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Abstract

This thesis explores the extraction of vibrato sounds from monaural excerpts of polyphonic

music using the coherent frequency modulation (CFM) of component partials as a grouping

cue. Nonnegative Matrix Factorization (NMF) (Lee and Seung 1999) is currently a popular

tool for musical source separation (Wang and Plumbley 2005), since it can provide a low-

rank approximate factorization of the magnitude spectrogram of the analyzed sound, where

the factors can be interpreted as the spectral templates and temporal activations of the

notes contributing to the recording. However, NMF implicitly models each source as having

a fixed spectral template and is thus ill-suited to the analysis of vibrato sounds, which are

characterized by slowly varying frequency and amplitude modulations.

We first propose a useful signal parameter, expressed simply as the local ratio of fre-

quency slope-to-frequency for a component partial, which can be extracted as a feature

from an excerpt of polyphonic music via non-stationary sinusoidal model analysis (Smith

and Serra 1987) followed by parameter estimation of each component sinusoid using the

Distributed Derivative Method (Betser 2009). Two source separation schemes are proposed

which utilize this extracted feature. The first, which we call Partial Grouping by Coherent

Frequency Modulation (PG-CFM), directly employs this feature in the grouping of the

partials tracked by the sinusoidal model analysis. The second, which we call Nonnegative

Matrix Factorization with Coherent Frequency Modulation constraints (NMF-CFM), uni-

fies the NMF generative model with the sinusoidal model analysis via a restructuring of the

NMF decomposition. Additionally, the NMF-CFM decomposition is constrained by way of

penalty terms that encourage CFM among same-source partials in the estimated sources.

Two experiments were conducted to investigate the performance of PG-CFM technique.

The first investigates the behavior of the grouped partials with respect to the PG-CFM

algorithm parameters. The second experiment compares the performance of PG-CFM

against NMF, first for a class of synthetic vibrato sounds, and then for a small dataset of

vocal audio with the vibrato effect. An application of NMF-CFM to the analysis of vibrato

singing voice sounds is also provided.

These preliminary results suggest a benefit of using a CFM-based source model in a

separation task where vibrato voices or instruments are the target sources.
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Resumé

L’utilisation de la factorisation en matrices non-négatives (NMF) (Lee et Seung 1999)

est devenue très populaire dans le cadre de la séparation de sources sonores (Wang et

Plumbley 2005), car elle fournit une approximation par factorisation de rang faible des

spectrogrammes d’amplitude d’un extrait musical, dont les facteurs peuvent être interprétés

respectivement comme des références spectrales et des activations temporelles des notes

contribuant à l’extrait musical. Cependant, la NMF considère implicitement chaque source

comme étant à contenu spectral fixe, et est donc mal adaptée à l’analyse des sons vibrés qui

se caractérisent par une modulation lente en fréquence et en amplitude de leurs partiels.

Dans cette thèse nous proposons tout d’abord un descripteur de signal utile dans le cadre

de la séparation de sources et qui s’exprime simplement comme le rapport local entre la

pente de fréquence et la fréquence d’un partiel donné, ce descripteur pouvant être estimé à

partir d’un extrait de musique polyphonique selon une méthode d’analyse additive (Smith

et Serra 1987), suivie d’une estimation de paramètres de chacune des sinusöıdes par la

méthode dite de la distribution dérivée (DDM) (Betser 2009). Deux stratégies de séparation

de sources reposant sur cette caractéristique sont ensuite proposées. La première, que nous

appelons regroupement de partiels par modulations de fréquence cohérentes (PG-CFM),

emploie directement ce descripteur pour regrouper les partiels préalablement extraits par

une technique d’analyse sinusöıdale. La seconde, que nous appelons factorisation de matrice

non-négative sous contrainte de modulations de fréquence cohérentes (NMF-CFM), unifie

le modèle générique de la NMF avec le modèle de représentation sinusöıdal des sons, via

une restructuration de la technique NMF de base. De plus, nous ajoutons des contraintes

à la décomposition NMF-CFM sous forme de termes de pénalité qui encouragent la CFM

entre partiels de même source.

Deux expériences ont été menées afin d’évaluer la performance de la technique PG-

CFM. La première expérience évalue le comportement du regroupement de partiels en

fonction de la paramétrisation de l’algorithme PG-CFM. La seconde expérience compare les

performances de la PG-CFM et de la NMF, d’abord pour une classe de signaux synthétiques

vibrés, puis sur une sous-classe de signaux vocaux réels vibrés. Une application de la

NMF-CFM à l’analyse de signaux de voix chantées vibrées est aussi menée. Ces résultats

préliminaires tendent à montrer l’effet bénéfique de l’introduction du descripteur CFM dans

les tâches de séparation de sources audio lorsque le mélange polyphonique est constitué de
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sources dont chacune est soumise à une modulation de fréquence cohérente et en particulier

à une modulation de type vibrato.
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Chapter 1

Introduction

We can understand a recording of polyphonic music as a mixture of instrumental sources.

Musical source separation describes the “unmixing” of such a recording to produce an

isolated track for each of the instruments present. This problem is of great interest in

the Music Technology community, as a robust solution would enable the design of more

capable software tools for composers and sound engineers working with recorded samples.

Additionally, related tasks such as polyphonic transcription, content-based indexing, and

audio coding, benefit from the individual analysis of each separated source (Lyon 2010).

This thesis concerns the analysis of monaural musical recordings in order to extract

time-domain audio estimates for the individual notes present, where each note has an

independent frequency vibrato effect. Two algorithms are proposed to this end, each relying

on the extraction of features that represent the frequency modulation on each component

partial in a non-stationary sinusoidal model. The extracted feature is shown to be common

to all same-source partials and is thus useful in the separation. The first algorithm, which we

call Partial Grouping by Coherent Frequency Modulation (PG-CFM), groups the partials

directly by estimating feature vectors, one for each source, which most likely explain the

observed data. The second, which we call Nonnegative Matrix Factorization with Coherent

Frequency Modulation constraints (NMF-CFM), is an extension of Nonnegative Matrix

Factorization (NMF) (Lee and Seung 1999), which correctly decomposes the magnitude

spectrogram for some musical source separation tasks (Wang and Plumbley 2005) but is

ill-suited to the analysis of vibrato sounds (Barker and Virtanen 2013).

2015/12/11
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1.1 Motivation

This work is motivated on the algorithmic side by the data-driven decomposition of Non-

negative matrix factorization (NMF) (Lee and Seung 1999) (Paatero and Tapper 1994).

NMF provides an efficient model which approximates the observed nonnegative data by

means of a nonnegative factorization, where individual factor-pairs in the model can be

meaningfully interpreted in a variety of contexts (Wang and Zhang 2012). The decomposi-

tion provided by NMF is fundamentally data-driven, as no a priori knowledge of the signal

characteristics are required, and is often referred to as a blind source separation technique

for this reason.

Although NMF has successfully been applied to musical source separation tasks via

a factorization of the spectrogram of the musical mixture (Wang and Plumbley 2005)

(Virtanen 2007), it models vibrato sounds—characterized by slowly-varying amplitude and

frequency modulations (Maher and Beauchamp 1990)—incorrectly in the sense that the

factor-pairs do not capture the characteristic modulation (Li, Woodruff, and Wang 2009).

For the analysis of this class of sounds, we appeal to sinusoidal signal modeling (Smith and

Serra 1987) (McAulay and Quatieri 1986) and the perceptual theory of Auditory Scene

Analysis (Bregman 1990), which respectively provide means for a proper analysis of the

subaudible modulation and subsequent perceptual grouping of partials according to the

analysis.

It is certainly worth recognizing the large body research in audio analysis—including

on the topic of source separation—that draws inspiration from Auditory Scene Analysis,

and is called Computational Auditory Scene Analysis (CASA) (Wang and Brown 2006).

Labeling a source separation method as CASA-based typically implies the use of (a) a

physically-inspired signal representation, e.g., the cochlear model of (Lyon 1982), and (b)

some high-level segmenting and grouping scheme which results in a so-called “auditory

stream”, e.g., a talker or instrument, present in the recording. The algorithms presented in

this thesis are not CASA-based in this regard, since they work on a lower-level to resolve

overlapping musical notes from short excerpts of music and use only one of the grouping

cues presented in Auditory Scene Analysis.
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1.2 Scope

Broadly speaking, source separation describes the task of isolating component signals con-

tributing to an observed mixture. We focus here on the problem of single-channel source

separation, where the observed mixture is a recording of musical sounds. For the sake of

brevity, we avoid an exhaustive review of the broader source separation literature. Instead,

we focus on the problem at hand, while providing the necessary background information

and abridged history relating to the monaural musical source separation problem as needed

in the subsequent chapters. For a more comprehensive study of the source separation prob-

lem in general, including a taxonomy of possible problems according to their specifications,

the interested reader should refer to (Jutten and Comon 2010), or (Vincent and Deville

2010) for the chapter on audio applications.

The purpose of these investigations is to produce an appropriate signal model and

accompanying algorithm for the extraction of sounds characterized by a slowly-varying fre-

quency modulation, e.g., singing voice with vibrato. This represents a significant yet small

subtask associated with the more broad and difficult problem of developing a robust musi-

cal source separation system capable of analyzing entire pieces of music. Correspondingly,

throughout this thesis the source separation problem is constrained along several dimen-

sions in order to permit a thorough investigation of the novel techniques proposed. For

example, identification of the number of sources present in a mixture is a difficult problem

for which no robust solution currently exists (Virtanen 2007). As such, we assume the

number of sources to be known a priori in the experiments and applications presented.

The algorithms presented are evaluated within a limited scope, namely, the analysis

of short (one to three seconds) monaural recordings produced as the linear mixture of

two sources, where a “source” is defined as a single note, which is oftentimes synthetically

produced as a simple waveform (e.g., square wave) with a vibrato effect added via a coherent

frequency modulation on the component partials used in the additive synthesis. The use

of well-calibrated synthetic signals facilitates a thorough investigation of the algorithm

behaviors. By generating signals synthetically, we have access to the “ground truth” signal

parameters such as instantaneous amplitude and frequency of the component partials.

Access to ground truth is especially relevant to the novel source separation algorithms

presented, since several levels of feature extraction are carried out prior to the separation

and source estimation. In the experiments presented we use the features extracted from the
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synthetic signal mixtures in the separation, but hold the ground truth signal parameters

aside for evaluation as needed. Use of synthetic signals also permits the quick prototyping

and evaluation using large datasets of vibrato sounds, possibly with random parameters.

In general, however, we should be wary of experimental evaluations using data which

fit the generative model by design. To this point, evaluation of mixtures of vibrato vocal

sounds are provided that demonstrate a relevance of the proposed feature extraction and

separation techniques to the analysis of natural vibrato sounds.

The analysis of vibrato source separation on very short musical excerpts does seem

appropriate as the effect is generally applied per-note. However, the unification of the

vibrato-specific separation techniques presented in this thesis would require additional work.

In particular, the coherent frequency modulation cues are not appropriate for the analysis

of sounds with stationary fundamental frequency since they rely on estimates of frequency

slope which are zero for this class of sounds. The results presented in here hopefully

represent a contribution towards the development of a more complete and robust source

separation scheme which appropriately handles vibrato sources.

Throughout this thesis we take “vibrato” to mean frequency vibrato, since we focus on

the use of local frequency slope estimates as a grouping cue in the source separation. It

should be noted that elsewhere in the literature, vibrato typically refers to the combined

effect of subaudible modulations in both frequency and amplitude (also called tremolo).

The vibrato effect may be characterized, depending on the instrumental source, by a pre-

dominance of either frequency modulations (e.g., singing voice, stringed instruments) or

amplitude modulations (e.g., brass and woodwind instruments) (Verfaille, Guastavino, and

Depalle 2005). While we focus on the analysis of vibrato sounds in this thesis, the under-

lying model can be applied more generally to the analysis of any sound with a coherent

frequency modulation across partials, e.g., glissando, pitch bending.

1.3 Signal representations

The source separation of audio signals is rarely carried out in the time domain. Rather,

the mixture is typically processed in some other domain following the application of an

invertible transformation to the input signal or analysis by a signal model for which a

corresponding synthesis scheme exists. Two signal representations are of particular interest

in this thesis. The first is given by the short-time Fourier transform (STFT) of the analyzed
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sound, which can be interpreted as a sliding-window Fourier transform or as the output

from a bank of equispaced band-pass filters (Allen and Rabiner 1977). This complex-valued

matrix encodes both magnitude and phase information at the output of each filter. NMF

can analyze only the STFT magnitudes (called the spectrogram) due to the nonnegativity

constraint. Thus the STFT phase information is discarded prior to the NMF analysis. This

step, however, prohibits the NMF from properly analyzing vibrato sounds, since frequency

modulations are represented by the phase of the STFT.

In this research we appeal to sinusoidal model analysis to capture the frequency mod-

ulation information. This signal representation more directly captures the frequency mod-

ulation in the analyzed sound by modeling it as a sum of sinusoids with slowly varying

amplitudes and phase, and has been studied extensively for the analysis of a single source

of both a musical and speech nature (Serra and Smith 1990) (McAulay and Quatieri 1986).

While this signal model is appropriate for most pitched musical sounds, percussive sounds

are notably ill-fit by this model.

1.4 Evaluation

The quantitative evaluation of algorithm performance remains a key issue in the research

community, since the assessment of perceived quality of an estimated source is funda-

mentally a subjective task, and the subjective assessment of results by human listeners is

often prohibitively expensive and discourages an easy comparison and cross validation of

results across groups of researchers. Moreover, estimated sources can suffer from distor-

tions of several varieties, and perfect separation is “rarely achieved in practice” (Vincent

and Deville 2010). The general paradigm for objective evaluation of performance involves

a comparison of the estimated source to the actual source by some metric which quan-

tifies levels of distortion in the estimated source. This mode of evaluation necessitates a

possession of the source signals in isolation and thus favors the use of simulated mixtures

in experimentation. We use simulated mixtures in the experiments and applications pre-

sented to facilitate quantitative performance evaluations, which reflects a common practice

in the literature (Vincent and Deville 2010). We use the metrics proposed by (Vincent,

Gribonval, and Févotte 2006), termed BSS_EVAL, which were proposed to assess the variety

of distortion measures characteristic of source separation algorithms. BSS_EVAL is widely

used in the contemporary source separation literature, having been used to evaluate recent
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separation challenges in source separation challenges focused on both speech and musical

signals (Vincent, Watanabe, Barker, Roux, Nesta, and Matassoni 2013) (Yen, Luo, and

Chi 2014), so the use of these metrics should yield results which are easy to interpret and

compare against competing techniques. Details of these metrics are provided alongside the

experimental procedure in section 4.3.5.

In evaluating the performance of PG-CFM and NMF-CFM, large experiments were

performed on simulated mixtures of synthetic signals. The use of synthetic signals provides

the sufficient control over the experimental conditions for the investigation the behavior

of the proposed algorithms with respect to their parameters. Moreover, a large and well-

organized database of frequency vibrato sounds was unavailable. However, an evaluation

of the feature extraction and source separation techniques described is provided using a

small dataset of vibrato singing voice sounds in order to show that the coherent frequency

modulation model is relevant to the analysis of natural sounds. This database, which is

discussed in further detail in section 4.3.2, was assembled by simulating the mixture of pairs

of vibrato vocal excerpts retrieved from several existing databases of musical recordings (not

specific to frequency vibrato).

1.5 Outline

Chapter 2 provides background on NMF and its application to musical source separation,

including the presentation of several basic algorithms from the literature and a discussion of

possible extensions. Chapter 3 discusses the analysis of musical sources by a non-stationary

sinusoidal model, and provides some background relevant to the perceptual motivations of

the research. Additionally, a source separation algorithm for grouping component partials

according to coherent frequency modulation cues is proposed. Chapters 4 and 5 present

the procedure and results from experiments carried out to evaluate the performance of the

proposed partial grouping algorithm in the analysis of vibrato sound mixtures. Synthetic

vibrato sounds and excerpts of vibrato vocal sounds are both considered in the evaluation.

Chapters 6 proposes an algorithm which unifies the NMF with the partial grouping method

and presents an application to the analysis of synthetic vibrato signals. Finally, chapter

7 summarizes the thesis, provides concluding remarks, and offers suggestions for future

research. Details of the analysis and synthesis tools used in the experiments are provided

in appendix A. Appendices B and C provide a derivation of the iterative updates for the

2015/12/11
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algorithms presented, and shows an equivalence of several optimization problems used in

the PG-CFM and NMF-CFM to well-known optimization problems which permit the use

of efficient solvers.
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Chapter 2

Nonnegative matrix factorization

Nonnegative Matrix Factorization (NMF) is a dimensionality reduction technique moti-

vated by the desire to represent observed nonnegative data approximately but efficiently as

a linear mixture of nonnegative elements, where each element has a low-rank factorization.

This amounts to a search for approximate matrix factors due to linearity in the matrix

multiplication and mixture model. An individual element contributing to the approxima-

tion may be interpreted in isolation due to a nonnegativity constraint on its factors. NMF

is often called a parts-based decomposition in recognition of this interpretability, which is

often meaningful in the sense that each element in the approximate factorization seems to

represent a part or source contributing to the observed data. This apparent representation

is the key asset of NMF as a data reduction tool, as the approximate factors themselves

are computed blindly, i.e., without a priori knowledge of the data (aside from their nonneg-

ativity). NMF provides a simultaneously economical and meaningful signal representation

in a variety of applications where nonnegative data is analyzed and has recently become

a popular analysis tool in many fields of computational science including musical source

separation.

2.1 History

NMF was popularized by (Lee and Seung 1999) via an application to a facial recognition

task where the resulting nonnegative components were shown to be more readily inter-
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pretable than those yielded by established dimensionality reduction techniques.1 NMF

was used to analyze 2,049 low-resolution greyscale images of faces in order to produce a

(low-rank factorizable) basis of 49 elements. Both the observed image pixels and the NMF

components are nonnegative, so individual NMF basis elements permit the interpretation as

parts (e.g., a mouth or pair of eyes) contributing to the analyzed image. This seminal paper

also contributed algorithms for deriving approximate factors via iterative multiplicative up-

dates, which are discussed in section 2.7. Theoretical developments in matrix factorization

with a nonnegativity constraint were introduced several years earlier (Paatero and Tapper

1994). NMF has also been extended to analyze data in higher dimensions as Nonnegative

Tensor Factorization (NTF) (Cichocki, Zdunek, and Amari 2008).

(Cichocki, Zdunek, Phan, and Amari 2009) provides a more detailed history of NMF

alongside a comparison to established data analysis tools such as Independent Component

Analysis (ICA) (Comon 1994). (Wang and Zhang 2012) presents a comprehensive review

of recent extensions to the basic NMF.

2.2 Audio applications

In audio processing, the factor-pairs resulting from the NMF decomposition of a spec-

trogram can be interpreted as pairs of spectral templates and temporal envelopes that

approximately produce the spectrogram of the analyzed sound. In the analysis of a music

recording, the elements in the modeled mixture correspond to the notes which constitute

the piece or excerpt, each of which is characterized spectrally by pitch and timbre, and

temporally by onset and offset. (Plumbley, Abdallah, Bello, Davies, Monti, and Sandler

2002) and (Smaragdis and Brown 2003) identified the mid-level parts-based signal repre-

sentation provided by NMF as useful in a music transcription task, the goal of which is to

determine names and durations of notes present in a music recording.

(Wang and Plumbley 2005) applied NMF analysis to a source separation task, where

instrumental sources in the recording must be estimated in the time domain. The time-

domain estimation of sources was identified as a key challenge since the nonnegative NMF

components represent spectrograms of the sources and lack phase information required for

1NMF was compared with both Principal Component Analysis (PCA) (Hotelling 1933) and Vector
Quantization (VQ) (Gray 1984) reduced to the same rank, neither of which imposes a nonnegativity
constraint.
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an inverse short-time Fourier transform reconstruction. Estimation of missing phase infor-

mation from a magnitude spectrogram has been the subject of research in other contexts

(Griffin and Lim 1984) (Achan, Roweis, and Frey 2003), particularly in the single-source

case, but (Wang and Plumbley 2005) used a basic masking approach which assumes only

one dominant source per time-frequency tile. This masking scheme implicitly assumes that

the sum of the spectrograms of the sources is the spectrogram of the sum of the sources

(equivalent to assuming no time-frequency overlap between sources), which is known to be

violated by many real audio mixtures, particularly with musical mixtures (Li, Woodruff,

and Wang 2009). (Kamoeka, Ono, Kashino, and Sagayama 2009) addressed this via the

inclusion of a the source phases in a NMF-like decomposition (although strictly not a factor-

ization) termed Complex Nonnegative Factorization (CNMF). (Bronson and Depalle 2014)

extended CNMF via a phase model for harmonic sources. (Badeau and Plumbley 2014) ap-

plied a so called “high-resolution” NMF model, which accounts for both the STFT phases

and local correlations within each frequency band, to the estimation of sources within a

convolutive mixture model.

2.3 Problem formulation

The nonnegative matrix X ∈ R
F×N
≥0 is approximated as the product of two nonnegative

factor matrices as

X ≈ X̂ = WH =
R
∑

r=1

wrh
T
r (2.1)

where theW = (w1, ...,wR) ∈ R
F×R
≥0 is the basis matrix whose columns are the basis vectors

and H = (h1, ...,hR)
T ∈ R

R×N
≥0 is the activation matrix whose rows are the activations

vectors. W and H are hereafter referred to as the NMF factors for convenience and

consistency with the literature, despite the fact that they only approximately factorize the

observed data. R is chosen so that the factorized representation is smaller then the observed

data, i.e., F × R + R × N ≪ F × N . The value of R is an important problem-specific

design consideration as it sets the number of basis vectors in the approximation, which

should ideally match the dimension of the subspace in which the observed data lie so that

individual basis vectors can be meaningfully interpreted.

