traditional ML algorithms require complex problems

to be broken down into simpler tasks. This comes as a mixed blessing due to the requirement of a
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larger dataset. Even if the "Big Data Era" of technology makes it easier to acquire a larger dataset,

the computation resource and time required for DL is still higher than other ML algorithms. But,

provided the proper infrastructure, a DNN will almost always outperform its contemporaries.

2.6 Neural Networks (NNs)

Throughout human history, we have been inspired by nature for numerous inventions. As it turns

out, the Neural Network (NN), also known as the Artificial Neural Network (ANN), is just one of

such examples. In their paper, published in 1943 [133], neurophysiologist Warren McCulloch and

mathematician Walter Pitts proposed the first computational NN architecture in an attempt to

model the Biological Neural Network (BNN) in human brains. Their work laid the pathway for the

development of many new NN/ANN architectures in the following decades.

In 1957, psychologist Frank Rosenblatt combined the mathematical model proposed by Warren

McCulloch and Walter Pitts [133], and the work of Arthur Samuel on his ML model [136], and came

up with the first computer trainable ANN called the Perceptron [155, 156]. The Perceptron was

trained using an algorithm inspired by Hebb’s rule [130, 131]. Donald Hebb proposed the theory that

the connections between biological neurons become stronger whenever they are triggered frequently

[134]. Siegrid Lowel reiterated the hypothesis with the phrase [131]:

“Cells that fire together, wire together.”

The Perceptron became the basis for all the modern versions of NN architectures that exist today.

2.6.1 Artificial Neurons (ANs)

NNs form the very core of DL. NNs are capable of learning and retaining knowledge, and using it

to make predictions in the future [157]. All the DL models that have come into existence have been

based on the principles of a basic NN paradigm. In order to delve deep into how an NN functions

we need to examine its building block, a neuron (also known as an Artificial Neuron (AN)). An

AN, a much simpler version of its biological counterpart, functions as follows:

• Takes in an input X with m features, X = [1, X1, X2, ..., Xm]

• Multiplies them with their respective weights, W = [W0,W1,W2, ...,Wm]
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• Sums the product of inputs and weights,
∑︁m

j=0XjWj

• Applies a function σ to that sum and gets the output, Ŷ = σ(
∑︁m

j=0XjWj)

Figure 2.8: A basic Artificial Neuron (AN)

This can be better visualized in Figure 2.8. Each of the input features, Xi is multiplied with an

associated weight, Wi. These weights determine the significance of the different features while

generating the output, Ŷ . Furthermore, the input X is augmented with a constant ”1”, which

is called a bias. It enhances the neuron’s flexibility to learn in the solution space by allowing

movements away from the origin. The function σ is called the activation function. In the same way

that a signal has to cross a certain threshold to pass through a biological neuron, the activation

function imposes a similar threshold for ANs. There are several activation functions that can be

used in an NN, with the popular ones being ReLU , Sigmoid and TanH [131, 153]. Once we have

the output Ŷ , we compare it to the actual value Y , which is known as the target/label. We compute

the difference (also referred to as a loss or an error), such as the Mean Squared Error (MSE) as

shown in Equation 2.34:
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E =
1

n

n∑︂
i=1

(Yi − Yî)
2 (2.34)

The aim is to minimize such an error, and it’s achieved by updating the weights. This process is

referred to as training a neuron. The usual process to adjust the weights involves gradient-based

methods such as gradient descent. The update rule for a single neuron would be as in Equation 2.35:

w
(t)
j = w

(t−1)
j + η

(︃
− ∂E

∂wj

)︃
, (2.35)

where η is the learning rate of the algorithm. This type of training/learning where a target/label is

used to compare the output of a model is known as supervised learning, as mentioned in Section 2.5.1

and further discussed in Section 2.6.3.

2.6.2 Fully Connected (FC)/Dense Layer

A simple neuron, as in Figure 2.8, can be used to solve a linearly separable problem with an arbitrary

accuracy. In order to tackle complex problems we need a more sophisticated model. Multiple such

neurons are stacked together in a single layer, which are then repeated a few times to get what we

know as an NN. Figure 2.9 shows an example of a basic NN. It has three layers — input, hidden

and output. The input layer has no weights associated with it, it simply consists of pass-through

neurons that output the input features to the next layer as it is [131]. It consists of neurons equal to

the number of input features plus a bias neuron (always outputs ”1”) [131]. The hidden and output

layers have associated weights for each neuron in the layer, and a single activation function for the

entire layer. Neurons in the same layer are completely disconnected from one another. Both the

hidden and output layers are "fully-connected" with their adjacent layer(s). Hence, they are called

Fully Connected (FC) layers (also known as dense layers). This is the most basic type of layer in

an NN.

The number of hidden layers and number of neurons in each hidden layer are both hyperparame-

ters. In ML, a hyperparameter is a parameter that is used to control the learning process of a model.

The number of output neurons is problem specific. This basic NN is also called a Feedforward Neu-

ral Network (FNN), since it allows signals/information to propagate through all its layers without

any feedback [158]. An FNN with a single hidden layer is capable of approximating any continuous
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Figure 2.9: A basic Neural Network (NN) with an input and an output layer, and one hidden layer.

function with arbitrary precision [159]. It is this ability of universal function approximation that

has led to the popularity of NN across a wide variety of applications.

2.6.3 Training NNs

One of the earliest and biggest hurdles of NNs was to find a suitable and stable training method. It

wasn’t until 1986, when David Rumelhart, Geoffrey Hinton, and Ronald Williams introduced the

backpropagation algorithm to train NNs [160]. This was a landmark moment for DL as the process

is still currently used to train all NNs. In their seminal paper, they proposed an efficient technique

to compute the gradients of the error with respect to each of the weights in the entire NN in just

two passes (one forward, one backward) [160]. The weights are then updated using a gradient-based

method, often with "adaptive" optimization algorithms, such as Adam [161]. This whole training

process is repeated until one of the following criteria is met: a certain number of runs (epochs) is

reached; the error goes below a certain acceptable value; or when the model starts to overfit.

Overfitting, as the name suggests, occurs when a model has learned to predict the training

data so well that it cannot generalize anymore. Normally, it arises when a complex model trains
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on a small dataset, and it ends up memorizing all the data. The most common way of detecting

overfitting is to use two separate sets of data — training and validation [162]. When the training

error keeps on dropping while the validation error starts to rise, that’s when the model starts to

overfit. There are multiple ways to tackle this: increase the data size; reduce the model’s complexity;

or add a form of regularization. The last one basically penalizes the model’s parameters that tend

to increase drastically during the training process. A few forms of regularization techniques have

been discussed later in Sections 2.6.4, 2.6.5 and 2.6.6.

As mentioned in Section 2.6.1, NNs are trained using a supervised learning technique. Such a

training process involves a dataset containing some input variables (also called features or attributes)

and some output variables (also called labels or targets). The NN is fed the input variables to predict

the output, which is then compared with the actual target. The error calculated is used to train the

NN through backpropagation, as mentioned above. Supervised learning can be classified into two

categories — regression and classification. A regression algorithm performs the task of predicting a

continuous value from the real number domain (IR) as an output based on the input data. It tries to

learn a function that can simply map the input features to the target values in the dataset. On the

other hand, a classification algorithm tries to map the input samples to some predefined categories

of targets known as labels or classes.

2.6.4 Dropout

One of the most popular forms of regularization in DL is dropout. It was first introduced in 2012

by Geoffrey Hinton [163] and further elaborated in 2014 by Nitish Srivastava et al. [164]. It can

enhance the performance of even the state-of-the-art DL architectures by 1-2% [131]. A dropout

layer consists of a parameter p, which is called the dropout rate. During each training step, each

of the neurons in a given layer has the probability, p of being "dropped out". This means that

the neuron will be completely ignored or turned off during that particular training step. Once the

training is completed, the neurons are not dropped anymore. Essentially, the dropout layer creates

a collection of 2N different NNs, where N is the number of neurons available for dropout. As a

result, the chance of a certain combination of neurons being trained twice is almost impossible. The

final trained network will represent an averaging ensemble of all the different NNs that have been

trained with extensive parameter (weight) sharing.
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Figure 2.10: A Neural Network (NN) before and after dropout is applied.

2.6.5 Batch Normalization (BN)

Another famous regularization technique is the Batch Normalization (BN). Normalization and stan-

dardization are some of the established and popular preprocessing techniques that are commonly

used in both Statistical ML, and DL. This idea of scaling the inputs was further extended by Sergey

Ioffe and Christian Szegedy in their paper in 2015 in the form of BN [165]. The BN operation

basically applies the standardization technique to the inputs of any given layer in an NN. Sergey

Ioffe and Christian Szegedy demonstrated that BN not only drastically reduces the training time

for all the DNNs tested, but also improves their performance significantly [165]. Furthermore, it

solves the problems of vanishing gradients and overfitting during the training process.

BN simply zero-centers and normalizes each input, and then scales and shifts it before passing

onto the next layer. The standardization is done using the mean and standard deviation, calculated

from the current mini-batch the model is being trained on, as shown in Figure 2.11. Whereas, the

scaling and shifting is done using two learnable parameters, respectively. Essentially, the operation

allows the model to find the optimal distribution for each of the inputs for the layer. The entire

process can be summarized with the following steps:

I Calculate the mean, µB for the ith input xi in the mini-batch B, given by Equation 2.36:

µB =
1

mB

mB∑︂
i=1

xi, (2.36)
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Figure 2.11: Computing the mean and the standard deviation for Batch Normalization (BN).

where mB is the number of samples in the mini-batch B.

