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ABSTRACT

In 2008, a new class of block error correction codes, known as polar codes, were proven

by Erdal Arıkan to be able to achieve the Shannon limit. Through inventive new de-

coding algorithms and fast code constructions, polar codes have become an attractive

high-performance error correction code for practical use. These innovations have resulted

in adoption of polar codes in the upcoming 3GPP 5th generation standard for New Ra-

dio. Still, polar codes are hindered by certain inflexible characteristics. Arıkan’s original

polar code definition limits block lengths to powers of two, due to a recursive Kronecker

product of the 2 × 2 polarizing kernel. This constraint presents a considerable obstacle,

as many realistic scenarios call for all code lengths to be readily available. Rate-matching

techniques, known as puncturing and shortening, allow for flexible polar code lengths,

albeit with inefficient decoding complexity. Multi-kernel polar codes produce native code

lengths that are powers of two and/or three with the addition of a 3× 3 ternary kernel,

although they necessitate specialized decoders and code design. This thesis will explore

and propose techniques that are intended for maximizing the flexibility and efficiency

of polar codes, as well as analyze any trade-offs affecting error correction performance.

An in-depth study is presented that compares state-of-the-art length-flexible polar codes

with the 3GPP standardized polar codes. This inquiry finds that the 5G standard offers

a highly simplified polar code construction with minimal loss to error correction per-

formance. Further, multi-kernel polar codes were found to have a negative correlation

between error correction performance and the quantity of ternary Kronecker constituents.

This thesis also proposes a new fast successive cancellation decoder that is compliant with

multi-kernel polar codes. The ternary kernel is further investigated by testing its rate-

matching and systematic properties. Finally, this thesis proposes a new scheme called

asymmetric polar codes. We present details on generator matrix definition, informa-

tion set design, and decoding schedules, as well as perform comparisons with competing

schemes using simulations and a comprehensive analysis. Asymmetric polar codes offer

flexible block lengths with decoding complexity lower than equivalent length-compatible

polar codes under successive cancellation. The enclosed findings indicate that asymmetric

polar codes afford comparable error correction performance to the competing schemes,

while dividing the number of successive cancellation decoding operations by up to a fac-

tor of two. The thesis is then concluded by recommending appropriate extensions of this

work for future research.



ABRÉGÉ

En 2008, une nouvelle classe de codes correcteurs d’erreurs en bloc, connus sous le nom de

codes polaires, a été prouvée par Erdal Arıkan capable d’atteindre la limite de Shannon.

Grâce à des algorithmes innovents et des constructions de code rapides, les codes polaires

sont devenus des codes correcteurs d’erreurs à haute-performance attrayants pour une

utilisation pratique. Ces innovations ont résulté dans l’adoption des codes polaires dans

la prochaine norme 3GPP de téléphonie, dite de 5e génération. Pourtant, les codes polaires

sont entravés par la rigidité de certaines de leur propriétés. La définition du code polaire

original d’Arıkan limite la longueur des blocs à seulement des puissances de deux, en

raison de l’utilisation du produit de Kronecker et du noyau polarisant de taille 2×2. Cette

contrainte constitue un obstacle considérable, car de nombreux scénarios pratiques exigent

la disponibilité facile de toutes longueurs de code. Des techniques permettant d’atteindre

des longueurs de code polaires flexibles existent notamment sous le nom de poinçonnage

et de raccourcissement. Cependant elles possèdent une complexité de décodage inefficace.

Les codes polaires multi-noyaux produisent des longueurs de code natives qui sont des

puissances de deux et/ou trois avec l’ajout d’un noyau ternaire de 3 × 3, bien qu’ils

nécessitent des décodeurs et la conception de code spécialisés. Cette thèse explore et

propose des techniques destinées à maximiser la flexibilité et l’efficacité des codes polaires,

ainsi que d’analyser tout compromis affectant la performance de la correction d’erreur.

Une étude approfondie est présentée qui compare ces codes polaires flexibles en longueur

avec les codes polaires stardardisées par le consortium 3GPP. Cette étude démontre que

la norme 5G offre une construction de codes polaires très simplifiée tout en garrantissant

une très bonne performance de correction d’erreurs. D’autre part, il a été démontré

que les codes polaires multi-noyaux ont une corrélation négative entre la performance

de la correction d’erreur et le nombre de noyaux ternaires utilisés. Cette thèse propose

également un nouveau décodeur rapide à annulations successives pour des codes polaires

multi-noyaux. Le noyau ternaire fait l’objet d’une étude plus approfondie en évaluant

ses propriétés systematiques et de flexibilité. Enfin, cette thèse propose un nouveau

schéma de codage appelé codes polaires asymétriques. Nous présentons la définition de

la matrice génératrice, la conception de l’ensemble des bits gelés, et le décodage. Nous

effectuons des comparaisons avec des schémas concurrents. Il apparait alors que les

codes polaires asymétriques offrent des performances en terme de correction d’erreurs

comparables à celles des schémas concurrents, tout en divisant le nombre d’opérations de

décodage via l’ algorithme à annulation successives par un facteur de deux. La thèse se



Abrégé

termine ensuite par la recommandation d’extensions appropriées de cette étude pour des

recherches futures.
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Chapter 1

Introduction

The research field of error correction codes is born out of the necessity to mitigate the

inherent unreliability of data transmission over physical media. Information theory, or

the study of quantification and communication of information, was pioneered by Claude

Shannon in 1948 with his landmark paper, “A Mathematical Theory of Communication”

[1]. Information theory serves as the backbone for designing error correction codes, which

act to minimize the probability of data transmission error over noisy channels by encoding

messages into robust codewords. For many years, industrial digital communication stan-

dards turned to turbo codes [2] and low-density parity check (LDPC) codes [3] for reliable

information transfer. These codes are highly effective error correction codes and come

close to the theoretical limit of reliable communication known as the channel capacity.

In 2008, Erdal Arıkan proved that a new coding scheme, known as a polar codes,

is able to asymptotically achieve the channel capacity of a binary memoryless channel

with infinite code length [4]. When considering polar codes for practical use, there are

several inherent deficiencies that have hindered their acceptance as a valuable coding

scheme. The proposed decoder for polar codes, successive cancellation, is sequential

in nature, which induces a low throughput. Further, polar codes offer mediocre error

correction performance at short to medium code lengths compared with turbo codes or

LDPC codes. These issues were quickly overcome with the advent of fast decoders [5]

[6], which significantly reduce decoding complexity, and list decoders [7] [8] [9], which

considerably improve the error correction performance of polar codes. In 2016, polar

codes became practical to the point where they were included in the latest 3GPP 5th

generation standard for New Radio [10] [11].

1
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Polar codes lack the native flexibility that is desired for practical application. Namely,

Arıkan’s polar code definition can only achieve code lengths that are powers of two. Rate-

matching techniques, known as puncturing [12] and shortening [13], have been applied

to polar codes to grant a flexible block length. However, these schemes are inefficient to

decode. Multi-kernel polar codes [14] improve natural block length flexibility, although

they introduce convoluted code designs and require specialized decoders [15]. As such,

there is currently a demand for efficient and flexible polar coding techniques.

1.1 Objective

The objective of this thesis is to maximize the practicality of polar codes by augmenting

code design, decoding efficiency, and improving overall flexibility.

1.2 Summary of Contributions

Outlined below are brief summaries of the research contributions of this graduate thesis.

Analysis of Length-Compatible Polar Codes

With the advent of the 3GPP 5th generation New Radio specification, there now exists

an industry standard for length-flexible polar codes. This section outlines the alternate

state-of-the-art flexible polar coding schemes, namely puncturing, shortening, and multi-

kernel construction, and evaluates their efficacy with respect to the newly designed 3GPP

standard. Simulations and an in-depth analysis are presented.

Analysis of Multi-Kernel Code Construction and Systematic En-

coding

Multi-kernel polar codes provide a new polarizing linear code construction that improves

the native flexibility of polar codes, albeit at the expense of increased decoding and code

design complexity. Moreover, many of the innovative algorithms proposed for conven-

tional polar codes over the last 10 years have not been demonstrated to be useful for

2
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multi-kernel polar codes. This investigation establishes that complex kernel order design

can be simplified and that multi-kernel polar codes cannot be systematically encoded in

the same way that Arıkan’s polar codes can be.

Fast Decoding of Multi-Kernel Polar Codes

Arıkan’s polar coding scheme was explained to posses embedded subcodes that permit

simplified decoding, allowing a significant reduction in decoding time complexity. The

proposed decoding algorithm in this work modifies the original fast decoder to be compli-

ant with multi-kernel polar codes. Although generalized rules are disclosed for decoding

any arbitrary multi-kernel code, efficient simplifications are devised, which are valid under

imposed design constraints that reflect typical multi-kernel behaviour. Results indicate

that the proposed fast decoder has a minimum 72% latency reduction compared with

successive cancellation decoding.

Rate-Matching of Multi-Kernel Polar Codes

Although conventional polar codes are limited to block lengths that are powers of two,

rate-matching techniques allow for any length to be attained. The presented research

demonstrates that rate-matching is possible for multi-kernel polar codes. Simulations

of suggested useful scenarios are exhibited and analyzed. Rate-matching of multi-kernel

polar codes can grant decoding complexity reduction while maintaining error correction

performance. Alternatively, the featured rate-matching scheme allows for an improvement

in error correction performance at the expense of increased decoding latency.

Asymmetric Polar Codes

Motivated by the inefficiency of punctured or shortened polar codes and the overall com-

plexity of multi-kernel polar codes, a novel length-flexible coding scheme is presented.

Asymmetric polar codes provide a well-defined code construction that supports any ar-

bitrary codeword length. Asymmetric polar codes display comparable error correction

performance to the state-of-the-art length-flexible polar coding schemes, while maintain-

ing reduced decoding complexity over punctured and shortened codes. Code design in-

structions are introduced, and a comprehensive analysis is performed. Natural extensions
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are explored; in particular, the effectiveness of rate-matching and systematic encoding of

asymmetric polar codes are investigated.

1.3 Thesis Organization

The proceedings of this thesis are as follows: Chapter 2 details the relevant preliminary

knowledge required to carry out the presented research, including digital communication

systems, error correction codes, and polar codes. Chapter 3 contains all length-flexible

polar coding techniques simulated in this work, as well as an in-depth discussion on these

techniques as they compare to the 3GPP polar code standard. Chapter 4 outlines all

research conducted on maximizing the practicality of multi-kernel polar codes. Chapter

5 presents asymmetric polar codes with details on their implementation and a thorough

analysis. Chapter 6 concludes this thesis with a summary of the presented research and

an outline of directions for future research extensions.

4



Chapter 2

Preliminaries

This section will review the background material of the presented research. In order

to properly motivate the enclosed analysis, we must cover the basics of forward error

correction and define the necessary simulation parameters.

2.1 Forward Error Correction

2.1.1 Model of Communication Systems

A digital communication system can be modeled such that a source consisting of a string

of binary numbers is transmitted over a noisy channel and collected by a receiver, as

outlined in Fig. 2.1. A fundamental issue associated with communication systems is that

the received message may be corrupted and not match the original. For example, if a 0

is sent as the message, there is a chance that channel noise can change this value to a 1

and cause the received value to be incorrect. The possibility of this error compromises

the reliability of this model. As such, it is often required for a communication protocol to

make the message more robust using forward error correction (FEC), or channel coding.

If the communication protocol is modified to encode some redundancy to the message,

it may be possible to mitigate the possibility of message corruption to some degree. For

Source

0

Channel Receiver

1

Figure 2.1: A basic communication model.
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Source

0

Encoder

000

Channel Decoder

010

Receiver

0

Figure 2.2: A modified communication model using forward error correction.

instance, we can add some verbosity to the message by simply repeating it multiple times.

On the receiving side, the message can then be decoded by taking a majority vote between

the values of the received bits. This particular error-correction code (ECC) is known as

a repetition (REP) code. Although this is a simple channel coding scheme, there exist

alternative ECCs that are more robust and more efficient. Fig. 2.2 depicts the modified

communication chain that includes a channel encoder and decoder.

2.1.2 Linear Codes

The scope of this work will be limited to binary alphabet ECCs. Linear block codes are

a subclass of ECCs that accept a binary message vector a of length K and encode it

into a codeword vector x of length N ≥ K with a code rate R = K
N
. These codes are

described as linear because any linear combination of valid codewords is also a codeword.

A message can be encoded into a codeword by:

x = aG, (2.1)

where G is a K × N generator matrix. Each linear block code has a codebook of size

2K that contains all unique codewords associated with all possible messages. Some ECCs

have a structure that causes the encoded message to be explicitly contained within the

codeword. These codes are said to be systematic. As an example, the systematic rep-

etition code used in Fig. 2.2 encoded message a = [0] into codeword x = [000] using

generator matrix G = [ 1 1 1 ].

Once the source has been encoded and transmitted over the noisy channel, the received

noisy vector y must be decoded in order to recover the original message. Although the

transmitted codeword is always binary, y may be defined by a different alphabet, depend-

ing on the type of channel. This discrepancy will be discussed in detail in the next section.