W and H are chosen to minimize some scalar cost function expressed as sum of scalar

costs per element, with an element-wise nonnegativity constraint on the factors, expressed
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as

minimize
W,H

D(X|WH) =
F−1
∑

f=0

N−1
∑

n=0

d(Xf,n|(WH)f,n)

subject to W,H ≥ 0.

(2.2)

W and H are often referred to in the literature as the factors of the observed data although

their product is in fact the low-rank approximation X̂.

For the analysis of audio mixtures X is chosen as some nonnegative time-frequency

representation of the input audio. The constant-Q transform (Brown 1991) has also been

examined for NMF-based audio analysis (Smaragdis, Raj, and Shashanka 2008), but is less

desirable for source separation as the resynthesis of time-domain audio from a factored

constant-Q transform is not straightforward. In this thesis we approximately factorize the

spectrogram (STFT magnitudes) of the observed data, i.e.,

Xf,n =
∣

∣Xf,n

∣

∣ (2.3)

where the STFT Xf,n is defined in appendix A.1.

We interpret the r-th outer product in the sum of (2.1) as the spectrogram of the r-th

part of the observed mixture spectrogram X. wr and hr then correspond to the spectral

template and temporal activation corresponding to the r-th part.

2.4 Separation

A reconstruction stage is required to estimate time-domain audio x̂(r) for source r given its

NMF decomposition X̂(r) = wrh
T
r , which lacks phase information. A common approach is

to apply a time-frequency mask derived from X̂(r) to the input STFT X. The approximate

STFT for source r is then expressed as

X̂
(r) =

X̂(r)

X̂
◦ X (2.4)

where and ◦ denote element-wise division and multiplication, respectively. The ratios
X̂(r)

X̂
correspond to per-hop Wiener filter gains for each of the estimated sources (Févotte,

Bertin, and Durrieu 2009). Source r is then reconstructed in the time-domain by ISTFT
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as

x̂(r) = [ISTFT{X̂(r)}]. (2.5)

This separation scheme implicitly assumes a single dominant source within each time-

frequency bin (i.e., non-overlapping partials). Musical noise may occur in the separated

audio when this assumption is violated.

2.5 Scalar costs

The qualities of the factors solutions to NMF depend on the choice of an element-wise

distance or divergence measure d(Xf,n|X̂f,n) in equation 2.1. (Lee, Hill, and Seung 2001)

examined two popular choices of scalar cost: the squared Euclidean distance (SED), defined

as

dSED(a|b) = (a− b)2, (2.6)

and the generalized Kullback-Liebler (KL) divergence, defined as

dKL(a|b) = a log
a

b
− a+ b. (2.7)

Another popular choice is the Itakura-Saito (IS) divergence (Févotte, Bertin, and Durrieu

2009).

dIS(a|b) =
a

b
− log

a

b
− 1 (2.8)

SED-NMF refers to NMF using the SED as the per-element scalar cost. Likewise, KL-

NMF and IS-NMF respectively refer to NMF using KL divergence and IS divergence as the

per-element scalar cost.

The IS divergence was conceived as measure of fit for comparing power spectra of speech

signals (Itakura and Saito 1968), and is thus well-suited to audio applications where the

observed data are power spectrograms. Furthermore the IS divergence is scale invariant,

a desirable quality in the analysis of audio, which has a large dynamic range and scales

logarithmically in perceptual loudness. Note that while each of the measures is nonnegative

with a unique minimum at a = b, dKL and dIS are not distances in the statistical sense

because they are asymmetric and violate the triangle inequality, i.e., d(a|b+ c) ≤ d(a|b) +

d(a|c) ∀ a, b, c does not hold. dSED is derived by squaring the ℓ2 norm (a true distance

metric) for ease of evaluating the derivatives.
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dSED(a|b) and dKL(a|b) are each separately convex with respect to a and b. The overall

scalar cost D(X|WH) is thus separately convex in each of the factors, which permits for

an optimal solution in each step of the alternating minimization. dIS(a|b), however, is sep-

arately non-convex in the individual variables, so each step in the alternating minimization

iteration yields a locally optimal solution by Majorization-Minimization (MM). (Févotte,

Bertin, and Durrieu 2009) provides such MM algorithmic updates for IS-NMF.

The β-divergence generalizes the three aforementioned cost functions to a single diver-

gence measure, defined as

dβ(a|b) =



















1
β(β−1)

(aβ + (β − 1)bβ − βabβ−1) β ∈ R\{0, 1}

a log a
b
− a+ b β = 1

a
b
− log a

b
− 1 β = 0

. (2.9)

where β is a tunable design parameter. NMF using the β-divergence is called β-NMF.

This generalization of the scalar cost allows for a flexible algorithm design as the cost

function can be tailored to the application at hand or can even be learnt from the data

given an appropriate evaluation criterion2. The β-divergence is equivalent to SED, KL

divergence, and IS divergence in the special cases of β equal to 2, 1, and 0, respectively.

The value of β can in fact be understood as affecting the shape of the noise in the NMF

implicit generative model, e.g., Gaussian additive noise for β = 2 and Poisson multiplicative

noise for β = 1. It is interesting to note that the tuning of β controls a tradeoff of

influence between high- and low-energy components in the decomposition, with increasing β

prioritizing high-energy components and β = 0 weighting all components equally, i.e., scale-

invariance as mentioned above. For applications to audio analysis this can be interpreted

as a tradeoff of influence of the low- (e.g., fundamental frequency) and high-frequency (e.g.,

upper overtones) components, since the spectral energy of musical sounds tends to fall off

in the higher registers.

dβ(a|b) is separately convex in a and b only for β ∈ [1, 2]. (Hennequin, David, and

Badeau 2011) proved the β-divergence to be a Bregman divergence, which permits the

derivation of an appropriate majorizing auxiliary function for an MM-based β-NMF algo-

rithm for the non-convex regions of β as in (Dhillon and Sra 2006). (Févotte and Idier

2Application-specific evaluation criteria are required to determine the optimal value of β as the scalar
costs dβ(a|b) cannot be directly compared for differing values of β.
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2011) provided such an algorithm for β-NMF with MM updates and demonstrated an im-

provement in convergence speed when compared with multiplicative update and heuristic

update β-NMF algorithms.

2.6 Alternating factor updates

The acquisition of a globally optimal solution is intractable in practice as the cost function

to be minimized is generally non-convex with respect to both matrix factors. Instead we

seek a locally optimal solution by an iterative alternating factor update scheme, where the

inner loop first optimizes W while H is held fixed, i.e.,

choose Wi+1

such that D(X|Wi+1Hi) ≤ D(X|WiHi)
(2.10)

where Wi and Hi denote the basis and activation matrices at the i-th iteration. We then

in turn update H while fixing W to the value from previous computation, i.e.,

choose Hi+1

such that D(X|Wi+1Hi+1) ≤ D(X|Wi+1Hi)
(2.11)

This optimization scheme is motivated by the separate convexity with respect to the

individual factors of the several popular cost functions, including those examined in (Lee

and Seung 1999). Whenever the cost function is separately convex we can alternatively

update each factor to its optimum value given the fixed value of the other factor. The

alternating minimization scheme remains applicable to choices of cost function that are

non-convex in the individual factors. In this case each optimization step in the inner

loop (e.g., finding the optimal factor update Wi+1 ← Wi given a fixed Hi) returns a

locally optimal solution via Majorization-Minimization (MM) given an appropriate convex

majorizing auxiliary function as in (Hunter and Lange 2004).

In practice the factors are often updated with a descent method that does not update the

independent factor optimally but hopefully provides a sufficient reduction in cost. Descent

methods require choice of descent direction and step size. Gradient descent methods choose

the descent direction as the gradient of the cost function with respect to the independent

factor. A subsequent projection step is required, as updating the factors in the direction of
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the gradient descent does not guarantee preservation of their nonnegativity. In the gradient

descent paradigm each factor update is inexpensive and the cost decreases monotonically

but may converge slowly.

The outer loop of the alternating minimization terminates when the stopping criteria

are met, which is typically chosen as a maximum number of iterations (Wang and Zhang

2012), but could be defined alternatively as a minimum scalar cost to be achieved, or

more rigorously as the satisfaction of the Karush-Kuhn-Tucker (KKT) conditions, which

guarantee the local optimality of a solution and are defined for NMF by (Berry, Browne,

Langville, Pauca, and Plemmons 2006).

2.7 Algorithms

NMF algorithms are described by their alternating factor updates (and possibly their ini-

tialization). They are assessed in terms of their speed of convergence and cost corresponding

to their final solution. An overview of significant NMF algorithms can be found in (Berry,

Browne, Langville, Pauca, and Plemmons 2006), where solution techniques from the lit-

erature are categorized in terms of their iterative update rules of the model parameters.

Several canonical NMF algorithms are discussed here. (Berry, Browne, Langville, Pauca,

and Plemmons 2006) offers a more comprehensive review of each of the following category

of factor update, including an examination of the KKT conditions for local optimality of

solutions and comparison of convergence speeds.

2.7.1 Alternating Least Squares NMF

(Paatero and Tapper 1994) devised SED-NMF as a two-step alternating least-squares prob-

lem. Indeed, the SED cost function defined in equation 2.6 is a least-squares problem with

one fixed factor and permits a closed from solution. Thus SED-NMF can be solved by alter-

nating least-squares updates to the factors, plus a projection step to ensure nonnegativity.

The basis matrix W is updated as

W← [XHT (HHT )−1]+ (2.12)
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where [·]+ denotes an element-wise nonnegative projection, i.e., projection onto the non-

negative orthant. Likewise, the activations matrix H is updated as

H← [(WTW)−1WTX]+. (2.13)

The Alternating Least Squares (ALS) framework supports extensions to NMF by the in-

clusion of certain penalty terms that preserve the separate convexity of the cost in the

factors, e.g., the inclusion of a ℓ2 norm constraint on one factor corresponds to a Tikhonov

regularization of the least-squares problem. The regularized SED-NMF of this form may

not permit a closed-form factor update as in equations 2.12 and 2.13 but can be solved

efficiently as a quadratic program followed by a nonnegative projection (Boyd and Vanden-

berghe 2009). (Cichocki, Zdunek, and Amari 2008) suggested that the speed of convergence

properties of ALS make it better-suited to large-scale problems and nonnegative tensor fac-

torizations.

2.7.2 Projected Gradient Descent NMF

Factors can be updated by additive gradient descent, a numerical optimization technique

suitable for non-convex problems whereby the model parameter is updated additively in a

direction opposite the local gradient of the scalar cost with respect to the parameter.

The step size is set by a growth factor ǫ. A subsequent projection step is required as

the additive gradient descent factor update may produce negative values in the factor. The

factors in Projected Gradient Descent NMF (PGD-NMF) are updated as

W←

[

W − ǫW∇WD(X|WH)

]

+

, (2.14)

and

H←

[

H− ǫH∇HD(X|WH)

]

+

(2.15)

where ǫW and ǫH are the step sizes for the factor updates. Linearity of the global cost

D(X|X̂) with respect to the element-wise scalar costs d(Xf,n|X̂f,n) permits element-wise

updates of the factors.



2 Nonnegative matrix factorization 17

The choice of step size is crucial in PGD-NMF as it affects speed of convergence and also

the final solution due to the projection step. Convergence to a local minimum {W∗,H∗}

is difficult to prove due to the projection step but is often empirically observed.

2.7.3 Multiplicative Update NMF

Multiplicative update NMF (MU-NMF) algorithms have been pervasive since their intro-

duction in (Lee and Seung 1999) and (Lee, Hill, and Seung 2001), likely due to the simplicity

of implementation. The updates are derived by (non-uniquely) expressing the gradient of

the cost function as the difference of two positive terms, expressed as

∇θD(X|X̂(θ)) = Gθ − Fθ (2.16)

where θ ∈ {W,H} is one of the two factors. The selected factor matrix is updated via

multiplication by the ratio of the two terms, i.e.,

θ ← θ ×
Fθ

Gθ

, (2.17)

where the multiplication and division are both element-wise. Nonnegativity is assured as

the multiplicative ratio must be positive. Coefficients will grow when the evaluated partial

derivative is negative and shrink towards zero otherwise. Each factor update is guaranteed

not to increase the cost, so MU-NMF with a sufficient number of iterations converges to a

stationary point, which can be either a local minimum or a saddle point (Berry, Browne,

Langville, Pauca, and Plemmons 2006), despite the initial claim by (Lee, Hill, and Seung

2001) of convergence to a local minimum. Multiplicative factor updates for SED-NMF are

expressed as

Wf,r ←Wf,r

(XHT )f,r
(WHHT )f,r

, (2.18)

and

Hr,n ← Hr,n

(WTX)r,n
(WTWH)r,n

(2.19)
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where θi,j denotes the {i, j}-th entry of the factor matrix θ. Multiplicative factor updates

for KL-NMF are expressed as

Wf,r ←Wf,r

∑

nHr,n
Xf,n

(WH)f,n
∑

σ Hr,σ

(2.20)

Hr,n ← Hr,n

∑

f Wf,r
Xf,n

(WH)f,n
∑

ffl Wffl

,r

(2.21)

MU-NMF is often interpreted as a additive gradient descent method where the projection

step is unnecessary and the step size is chosen adaptively and element-wise, expressed as

[ǫθ]i,j =

[

θ
1− Fθ

Gθ

Gθ − Fθ

]

i,j

. (2.22)

While the above equation is mathematically correct, this interpretation is technically in-

correct since a proper additive gradient descent method must have a uniform (i.e., not

element-wise) step size in order to maintain that the step is in the direction of the gradient.

Each multiplicative update is simple to implement, but MU-NMF generally has slow

convergence properties. Moreover, it is prone to suboptimal stationary solutions. For

example, once an entry of θ goes to zero it must stay there so the algorithm initialized

near a poor local optimum is likely to converge to that point as a solution. The inclusion

of a small noise term (e.g., 10−9) in the denominator is often included the avoid numerical

issues.

2.8 Initialization

The choice of initialization affects both the effectiveness of the approximate factorization,

i.e., the final cost, and the speed of convergence to the final value. The random nonnega-

tive initializations presented in (Lee and Seung 1999) remain prevalent in practice, as the

initialization tends to be “situation dependent” (Wang and Zhang 2012). (Berry, Browne,

Langville, Pauca, and Plemmons 2006) suggested a Monte Carlo approach for problems

requiring a near-global optimum, whereby the best NMF solution is chosen from amongst

many trials with random initializations. Some initialization strategies investigated in the

literature include Singular Value Decomposition (Langville, Meyer, and Albright 2006)
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(Boutsidis and Gallopoulos 2008) and k-means clustering (Wild, Curry, and Dougherty

2004). (Bryan, Mysore, and Wang 2013) provides an interesting example of initialization

in an audio source separation problem, where a stationary but perceptually unsatisfactory

NMF solution was reinitialized with user annotations to the approximate spectrogram to

produce a better solution.

2.9 Uniqueness

NMF is known to be an ill-posed problem in the sense that it has no unique global minimum,

since D(X|WH) = D(X|WAA−1H) for any invertible matrix A such that WA and A−1H

are nonnegative, e.g., scaling or permuting the factors. Local minima are non-unique by

the same argument (Donoho and Stodden 2003). NMF solutions are also ambiguous under

rotation transformations for which A need not be element-wise nonnegative. A common

approach for addressing this scaling ambiguity is to normalize3 columns of W following the

factor updates and multiply rows of H by the inverse norms so that X̂ = WH is unchanged

by the normalization.

Whereas scaling and permutation ambiguities do not affect the qualitative properties

of the NMF solution, rotation ambiguities are likely to do so. (Klingenberg, Curry, and

Dougherty 2009) provided a geometric interpretation of SED-NMF and showed that the

ability of NMF to produce a satisfactory basis whose elements correctly describe the com-

ponents of the implicit NMF generative model is data-dependent. (Smaragdis and Brown

2003) provides an example of such dependence in an application to source separation, where

NMF was shown to extract “unique events” rather than “unique notes”. In particular, if

two notes always occur in harmony, they are grouped together as one basis element in the

NMF decomposition. This is related to the non-uniqueness of NMF solutions and can be

understood through a geometric interpretation of SED-NMF as a Semidefinite Program-

ming problem (Klingenberg, Curry, and Dougherty 2009).

2.10 Extensions

The basic NMF yields low-rank factorizable elements that are interpretable alongside the

nonnegative observed data. This interpretability is purely data-driven since it results from

3typically by ℓ-1 or ℓ-2 norm
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the nonnegativity constraint on the factors in the decomposition and not from any a priori

knowledge about the structure of the data. Any such knowledge about the data can be

included via an extension of the basic NMF, and is “essentially necessary” for the decom-

position to correctly identify the underlying components for most applications (Wang and

Zhang 2012). Extensions to the basic NMF can be broadly categorized as Constrained

NMF, which alters the cost function to guide its minimization towards desirable factor

solutions, and Structured NMF, which alters the generative model directly. These exten-

sions are often realized by the inclusion of a regularized penalty term in the decomposition

which is a function of the model parameters, and encourages certain behaviors in the re-

sulting parts. For example, (Hoyer 2004) added a penalty term similar to the ℓ1-norm

to encourage sparsity in the factors. A similar penalty constraint was used in the NMF-

based music transcription algorithm of (Cont 2006). Alternatively, NMF can be extended

structurally by changing the form of the approximation. For example, (Smaragdis 2004)

expressed the approximation as the convolution of nonnegative factors, which allowed for

time-varying spectral templates in the decomposition. The structural extension from (Hen-

nequin, Badeau, and David 2010) permits frequency-dependent time activations which are

parameterized by an Autoregressive Moving Average (ARMA) model.

2.10.1 Constrained NMF

Constrained NMF includes additive penalty terms, which are functions of the factors, in

the scalar cost function to be minimized. The optimization is then expressed as

minimize
W,H

Dc(X||WH) = D(X||WH) + λ1J1(W) + λ2J2(H)

subject to W,H ≥ 0.
(2.23)

where J1(W) and J2(H) are penalty terms constructed to encourage certain qualities in

the resulting factors {W,H}. For example, a constrained NMF decomposition favors a

sparse-basis solution when J1(W) is designed to be minimized by a sparse W. λ1 and

λ2 are regularization parameters which control the influence of the penalty terms in the

optimization, and in particular control the tradeoff in priority between the fit of the model

to the data and the prevalence of the desired factors qualities in the solution. Penalty terms

should in general be smooth and differentiable to permit gradient-based methods in the
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solution to equation 2.23. Penalty terms with an expression as the difference of positive

terms as in equation 2.16 are also desirable as they permit multiplicative factor updates in

the Constrained NMF.

(Hoyer 2002) and (Hoyer 2004) presented constrained NMF with penalty terms encour-

aging sparsity in the factors. (Cont 2006) deployed NMF with sparseness constraints to

a polyphonic fundamental frequency estimation task. (Virtanen 2007) implemented NMF

with sparsity and temporal smoothness constraints for an application to audio source sep-

aration. (Choi 2008) presented NMF with orthogonality constraints. (Rigaud, Falaize,

David, and Daudet 2013) constructed an inharmonicity constraint for NMF applied to the

transcription of piano music.

2.10.2 Structured NMF

Prior knowledge of the structure of the data can alternatively be incorporated into the

NMF decomposition directly by changing the structure of the approximate factorization.

Extensions to the basic NMF of this class are called Structured NMF. The basic NMF

problem formulation as in equation 2.1 implicitly defines a generative model for the observed

data of the form

X = X̂+ E (2.24)

where X̂ = WH is the approximate factorization and E ∈ RF×N is the residual error

matrix. The optimization from equation 2.1 is then interpreted as minimizing the size of

the residual with the ‘size’ of a matrix evaluated by the scalar cost function. Structural

NMF assume a generative model of the form

X = f(WH) + E (2.25)

where the function f(WH) reflects the structure of the data, which may involve a further

parameterization of the factors. Structured NMF algorithms resemble those from basic

NMF. Gradient-based structured NMF algorithms require an expression for the gradient

of f(WH) with respect to any independent variables in the model.

(Smaragdis 2004) introduced Nonnegative Matrix Deconvolution, a Structured NMF

algorithm that permitted time-varying bases in the generative model. (Hennequin, Badeau,

and David 2010) presented a more involved parameterization of the NMF factors using an
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Autoregressive Moving Average model to allow for frequency-dependent time activations.

(Bertin, Badeau, and Vincent 2010) applied NMF to a piano transcription task and imposed

a harmonic structure on W via their composition as a linear sum of harmonic spectral

envelopes tuned to fundamental frequencies of the piano keys.

2.11 Example NMF spectrogram decomposition

The 2-source NMF decomposition of a simulated mixture of synthetic sounds is shown in

figure 2.1. The analyzed mixture comprises two overlapping notes synthesized at 16 kHz

sampling rate. The first note has a triangle waveform and pitch value C4 (fundamental

frequency 261 Hz), while the second note has a square waveform and pitch value E4 (fun-

damental frequency 330 Hz). The first note begins at t = 0 s and the second begins at

t = 0.25 s. Both notes have a duration of 1 s, so the mixture has a total duration of 1.25 s

with 0.75 s of note overlap

NMF was performed on the STFT magnitudes of the mixture, using a 64 ms Hann

window for the analysis, hop of 8 ms, and the fast Fourier transform (FFT) size equal to

the window length (i.e., N =M). SED was used as the divergence measure and alternating

least squares was used to update the factors in each iteration, with R = 2 (i.e., number of

sources correctly defined a priori).

