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Abstract

Pose and twist estimation is a ubiquitous problem in science and engineering: from

astro- and aeronautics to biomechanics; from navigation systems to the latest video games.

Current technology relies mainly upon accelerometer strapdowns, which call for precise

estimation algorithms. Along these lines, the main objective of this dissertation is the de-

velopment of innovative accelerometer strapdowns suitable for estimating rigid-body pose

and twist accurately and reliably. The design philosophy is based on two interdependent

concepts: an original concept of biaxial accelerometers, introduced in a previous disser-

tation and termed Simplicial Biaxial Accelerometers (SBA), and isotropic accelerometer

strapdowns. The goal of the former is to sense accelerations along arbitrary directions in a

plane. An improved SBA design is proposed and realized by means of MEMS (Microelec-

tromechanical System) fabrication technology. By means of finite element analysis (FEA),

the accelerometer sensitivity was found to be highly acceptable. The analysis results show

that the SBA is isotropically sensitive to accelerations along arbitrary directions in the

plane, while the cross-axis sensitivity is reduced, as desired. Isotropy mainly concerns a

novel accelerometer strapdown made of the proposed SBAs. By virtue of its inherent geo-

metric isotropy, the tetrahedral SBA strapdown is selected, but other isotropic polyhedra,

such as the other four Platonic solids and Buckyballs, can be equally used. Performance

and accuracy of the strapdown in estimating the pose and the twist of a rigid-body moving

in space are illustrated with representative simulation examples. Moreover, the isotropic

nature of the strapdown enables the decoupling of the point tangential acceleration from its

centripetal counterpart in the acceleration field. Consequently, “coupling”—a major hurdle

in pose and twist estimation—is avoided, thereby streamlining the estimation process.
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Résumé

L’estimation de la pose et du torseur cinématique des corps rigides est un problème

qui se retrouve partout en science et en ingénierie, aussi bien en aérospatiale, aéronautique

ou biomécanique que dans les systèmes de navigation ou les jeux vidéos. La technologie

acutelle repose principalement sur les assemblages d’accéléromètres qui exigent des algo-

rithmes d’estimation précis. Le principal objectif de cette thèse est donc de développer des

accéléromètres innovateures capables d’estimer, avec exactitude et fiabilité, la situation et

le torseur cinématique en question. La conception de ces accéléromètres s’appuie sur deux

idées originales interdépendantes: la biaxialité des accéléromètres, présentés antérieurement

dans une thèse et appelés accéléromètres simpliciaux biaxiaux (ASB), et l’isotropie de

leurs assemblages. L’objectif des ABS est d’estimer l’accélération dans des directions ar-

bitraires sur un plan donné. La conception des ASB a été améliorée par l’auteure, et la

technologie des SMEM (systèmes micro électromécaniques) a été utilisée pour leur fabri-

cation. L’analyse numérique par éléments finis qui a servi à quantifier la sensibilité a été

qualifiée de hautement acceptable. Les résultats montrent une sensiblité isotropique aux

accélérations dans des directions arbitraires sur leur plan et une réduction de la sensibilité

transversale, comme souhaité. L’isotropie porte principalement sur un nouvel assemblage

d’accéléromètres fabriqué à partir des ASB. Les assemblages d’ASB en tétrahèdre ont été

choisis en vertu de leur isotropie, mais il est aussi possible d’utiliser d’autres polyèdres

isotropiques comme les quatre autres solides de Platon ou les Buckyballs. Des simulations

illustrent la performance et la précision des assemblages dans l’estimation de la situation et

du torseur cinḿatique d’un corps rigide en mouvement dans l’espace. En outre, l’isotropie

de l’assemblage permet de découpler l’accélération tangentielle ponctuelle de son homologue

centripète dans le champ d’accélération. Cela permet d’éliminer le problème du “couplage”,

et donc de simplifier ladite estimation.
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3.7 Geometry of a Lamé-notched flexure hinge . . . . . . . . . . . . . . . . . . 27

3.8 FE results of von Mises stress distribution for flexure hinges . . . . . . . . 28
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Chapter 1

Introduction

1.1 Rigid-body Pose and Twist Estimation

Rigid-body pose and twist estimation is a ubiquitous problem in engineering. Pose

encompasses the position of a landmark point of a rigid-body and the body attitude, usually

given by a rotation matrix that relates the current attitude with a reference one, twist

encompassing the velocity of the same point and the body angular velocity. In principle,

twist can be estimated from information on the acceleration of the landmark point and the

body angular acceleration, upon integration of the acceleration information. Pose, in turn,

can be estimated upon integration of the twist [1].

The problem arises in aero- and astronautics (AA), as well as in rehabilitation, robot

assisted surgery, and in virtual environments, to name just a sample of application domains.

However, current methods estimating the angular acceleration and angular velocity are

not always accurate due to the inherent numerical errors which, in turn, hinder their

development and application. Hence, there is a pressing need for more accurate methods

for rigid-body pose and twist estimation.

1.2 Accelerometer Working Principle

Rigid-body pose and twist estimation is mainly based on the working principle of

accelerometers—the mass-spring-dashpot system. A typical illustration of the system is

shown in Fig. 1.1, in which the mass—often referred to as the proof-mass—can translate

along one direction, termed the sensitive axis, with the help of a viscoelastic suspension.
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a acceleration
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+−

displacement
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Fig. 1.1 Working principle of an accelerometer

Under working conditions, the accelerometer is rigidly mounted on a moving body B whose

acceleration is to be measured; the resulting displacement of the proof-mass can yield a

signal that obeys a linear algebraic relation with the acceleration.

1.3 Accelerometer Strapdown

An accelerometer strapdown is employed to yield information of the complete accel-

eration field of a rigid-body moving in space, i.e., its translational acceleration, angular

acceleration and angular velocity, as only one single accelerometer, uni- or multiaxial, is

not sufficient. The accelerometer strapdown is an array of accelerometers on the surface of

a rigid-body [2]. The Platonic solids, with their intrinsic geometric symmetries, provide an

ideal conceptual design for accelerometer strapdowns [3, 4].

1.4 Project Description and Objectives

This dissertation aims to develop a strapdown of multi-axial accelerometers with piezore-

sistive sensing technology. By attaching accelerometers to a rigid-body so as to form a

feasible accelerometer strapdown [5], the rigid-body acceleration field is determined. Fur-

thermore, estimation of rigid-body twist-rate, twist and pose will be given due attention.
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The objectives of the thesis follow:

• To develop a methodology for the structural design of robust biaxial accelerometers,

integrating robust sensing hardware with robust software.

• To validate the methodology with the fabrication of the accelerometers by means of

MEMS technology, to be arrayed in a strapdown thereof.

• To derive robust and innovative pose-and-twist estimation algorithms from point-

acceleration measurements.

• To validate the strapdown in estimating acceleration through numerical investigation.

1.5 Contributions

To the knowledge of the author, the main contributions proposed in this dissertation,

as listed below, are original:

• An improved SBA design, with notched ΠΠ legs, that can yield high frequency ra-

tios, over a previous design; meanwhile, the out-of-plane stiffness is significantly high

compared with its in-plane counterparts.

• Optimum design of Lamé-notched flexure hinges in the ΠΠ leg, to minimize stress

concentrations.

• The means of converting the proof-mass displacement into a strain signal.

• A piezoresistive sensing system leading to an electronic measurement circuit embed-

ded in the SBA mechanical structure, to provide acceleration signals.

• Microfabrication of the SBA structure as well as the complete measurement circuit

by means of MEMS technique, which brought about challenges that called for an

additional research effort.

• The innovative design of an isotropic accelerometer strapdown, composed of the pro-

posed SBAs, to be attached onto the rigid-body under measurement for estimation

of the acceleration field.
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• A robust estimation algorithm associated with the isotropic SBA strapdown, which

is capable of decoupling the tangential component of point acceleration from its cen-

tripetal counterpart, thus leading to an innovative estimation algorithm.

• The isotropic strapdown that obviates the updating second moment matrix J that

converts a set of biaxial point acceleration into rigid body acceleration.

• An algorithm based on the extended Kalman filter, with the introduction of system

noise, to increase accuracy of the angular velocity estimation.

• A provisional patent application, on the proposed isotropic SBA strapdowns and

associated algorithms for rigid-body pose and twist estimation [6].

1.6 Thesis Organization

An outline of the dissertation follows:

Chapter 2 summarizes the literature review on topics of compliant mechanisms, macro-

and micro-fabrication techniques of compliant mechanisms, stiffness analysis and state of

the art of accelerometer strapdowns.

Chapter 3 focuses on the study of compliant mechanisms and their application in ac-

celerometers. Four types of flexure hinges are analyzed in terms of FEA under loading; the

one with the minimum stress concentration is chosen for the accelerometer design. Based

on compliant mechanisms, the idea of SBA and a novel SBA design are developed. The

design objective is an instrument that exhibits isotropic low translational stiffness in one

plane and high stiffness in the other four directions of the rigid-body motion space. In

order to investigate the sensitivity to accelerations, different loading cases are applied onto

the SBA, and the corresponding responses are generated. Embedded in the SBA structure,

the electronic measurement circuit capable of generating an electronic signal to provide ac-

celeration information is built. The performance and accuracy of the measurement circuit

in estimating acceleration is verified by means of structural analysis in ANSYS.

In Chapter 4, a novel approach to the stiffness analysis in the context of parallel kine-

matics mechanisms is applied to the SBA. A survey of the existing approaches is provided.

A recent approach for the structural design and analysis considering serial and parallel

chains of compliant mechanisms is extended to the SBA stiffness analysis. The Lagrangian
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formulation of the underlying mathematical model is also included. Both approaches are

validated by means of a stiffness analysis of the system FE model in ANSYS. The sec-

ond part of this chapter is concerned with the decoupling of the stiffness matrix, thereby

allowing for the analysis of the translational and rotational stiffnesses independently.

Chapter 5 is devoted to the microfabrication of the SBA model through MEMS tech-

nology, which is conducted in the MIAM1 Nanotool Microfab Laboratory. The microfab-

rication process is conducted on the 4′′ single crystal silicon wafer on five masks, using the

CAD file for the refined MEMS masks. Three half-Wheatstone bridges are embedded in

the MEMS prototype to form a measurement circuit, which is designed to be capable of

yielding the acceleration information by means of the output voltage signals. This chapter

serves to investigate the MEMS manufacturability of the SBA and pave the way for the

testing of SBA strapdowns in future work.

In Chapter 6, the design of isotropic SBA strapdowns is proposed. Motivation is pro-

vided for constructing a strapdown whose estimation algorithm is more precise and simpler

than existing alternatives. Insight is provided on the motivation behind isotropic SBA

strapdowns. Performance and accuracy of the estimation algorithm are verified by two

representative examples: a rotating rigid disk and a free-rotating rigid brick. In order to

showcase the accuracy of the isotropic SBA strapdown, a non-isotropic SBA strapdown is

also employed for the estimation of the acceleration field. Simulation results are illustrated

and compared for both types of strapdowns. With the purpose of reducing measurement

errors and improving precision, different integration methods are employed to obtain the

angular velocity.

Finally, Chapter 7 includes conclusions and recommendations for future work.

1McGill Institute for Advanced Materials.
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Chapter 2

Literature Review

2.1 Multi-axial Accelerometers

In the early stages of accelerometer technology, these instruments were mainly used for

single-axis acceleration measurements in various domains: airplane catapults; aircraft shock

absorbers; and vibration diagnosis for turbines [7]. In the 1960s and 1970s, with the advent

of piezoelectricity, the field effect transistor (FET), and the charge amplifier, accelerometer

development entered the next stage [8, 9]. These technologies distinguish themselves by

their robustness in expanding the frequency bandwidth of sensors, which would directly

lead to the introduction of accelerometers in shock-detection applications [10].

The advent of MEMS in the 1980s can be regarded as a watershed in accelerometer

development. Thanks to MEMS technology, the sensing subsystem and its associated cir-

cuitry could be embedded in accelerometers, thus expanding the applications significantly.

Since then, accelerometers have become more attractive in the fields of automotive crash

detection, unmanned vehicles, automotive airbag systems, camera stabilization, etc [11]. In

recent years, the popularity of GPS-aided navigation systems and video-game controllers

set a new paradigm proving the successful applications of accelerometers in human-machine

interactions. In summary, accelerometers find extensive applications in the automotive and

industrial realms, covering several aspects, as listed below [12]:

• Single-axis acceleration measurement: mainly adopted in inertial navigation, airbag

crash sensing, gait analysis, etc. Accelerometers can be used as components in GPS-

aided navigation systems, which can provide continuous data between GPS updates



2 Literature Review 8

and during periods when the GPS signal is unavailable due to interference.

• Vibration measurement: single-axis accelerometers are adopted in seismic activity

and shock monitoring, as well as vibration monitoring in aircraft turbines and under-

ground pipes [7].

• Inclinometers: accelerometers for tilt measurement, which can also be integrated into

a multitude of products, such as game controllers, virtual reality input devices, 3D

computer mice, cameras, and personal navigation systems [13].

Of particular interest to this thesis is a class of accelerometers dubbed Simplicial. For

this reason, its development is recalled below.

M

(a)

M

(b)

Fig. 2.1 Layout of 1D simplicial accelerometer: (a) front view; (b) top view

Based upon the concepts of Parallel-Kinematics Machines, novel architectures for multi-

axial accelerometers were proposed by Cardou and Angeles [14]1, in which the proof-mass

was suspended by n + 1 legs (n = 1, 2, 3), where n is the number of acceleration compo-

nents measurable by the accelerometer. Having one extra leg provides redundancy in the

measurement, thereby offering robustness against measurement error. Not only this; the

extra leg also provides an enhanced stiffness in the non-sensitive directions. Compared to

serial architectures, parallel architectures offer superior properties in increasing the off-axis

stiffness of the structure [16].

The SUA, shown in Fig. 2.1, is intended to measure point-acceleration along one direc-

tion, which is realized by employing two opposing ΠΠ legs lying in orthogonal planes to

constrain the proof-mass (M) to translate in a direction parallel to the line of intersection

of the two planes. The Π joint is a parallelogram linkage, as described in [17]. By means of

1The term simplicial is borrowed from mathematical programming, whereby a simplex is defined as a
polyhedron in a n-dimensional space with a minimum number of vertices, namely, n + 1—a polyhedron
with a larger number of vertices is termed a complex. Hence, in n-dimensional space, for n = 1, 2, 3, the
simplex is a line segment, a triangle and a tetrahedron, respectively [15].
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M

(a)

MM

(b)

Fig. 2.2 Layout of 2D and 3D simplicial accelerometers: (a) SBA; (b) STA

a group-theoretic approach, it can be found that a ΠΠ linkage is a T2-generator, T2 being

the planar-translation subgroup of SE(3), the group of rigid-body displacements, charac-

terized by translations along two distinct directions. The SUA is designed to allow for only

motion along the line of intersection of the two planes of the Π joints, which is named the

sensitive axis, while exhibiting high stiffness in other directions.

The SBA, as illustrated in Fig. 2.2(a), is a planar parallel mechanism realized by laying

out the three ΠΠ legs in a common plane at 120◦ from one another [5]. The SBA allows

arbitrary translations parallel to the said plane, while providing a high stiffness along the

direction perpendicular to the plane. One significant common feature of the simplicial class

of accelerometer, in principle, lies in the equal dimensions of the triangle and tetrahedron,

for the SBA and the STA, respectively, playing the note of the proof-mass. This feature

will lead to equal sensitivity along the two or, correspondingly, three directions of interest,

thus making the architecture isotropic.

Finally, the parallel mechanism designed to provide pure translations of its moving

platform in space is recalled, the STA. This architecture is realized by suspending a rigid

regular tetrahedral proof-mass via four RΠΠR legs, where R stands for revolute, as shown

in Fig. 2.2(b). Each RΠΠR leg contains two revolute joints, with one of its ends attached

rigidly to the tetrahedron and another end to the body under probing.
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2.2 Compliant Mechanisms

2.2.1 Definition

One significant realization of accelerometer design is based on compliant mechanisms,

which comprise at least one region that is highly deformable (flexible or compliant), as

compared to the other regions of their monolithic structure [18]. In these structures,

flexure hinges are commonly employed to produce a desired motion, rather than conven-

tional mechanisms made up of rigid links coupled by lower and higher kinematic pairs [19].

Flexure-based compliant mechanisms are employed in a wide range of applications, espe-

cially in microscale devices, such as micro-positioning systems, microsensors, tilt mirrors,

and microfluidic devices.

2.2.2 Characteristics

Compliant mechanisms have been studied extensively in the literature [20, 21, 22, 23].

Unlike their conventional articulated counterparts, which employ lower pairs such as pins

and sliders, compliant mechanisms are jointless and have many desirable features: no as-

sembly needed, no backlash, compactness, low cost and wear-resistance. The jointless

feature brings some challenges as well, for example, a limited range of motion and undeter-

mined axis of rotation, due to the complex deformation of flexure hinges [24]. The latter

are designed to be compliant only about one axis, and stiff about all other directions of mo-

tion [25]. Within limited ranges, flexure hinges are often employed to provide ultra-precise

motions. The advantages of flexure hinges are summarized below:

• Displacements are smooth and continuous.

• Manufacture is simple and inexpensive.

• No assembly and no maintenance are needed.

• No friction loses.

• For small distortions, a linear relationship between applied force and displacement is

ensured and stays unchanged within manufacturing tolerance.

Flexure hinges also entail disadvantages, namely [26],
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• For most materials, significantly high stress may cause hysteresis in the stress-strain

characteristics.

• Limited range of rotations.

• Sensitive to temperature variations, that is to say, their dimensions may change due

to thermal expansion.

Moreover, in practice, the complex deformation of the flexure hinge may produce un-

desired parasitic motion along the other axes [27]. Hence, a study on how to minimize the

parasitic motions caused by flexure hinges is mandatory in accelerometer design. Due to

the inherent nature of providing redundancy, the simplicial architectures become optimal

realizations of accelerometers to reduce parasitic motions.

2.2.3 Material and Fabrication Techniques

Based on the design and analysis work, compliant mechanisms are required to be man-

ufabricable. Depending on the scale of mechanisms—macro or micro—material and fabri-

cation techniques vary widely. Macroscale compliant mechanisms are commonly fabricated

on metallic materials, by means of diverse fabrication techniques: from the classical drilling

and milling, to more complex ones, e.g., electron beam machining, wire electrodischarge

machining (EDM), etc [18]. Among all existing macroscale fabrication techniques, rapid

prototyping is promising. Rapid prototyping technology has experienced intensive develop-

ment with the inception of rapid, high fidelity and well customized fabrication devices, such

as 3D printers. This technology also brings possibility and convenience for rapid fabrica-

tion of compliant mechanisms, using plastic materials [28]. Micro compliant mechanisms,

on the other hand, are commonly fabricated on a flat silicon wafer, by means of MEMS

fabrication techniques, which will be introduced in Sec. 2.3.2.

2.3 MEMS Fabrication

2.3.1 MEMS Technology

MEMS technology broke new ground in the 1980s, as it set a new trend in mechanical

system design: MEMS can be produced at the nanometric scale; their responses being
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analyzed by means of the embedded microelectronic system [29, 30]. Thanks to micro-

fabrication technology, MEMS can carry bores, cantilevers, cavities, membranes, etc., i.e.,

virtually all the features of conventional mechanical systems.

case

piezoresistor

silicon beam

M

fluid:c

constraint case

Fig. 2.3 Schematic configuration of a microaccelerometer

Figure 2.3 illustrates a typical example of a microaccelerometer system, in which M is

the proof-mass. In microaccelerometers, the viscoelastic suspension is commonly realized

by means of compliant hinges; the entrapped air or fluid adds to the damping provided by

the material.

2.3.2 MEMS Fabrication Process

By means of photolithographic techniques, the patterns on the photomasks are trans-

ferred to the silicon surface. Generally, several other materials, that would supplement the

functional tasks of the microsystem, are either grown or deposited on the silicon substrate.

These materials include silicon dioxide (serving as sacrifice layer), silicon nitride (insulat-

ing layer), and metal films, such as aluminum, copper, gold, titanium or platinum (circuit

connections). After deposition of the aforementioned thin films, selective etches can then

be implemented to form the desired flexure mechanism [18, 25].

In this dissertation, our focus is the MEMS design and realization of one class of multi-

axial accelerometers: Simplicial Biaxial Accelerometers (SBA). The most significant feature

of multi-axial accelerometers is that they are capable of estimating multi-axial accelera-

tion components of the rigid-body under probing. Because of its planar nature, the SBA
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distinguishes itself from the other two classes of multi-axial accelerometers discussed in

Section 1.3: the SUA and the STA. Their planar nature allows the microfabrication of the

SBA, with their sensitive direction in their plane. This relatively simple fabrication process

also eases the commercial applications of biaxial accelerometers; some products of MEMS

biaxial accelerometers are available on the market [31].

In this dissertation, we are interested in the MEMS fabrication of the SBA with the

objectives listed below:

• Low translational stiffness in the plane and high out-of-plane translational stiffness.

• Isotropic stiffness in the plane, i.e., the same stiffness in arbitrary directions of the

SBA plane.

• Placement of the measurement circuits on either its top surface or its side walls, to

construct a complete sensing system under piezoresistive principles.

2.3.3 MEMS Sensing

Table 2.1 Comparison among characteristics of sensing technologies
Specifications Piezoelectric Piezoresistive Capacitive
Output impedance High Low High

DC response No DC response

Can measure down to DC,
e.g. throughout long-duration
events such as those associated
with automobile braking

Can measure down to DC

Power consumption Self-generating Require an external power source
Require a standard voltage
supply or battery

Temperature range Large Small Very large
Sensitivity Medium Medium High
Offset drift Offset drift with impact Offset drift with temperature None
Complexity of circuitry Medium Low High

Application ranges
Vibration measurements,
i.e., higher frequency

low-frequency applications
Wide bandwidth,
low-frequency applications

Cross-axis sensitivity Mainly determined by accelerometer mechanical design

Advantages
Relatively small size, large
bandwidth, high resonant
frequency, good linearity

Simplicity of design, fabrication
process and processing circuitry;
compactness

High sensitivity, low power
consumption, broad bandwidth,
good linearity and stability

Disadvantages No DC-response, high leakage Temperature sensitivity
Relatively high cost,
electromagnetic interference

Based upon the validated SBA model, we may turn to the sensing system in the SBA.

According to Maluf [12], all accelerometers share a basic structure, consisting of a proof-

mass mounted on a moving body by means of a viscoelastic suspension. However, they differ
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in the sensing of the relative position of the proof-mass, as the mass translates relative to the

accelerometer frame under the effect of a rigid-body acceleration. Measurement techniques

for the estimation of proof-mass displacements have been reported, including measurement

methods based on piezoelectricity, piezoresistivity, capacitance, metallo-resistivity, optical

sensing mechanisms based on diffraction-gratings, and optical microencoders. Piezoelec-

tricity is mainly used for vibration measurements, i.e., for high-frequency signals; capaci-

tance and piezoresistivity are widely used physical principles for low-frequency applications.