Depending on the type of data that is received, there are various decoding methods that

can be employed. Generally, decoding can be described in a few ways: hard-input-hard-

output (HIHO), soft-input-hard-output (SIHO), or soft-input-soft-output (SISO). Hard

data is represented by bits and soft data is represented by real value probabilities.

6



CHAPTER 2: Preliminaries

An example of a simple HIHO decoding scheme is to convert the received channel

vector y directly to a binary vector, compute the codeword estimate x̂ by comparing the

received binary data to all possible codewords, and select the candidate with the mini-

mum Hamming distance. This particular method is considered a hard-input maximum

likelihood (ML) decoding.

In a SIHO decoding method, y is used to compute the probability of a 0 or 1 for each

bit in x̂. The optimal SIHO decoder is a soft-input maximum likelihood (ML) decoder.

This scheme minimizes the Euclidian distance of the computed probabilities and every

possible codeword. This decoding method suffers from what is known as the curse of

dimensionality; its practicality is limited since 2K candidates must be evaluated. There

exist many alternative soft decoding algorithms for different ECCs that have low decod-

ing complexity but compromise the accuracy of evaluating the transmitted codeword.

The entire research field of FEC is highly focused towards optimizing error correcting

performance and decoding complexity. This dichotomy will be a central theme of this

thesis.

2.1.3 Channel Models

2.1.3.1 Modulation

A modulation scheme is always used to convert digital data to a physical waveform. For

the scope of this thesis, it is sufficient to consider the modulator and demodulator as

part of the channel. Most digital modulation schemes use a pair of sinusoidal carrier

waves that are of the same frequency but phase-shifted by 90◦. One carrier is said to be

in phase while the other is said to be in quadrature, which is depicted in Fig. 2.5. A

common modulation scheme for measuring the viability of error correction algorithms is

binary phase-shift keying (BPSK). This will be the only considered modulator. Phase-

shift keying encodes M bits into one of 2M possible symbols using two sinusoidal carrier

waves by mapping symbols to phase shifts according to the constellation of the modulator.

BPSK and quadrature phase-shift keying (QPSK) constellations are depicted in Fig. 2.3.

In the case of BPSK, there are only two possible symbols, ”0” or ”1”, and so each symbol

is represented by either a 0◦ or 180◦ phase shift of a single carrier, as demonstrated by

Fig. 2.4. In a simulation setting, these phase shifts can be represented as real values 1

and −1. Formally, a source vector x ∈ {0, 1} of length N can be modulated using BPSK

7
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√ E s

I

Q

−1 1

(1) (0)

(a) BPSK

√ E s

I

Q

(11) (10)

(01) (00)

1√
2

(b) QPSK

Figure 2.3: Symbol constellations for phase-shift keying modulation schemes.

”1” ”0” ”0” ”1”

Figure 2.4: A BPSK modulation waveform.
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Figure 2.5: Quadrature carriers.

into vector c ∈ {±1} as such:

ci = 1− 2xi , ∀ i ∈ [0, N) (2.2)

It should be noted that BPSK does not require the quadrature carrier. Similarly, QPSK

has four possible symbols: ”00”, ”01”, ”10”, or ”11”. These can be mapped to 180◦ phase

shifts on two carriers, or be represented as complex numbers. A source vector x ∈ {0, 1}
of length N can be modulated using QPSK into vector c ∈ {± 1√

2
± j 1√

2
} with:

ci =
1√
2
(1− 2xi) + j

1√
2
(1− 2xi+1) , ∀ 2i ∈ [0, N) (2.3)

2.1.3.2 Types of Channels

The communication channel can be modeled many different ways depending on the level

of analysis. For simulation of wireless or optical transmission systems, there exist complex
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models that accurately reflect the physical behaviour of these channels. For this work,

we will only examine simple memoryless models that allow for sufficient comparison of

various error correction techniques. This class of channels is known as binary-input

discrete memoryless channels (B-DMC). Binary inputs indicate that the channel inputs

have alphabet X = {0, 1}. The alphabet of the channel output Y can differ depending

on the channel. All channels W have a transition from the input to the output, ie.

W : X → Y . This transition is described by a probability of the output value based on

the input value, denoted as W (y|x), x ∈ X , y ∈ Y .

Claude Shannon demonstrated that all channels have a capacity I(W ) that dictates

that maximum allowable code rate for reliable data transmission [1]. Channel capacity

represents the maximum amount of information that the channel can carry, measured in

shannons, or bits. Shannon’s second theorem states that for any e > 0, there is a code

with a sufficiently large block length N with a rate R < I(W ) for which the probability

of error is smaller than e. This theorem then provides a performance measurement

for communication systems. An ECC that achieves the channel capacity is considered

optimal. From this point, the motivation of channel coding research is to design error

correction codes that become as close to this theoretical limit as possible while minimizing

decoding complexity.

A simple B-DMC is a binary erasure channel (BEC). Under this model, each trans-

mitted bit x has a probability ε of having its corresponding received bit y ∈ {0, 1, ?}
value become unknown, or erased, at the receiver. Conversely, there is a 1− ε probability

of receiving the correct value. Fig. 2.6a depicts the behaviour of a BEC. A BEC has a

channel capacity of I(W ) = 1− ε.

The disruptive noise in many physical communication systems can be described by a

Gaussian random process. As such, the additive white Gaussian noise (AWGN) channel

serves as an appropriate model for ECC simulation. AWGN channels can be simulated

by adding a Gaussian random variable with a mean of 0 and a variance of σ2 to the

modulated codeword, as depicted in Fig. 2.6b. The variance σ2 is dependent on the code

rate R, modulation rate M, and signal-to-noise ratio (SNR) of the channel, as detailed

in the next section. The received data will then be a real value such that y ∈ R. The

transition probability of an AWGN channel when employing BPSK is described by:

W (y|x) = 1√
2πσ2

e−
(y−x)2

2σ2 (2.4)

9
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where x is in modulated form. This distribution of this transition is detailed in Fig. 2.7.

AWGN in conjunction with BPSK will be the primary use case for simulations throughout

this work.

Under this transmission model, the transition probabilities serve as a measure of the

likelihood (P) of a transmitted bit having the value 0 or 1:

P0(y) = W (y|0) = 1√
2πσ2

e−
(y−(−1))2

2σ2

P1(y) = W (y|1) = 1√
2πσ2

e−
(y−1)2

2σ2

(2.5)

For convenience, the same information can be conveyed with simply the likelihood ratio

(LR) between the two possibilities:

LR(y) =
W (y|0)
W (y|1) =

1√
2πσ2

e−
(y−(−1))2

2σ2

1√
2πσ2

e−
(y−1)2

2σ2

(2.6)

In a practical setting, LR calculations have a tendency to overflow or underflow. Taking

the logarithm of the likelihood ratio (LLR), denoted by λ, helps to mitigate this issue

and often simplifies decoding operations:

λ = LLR(y) = ln
W (y|0)
W (y|1) = ln

1√
2πσ2

e−
(y−(−1))2

2σ2

1√
2πσ2

e−
(y−1)2

2σ2

= −2y

σ2
(2.7)

Now with a single value, we can express the probabilities of a received corrupted bit. x̂

is more likely to be 0 when λ is positive, and more likely to be 1 when λ is negative. A

hard decision can be made using an LLR by:

x̂ = HD(LLR(y)) =

⎧⎨
⎩0 LLR(y) ≥ 0

1 otherwise
(2.8)

The magnitude of the LLR indicates the reliability, or confidence, of the hard decision.

The value of x̂ is only known to be completely certain if LLR(y) = ±∞. Conversely,

an LLR of 0 indicates that x is equally likely to be ”0” or ”1”. In this case, the bit is

considered erased.

From this point onwards, a refers to the source vector of length K, x refers to the

codeword of length N , and y refers to the corrupted codeword of length N .
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1

0 0

?

1

1− ε

ε

ε

1− ε

x ∈ {0, 1} y ∈ {0, 1, ?}

(a) BEC

x ∈ {±1} y ∈ R

N (0, σ2)

(b) AWGN channel using BPSK modulation

Figure 2.6: Models of B-DMCs.
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Figure 2.7: Distributions of transition probabilities of AWGN channel using BPSK.

2.1.4 ECC Simulation

This section will outline the parameters necessary for sufficient testing of ECCs. Typically

a Monte-Carlo simulation can be used to estimate the error correction performance of an

ECC. Such a simulation involves transmitting a number of encoded messages, or frames,

over W and obtaining estimates by a decoding algorithm. The bit error rate (BER) can

be measured by counting the number of incorrectly decoded bits over the course of the

simulation and then dividing that count by the total number transmitted. The frame

error rate (FER) can be measured similarly, except by counting the number of codewords

instead. Depending on the application of the code design, either of BER or FER may be

a more meaningful metric. The simulations presented in this work will only present FER

results since we are primarily interested in the frequency with which an entire message is

correctly decoded.

To simulate an AWGN channel, the variance must be computed according to the code

parameters. The SNR is written as the ratio Es

N0
, where N0 is the noise power spectrum

density and Es is the normalized energy per modulated symbol. The variance is expressed
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as σ2 = N0

2
. Rearranging the equation, the channel variance can be written as:

σ2 =

(
2
Es

N0

)−1

=

(
2RMEb

N0

)−1

, (2.9)

where Eb is the more common energy per bit notation. If SNR is given in decibels (dB),

then it must be linearized first before computing σ2, ie. Eb

N0
= 10

SNR
10 .

2.1.5 Cyclic Redundancy Check

Occasionally it is useful to encode a message twice with two different ECCs in series. An

outer code is first used to encode the source message a into a′, and then a′ is encoded

into x with an inner code. This process is known as serial code concatenation. This

enhancement can be done to have the outer code relay information to the inner code

during decoding to improve error correction performance [16].

A common outer code is known as the cyclic redundancy check (CRC). A CRC of length

C is a linear cyclic code that performs polynomial division on a binary message of length

K with a characteristic polynomial of length C + 1 to obtain a unique remainder. The

remainder is appended to the original message to obtain a codeword of lengthK+C. After

the message is transmitted and decoded, division is applied to the estimated codeword.

If the division results in a remainder of all zeros, then no errors are detected. Conversely,

if the remainder has at least one 1, it is known that the received codeword has an error.

There are several polynomials for the most common CRC lengths. Table 2.1 lists all the

CRC lengths to be referenced in this work, along with the selected polynomials. A divisor

is obtained from the polynomial by first converting the hexadecimal representation into a

binary string, and then appending a 1 to the leftmost bit. To perform polynomial division

with the message, a series of XOR and bit shift operations are carried out, according to

the example in Fig. 2.8. This example examines a message [10101101] and a CRC of

length 3 with polynomial 0x5.

2.2 Polar Codes

Polar codes are a relatively new class of linear block ECCs introduced originally by

Norbert Stotle in 2002 [17] and then later verified by Erdal Arıkan in 2008 [4]. Polar
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Compute remainder Transmit Perform check

Error detected!

10101101 000

11010000 000

01111101 000

01101000 000

00010101 000

00011010 000

00001111 000

00001101 000

00000010 000

00000011 010

00000001 010

00000001 101

00000000 111

11101101 111

11010000 000

00111101 111

00110100 000

00001001 111

00001101 000

00000100 111

00000110 100

00000010 011

00000011 010

00000001 001

00000001 101

00000000 100

Sent

10101101 111

Received

11101101 111

Figure 2.8: An example of the usage of a CRC.

C Hexadecimal Divisor

6 0x21 1100001
8 0xD5 111010101
11 0x621 111000100001
16 0x1021 10001000000100001
24 0xB2B117 1101100101011000100010111
32 0x04C11DB7 100000100110000010001110110110111

Table 2.1: A list of CRC polynomials referenced in this work.

codes have become of strong interest because of their proven ability to achieve the channel

capacity of any B-DMC at infinite block lengths. Although polar codes are shown to have

good error correction performance at very long block lengths using Arıkan’s proposed

decoder, they are prone to inherent shortcomings such as high decoding latency and

mediocre error correction performance at short to medium block lengths. The field of

polar code research in the last 10 years has worked to mitigate these issues to the point

where polar codes have become a practical coding scheme. Polar codes have also been

included in the new 3GPP 5th generation wireless communication standard for New Radio.

Since polar codes have demonstrated their capacity for industrial utility, much of the

research presented in this thesis is dedicated to making polar codes more practical.
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Figure 2.9: Channel polarization process.
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Figure 2.10: Recursive polarization resulting in subchannels W8.

2.2.1 Channel Polarization

The mechanism from which polar codes are named is channel polarization. The principle

of channel polarization causes two copies of a channel W to be transformed into two

synthetic subchannels W2, such that one becomes stochastically upgraded (W
(1)
2 ) and

the other becomes stochastically degraded (W
(0)
2 ). These subchannels are then said to

be polarized in their reliability. The transformation used to polarize two binary input

channels is an XOR operation. The transformation is mathematically represented by a
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polarizing kernel, further referred to as the Arıkan kernel:

T2 =

[
1 0

1 1

]
(2.10)

The reliability of a channel W can be measured by its capacity I(W ). Arıkan showed that

the reliability of the synthetic subchannels can be accurately tracked for a BEC according

to:
I(W

(0)
2 ) = I(W )2

I(W
(1)
2 ) = 2I(W )− I(W )2

(2.11)

This polarizing transform is depicted in Fig. 2.9 for a BEC W with I(W ) = 0.5. The

polarization process can be applied recursively to obtain larger sets of polarized synthetic

channels. Fig. 2.10 depicts synthetic channels W8 obtained by applying the transforma-

tion two more times. From this example, it should be observed that longer polar codes

offer a higher degree of polarization.