NMF provides a reasonable low-rank approximation in this case, since the columns of

W each capture the spectral contours of one of the notes, while the rows of H likewise

correspond to the temporal envelopes of the notes. The satisfactory analysis by NMF can

be attributed to the fact that the implicit assumptions of the signal model are met, i.e., the

sources are spectrally stationary and no more than one source dominates any particular

time-frequency bin.

The sources are then estimated by ISTFT with the NMF factor-pairs, i.e., w1h
T
1 and

w2h
T
2 , used as time-frequency masks on the observed STFT S. The estimated sources are

shown alongside the true sources and mixture, in the time domain in figure 2.2, and in the

spectrogram domain in figure 2.3.
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Fig. 2.1 NMF decomposition of synthetic mixture Tri C4 + Sqr E4. Speci-
fications of the synthetic mixture are given in the text.
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Fig. 2.3 Source spectrogram estimation from NMF decomposition
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2.12 Conclusion

This chapter discussed NMF, which is considered to be a state-of-the-art source separation

technique. The general problem formulation was given, along with several algorithmic

approaches to finding a locally optimal solution within this framework. Some extensions

to the basic NMF were then discussed. An example application to the separation of non-

modulated synthetic sounds from a monaural recording was presented, and the roles of the

spectral templates and temporal activations in the separation were discussed.

2015/12/11
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Chapter 3

Grouping partials by coherent

frequency modulation

This chapter presents motivations for the formulation of a Coherent Frequency Modulation

(CFM) source model for use in a source separation task where NMF is unsatisfactory, and

discusses techniques for estimating the signal parameters relevant to such a model. We

first discuss the inability of NMF, which assumes fixed spectral templates, to properly

analyze vibrato sounds. We then present some motivations from the auditory perception

literature for the use of frequency modulation cues in a source separation task, which

precipitate the use of a non-stationary sinusoidal model to track the component partials

and their frequency modulation. Methods are presented for estimating the amplitudes,

frequencies, and frequency slopes of the components partials in the observed mixture under

an additive sinusoidal model. We present an additive sinusoidal-source model where same-

source partials are subject to a CFM, and show that same-source partials under this model

have a common ratio of local frequency slope to local frequency. Finally, we propose

novel source separation algorithm for the grouping of partials under an additive sinusoidal-

and CFM-source model, called Partial Grouping by Coherent Frequency Modulation (PG-

CFM).
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3.1 Motivation

3.1.1 Analysis of vibrato sounds by NMF

The implicit signal model of NMF specifies one fixed spectral template per source, and is

thus ill-suited to the analysis of vibrato sounds, which are characterized by slow frequency

modulations. This is demonstrated by way of example in figures 3.1, 3.2, and 3.3, which

show the NMF analysis of a simulated mixture1 of synthetic vibrato sounds. The analyzed

sound was produced by the per-source application of a vibrato effect to the sound analyzed

in the previous chapter, the NMF decomposition of which was given in figure 2.2. The

synthetic notes in the mixture are a triangle wave with note value C4 and a square wave

with note value E4.

Unlike the non-vibrato case, which was shown in figure 2.1, NMF fails to correctly

capture the spectral contours and temporal envelopes of the notes in the mixture when the

notes are subject to the frequency vibrato effect. The spectral templates of the estimated

sources, i.e., the columns of W, apparently attempt to capture the full range of frequencies

present in the vibrato. As a result, the two estimated sources have overlapping spectra

which is problematic in the application of the time-frequency masks in the separation. The

temporal activations are also incorrectly captured by the NMF, perhaps to an even more

disastrous effect. The modulation seen in the observed STFT magnitudes X, which is

truly a frequency modulation and is perceived as such upon listening to the recording, is

apparently captured as a dramatic amplitude modulation in the rows of H. This amplitude

modulation is can be seen in the time-domain representation of the estimated sources,

shown in figure 3.2. The estimated source spectrograms are shown in 3.3.

3.1.2 Auditory scene analysis

Human listeners are excellent source separators in the sense that they are able to “follow

along” with a particular instrument throughout a musical recording or live performance.

The perceptual theory of Auditory Scene Analysis postulates the importance of shared

frequency or amplitude modulations among partials as a perceptual cue in their grouping.

(Bregman 1990) offers the following heuristic to explain the relationship: “If different parts

of the spectrum change in the same way at the same time, they probably belong to the

1Details of the mixing process are provided in section 4.3.2.
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Fig. 3.1 NMF decomposition of synthetic mixture Tri C4 + Sqr E4 with
vibrato
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same environmental sound.” This theory of perceptual grouping is based on the principle

of common fate and stems from the assumption that components are unlikely to undergo

identical frequency or amplitude modulation by chance, but are more likely “parts of the

same sound, that is, that they have arisen from the same physical disturbance in the

environment.”

Some early empirical evidence supporting this hypothesis was presented by (Chowning

1980) in the context of synthesizing sung vowel sounds. A soprano voice was synthesized

as a complex tone comprising partials at the fundamental and formant frequencies of the

desired vowel sound at the desired pitch. This tone was said to “fuse” into “a unitary

percept” only following the application of a coherent (i.e., shared and harmonic) frequency

modulation to all partials. Application of the CFM across all partials emulates the vibrato

effect, which is characterized in singing voice by a frequency modulation of the component

partials at subaudible rates (Maher and Beauchamp 1990). (McAdams 1989) and (Marin

and McAdams 1991) provide a more formal investigation into the effect of CFM in the

perceptual grouping of component partials. Listening experiments were carried out where

subjects listened to a mixture of three synthesized sung vowel sounds with different pitches

and vowel types and were asked to rate the prominence of a specific vowel type in the

mixture. Component partials for each vowel were subjected to CFM at a subaudible (i.e.,

vibrato-like) rate, with the modulation rate and depth varying according on the experiment

condition. Listeners scored the target vowel as being more prominent when it was generated

with the CFM.

Several techniques in the source separation literature use notions of coherent modula-

tion in the observed partials to inform the separation. (Wang 1995) isolated individual

partials with shared CFM by linear filtering following a pre-processing step to demodulate

the mixture by an appropriate ‘frequency warp’ factor, which is derived from a maximum

likelihood estimation of the instantaneous frequency. (Li, Woodruff, and Wang 2009) uses

correlations in amplitude modulations to separate overlapping harmonics within a CASA

framework. (Barker and Virtanen 2013) performs a Nonnegative Tensor Factorization

(multi-way extension of NMF) on the so-called modulation spectrogram, a nonnegative ten-

sor that encodes the inter-channel correlations in amplitude envelope modulation between

channels in an auditory model.
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3.2 Partial tracking

The parameter estimation of sinusoidal signal components has a rich history in computer

music research, which is closely tied to developments in additive synthesis. The typical

analysis framework involves the estimation of the model parameters from a short-time

spectral representation, e.g., the STFT. (Portnoff 1976) provided an efficient digital imple-

mentation of the Phase Vocoder (PV), which is closely related to the STFT and provides

estimates of the frequencies of sinusoidal components near the center frequencies of the

FFT bins. The PV permits an exact resynthesis of the analyzed sound via additive syn-

thesis. Alternatively the model parameters can be manipulated to achieve a pitch-shifting

or time-stretching effect in the resynthesis (Moorer 1977). While the PV is able to analyze

and synthesize vibrato sounds with no reconstruction error, it is ill suited to their represen-

tation since the vibrato is encoded as a coherent phase modulation across many frequency

bins. Moreover, component partials of vibrato sounds are likely to cross multiple FFT bins

as the fundamental frequency varies. The PV analysis of a vibrato sound essentially does

not capture the underlying signal characteristics, and the application of PV-based audio

effects such as time stretching results in unwanted and audible artifacts for this class of

signals.

(Smith and Serra 1987) proposed PARSHL, a system for the analysis and synthesis

of musical sounds under an additive sinusoidal model. Like PV, the analysis consisted

of short-time signal parameter estimation at intervals equal to one hop size, i.e., “per-

frame”, but unlike PV, PARSHL modeled the sinusoidal signal components explicitly and

without fixed pre-allocated frequencies. For each component partial in the model, the slow

variations in local frequency and amplitude were tracked over the duration of the sound.

(McAulay and Quatieri 1986) concurrently developed a similar system for the analysis

and synthesis of speech signals. (Serra and Smith 1990) extended PARSHL to include a

stochastic component (equivalent to filtered white noise) in the signal model that permits

the effective analysis of non-deterministic musical sounds such as percussive transients, note

onsets, and contributions of breath to the sound of singing and woodwind instruments.

3.2.1 Analysis

Here we discuss the estimation of partials in an additive sinusoidal model framework similar

to (Smith and Serra 1987) and (McAulay and Quatieri 1986). It is equivalent to the deter-
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ministic portion of the analysis/synthesis tool described in (Serra and Smith 1990), which

was called Spectral Modeling Synthesis (SMS). In this thesis we refer signal analysis under

a (purely deterministic) additive sinusoidal model as Spectral Modeling Analysis (SMA),

since it fundamentally provides an analysis of the signal via an extraction of component

features, and to distinguish it from the analysis portion of the work described in (Serra and

Smith 1990), which technically included a stochastic component.

The input signal is modeled as the sum of sinusoidal components plus a residual, ex-

pressed as

x(m) =
K
∑

k=1

Ak(m) cos(φk(m)) + e(m) (3.1)

where Ak(m) and φk(m) are the instantaneous amplitude and phase of partial k. The

instantaneous phase φk(m) is initialized by the specification of an initial phase φk(m0) and

subsequently computed as the integral of the instantaneous frequency, expressed as

φk(m) =
2π

fs
fk(m) + φk(m− 1) (3.2)

where fk(m) is the instantaneous frequency of partial k and fs is the sampling rate.

The partial frequencies are estimated per-frame via peak detection on the STFT mag-

nitudes. A spectral interpolation scheme is required for the likely scenario that the partial

frequencies do not align to the center frequencies of the FFT bins. This can be accom-

plished by zero-padding the windowed signal and using a larger FFT size. Although this

does not increase the spectral resolution, it yields a finer spectral sampling of the signal, as

well as an increase in the number of data required to store the short-time spectral repre-

sentation. (Smith and Serra 1987) suggested parabolic interpolation as a more economical

interpolation method, whereby the partial frequency is estimated as the peak of a parabola

approximating the spectral shape of the main lobe given three data points near the peak

FFT magnitude. The per-frame detected spectral peaks are subsequently sorted into of

frequency guides (i.e., partial components), which is equivalent to a line detection problem

(Serra and Smith 1990). This stage of the analysis is parameterized by minimum ampli-

tude threshold, minimum duration, and maximum frame-to-frame frequency deviation of

the frequency guides.
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3.2.2 Synthesis

The analyzed sound can be resynthesized from the instantaneous amplitudes and phases of

the tracked partials via additive synthesis. The synthesis resembles the generative model

expressed by equation 3.1 excluding the error term, and is implemented using an overlap-

add scheme, the details of which are provided in appendix A.2 on page 100.

3.2.3 SMA Implementation

For the experiments and applications presented in this thesis, the partial tracking analysis

under an additive sinusoidal model is provided by sms-tools2, a Spectral Modeling Syn-

thesis toolbox implemented in Python and distributed with the GNU Affero General Public

License. The analysis is parameterized by the standard STFT parameters: analysis window

w, FFT size N , and hop size H. Additionally, the partial detection is parameterized by

the maximum number of partials in the model K and the minimum amplitude threshold

for detection Thr. Partial continuity is determined according to the maximum allowable

frequency deviation between successive frames of a tracked partial. This is parameterized

in sms-tools by FDO (stands for “frequency deviation offset”), which correspond to the

maximum allowable frequency deviation in Hz for a partial tracked near the 0-th bin, and

by FDS (stands for “frequency deviation slope”), a Hz-per-bin ratio which sets how the

maximum allowable deviation scales for higher frequencies3. The minimum duration of a

tracked partial is parameterized by Dur.

3.3 Distributed derivative method

The local frequency slope for a given partial can be estimated by a first-order Taylor series

approximation given the SMA frequency estimates at successive hops, expressed as

ξp(m) ≈
fp(m+H)− fp(m)

H
. (3.3)

2https://github.com/MTG/sms-tools
3The use of both a 0-Hz offset and a per-bin slope in the parameterization of the maximum allowable

frequency deviation seems appropriate since frequency vibrato modulates the higher partials proportional
to their frequency.



3 Grouping partials by coherent frequency modulation 36

In practice, however, these estimates are prone to spurious peaks, particularly during the

onset and offset of the partial. The Distributed Derivative Method (DDM) (Betser 2009)

provides an alternative frequency slope estimator, which is more robust than the first-order

Taylor series approximation when partials in the analyzed sound do not overlap. DDM

was developed for parameter estimation of a continuous-time monochrome analytic signal

modeled as a complex exponential with time-varying polynomial amplitude and frequency

laws. We implement DDM for parameter estimation of component partials of a polychrome

real signal in discrete time by appropriate sampling (e.g., sDT (m) , sCT (
m
fs
) ∀ m ∈ Z),

replacing integrals and derivatives with their discrete counterparts with appropriate chain-

rule scale factors.

3.3.1 Generalized sinusoidal model

We estimate the frequency slope of the k-th tracked partial via a parameter estimation on

its analytic signal4. The monochrome analytic (complex-valued) signal is modeled in con-

tinuous time as a complex exponential with time-varying Q-th order polynomial amplitude

and frequency laws, as

s(t) = exp

( Q
∑

q=0

αqt
q

)

= a(t)ejφ(t), (3.4)

where αi are complex polynomial coefficients and Q is the model order. The amplitude

law is given by a(t) while the phase law is given by the imaginary part of the exponent

argument φ(t) =
∑Q

q=0ℑ{αq}t
q. Thus the frequency law is given by φ′(t)

2π
. A second-order

model (Q = 2) is found to be sufficiently expressive in practice as music signals with vibrato

exhibit a slowly varying frequency modulation which is locally well-approximated as linear.

3.3.2 Frequency slope estimation

Model parameters (amplitude and phase laws) are computed as the solution to a system

of equations with each equation derived from an inner product of the signal s(t) with the

first derivative of a differentiable finite-support atom from the family {ψi}. In general, the

4The analytic signal can be derived via Hilbert transform or equivalently by removing negative frequen-
cies in the spectral domain.
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inner product of the signal s(t) with a continuous-time function y(t) is defined as

〈s, y〉 =

ˆ +∞

−∞

s(t)y∗(t)dt. (3.5)

Thus the inner product of the signal and the first derivative of the i-th atom ψ′
i(t) is

expressed as

〈s, ψ′
i〉 =

ˆ +∞

−∞

s(t)(ψ′
i)
∗(t)dt. (3.6)

We evaluate this expression using integration by parts which yields zero at the limits

t→ ±∞, i.e.,
[

s(t)ψi(t)

]+∞

−∞

= 0 = 〈s′, ψi〉+ 〈s, ψ
′
i〉. (3.7)

This can be rewritten as this as

−〈s, ψ′
i〉 = 〈s

′, ψi〉 (3.8)

from which a system of equations can be derived given a family of atoms {ψi}.

The left- and right-hand terms in equation 3.8 can each be expressed in terms of the

signal model given by equation 3.4, with the time derivative of the generalized sinusoidal

model given by

s′(t) = s(t)

Q
∑

q=1

qαqt
q−1. (3.9)

Signal parameters αq (for q > 0) are not time-dependent and thus factor out of the integral

expressed by equation 3.6. We can thus rewrite (3.8) as:

−〈s, ψ′
i〉 =

Q
∑

q=1

αq〈sp
′
q, ψi〉 (3.10)

where pq(t) = tq and thus p′q(t) = qtq−1. This represents the q-th equation in a system

which can be written as the following matrix product

Aα = b (3.11)
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where A ∈ RL×Q has elements [A]l,q = 〈sp
′
q, ψl〉 from the signal derivative inner products,

α ∈ RQ are the model parameters [α]q = αq for q > 0, and b ∈ RL has elements [b]l =

−〈s, ψ′
i〉.

3.3.3 DDM Implementation

In practice we are interested in determining the per-frame frequency slopes of the com-

ponent partials, whose frequency, amplitude, and phase parameters have previously been

estimated via SMA. Within the n-th time frame, we estimate the frequency slope of a par-

ticular partial using DDM on the (possibly zero-padded) signal buffer x̄(n) with the selection

of the L DDM atoms informed by the SMA estimates. In discrete time, the generalized

sinusoidal model for the n-th signal buffer is expressed as:

x̄(n)
m = cos

(

a0 +

Q
∑

q=1

aqm
q

)

(3.12)

The model is linear in the coefficients and thus permits a more compact expression as the

matrix multiplication

x̄(n) = Pa (3.13)

where the polynomial matrix P ∈ RM×Q+1 is defined as

P =
(

p(0), p(1), · · · , p(Q)
)

(3.14)

with the q-th column defined by the polynomial vector p(q) ∈ RM as

p(q)m = mq. (3.15)

DDM atoms are chosen from the family of N windowed complex exponentials centered

at the bin frequencies of the Discrete Fourier Transform (DFT), which we refer to as the

family of DFT atoms. The f -th-bin analysis atom in this family is expressed as

ψ(f)
m = w̄me

j2πf(m−1)
N = w̄mγ

(f)
m (3.16)
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where w̄m is the possibly zero-padded STFT analysis window, expressed by equation A.4

on page 99, and γ(f) is the f -th-bin complex exponential, expressed as

γ(f)
m = e

j2πf(m−1)
N . (3.17)

This permits an interpretation of the inner product 〈x̄(n),ψ
(f)
m 〉 of the STFT of x evaluated

at the n-th frame and f -th bin, i.e.,

〈x̄(n),ψ(f)〉 = [STFT{x}]f,n (3.18)

We choose L such atoms in the frequency neighborhood of the partial of interest (i.e.,

nearby the SMA frequency estimate for that partial). We estimate the signal parameters

α = [a1 · · ·aQ]
T as the solution to a system of equations where each equation in the system

follows from equation 3.8 given one of the L chosen atoms. This system can be expressed

compactly in matrix form as

Aα = b (3.19)

where A ∈ CL×(Q) is the DDM matrix whose element Am,f corresponds to the inner

product of the first derivative of the n-th signal buffer (x̄(n))′ and the f -th DDM atom

ψ(f), evaluated at time m, i.e.,

Am,f = 〈(x̄(n))′,ψ(f)〉m. (3.20)

Likewise, b ∈ CL is the DDM vector whose element bm corresponds to the inner product

of the n-th signal buffer and the first derivative of the f -th DDM atom (ψ(f))′, i.e.,

bm = −〈x̄(n), (ψ(f))′〉m. (3.21)

The first derivatives for x̄(n) and ψ(f) are obtained trivially from the respective definitions

for the signal model and window, given by equations (3.12) and (A.4). When L > Q, the

least-squares solution to equation 3.19 is given by the Moore-Penrose pseudoinverse as

α̂ = A†b = (AHA)−1AHb (3.22)
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We choose order Q = 2 to model linear frequency modulations. The frequency law corre-

sponds to the ℑ{α}, thus the frequency slope of the partial is estimated as

ξ̂ =
ℑ{α̂2}

π
. (3.23)

DDM also provides a secondary estimate of the frequency of the partial as

f̂ =
ℑ{α̂1}

2π
(3.24)

As with spectral peak estimation in SMA, zero-padding may be used as a spectral inter-

polation technique. The larger FFT size affords the selection of DFT atoms from more

points on the main lobe of the window, which can improve the DDM parameter estimates,

particularly in the case of low-frequencies partials.

3.3.4 CFM source model

We now propose a non-stationary additive sinusoidal signal model for sources, which in-

cludes the CFM of all same-source partials and is thus called the CFM source model. The

model makes no further assumption of structure (e.g., harmonicity) about the component

partials. In the absence of any frequency modulation, the source is modeled as the sum of

its component partials, each of which are parameterized by a time-varying amplitude and

phase. The source is expressed as

s(m) =
P
∑

p=1

Ap(m) cos(φp(m)) (3.25)

where Ap(m) and φp(m) are the instantaneous amplitude and phase (in radians) of partial

p and time index m. The instantaneous phase is initialized by the specification of an initial

phase φp(m0) and subsequently computed as an integration of the instantaneous frequency,

expressed as

φp(m+ 1) = φp(m) +
2π

fs
fp(m) (3.26)

where fp(m) is the instantaneous frequency (in Hz) of partial p.
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The application of CFM to all partials models the source during vibrato or glissando,

expressed as

fp(m) = fp(m0)(1 + β(m)) (3.27)

where fp(m0) is the instantaneous frequency of partial p in the initial state, and β(m0) , 0.

We show that all partials belonging to the same source under this model share a common

ratio of frequency slope to frequency at a given time. The local frequency slope is defined

as the first derivative of the instantaneous frequency of the p-th partial, expressed as

ξp(m) ,
d

dm
fp(m). (3.28)

Substituting in equation 3.27 and carrying the derivative through yields

ξp(m) =
d

dm
fp(m0) +

d

dm
fp(m0)β(m) = fp(m0)β

′(m). (3.29)

Dividing the local frequency slope by the instantaneous frequency yields the frequency-

slope-to-frequency ratio, denoted by Υp, which does not depend on the instantaneous fre-

quency fp(m) and is common to all same-source partials. The local frequency-slope-to-

frequency ratio is expressed as

Υp(m) ,
ξp(m)

fp(m)
=

fp(m0)β
′(m)

fp(m0)(1 + β(m))
=

β′(m)

1 + β(m)
(3.30)

Υp is a potentially useful feature in grouping observed partials from a mixture of sources

when instantaneous frequencies and frequency slopes are available (or can be reliably esti-

mated) for all the partials present in the mixture are available. Grouping using the coherent

frequency modulation cue Υp does not require estimation of the common modulation func-

tion β.