II Calculate the standard deviation, σB for the ith input xi in the mini-batch B, given by

Equation 2.37:

σB
2 =

1

mB

mB∑︂
i=1

(xi − µB)
2 (2.37)

III Compute the zero-centered and normalized value, x̂i, given by Equation 2.38:

xî =
xi − µB√︁
σB2 + ϵ

, (2.38)

where ϵ (∼ 10−5) is called a smoothing term, which avoids division by zero.

IV Compute the scaled and shifted output (final) value, zi, given by Equation 2.39:

zi = γi · xî + βi, (2.39)
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where zi is the output of the BN operation, γi is the learnable scaling parameter and βi is the

learnable offset parameter.

During the training process, while the BN process computes the mean and standard deviation

for the mini-batches it also keeps track of the mean, µ and the standard deviation, σ for the entire

training set using an exponential moving average. These are then used after the training is complete

to make predictions, for instance, while using the test set.

2.6.6 Layer Normalization (LN)

Even though BN is a well-performing regularization technique, it doesn’t work well on sequential

data. In their paper, in 2015, César Laurent et al. showed that BN hardly improved the performance

of Recurrent Neural Networks (RNNs), a type of NN which can train on sequential data, discussed

in Section 3.3 [166]. In order to overcome this issue, Jimmy Lei Ba et al. introduced a new form of

regularization technique called the Layer Normalization (LN) in their paper in 2016 [167]. LN and

BN function similarly, except that LN performs the normalization across all the features of every

sample instead of all the samples in a mini-batch, as shown in Figure 2.12. The operation steps are

almost the same as those in BN, given as follows:

I Calculate the mean, µL for the ith feature xi of the input sample, given by Equation 2.40:

µL =
1

mF

mF∑︂
i=1

xi, (2.40)

where mF is the number of features of the input.

II Calculate the standard deviation, σL for the ith feature xi of the input sample, given by

Equation 2.41:

σL
2 =

1

mF

mF∑︂
i=1

(xi − µL)
2 (2.41)

III Compute the zero-centered and normalized value, x̂i, given by Equation 2.42:

xî =
xi − µL√︁
σL2 + ϵ

, (2.42)
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where ϵ (∼ 10−5) is called a smoothing term, which avoids division by zero.

IV Compute the scaled and shifted output (final) value, zi, given by Equation 2.43:

zi = γi · xî + βi, (2.43)

where zi is the output of the LN operation, γi is the learnable scaling parameter and βi is the

learnable offset parameter.

Figure 2.12: Computing the mean and the standard deviation for Layer Normalization (LN).

Unlike BN, LN can compute the statistical values independently for each input, i.e., it doesn’t

have to rely on the mini-batches. This further indicates that the computation for the training and

testing phase is the same. Hence, it doesn’t require to keep track of the mean and standard deviation

of the entire training set using an exponential moving average like BN.
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2.7 Convolutional Neural Networks (CNNs)

Nobel Prize laureates David H. Hubel and Torsten Wiesel unravelled some of the sophisticated

mechanisms in which the visual system of vertebrates processes information [168]. In their papers

in 1958 [169] and 1959 [170], as they experimented on cats, and later, in 1968, on monkeys [171],

they gained some key insights of how the brain’s visual cortex is structured. Specifically, they

observed that the neurons in the visual cortex responded to only a limited region of the entire

visual field, leading to the idea that they have a small local receptive field. Furthermore, some

neurons got stimulated by only a certain fixed pattern such as a horizontal line or a vertical line.

Others with relatively larger receptive fields reacted to even more complex patterns. These led to

the conceptualization of a hierarchical structure of the neurons, where some high-level neurons take

the output from the ones in their respective neighbouring lower-level, which can process any form

of complicated pattern in the visual field. Inspired by these findings, Kunihiko Fukushima came up

with a novel architecture of NN in 1980 called the "Neocognitron", which could recognize patterns

regardless of their positions in the visual field [138]. The Neocognitron was the first iteration of

what is known today as the Convolutional Neural Network (CNN). Efforts on CNNs continued over

the next decades, and they bore fruit in the form of the famous LeNet − 5, a pioneering 7-level

CNN introduced by Yann LeCun et al. in 1998 [140]. It was widely used for handwritten digit

recognition on checks by the banks.

CNNs consist of multiple layers of neurons just like the regular NNs, discussed in Section 2.6.

However, the key factor that differentiates the former from the latter is the type of layers used to

build the network. A basic NN is simply made up of FC layers, as mentioned in Section 2.6.2,

whereas a CNN requires some additional types along with the FC layers — convolutional layers and

pooling layers, which are discussed in Sections 2.7.1 and 2.7.2, respectively.

A CNN functions fundamentally in the same way as a simple NN, discussed in Section 2.6.1.

The data is fed into the network through the input layer (which has no weights). As the data passes

through each hidden layer it gets multiplied by the respective weights, summed up, and a non-linear

function applied to it. However, a CNN expects the input data to be arranged in a certain shape,

either a 2D or 3D grid format. It was essentially based on the digital image format, which was the

primary target data type for CNNs. Nevertheless, modern CNNs are capable of processing not just
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images, but any data type that can be structured accordingly.

2.7.1 Convolutional Layer

The core of a CNN is the convolutional layer. It performs the primary feature extraction for the

CNN. Unlike a dense layer, discussed in Section 2.6.2, a convolutional layer doesn’t have all its

neurons connected to all the neurons in the previous layer. Inspired by the structure of the brain’s

visual cortex, a convolutional layer consists of small local receptive fields known as kernels/filters, as

shown in Figure 2.13. These kernels are essentially 2D matrices with an associated weight for each

position in the matrices. Each kernel is slid across the 2D input data, and the dot product of its

weights and the local region of the input data is computed, as shown in Figure 2.13. This produces

a 2D output known as the activation/feature map. Therefore, the output of a convolutional layer

is a stack of these feature maps, whose depth depends upon the number of kernels in the layer.

The height and the width of the feature maps are usually smaller than those of the input data, but

it could be maintained the same by using zero padding, as shown in Figure 2.13. The size of the

kernels, the stride at which they are slid, and padding are all hyperparameters.

Figure 2.13: Feature map computation in a convolutional layer using a 3× 3 kernel on a 5× 5 input
map using zero padding [4].

During the training process, the weights of the kernels are updated through backpropagation.

As a consequence, each kernel learns to detect a specific pattern in the input data. Each feature
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map generated shares the same weights of the respective kernel. This sharing puts a constraint on

the number of parameters in the layer, making the training process of the CNN computationally

faster and cheaper [153]. Normally multiple convolutional layers are stacked up one after the other,

just like the neurons in the visual cortex. This hierarchical structure allows the first layer to extract

low-level features, then aggregates them for the next layer to extract higher-level features, and so

on.

2.7.2 Pooling Layer

The pooling layer essentially acts as a regularizer. The goal is to reduce the number of parameters to

cut down the required computation time and resources, and prevent the CNN from overfitting. To

achieve that pooling layers are placed in-between two convolutional layers in order to down-sample

the spatial dimension of the feature maps. It consists of a single receptive field like the ones in a

convolutional layer, discussed in Section 2.7.1. However, there are no weights associated with it.

The filter simply applies an aggregation function, such as max or mean, over the local input patch.

The filter size, stride, and padding can be tuned just like in the convolutional layer. Figure 2.14

shows an example of a max-pooling layer with a 3× 3 filter, a stride of 1 and no padding.

Figure 2.14: Max-pooling computation using a 3× 3 kernel on a 5× 5 input map [4].
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2.7.3 Literature Survey

One of the first popular CNN models was the LeNet − 5, introduced in 1998, that was able to

recognize handwritten digits [140]. It had 3 convolutional layers alternating with 2 average-pooling

layers, and 2 FC layers at the end. The average-pooling layers had a trainable weight and bias

for each feature map from the previous layer. The LeNet − 5 was able to show that a CNN, that

assembles simple features into more complex ones over multiple layers, can be used for image clas-

sification. Further developments in CNN models were motivated by the ImageNet classification

challenge, officially known as ImageNet Large Scale Visual Recognition Challenge (ILSVRC). In-

augurated in 2010, ILSVRC currently has 1,281,167 training images, 50,000 validation images and

100,000 test images of about 1000 object classes for image classification and localization [172]. In

2012, AlexNet was the first CNN to win the challenge [154]. It had a top-5 error rate of 16.4%,

whereas the second best had around 26%. It was the first CNN with adjacent convolutional layers

without any pooling layer in-between. While being similar to the LeNet − 5, AlexNet was bigger

and deeper. Furthermore, it used data augmentation and Local Response Normalization (LRN)

to enhance its performance [154]. Its success marked the start of the "DL era" of ML. In 2014,

GoogLeNet won the competition with a top-5 error rate of 6.7% [173]. Even though it had 22 layers,

the total number of parameters were less than that in the AlexNet. It was possible because of the

Inception modules that utilizes the parameters much more efficiently [173]. However, the very next

year, in 2015, the champion model ResNet brought down the error rate to only 3.6% [174]. It was

developed with an astounding 152 layers. Training such a deep NN was possible due to the "skip

connections", which simply connects the input of one layer to the output of another located a bit

higher up the stack [174].

