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Abstract 

Recent advances in intelligent transportation systems have shown increasing interest in connected 

and automated-vehicle (CAV) and intelligent traffic-signal controls. Both CAV and signal controls 

have faced problems because of the complexity of traffic systems. This thesis focuses on studying 

the aforementioned two control problems, with a particular interest on how to encourage agent 

cooperation and to improve system robustness by leveraging advances in deep graph reinforcement 

learning.  

 

The first part of this thesis studies the CAV cooperation problem in mixed autonomy. We introduce 

Connected Automated Vehicle Graph (CAVG) to multi-agent reinforcement learning (MARL) to 

model the mutual interplay among CAVs. In this framework, CAV cooperation is learned by using 

graph convolutional networks and shared policy, and CAV cooperation is further enhanced by 

introducing attention mechanisms over the graph convolution features. To the best of our 

knowledge, this work is the first system-level multi-agent cooperative driving framework with 

graph information sharing.  To evaluate the proposed approach, various experiments are conducted 

in car-following and un-signalized intersection settings. To demonstrate the generalization ability, 

the proposed method is also evaluated within an open road network (the merging setting) with a 

dynamic number of agents.  Results demonstrate that the proposed MARL-CAVG framework 

outperforms the state-of-the-art baselines for CAV control and improves performance/efficiency 

for both CAVs and human-driving. 

 

The second part of the thesis focuses on improving the robustness of large-scale traffic signal 

control policy to sensor failures and demand surge. We solve this problem by introducing a novel 

decentralized approach based on graph neural networks (GNN) and distributional reinforcement 

learning (DRL). Specifically, we model agents as nodes in the graph. We follow a similar approach 

as in part one to learn the detailed feature representation of each traffic control participant. 

Furthermore, implicit quantile networks (IQN) are also used to model the state-action return 

distribution with quantile regression to stabilize the learning of policy. These two objectives are 

combined together through the loss function concept to improve the overall robustness of our 

model when dealing with uncertainty. Numerous experiments are also conducted to compare our 
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approach with existing multi-agent reinforcement learning and transportation approaches. The 

proposed method can be more robust given missing values and demand surge than other baseline 

methods. 

 

Keywords:  Intelligent Transportation System, Connected and Automated Driving, Intelligent 

Traffic Signal Control, Decision Making, Multi-agent Reinforcement Learning, 

Graph Neural Networks. 
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Résumé  

Un système de transport intelligent est une application avancée dans laquelle le contrôle des 

véhicules connectés et automatisés et le contrôle intelligent des feux de signalisation ont reçu une 

attention considérable dans l'industrie et le monde universitaire. Ils ont posé des problèmes en 

raison de la complexité des systèmes de trafic. Cette thèse étudie la manière d’encourager la 

coopération et d’améliorer encore la robustesse du système basé sur l'apprentissage par 

renforcement de graphe profond. 

 

Dans la première partie de cette thèse, le problème de coopération CAV en autonomie mixte est 

étudié en introduisant le graphe de véhicule automatisé connecté (CAVG) à l'apprentissage par 

renforcement multi-agents (MARL) pour modéliser l'interaction mutuelle entre les CAV. La 

coopération CAV est apprise à l'aide de réseaux convolutifs de graphes et d'une politique partagée, 

et la coopération CAV est encore améliorée en introduisant des mécanismes d'attention sur les 

fonctionnalités de convolution de graphes. À notre connaissance, cette étude est le premier cadre 

de conduite coopérative multi-agents au niveau du système avec partage d'informations graphiques. 

Des expériences approfondies sont menées dans des paramètres d'intersection suiveurs de voitures 

et non signalés. Pour démontrer la capacité de généralisation, la méthode proposée est également 

évaluée dans un réseau routier ouvert avec des numéros d'agents dynamiques - le paramètre de 

fusion. Les résultats ont démontré que le cadre MARL-CAVG proposé surpasse les lignes de base 

de pointe pour le contrôle des CAV et améliore les performances / efficacité à la fois pour les CAV 

et la conduite humaine. 

 

Sur la base du cadre d’apprentissage par renforcement de graphes, dans la deuxième partie, on 

étudie la manière d’améliorer encore la robustesse de la politique de contrôle des feux de 

circulation face aux pannes de capteurs et à la surtension. Une nouvelle approche décentralisée est 

introduite pour le contrôle des feux de circulation à grande échelle basé sur les réseaux neuronaux 

graphiques (GNN) et l'apprentissage par renforcement distributionnel (DRL). Plus précisément, 

les agents participants sont modélisés comme des nœuds dans le graphique. Une approche basée 

sur l'apprentissage par renforcement graphique dans la première partie est utilisée pour apprendre 

une représentation détaillée des caractéristiques de chaque participant au contrôle de la circulation. 
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En outre, les réseaux quantiles implicites (IQN) sont également utilisés pour modéliser la 

distribution de retour état-action avec régression quantile pour stabiliser l'apprentissage de la 

politique. Ces deux objectifs sont combinés via la fonction de perte pour améliorer la robustesse 

globale de notre modèle compte tenu de l'incertitude. De nombreuses expériences ont été menées 

pour comparer notre approche aux approches d'apprentissage par renforcement multi-agents et de 

transport. La méthode proposée peut être plus robuste compte tenu des valeurs manquantes et de 

l'augmentation de la demande que les autres méthodes de référence. 

 

Mots clés:  Système de transport intelligent, conduite connectée et automatisée, contrôle 

intelligent des feux de circulation, prise de décision, apprentissage par 

renforcement multi-agents, réseaux de neurones graphiques. 
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Chapter 1. Introduction 

1.1. Research background 

As the number of vehicles on our roads keeps rising, it is imperative to adapt traffic conditions to 

minimize congestion in order to improve transportation efficiency. As solution to the 

transportation issues, intelligent transportation systems (ITS) have gained momentum. ITS 

integrates different fields of the transportation system, such as traffic management, automated 

vehicle control, infrastructure, together to reduce traffic accident risk, traffic congestions, pollution, 

and satisfy travelers.  

One of the important topics in ITS in the last years has been the development of decision-

making methods for both autonomous vehicles and traffic controls (Wang et al., 2018; Wu et al., 

2017; Wei et al., 2018). Nowadays, most decision making methods are based on predefined plan 

such as potential field method and model predictive control for autonomous vehicle control 

(Rasekhipour, Y. et al., 2017; Kim, B. et al. 2001; Ji, J., Khajepour. et al., 2017). For intelligent 

traffic signal controls, one can refer to fixed-time signal approach (Koonce et al., 2008) and 

MaxPressure signal approach (Varaiya et al., 2013). However, as in a real-world scenario, some 

irrational and unseen behaviors may make the predefined plan inefficient.  

With recent advances in machine learning, reinforcement learning (RL) has become an 

efficient tool to model diverse and complex tasks. In particular, RL fits various tasks in intelligent 

transportation systems, and the field has been greatly advanced thanks to recent developments in 

RL. In the automated vehicle field, Wang et al. (2019) propose deep reinforcement learning with 

quadratic networks to generate continuous control actions. Shi et al. (2020) develop a hierarchical 

reinforcement learning framework for lane change decision making. In the intelligent traffic signal 

control field, Wei, et al. (2018) test deep reinforcement learning on real-world traffic data and 

demonstrate superior performance over the predefined plan. However, these single-agent 

approaches cannot generalize into large-scale networks due to a large joint action space (Wei et 

al., 2019). 

Recent research progress on graph neural networks has enabled effective and scalable 

reinforcement in multi-agent systems, i.e., mixed-autonomy system and traffic signal control 
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system. Graph reinforcement learning is proposed to capture multi-agent interplay in order to 

encourage cooperation (Jiang et al., 2018).  

This thesis is based on the graph reinforcement learning framework and integrates it into 

these ITS problems (CAV control and TSC control). Furthermore, several new findings on 

cooperation and robustness are also discussed in this thesis. 

 

1.2. Mixed autonomy system for traffic management 

The road transportation networks are unstable due to the inherent randomness in human-driving 

behavior (Treiber et al., 2013). Shock-wave and stop-and-go have become a primary safety 

concern and the main driver for traffic congestion. As a promising solution to improve the 

efficiency of transportation systems, connected and automated vehicles (CAVs) have received 

increasing attention in both industry and academia. One major benefit of CAVs is that the 

randomness in driving behaviors can be significantly reduce. Thus, the whole system can be better 

controlled with algorithms, reduce gap times between vehicles and minimum reaction times. 

Theoretically, having a fully autonomous fleet will substantially enhance the capacity and 

efficiency of urban transportation systems. However, before reaching full autonomy, it is 

inevitable that both CAVs and human-driving vehicles exist and interact with each other. 

Understanding and optimizing CAV behaviors in such a mixed-autonomy road environment is 

critical to the development and implementation of future autonomous driving. 

In particular, RL can help in various tasks in autonomous driving, and the field has been 

greatly advanced thanks to recent development in RL (see, e.g., Wang et al., 2018; Wu et al., 2017). 

However, despite these advances, the impact of mixed autonomy is still not fully understood. There 

are still several challenges to be addressed to obtain the benefits of cooperative automated driving. 

First, as CAVs have different characteristics compared to human-driving agents (e.g., reaction time 

and action generation process), it becomes challenging to navigate in such an extremely dynamic 

and complicated driving environment. Second, in such a mixed-autonomy system, it remains 

unclear how to encourage automated vehicle agents to cooperate and to maximize the total 

expected returns of the whole system. Finally, how to effectively guarantee both safety and 
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efficiency from the policy point of view is also an urgent research question in a multi-agent 

automated driving setting. 

 

1.3. Intelligent traffic signal controls 

Traffic signal controls (TSCs) are a crucial part of a modern ITS environment. TSC can now 

leverage massive traffic data collected by road and vehicle sensors. As the number of cars on our 

roads keeps rising, it is imperative to adapt road networks to minimize congestion and reduce its 

negative impacts (crashes, injuries, emissions, etc.). Developing robust and adaptable traffic 

control strategies is a powerful mitigating approach as demonstrated in the past (Wei et al., 2018; 

Devailly et al., 2020; Wei et al., 2019). TSC methods attempt to learn how to adapt traffic signal 

timing/phasing from available historical and real-time data, including vehicle information such as 

their positions and velocities (Shi et al., 2019; Essa et al., 2020; Wei et al., 2019). 

Such data are often collected from road and on-board vehicle sensors and then transmitted 

to traffic management centers to help take optimal decisions (e.g., to dynamically change signal 

indication in a busier lane from red to green). However, missing values in the collected data --- 

e.g., caused by sensor occlusions and transmission delays -- are a common problem. Missing data 

can introduce uncertainty in the predictions of the system, which will affect decision-making. 

Furthermore, traffic demand surge created by events such as roadblocks and incidents will also 

lead to different congestion situations. Overall, these exogenous uncertainties require robust 

control policies. 