2.2.2 Encoding

The generator matrix G for a polar code of length N is obtained by computing the nth

Kronecker product, denoted ⊗, of T2, where n = log2 N :

G = T⊗n
2 (2.12)

It should be noted that G is an N ×N matrix, which does not match the definition of a

linear block code in Section 2.1.2. To encode a message a of length K into a polar code of

length N , denoted PC(N,K), a must first be expanded into a vector u of length N . This

transformation is done simply by placing the data in a in the indices of u contained in the

information set I, which pertain to the K most reliable synthetic channels corresponding

to G. The remaining N −K indices of u are contained in the frozen set F and are set to

a known value, which is typically 0. This format can be mathematically described with

an expanding matrix E. If we borrow the notation used in [18], u can be obtained by:

u = aE, (2.13)

where

E = (Ei,j)
K−1,N−1
i=0,j=0 , and Ei.j =

⎧⎨
⎩1 j ∈ I
0 otherwise

. (2.14)
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There are different reliability metrics and algorithms that can be used to determine I and

F , and these will be outlined in later sections. Once u is determined, the polar encoding

process can be computed with the matrix multiplication:

x = uG. (2.15)

A more convenient representation of the polar encoder is to use a low-complexity factor

graph of XOR operations. Fig. 2.11 depicts polar encoders along with the corresponding

generator matrices for polar codes with a rate of R = 1
2
.

All instances of outer CRC code concatenation for PC(N,K) in this thesis will refer to

K as the sum of the message length and the CRC length. In other words, only the rate

of the inner polar code will be considered when discussing ECC comparisons. However,

the computation of the noise variance σ2 will take into account the rate of the outer

code for accurate simulation. For instance, a message of length 6 with an outer CRC

of length 3 encoded into an inner polar code of length 16 will have rate R = 9
16
, but

σ2 =
(
2 6
16
MEb

N0

)−1

.

This polar encoder is not systematic. A simple systematic polar encoder was pro-

posed in [18] that was shown to be valid under certain constraints. The systematic polar

encoding process is carried out by first encoding in the usual manner, then re-freezing

all frozen bits (set all bits whose indices are in F to 0), and then performing hard de-

coding as shown in Fig. 2.12. It should be noted that the original paper describes the

hard decoding stage as an additional stage of encoding. However, polar codes posses a

unique structure that causes their encoder and hard decoder to be the same operation,

ie. G = G−1. Although this distinction is somewhat inconsequential, later polar code

definitions in this thesis will make use of it.

In order for a polar code to be able to be encoded systematically with this method,

we need to ensure that the message a appears in the codeword. The systematic encoder

can be written as a series of matrix multiplications:

a(E ·G ·ET )(E ·G−1 ·ET ) (2.16)

In [18], it was shown that if this formula results in the identity matrix, then the systematic

encoder is valid:

(E ·G ·ET )(E ·G−1 ·ET ) = I (2.17)
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(a) PC(2, 1) with I = {1}
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(b) PC(4, 2) with I = {3, 4}
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(c) PC(8, 4) with I = {3, 5, 6, 7}
Figure 2.11: Factor graphs of polar encoders with R = 1

2 .

The validity of this encoder is then dependent on I, which dictates E. It was proven that

I needs to satisfy a property called dominant contiguity, which has a special meaning

with regards to polar codes. Formally, an information set I ⊆ {0, 1, . . . , N − 1} that is

dominant contiguous satisfies:

(h, j ∈ I and h � i � j) =⇒ i ∈ I, ∀ i ∈ [0, N), (2.18)

where the operator � indicates what is referred to as the binary domination relation in

[18]. Polar code index i ∈ [0, N) with binary representation ib = (i0, i1, . . . , in) is said to
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Figure 2.12: Factor graph for a systematic polar code with R = 1
2 and I = {3, 5, 6, 7}.

be binary dominant to index j ∈ [0, N) with binary representation jb = (j0, j1, . . . , jn),

or i � j, if and only if:

it ≥ jt, ∀ t ∈ [0, n). (2.19)

The binary representation for polar code indices often serves as a useful tool for various

polar code algorithms and proofs. However, the effectiveness of this representation is

merely a fortunate coincidence that results from the fact that polar codes have a recursive

structure that manifests itself in powers of 2. As such, the definition of binary domination

has limited use outside of this polar code definition. The binary domination relation does

not fully provide a deep understanding of why the information set I must adhere to a

particular pattern.

Now we will redefine the dominance relation between polar code indices such that it

can be used for alternate polar code definitions that will be introduced in later sections.

We can say that a polar code index i ∈ [0, N) is column dominant to index j ∈ [0, N), or

i � j, if and only if:

Gk,i ≤ Gk,j and Gi,i,Gj,j = 1, ∀ k ∈ [0, N). (2.20)

In other words, i dominates j when the support of column j of G contains the support

of column i and the diagonal entry of each column is one. In the setting of Arıkan’s polar

code definition, column dominance has the exact same meaning as binary dominance,
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although column dominance has a definition that is applicable to other types of polar

codes. Further, column dominance between indices is a more descriptive relationship

than binary dominance. Column dominance implies that a polar code index has a coded

value that is dependent on another if it is dominated by that index. For example, in a

polar code with N = 8, index 7 is dominant to all other indices since the coded value of

all other indices are dependent on u7. Conversely, index 3 is dominant to indices 0, 1,

and 2, but is dominated only by index 7.

The systematic encoder can then rely on a new definition of dominant contiguity that

satisfies:

(h, j ∈ I and h � i � j) =⇒ i ∈ I, ∀ i ∈ [0, N), (2.21)

Intuitively, dominant contiguity ensures that there are no information bits that are de-

pendent on dominant frozen bits. If this constraint is violated, there is a risk that some

frozen bit indices will change the value of dominated information bits during the re-

freezing step. It was proven in [18] that perfectly designed information sets are always

dominant contiguous in theory. However, the authors conceded that practical code design

algorithms with limited computation precision may possibly produce an information set

that violates dominant contiguity. Although their empirical evidence suggests that such

an event is rare, it can be easily remedied by imposing code construction constraints for

cases of systematic encoding. The lower triangular structure of a polar code generator

matrix allows for useful information sets that are dominant contiguous. Namely, indices

that are dominant to a large number of other indices are more likely to be highly reliable.

This observation allows information sets that provide good error correction performance

while remaining able to be systematically encoded.

2.2.3 Information Set Design

This section will detail some common methods for designing useful information sets. Be-

cause the reliability of polar code indices are said to be channel dependent [4], there exist

accurate construction methods that design information sets for a target SNR. However,

there has been recent interest in effective fast construction schemes that offer a complexity

trade-off by neglecting channel conditions.
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2.2.3.1 Bhattacharyya Parameter Expansion

One of the earlier polar code construction algorithms proposed by Arıkan [4] was to deter-

mine the Bhattacharyya parameter of each index corresponding to a synthetic subchannel.

The Bhattacharyya parameter Z(W ) of a channel W is an indicator of its probability of

error and is defined as:

Z(W ) �
∑
y∈Y

√
W (y|0)W (y|1). (2.22)

The idea behind this algorithm is that for a set of polarized subchannels WN , the Bhat-

tacharyya parameter of all synthetic channels Z(WN) can be determined given the Bhat-

tacharyya parameter of the uncoded channel Z(W ) according to the following equations:

Z(W
(2j−1)
N ) = 2Z(W

(j)
N
2

)− Z(W
(j)
N
2

)2,

Z(W
(2j)
N ) = Z(W

(j)
N
2

)2,
(2.23)

where the uncoded channel has Bhattacharyya parameter Z(W ) = ε, which is obtained

from the target SNR. After computing N unique Bhattacharyya parameters, the indices

are sorted according to Z(WN) in ascending order and select the first K indices to be

inserted into I. The remaining indices are inserted into F . This method has only been

proven to be exact for BECs. While this method is not designed for AWGN construction,

it can still be used at the expense of accuracy. It was shown in [19] that the Bhattacharyya

construction method is inferior to other construction algorithms when considering the

AWGN channel.

2.2.3.2 Gaussian Approximation

A more commonly used construction scheme is known as Gaussian approximation (GA).

Proposed by Peter Trifonov [20], this method is designed for the AWGN channel and

offers a lower complexity algorithm when compared with density evolution. Under the

assumption that uncoded channel W is Gaussian, the LLR of that channel has a Gaussian

distribution of λ(y) ∼ N ( 2
σ2 ,

4
σ2 ) when an all-zero codeword is transmitted. Although the

intermediate stages of a factor graph have bimodal distributions during soft decoding

algorithms, they are nonetheless assumed to be Gaussian for simplicity. The reliability

of the synthetic subchannels WN is then proportional to the mean of their distributions
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λN , denoted in this work by zN . The reliabilities of each index can be computed using:

z
(2j−1)
N = φ−1(1− (1− φ(z

(j)
N
2

))2),

z
(2j)
N = 2z

(j)
N
2

,
(2.24)

where

z
(0)
1 =

2

σ2
= 4R

Eb

N0

, (2.25)

where Eb

N0
is the linearized SNR. Note that the computation of σ2 neglects the modulation

rate, since GA does not take into account any modulation schemes when computing LLRs.

The function φ(x) is defined precisely as:

φ(x) =

⎧⎨
⎩1− 1√

4πx

∫∞
−∞ tanh u

2
e
−(u−x)2

4x dx, x > 0

1, x = 0
. (2.26)

Alternatively, there exist simple approximations from the open source FEC simulation

tool, aff3ct [21]:

φ(x) =

⎧⎨
⎩e0.0564x

2−0.485x x < 0.8678

eαx
γ+β otherwise

, and (2.27)

φ−1(x) =

⎧⎨
⎩4.3049(1−√

1 + 0.9567 log x) x > 0.6846

(a log x+ b)c otherwise
, (2.28)

where α = −0.4527, β = 0.0218, γ = 0.86, a = 1
α
, b = −β

α
, and c = 1

γ
. Similarly to the

Bhattacharyya method, sort the indices according to zN in descending order, then insert

the first K indices into I and the remaining indices into F . All codes in this thesis are

constructed with GA using the aff3ct simplifications unless otherwise noted.

The GA algorithm is useful beyond sorting indices by reliability. Since the output

of GA are the means of the evolved channel LLRs, that information can be used to

analytically compute a theoretical FER under SC decoding for an AWGN channel [22]:

FERth = 1−
∏
i∈I

(
1− 1

2
erfc

(
1

2

√
ziN

))
. (2.29)

As can be seen in Fig, 2.13 this formula computes FER quite accurately in relation to

the simulated FER.
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Figure 2.13: A comparison of simulated and theoretical FER measurement under SC decoding
in an AWGN environment.

2.2.3.3 Nested Sequences

The recursive property of polar codes alludes to the possibility that reliability orders have

a certain universality. It has been demonstrated that ranked reliability sets R ∈ [0, N) of

polar codes have a nested structure [23], [24]. Namely, the sorted reliability order RN ′ for

a polar code with length N ′ can be obtained from any reliability order designed for a polar

code with length N ′′ > N ′. This property is a byproduct of the fractal structure of polar

codes and their inherent universal partial order (UPO). Although the subchannels of a

polar code have reliabilities that are channel dependent, it is known that some indices

will undeniably be more reliable that other, regardless of the channel conditions. For

example, no information set construction algorithm will ever displace the last index as

the most reliable.

Given a carefully constructed reliability order R′′
N ⊆ [0, N ′′) for a polar code of length

N ′′, then any polar code of length N ′ < N ′′ can be constructed by removing all indices

from R′′
N that are less than N ′ such that RN ′ ⊆ [0, N ′). For example, given a reliability

order for a polar code with N = 16:

R16 = {15, 14, 13, 11, 7, 12, 10, 9, 6, 5, 3, 8, 4, 2, 1, 0}, (2.30)

the reliability order for a polar code with N = 8 can be obtained by:

R8 = R16 \ [8, 16)
R8 = {15, 14, 13, 11, 7, 12, 10, 9, 6, 5, 3, 8, 4, 2, 1, 0}
R8 = {7, 6, 5, 3, 4, 2, 1, 0}

(2.31)
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Figure 2.14: SC tree for PC(8, 4) and I = {3, 5, 6, 7}.
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Figure 2.15: SC decoding rules are dictated by left-priority tree traversal.

I can then be determined by selecting the first K elements of R8, and F = R8 \ I.

2.3 Polar Code Decoding Algorithms

This section will outline the key state-of-the-art soft decoding algorithms for polar codes.

All decoding equations are in the LLR domain.