Even though CNNs were primarily developed for image processing, as mentioned in Section 2.7,

they have been applied in a wide variety of research fields, one of which is CEM. In 2017, Wei Tang

et al. [72] demonstrated that a CNN could be used to solve Poisson’s equation. They predicted

the electric potential distribution, in both 2D and 3D models, using the electrical permittivity

distribution and source information organized in 2D and 3D grids for respective models. The CNN

had 7 convolutional layers with ReLU activation function without any pooling layers. Another use

case of CNNs was to predict the motor torque based on rotor images and act as a surrogate for an
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FEM model [73]. Similarly, an architecture based on a CNN and an FNN was used to estimate flux

linkage in motors [175]. In their paper in 2020, Ruohan Gong and Zuqi Tang used a CNN, named

U −Net, for predicting magnetic and temperature fields for different topologies [74]. Furthermore,

a CNN with an Encoder-Decoder architecture was used to predict magnetic field distribution for

low-frequency EM problems with different geometric complexity, material, and current intensity [5].

2.8 Role of Machine Learning (ML) in Electromagnetic (EM)

Simulations

Traditional first-principle methods, such as FEM, FDM, etc., are quite demanding in terms of time

and resources, as discussed in Section 1.2.1. For instance, some researchers concluded the infeasi-

bility of FEM for real-time simulation due to its increasing complexity and computation cost with

increasing model size and time step [176, 177]. This can be attributed to the computationally

intensive mesh generation and storage, which become even more expensive for 3D problems, and

the large stiffness matrix required to solve for a large mesh, as discussed in Section 2.3.5. Others

have proposed surrogate models to accelerate the design and optimization process of certain spe-

cific devices [178–181]. However, such models are only applicable for a limited number of design

problems [179]. Thus, there remains this void of a general purpose surrogate model that is compu-

tationally inexpensive and adequately accurate, allowing engineers to generate quick initial results

for preliminary design selection [179, 182]. Furthermore, optimizing the design of EM machines

requires simulating the problem multiple times while changing only a small number of parameters.

Using conventional numerical methods, such as FEM and/or FDM, requires the same amount of

time for each computation regardless of the magnitude of the change. This inevitably restricts the

exploration/search space for optimal design parameters due to high analysis costs [183, 184].

In order to facilitate the design exploration and optimization process various data-driven meth-

ods, discussed in Section 1.2.2, have been introduced in the recent past. This approach is imple-

mented using DL, discussed in Section 2.5.3, to develop models that can act as general purpose

surrogates for the first-principle methods. DL models can utilize the similarity of different designs

and speed up the calculations, hence making them an attractive method. Previously, DL models

such as a CNN, using dense regression [72–74], have been used for EM field prediction and showed
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favorable results. Such networks based on a CNN expect the input data as a stacked 2D input with

the geometry along with excitation and material properties, represented as a structured pixelated

grid of data points. Such an approach can only extract patterns limited by the pixel density of the

input data, which is predefined and remains fixed as part of the CNN architecture. Furthermore, the

pixel resolution of the input is fixed throughout the input geometry; thus, it is difficult to handle

complex geometries. This approach can also be wasteful in terms of resource allocation as very

granular pixels can be placed in regions of the input with little or no significance.

The proposed RNN model, discussed later in Section 3.3.6, in this thesis provides an improved

solution in terms of input representation by being able to process a non-uniform mesh, allowing

it to handle designs of variable mesh granularity locally, without increasing the overall size of the

input geometric representation. Another disadvantage of the CNN-based approach is the inability

to handle input of varying dimensionality without re-tuning. With my approach, a trained model

can handle both coarse and fine meshes without any architectural modification or retraining. This is

possible due to the inherent property of parameter sharing of RNNs, as discussed later in Section 3.3.

At the same time, the RNN-based neural architecture uses a lower memory footprint than the

CNN-based designs [72–74] at the time of model training and storage of the trained network. It was

also observed that the proposed approach was computationally faster than the ones introduced in

[72–74]. Such an approach can act as a surrogate for the solution obtained using the FEM. Although

an RNN-based approach is novel in the domain of EM simulations, similar architectures have been

used for efficiency map prediction [175], and a parameter-shared NN was used for classification and

segmentation of point cloud based non-uniform geometric shapes [185].

The other contribution of this thesis is the application of a hybrid learning method, discussed

in Section 1.2.3. This approach involves using the above proposed RNN-based architecture and

combining it with a physics-based learning methodology, resulting in a Physics-Informed Recurrent

Neural Network (PI-RNN) model, discussed later in Section 3.4.5, for EM analysis. PI-RNNs utilize

prior knowledge about the physical laws in the form of PDEs and BCs, and embed them into a loss

function, which is used to train a surrogate in the form of an NN. This allows them to circumnavigate

the need for expensive meshes. Such NNs follow symmetries and conservation principles extracted

from the physical laws observed in the training data. Several approaches have been proposed: a

variational form, Galerkin-type projections, or the use of the PDE in a strong form [186].
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3
A Deep Learning Approach for Computational

Electromagnetics

3.1 Mesh Representation as a Sequence

Traditional CEM methods, such as the FDM and the FEM, solve any given EM problem by first

discretizing the domain of interest into small structures, as discussed in Sections 2.3.1 and 2.3.5.

This generates a mesh composed of discrete points (also called nodes) throughout the entire domain

which are then solved iteratively. Now, for the DL approach proposed in this thesis, I have also

chosen to utilize the discretization process to solve the given EM problems.

The input representing an EM problem consists of a mesh-based grid with material behavior

and excitation properties. The unstructured mesh is then data engineered into a sequence of mesh

points. An example is provided in Figure 3.1, where the mesh of a simple coil problem with two

60



3.1. Mesh Representation as a Sequence

Figure 3.1: Computer-Aided Design (CAD) geometric mesh represented as a sequence.

different materials, coil and domain, is translated into a sequential format. Each point, (x, y) on the

mesh is associated with a value of the properties –– permeability (µ) and current density (J). Those

properties are retained with the respective nodal positions while creating the sequential dataset.

Furthermore, other geometric properties, such as the coil radius (CR) and the domain size (DS),

are also incorporated in the sequence. For points on the interface two copies are stored –– one for

each domain meeting at the interface. Such a representation is then fed into the DL architecture,

as described in Section 3.3.6. Once the data is input into the model, the training procedure can be

conducted either by pure supervised learning, pure physics-based learning, or hybrid learning, as

discussed in Sections 3.3.6 and 3.4.5, respectively.
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3.2 Data Acquisition

In this work, all the DL architectures, discussed later in this chapter, are trained using some form

of data-driven supervised learning method. The deeper the model, the higher the number of free

parameters in the model. This imposes the requirement of a sufficiently large input dataset to

train all these model parameters, otherwise, it would lead to model overfitting, as discussed in

Section 2.6.3. This input dataset has a certain format. Each instance of data points in a dataset

is called a sample or an example. As mentioned in Section 2.6.3, supervised learning involves two

types of data — input and output. The input (also called features or attributes), as the name

suggests, is what is fed into the DL models that predict a resultant output. This predicted output

is then compared with the actual output (also called targets) from the dataset.

The adage "Garbage In, Garbage Out (GIGO)" couldn’t be more appropriate when training ML

models. Especially, for models that learn using a supervised learning method. A model can only

be as good as the data it trains on. Even more so for DL models, since they also perform feature

extraction during the training process. Hence, both the quantity and quality of the dataset matter

for DL architectures. In terms of the quantity, the rule of thumb is — the bigger the better. As

for the quality, it requires some domain expertise to examine. Ideally, it can be measured with the

following aspects [187]:

• Reliability: How reliable is the source of data? How well does it represent the real-world

problem?

• Feature Representation: Is the data presented with useful features?

• Minimize Skew: Is the data biased? If so, by how much?

To address these quantity and quality issues, the simulated data collected for this thesis are generated

through industry standard Computer-Aided Design (CAD) simulations — Simcenter’s MAGNET

[69]. The CAD geometry represents the spatial coordinates of the problems while incorporating the

material information and current excitations with sufficient resolution.

DL models are designed based on the tasks at hand along with the size of the datasets. Simple

problems are better handled by simple models than by more complicated ones with a higher number

of trainable parameters. As a result, to thoroughly test my hypothesis of being able to predict a
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magnetic field with DL, I have chosen problems with varying complexities of dimension, material

properties, and current densities. The first problem is a current carrying coil inside a specified

domain, and the other one is a C-core actuator consisting of a coil wrapped around the ferromagnetic

core and an armature. For the supervised learning method, the dataset needs to be formatted with

some input features and output targets. The sequence representation of the mesh-based grid is used

as the input with the magnetic field value being the target. For physics-based learning, only the

coordinates, (x, y) are used as inputs. For each problem, around 3000 geometries were simulated,

of which 90% were used for training and 10% for validation.