Various simple approaches for TSCs have been proposed such as the classical fixed-time 

approach (Koonce et al., 2008, Urbanik et al. 2015), which defines a fixed cycle length and phase 

time for each intersection based on different road conditions. MaxPressure approach (Varaiya et 

al., 2013) maximizes the throughput of the road networks, i.e., greedily chooses the phase which 

can maximize the pressure. Due to some unrealistic assumptions, such that the lanes have 

unlimited capacity and that the traffic flow is constant, their applications in complex real-world 

scenarios are limited (Varaiya et al., 2013).  
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Recently, reinforcement learning (RL) has allowed the development of more advanced 

policies for various traffic control problems (Wei et al., 2018, Wei et al., 2019, Chu et al., 2019). 

In In general terms, in the RL approach, traffic signal agents take the state input from the 

environment (road network) and learn to predict the traffic signal phasing and timing (e.g., 

red/green). The goal of a reinforcement learning agent is to maximize the total return. Traditionally, 

vehicle delay and/or queue length are seen as measures of travel efficiency to be improved. In 

particular, RL has been applied to real-world road networks and demonstrated its superiority over 

other classical control methods such as the fixed-time approach (Koonce et al., 2008, Wei et al., 

2018). 

 

1.4. Connection between these two problems 

Many cities are moving towards ITS solutions. With the development of 5G technology, vehicles 

and vehicles will allow to communicate with each other (V2V), and vehicle and infrastructure 

(e.g., traffic signal controls) are also allowed to share information (V2I). It is expected that the 

mixed autonomy system and traffic signal control system can work together to provide sustainable 

mobility for our future.  Their connections and similarities are: 

1) Common propose 

For mixed autonomy system, the objective is to mitigate congestion and penalize 

inappropriate or dangerous behaviors such as sharp acceleration or deceleration. For traffic signal 

control systems, the objective is to reduce queue length and mitigate pollution emissions, for 

instance.  As a result, the general objective of these two complementary systems is to increase 

travel efficiency, to improve safety and reduce emissions.  

2) Similar multi-agent settings 

For mixed autonomy system, the agent is defined as each connected vehicle. Each vehicle 

will have its own local observation and generate its own policy to cooperate with other vehicles. 

For traffic signal control system, each traffic signal controller will also have its own observation 

and learn to generate its own control phasing strategies for each intersection. As a result, both 
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systems involve the interaction of multiple agents and the learning to achieve a common objective 

by cooperating with each other. 

 

1.5. Challenges in intelligent transportation system research 

1.5.1. Dynamic and complicated environment  

The ITS system, as mentioned above, involves various components, such as vehicles, pedestrians, 

traffic signal controllers, sensors, etc. Take the mixed autonomy system as an example, when there 

is a gap in front of the adjacent line of an autonomous vehicle, if the autonomous vehicle makes 

an abrupt lane change, the surrounding vehicle in the adjacent line could also be affected being 

forced to decrease its speed sharply. It can end up in a shock-wave in traffic flow. Instead, if the 

autonomous vehicle learns to cooperate with other agents, adjusts its speed steadily and tries to 

mitigate the negative impact on the whole system. 

On the other hand, for the traffic signal control system, it’s a very challenging task to allow 

the same policy to be optimal for all different road networks. For example, in the Manhattan road 

network, there are lots of regular shape roads (grid-like), while in Luxembourg, the road network 

is not a regular shape. Therefore, it is impossible to design and implement the same traffic control 

strategy and make it applicable for all different road networks. 

 

1.5.2. Robustness to exogenous uncertainties  

Modern ITS operations still have uncertainties, not only related to internal components (such as 

those coming from contain sensors) but also those uncertainties coming from outside the system. 

As mentioned before, a good decision needs to leverage massive traffic data collected by road and 

vehicle sensors. However, sensor failures creating missing-data challenges. In addition, various 

traffic demands will also affect the system’s performance. 

Take intelligent traffic signal control as an example, for small-scale traffic signal control, 

reinforcement learning approaches have shown to be robust to demand surge and sensor failure 
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problems (Rodrigues et al., 2019, Zhang et al., 2020). However, when the system becomes more 

complicated, i.e., consider more traffic signal controllers in the system or evaluate the model in 

large-scale network. The model is not robust enough (Wei et al., 2019).   

 

1.6. Thesis overview and contributions 

This thesis aims to introduce and develop algorithms that focus on mixed autonomy 

control and intelligent traffic signal control in ITS research. This thesis follows this structure. 

Chapter 2 reviews the literature on multi-agent systems, from general multi-agent systems to 

specific challenges in ITS research. Then, the thesis considers two typical scenarios, i.e., a mixed 

autonomy system in Chapter 3 and a traffic signal control system in Chapter 4. In Chapter 3, the 

thesis is focusing on multi-agent cooperation in mixed autonomy system. In Chapter 4, the thesis 

provides a deeper analysis of the robustness of the decision-making system.  

In this thesis, these challenges are trying to be solved: 

1) Cooperation in multi-agent system 

Chapter 3, Research on mixed autonomy system, focuses on encourage multi-agent cooperation. 

This thesis uses the graph attention networks to capture mutual interplay in the navigation setting 

of multi-agent reinforcement learning for mixed-autonomy cooperation. In the mixed autonomy 

setting, this thesis proposes to integrate a dynamic adjacency matrix scheme in the decision-

making framework to exploit both speed and position information from important neighbors and 

can extract valuable information from surrounding agents. 

2) Robustness to uncertainty 

Chapter 4, robustness of intelligent traffic signal control system, focuses on improving decision 

robustness to exogenous uncertainty, i.e., sensor failures and demand surge. Guided by previous 

work, this thesis models each traffic control participants (e.g., TSC, lane, vehicle, connection) as 

nodes in the graph using graph convolutional networks (GCNs). This thesis shows that using graph 

representation can implicitly improve the robustness given exogenous uncertainty through better 
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utilization of the information. This thesis also shows that modeling the distributional state-action 

value function can explicitly improve learning stability (robust to outliers and converge faster) in 

the multi-agent decentralized control problem. This thesis further analyzes the trade-off between 

the aforementioned representation capacity and learning stability. This thesis proposes the 

distributional graph reinforcement learning approach (DGRL) to strike a flexible trade-off to 

improve the overall decision performance and system robustness. 
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Chapter 2. Literature Review 

In this chapter, several topics are going to be reviewed. Firstly, in Chapter 2.1, the multi-agent 

system is reviewed because these two topics (CAV control and TSC control) in this thesis are the 

multi-agent system. Secondly, in the CAV control part, this thesis focuses on encourage 

cooperation in the multi-agent system, which is discussed in Chapter 2.2 and Chapter 2.3. On the 

other hand, in the TSC control part, this thesis focuses on improving robustness, which is discussed 

in Chapter 2.4 and Chapter 2.5. 

2.1. Multi-agent system 

Multi-agent system is usually defined as a system which composed of multiple interacting 

intelligent agents (Hu et al., 2020). Multi-agent system can deal with problems that are hard or 

impossible for a single-agent system. The typical settings for multi-agent systems are: (1) Fully 

cooperative, (2) Fully competitive, (3) Mixed cooperative & competitive (4) self-interested (Yang 

and Wang, 2020). In this context (mixed autonomy and traffic signal control), this thesis considers 

the fully cooperative relationship among each agent. The difficulty in multi-agent system research 

is that all the agents’ policies cannot remain the same. If all the other agent’s policies remain the 

same, the ith agent cannot get better expected return by changing its own policy because the other 

agent’s objective will change, and therefore, they will change their policy.  Thus, the single-agent 

method cannot be applicable in multi-agent setting.  

Typically, there are few ways for multi-agent system control (CAV or TSC control), i.e., fully 

centralized, fully decentralized, centralized training with decentralized execution (Yang and Wang, 

2020).  

1) Fully decentralized: every agent uses its own observations and rewards to learn its policy.  

2) Fully centralized: the agents send all information to the central controller. The controller 

makes decisions for all the agents. 
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3) Centralized training with decentralized execution: A central controller is used during 

training. The centralized controller is disabled after training. During the execution, the 

agent will adopt the decentralized fashion. (e.g., Lowe et al., 2017) 

In this thesis, the fully decentralized model is adopted. The reason is that it’s more common in real 

setting that each agent (autonomous vehicle or traffic signal controller) will only observe local 

information rather than full information. To enable better model performance, this thesis considers 

parameter sharing among each agent, which means that the agents are exchangeable. As a result, 

the learning would be easier with fewer model to be trained. Furthermore, it would be helpful to 

tackle cooperation tasks in such multi-agent setting. 

 

2.2. Automated vehicle decision-making and control  

In Chapter 3, this thesis is focusing on automated vehicle decision-making and control. Several 

specific solutions to decision-making for the automated vehicle from both individual and system 

levels will be illustrated. The cooperation in a multi-agent system will also be further analyzed. 

Most existing research in the field of automated vehicles control and motion planning has 

focused on maximizing the efficiency for an individual agent (i.e., ego driving), which formulates 

automated motion planning as an optimization problem and solve it with rule-based models (see, 

e.g., Rasekhipour et al., 2016, Luo et al., 2019). However, such methods may fail in real-life 

scenarios due to the complex interactions among agents. To address the limitation, recent 

developments for automated driving have been shifted from rule-based methods to reinforcement 

learning, which offers more flexibility, efficiency, and superior generalization power. Meanwhile, 

integration of micro-traffic simulator SUMO (Lopez et al., 2018) with deep reinforcement learning 

library can enable easy implementation of different traffic control tasks, e.g., lane change, ramp 

merge, and intersection (Wu et al., 2017). Despite the promising results, this reinforcement 

learning-based approach still mainly focuses on the control of a single-agent in a static or fully 

observed setting. As a result, these methods are still limited to non-shared policy generation rather 

than exploring multi-agent shared policy and cooperation under mixed autonomy. 
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Real-world automated driving problems often involve multiple agents in a dynamic and 

partially observed environment. An emerging question is how to promote cooperation among 

agents instead of relying on ego/selfish-driving. Shalev et al. (2016) introduce a hierarchical 

temporal abstraction with a gating mechanism that significantly reduces the variance of the 

gradient estimation in multi-agent automated driving environment.  Furthermore, Palanisamy et al. 

(2019) use Partially Observable Markov Games (POSG) to formulate the connected automated 

driving problems. Their approach can be trained in both centralized and decentralized frameworks. 

Wang et al. (2019) develop the cooperative lane change system by considering the overall traffic 

efficiency instead of the travel efficiency of an individual vehicle, which can lead to a more 

harmonic and efficient traffic system rather than competition. 

