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Abstract/Résumé 

Abstract 

Osteoporosis is a common, aging-related disease diagnosed primarily by measuring bone 

mineral density (BMD). We performed two genome-wide association studies (GWAS) to 

identify human genetic determinants of BMD estimated from the heel calcaneus (eBMD), 

leveraging the UK Biobank’s interim release (142,487 individuals) and full release (426,824 

individuals). We identified a total of 518 (454 novel) genome-wide significant loci, an 

approximate 7x increase of what was previously known. We also explained up to 20% of its trait 

variance, with the previous most recent estimate at approximately 6%. We then identified target 

genes for all loci using a combination of statistical fine-mapping and functional genomics data 

for SNP annotation. Skeletal phenotyping in mice of novel top candidate genes GPC6, DAAM2, 

CBX1, DSCC1, RGCC, WAC, and YWHAE confirmed their role in bone biology. We performed 

further validation of DAAM2 through CRISPR/Cas9 mediated knockouts in a human bone cell 

line, SaOS-2, and observed a mineralization phenotype for this crucial bone forming cell. 

Following our GWAS, we performed an epigenome-wide association study (EWAS) to identify 

human epigenetic determinants of BMD measured at the femoral neck and lumbar spine. We 

used site-specific CpG DNA methylation assessed in whole blood with the Illumina Infinium 

HumanMethylation450 array. We studied 4,614 individuals for our discovery analysis but failed 

to identify any consistently associated findings upon meta-analysis with a validation cohort of 

901 individuals. We therefore present the findings in this thesis as novel contributions to the 

genetic determinants of osteoporosis, and a cautionary tale for the study of the epigenetic 

determinants of osteoporosis. 
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Résumé 

L'ostéoporose est une maladie courante ayant un lien étroit avec le vieillissement. Cette 

maladie est principalement diagnostiquée en mesurant la densité de la masse osseuse (BMD). 

Nous avons effectué deux études d'association pan-génomique (GWAS) afin d’identifier les 

déterminants génétiques humains de la BMD estimés à partir du talon calcanéum (eBMD). En 

tirant en premier lieu de la libération provisoire de la cohorte de l’UK Biobank (142,487 

individus) et, subséquemment, de sa libération complète (426,824 individus). Nous avons 

identifié un total de 518 locus (incluant 454 nouveaux) étant statistiquement significatifs locus 

significatifs à l'échelle du génome. Représentant ainsi une augmentation d’environ 7 fois le total 

de locus précédemment connus. Suite à ces résultats, nous pouvons maintenant expliqué jusqu'à 

20% de la variance phenotypique de la BMD comparé à l'estimer d’environ 6% établi 

précédemment. Nous avons ensuite identifié des gènes cibles pour tous les loci à l'aide d'une 

combinaison de données statistiques de fine-mapping et de génomique fonctionnelle pour 

l'annotation de SNPs. Une analyse du phénotypes squelettiques liées aux nouveaux gènes 

candidats GPC6, DAAM2, CBX1, DSCC1, RGCC, WAC et YWHAE chez les souris, nous a 

permis de confirmer leurs rôles dans la biologie osseuse. Nous avons effectué une validation 

supplémentaire pour DAAM2 à travers des knockouts médiés par CRISPR/Cas9 dans une lignée 

de cellules osseuses humaines (SaOS-2) et, avons observé un phénotype de minéralisation pour 

cette cellule de formation osseuse cruciale. À la suite de notre GWAS, nous avons réalisé une 

étude d'association pan-épigénomique (EWAS) pour identifier les déterminants épigénétiques 

humaines de la BMD mesurés au niveau du cou fémoral et de la colonne lombaire. Nous nous 

sommes concentrés sur la méthylation de l'ADN dans la sang aux sites CpG compris sur la 

matrice d’Illumina Infinium HumanMethylation450. Nous avons interrogé 4,614 individus dans 
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une cohorte initiale suivi par une méta-analyse avec une cohorte de validation de 901 individus 

et avons constaté aucun résultats systématiquement associés au phénotype de la BMD. Nous 

présentons donc les conclusions de cette thèse en tant que nouvelles contributions aux 

déterminants génétiques de l'ostéoporose, et un conte de prudence pour l'étude des déterminants 

épigénétiques liés l'ostéoporose.  
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Original Contribution to Knowledge 

This doctoral thesis identified genetic determinants of osteoporosis through the study of 

bone mineral density (BMD), its most clinically relevant risk factor. We used genome-wide 

association studies, integrative analyses with statistical fine-mapping and functional genomics, 

animal model validation and epigenome-wide association studies to compile a comprehensive 

dataset for determinants of osteoporosis. 

Chapter 2 is titled “Identification of 153 new loci associated with heel bone density and 

functional involvement of GPC6 in osteoporosis”. It describes how we analyzed the UK Biobank 

interim data release of approximately 150,000 participants with both genome-wide genotypes 

and BMD estimated from quantitative ultrasound of the heel (eBMD) to identify 203 loci (153 

novel), explaining 12% of the trait variance. The number of novel loci in this study tripled and 

the variance explained doubled what was currently known. I then performed statistical fine-

mapping to identify plausibly casual variants and tested their evidence for association with gene 

expression in primary human osteoblasts, identifying glypican 6 (GPC6) as a top novel candidate 

gene for osteoporosis. A knockout mouse model of Gpc6 exhibited an abnormal skeletal 

phenotype and confirmed its relevance to bone biology. 

Chapter 3 is titled “An atlas of human and murine genetic influences on osteoporosis”. It 

is a follow-up study for Chapter 2 that leverages the UK Biobank full data release of 

approximately 500,000 participants to identify 518 loci (301 novel) for eBMD, explaining 20% 

of the trait variance. I also performed a meta-analysis of UK Biobank and 23andMe participants, 

approximately 1.2 million individuals in total, to identify 13 loci for bone fracture. I performed 

statistical fine-mapping to identify plausibly causal variants for eBMD and then used novel bone 

cell functional genomics data to identify a set of target genes strongly enriched for genes known 
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to influence bone density and strength. Knockout mouse model validation identified a set of 126 

genes enriched for outlier skeletal phenotypes and we performed additional validation analyses 

for one such gene, dishevelled associated activator of morphogenesis 2 (DAAM2). We performed 

CRISPR/Cas9 mediated gene knockouts in human osteoblast cell lines to confirm its relevance to 

bone biology. 

Chapter 4 is titled “Epigenome-wide association of DNA methylation in whole blood 

with bone mineral density”. I assembled an international consortium of cohorts to perform a 

meta-analysis of epigenome-wide associations for CpG DNA methylation data, assessed using 

the Illumina Infinium HumanMethylation450 array, and BMD measured at the femoral neck and 

lumbar spine. Using a sample size of up to 5,515 participants in a well-powered setting, we were 

unable to identify any consistent association signals among tested CpG sites. Therefore, this 

study was published as a null-results study, and serves as cautionary tale for the study of 

epigenetic determinants of osteoporosis. 
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Chapter 1: Introduction 

1.1 Osteoporosis and bone mineral density 

Osteoporosis is a common, complex disease characterized by weak bone 

microarchitecture resulting in bone fragility and increased risk for fracture. Due to the aging 

population of North America, the incidence of osteoporosis is increasing, costing the Canadian 

healthcare system up to $3.9 billion per year in total costs1 and exceeding $17 billion per year in 

direct care costs within the United States2. Identifying determinants of osteoporosis will improve 

the understanding of its pathophysiology, leading to better or more efficient treatments of this 

common and costly disease. Low bone mineral density (BMD) is the most clinically relevant risk 

factor for osteoporosis and is used in risk stratification3,4. BMD plays a fundamental role in the 

decision to treat individuals pharmacologically to prevent major osteoporotic fractures. While 

BMD is approximately 70-80% heritable, it is a complex trait that can be influenced by several 

biological and environmental factors5. The focus of my doctoral thesis is therefore to investigate 

determinants of BMD, with the aim to contribute to our knowledge of osteoporosis etiology and 

its treatment. 

1.2 Studying bone mineral density instead of bone fracture 

BMD is often used to study osteoporosis instead of bone fracture because the biological 

determinants of fractures are much more heterogeneous than the biological determinants of 

BMD6,7. This difference in heterogeneity is due to the more complex reasons for which fracture 

may occur, and is highlighted by the decrease in fracture heritability with age when compared 

against BMD, which has a high heritability8–12. The study of BMD genetics has identified nearly 

all known drug targets for fracture prevention, providing strong evidence that further study of the 
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genetic determinants of BMD can identify clinically relevant determinants of fracture with 

relatively fewer samples6. 

1.3 Different measurement sites of bone mineral density 

Sites of BMD measurement are selected due to different risks of fracture, such as the 

forearm, hip, or vertebral bones. As bone is a complex organ, not all bone throughout the body is 

of the same type. BMD that is measured at these sites represents different proportions of cortical 

and trabecular bone (where cortical bone is the outer tube-like structure and the trabeculae are 

the inner spicules of bone that connect the cortices). Cortical bone is dense, compact bone tissue 

that comprises up to 80% of the human skeleton and comprises most of the long bones of the 

body, such as the forearm. Trabecular bone is soft, spongy bone tissue that comprises 

approximately the remaining 20% of the human skeleton, providing structural support and 

flexibility at the ends of long bones. BMD is measured at sites of cortical or trabecular bone by 

using dual-energy X-ray absorptiometry (DXA) scanning, a non-invasive method. Bone 

measured at the forearm has a high proportion of cortical bone whereas bone measured at the hip 

and spine has a high proportion of trabecular bone. BMD can be estimated at the heel calcaneus 

using quantitative ultrasound measurements (eBMD), allowing for the cheap and rapid 

assessment of BMD in large numbers of samples, and can be used to independently predict 

fracture risk13,14. 

1.4 Genetic determinants of bone mineral density 

Genome-wide association studies (GWAS) and meta-analyses have identified single 

nucleotide polymorphisms (SNPs) associated with BMD15–23. SNPs are single base pair (bp) 

genetic variants that can differ at specific positions of the genome (alleles) between individuals 

and across populations. SNP alleles can be common, with minor allele frequencies (MAF) of 
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over 5% within a given population, can have a low frequency (1% ≤ MAF < 5%), or be rare 

(MAF < 1%). SNPs can be measured at low-cost in many individuals by using genotyping 

arrays. Currently, these arrays assess which allele is present at each SNP site for over 600,000 

SNPs. To increase coverage across the genome and study more SNPs, whole-genome sequencing 

haplotype data can be used to impute SNP alleles for any individual. Haplotypes can be 

measured from thousands of individuals to generate a reference panel that is then used for 

imputation. Imputation allows for the inference of a SNP allele for an individual based on their 

adjacent genotyped SNPs and is most effective when individuals being imputed are from the 

same population as the ones comprising the reference panel. For example, the UK10K project 

performed whole-genome sequencing on 3,621 individuals to generate a reference panel24. They 

then imputed the remainder of their participants to generate a sample size of up to 9,132 

participants with over 13 million SNPs assessed per person. Imputation therefore increases the 

number of available SNPs for GWAS and is currently widely implemented using the Haplotype 

Reference Consortium (HRC)25 and their HRC reference panel. GWAS simply ask whether the 

occurrence of a SNP allele in a population associates with a trait of interest or disease risk, and 

associated SNPs can direct us to genes. These genes may be already known to influence a trait or 

disease risk, or they may be novel and require functional validation. The basic form of this 

association test is a linear regression, estimating the additive effect of alleles on a trait or disease. 

Current methods utilize linear mixed models to also incorporate population stratification and 

cryptic relatedness into association tests26. 

GWAS-identified SNPs associated with BMD have shed light on the genetic architecture 

of osteoporosis by revealing genes that impact bone physiology through known molecular 

pathways such as the Wnt signaling pathway17. The set of SNPs that causally influence BMD are 
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not known, as it has been widely recognized that most associated SNPs are likely serving as 

proxy markers for causal SNPs due to the association between the marker and causal SNP via 

linkage disequilibrium (LD). Therefore, the identification of novel associated SNPs, and the 

further identification of which SNPs may be causal, can lead us to genes that were previously 

unknown to influence bone physiology. In addition, prior to the studies presented in this thesis, 

the number of GWAS-identified loci explained approximately 6% of the variance of BMD16, 

indicating that several more loci are likely to be discovered at larger sample sizes27. 

1.5 Fine-mapping of genetic loci for causal variation 

As discussed above, genetic variation assessed through SNPs by GWAS have identified 

dozens of BMD-associated loci. However, due to LD, most identified SNPs within each locus 

serve as proxies for the actual causal variant(s) underlying the association28. Recently, several 

software have been developed for the purpose of statistical fine-mapping to identify plausibly 

causal SNPs, and we focused on one in particular due to its high performance speed and 

replicability with other software: FINEMAP29. For a given locus, FINEMAP implements a 

shotgun stochastic search algorithm to test multiple causal configurations of SNPs, calculating 

within a Bayesian framework the posterior probabilities of each configuration to identify the 

number of likely causal SNPs. For a given number of causal SNPs, FINEMAP will calculate for 

each SNP their Bayes factor, which is a ratio for the likelihood of probability29. Based on their 

association statistics and local LD structure, we can retain only SNPs with Bayes factors greater 

than a pre-specified threshold to identify which SNPs are plausibly causal. As most identified 

SNPs are within non-coding regions, identifying causal SNPs will help us understand novel 

biological mechanisms through which these loci influence BMD. 
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1.6 Integrative analyses with functional genomics data 

We can infer the function of plausibly causal SNPs by integrating functional genomics 

data, generated in high-throughput manners (epigenomics). Epigenomics can be broadly defined 

as the study of dynamic regulatory elements that control gene expression and cell differentiation. 

Integrative analyses are particularly useful when SNPs map to non-coding regions of the 

genome, as function is not as explicit here in contrast to SNPs mapping to protein-coding genes. 

Two examples will be introduced: DNase I hypersensitive sites (DHS) and assay for transposase-

accessible chromatin using sequencing (ATAC-seq). DHS and ATAC-seq are methods to 

generate open chromatin landscapes for a given cell type, where we can identify regions of the 

genome with exposed chromatin that are predicted to have function (e.g. active transcription 

factor binding sites). DHS are generated by shearing genomic DNA with DNase I enzymes—

enzymes that cleave open chromatin—and amplifying the fragments by polymerase chain 

reaction (PCR)30. Fragments are then sequenced and mapped to a reference genome, where peak-

calling software are then used to identify peaks of DHS data. SNPs that map to these peaks are 

therefore inferred to have function, as this region is “open” in the given cell type, although the 

specific function would require further validation experiments. ATAC-seq operates in a similar 

fashion, where hyperactive Tn5 transposase is used to target open chromatin and fragment the 

genome31. ATAC-seq fragments are amplified with PCR, sequenced, mapped to a reference 

genome, and peak-calling software are applied to identify ATAC-seq peaks. One benefit of 

ATAC-seq over DHS is that it requires lower levels of input cells (e.g. single-cell ATAC-seq32), 

therefore ATAC-seq may be more tractable for precious samples. By generating open chromatin 

peak data, we can further disentangle SNPs in LD for function. Integrating functional genomics 
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data is therefore useful to stratify plausible causal and putatively functional SNPs for follow-up 

experiments, and to identify their target genes. 

1.7 Epigenetic determinants of bone mineral density 

Another form of epigenomics we can study is the addition of a CH3 methyl group to a 

cytosine followed by a guanine (CpG). The addition of a methyl group to a cytosine by 

methyltransferases results in a 5-methylcytosine. Clusters of CpGs are termed CpG islands and 

often CpG islands are found in gene promoter regions. The mechanism through which promoter-

region DNA methylation can regulate gene expression is the inhibition of regulatory elements 

necessary for transcription33. In general, methylation of CpGs associate with decreased levels of 

gene expression and unmethylated CpGs associate with increased levels of gene expression, 

although this is not always the case34,35. DNA methylation can be studied using microarray-based 

platforms, such as the Illumina Infinium HumanMethylation450 Bead Chip, which assesses the 

methylation status of approximately 450,000 CpGs mostly surrounding genes.  

Studies have shown that modified DNA methylation levels can impact cellular function and 

disease36 and that DNA methylation has a role in bone physiology37. Prior to the studies 

presented in this doctoral thesis, evidence linking BMD with epigenetic modifications at the 

genome-wide level had yet to be fully studied. With a GWAS-like study design, genome-wide 

screens of DNA methylation levels can test whether variation in methylation levels associate 

with BMD to identify novel loci involved in the pathophysiology of BMD or to understand if 

DNA methylation mediates known genetic variation associated with BMD. This study design is 

called an epigenome-wide association study (EWAS) and is currently being applied to several 

diseases in order to identify differentially methylated regions (DMRs) or probes (DMPs) 

associated with traits of interest38. 
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1.8 Rationale, objectives and hypothesis 

The three major objectives of the presented doctoral thesis were to:  

 Perform GWAS of bone mineral density to identify novel genetic determinants of 

osteoporosis 

 Develop a fine-mapping workflow to identify target genes for each locus using plausibly 

causal and putatively functional SNPs 

 Perform EWAS of bone mineral density to identify novel epigenetic associations with 

osteoporosis and validate associations for further testing 

We hypothesized that by leveraging large genetic or epigenetic cohort studies, statistical 

analyses, and functional genomics data, we would accomplish these objectives and identify novel 

genetic and epigenetic determinants of osteoporosis at an unprecedented scale.  

To address objectives 1 and 2, we used data from the UK Biobank, a large study of 500,000 

participants from the United Kingdom aged 40-69 years old. All participants had physical 

measurements taken at a baseline visit, providing physical samples and answering questionnaire-

based surveys, with their data linked to their electronic health records. This study was an 

unprecedented resource in both sample size and breadth of measurements, with genotype and 

phenotype data available for all participants. We first analyzed an interim release of 150,000 UK 

Biobank participants, detailed in Chapter 2. We then analyzed the full release of 500,000 UK 

Biobank participants, detailed in Chapter 3. Both Chapters are GWAS of bone mineral density 

estimated from quantitative ultrasound of the heel calcaneus (eBMD), with statistical and 

functional follow-up experiments to identify plausibly causal SNPs and their candidate target 

genes. Therefore, Chapter 2 and Chapter 3 represent major advancements in the field of bone 

genetics.  
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Objective 3 was addressed by assembling an international consortium of cohorts with 

DNA methylation assessed by the Illumina Infinium HumanMethylation450 array, and with 

BMD scans at the femoral neck and lumbar spine. We recruited the TwinsUK (TUK), Avon 

Longitudinal Study of Parents and Children (ALSPAC), Framingham Osteoporosis Study (FOS), 

Rotterdam Study (RS), and Danish Twin Registry (DTR) and performed an EWAS in up to 

5,515 participants, making this the first, and still the only, EWAS for any musculoskeletal trait to 

date. Although we sought to identify novel epigenetic determinants of osteoporosis, we did not 

identify any replicable associations and therefore published this EWAS as a null results study. 

Chapter 4 represents one of the largest EWAS publications in the complex trait and common 

disease literature and serves as a cautionary tale for the bone and genetics research communities. 
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Chapter 2 

Preface: Bridge Between Chapter 1 and Chapter 2 

The UK Biobank’s interim release was a landmark event for the global genetics research 

community, as a massive source of genotype and phenotype data was made available to any 

research group upon application. Our research group at McGill University has experienced 

previous success in collaborating with the Genetic Factors of Osteoporosis (GEFOS) consortium, 

an international community of bone genetics researchers, and therefore instead of competing 

with members of GEFOS to analyze and publish data from the UK Biobank alone, we 

collaborated. Through especially close collaboration with a research group at the University of 

Queensland, Australia, we performed GWAS of eBMD in the UK Biobank’s interim release of 

up to 150,000 participants and downstream statistical and functional analyses to identify and 

validate candidate target genes. Due to the competitive environment of working with such widely 

available data, and the time pressure of the UK Biobank’s impending full data release, we 

focused on one candidate target gene in greater detail, Glypican 6 (GPC6), showcasing the utility 

of our findings. 
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2.1 Abstract 

Osteoporosis is a common disease diagnosed primarily by measurement of bone mineral 

density (BMD). We undertook a genome-wide association study in 142,487 individuals from the 

UK Biobank to identify loci associated with BMD estimated by quantitative ultrasound of the 

heel (eBMD). We identified 307 conditionally independent SNPs attaining genome-wide 

significance at 203 loci, explaining 11.8% of the phenotypic variance. These included 153 novel 

loci, and several rare variants with large effect sizes. Linkage disequilibrium score regression 

revealed genetic correlations between eBMD, BMD measures at other skeletal sites, and fracture. 

To investigate underlying mechanisms, we undertook: 1) bioinformatic, functional genomic 

annotation and human osteoblast expression studies; 2) gene function prediction; 3) skeletal 

phenotyping of 120 knockout mice with deletions of genes within 500kb of lead independent 

SNPs; and 4) analysis of gene expression in mouse osteoblasts, osteocytes and osteoclasts. These 

studies strongly implicate GPC6 as a novel determinant of BMD and identify abnormal skeletal 

phenotypes in knockout mice for a further 100 prioritized genes. Overall, these studies almost 

triple the number of BMD-associated loci, double the variance in BMD explained by genetic 

factors, and identify new potential drug targets for the prevention and treatment of osteoporosis 

that can be tested directly in disease models. 
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2.2 Introduction 

Osteoporosis is a common age-related disorder characterized by low bone mass and 

deterioration in bone microarchitecture, leading to increased skeletal fragility and fracture risk. 

Low BMD is a strong risk factor for osteoporosis, as well as a key indicator for its diagnosis and 

treatment.4 BMD is highly heritable39, and GWAS have identified common variants at 73 loci 

associated with the trait, including many that are significantly associated with fracture risk16,18. 

Recently, deep imputation based on whole-genome sequencing has also identified low-frequency 

variants of large effect associated with BMD and fracture risk18. Despite these advances, 

common and rare variants explain only 5.8% of the total phenotypic variance in BMD16,18. 

In most previous genetic studies of BMD, the data analyzed were derived from dual-energy X-

ray absorptiometry (DXA). However, DXA is expensive, and consequently the largest GWAS so 

far of DXA derived BMD included only 32,965 individuals18, which compromised the 

researchers’ ability to detect risk loci. An alternative method of estimating BMD that is quick, 

safe and relatively inexpensive, and therefore can be used in very large samples of individuals, is 

derived from ultrasound, typically at the heel calcaneus (referred to here as estimated BMD 

[eBMD]). Ultrasound-derived eBMD values are highly heritable (on the order of 50% to 

80%)9,40–42, independently associated with fracture risk13,14 and moderately correlated with DXA-

derived BMD at the hip and spine (r = 0.4-0.6)43. A previous GWAS that used heel ultrasound 

parameters (N = 15,514) identified variants at nine loci, including seven that had been previously 

associated with lumbar spine/hip BMD19. 