2.3.1 Successive Cancellation

The primary decoder that is used to decode polar codes is known as successive cancellation

(SC), which was proposed by Arıkan in [4]. The SC decoder can be visualized as binary

tree traversal with left-branch-first priority. The encoder factor graph can be restructured
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into a tree with a depth of n + 1. The tree then has N leaf nodes, which represent the

estimated message û. The tree also has n stages of intermediate nodes with 2n−s nodes

corresponding to the polarizing transforms emphasized in Fig. 2.11c, where s ∈ [0, n] is

the stage number counting from the bottom of the tree. Each node v contains Nv = 2s

each of LLRs αv and bit partial sums βv. Fig. 2.14 visualizes the SC decoder where gray

nodes are intermediate, and black and white nodes represent information and frozen bit

leaf nodes, respectively. To begin decoding, the received channel values y are assigned to

the top of the tree where s = n. At each node, the left and right children LLRs, αl and

αr are computed using functions f and g, respectively:

αi
l = f(αi

v, α
i+Nv

2
v ) = αi

v � α
i+Nv

2
v ,

αi
r = g(αi

v, α
i+Nv

2
v , βi

l ) = (−1)β
i
l · αi

v + α
i+Nv

2
v ,

∀ i ∈ [0,
Nv

2
), (2.32)

where a�b ≈ sign (a) sign (b)min (|a|, |b|). At each leaf node i ∈ [0, N), a hard decision is

made to estimate the value of ûv if the node corresponds to an information bit. Otherwise,

ûv is set to 0 since it is frozen:

ûi =

⎧⎨
⎩HD(αi), if i ∈ I
0, otherwise.

(2.33)

After returning from a right branch, the partial sums in the parent node βv are updated

with:
βi
v = βi

l ⊕ βi
r,

β
i+Nv

2
v = βi

r,
∀ i ∈ [0,

Nv

2
), (2.34)

before traversing the next branch. Ostensibly, an SC decoder can be reduced to a schedule

of f and g operations, where the total number of operations is given by N log2 N . The

SC schedule is deterministic given the length of the polar code. The schedule of the

decoder in Fig. 2.14 is depicted in Fig. 2.16. The error correction performance of SC

improves with the length of the polar code, although SC is considered to have mediocre

performance overall. The poor performance is a result of the fact that SC only considers

the possibility of a single codeword path candidate, and LLR information in frozen bit

positions is discarded. The sequential nature of the SC decoder also poses latency issues.

Both of these issues will be rectified with modifications of the SC algorithm in the next

sections. A comparison of decoding performance of several polar codes is presented in

Fig. 2.17. I is optimized for each Eb

N0
point using GA.

The memory requirements of the SC decoder have a space complexity of O(N log2 N)
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Figure 2.16: SC decoder expressed as a schedule of f and g operations for N = 8.
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Figure 2.17: Theoretical SC performance on polar codes with R = 1
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Figure 2.18: SC α and β memory requirements for a polar code with N = 8.
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with a naive implementation. However, the sequential nature of the decoder allows α

and β data to be discarded once it is no longer needed. As such, a memory-efficient SC

decoder allows for linear space complexity [25], as depicted in Fig. 2.18.

2.3.2 Successive Cancellation List

To improve upon the lackluster error correction performance of SC, the Successive Can-

cellation List (SCL) decoder was proposed [8]. Under SCL decoding, L decoding path

candidates are considered simultaneously. This is accomplished by duplicating decoding

paths at each information bit leaf node i by considering the possibility that û is equal to

”0” or ”1”. The number of considered paths is then doubled at each information bit. In

order to maintain the list size at L, a pruning criteria must be used to determine which

paths to eliminate. In the LLR domain [9], each path l ∈ [0, L) is associated with a path

metric γi
l that is updated at each leaf node i using:

γi
l =

⎧⎨
⎩γi−1

l , if ûi =
1
2
(1− sign(α0

i ))

γi−1
l + |α0

i |, otherwise.
(2.35)

After computing each leaf node, if the number of path candidates is larger than the

maximum list size L, then only the L paths with the lowest γi
l are allowed to continue

decoding. The rest of the paths are discarded. Once all leaf nodes are computed, the path

with the lowest path metric is returned as the estimated message û. Fig. 2.19 presents

the performance of the SCL decoder with various maximum list sizes. The SCL decoder

is equivalent to SC when L = 1. Observe that increasing the list size does not necessarily

equate to improved performance. It is clear that a large enough list size causes the polar

code to converge to the ML bound.

In [8], it was shown that the SCL decoder can be substantially enhanced by employing

an outer CRC concatenation, as described in Section 2.1.5. Tal. et al observed that in

instances of decoding error under SCL, the correct path was often among the L best

candidates. To improve upon the path selection criteria at the end of decoding, the

augmented CRC-aided SCL decoder (CA-SCL) returns the message with the lowest path

metric that also has a valid CRC check. This modification was shown to significantly lower

the error floor of polar codes to the point where this decoding scheme can outperform

state-of-the-art LDPC codes. Although SCL and CA-SCL both have improved error

correction performance over SC, they both suffer from the sequential nature of the SC
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Figure 2.19: SCL and CA-SCL performance on PC(1024, 512) with L = {1, . . . , 32} and C = 16.

tree. In fact, SCL and CA-SCL have a substantial increase in latency over SC with

a time complexity of O(LN log2 N). Moreover, the requirement of selecting the best

paths imposes the necessity of a sorting algorithm for each instance of list pruning, which

further increases the decoding complexity. Fig. 2.19 shows the substantial improvement

in decoding performance CA-SCL offers for a list size of 8 using a CRC with C = 16.

2.3.3 Fast Simplified Successive Cancellation

The serial nature of the SC decoder is a serious impediment to the practicality of polar

codes. In [5], it was shown that an SC decoding tree can be pruned by identifying

particular frozen bit patterns. By allowing special intermediate nodes that reflect simple

subcodes with fast decoders, the decoding schedule can be altered to reduce latency.

When the decoder arrives at a specialized node, a specialized decoder can be enacted

with high efficiency that eliminates the need to traverse that branch of the polar code

further. This simplified decoder was extended in [6] to recognize additional embedded

codes that allowed for further latency reduction. The pruned decoder is known as fast

simplified successive cancellation (FSSC). This section will outline the four basic fast

nodes that are commonly used.
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Rate-0 Node

A Rate-0 (R0) node v with indicies i ∈ v is one that is parent only to frozen leaf nodes

such that i ∈ F . Further, any node that is parent to a set of intermediate R0 nodes is

also a R0 node. Such nodes need not be further traversed since all estimated bits and

partial sums are known to be “0”:

βi
v = 0,

ûi
v = 0,

∀ i ∈ [0, Nv), (2.36)

Rate-1 Node

Similarly, a Rate-1 (R1) node v is one that is parent only to information leaf nodes such

that i ∈ I, as are any nodes that are parent to only R1 nodes. R1 nodes can be decoded

by first computing βv with a hard decision:

βi
v = HD(αi

v), ∀ i ∈ [0, Nv), (2.37)

and then updating ûv with hard decoding:

ûv = βvG
−1
Nv
, (2.38)

where GNv is the generator matrix of a polar code of length Nv.

Repetition Node

Any polar code with a rate R = 1
N
, only the highest order bit uN−1 will contain informa-

tion. This frozen set pattern renders the polar code into a repetition (REP) code. Any

node v identified as a REP node is decoded simply by summing all LLRs and taking a

hard decision on the result. The result is stored in all indices of βv:

βi
v = HD(

∑
j

αj
v), ∀ i, j ∈ [0, Nv), (2.39)

The partial sum can then be hard decoded:

ûi
v =

⎧⎨
⎩0, i < Nv − 1

HD(
∑

j α
j
v), i = Nv − 1

∀ i, j ∈ [0, Nv), (2.40)
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Single Parity Check Node

For a polar code of rate R = N−1
N

, only the lowest order bit u0 will be frozen. This polar

code configuration can be interpreted as a single-parity check (SPC) code. For example,

if N = 4, then u = (0, u0, u1, u2) and x = (u0 ⊕ u1 ⊕ u2, u0 ⊕ u2, u0 ⊕ u1, u2). An SC node

v with Fv that reflects this pattern can be optimally decoded with low complexity. First,

the partial sums βv are estimated with a hard decision according to eq. 2.37. The parity

of βv is then computed using:

parity =
⊕
i

HDβi
v, ∀ i ∈ [0, Nv). (2.41)

If the parity constraint is not fulfilled, then the least reliable bit at index j is flipped as

in

βj
v := βj

v ⊕ parity, (2.42)

where

j = argmin
i

|αi
v|, ∀ i ∈ [0, Nv), (2.43)

Finally, ûv is estimated using eq. 2.38.

Combining these four specialized decoders with SC allows for substantial latency re-

duction. It is also possible to derive fast decoding rules for these nodes in list decoders

[26]. There are exact formulations for R0, R1, and REP nodes for list decoding that allow

for the exact same error correction performance as the original SCL decoder. However,

SPC nodes require a special approximation in order to remain practical [27], though the

FER loss is negligible. Other flavours of SC exist throughout polar code literature, but

this thesis will not cover these topics.
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Analysis of Length-Compatible Polar

Codes

The central theme of this thesis is non-conventional polar coding techniques. A major

drawback associated with polar codes is their lack of flexibility, since they can only attain

native block lengths that are powers of 2. This chapter will introduce the most studied

methods used to attain length-compatible polar codes and present an analysis that com-

pares the feasibility of these schemes. This chapter contains sections on puncturing and

shortening techniques, mixed-kernel construction, and the latest 3GPP 5G standard.

3.1 Punctured and Shortened Polar Codes

Puncturing and shortening techniques, sometimes known as rate-matching, support polar

code construction of any length. These algorithms can be useful for practical scenarios

where channel bandwidth or communication standards require a certain amount of flexi-

bility.

3.1.1 Puncturing

To build a punctured polar code PC(E,K) of arbitrary length E with rate R = K
E
, a

larger mother polar code of length N = 2�log2E	 is required to rectify the length difference.

The mother code is used for the encoding and decoding steps. To puncture, P = N − E

indices must be carefully selected to form the puncturing set P ⊂ [0, N). All indices in
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Figure 3.1: Puncturing patterns for a polar code with E = 6.

P are said to be punctured. To form a valid puncturing set, all contained indices must

be incapable. An incapable index is an index that results in an LLR of 0 at its leaf node

under SC decoding when the corresponding channel value is also 0. In other words, a

channel value indicating an erasure must propagate the erasure to the associated leaf

node, as depicted in Fig. 3.1. There are two simple patterns that can be used to build

valid puncture sets. The first pattern involves simply adding the first P indices to P as

in Fig. 3.1a, which was proposed in [12]. The second pattern, visualized in Fig. 3.1b,

similarly punctures the first P indices in bit-reversed (BR) order [28].

Once the puncturing set is determined, those indices are added to the frozen set, and

removed from R, ie. P ⊂ F , R = [0, N) \ P . This step will be further referred to

as the pre-freezing step. I is determined by selecting the first K indices remaining in

R. Encoding is performed with the mother code, and the punctured indices are not

transmitted with the rest of the codeword. P is known at the decoder, and an LLR of 0

is injected into the decoder at punctured channel indices:

yi = 0, ∀ i ∈ P . (3.1)

Decoding is then performed on the mother code in the usual way.

DeterminingR can take into account the punctured indices, since puncturing can affect

the reliability of non-punctured indices, though it is not required. In order to consider

the effect of punctured bits when using GA construction, simply set punctured indices
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to 0 rather than z
(0)
1 before carrying out the algorithm. Other construction algorithms

such as Bhattacharyya parameter expansion can be modified in a similar manner. This

puncturing scheme is called quasi-uniform puncturing (QUP) [12]. QUP has only been

formally defined for using the First puncturing pattern, though the method could easily

be adapted for the BR formation. All future uses of QUP in this work refer to a code

that punctures the first P indices. QUP produces an information set that is optimized for

the puncturing set, though it requires that the information set be recomputed for every

possible code length.

Alternatively, reliability set design can neglect the information provided by the punc-

turing set to varying degrees of success [28]. Using this method, the reliability order is

determined in the usual way for the mother code. While this method has no bearing

on optimality of the information set, it only requires computing reliability once for the

mother code so that it can be used for any desired punctured polar code length. This

low-complexity method will later be referred to as either First or BR, depending on the

puncturing pattern used.

Although puncturing can be used to attain any block length, it was noted in [11] that

puncturing techniques generally have poor performance at high rates. This observation

is a based on the fact that high rates imply that P is more likely to contain useful indices

in it. The systematic encoder defined in Section 2.2.2 is compatible with all outlined

puncturing schemes since both the First and BR puncturing patterns allow I to remain

dominant contiguous.