However, it remains unknown how to better utilize information of surrounding agents to 

encourage cooperation and make the driving behavior more efficient. Recent research progress on 

graph information sharing has brought new and promising perspectives to the multi-agent 

reinforcement learning problems (Wu et al., 2020). Iqbal et al. (2019) propose to use a multi-head 

attention mechanism to enable effective and scalable learning in complex multi-agent 

environments. However, this framework doesn’t consider training model’s parameter sharing 

among neighbors, which may make it hard to train and implement into the CAV setting. Agarwal 

et al. (2019) propose to create a shared agent-entity graph and introduced curriculum learning to 

increase transferability. Jiang et al. (2018) propose the graph convolutional reinforcement learning 

approach for multi-agent to learn cooperative strategies. However, for a highly dynamic 

environment, such as the automated driving setting, not only vehicles in close-range but also 

vehicles with high relative speed to the ego vehicle should be considered. Previous studies have 

not fully utilized both position and speed information from surrounding agents, which hinders the 

feasibility of real-world implementation of CAV. 

 

2.3. Cooperation in multi-agent system 

In this thesis (dealing with mixed autonomy system research), the system-level safety and 

efficiency are focused on system-level improvement. In other words, each agent needs to learn to 
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cooperate with others instead of just focusing on improving their self-interest. The essential way 

to encourage cooperation is to learn interactions among each agent. Park et al. (2019) propose 

concatenating each agents’ feature then average the combined feature into the interaction network 

to aggregate multi-agent information. Mean-field control utilizes a central controller that 

coordinates all agents’ behaviors.  Yang et al. (2018) propose the mean-field reinforcement 

learning in which they approximate the interactions within the population of agents using the 

average effect from the overall population or neighboring agent. This mechanism can enforce the 

interplay between two entities in order to encourage cooperation. Bacchiani et al. (2019) extend 

the asynchronous advantage actor-critic approach in a multi-agent scenario, allowing every agent 

to learn to interact with other similar agents.  However, the aforementioned literature needs the 

central network to integrate all the information together. In our setting, each agent can only observe 

local information. As a result, this thesis develops the decentralized control framework with 

parameter sharing for multi-agent control. 

 

2.4. Traffic signal control  

In Chapter 4, this thesis is focusing on intelligent traffic signal control. In the following section, 

typical traffic signal control solutions (methods) will be illustrated, and the way to improve 

robustness in decision-making will also be analyzed. 

Conventional coordinated methods. These methods usually coordinate traffic signal control by 

modifying the time interval between each traffic signal phase. The limitation of these methods is 

that they can only optimize the traffic flow in the fixed directions. It’s difficult to be applied in 

large-scale networks or irregular road networks. Several advanced methods are the fixed time 

method and MaxPressure method. The fixed time method uses a pre-determined plan for cycle 

length and phase time, which is widely used when the traffic flow is steady (Koonce et al., 2008). 

MaxPressrure is a popular and strong baseline for network-level traffic signal control methods in 

the transportation area. At each time step, it selects the action that maximizes the number of 

moving vehicles from inbound lanes (varaiya et al., 2013). However, it’s very likely to get into 

local optima. 
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RL-based Traffic Signal Control. The first implementation of RL in TSC uses tabular Q-

Learning to learn from a single intersection (Wiering et al., 2004, Cai et al., 2009) then used RL 

with function approximations. However, most previous investigations are limited to toy scenarios. 

To develop RL method for more realistic traffic data, researchers turned their attention to deep RL. 

Wei et al. (2018) show that deep reinforcement learning can dynamically adjust to real-time traffic. 

However, the high dimension of the joint action space still limits the scalability of centralized RL 

approaches. 

Large-Scale Traffic Signal Control. Multi-agent Reinforcement Learning (MARL) is introduced 

to improve the scalability of RL agents by using a decentralized control framework. Chu et al. 

(2019) use advantage actor-critic (A2C) as a large-scale TSC method. To be specific, neighbors' 

information is adapted to improve sample efficiency and promote cooperative strategy; further, a 

spatial discount factor is introduced to improve the learning efficiency, i.e., reduce fitting difficulty. 

To enable cooperation of traffic signals, recent works study how to encourage cooperation through 

graph representation learning. Wei et al. (2019) propose to use a graph attention neural network in 

the setting of large-scale road networks with hundreds of traffic signals. They model each TSC as 

an agent. Agents learn to communicate by attending to the representations of neighboring 

intersections. Their results demonstrate the effectiveness of the attention mechanism to help 

cooperation and achieve superior performance over state-of-the-art methods. Recently, Devailly 

et al. (2020) further exploit the vehicular data at its finest granularity by representing every vehicle 

as a node. They demonstrate the flexibility of GCNs, which can enable transfer-ability to unseen 

road networks. However, neither works evaluate their methods under exogenous uncertainties. 

 

2.5. Robustness of decision making system 

As stated in Chapter 4, a robust decision-making model is needed to solve exogenous uncertainty 

problems. In transportation research, a very straightforward way to solve the exogenous 

uncertainty problem from sensor failure is to use imputation methods. For example, recent work 

uses a variational Bayes approach to predict missing values accurately (Chen et al., 2019). Graph 

Neural Network (GNN) can also be an efficient and effective tool for recovering information from 
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malfunctioned sensors (Wu et al. 2020). Similar methods have also been seen in the reinforcement 

learning community. For example, Mai et al. (2019) formulate the problem as inverse 

reinforcement learning to recover the expert's reward function and calculate the likelihood of the 

demonstrated trajectories given missing observation pairs. Bayesian multiple imputation and 

bootstrap have also been used to approximate the distribution of the training set in order to estimate 

the state-action value function given missing data (Lizotte et al., 2008). 

Such methods have not been adapted for TSC and, in any case, are not tailored to the 

problem of demand surge. Recently, deep RL has proved to be robust under the impact of special 

events, such as demand surges, sensor failures, and partial detection.  Rodrigues et al. (2019) 

develop the callback-based framework to enable flexible evaluation of different deep RL 

configurations under special events. They conclude that when training in scenarios with sensor 

failures, the RL approach can be quite robust to the widely sensor failure and demand surge 

problems. Zhang et al. (2020) demonstrate that deep RL agents can be robust within the partially 

detected intelligent transportation systems (PDITS), which is a partially observable Markov 

decision process (POMDP) in the RL community, in which only part of vehicle information can 

be acquired. They have conducted experiments under different detection rates and report that RL 

based control method can improve travel efficiency even with a low detection rate. However, their 

evaluation scenario is limited to 1 to 5 intersection cases.  Most importantly, they only empirically 

demonstrate the robustness of the existing deep reinforcement learning approach but have not 

further discussed how to improve the robustness based on previous reinforcement learning 

methods. 
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Chapter 3. Efficient Connected and Automated Driving  

3.1. Mixed autonomy control problem formulation 

In this thesis, the mixed autonomy control problem consists of a mixed of connected automated 

vehicles and human driving vehicles (the black vehicle stands for human-driving vehicle and the 

blue vehicle stands for automated vehicle). Road sections with and without traffic controls 

(interrupted and uninterrupted traffic conditions) are considered. This problem is formulated as 

below: 

 

1Figure 3.1: CAV control framework 

 

Blue vehicles represent the connected and automated vehicles (CAVs), while the black 

vehicles represent the human-driving vehicles. The colormaps stand for the Gaussian speed field 

(Zhang et al., 2021) of each CAV (as shown in the colormap). The red dotted line stands for the 

scan scale, which is the local observation range of each agent (scanning sensing area). 

Following the work of Kreidieh et al., 2018, N CAVs is modeled as N homogeneous agents 

in a mixed-autonomy traffic network to achieve better generalization ability. Their decision 

procedures can be divided into three stages: (1) at the beginning of each decision, the agents  𝑐𝑖, 
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i=1,...,N, will first have a local observation and identify their current state 𝑠𝑡
𝑖 ; (2) then each agent 

will manage to locate and communicate with their neighbors; (3) once the agents acquire both 

information from themselves and neighbors, they will make decisions to accelerate/decelerate 

accordingly. 

Formally, the task in such a mixed-autonomy transportation system can be defined in the 

setting of multi-agent reinforcement learning (MARL) with the following components: 

1) Agent design 

In the simulation, two types of agents are considered: human-driving agents whose 

acceleration or deceleration decisions are determined based on car-following models (e.g., 

intelligent driver model (bando et al.,1995)); CAV agents which are controlled by deep 

reinforcement learning framework. 

2) State observation 

State observation is defined as 𝑜𝑖,i=1,…,N, for each CAVs, which consists of speed and 

position of the ego vehicle, as well as the relative speed and position from the ego vehicle, its 

leader, and follower. The state observation from for CAV i is denoted by 𝑆𝑖 = {𝑜i
𝑚 , … , 𝑜𝑖

𝑚}.  

3) Action space 

Action 𝑎𝑖 ,i=1,…,N is the speed adjustment for each CAVs, bounded by the maximum 

acceleration and deceleration specified in the environment's parameters. 

4) Reward function 

Reward functions which are defined differently for different simulation scenarios. 𝑟𝑖 , 

i=1,…,N is used to denote the reward for each CAVs. 

For the ring scenario and the figure-eight scenarios, the reward function is defined to 

encourage high average speeds from all vehicles in the network and to penalize 

accelerations/decelerations by the CAVs.  

The reward for ring and eight scenarios is defined as (Wu et al., 2017):  
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𝑟 = −𝑤𝑣 ∗ (𝑣�̅� − �̅�) + 𝑤𝑎(𝑎𝑡ℎ𝑒̅̅ ̅̅ ̅ − �̅�),  (3.1) 

where 𝑤𝑣and 𝑤𝑎 stand for the weight parameters for average velocity and average acceleration. 

𝑎𝑡ℎ𝑒̅̅ ̅̅ ̅is the threshold of the acceleration. 

For the merge scenario, reward function encourages similarity of the system-level speed to 

a desired speed, while slightly penalizing short headways among CAVs (Wu et al., 2017). 

𝑟 = −𝑤𝑣 ∗ (𝑣�̅� − �̅�) + 𝑤ℎ ∗ (min (
(ℎ̅−𝑡min)

𝑡𝑚𝑖𝑛
, 0)),  (3.2) 

where 𝑤𝑣 and 𝑤ℎ  stand for the weight parameters for average velocity and average headway. �̅� is 

the average velocity, 𝑣�̅� is the target velocity, ℎ̅  is the average headway, 𝑡𝑚𝑖𝑛  is the smallest 

acceptable time headway, which is defined as 1 s. 

5) Termination 

An episode is terminated if the time horizon is reached or a collision happens. 

 

3.2. Methodology 

3.2.1. Multi-agent cooperation within mixed-autonomy system 

In previous literature (e.g., Shi et al., 2019, Wang et al., 2018), CAV was designed to have an 

individual policy under the environment. This is not applicable for controlling a group of CAVs 

to learn in a mixed-autonomy transportation environment due to training complexity. Therefore, 

the shared policy is introduced into the proposed control framework. 