Metallo-resistivity, mainly adopted for high-frequency applications, is characterized by low

temperature drift, low noise and high precision. Advantages of optical detection techniques

compared to capacitive or piezoresistive technologies include high sensitivity. A summary

of characteristics of different sensing technologies is given in Table 2.1. With reference to

Allen [32], piezoresistivity is significant in MEMS sensors for the following reasons:

• Piezoresisitive effect in silicon is an order of magnitude higher than in metals.

• Optimal transmission of strain without creep is realized by means of the integration

of the piezoresistive material and MEMS devices.

• Good matching of piezoresistors in the Wheatstone bridge circuit is possible by means

of MEMS fabrication.

2.4 Stiffness Analysis of Compliant Mechanisms

2.4.1 Methodologies

The performance of compliant mechanisms is sensitive to their stiffness [33, 34, 35].

Generally speaking, two approaches can be adopted to determine the stiffness matrix:

the energy approach based on the Lagrange formalism and FEA. However, the presence

of hinges in compliant mechanisms can make the parametric calculation of kinetic and

potential energies extremely difficult. Furthermore, following the Lagrangian approach,

the direct relationship between stiffness and free-form components can be cumbersome to

establish [34]. Therefore, FEA is more often employed in determining the stiffness matrix.

However, FEA is often time-demanding, depends on the meshing technique, and is capable

of analyzing the mechanism only after all specific dimensions are defined [36].
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Another difficulty in connection with stiffness analysis lies in the complex assembly of

the mechanism. In micro-compliant mechanisms, the assembly is always extremely compli-

cated and can consist of both serial and parallel chains of flexure hinges and rigid links [37].

In this sense, research works are seldom found on the full modeling of micro-compliant mech-

anisms, the most widely employed modeling technique being based on simplified models.

The interested reader may refer to [37, 38, 39] for a detailed review of current simplifica-

tion methods. Among these, the effective pseudo-rigid-body (PRB) method is frequently

used [23, 40]. Within this approach, all the flexure hinges are replaced by single-degree-of-

freedom revolute joints along with a torsional spring, while modeling the remaining parts

as rigid bodies. However, the PRB is only capable of exhibiting stiffness in the principal

direction, while leaving the stiffness in other directions undetermined [41]. To overcome

this shortcoming, the lumped-parameter model can be adopted to determine the stiffness of

the mechanism [42]: the mechanism is assumed to move in both translation and rotation,

the flexure hinges being replaced by multi-dof joints. By doing this, the stiffness of the

flexure hinge along all six-dof directions can be obtained. Hence, the lumped-parameter

model can be extended to analyze compliant mechanisms with ditto, in the presence of

serial and parallel chains [34, 35].

2.4.2 Decoupling of the Cartesian Stiffness Matrix

The 6 × 6 Cartesian stiffness matrix of a class of multibody systems contains the 3 × 3

rotational, translational and coupled stiffness blocks of the system [43]. For compliant-

mechanism design, the Cartesian stiffness matrix can be obtained in terms of FEA [44].

A means to predict the stiffness of the mounting of a rigid body on an elastic suspension

relies on the entries of the stiffness matrix [45]. Another means rely on the eigenvalues

and eigenvectors of the same matrix, which convey more information than the individual

entries, as the former are frame-invariant [46]. However, spurious coupling of translational

and rotational stiffness may occur, as first pointed out in [47]. Coupling prevents an

independent analysis of the translational and rotational stiffnesses of the system. Moreover,

the Cartesian stiffness matrix has entries with different physical units, thereby calling for a

generalized eigenvalue analysis [48]. The decoupling of the Cartesian stiffness matrix was

discussed by Selig [49] and Angeles [50]. In some typical applications, such as accelerometer

design, the structure is desired to exhibit compliance along the sensitive axes and high
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stiffness along the remaining axes of the rigid-body motion space. Due to this feature,

screw theory is often employed to help investigate the motions of compliant mechanisms [49].

Contemporary works on screw theory are available in the literature [51, 52, 53, 54, 55, 56,

57].

2.5 Accelerometer Strapdowns

2.5.1 State of the Art of Inertial Measurement Units

A conventional strapdown consists of three accelerometers to measure point acceleration

and three gyroscopes to measure the three components of angular velocity [58]. These sensor

systems may be used to infer the complete rigid-body acceleration field, i.e., the twist—

velocity and angular velocity—and its time-rate of change. Gyroscopes can provide direct

measurements of angular velocity, which obviates the need of integration of the angular

acceleration [59, 60, 61, 62, 63, 64]. However, gyroscopes exhibit some drawbacks, such

as complicated fabrication, high cost and power consumption as well as high sensitivity

to impact [65]. Moreover, a relatively low-cost gyroscope lacks the accuracy required for

precise measurement. In view of the fabrication cost, a micromachined accelerometer with

high precision is more attractive. Hence, the gyroscope-free strapdown (GF strapdown),

which was first proposed by Dinapoli [66], has become a novel trend in the field of navigation

systems [67, 68, 69].

2.5.2 Strapdown Applications

The applications of the accelerometer strapdowns are found in many fields: automotive

industry, aero- and astronautics, biomechanics and navigation systems, etc. [8, 70, 71]. For

example, the advent of the da Vinci Surgery System is a textbook example of the application

of the accelerometer strapdown in the development of robotic surgery, as illustrated in

Fig. 2.4. In 2000, the da Vinci surgery system became the first robotic system approved

by the FDA2 for general laparoscopic surgery. The da Vinci surgical system employs

joint kinematics to calculate the position and velocity of the tool tip internally. With

accelerometer strapdowns mounted to the patient-side manipulators, an accurate surgical

operation is ensured, even at the millimetric scale. The operating arms are made as thin

2U.S. Food and Drug Administration.



2 Literature Review 17

operating arms
with accelerometers inside

Fig. 2.4 Da Vinci Surgery System

as 10 mm in diameter, which is advantageous to reduce contact between surgical device

and exposed tissue, thus moving a big step forward to reducing the risk of infection. The

FDA approved the da Vinci Surgery System in both adult and pediatric procedures in

areas such as: urological surgery, general laparoscopic surgery as well as thoracoscopically-

assisted carditomy procedures, etc.

embedded
accelerometer strapdown

Fig. 2.5 Accelerometer strapdown in the Boeing 787 Dreamliner

In the astro- and aeronautical realm, accelerometer strapdowns became compulsory in

aircraft design for the detection of rotation, acceleration and pose in space [7]. For exam-



2 Literature Review 18

ple, the new Boeing 787 Dreamliner, illustrated in Fig. 2.5, has a sophisticated system of

accelerometer strapdowns at its nose. The accelerometer strapdowns are meant to play an

important role in providing not only a safer flight—through their robustness in detecting

the acceleration and monitoring turbine engine vibration—but also a much more comfort-

able flight experience. For instance, in the presence of strong turbulence, the airplane

drops several meters, which gives the passengers the sense that the airplane is falling. For

the purpose of counteracting the effects of turbulence, the Boeing 787 Dreamliner adds an

accelerometer system to its nose. Therefore, if a sudden drop is detected by the accelerom-

eters, they will simultaneously tell the wing flaps to adjust quickly. By doing so, a 3 m

drop for an older aircraft is reduced to just 1 m for the Boeing 787, thus offering a much

smoother flight experience to the passengers.

Accelerometer strapdowns are also widely employed in astronautics. The breathtak-

ing rendez-vous of the space shuttle Discovery with the International Space Station is

a paradigm of a successful application of accelerometer strapdowns. Each of Discovery’s

wings has stapdown systems of 66 accelerometers to detect impacts and gauge their strength

and location. These systems bear a rich network of sensors to help engineers and astronauts

gain a better control of the working conditions in the space shuttle.

2.5.3 Isotropic Accelerometer Strapdowns based upon the Platonic Solids

(a) (b) (c) (d) (e)

Fig. 2.6 Platonic solids: (a) tetrahedron; (b) cube; (c) octahedron; (d)
dodecahedron; and (e) icosahedron

The Platonic solids are deemed attractive for the design of SBA strapdowns due to their

geometric isotropy. These are a class of solids whose faces are all identical regular polygons.

It was first proven by Theaetetus in 360 BCE that there exist precisely five Platonic solids:
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the tetrahedron (four equilateral triangular faces), the cube (six square faces), the octahe-

dron (eight equilateral triangular faces), the dodecahedron (twelve pentagonal faces) and

the icosahedron (twenty equilateral triangular faces), which were further explicitly demon-

strated in Book XIII of Eulid’s Elements. Theaetetus’ proof3 on the precise number of

Platonic solids can be found in [72]. Their aesthetic symmetries aside, the characteristics

of the Platonic solids in view of their group symmetries have also been studied [73, 74].

These five Platonic solids are shown in Fig. 2.6, with a summary of their corresponding

geometric features listed in Table 2.24.

Table 2.2 Properties of Platonic solids
Solid Faces Vertices Edges Dual polyhedron

tetrahedron 4 4 6 tetrahedron
cube 6 8 12 octahedron

octahedron 8 6 12 cube
dodecahedron 12 20 30 icosahedron
icosahedron 20 12 30 dodecahedron

It is noteworthy that tetrahedron- and cube layouts are more commonly employed than

the other three Platonic solids, mainly due to their structural simplicity and concomitant

lower cost. As a consequence, the accelerometer strapdowns based upon the first two

Platonic solids are adopted in this thesis. Details of the isotropic SBA strapdowns in

estimating rigid-body pose and twist are included in Chap. 6.

2.5.4 Pose-and-Twist Estimation Algorithms

The GF strapdown is intended to provide measurements of the acceleration field of a

rigid-body moving in space, nine scalar quantities in total [66]. Theoretically, a minimum

of six accelerometers are required in a GF strapdown to provide a full estimation of the

acceleration field, since angular velocity can be integrated out of angular acceleration [75].

However, within this layout, the value of angular acceleration depends upon the a priori

knowledge of angular velocity, which is derived from integration of the angular accelera-

3Theaetetus proved that there are precisely five regular convex polyhedra.
4According to the duality principle, each regular polyhedron has its dual polyhedron in which faces and

vertices possess complementary locations. The dual polyhedron can be constructed by: (1) placing a point
in the centre of each face of the original polyhedron; (2) connecting each new point with the new points of
its neighboring faces; and (3) eliminating the original polyhedron [72].
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tion in the former step. As a result, the estimation error grows quickly. To address this

issue, a six-accelerometer cube-type GF strapdown was proposed, in which the angular

acceleration is estimated independently [75, 76, 77, 78]. Besides, other types of strapdowns

have been proposed, such as the six-accelerometer layout with a feedback compensation

system [75, 77], and the nine-axis accelerometer strapdown [79, 78, 80]. However, current

accelerometer strapdowns suffer from some shortcomings. For example, for most current

strapdowns, accelerometers, usually uniaxial, are required to be located individually on

the rigid-body under probing, with individual orientations [78, 81, 82]. Therefore, the user

has to determine the attachment locations of all the accelerometers on the rigid-body as

well as their orientations, to build the strapdown; this calls for the test of several different

layouts of diverse accelerometer locations and orientations, to find at least one layout able

to yield the acceleration field of the rigid-body under probing. For example, the patent

in [83] concentrates on the application of accelerometer assembly mounting on a helmet

for crash test, which needs a total number of sensing axes greater than or equal to twelve.

In this design, the user has to figure out the way to locate at least twelve accelerometers

as well as their orientations, for the purpose of realizing effective measurements. Not only

this; the sign-ambiguity problem also arises, which comes from the quadratic nature of

the angular velocity in the centripetal-acceleration component. Since the tangential- and

centripetal-components of the acceleration field are not decoupled by current strapdowns,

sign-ambiguity always hinders pose-and-twist estimation. One approach to address this

predicament is to increase the number of accelerometers, in order to provide redundant

measurements. The reader is referred to [84, 85] for details on the proposed solutions.

However, an increase of the number of accelerometers not only increases the financial cost,

but also is incapable, by itself, of directly decoupling the tangential and centripetal compo-

nents of the acceleration field. The aforementioned shortcomings of current strapdowns, on

the other hand, leave ample room for improvement, which is what this dissertation intends

to do.
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Chapter 3

Design of Simplicial Biaxial

Accelerometers

3.1 Overview

The concept of Simplicial-Biaxial-Accelerometer was first proposed by Cardou [5]. Due

to its planar nature, the SBA is amenable to microfabrication. Figure 3.1 illustrates the

SBA design as proposed by Cardou [5] at the Robotic Mechanical System Laboratory, McGill

University. The proof-mass at the centre moves by virtue of the motion of the rigid-body

under probing. Three sets of Π-joints with a pair of constant cross-section flexible beams

are built to connect the proof-mass to the frame of the SBA, which is rigidly attached

to the object under probing. An electronic measurement system composed of electrodes

embedded and fixed rigidly on the beam is intended to yield the acceleration information

of the rigid-body based on the following principle: the electrodes undergo the same de-

formation as the flexible beams, caused by the motion of the proof-mass, thus leading to

the capacitance variations between them. The capacitance variations are sensed by the

electronic measurement system so that a corresponding output voltage is produced. With

this approach, the output voltage is a result of the motion of the proof-mass. Afterwards,

several estimation algorithms can be applied to obtain the acceleration of the proof-mass,

the acceleration of the rigid-body to be measured being obtained accordingly.

We have conducted a static analysis in ANSYS on the SBA shown in Fig. 3.1, and

found that this architecture readily comes across interference between the proof-mass and



3 Design of Simplicial Biaxial Accelerometers 22

0.3 mm

10 mm

proof-mass

electrodes

stopper

flexible beams

Fig. 3.1 SBA architecture proposed by P. Cardou

the fixed frame. The problem may be inevitable due to the inherent high compliance of the

structure. The experimental tests of the MEMS model of the structure also illustrated that

out-of-plane motions are likely to occur. To overcome this problem, a novel SBA design

is proposed and dimensioned in Section 3.4. Its modal analysis is conducted in ANSYS,

with static and harmonic loadings applied to the proof-mass in order to investigate the

capability and sensitivity of the SBA in acceleration estimation under different loading

conditions. After validation of the SBA design, a piezoresistive sensing system is built to

yield acceleration information. A numerical experiment is conducted in ANSYS, for the

purpose of validating the agreement of the sensor output with the forced response of the

proof-mass, thus shedding light on the feasibility and precision of the sensing system of the

SBA.

3.2 Conceptual Design

3.2.1 Compliant Mechanisms and Design of Flexure Hinges

Compliant mechanisms are widely used in the design of MEMS-based accelerometers.

According to Howell [23], a compliant mechanism comprises at least one localized region

that is highly deformable (compliant) when compared to the balance of the structure.

The general realization of flexure hinges depends on the cross-section profile; some of

the common shapes are illustrated in Fig. 3.2. Based on flexure hinges, the realization of
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(a) leaf type (b) circular-notched

(c) corner-filleted

Fig. 3.2 General realization of flexure hinges

compliant Π-joints is shown in Fig. 3.3. One possibility is by means of one pair of long

beams with constant cross-section; another by means of four notched hinges, as illustrated

in Figs. 3.3 (a) and (b), respectively. Compared with its long-beam counterpart, the notched

Π-joint has the desirable feature of high stiffness ratios between the sensitive direction and

the other directions. However, this type of realization also exhibits the inherent demerit of

a limited range of motion.

(a) a pair of long beams (b) four notched hinges

Fig. 3.3 Pictorials of two compliant realizations of the Π-joint
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3.2.2 Lamé-notched Flexure Hinge

According to Lobontiu [86], current types of flexure hinges, including the leaf-type,

circular-filleted and circular-notched hinges, are prone to high stress concentration. In

order to address this deficiency, the Lamé-notched hinge was proposed [44, 47], which is

defined as [87]
∣

∣

∣

∣

x

a

∣

∣

∣

∣

η

+

∣

∣

∣

∣

y

b

∣

∣

∣

∣

η

= 1 η = 1, 2, ... (3.1)

where a and b are one-half of the side lengths of the circumscribing rectangle.

3.2.3 Lamé Curves

Figure 3.4 illustrates Lamé curves. Even-order Lamé curves are analytic everywhere.

For η = 2, the curve becomes an ellipse; for η → ∞, the curve approaches a rectangle. An

important shortcoming intrinsic to compliant mechanisms is that high stress concentration

may lead to fatigue failure, while curvature discontinuities of the structure profile gener-

ate stress concentration. We recall the concept of G2-continuity, which denotes position,

tangent and curvature continuity over a given geometric curve [87]. G2-continuity thus

becomes a significant criterion in analyzing the level of stress concentration in a flexure

hinge. Figure 3.5(a) illustrates the profile of the circular-filleted hinge, where R is the ra-

dius. From its curvature distribution κ(s) in terms of s in Fig. 3.5(b), we observe that the

profile leads to G2-discontinuity at points A and B, because of the curvature discontinuities

at the two blending points with a straight segment. On the other hand, the curvature of the

4th-order Lamé-notched hinge behaves continuously over the notch profile, as illustrated in

Fig. 3.6(b). The notch shape thus provides G2-continuity, thereby reducing the stress con-

centration. A key property of Lamé curves helps to explain this property: their curvature

vanishes at the intersections with the coordinate axes when η > 2, hence, G2-continuity

can be satisfied when Lamé curves are employed as the fillets of a straight beam.

Hinges designed with the form of a Lamé curve offer G2-continuity along the notch

surface, as opposed to their circular counterparts. An illustration of a Lamé-notched hinge

is shown in Fig. 3.7, in which one end of the flexure hinge is clamped, and a vertical

load F is applied at the free end, along the y-direction. The flexibility parameter υ—read
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Fig. 3.4 Lamé curves with variable η: (a) Even-order; (b) Odd-order.
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Fig. 3.5 Circular-fillted flexible hinges
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Fig. 3.6 Lamé-notched hinges

“upsilon”—is given in terms of the nominal stress as:

σ̄nom =
6M

wt2
m

=
6F l

wt2
m

, υ =
umaxEwt2

m

F l2
(3.2)

where l, w and tm are the length, the depth and the minimum thickness of the hinge, while

umax is the maximum deflection of the hinge along the y-direction in response to the applied

load F .

3.2.4 FEA of Lamé-notched Hinge

The stress concentration factor is defined as the ratio of the maximum von Mises stress

σvM , which occurs within the limit of the elastic range, to the nominal stress σ̄nom [88], i.e.,

Kt = σvM /σ̄nom.

In order to illustrate the stress distribution under loading, four types of flexure hinges

are investigated under FEA, as shown in Fig. 3.8. The structural optimization of the

Lamé-notched hinge is developed using the ANSYS Parametric Design Language (APDL).
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Fig. 3.7 Geometry of a Lamé-notched flexure hinge

The first-order optimization method is employed. At each iteration, the design variables are

changed, with the new FE model generated accordingly. Also, a tolerance of 10−6 is imposed

on the objective function. The optimum results are a = 105 µm and b = 70 µm. Stress

concentration levels of four types of flexure hinges under the same boundary conditions

are compared, while showcasing the advantages of the Lamé-notched hinge in reducing

stress concentration. A comparison of the stress concentration factor Kt and the flexibility

parameter υ is provided in Table 3.1. Some conclusions follow:

• The leaf-type hinge is the most bending-compliant, but induces the maximum stress

concentration.

• The circular-notched hinge causes lower stress, but shows lower flexibility.

• The values of Kt and υ of the circular-filleted hinge lie between those of the leaf

and circular-notched hinges1. This is reasonable because the leaf type and circular-

notched hinges are two typical cases of circular-filleted hinges, the former with r = 0

(r is the fillet radius), the latter with r = l/2 (l is the hinge length).

• The Lamé-notched hinge bears the lowest stress concentration and shows a higher

bending-compliance than the circular hinge.

1A set of FEA was conducted to investigate the effect of fillet radius on Kt and υ. The value of fillet
radius is chosen 20 µm.
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(a) leaf type (b) circular-filleted (c) circular-notched

(d) Lamé-notched

Fig. 3.8 FE results of von Mises stress distribution for flexure hinges

Table 3.1 Comparison results for Kt and υ of different flexure hinges

Hinge Types
Leaf type Circular-filleted Circular-notched Lamé-notched

Kt 2.0645 1.9119 1.3190 1.3077
υ 169.0436 152.4052 53.5299 93.3921

3.3 Stiffness Analysis of the Lamé-notched Flexure Hinge

As illustrated in Fig. 3.7, the 4th-order Lamé-notched hinge is fixed at one end, and

subjected to three-dimensional loading at the free end. The 6 degree-of-freedom (dof) of

the free end comprise three translations, ux, uy, uz, and three rotations, θx, θy, θz, with

respect to the reference coordinate frame Oxyz.

The 6 × 6 compliance matrix of the Lamé-notched hinge takes the form [18]:

Ch =





























CθxMx
0 0 0 0 0

0 CθyMy
0 0 0 CθyFz

0 0 CθzMz
0 CθzFy

0

0 0 0 CuxFx
0 0

0 0 CuyMz
0 CuyFy

0

0 CuzMy
0 0 0 CuzFz





























(3.3)
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where CuyMz
= CθzFy

and CuzMy
= CθyFz

.

Castigliano’s second theorem is adopted to determine the compliance entries appearing

in eq. (3.3). This theorem is an effective approach to calculating the deformation of an

elastic body under external loading and supporting conditions. Within this theorem, the

local translational or rotational deformation can be regarded as the partial derivative of

the total strain energy of the elastic body with respect to the external force or moment

acting in the corresponding location or direction, as expressed below:

u =
∂U

∂F
(3.4)

where U is the strain energy stored in the body, F is the applied force or moment, and u

is the corresponding deformation.

With reference to Fig. 3.7, the thickness of the flexure hinge t(x) is a function of x,

namely,

t (x) = 2
(

b +
tm

2

)

− 2b

[

1 − (a − x)4

a4

]
1

4

(3.5)

The strain energy due to the bending moment Mz is

Ub,z =
∫ l

0

M2
z

2EIz

dx (3.6)

where E is the Young modulus and Iz the area second moment about the x-axis, which is

given by Iz(x) = wt3(x)/12.

According to eq. (3.4), the bending angular displacement θz is obtained as

θz =
∂Ub,z

∂Mz
=

Mz

E

∫ l

0

1

Iz
dx =

12Mz

Ew

∫ l

0

1

t(x)3
dx (3.7)

Substituting eq. (3.5) into eq. (3.7) leads to

θz =
12Mz

Ew
g(x) (3.8)

where

g(x) =
∫ 2a

0

1

[2b + tm − 2b (1 − (a − x)4/a4)
1

4 ]3
dx (3.9)
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For numerical convenience, x of eq. (3.8) is expressed below in polar coordinates. Let

x = a − a cos α, α ∈ [0, π]; therefore, dx = a sin αdα, θz then becoming

θz =
12Mza

Ew

∫ π

0

sin α

[2b + tm − 2b(1 − cos4 α)
1

4 ]3
dα (3.10)

Further, let ξ = b/tm, so that b = ξtm. Substituting this relation into eq. (3.10) yields

θz =
12Mza

Ewt3
m

∫ π

0

sin α

[2ξ + 1 − 2ξ(1 − cos4 α)
1

4 ]3
dα

=
12Mza

Ewt3
m

f(ξ)

(3.11)

Hence, the in-plane bending compliance CθzMz
is given by:

CθzMz
=

12a

Ewt3
m

∫ π

0

sin α

[2ξ + 1 − 2ξ(1 − cos4 α)
1

4 ]3
dα =

12a

Ewt3
m

f(ξ) (3.12)

For a given ξ = b/tm, the integral f(ξ) is evaluated by means of Romberg’s numerical

quadrature [89].