3.1.2 Shortening

Shortening schemes operate on a different principle than puncturing schemes, but their

implementations are very similar. Building a shortened polar code PC(E,K) of arbitrary

length E requires a mother code of length N = 2�log2E	. A valid shortening set S ⊂ [0, N)

is comprised of S = N − E shortened indices that must be overcapable. An overcapable

index is one whose codeword value is ”0” when its uncoded value is also ”0”, as outlined

in Fig. 3.2. As with puncturing, there are two useful shortening patterns that can be

employed. One shortening pattern simply adds the last S indices to S [13], as depicted in

Fig. 3.2a. The second shortening pattern shortens the last S indices in BR order [28], as

in Fig. 3.2b. These patterns will be referred to as the Last and BR shortening schemes

from this point on.
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Figure 3.2: Shortening patterns for a polar code with E = 6.

After the shortening set is decided, all shortened indices are pre-frozen in the same

way as with puncturing. The mother code is encoded, and the shortened indices are

not transmitted. S is known at the decoder, and all channel values corresponding to

shortened indices are set to infinity since those codeword bits are known to be zero:

yi = ∞, ∀ i ∈ S. (3.2)

The mother code can then be decoded. Just as with puncturing, computing R for a

shortened polar code can take into account the effect that shortening has on the reliability

of transmitted bits. To perform GA that takes shortening into account, set all indices in S
to ∞ before computing the reliabilities, as proposed in [13]. This method will be referred

to as the Wang-Liu (WL) method, which exclusively uses the Last shortening pattern.

It is also possible to ignore the effect of shortening on index reliability, as suggested in

[28], and simply employ Last or BR formations with the natural reliability order of the

mother code. Again, this method has no guarantee of optimality, but allows for a single

reliability construction for all code lengths. All later references to Last or BR in this

work refer to this low complexity method.

Shortening is observed to have inadequate performance at low rates [11]. In low coding

rate scenarios, only a few information bits are required. In the case of shortening, the most

reliable bits are shortened and not available for the data transmission, which impairs the

quality of the polar code. Regarding systematic shortened polar codes, it was noted that
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both the Last and BR shortening pattern are compatible with the encoding technique

described in Section 2.2.2 [18].

3.2 Multi-Kernel Polar Codes

Introduced in [14], multi-kernel (MK) polar codes, or sometimes mixed-kernel polar codes,

are an alternative construction that offers increased native length flexibility over Arıkan’s

definition. Traditional polar codes, now referred to as Arıkan polar codes, are limited

to block lengths that are powers of 2. This limitation is the result of the recursive

Kronecker expansion of the 2× 2 polarizing matrix T2, further referred to as the Arıkan

kernel. Gabry et al proposed the possibility of obtaining polar codes using kernels with

alternate dimensions. Specifically, the 3× 3 polarizing matrix was introduced:

T3 =

⎡
⎢⎢⎣
1 1 1

1 0 1

0 1 1

⎤
⎥⎥⎦ . (3.3)

This new matrix, referred to as the ternary kernel, was shown to be optimal for polar-

ization [29], although it has a polarization exponent that is less than that of T2. T3

can be used as a Kronecker product constituent in conjunction with the Arıkan kernel to

produce any polar code with length N = 2n3m where n,m ∈ N
0. The number of terms

in the Kronecker product is equal to M = n+m. Table 3.1 outlines the increased block

length flexibility that MK polar codes offer by varying m and n for M ∈ [1, 10] to list all

possible lengths. Values in bold indicate block lengths where 32 ≤ N ≤ 1024, which are

possible use cases of 5G polar codes. Further, the table points out that with a maximum

of 10 stages, Arıkan polar codes can only attain 10 lengths, where as MK polar codes

using T2 and T3 can attain 65.

3.2.1 Multi-Kernel Encoding

With the addition of improved block length flexibility, there must be further consideration

for the order of the kernels in the Kronecker product that defines G. For example, a polar

code of length N = 6 could be encoded with either T2 ⊗ T3 or T3 ⊗ T2, which are two

unique generator matrices, depicted in Fig. 3.3. For clarity, we can refer to a kernel

vector k that stores the sizes of the kernels in order pertaining to the generator matrix,
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M = 1 M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10

2 4 8 16 32 64 128 256 512 1024
3 6 12 24 48 96 192 384 768 1536

9 18 36 72 144 288 576 1152 2304
27 54 108 216 432 864 1728 3456

81 162 324 648 1296 2592 5184
243 486 972 1944 3888 7776

729 1458 2916 5832 11664
2187 4374 8748 17496

6561 13122 26244
19682 39366

59048

Table 3.1: List of block lengths attainable by MK polar codes using T2, T3.

ie. ki ∈ {2, 3} ∀ i ∈ [0,M). The generator matrix can then be defined as:

G =
M−1⊗
i=0

Tki
. (3.4)

Observe that the kernel order in a MK factor graph is reversed from that of the the

Kronecker product. Further, additional kernels of size higher than 3 have been proposed

[30] [31] and proven [29], although the Arıkan and ternary kernels are the most common

[15] and least complex to use. As such, only MK polar codes derived from these two

kernels will be inspected.

3.2.2 Multi-Kernel Decoding

Decoding of MK polar codes can be accomplished using SC [14]. Just as with Arıkan

polar codes, the encoding factor graph is restructured into a tree with M stages, which

visualizes the SC algorithm. MK SC involves a tree search with left-to-right branch

priority, where the leaf nodes in the tree represent the estimated sourceword û. The top

of the tree acts as the decoder input, which is the received noisy channel vector y in the

form of LLRs.

Beginning from the top of the tree, the branches are traversed by applying LLR trans-

formations and storing the results in the proceeding stage. Each stage s ∈ (0,M ] pertains

to either the Arıkan or ternary kernel and contains N
p
nodes, which represent groups of

polar transforms emphasized in Fig. 3.3, where p =
∏s−1

i=0 kM−1−i. At the bottom stage
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Figure 3.3: Factor graphs for two unique multi-kernel polar codes with N = 6.

of the tree (ie. s = 0), p = 1. Each node v in stage s stores both p LLRs and bit partial

sums and invokes p
2
or p

3
transformations upon entering, depending on the kernel of stage

s − 1. If the stage s pertains to the Arıkan kernel, the functions f or g, found in eq.

2.32, are applied to the left and right branches, respectively. In the case that stage s

corresponds to the ternary kernel, the left, center, and right children LLRs, αl, αc, and

αr, are computed using functions λ0, λ1, and λ2, respectively:

αi
l = λ0(α

i
v, α

i+Nv
3

v , α
i+ 2Nv

3
v ) = αi

v � α
i+Nv

3
v � α

i+ 2Nv
3

v ,

αi
c = λ1(α

i
v, α

i+Nv
3

v , α
i+ 2Nv

3
v , βi

l ) = (−1)β
i
l · αi

v + α
i+Nv

3
v � α

i+ 2Nv
3

v ,

αi
r = λ2(α

i+Nv
3

v , α
i+ 2Nv

3
v , βi

l , β
i
c) = (−1)β

i
l · αi+Nv

3
v + (−1)β

i
l⊕βi

c · αi+ 2Nv
3

v ,

∀ i ∈ [0,
Nv

3
),

(3.5)
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Figure 3.4: SC tree for PC(6, 3).

s = d
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Figure 3.5: Mk SC decoding rules are dictated by left-to-right priority tree traversal.

Hard decisions are applied to leaf nodes in the usual way. After returning from a right

branch, p partial sum updates are executed at the previous node before moving down

another branch. For Arıkan stages, eq. 2.34 is applied. For a ternary stage, instead

apply:

βi
v = βi

l ⊕ βi
c,

β
i+Nv

3
v = βi

l ⊕ βi
r,

β
i+ 2Nv

3
v = βi

l ⊕ βi
c ⊕ βi

r,

∀ i ∈ [0,
Nv

3
), (3.6)

An SC decoder can be expressed as schedule of f , g, λ0, λ1, and λ2 operations, where the

total number of operations described by MN . Fig. 3.4 depicts SC trees for both kernel

configurations for N = 6, and Fig. 3.6 depicts their corresponding schedules. A SCL

decoding can also be performed on MK codes by employing the same method outlined in

Section 2.3.2.

3.2.3 Multi-Kernel Information Set Design

The following section assumes that the order of the kernels and generator matrix are

known to the designer. Kernel order optimization will be discussed in Section 4.1, al-

though this chapter can assume that the kernel order is designed for highest overall code
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Figure 3.6: SC decoder expressed as a schedule of LLR operations for N = 6.

reliability.

3.2.3.1 Bhattacharyya Parameter Expansion

MK polar codes can have their reliability ordering determined with Bhattacharyya pa-

rameter expansion just as with Arıkan polar codes. The overall algorithm is the same,

but there lies a change in computing ternary stages. Different formulas must be used

for computing the Bhattacharyya parameter for ternary stages. These equations can be

easily derived by noticing that eq. 3.5 can be expressed in terms of eq. 2.32:

λ0(a, b, c) = a� b� c = f(a, f(b, c)),

λ1(a, b, c, d) = (−1)d · a+ b� c = g(a, f(b, c), d),

λ2(a, b, c, d) = (−1)c · a+ (−1)c⊕d · b = g(a, (−1)c⊕d · b, c).
(3.7)

Specifically, the SC LLR equations for a ternary stage can be rewritten as nested com-

binations of f and g operations. This pattern can be exploited to rewrite the reliability

construction algorithms for ternary polar codes. As such, eq. 2.23 can be modified

accordingly:

Z(W
(3j−2)
N ) = 3Z(W

(j)
N
3

)− 3Z(W
(j)
N
3

)2 + Z(W
(j)
N
3

)3,

Z(W
(3j−1)
N ) = 2Z(W

(j)
N
3

)2 − Z(W
(j)
N
3

)3,

Z(W
(3j)
N ) = Z(W

(j)
N
3

)2,

(3.8)

R can then be sorted according to Z(WN), and the first K bits can be selected for I.
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3.2.3.2 Gaussian Approximation

The GA algorithm outlined in Section 2.2.3.2 can be adapted in a similar manner to

the Bhattacharyya modification in the previous section. For stages of the polar code

corresponding to an Arıkan kernel, use eq. 2.24. For computing GA for a ternary stage,

use the following modified formulas:

z
(3j−2)
N = φ−1

(
1−
(
1− φ(φ−1(1− (1− φ(z

(j)
N
3

))2))

)
(1− φ(z

(j)
N
3

))

)
,

z
(3j−1)
N = φ−1(1− (1− φ(z

(j)
N
3

))2) + z
(j)
N
3

,

z
(3j)
N = 2z

(j)
N
3

,

(3.9)

Then, select I in the usual way.

MK polar codes can also be constructed for minimized codeword Hamming distance

[30]. This is a valid construction, although this scheme is known to only be effective for

short code lengths, ie. N < 200. At this time, there exist no proposals for the possibility

of nested sequences for MK polar codes.

3.3 3GPP 5th Generation New Radio

This section will outline the length-compatible polar coding schemes that have been

devised for industrial use in the control channel for the upcoming 3GPP 5th generation

(5G) standard for New Radio (NR). The schemes referenced are detailed in the 3GPP

specification [10], which is summarized in [11].

3.3.1 5G Polar Codes System Overview

5G NR features several different use cases. This thesis is primarily focused on the error

correction performance and efficiency of length-compatible polar code techniques. As

such, this work will limit the scope of the 5G parameters to only include cases that

are relevant to the other state-of-the-art length compatible schemes. This work will not

consider the performance of uplink scenarios (labeled PUCCH/PUSCH in the literature)

since those use cases employ embedded parity checks within the codeword. The parity
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Figure 3.7: The 5G polar coding scheme for the downlink case.

check bits will not yield a fair comparison of the 5G standard against puncturing, shorten-

ing, or multi-kernel schemes due to the added system complexity and potential difference

in error correction performance. Since only the downlink scenarios (PDCCH/PBCH) will

be studied, only the block components depicted in Fig. 3.7 will be considered.

3.3.2 5G Polar Code Encoding

The encoding chain begins with the source, which is a binary message a of length A.

Next, a CRC is computed on a and appended to form vector c such that the message is

now of length K = A+C, where C = 24 in the downlink case. c is then placed through an

input bit interleaver ΠIL to obtain vector c′. The interleaver is implemented as a lookup

table, where the table is defined in Table 5.3.1.1-1 in the specification [10].

Before c′ can be encoded into a polar code of PC(E,K), several parameters must be

specified. First, the size of the mother code N must be determined using Algorithm 1.

From this point, the rate-matching scheme needs to be selected in order to perform the

pre-freezing step. If E ≤ N and R ≤ 7
16
, then puncturing is employed. Alternatively, if

E ≤ N and R > 7
16
, then shortening is used instead. This corroborates the suggested use

cases in Sections 3.1.1 and 3.1.2: puncturing and shortening are effective for low rates

and high rates, respectively. However, there is the possibility that E > N , in which case

a repetition rate-matching scheme is used. For shorthand, the puncturing set, shortening

set, and repetition set, will all be represented interchangeably with a rate-matching set

RM ⊂ F . The rate-matching set is not determined with the typical First, Last, or
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BR patterns, but instead a customized pattern dictated by the sub-block interleaver ΠSB

defined in eq. 3.10.