Figure 3.2: (a) Coil in a box problem, (b) coil in a cylinder problem, and (c) C-core problem.
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3.2.1 Coil Problem

The first problem is a two-domain setup. A coil carrying Direct Current (DC) is placed inside

either a box or a cylinder, as shown in Figures 3.2(a) and 3.2(b) respectively. The coil is made

up of copper, whereas the domain around it is varied between a linear and a non-linear magnetic

material. The coil radius (CR) is varied from 0.5 to 3.5 mm, the domain size (DS) is varied from

12 to 24 mm, and the current (J) is varied from 0.5 to 5.5 A. The data for this problem is collected

from the Finite Element Analysis (FEA) software package — MAGNET [69]. The different material

properties used in the setup were collected from the software library [69].

3.2.2 C-core Problem

The second problem is much more complex and challenging, as it involves three different domains and

multiple interfaces. Here, we have an EM C-core actuator, as discussed in details in Section 2.4.1.

The C-core is made of iron and wrapped around with a copper coil carrying a current, as shown in

Figure 3.2(c). In the 2D image format, the coil is represented by a “go” and a “return” conductor.

The current in the coil is varied from 450 to 600 At. On the right of the core is the armature,

which is placed close to the C-core while avoiding any form of contact. Both the C-core and the

armature are placed inside a box filled with air. The whole setup is shown in Figure 3.2(c), and

the dimension ranges are provided in Table 3.1. The data for this problem was collected from three

different sources –– the MATLAB PDE solver [188], MAGNET [69], and the Finite Element Method

Magnetics (FEMM) solver [189].

Parameter Range (mm)
Armature width [4.5, 7.5]

Armature height [27, 33]

Coil width [1.5, 4.5]

Coil height [15, 21]

C-core central width [4.5, 7.5]

C-core upper/lower width [15, 21]

C-core upper/lower height [4.5, 7.5]

Air gap [0.5, 1.5]

Domain size 50

Table 3.1: C-core dimension configuration
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3.3 Recurrent Neural Networks (RNNs)

Along with the basic NN, Warren McCulloch and Walter Pitts also discussed another form of NN,

referred to as Nets with Circles, in their 1943 paper [133]. They were simply conceptualizing what

is currently known as the Recurrent Neural Network (RNN). In fact, the term "Recurrent Network"

was formally mentioned years later by Minsky and Papert, in 1969, in their book "Perceptrons: An

introduction to computational geometry" [190]. However, it was not until 1986, when Rumelhart,

Hinton and Williams showed that an RNN could be successfully trained [160].

Figure 3.3: (a) A Recurrent Neural Network (RNN) with only one Recurrent Neuron (RN), and (b)
the RNN unrolled through time.

An RNN, just like the regular NN, has weights, biases and an activation function for each of

its layers. The main difference in an RNN is that it also consists of feedback connections along

with the rest of the forward connections. This can be visualized in Figure 3.3(a), which shows the

simplest possible RNN consisting of just one neuron (also known as a Recurrent Neuron (RN)). A

loop in the RN can be observed, which passes the output back to the neuron as an input. This loop

is executed with a step delay. For instance, the RN, in Figure 3.3(a), takes in an input, xt at step

t of the sequence, as well as the output from the previous step, ht−1. As a result, the output at

each sequence step, yt depends not only on the input, xt but also on the inputs from previous steps

in the sequence. This leads to the creation of some form of memory in the RNs, and hence, they

are often referred to as memory cells. The state of such a cell at step t is denoted as ht, which is a
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function of the input, xt and its state at the previous sequence step, ht−1, as shown in Equation 3.1:

ht = f(xt, ht−1) (3.1)

For simple memory cells, the hidden state, ht is the same as the output, yt, but it gets more

complicated with other complex cells that are discussed later. Furthermore, the RN cell uses the

same trainable weight, w to compute the hidden state, ht and/or the output, yt for each of the steps

in the input sequence, which is known as parameter sharing. Due to this feature, RNNs can take

inputs of varying sequence length, without increasing the number of trainable parameters, which

makes them very efficient, and hence, ideal for processing sequential data.

RNNs are often represented against the time axis to display the flow of sequential information

better, as shown in Figure 3.3(b). This is known as unrolling the RNN through time. Unrolling

the RNN is also needed for training purposes. Regular backpropagation is applied to the unrolled

RNN, and is known as Backpropagation Through Time (BPTT). The input sequence of an RN

doesn’t have to be literally time-dependent, i.e., it could be a sequence of any type of data where t

represents the position of the data in the sequence.

3.3.1 Long Short-Term Memory (LSTM)

In theory, regular RNNs are capable of retaining memory from all the past inputs, but, unfortunately,

in practice that doesn’t seem to be the case. Furthermore, trying to train regular RNNs on long

sequences of data leads to either exploding or vanishing gradient problems. This occurs due to the

multiplicative nature of the weights in the RNN memory cells. In order to solve these problems,

Hochreiter and Schmidhuber came up with a new architecture for the memory cells known as Long

Short-Term Memory (LSTM) units [191]. LSTMs are explicitly designed to solve the long-term

learning problem.

RNN layers form a chain of memory cells when unrolled, as mentioned in Section 3.3 and shown

in Figure 3.3(b). Similarly, LSTMs form a repeated pattern except that the memory cell structure

is different, as shown in Figure 3.4. Here the cell state, Ct is different than the hidden state, ht. The

cell state, Ct retains the long-term state of the cell for future use, whereas the hidden state, ht is

used to generate the output for the given time step. The information flowing through an LSTM cell
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Figure 3.4: A Long Short-Term Memory (LSTM) cell

is moderated through a series of gates — Forget, Input and Output. A gate is simply a combination

of a sigmoid layer (σ) and element-wise multiplication (×) of vectors. The sigmoid function scales

the information from 0 to 1 which helps to control the flow. The step-by-step update process of an

LSTM cell is described as follows:

I Forget Gate: Controls the amount of information kept from the previous cell state, Ct−1,

given by Equation 3.2:

ft = σ(Wf · [ht−1, xt] + bf ) (3.2)

II Input Gate: Controls the amount of information transferred to the current cell state, Ct,

from the current input, xt and previous hidden state, ht−1, given by Equations 3.3 and 3.4:

it = σ(Wi · [ht−1, xt] + bi) (3.3)
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Ct̃ = tanh(WC · [ht−1, xt] + bC) (3.4)

III Cell State Update: Updates the current cell state, Ct as an additive linear combination of

previous cell state, Ct−1 and processed input, given by Equation 3.5:

Ct = ft ∗ Ct−1 + it ∗ Ct̃ (3.5)

IV Output Gate: Controls the amount of information needed, in terms of the hidden state, ht,

to make the current prediction, given by Equations 3.6 and 3.7:

ot = σ(Wo · [ht−1, xt] + bo) (3.6)

ht = ot ∗ tanh(Ct) (3.7)

3.3.2 Gated Recurrent Unit (GRU)

A Gated Recurrent Unit (GRU) cell, as shown in Figure 3.5, is a newer variant of an RN introduced

by Kyunghyun Cho, et al. [192]. It is a simpler model than the LSTM unit, discussed in Sec-

tion 3.3.1. Unlike LSTM, a GRU cell does not have a cell state anymore. It uses the hidden state,

ht to retain long-term memory and to make current predictions. Furthermore, it has only two gates

— Reset and Update. The Update gate has the combined functionality of the Forget and Input

gates of an LSTM, given by Equation 3.8. It controls the amount of information to retain from

the previous hidden state, ht−1 and how much to add from the current input, xt. It concatenates

both ht−1 and xt, and then passes them through an NN layer and applies an activation function, σ.

Similarly, the Reset gate controls how much past information to forget as given by Equation 3.9.

The results from both the gates are then combined using Equations 3.10 and 3.11 to generate the

current output, ŷt and the current hidden state, ht. All RN cells share the same trainable weights

(Wg, Wr, Wz), which is also known as parameter sharing, as discussed in Section 3.3. With param-

eter sharing, it can be inferred that a similar problem is solved at each node, with only the input
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Figure 3.5: A Gated Recurrent Unit (GRU) cell

nodal information and the memory varying.

zt = σ(Wz · [ht−1, xt] + bz) (3.8)

rt = σ(Wr · [ht−1, xt] + br) (3.9)

gt = tanh(Wg · [rt ∗ ht−1, xt] + bg) (3.10)

ht = (1− zt) ∗ ht−1 + zt ∗ gt (3.11)
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3.3.3 Bidirectional Recurrent Layer

A regular RNN layer simply produces an output based on the current and past inputs. It is useful

for making future predictions such as weather or stock forecasts. But in many cases, such as in

Natural Language Processing (NLP), it is also important to look ahead and see the future inputs

in the sequence to generate the current output. Hence, the introduction of a bidirectional recurrent

layer, as shown in Figure 3.6. In this layer, two copies of the same recurrent layer are used, where

one copy takes the input from one direction and the second copy from the opposite direction (in

terms of the order of the sequence). Their outputs at each time step are then combined, usually

through concatenation. A bidirectional recurrent layer could be constructed using any type of RNN

cell such as the basic RN, LSTM, GRU, etc.

Figure 3.6: A bidirectional recurrent layer

3.3.4 RNN Architectures

One of the other benefits of an RNN over a regular NN, aside from memory retention, is that it

can handle inputs of variable sizes. It can achieve that by simply unrolling itself over the required

number of time steps or length of the input sequence. This flexibility facilitates the construction of

different network architectures, as discussed below:

I One-to-One: This is almost like a basic AN, where the RN takes in one input (vector) and

predicts one output (vector) just for one time step, as shown in Figure 3.7(I). Ex — traditional
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Figure 3.7: RNN architectures
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RNN.