Because genetic loci associated with BMD are strongly enriched for the targets of 

clinically relevant osteoporosis therapies27,44, the identification of new genetic loci and the 

biological pathways they implicate may help scientists identify drug targets for the prevention 
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and treatment of fragility fracture. To identify novel genetic determinants of BMD, we 

investigated genome-wide association in the UK Biobank Study, which has measured eBMD and 

genome-wide genotypes in 142,487 individuals. We subsequently used three systematic and 

complementary approaches to prioritize genes for functional validation (Supplementary Figure 

1). 
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2.3 Results 

2.3.1 Genome-wide association study of eBMD 

Quantitative ultrasound of the heel was used to obtain a non-invasive estimate of BMD 

that predicts fracture13,14. After stringent quality control of both eBMD measurements and 

genome-wide genotypes (Online Methods, Supplementary Figure 2), data were available from 

142,487 individuals (53% women) (Supplementary Table 1). We tested the additive effect of 

17,166,351 SNPs with minor allele frequency (MAF) > 0.1% and imputation quality score > 0.4 

on eBMD, controlling for age, sex and genotyping array. In total, 307 conditionally independent 

SNPs at 203 loci surpassed our revised genome-wide significance threshold (P ≤ 6.6x10-9, which 

accounts for the large number of independent SNPs deeply imputed in the UK Biobank (Online 

Methods)) and jointly explained ~12% of the variance in eBMD (Supplementary Figure 3, 

Supplementary Table 2). Together the 307 SNPs explained about one-third of the eBMD SNP 

heritability estimated by BOLT-REML (h2SNP = 0.36). Although there was substantial inflation 

of the test statistics relative to the null (λGC = 1.37), linkage disequilibrium (LD) score 

regression45 indicated that the majority of the inflation was due to polygenicity rather than 

population stratification (LD score regression intercept = 1.05). Of the 203 loci identified, 153 

(75%) regions had not been implicated in previous GWAS of BMD15,16,18,20–23,46,47 

(Supplementary Table 2, Supplementary Figure 3). We found it interesting that the list of 

novel associations included multiple variants (e.g. SNPs at TBX1, ZNRF3) for which there was 

extremely strong evidence of association with heel eBMD (P < 10-30) but little evidence of 

association (P > 0.05 for any trait) in a previous GEFOS-seq GWAS of DXA-derived BMD18 

(Supplementary Table 3).  
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Our study also replicated SNPs in 55 out of 73 regions (>75%) that had been reported as 

genome-wide significant in previous GWASs of BMD at other body sites (P < 0.05 and 

consistent direction of effect), and we replicated all loci with genome-wide significance 

identified in a previous GWAS of ultrasound-derived heel eBMD19 (Supplementary Table 4). 

Our list of known BMD-associated SNPs is deliberately broad and comprehensive with respect 

to previous GWASs. This comprehensive inclusion policy, however, called for the incorporation 

of results from some smaller GWASs that may include false positives. When we restricted our 

attention to the 64 SNPs reported in the large Genetic Factors for Osteoporosis Consortium 

(GEFOS) meta-analysis by Estrada et al.16 (which are unlikely to represent type 1 errors), we 

replicated 54 of the 64 (84%) SNPs. Possible reasons for nonreplicated loci include site 

specificity, differences in phenotype (ultrasound-derived versus DXA-derived BMD), 

differences in ancestral population between studies, and type 1 error in the previous, smaller 

study.  

Notably, across six loci (RSPO3, LINC00326, CPED1, MPP7, KCNMA1 and 

TMEM263), there were SNPs with different directions of effect in the current eBMD study 

compared with those in previous BMD studies. The SNPs at CPED1 also showed an association 

with fracture in the UK Biobank data (discussed below), but in the direction predicted by eBMD 

rather than the direction predicted by BMD in previous studies (i.e. alleles that predispose 

subjects to low eBMD are associated with increased risk of fracture). Although these opposite 

directions of association are difficult to explain, differences in the phenotypes measured by DXA 

and ultrasound technologies are likely to be responsible. For example, whereas heel ultrasound 

measures primarily trabecular bone, DXA-based BMD measurements reflect a combination of 

trabecular and cortical bone. In addition, ultrasound-based measurements are independent of 
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bone size, whereas areal BMD as measured by DXA is not fully size-corrected. In fact, of the six 

loci that showed opposite associations between DXA BMD and eBMD, three also showed strong 

associations with height in data from the Genetic Investigation of Anthropometric Traits 

(GIANT) consortium in the same direction as the DXA BMD data48, which suggests that these 

three associations may partly have reflected size effects (although it must be noted that several 

other concordant eBMD and DXA BMD loci also showed associations with height). Whereas 

bone size and bone mass generally show a strong positive correlation, genetic influences that 

lead to greater bone size might be inversely related to trabecular bone density at certain sites, 

owing to reduced mechanical strain as a consequence of a larger and thus stronger skeleton. 

However, despite these few discrepancies, overall there was a strong positive correlation 

between estimated effect size for the genome-wide-significant heel eBMD SNPs in the present 

UK Biobank Study and estimated effect sizes for DXA-derived BMD at other skeletal sites in 

our previous GEFOS-seq study (femoral neck, Pearson’s r = 0.64 (0.57-0.71); lumbar spine, r = 

0.69 (0.62-0.75); forearm, r = 0.49 (0.39-0.58)) (Figure 1)18. Adjusting for weight had little 

effect on genome-wide significance, save for partially attenuating the strength of the association 

between eBMD and known adiposity variants (Supplementary Table 5). 

Because we had used a large sample size and genotyped and/or imputed low-frequency 

variants (MAF < 1%), we next assessed the relationship between allelic architecture and eBMD 

(Figure 2). We found a strong relationship between MAF and effect size that generally followed 

the statistical power of our study design. The variants of largest effect (for which each allele 

increased eBMD by 0.44 SD.; P = 5x10-11) were in the gene IGHMBP2 (within 0.5 Mbp of 

known variants in LRP5) and the known EN1 and WNT16/CPED1 loci. We also detected several 

rare (MAF < 1%) and low-frequency variants (1% < MAF < 5%) in previously unreported loci, 
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including rare variants near the genes BMP5 and BMPR2. When we compared the mean absolute 

effect sizes of genome-wide significant variants, we found a 6.5-fold difference in effects 

attributed to rare versus common variants. 

Sex-specific analyses across the genome and tests of sex heterogeneity at genome-wide 

significant SNPs revealed a single variant, rs17307280, at FAM9B on the X chromosome that 

was significantly associated with eBMD in men only (Supplementary Figure 4, 

Supplementary Table 6) (heterogeneity P = 1.4x10-11), thus replicating previous results from 

Estrada et al.16. 

2.3.2 Effects on fracture 

We tested the relationship between eBMD-associated SNPs and fracture. We identified 

14,492 individuals (58% women) in UK Biobank who had reported a previous fracture, without 

giving special consideration to the trauma mechanism, as high-trauma fractures are predicted by 

low BMD and are predictive of future low-trauma fracture, thus suggesting a shared etiology49,50. 

In total, we observed that 12 eBMD SNPs were associated with fracture, after controlling for 

multiple testing (P ≤ 1.6x10-4). The results of sensitivity analyses including only 8,540 

individuals (69% women) who had reported a fracture resulting from a simple fall (i.e. from 

standing height) were consistent with these findings (Table 1). Of these 12 loci, variants at 

AQP1 and SLC8A1 had not been associated with BMD or risk of fracture previously (although 

both SNPs showed nominal association (P < 0.01) with DXA-derived BMD values from the 

GEFOS-seq study18 (Figure 1, Supplementary Table 3)). We observed an inverse relationship 

between the effects of genome-wide significant eBMD variants on eBMD and the odds of 

fracture (Supplementary Figure 5). 
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2.3.3. Shared genetic factors 

To test whether eBMD has a shared genetic etiology with 247 other diseases and 

biomedically relevant traits, we used LD score regression51 as implemented in LDHub52. This 

method estimates the degree to which genetic risk factors are shared between two diseases or 

traits, although it says nothing about how this shared genetic etiology arises (i.e. whether one 

variable causes the other, or whether the relationship between eBMD and the other variable is 

mediated by an underlying variable such as body mass index (BMI), which is itself partially 

genetic). Genetically increased eBMD was strongly and negatively correlated with fracture 

(Figure 3; rg = -0.47; 95% CI, -0.59, -0.35). Further, measures of BMD at other skeletal sites 

showed moderate positive genetic correlation with eBMD (Figure 3) in agreement with the 

concordant directions observed at the genome-wide significant loci (Figure 1). We also asked 

whether eBMD is genetically correlated with a range of other complex traits and diseases 

(Supplementary Table 7, Figure 3). We observed weak and negative correlation with HDL 

cholesterol level, LDL cholesterol level, height, age at menarche and rheumatoid arthritis 

(Figure 3). In contrast, eBMD was weakly positively genetically correlated with BMI, waist 

circumference, waist-to-hip ratio, coronary heart disease and type 2 diabetes. These findings 

support a shared genetic etiology of several common traits and diseases with eBMD, as has been 

shown previously for BMD, adiposity and type 2 diabetes through Mendelian randomization53,54. 

2.3.4 Gene Prioritization 

2.3.4.1 Strategy One: Bioinformatic, statistical and functional genomics in humans 

We used several bioinformatics and statistical genetics tools to prioritize likely candidate 

genes and variants. These included the Variant Effect Predictor software55 to identify deleterious 

coding variation at genome-wide significant loci (Supplementary Table 8), the FINEMAP 
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software to create configurations of plausible causal SNPs around each conditionally 

independent lead SNP (Supplementary Table 9), ENCODE maps of DNase I hypersensitivity 

sites (DHSs)30,56 and contextual analysis of transcription factor occupancy57 to identify SNPs that 

perturb transcription factor activity, and evidence of cis-expression quantitative trait loci 

(eQTLs) in human osteoblasts58 (Supplementary Table 10). These results are fully described in 

Supplementary Note 1. 

2.3.4.2 Strategy Two: Data-driven expression-prioritized integration 

For the second gene-prioritization approach, we used the DEPICT computational tool59. 

We identified 273 genes as most likely to drive the eBMD association signals (false discovery 

rate (FDR) < 0.05). Among these 273 genes were several with an established role in bone 

metabolism, such as BMP2, LRP5, EN1, RUNX2, JAG1, ESR1, COL21A1 and SOST 

(Supplementary Table 11). We next tested the DEPICT-prioritized genes for enriched 

expression in any of 209 Medical Subject Heading (MeSH) tissue and cell-type annotations59. 

We identified 62 tissue or cell-type annotations (FDR: 5%) among the entries defined from the 

MeSH tissue and cell annotations (Supplementary Table 12, Supplementary Figure 6). The 

strongest evidence of enriched expression of the genes mapping to eBMD loci came from 

chondrocytes and cartilage, although systems other than the musculoskeletal system were also 

overrepresented (cardiovascular system, 7/12 significant entries; membrane tissue, 6/7 

significant entries; connective tissue cells, 5/7 significant entries). We also tested the DEPICT-

prioritized genes for enriched gene sets and identified more than 1,000 significantly enriched 

(FDR: 5%) gene sets. Clustering in 35 ‘meta gene-sets’ showed that most clusters were related to 

skeletal growth (e.g. regulation of mineralized tissue development, vertebral fusion, abnormal 

craniofacial development, cartilage development) or signaling pathways involved in bone 
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biology (e.g. mesenchymal stem cell differentiation, BMP or WNT signaling). More global 

biological processes were also highlighted (e.g. transcription factor binding and regulation, 

chromatin remodeling complex, cell development) (Supplementary Figure 7). Analysis with 

the MAGENTA (meta-analysis gene-set enrichment of variant associations) software produced 

similar results implicating gene sets involved in bone mineralization and development, cadherin, 

the WNT and Hedgehog signaling pathways, and other pathways worthy of further investigation 

(oncogenic pathways, melanogenesis, etc.) (Supplementary Table 13). We tested all genes 

prioritized by DEPICT for expression in mouse osteoblasts, osteoclasts and osteocytes. Among 

the 273 genes prioritized, 241 had mouse homologs (the majority that did not have a known 

homolog were long noncoding RNAs), with 92% expressed in osteoblasts, 66% in osteoclasts 

and 83% in osteocytes (Supplementary Table 14). In all, 95.4% of these genes were expressed 

in at least one of the three cell types. This represents a substantial enrichment of genes expressed 

in osteoblasts, osteocytes and osteoclasts (P < 0.0001 for each of osteoblasts, osteocytes and 

osteoclasts). We then investigated whether a skeletal phenotype had been reported in the 

International Mouse Phenotyping Consortium (IMPC; URLs) or Mouse Genome Informatics 

(URLs) databases in knockout mice with deletion of any of the prioritized genes. We found that 

189 (78%) of the 241 DEPICT-prioritized genes had mouse knockout phenotype data available, 

and 62 (33%) of those phenotypes included skeletal abnormalities (Supplementary Table 14). 

2.3.4.3 Strategy Three: Deep phenotyping of knockouts of selected genes within 1 Mb of lead 

SNPs 

The third gene-prioritization approach identified all genes within 1 Mb of lead SNPs at 

associated eBMD loci. We compared these genes with genes from knockout mice generated at 

the Wellcome Trust Sanger Institute for the IMPC60. Knockout mice had been generated for 120 
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of the prioritized genes, and bespoke skeletal phenotyping was undertaken as part of the Origins 

of Bone and Cartilage Disease Program61. Specifically, we carried out both structural and 

functional analysis of skeletal samples, using digital X-ray microradiography, micro-CT and 

biomechanical testing. We compared our results with normal reference data from >250 control 

mice with an identical C57BL/6 genetic background. We found that 43 (36%) of these 120 

prioritized genes were associated with significantly abnormal bone structure, representing 

twofold enrichment compared with the results of a previous analysis of 100 unselected knockout 

mice61 (χ2 = 8.359, P = 0.0038) (Supplementary Table 15). 

2.3.5 GPC6 Findings 

Using these parallel strategies, we identified 100 genes that, when disrupted, were 

associated with an abnormal skeletal phenotype in mutant mice (Supplementary Tables 14 and 

15).  However, all three gene-prioritization strategies identified GPC6, so we selected this gene 

for further study (Supplementary Table 16). 

GPC6 encodes a member of the glycosylphosphatidylinositol-anchored, membrane-

bound heparan sulfate proteoglycan protein family. Loss-of-function mutations in GPC6 result in 

omodysplasia 1 (OMIM 258315), a rare autosomal recessive skeletal dysplasia characterized by 

short-limbed dwarfism with craniofacial dysmorphism. This indicates a role for GPC6 in skeletal 

biology62, although the gene has not previously been implicated in osteoporosis.  

Our bioinformatics pipeline provided evidence for a functional association at the GPC6 

locus. A single SNP in GPC6, rs1933784, in high linkage disequilibrium with the conditionally 

independent lead SNP rs147720516 at this locus (r2 > 0.9), was a plausible causal and functional 

variant. We observed that rs1933784 was a low frequency SNP (MAF = 0.05) that was 

significantly associated with eBMD (P = 2.3x10-10), with high causal probability (log10 Bayes 
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factor = 2.4), and that it was present within DHSs in several cell types (Supplementary Table 

16). The rs1933784 variant also showed some evidence of association with GPC6 expression in 

osteoblasts (P = 4.7x10-3) (Supplementary Table 16).  

DEPICT identified GPC6 as the gene most likely to be responsible for the association at 

this locus. Gpc6 is expressed in osteoblasts and osteocytes in mice (Supplementary Table 14). 

In osteocytes, Gpc6 had a similar level of enrichment (1.76 log fold-enrichment) as genes known 

to have key involvement with the skeleton, such as Lrp5 (1.95 log fold-enrichment) 

(Supplementary Figure 8), encoding an important receptor that influences bone mass through 

canonical Wnt signaling, and Runx2 (1.73 log fold-enrichment), encoding a key transcription 

factor in osteoblast differentiation.  

We analyzed adult female Gpc6-/- mice and compared the results with data for >250 wild-

type control mice of identical C57BL/6 background. Consistent with the phenotype of 

omodysplasia 1, Gpc6-/-mice had femurs and vertebrae that were shorter than those of wild-type 

mice (-1.95 and -2.17 SD, permuted P = 0.06 and 0.016, respectively). Gpc6-/- mice also had 

increased femoral bone mineral content (+2.4 SD, permuted P = 3x10-4) and increased cortical 

thickness (+2.3 SD, permuted P = 5x10-3) compared with wild-type mice. The biomechanical 

consequence of these structural abnormalities was an increase in yield load (+2.1 SD, permuted 

P = 8x10-3) that reflected increased material elasticity (Figure 4). Although the phenotype of 

Gpc6-/- mice is consistent with human omodysplasia 1, no information is available regarding 

adult manifestations of the condition. Thus, further studies in Gpc6-/- mice are required to 

characterize the cellular and molecular mechanisms underlying the role of GPC6 in the 

pathogenesis of osteoporosis. 
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Finally, we queried 87 separate GWASs using the web utility PhenoScanner, with full 

genome-wide summary statistics available for the conditionally independent genome-wide 

significant SNPs for eBMD (rs72635657, rs147720516) at the GPC6 locus, for any associations 

with a P value of < 0.0563. We identified one association, for rs72635657 with femoral neck 

BMD (P = 0.015). We also searched the NHGRI-EBI GWAS Catalog64 of published GWASs for 

GPC6 (accessed 22 March 2017). SNPs in the region of GPC6 had previously shown evidence 

of association with attention deficit hyperactivity disorder, FEV1 after bronchodilation, 

Alzheimer’s disease, neuroticism and lower facial height, although the lead SNPs reported in 

these scans were not in appreciable LD with the lead conditionally independent SNPs in the 

present study (all r2 < 0.1). 

2.4 Discussion 

With this study, we have increased the number of genetic loci associated with BMD in 

humans almost threefold and doubled the amount of variance explained for this trait. Further, we 

have demonstrated that several BMD-associated variants also influence the risk of fracture. We 

have prioritized genes for future study and provided functional evidence that GPC6 has a role in 

determining BMD and the pathophysiology of osteoporosis. 

Our findings provide evidence that the genetic architecture underlying BMD is highly 

polygenic. The observed effect sizes follow a close relationship with MAF within the limits of 

the statistical power of the study. This suggests that further low-frequency and rare variants of 

moderate to large effect will be identified in future studies, which is likely to improve the overall 

understanding of the cellular and molecular mechanisms involved. Drug targets supported by 

evidence from human genetics are most likely to result in clinically useful therapies in general, 

and this has been demonstrated for musculoskeletal conditions27,44. Thus, our findings will be 
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helpful for identifying pathways and proteins amenable to pharmacologic manipulation to 

decrease the burden of fracture in the population. 

GPC6 encodes a glypican that may serve as a novel drug target for osteoporosis care, as 

it is a cell-surface protein involved in signaling whose loss of function leads to increased bone 

mineral content, likely due to increased cortical bone and resultant increased elasticity. GPC6 is 

a member of the glypican family (GPC1-6) of glycosylphosphatidylinositol-anchored, 

membrane-bound heparan sulfate proteoglycan core proteins that are involved in cellular growth 

control and differentiation. Mutations of GPC3, GPC4 and GPC6 result in developmental 

skeletal abnormalities, but limited or no information is available from affected adults (OMIM 

312870, OMIM 258315). The heparan sulfate proteoglycans attached to the GPC6 core protein 

regulate skeletal signaling pathways involved in bone formation and mineralization, including 

those mediated by the FGF, VEGF, Hedgehog and BMP pathways65. In addition, the adult high-

bone-mass phenotype and increased cortical bone thickness identified in Gpc6-/- mice in these 

studies is consistent with the recently identified direct role of GPC6 in the modulation of Wnt 

signaling65,66, which is the key regulator of osteoblastic bone formation and is associated with 

BMD in humans. Overall, these findings suggest a number of possible new pharmacological 

targets that include not only the core protein GPC6, but also the heparan sulfate synthetic 

(EXT1-2) and modification enzymes (NDST1-4, GLCE, HS2ST and HS6ST1-3) that specifically 

regulate growth factor binding and activity. The availability of global and tissue-specific Gpc6-/- 

mice60 now provides the opportunity to test these possibilities directly. However, we caution that 

although GPC6 and associated proteins seem to be promising targets for pharmacotherapy, other 

factors (the likelihood of unintended side effects, etc.) will need to be considered before these 

molecules can be confirmed as suitable candidates for pharmacological manipulation. 
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There are several limitations to our study. First, despite the high concordance between the 

loci identified from ultrasound-derived measurements of BMD and those from previous studies 

that used DXA-derived BMD, there were some notable differences. Our study did not replicate 

associations at 18 known BMD loci identified in previous studies. Also, our list of genome-wide 

significant variants included some that were strongly related to eBMD at the heel but were not 

found in previous studies that used DXA-derived BMD measures at other body sites in 

considerably smaller samples. For some of these loci, such as TBX1, this may simply be a 

consequence of the associated variants having been neither genotyped nor tagged well in 

previous studies. For other loci, it may reflect genetic influences that are specific to the heel (for 

example, genetic responses of the heel to ground reaction forces) that are not present at other 

body sites. Interestingly, we identified variants at six loci where the direction of effect was 

opposite between eBMD at the heel and DXA-derived BMD at other sites, although notably at 

CPED1 the variants also showed association with risk of fracture in the direction consistent with 

the heel eBMD association. Although the reason for these differences is unclear, the implication 

is that ultrasound measurements of the heel capture aspects of bone structure beyond those 

obtained by central DXA, and this is consistent with previous observations that ultrasound 

measurements of the heel predict risk of osteoporotic fracture over and above hip BMD67. 

Second, our study does not provide a definitive biological mechanism through which 

variants at genome-wide significant loci causally affect eBMD. Our eQTL analyses were not 

consistent with the mediation of SNP effects through osteoblast expression at a majority of loci. 

This is probably because at least some of the identified eBMD-associated SNPs may act on cell 

types other than osteoblasts, such as osteocytes and osteoclasts. Further, the relatively small 

sample size of 95 individuals in the osteoblast eQTL experiment may have led to uncertain 
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estimates. Also, the expression of genes in culture may reflect different biological processes than 

those in vivo. Although differences in gene expression are not the only mechanism through 

which the functional effects of an association can be mediated, we expect that large-scale 

genomic studies investigating the pattern of genetic association in osteoblasts, osteocytes and 

osteoclasts will reveal how these eBMD associations are mediated in the not-too-distant future. 

Third, our study had a limited ability to detect very rare variants (i.e. MAF < 0.1%) or 

rare variants of small effect (MAF < 1% and effect size < 0.05 SD). Finally, our study 

investigated the genetic etiology of osteoporosis only in European individuals. It is likely that 

studies of populations of different ancestry will reveal novel loci that are important in the 

regulation of BMD, as has been the case for other conditions68. 