Based on the graph attention on CAVs, the multi-agent reinforcement learning architecture 

is established. Specifically, CAVs learn their policies with PPO as the basic optimization scheme 

to handle continuous action space. The overall architecture is based on the actor-critic algorithm 

(Sutton et al., 2018), as shown below: 
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 2Figure 3.2: Architecture of MARL-CAVG 

 

The architecture of MARL-CAVG is shown above in Figure 3.2. The critic network is a 

graph convolutional neural network, i.e., GAT, parametrized with 𝜙. Notably, the output of critic 

network at each time step 𝑡 is state value estimation 𝑉𝑖 (i.e., short for 𝑉𝑖). It will be further used for 

advantage estimation to train the actor network. 

In this thesis, several techniques are designed and integrated to encourage cooperation to 

promote safety and efficiency in dynamic traffic flow: 

1) Capture Mutual Interplay among CAVs 

In connected and automated driving scenarios, the environment is extremely dynamic 

because agents keep moving, and their relationships among neighbors change quickly. This 

characteristic makes it very difficult for agents to learn to cooperate with each other. As shown in 

Figure 3.1, after observing the state, the CAVs will integrate information from their neighbors to 

develop a more comprehensive awareness of the current traffic dynamic. Firstly, unlike previous 

approaches (e.g., Jiang et al., 2018, Wei et al., 2019), the adjacency matrix is built based on the 

Gaussian speed field using the Gaussian process regression (GPR) model (Zhang et al., 2020). The 

standard exponential kernel function is computed as: 
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𝐾(𝑥𝑖 , 𝑥𝑗) = 𝐴 ∗ exp (−
(𝑥𝑖−𝑥𝑗)

2

2𝜎2 ), (3.3) 

where A is an amplitude constant. 𝑥𝑖 represents the position of the ego vehicle and 𝑥𝑗 represents 

the position of the surrounding 𝑗𝑡ℎvehicle. And 𝜎 is length scale constant controlling how the 

correlations are decaying with respect to the distance. A small 𝜎 indicates fast decay rate, which 

impose less correlation on two points that are far away. In our research, length scale is fixed as 4m 

(Zhang et al., 2020). 

Furthermore, the feature representation can be dynamically constructed in the adjacency 

matrix at time step t, whose elements are defined as follows: 

𝑀𝑡(𝑖, 𝑗) = 𝐾(𝑥𝑖, 𝑥𝑗)∆𝑉(𝑥𝑖 , 𝑥𝑗), 𝑑𝑖𝑠(𝑥𝑖 , 𝑥𝑗) ≤ 𝑆𝐶𝑖 . (3.4) 

The location information is incorporated (i.e., 𝐾(𝑥𝑖 , 𝑥𝑗)) and velocity difference (i.e., ∆𝑉(𝑥𝑖 , 𝑥𝑗)) 

of every two agents in the suggested adjacency matrix. Notably, each row i represents an ego 

vehicle, and each non-zero element of this row is the neighboring information between this ego 

vehicle and surrounding vehicles within its scan scale 𝑆𝐶𝑖. Intuitively, ego vehicle will be more 

sensitive to closer surrounding vehicle than a more distant one. 

Intuitively, the observation and extracted features of each agent are integrated through 

graph convolution based on the weighted adjacency matrix 𝑀𝑡: 

ℎ𝑖
𝑘 = 𝑓(𝑐𝑜𝑛𝑐𝑎𝑡[𝑀𝑡𝐻𝑘−1, 𝐷𝑖

−1𝑀𝑡𝐻𝑘−1]𝑊𝑖), (3.5) 

where 𝑓 is the activation function and ℎ𝑖
𝑘 denotes extracted feature by agent i at the kth layer, which 

depends on the current adjacency matrix 𝑀𝑡 as well as the feature of its neighbors extracted from 

previous layer 𝐻𝑘−1 = [ℎ1
𝑘−1, … , ℎ𝑁

𝑘−1]. 

Furthermore, an attention module is added to capture the impact of the surrounding agents. 

The neighbors are selected within the scan scale 𝑆𝐶𝑖 for each CAV individually. Considering 𝑁𝑖 

neighbors of ego CAV i, the attention score on neighboring CAV j can be computed as: 

𝑞𝑖 = 𝑓𝑞𝑢𝑒𝑟𝑦(ℎ𝑖 ∗ 𝑊𝑞𝑢𝑒𝑟𝑦), (3.6) 
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𝑘𝑗 = 𝑓𝑘𝑒𝑦(ℎ𝑗 ∗ 𝑊𝑘𝑒𝑦) , 𝑗 ∈ 𝑁𝑖 (3.7) 

𝜙𝑖,𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑞𝑖∗𝐾𝑗

𝑇

∑ 𝑞𝑖∗𝑘𝑙
𝑇

𝑙∈𝑁𝑖

), 𝑗 ∈ 𝑁𝑖 . (3.8) 

Note that the layer index is omitted here for simplicity. We use 𝑓𝑞𝑢𝑒𝑟𝑦and 𝑓𝑘𝑒𝑦  to encode input 

features as query-key pairs, then dot-product between query 𝑞𝑖 and key 𝑘𝑗 vectors is conducted. 

With softmax  activation function it can further quantify the strength of relationship 𝜙𝑖,𝑗 between 

two entities (Vaswani et al., 2017). With the attention scheme, an ego CAV can further utilize 

information from neighboring CAVs selectively, and thus the framework can promote more 

effective cooperation. 

2) Continuous Action Generation via Proximal Policy Optimization  

In a typical reinforcement learning problem, an agent takes an action 𝑎 ∈ 𝐴 based on the 

current state S and acquires the reward R. Unlike previous tasks based on DQN (e.g., in Go games 

(Silver et al., 2017), the CAVs need to generate continuous action space for smooth and efficient 

control strategy. 

Therefore, Proximal Policy Optimization (PPO) is used (Schulman et al., 2017) for CAVs 

to handle continuous action space. The critic network is designed as a graph convolutional neural 

network parametrized by 𝜙.Notably, the output of critic network at each time step t is state value 

estimation 𝑉𝑖 (i.e., short for 𝑉(𝑆𝑡 , 𝑀𝑖)), it will be further used for advantage estimation to train the 

actor network. 

The update of the gradient for critic is based on temporal difference learning (Sutton al., 

2018): 

∇𝜙𝐿(𝜙) = ∇ϕ𝐸[∑ (𝑟𝑖
𝑡 + �̂�(𝑆𝑡+1, 𝑀𝑖) − �̂�(𝑆𝑡 , 𝑀𝑖))

2
], (3.9)

𝑁

𝑛=1

 

The policy 𝜋𝑖  (i.e., short for 𝜋(𝑎𝑖|𝑆, 𝑀𝑖 )) can be modelled as a distribution (i.e., Gaussian 

distribution for continuous control) and also parameterized through the graph convolutional 
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network with parameters 𝜃. Therefore, at given time step t, the policy gradient can be derived with 

the advantage 𝐴𝑖
𝑡 , 𝑖 = 1, … , 𝑁 from critic: 

∇𝜃𝐽(𝜃) = ∇𝜃𝐸𝜋
𝜃𝑜𝑙𝑑

[∑ min (𝑟𝑖
𝑡(𝜃)�̂�𝑡

𝑖 , 𝑐𝑙𝑖𝑝(𝑟𝑖
𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)�̂�𝑡

𝑖)]𝑁
𝑖=1 , (3.10) 

where the likelihood ratio 𝑟𝑖(𝜃) =
𝜋𝜃𝑖(𝑎𝑖|𝑆𝑡,𝑀𝑡)

𝜋
𝜃𝑜𝑙𝑑(𝑎𝑖|𝑆𝑡,𝑀𝑡)

, and this is done by defining the policy loss 

function to be the minimum between the standard surrogate loss and an 𝜖 clipped parameter. It 

should be pointed out that, for model simplicity, the adjacency matrices are kept the same for the 

next state value prediction. This assumption makes sense since the variation is limited between 

two consecutive state observations, especially when the experiment is studied in fine granularity 

(e.g., simulation resolution is less than 1 s). In addition, on-policy roll-out is performed to collect 

the experience (i.e., {𝑜𝑖 , 𝑎𝑖 , 𝑟𝑖} and the advantage estimation for agent i at step T is calculated as:  

�̅�𝑇
𝑖 = ∑ 𝛾𝑡𝑟𝑖

𝑡 − �̂�(𝑆𝑡 , 𝑀𝑡).𝑇
𝑡  

The overall training algorithm is summarized in Table 3.1: 

 

Table 3.1：Training algorithm for CAV control 

Algorithm 1 Training algorithm for CAVs control based on traffic simulation 

Set time horizon T steps for each simulation, set scan scale SC for all the agents. 

Initialize memory buffer 𝐵 = ∅, batch size as 𝑏. 

Initialize parameters 𝜙, 𝜃 for critic and actor network. 

for each episode do 

     for 𝑡 = 1 to 𝑇 do  

         Obtain state observation 𝑜𝑖 , 𝑖 = 1, . . , 𝑁 and global observation 𝑆 =
         [𝑜1, … , 𝑜𝑁]. 

         for CAV 𝑖 = 1, . . , 𝑁 do 

         Sample action 𝑎𝑖 from 𝜋𝑜𝑙𝑑(𝑆, 𝑀𝑖|𝜃) to control CAV. 



 21 

         end for  

         Obtain next state observation (𝑜𝑖
′)𝑁

𝑖=1
 and global observation 𝑆′ =

         [𝑜′
1, … , 𝑜′

𝑁] as well as the reward signal 𝑟𝑖 for each CAV. 

         𝐵 ← 𝐵 ∪ (𝑎𝑖 , 𝑜𝑖 , 𝑜′
𝑖 , 𝑟𝑖 , 𝑀𝑖)

𝑁
𝑖=1

 

         if |𝐵|%b=0 then  

            Fetch experience from 𝑀 and perform roll-out 

            Update 𝜙 based on Equation 3.9 

            Update 𝜃 based on Equation 3.10 

            𝐵=0  

         end if  

         if collision happened then 

            Break  

         end if  

     end for   

end for=0 

 

3.3. Experiment analysis 

This section provides analysis on the experiment settings and algorithms’ setup. The 

models’ performance is also compared with several baselines. 

3.3.1. Experiment setup 

Extensive experiments are conducted in Flow, an open-source project that supports mixed-

autonomy control. The proposed algorithm is evaluated based on several benchmarks, car-

following (Kreidieh et al., 2018), intersection and merge (Vinitsky et al., 2018) as shown in which 
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are common intelligent traffic control scenarios. In the simulation, the horizon represents the 

number of steps per roll-outs, and each time step is 0.1s. 