II One-to-Many: Here one input (vector) is used to generate a sequence of outputs by feeding

the output from the previous time step as the current input, as shown in Figure 3.7(II). Ex

— music/text generation.

III Many-to-One: Here a sequence of inputs is used to generate a sequence of outputs, but

only the output in the final time step is considered, as shown in Figure 3.7(III). Ex — text

classification.

IV Many-to-Many: This is similar to the many-to-one model, except that the entire output

sequence is taken into account, as shown in Figure 3.7(IV). Ex — forecasting time series, such

as stock, weather, etc.

V Encoder-Decoder: This could be considered a variation of the many-to-many model, but

this architecture is a generic one and does not only pertain to RNNs. For the RNN version,

the encoder and the decoder are represented by a many-to-one and a one-to-many model,

respectively, as shown in Figure 3.7(V). The fundamental concept remains the same, where

the encoder tries to map the useful features of the input sequence into a vector representation,

called the context, which is then used by the decoder to generate a sequence of output. Ex —

machine translation.

3.3.5 Literature Survey

RNN based DL models have been used for EM analysis in the past, such as predicting efficiency

maps for motors using current excitation, torque values, and base speeds [175]. The paper uses an

Encoder-Decoder architecture with an RNN, which was first implemented by Kyunghyun Cho et

al. in 2014 [192]. In the standard architecture the context vector depends on the final output of the

encoder, but sometimes different parts from the encoder are useful in generating the output in the

decoder. To resolve this issue, a technique known as an attention mechanism was first introduced by

Dzmitry Bahdanau et al. [193]. It computes a weight vector at each time-step of the decoder that

controls the level of influence that each encoder hidden state has on the context. These weights,

also referred to as attention weights, are often computed using a softmax and a scoring function
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based on the encoder’s current hidden states and the decoder’s previous hidden states. This simply

allows the neighboring values in the input sequence to contribute to the prediction of a given point.

Other implementations of the attention mechanism have been shown by Luong et al. [194] and by

Ashish Vaswaniet et al. [195].

Due to their acyclic nature, RNNs are designed to handle data formatted in sequences. The

distinct attribute of RN cells to preserve memory allows them to link the geometry’s spatial infor-

mation, which is inputted as a sequence. By representing a 2D/3D geometry as a 1D sequence, the

spatial information is lost. However, the acyclic nature of RNNs and the inherent memory linking

every element of the sequence can compensate for this loss of representation. In the case of large

problems with high numbers of nodes, bidirectional recurrent layers, discussed in Section 3.3.3, and

an attention mechanism [193] can be used. However, for problems discussed in this work, a simple

RNN architecture was sufficient.

3.3.6 RNN Model Architecture

In this work, the first proposed architecture is an entirely data-driven RNN model. The RNN model,

shown in Figure 3.8, uses an Encoder-Decoder architecture [192], as discussed in Section 3.3.4. The

encoder encapsulates the information from the input sequence into its final output as a vector

representation, referred to as the context vector. This vector is then used as the input to the

decoder, which then makes the corresponding sequential predictions.

The encoder is represented by two GRU layers, discussed in Section 3.3.2, which take in variable-

length sequences of mesh nodes (x, y) (based on the number of nodes in the mesh design), along

with geometric and material information, and current values. Once the input data has been encoded,

it is passed to the decoder. The context vector contains the encoded information extracted from

the input that would be relevant for the decoding process. The encoder performs a form of feature

extraction as mentioned in Section 3.2.

The decoder is made up of a dense layer (also called an FC layer), as mentioned in Section 2.6.2,

wrapped around by a Time Distributed layer, as shown in Figure 3.8. A Time Distributed layer

simply applies the core layer (in this case, a dense layer) to each of the steps of the incoming sequence

of data [131]. In other words, the same dense layer (parameter sharing) is applied to produce one

output per input node of the incoming sequence vector from the encoder, resulting in a sequence of
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Figure 3.8: The RNN architecture used for the coil problem.

outputs. This sequence represents the magnetic flux density, B values as the predicted output. The

model’s flexibility of being able to handle inputs of varying length (based on the number of nodes) is

due to RNN’s parameter sharing feature, discussed in Sections 3.3 and 3.3.2. Consequently, RNNs

can be unrolled to any length of sequence without increasing the number of model parameters,

since the RN cells share the same trainable weight. Likewise, the Time Distributed layer uses the

same dense layer to predict each of the values in the output sequence. The model was trained by

minimizing the MSE between the predicted magnetic field values and the ground truth from the

FEA solver.
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To enhance the performance of the model and to avoid the exploding gradient problem [196, 197],

a dropout rate of 0.2 (20%) was used for each of the GRU layers [163, 164]. As discussed in

Section 2.6.4, it acts like a regularization agent by randomly switching off certain neurons during

the training process. Furthermore, LN, discussed in Section 2.6.6, was added after each GRU

layer to improve the gradient stability during the training process [167]. It learns a scale and an

offset parameter for each input and normalizes the features. The training is done using the Adam

optimization algorithm [161].

3.4 Physics-Informed Neural Networks (PINNs)

All the DL models that have been discussed so far are based on a supervised learning technique,

discussed in Section 2.6.3. As a result, they are inherently dependent on the dataset that is used

in the training process. In today’s world, with the emergence of internet and the proliferation

of online users, we have been able to collect and store data on a more massive scale than ever

before. The variety of datasets includes images, text, voices recordings, financial transactions, etc.

These data have been fueling the development of such DL models. However, unfortunately, it’s not

always possible to acquire large datasets for all problems. For instance, in the EM systems being

considered in this thesis, the datasets are just not big enough and are expensive to generate. With

the lack of datasets of sufficient size, even the state-of-the-art DL models cannot perform up to par.

However, these problems conform to the laws of EMs, i.e., Maxwell’s equations. Such laws have

been studied, postulated and well-defined throughout human history. Thus, this sparsity of data

has led to the development of a new kind of model that incorporates these physical laws, known as

the Physics-Informed Neural Network (PINN) [198].

3.4.1 Partial Differential Equations (PDEs)

To constrain PINNs to the physical laws, we need to define them in mathematical terms that can

be solved analytically or numerically to begin with. When investigating any natural phenomenon

we try to parameterize the causal effect of something, i.e., what happens to Y when X changes.

This has led to the use of ODEs and PDEs in the formulation of various physical laws governing

electromagnetism, electrostatics, thermodynamics, diffusion, heat, quantum physics, etc. Since most
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of the mathematical models developed through the course of time are multivariate objects instead of

univariate ones, the focus is placed on PDEs here. Although the application of ODEs and PDEs in

PINNs are interchangeable. A PDE can be defined using a generic form, as shown in Equation 3.12:

F (x1, x2, ..., xn, y,D
k1 , Dk2 , ..., Dkm) = 0, (3.12)

where

y = y(x1, x2, ..., xn), (3.13)

and

Dk =
∂ky

∂x1
...
∂ky

∂xn
(3.14)

Here, F is the given function, y in the unknown/latent function (given in Equation 3.13), xn is

the nth independent variable, and Dk is the kth−order partial derivative with respect to all the

variables (given in Equation 3.14). According to the French mathematician Jacques Hadamard,

mathematical models of any physical phenomenon should be well-posed. This means that the PDE

should have these following properties:

• Existence: For every (valid) input variable, at least one solution exists.

• Uniqueness: For every (valid) input variable, the solution is unique.

• Stability: The solution depends continuously on input parameters and ICs, i.e., small changes

in the input and ICs lead to small changes in the solution.

In practice, when defining a well-posed PDE, we need to consider both the ICs and the BCs for the

problem. There are primarily three possible options for BCs: Dirichlet, Neumann and Robin.

In this work, I have focused on electromagnetism, more specifically how the magnetic field

varies in low-frequency EM systems, as mentioned in Sections 2.1.3, 2.2 and 2.3. For that I need

to use Ampere’s law of electromagnetism, discussed in Section 2.1. The final form of the law,

that I intend to use for my application, leads to Poisson’s equation for magnetic field, as given

in Equation 2.19. For my problem, I use the Dirichlet BC for the PDEs, which is discussed in

Section 3.4.5. Furthermore, the PDEs in question are also well-posed.
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3.4.2 Designing PINNs

Now that we have a well-defined mathematical model of the physical law for the problem, how do we

modify the architectures of the conventional DL models to take that into account? As it turns out,

all we need to do is replace the loss function, as described in Section 2.6.1, with the PDE, BC and IC

of the problem, and try to minimize them. This idea is predicated on the Universal Approximation

Theorem [159] and the advancements in Automatic Differentiation (AD) [199]. As mentioned in

Section 2.6, NNs can approximate any function, y with arbitrary precision. Furthermore, due to

AD, we have access to the derivatives of the function, y with respect to all its inputs, x and t. We

can now re-arrange the underlying PDE as follows:

f := yt +N [y] + c = 0, x ∈ Ω, t ∈ [0, T ], (3.15)

where y(x, t) is the latent function that we are trying to approximate using an NN, N [·] is a nonlinear

differential operator and c is a constant. The function f(x, t), that we have defined in Equation 3.15,

represents the Physics-Informed Neural Network (PINN) [198].