In summary, our findings shed light on the pathophysiological mechanisms that underlie 

changes in BMD and fracture risk in humans. The proteins identified and prioritized by these 

studies identify signaling pathways that represent new drug targets for the prevention and 

treatment of osteoporosis—a major health care priority. 
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2.5 Online Methods 

2.5.1 Measurement of eBMD, fracture and weight in UK Biobank 

In 2006-2010, the UK Biobank recruited 502,647 individuals aged 37-76 years (99.5% 

were aged 40-69 years) from across the country. All participants provided information regarding 

their health and lifestyle via touch screen questionnaires, consented to physical measurements 

and agreed to have their health followed. They also provided blood, urine and saliva samples for 

future analysis. UK Biobank has ethical approval from the Northwest Multi-centre Research 

Ethics Committee, and informed consent was obtained from all participants. A Sahara Clinical 

Bone Sonometer (Hologic Corporation, Bedford, Massachusetts, USA) was used for quantitative 

ultrasound assessment of calcanei in UK Biobank participants. Details of the complete protocol 

are publicly available on the UK Biobank website (URLs). Participants were initially measured 

at baseline (N = 487,428) and had their left calcaneus (N = 317,815), right calcaneus (N = 4,102) 

or both calcanei (N = 165,511) measured. A subset of these subjects was followed up at two 

further time points (N = 20,104 and N = 7,988), during which both heels were measured. A 

detailed description of the ascertainment procedure is provided in Supplementary Figure 2. 

Prior to quality control, ultrasound data were available for 488,683 individuals at either baseline 

and/or follow-up assessment. eBMD (g/cm2) was derived as a linear combination of speed of 

sound (SOS) and bone ultrasound attenuation (BUA) (eBMD = 0.002592x(BUA + SOS) - 

3.687). To reduce the impact of outlying measurements, quality control was applied to male and 

female subjects separately with the following exclusion thresholds: SOS, ≤ 1,450 or ≥ 1,700 m/s 

for males, ≤ 1,455 or ≥ 1,700 m/s for females; and BUA, ≤ 27 or ≥ 138 dB/MHz for males, ≤ 22 

or ≥ 138 dB/MHz for females. Individuals exceeding the following thresholds for eBMD were 

excluded: males, ≤ 0.18 or ≥ 1.06 g/cm2; females ≤ 0.12 or ≥ 1.025 g/cm2. Bivariate scatter plots 
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of eBMD, BUA and SOS were visually inspected, and any measurements that did not cluster 

with the others were removed; this left a total of 483,230 valid measures (476,618 left and 6,612 

right calcaneus) for SOS, BUA and BMD (265,057 females and 218,173 males). Please see 

Supplementary Figure 2 for a detailed description of the quality control pipeline and 

Supplementary Table 1 for an overview of descriptive statistics of the cohort after quality 

control. 

We defined 14,492 individuals (8,439 female and 6,053 male) as having a fracture, on the 

basis of affirmative answers to the question, “Have you fractured/broken any bones in the last 5 

years?” at either baseline or first follow-up. Individuals were coded as missing if they responded 

“Do not know” or “Prefer not to answer” at both baseline and first follow-up; otherwise they 

were coded as controls (N = 130,563). Self-reported fractures have low false positive and false 

negative rates45. Individuals who stated that they had had a fracture were also asked whether the 

fracture resulted from a simple fall (i.e. from standing height). We created a second variable 

using this question, where 8,540 individuals (5,853 female and 2,687 male) had a fracture from a 

simple fall and 131,333 individuals did not report a fracture. Weight was measured with a Tanita 

BC418MA body composition analyzer. 

2.5.2 Preparation, quality control and genetic analysis in UK Biobank samples 

Genotype data from the interim May 2015 release of UK Biobank were available for a 

subset of 152,729 participants. Data were imputed centrally by UK Biobank with IMPUTE269 to 

a 1000 Genomes (October 2014) and UK10K reference panel. In addition to the quality control 

metrics performed centrally by UK Biobank (UK Biobank document #155580; see URLs), we 

defined a subset of ‘white European’ ancestry samples by using a K-means (K = 4) clustering 

approach based on the first four genetically determined principal components. A maximum of 
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142,487 individuals (76,067 females and 66,420 males) with genotype and valid quantitative 

ultrasound measures were available for the present analyses. We tested genetic variants for 

association with eBMD, assuming an additive allelic effect, in a linear mixed non-infinitesimal 

model implemented in BOLT-LMM26 to account for cryptic population structure and relatedness. 

Genotyping array, age and sex were included as covariates in all models. We also included 

weight as a covariate in a sensitivity analysis to investigate whether the power to detect 

association was increased or whether weight mediated the relationship between genotype and 

eBMD (i.e. some variants may be primarily associated with weight, and their effect on eBMD 

may be mediated through a causal effect of weight on eBMD54). Only SNPs down to an MAF of 

0.1% and with an info-score threshold of > 0.4 were analyzed. We additionally analyzed the 

association between eBMD and directly genotyped SNPs on the X chromosome, adjusting for 

genotyping array, age, sex and the first four ancestry principal components, using Plink v1.90 

beta 3.38 (7 June 2016) software70 and a nested sample of unrelated subjects (N = 135,729). 

Because the analyses for the X chromosome data were based on observed genotypes, our quality 

control was slightly different. We excluded SNPs with evidence of deviation from Hardy-

Weinberg equilibrium (1x10-6), MAF < 0.1% and overall missing rate > 5%, which yielded 

15,552 X chromosome SNPs for analysis. Heterogeneity between sexes in effect size coefficients 

was tested with EasyStrata71. Manhattan and Miami plots of our genome-wide association scans 

were generated by EasyStrata version 15.3. Regional association plots were generated with 

LocusZoom (v1.3)72, using LD information estimated from our reference UK Biobank sample, 

together with the December 2016 release of the NHGRI-EBI GWAS Catalog. SNPs that were 

associated with eBMD at genome-wide significance levels were additionally tested for 
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association with fracture using BOLT-LMM, including age, sex, BMI and the time of reporting 

the fracture as fixed effects26. 

2.5.3 Estimation of genome-wide significance threshold 

Traditional estimates of the genome-wide significance threshold for common variants 

(MAF > 5%) in European populations (i.e. α = 5x10-8) are based on a Bonferroni correction of α 

= 0.05/106, as there are an estimated 1 million statistically independent SNPs above this MAF 

threshold. However, in the case of UK Biobank, we assessed SNPs down to an MAF of 0.1% in 

142,487 individuals and applied an info-score threshold of > 0.4, which resulted in 17.17 million 

SNPs. Thus, we defined a new and more conservative threshold to declare genome-wide 

significance, accounting for the number of independent statistical tests performed in our data. To 

do this, we applied the method we used previously in the UK10K sequencing consortium18, 

which assesses the correlation between nearby test statistics empirically. Analysis of permuted 

data derived from a small proportion of all tested variants allows assessment of the correlation 

patterns. Thus we were able to estimate, in subsets of the genome of varying size, the 

relationship between the Bonferroni significance threshold and the empirical significance 

threshold that corrects for correlations, and thereby extrapolate to the whole genome. 

Specifically, when assessing all 740,018 variants that met our filtering criteria across 

chromosome 9 (Supplementary Figure 9), we saw a good linear fit between family-wise error 

rate (α = 0.05), divided by the number of tests and the empirical significance thresholds. Our 

estimated genome-wide significance threshold then, accounting for all SNPs with MAF ≥ 0.1% 

and info-score > 0.4, was α = 6.6x10-9. 
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2.5.4 Approximate conditional association analysis 

To detect multiple independent association signals at each of the genome-wide significant 

eBMD loci, we carried out approximate conditional and joint genome-wide association analysis 

using the software package GCTA73. SNPs with high collinearity (multiple regression R2 > 0.9) 

were ignored, and those situated more than 20 Mb away were assumed to be in complete linkage 

equilibrium. A reference sample of 15,000 unrelated (pairwise relatedness < 0.025) individuals 

of white British origin randomly selected from UK Biobank was used to model patterns of LD 

between variants. The reference genotyping data set consisted of the same 17 million variants 

assessed in our GWAS, but with an additional quality control step to exclude SNPs that deviated 

from Hardy-Weinberg equilibrium (1x10-6). Conditionally independent variants that reached 

GWAS significance were annotated to the physically closest gene with bedtools74 v2.26.0 and 

the Hg19 Gene range list available online (see URLs). 

2.5.5 Estimation of variance explained by significant variants and SNP heritability 

We estimated the proportion of phenotypic variance tagged by all SNPs on the 

genotyping array (i.e. the SNP heritability) with BOLT-REML75. To calculate the variance 

explained by all genome-wide significant SNPs, we first used the method of Bigdeli et al.76 to 

shrink the effect sizes of SNPs likely to suffer from ‘winner’s curse’. Briefly, the method works 

by shrinking the effect sizes of SNPs that just reach significance while having a negligible effect 

on SNPs that are more robustly significant (and consequently more accurately and precisely 

estimated). After calculating the corrected effect sizes, we removed the combined effect of the 

SNPs on the individual’s eBMD and recalculated the total expected variance in BOLT-LMM. 

The difference between this estimate and the total expected variance calculated on the original 

data without the SNP correction was an estimate of the variance explained by all SNPs. 
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2.5.6 Linkage disequilibrium score regression 

To estimate the amount of genomic inflation in the data due to residual population 

stratification, cryptic relatedness and other latent sources of bias, we used LD score regression45. 

LD scores were calculated for all high-quality SNPs (i.e. INFO score > 0.9 and MAF > 0.1%) 

from a data set consisting of 15,000 unrelated individuals from the UK Biobank. To estimate the 

genetic correlation between eBMD and other complex traits and diseases, including those related 

to osteoporosis, we used a relatively new method based on LD score regression as implemented 

in the online web utility LDHub51,52. This method uses the cross-products of summary test 

statistics from two GWASs and regresses them against a measure of how much variation each 

SNP tags (its LD score). Variants with high LD scores are more likely to contain more true 

signals and thus provide a greater chance of overlap with genuine signals between GWASs. The 

LD score regression method uses summary statistics from the GWAS meta-analysis of eBMD 

and the other traits of interest, calculates the cross-product of test statistics at each SNP, and then 

regresses the cross-product on the LD score. The slope of the regression is a function of the 

genetic covariance between traits: 

𝐸൫𝑧ଵ𝑧ଶ൯ = ඥ𝑁ଵ𝑁ଶ𝜌𝑀 𝑙 + 𝜌𝑁௦ඥ𝑁ଵ𝑁ଶ 

where Ni is the sample size for study i, ρg is the genetic covariance, M is the number of SNPs in 

the reference panel with MAFs between 5% and 50%, lj is the LD score for SNP j, Ns quantifies 

the number of individuals that overlap both studies, and ρ is the phenotypic correlation among 

the Ns overlapping samples. Thus, if there is sample overlap (or cryptic relatedness between 

samples), it will affect only the intercept from the regression (i.e. the term rNs / N1N2) and not the 

slope, and hence estimates of the genetic covariance will not be biased by sample overlap. 

Likewise, population stratification will affect the intercept but will have a minimal effect on the 
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slope (i.e. intuitively, as population stratification does not correlate with LD between nearby 

markers). 

2.5.7 Gene prioritization and pathway analysis 

To establish functional connections, we conducted three different analyses implemented 

in the DEPICT v1 tool59. First, to prioritize genes with relevant biological roles in the eBMD-

associated loci, we tested functional similarities among genes from different associated regions 

where genes with high functional similarity across regions obtained lower prioritization P values. 

Second, we analyzed expression enrichment across particular tissues or cell types by testing 

whether genes in the associated eBMD loci had high expression in any of the 209 MeSH 

annotations, using data from 37,427 expression arrays. Third, we performed a gene set 

enrichment analysis to test whether the genes in the associated eBMD loci were enriched in 

reconstituted gene sets. The 10,968 gene sets tested were generated from diverse databases, 

including Gene Ontology, KEGG, REACTOME, the InWeb database (high-confidence protein-

protein interaction), and the Mouse Genetics Initiative (phenotype-genotype relationships). In all 

three analyses we used the FDR to adjust for multiple testing; significance was defined at FDR = 

5%. 

The DEPICT analyses were based on independent lead SNPs (r2 < 0.1; European 

populations, 1000 Genomes reference panel) with P values below the genome-wide significance 

threshold (P < 6.64x10-9). Because many of the gene sets tested came from different repositories, 

they overlapped; hence significantly enriched gene sets were further grouped into ‘meta gene 

sets’ through similarity clustering, as previously described59. The visualization of these meta 

gene-sets was performed in Cytoscape77, filtering at FDR < 1%. 
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We also compared the DEPICT gene set enrichment results to analyses with the 

MAGENTA software78. Briefly, MAGENTA maps each gene in the genome to a single index 

SNP with the lowest P value within a 110-kb upstream and 40-kb downstream window 

(excluding genes in the HLA region owing to complex patterns of LD). This P value is then 

corrected for confounding factors (SNP density, gene size, etc.) in a linear regression model, and 

each gene is ranked by its adjusted gene score. The observed number of gene scores in a given 

pathway, with a ranked score above a specified threshold (i.e. 95th and 75th percentiles of all 

gene scores), is then calculated. This observed statistic is then compared to 1,000,000 randomly 

permuted pathways of identical size. This generates an empirical gene set enrichment analysis P 

value for each gene set. A gene set was declared significant when an individual pathway reached 

FDR < 0.05 in either analysis. We tested 3,217 prespecified gene sets from the Gene Ontology, 

Ingenuity, KEGG, Protein Analysis through Evolutionary Relationships (PANTHER), BioCarta 

and Reactome databases.  

2.5.8 Prioritising candidate genes and possible causal variants at each eBMD locus 

We combined a number of approaches to identify possible causal SNPs at each eBMD 

signal (defined here as all SNPs within 500 kb of a conditionally independent lead SNP that 

attained genome-wide significance). First, we used the Variant Effect Predictor (VEP)55 to 

annotate all SNPs within a locus (defined as ±500 kb from a conditionally independent lead 

SNP) for deleterious coding variation annotation if they were significantly associated with 

eBMD (P < 6.6x10-9). Deleterious SNPs were classified as such if they had one of the following 

sequence ontology terms: frameshift_variant, inframe_deletion, inframe_insertion, 

initator_codon_variant, missense_variant, splice_acceptor_variant, splice_donor_variant, 

stop_gained, or stop_lost. 
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Next, using FINEMAP29, we identified 305 autosomal lead SNPs and further defined sets 

of plausible causal SNPs within each locus. For each locus, FINEMAP implements a shotgun 

stochastic search algorithm to test multiple causal configurations of SNPs, calculating within a 

Bayesian framework the posterior probabilities of each configuration to identify the number of 

likely causal SNPs. We note that this approach assumes that the true causal variants have been 

included in the analysis and have been well imputed. We also emphasize that approaches such as 

this that are based solely on association test statistics and LD are unlikely to be definitive with 

respect to the identification of causal variants/genes. Thus, we regard these fine-mapping 

analyses as one of several approaches that can be used to implicate specific variants/genes in 

osteoporosis etiology. When the same variant/gene is implicated by multiple independent 

approaches (for example, mouse knockout, human knockout, gene expression and eQTL 

studies), there is greater confidence of the identity if the gene/variant(s) underlying the statistical 

association. 

For a given number of plausible causal SNPs, FINEMAP will calculate for each SNP the 

Bayes factor, which quantifies the evidence that the particular SNP is causal. We retained only 

SNPs with Bayes factors greater than 100, or log10 Bayes factors greater than 2, as our plausible 

causal SNPs for each locus. 

We then annotated each set of plausible causal SNPs for overlap with DHSs, using a 

master list derived from 115 cell types57. DHSs are focal sites of open chromatin comprising the 

collective transcription factor binding sites in a given cell type. We further annotated each SNP 

inhabiting a DHS with Contextual Analysis of Transcription Factor Occupancy (CATO) scores. 

CATO, previously described by Maurano et al.57, scores the likelihood that a variant will cause 

allelic imbalance of a DHS by modeling both local sequence context and direct effects on the 
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transcription factor recognition sequences for 44 transcription factor motif families. CATO 

scores range between 0 and 1, and we considered SNPs with CATO scores greater than 0.1 as 

having very strong functional evidence (corresponding to a 51% positive predictive rate in the 

initial training set57). 

2.5.9 Genetically modified animals used for functional validation 

The IMPC (URLs)79 and the International Knockout Mouse Consortium (IKMC) are 

generating null alleles for all protein-coding genes in mice on a C57BL/6 genetic background80. 

These mice are phenotyped through a broad-based phenotyping screen81. This approach can be 

used for functional investigation of candidate genes identified by a GWAS of human disease or 

traits, and studies have already ascribed novel functions for poorly annotated or previously 

unpublished genes. The Origins of Bone and Cartilage Disease (OBCD) study (URLs) is 

undertaking a validated multiparameter skeletal phenotype screen61 of mutant mouse lines 

generated by the Wellcome Trust Sanger Institute as part of the IKMC and IMPC effort. 

2.5.10 OBCD methods 

Samples from 16-week-old female wild-type and knockout mice were stored in 70% 

ethanol, anonymized and randomly assigned to batches for rapid-throughput analysis in an 

unselected fashion. The relative bone mineral content (BMC) and length of the femur and caudal 

vertebrae were determined at 10-μm pixel resolution by digital X-ray microradiography 

(Faxitron MX20). Micro-CT (Scanco uCT50, 70 kV, 200 μA, 0.5-mm aluminum filter) was used 

to determine cortical bone parameters (thickness, BMD, medullary diameter) at 10-μm voxel 

resolution in a 1.5-mm region centered on the mid-shaft region 56% of the way along the length 

of the femur distal to the femoral head, and trabecular parameters (bone volume, trabecular 

number, thickness, spacing) at 5-μm voxel resolution in a 1-mm region beginning 100 μm 
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proximal to the distal growth plate. Biomechanical variables of bone strength and toughness 

(yield load, maximum load, fracture load, the percentage of energy dissipated before fracture) 

were derived from destructive three-point bend testing of the femur and compression testing of 

caudal vertebrae 6 and 7 (Instron 5543 load frame, 100-N load cell)61. Overall, 19 skeletal 

parameters were reported for each individual mouse studied and compared to reference data 

obtained from > 250 16-week-old wild-type C57BL/6 female mice. Coefficients of variation for 

each skeletal parameter were as follows: femur BMC (2.0%) and length (2.1%); vertebra BMC 

(2.1%) and length (2.3%); trabecular bone volume/tissue volume (18.5%), trabecular number 

(7.3%), trabecular thickness (7.9%) and trabecular spacing (8.3%); cortical bone thickness 

(4.3%), internal diameter (6.0%) and BMD (4.0%); femur yield load (13.2%), maximum load 

(10.0%), fracture load (29.0%), stiffness (13.7%) and energy dissipated before fracture (26.7%); 

and vertebra yield load (13.0%), maximum load (10.3%) and stiffness (13.3%). 

In Supplementary Table 15, we highlight knockout mice with phenotypes greater than 2 

SD away from the mean of wild-type mice. We generated P values for the reported Gpc6-/- 

mouse phenotypes through permutation. To do so we first identified the least extreme phenotype 

for the Gpc6-/- mice tested. We then permuted the knockout labels 100,000 times to observe the 

number of times we observed two knockout animals with both phenotypes as extreme as the least 

extreme Gpc6-/- mouse phenotype. The P value was then calculated as the number of extreme 

permutations divided by 100,000. All mouse studies were undertaken by the Wellcome Trust 

Sanger Institute Mouse Genetics Project as part of the IKMC and licensed by the UK Home 

Office in accordance with the Animals (Scientific Procedures) Act 1986 and the 

recommendations of the Weatherall report. 
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2.5.11 Gene expression in primary human and mouse osteoblasts 

To study human osteoblasts, we undertook cis-eQTL analyses of plausible causal 

regulatory SNPs in 95 primary human osteoblasts as previously described by Grundberg et al.58, 

performed with an updated imputation panel, the combined UK10K and 1000 Genomes phase 1 

v3 reference panel82. We used an α level of 0.05 to identify possible gene targets of plausible 

causal SNPs. 

We investigated the possibility that heel eBMD associations and cis-eQTL effects in 

osteoblasts may represent different signals (as opposed to a causal effect of osteoblast expression 

on eBMD) by performing two sample summary Mendelian randomization analyses on osteoblast 

eQTL and heel eBMD GWAS results83,84. A HEIDI (heterogeneity in dependent instruments) 

test was used to identify situations in which the lead cis-eQTL was likely to be in LD with two 

distinct causal variants (one affecting gene expression, and the other affecting eBMD variation), 

as opposed to expression of the relevant gene mediating the relationship between the SNP and 

eBMD. Intuitively the test works by comparing estimates of the putative causal effect of gene 

expression on eBMD obtained by Mendelian randomization analysis of each variant while taking 

into account dependencies between the SNPs. Under a causal model, different SNPs should 

produce the same causal estimate (subject to sampling error), whereas under a model of linkage 

(i.e. two separate signals in the region, one affecting gene expression in osteoblasts and the other 

affecting eBMD), the estimates from the Mendelian randomization analysis may significantly 

differ. In the context of our study, a significant HEIDI test suggested that expression of the 

relevant gene in osteoblasts does not mediate the SNP-eBMD association. We therefore 

performed HEIDI tests for all the probes listed in Supplementary Table 10 that were implicated 

in our gene expression analyses. To prevent weak SNP instruments from potentially affecting our 
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results, we included only SNPs that exhibited strong evidence of association (i.e. F statistic > 10) 

in the eQTL analysis84. 

Gene expression profiles of candidate genes were examined in primary mouse osteoblasts 

undergoing differentiation. These data have been described in detail previously85 and are 

publicly available from the Gene Expression Omnibus (GSE54461). To study mouse osteoblasts, 

we obtained pre-osteoblast-like cells from calvaria collected from neonatal C57BL/6J mice 

carrying a transgene expressing cyan fluorescent protein (CFP) under the control of the Col 3.6-

Kb promoter. The cells were placed into culture for 4 d in growth media, and cells that did not 

express CFP at the end of that culture period were removed by FACS. The remaining pre-

osteoblast cells were re-plated and exposed to an osteoblast-differentiation cocktail, and RNA 

was collected every 2 d from day 2 to 18 d post-differentiation. We used RNA-seq to evaluate 

the transcriptome at each time point with an Illumina HiSeq 2000. Three technical replicates per 

samples were sequenced. The alignments for abundance estimation of transcripts were created 

with Bowtie version 0.12.9, using the NCBI m37 reference genome. We calculated the 

expression level per gene with RSEM version 1.2.0 with parameters of --fragment-length-mean 

280 and --fragment-length-sd 50, and the expression level for each sample was normalized 

relative to the per-sample upper quartile. 

2.5.12 Gene expression in murine osteocytes 

We determined osteocyte expression by analyzing whole-transcriptome sequences 

derived from four different mouse bones: the tibia, femur, humerus and calvaria (marrow 

removed; n = 8 per bone). A threshold of expression was determined on the basis of the 

distribution of normalized gene expression for each sample, using a modified statistical approach 

from Hart et al.85. ‘Expressed’ genes were above this threshold for eight of eight replicates in any 
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bone type. We determined the specificity of these genes’ expression in the skeleton by 

comparing transcriptome-sequencing data from bone samples with osteocytes isolated to data 

from bones with the marrow left intact (n = 5 per group) (S.E.Y., J.H.D.B., G.R.W., and P.I.C., 

manuscript in preparation). 

2.5.13 Gene expression in mouse osteoclasts 

Expression of genes in mouse osteoclasts was determined from publicly available data 

obtained via RNA-seq of bone-marrow-derived osteoclasts obtained from 6-8-week-old 

C57BL/6 mice (GEO accession GSM1873361).  