Expressions of the other compliance entries in eq. (3.3) are obtained likewise:

CuxFx
=

a

Ewtm

∫ π

0

sin α

2ξ + 1 − 2ξ(1 − cos4 α)
1

4

dα

CuyFy
=

12a3

Ewt3
m

∫ π

0

(1 − cos α)2 sin α

[2ξ + 1 − 2ξ(1 − cos4 α)
1

4 ]3
dα

CuzFz
=

12a3

Ew3tm

∫ π

0

(1 − cos α)2 sin α

2ξ + 1 − 2ξ(1 − cos4 α)
1

4

dα

CθyMy
=

12

w2
CuxFx

CuyMz
=

12a2

Ewt3
m

∫ π

0

(1 − cos α) sin α

[2ξ + 1 − 2ξ(1 − cos4 α)
1

4 ]3
dα

CuzMy
=

12a2

Ew3tm

∫ π

0

(1 − cos α) sin α

2ξ + 1 − 2ξ(1 − cos4 α)
1

4

dα

(3.13)

Further, a torsion load Mx is applied at the opposite, free end, as illustrated in Fig. 3.9.

An approximate expression for the torsional stiffness of the notched hinge can be obtained

by dividing the hinge into infinitesimal vertical slabs. Hence, the corresponding torsional
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Fig. 3.9 CAD model of a Lamé-notched flexure hinge

angle θx due to pure torsional moment is given by

θx =
∫ 2a

0

Mx

GIx(x)
dx (3.14)

where G is the shear modulus, and Ix(x) is the torsional moment of inertia for the infinites-

imal strip at position x.

Using Roark’s formulas [90], Ix(x) is expressed as

Ix(x) = wt3(x)

[

1

3
− 0.21

t(x)

w

(

1 − t4(x)

12w4

)]

(3.15)

Based on the polar coordinates introduced in Fig. 3.7, eq. (3.5) becomes

t (α) = 2b + tm − 2b
(

1 − cos4 α
)

1

4 (3.16)

Likewise, eq. (3.15) can be expressed as

Ix(α) = wt3(α)

[

1

3
− 0.21

t(α)

w

(

1 − t4(α)

12w4

)]

(3.17)

Following a similar procedure, eq. (3.14) is expressed as

θx =
Mxa

G

∫ π

0

sin α

Ix(α)
dα (3.18)
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Further, substituting ξ into eq. (3.16) yields

t(α) = tm

[

2ξ + 1 − 2ξ
(

1 − cos4 α
)

1

4

]

= tmh(ξ) (3.19)

Upon substituting the relation obtained in eq. (3.19) into eq. (3.17) produces

Ix(α) = wt3
mh3(ξ)

[

1

3
− 0.21

tmh(ξ)

w

(

1 − t4h4(ξ)

12w4

)]

(3.20)

Hence, eq. (3.18) can be written as

θx =
Mxa

Gwt3

∫ π

0

sin α

h3(ξ)

[

1
3 − 0.21

tmh(ξ)
w

(

1 − t4
mh4(ξ)
12w4

)]dα

Letting n = tm/w, eq. (3.3) becomes

θx =
Mxa

Gwt3

∫ π

0

sin α

h3(ξ)

[

1
3 − 0.21nh(ξ)

(

1 − n4h4(ξ)
12

)]dα =
Mxa

Gwt3
m

z(ξ, n) (3.21)

Therefore, the torsional compliance of the Lamé-notched hinge is

CθxMx
=

θx

Mx
=

az(ξ, n)

Gwt3
m

(3.22)

As a result, the compliance matrix of the flexure hinge is obtained in block-form as

Ch =





Crr Crt

CT
rt Ctt



 (3.23)

where

Crr =











277.63 0 0

0 24.144 0

0 0 999.49











(Nm)−1, Crt =











0 0 0

0 0 −0.3491 × 10−2

0 0.1411 0











N−1

(3.24)
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Ctt =











0.1759 × 10−6 0 0

0 0.2263 × 10−6 0

0 0 0.1239 × 10−5











m/N (3.25)

Finally, the stiffness matrix is obtained as the inverse of the compliance matrix, namely,

Kh = C−1
h (3.26)

Since the motion of accelerometers is highly dependent on the flexure hinges, the stiffness

analysis of the flexure hinges is significant for the study of the accelerometer stiffness.

However, flexure hinges are rarely found to be directly applied to accelerometers to realize

compliant motions. Instead, the Π-joint, a mechanism with a combination of rigid links

and flexure hinge, is proposed to realize compliant motions for the SBA.

3.4 SBA Structural Design

In order to address the drawback of the SBA design proposed by Cardou [5], the Π

joint was improved in the realization of the SBA design discussed in this dissertation. As

illustrated in Fig 3.10, instead of a pair of long beams, the notched Π-joints are used

here, as shown in Fig. 3.3(b), to provide compliance along the sensitive direction. In the

SBA, the rigid proof-mass is connected by three ΠΠ-limbs, with an angular separation of

120o in the plane. The notched Π-joint is realized by means of the Lamé-notched flexure

hinge (minimum thickness tm = 20 µ m, length l = 210 µ m), with single-crystal silicon.

The model parameter values and material properties of the silicon are listed in Tables 3.2

and 3.3, respectively. These dimensions were obtained by trials and errors, based upon the

micromachinability of the device, in order to meet design objectives.

As a design objective, the proof-mass is to be sensitive to applied accelerations along

arbitrary directions in the plane and to exhibit high out-of-plane stiffness. Compared to the

translations, the inevitable rotations of the proof-mass are expected to be slight by virtue

of the structure stiffness. Besides, the flexure hinges are capable of providing compliant

motions to the proof-mass under loading; by the same token, the hinges are not prone to

cracking at their minimum-thickness region within the allowable range of displacements of

the proof-mass.

The incentive of the SBA design is driven by its advantages over some other designs of
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Fig. 3.10 SBA design with its dimensions

biaxial accelerometers, due to its structure. First, due to the n+1 leg provided by simplicial

architectures, the SBA provides redundancy in the sensing signals, thereby offering robust-

ness against measurement errors. Also, the isotropic nature of the SBA offers the same

sensitivity for accelerations along any directions in the plane. Moreover, the employment

of Lamé-notched hinges plays a significant role in reducing stress concentration.

Table 3.2 Dimensions of the SBA
a (µ m) b (µ m) c (µ m) d (µ m) e (µ m) l (µ m) L (µ m) tm (µ m) α (rad) w (µ m)

3333 1400 200 210 700 210 3466 20 π/4 300

3.5 Structural Analysis

The validation procedure comprises two parts, modal analysis and forced response un-

der various loading conditions. By means of modal analysis, we expect to obtain the
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Table 3.3 Mechanical properties of silicon
Density Stiffness Coefficients (103 MPa) Young’s Modulus (103 MPa) Poisson Ratio

(kg/µ m3) C11 C12 C13 [100] [110] [111]
2.33 × 10−15 165.7 63.9 79.6 129.5 168.0 186.5 0.222

natural frequencies, based on which the frequency ratio and frequency limit of acceleration

measurements can be determined. Afterwards, the forced response under different loading

conditions provides information on acceleration limit and isotropic behavior in estimating

accelerations in the x-y plane. The numerical structural validation is conducted in ANSYS.

3.5.1 Damping Effects

Force

Force

Velocity

Velocity

Moving plate

Moving plate

Film

Fluid flowGap

Gap

Substrate

Substrate

Substrate

Fig. 3.11 Squeeze film and slide film damping

As illustrated in Fig. 3.11, two major types of damping occur in the micro scale SBA:

squeeze-film damping and slide-film damping. According to [91], the squeeze-film damping

occurs when a plate moves perpendicular to a stationary surface, i.e., squeeze-film damping

takes place along the out-of-plane direction of the proof-mass. Slide-film damping arises as

a plate moves parallel to a stationary surface. Consequently, slide-film damping occurs for

the proof-mass motions in the plane of the SBA. It is noteworthy that no pressure variations

occur in the gap between the proof-mass and the stationary surface of the package under
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slide-film damping.

The damping analysis is based on the assumption of Couette air flow [92], in which the

plate motion abruptly forms a fully-established linear velocity profile in the flow. Within

the framework of [93], the Burgdorfer effective viscosity model for slide damping is defined

as:

µe =
µ

1 + 6Kn
(3.27)

where µ is the absolute air viscosity, while Kn is the dimensionless Knudsen constant [94].

Therefore, the slide-film damping coefficient Cp is derived as:

Cp =
µeApm

g
(3.28)

in which Apm is the area of the proof-mass, and g is the gap between the proof-mass and

the stationary surface. Cp has units of N.s/m.

Unlike the slide-film damping, the squeeze-film damping decreases if a gap between the

proof-mass and the stationary surface arises. According to [93], the squeeze-film damping

coefficient is approximated as:

Cs =
µaαpLpw3

p

g3
(3.29)

with unit of N.s/m. In eq. (3.29), αp is a constant parameter depending on the wp/Lp ratio,

Lp is the effective plate length and wp the effective plate width.

Consequently, the damping matrix C takes the form

C = diag ([Cp Cp Cs 0 0 0]) = [diag ([2.88 2.88 8.12 0 0 0])] × 10−5 N.s/m

(3.30)

3.5.2 Modal Analysis

The FE model of the SBA is shown in Fig. 3.12, in which each node has six dof. The

four outside sidewalls of the SBA frame are fixed. Through modal analysis, the first six

natural frequencies are listed in Table 3.4. The almost identical values of f1 and f2 meet the

design objective of equal sensitivity for translations in the x- and y-directions. Moreover,

the value of f3 is about 2.2 times higher than that of f1 and f2, which means translations

along the the z-direction are more constrained than those in the x-y plane. The high
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frequency ratio between the rotational frequencies f4, f5 and f6 and those associated with

the x- and y-translations, of about 5.0, also shows an acceptable structural behavior, as

required by the SBA design. The modal analysis results are also validated by the first six

mode shapes, as illustrated in Fig. 3.13. Figures 3.13(a)–(c) pertain to translations along

the x-, y- and z-directions, respectively. At higher frequencies, rotations appear, as shown

in Figs. 3.13(d)–(f).

Fig. 3.12 FE model of the SBA (4-node tetrahedron element type, 53,471
nodes)

Table 3.4 Natural frequencies of the SBA through modal analysis in ANSYS
i 1 2 3 4 5 6

fi (Hz) 5858.3 5859.1 12890 29006 29036 33051
Mode shape2 T1 T2 T3 R1 R2 R3

3.5.3 Harmonic Response

For the purpose of evaluating the dynamic performance of the SBA model, a unit load-

ing that varies harmonically with time is applied on the SBA to study the corresponding

displacement response. Consequently, the cyclic loading a = A sin(ω t) m/s2 is applied on

2Ti (i = 1, 2, 3) denotes translation along the i-axis; Ri (i = 1, 2, 3) denotes rotation about the i-axis.
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(a) mode 1 (b) mode 2

(c) mode 3 (d) mode 4

(e) mode 5 (f) mode 6

Fig. 3.13 Mode shapes of the SBA



3 Design of Simplicial Biaxial Accelerometers 39

102.5 103.5

ω(Hz)

|H
T

(ω
)|

(m
m

)

103 104

10−3

10−2

10−4

|HT X (ω)|

|HT Y (ω)|

|HT Z(ω)|

(a)

φT X (ω)

φT Y (ω)

φT Z (ω)

ω(Hz)

φ
T

(ω
)

(◦
)

103 104
-180
-160
-140
-120
-100
-80
-60
-40
-20

0

(b)

|HRX (ω)|

|HRY (ω)|

|HRZ(ω)|

ω(Hz)

|H
R

(ω
)|

(r
a
d

)

0 0.5 1 1.5 2 2.5
×105

0

0.5

1

1.5

2

2.5

3

3.5

4 ×10−8

(c)

φRX (ω)

φRY (ω)
φRZ(ω)

ω(Hz)
φ

R
(ω

)
(◦

)
0 0.5 1 1.5 2 2.5

×105

-80

-70

-60

-50

-40

-30

-20

-10

0

(d)

Fig. 3.14 Frequency response of the SBA:(a) translational magnitude; (b)
translational phase angle; (c) rotational magnitude and (d) rotational phase
angle

the proof-mass along the x-, y-, and z-axes, respectively, in ANSYS, the results being sum-

marized in the Bode plots of Fig. 3.14. The amplitude responses of the proof-mass shown

in Fig. 3.14(a) clearly illustrate that peaks appear at the critical natural frequencies along

the x-, y-, and z-directions. An apparent planar isotropy of the proof-mass—|HT X(ω)|
and |HT Y (ω)|—is observed. In the meantime, the out-of-plane sensitivity to accelerations

is significantly lower. With reference to Carlson [95], bandwidth is the difference between

upper and lower cutoff frequencies. From the plot, a bandwidth of 159 Hz is observed.

With reference to the rotational amplitude responses, Fig. 3.14(c), and their phase angle

counterparts Fig. 3.14(d), we conclude that within a wide range of frequencies, the ro-

tational responses exhibit an amplitude five orders of magnitude lower than those of the

in-plane translations, which tallies with the design objectives: rotations of the SBA are to

be negligible.

3.5.4 Transient Analysis

The transient analysis of the SBA is conducted in ANSYS, for the purpose of obtaining

the response under loading in the time domain. For the input loading, a pulse signal
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Fig. 3.15 Transient analysis of the SBA: (a) input acceleration signal; (b)
output response of SBA proof-mass in its plane ux, uy; (c) output response of
the SBA proof-mass out of its plane, uz

of acceleration is applied on the SBA, along the x-, y-, and z-directions, respectively, as

illustrated in Fig. 3.15(a). The duration of the pulse is set to 2.5×10−3 s, which is 15 times

the period of the first and second critical frequency of 5858.3 Hz (fX , fY ) and 32 times

that of the third critical natural frequency of 12580 Hz (fZ). The corresponding output

responses of the central node of the proof-mass are obtained by means of the Transient

Analysis module in ANSYS. Figure 3.15(b) illustrates the responses along the x- and y-

directions in the time domain, i.e., the responses in the plane of the SBA. An average

amplitude 7.5 × 10−4 m is observed, which coincides with the first peak amplitude in the

harmonic analysis. In addition, an acceptable isotropy behavior of the SBA along the x-

and y- directions is observed. In comparison with the output response in the plane, the

response along the z-direction is significantly small—Fig. 3.15(c)—in good agreement with

the design objective of a high out-of-plane stiffness.
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3.6 Piezoresistive Sensing System

3.6.1 Piezoresistive Sensing Principle

Selecting and developing a sensing method based on the comparison of different sens-

ing technologies is an important task in this dissertation. Three main criteria are em-

ployed: sensitivity, cost and MEMS manufacturability. Among existing sensing technolo-

gies, piezoresistive sensing is attractive because it relies on a compact mechanism that

requires neither complex processing circuitry nor a bulky external apparatus, besides ex-

hibiting low susceptibility to electromagnetic interference. Moreover, simplicity for design,

fabrication process and processing circuitry also feature the intrinsic advantages of piezore-

sistive sensing. At the same time, however, piezoresistive sensing technology suffers from

low sensitivity to temperature variations. In addition, researches are seldom found to im-

plant piezoresistive sensing technology in the design of biaxial accelerometers, which makes

this alternative terra incognita in our context. This room for improvement helps us narrow

down our search, to focus on a novel piezoresistive sensing technology for the SBA.

The piezoresistive effect is also known for the phenomenon that the resistance of a

material changes under applied stresses. This effect results from both geometric changes

and the change in resistivity, as[96]

∆R/R = (1 + 2ν)ǫ +
∆ρ

ρ
(3.31)

where ν is the Poisson ratio, ǫ is the strain along the piezoresistor, while R and ρ are

resistance and resistivity in the unstressed material. For semiconductor gauges, such as

silicon and germanium, the changes in resistivity ∆ρ/ρ are dominant when compared with

the dimensional changes in eq. (3.31). Hence, we will assume ∆R/R = ∆ρ/ρ.

The piezoresistive effect is described by a fourth-rank tensor that relates the change

in resistivity to the stress [97]. For crystals with cubic symmetry, such as silicon, the
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piezoresistance tensor is given, in matrix form by
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(3.32)

Note that the piezoresistance coefficients depend on crystal orientation, impurity con-

centration and temperature [98].

The relation between the electric field and the current density is, in turn,
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where εi and ji, (i = 1, 2, 3) are the electric field and current density components along

three mutually orthogonal directions, respectively.

For the piezoresistive analysis, it is necessary to learn how to transform the piezoresistive

equations from one coordinate frame to another. Hence, the general expression for the

longitudinal and transverse piezoresistance coefficients for a gauge in an arbitrary crystal

direction is given by [99]:

πl = π11 − 2(π11 − π12 − π44)(l2
1m2

1 + l2
1n2

1 + m2
1n2

1)

πt = π12 + (π11 − π12 − π44)(l2
1l2

2 + m2
1m2

2 + n2
1n2

2)
(3.34)

where (l1, m1, n1) is the set of direction cosines between the longitudinal orientation and the

crystal axis, (l2, m2, n2) being its transverse counterpart. The resistance change is described

by
∆R

R
= πlσl + πtσt (3.35)

where σl and σt are the longitudinal and transverse stress components.
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3.6.2 Location of Piezoresistors

Maximum stress area:
Lamé-notched hinges
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Fig. 3.16 Stress field of one limb of the SBA
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Fig. 3.17 Stress values of different areas of one limb of the SBA

Within the framework of micro system design [100], the piezoresistors are sensitive to

the stress applied on it: the higher the stress it takes, the higher the voltage it will output.

This phenomenon serves as the beacon for the significant criteria of locating piezoresistors

in accelerometers: the piezoresistors should be attached rigidly to areas with relatively high

stress values. Therefore, a stress analysis is conducted on the FE model of the SBA under

ANSYS. Figure 3.16 illustrates the stress field of the SBA under an arbitrary acceleration
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in the plane. It is clearly shown that the stress on the hinges is much higher than that on

other regions, and the maximum stress areas appear at hinge d. This analysis is further

validated through the study illustrated in Fig. 3.17. With reference to Fig. 3.16, we divide

one limb of the SBA into seven parts, comprising the Lamé-notched hinges and the rigid

links. Afterwards, based on the FEA of the SBA under acceleration along arbitrary planar

directions, the stress values of nodes on line l for each area are plotted in Fig. 3.17. In

the figure, stresses in the “hinge d” area, which is the bottom Lamé-notched hinge, are

maximum, this area being ideal to locate the piezoresistors. Consequently, the piezoresistors

are attached rigidly to the Lamé-notched hinges in the “hinge d” area; by doing so, the

piezoresistors will show the highest sensitivity to the applied accelerations.

3.6.3 Measurement Circuit

It is assumed that the piezoresistors are located on the SBA surface with submicromet-

ric thickness. These resistors are p-type silicon, assuming a doping concentration under

1017 cm−3. The piezoresistance coefficients for p-type silicon are listed in Table. 3.5.

Table 3.5 Piezoresistance coefficients for p-type silicon (at room tempera-
ture)

Resistivity (Ω-cm) Piezoresistance (10−11Pa−1)
π11 π12 π44

7.8 6.6 −1.1 138.1

Two approaches to locate the piezoresistors are considered: a) on the top surface of the

notched hinge, near the edge, and b) on the vertical sidewall of the hinge, covering 1/3 of

the top area. For case a), the resistor has a 120-µ m length and 4-µ m width; for case b),

the resistor is designed so as to have dimensions of 120 × 100 µ m, since a larger space is

available in this layout.

As shown in Fig. 3.18(a), three measurement circuits are employed to provide voltage

signals to detect the loading in an arbitrary direction in the Oxy plane. Each of the

three circuits consists of four resistors connected via a half-Wheatstone bridge, as shown

in Fig. 3.18(b). Taking bridge I as an example, resistors R1 and R2 are employed as

two active Wheatstone-bridge elements, which are subject to opposite stress conditions.

Furthermore, the two extra notched hinges formed on the accelerometer frame have the

same structure as the two other hinges, which helps shape the two fixed bridge elements
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R3 and R4. Figure 3.18(a) illustrates the circuit connection for bridge I for the top-surface

implantation case, with the bridge drive voltage Vs = 5V . The connections for the other

two bridges and for the vertical sidewall layout are equivalent to bridge I. It is noted that

the four resistors forming a Wheatstone bridge have the same geometry, in order to provide

zero-offset output voltage. At the same time, primary temperature compensation is also

achieved.

proof-mass

Lamé-notched hinge
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R4
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V0(+)
Vs GroundV0(−)
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(b) half-Wheatstone bridge

Fig. 3.18 SBA geometry and sensing system

Assuming that all four resistors have identical resistance R in the absence of loading,

we can write

R1 = (1 + α1)R, R2 = (1 − α2)R, R3 = R4 = R (3.36)

where α1 and α2 are change rates of R1 and R2.
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Fig. 3.19 Commonly employed crystal planes of silicon: (100), (110) and
(111) planes

Hence, the resulting relation between the input and output voltages becomes

Vo

Vs

=
R1

R1 + R2

− R4

R3 + R4

=
R1 − R2

2(R1 + R2)
=

α1 + α2

2(2 + α1 − α2)
(3.37)

As known in the art [100], α1 and α2 are typically small, and differ from each other

by only 10%, the input-output ratio of the half-bridge being one-half of that of the full

bridge, without a large nonlinearity. Under the assumption that R1 and R2 are subject to

the same strain value with opposite signs, the voltage ratio becomes Vo/Vs = ∆R/2R.

Figure 3.19 illustrates the crystal planes of silicon, where [ijk] denotes a vector normal

to a plane described by (ijk), 〈ijk〉 representing all directions equivalent to [ijk]. The SBA

structure starts from the n-type (100) single crystal silicon wafer. For bridge I, the resistors

are oriented along the 〈11̄0〉 direction, which gives the maximum value for πl, denoting

the longitudinal piezoresistance coefficient of a gauge in an arbitrary crystal direction, as

defined in eq. (3.34). The x′- and y′-axes, shown in Fig. 3.18(a), denote the crystal axes

of symmetry of the wafer. The resistors in the two other bridges are aligned along the

length direction of their corresponding hinges. Then, according to the same eq. (3.34),

the piezoresistance coefficients for the resistors of the three Wheatstone bridges can be

calculated, as listed in Table. 3.6, considering the two distinct layouts of resistor location.

3.6.4 Noise Analysis

Two types of noise are studied in the SBA: electronic-thermal and mechanical.