3.3.5 Example feature extraction

We can approximate the frequency-slope-to-frequency ratio Υ by evaluating equation 3.30

using the per-partial, per-hop parameter estimates f̆p and ξ̂p, which are provided by SMA

and DDM respectively. Example features extracted from a simulated mixture of vibrato
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sounds are shown in figure 3.4. The analyzed sound is the same one that produced the

NMF decomposition plots in figures 3.1 and 3.2.

Two distinct curves are present when the analyzed sound is represented in the Υ feature

space, which reflects the fact that same-source partials have the same local frequency-slope-

to-frequency ratio under the CFM source model. The apparent visual separability in the

feature space is an informal but encouraging result which suggests both the appropriateness

of the proposed feature Υ in the analysis of vibrato sounds, and the potential for a partial

grouping algorithm that employs these features to correctly separate vibrato sources from

an observed recording. The goal of the partial grouping algorithm is essentially to estimate

a unique feature curve for each source in the observed mixture, such that the observed

data are best explained by the algorithm-estimated curves when expressed in the feature

domain, i.e., as the matrix Υ containing local frequency-slope-to-frequency ratio estimates

for each of the partials tracked by SMA, where DDM is used to estimate the local frequency

slopes.
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Fig. 3.4 Features extracted from synthetic mixture Tri C4 + Sqr E4. f̆(k,m)
and d̂(k,m) are the respective SMA frequency estimate DDM frequency slope
estimate for the k-th tracked partial at hop index n. Υ(k, n) is the resulting
frequency-slope-to-frequency ratio feature. A coherent frequency modulation
of same-source partials is apparent in the Υ feature space.
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3.4 Partial Grouping by Coherent Frequency Modulation

We propose a method for grouping component partials in a non-stationary sinusoidal model

via a grouping of their frequency-slope-to-frequency ratio features Υ ∈ R
K×N , provided by

the tandem feature extraction of SMA and DDM. The number of parts R is assumed to

be known. The goal is to estimate one feature vector per source such that the component

partials tracked by SMA and DDM are well-explained in the feature space. Hopefully, the

estimated feature vector for source r captures the CFM that uniquely characterizes the

source under the CFM source model presented in section 3.3.4.

Formally, the method estimates per-source frequency-slope-to-frequency ratios υ ∈

RR×N such that υr(n) corresponds to the ratio of frequency slope to frequency for source r

and time n. Concurrently, a tensor p ∈ RR×K×N , to be interpreted as a set of “likelihoods”,

is estimated, such that pr(k, n) represents the likelihood that observed ratio feature5 Υ(k, n)

was produced by source r. We constrain the likelihoods to be nonnegative values that sum

across sources to 1 at each {k, n}, i.e., each observed feature Υ(k, n) is well-explained by

the sources r = 1 . . . R.

3.4.1 Cost function formulation

As with NMF, the estimation of the algorithm variables is formalized as the minimization of

a scalar cost function, subject to the appropriate constraints. We formalize a cost function

representing the inverse model fit of the algorithm-estimated ratios υ to the observed ratio

features Υ. The cost incurred at a time n for track k by source r comprises the squared

difference of the observed ratio Υ(k, n) and the estimated ratio υr(n), scaled by the pr(k, n),

which represents the likelihood that part r explains partial k at time n.

It is expressed as

J(p,υ) = pr(k, n)|Υ(k, n)− υr(n)|2. (3.31)

The cost function is minimized when υr(n) is close to the observed ratio Υ(k, n) if source

r is likely to have explained the observation (i.e., pr(k, n) close to 1). The global cost is

5Here we slightly modify the previous notation for the local frequency-slope-to-frequency ratio features
for consistency amongst the various matrices and tensors used in the formalization of the algorithm, and
also to distinguish between “true” and “estimated” features. E.g., while Υp(m) represented the true local
frequency-slope-to-frequency ratio of partial p at time m, Υ(k, n) represents the estimated frequency-slope-
to-frequency ratio of the k-th tracked partial at hop n.
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then the sum of 3.31 over {r, k, n} plus the penalty terms

P1(υ) =
∑

r,n

(υr(n)− υr(n− 1))2 (3.32)

and

P2(p) =
∑

r,k,n

(pr(k, n)− pr(k, n− 1))2 (3.33)

to encourage temporal smoothness in υ and p, respectively. The influences of the two

penalty terms in the global cost are controlled by regularization parameters λ∆υ and λ∆p.

The global cost is thus expressed as

C(p,υ) =
∑

r,k,n

J(p,υ) + λ∆υP1(υ) + λ∆pP2(υ)

=
∑

r,k,n

pr(k, n)|Υ(k, n)− υr(n)|2 + λ∆υ

∑

r,n

(υr(n)− υr(n− 1))2

+ λ∆p

∑

r,k,n

(pr(k, n)− pr(k, n− 1))2

(3.34)

3.4.2 Optimization problem

The optimization problem is thus formalized as the minimization of the above cost function

subject to the appropriate constraints on p, and is expressed as

minimize
p,υ

∑

r,k,n

pr(k, n)|Υ(k, n)− υr(n)|2

+ λ∆υ

∑

r,n

(υr(n)− υr(n− 1))2 + λ∆p

∑

r,n

(pr(k, n)− pr(k, n− 1))2

subject to pr(k, n) ≥ 0 ∀ r, k, n,

R
∑

r=1

pr(k, n) = 1 ∀ {k, n}.

(3.35)

Although C(p,υ) is non-convex in both arguments, it is convex in p with fixed υ = υ0,

and is likewise convex in υ with fixed p = p0. As with NMF, we seek a locally optimal

solution by iterating a two-step process, first fixing υ and computing p∗, then fixing p and

computing υ∗.
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3.4.3 Algorithm

We propose an algorithm, called Partial Grouping by Coherent Frequency Modulation

(PG-CFM), which seeks a locally optimal solution to the optimization problem expressed

in equation 3.35 by alternate minimization of the variables {p,υ}, with stopping criteria set

by the number of iterations η. With fixed υ, the optimization problem given by equation

3.35 is equivalent to a Quadratic Program (QP), a constrained optimization problem of a

standard form, where the cost function to be minimized is quadratic in the independent

variable. The derivation of the equivalent QP is given in appendix B. The cost function

for the equivalent QP is convex in p, which permits a globally optimal6 solution p∗, which

can be found efficiently using existing solvers. Although the solution to such a convex

QP is beyond the scope of this thesis, the interested reader should refer to (Boyd and

Vandenberghe 2009) for a thorough description of solution methods for specific classes of

QP.

When p is fixed to its previously assigned value, the constraints in equation 3.35 are

satisfied automatically. Thus solving for the optimal υ amounts to an unconstrained convex

QP, which permits a closed-form solution, expressed as

υ̃ ← (UT
kDpUk + λ∆υΛ

T
υΛυ)

−1(UkDpUrΥ̃) (3.36)

where υ̃ and Υ̃ are the column vector representations of υ and Υ, respectively. Uk ∈

RRKN×RN and Ur ∈ RRKN×KN are repeating matrices, the applications of which effectively

repeat elements of υ and Υ along the k and r dimensions, respectively. ∈ RRKN×RKN is a

smoothing matrix which effectively performs the first order difference operation expressed

by the smoothness penalty on υ, as expressed by equation 3.32. Cf. appendix B for a full

explanation of this vector notation.

The PG-CFM procedure is expressed by algorithm 3.1

6The solution is globally optimal in the parameter space spanned by {p,υ0}, since υ is fixed to its
previously assigned value.
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Algorithm 3.1: PG-CFM

Input: Υ ∈ RK×N , R, η, λ∆υ, λ∆p

Output: p ∈ R
R×K×N
≥0 , υ ∈ RR×N

initialize i = 1 and p,υ by k-means clustering, with

υ ∈ RR×N , p ∈ R
R×K×N
≥0 ,

∑R

r=1 p
r(k, n) = 1 ∀ k, n;

compute p̃, υ̃, Υ̃ by unfolding p,υ,Υ as column vectors;

while i ≤ η do

compute υ̃,Λp, d̃;

p̃← p̃∗ by solution to equivalent QP, given by equation B.16, page 109;

compute Λυ,Ur,Uk,Dp;

υ̃ ← (UT
kDpUk + λ∆υΛ

T
υΛυ)

−1(UT
kDpUrΥ̃);

i← i+ 1

compute p,υ by reshaping p̃, υ̃ to original dimensions;

3.4.4 Initialization

The PG-CFM solution {p∗,υ∗} represents a local minimum of the scalar cost function.

Both the final cost value and the qualities of solution variables depend on algorithm ini-

tialization. A random initialization strategy7 was found to give inconsistent results with

respect to the quantitative evaluation metrics, i.e., PG-CFM could not always produce a

correct separation from a random initialization. We instead initialize pr(k, n) and υr(n) by

a local (per-hop) k-means clustering on the observed frequency-slope-to-frequency ratios

Υ̂(k, n).

k-means clustering8 describes the task of assigning some observed data to a pre-determined

number of clusters (Bishop 2006). Each datum is assigned to only one cluster, and each

cluster is parameterized by its mean χ. A scalar cost function to be minimized is formu-

lated as the sum of all SED between each observed datum and its assigned cluster. The

7taking into account the appropriate constraints on pr(k, n)
8k-means clustering is so-named because its solution provides the estimated mean for each cluster, where

the number of clusters is conventionally denoted by k. In our case the number of clusters is equal to the
number of sources R and should not be confused with k, the index variable for the partials tracked by
SMA.
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k-means clustering optimization problem is thus expressed as

minimize
χ,ρ

ρr(k)
R
∑

r=1

K
∑

k=1

(χ(r)− a(k))2

subject to
R
∑

r

ρr(k) = 1 ∀ k

(3.37)

where a(k) are the data, χ(r) is the r-th cluster mean and ρr(k) ∈ {0, 1} is the binary-

valued k-means assignment variable, which evaluates to 1 when the k-th datum is assigned

to the r-th cluster, i.e.,

ρr(k) =







1 a(k) assigned to cluster r

0 else.
(3.38)

The Expectation-Maximization (EM) algorithm is used to find a locally optimal solution

to the k-means clustering problem (Dempster, Laird, and Rubin 1977). EM is an iterative

alternating minimization algorithm resembling those discussed in chapter 2, where, within

the inner loop, χ is optimized with ρ fixed and vice versa. k-means clustering is relatively

efficient to implement since each optimization step represents a least-squares problem with

a closed form solution.

We initialize the PG-CFM variables pr(k, n) and υr(n) by per-hop k-means clustering

of the extracted features Υ̂(k, n). For the n0-th hop, {pr(k, n0), υ
r(n0)} is initialized as the

solution {ρr, χ(r)} to the k-means clustering of the extracted features Υ(k, n0), i.e., the

solution to equation 3.37 with a(k) , Υ(k, n0). In the EM algorithm used to solve the

k-means problem, {ρr, χ(r)} are themselves initialized to the solutions from the previous

hop, i.e., {pr(k, n0 − 1), υr(n0 − 1)}.

k-means clustering is appropriate for the local analysis of the frequency-slope-to-frequency

feature data from the K tracked partials, since, for a given hop n, the extracted features

Υ̂(k, n) are visually separable in the feature space. Locally, partial grouping resembles a

clustering task. Globally satisfactory partial grouping by local clustering would require

proper continuity in the cluster means across all hops. Regrettably, k-means clustering

by EM is ill-suited to the global separation task for this reason, since it suffers from per-

mutation ambiguity. Moreover, k-means clustering does not appropriately handle the case
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where features from two partials belonging to separate sources cross over one another in the

feature space, since they are well-explained by a single cluster during the crossing. Despite

these shortcomings in the solution to the global separation problem, k-means clustering

provides a reasonable and inexpensive initialization to the PG-CFM algorithm. Initial-

ization of PG-CFM by k-means was observed to improve the consistency of the resulting

separations with respect to the evaluation metrics (compared with a random initialization),

although it did not, in general, improve the best-case performance.

3.4.5 Separation by masking and resynthesis

The r-th source is estimated by the application of a mask derived from the likelihoods

pr(k, n), followed by an additive resynthesis. From a probabilistic interpretation, the values

of the likelihoods associated with source r directly correspond to a soft mask, expressed as

µr
soft(k, n) = pr(k, n). (3.39)

Alternatively, a hard mask is created by a rounding of the likelihoods, expressed as

µr
hard(k, n) =







1 r = argmax
r

pr(k, n)

0 else.
(3.40)

Per-source estimates for the instantaneous amplitudes of each partial are estimated by

applying the mask to the observed partial amplitudes Ă ∈ RK×N , expressed as

Âr(k, n) = µ(k, n)Ă(k, n) (3.41)

with one of the two aforementioned masks chosen, i.e., µ ∈ {µsoft, µhard} Each source can

then be estimated via an overlap-add synthesis using the masked instantaneous partial

amplitudes and the (unmasked) instantaneous phases.
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Fig. 3.5 PG-CFM block diagram

3.4.6 Application to a synthetic vibrato mixture

An application of PG-CFM to a simulated mixture of synthetic vibrato sounds is shown

by figures 3.6, 3.7, and 3.8. The separation parameters were λ∆υ = 215.4, λ∆υ = 1.0, and

η = 6, with hard masking used. Figure 3.6 shows the estimation of a reasonable feature

vector for each of the two sources. Figure 3.7 shows the correct subsequent grouping of

partials by hard masking, which results in a good separation, as shown in figure 3.8. We see

in figure 3.8 a permutation ambiguity in the separation, as estimated source 2 corresponds

to true source 1 and vice versa. While PG-CFM (as with NMF) does not attempt to solve

the permutation problem, it can be addressed by simple projection/correlation measures if

the true sources are known a priori.
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3.5 Conclusion

This chapter introduced PG-CFM, a novel algorithm for the extraction of musical sources

with CFM from a monaural musical recording under an additive sinusoidal model. Mo-

tivations for this new technique were presented, namely, the shortcomings of NMF in the

analysis of vibrato sounds and the proposal of CFM as a perceptual grouping cue by Audi-

tory Scene Analysis. The CFM source model underlying PG-CFM was presented, and the

per-partial local frequency-slope-to-frequency ratio feature, denoted by Υ, was introduced,

along with a proposed method for estimating this signal parameter using SMA and DDM.

An application of PG-CFM to the source separation of a simulated mixture of synthetic

vibrato sources was then discussed, which validates our approach to analyzing this class of

sounds, namely, the use of CFM cues in the grouping of the tracked partials into estimated

sources.

2015/12/11
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Chapter 4

Experiment 1: PG-CFM parameter

analysis

4.1 Motivation

The proposed PG-CFM source separation method, given by algorithm 3.1 necessitates the

specification of several algorithm parameters. Before the performance of PG-CFM can

be compared with NMF-based (or any other) source separation technique, the parameters

PG-CFM parameters yielding the best performance should be determined, since the effec-

tiveness and robustness of separation performance by PG-CFM depends on the algorithm

parameter values being properly specified. This chapter discusses an experiment to deter-

mine the best-performing values for a subset of the PG-CFM parameters, evaluated using

a constructed dataset of artificially mixed synthetic mixtures of single notes with frequency

vibrato.

4.2 System parameters

Prior to the design of a parameter sweep experiment, the system parameters are discussed

and categorized. The PG-CFM system is described by the block diagram in figure 3.5, page

50. The analysis parameters are those associated with STFT, SMA, and DDM blocks, and

are listed in table 4.1. They must be appropriately selected to ensure meaningful features

are extracted from the input audio in a robust manner. Note that parameters common

to multiple analysis tools (e.g., window shape and size, FFT size) assume the same value
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in each case and are thus listed only once table 4.1. The manual selection of the analysis

parameter values for the experiment is further discussed in section 4.3.3.

Subsequently, the separation parameters, those associated with PG-CFM algorithm,

must be properly set in order to ensure a partial grouping with desired qualities in the

algorithm-estimated variables pr(k, n) and υr(n). In particular, a certain degree of smooth-

ness in these variables is necessary for a good separation. These parameters are listed in

table 4.2 and are further discussed in 4.3.4.

There are also a set of synthesis parameters associated with the resynthesis of estimated

sources via SMS, given the estimated instantaneous frequencies and amplitudes for each

of the sources, which result from the masking stage. These parameters are not depicted

in figure 3.5 or tabulated independently, but are implicitly assigned to the same values

as their corresponding analysis parameters. They are the FFT size N , hop size H, and

sampling rate fs.

Meaning Notation Domain

STFT parameters

FFT size N Z

Window length M Z

Window w RM

Hop size H Z

SMA parameters

Amplitude detection threshold Thr R

Number of tracked partials K Z

Frequency deviation offset FDO R

Frequency deviation slope FDS R

Minimum track duration Dur R

DDM parameters

Model order Q Z

Number of atoms L Z

Table 4.1 PG-CFM Analysis parameters
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Meaning Notation Domain

PG-CFM separation parameters

Number of iterations η Z

Number of sources R Z

υ smoothness regularization λ∆υ R

p smoothness regularization λ∆p R

Table 4.2 PG-CFM Separation parameters

Finally, a choice between soft and hard post-separation masking must be made. These

masking schemes are expressed in equations 3.39 and 3.40, respectively. In this experiment

a hard masking scheme was chosen, as it was observed empirically to produce estimated

sources with fewer artifacts. The hard masking scheme implicitly assumes that each time-

frequency bin contains energy from a single dominant source. It is possible that the benefits

of hard masking in terms of separation results are due to the use of synthetic signals in

a simulated and noiseless mixing environment, and that a soft masking scheme would

generalize better to the analysis of real hi-fidelity musical mixtures.

4.3 Procedure

4.3.1 Experiment overview

An experiment was carried out to determine the set of optimal PG-CFM separation param-

eters, i.e., the set of regularization parameters {λ∆p, λ∆υ} that yields the best separation

performance according to the BSS_EVAL metrics. Separation performance was evaluated on

a dataset composed of eight simulated mixtures of synthetic vibrato notes produced accord-

ing to the CFM signal model detailed in section 3.3.4. For each mixture in the dataset, a

combinatorial sweep over a grid of possible separation parameter values is performed, with

a PG-CFM decomposition produced for each separation parameter pair considered. The

optimal separation parameter set is chosen by comparing the BSS_EVAL metrics for each

{λ∆p, λ∆υ}, averaged across the eight mixtures.
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4.3.2 Data

A dataset of eight simulated mixtures of synthetic vibrato sources was generated for the

parameter sweep experiment. The two sources to be mixed are single notes with triangle

and square waveforms, respectively. Each note is one second long, with CFM vibrato

applied as expressed in section 3.3.4. Each mixture is simulated by linear superposition

with appropriate scaling to ensure equal power in the two sounds prior to mixing. A 50

ms linear ramp is applied to the note onsets and offsets to avoid clicking. The sources are

time-shifted so that they overlap for 75% of their duration, and the resulting eight mixtures

are 1.25 each seconds long.

The sources were generated by the additive synthesis model described in appendix A,

with the partial amplitudes for the square and triangle waveforms specified by equations

A.18 and A.22, respectively. The value of the triangle wave note was fixed to C4 (fun-

damental frequency 262 Hz) for all mixtures, while the square wave note took a different

value in the C major scale in the octave range C4–C5 (fundamental frequencies 262–523

Hz) for each mixture in the dataset. Number of partials used to synthesize each source,

i.e., P in equation A.14, was randomized to an integer in the range [3, 11] and reduced as

necessary to avoid aliasing.

Vibrato was applied via the application of CFM to all partials, as expressed in equation

3.27. Vibrato depth was selected randomly from the range of [2, 19] % of the fundamen-

tal frequency. Vibrato rate was selected randomly from the range of [1, 11] Hz. These

ranges depth and rate correspond to a mild exaggeration of the guidelines for vocal vibrato

synthesis provided by (Maher and Beauchamp 1990), so that the resulting sounds have rea-

sonable but pronounced frequency vibrato. Frequency law and vibrato law initial phases

were randomized in the range [0, 2π].

Time-domain, dB spectrogram, and partial tracking representations of one such mixture

are shown in figure 4.1.

4.3.3 Selection of analysis parameters

The goal of this experiment is to determine the set of ideal separation parameters, i.e.,

the inputs to algorithm 3.1 that are not the extracted features υ. The remaining system

parameters, i.e., the analysis parameters, influence the system performance insofar as they

produce meaningful features υ as input to the separation algorithm. These parameter
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values are hand-tuned prior to the experiment, with the selection of values informed by

knowledge of the signal characteristics (e.g., range of fundamental frequencies, maximum

vibrato rate). These considerations are discussed in this section. Fixing the analysis pa-

rameters also greatly reduces the computational resources required for the experiment since

the run time of a combinatorial parameter sweep scales polynomially with the number of

independent parameters.

It is well known that the choice of window size in STFT-based analysis corresponds to

a tradeoff between spectral and temporal resolution, with spectral resolution proportional

to window length. In this case, we want the window to span at least four periods of the

lowest frequency of interest in order to properly resolve low frequency components. The

window length is chosen as 1024 samples, which corresponds to 64 ms at 16 kHz sampling

rate. This permits proper resolution of fundamental frequencies for notes as low as B1,

while retaining an acceptable temporal resolution.