2.5.14 URLs 

The human genotype and phenotype data on which the results of this study are based are 

available upon application from UK Biobank (http://www.ukbiobank.ac.uk/). GWAS summary 

statistics from this study are available via the GEFOS website (http://ww.gefos.org/). No new 

data sets or related accession codes were generated as part of this study. Mouse phenotype data 

are available online from the IMPC (http://www.mousephenotype.org/) and OBCD 

(http://www.boneandcartilage.com/). 
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2.8 Tables and Figures 

2.8.1 Tables 

Table 1. Genome-wide significant eBMD-associated SNPs significantly associated with risk 

of fracture (P < 1.6x10-4). All findings represent known loci except for SLC8A1 and AQP1, 

which were novel within our study. 

    

Effect Allele 
Other 

Allele 
EAF 

Any Fracture Fracture from Fall 

SNP CHR BP GENE 
OR  

(95% CI)* 
P 

OR  

(95% CI)* 
P 

rs2536195 7 120959155 WNT16 A G 0.60 
1.10  

(1.07, 1.12) 
2.6x10-15 

1.13  

(1.10, 1.16) 
1.6x10-15 

rs10668066 7 120965464 WNT16 G GCACC 0.75 
1.09  

(1.07, 1.12) 
1.5x10-11 

1.13  

(1.09, 1.17) 
2.5x10-12 

rs7099953 10 54426489 MBL2 G T 0.89 
0.90  

(0.87, 0.93) 
4.9x10-9 

0.89  

(0.84, 0.93) 
5.0x10-7 

rs7741021 6 127468274 RSPO3 A C 0.52 
1.07  

(1.04, 1.09) 
1.5x10-8 

1.07  

(1.04, 1.10) 
4.8x10-6 

rs112069922 4 1034997 IDUA C T 0.95 
0.89  

(0.84, 0.93) 
4.8x10-6 

0.90  

(0.84, 0.96) 
2.2x10-3 

rs2941741 6 152008982 ESR1 G A 0.58 
1.05  

(1.03, 1.08) 
6.5x10-6 

1.07  

(1.04, 1.11) 
2.4x10-6 

rs10490046 2 40630678 SLC8A1 A C 0.78 
0.94  

(0.92, 0.97) 
6.8x10-6 

0.94  

(0.91, 0.98) 
1.4x10-3 

rs7209826 17 41796406 SOST A G 0.62 
1.05  

(1.03, 1.07) 
3.6x10-5 

1.06  

(1.03, 1.10) 
7.1x10-5 

rs10276670 7 30956489 AQP1 A G 0.77 
0.95  

(0.92, 0.97) 
4.1x10-5 

0.94  

(0.91, 0.97) 
3.5x10-4 

rs9491689 6 127398595 RSPO3 C A 0.72 
1.05  

(1.03, 1.08) 
5.0x10-5 

1.05  

(1.02, 1.09) 
2.0x10-3 

rs188810925 17 41798194 SOST G A 0.92 
1.09  

(1.04, 1.14) 
9.2x10-5 

1.11  

(1.05, 1.17) 
3.3x10-4 

rs4869744 6 151908012 ESR1 T C 0.71 
0.95  

(0.93, 0.98) 
1.3x10-4 

0.95  

(0.92, 0.98) 
8.0x10-4 
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β and SE values from BOLT-LMM were transformed via the following formula: (β or SE)/(μx 1 

- μ)), where μ is the number of cases/number of controls. Approximate odds ratios (OR) and 

95% confidence intervals (CI95%) were calculated from the transformed β and SE CI95%-L, 

lower CI limit; CI95%-U, upper CI limit; RSID, reference SNP cluster ID; CHR, chromosome; 

BP, base pair position of the variant according to human reference sequence Hg19/GRCh37; 

C.GENE, closest gene; EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency; P, 

strength of evidence against the null hypothesis of no association between variant and self-

reported fracture (i.e. P value); any fracture, any self-reported fracture within the past 5 years (N 

= 14,492 cases/130,563 controls); fall fracture, self-reported fracture within the past 5 years that 

occurred as the result of a simple fall (N = 8,540 cases/131,333 controls).  
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2.8.2 Figures 

Figure 1. eBMD effect size compared with the effect size from a previous GEFOS meta-

analysis of DXA-derived BMD for eBMD-associated SNPs. 

 

(a-c) Effect size for heel eBMD (y-axis) from the current UK Biobank study plotted against 

effect size from the previous GEFOS-seq study18 for BMD at the (a) femoral neck, (b) lumbar 

spine and (c) forearm (x-axis). Only conditionally independent variants that reached genome-

wide significance (P < 6.6x10-9) for eBMD in the UK Biobank study are plotted. The -log10P 

value for the (any) fracture analysis of UK Biobank subjects is indicated by the shading of the 

data points (black indicates robust evidence of association with fracture, and white indicates poor 

evidence of association). SNPs that reached Bonferroni-corrected significance for fracture (P < 

1.6x10-4) are labeled. The blue dashed lines show the strong correlation between estimated effect 

sizes at the heel and at other sites of the body. SNPs at SLC8A1 and AQP1 were significantly 

related with fracture after correction for multiple testing (P < 1.6x10-4) and have not previously 
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been reported as associated with BMD or fracture, although they both reached nominal 

significance (P < 0.05) in the previous GEFOS-seq analysis.  

*Multiple conditionally independent variants present at the locus.  

~The closest gene to the locus (i.e. DEPICT did not detect any region within 1 Mb of the 

reported SNP). 
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Figure 2. The relationship between absolute conditional and joint analysis effect size (y-

axis) and minor allele frequency (x-axis) for 307 conditionally independent SNPs. 

 

Red circles represent SNPs at previously reported BMD loci. Blue circles represent SNPs at 

novel loci. The black dashed curve shows the effect size required for 80% power to detect 

association at a given minor allele frequency at genome-wide significance (α = 6.6x10-9) in the 

present study. The orange dashed curve shows the effect size required for 80% power to detect 

association at a given minor allele frequency at genome-wide significance (α = 6.6x10-9) 

assuming N = 483,230 individuals in the full UK Biobank study.  

GWS, genome-wide significant.  

*Multiple conditionally independent variants present at the locus.  

~The closest gene to the locus (i.e. DEPICT did not detect any region within 1 Mbp of the 

reported SNP).  
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Figure 3. Genetic correlations between eBMD as measured in the UK Biobank study (y-

axis) and other traits and diseases (x-axis) estimated by LD score regression implemented 

in LDHub. 

 

Genetic correlation (rG) and corresponding 95% confidence intervals (error bars) between eBMD 

and traits were estimated via LD score regression. The genetic correlation estimates (rG) are 

color-coded according to their magnitude and direction as defined in the key. 
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Figure 4. Increased bone mass and strength in adult Gpc6-/- mice. 

 

(a) X-ray microradiography images of femurs and caudal vertebrae from female wild-type (WT) 

and Gpc6-/- mice at postnatal day 112 (P112). In these pseudocolored grayscale images, green 

indicates low bone mineral content, and pink indicates high bone mineral content. The graphs at 

the bottom show reference ranges derived from > 250 wild-type mice of identical age, sex and 

genetic background (C57BL/6). The plots represent the mean (solid center lines), ±1.0 SD 

(dotted lines) and ±2.0 SD (gray boxes). Values for parameters from individual Gpc6-/- mice are 

shown as red dots, and mean values as a thick black line (n = 2 animals). (b) Micro-CT images 

of proximal femur trabecular bone (left) and mid-diaphysis cortical bone (right) from wild-type 

and Gpc6-/- mice. The graphs below show trabecular bone volume/tissue volume (BV/TV), 

trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), cortical 

thickness (Ct.Th), internal cortical diameter and cortical BMD. Elements of the plots are defined 

as in a. HA, hydroxyapatite. (c) Representative load-displacement curves from destructive three-

point bend testing of femurs from wild-type and Gpc6-/- mice, showing yield load, maximum 

load, fracture load and gradient of the linear elastic phase (stiffness). The graphs show yield load, 

maximum load, fracture load, stiffness, and energy dissipated before fracture (toughness). 
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Elements of the plots are defined as in a. (d) Representative load-displacement curves from 

destructive compression testing of caudal vertebrae from wild-type and Gpc6-/- mice, showing 

yield load, maximum load and stiffness. Elements of the plots are defined as in a. P values were 

generated by permutation analysis as described in the Online Methods. Scale bars (a,b), 1 mm. 
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2.9 Supplementary Tables and Figures 

Supplementary Tables and Figures can be downloaded from the open access publication 

Kemp et al.86 in Nature Genetics available here: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621629/ 
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Chapter 3 

Preface: Bridge Between Chapter 2 and Chapter 3 

In Chapter 3, we use the UK Biobank’s full data release, which came out shortly after 

Chapter 2 was published. Once again, in collaboration with members of the GEFOS consortium, 

we analyzed data from the UK Biobank under a very competitive environment. Of special note is 

that our research group at McGill University had Canadian Institutes of Health Research (CIHR) 

project grants funded, allowing for us to generate bone cell functional genomics data for the first 

time. Therefore, the functional follow-up experiments for the analysis of the UK Biobank’s full 

release were changed to reflect these new and exciting data that would allow us to identify 

candidate target genes informed by data from relevant cell types. We also used our research 

funds to use human osteoblast cell lines and conduct our group’s first CRISPR/Cas9 mediated 

gene knockout experiments. These exciting developments led to a more in-depth characterization 

of a novel identified candidate target gene for osteoporosis, dishevelled associated activator of 

morphogenesis 2 (DAAM2), once again showcasing the utility of our findings. 
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3.1 Abstract 

Osteoporosis is a common debilitating chronic disease diagnosed primarily using bone 

mineral density (BMD). We undertook a comprehensive assessment of human genetic 

determinants of bone density in 426,824 individuals, identifying a total of 518 genome-wide 

significant loci, (301 novel), explaining 20% of the total variance in BMD—as estimated by heel 

quantitative ultrasound (eBMD). Next, meta-analysis identified 13 bone fracture loci in ~1.2M 

individuals, which were also associated with BMD. We then identified target genes from cell-

specific genomic landscape features, including chromatin conformation and accessible chromatin 

sites, that were strongly enriched for genes known to influence bone density and strength 

(maximum odds ratio = 58, P = 10-75). We next performed rapid throughput skeletal phenotyping 

of 126 knockout mice lacking eBMD Target Genes and showed that these mice had an increased 

frequency of abnormal skeletal phenotypes compared to 526 unselected lines (P < 0.0001). In-

depth analysis of one such Target Gene, DAAM2, showed a disproportionate decrease in bone 

strength relative to mineralization. This comprehensive human and murine genetic atlas provides 

empirical evidence testing how to link associated SNPs to causal genes, offers new insights into 

osteoporosis pathophysiology and highlights opportunities for drug development.  
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3.2 Introduction 

eBMD is predictive of fracture and is highly heritable (50-80%).9,13,14,41,87 While BMD 

measured from dual-energy X-ray absorptiometry (DXA)-scanning is most often used in clinical 

settings, our recent GWAS for eBMD identified 84% of all currently known genome-wide 

significant loci for DXA-BMD86 and effect sizes were concordant between the two traits 

(Pearson’s r = 0.69 for lumbar spine and 0.64 for femoral neck).86 The largest GWAS to date for 

DXA-derived BMD measures contained only 66,628 individuals.88 Both ultrasound and DXA-

derived BMD are strongly associated with fracture risk where a standard deviation decrease in 

either metric is associated with approximately a ~1.5-fold increase in the risk of osteoporotic 

fracture,89,90 and both traits are highly polygenic. 

Little is known about how to reliably map associated genomic loci to their causal genes. 

However, highly polygenic traits such as bone density offer the opportunity to empirically test 

which methods link associated SNPs to genes enriched for causal proteins. Causal proteins can 

be identified in human clinical trials when their manipulation by medications leads to changes in 

BMD.6 Another source of causal proteins is Mendelian genetic conditions, which may constitute 

human knockouts and can also strongly implicate key genes that underlie bone physiology.91 

Given a sufficient number of associated loci, the different genomic characteristics that link a 

SNP to these causal proteins can be tested. These include genomic landscape characteristics such 

as cell-specific 3-dimensional (3D) contact domains, cell-specific open chromatin states, 

physical proximity and the presence of coding variation. Furthermore, samples from knockout 

mice generated by large-scale programs, such as the International Knockout Mouse Consortium 

(IKMC), can be used to identify genes whose deletion results in an abnormal skeletal phenotype. 
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This rapid-throughput phenotyping data can then be used to determine whether outlier bone 

phenotypes are enriched in mice harboring deletions of genes identified by GWAS in humans. 

Here, we present the most comprehensive investigation of human and murine genetic influences 

on bone density and fracture to date. We not only undertook a GWAS of 426,824 individuals for 

eBMD in the UK Biobank, explaining 20% of its variance and identifying 301 novel loci, but 

also identified the genetic determinants of fracture in up to 1.2 million individuals combining the 

UK Biobank and 23andMe cohorts. We then assessed the SNP-level and genomic landscape 

characteristics that mapped associated SNPs to genes that were enriched for known bone density 

proteins. We identified Target Genes that were enriched up to 58-fold for known causal genes 

and for genes differentially expressed in in vivo osteocytes compared to bone marrow cell 

models. Finally, we investigated whether deletion of GWAS-identified genes resulted in skeletal 

abnormalities in vivo by undertaking rapid-throughput phenotyping of knockout mice, which 

included 126 Target Genes. Mice harboring deletions of these 126 Target Genes were strongly 

enriched for outlier skeletal phenotypes. A convergence of human genetic, murine genetic, in 

vivo bone-cell expression and in vitro cell culture data all pointed to a role for DAAM2 in 

osteoporosis. This was further investigated by detailed analysis of mice with a hypomorphic 

allele of Daam2. Daam2 knockdown resulted in a marked decrease in bone strength and increase 

in cortical bone porosity. CRISPR/Cas9-mediated edits of DAAM2 in osteoblast cell lines 

demonstrated a reduction in mineralization, compared to un-edited cells. 

These newly discovered loci will empower future clinical and pharmacological research 

on osteoporosis, spanning from a better understanding of its genetic susceptibility to, potentially, 

biomarker discovery and drug targets. Moreover, to maximize the utility of these results to the 
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community, all data are made freely available via web resources (see URLs). Below we 

summarize the key results from our investigations.  
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3.3 Results 

3.3.1 GWAS for eBMD and Fracture 

We selected 426,824 White-British individuals (55% female) for the eBMD GWAS from 

the UK Biobank full release (Online Methods, Table S1 and Figure S1). We analyzed 

13,737,936 autosomal and X-chromosomal SNPs for their association with eBMD. Although 

there was substantial inflation of the test statistics relative to the null for eBMD (λGC = 2.26, 

Figure S2), linkage disequilibrium (LD) score regression indicated that the majority of inflation 

was due to polygenicity rather than population stratification (LD score regression intercept = 

1.06 [0.063], ratio = 0.017 [0.018]). 

We identified 1,103 conditionally independent signals (423 novel) at a genome-wide 

significant threshold (P < 6.6x10-9 see Online Methods) mapping to 515 loci (301 novel) (Table 

S2 and Figure 1). Of the conditionally independent lead SNPs at each locus, 4.6% were rare, 

having a minor allele frequency (MAF) ≤ 1%, whereas 9.3% were low-frequency (MAF ≤ 5% 

but > 1%) and 86.1% were common (MAF > 5%) (Figure S3 shows the relationship between 

MAF and absolute effect size). The average absolute conditional effect sizes for these three 

categories of SNPs were 0.14, 0.04 and 0.02 standard deviations, respectively. The total variance 

explained by conditionally independent genome-wide significant lead SNPs for eBMD was 

20.3%. When partitioning the variance explained by genome-wide significant lead SNPs into the 

three MAF categories, we found that rare variants explained 0.8% of the variance, whereas low-

frequency and common variants explained 1.7% and 17.8% of the variance in eBMD, 

respectively. We found strong correlations between effect sizes for eBMD when compared to 

effect sizes from the interim release of UK Biobank data (r = 0.93, Figure S4, Table S3). 
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We identified 53,184 fracture cases (60% female) and 373,611 controls (54% female), 

totalling 426,795 individuals in UK Biobank (Table S1). We assessed 13,977,204 autosomal and 

X-chromosomal SNPs for their effects on fracture and identified 14 conditionally independent 

signals associated with fracture mapping to 13 loci (Table S4 and Figure S5). Once again, we 

observed inflation of the test statistics, (λGC = 1.15). However, this was also likely due to 

polygenicity, rather than population stratification (LD score regression intercept = 1.00 [0.008], 

ratio = 0.017 [0.038]). Conditionally independent genome-wide significant lead SNPs were 

tested for replication in a cohort of research participants from 23andMe, Inc., a personal genetics 

company (N = 367,900 cases and 363, 919 controls). All 14 SNPs showed strong evidence of 

replication (Table S4). All genome-wide significant fracture SNPs were also found to be 

genome-wide significant in their association with eBMD in the expected direction of effect (i.e. 

alleles lowering eBMD were related to higher risk of fracture). Further, there was a high 

correlation between the effect sizes of eBMD associated variants and their effects on fracture 

were highly negatively correlated (r = -0.77 [-0.79, -0.74], Figure S4).  

3.3.2 Sex Heterogeneity 

To investigate whether the genetic aetiology of eBMD differed between the sexes, we 

performed tests of sex heterogeneity across the genome. We identified 45 variants at 7 loci that 

displayed strong evidence of a sex difference (P < 6.6x10-9, Table S5). Variants at two of these 7 

loci did not reach genome-wide significance in males, females or the main eBMD GWAS, and 

were therefore not followed up further (Figure S6 and Table S5). Of the five remaining loci 

(Table S5), we detected evidence of a sex difference at FAM9B, a known male-only eBMD 

associated locus that may mediate its effect on bone through both serum testosterone levels and 

estradiol levels in men.92,93 Alleles at this locus associated with increased testosterone levels 
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were also associated with increased eBMD in males only. For the remaining loci, male-only 

effects were detected at FKBP4 and RNU6ATAC. FKBP4 codes for a tetratricopeptide repeat 

protein found in steroid receptor complexes that has been implicated in androgen receptor 

mediated signalling and function.94 Variants at the LOC105370177 (upstream of the OPG gene) 

and ABO loci were associated with eBMD in both sexes, but were more strongly related in 

males. Finally, variants within MCM8 were associated with eBMD in females only (Table S6). 

The same variants are known to be associated with onset of menopause95 in the predicted 

direction (i.e. alleles which increase age at menopause associate with increased eBMD). 

Interestingly, 164 loci that reached genome-wide significance in the main analysis showed 

evidence of sex-heterogeneity in effect size far above expectation (164 out of 1106 SNPs had P < 

0.05, Table S7). Despite these differences in men and women, LD score regression analyses 

suggested that on average the genetic architecture influencing male and female eBMD was 

largely shared but that there were some significant differences between the sexes (rG = 0.91, SE 

= 0.012, P < 0.001).51 The total number of genome-wide significant conditionally independent 

lead SNPs becomes 1,106 mapping to 518 loci when including our sex heterogeneity analyses, 

however, we focus on results from the main GWAS for the rest of our study. 

3.3.3 Coding Variants 

Most genome-wide significant associations to date have arisen from non-coding variants, 

which has made the identification of causal genes difficult.91 Genetic association signals at 

coding variation can more directly highlight a potentially causal gene. We identified 1,237 

coding variants, based on the Variant Effect Predictor55, meeting genome-wide levels of 

significance in their association with eBMD, prior to conditioning on other the lead SNPs in LD 

at each locus. This represents 1.0% of the total count of genome-wide significant variants (Table 
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S8). The average absolute effect size for coding variants was 0.025 standard deviations 

(interquartile range: 0.014 - 0.027), which was approximately equal to the absolute effect size for 

genome-wide significant common variants. These coding variants do not necessarily directly 

implicate a gene but may reflect non-causal associations through linkage disequilibrium with 

other common non-coding causal variants. 

3.3.4 Fine-Mapping Associated Loci 

In order to map SNPs to potentially causal genes, we first refined the set of associated 

SNPs at each locus to a smaller set using two statistical fine-mapping methods, GCTA-COJO96 

and FINEMAP29. These methods identify sets of SNPs based on their conditional independence 

and posterior probability for causality, respectively. We generated such sets for each genome-

wide significant autosomal locus by identifying conditionally independent lead SNPs, or those 

SNPs having a high posterior probability of causality, as determined by log10 Bayes factor > 3 

(Figure 2a). Here we refer to the set of “fine-mapped SNPs” as those SNPs achieving either 

conditional independence or a high posterior probability for causality. 

Prior to fine-mapping, we identified on average 235 genome-wide significant SNPs per 

locus. After this fine-mapping exercise, an average of two conditionally independent SNPs and 

five SNPs with a log10 Bayes factor > 3 remained per locus (Tables S9 and S10). The number of 

fine-mapped SNPs per locus ranged between 1 to 81. As a sensitivity test, we also considered a 

more lenient inclusion criterion for inclusion of SNPs based on a log10 Bayes factor > 2, which 

resulted in a sharp increase in the average number of SNPs per locus to 27, which in total 

comprised 13,742 unique SNPs (Table S11).  
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3.3.5 Comparing Fine-Mapped SNPs for Biological Activity 

Given the large number of associated SNPs per locus, downstream analyses should focus 

on those SNPs most likely to have a biological function. We used accessible chromatin sites 

surveyed in a relevant cellular context as a proxy for biological activity. We generated ATAC-

seq maps in the human osteosarcoma cell line SaOS-2. SaOS-2 cells possess osteoblastic features 

and can be fully differentiated into osteoblast-like cells. We also analyzed DNase I 

hypersensitive site (DHS) maps from human primary osteoblasts generated by the ENCODE 

project.30 Both ATAC-seq and DHS data were analyzed using a uniform mapping and peak-

calling algorithm (Online Methods). 

We then analyzed the fine-mapped SNPs for enrichment of these functional signatures 

relative to all SNPs in the 1 Mbp surrounding each genome-wide significant association locus. 

Fine-mapped SNPs, including the set of conditionally independent SNPs and SNPs with log10 

Bayes factors > 3, were strongly enriched for both missense variants in protein coding regions 

and osteoblast accessible chromatin sites (Figure 3a). As the log10 Bayes factor threshold 

increased, fold-enrichment increased as well (Figure 3b). This indicates that the fine-mapped set 

of SNPs is highly enriched for genomic signatures of function, which can inform the choice of 

statistical cut-off for selection of SNPs for follow-up functional studies. 

3.3.6 Mapping Fine-Mapped SNPs to Target Genes & Enrichment for Positive Control 

Genes 

Human genetic associations have rarely been translated to improved clinical care, 

primarily because causal genes at associated loci have not been indisputably identified. We 

therefore sought to test which genomic features link associated SNPs to genes known to 

influence bone biology in humans. We identified a set of proteins whose perturbation through 
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pharmacotherapy6 or Mendelian disease leads to changes in bone density or strength. Mendelian 

disease genes were defined as monogenic disorders characterized with altered bone mass or 

abnormal skeletal mineralization, osteolysis and/or skeletal fragility or osteogenesis imperfecta 

(Table S12) and constitute an informative human knockout resource.97 We considered such 

proteins to be products of “positive control” genes influencing bone density and likely critical to 

bone biology. 