Due to piezoresitors in the Wheatstone bridge system in the SBA, two typical sources

exist for the electronic-thermal noise: Johnson noise and flicker noise [101]. According to
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Table 3.6 Piezoresistance coefficients for top and sidewall implanted resis-
tors

Resistor location Category Bridge I Bridge II Bridge III

Top surface

(l1, m1, n1) (−
√

2/2,
√

2/2, 0) (cos 15◦, cos 75◦, 0) (cos 105◦, cos 195◦, 0)

(l2, m2, n2) (
√

2/2,
√

2/2, 0) (cos 75◦, cos 165◦, 0) (cos 15◦, cos 105◦, 0)

πl (10−11Pa−1) 71.8 22.9 22.9

πt (10−11Pa−1) −66.3 −17.4 −17.4

Sidewall

(l1, m1, n1) (−
√

2/2,
√

2/2, 0) (cos 15◦, cos 75◦, 0) (cos 105◦, cos 195◦, 0)
(l2, m2, n2) (0, 0, 1) (0, 0, 1) (0, 0, 1)

πl (10−11Pa−1) 71.8 22.9 22.9

πt (10−11Pa−1) −1.1 −1.1 −1.1

Barlian et al. [102], noise depends on the geometry of the piezoresistive sensors, tempera-

ture, sensor bandwidth and doping concentration.

Johnson noise, which is also known as thermal noise, is the electronic noise of the charge

carrier due to thermal agitation under applied voltage. As its power spectral density (PSD)

stays constant over the frequency spectrum, Johnson noise is often assumed to be white

noise [103]. The Johnson noise for each piezoresistor is defined as:

Vj =
√

4kBTBR V (3.38)

where kB = 1.38×10−23 J/K is the Boltzmann constant, T being the absolute temperature,

B is the bandwidth, and R the resistance of the piezoresistors.

The flicker noise is relevant to the fabrication process, in which parameters such as

implant dose and energy play a role in controlling it [104]. According to Tuck [105], the

flicker noise comes from conductivity fluctuation in the resistor. The flicker noise is defined

as:

V1/f = Vb

√

α

Nf
V (3.39)

where Vb, N and f are the bias voltage, carrier number in the piezoresistor volume and

frequency, respectively, while α is an empirical non-dimensional number ranging from 10−7

to 10−3, and is attributed to lattice quality.

As illustrated in eq. (3.39), the frequency appears in the denominator, which means

that the PSD of flicker noise is inversely proportional to frequency.
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Hence, the total electronic-thermal noise is obtained as

Ve =
√

V 2
j + V 2

1/f V (3.40)

With reference to [102], mechanical noise is due to the mechanical resistance of the sensor

seismic system, as well as the thermal-mechanical noise of the moving parts. Mechanical

noise can be obtained as a function of the resonant frequency ω, mass m of the the proof-

mass, damping C and absolute temperature T , as:

Vm =
1

g

√

4kBTω

mC
V (3.41)

Mechanical noise can be minimized by increasing the mass of the proof-mass, or decreas-

ing the resonant frequency. According to Tuck [105], mechanical noise plays a dominant

role over electronic-thermal noise only at frequencies above 10 kHz.

Figure 3.20 illustrates the Johnson noise and flicker noise vs. frequency. It can be con-

cluded that the Johnson noise Vj = 301 nv remains constant over the frequency spectrum.

On the other hand, the flicker noise is non-negligible only at low frequencies.

The SBA is designed to have a dynamic range of 30 g, which denotes a full signal of

±30 g, i.e., a total of 60 g. The signal-to-noise ratio (SNR) of the SBA can be either

obtained from measurement data, or estimated in terms of noise and dynamic range, as:

SNR = 20log10

(

1

Ve

6g

2
√

2

)

db (3.42)
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3.7 Sensing System Validation

3.7.1 Load-voltage Matrix

For simple rectangular cantilevers, closed-form expressions for the stress occurring at

the point of interest in terms of structure parameters are readily derived, from which the

resistance changes can be obtained, as described in [100, 106]. However, for more complex

architectures, finite element modeling has been found to be an effective tool. Moreover,

the piezoresistive analysis, which belongs to coupled-field analysis, is implemented by static

analysis, the element type PLANE223 (2D, eight-node coupled-field element) being adopted

to simulate the piezoresistors. In each static analysis, the four piezoresistors are connected

via a half-Wheatstone bridge, as illustrated in Fig. 3.18(b).

Compared with conventional piezoresistive accelerometers, the SBA model provides

redundancy on signal detection, i.e., three voltage measurements are generated from an

arbitrary in-plane acceleration signal, which can be decomposed into the x- and y-directions.

Furthermore, in order to discern the magnitude and direction of the applied loading from

the three voltage measurements directly, a load-voltage matrix (LVM) is derived. The

procedure for obtaining this matrix is explained below:

1. Apply three different in-plane loading cases: Fx = 1N; Fy = 1N; and Mz = 1 N mm,

with the force acting at the centre of mass of the proof-mass, and all other load

components set to zero for each case.

2. Conduct a FEA for each loading case and obtain the three output voltages from the

three Wheatstone bridges, namely,

vx =
[

vx1
vx2

vx3

]T
, vy =

[

vy1
vy2

vy3

]T
,

vz =
[

vz1
vz2

vz3

]T
(3.43)

where vxi
, vyi

, and vzi
(i = 1, 2, 3) denote the ith readout of the measurement circuit

under the unit loads defined in item 1.

3. Then, the LVM relating the applied loading with the readout is defined as

V =
[

vx vy vz

]

(3.44)
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Hence, for a general load

w =
[

Fx Fy Mz

]T
(3.45)

it yields

v = Vw (3.46)

where v denotes the three-dimensional array of readouts of the three measurement

circuits.

4. In the meantime, a “small”-amplitude displacement s is also produced under w:

s =
[

ux uy θz

]T
(3.47)

with ux and uy denoting “small” translational displacements along the x and y di-

rections, θz a “small” angular displacement2 about the z axis. Then, based on the

LVM V defined in eq. (3.44), the displacement-voltage matrix (DVM) R can be also

obtained, which is defined as

v = Rs (3.48)

Upon expressing w as w = Ks in eq. (3.46), where K denotes the 3 × 3 in-plane

system stiffness matrix obtained with ANSYS, the DVM is readily obtained as

R = VK (3.49)

3.7.2 Piezoresistive Analysis

A set of simulation runs in ANSYS is conducted to obtain the output voltage of bridge

I, considering the values of the applied accelerations ax continuously increasing. The sim-

ulation results are illustrated in Fig. 3.21, for the cases of piezoresistive sensors attached

to the sidewall and top of the flexure hinges.

Figure 3.21 illustrates that for both cases, the output voltage obeys a linear relation

with the applied loading. The line slope denotes the sensitivity of the sensors. Negligible

offset is found in output voltage for both sensor attachments. The rms errors for these

two linear fits are 0.0672% and 0.0436%, respectively. From Fig. 3.21, we can conclude

that the sidewall sensor system is more sensitive to applied accelerations than its top

2This means |θz| has the maximum value in radius for which sin θz ≈ θz, i.e., θz 6 3◦.
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Fig. 3.21 Sensitivity of the SBA attached with the flexure hinge at: (a)
sidewall; (b) top.

counterpart. However, the sensitivity differences between them are slight; in comparison

with its sidewall counterpart, the top sensor system only loses a negligible sensitivity to

applied accelerations.

Further, simulation tests are implemented to find the mapping matrices that relate the

three output measurements with the displacement, and the voltage measurements with the

applied loading. With reference to Fig. 3.10, the in-plane stiffness matrix for the whole

system, as reported by ANSYS, is

K =











5.58 7.48 × 10−4 4.43 × 10−4

7.48 × 10−4 5.58 0

0 4.43 × 10−4 2.77











(3.50)

whose 2 × 2 upper-left block has units of N/mm, its 2 × 1 and 1 × 2 off-diagonal blocks

units of N, and its (3, 3) entry units of N mm.

For the piezoresistors located on the top surface,

V =











4.2713 6.1605 −1.0367 × 10−4

−7.5018 0.6158 −1.0367 × 10−4

3.2051 −6.8005 −1.0367 × 10−4











,

R =











23.8385 34.3788 0.0016

−41.8596 3.4306 −0.0036

17.8794 −37.9444 0.0011











(3.51)
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Table 3.7 Validation of mapping matrices

v′ (mv) MAPE

Top
[

−2.366720786 15.53745777 −13.28043391
]T

0.0057

Sidewall
[

−2.757804278 18.391174 −15.98428694
]T

0.0082

v (mv) MAPE

Top
[

−2.382075813 15.61936948 −13.21070759
]T

0.0057

Sidewall
[

−2.766997431 18.56065200 −16.17500793
]T

0.0082

The 3×2 left-hand block of V has units of mV/N, its third column units of mV/(N mm),

while the 3 × 2 left-hand block of R has units of mV/mm, its third column units of mV.

For piezoresistors located on the vertical sidewall surface,

V =











5.2883 7.8096 −4.0716 × 10−5

−8.9407 0.6792 −4.0716 × 10−5

4.0492 −8.0765 −4.0716 × 10−5











,

R =











29.5146 43.5815 0.0022

−49.8886 3.7832 −0.0041

22.5885 −45.0638 0.0017











(3.52)

The above matrices have the same units as their counterparts in eq. (3.51). In order to

verify the above mapping matrices, the output voltage v under both top and sidewall cases

is evaluated according to v = Vw, where w =
[

−2 1 0
]T

N is one applied in-plane

loading. In addition, the voltage readout v′ from FEA, which is considered as the exact

value here, is also recorded in Table 3.7 for comparison purposes. In the table, the mean

absolute percentage error (MAPE) is used to compare v and v′, which is given by

MAPE =
1

n

n
∑

i=1

∣

∣

∣

∣

∣

v′
i − vi

v′
i

∣

∣

∣

∣

∣

(3.53)

where n = 3, while vi and v′
i denote the ith entry of v and v′, respectively.
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3.8 Summary

In this chapter, an innovative design of biaxial accelerometers has been proposed, that

is based on the architecture of a three-limb planar parallel robot whose moving platform is

constrained to move under pure translation. With the use of our proposed Lamé-notched

hinges, the SBA architecture relies on a combination of what is known as Π-joints. A serial

array of two Π-joints with Lamé-notched hinges was devised and employed to connect the

proof-mass with the supporting structure. This kind of notch was introduced in order to

minimize the stress concentration and provide good compliance for the proof-mass along the

sensitive axes. The accelerometer bandwidth was obtained by means of harmonic analysis,

which also showed that the SBA provides the same high sensitivity to applied accelerations

in any direction of its plane and exhibits low sensitivity to out-of-plane accelerations. The

electronic measurement system was designed based on the foregoing structural validation.

Two approaches were proposed for locating the piezoresistors, on the top surface and on

the vertical sidewall of the flexure hinges. Piezoresistive analysis was conducted on the FE

model of the SBA with simulation results illustrating that both approaches are effective

in detecting the output voltage signal under applied accelerations. Besides, the mapping

matrices that generate the acceleration signal from applied accelerations were derived for

the electronic layouts.
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Chapter 4

Stiffness Analysis of the SBA

4.1 Overview

In this chapter, the stiffness analysis of the SBA is conducted. The first section focuses

on the stiffness analysis in terms of the energy approach based on the Lagrange’s formu-

lation. In the second section, the stiffness analysis by means of the structural approach,

which considers the assembly of serial and parallel chains of flexure hinges and rigid links,

is included. Based on the lumped-parameter model, the 6 × 6 system stiffness and mass

matrices are obtained. The resultant eigenfrequencies and eigenmodes are compared with

their counterparts obtained by ANSYS. The third section includes the decoupling of the

Cartesian stiffness matrix, based on screw theory. The stiffness matrix is decoupled by

means of a similarity transformation defined over the space of “small-amplitude” screw

displacements. A case study on the decoupling of the SBA stiffness matrix is conducted

to validate the stiffness decoupling method. Finally, conclusions regarding the stiffness

analysis for compliant mechanisms are offered.

4.2 Accelerometer Design Process

The general process of accelerometer design is illustrated in Fig. 4.1. It is noteworthy

that through the whole process, stiffness analysis plays a significant role in validating the

design objectives. Otherwise, either the dimensions or materials, or both, will be revised

in order to meet the stiffness criteria.
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input data

stiffness analysis

DO OK?

Yes

fabrication

No

revise dimensions
& materials

Fig. 4.1 Accelerometer design flowchart, where DO = Design Objectives

4.3 Screw Theory

The main objective of accelerometer design is to provide high compliance along the

sensitive axes, and high stiffness along all other directions [107]. With the aid of screw

theory, we analyze the stiffness matrix via the associated generalized eigenvalue problem.

In screw theory, the general spatial motion of the rigid body is represented by a rotation

of the body about a line, called the screw axis, and a concomitant translation parallel to

that axis [108, 109], as illustrated in Fig. 4.2(a). Furthermore, a scalar quantity p denotes

the pitch, which couples the rotation with the translation.

A unit screw ŝ is represented as a six-dimensional array, namely,

ŝ =





e

µ



 =





e

r × e + pe



 (4.1)

where e is the unit vector parallel to the direction of the screw axis L, while µ denotes

translation of the screw nut under a unit rotation of the latter. Moreover, r is the position

vector pointing from a point R on the screw axis L to the origin O. Without loss of

generality, R can be assumed to be the point of L closest to O, as depicted in Fig. 4.2(b).
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It is noteworthy that a pure rotation is characterized by a zero pitch, while an infinite pitch

characterizes a pure translation.

As illustrated in Fig. 4.2(a), a rigid body is displaced from Pose I to Pose II around the

screw axis L with a pitch p.

Based on the “small-amplitude” displacement screw assumption, the screw displacement

s, the rigid-body twist t and the wrench w are obtained by multiplying the unit screw ŝ in

eq. (4.1) by a “small” amplitude Θ, an arbitrary amplitude Ω with units of angular velocity,

and an amplitude F with units of force, respectively:

s = Θŝ =





θ

r × θ + pθ



 , t = Ωŝ =





ω

r × ω + pω



 ,

w = F ŝ =





f

r × f + pf





(4.2)

y

O

z

x

L

Pose I

Pose II

θ

e

pe

(a) Screw motion combining rotation and
translation

y

O

z

x

screw axis
ω × r

pω
pω

Ω

vB

r

B

(b) Twist screw elements: the point B of the
body is instantaneously at the origin O

Fig. 4.2 Screw of a rigid body

Figure 4.2(b) depicts the screw elements of a twist t for a rigid body, i.e., the angular

velocity ω and the velocity vB of a point B of the rigid body, the screw nut, which coincides

instantaneously with the origin O.

At the outset, it is recalled that scientific code assumes that all the entries of the matrix
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under eigen-analysis bear the same units, and hence, its eigenvectors can be normalized to

render them of unit norm. In the context of eigenscrew analysis, the said norm cannot be

defined, but the putative unit eigenvectors are still useful to extract the desired information

from them.

Assuming that ki, for i = 1, . . . , 6, a unit screw, is the ith eigenvector of the 6×6 stiffness

matrix K, and κi the corresponding eigenvalue, the eigenvalue problem is formulated as:

Kki = κiΓki (4.3)

where κi can be proven to have units of force (N) from the expansion of eq. (4.3), while Γ

denotes the 6 × 6 permutation matrix, defined as

Γ =





O3×3 13×3

13×3 O3×3



 , Γ = Γ−1 (4.4)

in which O3×3 denotes the 3 × 3 zero matrix, and 13×3 the 3 × 3 identity matrix, Γ thus

converting screw axis- into radial coordinates [53]. Henceforth κi is referred to as the ith

eigenforce. In screw theory, the reciprocal product of two screws is defined as the power Π

developed by a wrench w acting on a rigid body that moves with a twist t, namely,

Π = tT Γw (4.5)

Screws constitute vector spaces that do not admit an inner product [110]. A twist t is

said to be reciprocal to a wrench w when their reciprocal product is zero, i.e., in eq. (4.5),

Π = 0.

With reference to [50], based on K, the procedure to obtain the eigenscrews is outlined

below:

Let λi and λi denote the ith generalized unit eigenvector and its corresponding eigen-

value, as returned from an eigenvalue solver when applied to K:

Kλi = λiΓλi (4.6)

whence,

κiΓki = λiΓλi (4.7)
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Since Γ is nonsingular, it is apparent that

κiki = λiλi (4.8)

According to eq. (4.1), it is convenient to expand eq. (4.8) into block-form to calculate

all the factors on the left-hand side, as:

κi





ei

pi × ei + piei



 = λi





ηi

ζi



 (4.9)

where ηi and ζi are three-dimensional blocks of λi for simplicity.

Expressions for ei and κi are readily obtained upon taking the norm of the upper blocks

of the foregoing equation, and recalling that ‖ ei ‖= 1, whence,

ei =
ηi

‖ ηi ‖ , κi = λi ‖ ηi ‖ (4.10)

The ith eigenpitch pi is obtained upon equating the lower blocks of eq. (4.9), and dot-

multiplying the equation thus resulting by ei, which yields,

pi =
λi

κi
eT

i ζi (4.11)

Similarly, pi is expressed in terms of the lower blocks in eq. (4.9). For convenience, the

equation is rewritten in a simple form, as:

Eipi = −λi

κi

ζi + piei (4.12)

where1 Ei is the cross-product matrix (CPM) of the vector ei, defined as

Ei = CPM(ei) =
∂(ei × v)

∂v
∀ v ∈ IR3 (4.13)

An additional condition is imposed upon pi, by defining it to be the position vector of the

1Ei is defined as the 3 × 3 skew-symmetric matrix with the property Eipi ≡ ei × pi
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point of the ith screw axis Li of minimum magnitude:

eT
i pi = 0 (4.14)

Then, by adjoining eq. (4.14) to eq. (4.12), an augmented system of four linear equations

in the three unknown components of pi is obtained:

Aipi = bi (4.15)

in which,

Ai ≡




Ei

eT
i



 , bi ≡







−λi

κi

ζi + piei

0






(4.16)

It is noteworthy that eq. (4.15) is an “overdetermined” linear system, but overdeterminacy

is only formal, as the four equations are consistent, hence the quotation marks. Finally,

based on eq. (4.15), the unique solution for vector pi of minimum Euclidean norm yields,

pi =
ηi × ζi

‖ ηi ‖2
(4.17)

thereby computing all the eigenscrew parameters in the generalized eigenvalue problem

associated with the stiffness matrix.

The physical significance of screws on accelerometer stiffness is worth investigating. In

the case of uniaxial accelerometers, for example, suppose that the accelerometer is mounted

on a rigid body that undergoes translational and rotational motions simultaneously. Ac-

cording to screw theory, we can assume that the accelerometer is subjected to a small-

amplitude displacement—one involving a small angle of rotation—determined by a screw

s. Then, the screw will induce a wrench. For numerous accelerometer applications, the

screw axis is not the same as the wrench axis. The main objective of accelerometer design

is to have the screw axis coincide with the wrench axis, which is the sensitive direction.

By doing so, an applied force along the sensitive axis will cause a pure translation accord-

ingly. This criterion is called the force-compliant feature-based condition for compliant

mechanisms [111].
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4.4 Lumped-parameter Model

For compliant mechanisms, the lumped-parameter method is interesting for the kine-

matic design. The key feature of the lumped-parameter approach is its relying on tra-

ditional mechanism analysis to model the compliant mechanisms as equivalent rigid link

mechanisms. The stiffness of each part of the compliant mechanism is analyzed in its local

frame and transformed into the global frame. By doing so, the lumped-parameter method

is extended to include the stiffness analysis of spatial compliant mechanisms.

4.4.1 Lagrangian Formulation

O

x

y

z

1st limb

2nd limb

3rd limb

proof-mass

rd1

rd2

rd3

rd4

rd5

h1

h2

h3

h4

Fig. 4.3 Three limbs of the SBA

As illustrated in Fig. 4.3, each limb of the SBA is apparently composed of two categories

of mechanisms: conventional and compliant. The former include rigid links, rd1, rd2, rd3,

rd4, and rd5, shown in the figure, to connect the proof-mass with the compliant hinges.

Due to their rigidity, the links are assumed to have zero compliance. The latter are the

Lamé-notched flexure hinges, h1, h2, h3, h4 in the same figure.
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Following the Lagrangian formulation, the stiffness of the SBA can be obtained based

on the kinetic and potential energies, which are investigated below:

System Kinetic Energy

The generalized small-amplitude displacement (SAD) screw u of the system, in frame

Oxyz, is

u =
[

θx θy θz ux uy uz

]T
(4.18)

where θx, θy, θz are the “small” angular displacements, while ux, uy, uz are their transla-

tional counterparts.

Therefore, the twist t is obtained as the time derivative of u, namely,

t ≡ u̇ (4.19)

Since the centre of mass of the system coincides with the centre of mass of the proof-

mass, letting the mass matrix of the proof-mass be Mpm, the kinetic energy of the proof-

mass is

Tpm = (1/2)tT Mpmt (4.20)

with

Mpm =





Ipm O

O mpm1



 (4.21)

where Ipm is the inertia matrix of the proof-mass about the centre of mass, mpm being its

mass and O the 3 × 3 zero matrix. Within the framework of Reiner [112], with the SBA

dimensions illustrated in Fig. 3.10, the inertia matrix of the proof-mass is

Ipm =
mpml2

24











1 0 0

0 1 0

0 0 2











(4.22)

where l is the edge length of the triangular proof-mass.

The system kinetic energy also includes the kinetic energy of other rigid parts. As

illustrated in Fig. 4.3, three limbs having exactly the same structure are combined to form

the SBA, with their angular separation of 120◦ in the plane of the proof-mass. Taking the
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first limb, for example, and assuming that the mass matrix for the ith rigid part rdi is Mrdi
,

the twist being trdi
, then, the corresponding kinetic energy is

Trdi
=

1

2
tT

rdi
Mrdi

trdi
(4.23)

with

Mrdi
=





Ird O

O mrd1



 (4.24)

in which mrd is the mass of the ith rigid part, and Ird is its inertia matrix about its centre

of mass. Twist of all rigid links are expressed in terms of that of the proof-mass centre of

mass, based upon the geometric relationship therein contained.

O

C

θ1

θ2

θ3

θ4

θ5

θ6

rd1 rd2

rd3

rd4
rd5

Fig. 4.4 Geometric relationship of rigid links with proof-mass centre of mass:
O is the original proof-mass centre of mass, C being that in motion

As shown in Fig. 4.4, the relationship of the SAD screw of rigid links rd1, rd2, rd3, rd4, rd5

with u along x and y-directions are expressed as

ux1
= ux2

= e cos α − e cos θ1 uy1
= uy2

= e sin θ1 +
e

2
sin θ2 − 3e

2
sin α

ux3
=

e

2
cos α − e cos θ1 − e

2
cos θ2 uy3

= e sin θ1 − e sin α

ux4
= ux5

=
e

2
cos α − e

2
cos θ1 uy4

= uy5
=

e

2
sin θ1 − e

2
sin α

(4.25)
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with ux = −e (sin θ2 + cos θ1) , uy = 2e sin α − e sin θ2 − e sin θ1.

It is noteworthy that relationship of screw components along the out-of-plane and ro-

tational directions of rigid links with those of the proof-mass is not straightforward, thus

their analysis results are not accurate.