The STFT hop size must be small enough to guarantee proper subsampling of the

short-time spectra, which relates to the bandwidth of the main lobe of the analysis window

spectrum (Allen and Rabiner 1977). In the case of the Hann window, the hop size can be at

most 1
4
of the window size (Dolson 1986). The hop size is chosen as 1

4
the size of the window,

or 16 ms. We zero-pad the analysis window by a factor of 2 prior to the FFT computations

in the STFT, SMA, and DDM blocks, i.e., N = 2M . Zero padding was identified as being

important to the satisfactory performance of DDM, since it permits the selection of more

DDM atoms on the main lobe of the analysis window for the frequency slope estimation

of a particular partial. This is demonstrated by figures 4.2 and 4.3, which show, for a

particular hop n = 781, the selected DDM atoms overlaid on the STFT magnitudes and

phases.

The DDM model order is set to Q = 2, which is sufficient to model the local (per-hop)

frequency modulation as linear. The number of DDM atoms is set to L = 4.

All analysis parameters values used in experiment 1 are listed in table 4.3. Values for

the separation parameters that yield the best performance ideally do not depend on the

data but likely do depend on the analysis parameters. Therefore if the analysis parameters

were to change (e.g., higher sampling rate, longer window, no frequency oversampling) the

parameter sweep experiment would likely need to be run again to determine a new set of

optimal separation parameters.

1Tri C4 and Sqr E4 overlap for the chosen n
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Parameter Experiment 1 value

Data parameters

Sampling rate 16 kHz

STFT parameters

FFT size 2048

Window length 1024 samples (64 ms)

Hop size 256 samples (16 ms)

SMA parameters

Amplitude detection threshold -50 dB

Maximum number of partials tracked 25

Frequency deviation offset 20 Hz

Frequency deviation slope 0.11 Hz/bin

Minimum track duration 200 ms

DDM parameters

Model order 2

Number of atoms 4

Table 4.3 Experiment 1 PG-CFM analysis parameter values

4.3.4 Sweeping across separation parameters

We sweep over a parameter grid with logarithmic spacing, with the minimum and maximum

evaluated parameter values chosen, such that the parameter grid extends over a variety of

parameter pairs observed to give reasonable results in some informal initial investigations.

The parameter grid values are λ∆υ = 10{−3,−2,−1,0,1,2,3} and λ∆p = 10{1,1.67,2.33,3,3.67,4.33,5}.

λ∆p, which encourages smoothness in p, was found to require a larger value (compared

its counterpart λ∆υ) in order to be effective in the sense of producing visibly smooth p in

the PG-CFM solution. This can likely be attributed to the domain of p being much larger

than that of υ, and perhaps also due to the constraints on p that forbid it from assuming

large values.

The number of iterations is set to η = 6, which was observed to be suffice, in general, for

convergence to a locally optimal point, i.e., cost function no longer decreases with further
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iterations. The correct number of sources R = 2 is specified a priori. Hard masking was

used in the separation.

4.3.5 Evaluation

For the quantitative evaluation of separation performance, we use metrics from (Vincent,

Gribonval, and Févotte 2006), which were implemented in the BSS_EVAL toolbox2, and

are hereafter referred to as the BSS_EVAL metrics. BSS_EVAL quantifies several types of

distortion typically of masking-based source separation algorithms, which are computed

by orthogonal projection. The observed mixture y ∈ R
S is modeled as the sum of R true

sources x ∈ RS×R according to some mixture mapping, plus some additive noise n ∈ RS,

as

y = A(x) + n. (4.1)

The source separation algorithm produces R estimated sources {x̂r}. The j-th estimated

source is modeled as the sum of contributions from the target signal plus a variety of

distortion terms, expressed as

x̂j = xtarget + einterf + enoise + eartif (4.2)

where xtarget resembles the j-th true source xj, possibly subject to some allowable dis-

tortions, and einterf, enoise, and eartif are the interference, noise, and artifact error terms,

respectively. The source-to-distortion (SDR) ratio is defined as

SDR , 10 log10
‖xtarget‖

2

‖einterf + enoise + eartif‖2
. (4.3)

The source-to-interference (SIR) ratio is defined as

SIR , 10 log10
‖xtarget‖

2

‖einterf‖2
. (4.4)

The source-to-noise (SNR) ratio is defined as

SNR , 10 log10
‖xtarget + einterf‖

2

‖enoise‖2
. (4.5)

2http://bass-db.gforge.inria.fr/bss_eval/
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The source-to-artifacts (SAR) ratio is defined as

SAR , 10 log10
‖xtarget + einterf + enoise‖

2

‖eartif‖2
. (4.6)

The target vector xtarget and each of the noise terms, einterf, enoise, and eartif, are calculated

per-source by a series of orthogonal projections given the true sources {xj} and the j-th

estimated source x̂j, as

xtarget , Pxj
x̂j (4.7)

einterf , Pxx̂j − xtarget (4.8)

enoise , Px,nx̂j − Pxx̂j (4.9)

eartif , x̂j − Px,nx̂j (4.10)

where Pxj
x̂j is the projection of the j-th estimated source onto the j-th true source, Pxx̂j is

the projection of the j-th estimated source onto the subspace spanned by all true sources,

and Px,nx̂j is the projection of the j-th estimated source onto the union of subspaces

spanned by the true sources and true noise.

For each pair {λ∆p, λ∆υ} in the parameter grid, PG-CFM was performed 5 times on

each of the 8 mixtures in the dataset, for a total of 40 trials per parameter pair. We run

the algorithm multiple times for each note pair to account for the local optimality of the

PG-CFM solution.

4.4 Results

The BSS_EVAL metrics give one SDR, SIR, and SAR score for each source estimated by a

PG-CFM solution. The SDR, SIR, and SAR scores reported are calculated by considering

the evaluation score for a single trial to be the mean SDR, mean SIR, and mean SAR scores

averaged across all sources, i.e., the performance is assessed based on the average quality

of all estimated sources, rather than the quality of the best-estimated source.
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We omit the SNR BSS_EVAL metric in the results since simulated mixtures presented in

this thesis do not use additive noise so n and enoise evaluate to 0. SIR results are notably

high, reaching 40 dB in the best case. This can be attributed the class of examined synthetic

signals, which are unlikely to mutually correlate.

In order to determine the optimal separation parameters, we examine the median values

and variances for the 40 runs of PG-CFM which were produced for each {λ∆p, λ∆υ} in the

parameter grid. We prioritize a parameter pair which yields both (a) high median and (b)

low variance for its 40 BSS_EVAL scores. We thus devise a criteria of “consistent goodness”,

whereby a parameter pair is called consistently good if it produces median SDR and SAR in

the top quartile compared with all points on the parameter grid, and likewise SDR variance

and SAR variance in the bottom quartile. The BSS_EVAL metrics for parameter pairs with

“consistent goodness”, along with the parameter pairs yielding the best and worst median

SDR results, are shown in table 4.4. The metrics are presented by their median values,

with the lower and upper bounds of the interquartile range given in braces.

Median [Q1, Q3]

λ∆υ λ∆p SDR SIR SAR

Parameters yielding maximum median SDR

100 102.33 19.96[3.85, 25.30] 41.60[8.63, 42.20] 20.25[14.21, 25.43]

Parameters yielding minimum median SDR

10−3 101 −0.97[−3.35, 4.08] 7.45[2.29, 12.58] 2.49[0.77, 9.74]

Parameters meeting the “consistent goodness” criteria

10−2 103.66 19.84[8.80, 24.23] 37.42[11.25, 42.18] 20.21[17.10, 28.42]

10−2 104.33 19.84[8.80, 24.23] 37.42[13.23, 42.18] 20.21[17.10, 28.42]

Table 4.4 PG-CFM parameter sweep selected results

4.5 Discussion

We see that the inclusion of the penalty terms in the formulated cost function is necessary

in order to steer the algorithm towards a meaningful solution, since the worst-performing

parameter pair corresponds to smallest values possible on the separation parameter grid.

The “consistent goodness” criteria was satisfied for only two parameter pairs on the grid:

{λ∆p, λ∆υ} = {10−2, 103.66} and {λ∆p, λ∆υ} = {10−2, 104.33}. These two parameter pairs
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perform nearly identically on the dataset, even across the multiple algorithm runs. This

suggests that once the penalty terms are in the correct region of influence, they are not

sensitive to small changes in their corresponding regularization parameters.

4.6 Conclusion

This chapter presented a parameter sweep experiment designed to determine the optimal

set of PG-CFM algorithm parameters. The experiment was carried out using a dataset

of simulated mixtures of synthetic vibrato signals. Two parameter pairs were identified

as performing consistently well over the set of analyzed data, which represent the set of

permissible PG-CFM parameters to be used in subsequent source separation tasks.

2015/12/11
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Chapter 5

Experiment 2: Evaluation of

PG-CFM vs. NMF

In this chapter, we present the results of an experiment that was carried out to compare

the performance of PG-CFM with basic NMF on a source separation task using a dataset

of simulated mixtures of synthetic signals. We then discuss an application of PG-CFM

to the analysis of simulated mixtures of vibrato singing voice sounds. The procedure for

this application is less rigorous than the synthetic sound experiment since fewer sounds

are analyzed, the analysis parameters must be tuned by hand according to each analyzed

sound. Evaluation results are presented for the application to natural sounds and compared

with similar results from an NMF-based separation.

5.1 Experiment 2a: evaluation of PG-CFM vs. NMF with

synthetic data

5.1.1 Motivation

Basic NMF was shown in section 3.1.1 to be ill-suited for the analysis sounds comprising

the mixtures of sources with CFM vibrato, in the sense that the estimated sources do not

properly capture the frequency modulation present, which results in estimated sources of

a poor quality. We here design an experiment to provide a quantitative comparison of

NMF and PG-CFM in a source separation task where the analyzed sounds are mixtures of
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synthetic vibrato notes. The PG-CFM algorithm parameter are informed by the results of

the parameter sweep experiment, which was presented in chapter 4.

5.1.2 System parameters

Selection of the PG-CFM separation parameter values was informed by the experiment de-

scribed in chapter 4. In particular, we choose the parameter pair {λ∆p, λ∆υ} = {10
−2, 104.33},

which was observed to perform with “consistent goodness” on the dataset considered for

the parameter sweep experiment. The PG-CFM analysis parameters are set to the values

used in Experiment 1, which were given by table 4.3.

PG-CFM was compared with a basic NMF implementation, for which SED was used

as the divergence measure and alternating least squares was used to update the factors in

each iteration, with R = 2 (i.e., number of sources correctly defined a priori).

5.1.3 Data

The dataset comprised 100 simulated mixtures of the same class previously discussed,

namely, of synthesized triangle and square wave notes with vibrato effect added. Whereas

the experiment 1 examined simulated mixtures with fixed note values, here the value of

each note was selected randomly from the set of notes on a piano keyboard, i.e., A0–

C8 (fundamental frequencies 28–4186 Hz). The vibrato parameter values were randomly

selected from the same ranges as in experiment 1, which were specified in section 4.3.2,

page 58.

5.1.4 Procedure

For each simulated mixture in the dataset, PG-CFM and NMF were run 5 times. The

BSS_EVAL metrics were computed for each of the solutions produced, for a total of 500

values of SDR, SAR, and SIR produced for each of the two algorithms.

5.1.5 Results

For each algorithm, the interquartile ranges of the 500 evaluation results are shown in

table 5.1. These ranges are illustrated by the box plot shown in figure 5.1.
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Median [Q1, Q3]

Algorithm SDR SIR SAR

PG-CFM 20.21[19.29, 23.67] 33.85[31.00, 37.77] 25.26[22.98, 26.98]

NMF 15.91[9.29, 19.77] 22.27[14.91, 27.68] 18.56[14.09, 21.42]

Table 5.1 PG-CFM vs. NMF for source separation of randomly generated
mixtures of synthetic vibrato sounds
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Fig. 5.1 Interquartile ranges for PG-CFM vs. NMF using synthetic dataset

5.1.6 Discussion

Results from the analysis of simulated mixtures of synthetic vibrato sounds show gains of

4.31 dB, 11.58 dB, and 6.7 dB, of PG-CFM over basic SED-NMF in the median SDR,
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median SAR, and median SIR values across all 500 trials. While the experiment is non-

exhaustive since it considers a class of single-note synthetic vibrato sounds, the result is an

encouraging one that suggests that PG-CFM is better-suited to the source separation task

where the analyzed sounds contain a vibrato effect. We also see that the lower quartile value

Q1 is generally much higher for PG-CFM than NMF: 10 dB higher in the case of median

SDR. This suggests that PG-CFM may solve the failure mode of NMF in analyzing vibrato

sounds that was illustrated in 3.1. However, the failures of PG-CFM are more severe than

those of NMF as is evidenced by the few negative SDR results which can be seen in figure

5.1.

5.2 Experiment 2b: PG-CFM analysis of vibrato singing voice

mixtures

5.2.1 Motivation

The use of well-calibrated synthetic signals thus far in the experimentation has permitted a

careful inspection of the behaviors of PG-CFM. However, in order to advocate for the use of

these features and techniques within a more general musical source separation framework,

we also would like to demonstrate their appropriateness for the analysis of real musical

sounds. To this end, we describe an application of PG-CFM to a source separation task,

where the analyzed sounds are simulated mixtures of recordings of (real) vibrato singing

voice, and present results from using NMF on the same task for comparison.

5.2.2 Data

In the analysis of natural sounds, we must acknowledge a limit of PG-CFM in the analysis

of sounds in the absence of frequency modulation, where estimated frequency slope ξ̂ is

close to zero the proposed features Υ thus suffer from numerical issues. Thus, we focus on

the analysis of a dataset of musical sounds with a frequency modulation effect. We choose

to examine singing vocal vibrato sounds, which are characterized by a strong frequency

modulation (Maher and Beauchamp 1990) and thus should be appropriate for analysis by

the proposed signal model.

A well-organized dataset of vibrato singing voice sounds was unavailable, so a small

dataset of this class of sounds was complied by hand. Raw recordings were gathered
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from the MIR-1K dataset1 (Hsu and Jang 2009) and from recordings2 of female and male

opera singers found on freesound.org (Font, Roma, and Serra 2013). They were edited

to isolate parts of the performance subject to a frequency vibrato. The segments of the

vocal performance that met this criteria were sustained sung vowel sounds with the vocal

vibrato effect. The note onsets and decayed were typically excluded from the edits since

they are not well-described by the CFM signal model. The resulting edited recordings were

amplitude normalized, and downsampled to 16 kHz sampling rate as needed (to reflect

the sampling rate used in the previous experiment for which the regularization parameters

{λ∆υλ∆p} were found). The resulting dataset of isolated source sounds comprises 10 one-

second recordings of sung vowel sounds with vibrato; the time-domain and spectrogram

representations for one such sound are shown by figure 5.2.

5.2.3 System parameters

The system elements providing the pre-separation feature extraction of the component

partials, i.e., the DDM and SMA, were found to be very sensitive to changes in the analysis

parameters for the analysis of the dataset of vibrato singing voice sounds. This sensitivity

presents a key obstacle in the application of PG-CFM in the analysis of natural sounds,

since proper separation in the feature domain requires the extraction of reliable features

from the observed data.

We found that we could encourage the extraction of more reliable features by hand

tuning the analysis parameters to the analyzed sound prior to the separation. An example

of such a hand tuning is shown by figures 5.3 and 5.4. Figure 5.3 shows the local frequency-

slope-to-frequency ratio features extracted from a vibrato vocal source in isolation (i.e., not

a simulated mixture) using the default parameters given in table 4.1, which are apparently

quite noisy, which can be attributed to the incorrect tracking of noise above 2 kHz as

component partials by SMA. Figure 5.4 shows features extracted from the same sound

when the SMA minimum partial detection threshold has been increased from -50 dB to -40

dB. The total number of partials detected (including correctly-tracked partials) decreases

1MIR-1K contains recordings of untrained singers singing Chinese pop songs karayoke-style by the
graduate students in the lab, who are presumably untrained singers.

2in particular, http://www.freesound.org/people/digifishmusic/sounds/84243/ and https://

www.freesound.org/people/NoiseCollector/sounds/62103/, which are recordings of female and male
opera singers.



5 Experiment 2: Evaluation of PG-CFM vs. NMF 73

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t ime (s)

a
m
p
li
tu

d
e

V ibrato voice sound #9: /a/

time = nH (s)

fr
e
q
u
e
n
c
y
(H

z
)

Spectrogram (dB)

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

8000

−120

−100

−80

−60

−40

−20

0

20

Fig. 5.2 Time-domain and spectrogram representations for vibrato voice
sound in isolation: /a/



5 Experiment 2: Evaluation of PG-CFM vs. NMF 74

as a results of the adjustment, but the resulting features Υ are much cleaner and coherent

across same-source partials.

In general we were able to produce similar “cleaned” extracted features for each of

the 10 vibrato vocal sources in the dataset by hand-tuning the analysis parameters, which

typically involved adjusting the minimum detection threshold but in several cases involved

additional adjustments to the minimum partial duration or maximum frequency deviation

parameters.

Analysis parameters related to STFT are kept the same for every analysis as those

specified by table 4.1. Separation parameters are set to {λ∆p, λ∆υ} = {10
−2, 104.33}, which

were determined in experiment 1 to be “consistently good” in the analysis of simulated

mixtures of synthetic vibrato sounds.

5.2.4 Procedure

Prior to the simulated mixing of the vibrato vocal sources, the hand-tuned analysis param-

eters, one for each source, were set aside. Mixtures of vibrato vocal sounds were simulated

by the same procedure as in experiments 1 and 2, namely, by linear superposition with

0.75 seconds overlap for a resulting simulated mixture of 1.25 seconds. The data set of

10 isolated source sounds permits a unique combination of 45 unique two-source combi-

nations. For this application we consider “source A mixed with source B” and “source

B mixed with source A” to be unique source separation tasks, since we use the set-aside

hand-tuned analysis parameters for source A in the first case and those for source B in the

second case. Therefore, a total of 2 ∗ 45 = 90 simulated mixtures were considered in the

source separation task.

PG-CFM and NMF were performed on for each of the 90 simulated mixtures produced

from the singing voice vibrato dataset with 5 repetitions, for a total of 450 trial evaluations

for each of the two algorithms considered. Unlike experiments 1 and 2, where the analysis

parameters were fixed across trials, the analysis parameters in this application varied per

trial, and were specified to the set of values hand tuned to the first source in the mix-

ture. The BSS_EVAL metrics were computed for each of the 450 trials. As before, these

metrics were averaged across sources for each trial, so that the algorithm performance is

assessed during each trial on its overall average performance rather than the best-source

performance.
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5.2.5 Results

For each algorithm, the interquartile ranges of the 450 evaluation results are shown in table

5.2. These ranges are illustrated by the box plot shown in figure 5.5.

Median [Q1, Q3]

Algorithm SDR SIR SAR

PG-CFM 9.61[0.89, 12.14] 19.28[9.91, 23.35] 12.30[7.17, 15.62]

NMF 7.34[2.04, 10.06] 11.73[5.27, 19.64] 9.20[6.25, 11.95]

Table 5.2 PG-CFM vs. NMF for source separation of mixtures of vibrato
singing voice sounds
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5.3 Discussion

Both PG-CFM and NMF performed poorly on the application to vibrato vocal source sepa-

ration, when compared with the results from experiment 2. PG-CFM apparently performs

marginally better than NMF across the 450 trials, with gains of 2.26 dB, 7.53 dB, and

3.10 dB in median SDR, median SIR, and median SAR, respectively. Looking at the box

plot in figure 5.5, we see that PG-CFM yields a larger range of results than NMF. Inter-

estingly, PG-CFM yields much better best-case results than NMF, but does not perform

well consistently. Unlike with experiment 2, we see that PG-CFM has a small value for

its lower-quartile cutoff, which suggests a higher failure rate in this application. While the

small gains of PG-CFM over NMF in the median BSS_EVAL results are somewhat encour-

aging, the application to real musical sounds is somewhat inclusive, especially considering

the hand-tuning of analysis parameters that was required to facilitate the separations.

Sensitivity of the feature extraction blocks in PG-CFM to analysis parameters, which

may be data-dependent, is a major problem for PG-CFM as a practical source separation

tool since it reduces the robustness of the technique with regard to handling a variety of

data (e.g., of different noise floors). One possible future research direction would be to

attempt an automated approach to the setting of the analysis parameters, e.g., estimation

of the level of stationary noise in the recording.

However, the necessity of hand-tuning analysis parameters in this application suggests

a potentially more serious issue with PG-CFM, which stems from its reliance on non-

stationary sinusoidal model for not only the extraction of features, but also the estimation

of sources by resynthesis. This process of cleaning the features by hand essentially reduces

the fidelity of signal representation, since it tends to reduces the number of partials in

the non-stationary sinusoidal model. This is because, in general, the component partials

of singing voice decrease in energy as their frequency increases. Therefore, by increasing

the minimum threshold for detection in SMA we implicitly throw away the higher-register

partials.

An example of this phenomenon is seen in figures 5.3 and 5.4, where the SMA analysis

with hand-tuned features yields better features but also contains just a few partials. Since

the source separation task is equivalent to a partial grouping task from the perspective of

PG-CFM, and since the algorithm cannot group partials absent from the signal representa-

tion, the PG-CFM may estimate sources of a low fidelity in cases where hand-tuning of the
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analysis parameters is required, since the signal model comprises only a few partials. It is

possible that building a harmonicity constraint into the source model could help to discern

higher-register partials that are closer in amplitude to the ambient noise, since we would

know in what spectral neighborhoods to expect partials. However this would likely require

the estimation or a priori knowledge of the fundamental frequency for each source, which is

a challenging problem for the case of polyphonic mixtures (Yeh, Roebel, and Rodet 2010).