Next, we investigated which genomic features linked the fine-mapped set of SNPs to 

positive control genes for bone density. We tested whether positive control genes were enriched 

among six types of genomic characteristics that can link a SNP to a gene: 1) Genes that were 

most proximal to the fine-mapped set SNPs; 2) Genes that contained fine-mapped SNPs 

overlapping their gene bodies; 3) Genes containing fine-mapped SNPs that are coding variants; 

4) Genes identified to be in 3D contact with fine-mapped sets in human osteoblasts or osteocytes 

through high-throughput chromatin conformation capture (Hi-C) experiments; 5) The closest 

gene to fine-mapped SNPs, which also mapped to ATAC-seq peaks in human osteoblast SaOS-2 

cell lines; and 6) Those genes within 100 kbp of fine-mapped SNPs (Figure 2b emphasizes the 

target gene selection and Figure 4 details this entire pipeline). Coding annotations, ATAC-seq 

peaks, and Hi-C interaction peaks were not combined but kept separate to enable different 

sources of data to provide converging and confirmatory evidence. Distance from a fine-mapped 

SNP to a gene was considering the closer of the 3’ and 5’ ends, not the transcription start site. 

We named these genes “Target Genes” and tested which of the above 6 methods to define Target 

Genes was most strongly enriched for positive control genes.  

The set of Target Genes that were most strongly enriched for positive control genes, 

arose from genes targeted by SNPs that were conditionally independent and by SNPs identified 
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to be plausibly causal with a log10 Bayes factor > 3 (Table 1 and Table S13). This set of Target 

Genes featured 556 genes total, approximately one gene per locus. All six different methods for 

linking these fine-mapped set of SNPs to Target Genes yielded strong enrichment for positive 

control genes. The odds ratios ranged from 5.1 (95% CI: 3.0-8.6, P = 10-11) for Target Genes 

within 100 kbp of the fine-mapped SNPs to an odds ratio of 58.5 (95% CI: 26.4-129.31, P = 10-

75) for Target Genes closest to fine-mapped SNPs that were in an osteoblast-derived ATAC-seq 

peak (Table 1). In addition, we used FUMA98 to assess which pathways from the 

WikiPathways99 database were identified by the set of Target Genes most strongly enriched for 

positive control genes. We observed that well known pathways such as Wnt signalling, 

endochondral ossification, osteoclast and osteoblast signalling, as well as novel pathways were 

highlighted by this approach (Figure S7). 

These results suggest that our Target Gene identification methods lead to strong 

enrichment for positive control genes known to be central to bone biology. Such methods may 

help to prioritize genes at associated loci for functional testing, which are more likely to 

influence bone biology and therefore, have clinical relevance. The full list of mapped Target 

Genes and the method through which they were identified is presented in Table S14. 

3.3.7 Mapping Fine-Mapped SNPs to Osteocyte-Signature Genes 

An alternative method to assess the biological plausibility of Target Genes is to test 

whether their expression is enriched in bone cells. Osteocytes are the most abundant cell type in 

bone and are key regulators of bone mass, bone formation and bone resorption.100 We therefore 

assessed the transcriptome of primary murine osteocytes derived from three bone types in 

vivo.101 Genes enriched for expression in osteocytes and expressed in all bone types defined an 
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osteocyte transcriptome signature.101 We then tested which of the methods used to identify 

eBMD Target Genes resulted in the greatest enrichment for osteocyte-signature genes. 

Again, we found that Target Genes were strongly enriched for osteocyte signature genes, with 

odds ratios for enrichment ranging from 2.1 (95% CI: 1.7-2.5, P = 2x10-17) for Target Genes 

within 100 kbp of the fine mapped set of SNPs, to 7.4 (95% CI: 3.8-14.5, P = 5x10-12) for Target 

Genes mapped through fine-mapped coding SNPs (Table 2 and Table S15 and S16). This again 

suggests our methods result in enrichment for biologically relevant genes. 

3.3.8 A Large-Scale High Throughput Murine Knockout Screening Program 

The Origins of Bone and Cartilage Disease (OBCD) program 

(www.boneandcartilage.com) is determining 19 structural and functional parameters in all 

unselected knockout mouse lines generated at the Wellcome Trust Sanger Institute for the IKMC 

and IMPC. These parameters evaluate bone mineral content (BMC), 3D trabecular and cortical 

bone structure, bone mineralization and femoral and vertebral bone strength. To date, the OBCD 

program has included the analysis of 126 knockout lines with mutations of Target Genes (Table 

S17). Outlier phenotypes were defined as structural or strength parameters > 2 standard 

deviations away from the reference mean, determined from over 300 age-matched, sex-matched 

and genetically identical C57BL/6N wild-type controls (Online Methods). We investigated 

whether deletion of these 126 Target Genes resulted in enrichment of outlier skeletal phenotypes. 

Outlier cortical and trabecular bone phenotypes were more frequent in mice with disruptions of 

the 126 Target Genes compared against 526 unselected knockout lines (Tables S17 and S18, OR 

3.2 [95% CI: 1.9-5.6], P < 0.0001). Therefore, enrichment of abnormal skeletal phenotypes in 

mice with disruption of Target Genes provides clear functional validation that our fine-mapping 

approach identifies critical and biologically-relevant skeletal genes. Our fine-mapping in vivo 
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and in vitro data converged to identify DAAM2 as a highly credible and novel osteoporosis gene, 

therefore we undertook detailed analyses of mice with a hypomorphic Daam2 allele to illustrate 

the potential of this approach. 

3.3.9 In-Depth Characterization of DAAM2 

Numerous lines of evidence identified DAAM2 as an important gene for further 

functional investigation. First, a conditionally independent lead SNP, rs2504101, mapped 

directly to DAAM2 (Pconditional = 4.3x10-10) and second, fine-mapping revealed two coding 

missense variants with high posterior probabilities for causality, rs201229313 in its 19th exon 

(log10 BF = 3.7), and rs61748650 in its 21st exon (log10 BF = 2.5). Third, a rare variant, 

rs772843886, near DAAM2 was suggestively associated with risk of fracture (P = 2x10-3). 

Fourth, the Daam2tm1a/tm1a mouse was identified to have an outlier skeletal phenotype in our 

rapid throughput murine knockout screening program (Table S17). Fifth, although DAAM2 has 

not previously been implicated in osteoporosis, it has been predicted to have a role in canonical 

Wnt signaling.102,103  

To investigate the role of DAAM2 in bone biology, we first tested its expression in bone 

cells. We performed RNA-seq and ATAC-seq experiments in four different human osteoblast 

cell lines and found it was expressed in all cell lines (Online Methods, Figure S8). Staining 

experiments in the SaOS-2 cell line revealed DAAM2 localized specifically in the cell nuclei 

(Figures S9 and S10). This functional evidence from human bone cells also led us to 

characterize Daam2 in mouse bone cells. Daam2 was identified as an osteocyte signature gene 

(Table S16) and was expressed in mouse calvarial osteoblasts and bone marrow-derived 

osteoclasts (Table S19).  
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Next using CRISPR/Cas9, we tested the effect on bone mineralization of double-stranded 

breaks (DSBs) in the second exon of DAAM2 in SaOS-2 osteoblast cell lines (Online Methods). 

We found that after 14 days of treatment with osteogenic factors, control cells transfected with 

the intact plasmid, but not undergoing an DSB of the DAAM2 gene, had a 9-fold increase in 

mineralization. After the introduction of a DSB in the second exon of DAAM2, induced 

mineralization was severely impaired (Figure 5). These CRISPR/Cas9-based findings suggest 

that DAAM2 influences mineralization capacity in human osteoblasts. 

We next analyzed the skeletal phenotypes of Daam2tm1a/tm1a, Daam2+/tm1a and wild-type 

littermate mice in detail. Adult male Daam2tm1a/tm1a mice had reduced femur and vertebral bone 

mineral content (BMC), while male Daam2+/tm1a and female Daam2tm1a/tm1a mice also had 

reduced vertebral BMC. These changes were accompanied by a small reduction in femur length 

in Daam2tm1a/tm1a mice (males, 2.7%; females, 3.5%). Despite otherwise normal trabecular and 

cortical bone structural parameters, cortical porosity was increased in both male and female 

Daam2tm1a/tm1a mice (Figure S11).   

Consistent with their increased cortical porosity, Daam2tm1a/tm1a mice had markedly 

reduced bone strength (Figure 6) even though all other cortical bone parameters, including 

BMD, were normal (Figure S11). Bone composition and structure were thus investigated in 

Daam2tm1a/tm1a mice by comparing Daam2tm1a/tm1a mineralization and biomechanical parameters 

with values predicted by linear regression analysis of over 300 wild-type age, sex and genetic 

background matched wild-type controls. Measures of bone composition and structure in 

Daam2tm1a/tm1a mice were reduced compared to wild-type mice, and vertebral stiffness was > 2 

standard deviations below that predicted even after accounting for reduced BMC (Figure 6c and 

Table S20). To investigate the role of Daam2 on bone turnover, we measured markers of bone 
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resorption (TRAP) and formation (P1NP) in 10-week-old Daam2tm1a/tm1a and Daam2+/tm1a mice, 

and these did not differ from wild-type (Figure S12). Furthermore, primary cultures of bone 

marrow mononuclear cells from Daam2tm1a/tm1a mice showed no difference in osteoclastogenesis, 

and primary osteoblast mineralization was also similar to wild-type (Figure S12). 

Male Daam2tm1a/tm1a mice had decreased mineral content per unit matrix protein and increased 

carbonate substitution (Figure S13). This decrease in mineral to matrix ratio explains the overall 

decrease in bone mineral content observed in the absence of a decrease in cortical bone size. 

While bone size and geometry play a major role in controlling bone strength, decreases in 

mineral to matrix ratio are associated with decreased bone stiffness and decreased bending 

moment.104 These decreases likely contributed to the poor bone composition and structure 

observed in the Daam2tm1a/tm1a mice. 

Taken together, these data suggest the decreased bone strength in Daam2tm1a/tm1a mice is 

not simply a result of abnormal bone turnover, but also a consequence of increased porosity and 

impaired bone composition and structure. If DAAM2 proves to be a tractable drug target, such 

an agent would represent a complementary therapeutic strategy for prevention and treatment of 

osteoporosis and fragility fracture.  

3.3.10 Additional Novel Candidate Bone Genes 

While DAAM2 represents the detailed validation of a novel Target Gene and the rapid-

throughput knockout mouse skeletal phenotyping pipeline, we also highlight five additional 

eBMD Target Genes that result in contrasting abnormalities of bone structure and strength when 

deleted in mice, thus emphasising their functional role in skeletal physiology and importance for 

further study. 
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CBX1 encodes Chromobox 1, a highly conserved non-histone member of the 

heterochromatin protein family that mediates gene silencing but has no reported role in the 

skeleton105. Homozygous deletion of Cbx1 resulted in embryonic lethality whereas adult 

heterozygous mice had increased bone mineral content and trabecular thickness resulting in 

increased stiffness and strength (Table S17, Figure S14). CBX1 was identified by five SNPs 

with log10 BFs > 2 mapping directly to its gene body (Table S11) and rs208016 (70 kbp 

upstream) suggested an association with fracture (P = 1.5x10-5). 

WAC encodes WW Domain Containing Adaptor with Coiled-Coil, a protein of unknown 

function that is associated with global developmental delay and dysmorphic features in Desanto-

Shinawi syndrome106. Homozygous deletion of Wac resulted in prenatal lethality whereas adult 

heterozygous mice had increased bone length, mass and strength (Table S17, Figure S15). 

Seven fine-mapped SNPs mapped proximally or directly to WAC (Table S11), with two fine-

mapped SNPs, rs17686203 (log10 BF = 3.1) and rs61848479 (log10 BF = 3.9) mapping to WAC 

promoter Hi-C interaction peaks in primary human osteoblasts, and for the latter SNP in primary 

human osteocytes (Table S14). We also identified rs17753457 (60 kbp downstream) that had a 

suggestive association with fracture (P = 4.3x10-5). 

DSCC1 encodes DNA Replication and Sister Chromatid Cohesion 1, a component of an 

alternative replication factor that facilitates binding of proliferating cell nuclear antigen to DNA 

during S phase but has no known role in bone107. Homozygous knockout mice had reduced 

viability and adult Dscc1+/- heterozygotes had increased bone mineral content and strength 

(Table S17, Figure S16). DSCC1 was identified by rs62526622 (log10 BF = 2.0) mapping to an 

intronic DSCC1 Hi-C promoter interaction peak in primary human osteoblasts. rs546691328 
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(180 kbp downstream) was also found to have a suggestive association with fracture  (P = 

2.9x10-4). 

RGCC encodes Regulator of Cell Cycle, a p53 Target Gene that interacts with polo-like 

kinase 1, which regulates cell proliferation and apoptosis but has no documented role in the 

skeleton108. Nevertheless, Rgcc-/- knockout mice displayed increased bone mineral content and 

strength (Table S17, Figure S17). RGCC was identified by rs145922919 (log10 BF = 3.3) 

mapping approximately 30 kbp upstream of RGCC to a Hi-C promoter interaction peak in 

primary human osteoblasts and rs545753481 (32 kbp upstream) also had a suggestive association 

with fracture (P = 3.4x10-3). 

YWHAE encodes Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation 

Protein, Epsilon Isoform, a pro-inflammatory cytokine that mediates signal transduction by 

binding to phosphoserine-containing proteins. YWHAE (14-3-3) binds to aminopeptidase N 

(CD13) to regulate chondrocyte homeostasis and has been implicated as a novel therapeutic 

target in osteoarthritis109. Rare YWHAE deletions have been reported in Miller-Dieker 

Lissencephaly syndrome which includes craniofacial abnormalities and growth retardation 

together with diverse neurodevelopmental abnormalities110. Consistent with this, homozygous 

deletion of Ywhae resulted in reduced bone length, and increased bone mass and mineral content 

resulting in brittle bones (Table S17, Figure S18). YWHAE was identified in our target gene 

approach by 22 SNPs with log10 BFs > 2 (Table S11) all mapping directly to YWHAE introns 

and an additional SNP, rs181451348 (1 kbp downstream) showed suggestive association with 

fracture (P = 7.1x10-5). 

CBX1, DSCC1, RGCC, WAC, and YWHAE represent strong candidates for further in-

depth functional characterization as we have performed for DAAM2. Bone composition and 
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structure screens identified WAC and DSCC1 as femur outliers due to Wac+/- and Dscc1+/- 

knockout mice being at least two standard deviations from the expected range (Figure S19). Our 

data also support functional experiments in human cells as all five genes were expressed in all 

four human osteoblast cell lines we profiled with RNA-seq and ATAC-seq (Online Methods), 

except for RGCC which was highly expressed in SaOS-2 with low expression levels in U2OS, 

MG63, and HOS, three other human osteoblast cell lines for which we generated RNA-seq data 

(Online Methods). In addition, we observed suggestive association at each locus with fracture 

(Table S21), further supporting evidence for these five genes having roles in human bone 

biology. 
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3.4 Discussion 

In this, the most comprehensive human and murine study on the genetic determinants of 

bone density and fracture performed to date, we have identified a total of 518 genome-wide 

significant loci, of which 301 are novel and together explain 20% of the total variance in eBMD. 

In a GWAS meta-analysis of up to 1.2 million individuals, 13 fracture loci were identified, all of 

which were also associated with eBMD. Taking advantage of the polygenicity of eBMD, we 

demonstrated strong biological enrichment for fine-mapped SNPs in bone cell open chromatin. 

Using fine-mapped SNPs we found that Target Genes were strongly enriched for genes that are 

known to play central roles in bone biology through Mendelian genetics, or as targets for 

clinically-validated osteoporosis therapies. High throughput skeletal phenotyping of mice with 

deletions of 126 Target Genes revealed enrichment of outlier skeletal phenotypes compared to 

analysis of 526 unselected knockout lines. Last, we identified DAAM2 as a protein with critical 

effects on bone strength, porosity and composition. These findings will enable on-going and 

future studies to better understand the genomic characteristics that link fine-mapped SNPs to sets 

of genes enriched for causal proteins. Further, this comprehensive study of the genetic variants 

associated with osteoporosis will provide opportunities for biomarker and drug development 

The polygenicity of eBMD is striking. Few traits and diseases currently have hundreds of loci 

associated at genome-wide levels of significance.91,111 This has led to a large proportion of total 

variance in eBMD being explained by now known genetic determinants, which will facilitate 

future exploration of bone biology and enable drug development for osteoporosis.44, Yet, despite 

the large number of genetic and biological inputs into eBMD determination, pharmacological 

perturbation of even only one protein identified in our GWAS can have clinically relevant 

effects. For example, RANKL inhibition has been shown to increase bone density by up to 21% 
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after ten years of therapy.112 Interestingly, the genetic variants near RANKL have small effects 

on eBMD. Thus, despite the small effect sizes for most identified variants, these do not 

necessarily reflect the effect sizes to be anticipated by pharmacological manipulation of the 

protein. This is because common genetic variants tend to have small effects on protein function, 

whereas pharmacotherapies tend to have large effects on protein function. Consequently, the 

dose-response curve describing the effect of small and large genetic perturbations on eBMD is 

needed to decide which proteins to target for drug development.91 

Polygenicity has also improved our statistical power to validate linking an associated 

locus with a potentially causal gene. We found that fine-mapped sets of SNPs were able to 

identify Target Genes that were strongly enriched for positive control genes—particularly when 

the approach implemented relatively simple strategies, such as the nearest gene, or the gene 

nearest a fine-mapped SNP in cell-relevant open chromatin. We also observed that fine-mapped 

SNPs were often in 3D contact with Target Genes in human osteoblasts and osteocytes. These 

rich data, surveying many genomic landscape features provide guidance for investigators 

attempting to identify causal genes from GWAS-associated SNPs and all human genetic and 

murine results are available for download (see URLs). 

The marked reduction in bone strength in Daam2tm1a/tm1a mice, despite minimal changes 

in bone morphology and mineral content, indicates that Daam2tm1a/tm1a mice have abnormal bone 

composition and structure, which can be explained in part by increased cortical porosity. Further, 

CRISPR/Cas9-mediated knockouts of DAAM2 in osteoblast cells lines resulted in a marked 

reduction in inducible mineralization. Few such genes have been identified and further 

investigations will be required to determine whether DAAM2 represents a tractable drug target in 

humans. Nevertheless, previous studies have suggested that DAAM2 indirectly regulates 
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canonical Wnt signalling across several developmental processes.102,103 We applied the 

triangulation approach113 by using different sources of data to identify DAAM2, allowing for 

greater confidence in results. While each type of data has its own biases, these biases are 

partially orthogonal, and consequently, concordant evidence from datasets increases the quality 

of the evidence. 

Our GWAS for fracture risk identified 13 loci associated with this common disease. All 

these loci have been associated with BMD and/or eBMD, highlighting the importance of BMD 

as a determinant of fracture risk, at least in the age range assessed within the UK Biobank. While 

BMD-independent loci for fracture likely exist, these were not identified despite a well-powered 

study. This suggests that screening for fracture drug targets should also include understanding 

the effect of the protein on BMD.  

Our study has important limitations. First, we have measured eBMD, rather than DXA-

derived BMD, which is typically measured in the clinic. Nonetheless, beyond their phenotypic 

correlation, these two traits also demonstrate high genetic concordance in terms of their genome-

wide significant loci, suggesting that the biological properties that underpin these two traits are 

similar. Importantly, however, eBMD is a strong predictor of fracture risk in its own right, and 

contributes to risk assessment over and above DXA-derived BMD at the hip.67 While our target 

gene approach has identified a set of candidate genes enriched for genes with known effects on 

bone density, it is important to note that there is no gold-standard set of genes known to 

influence BMD. While our rapid throughput mouse knockout program is on-going and will 

investigate many of the Target Genes implicated by our study, further efforts will be required to 

functionally validate (or exclude) these genes in bone biology. Our target gene approach did not 

include human gene expression quantitative trait loci (eQTL) data. This is because the largest 
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available eQTL experiments for human osteoblasts involve only 95 individuals,58 and larger 

sample sizes with RNA-sequencing data will be required to properly investigate our method of 

linking fine-mapped sets of SNPs to genes. Finally, our program was limited to individuals of 

White British genetic ethnicity and the effect of most of the genome-wide significant SNPs in 

other populations remains to be assessed. It is likely that on-going studies in non-British 

ancestries will address this question. 

In summary, we have generated an atlas of human and murine genetic influences on 

osteoporosis. This comprehensive study has more fully described the genetic architecture of 

eBMD and fracture and has identified a set of Target Genes strongly enriched for genes with 

known roles in bone biology. We used human genetics, functional genomics, animal models and 

genome editing to demonstrate the relevance of this approach, formally known as 

triangulation113, by identifying DAAM2. Disruption of DAAM2 in mice leads to an increase in 

cortical porosity and marked reductions in bone composition and strength, and in human 

osteoblasts leads to a decrease in mineralization. This set of Target Genes is expected to include 

new drug targets for the treatment of osteoporosis, a common disease for which novel 

therapeutic options are a health priority. 
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3.5 Online Methods 

3.5.1 Curating osteoporosis associated outcomes in the UK Biobank study 

During the period from 2006-2010, half a million British adults were recruited by the UK 

Biobank study (http://www.ukbiobank.ac.uk/).114 Subjects provided biological samples, 

consented to physical measurements and answered questionnaires relating to general health and 

lifestyle. Ethical approval was granted by the Northwest Multi-Centre Research Ethics 

Committee, and informed consent was obtained from all participants prior to participation. Heel 

bone quality was evaluated in 487,428 subjects by quantitative ultrasound speed of sound (SOS) 

and broadband ultrasound attenuation (BUA) using a Sahara Clinical Bone Sonometer (Hologic 

Corporation, Bedford, Massachusetts, USA). Further information regarding the assessment 

protocols are publicly available on the UK Biobank website. Participants were initially measured 

at baseline (N = 487,428) and had their left calcaneus (N = 317,815), right calcaneus (N = 4,102) 

or both calcanei (N = 165,511) measured. A subset of these subjects was followed up at two 

further time points (N = 20,104 and N = 7,988), during which both heels were measured. A 

detailed description of the ascertainment procedure is provided in Figure S1. Prior to quality 

control, ultrasound data were available for 488,683 individuals at either baseline and/or follow-

up assessment. To reduce the impact of outlying measurements we first identified subjects that 

had both heels measured and removed those with highly discrepant (i.e. left vs. right) SOS and/or 

BUA measurements. To achieve this, subjects were stratified by sex and bivariate scatter plots 

comparing left and right heel measures of SOS and BUA were generated separately. Outliers 

were identified by manual inspection and removed. The same method was used to identify and 

remove individuals with highly discordant SOS v BUA measured for each heel. Strict quality 

control was thereafter applied to male and female subjects separately using the following 
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exclusion thresholds: SOS [Male: (≤ 1,450 and ≥ 1,750 m/s), Female (≤ 1,455 and ≥ 1,700 m/s)] 

and BUA [Male: (≤ 27 and ≥ 138 dB/MHz), Female (≤ 22 and ≥ 138 dB/MHz)]. Individuals 

exceeding the threshold for SOS or BUA or both were removed from the analysis. Estimated 

bone mineral density [eBMD, (g/cm2)] was derived as a linear combination of SOS and BUA 

(i.e. eBMD = 0.002592 x (BUA + SOS) - 3.687). Individuals exceeding the following thresholds 

for eBMD were further excluded: [Male: (≤ 0.18 and ≥ 1.06 g/cm2), Female (≤ 0.12 and ≥ 1.025 

g/cm2)]. A unique list of individuals with a valid measure for the left calcaneus (N = 477,380) 

and/or right (N = 181,953) were identified separately across the three time points. Individuals 

with a valid right calcaneus measure were included in the final data set when no left measures 

were available, giving a preliminary working dataset of N = 481,100, (left = 475,724 and right = 

5,376) unique individuals. Bivariate scatter plots of eBMD, BUA and SOS were again visually 

inspected and 723 additional outliers were removed, leaving a total of 480,377 valid QUS 

measures for SOS, BUA and BMD (264,304 females and 216,073 males). The R script used to 

curate the raw data is available on request, together with all supporting summary data and plots. 