We can now obtain the kinetic energy of the first limb as the sum of the kinetic energies

of the composed rigid parts Trdi
, namely,

T1 =
5
∑

i=1

Trdi
(4.26)

Likewise, following a similar procedure, the kinetic energy of the second and third limbs

can be obtained, which are denoted as T2 and T3, respectively. Therefore, the total kinetic

energy of the SBA is obtained as:

T = Tpm +
3
∑

i=1

T1 (4.27)

System Potential Energy

The system potential energy involves the elastic deformation of the flexure hinges,

caused by the displacement of the proof-mass. It is noteworthy that the rigid parts have no

influence on the system potential energy. In order to obtain the system potential energy,

the assumptions below are introduced:

• All the calculations are conducted in the global coordinate frame, whose origin is

located at the proof-mass centre of mass.

• Both the translational and rotational motions of the flexure hinges are small.

• The mass and moment of inertia of the flexure hinges are ignored.

• All flexure hinges are Lamé-notched hinges and have the same compliance.

• Each pair of parallel hinges h1, h2, h3, h4, as illustrated in Fig. 4.3, has the same

motion amplitudes under a SAD undergone by the proof-mass centre of mass2.

2In Fig. 4.3, a colour code for stress intensity is used, which is visible on the pdf file of the thesis.



4 Stiffness Analysis of the SBA 65

Based upon the above assumptions, the SAD uhi
for hinge hi is defined, as

uhi
=
[

θhxi
θhyi

θhzi
uhxi

uhyi
uhzi

]T
(4.28)

O

C

uxa

uxb

uxc

uxd

uxe

uxf

uxh1

uxh2

uxh3

Fig. 4.5 Deformation of flexure hinges: O is the original proof-mass centre
of mass, C being that in motion

Since a SAD is given to the proof-mass centre of mass, it is possible to derive the

deformation for each flexure hinge uhi with respect to u. Through this way, the deformation

of each flexure hinge is assumed as the subtraction of the displacements of the two rigid

links end planes connecting to it.

As illustrated in Fig. 4.5, SAD screw components along x-direction of flexure hinges

h1, h2, h3 are obtained as

uxh1
= uxa

− uxb
, uxh2

= uxc
− uxd

, uxh3
= uxe

− uxf
(4.29)

where uxi
, i = a, b, c, d, e, f are SAD screw components along x-direction of the rigid-link

end-plane connecting the flexure hinges. By the same token, deformation of the flexure

hinges along y-direction is calculated. Deformations along the out-of-plane direction and

rotational directions of flexure hinges cannot be accurately obtained.
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Hence, the procedure for obtaining the potential energy of the ith Lamé-notched hinge

becomes straightforward; it is expressed as

Vhi
=

1

2
uT

hi
Khuhi

(4.30)

where Kh is the 6 × 6 stiffness matrix of the Lamé-notched hinge, which was studied in

Section 3.3.

The potential energy for the first limb is expressed as

V1 =
4
∑

i=1

Vhi
(4.31)

Hence, the system potential energy is the sum of the potential energies of all the limbs,

namely,

V =
3
∑

i=1

Vi (4.32)

Lagrange’s Equations

Within D’Souza et al.’s framework [113], the dynamics equations of the system can be

obtained following Lagrange’s formulation. With the Lagrangian defined as L = T − V ,

the governing equations are
d

dt

(

∂L

∂u̇

)

− ∂L

∂u
= 0 (4.33)

Equation (4.33) can be cast in compact form as

Msysü + Ksysu = 0 (4.34)

in which Msys and Ksys are the resultant system mass and stiffness matrices, respectively.

As a result, the system stiffness matrix is:

Ksys =





Krr Krt

KT
rt Ktt



 (4.35)
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with the various blocks displayed below:

Krr =











0.1131 0 0

0 0.2354 0

0 0 0.2878











× 10−4 Nm, Krt =











0 0 0

0 0 19.378

−0.7054 0 0











× 10−4 N,

Ktt =











4.9968 0 0

0 5.5942 0

0 0 13.4021











× 103 N/m

(4.36)

in which Krr is the rotational stiffness matrix, Ktt denoting the translational stiffness

matrix, Krt being the coupling stiffness matrix.

The mass matrix is

Msys =





I O3×3

O3×3 m1



 (4.37)

where m = 0.3095 × 10−6 kg is the mass of the proof-mass, I being its inertia matrix about

the centre of mass, which is

I =











0.4755 0 0

0 0.4755 0

0 0 0.5833











× 10−12 kgm2 (4.38)

4.4.2 Structure Description

As shown in Fig. 4.3, each limb of the SBA is composed of both serial and parallel

chains of flexure hinges and rigid links. As can be seen from Fig. 4.6(a), a serial chain

consists of several rigid links and flexure joints. The small spheres indicate flexure hinges,

the parallelepipeds indicating rigid links. A parallel chain can be described as a rigid

proof-mass connected by a set of serial chains, as shown in Fig. 4.6(b). Before analyzing

the mechanical characteristics of both chains, several assumptions are listed below:

• The limb can be composed of either a serial or a parallel chain, or even of both.

• Both rigid links and flexure joints are considered flexure members.

• The compliance matrix of rigid links is assumed to vanish.
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proof-mass

flexure hinges rigid links

fixed end

(a)

proof-mass

flexure hinges

rigid links

fixed end

limb

(b)

Fig. 4.6 Flexure hinge chains: (a) serial; (b) parallel

Compliant Serial Chain

For the ith flexure member, let si be a six-dimensional SAD screw expressed in the

reference frame Oxyz attached at the chain end-plane, and sloc
i its local counterpart at its

local frame Oixiyizi. Therefore,

si = Jis
loc
i (4.39)

where Hi, the matrix transforming sloc
i into si, is now introduced [114, 115]:

Hi =





Ri O

−RiDi Ri



 (4.40)

in which Ri denotes the rotation matrix from local frame Oixiyizi to the reference frame

Oxyz, while O is the 3 × 3 zero matrix, and Di is the cross-product matrix of the vector

di pointing from Oi to O, namely,

Di = CPM(di) =
∂(di × v)

∂v
∀ v ∈ IR3 (4.41)

Likewise, the external wrench w at the chain end-plane expressed in frame Oxyz is

balanced by the reaction wrench wloc
i at Oixiyizi, namely,

wloc
i = HT

i w (4.42)
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In a serial chain, all n hinges are assumed flexure members, each behaving as a spring

with stiffness matrix Kloc
i in frame Oixiyizi.

According to the deformation relationship of the serial chain, the SAD s at the end-plane

is the summation of the individual SADs of all the flexure members, namely,

s =
n
∑

i=1

si =
n
∑

i=1

His
loc
i (4.43)

Based on eqs. (4.39–4.43), the desired transformation is obtained as

Csw =
n
∑

i=1

HiC
loc
i wloc

i =
n
∑

i=1

HiC
loc
i HT

i w (4.44)

Consequently, the complete compliance of the serial chain becomes [35]

Cs =
n
∑

i=1

HiC
loc
i HT

i (4.45)

Compliant Parallel Chain

A typical example of parallel chain is illustrated in Fig. 4.6(b). It is noteworthy that,

due to the rigidity of the proof-mass, the end-plane of each limb and the proof-mass have

the same translational and rotational displacements.

For parallel chains, the end-plane SAD of all n limbs is the same, namely,

s = H1s1 = H2s2 = · · · = Hnsn (4.46)

where si is the SAD of the ith limb in its local frame Oixiyizi, while s denotes the SAD of

one landmark point O on the proof-mass, and Hi is the transformation matrix from frame

Oixiyizi to frame Oxyz, which takes the form displayed in eq. (4.40).

Meanwhile, with reference to eq. (4.42), a wrench w applied to point O on the proof-

mass is the sum of each wrench wi acting on the ith limb, i.e.,

w =
n
∑

i=1

(HT
i )−1wi (4.47)

Further, with Kp and Ki denoting the stiffness matrices of the parallel chain structure
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and the ith limb, respectively, eq. (4.47) can be rewritten as

w = Kps =
n
∑

i=1

H−T
i wi =

n
∑

i=1

H−T
i Kisi =

n
∑

i=1

H−T
i KiH

−1
i s (4.48)

Consequently, the stiffness matrix of the parallel chain is obtained as [34]:

Kp =
n
∑

i=1

H−T
i KiH

−1
i (4.49)

SBA Limb Stiffness Analysis

x

y

O

limb

proof-mass

fixed ends

part III

part II

part I

chain 1

chain 2

A1

A2

A3

A4

B1

B2

B3

B4

x3

x4

y4

y1

x1

x2

y2

xC

yC

C

xD

yD

D

A1

A2

A4

C

D

Fig. 4.7 Serial and parallel chains of the SBA limb

Figure 4.7 shows one SBA limb composed of both serial and parallel chains. The limb

can be regarded as a serial combination of two Π joints and one intermediate rigid link,

labeled parts I, III, and II, respectively. The parts are combined as a serial chain, whose

bottom and top parts are connected to the fixed-end and to the proof-mass, respectively.

For each part, the stiffness and compliance matrices, Kloc
i , Cloc

i , where i = I, II, III, are

calculated in the corresponding local frames; a transformation matrix Hi is then introduced
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to transform them into the global frame Oxyz, which is attached at the centre of mass of

the proof-mass.

1. Part I Compliance Matrix

Part I is a Π joint and can be regarded as a parallel chain, as “chain 1” and “chain 2”

illustrated in Fig. 4.7. Each chain is composed of two Lamé-notched hinges (A1-A2,

A3-A4, B1-B2, B3-B4) and one rigid link (A2-A3, B2-B3). In the reference frame A1,

attached at point A1, the total compliance matrix of chain 1 is obtained as

Cch1 = diag (CA1A2
, CA3A4

) (4.50)

in which CA1A2
and CA3A4

denote the local compliance matrices of the flexure hinges

in frames A2 and A4, respectively.

Further, the 6×12 transformation matrix that transforms the local compliance matrix

of each flexure member to the reference frame A1 is written as

Hch1 = [HA1A2
, HA3A4

] (4.51)

where

HA1A2
=









Rz

(

−π

2

)

O

−Rz

(

−π

2

)

DA1A2
Rz

(

−π

2

)









, HA3A4
=









Rz

(

−π

2

)

O

−Rz

(

−π

2

)

DA3A4
Rz

(

−π

2

)









(4.52)

in which DA1A2
≡ CPM (dA2A1

), and DA3A4
≡ CPM (dA4A1

), with dA2A1
and dA4A1

denoting vectors pointing from point A2 to A1 and A4 to A1, respectively. With

reference to eq. (4.40), Rz (−π/2) here denotes that, frames A2 and A4 can be rotated

into frame A1, by an angle of −π/2 about z-axis.

Therefore, with reference to eq. (4.45), the compliance matrix of chain 1 in frame A1

is

[Cch1]A1
= Hch1Cch1HT

ch1 (4.53)

The stiffness matrix of the same chain is obtained as the inverse of its compliance

matrix:

[Kch1]A1
= [Cch1]−1

A1
(4.54)
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By the same token, the stiffness matrix [Kch2]B1
of chain 2 in frame B1, the cor-

responding local frame attached at point B1, can be obtained following the same

procedure.

Moreover, as illustrated in Fig. 4.7, the midpoint C between A1 and B1, is chosen as

the origin of the reference frame C to express the total stiffness matrix KI of part I.

Hence, according to eq. (4.49), KI, expressed in frame C, is obtained as

KI = H′
IKIHI (4.55)

where H′
I =

[

H−T
A1C H−T

B1C

]

, KI = diag
(

[Kch1]A1
[Kch2]B1

)

and HI =
[

H−1
A1C H−1

B1C

]

,

with

HA1C =





1 O

−CPM (dA1C) 1



 , HB1C =





1 O

−CPM (dB1C) 1



 (4.56)

where dA1C denote the vector pointing from point A1 to C, dB1C being the vector

pointing from point A1 to C.

2. Part II Compliance Matrix

It is noteworthy that the compliance matrix of the rigid links vanishes, i.e.,

CII = O6×6 (4.57)

3. Part III Compliance Matrix

As shown in Fig. 4.7, with reference to frame D, a similar procedure is applied to

obtain the compliance and stiffness matrices CIII and KIII, respectively, of Part III.

4. Limb Stiffness Matrix

Based on the compliance matrices of each part in its local frame [CI]C, [CIII]D, the

complete compliance matrix of the first limb in the global coordinate frame Oxyz is

obtained following eq. (4.45):

C1 = H1C
loc
1 HT

1 (4.58)
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in which H1 = [HCO HDO], while Cloc
1 = diag ([CI]C, [CIII]D), with

HCO =





1 O

−DCO 1



 , HDO =





1 O

−DDO 1



 (4.59)

with DCO ≡ CPM (dCO), and DDO ≡ CPM (dDO), while dCO and dDO denote vectors

pointing from point C to O and D to O, respectively.

Consequently, the stiffness of the limb is obtained as:

K1 = C−1
1 (4.60)

Stiffness Matrix of the SBA

As shown in Fig. 4.3, the three limbs are combined in a parallel chain, their reference

point O coinciding with the proof-mass centre of mass. The stiffness matrices of the other

two limbs in the global frame Oxyz are obtained following the same procedure as per the

first limb. According to eq. (4.49), the 6 × 6 global stiffness matrix of the SBA is obtained

as

Ksys =
3
∑

i=1

Ki (4.61)

i.e.,

Ksys =





Krr Krt

KT
rt Ktt



 (4.62)

with the various blocks displayed below:

Krr =











0.1577 0 0

0 0.1577 0

0 0 0.2961











× 10−4 Nm, Krt =











0 0 0

0 0 1.000

1.000 0 0











× 10−6 N,

Ktt =











5.6147 0 0

0 5.6147 0

0 0 30.824











× 103 N/m

(4.63)

From eq. (4.62), it is observed that the mechanism behaves isotropically in the x- and

y-directions. Moreover, both the translational and rotational stiffnesses in the z-direction
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are much higher than their counterparts in the x- and y-directions. That is, the structure

has a very high out-of-plane stiffness, the in-plane motion being much easier to excite.

Mass Matrix of the SBA

The 6 × 6 mass matrix for the SBA is expressed as

Msys =





m13×3 O

O3×3 I3×3



 (4.64)

where m and I3×3 are the mass of the proof-mass and its moment-of-inertia matrix.

With reference to Fig. 4.7, the moments of inertia II and IIII of Parts I and III in limb I

are calculated with respect to their own center-of-mass. Two rotation matrices RI and

RIII are defined, in order to transform the moment-of-inertia matrix of each part into the

coordinate frame Oxyz as

IR
I = RIIIR

T
I , IR

III = RIIIIIIIR
T
III (4.65)

with IR
I , IR

III denoting the moment-of-inertia matrices of Parts I and III in the reference

frame Oxyz. As illustrated in Fig. 4.7, since the axes of the local O3x3y3z3 frame are parallel

to those of Oxyz, the moment-of-inertia matrix of Part II, III, need not be transformed.

Denoting the vector directed from O to the centre of mass of Parts I, II and III by l1, l2

and l3, the moment-of-inertia matrices of each part with respect to O is expressed as

IO
I = IR

I + Iad
I , IO

II = III + Iad
II , IO

III = IR
III + Iad

III (4.66)

According to Steiner’s theorem3, with Iad
I , Iad

II and Iad
III being given by,

Iad
I =











mIl
2
Ix 0 0

0 mIl
2
Iy 0

0 0 mIl
2
Iz











, Iad
II =











mIIl
2
IIx 0 0

0 mIIl
2
IIy 0

0 0 mIIl
2
IIz











,

Iad
III =











mIIIl
2
IIIx 0 0

0 mIIIl
2
IIIy 0

0 0 mIIIl
2
IIIz











(4.67)

3Steiner’s theorem is best known as “the parallel-axis theorem”.
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in which mI, mII, and mIII are masses of the three parts. Following the same procedure, the

moment-of-inertia matrices of Parts I, II and III in the two other limbs are also calculated,

with the proof-mass centre of mass O as the reference point. The relatively small mass of

the flexure hinges is neglected here.

The inertia matrix of the proof-mass with respect to its centre of mass O is obtained

as:

Ipm =
mpm

24











a2 + 2w2 0 0

0 a2 + 2w2 0

0 0 2a2











(4.68)

where mpm is the mass of the proof-mass. Therefore, the total inertia matrix of the system

is:

I = Ipm + II + III + IIII (4.69)

where II = IO
I + IO

II + IO
III, III and IIII being obtained from eq. (4.66). Assuming that the

system mass is m (0.3095 × 10−6 kg), then the inertia matrix I is calculated as:

I =











0.4974 0 0

0 0.4974 0

0 0 0.6802











× 10−12 kgm2 (4.70)

4.4.3 FE Validation

Both the energy and structural approaches are validated via FEA. The FE validation

is conducted on the FE model illustrated in Fig. 3.12. 3D 8-node structure brick element

SOLID 73 is used to build the model, based on the assumption that the rotational dof

of the system are also significant in modal analysis. Taking into account the whole SBA

model, the dof of the FEA model may be tens of thousands, thereby leading to extremely

time-consuming calculation. The 6×6 stiffness matrix is computed in ANSYS as described

below:

1. Apply, successively, a unit force at the proof-mass centre of mass and a unit moment

in the corresponding translational and rotational directions. A vector

w = [Mx My Mz Fx Fy Fz]T (4.71)
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is constructed, which stores the loading wrenches. Six loading cases wi are defined,

with wi having all but its ith entry equal to 0.

2. The FEA for each loading case wi is conducted, then the position and orientation of

the proof-mass centroid are obtained; the respective “small” translational and angular

displacements are stored in the six-dimensional vector ∆si, which is the ith column

of the compliance matrix C.

3. For a general load w, ∆s is obtained as

∆s = Cw (4.72)

4. The 6 × 6 stiffness matrix is expressed simply as the inverse of C.

Consequently, the stiffness matrix obtained through FEA is

Kfea =





Krr Krt

KT
rt Ktt



 (4.73)

with

Krr =











0.1203 0.0061 0

0.0061 0.1208 0

0 0 0.2771











× 10−5 Nm, Krt =











0 0 0.0050

0 0 0.4064

−0.4430 0.0013 0











× 10−3 N

Ktt =











5.5819 0 0

0 5.5807 0

0 0 25.0652











× 103 N/m

(4.74)

Regarding both the Lagrangian formulation and the structural analysis, a good agree-

ment is observed between the stiffness matrix derived and its FEA counterpart for the

translational dof, with the MAPE, as defined in eq. (3.53), of 19.085% and 8.057%, re-

spectively. For the rotational stiffness, the MAPE is higher for both cases, of 34.9% and

22.83%, respectively.

The reason for the difference between the Lagrangian formulation and the FEA analysis

may come from a feature of the former: the potential energy only includes the strain energy



4 Stiffness Analysis of the SBA 77

of the flexure hinges, while ANSYS calculates the strain energy of all parts, based upon

the large-dof FE model. Another factor to explain the difference lies in that the system

potential energy is derived indirectly from the stiffness matrix introduced in Section 3.3,

which includes inherent, unavoidable errors. The calculation of the kinetic energy also

suffers from computational inaccuracy. For example, the assumption of a direct relationship

of the angular velocity of each rigid part with that of the proof-mass is not accurate,

because of the deformation of the flexure hinges connecting them. Within the FE model,

a reasonably high mesh density is able to calculate the deformation of the flexure hinges,

the effects of their deformation on the angular velocity of each rigid part thus being taken

into account.

The difference between the structural and the FE analyses comes from the assumption

in the former. In the structural analysis, no compliance is assumed for the rigid links. As

illustrated in the mode shapes of the SBA in Fig. 3.13, besides the flexure hinges, the rigid

links can also deform, i.e., the putative rigid links observe a non-zero compliance in the FE

model. The FEM is thus capable of a more accurate stiffness analysis.
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Fig. 4.8 Proof-mass centre of mass displacement found through both the
structural and the FE analyses

Figure. 4.8 illustrates the displacement of the proof-mass centre of mass under applied

loads Fx and Fy, respectively, with the slopes as the stiffness in the corresponding direction.

A good agreement between the two approaches is observed, and a negligible nonlinearity

appears for the stiffness obtained with ANSYS.
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4.4.4 Modal Validation

Based on the stiffness and mass matrices derived by the structural analysis approach,

the modal analysis is conducted. Following Angeles [116], the frequency matrix Ω is defined

as the positive-definite square root of Ω2 ≡ N−1KN−1, where N is the positive-definite

square root of Msys, while Ksys is the system stiffness matrix.

Let {ωi}6
1 be the six eigenvalues of Ω, the six natural frequencies of the system being

denoted {fi}6
1, with fi = ωi/2π in Hz, which is recorded below in array f as:

f =
[

5616 5616 9406 20632.6 20632.6 35752.6
]T

Hz (4.75)

The corresponding eigenmodes are stored in the matrix below:

V =





























1.0000 0 0 0 0 0

0 1.0000 0 0 0 0.0942

0 0 1.0000 −0.0075 0 0

0 0 0 1.0000 0 0

0 0 0 0 1.0000 0

0 0 0 0 0 1.0000





























(4.76)

Based on the modal-analysis results, we can conclude that the SBA has the same accel-

eration sensitivity in the x- and y-directions, while along the z-axis the sensitivity is about

one-half that of the former. Moreover, pure translation occurs in the Oxy plane, which

meets well the SBA design objectives.

With ANSYS, the natural frequencies of the system are directly obtained as:

ωfea =
[

5858.3 5859.1 12890 29006 29036 33051
]T

Hz (4.77)

With reference to eqs. (4.75) and (4.77), it is concluded that the first two natural

frequencies obtained by means of the two approaches are in good agreement. It is noticeable

that the difference in the third frequency is somewhat higher (26%) than those of other

frequencies (around 9%).

The results are also validated through the first six mode shapes shown in Fig. 3.13. Al-

most pure translational motions along the x-, y- and z-directions are detected in Figs. 3.13(a)–

(c), with slight parasitic motions observed. This behavior tallies with the modal analysis
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results displayed in eqs. (4.75) and (4.76). Likewise, the rotations shown in Figs. 3.13(d)–

3.13(f) also match the modal analysis results in eq. (4.76).

4.5 Decoupling of the Stiffness Matrix

4.5.1 Decoupling in Compliant Mechanisms
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Fig. 4.9 Some stiffness components vs. design parameters: (a) KuxFx; (b)
KθxMx

; (c) KuyMz

The 6 × 6 compliance matrix Ch of the Lamé-notched hinge is given in eq. (3.3), the

stiffness matrix Kh of the Lamé-notched hinge being obtained as the inverse of Ch, namely,

Kh = C−1
h =





Kh,tt Kh,tr

KT
h,tr Kh,rr



 (4.78)

with the usual notation for the three different blocks.

Figure 4.9 illustrates the translational stiffness components KuxFx
, rotational compo-

nent KθxMx
and coupling term KuyMz

of the Cartesian stiffness matrix of the Lamé-notched
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hinge. As shown in the figure, all translational, rotational and coupling components in the

Cartesian stiffness matrix behave nonlinearly with respect to the two design parameters

and exhibit sensitivity to only one linear combination of the two. Hence, any slight change

of a design parameter will have an effect on the stiffness. For this reason, stiffness analysis

plays an important role in the whole process of accelerometer design. However, the compli-

ant nature of flexure hinges accompanies a much higher probability of coupling between the

translational and the rotational stiffness blocks, in comparison with conventional mecha-

nisms. In accelerometer design, numerous flexure hinges are employed to provide compliant

motions; hence, the coupling terms may not be negligible. Therefore, under such situations,

the decoupling of the Cartesian stiffness matrix becomes significant in providing a precise

stiffness analysis of the whole system.