1) Car following control 

This is a common scenario in the highway without bottleneck.  To simplify the training 

process, this thesis considers a ring-shaped network with a single lane, which is shown in Figure 

3.4-(a). In the initial condition, all the vehicles are uniformly distributed on the circular road with 

the same initial speed. Experimental results in Sugiyama et al. (2008) show that the system is very 

unstable. Even a tiny fluctuation can grow and eventually breaks up the homogeneous movement, 

resulting in a traffic jam. 

2) Intersection control 

This is a common urban traffic scenario. As shown in Figure 3.4-(b), in this case, CAV 

control can help improve the overall travel efficiency of urban transportation systems. A simple 

intersection is considered with a figure-eight shape network with one or two circular tracks. 

3) Merge  

This scenario is common in highway networks. Vehicles move from the on-ramp create 

backward propagating stop-and-go waves. As a result, perturbations will propagate upstream from 

the merge point and reduce the throughput of vehicles in the network. For the merge scenario, the 

total number of vehicles is considered as the number of vehicles per hour coming into the highway 

lane. See Figure 3.4-(c) for the implemented merge scenario. 

 

Automated vehicle agent

Observed humans

Unobserved humans

Sensing of leader and follower vehicle
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Figure 3.3: Road network structures 

 

Different road networks are given above. To be specific, several variants are considered in 

the simulation scenario to test the performance of the proposed model. Firstly, for ring networks, 

it is a standard car-following evaluation scenario that is common in the real-world. Secondly, for 

the figure-eight network, it's a more challenging scenario compared to a ring network with the 

intersection. Thirdly, for merge network, which is an open-looped network. As a result, it can be 

used to test the robustness of our method to the dynamic changing environment. 

 

3.3.2. Algorithm setup 

The proposed MARL-CAVG method is compared with several state-of-the-art baselines, 

including not only reinforcement learning frameworks (single-agent and multi-agent) but also car-

following models in traffic flow theory. For all experiments, we run 100 episodes with a collection 

of the average results of 10 random seeds which is similar to the setting in this study (Wu et al., 

2017). The explanations for selecting these baselines are given as follows. 

1) Intelligent driver model (IDM):  

Intelligent driver model (IDM) (Bando et al.,1995) is a commonly used adaptive cruise 

control method for vehicles that automatically adjusts the acceleration based on distance and 

velocity information to maintain a safe distance from the leading vehicle. IDM is commonly used 

to model human-driving behavior in traffic simulators. (e.g., (Wang et al., 2018, Shi et al., 2019). 

A 0.2 random noise is added to the action to model the uncertainty of human-driving behavior. 

2) Deep Deterministic Policy Gradient (DDPG): 

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,2015): DDPG is a 

deterministic version of a model-free RL algorithm to deal with continuous action space. CAV 

agents can reliably learn the optimal policy with continuous actions. A single-agent is constructed 

for the training framework based on the DDPG method, which is similar to Huang et al.,2019. 

3) Proximal Policy Optimization (PPO): 
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Proximal Policy Optimization (PPO) (Schulman et al., 2017): PPO is a gradient-based RL 

algorithm to deal with continuous action space. Unlike DDPG, PPO is an on-policy algorithm. 

4) Multi-agent Deep Deterministic Policy Gradient (MADDPG): 

Multi-agent Deep Deterministic Policy Gradient (MADDPG) (Lowe et al., 2017): This is 

a widely used multi-agent framework with centralized critics and decentralized actors. This is a 

baseline model without introducing a graph neural network to consider information from neighbors 

specifically. 

5) Multi-agent Proximal Policy Optimization (MAPPO): 

This framework is developed based on the single-agent version of PPO. Unlike in single-

agent PPO, different agents will have a shared policy in MAPPO. 

 

3.3.3. Performance comparison  

Several experiments are conducted in these three networks. 

1) Evaluation in car-following control: 

Figure 3.5 shows the training performance of different methods in the car-following control 

scenario. As can be seen, the MARL-CAVG method outperforms other methods with a large 

margin. From Table 3.1, it can be seen that MARL-CAVG achieves the second-highest velocity 

and the smallest acceleration, which makes it achieve the highest return in this scenario. It indicates 

that the proposed model can better mitigate the shock-wave during the car following control. 
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4Figure 3.4: Learning curve in ring network 

 

In the ring network, 3000 horizons are used, the total vehicles are 22, and autonomous 

vehicles are 16. The lane is 1 and target speed is 30km/h. 

 

2Table 3.2: Performance comparison in ring network 

Methods Velocity(m/s) Acc (0.1 m2 /s) Return 

IDM 2.754 3.318 424.12 

DDPG 3.134(±0.148) 2.718(±0.378) 70.063(±70.3506) 

PPO 3.165(±0.145) 3.129(±0.369) -676.959(±65.046) 

MADDPG 3.270(±0.148) 2.121(±0.366) 779.140(±29.178) 

MAPPO 3.379(±0.142) 2.782(±0.325) 776.225(±20.121) 
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MARL-CAVG 3.391(±𝟎. 𝟎𝟗𝟐) 0.835(±𝟎. 𝟏𝟕𝟏) 2593.99(±𝟓𝟏. 𝟖𝟐𝟎) 

 

2) Evaluation in intersection control: 

In the figure-eight scenario, the concern is to balance the safety and efficiency in the figure-

eight network. To be specific, with the introduction of lane change behaviors or increasing target 

speed, the average speed within the network will increase and, therefore the possibility for 

collisions at the intersection will be higher. As shown in Figure 3.6, it can be found that MARL-

CAVG method can achieve better performance when considers the aforementioned changes. It can 

achieve better control performance, maintaining a good balance between safety and efficiency. 

From Table 3.2, it can be found that although MARL-CAVG does not achieve the highest velocity, 

it has the smallest acceleration in this scenario. This demonstrates that our model can learn to 

sacrifice the speed but achieve higher safety to deal with the trade-off, which is beneficial to get 

the highest cumulative return. 

 

5Figure 3.5: Learning curves in figre-eight network 

 

In figure-eight network, 1500 horizon is used, the total vehicles are 14 and the 

autonomous vehicles are 7 and target speed is 30km/h. 
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Table 3.3: Performance comparison in figure-eight network 

Methods Velocity(m/s) Acc (0.1 m2 /s) Return 

IDM 4.531 9.205 500.87 

DDPG 4.325(±2.091) 8.619(±3.191) 379.061(±46.852) 

PPO 4.0654(±2.415) 8.812(±4.090) -357.946(±64.509) 

MADDPG 4.879(±𝟏. 𝟐𝟑𝟏) 6.192(±2.213) 618.641(±32.796) 

MARL-CAVG 4.265(±1.913) 3.123(±𝟏. 𝟏𝟑𝟗) 669.119(±𝟐𝟖. 𝟖𝟗𝟓) 

 

 

3) Evaluation in intersection control: 

In the merge scenario, the number of controlled and uncontrolled vehicles varies with time 

due to the inflow and outflow. MARL-CAVG method treats it through a limited multi-agent setting, 

transforming a tremendous state space using graph attention mechanism to handle the varying 

feature vector size. In this case, it can be found that our model outperforms the baselines in most 

evaluation indicators. 
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6Figure 3.6: Learning curves in merge network 

 

In the experiment, 600 horizons are used, the penetration rate as 0.25, i.e., 25% of the 

vehicles are autonomous vehicles, the number of lane is 1, the target speed is 30km/h. 

 

3.3.4. Further analysis  

1) Visualization of Control Performance 

To evaluate the control performance, the ring network is selected as an example and plot 

space-time diagram and velocity figures with the trained policy after 200 episodes. The number of 

heads in the attention module is 8.  Each method is tested with 200 time steps and a target speed 

of 20km/h, then record the average speed for all the vehicles in the current road network. 

As shown in the result of Figure 3.8, the red curve stands for the control performance with 

all human driving vehicles, which is unstable. After automation is turned on, the flow becomes 

stable. It can be seen that after automation turns on, the velocity will become stable. Furthermore, 

the proposed model can reach the highest speed compared to other baselines. 
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7Figure 3.7: Velocity performance in ring network 

 

To visualize the impact of shock-wave, the space-time diagram performance in the ring 

network before and after the automation is turned on is further compared. It can be seen from 

Figure 3.9 that the velocity fluctuates sharply. With automation turned on, the velocity becomes 

smooth, and the average velocity increases, as shown in Figure 3.10. 

 
 

8Figure 3.8: Space time diagram without automation 
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9Figure 3.9: Space time diagram with automation 

 

 

 

2) Evaluation of different penetration rates 

 

The penetration rate is a critical parameter that can affect the model's performance. To 

evaluate the performance of the proposed model under different penetration rates, several typical 

ring scenarios are selected to make the comparison. The typical multi-agent RL approach 

(MADDPG) and single-agent RL approach (DDPG) are selected as the baselines. As shown in 

Figure 3.11, it can be seen that with the increase of penetration rates, the return of both the single-

agent and multi-agent approaches first increases then decreases. The reason is that with more 

autonomous vehicles in the road network, there is a larger control policy space to explore, which 

hinders the training efficiency. Owing to the parameter sharing and graph attention within a certain 

scan scale, the MARL-CAVG can efficiently handle the increasing number of controlled agents, 

and therefore achieve increasing return and the best overall performance. 
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10Figure 3.10: Evaluation of different penetration rates 

 

3) Evaluation of different target speeds 
 

Different target speeds of each vehicle will reflect different driving behaviors (e.g., a more 

aggressive driver tends to set a higher target speed in his trip). A higher target speed will increase 

the travel efficiency but tend to have safety problems because of large acceleration/deceleration. 

In this subsection, the penetration rate is fixed as 0.4, and then test with different target speeds, 

then evaluate different methods' performance. The target speed is set as 20km/h as the baseline, 

then calculate the percentage (%) of increase for each method based on their 20km/h baseline. As 

shown in Figure 3.12, it can be found that for each method, with the increase of target velocity, 

the agent's performance will be better. However, when the target velocity is too high (e.g., 

120km/h), then the agent's performance will decrease. The proposed model achieves the best return 

given the highest target velocity. This demonstrates that the proposed model is more robust to 

different driving behaviors. 
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11Figure 3.11: Evaluation of increase of returns under different target speeds 

  

 

4) Evaluation of different architectures 

 

For different architectures of the model, the range of scan scales on model performance is 

evaluated. The results are shown in Figure 3.13. From the results, it can be found that if slightly 

enlarge the scan scale, the performance will also increase because it can include more neighboring 

information. However, further increase of scan scale will decrease the model's performance 

because more redundant information will make learning becomes harder. 
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12Figure 3.12: Evaluation of different scan scales 

 

Furthermore, the performance in terms of different information used to build the adjacency 

matrix is also evaluated. Only speed information or position information and both speed and 

position information are considered as given in Equations 3.11 and 3.12. The different information 

considered is as follows: 

Only consider position information: 

 
𝑚𝑖 = 𝑥𝑖 − 𝑥𝑜 , (3.11) 

 
where 𝑥𝑜 and 𝑥𝑖 are the position of the ego agent and surrounding 𝑖𝑡ℎ agent.  