The application of PG-CFM to the analysis of vibrato singing voice mixtures revealed

SMA and DDM as useful but fragile feature extraction tools, which provided meaningful

features for real musical sounds, but are sensitive to data-dependencies such as the level

of stationary noise in the recording. The attempt to separate sources by a direct grouping

of partials using the extracted features demonstrated a moderate benefit of the proposed

method over NMF, but also suggested that the estimation of vibrato sources in high fidelity

would require source separation technique with a more robust signal model.

5.4 Conclusion

This chapter evaluated the performance of PG-CFM on two monaural musical source sep-

aration tasks, and provided a comparison to NMF in each case. First, an experiment

concerning simulated mixtures of synthetic vibrato sounds was carried out, which showed

moderate gains of PG-CFM over NMF. An application to the analysis of simulated mixtures

of vibrato voices showed small gains of PG-CFM over NMF, but also revealed a fragility

in SMA, the analysis tool used to provide local parameter estimates of the component

partials under an additive sinusoidal model, which in turn affects the local frequency slope

estimates provided by DDM. The sources estimated by PG-CFM were shown to be of an

unsatisfactory fidelity due to the hand-tuning of analysis parameter required to address

this issue.

2015/12/11
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Chapter 6

Structured NMF with CFM

constraints

The proposed PG-CFM algorithm was shown in chapters 4 and 5 to provide some benefit

over NMF in the analysis of vibrato signals in a source separation task. In this chapter we

propose an extension of the NMF, which incorporates the local frequency slope information

provided by SMA and DDM, and hopefully provides gains over basic NMF in the analysis

of sounds where the CFM signal model is applicable, while proving more robust than than

PG-CFM in the analysis of natural sounds. This algorithm can be categorized as both

a structural NMF extension and a constrained NMF extension. An application to the

analysis of a simulated mixture of synthetic vibrato sounds is then discussed.

6.1 Motivation

The proposed local frequency-slope-to-frequency ratio feature Υ, introduced in section

3.3.4, is evidently useful as a cue in the correct grouping of partials by source, as was

demonstrated in previous chapters. The PG-CFM signal model, which assumes a nonzero

frequency modulation applied coherently to each partial within a given source, was shown

to be appropriate in the analysis of short excerpts of sung vowel sounds with vibrato.

Sounds of this class occur briefly over the course of an entire vocal phrase, however, and

PG-CFM is not robust to the analysis of sounds in the absence of such a modulation since

the frequency slope ξ evaluates to zero or near-zero, resulting in numerical issues in the

computation of the frequency-slope-to-frequency ratio Υ. Furthermore, proper separation
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with PG-CFM assumes that every source in the mixture has some nonzero and CFM on

its partials. The experiments presented in chapter 5 examined the case where two vibrato

voice sounds overlap, but the more likely application of interest involves the extraction of

a single vibrato voice sound from a noisy environment, or from accompanying piano or

orchestral parts. PG-CFM may fail in this case since the signal model does not fit every

competing source in the auditory scene.

6.2 Proposed NMF extension

Can the NMF decomposition, with its fixed spectral templates, be extended to accommo-

date the analysis of sounds containing frequency modulations at subaudible rates? We

address this question by proposing restructured NMF decomposition, which must explain

the analysis from the non-stationary sinusoidal model by construction. This approach

represents a unification of the STFT-based and sinusoidal model-based signal analyses.

Additionally, we include several penalty terms in the decomposition, which are designed to

encourage certain qualities, including intra-source CFM, in the estimated sources.

We first present a new cost function which comprises the restructured model approxima-

tion along with the desired penalty terms. We then propose an algorithm, called Nonnega-

tive Matrix Factorization with Coherent Frequency Modulation constraints (NMF-CFM),

which minimizes the proposed cost function subject to the appropriate constraints. NMF-

CFM is both a structural and constrained extension of the basic NMF.

6.3 Cost function formalization

6.3.1 Model fit

We begin with a restructuring of the model approximation. The observed spectrogram is

approximated as the sum of contributions from R nonnegative sources, each of which is

characterized by low-rank spectral templates and temporal activations as with NMF. Addi-

tionally, each source in the model must explain some frequency estimates of the component

partials provided by SMA, where “explanation” is formalized by weighting the estimated

sources (i.e., {wr, hr} factor-pairs) by a tensor. This tensor incorporates (a) a notion of

the “likelihood” that source r explains the SMA data of partial k at hop n that was used

in PG-CFM, notated by pr(k, n), and (b) a function, derived from spectral shape of the



6 Structured NMF with CFM constraints 82

STFT analysis window, which permits the comparison of the STFT and SMA analyses in

the same domain. The approximate spectrogram under this model is expressed as

X̂(f, n) =
R−1
∑

r=0

wr(f)hr(n)
K−1
∑

k=0

pr(k, n)H(
f

N
− f̆(k, n)) (6.1)

where f

N
is the f -th FFT bin in normalized frequency, and f̆(k, n) is the SMA frequency

estimate expressed for tracked partial k at hop n, also expressed in normalized frequency.

H(·) is the magnitude of the Fourier transform of the analysis window w, normalized

such that H(0) = 1. The spectral templates wr(f) and temporal activations hr(n) for a

given source only contribute to the approximate spectrogram for time-frequency bins {f, n}

where
∑K−1

k=0 p
r(k, n)H( f

N
− f̆(k, n)) evaluates to 1. This occurs when both pr(k, n) ≈ 1

and f

N
− f̆(k, n) ≈ 0, which is to say that the likelihoods associated with source r explain

one1 of the SMA frequency estimates f̆(k, n) at time-frequency bin {f, n}.

In other words, source r contributes to the approximation X̂(f, n) only when both its

associated factor-pair wr(f)hr(n) and the likelihood pr(k, n) “agree”. The factor-pair re-

lates to the STFT analysis in the sense that it is a low-rank spectrogram, and the likelihood

relates to the sinusoidal model analysis, so this “agreement” in an optimization sense, is

a negotiation between the two modes of analysis, and the model fits the data only if it

accounts for both analyses.

The normalized spectral shape of the analysis window is expressed as

H(ν) =
1

W

∣

∣

1

2
Hrect(ν)−

1

4
Hrect(ν +

1

M − 1
)−

1

4
Hrect(ν −

1

M − 1
)
∣

∣ (6.2)

where ν ∈ [0, 1] is a normalized frequency, W is the analysis window normalization term,

which for the the Hann window is given by A.5, and Hrect(ν) is the spectral shape of the

length-M rectangular window (Harris 1978), expressed as

Hrect(ν) = e−jπ(ν−1) sin(Mπν)

sin(πν)
. (6.3)

1We implicitly assume no more than one dominant partial per time frequency patch, whose width is
given by the main lobe width of the analysis window magnitude spectrum, so that H( f

N
− f̆(k, n)) ≤ 1.

This is a stronger assumption than that of basic NMF, which assumes no more than one dominant source
per time-frequency bin. However, it is the same as the implicit assumption made by SMA since the spectral
resolution is set by the main lobe width of the analysis window.
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This model approximation is not a true factorization as with NMF. Some practical

consequences of this results are discussed in section 6.7.4, page 92.

We use the SED as a measure of fit of the approximate spectrogram X̂(f, n) to the

observed spectrogram X(f, n), expressed as

dSED(Xf,n|X̂f,n) = (X(f, n)− X̂(f, n))2. (6.4)

This distance measure is chosen for its convexity and simplicity with regards to gradient

evaluation. The scalar cost is the sum of element-wise SED of the observed spectrogram

to its model approximation, expressed as

D(W,H,υ,p) , DSED(X|X̂) =
F−1
∑

f=0

N−1
∑

n=0

dSED(Xf,n|X̂f,n). (6.5)

6.3.2 Coherent frequency modulation constraint

We formulate a scalar penalty function to encourage CFM for each of the estimated sources,

which takes the same form as equation 3.31, page 44, and is expressed as

CCFM(p,υ) =
R−1
∑

r=0

K−1
∑

k=0

N−1
∑

n=0

pr(k, n)(Υ(k, n)− υr(n))2. (6.6)

6.3.3 Spectral templates smoothness constraint

We formulate a scalar penalty function to encourage smoothness in the spectral templates

wr(f), which is expressed as

C∆w(W) = λ∆w

R−1
∑

r=0

F−1
∑

f=1

(wr(f)− wr(f − 1)).2 (6.7)

This penalty formulation is motivated by the apparent inability of the non-statinonary

sinusoidal model to properly estimate the high frequency components of sources, which

was discussed in section 5.3. In the absence of this penalty function, NMF-CFM is encour-

aged to choose factor pairs {wr(f), hr(n)} for the r-th estimated source with energy only

in time-frequency bins where a partial likely explain that source (formalized by pr(k, n))

was tracked. In other words, unpenalized NMF-CFM will tend to prefer source estimates
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resemble those of PG-CFM. By including this penalty term we discourage NMF-CFM from

setting its spectral templates to zero in the high frequency bins, particularly when a partial

was tracked in a nearby (usually lower) bin. This hopefully allows NMF-CFM to model

signal components in the higher frequencies where partial tracks from SMA are unavailable,

e.g., due to a high noise floor.

6.3.4 Likelihoods smoothness constraint

We formulate a scalar penalty function to encourage smoothness in the likelihoods pr(k, n),

which takes the same form as 3.33 and is expressed as

C∆p(p) =
R−1
∑

r=0

K−1
∑

k=0

N−1
∑

n=1

(pr(k, n)− pr(k, n− 1))2. (6.8)

6.3.5 Ratio features smoothness constraint

We formulate a scalar penalty function to encourage smoothness in the estimated ratio

features υr(n), which takes the same form as 3.32 and is expressed as

C∆υ(υ) =
R−1
∑

r=0

N−1
∑

n=1

(υr(n)− υr(n− 1))2. (6.9)

6.3.6 Cost function formulation

The overall scalar cost is expressed as

J(W,H,υ,p) = D(W,H,υ,p)

+ λCFMCCFM (p,υ) + λ∆wC∆w(W)

+ λ∆pC∆p(p) + λ∆υC∆υ(υ).

(6.10)

6.4 Optimization problem

The optimization problem for finding the best model approximation of the observed spec-

trogram amounts to a minimization of the cost function expressed by 6.10, subject to the

appropriate constraints. In particular, the spectral templates wr(f) and temporal activa-

tions υr(n) must be nonnegative, and pr(k, n) is constrained as in PG-CFM, so that it
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is nonnegative and always sums across parts to one. The optimization problem is thus

expressed as

minimize
W,H,υ,p

J(W,H,υ,p)

subject to pr(k, n) ≥ 0 ∀ r, k, n,

R
∑

r

pr(k, n) = 1 ∀ {k, n},

wr(f) ≥ 0 ∀ {r, f},

hr(n) ≥ 0 ∀ {r, n}.

(6.11)

6.5 Algorithm

We propose an algorithm, called NMF-CFM, which finds a locally optimal solution to

the optimization problem expressed by equation 6.11 by the familiar routine of alternating

minimization of the variables {p, υ, w, h}. During the update to each of these four variables,

the other three are held fixed to their previously assigned value. As with PG-CFM, p and

υ are updated by the solution to an equivalent QP. For the update to p, the equivalent QP

is convex, which permits and efficient solution using an existing solver. For the update to

υ, the equivalent QP is convex and unconstrained, which permits a closed-form solution.

The w and h are updated multiplicatively. The multiplicative updates are derived as in

(Lee, Hill, and Seung 2001), which was discussed in section 2.7.3, with details provided in

appendix C NMF-CFM is expressed by algorithm 6.1.

6.5.1 Multiplicative update of w

The spectral templates are updated multiplicatively as

wr(f)← wr(f)

∑N−1
n=0 X(f, n)hr(n)

∑K−1
k=0 pr(k, n)H( f

N − f̆(k, n)) + λ∆wκ(w
r(f))

∑N−1
n=0 X̂(f, n)hr(n)

∑K−1
k=0 pr(k, n)H( f

N − f̆(k, n)) + λ∆w̺(wr(f))
(6.12)

with

̺(wr(f)) =



















2wr(f) f = 0

4wr(f) 0 < f < F − 1

2wr(f) f = F − 1

(6.13)
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and

κ(wr(f)) =



















2wr(f + 1) f = 0

2wr(f − 1) + 2wr(f + 1) 0 < f < F − 1

2wr(f − 1) f = F − 1.

(6.14)

6.5.2 Multiplicative update of h

The temporal activations are updated multiplicatively as

hr(n)← hr(n)

∑F−1
f=0 X(f, n)wr(f)

∑K−1
k=0 p

r(k, n)H( f

N
− f̆(k, n))

∑F−1
f=0 X̂(f, n)wr(f)

∑K−1
k=0 p

r(k, n)H( f

N
− f̆(k, n))

. (6.15)

cf. appendix C for a derivation of the multiplicative updates to both w and h.

6.5.3 Scaling

We include a normalization step since it prevents the spectral templates from blowing up

proportional to the number of iterations. In particular, we rescale the factors so that wr(f)

sums to unity across all bins in each part, i.e.,

wr(f)←
wr(f)

∑F−1
ν=0 w

r(ν)
, (6.16)

hr(n)← hr(n)
F−1
∑

ν=0

wr(ν). (6.17)

Some consequences of this decision are discussed in section 6.5.4

6.5.4 Convergence

Updates to p and υ are local optima (with all other variables fixed), while the multiplicative

updates to w and h guarantee nonincreasing cost and satisfaction of the constraints. In

the absence of a post-update normalization step, we can guarantee convergence to a locally

stable solution in the limit η → ∞. However, we sacrifice a convergence guarantee by

including the scaling step. This is not the case with the basic NMF, but in our case

the cost may increase slightly as a result of the scaling, which cannot be applied to the



6 Structured NMF with CFM constraints 87

likelihoods without violating their constraints. In practice we observe that such increases

due to the normalization do not affect the overall convergence behavior.

6.5.5 Initialization

In practice, NMF-CFM performance was found to be quite sensitive to initialization of

the algorithm variables {H,W,p,υ}. For example, the update of p on the first iteration,

when W and H were initialized to random nonnegative values, the first updates to p and

υ would sometimes yield values for {p,υ} that, unlike a good PG-CFM solution, did not

well explain the observed features Υ, and moreover could not be “undone” in the following

iterations.

The remaining algorithm factors {W,H} are then updated according to gradients of

variables which do not properly encode the CFM of the sources, which leads to a NMF-

CFM solution after η that, while representing a stationary point of the cost function,

yields a poor separation. To address this issue, we propose an initialization scheme called

NMF-CFM-init, which is expressed by algorithm 6.2. The idea is to initialize {p,υ} to

a PG-CFM solution and run several iterations of multiplicative updates to W and H to

allow the spectral templates and temporal activations to reach values which reasonably-well

explain the observed data. From here we begin the NMF-CFM procedure.

Some observations on algorithm behavior with and without initialization by NMF-CFM-

init are discussed in section 6.7.

6.5.6 Block diagram

A block diagram for the proposed PG-CFM system is given by figure 6.1
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STFT |·| NMF-CFM mask ISTFT

K,H,Thr,Dur, FDO, FDS

SMA

DDM ratio

w, F,H

x X X
H,W, pr

X̂
r

Q,L

R, η, λ∆υ, λ∆p, λ∆w, λCFM

Υ̂

ξ̂

f̆

x̂r

Fig. 6.1 NMF-CFM block diagram

Algorithm 6.1: NMF-CFM with multiplicative updates

Input: Υ, f̆ ∈ RK×N , R, η,λCFM , λ∆p, λ∆υ, λ∆w

Output: p ∈ R
R×K×N
≥0 , υ ∈ RR×N ,W ∈ R

F×R
≥0 ,H ∈ R

R×N
≥0

initialize j = 1 and W,H,p,υ such that

W ∈ R
F×R
≥0 ,H ∈ R

R×N
≥0 ,υ ∈ RR×N , p ∈ R

R×K×N
≥0 ,

∑R

r=1 p
r(k, n) = 1 ∀ k, n;

compute p̃, υ̃, Υ̃ by unfolding p,υ,Υ as column vectors;

compute H ∈ RR×F×N×K by equation 6.2;

while j ≤ η do

compute υ̃,Λp, d̃,DH ,DΞ,Σr,Σk,Uf ;

p̃← p̃∗ by solution to equivalent QP, given by equation C.27 ;

compute Λυ,Ur,Uk,Dp;

υ̃ ← (UT
kDpUk + λ∆υΛ

T
υΛυ)

−1(UT
kDpUrΥ̃);

compute ̺ ∈ RF×R,κκκ ∈ RR×N ,v ∈ RR×F×N ;

wr(f)← wr(f)
∑N−1

n=0 X(f,n)hr(n)
∑K−1

k=0 pr(k,n)H( f

N
−f̆(k,n))+λ∆wκ(wr(f))

∑N−1
n=0 X̂(f,n)hr(n)

∑K−1
k=0 pr(k,n)H( f

N
−f̆(k,n))+λ∆w̺(wr(f))

;

compute ̺ ∈ RF×R,κκκ ∈ RR×N ,v ∈ RR×F×N ;

hr(n)← hr(n)
∑F−1

f=0 X(f,n)wr(f)
∑K−1

k=0 pr(k,n)H( f

N
−f̆(k,n))

∑F−1
f=0 X̂(f,n)wr(f)

∑K−1
k=0 pr(k,n)H( f

N
−f̆(k,n))

;

normalize W, H as appropriate;

j ← j + 1

compute p,υ by reshaping p̃, υ̃ to original dimensions;
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Algorithm 6.2: NMF-CFM-init with multiplicative updates

Input: Υ, f̆ ∈ RK×N , R, ηj,λ∆p, λ∆υ, λ∆w

Output: pi ∈ R
R×K×N
≥0 , υi ∈ RR×N ,Wi ∈ R

F×R
≥0 ,Hi ∈ R

R×N
≥0

initialize j = 1 and Wi,Hi such that Wi ∈ R
F×R
≥0 ,Hi ∈ R

R×N
≥0 , and

pi ∈ RR×K×N ,υi ∈ RR×N by PG-CFM;

while i ≤ ηj do

compute ̺ ∈ RF×R,κκκ ∈ RR×N ;

wr(f)← wr(f)
∑N−1

n=0 X(f,n)hr(n)
∑K−1

k=0 pr(k,n)H( f

N
−f̆(k,n))+λ∆wκ(wr(f))

∑N−1
n=0 X̂(f,n)hr(n)

∑K−1
k=0 pr(k,n)H( f

N
−f̆(k,n))+λ∆w̺(wr(f))

;

compute ̺ ∈ R
F×R,κκκ ∈ R

R×N ;

hr(n)← hr(n)
∑F−1

f=0 X(f,n)wr(f)
∑K−1

k=0 pr(k,n)H( f

N
−f̆(k,n))

∑F−1
f=0 X̂(f,n)wr(f)

∑K−1
k=0 pr(k,n)H( f

N
−f̆(k,n))

;

normalize Wi, Hi as appropriate;

j ← j + 1

6.6 Comments on the implementation

The NMF-CFM approximate model is not a product of low-rank matrix factors as with

the NMF. Although the spectral templates and temporal factorizations are low rank, the

overall model representation is not since we must store both the SMA and DDM extracted

features in memory. Efficiency of the model representation was a prime motivation in the

development of basic NMF, while the resulting interpretability of the estimated sources

was secondary, essentially amounting “good news” (Bertin, Badeau, and Vincent 2010).

Here we prioritize interpretability and correctness in the estimated sources, and sacrifice

efficiency of the model representation in so doing.

NMF-CFM represents an enormous computational requirement compared with PG-

CFM, which translates to a burden in either memory or speed depending on the im-

plementation. In particular, the memory-speed tradeoff hinges on whether the tensor

pr(k, n)H( f

N
− f̆(k, n)) ∈ RR×F×N×K is stored in memory as a pre-processing step, or

re-computed in the inner loop of each iteration. In our implementation, we chose to com-

pute this tensor in the pre-processing, which facilitates the examination of convergence

behaviors of the algorithm after many (on the order of 50) iterations. This, however,

limited the analysis to audio sampled at 16 kHz.
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As discussed in chapter 3, transient or breathy sounds are not well-modeled by the

sum of non-stationary sinusoids (Serra and Smith 1990). In theory, these sounds are more

appropriately modeled by NMF with flat spectral templates. Since the restructuring of the

NMF model in the formulation of NMF-CFM incorporates the non-stationary sinusoidal

model in the decomposition, it is unlikely to analyze this class of sounds well. This issue

could potentially be addressed by incorporating a stochastic model of the sinusoidal model

residual, as in (Serra and Smith 1990), into the decomposition.

NMF-CFM involves four separation parameters, λCFM , λ∆p, λ∆υ, and λ∆w, which span a

considerably larger parameter space than the two separation parameters of PG-CFM. This

consideration, along with the increased computation and memory requirements of NMF-

CFM over PG-CFM and the lack of a large dataset of real sounds containing frequency

modulations, ultimately deterred from the design of a full parameter sweep experiment to

determine the optimal separation parameters, of the type described in chapter 4. Such an

experiment could be the focus of future work.