Descriptive statistics of the cohort, after quality control, are detailed in Table S1. 

Fracture cases were identified using two mutually non-exclusive methods: Hospital 

Episodes Statistics linked through NHS Digital (http://content.digital.nhs.uk/hes) with a hospital-

based fracture diagnosis irrespective of mechanism within the primary (N = 392,292) or 

secondary (N = 320,448) diagnosis field, and questionnaire-based self-reported fracture within 

the past five years (N = 501,694). We defined a set of International Classification of Diseases 

codes, 10th revision (ICD10), to separate fracture cases from controls with the Hospital Episodes 

Statistics data. We excluded fractures of the skull, face, hands and feet, pathological fractures 

due to malignancy, atypical femoral fractures, periprosthetic and healed fracture codes. A full list 
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of ICD10 codes used can be found in Table S22. We did not exclude any self-reported fracture 

cases by fracture site, since participants were only asked if they sustained a fracture at ankle, leg, 

hip, spine, wrist, arm, other or unknown. We identified 20,122 fractures using ICD10 codes and 

48,818 using questionnaire-based self-reported data. Descriptive statistics of the cohort, after 

quality control and ancestry selection, are detailed in Table S1.  

3.5.2 Ancestry assignment 

Genotype array data were imputed by the UK Biobank using the Haplotype Reference 

Consortium (HRC) panel25. A comprehensive description of the imputation protocol is described 

elsewhere115. A sample of 409,728 White British individuals was identified centrally by the UK 

Biobank, using a combination of self-reported ethnicity and genetic information. However, the 

reliance on self-reported information was deemed too conservative and we chose to redefine a 

White British sample (N = 440,414) using genetic information only. We projected the UK 

Biobank sample onto the first 20 principal components estimated from the 1000 Genomes Phase 

3 (1000G) project data116 (where ancestry was known) using FastPCA version 2.117 Projections 

used a curated set of 38,551 LD-pruned HapMap 3 Release 3 (HM3)118 bi-allelic SNPs that were 

shared between the 1000G and UK Biobank datasets (i.e. MAF > 1%, minor allele count > 5, 

genotyping call rate > 95%, Hardy-Weinberg P > 1x10-6, and regions of extensive LD removed). 

Expectation Maximization (EM) clustering (as implemented in R using EMCluster119) was used 

to compute probabilities of cluster membership based on a finite mixture of multivariate 

Gaussian distributions with unstructured dispersion. Eigenvectors 1, 2 and 5 were used for 

clustering as they represented the smallest number of eigenvectors that were able to resolve the 

British 1000G sub-population (GBR) from other ethnicities (Figure S20). Twelve predefined 

clusters were chosen for EM clustering as sensitivity analyses suggested that this number 
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provided a good compromise between model fit (as quantified by log likelihood, Bayesian 

information criterion, and Akaike information criterion) and computational burden (Figure S21). 

UK Biobank participants (N = 440,414) that clustered together with the 1000G GBR sub-

population were termed White British and used for downstream genetic analyses (Figure S22).  

3.5.3 Identification of unrelated samples for LD reference estimation and X chromosome 

analyses 

Genome-wide complex trait analysis (GCTA)73 was used to construct a genetic 

relatedness matrix (GRM) using the White British sample and a curated set of LD non-pruned 

HM3 autosomal genome-wide variants (N = 497,687). Unrelated individuals were defined using 

the genome-wide relatedness measure defined by Yang et al.73 where the pairwise relatedness 

between individuals j and k (Ajk) was estimated by: 

𝐴 = 1𝑁  ൫𝑥 − 2𝑝൯(𝑥 − 2𝑝)2𝑝(1 − 𝑝)ே
ୀଵ  

where xij is the number of copies of the reference allele for the ith SNP of the jth and kth 

individuals and pi is the frequency of the reference allele across the N individuals.  

Two samples of unrelated individuals were defined from the White British UK Biobank 

population: A sample used for X chromosome association analysis (pairwise relatedness < 0.1, N 

= 374,559) and a random sample for LD reference estimation (pairwise relatedness < 0.025, N = 

50,000).  

3.5.4 Genome-wide association analysis 

A maximum of 426,824 White-British individuals (233,185 females and 193,639 males) 

with genotype and valid QUS measures were analyzed (Table S1). For fracture, a maximum of 

426,795 White-British individuals, comprising 53,184 fracture cases (60% female) and 373,611 

controls (54% female) were analyzed. We note that the sample sizes between the two assessed 
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traits are similar but different, due to not all fracture cases and controls having eBMD measured, 

and vice-versa. We tested autosomal genetic variants for association with eBMD and fracture, 

separately, assuming an additive allelic effect, using a linear mixed non-infinitesimal model 

implemented in the BOLT-LMM v2 software package26 to account for population structure and 

cryptic relatedness. The following covariates were included as fixed effects in all models: age, 

sex, genotyping array, assessment center and ancestry informative principal components 1 to 20. 

Autosomal analysis was restricted to up to 13,977,204 high quality HRC imputed variants with a 

MAF > 0.05%, minor allele count > 5, info score > 0.3, genotype hard call rate > 0.95, and 

Hardy-Weinberg equilibrium P > 1x10-6. We also analyzed the association between eBMD and 

fracture and directly genotyped SNPs on the X chromosome, adjusting for the same covariates, 

using the Plink2 (October 2017) software package70 and a nested sample of unrelated 

participants (N = 362,926 for eBMD and N = 45,087 cases and 317,775 controls for fracture). As 

the analyses for the X chromosome data were based upon observed genotypes, we excluded 

SNPs with evidence of deviation from Hardy-Weinberg Equilibrium (P < 1x10-6), MAF < 

0.05%, minor allele count < 5, and overall missing rate > 5%, resulting in up to 15,466 X 

chromosome SNPs for analysis. Heterogeneity in effect size coefficients between sexes was 

tested in EasyStrata71, using Cochran’s test of heterogeneity120   𝑋௧ = [(𝛽 − 𝛽ை௩)ଶ𝑤] ~𝜒ଶ(𝑚 − 1) 

βi effect size estimates of stratum i 

SEi standard error of stratum i 𝑤 = 1/𝑆𝐸ଶ 

i = 1..m 
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Manhattan plots of our genome-wide association scans were generated using the same software. 

We have previously estimated the genome-wide significance threshold α = 6.6x10-9 for analyzing 

data from the UK Biobank using the above critera.86 

3.5.5 Fracture replication meta-analysis 

14 genome-wide significant conditionally independent lead SNPs identified from our 

fracture analyses were tested for replication in the 23andMe cohort. Genetic associations were 

tested against the fracture phenotype on a set of unrelated individuals of European ancestry. 

Analyses were adjusted for age, sex, principal components 1 to 5, and the genotyping platform. 

There were 367,900 cases and 363,919 controls. Meta-analysis of UK Biobank discovery and 

23andMe replication data was performed using METAL.121 In order to compare the effect 

estimates and standard errors of the UK Biobank discovery and 23andMe replication data, we 

had to transform the UK Biobank discovery effect estimates and standard errors as per the 

manual specifications in the BOLT-LMM26 documentation, specifically: 

log OR = 𝛽𝜇 ∗ (1 − 𝜇) 

where 𝜇 = case fraction and standard errors of SNP effect estimates should also be divided by 

(𝜇 ∗ (1 − 𝜇)). 

3.5.6 Approximate conditional association analysis 

To detect multiple independent association signals at each of the genome-wide significant 

eBMD and fracture loci, we applied approximate conditional and joint genome-wide association 

analysis using the software package GCTA v1.91.96 Variants with high collinearity (multiple 

regression R2 > 0.9) were ignored and those situated more than 20 Mbp away were assumed to be 

independent. A reference sample of 50,000 unrelated White-British individuals randomly 

selected from the UK Biobank was used to model patterns of linkage disequilibrium (LD) 
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between variants. The reference genotyping dataset consisted of the same variants assessed in 

our GWAS. Conditionally independent variants reaching genome-wide significance were 

annotated to the physically closest gene using Bedtools v2.26.074 and the hg19 gene range list 

(www.cog-genomics.org/plink2). 

3.5.7 Estimation of variance explained by significant variants and SNP heritability 

We estimated the proportion of eBMD phenotypic variance tagged by all SNPs on the 

genotyping array (i.e. the SNP heritability) using BOLT-REML26 and Linkage Disequilibrium 

Score Regression (LDSC)45. To calculate the variance explained by independent genome-wide 

significant SNPs, i.e. all 1,103 genome-wide significant conditionally independent lead SNPs, 

we summed the variance explained per SNP using the formula: 2p(1 - p)β2, where p is the effect 

allele frequency and β is the effect of the allele on a standardized phenotype (mean = 0, variance 

= 1)122–124.  

3.5.8 Estimating genomic inflation with LD Score Regression (LDSC) 

To estimate the amount of genomic inflation present in the data that was due to residual 

population stratification, cryptic relatedness, and other latent sources of bias, we used stratified 

LDSC125 in conjunction with partitioned LD scores that were calculated for high quality HM3 

SNPs derived from a sample of unrelated 1000G EUR individuals.  

3.5.9 Fine-Mapping SNPs 

Fine-mapped SNPs were defined as those being conditionally independent, as identified 

by GCTA-COJO or exceeding our threshold for posterior probability of causality, as defined by 

FINEMAP. Here we describe the generation of this set of fine-mapped SNPs. 

First, SNPs were defined as being conditionally independent using GCTA-COJO.29,96 We next 

calculated the posterior probability of causality. To do so, we defined each conditionally-
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independent lead SNP as a signal around which, we would undertake posterior probability 

testing. We used all imputed SNPs within 500 kbp of a conditionally independent lead SNP and 

treated each signal independently. We used FINEMAP29, which approximates, per input region, 

genotype-phenotype data with correlation matrices and summary statistics, and then implements 

a shotgun stochastic search algorithm to test causal configurations of SNPs rapidly and identify 

the most likely number of causal SNPs per signal in a Bayesian framework. We generated 

correlation matrices for each fine-mapped region from a subset of randomly selected 50,000 

White-British UK Biobank participants with the LDSTORE software126. FINEMAP was run with 

default parameters except for the number of maximum causal configurations tested, which we set 

to 10.29 For the causal configuration with the highest posterior probability, each SNP was 

assigned a log10 Bayes factor as a measure of its posterior probability for being in the causal 

configuration. For example, if a tested region had a causal configuration of six SNPs with the 

highest posterior probability, all tested SNPs were assigned a Bayes factor for their marginal 

posterior probabilities of being in that causal configuration. Based on this information we 

constructed our sets of fine-mapped SNPs, including only the SNPs with the highest posterior 

probabilities. After testing each signal at a locus, the set of fine-mapped SNPs were collapsed 

into the same locus, due to the high amount of redundancy between credible sets for each signal, 

given that the approximation of genotype-phenotype data with correlation matrices and summary 

statistics implemented by FINEMAP is identical to GCTA-COJO.29,96 We used a log10 Bayes 

factor > 3 threshold to only consider SNPs with the strongest posterior probabilities for causality, 

and those SNPs that were identified as genome-wide significant conditionally independent lead 

SNPs, as being fine-mapped SNPs. 
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3.5.10 RNA sequencing for mouse osteocytes 

We performed an analysis of whole transcriptome sequencing data of three distinct bone 

types from the mouse skeleton to measure osteocyte expression86. The three sites were the tibia, 

femur and humerus, and in each, the bone marrow was removed (N = 8 per site). The distribution 

of normalized gene expression for each sample was used to calculate a threshold of gene 

expression85, with genes above this threshold for 8 out of 8 replicates in any bone type deemed to 

be expressed. Osteocyte enriched genes were determined by comparing the transcriptomes of 

matched bone sample controls, one with the marrow removed and the other with the marrow left 

intact (N = 5 per site). Genes significantly enriched in osteocytes and expressed in all bone types 

were defined as osteocyte transcriptome signature genes. 

3.5.11 Mapping accessible chromatin 

ATAC-seq libraries were generated by the McGill University and Genome Quebec 

Innovation Centre on 100,000 SaOS-2 cells, using a modified protocol to that previously 

described31. The modifications included: reducing the transposase reaction volume from 50 µl to 

25 µl, increasing the transposase concentration from 1x to 40x, and using 12 cycles of PCR to 

enrich each library. Libraries were quantified by qPCR, Picogreen and LabChip, then were 

sequenced on the Illumina HiSeq 2500 to 125 bp in pair-ended mode, using the Nextera 

sequencing primers. DNase-seq data from primary osteoblast samples30 were obtained from 

http://encodeproject.org under accessions ENCLB776DWN and ENCLB906BCL. 

Reads were processed using a uniform pipeline to produce both ATAC-seq and DNase-seq 

peaks. Illumina adapters were trimmed using Trimmomatic v. 0.36127. Reads were aligned to the 

hg38 human reference using BWA v.0.7.15 65. Peak calling was performed using hotspot2 
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(https://github.com/Altius/hotspot2) with a cutoff of 1% FDR and converted to hg19 reference 

coordinates using UCSC liftOver. 

3.5.12 RNA sequencing for human osteoblast cell lines 

RNA library preparations were carried out on 500 ng of RNA from SaOS-2, U2OS, 

MG63 and HOS cells with RNA integrity number (RIN) > 7 using the Illumina TruSeq Stranded 

Total RNA Sample preparation kit, according to manufacturer's protocol. Final libraries were 

analyzed on a Bioanalyzer and sequenced on the Illumina HiSeq4000 (pair-ended 100 bp 

sequences). Raw reads were trimmed for quality (phred33 ≥ 30) and length (n ≥ 32), and 

Illumina adapters were clipped off using Trimmomatic v. 0.35127. Filtered reads were aligned to 

the GRCh37 human reference using STAR v. 2.5.1b128. Raw read counts of genes were obtained 

using HTseq-count v.0.6.1129. 

3.5.13 RNA sequencing for murine calvarial osteoblasts 

We used whole transcriptome sequencing on mouse osteoblasts post-differentiation to 

obtain expression profiles of the maturing osteoblast86. We obtained pre-osteoblast-like cells 

from the neonatal calvaria of C57BL/6J mice carrying a Cyan Fluorescent Protein (CFP) 

transgene under the control of the Col 3.6 kbp promoter130. Specifically, we removed cells not 

expressing CFP by FACS sorting after culturing for four days in growth media. The remaining 

cell set was considered enriched for pre-osteoblast cells and was re-plated and subjected to an 

osteoblast differential cocktail, with RNA being collected every two days from days two to 18 

post-differentiation. We used whole transcriptome sequencing with three technical replicates per 

sample and calculated a normalized expression level per gene. 
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3.5.14 High-throughput chromosome conformation capture 

High-throughput chromosome conformation capture (Hi-C) was performed on primary 

human osteoblasts and osteocytes from human bone biopsies of non-fracture subjects. Hi-C 

libraries were prepared as described previously.131 Instead of using HindIII restriction enzyme, 

we used DpnII132 which increased coverage and insensitivity of CpG methylation133. The Hi-C 

libraries were sequenced on Illumina HiSeq4000 instruments to 2 billion pair-end reads. 

Biological replicates were independently generated and sequenced. HiC-Pro was used to process 

the HiC-Pro pipeline134 beginning with aligning each read end to hg38 reference genomes. The 

Chimeric read ends were filtered to keep only 5′ alignments with MAPQ > 10, and then read-

ends were paired and de-duplicated. Contact matrices were constructed, and significant 

interactions were estimated with Homer,135 GOTHiC136 and Juicer.137 We defined significant 

interactions as P < 10-15 (comparing observed interactions to estimated expected interactions and 

taking into account DNA fragment size, GC content, and other genomic features). Only 

interaction pairs that were significant (P < 10-15) from all three tools were considered significant. 

The resolution of Hi-C interactions was from 1.5 to 2 kbp with average 1.8 kbp. ATAC-seq 

experiments were also performed in primary osteoblasts and osteocytes that were used for HI-C 

experiments. We only considered and reported chromatin interactions that mapped to open 

chromatin. 

3.5.15 Target Gene identification 

We identified Target Genes for the autosomal fine-mapped sets by annotating fine-

mapped sets of SNPs to the closest protein-coding gene, making additional note if the SNP 

mapped directly to the gene’s introns or exons, or was coding. We identified Target Genes on the 

X chromosome by the closest gene to a conditionally independent lead SNP, as we did not 
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calculate log10 Bayes factors for SNPs on the X chromosome. Additionally, we annotated Target 

Genes that may be functional in bone cells by marking which fine-mapped SNPs mapped to open 

chromatin in human bone cells, identified by SaOS-2 ATAC-seq peaks, and we mapped 

chromosomal positions of fine-mapped SNPs to significant Hi-C interactions of primary 

osteoblast and osteocytes. When the interaction chromatin mapped to multiple isoforms of 

protein coding genes, we selected the one with the most significant interaction (usually with 

highest interaction counts). When the interaction chromatin mapped to multiple bins, we selected 

the one(s) with looping domains. We further annotated Target Genes using the osteocyte 

signature gene set where genes within this set are enriched for osteocyte activity.86  

3.5.16 Target Gene enrichment analyses 

We performed a series of enrichment analyses by calculating the odds of Target Genes 

being either positive control genes or osteocyte signature genes. We identified a set of 57 

proteins whose perturbation through pharmacotherapy,6 or Mendelian disease leads to changes in 

bone density, monogenic disorders presenting with abnormal skeletal mineralization or low bone 

mass, osteolysis and/or skeletal fragility and osteogenesis imperfecta and abnormal skeletal 

mineralization (Table S12).97 For all protein-coding genes in the genome, which were identified 

using refGene (N = 19,455), we annotated whether they were found to be Target Genes and/or 

positive control genes. These annotations allowed us to construct contingency tables and 

calculate an odds ratio for enrichment of Target Genes amongst positive control genes. We used 

multiple genomic features to test which methods of identifying Target Genes enriched for 

positive control genes. To do so, we tested if positive control genes were enriched amongst 

targeted genes identified by four different methods: 1) Genes that were most proximal to the 

fine-mapped set SNPs; 2) Genes that contained fine-mapped SNPs overlapping their gene 
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bodies; 3) Genes containing fine-mapped SNPs that are coding variants; 4) Genes identified to be 

in 3D contact with fine-mapped sets in human osteoblasts or osteocytes through Hi-C 

experiments; 5) The closest gene to fine-mapped SNPs, which also mapped to ATAC-seq peaks 

in human osteoblast SaOS-2 cell lines; and 6) Those genes within 100 kbp of fine-mapped SNPs 

(Figures 2 and 4). We then repeated this analysis using the osteocyte signature gene set (N = 

1,240) instead of the positive control set, to calculate the odds of Target Genes being active in 

the osteocyte. 

3.5.17 Target Gene pathway analysis 

We used the Functional Mapping and Annotation of GWAS tool (FUMA)98 to annotate 

our lists of Target Genes for their most enriched biological pathways with data from the 

WikiPathways99 database. WikiPathways is an openly curated database for biological pathways 

and provides information on the roles of specific genes or proteins in their respective pathways. 

FUMA uses WikiPathways data to compare a list of given genes against a background gene set 

(e.g. all protein coding genes) with hypergeometric testing. The output is then a list of enriched 

biological pathways based on the input gene lists. We have presented these data graphically in 

the Figure S7. 

3.5.18 CRISPR/Cas9 Methods 

SaOS-2 cells were obtained from ATCC (#ATCC HTB-85) and cultured in McCoy5A 

medium (ATCC) supplemented with 15% of FBS (Wisent inc) and 1% of penicillin and 

streptomycin (Wisent Inc.) according to the manufacturer. Three different guide RNAs (gRNA) 

targeting the second exon of DAAM2 were cloned in the PX458 plasmid (pSpCas9(BB)-2A-

GFP; Addgene #48138). The gRNA sequences were: gRNA 1-CAGAGGGTGGTTGTCCCGG; 

gRNA 2-CAGCCCCATCCCGAACGCAG; and gRNA 3-TGTCCCGGAGGTTGATTTCG. We 
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observed the cutting frequency determination (CFD) scores138 for each gRNA was < 0.1, 

therefore we did not consider off-target effects to merit testing139. The construct plasmids were 

purified using the QIAGEN filter midi prep kit (QIAGEN #12243) according to manufacturer 

instructions. SaOS-2 cells were cultured to 80% confluence in a 100-mm2 petri dish. Cells were 

then transfected with one of the three different plasmids generated, or with the intact plasmid as 

a control, using TransIT LT1 transfection reagent (Mirus #MIR2304) with a reagent-to-DNA 

ratio of 3:1. 48 hours post-transfection, GFP positive cells were sorted by FACS in a single cell 

model. The remaining colonies were expanded and then assessed for the presence of DAAM2 

protein using immunofluorescence technique (Anti-DAAM2 antibody, Sigma-Aldrich 

#HPA051300). PCR primers were designed against regions of DAAM2 flanking the three gRNA 

target sequences (forward: 5′-tcctcttgtccagATCACAATG-3′ and reverse: 5′-

ccaagaggagttttgagagatgga-3′) to generate an amplicon of 355 bp. PCR products of the identified 

clones were sequenced using MiSeq (Genome Quebec). 

To generate DAAM2 Western blots (Figure S23), total protein was extracted from 

SaOS-2 cells using a RIPA buffer. Denatured proteins (20 µg) were separated by 10% sodium 

dodecylsulfate (SDS) polyacrylamide gel electrophoresis followed by transfer to nitrocellulose 

membranes. The membranes were blocked in 5% skim milk for one hour at room temperature 

followed by incubation with an anti-DAAM2 antibody (Abcam #ab169527) at 1/1,000 overnight 

at 4°C and the secondary antibody goat anti-rabbit IgG at 1/10,000 for one hour at room 

temperature (Abcam #ab205718). The band densities were quantified by densitometry using 

Image Lab 5.1 software (Bio-Rad). Protein levels were expressed as a ratio of protein-specific 

band density and that of total protein stained using MemCode Staining Solution (Thermofisher 
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#24580). Figure S23 shows that DAAM2 protein expression was reduced to 17.5% and 33.5% 

in the gRNA1 and gRNA2 edited clones, respectively.  