Algorithm 1: Determine the size of the mother code.
Input : E,K
Output: N

1 nmin = 5;
2 if uplink then
3 nmax = 10;
4 else
5 nmax = 9;

6 if E ≤ 9
8
(2�log2 E�) AND K

E
< 9

16
then

7 n1 = �log2 E�;
8 else
9 n1 = �log2 E�;

10 n2 = �log2 8K�;
11 n = max(min(n1, n2, nmax), nmin);
12 N = 2n;
13 return N

ΠSB(j) = i, ∀ j ∈ [0, N), (3.10)

where

i = B · P
⌊
j

B

⌋
+ q, (3.11)

and B = N
32
, q = j mod B. Evidently, the indices to be pre-frozen are the first or last

N −E indices after interleaving such that ΠSB(k) ⊂ F ,RM ∀ k ∈ [ω,N −E+ω) where

ω = 0 when puncturing or repeating, and ω = E otherwise.

In the case of puncturing, there is an extra freezing step to ensure that reliable bits

are used for data transmission. The indices that are frozen in this step are all that satisfy

[0, T ) ⊂ F where:

T =

⎧⎪⎪⎨
⎪⎪⎩
⌊
3
4
N − E

2

⌋
if E ≥ 3

4
N,

⌊
9
16
N − E

4

⌋
otherwise.

(3.12)

Finally, the first K non-frozen indices may be selected from the nested sequence pre-

sented in Table 5.3.1.2-1 of [10] to insert into I. If N < 1024, which is the case during

downlink, then a reliability sequence for the appropriate block length is extracted using

the technique described in Section 2.2.3.3. As usual, the remaining indices are added to
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F . Vector c′ is then expanded into u and the mother polar code can then be encoded

into x. The codeword is next sent to the circular buffer.

The circular buffer is the device that chooses which indices are transmitted across the

channel. If puncturing or shortening is used, all indices in RM are not transmitted.

However, if repetition is the elected rate-matching scheme, then all indices in RM are

transmitted twice. On the receiver side, LLRs corresponding to punctured and shortened

indices are set to 0 and ∞, respectively. Repeated indices sum their multiple LLRs

together before decoding. Decoding is then performed using the mother code. It is

preferable to employ a decoder that takes advantage of the appended CRC, such as CA-

SCL.

For the remainder of this work, all simulations of 5G polar codes will neglect the input

bit interleaver ΠIL, which has a maximum input length of K = 164. This omission will

allow for an unconstrained message length K, and a fair comparison of length-compatible

polar code schemes.
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Figure 3.13: The effect of the ternary kernel on error correction performance forN ≈ 3723±18%.

3.4 Simulations

This section presents simulation data that test the error correction performance of the

length-compatible polar coding schemes detailed in this chapter. Although puncturing

and shortening schemes can attain any arbitrary length, the scope of tested cases must

accommodate the limitations of 5G polar codes and MK polar codes. As such, the

simulation campaign encompassed a range of block lengths and rates that exhibit the

strengths and weaknesses of the studied coding schemes. The examined coding schemes,

are the 3GPP 5G standard, puncturing using QUP, shortening using WL, and MK polar

codes. ”MK HR” refers to codes constructed such that their kernel orders were chosen for

highest overall reliability, as suggested in [14], and ”MK Last” indicates codes constructed

with ternary kernels as the last constituents in the Kronecker product. The decoder used

is CA-SCL with a list size of 8 and a CRC size of 24. The code lengths tested are

N = {192, 394, 576, 768, 972} with rates R = {1
4
, 1
2
, 3
4
}. All information sets are designed

for each plot point using GA.
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3.5 Analysis

For the purposes of discussion, we will introduce two new metrics with which to measure

degradation against Arıkan polar codes. These metrics can serve as an indicator of the

magnitude of compromise that the considered scheme needs to make in order to achieve

non-standard code lengths. For puncturing and shortening, it will be useful to consider

the proportion of the mother code length N that is discarded to attain the desired length

E. This will be called the rate-matching ratio, φRM = N−E
N

. For MK polar codes, the

fraction of ternary stages, φMK = m
M
, will be referred to as the ternary ratio and may

serve as an effective measurement of deterioration.

In most simulated conditions all considered schemes have comparable error correction

performance. We will then investigate the circumstances where some schemes are supe-

rior. From these simulations, there are several notable observations. The 5G polar codes

often have among the best error correction performance of all the presented schemes in

most cases. 5G polar codes have near identical performance to either punctured or short-

ened polar codes, which is to be expected since typically the underlying schemes are very

similar. The literature on rate-matching techniques acknowledges that shortening tends

to outperform puncturing in high rates, while the opposite is true for low rates. From

these simulations, these characteristics can indeed be confirmed to be true. For R = 1
2
,

puncturing and shortening perform similarly. An interesting result can be found in the

simulations for N = 576: this code length suggests that puncturing and shortening will

suffer in comparison to MK codes since a significant portion of the code is discarded, ie.

φRM ≈ 0.44. However, the 5G scheme outperforms both QUP and WL for high rates, and

outperforms MK codes in low rates. In fact, the 5G polar codes only ever produce inferior

results for some medium rates. QUP and WL do deteriorate when φRM → 0.5, which

occurs when the difference in N and E are largest. This issue lends sufficient justification

to the design choices for the complex rate-matching system used for 5G polar codes. The

5G scheme ensures that φRM remains as low as possible to preserve the error correction

capabilities of the polar code. When considering that the 5G algorithm uses a nested

sequence to determine the information and frozen sets, the simulations indicate little

compromise in FER. This impressive result demonstrates a well designed low-complexity

error correction scheme for industrial use.

Regarding MK polar codes, two different kernel ordering strategies were selected to

indicate the impact of this code design step. From the simulations, it could be argued

that optimizing the kernel order is certainly not required. The ”MK Last” codes produced
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consistent results when compared with ”MK HR”. In most tested cases, MK polar codes

had commensurate performance in comparison with the other coding schemes. However,

there exist MK constructions that cause an unavoidable performance loss. For N = 972,

both considered MK kernel order strategies resulted in a FER that lags the puncturing

and shortening schemes by at least one order of magnitude. This deficiency can be

attributed to multiple factors. Firstly, puncturing and shortening methods are more

likely to perform well when φRM → 0. Secondly, MK polar codes do not perform well

when φMK → 1 since it is known that T3 has a reduced rate of polarization compared

with T2. This shortcoming suggests that reducing the number of ternary stages in a

MK polar code will improve performance. This motion is confirmed by the experiment

depicted in Fig. 3.13. These plots were generated using the theoretical FER formula in

2.29. This calculation measures the FER of MK polar codes with an approximate length

of N = 3723 while varying φMK and maintaining the block length as much as possible.

The experiment reveals that increasing the number of ternary stages reduces the error

correction performance by multiple orders of magnitude in some extremes. Though the

code lengths are not constant, the FER drops as N increases. Polar codes generally

improve in error correction performance as block length increases, which suggests that

the trend presented in this experiment is quite strong. The evidence points out that

”deeper” polar codes, or polar codes with a smaller φMK , will have better error correction

performance. These simulations also suggest that using Last is optimal for low rates, while

using First is best for high rates. However, the difference in FER is negligible.

Regarding decoding complexity, MK polar codes with a higher φMK for a given N will

have reduced decoding time since there are fewer stages to the decoder. On the other

hand, MK polar codes always have reduced decoding time compared with punctured or

shortened polar codes since they must always decode using their larger mother code.
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Towards Practical Multi-Kernel

Polar Codes

Thus far, MK polar codes have been shown to have similar error correction performance to

previously proposed puncturing and shortening schemes while offering reduced decoding

complexity [14]. They have also been shown to be feasible for a hardware implementation

[15]. However, MK polar codes are still lacking many of the useful features and innovations

of Arıkan polar codes, such as simplified code construction, fast decoding, rate-matching,

and systematic encoding. This chapter will investigate the viability of these techniques

as they apply to MK polar codes in order to maximize their capabilities.

4.1 Kernel Order Optimization

To design a MK polar code, one must first decide the order of the kernels to perform

encoding, decoding, and frozen set design. For a given block lengthN , there exist κ = M !
n!m!

different possible kernel orders π that make up the set K. In [14], it was suggested

that k can be theoretically optimized for error correction performance by searching all

permutations for the order that produces the most overall reliable information set. If R
is to be constructed using Bhattacharyya parameters, the kernel order can be chosen to

minimize the probability of error of the information set:

k = argmin
π

∑
i

Z(W
(i)
N ), ∀ i ∈ Iπ, π ∈ K. (4.1)
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Alternatively, the kernel order can be selected to maximize reliability of the information

set using GA:

k = argmax
π

∑
i

z
(i)
N , ∀ i ∈ Iπ, π ∈ K. (4.2)

While these methods are effective, it is not desirable to have this additional optimiza-

tion over κ possible configurations when comparing the practicality of MK polar codes

with rate-matched Arıkan polar codes. Fig. 4.1 demonstrates that for long MK po-

lar codes, the kernel optimization step is largely inconsequential, in particular for high

rates. The figure depicts MK polar codes with N = 786 and N = 2304 sweeping rates

R = {1
4
, 1
2
, 3
4
} under SC decoding. The codes were constructed using GA for each point in

the plot to ensure that the frozen sets are optimal through the simulation. Three different

kernel ordering strategies are investigated. The First and Last labels indicate that ker-

nels are ordered such that the ternary kernels serve as either the first or last components

of the Kronecker product, respectively. ”Highest Reliability” uses the kernel ordering

method outlined in the previous paragraph. We can conclude that placing the ternary

kernel in the Kronecker product at either the first or last positions produces comparable

error correction results against an optimized kernel order for long polar codes. Further, it

can observed that low rate codes have better performance using the Last method, while

the opposite configuration performs best for medium to high rate codes.

4.2 Fast Decoding of Multi-Kernel Polar Codes

4.2.1 Ternary-Compatible Fast Nodes

This section will outline the techniques required to adapt the FSSC decoder described in

Section 2.3.3 to MK polar codes that use T3. Just as with FSSC in the purely Arıkan case,

the objective behind FSSC for MK codes is to prune the decoding tree in order to alter

the schedule and thus reduce latency. This work will revisit the four fast nodes previously

discussed and extend them to be compatible with the ternary kernel. While Arıkan polar

codes need only consider frozen set patterns when scheduling FSSC, MK polar codes

must also consider the added dimension of kernel order. As such, each type of node will

be generalized for any kernel ordering. To keep MK polar codes practical, simplified fast

node implementations are proposed that are valid under certain code constraints.
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Figure 4.1: FER curves for MK polar codes with N = 768, 2304 sweeping rates R = { 1
4 ,

1
2 ,

3
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comparing kernel ordering strategies.

Rate-0 Node

Recall that R0 nodes are parent only to frozen indices where leaf nodes and partial sums

are known to be 0 [5]. This relationship does not change when considering the ternary

kernel since encoding (0, 0, 0) with T3 results in (0, 0, 0). R0 decoding is thus unchanged

for T3.

Rate-1 Node

Just as before, R1 nodes are those that are parent only to information indices. A R1

node v can be decoded by evaluating the p partial sums βv at that stage with a hard

decision on αv in tv and then updating the values of the leaf nodes by hard decoding

the partial sums [5]. Specifically, the partial sum vector is obtained by βv = HD(αv).

The estimated sourceword values ûv ⊂ û with indices in Iv ⊂ I are hard decoded using

ûv = βvG
−1
p where Gp is the generator matrix obtained by performing the Kronecker

product of kernels pertaining to all stages below that of node v. Alternatively, ûv may be

estimated by propagating the partial sums βv to the leaf nodes with inverse partial sum
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equations for each stage where

βi
l = βi

v ⊕ β
i+Nv

2
v ,

βi
r = β

i+Nv
2

v ,
∀ i ∈ [0,

Nv

2
), (4.3)

are used for Arıkan stages and

βi
l = βi

v ⊕ β
i+Nv

3
v ⊕ β

i+ 2Nv
3

v ,

βi
c = β

i+Nv
3

v ⊕ β
i+ 2Nv

3
v ,

βi
r = βi

v ⊕ β
i+ 2Nv

3
v ,

∀ i ∈ [0,
Nv

3
), (4.4)

are to be used for ternary stages.