The procedures to implement a PINN, which is shown in Figure 3.9, to solve any given problem

are summarized below:

I Define a DL model, such as an NN, CNN, RNN, etc. which will form the basis for the PINN.

II Setup separate training sets for the PDE, IC and BC.

III Define the loss functions in terms of the PDE, IC and BC (usually by summing the weighted

MSE losses of those equations).

IV Train the DL model through backpropagation and minimize the loss functions.

The DL model, NN(θ) is used to approximate the latent function, y(x, t), and the PINN function,

f(x, t) is also defined by this NN(θ) with the aid of AD. AD enables us to compute the derivative (of

any order) of the output of NN(θ) with respect to any of the input variables by applying the chain

rule for differentiation [199]. Hence, due to the parameter sharing between the functions y(x, t) and

f(x, t), training NN(θ) implicitly implies training the PINN.
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Figure 3.9: A Physics-Informed Neural Network (PINN) architecture with a basic NN as the base,
and loss function computed as a linear combination of the MSEs of the PDE, IC, and BC.
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3.4.3 Training PINNs

PINNs are trained through backpropagation, just like any other NN. The key difference being the

loss function, which now incorporates the physical constraints of the given problem. Usually, the

MSE is used for convenience when specifying the loss function [198, 200]. The loss function for a

PINN, given by Equation 3.16, is defined as a linear combination of the MSEs of the PDE, IC, and

BC of the problem, given by Equations 3.17, 3.18, and 3.19, respectively:

L(θ) = wfLf (θ) + wicLic(θ) + wbcLbc(θ), (3.16)

where

Lf (θ) =
1

Nf

Nf∑︂
i=1

|f(xif , tif )|2, (3.17)

Lic(θ) =
1

Nic

Nic∑︂
i=1

|ŷ(xiic, tiic)− yiic|2, (3.18)

Lbc(θ) =
1

Nbc

Nbc∑︂
i=1

|ŷ(xibc, tibc)− yibc|2, (3.19)

and wf , wic, and wbc are the respective weights. The training set for PINNs consists of the colloca-

tion, initial, and boundary data points denoted as {xif , tif}
Nf

i=1, {xiic, tiic, yiic}
Nic
i=1, and {xibc, tibc, yibc}

Nbc
i=1,

respectively. Here, the IC and BC MSEs are minimized using the ground truth (target) values,

yi, i.e., supervised learning. Whereas, for the PDE the equation itself is minimized using only

the collocation points, i.e., unsupervised learning. This imposes a structured information on the

learning process of the model, which enables it to generalize well with only a small sub-set of the

training data [198]. The minimization is done through an optimization algorithm such as Adam

[161] or Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [201]. As discussed in Sec-

tion 2.6.3, to prevent a model from overfitting we need to use some form of regularization. Here,

wfLf (θ) performs such a role for PINNs, by constraining the model’s parameters θ to only those

outputs satisfying the underlying PDE [198, 200].

Theoretically, the convergence of PINNs cannot be guaranteed. However, in their paper, Raissi,

Perdikaris, and Karniadakis have shown that if the PDE is well-posed then this method of training

“is capable of achieving good prediction accuracy given a sufficiently expressive neural network archi-
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tecture and a sufficient number of collocation points Nf ” [198]. Furthermore, it has been suggested

that proper hyperparameter tuning of the boundary weight, wbc would enhance both the speed and

performance of the model [202]. In addition, the authors of [203] have recommended to use a large

positive value for wbc for better prediction results.

3.4.4 Literature Survey

The concept of a PINN was first formally introduced in 2017 as a new category of data-driven

DL models [198]. Although it is trained using a hybrid method, a PINN can be viewed as an

unsupervised learning approach when it is trained solely using the underlying differential equations

(PDEs/ODEs) and BCs [198]. In fact, this approach of solving PDEs by an NN was first attempted

in 1994 by M. W. M. G. Dissanayake and N. Phan-Thien [204], and later by I. E. Lagaris, A. Likas,

and D. I. Fotiadis on irregular boundary problems [205]. Due to its ability to exploit the physical

laws and self-regularize itself, PINN has become increasing popular and is at the forefront of DL

research. Moseley et al. [206] suggested using separate NNs, one for each subdomain in a multi-

domain analysis. In his paper [186], A. Khan has shown promising results in the application of

PINNs for EM analysis. His experimental results show the performance of PINNs on multi-domain

problems with varying complexities. Recently, another application of PINNs for solving electrostatic

Laplace’s equation was also demonstrated in [207].

Furthermore, researchers have taken the liberty to experiment with different variations of PINNs

to suit their problems. One such is a hp-Variational Physics-Informed Neural Network (hp-VPINN)

[208], and another being a Conservative Physics-Informed Neural Network (CPINN) [53]. The latter

was proposed by Jagtap et al [53] on discrete domains. In this framework, the complete solution

is recreated by patching together all of the solutions in each sub-domain using the appropriate

interface conditions. The domain segmentation makes it possible to parallelize the training process,

which is crucial to achieve computing efficiency. Another variation involves using Hypernetworks

with PINNs to solve inverse EM problems [209].

Activation functions play an important role in the training process of DL models, as discussed

in Section 2.6.1. The most common ones used are ReLU, Sigmoid and Tanh [131, 153]. Researchers

have come up with a dynamic activation function with a trainable parameter known as the Swish

activation function. It is defined using Equation 3.20:
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Swish(x) = x · Sigmoid(βx), (3.20)

where β is the trainable parameter. Swish has been claimed to perform the best among the ones

mentioned above [210].

Similarly, the architecture of the DL models forming the bases for PINNs is crucial to their

performance. Smaller DNNs may be unable to effectively approximate unknown functions, whereas

over-large DNNs may be difficult to train, particularly with small datasets. From the many experi-

mental applications of PINNs to real-world phenomena, it can be observed that the underlying NNs

can become very deep with multiple layers stacking up. This may lead to higher training costs and

poor computational efficiency.

3.4.5 PI-RNN Model Architecture

In the second model proposed in this work, a hybrid learning algorithm is used. The PINN, discussed

in Section 3.4, incorporates a supervised learning model for the boundary and the interfaces, as well

as a PDE solver for the domains, i.e., unsupervised learning. The supervised component is used

to accelerate the training process as demonstrated by Khan [186]. In this thesis, RNNs, discussed

in Section 3.3, are used as the bases for the PINN, as shown in Figure 3.10. Hence, I refer to my

model as Physics-Informed Recurrent Neural Network (PI-RNN). Each RNN is used to solve for a

particular material type. For instance, one RNN is used to approximate for the coil made of copper,

another RNN for the C-core and armature, which are both made of iron (ferromagnetic material),

and another RNN for air. To maintain continuity at the interfaces, solutions from the RNNs for the

domains on either side of the interface are averaged and used as a loss component to be minimized,

as shown in Equation 3.27. For the two problems being considered in this work, the underlying

well-posed PDEs, as discussed in Section 2.1.3, are given by Equations 3.21 and 3.22:

f := −∇2 1

µrµ0
A = J, (x, y) ∈ Ωcoil (3.21)

f := −∇2 1

µrµ0
A = 0, (x, y) ∈ Ωdomain, and ∈ Ωcore (3.22)
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Figure 3.10: The Physics-Informed Recurrent Neural Network (PI-RNN) architecture used for the
coil problem.
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where µr is 1 for linear paramagnetic materials like air and copper, and 5000 for linear high-

permeability magnetic material, such as iron, operating below saturation. For materials with non-

linear B −H properties, such as transformer steel, µr is defined using Equation 3.23:

µr = (
µmax

1 + c||∇A||2
+ µmin) , (3.23)

where µmax = 5000, µmin = 200, and c = 0.05T−2 [211]. The value for A ranges from 0 to 2.5 Tm,

which is well into the non-linear portion of the material’s B −H curve. The Dirichlet BC used for

the problem is given by Equation 3.24:

A = 0, (x, y) ∈ Ωboundary (3.24)

As discussed in Section 3.4.3, PI-RNNs are trained through backpropagation, just like any

other NN. The loss function for the PI-RNN is defined as a linear combination of the MSEs of

the PDE (L1), the continuity at the interfaces, IF (L2), and the BC (L3), as shown in Equa-

tions 3.25, 3.26, 3.27 and 3.28, respectively:

MSE = wPDEMSEPDE + wIFMSEIF + wBCMSEBC , (3.25)

where

MSEPDE = L1(θ) =
1

Nf

Nf∑︂
i=1

|f(xif , yif )|2, (3.26)

MSEIF = L2(θ) =
1

Nif

⎡⎣Nif∑︂
i=1

|û(xiif , yiif )− uiif |2+
Nif∑︂
i=1

|û(xiif , yiif )− ûiifavg |
2

⎤⎦ , (3.27)

MSEBC = L3(θ) =
1

Nbc

Nbc∑︂
i=1

|û(xibc, yibc)− uibc|2, (3.28)

and wPDE , wIF , and wBC are the respective multipliers used as regularization parameters to prevent

the model from overfitting, discussed in Section 2.6.3 [198, 200]. The training set for PI-RNN consists

of the collocation, interface, and boundary data points denoted as {xif , yif}
Nf

i=1, {xiif , yiif , uiif}
Nif

i=1 , and

{xibc, yibc, uibc}
Nbc
i=1, respectively, where x and y are the coordinates, and u and û are the corresponding

actual and predicted magnetic field values, respectively. The minimization is done through the Adam
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optimization algorithm [161].