Only consider velocity information: 

 

𝑚𝑖 =
𝑣𝑡

𝑣𝑜 (|𝑣𝑖−𝑣𝑜|+𝜖)
 ,  (3.12) 

 
where 𝑣𝑜 and 𝑣𝑖 are the velocity of the ego agent and surrounding 𝑖𝑡ℎ agent.  

Intuitively, if two vehicles are running slowly on the road and are far away from each other, 

their correlation should be weak so that the measure should be more considerable. On the contrary, 

if a vehicle is running fast along with a slow vehicle and they are very closed, then they are more 

likely to be affected by each other, either because of the safe or efficiency consideration. Therefore, 

the measure will be smaller, and priority will be higher. 
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Table 3.4: Returns with different information in adjacency matrix 

 

Adjacency matrix Position Velocity Both 

Returns 2490.99 (±20.149) 2601.87(±19.825) 2710.32(±23.581) 

 

The penetration rate is fixed as 0.4, target speed as 30km/h. As shown in Table 3.4, speed 

information is more important than position information. Integrating both position and velocity 

information through velocity field can achieve the best overall performance. 

 

5) Evaluation of attention module 

 

To evaluate the effectiveness of the attention setting, experiments with/without (i.e., 

head=0) the attention module and the different number of heads in the attention module are 

conducted. In the experiment, the penetration rate is 0.4. The target speed is 30km/h. Only a 

different attention module has experimented with. 

 

 

 

Table 3.5: Returns with different heads in attention module 

 

Heads Returns 

0 2423.19 (±39.193) 

2 2515.89 (±48.131) 

4 2566.23 (±43.123) 

6 2586.23 (±41.641) 

8 2624.20 (±41.213) 

10 2516.10 (±39.142) 
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From Table 3.5, it can be found that without attention module (head=0), the performance 

of the model decreases a lot. The increase of attention heads will increase the model's performance, 

while too many heads (heads≥10) will decrease the performance. 

 

3.4. Main findings   

In this chapter 3, the graph convolutional reinforcement learning approach for CAV control by 

encouraging efficient cooperative traffic control in mixed autonomy is proposed. There are several 

interesting findings. Firstly, the shared policy and efficient communication strategy, i.e., graph 

attention, can help agents efficiently cooperate with each other. The proposed model can achieve 

the best performance in all scenarios. It can learn to balance safety and efficiency. Secondly, the 

proposed model also demonstrates robustness to different penetration rates, target speeds, and 

network structures. However, in this chapter, sensor failures and demand surges have not been 

considered.  In the next chapter 4, how to improve robustness to these exogeneous uncertainties 

will be further discussed. 
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Chapter 4. Robust Large-scale Traffic Signal Control 

4.1. Traffic signal control problem formulation 

In this section, the traffic signal control problem is formulated as below: 

 

13Figure 4.1: Reinforcement learning for TSC with exogenous uncertainty 

 

1) Agent design 

Each TSC is the agent in this problem, which can only observe the local information of the 

surrounding environment. Hence, the problem is a partially-observable MDP. 

 

2) State observation  

TSC node: it represents the state of a controller. The features include the number of 

seconds since a traffic controller performed its last phase switch. 

Lane node: it represents the state of a lane. It includes the length of the lane. 

Connection node: it represents the state of an existing link between an entry lane and an 

exit lane. For example, the connection exists between an entry lane A and an exit lane B if a vehicle 
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on A is allowed to go to continue its travel to B. The features in the connection node are whether 

a connection is opened under the current phase; whether if an open connection between an entry 

and an exit lane it has priority or not; the number of switches the controller has to perform before 

the next opening of a given connection; and whether the next opening of the connection will have 

priority or not. 

Vehicle node: it represents the state of a vehicle which includes its current speed and 

position on the current lane as a feature. 

3) Action space 

At every intersection of the road network, a predefined logical program, composed of a 

given number of phases, depending on the roads, lanes, and the connection information. The 

program is given by the road network. The agent's action is to choose whether to switch to next 

phase or prolong the current phase, as a result, it's a binary action. 

4) Reward function 

Each agent i can obtain a reward 𝑟𝑖 at time t from the environment. In this thesis, the goal 

is to maximize the travel efficiency of the vehicles by reducing queue length. The reward is defined 

as the negative sum of total queues lengths per intersection q, 𝑟𝑖
𝑡 = − ∑ 𝑞𝑖,𝑙

𝑡
𝑙 . where  𝑞𝑖,𝑙

𝑡  is the 

queue length on the lane l at time step t. 

 

4.2. Methodology 

4.2.1. Overview of learning process  

In this framework, as shown in Figure 4.2, each vehicle (V), lane (L), connection node (C), and 

traffic signal controller (TSC) are abstracted as nodes in the graph. The information of each node 

and its connection can be exploited through graph representation learning using a GCN. At the 

output of the GCN, it can be obtained that a graph representation embedding 𝜓. These can be 

trained using an RL objective or a DRL objective. In DRL, those features are combined with an 
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embedding function 𝜙(𝜏)where 𝜏 is the quantile, using the dot product. Results demonstrate that 

combining the DRL and the standard RL objectives improves performance. 

 

14Figure 4.2: DGRL framework overview 

As shown in Figure 4.2, from (a), learn the distribution of returns while from (b) learn 

deterministic value. 

4.2.2. Graph representation learning on different nodes  

1) Graph Representation Learning on Different Nodes 

The traffic-signal control system involves a traffic signal controller, lanes, connections 

between lanes, and vehicles (e.g., nearby ones). In this thesis, TSC nodes, connection nodes, lane 

nodes, vehicle nodes are modeled as the entities within the proposed GCN structure like in 

(Devailly et al., 2020). 
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Every layer of the GCN uses one set of parameters per edge type to perform message-

propagation: 

𝐻(𝑙+1) = 𝜎 (𝐷− 
1
2𝐴𝐷− 

1
2𝐻𝑙𝑊𝑙) , (4.1)   

where 𝐻(𝑙+1) denotes the extracted features from (l+1) layer, A is the adjacency matrix, D is the 

degree matrix, 𝑊𝑙is the weight matrix which contains the parameters in l embedding layer and 𝜎 

is the activation function. 

Consider the GCN network in above Equation. Let 𝜓: 𝑋 → 𝑅𝑑 be an embedding function 

parametrized by the GCN layers. Then, add a subsequent fully-connected layer to map  𝜓(𝑥) to 

the estimated action-values, such that 𝑄(𝑥, 𝑎) ≡ 𝑓(𝜓(𝑥))
𝑎
where a in 𝑓(∙)𝑎  indexes the output 

action. 

Then the predicted Q values can be derived (Mnih et al., 2015): 

�̂� = 𝐻𝐿𝑊𝑝 + 𝑏𝑝 , (4.2) 

where 𝑊𝑝 ∈ 𝑅𝑐×𝑝  and 𝑏𝑝 ∈ 𝑅𝑝   are parameters of the neural networks, p is the number of phases 

(action space). L is the number of GCN layers. Here, 𝐻𝐿can be considered as same as 𝜓 in Figure 

4.2.  

Then the loss function of learning deterministic values can be represented as: 

𝐿𝑀𝐴𝑅𝐿 =
1

𝑁
 ∑(𝑦 − 𝑄(𝑠𝑡 , 𝑎𝑡))

2
,

𝑁

𝑗=1

(4.3) 

where  𝑦 = 𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎𝑡+1), N is the number of intersections in the whole road network. 

𝜃 represents trainable parameters. 

2) Parameter sharing 

To enable the transfer ability and training on a variety of networks / architectures, 

parameter sharing is considered for all decision processes, including inside and outside of a given 
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decision process (e.g., between two same type nodes on the same intersection and two same type 

nodes on unrelated intersections). 

 

4.2.3. Decentralized distributional RL for TSC 

The previous section introduces the GCN and a standard RL objective. Now, this section will 

discuss learning the GCN model using distributional RL (DRL). Compared to traditional RL, DRL 

models the distribution over returns. The expectation of that distribution yields the standard value 

function. In this thesis, implicit quantile networks (Dabney et al., 2018) are used as a distributional 

version of Deep Q-Networks (Silver et al., 2017). Implicit quantile networks can approximate any 

distribution over returns and show superior performance compared to other DRL methods. 

Implicit quantile networks define an implicit distribution using samples 𝜏 from a base 

distribution 𝜏 ~𝑈([0.1]) . The implicit distribution is parametrized using 𝜙: [0,1] → 𝑅𝑑 . The 

function 𝜙 provides the embedding for quantile 𝜏. This embedding  𝜙 is combined with the GCN's 

output embedding 𝜙 to form the approximation of the distributional Q-values (see Figure 4.2 -(a)): 

𝑍𝜏(𝑥, 𝑎) ≡ 𝑓(𝜓(𝑥)⨀𝜙(𝜏))
𝑎
, (4.4) 

where ⨀ represents the element wise product, the a on the RHS indexes the output of the function 

f. As in the original IQN paper (Dabney et al., 2018): 

𝜙𝑗(𝜏) ≔ 𝑅𝑒𝐿𝑈 (∑ cos(𝜋𝑖𝜏) 𝑤𝑖𝑗 + 𝑏𝑗

𝑛−1

𝑖=0

) , (4.5) 

where n, a hyperparameter, is the size of the input embedding, 𝑗 ∈ 1, … , 𝑑indexes different units 

(neurons), and 𝑤𝑖𝑗  and 𝑏𝑗 are parameters shared across all TSCs (much like parameters of the GCN 

are also shared across TSCs). 

As a result, the state-action value function can be represented as the expectation: 

𝑄(𝑥, 𝑎) ≔ 𝐸𝜏~𝑈([0,1])[𝑍(𝜏)(𝑥, 𝑎)]. (4.6) 
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Its associated greedy policy is: 

𝜋(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴Q(x, a). (4.7) 

As described in the IQN paper (Dabney et al., 2018), for two samples 𝜏, 𝜏′~U ([0,1]), and policy 

𝜋, the sampled temporal difference error (TD-Error) at time step t can be computed as: 

𝛿𝑡
𝜏,𝜏′ = 𝑟𝑡 + 𝛾𝑍𝜏′(𝑥𝑡+1, 𝜋(𝑥𝑡+1)) − 𝑍𝜏(𝑥𝑡 , 𝑎𝑡).  (4.8) 

A distributional RL method also comes with loss function. In IQNs, the loss is: 

𝐿𝑑𝑖𝑠(𝜃) =
1

𝑁′
∑ ∑ 𝜌𝜏𝑖

𝜆 (𝛿𝑡
𝜏,𝜏′

)

𝑁′

𝑗=1

𝑁

𝑖=1

, (4.9)  

with 𝜌𝜏𝑖
𝜆  is the quantile regression term (Dabney et al., 2018), N and N’ are the number of samples 

used to evaluate the TD-error.  