The following is a proof that verifies this R1 decoding method for stages corresponding

to T3. Each R1 node has the property that

βvl = h(αvl), βvc = h(αvc), βvr = h(αvr). (4.5)

where αvl , αvc , and αvr are the LLRs in the three branches below node v, as depicted in

Fig. 4.2. For shorthand, let e = 3i, o = 3i+ 1, and u = 3i+ 2 for all fixed i. Recall that

the � operator has the property

HD(a� b) = HD(a)⊕HD(b) if ab �= 0. (4.6)

And so assuming that αv[e] �= 0, αv[o] �= 0, and αv[u] �= 0 indicates that

h(αvl [i]) = h(αv[e])⊕ h(αv[o])⊕ h(αv[u]); thus

h(αvc [i])
(a)
= h(αv[o]� αv[u] + (1− 2h(αvl [i]))αv[e])

= h(αv[o]� αv[u] + (1− 2(h(αv[e])⊕ h(αv[o])⊕ h(αv[u])))αv[e])

= h(αv[o]� αv[u]) = h(αv[o])⊕ h(αv[u])

h(αvr [i])
(a)
= h((1−2h(αvl [i]))αv[o] + (1−2h(αvl [i]⊕αvc [i]))αv[u])

= h((1− 2(h(αv[e])⊕ h(αv[o])⊕ h(αv[u])))αv[o]

+ (1− 2(h(αv[e])⊕ h(αv[o])⊕ h(αv[u])⊕ h(αv[o])⊕ h(αv[u])))αv[u])

= h(αv[e])⊕ h(αv[u])
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s=0

s=1

s=2

s=3

(a) PC(18, 9) with G = T2 ⊗ T3 ⊗ T3

s=0

s=1

s=2

s=3

(b) PC(18, 11) with G = T3 ⊗ T3 ⊗ T2

Figure 4.2: SC decoding trees (light grey) that are pruned to their FSSC counterparts (black).
White and grey leaf nodes represent frozen and information bits, respectively. Blue nodes are

REP3A, pink nodes are REP3B, and green nodes are SPC.

where (a) uses Eq. 4.5. Further,

βv[u] = βvl [i]⊕ βvc [i]⊕ βvr [i]

(b)
= h(αvl [i])⊕ h(αvc [i])⊕ h(αvr [i])

= h(αv[e])⊕ h(αv[o])⊕ h(αv[u])⊕ h(αv[o])⊕ h(αv[u])⊕ h(αv[e])⊕ h(αv[u])

= h(αv[u]); thus

βv[o] = βvl [i]⊕ βvr [i]
(b)
= h(αvl [i])⊕ h(αvr [i])

= h(αv[o])

βv[e] = βvl [i]⊕ βvc [i]
(b)
= h(αvl [i])⊕ h(αvc [i])

= h(αv[e])

where (b) also makes use of Eq. 4.5. Hence, the proof is completed and confirms that

decoding of a R1 node can be accomplished using the same method for T3 as for T2. The

original proof in [5] grants that this decoder holds for a R1 node of any depth.
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Single-Parity Check Node

In MK polar codes with rate R = N−1
N

, u0 will always be frozen regardless of the order

of kernels, and so MK polar codes also have an embedded SPC property. Observe that

if N = 3, then u = (0, u0, u1) and x = (u0, u1, u0 ⊕ u1). As such, ternary SPC nodes can

be identified and decoded in exactly the same way as with Arıkan polar codes. The same

is true for an SPC node of any depth with any combination of T2 and T3.

Repetition Node

The ternary kernel also mirrors repetition codes when rate R = 1
N

since only uN−1 will

contain information. However, the decoding procedures are more involved than with

Arıkan polar codes. When considering only an Arıkan kernel, a REP node results in x

where all indices are equal to uN−1. Conversely, x does not repeat uN−1 in all indices

in a MK REP node, although a pattern is still present. Specifically, if N = 3 and

u = (0, 0, a0), then x = (0, a0, a0). In this example, repetition decoding can still be

carried out, supposing that the first index is excluded in the sum in Eq. 2.39. Generally,

a REP node at stage S has a REP pattern Pv, which is determined for any combination

of Arıkan or ternary kernels by performing a Kronecker product of repetition patterns

P2 = (1, 1) or P3 = (0, 1, 1):

Pv =
⊗
i

Pki , ∀ i ∈ [0, S). (4.7)

Eq. 2.39 can then be modified to accommodate this addendum:

βi
v = HD

(∑
j

αj
v · P j

v

)
∀ i, j ∈ v. (4.8)

Table 4.1 outlines several examples of REP patterns with varying kernel orders. A new

notation for repetition nodes may be appropriate for the purposes of decoder scheduling

depending on the order of kernels. A REP node that is made up of only Arıkan kernels,

previously the only type of REP node, can now be labeled as a REP2 node. REP

nodes comprised of only ternary kernels can be labeled as REP3A nodes. Mixed kernel

repetition nodes can be labeled REP3B or REP3C depending on the order of T2 or T3.
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Nv kv Pv Type

3 (3) (0,1,1) REP3A
6 (2,3) (0,1,1,0,1,1) REP3C
6 (3,2) (0,0,1,1,1,1) REP3B
8 (2,2,2) (1,1,1,1,1,1,1,1) REP2
9 (3,3) (0,0,0,0,1,1,0,1,1) REP3A
12 (2,2,3) (0,1,1,0,1,1,0,1,1,0,1,1) REP3C
12 (3,2,2) (0,0,0,0,1,1,1,1,1,1,1,1) REP3B
18 (2,3,3) (0,0,0,0,1,1,0,1,1,0,0,0,0,1,1,0,1,1) REP3C

Table 4.1: Examples of Pv patterns.

Although a MK polar code can be built using any arbitrary order of kernels, it is

often the case that the non-Arıkan kernels are either the first or last constituents in

the Kronecker expression used to compute G. Further, Section 4.1 demonstrates that

assuming the order of kernels without optimization presents comparable error correction

results. Moreover, using LDPC WiMAX code lengths [8] as a guideline suggests that

MK polar codes are able to achieve many desired code lengths with a limited number of

ternary stages. Acknowledging this behaviour, it is unnecessary to implement generalized

ternary repetition nodes as the majority of cases can be efficiently decoded under a few

constraints. As such, the scheduling and implementation of MK REP nodes can be

simplified by eliminating the computation of Pv. We propose to limit REP3A nodes to

have a maximum size of 27 so that there are only 3 possible Pv, which can be simply

stored instead of computed. Additionally, we limit REP3B and REP3C nodes to contain

only a single ternary stage so that computation of βv can be carried out efficiently:

βi
vREP3B

= HD

(∑
j

αj
v

)
∀ i, j ∈ (

Nv

3
, Nv],

βi
vREP3C

= HD

(∑
j

αj
v

)
∀ i, j �≡ mod 3.

The summation in Eq. 2.39 is modified for REP3B nodes by skipping the first third

of indices, while for REP3C node it is modified by skipping every third index. Of course,

Eq. 2.40 still applies to ternary repetition nodes. Under the requirement of only a

single ternary stage, these nodes do not need to be limited in size. We will utilize these

simplifications in our numerical analysis.
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N R # SC # FSSC # R0 # R1 # SPC # REP2 # REP3 % Reduction

96
0.25 158/189 37/27 7/2 1/0 4/4 0/4 1/0 76.6/85.7
0.5 158/189 43/45 8/5 1/5 6/3 0/3 0/0 72.8/76.2

0.75 158/189 37/42 3/3 5/6 4/4 0/3 0/1 76.6/77.8

432
0.25 654/849 101/118 15/11 4/6 16/13 0/11 4/2 84.5/86.1
0.5 654/849 110/136 14/9 4/7 21/19 0/15 7/0 83.2/83.4

0.75 654/849 106/109 13/9 9/9 17/14 0/8 2/0 83.8/87.2

768
0.25 1278/1533 196/186 34/17 5/8 24/19 0/19 3/0 84.6/87.9
0.5 1278/1533 223/222 31/15 9/14 31/24 0/22 4/0 82.5/85.5

0.75 1278/1533 172/192 19/12 10/19 25/19 0/15 4/0 86.5/87.5

2304
0.25 3582/4602 409/453 62/31 8/16 71/54 0/52 5/0 88.6/90.1
0.5 3582/4602 487/516 63/23 17/17 86/78 0/56 8/0 86.4/88.8

0.75 3582/4602 395/441 45/24 27/39 60/50 0/36 9/0 88.9/90.4

6561
0.25 9840 1056 159 66 165 0 33 89.3
0.5 9840 1186 142 111 176 0 46 87.9

0.75 9840 1021 111 102 165 0 31 89.6

Table 4.2: Latency reduction of MK polar codes with ternary kernels as last/first
Kronecker constituents.

4.2.2 Decoding Complexity Evaluation

This section outlines the effectiveness of the proposed MK-compatible FSSC decoder

with numerical examples. With a sufficiently large processor, it can be assumed that

each node in a decoding tree constitutes a single operation. As such, all measurements

of decoding complexity refer to the number of decoding nodes. All polar codes analyzed

were constructed using GA with a target Eb
N0

of 3 dB. Fig. 4.3 compares the number of

computations in FSSC decoders for various length-compatible polar codes over a range of

codeword lengths and rates. Punct QUP [12] and Short WL [13] indicate puncturing and

shortening patterns that allow for large numbers of frozen sets to be grouped together.

Generally, puncturing and shortening methods have comparable decoding complexity to

both kernel orderings of MK polar codes. However, MK codes with a high proportion of

ternary stages, such as lengths N = (216, 324, 648), have the fewest decoding operations

overall when built with the Last kernel ordering. This is a result of the fast decoders for

ternary nodes, which decode a larger number of bits simultaneously than would Arıkan

nodes. This is depicted in Fig. 4.2a where a node in stage s = 2 decodes 9 bits at once,

where as node in the same stage of Fig. 4.2b decodes only 6 bits at once. Therefore,

it may be desirable to construct MK polar codes using the Last kernel ordering from a

decoding complexity standpoint.

Regarding latency reduction of MK decoding, Table 4.2 outlines various comparisons

between SC and FSSC along with the node makeup of FSSC decoding schedules. Just as
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Figure 4.3: FSSC complexity for (a) N = 768 and (b) K = 164 sweeping rates R ≈ { 1
8 , . . . ,

7
8}.

with Arıkan polar codes, there is a greater latency reduction for extreme rates. This gain

is due to the higher proportion of R1 and SPC nodes for high rates and R0 and REP nodes

for low rates. Observe that longer MK polar codes have greater latency reduction than

short polar codes. It should also be noted that MK polar codes with a higher number of

ternary stages have increased latency with the First kernel permutation compared with

Last. This is a result of the fact that MK polar codes with a Last kernel order have all

ternary stages at the bottom of the SC tree, where fast nodes are typically identified,

indicating that the newly designed ternary fast nodes in this work are highly effective.

Further, the number of ternary repetition nodes is proportionately low, so it is sufficient

to consider only the most common cases for a simplified implementation rather than a

complex generalized algorithm.

4.3 Punctured Multi-Kernel Polar Codes

This section will evaluate rate-matching techniques for MK polar codes. We will demon-

strate that it is possible to puncture MK polar codes, and discuss possible use cases

56



CHAPTER 4: Towards Practical Multi-Kernel Polar Codes

0

α1 � α2

(−1)û1α2
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Figure 4.4: The First puncturing pattern is valid for T3.

complete with simulations. We will further explain that shortening MK codes is not

straightforward and thus not viable.

To determine whether MK polar codes can be punctured, we must establish a viable

puncturing pattern for the ternary kernel. Recall that any polar code index can be

punctured so long as its leaf node LLR is 0 when the corresponding channel value is also

0. To test for this, we can examine all possible puncturing patterns on T3 to see which

configurations adhere to this requirement. The test involves applying a 0 at a given index

at the channel side of a T3 decoder and observing whether the corresponding leaf node

also receives a soft 0. For the ternary kernel, there are 3 possible one-index and two-index

permutations each. The case where all 3 indices are injected with 0 is not examined since

there is no data to decode. The experiment is detailed in Fig. 4.4. Note that there

are only two valid puncturing configurations, both of which follow the First puncturing

pattern described in Section 3.1.1. Since it is known that this pattern is also valid for T2,

we can conclude that this pattern is valid for MK polar codes with any combination of

both kernels. This will then be the considered puncturing pattern for MK polar codes.

Puncturing MK polar codes improves their flexibility to the point where any arbitrary

length can be achieved. Additionally, MK polar codes offer a choice of block length for

the mother code, since there exists an array of selections, unlike rate-matching of Arıkan

polar codes. For example, if E = 700, the code design may utilize either of, but is not

limited to, N = 729 or N = 768. The decision of the mother code may then prioritize

either error correction performance or decoding complexity. In this case, a mother code

block length of N = 729 requires only 4374 decoding operations under SC, while N = 768

requires 6912. However, a length of N = 768 is expected to have superior error correction

performance since it was shown in Section 3.5 that error correction performance of MK
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Figure 4.5: SCL performance on PC(729, 365) with L = 8, C = 16.
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Figure 4.6: SCL performance on PC(700, 350) with L = 8, C = 16.

polar codes degrades with the increase of φMK . To weigh the new code design parameters,

we will now consider use cases for punctured MK polar codes.

Fig. 4.5 outlines a scenario where E is a length that is attainable by a MK polar

code, but the error correction performance can be improved upon by selecting a slightly

larger mother code with fewer ternary stages. Observe that by setting N = 768 and

E = 729, and puncturing 39 bits, an order of magnitude is gained in FER. As outlined

in the previous paragraph, this improvement comes at the expense of increased decoding

complexity.
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Figure 4.7: SCL performance on PC(1056, 528) with L = 8, C = 16.

Fig. 4.6 illustrates another scenario when E is not naturally attainable by a MK polar

code, but φRM is lower than when considering puncturing an Arıkan polar code. This

practice offers comparable error correction performance to a punctured Arıkan code, but

the decoding complexity is significantly reduced. In this specific case, the Arıkan polar

code requires that N = 1024 where SC requires 10240 decoding operations, while the

MK polar code can select N = 768 where only 6912 decoding operations are needed.