4.5.2 Decoupling Process

The analysis below is reported in [50]. It is reproduced here for completeness.

Decoupling of the Cartesian stiffness matrix is possible if and only if the 3 × 3 coupling

block Krt is singular, of rank 2 or 1 [50]. Moreover, decoupling is achieved by means of a

similarity transformation that involves only a shift of the origin.

Let the stiffness matrix under study be denoted by [K]A when represented in a coordi-

nate frame labeled A. With this matrix representation known, the representation [K]B of

the same matrix is required in a second frame B, under the assumption that the orientation

of the axes of the two frames are different, and so are their origins.

The matrix S that transforms the components of a unit screw ŝ from B-coordinates into

A-coordinates is given by [117]

S =





Q O3×3

DQ Q



 (4.79)

where Q and d denote the rotation matrix and the translation that carries the origin of

frame B into that of A, while D ≡ CPM(d).

Matrices [K]A and [K]B are displayed below:

[K]A =





Krr Krt

KT
rt Ktt



 [K]B =





K′
rr K′

rt

K′T
rt K′

tt



 (4.80)
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The similarity transformation that relates [K]A with [K]B is known to be [118]:

[K]B = ΓSΓ−1[K]AS−1 (4.81)

where, in light of eq. (4.4),

ΓSΓ−1 = ΓSΓ =





Q DQ

O Q



 (4.82)

Substituting eq. (4.80) into eq. (4.81) yields

K′
rr = Q(Krr − KrtD)QT + DQ(KT

rt − KttD)QT

K′
rt = (QKrt + DQKtt)Q

T

K′
tt = QKttQ

T

(4.83)

Under the decoupling condition K′
rt = O, but no condition is imposed on Q, which can

thus be freely chosen, the simplest choice being the 3 × 3 identity matrix 1. If Q = 1,

eqs. (4.83) yield,

K′
rr = Krr − KrtD + D(KT

rt − KttD) (4.84a)

DKtt = −Krt (4.84b)

K′
tt = Ktt (4.84c)

whence D can be determined from eq. (4.84b). However, D being a 3 × 3 skew-symmetric

matrix, the product DKtt is at most of rank 2, according to Sylvester’s Theorem [119].

Therefore, the right-hand side of eq. (4.84b) is bound to be of rank 2 or less. If Krt is

of full rank, then decoupling is not possible. Under the assumption that Krt is singular,

then D is found upon taking the axial vector4 of both sides of eq. (4.84b), which yields [47]

Md = krt, M =
1

2
[1tr (Ktt) − Ktt] (4.85)

where krt is the axial vector of Krt, M has units of force, and tr(·) is the trace of its matrix

4Within the concept of field theory [120], the axial vector of a 3×3 matrix A is defined as a ≡ vect(A) ≡
(1/2) [a32 − a23 a13 − a31 a21 − a12]

T
, a vector invariant of A.
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argument.

If M is invertible, then d = M−1krt; otherwise, one of two cases occurs: a) tr(Ktt) = 0

and b) Ktt is a rank-one matrix. In either case, M fails to be invertible, but d can still be

calculated, as explained in [50].

4.5.3 Simulation Example of SBA

The decoupling of the stiffness matrix is implemented on the SBA design. Two ap-

proaches based on screw theory are employed to find the eigenscrews of the Cartesian

stiffness matrix. First, following the decoupling process outlined in Sec. 4.5.2, the stiffness

matrix is decoupled and its eigenvalue analysis is conducted upon the decoupled stiffness

submatrices. Then, the generalized eigenscrew problem described in Sec. 4.3 is solved for

the example, for comparison purposes.

The SBA structure is designed to allow for a two-degree-of-freedom pure translation

of the triangular proof-mass in the plane of the figure. At the same time, a complex

deformation is detected on the flexure hinges connecting the proof-mass to the frame.

However, spurious motions of the proof-mass in the other four directions also occur due to

the flexibility of the hinges. In addition, the stiffnesses associated with these motions are

much higher than those of the translational motions. The foregoing features will become

apparent with the eigenvalue and eigenscrew analyses of the stiffness matrix from eq. (4.74).

Decoupling of the Stiffness Matrix

For the SBA model, it is not difficult to prove that Krt is of rank 2, decoupling thus

being possible, with matrix M of eq. (4.85) obtained as

MSBA =











15.32 0 0

0 15.32 0

0 0 5.58











N/m (4.86)



4 Stiffness Analysis of the SBA 83

which is diagonal, with the first two diagonal entries coinciding to the first four digits. It

is not difficult to prove that MSBA is invertible, whence d and D are obtained as

dSBA =











0.13

0.01

0











× 10−4, DSBA =











0 0 0.01

0 0 −0.13

−0.01 0.13 0











× 10−4 (4.87)

where both dSBA and DSBA have units of mm, their entries being five orders of magnitude

below the dimensions of the device.

Further, K′
rr and K′

tt are calculated in turn as:

K′
rr =











1.20 0.06 0

0.06 1.21 0

0 0 2.77











× 10−2 Nmm, K′
tt =











5.58 0 0

0 5.58 0

0 0 25.06











N/mm (4.88)

where K′
rr and K′

tt have units of Nmm and N/mm, respectively. It is noteworthy that both

K′
rr and K′

tt show no difference with their counterpart matrices of eq. (4.74), up to the

digits displayed.

The corresponding eigenvalues and eigenvectors are arrayed as:

frr =











0.01

0.01

0.03











Nmm, Λrr =











0.72 0.69 0

0.69 0.72 0

0 0 1.00











ftt =











0.56

0.56

2.51











× 103 N/mm, Λtt =











0.42 0.91 0

0.91 0.42 0

0 0 1.00











(4.89)

It is thus found that the SBA exhibits a quasi-isotropic stiffness in the xy-plane. As the

out-of-plane translational stiffness is about five times higher than its in-plane counterpart,

there is still room for improvement, by means of a dimensional fine-tuning of the current

model. Furthermore, tilt motions occur along axes L of Fig. 4.10, which are more likely to

happen than the in-plane rotation.
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Fig. 4.10 Eigenscrew illustration for SBA

Solution of the Generalized Eigenvalue Problem

In order to solve the generalized eigenvalue problem, the procedure of Sec. 4.3 is applied

to the stiffness matrix K of eq. (4.73). The eigenvalue and the eigenvector arrays λ and

Λ, respectively, are displayed below:

λ =





























0.83

0.27

0.25

0.25

0.27

0.83





























, Λ =





























0.61 0.69 0.72 0.72 0.69 0.61

0.12 0.72 0.69 0.69 0.72 0.12

0.99 0.19 0.55 0.55 0.19 0.99

0.12 0.33 0.32 0.32 0.33 0.12

0.18 0.34 0.31 0.31 0.34 0.18

0.33 0.14 0.17 0.12 0.14 0.33





























(4.90)

The eigenforces were obtained as:

κ1 = −κ6 = 0.83 N, κ2 = −κ5 = 0.26 N, κ3 = −κ4 = 0.25 N (4.91)

the corresponding eigenpitches being:

p1 = −p6 = 0.03 mm/rad, p2 = −p5 = 0.05 mm/rad, p3 = −p4 = 0.04 mm/rad (4.92)
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The six eigenscrews are given below:

S =





























0 0.69 0.72 0.72 0.69 0

0 0.72 0.69 0.69 0.72 0

0.99 0 0 0 0 0.99

0 0.03 0.03 0.03 0.03 0

0 0.03 0.03 0.03 0.03 0

0.03 0 0 0 0 0.03





























(4.93)

whose elements are dimensionless. Notice that the three eigenscrew axes of Fig. 4.10 bear

dashes of opposite inclinations, indicating pitches of opposite hands.

All screw axes are found to pass through the centre of mass O of the proof-mass. As

per the numerical results in eq. (4.93), four screw axes—the second, third, fourth and fifth

columns in S—lie in the x-y plane, the remaining two on the z-axis, which is in good

agreement with the symmetric layout of the structure. However, none of the eigenpitches

displayed in eq. (4.92) vanishes, and none is unbounded, thereby ruling out both pure

rotations and pure translations. Therefore, the finite and nonzero eigenpitches denote

spurious scew motions, which tallies with the eigenvectors listed in eq. (4.89). The six

eigenscrews, namely, the columns of S of eq. (4.93), are displayed in the 3D layout of the

SBA in Fig. 4.10. Likewise, s1, s2, s3 point in the positive directions of the corresponding

axes, while s4, s5, s6 point in the negative directions.

It is noteworthy that slight errors are detected from the comparison of the decoupled

stiffness submatrices with their coupled counterparts. Considering that the stiffness matrix

is obtained by means of FEA, discretization errors are deemed to be the source of the

spurious results, which is reflected in the coupling submatrix. The FEA error thus needs to

be filtered for design purposes. Hence, when submatrix Krt is rank-deficient, decoupling is

achievable by means of a “small” shift of the origin. Thus, the discretization error is filtered

by means of decoupling. After that, the translational and rotational stiffness properties

can be obtained independently via a simple eigenvalue problem, associated with two 3 × 3

symmetric, positive-definite matrices.
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4.6 Summary

This chapter focused on the stiffness analysis of the SBA. Two approaches, named

Lagrangian formulation and structural analysis, were adopted and enhanced to obtain the

stiffness and mass matrices of the SBA. The numerical results were compared with those

obtained by FEA in ANSYS; they showed a reasonable agreement consistently with the

ANSYS results. It was shown that stiffness-decoupling led to a straightforward analysis of

the compliant mechanism with an enhanced accuracy.

The second topic of this chapter is the decoupling of the Cartesian stiffness matrix

and its application to the design of accelerometers designed with a compliant-mechanism

structure. Based on eigenscrew theory, the Cartesian stiffness matrix is decoupled and

the stiffness submatrices K′
tt, K′

rr are compared with their counterparts Ktt, Krr before

decoupling. Consequently, for the SBA, K′
tt and K′

rr are numerically almost identical to

Ktt and Krr, respectively. The discretization error inherent to FEA is deemed to be the

source of the spurious results, which is reflected in the nonzero coupling submatrix. Upon

zeroing of this submatrix, the independent translational and rotational stiffness analyses

are possible. Thereafter, the eigenvalue analysis is conducted on the decoupled stiffness

submatrices. For validation purposes, the eigenscrews are also computed, based on a gener-

alized eigenvalue analysis. The real, symmetric pairs of eigenvalues yield the corresponding

eigenpitches for both cases, while the corresponding eigenvectors help explain the motions

of the proof-mass.
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Chapter 5

MEMS Fabrication

5.1 Overview

This chapter focuses on the MEMS fabrication of the SBA designed and analyzed in the

foregoing chapters. The MEMS fabrication is conducted at McGill Nanotools Microfab1.

The objective of the MEMS fabrication is to validate the manufacturability of our SBA

design, with the purpose of conducting, at a later stage, experimental tests.

5.2 Microfabrication

5.2.1 Process Flow

As illustrated in Fig. 5.1, the entire process flow starts from the 〈100〉-oriented 4-inch

single crystal silicon wafer, with a thickness of 300 µ m. The process flow involves five steps:

alignment marks etch; diffusion of resistors; diffusion of conducting region; metallization;

and structure etch, with masks 1–5 in Fig. 5.2. In Step 2, the piezoresisitors can be located

either on the sidewall, or the top of the flexure hinges. The sidewall resistors are commonly

realized by means of ion implantation technique [121, 122, 123]. However, the high cost

and the lack of ion implantation equipment force us to turn to the top resistor realization:

ion diffusion.

The specifications of the substrate are listed in Table 5.1. It is noteworthy that the

1McGill Nanotools Microfab, McGill Institute for Advanced Materials, Ernest Rutherford Building,
3600 University St. Montreal, Quebec, H3A 2T8, Canada.
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(a) silicon substrate

photoresist

(b) alignment marks pattern in
photoresist

(c) alignment marks etch

oxide

(d) oxide growth (e) oxide mask pattern in photore-
sist

(f) oxide mask etch

resistor

(g) light boron diffusion for resis-
tors

(h) oxide removal (i) oxide growth, pattern and etch

conducting region

(j) heavy boron diffusion for con-
duction regions

(k) oxide removal

LOR 5B photoresist

(l) Photoresist coat and pattern
for lift-off

aluminium

(m) aluminium deposition (n) formation of aluminium con-
nections using lift-off

(o) structure pattern in photore-
sist

(p) structure etch

Fig. 5.1 SBA fabrication process flow: (a)–(c) alignment marks etch; (d)–(h)
diffusion of resistors; (i)–(k) diffusion of conducting region; (l)–(n) metalliza-
tion; and (o)–(p) structure etch
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silicon substrate is chosen as phosphorus doped n-type, which is intended to meet the

requirement for forming a p-n junction during the boron diffusion steps.

Table 5.1 Wafer specifications

material single-crystal silicon
diameter 4 inch (100 mm)

type and doping Phosphorus (N)
orientation 100
resistivity 0.5-20 Ω cm
thickness 300 µm

polish double side polished

5.2.2 Microfabrication Process

Alignment Marks

The wafer is coated with a 1.4-µm layer of Shipley-1813 photoresist and softbaked

following the recipe of Table B.1. The pattern on mask 1 in Fig. 5.2 is transferred to

the wafer using EVG620 aligner with the recipe listed in Table B.2. Then, the wafer is

processed for development and hardbake in terms of the recipe of Table B.3. After the

lithography process, the patterned alignment marks are etched down to 4 µm on the silicon

substrate using the Deep Reactive Ion Etching (DRIE) process in Table B.5. Finally, an

image of the etched alignment mark on the wafer surface after DRIE is captured under

microscope, as shown in Fig. 5.3(a). As an example, a microphotograph of alignment for

a pair of marks in the resistor diffusion step is illustrated in Fig. 5.3(b). For preparing the

wafer for the next step, a standard wafer clean procedure is conducted on the solvent bench

to remove the photoresist mask, with relevant parameters listed in Table B.4.

Diffusion of Resistors and Conduction Regions

In order to remove any possible metallic impurities, a special cleaning procedure is

conducted prior to the diffusion step. The wafer is soaked in hot H2SO4 and H2O with a

4 : 1 volume ratio, then rinsed by distilled (DI) water, and soaked in 48% hydrofluoric (HF)

acid. Unlike ion implantation, ion diffusion is a process under high temperature, which the

photoresist mask could not sustain. Hence, silicon dioxide (SiO2) is selected as the diffusion
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(a) mask 1 (b) mask 2 (c) mask 3

(d) mask 4 (e) mask 5

Fig. 5.2 Masks of the SBA

mask. A 5000-Å layer of silicon dioxide is grown at 1100 ◦C over the wafer in the Tylan

oxidation furnace as per the recipe in Table B.6. Then, a 1.4-µm layer of Shipley-1813

photoresist coated on the oxide layer is patterned in terms of mask 2, as per the recipes of

Tables B.1, B.2 and B.3. Afterwards, the oxide mask is etched down to 0.55 µm following

the recipe in Table B.7, to form an opening for the subsequent diffusion step. The diffusion

process comprises four steps:

1. Preparation of boron diffusion: the wafer is soaked in hot H2SO4 and H2O with a
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0.1 mm

(a)

0.1 mm

(b)

Fig. 5.3 Microphotographs of: (a) an etched alignment mark; (b) a mark
alignment for resistor diffusion step

volume ratio 4 : 1, then rinsed by DI water, and soaked in 48% HF acid, in order to

remove any possible metallic impurities.

2. Pre-deposition diffusion process: the boron dopant is spinned on wafer at 3000 rpm

for 10 seconds and baked at 150 ◦C for 10 minutes. It is noteworthy that the objective

of the baking process is to harden the spinned Boron film.

3. Drive-in diffusion process: conducted in a Tylan LPCVD furnace at 1000 ◦C for 60

minutes, under an atmosphere of 75% nitrogen, 25% oxygen, with an approximate

sheet resistance2 of 188 Ω/2.

4. Post diffusion cleanup: the wafer is soaked in 48% HF acid to remove the remaining

boron stains and oxide.

Thereafter comes the post-diffusion cleanup step, in which the wafer is soaked in 48% HF

acid to remove the remaining boron stains and oxide.

The diffusion of the conducting region can be accomplished following the above proce-

dure, except for the temperature (1100 ◦C) and duration (120 minutes) in the drive-in step,

which forms a sheet resistance of around 16 Ω/2.

2To avoid confusion between sheet resistance and bulk resistance, the unit “ohms per square”—denoted
Ω/2—is exclusively used for the former.
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Metallization

0.7 mm

(a)

0.7 mm

(b)

Fig. 5.4 Microphotographs of: (a) overview of measurement circuit located
on the top surface ; and (b) zoom-in

Mask 4 shown in Fig. 5.2 is devised to delineate areas on the wafer that form the circuit

interconnects and contact pads. In accordance with the pattern shown on that mask, a

technique defining the aluminium connections is adopted: lift-off [124]. In order to ensure

a better lift-off effect, an improved process called LOR 5B lift-off is employed, during

which the lift-off resist (LOR 5B) serves as an underlying layer to create an undercut. In

combination with evaporation techniques, the undercut will bring a discontinuity in the

deposited aluminium layer which permits optimum lift-off in the adequate solvent.

A regular solvent clean process as described in Table B.4 is implemented as the first

step, for the purpose of preparing a better surface quality for processing. Then, the LOR 5B

and Shipley-1813 photoresist are coated and soft-baked successively by means of the Site

Service Spin Coater. Afterwards, the wafer is processed with exposition and development

in terms of mask 4, as per the recipes in Tables B.2 and B.3. It is noteworthy that,

unlike the regular lithography process described in the former subsections, the wafer could

not be hard-baked here, since it may cause difficulty for peeling off the aluminium in

the lift-off. Afterwards, deposition of a 0.2-µm layer of aluminium on the substrate using

BJD1800 e-beam evaporator precedes the lift-off step, which follows the recipe of Table B.8.

Finally, the substrate is rinsed by nanoremover PG, isopropyl alcohol and distilled water,

in succession.

An image of the measurement circuit formed by lift-off is captured via microscope, as

shown in Fig. 5.4(a). A zoom-in of the aluminium connections as well as boron-diffused
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piezoresistors and conduction region is illustrated in Fig. 5.4(b).

Structure Etch

0.2 mm

Lamé-notched hinge

rigid link

(a)

1.4 mm

(b)

Fig. 5.5 Microphotographs of Lamé-notched hinge: (a) after photolithogra-
phy; and (b) after etching

sidewall

Fig. 5.6 Microphotograph of the overetched trench sidewall after DRIE

The carving of the SBA mechanical structure is conducted using a single DRIE process,

which is up to 300-µm deep. It is noteworthy that the 1.4-µm Shipley-1813 photoresist no

longer works here, due to the thick etch depth. Instead, the AZ9245 is used as the mask,

which is a high-resolution thick photoresist.

The wafer is coated with 10-µm thick AZ9245 photoresist, patterned and developed

according to Tables B.2. It is noticeable that the exposure dosage increases to 250 mJ/cm2

each cycle for four cycles, in conformity with the photoresist thickness increase. After
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that, the substrate is hard-baked in the oven for 60 minutes to enhance the adhesion of

photoresist with wafer surface, or the photoresist layer may not be capable of sustaining the

long-time etching process. After the lithography process, a microphotograph of the Lamé-

notched hinge is shown in Fig. 5.5(a), which illustrates that the pattern is fully developed

after UV exposure.

The wafers are processed using DRIE, one at a time, with a six-inch carrier wafer

underneath, to protect the etching equipment, since a through-substrate etching is required.

In order to investigate what recipe is appropriate, a set of etching tests are conducted with

varying values of its parameters, i.e., the source power, the gas flow, the temperature,

the gas pressure, frequency of the generator, etc. Figure 5.6 depicts the cross sectional

view of the substrate trench under the conditions of over-high source power and generator

frequency. It can be observed that the trench sidewall is not upright due to an overetching

caused by the aggressive recipe. During the tests, it was also found that if the source power

is adjusted to 2500 watts or less, the photoresist mask is etched away before the depth of

300 µm could be reached in the silicon, mainly for the reason of extremely long duration.

By trial and error, the recipe illustrated in Table B.9 is verified to provide a better effect

for through-wafer etching. Finally, zoom-in of the Lamé-notched hinge layouts formed via

the DRIE process is shown in Fig. 5.5(b).

Fig. 5.7 Microphotographs of the SBA

After structural etching, the SBA MEMS model is accomplished, as illustrated in

Fig. 5.7.
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5.3 Summary

This chapter described the MEMS fabrication process of the SBA. The fabrication was

conducted on a 4” crystal silicon, by five masks. Both the mechanical structure and the

electronic measurement system were successfully produced. By virtue of its planar nature,

the SBA design was proven to be manufacturable. Experiment testing of the SBA MEMS

model is the subject of future work.
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Chapter 6

Isotropic SBA Strapdowns

6.1 Overview

In this chapter, the idea of a novel tetrahedral strapdown carrying four SBAs is pro-

posed, its applications in estimating rigid body angular velocity and acceleration being

investigated. It is noteworthy that, besides angular velocity and acceleration, rigid-body

pose-and-twist also includes translational components. However, they are trivial compared

with their angular counterparts. Hence, the translational components of rigid-body pose-

and-twist are not considered in this analysis. Based on the strapdown layout, an estimation

algorithm of the rigid-body angular acceleration, angular velocity and attitude is proposed.

In order to validate the strapdown in estimating rigid body pose and twist, two representa-

tive simulation examples, a rotating rigid disk and a free-rotating rigid brick, are included.

Moreover, for the purpose of showcasing the accuracy of the tetrahedral SBA strapdown,

the general-type SBA strapdown with six SBAs is also tested in the simulation exam-

ples. For both strapdowns, the estimated pose and twist are compared with their “exact”

values, obtained by integration of the rigid-body motion initial-value problem, with the

errors recorded. Finally, a summary regarding the accuracy and performance of the SBA

tetrahedral strapdown is included.

6.2 The Rigid-body Acceleration Field

A rigid body B, moving in space with n uniaxial accelerometers collocated at n body

points {Pi}n
1 , is illustrated in Fig. 6.1. A reference point B, of position vector b, is chosen
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Fig. 6.1 A rigid body carrying n uniaxial accelerometers

on the body. It is noteworthy that B need be neither the centroid nor the centre of mass

of the body. The position vector of the ith accelerometer, located at point Pi, is denoted

by pi. Vector ri is now introduced as ri = pi − b, for i = 1, . . . , n.

The physical principle under which accelerometers work is based on the dynamics of the

relative motion between the centre of mass Ci of the accelerometer proof-mass and point

Pi of the body under probing. The excitation of this motion is the absolute acceleration of

point Pi. For conciseness, the dynamics governing the relative motion is not included here,

as this is common to all accelerometers [125].