 

4.2.4. Multi-objective robust loss 

Figure 4.2 outlines two different reinforcement learning frameworks for learning TSC policies. 

While distributed RL tends to outperform classical RL in perceptual domains, it’s not known how 

these results might extend to a multi-agent TSC domain. 

Early experiments showed important differences between both methods. First, it is found 

that distributional RL converges faster compared to classical RL in this studied domain. Second, 

the embeddings learned by two different approaches is compared. In Figure 4.3, t-SNE (Maaten et 

al., 2008) --- a non-linear dimensionality reduction method --- is used to explore the deterministic 

embeddings 𝜓 and the distributional embeddings 𝜓 ⨀ 𝜙.  The same conclusion can also be 

drawn for each sample in distributional embeddings, to visualize the feature, the average across 

samples is calculated. 
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15Figure 4.3: Visualization of graph representation feature 

 

The deterministic embeddings form clusters that likely correspond to the two available 

actions. On the other hand, the distributional embeddings are more evenly distributed, which likely 

better captures the uncertainty of the actions. The distributional approach uses a robust loss that is 

less sensitive to outliers and so might discard important information. From the preliminary 

experiment both methods seem to represent different types of information and so a (convex) 

combination might yield the best of both worlds. 

𝐿𝑟𝑜𝑏𝑢𝑠𝑡 = 𝜅𝐿𝑀𝐴𝑅𝐿 + (1 − 𝜅)𝐿𝑑𝑖𝑠 , (4.10) 

where 𝜅 ∈ [0,1] is the relative importance of the standard RL approach. This new objective can be 

jointly optimized to improve the robustness of our model. It can be referred to the model that 

optimizes this loss as distributed graph reinforcement learning (DGRL). 

 

4.3. Experiment analysis 

In this section, the effectiveness and interpretability of the proposed distributional RL method for 

multi-agent TSC is studied. It is aimed to answer the following questions: 

(a) Deterministic � (b) Distributional �
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(1) How does the proposed method perform compared with other state-of-the art 

baselines? 

(2) Is the proposed method robust enough to demand surge and sensor failure problems 

compared to other baseline methods? 

(3) How to balance the trade-off between representation capacity and the learning 

stability and improve the overall robustness? 

 

4.3.1. Background and assumptions 

The background knowledge and key assumptions for our problem formulation are given as 

follow: 

1) Sensor Failures 

In the experiment for TSC, it’s assumed that “we can know the lane each vehicle is in”. 

let’s imagine that that on each traffic signal controller, there would be a camera/detector that can 

sense which vehicle has entered into the lane, and it is not likely to fail in reality. As a result, the 

lane information of each vehicle can be got from the camera. 

2) Demand surge 

Different traffic demands are based on the arrival rate. The arrival rate is controlled by the 

option ‘period’ in Simulation of Urban MObility (SUMO) (Krajzewicz et al., 2002). By default, 

this generates vehicles with a constant period and arrival rate of (1/period) per second. Note that 

for different scale of road networks, the same arrival rate will end up with different traffic signal 

performance. To make a fair comparison, it’s considered that the heavy traffic regime as two times 

the normal traffic regime in simulated data.  

In the experiment, normal traffic regime is set as period=4 while heavy traffic regime as 

period=2. 
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3) Evaluation metrics 

It’s considered for several evaluation metrics to compare different methods. 

Travel time: The travel time is defined as the time duration between the real departure 

time and the time the vehicle has arrived. The information is generated for each vehicle as soon as 

the vehicle arrived at its destination and is removed from the network. 

Queue length: The queue length is calculated using the end of the last standing vehicle. 

This criterion is to measure the congestion. 

Delay: The delay is to measure the gap between the vehicle’s current speed to the 

maximum theoretically reachable speed, which is constrained by the type of vehicle and the max 

allowed speed on its current lane. 

sv
∗ = min(𝑠𝑣

∗, 𝑠𝑙) , (4.11) 

dt = ∑ (𝑠𝑣
∗, 𝑠𝑣)/𝑠𝑣

∗
𝑣∈𝑉  , (4.12) 

where V is the total vehicles traveling in the current network, 𝑠𝑣 is the maximum speed that the 

vehicle can reach, 𝑠𝑙 is the speed limitation of this road, 𝑠𝑣  is the current vehicle speed, finally the 

delay can be got at time step t. 

 

4.3.2. Experiment setup 

The learning setup is shown in Figure 4.4. RL methods (DGRL, IGRL, and GNN-TSC) are trained 

on synthetic road networks. Then, their performances are tested on either other synthetic networks 

or perform zero-shot generalization by controlling the TSCs of two real-world networks (a subset 

of Luxembourg and Manhattan). During training, exploratory behaviors can be encouraged using 

randomly generated networks. The second advantage of this training scheme is that it doesn’t need 

to re-train the model on the target networks. At test, the effects of missing data and demand surges 

are studied, which is simulated by using heavier traffic regimes. 
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16Figure 4.4：Learning scheme for the proposed model 

The proposed method is compared with several state-of-the-art methods, including both 

classical transportation methods and learned ones. 

1) Fixed time baseline 

This method uses a pre-determined plan for cycle length and phase time, which is widely 

used when the traffic flow is steady (Koonce et al., 2008). 

2) MaxPressure 

A popular and strong baseline for network-level traffic signal control method in 

transportation area. At each time step, it selects the action that maximizes the number of moving 

vehicles from inbound lanes (Vraiya et al., 2013). 

3) Inductive Graph Reinforcement Learning (IGRL) 

This recent approach uses graph convolutional networks with a decentralized RL objective. 

The authors show that their approach can scale and transfer to massive-scale networks. The 

proposed robust learning framework is based on IGRL. Then, the proposed model is compared 
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against their best performing model IGRL-V which models vehicles as nodes (Devailly et al., 

2020). 

4) Graph Neural Networks for TSC (GNN-TSC) 

Similar to IGRL, the authors propose a GNN-based RL-trained model. Compared to IGRL 

(Devailly et al., 2020), the method does not consider individual vehicles as nodes in the graph. 

Instead, they model information at the lane level. The attention module has also experimented as 

given in (Wei et al., 2019), but the performance hasn't improved, so it isn’t included in the 

experiment. With that in mind, IGRL-L, a version of IGRL that models lane nodes rather than 

vehicles as nodes, is used. The authors of (Wei et al., 2019) rely on the CityFlow simulator (Wei 

et al., 2019); in this thesis, SUMO is used, which makes a direct comparison impossible without a 

major code rewrite. Independent Reinforcement Learning (IRL) 

An independent deep Q-Learning (DQN) agent can be used to model each TSC. DQNs are 

known to be robust given demand surges and sensor failures (Rodrigues et al., 2019, Zhang et al., 

2020). The IRL baseline couples DQNs with recent developments for improved robustness: double 

Q-Learning (Hasselt et al., 2010), a dueling architecture (Wang et al., 2016), and noisy layers 

(Fortunato et al., 2017). 

 

4.3.3. Performance comparison  

In this section, the performance of the above baselines is compared to the performance of the 

method proposed in this paper. All experiments are repeated 30 times with different random seeds, 

and the average results are presented. For every evaluation metric, it has reported the sum of a 

1,000 time-step simulation. 

1) Comparison under different traffic regime in in Synthetic Networks 

Table 4.1 reports the performance of different methods for both normal and heavy traffic 

regimes in the synthetic network. The demand surge experiment is conducted in a synthetic 

network because it's hard to control the demand parameter in real networks. In the experiment, 
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train and test networks are disjoint. The same road network is conducted (not seen in the training 

set) in the test for all methods with 30 random seeds for trips. The distributional RL approach 

(DGRL) outperforms others in both regimes across the three metrics. DGRL shines in heavy 

regime showing that it is more robust to demand surges. 

It can be seen that Fixed time does not perform as well as MaxPressure in normal traffic 

regimes but better than MaxPressure in heavy traffic regimes. This suggests that MaxPressure is 

likely to end up with locally optimal solutions. In terms of travel time, DGRL is the same as IGRL 

in the normal regime. In a given situation, the average travel time of DGRL is sometimes longer 

than IGRL's, but the DGRL's trip distribution is in a more equitable fashion with less variability 

for the same trip. In a heavy traffic regime, it can be seen that DGRL outperforms IGRL by a large 

margin. 

 

6Table 4.1: Comparison under different traffic regime 

Methods Normal regime  Heavy regime 

 Delay Queue 

length 

Travel time Delay Queue 

length 

Travel time 

Fixed 

time 

789.26 

(±36.36) 

588.88 

(±35.39) 

1182.26 

(±125.57) 

4059.19 

(±108.54) 

4553.34 

(±112.34) 

13901.72 

(±922.15) 

Max 

pressure 

379.91 

(±12.22) 

191.91 

(±10.41) 

670.28 

(±264.48) 

6201.11 

(±183.23) 

6865.94 

(±190.42) 

15150.86 

(±734.36) 
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IQL 1257.58 

(±31.84) 

1013.89 

(±29.40) 

1242.38 

(±46.78) 

5257.58 

(±152.62) 

6670.75 

(±160.25) 

14112.98 

(±498.12) 

GNN-

TSC 

311.85 

(±4.32) 

210.43 

(±10.53)  

517.15 

(±34.32)  

2998.63 

(±61.47) 

3645.75 

(±92.68)  

6092.63 

(±428.75) 

IGRL 288.16 

(±8.66)  

125.89 

(±7.72)  

501.36 

(±22.22)  

2962.92 

(±81.81)  

3515.23 

(±86.00)  

6051.32 

(±355.51)  

DGRL 244.15 

(±4.25)  

80.11 

(±2.74)  

501.95 

(±20.77)  

2503.96 

(±71.91)  

3029.45 

(±76.57)  

5030.31 

(±313.82)  

 

2) Comparison under sensor failures in different real-world road networks 

In this experiment, the proposed model's performance is tested with two real-world road 

networks using real traffic demand. The IQL method does not scale to such large networks (the 

parameters increase linearly with the number of TSCs), and so it cannot be reported for its 

performance. Transportation baselines do not consider speed nor vehicle position, and so their 

performance is robust to noisy sensors. 

The performance in Manhattan road network is reported in Table 4.2. Missing probabilities 

20%, 40%, 60% are evaluated. Because the fixed time and MaxPressure baselines don’t use the 

vehicle’s speed and position information, so they won’t be affected by missing values in our 

experiment.  
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Interestingly, it can be seen that if considering a small missing probability, i.e., 20% into 

the training set, the performance increases. This finding is in accordance with the inductive ability 

of GNN to infer for un-sampled speed and position information (Wu et al., 2020).  Furthermore, 

with the consideration of modeling distribution, the training will be more stable given a higher 

missing probability compared to other RL baselines. As a result, the DGRL model's performance 

will decrease less than the IGRL model and GAT-TSC model when increasing the missing 

probabilities. 