6.7 Experiment 3: CFM-NMF analysis of synthetic vibrato

sound mixtures

We here demonstrate some of the merits and limitations of NMF-CFM by presenting an

application to a source separation task, where the algorithm parameters are selected by

hand. We focus on the analysis of simulated mixtures of (real) vocal vibrato sounds, which

was identified in section 5.3 as a case where PG-CFM provides gains over NMF but is

ultimately unsatisfactory due to an inability to model partials in the higher frequency

ranges. In particular, we examine a single simulated mixture of two vibrato signing voice

sources, taken from the dataset described in section 5.2.2. This permits a more thorough

examination of the NMF-CFM behaviors with respect to its algorithm parameters (in the

absence of a parameter sweep experiment). Moreover, the examination of a single mixture

from the dataset limits the influence of noise on the extracted features, which was previously

identified as an issue in the analysis of real musical recordings in our dataset. We compare

these results with those produced by NMF and PG-CFM. While this application is non-

exhaustive, it provides some useful insight into the quality of the sources estimated by

NMF-CFM.



6 Structured NMF with CFM constraints 91

6.7.1 Data

Sources 1 and 2 are recordings of an alto voice with singing a “oo” at B3 (fundamental

frequency 247 Hz) and “oo” at A4 (fundamental frequency 440 Hz), respectively, with

moderate vibrato in both cases. Spectrogram representations (in dB) are given for the two

vibrato voice sources in isolation and in simulated mixture by figure 6.2. We display only

the frequency bins in the range f ∈ [1, 175], which corresponds to frequencies less than 2.75

kHz, to enhance the clarity of the presented results, as the partials of interest exist in this

range for the sounds considered.
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Fig. 6.2 Spectrograms (dB) for vibrato singing voice sources in isolation and
mixture

6.7.2 Procedure

Analysis parameters for STFT and DDM were set to the same values as used for previous

experiments, which were given in table 4.3. The SMA analysis parameters were specified

to set of values hand-tuned to source 1, which in this case were identical to the SMA

parameters specified by table 4.3, except for the amplitude detection threshold, which was

set to -47 dB.

Four separations were performed using the following algorithms:
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• PG-CFM with η = 6, λ∆υ = 10−2, λ∆p = 104.33

• SED-NMF with η = 25, updates by alternating least-squares

• NMF-CFM-init with ηi = 100, λ∆w = 107, initialized by the previous PG-CFM solu-

tion

• NMF-CFM with η = 5, λCFM = 104, λ∆υ = 10−2, λ∆p = 104, λ∆w = 107, initialized

by the previous NMF-CFM-init solution

6.7.3 Results

The BSS_EVAL metrics for each of the four separations are give by table 6.1. Unlike the

results for the previous experiments, which averaged the metrics across sources for each

trial, we here present the per-source metrics. Spectrogram representations (in dB) for both

estimated sources produced by each of the four algorithms are shown by figure 6.3.

(Source 1, Source 2)

Algorithm SDR SIR SAR

PG-CFM (21.25, 22.03) (43.25, 37.12) (21.28, 22.17)

NMF (15.47, 17.87) (34.88, 24.31) (15.53, 19.00)

NMF-CFM-init (29.08, 22.28) (41.79, 23.34) (29.32, 28.98)

NMF-CFM (21.75, 18.41) (40.62, 20.78) (21.8, 22.22)

Table 6.1 Source separation performance for vibrato voice mixture: PG-
NMF, NMF, NMF-CFM, and NMF-CFM-init

6.7.4 Discussion

The spectrograms of the sources estimated by PG-CFM illustrate the fidelity problem of

the non-stationary sinusoidal model, which was discussed in section 5.3. For example, PG-

CFM estimates source 1 as a single partial. Looking at the spectrograms of the NMF-CFM

and NMF-CFM-init, we can see the effect of the new signal model in the reproduction;

sources estimated by this method are much more capable than PG-CFM of representing

the higher partials present in the sources. This is reflected by a subjective evaluation of

(i.e., listening to) of the estimated sources;

The NMF-CFM signal model seems more capable than that of PG-CFM, but does not

yield a perfect separation in this application, as is illustrated by the presence of some
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Fig. 6.3 Source 1 and 2 estimated spectrograms (dB) by PG-CFM, NMF,
NMF-CFM, and NMF-CFM-init
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source-1 overtones above bin 100 in source-2 estimations from both NMF-CFM and NMF-

CFM-init (we also observe this behavior in the NMF estimated sources).

It is very interesting to note that, in terms of the BSS_EVAL metrics, NMF-CFM-init

performs better than any other algorithm on this task, with gains of 13.61 dB and 7.83 dB

in SDR over NMF and PG-CFM, respectively. The NMF-CFM iterations updating the full

set of algorithm parameters {W,H,p,υ} apparently provide no extra separation benefit

after the multiplicative factor updates to {W,H} provided by NMF-CFM-init.

Although it is unwise to generalize about algorithm behavior from a single example, one

hypothesis is we do not benefit from a concurrent separation in both the Υ feature domain

and the spectrogram domain. In other words, perhaps the partial grouping provided by

PG-CFM best explains the observed sound in the feature domain, and while NMF-CFM-

init (which was initialized by PG-CFM) does not alter the source estimates in the feature

domain, it provides decent low-rank spectral templates and temporal activations which

enable source estimates in a higher fidelity than is possible in with the implicit sinusoidal

model of PG-CFM.

6.8 Conclusion

This chapter presented NMF-CFM, a novel NMF extension designed for the separation of

frequency-modulated musical sources from a monaural recording. NMF-CFM restructures

the NMF model so that the observed spectrogram is approximated by a non-stationary

sinusoidal in addition to the low-rank spectral templates and temporal activations typical

of NMF. Intra-source CFM and smoothness in the algorithm parameters are encouraged in

the NMF-CFM decomposition by the inclusion of several penalty terms in the formulated

cost function. An example analysis of a vibrato singing voice mixture, and some algorithm

behaviors and issues in the implementation were discussed. NMF-CFM was observed to

resolve some of the fidelity issues in source estimation characteristic of PG-CFM, but

interestingly was unable to surpass the performance of its initialization algorithm NMF-

CFM-init on the example application.

2015/12/11



95

Chapter 7

Conclusion

This chapter summarizes the main contributions of this thesis and suggests several possible

directions for future research on musical source separation using a CFM source model.

7.1 Summary of contributions

Chapter 3 discussed the local frequency-slope-to-frequency ratios using SMA and DDM in

tandem within the framework of a non-stationary additive sinusoidal signal model. These

ratio features were then shown to be useful in the grouping of the sinusoidal partials under

a source model containing a CFM term, and an algorithm to provide such a grouping,

called PG-CFM, was described.

Chapter 4 discussed the PG-CFM algorithm parameters, and described a parameter

sweep experiment designed to determine the ideal set of separation parameters via the

analysis of simulated mixtures of synthetic vibrato sounds with note values in the range

[C4, C5]. Two pairs of parameters that performed consistently well on the synthetic data

were identified.

In chapter 5, the separation performance of PG-CFM was evaluated using one of the

pairs of optimal separation parameters found in the previous experiment and compared

with the results from an NMF-based source separation. In the analysis of 500 simulated

mixtures of synthetic vibrato sounds with notes in the range [A0, C8], PG-NMF was

found to provide a moderate gain over NMF. In the analysis of real vibrato singing voice

mixtures, PG-CFM provided a small benefit over NMF but produced estimated sources of a

low fidelity due to the underlying additive sinusoidal model, which was unable to reproduce
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high-frequency signal components in the estimated sources. This application also revealed

SMA and DDM to be fragile in the extraction of local frequency-slope-to-frequency ratio

features from natural sounds.

In chapter 6, an extension to NMF was proposed that could hopefully leverage the

success of PG-CFM in using the extracted ratio features while avoiding the apparent pitfalls

of the additive sinusoidal model in the estimation of sources. The proposed algorithm,

called NMF-CFM, uses a restructured NMF model that takes into account the sinusoidal

signal components tracked by SMA in its approximation of the observed spectrogram.

Intra-source CFM, along with smoothness in the model parameters, is encouraged in the

estimated sources by way of penalty terms.

The application of NMF-CFM to the analysis of a single simulated mixture of two vi-

brato singing voice sounds was then discussed in detail. This example illustrated a benefit

of approximating sources in the spectrogram domain in the correct identification of higher-

frequency partials. Interestingly, the algorithm for initializing was found to outperform

NMF-CFM in the separation task, which may suggest that the estimation of spectral tem-

plates and temporal activations is best kept separate from the task of grouping partials by

CFM cues.

7.2 Future work

There are several steps that could be taken to directly advance the research presented in

this thesis. For example, while this thesis focused on the analysis of musical sounds with

frequency vibrato, the algorithms presented herein could be extended to musical sounds

with glissando or pitch bending effects. It is likely that the convergence speed of NMF-

CFM could be greatly improved by updating factors with Majorization-Minimization, as

in (Févotte 2011), which provides an updated factor that globally optimizes a function

majorizing the cost function, which likely reduces the cost much more than a single mul-

tiplicative update. Also, the hypothesis presented in chapter 6, that partial grouping and

spectrogram factor estimation are best done in separate domains, should be more thor-

oughly investigated.

Generally speaking, there is a great potential for future research on musical source

separation using a CFM source model, since there are a large variety of musical sounds

with CFM that are not well-modeled by the basic NMF. Improving the robustness of CFM-
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based source separation techniques would likely entail achieving an independence from the

sinusoidal model-based tracking tools like SMA, whose parameters needed to be hand-tuned

to specific audio input in practice. We first appealed to the additive sinusoidal model since

it more directly encodes the frequency modulation when compared with the STFT or PV.

However, it is conceivable that the intra-source frequency modulation coherence could be

leveraged by a parameter estimation in the STFT domain, which would in turn require a

STFT-like CFM signal model.

(Li, Woodruff, and Wang 2009) encoded amplitude modulations per frequency chan-

nel in auditory model to produce a nonnegative tensor to be factorized with an NMF-like

framework, along with appropriate masking and rectification to ensure that only valid fre-

quency slope estimates are considered, and that the data are nonnegative. It is conceivable

that DDM could be employed in the STFT domain to produce a similar tensor signal rep-

resentation. After all, STFT atoms are used to construct the linear system that provides

the DDM parameter estimates.

2015/12/11
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Appendix A

Analysis/synthesis specifications

A.1 Short-time Fourier Transform

A.1.1 Transform definitions

The STFT is defined as

[STFT{x}]f,n = Xf,n =
1

W

N

2
−1

∑

l=−N

2

x̄
(n)
l w̄l exp

(−j2πlf

N

)

(A.1)

where N is the number of frequency bins in the Discrete Fourier Transform (DFT), x̄(n) is

the n-th (possibly zero-padded) signal buffer, w̄ is the analysis window w̄ shifted by nH

samples, w̄ is the (possibly zero-padded) normalized analysis window, and f ∈ [0, F − 1]

is the set of non-redundant frequency bins, which is discussed further in section A.1.3.

We synthesize output audio from the time-frequency domain using the inverse short-time

Fourier transform (ISTFT), defined as

[ISTFT{X}]l = xl =
+∞
∑

m=−∞

(

N

2
−1

∑

n=−N

2

Xf,n exp
(j2πlf

N

)

)

. (A.2)

Appropriate analysis parameters must be chosen to ensure proper sampling of X in both

time and frequency (Allen and Rabiner 1977). Synthesis is implemented using the overlap-

add technique with an implicit rectangular synthesis window.



A Analysis/synthesis specifications 99

A.1.2 Signal buffer and analysis window

The possibly zero-padded n-th signal buffer is defined as

x̄
(n)
l =







xm+nH 1 ≤ l ≤M

0 M < l ≤ N .
(A.3)

We use a length-M normalized Hann window for analysis with zero padding when N > M .

The window is expressed as

w̄m =







1
W

sin2
(

π(m−1)
M

)

1 ≤ m ≤M

0 M < m ≤ N
(A.4)

where W is the normalization term included so that the window has unity sum1, i.e,

W =
M
∑

m=1

sin2
(π(m− 1)

M

)

=
M − 1

2
. (A.5)

The first derivative of the window is expressed as

w̄′
m =







π
W(M−1)

sin
(

2π(m−1)
M−1

)

1 ≤ m ≤M

0 else.
(A.6)

Source separation by Nonnegative Matrix Factorization necessitates a nonnegative short-

time spectral representation, for which the STFTmagnitudes, termed spectrogram, or STFT

square magnitudes, termed power spectrogram are often used.

A.1.3 Spectral symmetry

When x is strictly real, which is satisfied in the case of audio signals, all short-time spectra

have a symmetry property, expressed as

Sf,σ = −SN−f,σ ∀ f ∈ [1,
N

2
− 1]. (A.7)

1The normalized window function also has the property of unity spectral energy in the DC bin, i.e.,
[DFT{x}]0 = 1.
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In other words, the STFT for frequency bins f > N
2

are redundant to the signal repre-

sentation as they can be reproduced prior to the resynthesis without loss of information.

Therefore, in an NMF-like analysis of the STFT magnitudes, we discard these redundant

frequency bins and consider only the STFT magnitudes in the range f = [0, F − 1] where

F number of non-redundant bins, given by

F =
N

2
+ 1. (A.8)

A.2 Additive synthesis

An overlap-add additive synthesis scheme is used to generate a time-domain estimate of

the analyzed sound according to the model representation, i.e., the per-frame frequency

and amplitude estimates from the analysis. The n-th frame of partial k is synthesized as

x̂nk(m) =
P
∑

k=1

Ân
k(m) cos(φ̂n

k(m)) (A.9)

where Ân
k(m) and φ̂n

k(m) are the amplitude and phase estimates for partial k at frame n

evaluated at sample m. They are derived by a linear interpolation of the SMA amplitude

and frequency estimates {Ăn
k , f̆

n
k } of the current and previous frames as

Ân
k(m) = Ăn−1

k +
Ăn

k − Ă
n−1
k

H
m, (A.10)

and

φ̂n
k(m) = φ̂n−1

k (0) +
2πm

fs
(f̆n−1

k +
f̆n
k − f̆

n−1
k

2H
m) (A.11)

where fs is the sampling rate. The signal is then synthesized by overlap-add of all frame

estimates as

x̂(m) =
N
∑

n=1

K
∑

k=1

x̂nk(m− nH). (A.12)

It is worth noting that a more involved interpolation of the per-sample phases φ̂n
k(m)

may be better suited to resynthesis of signals with amplitude and frequency modulations,

as in (McAulay and Quatieri 1986), where an order-3 polynomial frequency interpolation
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scheme was used. We use linear frequency interpolation in the implementation, however,

since we defer to sms-tools for analysis and synthesis by additive sinusoidal model, which

interpolates the frequency linearly.

A.3 Synthetic signals

For the experiments described in Chapters 4 and 5, we generate mixtures of synthetic

signals, where each source in the mixture is a simple harmonic waveform subject to a

coherent sinusoidal frequency modulation. The mixture is defined as

x[m] =
R
∑

r=1

xr[m] (A.13)

where xr[m] is the r-th source in the mixture. It is expressed as

xr[m] =
P
∑

p=1

Ap[m] cos(φp[m]) (A.14)

where Ap[m] and φp[m] are respective instantaneous amplitude and instantaneous phase (in

radians) of partial p, and fs is the sampling rate. The instantaneous phase is specified by

initial phase φp[0] and subsequently calculated as an integral of the instantaneous frequency

as

φp[m+ 1] = φp[m] +
2π

fs
f̄p(1 + βr[m]) (A.15)

where f̄p is the steady-state frequency (in Hz) of partial p and fs is the sampling rate.

βr[m] is the sinusoidal coherent modulation for source r, expressed as

βr[m] =
∆r

2π
cos(ϕr[m]) (A.16)

where ∆r and ϕr[m] are the vibrato depth (in Hz) and instantaneous vibrato phase (in

radians) of source r. The instantaneous vibrato phase is specified by initial phase ϕr[0] and

subsequently calculated as the integration of the instantaneous vibrato frequency as

ϕr[m+ 1] = ϕr[m] +
2π

fs
ρr (A.17)
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where ρr is the vibrato rate (in Hz/sec) of source r.

In the aforementioned experiments, parts xr[m] in the mixture are generated as simple

harmonic waveforms (square, triangle, or sawtooth) with constant amplitude, i.e., fp[m] =

f̄p. The generating amplitudes and frequencies {Āp, f̄p} for square wave, triangle wave, and

sawtooth wave are expressed as follows:

A.3.1 Square Wave

Āp =
2

π(2p− 1)
(A.18)

f̄p =
(2p− 1)f̄1

fs
(A.19)

where f̄1 is the fundamental frequency (in Hz).

A.3.2 Sawtooth Wave

Āp =
1

πp
(A.20)

f̄p =
pf̄1

fs
(A.21)

A.3.3 Triangle Wave

Āp =
4

π2(2p− 1)2
(A.22)

f̄p =
(2p− 1)f̄1

fs
(A.23)

2015/12/11
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Appendix B

PG-CFM Optimization details

This appendix provides details for the inner loop variable updates of PG-CFM and NMF-

CFM, which were presented in algorithms 3.1 and 6.1, respectively. In both PG-CFM and

NMF-CFM, we show an equivalence of the updates to pr(f, n) and υr(n) to optimization

problems with a standard form, which permits the use of existing efficient solvers in the

inner loop. In both NMF-CFM, we derive the multiplicative updates to wr(f) and hr(n),

which amounts to additive gradient descent with a fixed step size that assures satisfaction

of the nonnegativity constraints along with a non-increasing cost between iterations.

B.1 Quadratic program

A Quadratic Program (QP) is a constrained optimization problem of the form

minimize
x

1

2
xTPx+ qTx+ r

subject to Gx � h

Ax = b

(B.1)

where P ∈ Rn is a symmetric matrix, G ∈ Rm×n, A ∈ Rp×n, h ∈ Rm, b ∈ Rm, and

x ∈ Rn (Boyd and Vandenberghe 2009). When P ∈ Sn
+, i.e., is both symmetric positive

semidefinite, then the QP is convex and permits a globally optimal solution that can be

found efficiently using existing solvers.
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B.2 PG-CFM updates

The PG-CFM algorithm finds a locally optimal solution to the optimization problem ex-

pressed by equation 3.35 via iterative alternating minimization of the variables p and υ.

We show that each of these optimization steps is equivalent to a convex QP for which an

optimal solution with respect to the independent variable can be found efficiently by using

the quadprog function from the Matlab optimization toolbox. In fact, in update of υ is

equivalent to an unconstrained convex QP, which permits a closed form solution.

B.2.1 Optimization problem for the update of pr(k, n)

We here discuss the inner loop update to pr(k, n), which is accomplished by minimizing the

cost function formalized in equation 3.34 with υr(n) held fixed to its previously assigned

value. With fixed υr(n), the optimization problem function expressed by equation 3.35

simplifies and can be expressed as

minimize
p

N
∑

n=1

K
∑

k=1

R
∑

r=1

pr(k, n)|Υ(k, n)− υr(n)|2

+ λ∆p

N
∑

n=2

R
∑

r=1

(pr(k, n)− pr(k, n− 1))2

subject to pr(k, n) ≥ 0 ∀ r, k, n,

R
∑

r=1

pr(k, n) = 1 ∀ {k, n}.

(B.2)

We now show that this optimization problem is equivalent to a QP of the form expressed

by equation B.1.
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B.2.2 Column vector definitions

Let p̃ ∈ RRKN be the “unfolding” of the tensor pr(k, n) ∈ RR×K×N into a column vector,

i.e.,

p̃ ,





















































































p1(1, 1)

p2(1, 1)
...

pR(1, 1)

p1(2, 1)

p2(2, 1)
...

pR(2, 1)
...

pR(K, 1)

p1(1, 2)
...

pR(1, 2)
...

pR(K, 2)
...

pR(K,N)





















































































. (B.3)

The i-th entry of p̃ can alternately be determined by

p̃i = pr̃(i)(k̃(i), ñ(i)) (B.4)

where r̃(i), k̃(i), and ñ(i) are defined as

r̃(i) , ((i− 1) mod R) + 1, (B.5)

k̃(i) , (⌊
i− 1

R
⌋ mod K) + 1, (B.6)

and

ñ(i) , ⌊
i− 1

RK
⌋+ 1, (B.7)

respectively. mod denotes the modulus operator and ⌊·⌋ denotes the floor operator.
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d̃ ∈ RRKN is similarly defined as the column vector expansion of the tensor |Υ(k, n)−

υr(n)|2 ∈ R
R×K×N , i.e.,

d̃ ,





















































































(Υ(1, 1)− υ1(1))2

(Υ(1, 1)− υ2(1))2

...

(Υ(1, 1)− υR(1))2

(Υ(2, 1)− υ1(1))2

(Υ(2, 1)− υ2(1))2

...

(Υ(2, 1)− υR(1))2

...

(Υ(K, 1)− υR(1))2

(Υ(1, 2)− υ1(2))2

...

(Υ(1, 2)− υR(2))2

...

(Υ(K, 2)− υR(2))2

...

(Υ(K,N)− υR(N))2





















































































. (B.8)

As with previous column vector definition, d̃ can be computed element-wise as

d̃i =
(

Υ(k̃(i), ñ(i))− υr̃(i)(ñ(i))
)2
. (B.9)

The column vector notation permits the expression of element-wise tensor sums as vector

dot products, e.g.,
N
∑

n=1

K
∑

k=1

R
∑

r=1

pr(k, n)|Υ(k, n)− υr(n)|2 = d̃T p̃. (B.10)
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B.2.3 Smoothing matrix

We define a smoothing matrix which computes the first order difference of p̃, as in the

second term of B.2. The smoothing matrix Λp ∈ RRKN×RKN is defined as

Λp =























0RK,1 0RK,RK−1 0RK,1 0RK,1 · · · 0RK,1 0RK,1

−1 01,RK−1 1 0 · · · 0 0

0 −1 01,RK−1 1 0 · · · 0

0
. . . . . . . . . . . . . . .