From rigid-body kinematics, the acceleration p̈i of Pi is given by

p̈i = b̈ + ω̇ × ri + ω × (ω × ri) = b̈ + Wri, i = 1, . . . , n (6.1)

where W = Ω̇ + Ω2 is the angular acceleration matrix, while Ω ≡ CPM(ω).

It is noteworthy that the acceleration field of a rigid body is completely characterized by

three vectors: the translational acceleration b̈ of a landmark or base point B, the angular

acceleration ω̇ and the angular velocity ω. Equation (6.1) can be recast in the form:

p̈i − b̈ = p̈⊥
i + p̈

‖
i i = 1, . . . , n (6.2)

with the term p̈⊥
i ≡ Ω̇ri denoting the tangential point-acceleration component, p̈

‖
i ≡ Ω2ri
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its centripetal counterpart1, respectively, as illustrated in Fig. 6.2.

B
P1

P2

p̈⊥
1

p̈⊥
2

ω̇

(a) tangential component

B

p̈
‖
1

p̈
‖
2

P1

P2

ω

(b) centripetal component

Fig. 6.2 Acceleration field of a rigid body

6.3 SBA Strapdowns

6.3.1 General and Isotropic SBA Strapdowns

SBA

brick frame

(a)

SBA

regular tetrahedral frame

(b)

Fig. 6.3 Accelerometer strapdowns: (a) non isotropic; (b) isotropic

One instance of a common strapdown is depicted in Fig. 6.3(a), which comprises six

SBAs, one on each face of a brick, i.e., a rectangular parallelepiped. Each SBA is attached

1Superscripts ⊥ and ‖ are to be read “perp” and “par”, respectively.
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at each face centroid, where the SBA proof-mass centroid is placed. On the other hand,

Fig. 6.3(b) illustrates a second instance, isotropic2, that is based on the regular tetrahedron.

Moreover, alternative isotropic polyhedral strapdowns, e.g., the other four Platonic solids,

the Buckyball3, and so on, could be used, as they all exhibit the same properties, which

will be discussed in Section 6.4.

Let {pi}n
1 be the corresponding position vectors of the set {Pi}n

1 , with centroid C, of

position vector c, and n denoting the number of SBAs for a general strapdown, namely,

c =
1

n

n
∑

i=1

pi (6.3)

Unlike multi-axial accelerometer strapdowns made of a combination of multiple single-

axis accelerometers, the SBA does not have a pair of sensitive directions, by virtue of the

planar isotropy of the structure. This means that the proof-mass plane includes two prin-

cipal axes of translational stiffness, at right angles, but otherwise of arbitrary orientations

within the plane. Moreover, the two principal stiffnesses in the plane are identical, thereby

leading to structural isotropy in the plane. This means that any pair of mutually perpen-

dicular lines passing through Pi, the centroid of the ith face, defines a pair of principal

translational-stiffness directions in the face plane.

6.3.2 Angular-acceleration Estimation

When n SBAs move with the rigid-body under probing, each SBA provides one two-

dimensional acceleration-vector signal in its own plane. It is noteworthy that the ith SBA

does not directly and explicitly provide acceleration readouts in the strapdown coordinate

system, but rather yields signals associated with the displacement of the proof-mass in its

plane; these lead to acceleration signals in the local coordinate frame Fi of the SBA. For

clarity, two other coordinate frames are also introduced, the strapdown-fixed coordinate

frame S, and the inertial coordinate system I, the latter illustrated in Fig. 6.1. Apparently,

the rotation matrix Ri from the ith accelerometer frame Fi to the strapdown-fixed frame S
can be calculated offline, as described in Appendix A. Henceforth, subscripted brackets are

2This concept refers to the second moment of the array of vertices of the isotropic polyhedron, a.k.a.
the geometric moment-of-inertia tensor, with three identical eigenvalues.

3The Buckyball is also known as the 60-vertex truncated icosahedron, whose shape appears in soccer
balls.
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used to indicate the representation frame; when no bracket is included, the representation

frame is I, the inertial frame.

From eq. (6.1), the relative acceleration of {Pi}n
1 with respect to C can be expressed as

p̈i − c̈ = (Ω̇ + Ω2)(pi − c), i = 1, . . . , n (6.4)

in the inertial frame I.

Moreover, a 3 × n matrix Π is defined:

Π ≡
[

π1 π2 . . . πn

]

, πi = pi − c, i = 1, . . . , n (6.5)

with similar definitions for Π̇ and Π̈.

Based on eqs. (6.4) and (6.5), we have

π̈i ≡ p̈i − c̈ = (Ω̇ + Ω2)πi, i = 1, . . . , n (6.6)

Similar to eq. (6.2), π̈i can be decomposed into two parts: the relative tangential

acceleration π̈⊥
i and its centripetal counterpart π̈

‖
i , i.e.,

π̈⊥
i = Ω̇πi, π̈

‖
i = Ω2πi, i = 1, . . . , n (6.7)

It is noteworthy that, in the two instances of Fig. 6.3, the position vector πi is perpen-

dicular to the face of the polyhedron containing point Pi. This is an important property,

that will be henceforth referred to as the πi-perpendicularity property (PP). This prop-

erty holds for all isotropic arrays, but not so for all polyhedral arrays. It does, however,

hold for the brick strapdown of Fig. 6.3(a).

It is thus apparent that the tangential component π̈⊥
i lies in the ith face of the poly-

hedron, which is measured by the SBA attached at point Pi. By virtue of the geometric

isotropy of the tetrahedron as well as the elastic, planar isotropy of the SBA, the centripetal

acceleration component π̈
‖
i is filtered out, thereby leaving its tangential counterpart as the

accelerometer readout. In this way, the estimation algorithm is greatly simplified, as shown

below. For the sake of generality, a n-faced polyhedral strapdown with the PP is assumed

henceforth.

The readout of the ith SBA is
[

π̈⊥
i

]

Fi

, which is the relative tangential acceleration
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expressed in frame Fi. Then, to express this vector in the inertial frame, two coordinate

transformations are involved: Ri, to transform the vector from Fi to S and Q, the proper

orthogonal matrix defining the attitude of the strapdown, which takes vectors represented

in S into their representation in I, namely,

π̈⊥
i = Q

[

π̈⊥
i

]

S
,

[

π̈⊥
i

]

S
= Ri

[

π̈⊥
i

]

Fi

(6.8)

Upon assembling all n equations (6.7), and recalling the definitions of eq. (6.5), the

relations below follow:

Π̈
⊥

= Ω̇Π, Π̈
⊥

= Q

[

R1

[

π̈⊥
1

]

F1

R2

[

π̈⊥
2

]

F2

· · · Rn

[

π̈⊥
n

]

Fn

]

(6.9)

Further, the representation of the array defined in eq. (6.5) in I-coordinates, denoted

by Π, is obtained as

Π = Q [Π]S

Post-multiplying both sides of the first of eqs. (6.9) by ΠT yields

Π̈
⊥

ΠT = Ω̇R, R ≡ ΠΠT (6.10)

Next, the axial vector of both sides of eq. (6.10) is taken, which produces

vect(Π̈
⊥

ΠT ) =
1

2
Jω̇ (6.11)

where J is a symmetric, positive-definite matrix, given by [1]:

J ≡ tr(R)1 − R = Q [J]S QT (6.12)

in which 1 denotes the 3 × 3 identity matrix. In fact, J can be regarded as the 3 × 3 inertia

matrix of an array of unit masses collocated at {Pi}n
1 , with respect to C. Notice that R

is body-pose dependent, and hence, J is also. In body-fixed, i.e., in strapdown-coordinates

S, however, the foregoing matrix is constant:

[J]S = tr ([R]S) 1 − [R]S , R = Q [Π]S [Π]TS QT = Q [R]S QT (6.13)
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which means that, for strapdown readouts, [J]S must be transformed by means of a simi-

larity transformation to inertial coordinates at every sampling instant.

The angular acceleration for an accelerometer strapdown that is designed, nevertheless,

with the PP, is obtained from eq. (6.11) as

ω̇ = 2J−1vect
(

Π̈
⊥

ΠT
)

(6.14)

or, for J given in strapdown coordinates, as

ω̇ = 2
(

Q [J]S QT
)−1

vect
(

Q
[

Π̈
⊥
]

S
[Π]TS QT

)

(6.15)

For isotropic strapdowns, any isotropic polyhedron with n vertices is now considered.

For brevity, only the five Platonic solids and the Buckyball are included here; moreover,

the dual4 property of the Platonic solids is applied. For instance, the dual polyhedron

of the icosahedron with side a is an inscribed dodecahedron with side b = (
√

5 − 1)a/2.

To calculate J for the icosahedron, it is obviously more convenient to utilize the vertex

coordinates of its dual dodecahedron, instead of finding its own centroid coordinates for

each face. Values of J are recorded for the solids of interest in Table 6.1.

Table 6.1 Expressions for R and J pertaining to the Platonic solids and the
Buckyball

Tetrahedron Cube Octahedron

R
1

18
a21

1

2
a21

4

9
a21

J
1

9
a21 a21

8

9
a21

Dodecahedron Icosahedron Buckyball

R (20 + 8
√

5)a21
10(

√
5 − 1)2(3 +

√
5)

(1 +
√

5)2
a21 (

40

3
+

232

45

√
5)a21

J (40 + 16
√

5)a21
20(

√
5 − 1)2(3 +

√
5)

(1 +
√

5)2
a21 (

80

3
+

464

45

√
5)a21

With reference to Table 6.1, for the Platonic solids, and the Buckyball, J can be ex-

pressed as J = σ21, where σ2 represents a positive scalar factor. Hence, eq. (6.12) becomes

J = σ2Q1QT = σ2QQT = σ21 = [J]S (6.16)

4For any Platonic solid, its dual polyhedron is constructed in such way that each vertex of the latter
coincides with the centroid of the corresponding face of the former.
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Therefore, for an isotropic accelerometer strapdown, the rotation matrix Q is filtered

out, which leads to J = [J]S . Because of the symmetry of the set of vertices of the regular

tetrahedron, and hence, of the set {Pi}n
1 , [J]S , the second moment of this set, is isotropic

because [R]S = (1/18)a21, with a denoting the length of each tetrahedron edge. Therefore,

the [J]S matrix remains immutable, i.e., independent of the strapdown attitude, which

eases greatly the estimation of the angular acceleration.

Consequently, the angular acceleration is calculated, for an isotropic strapdown, as

ω̇ = 2 [J]−1
S vect

(

Q
[

Π̈
⊥
]

S
[Π]TS QT

)

=
2

σ2
Qvect

([

Π̈
⊥
]

S
[Π]TS

)

(6.17)

which follows because of the frame-invariance of the axial vector.

By virtue of the identity vect
(

abT
)

≡ − (1/2) a × b [1], for any 3-dimensional vectors

a and b, the above vect (·) expression can be shown to take the form vect
([

Π̈⊥
]

S
[Π]TS

)

=
[

Pπ̈⊥
]

S
, where [P]S is a row array of n 3 × 3 blocks [Πi]S that map any 3-dimensional

vector r into [πi]S ×r, and
[

π̈⊥
]

S
is a 3n-dimensional vector, their product,

[

Pπ̈⊥
]

S
, being

rightfully a 3-dimensional vector. Therefore, the above expression for ω̇ takes the form

ω̇ =
1

σ2 Q
[

Pπ̈⊥
]

S
(6.18)

and hence, a) [P]S being constant, it is to be computed off-line and b) no matrix inversion is

needed in this case. Although inverting a 3×3 matrix in real time does not add a significant

computational overhead to the foregoing computation, it is still worth avoiding it, in order

to avoid roundoff-error amplification that, even if small, may contribute significantly to the

buildup of drift in the pose-estimation algorithm. On the other hand, for the non-isotropic

stradown, J depends on Q, as made apparent from eq. (6.12), which must thus be updated

at every sampled instant. That is, the updating of J requires knowledge of the current

strapdown attitude, which is given by Q. However, the current attitude is not known, but

rather two sampling instants earlier, since the angular velocity is obtained in the previous

sampled instant. Therefore, this estimation algorithm is prone to drift. Any drift will

hamper the algorithm effectiveness in pose-and-twist estimation.
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6.3.3 Angular-velocity Estimation

The estimation of the angular velocity is now straightforward, as it can be derived from

the integration of the angular acceleration. A widely used numerical method is Simpson’s

rule, whereby quadratic polynomials are adopted to approximate the value of a definite

integral, namely,

ω̂k+1 = ωk +
h

2
(ω̇k + ω̇k+1) (6.19)

in which h represents the constant sampling time, and ω̂k+1 denotes the estimate of ωk+1.

It is noteworthy that a drift over time is inevitable due to this integration process. Hence,

other numerical techniques have to be brought into play, to attenuate the truncation error

in the numerical quadrature.

It is recalled that for single-step methods, such as Simpson’s rule, only one previous

point is used to estimate the successive point. Multi-step methods require information on

several prior points, among which central-differences are representative [126]. The central-

difference method is a robust numerical tool to integrate ordinary differential equations. In

this method, for the kth time step, ω̇k can be expressed as

ω̇k =
1

2h
(−ωk−1 + ωk+1) (6.20)

and hence, the angular velocity at the (k + 1)st time step can be obtained in terms of the

angular acceleration and angular velocity at previous time steps, namely,

ωk+1 = ωk−1 + 2hω̇k (6.21)

6.3.4 Rigid-body Attitude

The rigid-body attitude, given by the rotation matrix Q from a reference attitude, can

be expressed using the Euler-Rodrigues parameters—isomorphic to the quaternion— [1],

namely, by means of the four-dimensional array η:

η =





q

q0



 ≡




sin (φ/2) e

cos (φ/2)



 (6.22)
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in which the rotation Q is characterized by an axis of direction parallel to the unit vector

e, and an angle φ about the axis, namely,

Q =
(

q2
0 − qT q

)

1 + 2qqT + 2q0CPM(q) (6.23)

with 1 already defined when J was introduced in eq. (6.12), while the CPM(·) operator

was introduced in eq. (4.13).

The linear relationship between the time-rate of change of η and ω is known to be [1]:

η̇ = Hω (6.24)

with

H =
1

2





q01 − CPM(q)

−qT



 (6.25)

Substitution of eq. (6.25) into eq. (6.24) leads to





q̇

q̇0



 =
1

2





Ω(t) ω(t)

−ωT (t) 0









q

q0



 (6.26)

The above equation can be cast in compact form as

η̇ = Aη, A ≡ 1

2





Ω(t) ω(t)

−ωT (t) 0



 , η0 =





0

1



 (6.27)

which is an initial-value problem (IVP) in a linear, homogeneous, time-varying equation,

that can be integrated numerically using a suite of methods [127]. Since any numerical

integration will incur a truncation error, η obtained from the foregoing IVP will violate

the normality condition ‖η‖ = 1. This can be readily alleviated by dividing the computed

η by its Euclidean norm [128].

Interestingly, matrix A, as given in eq. (6.27), turns out to be isotropic, and hence,

optimally conditioned. Its quadruple singular value is, in fact, ‖w‖/2.
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6.3.5 Introduction of Noise

Because of unavoidable noise, the ith SBA output ˆ̈π⊥
i (t) is expressed as the sum of three

mutually independent vectors, namely,

ˆ̈π⊥
i (t) = π̈⊥

r,i(t) + δπ̈⊥
b,i(t) + δπ̈⊥

ν,i(t) (6.28)

where π̈⊥
r,i(t) is the actual value of the point-acceleration, whereas δπ̈⊥

b,i and δπ̈⊥
ν,i are the

bias and noise errors, respectively, which are modelled as orthogonal random variables fol-

lowing a Gaussian distribution with zero mean and isotropic variances σ2
b,i13×3 and σ2

ν,i13×3:





δπ̈⊥
b,i

δπ̈⊥
n,i



 ∼ N










03

03



 ,





σ2
b,i13×3 O3×3

O3×3 σ2
ν,i13×3











(6.29)

Note that the bias error is assumed constant throughout, noise error to be white and

normally distributed. Moreover, 0n denotes the n-dimensional zero vector, 1n×n the n × n

identity matrix and Om×n the m × n zero matrix.

In an isotropic accelerometer strapdown, the n accelerometer outputs and their corre-

sponding bias and noise errors are grouped in array form as:

ˆ̈
Π⊥ ≡

[

ˆ̈π⊥
1

ˆ̈π⊥
2 . . . ˆ̈π⊥

n

]

, Π̈
⊥ ≡

[

π̈⊥
r,1 π̈⊥

r,2 . . . π̈⊥
r,n

]

,

δΠ̈
⊥

b ≡
[

δπ̈⊥
b,1 δπ̈⊥

b,2 . . . δπ̈⊥
b,n

]

, δΠ̈
⊥

ν ≡
[

δπ̈⊥
ν,1 δπ̈⊥

ν,2 . . . δπ̈⊥
ν,n

]
(6.30)

Then, eq. (6.28) can be rewritten as

ˆ̈
Π⊥ = Π̈

⊥
+ δΠ̈

⊥

b + δΠ̈
⊥

ν (6.31)

6.3.6 Error Propagation

With reference to eq. (6.18), let y = α ≡ ω̇, the estimator ŷ of y being defined as

ŷ = α̂ =
1

σ2
Q [P ]S

[

ˆ̈π⊥
]

S
(6.32)
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Similar to ˆ̈
Π⊥ in eq. (6.31), ŷ can be decomposed as

ŷ = y + δyb + δyν (6.33)

where y ≡ (1/σ2)Q [P ]S

[

π̈⊥
]

S
, δyb ≡ (1/σ2)Q [P ]S

[

δπ̈⊥
b

]

S
, and δyν ≡ (1/σ2)Q [P ]S

[

δπ̈⊥
ν

]

S
.

Besides, δyb and δyν follow a Gaussian distribution such that





δyb

δyν



 ∼ N






06,





Σ2
y,b O3×3

O3×3 Σ2
y,ν











(6.34)

where
Σ2

y,b ≡ J−1(σ2
b,1Π1Π

T
1 + σ2

b,2Π2Π
T
2 + σ2

b,3Π3ΠT
3 + σ2

b,4Π4Π
T
4 )J−T ,

Σ2
y,ν ≡ J−1(σ2

ν,1Π1Π
T
1 + σ2

ν,2Π2ΠT
2 + σ2

ν,3Π3Π
T
3 + σ2

ν,4Π4ΠT
4 )J−T

(6.35)

with Πi denoting CPM (πi).

6.3.7 State-space Model

For our proposed estimation scheme, the state space model is formulated as

ẋ = Fx + Gu

ŷ = h(x) + δyν

(6.36)

where

x =
[

αT ωT δyT
b

]T
, δyb = δαb, u =

[

γT βT
α

]T
,

F =











O3×3 O3×6

13×3 O3×6

O3×3 O3×6











, G =











13×3 O3×3

O3×3 O3×3

O3×3 13×3











, h(x) = α + δαb

.

Further, notice that, in eq. (6.36), the system inputs {γi}3
1 and {βα,i}3

1 are the time-

rates of change of the angular acceleration—termed the angular jerk—and those of the bias

errors, respectively.

It is noteworthy that direct measurement of the angular jerk and the time-rates of

change of the errors are not produced by an accelerometer strapdown; therefore, they are



6 Isotropic SBA Strapdowns 109

modelled as piecewise-constant functions, namely,

u(t) =















































u0 t0 ≤ t < t1,

u1 t1 ≤ t < t2,
...

...

uk tk ≤ t < tk+1,
...

...

uk ∼ N
{

06, Σ2
u

}

The angular jerk and the time-rates of change of the errors are assumed to be stochas-

tically independent, their covariance matrices thereby taking the form:

Σ2
u =





σ2
γ13×3 O3×3

O3×3 Σ2
β



 , Σ2
β = σ2

βQ [P]S [P]TS QT (6.37)

where σ2
γ13×3 is the covariance matrix of γ, Σ2

β that of the array defined as

β =
[

βT
α βT

ζ

]T
(6.38)

The initial state of the estimate x̂0 for the state-space system of eq. (6.36) is given as

x̂0 ≡











α̂0

ω̂0

δα̂b











∼ N





























α0

ω0

03











,











σ2
α,013×3 O3×3 O3×3

O3×3 σ2
ω,013×3 O3×3

O3×3 O3×3 Σ2
y,ν





























(6.39)

where the initial estimate of the angular acceleration α̂0 and that of the angular velocity

ω̂0 are assumed to be independent, with Gaussian distributions of means α0 and ω0,

respectively, and corresponding isotropic variances σ2
α,013×3 and σ2

ω,013×3.

6.3.8 Extended Kalman Filter

For the purpose of feeding the extended Kalman filter with the SBA-strapdown estima-

tion algorithm, the continuous-time state-space system in eq. (6.36) is discretized.

First, the state-transition matrix is introduced here for any time step tk+1 − tk:

Φ(tk, tk+1) = eF(tk+1−tk) = 19×9 + F(tk+1 − tk)
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i.e.,

Φ(tk, tk+1) = 19×9 + Fh (6.40)

under the assumption that ∆tk+1 ≡ tk+1 − tk = h is constant.

The system state at time tk+1 can thus be expressed as

xk+1 = Φxk + Υuk (6.41)

where Υ = Gh + (1/2)FGh2.

Further, the discrete-time measurement equation takes a form similar to its continuous-

time counterpart of eq. (6.36):

ŷk = h(xk) + δyν,k (6.42)

Moreover, the application of the extended Kalman filter requires the Jacobian matrix

H of its time-continuous counterpart, as:

H(x) =
∂h(x)

∂x
=
[

13×3 O3×3 O3×3

]

(6.43)

The estimation algorithm with Kalman filter is generalized below:

• Model Forecast Step:

x̂−
k , the a priori state estimate at time tk, is calculated from x̂+

k−1, the a posteriori

state estimate at time tk−1, as:

x̂−
k = Φx̂+

k−1 (6.44)

with covariance given by

V−
k = ΦV+

k−1Φ
T + ΥΣ2

uΥT (6.45)

• Data Assimilation Step:

x̂+
k = x̂−

k + Kk

[

ŷk − h(x̂−
k )
]

(6.46)

where

Kk ≈ V−
k H(x̂−

k )T
[

H(x̂−
k )V−

k H(x̂−
k )T + Σ2

y,ν

]−1
(6.47)

V+
k ≈

[

19×9 − KkH(x̂−
k )
]

V−
k (6.48)
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V−
k being the covariance of the error on the a priori state estimate x−

k , V̂+
k denoting

its a posteriori counterpart x̂+
k , and Kk is the Kalman gain.

6.3.9 Signal-to-noise Ratio

Upon denoting the true angular acceleration vector and its noisy counterpart as α and

α̂, respectively, the error component of α is defined as [5]:

σ =
‖ α ‖2

‖ δα ‖2
=

‖ α ‖2

‖ α − α̂ ‖2
(6.49)

where ‖ · ‖2 represents the Euclidean norm of ( · ).

Based on the error component, the signal-to-noise ratio (SNR) can be obtained as [129]:

SNR = 20 × log10σ db (6.50)

SNR is an important criterion in analyzing the sensitivity of accelerometer strapdowns.

A high obtrusive background noise will result in a low SNR, which means a low strapdown

sensitivity.