Another road network with more irregular roads is selected to evaluate the performance of 

our model. Overall, DGRL outperforms other methods. In Table 4.2, it can be seen that 

MaxPressure performs worse than the Fixed time method, which demonstrates that when the traffic 

conditions become more realistic, MaxPressure tends to fail. Furthermore, given higher missing 

probabilities, i.e., 60%, both IGRL, and GAT-TSC will perform worse than Fixed time method, 

which suggests that these methods are not robust under higher missing probabilities. Note that the 

IQL cannot be generalized into large-scale network, so the results are not reported. 

7Table 4.2: Comparison under different missing values in Manhattan network 

Methods Missing probability (20/40/60%) 

 Delay Queue length Travel time 

Fixed time 1356.45(±41.29) 937.47 (±40.48) 1871.86 (±238.99) 

Max pressure 1144.30 (±34.32) 907.24 (±44.43) 1630.67 (±264.48) 

IQL - - - 

GNN-TSC 484.49 (±4.84)/ 

497.18 (±9.61)/ 

696.15 (±9.82) 

469.75 (±7.84)/ 

578.98 (±9.61)/ 

696.15 (±9.82) 

973.46 (±27.23)/ 

1273.31 (±12.67)/ 

1346.75 (±41.45) 
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IGRL 413.94 (±9.94)/ 

518.41 (±11.87)/ 

653.22 (±13.76) 

314.74 (±3.96)/ 

417.93 (±3.36)/ 

499.89 (±3.55) 

966.65 (±25.47)/ 

1163.89 (±10.32)/ 

1260.46 (±18.27) 

DGRL 364.23 (±3.95)/ 

397.91 (±4.05)/ 

492.89 (±9.12) 

311.99 (±3.01)/ 

363.60 (±3.17)/ 

403.11 (±3.22) 

954.28 (±15.66)/ 

1032.58 (±13.63)/ 

1088.67 (±17.3) 

 

8Table 4.3: Comparison under different missing values in Luxembourg network 

Methods Missing probability (20/40/60 %) 

 Delay Queue length Travel time 

Fixed time 594.22 (±16.24) 509.79 (±14.33) 620.98 (±68.54) 

Max pressure 754.27 (±22.16) 661.03 (±19.97) 781.38 (±131.84) 

IQL - - - 

GNN-TSC 489.50 (±6.38)/ 

595.84 (±8.82)/ 

723.65 (±10.79) 

385.65 (±5.06)/ 

511.68 (±8.71)/ 

627.66 (±10.59) 

534.16 (±29.69)/ 

651.36 (±49.48)/ 

721.98 (±58.02) 

IGRL 438.26 (±8.31)/ 

531.25 (±9.30)/ 

678.75 (±14.37) 

373.33 (±4.89)/ 

460.07 (±6.23)/ 

589.61 (±7.35) 

527.38 (±31.20)/ 

591.92 (±32.71)/ 

683.25 (±40.51) 

DGRL 419.43 (±6.23) 

501.86 (±7.12)/ 

545.68 (±8.56) 

356.28 (±3.27) 

421.85 (±5.71)/ 

469.28 (±7.91) 

467.94 (±16.35) 

535.66 (±23.98)/ 

572.67 (±28.01) 
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As in Table 4.2 and Table 4.3, DGRL and IGRL have similar performance in normal traffic 

regime with 20% missing probability, respectively. Then, the same trips' travel time is compared 

between DGRL and other representative baselines.  

 

 

17Figure 4.5: Trip duration comparison 

 

In Figure 4.5, differences of paired trips travel time compared to DGRL. The difference 

between DGRL and the method is reported (i.e., DGRL - method). The numbers higher than 0 

indicate the method being outperformed by DGRL. The y-axis is normalized. 

As shown in Figure 4.5, although IGRL and DGRL have similar average trips, lots of trip 

are delayed by IGRL, e.g., 100--200 and 300--400, so we conclude that DGRL distributes these 

trip delays much more smoothly. 

To visualize the control performance, the average delays per time step is collected from 

two road networks.  The best RL baseline is selected and two transportation baselines to make a 

clear comparison.  
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18Figure 4.6: Average delays evolution in Manhattan road network 

 

 

19Figure 4.7: Average delays evolution in Luxembourg road network 

 

From Figure 4.6, it can be seen that DGRL better mitigates the effect of demand surge 

compared to other baselines. Moreover, from Figure 4.7, with more challenging demand evolution 

in Luxembourg road network, DGRL also demonstrates the overall best robustness. 
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3) Comparison with Different Weight Parameter in Loss Function 

Furthermore, the weight parameter 𝜅 in the loss function is evaluated; it is an important 

parameter to balance between the representation capacity and the learning stability. In  Figure 4.8, 

it can be seen that either model on their own (𝜅 = 0 or 𝜅 = 1) never perform as well as their 

combination. When 𝜅 is close to 1 (MARL) or 0 (Dis), which suggests that the model cannot 

perform well with only distributional RL and deep graph RL.  

 

20Figure 4.8: Different 𝜿 combination 

 

Also, it  can be found that 𝜅 =0 is worse than 1, it validates that modeling the distribution 

may end up losing some important features. On the other hand, with the combination of these two 

objectives, the model can be quite robust by striking the trade-off between the representation 

capacity and the learning stability. 

4) Model architecture analysis 

Number of samples is a important hyper-parameter for model's performance (Dabney et al., 

2018). Different number of samples have been tested, it’s found that although with larger samples, 

the performance in previous few episodes would be better, however, just a minimal impact  on 
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long performance. Furthermore, more samples will make the training become harder, harming the 

overall performance, as a result, the N=8 is used in our experiment. 

 

21Figure 4.9: Different number of samples 

 

To evaluate the learning stability of learning distribution versus learning deterministic 

values, the value estimation is recorded from the value function. For the distributional value 

function, the average value is calculated over the number of samples to compare with the 

deterministic value. From Figure 4.10, it can be found that learning distribution can converge faster, 

which demonstrates that estimate the distribution will present a more stable learning effect. Then,  

the same conclusion can also be drawn from both scenario with and without exogenous uncertainty. 

 
 

22Figure 4.10: Comparison of convergence 
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4.4. Main findings 

In this chapter, it is demonstrated that with the help of distributional reinforcement learning, the 

proposed method is particularly robust to exogenous uncertainty. This is done by comparing 

traditional methods, fixed time and MaxPressure methods and using the networks of Luxembourg 

and Manhattan road networks. However, the naive model fails when considering demand surge or 

sensor failure problems. The proposed method also can enable a flexible trade-off to improve the 

overall decision performance and system robustness, achieving the best performance in all the 

designed scenarios. Furthermore, policies learned with DGRL can also enable both transfer and 

scaling ability to large-scale networks. 
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Chapter 5. Conclusion and Future Work 

5.1. Conclusions 

In the first part of the CAV research, this thesis focus on encouraging cooperation in such mixed 

autonomy scenario. The proposed graph convolutional reinforcement learning approach is efficient 

for CAV control by encouraging cooperation through information aggregation. The main 

contribution is that graph attention network is first use in the mixed autonomy setting to captuer 

mutual interplay in order to encourage agent cooperation.  

Extensive experiments are conducted based on different road networks and demonstrate 

the superior performance of our proposed MARL-CAVG method over both reinforcement learning 

and existing traffic flow simulation baselines. There are two major findings worth noting. First, 

multi-agent training with the shared policy can achieve much better performance than those single-

agent training strategies. Second, efficient communication strategies, such as the graph attention 

on surrounding neighbors proposed in this thesis, can significantly enhance the cooperation among 

agents, which improves both efficiency and safety of the system. Overall, the proposed method 

can achieve the overall best performance under different road networks, target speeds, penetration 

rates.  These findings provide valuable insights into the design of the connected and automated 

driving system. 

In the second part of TSC control research, this thesis focus on further improving the 

robustness to exogenous uncertainty based on the graph reinforcement learning in the first part. 

The main contribution is the proposed method can achieve a flexible trade-off to improve overall 

decision performance and robustness to exogeneous uncertainty.  

An RL approach is proposed based on Distributional Graph Reinforcement Learning 

(DGRL) for large-scale traffic signal control. DGRL is particularly robust to exogenous 

uncertainty. This is the first study on how to consider robustness in large-scale TSC as well as 

integrate graph neural networks with distributional reinforcement learning in multi-agent settings. 

Furthermore, policies learned with DGRL can enable both transfer and scaling ability to large-

scale networks. A series of experiments are conducted on two different real-world networks with 
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real traffic demands and show that the proposed method outperforms several state-of-the-art 

baselines.    

5.2. Future work 

In the first part of the CAV research, there are several directions for future research and 

improvements. In particular, as multi-agent training is quite unstable, a small change in the 

environment setting will result in a large return shift. Thus, it is critical to explore how to better 

stabilize the training in dynamic settings. In the future, it is also worthy of trying to develop sim-

to-real transfer learning (Jang et al., 2019) for mixed-autonomy control and implement our 

approach in real mobile robot vehicles. Fairness is also important for modern society, which can 

contribute to the stability and productivity of the multi-agent system. As in the mixed autonomy 

system, human-driving vehicles and automated vehicles should maintain fairness and envy-

freeness reward. To tackle this challenge, the hierarchical reinforcement learning model can be 

investigated in the future (Jiang. et al., 2019).  

In the second TSC control research, it is interested in studying the empirical and theoretical 

properties of DGRL to robustly model other multi-agent systems with exogenous sources of 

uncertainty. It is valuable to evaluate the effects of various sampling distribution in Implicit 

Quantile Networks (Dabney et al., 2018). Furthermore, as shown in  Figure 4.3, different 

distribution is corresponding to different action selection. In the future, it’s also helpful to 

investigate which kind of distributions are corresponding to which kind of actions.  

It is  promising to study intelligent transportation with both intelligent traffic signal control 

and connected vehicles together. In such a system, the traffic signal control system guide the 

movements of both human-driving vehicle and connected vehicle while the connected vehicle will 

also help regulate traffic flow.  It is interesting to develop a unified control framework for both 

traffic signals and connected vehicles. 
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Appendix  

For the Luxembourg road network in Figure A.1, it has two peak hours, while for the Manhattan 

road network, as given in Figure A.2, it only has one peak hour. The configuration of different 

road networks is shown in Table A.1. 

 

23Figure A.1: Traffic demand evolution in Luxembourg road network 
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24Figure A.2: Traffic demand evolution in Manhattan road network 

 

9Table A.1: Configuration of different road networks 

Road network Traffic light Number of intersections 

Luxembourg 75 550 

Manhattan 22 482 
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