3.5 Methodology Overview

In this thesis, I have proposed a DL approach for CEM. For demonstration of the POCs I have

chosen to solve for the magnetic field distribution for two different problems — coil and C-core,

discussed in Sections 3.2.1 and 3.2.2, respectively. I have used specialized types of DNNs — RNNs

and PI-RNNs, which have been discussed in Sections 3.3 and 3.4, respectively.

The initial step was to collect and prepare the data for my DNN models, discussed in Sec-

tion 3.2. The next step was designing the model architectures for RNN and PI-RNN, followed by

hyperparameter tuning, discussed in Sections 3.3.6, 3.4.5 and 4.2, respectively. Finally, I evaluated

my models’ predictions by comparing the experimental results with the ground truth, collected from

FEM models, and compared the performances with that of other DL models used as benchmarks,

discussed in Section 4.2.

84



4
Experiments

4.1 Benchmark Performance

A previous published work from the lab is used as a benchmark to validate the proposed model

architectures [5, 212]. The benchmark is also applied on similar EM problems used in this thesis,

as mentioned in Section 3.2.

A. Khan has used the data-driven approach using a CNN-based model, discussed in Section 2.7,

to predict the magnetic field distribution in different EM problems. The DL model uses an Encoder-

Decoder architecture, discussed in Section 3.3.4. It is comprised of 32 layers — 16 convolutional

layers, 8 pooling/up-sampling layers, and 8 dropout layers [5]. The layers are grouped together in

blocks, each of which consists of 2 sets of 3 × 3 convolutional layers, a batch-normalization layer,

and a 2× 2 max-pooling/up-sampling layer.

The CNN model is trained on an NVIDIA 1080 Ti GPU. For a batch size of 16, the model took
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around 10 minutes per epoch to train. With 60 − 100 epochs to achieve the convergence, the net

training time taken was around 12− 15 hours [5]. The prediction time for the whole geometry was

about 20− 30 ms, and the error rate for prediction was around 1.5%. All the results are tabulated

in Table 4.1.

Problem Coil with Linear Material
Models Error Training Time Prediction Time (whole geometry)

CNN Model ∼ 1.5% 12− 15 hours 20− 30 ms

Table 4.1: CNN performance benchmark [5]

4.2 Results and Discussion

All the models experimented with in this thesis were run on an Intel(R) Xeon(R) Silver 4210 CPU

@2.20GHz with 10 cores, an NVIDIA Quadro P5000 GPU with 16GB memory and 64GB of RAM.

A 64-bit Windows 10 operating system was used.

4.2.1 RNN Model Performance

In this work, the RNN model, discussed in Section 3.3.6, was used to solve the coil problem only,

mentioned in Section 3.2.1. It has been trained in two different ways: using a single model for both

the coil and the outer domain, and using separate models for each material. For the former method,

the input was a sequence of nodal coordinates, (x, y) of the underlying mesh; geometric information

such as the coil radius (CR) and the domain size (DS); material identification as a one-hot encoded

vector (µ); and current excitation (J). On the other hand, when training using separate models,

the material identification (µ) was skipped, and the input sequences were fed to each RNN model

for the respective material. For both the methods, the models were used to predict a sequence of

the corresponding magnetic field values [Û(x, y, CR,DS, µ, J)] for the given input sequence. The

inputs were normalized, and hence, a Sigmoid activation function was used in the output layers. The

models were tuned for optimal hyperparameters using a grid search, with the final configurations

shown in Table 4.2.

The models were built in the Python 3.8.13 programming language [213] using TensorFlow

2.10.0 framework [143], CUDA Toolkit 11.2.2, and cuDNN SDK 8.1.0. The performances of the
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Figure 4.1: MSE plots for the single-model (orange) and the separate-model (purple) RNNs for the
coil problem, with the corresponding MSE scales on the left and the right Y-axes, respectively.

Configuration No. of Layers No. of Neurons Activation Functionin each Layer
Single Model 2 128, 64 Elu, Elufor all materials

Separate Models 2 64, 32 Tanh, Tanhfor each material

Table 4.2: RNN model hyperparameter configurations

best architectures, based on the lowest MSE, are shown in Figure 4.1. The predictions for the

single-model and separate-model RNN architectures along with the solutions (ground truth) for the

magnetic field, B values from the FEM solver are shown in Figures 4.2 and 4.3, respectively. The

color scale shows the normalized intensity of the magnetic field, B [0, 1] across the core and the

domain for the coil problem. Although the unit for the magnetic field, B is T (tesla), the output

values of the models are unitless since they are all normalized. From the figures we can observe a

close match between the models’ predictions and the FEM solutions. The field predictions for the

cores are almost always accurate, and for the domains are quite comparable to the ground truth

values. However, the nodes near the interfaces are always the trickiest since they have to deal with

the field traversing from one material to another, and hence, that’s where the models’ predictions
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Figure 4.2: FEM solution (ground truth) of the magnetic field distribution for the coil problem
with linear material, alongside the predicted magnetic field distribution from the single-model RNN
architecture. The color scale represents the normalized magnetic field, B values.

suffer the most.

Nevertheless, the average MSE rate of the RNN models was found to be around 3− 6% of the

ground truth. Both the models were trained using batch sizes of 16 and 32, and learning rates of 0.01

and 0.001. Each epoch took around 3 − 6 minutes to complete depending upon the combination

of hyperparameters used. Even though the models were trained for 50 epochs, convergence was

achieved much earlier. Hence, the total training time for a model was about 150 − 300 minutes.

The prediction time was clocked at around 1.335 ms and 1.031 ms for the whole geometry for the

single RNN and the separate RNN architectures, respectively. The performances are tabulated in

Table 4.3.

Problem Coil with Linear Material
Models Error Training Time Prediction Time (whole geometry)

RNN Model for ∼ 3% 150− 300 mins 1.335 msall domains
RNN Models for ∼ 4% 150− 300 mins 1.031 mseach domain

Table 4.3: RNN performance measure
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Figure 4.3: FEM solution (ground truth) of the magnetic field distribution for the coil problem with
linear material, alongside the predicted magnetic field distribution from the separate-model RNN
architecture. The color scale represents the normalized magnetic field, B values.

When compared to that of the CNN model [5, 74], as discussed in Section 4.1, the performances

of the RNN models show some significant improvement. With similar level of accuracy of about

2.5 − 3%, the RNNs train much faster than the CNN [175], by cutting down the average training

time by more than 72%, as provided in Table 4.1. Furthermore, the RNNs can generate predictions

around 18 times faster than the CNN. The DL models are trained in batches, and the CNN model

could only be trained with a smaller number of samples per batch (i.e., small batch size), as compared

to an RNN-based model. The RNN model also provides the flexibility of being able to process

non-uniform meshes of variable sizes without changing the geometric representation of the different

problems due to its parameter sharing feature, discussed in Section 3.3.6. This also enables the RNN

architecture to limit the number of trainable weights, and hence, use less computation memory while

training and storing the model [175].

4.2.2 PI-RNN Model Performance

The PI-RNN model, discussed in Section 3.4.5, was used for the coil problem with both linear

and non-linear magnetic materials, and also for the C-core problem with linear magnetic materials,
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Problem Coil with Linear Material Coil with Non-Linear Material
Base Models RNN for Coil RNN for Domain RNN for Coil RNN for Domainfor PI-RNN
No. of Layers 3 4 3 4

No. of Neurons 300 400 300 400in each Layer
Activation Sigmoid Sigmoid Sigmoid SigmoidFunction
Problem C-core with Linear Material

Base Models RNN for RNN for RNN for Domain RNN for Core/
for PI-RNN Left Coil Right Coil Armature
No. of Layers 6 6 6 6

No. of Neurons 150 150 300 450in each Layer
Activation Sigmoid Sigmoid Sigmoid SigmoidFunction

Table 4.4: PI-RNN model hyperparameter configurations

discussed in Sections 3.2.1 and 3.2.2, respectively. The network configuration for each problem is

tabulated in Table 4.4, although the input and output layers were of fixed sizes for all the models

— 2 neurons and 1 neuron, respectively. However, unlike the RNN model, only separate models for

each different material were used for PI-RNNs. The reason behind that is because each material has

a different physical property, which has to be modelled accordingly. The input data consisted of only

the coordinates, (x, y) of the geometry for the respective materials, and the output was the magnetic

field value, û(x, y) at the corresponding input point. The magnetic properties of the materials, µr,

and the current excitation, J were all incorporated in the PDEs and BC used in the loss function.

The data points were normalized, and hence, a Sigmoid activation function was used in the output

layers. Furthermore, adaptive activation functions, which consist of a trainable parameter that

speeds up the model’s convergence [214], were used in all other layers. The training epochs were

limited to 20, 000 to put a constraint on the resources being used. Hyperparameter optimization

for PI-RNNs was performed using the Ray framework [215]. The Asynchronous Successive Halving

Algorithm (ASHA) was chosen for the tuning purpose, which combines the random search with

principled early stopping in an asynchronous way [216].