6.4 Simulation Examples

In order to verify the robustness of the foregoing estimation algorithm, two representa-

tive simulation examples are conducted: the harmonic rotation of a rigid disk about three

orthogonal axes, and the free rotation of a rigid brick. For each example, a tetrahedral

SBA strapdown and a brick SBA strapdown are rigidly attached to the rigid body at an

arbitrary point on its surface, one at a time. Three vector variables, angular acceleration ω̇,

angular velocity ω and attitude η, are to be estimated using corresponding algorithms. The

root-mean square (rms) error of the measured pose and twist with their exact counterparts

is chosen as the criterion in evaluating the performance of each accelerometer strapdown.

6.4.1 Rotating Disk Under a Prescribed Applied Moment

The case of a harmonically rotating rigid disk is shown in Fig. 6.4, with uniform density

ρ = 7800 kg/m3, a radius r = 0.2 m and thickness w = 0.03 m. A tetrahedral strapdown
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Fig. 6.4 A rigid rotating disk with IMU

is attached with its centroid located at point (0.015, −0.1, 0.1) m in the body-fixed frame

shown in the foregoing figure—because of the geometric isotropy of the tetrahedral strap-

down, its orientation in the body-fixed frame is immaterial. The disk is excited with a

harmonic moment n(t).
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Fig. 6.5 Estimated acceleration of the disk of Fig. 6.4 using a tetrahedral
SBA strapdown
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Fig. 6.6 Estimated angular velocity of the disk of Fig. 6.4 using a tetrahedral
SBA strapdown
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Fig. 6.7 Estimated attitude of the disk of Fig. 6.4 using a tetrahedral SBA
strapdown

The equation of motion of the rotating disk is

Iω̇ + ω × Iω = n(t), ω(0) = 0, n(t) = [30 cos(4πt) 6 cos(5πt) 6 cos(6πt)]T N m (6.51)

I being the centroidal inertia matrix of the rigid disk, namely, I = ρπr2w diag[(3r2 +

w2)/12, (3r2 + w2)/12, r2/2] kg m2. The exact angular acceleration α and its estimate α̂
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Fig. 6.8 Estimated acceleration of the disk of Fig. 6.4 using a brick SBA
strapdown

ω
1
(r

a
d

/
s)

-40

-30

-20

-10

0

10

20

30

40

0 1 2 3 4 5
time (s)

ω1 ω̂1 δω1

(a) ω1

ω
2
(r

a
d

/
s)

-40

-30

-20

-10

0

10

20

30

40

0 1 2 3 4 5
time (s)

ω2 ω̂2 δω2

(b) ω2

ω
3
(r

a
d

/
s)

-2

0

2

4

6

8

10

0 1 2 3 4 5
time (s)

ω3 ω̂3 δω3

(c) ω3

Fig. 6.9 Estimated angular velocity of the disk of Fig. 6.4 using a brick SBA
strapdown

are plotted in Fig. 6.5, along with the error δα. The “exact” value is that obtained from
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Fig. 6.10 Estimated attitude of the disk of Fig. 6.4 using a brick SBA strap-
down

the numerical integration of the initial-value problem in eq. (6.51), “estimated” denoting

the value obtained using the proposed estimation algorithm. The “error” is calculated as

the numerical difference between the exact and the estimated values. From Fig. 6.5, it can

be seen that the estimated value approaches the exact value, with a rms of the stabilized

error of 0.1145 rad/s2.

With reference to eq. (6.19), the central-difference method is adopted to obtain the

estimated angular velocity ω̂, as illustrated in Fig. 6.6. It can be seen that the estimated

values do a good job in matching their exact counterparts. The rms value of the angular-

velocity error over the whole period is obtained as 0.0416 rad/s.

Upon resorting to eq. (6.27), the attitude plots of the rotating disk are illustrated in

Fig. 6.7. The exact and estimated attitude values are compared, the error δη being also

plotted. We can observe a good match, the rms value of the error over the overall time

interval being 0.0309.

Likewise, the brick SBA strapdown is used to measure the pose and twist of the disk.

The strapdown is placed on the “front” face of the disk, with its centroid located a distance

d = 0.1 m from the disk axis X. Figures 6.8–6.10 illustrate the estimated angular accel-

eration, angular velocity and attitude of the rigid disk, respectively. A good agreement

between the measured and exact signals is observed, with the corresponding recorded rms

values of the errors being 1.3693 rad/s2, 0.2941 rad/s and 0.0678.

By comparison, it is apparent that for the harmonically excited rigid disk, the preci-

sion of the tetrahedral strapdown is much higher than that of the brick strapdown, which
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carries, additionally, two more SBAs than its tetrahedral counterpart. Moreover, with-

out knowledge of two earlier time steps for the updated Q, the tetrahedral estimation is

computationally more efficient, thereby reducing the overall computational cost.

For the rotating disk, the SNR of the strapdown in estimating the angular acceleration

is obtained as

SNR =











SNRx

SNRy

SNRz











=











37.60

37.85

33.44











db (6.52)

6.4.2 Freely Rotating Brick
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Fig. 6.11 A rigid brick with accelerometer strapdown

The second example involves a free rotating brick, depicted in Fig. 6.11, with dimensions

given as: a = 0.2 m, b = 0.15 m and c = 0.1 m. Moreover, a frame B is attached to the

brick under probing with its origin O located at the brick centre of mass. The tetrahedral as

well as the brick strapdown are attached on the “top” face of the brick, of dimensions a×b,

one at a time, as illustrated in the figure, with the centroid of the strapdown coincident

with that of the body face. Moreover, the brick strapdown is oriented so that its longest

edges are parallel to their counterpart body-edges.The equation of motion of the brick is

Iω̇ + ω × Iω = 03, ω0 = [13, 17, 22]T rad/s (6.53)

where I is the inertia matrix of the brick about its centre of mass, when expressed in frame B,

I is given as IB = ρ diag(2.6, 5, 4) × 10−6 kg m2, with a constant density ρ = 2300 kg/m3.

As ω0 is not parallel to any of the principal directions of inertia—coincident with the
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directions of the brick edges—the brick will wobble.

With the exact and estimated angular acceleration values plotted in Fig. 6.12, it is

noteworthy that the estimated angular acceleration matches reasonably well the exact value,

with a rms error over the whole simulation period of 0.1045 rad/s2. That is, the strapdown

estimation algorithm proposed here works well in estimating the angular acceleration of

the freely rotating rigid body. Based upon the central-difference integration method within

the estimation algorithm, the angular velocity is illustrated in Fig. 6.13, with a rms error of

0.3323 rad/s. The attitude is plotted in Fig. 6.14. A good agreement between the estimated

and the exact attitude is observed, the rms error being 0.0402.
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Fig. 6.12 Measured acceleration of the brick through isotropic SBA strap-
down

Following the estimation algorithm of the brick SBA strapdown, the angular acceler-

ation, angular velocity and attitude of the brick are shown in Figs. 6.15, 6.16 and 6.17,

respectively. The estimated signals lie near the exact values, with error rms values of

4.3323 rad/s2, 2.8726 rad/s and 0.0456, respectively. Hence, based upon the comparison of

the rms errors of the simulation results, it is concluded that the tetrahedral SBA strapdown

tracks the exact values better than its brick counterpart. The SNR of the strapdown in

estimating the brick angular acceleration is 52.86 db, 47.39 db and 56.27 db in the x, y

and z directions, respectively.
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Fig. 6.13 Measured angular velocity of the brick through isotropic SBA
strapdown
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Fig. 6.14 Measured attitude of the brick through isotropic SBA strapdown

6.5 Summary

In this chapter, novel architectures of SBA strapdowns were proposed and employed

for rigid-body pose and twist estimation. A set of SBAs is attached to the faces of a

geometrically isotropic polyhedron to construct an isotropic strapdown. By virtue of the

geometric isotropy of the polyhedron and the structurally planar isotropy of the SBA, the
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Fig. 6.15 Measured acceleration of the brick through a brick SBA strapdown
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Fig. 6.16 Measured angular velocity of the brick through a brick SBA strap-
down

isotropic SBA strapdown is predominant over other types of strapdowns for its capability

in decoupling the acceleration field. As a consequence, the centripetal component of the
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Fig. 6.17 Measured attitude of the brick through a brick SBA strapdown

relative point accelerations is filtered out, thereby leaving only the tangential component

as the strapdown readout. By doing so, the point acceleration of a rigid body is decoupled

from the angular acceleration, the estimation of the latter becoming straightforward. Two

representative numerical examples were proposed, to investigate the performance of the

SBA strapdown in estimating rigid body pose and twist. With the purpose of showcas-

ing the precision of the isotropic strapdown, a more general strapdown is also employed.

The simulation results demonstrate that the attitude and angular motions obtained by

means of the proposed isotropic strapdown are consistently in close agreement with their

exact counterparts. These results are significantly superior when compared with those of

a general-type SBA strapdown.
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Chapter 7

Conclusions and Recommendations

The increased demand for precise pose-and-twist estimation from industry drove us to

conduct research in the area of accelerometer design, along with their strapdowns and esti-

mation algorithms. In this dissertation, we have addressed two challenges: the difficulties of

biaxial accelerometer design, as these are required to be sensitive in estimating acceleration

in its plane; the intense demands for a more stable and precise estimation algorithm based

on a novel accelerometer strapdown. The general outcome of this work is the innovative

design of an isotropic biaxial accelerometer strapdown, based on our proposed Simplicial

Biaxial Accelerometer. This accomplishment is achieved by means of the contributions

explained below.

7.1 Contributions

Due to their inherent structural nature of exhibiting compliance about one axis while

high stiffness about all other axes of motion, flexure hinges were employed in our accelerom-

eter design. Four types of flexure hinges were studied; among them, the Lamé-notched

hinge was chosen because of its geometric smoothness, which makes it ideal to avoid stress

concentration. Based on the Lamé-notched hinge, the SBA design was undertaken. A sys-

tematic study of the SBA has been made: CAD design; stiffness analysis; FEA; and MEMS

fabrication. The novel SBA design is required to be sensitive to even trivial excitations of

the proof-mass in its plane, and behave isotropically along arbitrary planar directions. At

the same time, its out-of-plane stiffness should be much higher than its in-plane counter-

part. Both modal analysis and forced response under loading were conducted on the FE
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model of the SBA, to validate the design objectives. Simulation results illustrated that the

SBA has equal sensitivity along any planar directions, the out-of-plane motion requiring

much higher excitation frequencies to be excited. Afterwards, a piezoresistive electronic

measurement circuit was designed to implement on the SBA. The output voltage was re-

quired to be sensitive in the motion of the proof-mass. Simulation results in terms of the

ANSYS Coupled Field module demonstrated an excellent agreement, consistent with the

response of the proof-mass under loading.

Being confident of the SBA design by numerical validation, we conducted its MEMS

fabrication. The microfabrication was made on the 4” single-crystal silicon wafer by five

masks, in which the measurement circuits employ three half-Wheatstone bridges to provide

voltage signals. The fabrication is possible because of the SBA planar nature.

By resorting to geometrically isotropic solids, we broke new ground in carrying out a

novel accelerometer strapdown design: the isotropic SBA strapdown. The distinguished

advantages of this strapdown can be attributed to two aspects: the estimation drift through-

out the overall estimation time history is minimized, the estimation accuracy thus being

high; its inherent geometric isotropy helps decouple the acceleration tangential component

from its centripetal counterpart, thus making the acceleration estimation straightforward

and accurate. By means of simulation over two representative numerical examples, the

tetrahedral strapdown was found accurate in estimating angular acceleration and angu-

lar velocity for 3D rigid bodies. Experimental tests of the strapdown are important and

mandatory.

7.2 Future Research Directions

Beyond the issues and the scope of this dissertation, several open challenges and exten-

sions exist that will benefit from further research efforts in this realm. A list of recommen-

dations for future work is summarized below:

7.2.1 Research Extensions

Throughout the systematic study of SBA strapdowns, experimental testing is an im-

portant and unavoidable step, before industrial applications. The testing is composed of

two parts: the assembly of the SBA MEMS models to construct a tetrahedral strapdown;

the pose-and-twist estimation of the objective rigid-body, using the strapdown and testing
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devices. The Dual-Arm Testbed in the Robotic Mechanical Systems Laboratory, McGill

University, will be employed as the testing platform. Due to the extensive time-consuming

process of assembling, as well as debugging the testbed, the experimental testing is beyond

the scope of this dissertation, testing recommendations being provided in this section.

SBA strapdown

Agile Wrist

Platform

Cuatro-2

Gripper

Cuatro-1

(a) (b)

Fig. 7.1 Dual-Arm Testbed: (a) CAD illustration; (b) experiment device

Figure 7.1 illustrates the Dual-Arm Testbed, which was designed to investigate the

collision of mechanical systems. The Cuatro-2 arm moves an object in space; the Cuatro-

1, supplied with a 3 DOF spherical parallel manipulator, the Agile Wrist, functions to

grasp the object held by Cuatro-2. The SBA strapdown will be attached to the gripper of

Cuatro-1 to render its pose-and-twist.

The recommendations for the test are listed below:

• Three main issues should be attended, regarding the strapdown assembly: all the

SBAs are required to be attached rigidly to the tetrahedral base frame; contact be-

tween the SBA proof-mass and the strapdown surface is not allowed; all the SBAs

share a common origin.

• Afterwards, the strapdown is attached rigidly to the Dual-Arm Testbed. The strap-

down is intended to estimate, in real-time, the pose and twist of the object. Diverse

types of movements will be performed by the testbed, such as translation, sudden

acceleration, impact, collision, etc.; the strapdown is expected to yield an output

signal to provide information on the pose and twist of the rigid-body. Accuracy of

the estimated pose and twist should be investigated; improvements should be made

as needed.
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Another extension is a deeper investigation of the tetrahedral strapdown. In order to

meet increased requirements from industry for a low cost accelerometer strapdown with

good accuracy in estimating rigid-body pose and twist, investigations on some design pa-

rameters, such as the edge length of the tetrahedron frame as well as its material and

weight, will be made. Pose and twist estimation under the effect of these parameters is

worth studying.

For the SBA design, the out-of-plane natural frequency fz is around 2.5 times higher

than the in-plane natural frequencies, fx and fy. In other words, the frequency ratio of the

SBA is almost 2.5. At high frequency excitations, unavoidable, even though not obvious,

out-of-plane motions of the proof-mass are observed. From this point of view, it will be

valuable to continue studying possible approaches to increase the frequency ratio. This will

be the third stage of this project.

7.2.2 Methodology

Though drift throughout the time-history of pose-and-twist estimation is minimized,

refinements to the numerical methods to increase calculation precision is still appealing.

The study on enhancing computational efficiency will be another future methodology work.

Improvement of the current estimation algorithms to obtain a more time-efficient method

should lead to decreasing the high computational cost.

7.2.3 Industrial Applications

The novel SBA strapdowns proposed in this dissertation may lend themselves to appli-

cations in the aero- and astronautics realm. As Canadians, we are proud of the Canadarm

in the International Space Station, which integrates inspiration, novelty and diligent work

of astronautical scientists and engineers. As illustrated in Fig 7.1, the SBA strapdown will

be tested on the Dual-Arm testbed. The Dual-Arm testbed is able to emulate rendez-vous

operations. Therefore, the SBA strapdown can be extended to applications in improving

precision and smoothness in certain operations of the International Space Station.

Besides its wide usage in the astro- and aeronautical realm, the application in robotic

surgery is highlighted. Through years of stressing works in the field of MEMS accelerom-

eter, we expect that the commercial implementation of the strapdown design will help

improve the precision of surgical operations. The accelerometer strapdown may reduce the
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procedures of curing the sick and saving medical resources, while providing more precise

and smooth surgical operation services. Within several years of biomedical applications,

the strapdown may help improve the service quality and efficiency of Canadian hospitals,

thereby helping address problems of the notorious long waiting lists for patients requiring

medical services in Canada.
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Appendix A

Rotation Matrices for Tetrahedron

and General-Type SBA Strapdowns

A.1 Case of a Tetrahedral Strapdown

O

X

Y

Z

l

X1

X2

X3

X4

Y1 Y2

Y3

Y4

Z1 Z2

Z3

Z4

Fig. A.1 Illustration of the tetrahedral strapdown with its local and global
coordinate frame

Figure A.1 illustrates the tetrahedral strapdown with its local and global coordinate

frames. It is noteworthy that the coordinate frame located at the origin of the strapdown

frame coincides with the global coordinate frame attached at the rigid-body centroid. The

rotation matrix Ri for the ith SBA is obtained below.
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• For SBA 1, the coordinate frame is rotated about X1 with RX1
through an angle θX1

,

then about Z1 with RZ1
through θZ1

, the rotation matrices being given by

RX1
=











1 0 0

0 cos θX1
− sin θX1

0 sin θX1
cos θX1


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

, RZ1
=
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



cos θZ1
− sin θZ1

0

sin θZ1
cos θZ1

0

0 0 1











(A.1)

where θX1
= −π/3 is the angle between any two faces of the strapdown, θZ1

= −π/6.

The overall transformation matrix R1 can be expressed as:

R1 = RZ1
RX1

(A.2)

• For SBA 2, the coordinate frame is rotated about X2 by θX2
, then it is rotated about

Z2 by θZ2
, with the rotation matrices as:

RX2
=











1 0 0

0 cos θX2
− sin θX2

0 sin θX2
cos θX2











, RZ2
=
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







cos θZ2
− sin θZ2

0

sin θZ2
cos θZ2

0

0 0 1











(A.3)

in which θX2
= −π/3, θZ2

= −2π/3. Likewise, the overall transformation matrix R2

is expressed as:

R2 = RZ2
RX2

(A.4)

• The rotation for SBA 3 is obtained likewise: rotation about X3 first, then rotations

about Z3, with θX3
= −π/3, θZ3

= π/2.

• The local coordinate frame of SBA 4 coincides with OXY Z; hence, the rotation

involved is the 3 × 3 identity matrix.

A.2 Case of a General Strapdown

Similar to the case of a tetrahedral strapdown, as illustrated in Fig. A.2, the position

vector of each SBA centroid in OXY Z is obtained under a rotation of OiXiYiZi. The

transformation is investigated below:
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Fig. A.2 Illustration of the brick strapdown with local and global coordinate
frames

• For SBA 1 and SBA 2, the rotation matrix is also the identity, as the coordinate

directions are the same as those of OXY Z.

• For SBA 3 and SBA 4, the local coordinate frame is rotated about the Y3 and Y4 axes

respectively, followed by a rotation about X3 and X4, respectively, with the rotation

matrices:

RY3
= RY4

=











cos θ1 0 sin θ1

0 1 0

− sin θ1 0 cos θ1











, RX3
= RX4

=











1 0 0

0 cos θ2 − sin θ2

0 sin θ2 cos θ2











(A.5)

where θ1 = −π, θ2 = −π/2. The overall rotation matrices R3 and R4 are defined as:

R3 = RY3
RX3

, R4 = RY4
RX4

(A.6)

• The rotation matrices R5 and R6 of SBA 5 and SBA 6 are obtained through rotations

about the Y5, X5 and Y6, X6 axes, respectively, of the same form as R3 and R4, with

θ1 = −π/2, θ2 = −π/2.
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Appendix B

Microfabrication Recipes

All microfabrication recipes cited in Chap. 4 are listed below:

Table B.1 Spinning a 1.4-µm layer of Shipley-1813 photoresist on a four-
inch silicon wafer
tool: Site Services Coater/Developer (SSCD) recipe: 4C14NEBR.LN

step parameters
spin 200 rpm

dispense resist from edge to center
accelerate 50000 rpm/s

spin 3950 rpm, during 30 s
spin 2000 rpm

decelerate 10000 rpm/s
softbake 115◦C, during 1 min
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Table B.2 Exposing a layer of photoresist on a four-inch silicon wafer using
top-side alignment marks
tool: EVG 620 Aligner recipe: TopSide-5inMask-4in.rcp

parameter value
maskholder size 5 inches
substrate size 4 inches

separation 50 µm
mask thickness 2.28 mm

substrate thickness 300 µm

resist thickness
1.4-µm layer of Shipley-1813
10-µm layer of AZ9245

process top side
process mode transparent

exposure mode constant energy
contact mode hard contact

energy
65 mJ (1.4-µm layer of Shipley-1813)

250 mJ/cycle cycles (10-µm layer of AZ9245)

Table B.3 Developing a 1.4-µm layer of Shipley-1813 photoresist on a four-
inch silicon wafer

tool:Site Services Coater/Developer (SSCD)
recipe: D1813 45.LN

step parameters
accelerate 10000 rpm/s
spin 400 rpm, during 2.5 s

after 1 s, dispense developer from edge to center
decelerate 10000 rpm/s
spin 50 rpm, during 2.5 s
decelerate 10000 rpm/s

stand still for 41 s
dispense DI water in the center for 20 s

spin 500 rpm, during 20 s
spin 3000 rpm, during 10 s
decelerate 10000 rpm/s
spin 100 rpm, during 5 s
decelerate 500 rpm/s
hardbake 90◦C, during 90 s
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Table B.4 Regular solvent clean process on solvent bench
tool: solvent bench

step parameter
acetone dip 15 min at room temperature

isopropyl alcohol dip 15 min at room temperature
distilled water 10 min at room temperature

wafer drying using nitrogen gun

Table B.5 Deep reactive ion etching of silicon
tool: Tegal SDE110 DRIE recipe: SPC BOSH 2UM S1813
depth: 4 µm duration: 1 min 30 s

step

THERM 0C
200MM

TEMP 30 SEC
200 MM

main etch

gas
time
(s)

flow
(sccm)

pressure
(mbar)

RF power
source (w)

LF power
frequency(Hz)

SF6 2.0 300 4.5−2 2000 285
C4F8 4.5 150 2.5−2 2000 280

Table B.6 Growing a 5000-Å layer of silicon dioxide on silicon

tool: Tylan Oxidation and LPCVD Furnace Stack

parameter value
gas O2 + H2 (wet environment)

temperature 1100◦C
duration 38 min 49 s

Table B.7 Reactive ion etching of silicon dioxide
tool: Applied Materials P5000 RIE recipe: NANOTOOL OX ETCH
depth: 0.55 µm

step stabilization main etch rampdown
time (s) 15 120 30

pressure (mTorr) 100 100 open
power (w) 0 720 100

B-field (Gauss) 0 70 0
CHF3 (sccm) 45 45 0

Ar (sccm) 70 70 100
CF4-1 (sccm) 7 7 0



B Microfabrication Recipes 144

Table B.8 Lift-off process
tool: Solvent Wetbench

step time
—c—soak the wafer into Remover PG at 70◦C with the ultrasonic bath 40 min
rinse the wafer by means of DI water 10 min

Table B.9 Deep reactive ion etching of silicon

tool: Tegal SDE110 DRIE recipe: McGill TSV 820HM
depth: 300 µm duration: 18 min

step

THERM -5C
150MM

TEMP 30 SEC
150 MM

TSV (main etch)

gas
time
(s)

flow
(sccm)

pressure
(mbar)

RF power
source (w)

LF power
frequency(Hz)

SF6 2 500 7.0−2 2800 285
C4F8 1 300 7.0−2 2800 285
O2 8 200 1.8−1 2800 273