To induce mineralization (Figure 5), cells were then cultured to 90% confluence in a 6-

well plate and then treated, or left untreated for a control, with osteogenic factors (Ascorbic acid 

50 µg/ml and ß-Gycerophosphate 10 mM). Fresh media containing osteogenic factors was added 

every 2-3 days over 13 days. At day 14, mineralization was quantified using the osteogenesis 

assay kit according to manufacturer instructions (Millipore #ECM815). The Alizarin red 

concentration (µM) was normalized with the protein content assessed in the media in each 

culture (Pierce BCA Protein assay kit; Thermo Fisher #23227). 

3.5.19 Rapid throughput murine knockout program 

The Origins of Bone and Cartilage Disease (OBCD) program 

(www.boneandcartilage.com) is undertaking rapid-throughput structural and functional skeletal 

phenotype analyses of all unselected knockout mice generated at the Wellcome Trust Sanger 

Institute as part of the International Knockout Mouse and International Mouse Phenotyping 

Consortia (IKMC and IMPC). Anonymized samples from 16-week-old female wild-type and 

mutant mice (N = 2 to 6 per mutant genotype) were stored in 70% ethanol and assigned to 

batches for rapid throughput analysis. Mice were fed either a Breeder’s Chow (Mouse Breeder 

Diet 5021, 21% kcal as fat, Labdiet, London, UK) or a Western diet (Western RD, 829100, 42% 

kcal as fat, Special Diet Services, Witham, UK) from 4 weeks of age. The relative bone mineral 

content and length of the femur and caudal vertebrae are determined by digital X-ray 

microradiography (Faxitron MX20, 10μm pixel resolution)61,140,141. Micro-CT (Scanco uCT50, 

70kV, 200μA, 0.5mm aluminium filter) is used to determine trabecular parameters (bone volume 

BV/TV, trabecular number Tb.N, thickness Tb.Th, spacing Tb.Sp) at a 5μm voxel resolution in a 



125 
 

1mm region beginning 100μm proximal to the distal femoral growth plate and cortical bone 

parameters (thickness Ct.Th, BMD, medullary diameter) at a 10μm voxel resolution in a 1.5mm 

region centered in the mid-shaft region 56% along the length of the femur distal to the femoral 

head.61,142,143 Biomechanical variables of bone strength and toughness (yield load, maximum 

load, fracture load, % energy dissipated prior to fracture) are derived from destructive 3-point 

bend testing of the femur and compression testing of caudal vertebra 6 and 7 (Instron 5543 load 

frame, 100N and 500N load cells).61,141 Overall, 19 skeletal parameters were reported for each 

individual mouse studied and compared to reference data obtained from 320 16-week-old wild-

type C57BL/6 female mice. Outlier phenotypes were defined by parameters > 2 standard 

deviations away from the reference mean determined from the 320 age, sex and genetically 

identical C57BL/6N wild-type controls. Enrichment of outlier skeletal parameters in mice with 

deletion of eBMD Target Genes was determined by comparison with the frequency of outlier 

parameters in 526 unselected knockout lines using Fisher's Exact Test (Table S18, Prism, 

GraphPad Software, La Jolla, USA). The 526 unselected knockout lines were generated by the 

WTSI and phenotyped by the OBCD program; these lines included 56 Target Genes. Five Target 

Genes had previously been phenotyped in an OBCD pilot study61 and knockout lines for an 

additional 65 Target Genes, that had already been generated by WTSI, were prioritized for rapid-

throughput skeletal phenotyping. In total, our analyses included 596 knockout lines. 

Additional skeletal samples from 16-week-old WT (n=5 female, n=5 male), Daam2+/tm1a 

(n=7 female, n=5 male) and Daam2tm1a/tm1a (n=7 female, n=5 male) mice were analyzed as 

described above. Supplementary cortical bone parameters (total cross-sectional area Tt.Ar, 

cortical bone area Ct.Ar, medullary area M.Ar, periosteal perimeter Ps.Pm, endocortical 

perimeter Ec.Pm, cortical porosity Ct.Po, polar moment of inertia (J) and maximum and 
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minimum moments of inertia (Imax and Imin)) were determined by micro-CT (at 10μm voxel 

resolution, except for Ct.Po which was determined at 1μm voxel resolution using the Scanco 

uCT50 at 70kV, 57µA, 0.5mm aluminium filter).  Correlation between bone mineral content and 

biomechanical parameters was determined by linear regression analysis using 320 16-week-old 

WT femur and vertebra samples from C57BL/6 female mice.  Bone composition and structure 

was investigated in Daam2tm1a/tm1a mice by comparing observed biomechanical parameters with 

values predicted by linear regression analysis of femoral and vertebral BMC and biomechanical 

parameters obtained from 320 WT age and sex matched controls. 

3.5.20 Daam2 knockout mice 

Mouse studies undertaken at the Garvan Institute of Medical Research (Darlinghurst, 

NSW, Australia) were approved by the Garvan Institute / St Vincent’s Hospital Animal Ethics 

Committee in accordance with New South Wales (Australia) State Government legislation. 

Daam2tm1a(KOMP)Wtsi mice (designated Daam2tm1a/tm1a) were obtained from the Wellcome 

Trust/Sanger Institute (Cambridge, UK) where the mice were generated as part of the 

International Mouse Phenotyping Consortium (http://www.sanger.ac.uk/mouseportal), using ES 

cells produced by the Knockout Mouse Project 

(https://www.komp.org/geneinfo.php?Symbol=Daam2). The Daam2 gene in these mice was 

disrupted by a cassette containing an insertion with an additional splice acceptor site between 

exons 5 and 6 

(http://www.mousephenotype.org/data/alleles/MGI:1923691/tm1a%28KOMP%29Wtsi?). The 

success of this strategy was confirmed with an 80% knockdown of Daam2 in Daam2tm1a/tm1a and 

50% knockdown in Daam2+/tm1a. Age and sex matched 16-week old mice were used for detailed 

skeletal phenotyping, as described above. 
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3.5.21 In vitro assays of osteoclast formation 

Osteoclasts were generated from primary BMCs flushed from mouse long bones of 8-10 

week old WT, Daam2+/tm1a and Daam2tm1a/tm1a mice, resuspended in MEM/FBS then added (105 

cells/well) to 6mm diameter culture wells.  These were stimulated with 10, 20, 50 and 100 ng/ml 

RANKL, plus 50 ng/mL M-CSF. Medium and cytokines were replaced at day 3, and on day 6 

cultures were fixed with 4% paraformaldehyde and histochemically stained for TRAP using as 

previously described.144 TRAP positive multinucleated cells (MNCs) containing 3 or more nuclei 

were counted as osteoclasts and quantified under inverted light microscopy. 

3.5.22 In vitro osteoblast mineralization 

Plastic-adherent bone marrow stromal cells (BMSCs) were isolated from 8-10 week old 

WT, Daam2+/tm1a and Daam2tm1a/tm1a  mice as described previously. 145 Briefly, marrow cells 

were flushed from mouse long bones and plated in MEM containing 20% FBS in 25cm2 tissue 

culture flask. Non-adherent cells were removed by medium changes 3 and 5 days later. After 7 

days in culture, cells were trypsinized, scraped and re-plated at 3x104 cells/cm2 in 24-well plates 

in MEM with 10% FBS containing osteoblast differentiating factors (50 g/ml ascorbic acid, 

2.5nM dexamethasone and 10 mM -glycerolphosphate; Sigma-Aldrich), which was added and 

changed every 3 days for 21 days. Cells were washed with PBS and fixed with 4% 

paraformaldehyde for 15 mins then ethanol (80%) for 30 mins, rinsed and stained with 0.5% 

Alizarin Red (Sigma Aldrich) in water for 30 mins, washed, dried and images of the plates taken 

with a flat-bed scanner (model v800, Epson, North Ryde, NSW Australia). Alizarin red was then 

eluted with 10% cetyl pyridinium chloride (CTP; Sigma-Aldrich) in PBS overnight and 

quantified by measuring 562 nm absorbance (Clariostar plate reader, BMG Labtech, Offenburg, 

Germany) relative to standard alizarin red solutions.  
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3.5.23 Detection of serum markers of bone resorption and formation 

Serum levels of bone resorption marker tartrate-resistant acid phosphatase (TRAP) and 

bone formation marker procollagen type 1 N-terminal propeptide (P1NP) were measured using a 

Rat/Mouse TRAP enzyme immunoassay kit and a Rat/Mouse P1NP enzyme immunoassay kit 

(Immunodiagnostic Systems, Gaithersburg, MD, USA) respectively. 

3.5.24 Fourier-Transform Infrared Spectroscopy 

The humeri from Daam2 WT, Daam2+/tm1a and Daam2tm1a/tm1a male and female mice 

were collected at 16 weeks of age. 21 male samples (11 WT, 4 Daam2+/tm1a and 6 

Daam2tm1a/tm1a) and 19 female samples (8 WT, 5 Daam2+/tm1a and 6 Daam2tm1a/tm1a) were 

examined. The bones were frozen immediately and were kept at a stable temperature until 

analysis. All bones were processed at the same time and all analyzed on the same day to reduce 

batch effects. The humeri were thawed, stripped of soft tissue with epiphyses removed and the 

marrow cavity was flushed. Specimens were then refrozen in liquid nitrogen and pulverized at -

80°C using a SPEX Sample Prep 6870 Freezer/Mill. Each sample was subjected to three rounds 

of pulverization at 15 cycles per second for one minute with a two-minute cool-down between 

each round.  The samples were lyophilized under vacuum at -51°C overnight to ensure they were 

completely dehydrated. Anhydrous potassium bromide (KBr) was then added until the final 

concentration of bone in the samples was between 2.50-2.56% by mass. KBr pellets were formed 

by compressing 20 mg of mixed KBr and bone samples in a 7 mm die under 4 tons of force.  The 

formed pellets were loaded into a Nicolet iS50 FT-IR spectrophotometer (Thermo Fisher 

Scientific). The collection chamber was continuously purged with dry nitrogen gas to minimize 

noise from moisture and carbon dioxide. Background noise was collected on KBr-only pellets 

and subtracted at the beginning of each cohort or after 30min of continuous measurements 
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(whichever occurred first). For each sample, 128 scans between 400-2200 cm-1 (wave numbers) 

were collected at a resolution of 4.0cm-1 using Happ-Genzel apodization. The wave number data 

was curve fit to absorbance, with baselining and spectral analyses performed using custom 

algorithms and scripts written in the R programming language (R version 3.4.2). The scripts 

were built on top of the ChemoSpec (version 4.2.8) and MESS (version 0.3-2) packages. Local 

minima were used as limits of integration to calculate areas under the curve for the carbonate, 

phosphate and amide I peaks; the mineral to matrix ratio, carbonate to phosphate ratio were then 

calculated using these areas in the appropriate ratios. Collagen maturity and crystallinity were 

calculated from the spectral data using absorbance values at literature-reported and validated 

wavenumbers.146 Between two and four technical replicates were run for each sample, based on 

the amount of material available. Two samples (both from WT males) were removed from all 

subsequent statistical analyses as the signal to noise ratio was excessive for the spectral data for 

all technical replicates, thus precluding obtaining meaningful information from those samples. 

Values for technical replicates where averaged for each specimen. Differences between 

genotypes were determined by ANOVA, followed by a Tukey’s post hoc test. Data from male 

and female mice were analyzed separately. 

3.5.25 URLs 

URLs to download the genome-wide association summary statistics for eBMD and 

fracture, as well as RNA-seq and ATAC-seq data generated for human osteoblast cell lines, will 

be made available on the GEFOS website after publication (www.gefos.org/). 
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3.7 Tables and Figures 

3.7.1 Tables 

Table 1. Target gene identification methods enrichment for 57 positive control genes. No 

positive control genes were identified by osteocyte Hi-C interactions therefore we did not 

calculate its enrichment. Distance to gene was determined using 3’ and 5’ ends, instead of the 

transcription start site. 

Target Gene Set OR (95% CI) P 

SaOS-2 ATAC-seq Peak Gene 58.5 (26.4 - 129.3) 1.3x10-75 

Coding SNP Gene 41.8 (14.3 - 121.6) 1.0x10-30 

Osteoblast Hi-C Interaction Gene 21.1 (6.4 - 69.6) 7.8x10-13 

Closest Gene 12.9 (7.1 - 23.4) 1.8x10-27 

Overlapping Gene Body 11.2 (5.2 - 23.8) 3.4x10-15 

All Genes Within 100 kbp 6.8 (3.9 - 11.7) 2.1x10-15 

Osteocyte Hi-C Interaction Gene NA NA 
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Table 2. Target gene identification methods enrichment for 1,240 osteocyte signature genes. 

Distance to gene was determined using 3’ and 5’ ends, instead of the transcription start site. 

Target Gene Set OR (95% CI) P 

Coding SNP Gene 7.4 (3.8 - 14.5) 5.2x10-12 

SaOS-2 ATAC-seq Peak Gene 6.1 (3.5 - 10.6) 2.6x10-13 

Overlapping Gene Body 5.1 (3.8 - 6.7) 1.1x10-37 

Closest Gene 4.6 (3.7 - 5.6) 4.1x10-53 

Osteoblast Hi-C Interaction Gene 3.8 (1.9 - 7.4) 2.5x10-5 

Osteocyte Hi-C Interaction Gene 2.9 (1.0 - 8.6) 4.0x10-2 

All Genes Within 100 kbp 2.1 (1.7 - 2.5) 1.8x10-17 
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3.7.2 Figures 

Figure 1. Manhattan plot of genome-wide association results for eBMD in the UK Biobank. 

 

The dashed red line denotes the threshold for declaring genome-wide significance (6.6x10-9). 

1,103 conditionally independent SNPs at 515 loci passed the criteria for genome-wide 

significance. 301 novel loci (defined as > 1 Mbp from previously reported genome-wide 

significant BMD variants) reaching genome-wide significance are displayed in blue. Previously 

reported loci that reached genome-wide significance are displayed in red, and previously 

reported loci failing to reach genome-wide significance in our study are shown in black.  
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Figure 2. Fine-mapping SNPs and target gene selection diagram.  

 

A) For each 500 Mbp region around a conditionally independent lead SNP, we applied statistical 

fine-mapping to calculate log10 Bayes factors for each SNP as a measure of their posterior 
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probability for causality. SNPs that were conditionally independent lead SNPs or that had log10 

Bayes factors > 3 were considered our fine-mapped SNPs that we then used for target gene 

identification. B) Target Genes were identified if: 1) It was the gene closest to a fine-mapped 

SNP. 2) A fine-mapped SNP was in its gene body. 3) A fine-mapped SNP was coding. 4) The 

gene mapped closest to a fine-mapped SNP which resided in an SaOS-2 ATAC-seq peak. 5) A 

fine-mapped SNP was present in a Hi-C osteoblast or osteocyte promoter interaction peak, 

therefore being closer to a target gene in three-dimensions than linearly on the genome. 
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Figure 3. SNPs at genome-wide significant loci are enriched for osteoblast open chromatin 

sites.  

 

A) Odds ratio for missense, osteoblast DHSs and SaOS-2 ATAC-seq peaks for SNPs that are 

conditionally independent or achieving a log10 Bayes factor > 3. Note the log10 Bayes factor > 3 

set contains nearly twice the number of SNPs. B) Ranking SNPs by log10 Bayes factor (x-axis) 

shows increasing enrichment of missense SNPs and of SNPs at accessible chromatin sites. 
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Figure 4. Target Gene Identification Workflow. 
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Figure 5. Reduction in DAAM2 protein resulted in decreased mineralization in SaOS-2 

cells.  

 

Mineralization quantification in control cells and DAAM2 exon 2 double-stranded break (DSB) 

induced cells in either the presence of osteogenic factors (treated) or absence (untreated). Bars in 

(a) represent the mean of six independent experiments ± SEM from Alizarin red staining in (b) 

to quantify mineralization. *** P < 0.001 compared to untreated control cells and &&& P < 

0.001 compared to treated control cells determined by one-way Anova and a Bonferroni post-hoc 

test.   
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Figure 6. Biomechanical Analyses of mice with Daam2 knockdown.  

 

A) Femur biomechanical analysis. Destructive 3-point bend testing (Instron 5543 load frame) 

of femurs from WT (NFemale = 3, NMale = 4), Daam2+/tm1a (NFemale = 6, NMale = 4), Daam2tm1a/tm1a 

(NFemale = 5, NMale = 9) mice. Graphs showing yield load, maximum load, fracture load, stiffness 

(gradient of the linear elastic phase) and toughness (energy dissipated prior to fracture). Data are 

shown as mean ± SEM; ANOVA and Tukey’s post hoc test; (i) Daam2+/tm1a vs WT and 

Daam2tm1a/tm1a vs WT, **P < 0.01; ***P<0.001 and (ii) Daam2+/tm1a vs Daam2tm1a/tm1a, #P < 

0.05; ##P < 0.01; ###P < 0.001. B) Vertebra biomechanical analyses. Destructive compression 

testing (Instron 5543 load frame) of caudal vertebrae from WT (NFemale = 3, NMale = 4), 

Daam2+/tm1a (NFemale = 6, NMale = 4), Daam2tm1a/tm1a (NFemale = 5, NMale = 9) mice.  Graphs 

showing yield load, maximum load, and stiffness. Data are shown as mean ± SEM; ANOVA and 

Tukey’s post hoc test; (i) Daam2tm1a/tm1a vs WT, *P < 0.05 and **P < 0.01 and (ii) Daam2+/tm1a 

vs Daam2tm1a/tm1a, #P < 0.05. Females are on left and males on right. C) Bone composition and 

structure analysis from rapid throughput screening murine knockouts. The graph 
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demonstrates the physiological relationship between bone mineral content and stiffness in caudal 

vertebrae from P112 female WT mice (N = 320).  The blue line shows the linear regression (P = 

0.0001) and the grey box indicates ± 2SD.  The mean value for female Daam2tm1a/tm1a (N = 2 

from initial OBCD screen) mice is shown in orange (-2.14 SD). 
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3.8 Supplementary Tables and Figures 

Supplementary Tables and Figures can be downloaded from the open access pre-print 

posting Morris et al.147 in bioRxiv available here: 

https://www.biorxiv.org/content/early/2018/07/27/338863 
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Chapter 4 

Preface: Bridge between Chapter 3 and Chapter 4 

Chapters 2 and 3 provided evidence that studying the genetic determinants of bone 

mineral density can identify novel genes that may be causal for osteoporosis. Of interest to the 

complex traits and common disease research community is also the study of epigenetics and how 

this phenomenon can contribute to disease risk, therefore we sought to identify epigenetic 

determinants of bone mineral density to understand its contribution to osteoporosis risk. 

Borrowing from the GWAS study design, we performed an EWAS by replacing genetic variants 

with single-site CpG estimates of DNA methylation.  
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4.1 Abstract 

Genetic and environmental determinants of skeletal phenotypes such as bone mineral 

density (BMD) may converge through the epigenome, providing a tool to better understand 

osteoporosis pathophysiology. As the epigenetics of BMD have been largely unexplored in 

humans, we performed an epigenome wide association study (EWAS) of BMD. We undertook a 

large-scale BMD EWAS using the Infinium HumanMethylation450 array to measure site-

specific DNA methylation in up to 5,515 European descent individuals (NDiscovery = 4,614, 

NValidation = 901). We associated methylation at multiple cytosine-phosphate-guanine (CpG) sites 

with dual-energy X-ray absorptiometry derived femoral neck and lumbar spine BMD. We 

performed sex-combined and stratified analyses, controlling for age, weight, smoking status, 

estimated white blood cell proportions, and random effects for relatedness and batch effects. A 

5% false-discovery rate was used to identify CpGs associated with BMD. We identified one 

CpG-site, cg23196985, significantly associated with femoral neck BMD in 3,232 females (P = 

7.9x10-11) and 4,614 females and males (P = 3.0x10-8). cg23196985 was not associated with 

femoral neck BMD in an additional sample of 474 females (P = 0.64) and 901 males and females 

(P = 0.60). Lack of strong consistent association signal indicates that among the tested probes, no 

large-effect epigenetic changes in whole blood associated with BMD, suggesting future 

epigenomic studies of musculoskeletal traits measure DNA methylation in a different tissue with 

extended genome coverage. 
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4.2 Introduction 

Osteoporosis is primarily an aging-related disease characterized by compromised bone 

strength that increases the risk of fracture. Due to population ageing worldwide the incidence of 

osteoporosis is increasing, exceeding $17 billion per year in direct care costs within the United 

States of America2 and costing upwards of €37 billion per year in the EU-27 member states148. 

Identifying the causes of osteoporosis will improve the understanding of its pathology, leading to 

better or more efficient treatments of this common and costly disease. Low bone mineral density 

(BMD) is one of the major risk factors for fracture and is largely used in clinical prediction tools 

for fracture and gauging response to treatment.  Genome-wide association studies (GWAS) of 

BMD have been instrumental in identifying novel genetic loci influencing osteoporosis disease-

risk16,18. However, epigenetic variation in the genome, which can be influenced by both genetic 

and environmental factors149,150, may also influence BMD, yet the epigenetic influences on BMD 

have largely been unexplored. 

One of the most stable epigenetic processes is DNA methylation, or, the addition of a 

CH3 methyl group to cytosine, typically in the context of cytosine paired sequentially to a 

guanine nucleotide, separated by a phosphate group (CpG). DNA methylation is known to play a 

role in gene expression and cell differentiation151,152 and differential DNA methylation has been 

linked to multiple human complex traits and disease phenotypes149,153–156. Studies performed 

using bone samples have identified epigenetic alterations that influence bone cell function37,157. 

We studied epigenetic variation in whole blood, as a proxy for difficult-to-acquire samples such 

as bone, in relation to BMD because epigenetic markers are often stable across multiple tissues, 

and immune cells within blood are known to influence bone homeostasis158. Furthermore, 

osteoclasts are derived from the monocyte-macrophage lineage found in whole blood159. 
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Although epigenetic profiling has been performed previously in bone samples from osteoporotic 

and osteoarthritic patients160 and an epigenome-wide association study (EWAS) of BMD has 

been performed in mice161, EWAS of BMD have not been reported in humans with validation of 

significant findings. 

We, therefore, undertook a large-scale BMD EWAS, assessing the association of up to 

473,882 CpGs quantified in whole-blood with BMD measured in up to 4,614 individuals across 

five cohorts from Europe and North America. To our knowledge, this study is the largest EWAS 

of a musculoskeletal trait performed to date. We used an additional 901 individuals as a 

validation cohort to increase the reliability of our results. 
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4.3 Methods 

4.3.1 Individual cohorts 

We performed our EWAS in cohorts comprised of European descent individuals. Cohorts 

used for the discovery analysis were the TwinsUK Registry (TUK), Framingham Study 

Offspring Cohort (FOS), Avon Longitudinal Study of Parents and Children (ALSPAC; further 

information on the ALSPAC cohorts and ARIES project is included in Supplementary Table 

1), Rotterdam Study (RS), and the Danish Twin Registry (DTR). The cohort used for validation 

of significant findings was the Framingham Study Generation 3 cohort (Gen3), a cohort 

including family members of FOS (Table 1; Supplementary Table 1). 