The code was entirely developed in the Python 3.8.13 programming language [213] using PyTorch

1.12.1 framework [145] and CUDA Toolkit 11.3.1. The training graph, as shown in Figure 4.4,
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Figure 4.4: MSE plots for the PI-RNNs for all three problems — the linear coil, the non-linear coil,
and the C-core.

provides evidence of convergence. To better visualize the performance of the models, contour plots

of the predicted magnetic field, B values were compared to those using the actual values from

the commercial FEM solver. The contour plots for the linear coil, non-linear coil, and the C-core

problems are shown in Figures 4.6, 4.7, and 4.8, respectively. The color scale shows the normalized

intensity of the magnetic field, B [0, 1] across all the different domains for both the coil and C-core

problems. Although the unit for the magnetic field, B is T (tesla), the output values of the models

are unitless since they are all normalized. It can be seen in the figures, that the predicted plots

are very similar to the actual plots, for all the problems, which proves that the PI-RNNs were able

to closely match the ground truth. Furthermore, contour plots showing the error distribution at

the nodal coordinates of the FEM mesh were also generated, as given in Figures 4.6(c), 4.7(c),

and 4.8(c). The color scale represents the absolute error values of the predicted field relative to the

ground truth from the FEM solver.

For both the coil problems, the field predictions are almost perfect for the core and the domain

near the boundary. As discussed in Section 4.2.1, the nodes near the interfaces suffer the most

inaccuracies during the model prediction. However, for the non-linear problem the error near the

interface is lower than that for the linear one. The average error rate for the linear problem was
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Figure 4.5: Histogram of the relative error (%), along with the error percentiles for PI-RNN for the
non-linear coil problem.

around 6%, whereas for the non-linear problem it was around 3.5%, as shown in Table 4.5. This

can be attributed to the well-defined modeling of the non-linear property of the material in the loss

function of the PI-RNN architecture, as discussed in Section 3.4.5.

The C-core problem is a much more challenging one, incorporating three different domains and

six interfaces. Nevertheless, the PI-RNN model was able to predict the field values with an average

error rate of about 3.6%, as shown in Table 4.5, which is almost comparable to that of the non-linear

coil problem. However, the domain to suffer the most inaccuracies during the prediction was the

C-core, which is made of iron. The most probable reason is because of its three different interfaces

with the "go" conductor, the "return" conductor, and the domain, as described in Section 3.2.2.

Furthermore, the model only uses unsupervised learning for this part of the domain, which makes

it even more difficult.

The average error for all the mesh points was found to be around 3.5% for both the coil and

the C-core problems. The histogram of the relative error (%) along with the percentiles for the

non-linear coil problem is shown in Figure 4.5. From the plot, the 25th, the 50th, and the 75th

percentiles can be observed to be around 0.75%, 1.35%, and 5.70%, respectively. For both the coil
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problems, each training process took around 60 − 90 minutes to complete, as shown in Table 4.5,

while using learning rates ranging from 0.0008 to 0.01. However, the training time for the C-core

problem was about 90 − 120 minutes, as shown in Table 4.5, while using learning rates ranging

from 0.0001 to 0.01. This is due to the bigger model architecture used for the problem, as given in

Table 4.4, in order to capture its higher complexities. The prediction time was clocked at 1.527 ms,

1.519 ms, and 2.975 ms for the whole geometry for the linear coil, non-linear coil, and linear C-core

problems, respectively. The performances are tabulated in Table 4.5.

Problem Error Training Time Prediction Time
(whole geometry)

Coil with Linear Material ∼ 6% 60− 90 mins 1.527 ms

Coil with Non-Linear Material ∼ 3.5% 60− 90 mins 1.519 ms

C-core with Linear Material ∼ 3.6% 90− 120 mins 2.975 ms

Table 4.5: PI-RNN performance measure

Nevertheless, for the coil problems, the PI-RNN model was able to cut down the average training

time of the RNN model by a further 66.7%, as provided in Table 4.3, and that of the benchmark

CNN model [175] by over 90%, as provided in Table 4.1. This shows that hybrid learning is much

faster than a supervised one. This can be attributed to the much smaller amount of data required to

train the PI-RNN, when compared to the RNN model. Specifically, only the boundary and interface

data points were needed for the hybrid method, since points in the domain could be learnt just from

the PDEs. Furthermore, the predictions generated by the PI-RNN model was about 16 times faster

than the CNN.

For the C-core problem, two variants of the PI-RNN were tested — one with separate RNNs for

the C-core and the armature, and the other with a single RNN for both. Now, the C-core and the

armature are made of the same material, iron, which means that the underlying PDEs are the same.

Theoretically, a single RNN should be able to approximate the field values for a specific material

regardless of its spatial position. The experimental results support the hypothesis, i.e., the design

with a single RNN for both the C-core and the armature produced similar output to the one with

separate RNNs. This shows the potential for generalizability of PI-RNNs with the assistance of

transfer learning.
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Figure 4.6: (a) FEM solution (ground truth) of the magnetic field distribution for the coil problem
with linear material, and (b) the predicted magnetic field distribution from the PI-RNN architec-
ture. The color scale represents the normalized magnetic field, B values. (c) The absolute error
distribution of the predicted values relative to the ground truth. The color scale represents the
absolute error values.
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Figure 4.7: (a) FEM solution (ground truth) of the magnetic field distribution for the coil prob-
lem with non-linear material, and (b) the predicted magnetic field distribution from the PI-RNN
architecture. The color scale represents the normalized magnetic field, B values. (c) The absolute
error distribution of the predicted values relative to the ground truth. The color scale represents
the absolute error values.
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Figure 4.8: (a) FEM solution (ground truth) of the magnetic field distribution for the C-core
problem, and (b) the predicted magnetic field distribution from the PI-RNN architecture. The
color scale represents the normalized magnetic field, B values. (c) The absolute error distribution
of the predicted values relative to the ground truth. The color scale represents the absolute error
values.
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5
Conclusion and Future Work

5.1 Conclusion

The goal of this research was to explore the two different fields of study — Computational Elec-

tromagnetics (CEM) and Machine Learning (ML), and combine them in a harmonious way so as

to benefit both the fields. In this thesis, a thorough review of the current literature in both the

fields have been discussed, and how one field can have a significant impact on the other. Conven-

tional Finite Element Analysis (FEA) software have high computation requirements which limits

the design and analysis of EM systems. The intent was to examine both a data-driven and a hybrid

approach to simulate and solve EM problems, and evaluate their efficiencies so that they could

be used as preliminary estimators before resorting to the FEA solvers. Both the approaches were

accomplished using novel Deep Learning (DL) models, and were tested using different problems of

varying complexities.
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5.1. Conclusion

In this work, I have shown two new DL architectures — RNN and PI-RNN, for magnetic

field evaluation. The RNN models were trained using a purely supervised (data-driven) learning

technique, while a hybrid approach, involving both supervised and unsupervised learning methods,

was used for the PI-RNN architectures. The magnetic field distribution was predicted using the

models for three different scenarios: coil in a linear magnetic material, coil in a non-linear magnetic

material, and C-core with a linear magnetic material. Trained on the actual data from the FEA

software, both the RNN and PI-RNN models were able to efficiently estimate the field values. This

will allow the DL models to make predictions on unseen new problems with varying geometries while

incurring lower computational costs. Furthermore, the models can be run using GPUs, allowing the

process to be parallelized for enhanced efficiency. Thus, the DL models can be used as surrogates

for the solutions obtained using the conventional FEA solvers.

The performance of the RNN model was compared to that of another supervised learning model

(CNN), which was used as a benchmark, and the RNN showed significant improvement in terms

of training time with similar accuracy, while using less computational resources. Furthermore, its

prediction time was much lower than that of the benchmark CNN model.

Moreover, the PI-RNN’s hybrid learning method has been shown to improve the training period

even further, while maintaining the accuracy level. PI-RNN was also able to evaluate the magnetic

field distribution for a much more complex problem (C-core) with similar training time and accuracy,

while using only the boundary and interface data points for supervised learning. This approach

significantly cuts down the data dependency as compared to the data-driven model, making it more

robust to changes in the geometries of any EM problem.

Even though the experimental results have been promising, I still cannot conclude if a PI-RNN

can be used as a replacement for the traditional FEM solvers. The primary issue being the interface

points. The boundary point values can be computed for any problem with a well-posed PDE with

some form of BC (such as a Dirichlet BC), but the interface labels used for the supervised learning

part are much more challenging to acquire. In this work, those were collected from a traditional

FEM solver to begin with.

Nonetheless, the work done in this thesis can definitely serve as a guide to designing and devel-

oping DL architectures for future work in the field of CEM. Furthermore, it serves as a concrete

example of showcasing the versatility of ML, especially DL, through its application in this field.
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The architectures explored in this thesis can be applied to other fields as well. Finally, it can be

used as a new benchmark for any future work that incorporates any data-driven or hybrid approach

for CEM.

5.2 Future Work

For future work, I would like to test the potential for generalizability of PI-RNNs that we had

a glimpse of in this work. The procedure would involve using a model, trained for a specific

material on a particular problem, for predicting the solution for the same material but on a different

unseen problem using transfer learning. If the process becomes successful, it will further reduce the

computation time and resources by cutting down the training process.
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