...

0 · · · 0 −1 01,RK−1 1 0

0 · · · 0 0 −1 01,RK−1 1























(B.11)

where 0a,b ∈ Ra×b denotes a rectangular zeros matrix. Starting at row RK + 1, the matrix

corresponds to an first-order FIR smoothing filter matrix acting the n dimension of pr(k, n).

In other words, pr(k, n) − pr(k, n − 1) can be expressed by the reshaping of Λpp̃ like in

equation B.3. Setting the first RK rows to zero effectively sets the first filter output to

zero, i.e., sets the starting index the sum over n in the second term of equation B.2 to

n = 1 rather than n = 0 (for which pr(k, n− 1) is undefined).

An example of the smoothing matrix Λp for R = 2, K = 3, N = 4 is given in figure

B.1.

Λp =





















































































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1


























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
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



































Fig. B.1 Example smoothing matrix Λp for R = 2, K = 3, N = 4
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The second sum in the cost function of equation B.2 is thus expressed as

λ∆p

N
∑

n=2

R
∑

r=1

(pr(k, n)− pr(k, n− 1))2 = λ∆pp̃
TΛT

pΛpp̃. (B.12)

B.2.4 Equality constraints

The sum-to-one constraints on pr(k, n) can be equivalently expressed in the vector notation

via the introduction of a matrix which effectively sums across the r dimension. The matrix

Σr ∈ RKN×RKN is a block diagonal matrix of row vectors of ones, and is expressed as

Σr =



















11,R 01,R · · · 01,R 01,R

01,R 11,R 01,R · · · 01,R

...
. . .

...

01,R
. . . 01,R

01,R · · · 01,R 11,R



















(B.13)

where 1a,b ∈ Ra×b is a rectangular ones matrix (a row vector, in this case). An example of

the summing matrix Σr for R = 2, K = 3, N = 4 is given in figure B.2.

Σr =











































1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1











































Fig. B.2 Example summing matrix Σr for R = 2, K = 3, N = 4
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The second constraint in equation B.2, which requires pr(k, n) to sum to one across all

parts, can be equivalently expressed as

Σrp̃ = 1KN,1 (B.14)

where 1KN,1 is a column vector containing KN ones.

B.2.5 Inequality constraints

The nonnegativity constraints on pr(k, n) can be expressed in the vector notation simply

by a multiplication by the identity matrix and element-wise comparison to a column vector

of zeros. This is expressed as

−IRKN p̃ � 0RKN,1 (B.15)

where IRKN ∈ RRKN×RKN is the identity matrix and 0RKN,1 ∈ RRKN is a column vector

of zeros. Note that we favor the element-wise inequality comparison using the � operator,

which reflects QP formulation given in equation B.1.

B.2.6 Quadratic program equivalence

The optimization problem expressed by equation B.2 is equivalent to the QP expressed by

minimize
p̃

λ∆pp̃
TΛT

pΛpp̃+ d̃T p̃

subject to − IRKN p̃ � 0RKN,1

Σrp̃ = 1KN,1.

(B.16)

B.2.7 Quadratic program convexity

The above QP is convex if and only if ΛT
pΛp is a positive semidefinite and symmetric

matrix. Matrix symmetry requires AT = A, which is satisfied trivially for ΛT
pΛp. Matrix

positive semidefiniteness requires xTAx ≥ 0 ∀ x, which is satisfied by construction in the

case of ΛT
pΛp, since p̃TΛT

pΛpp̃ is equivalent to
∑N

n=2

∑R

r=1(p
r(k, n)− pr(k, n− 1))2, which

is nonnegative. The QP expressed by equation B.16 is thus a convex optimization problem,

for which a globally optimal p̃∗ can be found efficiently.
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B.2.8 Implementation

The quadprog function from Matlab’s optimization toolbox is used to determine the so-

lution p̃∗ to the convex QP expressed by equation B.16. The interior-point-convex

algorithm is chosen as the solver, which implements an iterative interior point Newton’s

step method detailed in (Mehrotra 1992). Sparse matrix structures are used where appli-

cable in order to reduce the memory requirements of the algorithm.

B.2.9 Optimization problem for the update of υr(n)

υr(n) is updated in the inner loop by minimizing the cost function formalized in equation

3.34 with pr(k, n) held fixed to its previously assigned value. When pr(k, n) is fixed, the

optimization problem function expressed by equation 3.35 simplifies and can be expressed

as

minimize
υ

N
∑

n=1

K
∑

k=1

R
∑

r=1

pr(k, n)|Υ(k, n)− υr(n)|2

+ λ∆υ

N
∑

n=2

R
∑

r=1

(υr(n)− υr(n− 1))2.

(B.17)

Note that this optimization problem is unconstrained, since pr(f, n) is fixed to its previous

values and thus the constraints given in equation 3.35 will remained satisfied following the

update to υr(n). We show that this optimization problem is equivalent to an unconstrained

convex QP that permits a closed-form solution.
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B.2.10 Column vector definitions

Let υ̃ ∈ RRN be the “unfolding” of the tensor υr(n) ∈ RR×N into a column vector, i.e.,

υ̃ ,















































υ1(1)

υ2(1)
...

υR(1)

υ1(2)

υ2(2)
...

υR(2)
...

υR(N)















































. (B.18)

The i-th entry of υ̃ can alternately be determined by

υ̃i = υr̃(i)(ñ(i)) (B.19)

where r̃(i) and ñ(i) are the same definitions as B.5 and B.7, except with K = 1 to eliminate

the k dimension.

Let Υ̃ ∈ RKN be the “unfolding” of the tensor Υ(k, n) ∈ RK×N into a column vector,

i.e.,

Υ̃ ,















































Υ(1, 1)

Υ(2, 1)
...

Υ(K, 1)

Υ(1, 2)

Υ(2, 2)
...

Υ(K, 2)
...

Υ(K,N)















































. (B.20)
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The i-th entry of Υ̃ can alternately be determined by

Υ̃i = Υ(k̃(i), ñ(i)) (B.21)

where k̃(i) and ñ(i) are the same definitions as B.6 and B.7, except with R = 1 to eliminate

the r dimension.

B.2.11 Repeating matrix

Ur ∈ RRKN×KN repeats Υ̃ along the r dimension. It is a block diagonal matrix of column

vectors of ones, and is expressed as

Ur =



















1R,1 0R,1 · · · 0R,1 0R,1

0R,1 1R,1 0R,1 · · · 0R,1

...
. . .

...

0R,1
. . . 0R,1

0R,1 · · · 0R,1 1R,1



















(B.22)

The application of the repeating matrix is then expressed as

UrΥ̃ =













































Ῡ(1, 1)

Ῡ(2, 1)
...

Ῡ(K, 1)

Ῡ(1, 2)

Ῡ(2, 2)
...

Ῡ(K, 2)
...

Ῡ(K,N)













































(B.23)
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where Ῡ(k, n) ∈ RR is a column vector containing R repetitions of Υ(k, n), i.e.,

Ῡ(k, n) =













Υ(k, n)

Υ(k, n)
...

Υ(k, n)













. (B.24)

An example of the expanding matrix Ur for R = 2, K = 3, N = 4 is given in figure B.3.

Ur =

























































































1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1

























































































Fig. B.3 Example repeating matrix Ur for R = 2, K = 3, N = 4

Uk ∈ RRKN×RN is constructed similarly to expand υ̃ along the k dimension. It is a

block diagonal matrix of stacked identity matrices, and resembles Ur, but requires the
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permutation of rows since repeats occur along an inner dimension. This repeating matrix

is expressed as

Uk =



















℧(R,K) 0RK,R · · · 0RK,R 0RK,R

0RK,R ℧(R,K) 0RK,R · · · 0RK,R

...
. . .

...

0RK,R
. . . 0RK,R

0RK,R 0RK,R · · · 0RK,R ℧(R,K)



















(B.25)

where ℧(R,K) ∈ RRK,R is the vertical concatenation of K identity matrixes of size R, i.e.,

℧(R,K) =









IR
...

IR









. (B.26)

An example of the expanding matrix Uk for R = 2, K = 3, N = 4 is given in figure B.4.

B.2.12 Smoothing matrix

We formulate Λυ ∈ RRN×RN , a smoothing matrix for υ̃, which takes the same form as B.11

with K = 1, and is expressed as

Λυ =























0R,1 0R,R−1 0R,1 0R,1 · · · 0R,1 0R,1

−1 01,R−1 1 0 · · · 0 0

0 −1 01,R−1 1 0 · · · 0

0
. . . . . . . . . . . . . . .

...

0 · · · 0 −1 01,R−1 1 0

0 · · · 0 0 −1 01,R−1 1























(B.27)

B.2.13 Weighting matrix

We formulate a weighting matrix for Dp ∈ RRKN×RKN , a diagonal matrix whose diagonal

elements are pr(k, n), i.e.,

[Dp]i,j = p̃iδ(i− j) (B.28)
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Uk =

























































































1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























































































Fig. B.4 Example repeating matrix Uk for R = 2, K = 3, N = 4
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This permits an expression of the argument to the first summation in equation B.17 as

pr̃(i)(k̃(i), ñ(i))|Υ(k̃(i), ñ(i))− υr̃(i)(ñ(i))|2 = [(UrΥ̃−Ukυ̃)
TDp(UrΥ̃−Ukυ̃)]i (B.29)

where r̃(i), k̃(i), and ñ(i) are the indexing functions defined by equations B.5, B.6, and

B.7, respectively.

B.2.14 Quadratic program equivalence

The optimization problem expressed by equation B.17 is equivalent to the unconstrained

minimization problem defined as

minimize
υ̃

(UrΥ̃−Ukυ̃)
TDp(UrΥ̃−Ukυ̃) + λ∆υυ̃

TΛT
υΛυυ̃ (B.30)

This is quadratic in υ̃ and can thus be expanded and regrouped as the unconstrained

QP

minimize
υ̃

υ̃T (UT
kDpUk + λ∆υΛ

T
υΛυ)υ̃ − 2Υ̃TUT

r DpUkυ̃ + Υ̃TUT
r DpUkΥ̃. (B.31)

Note that the third term is a constant and thus has no effect on the solution.

B.2.15 Closed-form solution

The optimization problem expressed by equation B.31 is an unconstrained QP, which is

convex since the quadratic term (UT
kDpUk + λ∆υΛ

T
υΛυ) is positive semidefinite and sym-

metric by the same arguments given in section B.2.7. In fact we can make the stronger

statement that the quadratic term is positive definite since Uk is full rank. The lack of

constraints and positive definiteness of the quadratic term permit a closed-form solution to

the optimization problem, which is expressed as

υ̃∗ = (UT
kDpUk + λ∆υΛ

T
υΛυ)

−1(UT
kDpUrΥ̃) (B.32)

2015/12/11
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Appendix C

NMF-CFM Optimization details

C.1 NMF-CFM updates

The NMF-CFM algorithm finds a locally optimal solution to the optimization problem

expressed by equation 6.11 via iterative alternating minimization of the variables w, h, p

and υ. The multiplicative updates for w and h are derived here. As with the PG-CFM, the

updates to p and υ come from the solution to equivalent convex QPs, which are formulated

here.

C.1.1 Multiplicative updates of wr(f) and hr(n)

We here derive the inner loop updates to the nonnegative factors wr(f) and hr(n) according

to the standard form for NMF multiplicative updates, which was described in section 2.7.3.

We express the partial derivative of the cost function with respect to each of the two

variables θ ∈ {w, h}, i.e., ∂J
∂θ
. We then reformulate the partial derivative as the difference

of two nonnegative terms, and finally give the multiplier used in the update as the ratio of

these terms.
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C.1.2 Update of wr(f)

With h, p, and υ fixed, the NMF-CFM optimization problem, which is given by equation

6.11, simplifies, and can be expressed as

minimize
w

D(X|X̂) + λ∆wC∆w(W)

subject to wr(f) ≥ 0 ∀ {r, f}.
(C.1)

We can analyze the partial derivative with respect to each term individually by linearity of

the partial derivative, i.e.,

∂J

∂wr(f)
=
∂D(X|X̂)

∂wr(f)
+ λ∆w

∂C∆w

∂wr(f)
(C.2)

The first term in equation C.2 is expressed as

∂D(X|X̂)

∂wr(f)
= 2

N−1
∑

n=0

X̂(f, n)hr(n)
K−1
∑

k=0

pr(k, n)H(
f

N
− f̆(k, n)))

− 2
N−1
∑

n=0

X(f, n)hr(n)
K−1
∑

k=0

pr(k, n)H(
f

N
− f̆(k, n)))

(C.3)

where X̂(f, n) is the model approximation, defined as

X̂(f, n) =
R−1
∑

r=0

wr(f)hr(n)
K−1
∑

k=0

pr(k, n)H(
f

N
− f̆(k, n)) (C.4)

The second term in equation C.2 is expressed as

λ∆w

∂C∆w

∂wr(f)
= λ∆w(2̺(w

r(f))− 2κ(wr(f))) (C.5)

where

̺(wr(f)) =



















wr(f) f = 0

2wr(f) 0 < f < F − 1

wr(f) f = F − 1

(C.6)
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and

κ(wr(f)) =



















wr(f + 1) f = 0

wr(f − 1) + 2wr(f + 1) 0 < f < F − 1

wr(f − 1) f = F − 1.

(C.7)

We can thus reformulate the expression for the partial derivative as the difference of two

nonnegative terms, as
∂J

∂wr(f)
= Gwr(f) − Fwr(f), (C.8)

which permits multiplicative updates of the form

wr(f)← wr(f)
Fwr(f)

Gwr(f)

. (C.9)

The denominator of the multiplicative update is expressed as

Gwr(f) = 2
N−1
∑

n=0

X̂(f, n)hr(n)
K−1
∑

k=0

pr(k, n)H(
f

N
− f̆(k, n)) + 2λ∆w̺(w

r(f)), (C.10)

while the numerator is expressed as

Fwr(f) = 2
N−1
∑

n=0

X(f, n)hr(n)
K−1
∑

k=0

pr(k, n)H(
f

N
− f̆(k, n)) + 2λ∆wκ(w

r(f)). (C.11)

Both Fwr(f) and Gwr(f) are nonnegative functions since they sum over the nonnegative vari-

ables w, h, and p, and the weights H( f

N
− f̆(k, n)) represent Fourier transform magnitudes

and are thus nonnegative. The full multiplicative update is thus expressed as

wr(f)← wr(f)

∑N−1
n=0 X(f, n)hr(n)

∑K−1
k=0 pr(k, n)H( f

N − f̆(k, n)) + λ∆wκ(w
r(f))

∑N−1
n=0 X̂(f, n)hr(n)

∑K−1
k=0 pr(k, n)H( f

N − f̆(k, n)) + λ∆w̺(wr(f))
. (C.12)

C.1.3 Multiplicative update of hr(n)

With w, p, and υ fixed, the NMF-CFM optimization problem, which is given by equation

6.11, simplifies, and can be expressed as

minimize
w,h,p,υ

D(X|X̂) subject to hr(n) ≥ 0 ∀ {r, n}. (C.13)
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The partial derivative of the function-to-be-minimized can be expressed as

∂D(X|X̂)

∂hr(n)
= 2

F−1
∑

f=0

X(f, n)wr(f)
K−1
∑

k=0

pr(k, n)H(
f

N
− f̆(k, n))

− 2
F−1
∑

f=0

X̂(f, n)wr(f)
K−1
∑

k=0

pr(k, n)H(
f

N
− f̆(k, n)).

(C.14)

We can thus reformulate the expression for the partial derivative as the difference of

two nonnegative terms, as
∂J

∂hr(n)
= Ghr(n) − Fhr(n), (C.15)

which permits multiplicative updates of the form

hr(n)← hr(n)
Fhr(n)

Ghr(n)

. (C.16)

The denominator of the multiplicative update is expressed as

Ghr(n) =
F−1
∑

f=0

X̂(f, n)wr(f)
K−1
∑

k=0

pr(k, n)H(
f

N
− f̆(k, n)), (C.17)

while the numerator of the multiplicative update is expressed as

Fhr(n) =
F−1
∑

f=0

X(f, n)wr(f)
K−1
∑

k=0

pr(k, n)H(
f

N
− f̆(k, n)). (C.18)

Nonnegativity of Fhr(n) and Ghr(n) is assured as they are sums of nonnegative terms with

nonnegative weights. The full multiplicative update of the temporal activations is thus

expressed as

hr(n)← hr(n)

∑F−1
f=0 X(f, n)wr(f)

∑K−1
k=0 p

r(k, n)H( f

N
− f̆(k, n))

∑F−1
f=0 X̂(f, n)wr(f)

∑K−1
k=0 p

r(k, n)H( f

N
− f̆(k, n))

. (C.19)
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C.1.4 Update of pr(k, n)

The inner loop update of p is discussed here. With w, h, and υ fixed, the NMF-CFM

optimization problem given by 6.11, simplifies, and can be expressed as

minimize
p

D(X|X̂) + λCFMCCFM (p,υ) + λ∆pC∆p(p)

subject to pr(k, n) ≥ 0 ∀ r, k, n,

R
∑

r

pr(k, n) = 1 ∀ {k, n}.

(C.20)

As with PG-CFM, we show an equivalence of this optimization problem to a convex QP

by using a similar vector notation, including the introduction of matrices that sum, repeat,

smooth, and weight the vectors as in the previous sections. Since these matrices were

explicitly defined before, and in the sake of brevity, we merely list the vectors and matrices

used, along with their domain and functions, as follows:

• p̃ ∈ RRKN is the column vector unfolding of pr(k, n)

• d̃ ∈ RRKN is the column vector unfolding of |Υ(k, n)− υr(n)|2

• Ξ̃ ∈ RRFN is the column vector unfolding of
∑R−1

r=0 w
r(f)hr(n)

• DΞ ∈ RRFN×RFN is the diagonal matrix whose diagonal entries are Ξ̃

• H̃ ∈ RRFNK is the column vector unfolding and repeating of H( f

N
− f̆(k, n))

• DH ∈ RRFNK×RFNK is the diagonal matrix whose diagonal entries are H̃

• X̃ ∈ RFN is the column vector unfolding of X

• Uf ∈ RRFNK×RFN is the repeating matrix along the f dimension

• Σk ∈ RRFN×RFNK is the summing matrix along the k dimension

• Σr ∈ RFN×RFNK is the summing matrix along the r dimension

• Λp ∈ RRKN×RKN is the smoothing matrix acting on p in the n dimension
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Each of the three terms contributing to the function-to-be-minimized in equation C.20

can thus be expressed in the vector notation. In particular, the NMF-CFM model fit is

expressed as

D(X|X̂) =
∑

f

∑

N

d(Xf,n|X̂f,n) = (X̃−ΣrDΞΣkDHUf p̃)
T (X̃−ΣrDΞΣkDHUf p̃).

(C.21)

The CFM penalty is expressed as

CCFM(p) = d̃T p̃. (C.22)

The p smoothness penalty is expressed as

C∆p(p) = p̃TΛT
pΛpp̃. (C.23)

As in sections B.2.4 and B.2.5, the equality constraints in equation C.20 can be expressed

as

Σrp̃ = 1KN,1, (C.24)

while the inequality constraints can be expressed as

−IRKN p̃ � 0RKN,1 (C.25)

Equality and inequality constraints on p̃ are expressed as in sections B.2.4 and B.2.5

on page 108.

The optimization problem expressed by equation C.20 is thus expressed in the vector

notation as

minimize
p̃

(X̃−ΣrDΞΣkDHUf p̃)
T (X̃−ΣrDΞΣkDHUf p̃) + λCFM d̃T p̃+ λ∆pp̃

TΛT
pΛpp̃

subject to − IRKN p̃ � 0RKN

Σrp̃ = 1KN,1.

(C.26)
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The cost function to be minimized is quadratic in the independent variable, and can thus

be rewritten as a QP in the form given by equation B.1, expressed as

minimize
p̃

p̃T (UT
f DHΣT

kDΞΣ
T
r ΣrDΞΣkDHUf + λ∆pΛ

T
pΛp)p̃

+ (λCFM d̃T − 2X̃TΣrDΞΣkDHUf )p̃+ X̃T X̃

subject to − IRKN p̃ � 0RKN

Σrp̃ = 1KN,1.

(C.27)

C.1.5 Update of υr(n)

The only contributions to the NMF-CFM cost function, given by equation 6.10, that depend

on υr(n) are the penalty terms CCFM and C∆υ. Therefore, when p, w, and h are fixed, the

optimization problem expressed by 6.11 simplifies and can be expressed as

minimize
p,υ

λCFM

R−1
∑

r=0

K−1
∑

k=0

N−1
∑

n=0

pr(k, n)(Υ(k, n)− υr(n))2 + λ∆υ

R−1
∑

r=0

N−1
∑

n=1

(υr(n)− υr(n− 1))2.

(C.28)

This is equivalent to the unconstrained convex QP of the form

minimize
υ̃

υ̃T (λCFMUT
kDpUk + λ∆υΛ

T
υΛυ)υ̃ − 2λCFMΥ̃TUT

r DpUkυ̃ + λCFMΥ̃TUT
r DpUkΥ̃,

(C.29)

which permits a closed-form solution, expressed as

υ̃∗ = (λCFMUT
kDpUk + λ∆υΛ

T
υΛυ)

−1(λCFMUkDpUrΥ̃). (C.30)
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