Both, or one of, femoral neck (FN) and lumbar spine (LS) BMD were measured in each 

cohort by dual-energy X-ray absorptiometry (DXA) (Supplementary Table 2). All cohorts, 

except the ALSPAC and DTR, followed the same methods for extracting DNA from whole-

blood tissue and quantifying DNA methylation. Whole-blood tissue DNA was extracted using 

the DNeasy Blood & Tissue Kit (Qiagen, Inc.), followed by bisulfite conversion of 750 ng DNA 

using the EZ DNA Methylation Kit (Zymo Research) following manufacturer instructions. The 

ALSPAC cohort and the DTR cohort performed DNA extraction and conversion as described 

previously.162,163 DNA methylation across the genome was quantified using the Infinium Human 

Methylation450 BeadChip (Illumina), assaying up to 482,421 CpGs throughout the human 

genome. Image intensities were extracted using GenomeStudio Methylation Module (v1.8) 

software. Cohort-specific criteria were applied in further quality control and normalization of 

probe intensities (Supplementary Table 3). 
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4.3.2 Statistical analyses 

For discovery analyses, each cohort followed a pre-specified analysis plan. FN and LS 

BMD residuals were calculated by fitting a linear regression model, adjusting for age, weight, 

and sex. For sex-specific analyses, the term for sex was removed from the model. In addition, the 

DTR adjusted for birth weight discordance as historically, DTR samples were selected to address 

birth weight discordance in twins (Supplementary Table 1). To address the issue of cell 

heterogeneity in whole blood tissue, each cohort calculated the estimated white blood cell 

proportions of eosinophils, lymphocytes, monocytes, and neutrophils using a reference-free 

method164. DNA methylation for each probe was transformed to a standard normal distribution 

using quantile normalization. The association between DNA methylation and BMD was then 

calculated by fitting a linear mixed effects model for normalized DNA methylation, including 

BMD residuals, smoking (measured as smokers, non-smokers, or former-smokers), age, weight, 

sex, and estimated white blood cell proportions as fixed effects, and terms for family structure 

and batch effects as random effects, where relevant. Association testing was performed in male, 

female, and combined samples. Each cohort was assessed for epigenome-wide statistical 

inflation by calculating the genomic inflation factor lambda (λ) and generating a quantile-

quantile plot (QQ-plot). Lambda can be calculated to estimate the deviation of a distribution 

from a null expected distribution, whereas QQ-plots can be used to visualize the deviation of a 

distribution from a null expected distribution. 

Fixed-effects meta-analyses were performed using METAL121 for FN and LS sex-

combined and sex-stratified analyses. We used the I2 statistic to quantify the variability in 

association effect estimates due to statistical heterogeneity, excluding probes with heterogeneous 

I2 statistics (PHet<0.05). Statistical significance, when considering the multiple testing burden, 
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was determined by calculating Benjamini-Hochberg (BH) adjusted P-values for each meta-

analysis. Probes with significant BH-adjusted P-values (PBH<0.05) would, therefore, be 

significant at a 5% false-discovery rate (FDR). 

Associated probes were assessed for the influence of single nucleotide polymorphisms 

(SNPs) that overlapped the probe body by mapping these probes to dbSNP 146.165 This was 

assessed by adding a term for the dosage of each SNP to the discovery linear mixed effects 

models in cohorts with genotype data, to observe if the association between DNA methylation 

and BMD was influenced by the genetic polymorphism at the probe. 

Gen3 samples were assessed using the same methods as in the analysis of FOS samples 

to perform validation analyses of significantly associated probes. Probes were deemed robustly 

associated with BMD if they met a validation P-value of less than 0.05. These samples are not 

completely independent from the FOS samples because the Framingham Study is a family-based 

study with several cohorts, and, therefore, there is underlying family structure. 

To assess the power of our study, we performed 5000 permutations on the 775 TUK samples 

with FN BMD measurements. FN was randomly sampled based on the twin and family structure 

prior to fitting linear mixed effects models, and the power was defined as the number of 

permutations with P-values greater than the observed P-value for the TUK samples (P = 1.14x10-

5; Supplementary Table 6) 
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4.4 Results 

4.4.1 Meta-analysis 

Meta-analyses of discovery cohorts identified CpG-site cg23196985 associated at a 5% 

FDR for FN sex-combined (β = 0.66, SE = 0.19, P = 2.99x10-8, PBH = 1.30x10-2) and FN female 

(β = 0.95, SE = 0.15, P = 7.86x10-11, PBH = 3.41x10-5; Figure 1; Figure 2; Table 2) analyses. 

CpG-site cg23196985 maps to the 5’ untranslated region of the liver carboxylase 1 gene (CES1), 

which is expressed in the liver and whole-blood166, yet with no currently reported associations 

with BMD by GWAS in the same chromosomal region (16q12.2) and with the nearest BMD 

associated SNP mapping approximately 4 mega base pairs upstream at the SALL1 and CYLD 

locus64. The calculated lambdas and QQ-plots for the meta-analyses of FN female and sex-

combined analyses revealed no statistical inflation of the association P-values (λfemale = 1.02, λsex-

combined = 0.97; Supplementary Table 7). We observed no significantly associated CpG-sites 

with LS BMD in sex-combined or sex-stratified analyses (Supplementary Figures). 

We tested for influence of SNPs underlying cg23196985 in females from the FOS, RS, 

and ALSPAC cohorts, as the strength of the association was stronger in females than in the sex-

combined analysis. Four SNPs were mapped to the cg23196985 50 base pair probe sequence, 

and these included rs144950224, rs12149371, rs12149373, and rs3815583, with rs144950224 

mapping directly to the probe’s target CpG-site. SNP rs144950224 was found to be rare within 

our cohorts, with a minor allele frequency (MAF) of approximately 0.5% in FOS samples, 0.1% 

in RS samples, and no carriers in ALSPAC samples. We observed no notable change in 

association P-values upon conditioning with each of the four SNPs (Supplementary Table 8).  

In the validation sample, cg23196985 was not associated with FN in Gen3 female (P = 0.64) and 

sex-combined (P = 0.60) analyses. However, after meta-analyzing Gen3 validation data with 
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discovery results, the probe remained strongly associated in female-only analyses (β = 0.86, SE = 

0.14, P = 3.7x10-10; N = 4,345) but not in sex-combined analysis (P = 0.68, N=5,301). 

For our power calculation, we found all permutations were less significant than our 

observed P-value for the 775 TUK samples at P = 1.14x10-5 (permuted P-value range: 0.99 to 

2.46x10-5), this suggested we had 100% power to detect the observed effect size (β = 1.20, SE = 

0.27) between bone density measurements and methylation at cg23196985 in CES1. 

4.4.2 Individual cohorts 

Individual cohort analyses identified seven probes that were significantly associated in 

two cohorts with sex-combined or sex-stratified analyses (Supplementary Table 4), but there 

were no other cohort-specific significant associations. The DTR LS female analysis identified 

four significantly associated probes, two of which map to genes, cg04081651 (MAP3K8), 

cg09832237, cg14793931 (ZFR2), and cg24029028. The DTR LS male analysis identified one 

significantly associated probe, cg23214071 (HLA-DQB1). The TUK LS female analysis 

identified two significantly associated probes, cg24117468 (P4HA2) and cg02526790 (TG) 

(Supplementary Table 4). The calculated lambda and QQ-plot for the DTR LS female analysis 

revealed statistical inflation of the association P-values (λ = 1.46), but the lambda and QQ-plots 

for the remainder of the cohorts showed no large inflation or deflation of association P-values 

(Supplementary Table 7). 
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4.5 Discussion 

In the first large-scale assessment of the contribution of epigenetic changes in whole 

blood to BMD we did not identify methylation changes reliably associated with this clinically 

relevant trait. CpG-site cg23196985 was found in the discovery meta-analysis to be strongly 

associated with FN BMD in females-only and in analyses combining males and females, but 

upon validation in an extended sample which included related individuals, the association was 

attenuated in the female analysis and completely absent in sex-combined analyses. 

These findings provide important insights into the field of epigenetics. The first, is that 

using a precisely measured trait, BMD, which is highly heritable and for which genetic 

determinants have been identified through GWAS6,16,18, there do not appear to be associations 

between methylation changes and BMD. While whole blood methylation changes may not be the 

ideal tissue within which to test epigenetic influences on bone, this conveniently accessible tissue 

has many links to bone biology, including the fact that osteoclasts and monocyte/macrophages 

originate from the same precursors158,159. The extent to which methylation changes are shared 

between bone and whole blood is not well known. However, evidence shows that a significant 

proportion of methylation variation genome-wide can be conserved across tissues167. Additional 

explanations for our mostly null findings include the possibility that DNA methylation changes 

may not have a large influence on BMD. 

Notwithstanding the general lack of consistent associations with BMD across the 

genome, we did generate evidence for suggestive association of cg23196985 with FN BMD in 

females. However, we caution that these findings require further replication. Since we are 

unaware of any available replication data to test this hypothesis, these findings will require 

replication in future studies. 
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There is limited evidence for the effects of DNA methylation on bone. A methylation 

profiling study that compared the differences between bone samples of 27 osteoporotic and 23 

osteoarthritic patients was undertaken on an earlier DNA methylation platform, the 

HumanMethylation27 BeadChip (assessing approximately 27,000 CpGs in the genome), and 

were able to identify bone genes following pathway analyses of over 200 differentially 

methylated CpGs, however, these to date results lack replication160. Another study failed to 

demonstrate specific effects of DNA methylation, assessed by sequencing methods, on RANKL 

in the bones of patients with osteoporotic fractures168. The evidence from previous studies and 

our own suggests that if strong effects of DNA methylation on bone biology are to be identified, 

they may not be detectable with current analytical approaches. 

A strength of our study was the sample size, and a conservative estimate of statistical 

power to identify epigenetic effects on BMD that account for 0.8% of its variance. The large 

sample size also allowed us to classify several cohort-level associations were likely to be false 

positives. For example, TUK female analyses identified two probes significantly associated with 

LS BMD, but this association was not observed in any other cohort, suggesting the associations 

were false positives (Supplementary Table 4; Supplementary Table 5).  

One of the key limitations of cohort-based epigenetic studies is the lack of cell-sorted 

data for analysis. As discussed by Birney et al.,169 optimal planning at the outset of a study is 

ideal, however, such coordination is difficult to implement in large cohorts and so bioinformatics 

methods must be applied post hoc to adjust for suboptimal study designs. We adjusted for cell 

heterogeneity within whole blood, and therefore the signal we tested for association with BMD 

would be ubiquitous within whole blood. Such ubiquitous signals within whole blood may only 

be detectable for extremely strong environmental modifiers of DNA methylation, such as 
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cigarette smoking149,150. Targeted EWAS of specific cell types within whole blood with clear 

roles in bone biology, such as monocytes due to their role in osteoclastogenesis, may be more 

fruitful. Furthermore, longitudinal studies can identify disease-risk biomarkers and provide 

mechanistic insights, however, these are generally underpowered when studying BMD due to the 

relatively small changes in BMD that occur over time. As we have shown that large-scale whole 

blood EWAS of BMD does not identify disease-risk biomarkers for osteoporosis risk, a well-

powered longitudinal study with a wide-range of time points and bone samples may be more 

informative. 

In the largest EWAS meta-analysis to date of BMD, we observed a probe near CES1 to 

be associated with FN BMD in the discovery sample of up to 4,826 individuals, but not with the 

same phenotype in a semi-independent validation sample of 901 individuals. In conclusion, these 

findings suggest that there are no large effects of methylation changes on BMD in whole blood 

in the epigenome, which are common and well captured by the Infinium HumanMethylation450 

BeadChip. 
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4.7 Tables and Figures 

4.7.1 Tables 

Table 1. Sample sizes of discovery and validation cohorts. 

               

Phase Cohort 

Sample Size 

FN BMD LS BMD 

Pooled Females Males Pooled Females Males 

Discovery 

Avon Longitudinal 

Study of Parents and 

Children (ALSPAC) 

715 715 0 0 0 0 

Danish Twin Registry 

(DTR) 
267 132 135 260 132 128 

Framingham Study 

(FS) 
2207 1254 953 2203 1259 953 

Rotterdam Study (RS) 650 356 294 633 346 287 

TwinsUK (TUK) 775 775 0 770 770 0 

Discovery Total 4614 3232 1382 3866 2507 1368 

Validation 

FOS Gen3 901 448 453 0 0 0 

Discovery + 

Validation Total 
5515 3680 1835 3866 2507 1368 
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Table 2. Meta-analysis results for association of cg23196985 with FN BMD in both female 

(top row) and sex-pooled (bottom row) analyses in discovery phase, with replication and 

combined discovery and replication analyses. 

Discovery Validation Combined 

β SE P PBH PHet β SE P β SE P PHet 

0.95 0.15 7.9E-11 3.4E-05 0.81 0.19 0.39 0.64 0.86 0.14 3.8E-10 0.43 

0.66 0.12 3.0E-08 1.3E-02 0.1 -0.01 0.02 0.6 0.01 0.02 0.68 3.0E-07 

β = effect size; SE = standard error; PBH = Benjamini-Hochberg adjusted P-value; I2 = 

heterogeneity measure;  

PHet = heterogeneity P-value 
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4.7.2 Figures 

Figure 1. Quantile-quantile plots (QQ-plots) of the distribution of observed -log10 

association P-values against the expected null distribution, for discovery meta-analyses of 

FN BMD in (A) females-only and (B) sex-combined analyses. 

 

Genomic inflation lambda scores are given in each QQ-plot, to quantify statistical inflation of P-

values. No evidence for inflation was observed in the QQ-plots or as calculated by lambda 

scores. 
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Figure 2. Manhattan plots of -log10 association P-values for (A) females-only and (B) sex-

combined analyses. 
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4.8 Supplementary Tables and Figures 

Supplementary Tables and Figures can be downloaded from the open access publication 

Morris et al.170 in the Journal for Bone and Mineral Research available here: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615229/ 
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Chapter 5: Discussion 

The purpose of this thesis was to advance the knowledge of bone biology using methods 

from genetic epidemiology, bioinformatics, and statistical genetics. This thesis represents a 

dramatic leap forward in identifying novel risk genes for osteoporosis. In Chapters 2 and 3, we 

identified hundreds of novel genes and validated select genes (e.g. GPC6, DAAM2) with strong 

supportive evidence for roles in bone biology. Chapter 4 highlights the difficulties of studying 

the epigenetics of osteoporosis without access to proper cell types or tissues of interest, as we 

were unable to detect any significant associations between site-specific DNA methylation 

changes and bone mineral density (BMD). Below, we discuss the strengths or shortcomings of 

each chapter. 

Chapters 2 and 3 were both genome-wide association studies (GWAS) of BMD estimated 

from quantitative heel ultrasound (eBMD) in the UK Biobank. They differ in their sample sizes 

and the described follow-up analyses. In Chapter 2, we analyzed the UK Biobank’s interim data 

release of 150,000 participants, and after selecting White European participants to reduce 

population stratification and genomic inflation, we had a sample size of approximately 140,000. 

At the time, this was a sample size vastly greater than any other GWAS of BMD, with previous 

studies reaching approximately 30,000 participants16,18. The first strength of this study was our 

increased sample size, as we identified 201 loci (153 novel) using eBMD. The second strength, 

which had important implications for both Chapters 2 and 3, was we validated the usage of 

eBMD to study the genetic architecture of osteoporosis. We did this through genetic correlation 

analyses, showing that the effect sizes of our conditionally independent lead SNPs strongly 

correlated with their effects on other BMD sites (lumbar spine, femoral neck, and forearm), and 

that genome-wide, eBMD was strongly correlated with other BMD sites and inversely correlated 
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with fracture, using linkage disequilibrium score regression45. The third strength of our study 

was a product of a shortcoming: Given the lack of available bone cell functional genomics data, 

we leveraged a novel machine learning method to annotate plausibly causal SNPs for putative 

function. Specifically, we used the contextual analysis of transcription factor (TF) occupancy 

(CATO) score57 to test whether SNPs were likely to perturb TF binding in any cell type, if they 

mapped to open chromatin (determined using ENCODE30,171 and Roadmap Epigenomics56 

DNase hypersensitive site [DHS] data). The fourth strength of this study was the beginning of 

our collaboration with the Origins of Bone and Cartilage Disease (OBCD) consortium, a 

collective of UK and Australia-based researchers. In short, the OBCD received knockout mice 

from the International Mouse Phenotyping Consortium79 and tested these mice for outlier 

skeletal phenotypes. In our study, we identified GPC6 as a gene of interest for humans, and 

further evidence was gained through its mouse knockout that had an outlier skeletal phenotype. 

The analyses performed in Chapter 2 set the table for what was to come in Chapter 3, upon the 

UK Biobank’s full data release of 500,000 participants. 

In Chapter 3, we once again performed a GWAS of eBMD in the UK Biobank, with a 

sample size of approximately 420,000 participants. We applied a more stringent selection criteria 

for White British participants, instead of White Europeans, to further reduce population 

stratification and genomic inflation. This study’s first strength was the identification of 518 loci 

(301 novel), increasing the total to 454 when considering Chapters 2 and 3. There was a distinct 

lack of bone cell functional genomics data available when we had analyzed the UK Biobank’s 

interim release, however, due to successful funding applications, we were now able to generate 

these data ourselves and design our own follow-up experiments in human cells. We decided to 

generate functional genomics data for osteoblast cell lines rather than primary cells, to perform 
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genome-editing of candidate genes in our study. Therefore, the second strength of our study was 

that we generated open chromatin data using ATAC-seq31 and gene expression data using RNA-

seq for the osteoblast cell line SaOS-2172. By leveraging these data, and other functional 

genomics data generated by collaborators (i.e. primary osteoblast chromosome conformation 

capture data to resolve the 3D genome), we identified 556 genes enriched for known bone 

biology. Amongst these genes was DAAM2, that we further targeted with two different 

approaches to validate its function in bone cells, resulting in the next two major strengths of our 

study. We generated, for the first time in our research group, CRISPR/Cas9 mediated gene 

knockouts, targeting the DAAM2 2nd exon in SaOS-2 cells, observing a decreased ability of this 

crucial bone forming cell’s ability to mineralize. A drawback of our CRISPR/Cas9 editing 

approach is that it was a time-consuming process, therefore we need novel methods to perform 

high-throughput editing assays in SaOS-2 cells. Our OBCD collaborators generated Daam2 

homozygous and heterozygous knockdown mice and observed a decrease in their bones’ strength 

and porosity, further characterizing DAAM2’s function in bone biology. Collaboration with 

OBCD resulted in the characterization of five other genes in Chapter 3 (CBX1, WAC, DSCC1, 

RGCC, and YWHAE) suggesting these are strong candidates to further characterize with genome-

editing in SaOS-2. Although we generated novel bone cell functional genomics data and 

performed genome-editing, we were still mostly limited to the osteoblast and its cell lines. 

Therefore, a shortcoming of this study is that many more loci could possibly be identified 

through generating osteoclast or osteocyte functional genomics data and performing genome-

editing in these cells. 

Chapter 4 represented an attempt to apply the GWAS methodology to epigenetics and to 

identify the epigenetic determinants of osteoporosis. This study was performed by an 
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international consortium of cohorts with BMD measured for the lumbar spine and/or femoral 

neck and with DNA methylation measured using the Illumina InfiniumHumanMethylation450 

array in whole blood. While there was a biological rationale to use whole blood in the study, as 

described in Chapter 4, the usage of whole blood was also due to it being the only tissue 

available. Large cohorts typically use whole blood to generate genotype and sequencing 

information, therefore when they made the decision to measure DNA methylation, the only 

sample they had was whole blood. Rather than performing cell sorting, the whole tissue was 

used, resulting in a homogenous mixture of cells being studied. Epigenetic studies should be 

designed prior to generating the data, and therefore Chapter 4 serves as a cautionary tale to any 

researcher who studies the epigenetic determinants of complex traits and common disease. 
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Chapter 6: Conclusion and Future Aims 

This thesis was an exploration of the genetic and epigenetic determinants of osteoporosis 

through the study of bone mineral density (BMD). As we demonstrated in Chapters 2 and 3, 

BMD is a highly polygenic trait with hundreds of associated genetic loci. Conversely, as 

demonstrated in Chapter 4, the epigenetics of BMD need to be further studied. Several future 

aims can be suggested to continue this work. 

Chapters 2 and 3 can be continued with trans-ethnic analyses. We restricted our analyses 

to either White Europeans (Chapter 2) or White British (Chapter 3) participants in the UK 

Biobank. GWAS of BMD can and should be expanded to other ethnicities, however these efforts 

have lacked statistical power for discovery GWAS, instead performing targeted validation of 

White European identified SNPs173. Recently, Kanai et al.174 performed GWAS of 58 

quantitative traits in up to 200,000 East Asian participants from BioBank Japan, representing a 

major advancement in GWAS outside of the Western world. BMD was not one of the 58 studied 

traits, unfortunately. The Chinese Kadoorie Biobank, however, has up to 500,000 participants 

with genetic information and quantitative ultrasound of the heel for at least 25,000 

participants175. These studies signal that large trans-ethnic GWAS of BMD may be on the 

horizon, therefore as these data become available, they should be analyzed with UK Biobank 

data to identify even more genetic determinants of osteoporosis. While these studies are on their 

way, more research should be devoted to the following to understand gene function in disease 

models: 1) Generation of more bone cell functional genomics data in various cell types (e.g. 

osteoclasts); 2) Generation of more knockout mice for skeletal phenotyping; and 3) Generation 

of high-throughput pooled genome-editing approaches. 



169 
 

The data presented in Chapter 4 could be studied further, however I suggest that any 

further attempts at EWAS of BMD should be planned before data generation. The ideal study 

design would be to assess bone cells directly, however, obtaining a large sample size (e.g. 

hundreds to thousands) of healthy-donor primary osteoblasts, osteoclasts, or osteocytes would 

prove costly and time-consuming. Given the lack of primary bone cells, blood cells could still be 

studied, however, the cells should be sorted. For example, whole blood could be sorted for 

exclusively monocytes, a precursor cell of the osteoclast. Therefore, an EWAS of DNA 

methylation measured in monocytes would be better positioned to identify associations with site-

specific CpG DNA methylation and BMD, and any significant findings could be studied for 

whether they are determinants of osteoporosis. 

We have identified hundreds of novel loci for osteoporosis and demonstrated the validity 

of statistical fine-mapping and functional genomics analyses by validating candidate genes. The 

demonstrated polygenicity of BMD suggests that larger GWAS (e.g. sample sizes exceeding 

500,000) will continue to identify novel loci, and therefore we will need methods to identify 

target genes and to discern their function. The analyses we have performed and data we have 

generated should be used to study future GWAS of BMD, as we have clearly shown their utility 

in identifying novel genes with roles in bone biology. In conclusion, the findings presented this 

thesis represent novel contributions to the understanding of the genetic determinants of 

osteoporosis. 
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