Fig. 4.7 details another example of this application to a greater extreme. If E = 1056,

then a punctured Arıkan code uses N = 2048 and φRM = 0.48, while a punctured MK

code can use N = 1152 with φRM = 0.08. Note the punctured MK codes afford a 53.9%

SC decoding complexity reduction over the punctured Arıkan codes for an approximate

0.2 dB loss in FER for this configuration. Further, this simulation reveals that the low-

complexity First puncturing scheme, which neglects accounting for punctured bits when

computing R, is highly unreliable.

On shortening of the ternary kernel

With a brief inspection, it becomes clear that T3 cannot be easily shortened. A valid

shortening pattern must ensure that any index with an uncoded ”0” results in a coded

”0”. This requirement is tested in Fig. 4.8 where it is made clear that this prerequisite

is never satisfied. It can then be concluded that MK polar codes cannot be shortened in

any practical manner.
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Figure 4.8: T3 does not support any valid shortening pattern.

4.4 Ternary Kernel Denies Dominant Contiguity

In [6], it was shown that systematic polar codes can be decoded with reduced latency

when employing FSSC compared with non-systematic polar codes while maintaining the

same FER. This improvement is a result of the fact that the source bits appear in the

indices of I in the codeword, and so FSSC decoding can be completed by obtaining

the partial sums at the top of the decoding tree rather than the bottom. Since FSSC

often eliminates the majority of SC operations, there are fewer partial sum computations

required to traverse to the top of the tree than the bottom. Thus, the geometry of the

pruned decoding tree yields a reduced number of operations when employing systematic

polar codes. As such, a simple systematic encoder can be desirable for further latency

reduction.

Section 2.2.2 outlines a low complexity method for systematic encoding of Arıkan

polar codes that is valid under the constraint of a dominant contiguous information set.

Although not all polar codes with any arbitrary I can be systematically encoded this

way, most useful I are dominant contiguous in practice.

We will now investigate the possibility of low complexity systematic encoding of MK

polar codes. Recall that Eq. 2.17 is only valid when the information set is dominant

contiguous. To test for dominant contiguity of I, we must first establish any dominance

relations of indices in the ternary kernel. For this test, the most appropriate dominance

relation is the column dominance definition from Eq. 2.20, since binary dominance does

not translate to the ternary kernel. The only dominance relation present in T3 among

indices {0, 1, 2} is 0�2. Indeed, we can observe that systematic encoding is possible when

I = {0}:
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Figure 4.9: Bhattacharyya parameter evolution for a single ternary stage.
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As this example is a highly impractical, it does not make a strong case for the systematic

encodability of T3. Further, we can demonstrate that this scenario is not likely to occur

using Bhattacharyya parameters. Observe that index 0 will not be the first inserted in I
since it is stochastically the least reliable in T3:

Z(W
(3j−2)
N ) ≥ Z(W

(3j−1)
N ) ≥ Z(W

(3j)
N ). (4.10)

This inequality is visualized in Fig. 4.9, where it is evident that index 0 is stochastically

degraded while indices 1 and 2 are stochastically upgraded. This result indicates that

the order in which indices of T3 are inserted into I is 2, followed by 1, followed by 0.

Maintaining this order, I will never be dominant contiguous. We can further rule out

the simplified systematic encoding of MK polar codes with a final counterexample. If we

examine a plausible information set of I = {1, 2}, we see that

E ·G ·ET ·E ·G−1 ·ET =

[
0 1 0

0 0 1

]
·

⎡
⎢⎢⎣
1 1 1

1 0 1

0 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
0 0

1 0

0 1

⎤
⎥⎥⎦
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·
[
0 1 0

0 0 1

]
·

⎡
⎢⎢⎣
1 0 1

1 1 0

1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
0 0

1 0

0 1

⎤
⎥⎥⎦ =

[
1 1

0 1

]
�= I, (4.11)

and that the systematic encoding scheme is thus invalid. Thus MK polar codes do not

exhibit the systematic property that Arıkan polar codes display. This finding suggests

that the key to a valid systematic polar encoder is a generator matrix that is lower

triangular and has a main diagonal of all ”1”s. This requirement of the main diagonal

reveals that each coded bit must be dependent at least on the uncoded bit of the same

index.
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Asymmetric Polar Codes

This chapter proposes a new length-compatible polar coding scheme that is called asym-

metric polar codes (APC). This new class of polar codes addresses key issues associated

with the current state-of-the-art length-compatible polar codes discussed in Chapter 3.

Puncturing and shortening of Arıkan polar codes allow for any arbitrary block length

to be achieved, though there are several issues with these methods. Because punctur-

ing and shortening perform encoding and decoding on the mother code, their decoding

complexity is not directly related to the size of the mother code, which renders them

computationally inefficient. Also, provisions are sometimes made for the impact of punc-

turing and shortening on index reliability, which often necessitates a multiple-step code

design. Even though low-complexity rate-matching code design has been successfully pro-

posed [28], standardized polar coding in 5G indicates that the robustness of an industrial

application evokes multi-step code design nonetheless. Multi-kernel polar codes certainly

improve upon the native length flexibility of Arıkan polar codes, yet they introduce more

complexity to an otherwise simple scheme. Moreover, it is worth noting that LDPC codes

were favoured over polar codes for the data channel in 5G due to their length flexibility

and decoding complexity that is directly dependent on their block length [32].

Asymmetric polar codes are a new coding scheme in which polar codes of unequal

lengths are linked together using polarizing transformations. By linking together multiple

polar codes in this way, any desired block length can be attained. The new method

offers a straightforward approach to polar coding that is length-flexible and exhibits

length-dependent decoding complexity. APCs are similar to Arıkan polar codes in the

sense that they both have a recursive structure and contain smaller polar codes in their

generator matrix. Many previously designed polar decoders and construction methods
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for Arıkan codes are fully compatible with APCs. Notably, APCs offer reduced time and

space complexity with comparable error correction performance when measured against

puncturing and shortening schemes.

5.1 Generator Matrix Construction

An asymmetric polar code, denoted by PC(N,K), is a linear block code of length N

and rate R = K
N
. The codeword is obtained with x = uG, as usual. An APC of length

N is constructed from a minimum ϕ partial polar codes, which are determined by the

decomposition of N into a sum of powers of 2, whose summands comprise the vector

A = {N0, N1, . . . , Nϕ−1}. The minimum required partial code lengths can be obtained

using binary decomposition. For each 1 in bin(N), the corresponding binary index value is

inserted into A. For example, a code length of N = 14 is represented in binary as “1110”,

and therefore A = {8, 4, 2} and ϕ = 3. A can be ordered so that APCs be constructed

in either an ascending (asc = 1) or descending (asc = 0) permutation. The ascending

order indicates that the size of the partial codes increases with bit indices, as in Fig. 5.1a.

Alternatively, the descending order follows that the partial code sizes decrease with bit

indices, which requires that A be reversed, as in Fig. 5.1b.

The linking process is executed recursively whereby each partial code matrix GNl
is

linked with the next partial code GNl+1
according to the sequence A. Generator matrix

assembly for APCs requires ϕ−1 iterations of this process. The polarizing stage used for

each iteration l is the same XOR operation that is used for the last stage of an Arıkan code

of length 2Nl+1. This stage will include Jl = min(
∑l+1

k=0 Nk −Nl+1, Nl+1) sum junctions,

detailed in Fig. 5.3, which join indices j and j + Nl+1 for j ∈ [0, Jl). The generator

matrix is equal to the final iteration of the linking matrix, such that G = Lϕ−2, where

Ll is defined in eq. 5.1:

Ll =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GNl
l = 0⎡

⎢⎣ GNl
0

GNl
⊗ 1̂T∑

j<l Nj
Nl

Ll−1

⎤
⎥⎦ l > 0, asc = 1

⎡
⎣ GNl

0

GNl
[
∑

j<l Nj; ] Ll−1

⎤
⎦ l > 0, asc = 0,

(5.1)
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Figure 5.1: APC encoders of length N = 6.
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Figure 5.2: SC decoding schedule for APC of length N = 6.

where 1̂i is the all-one vector of length i, and G[i; ] is generator matrix G with only its

first i rows. It should be noted that A can contain a code length of 1, which equates to

a single uncoded bit, ie. G1 =
[
1
]
. Observe that the linking matrix closely resembles

the Arıkan kernel when l > 0. Further, this representation makes it possible to obtain

Arıkan polar codes when A contains only two equal lengths. APCs can be constructed
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Figure 5.3: The polarizing sum junction.

using any A, so long as its elements are powers of two. For example, an APC with N = 6

could be constructed with either of, but not limited to, A = {2, 2, 2} or A = {4, 2}. Only

the ascending and descending constructions using the minimum number of partial polar

codes will be considered in the analysis.

5.1.1 Example: NA = 6

Note in Fig. 5.1a the encoder of an ascending APC with N = 6 that has constituent polar

codes of length 2 and 4. Combining these two partial codes is done with the additional

polarizing stage. The additional stage is the same as the last stage of an Arıkan polar

code of length twice that of the upper code in the factor graph. In particular, the upper

code in this example has length 2 and thus requires the last stage of an Arıkan polar code

of length 4. The SC decoding schedule must be modified to match the new factor graph,

as depicted in Fig. 5.2a.

An APC generator matrix G must contain those of the constituent codes so as to be

consistent with the original polar code definition. Thus, G is a block matrix comprised

of the partial code matrices and the additional polarizing transforms discussed above.

In this case, the final ascending generator matrix in Fig. 5.1a has block components

G2 (red) and G4 (blue) that arranged according to the definition in eq. 5.1. A similar

example for the corresponding descending APC is visualized in presented in Fig. 5.1b.

5.2 Asymmetric Information Set Design

Most code construction algorithms used to build reliability sets for Arıkan codes can be

adapted to work for APCs with minor adjustments. GA serves as an effective method

for designing reliability order. One must consider the asymmetry of the factor graphs of

APCs in order to carry out the algorithm accurately. GA entails tracking the reliabilities
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Figure 5.4: Gaussian approximation computation across an independent sum junction.
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Figure 5.5: Gaussian approximation reliability ordering of an ascending APC with N = 7 and
A = {4, 2, 1}.

of each index at each stage of the factor graph, where the reliabilities are represented by

the mean of the LLRs of the synthetic channels. To compute GA for APCs, begin by

assigning each coded bit in the factor graph the LLR mean of the uncoded channel z
(0)
1 ,

as described in Section 2.2.3.2. For Arıkan polar codes, it is sufficient to assume each

input to a sum junction has been transformed an equal number of times and by equal

amounts. APCs require special attention to the sum junctions, and so eq. 2.24 can be

modified by applying the GA transformations independently at each sum junction. The

reliabilities are transformed at each summation junction between stage d and d − 1, as

seen in Fig. 5.4, according to

z
(0)
d−1 = φ−1(1− (1− φ(z

(0)
d ))(1− φ(z

(1)
d ))), (5.2)

z
(1)
d−1 = z

(0)
d + z

(1)
d .

Computing the entire graph results in vector zN . As usual, this vector can be used to

rank the indices in terms of reliability to form R.

A construction example for PC(7, 4) with A = {4, 2, 1} is now presented for a target
Eb

N0
= 3dB. The propagation results in z

(0)
N = {2.74, 1.70, 6.71, 2.42, 8.35, 12.72, 31.92},

as is detailed in Fig. 5.5. In this case, R = {6, 5, 4, 2, 0, 3, 1}, I = {6, 5, 4, 2}, and

67



CHAPTER 5: Asymmetric Polar Codes

F = {0, 3, 1}. The Bhattacharyya parameter algorithm from Section 2.2.3.1 can be

modified in the same way.

5.3 Asymmetric Polar Code Decoding

Just as when decoding Arıkan codes, the operations f and g in eq. 2.32 are used for

decoding APCs since the same polarizing transform is used. As such, all standard polar

decoders can be used with only a change in schedule according to the new factor graph.

The SC decoding tree has ϕ partial code trees that are children of asymmetric nodes

and are decoded in the same manner as described in Section 2.3.1. The ϕ − 1 asym-

metric nodes are decoded with a schedule that corresponds to the additional polarizing

stages. Specifically, each sum junction corresponds to an f and g function with equivalent

indexing, as indicated by Fig. 5.3.

The ϕ − 1 asymmetric nodes each have α and β vectors of length 2Jl pertaining

to the lth iteration of the generator matrix linking process. The top asymmetric node

accepts 2Jl channel values as its input. The input to intermediate asymmetric nodes is

a combination of Jl+1 LLRs from the previous asymmetric node and Nl − Jl+1 unused

channel values when asc = 1, or simply Jl+1 LLRs from the previous asymmetric node

when asc = 0. Traversing the left and right branches of an asymmetric node calls for

Jl f and g operations, respectively, replacing the Nv

2
offset in eq. 2.32 with Nl+1. In

the descending case, the last Nl+1 − Jl values in α are unprocessed and directly stored

in the next stage. Examples of APC decoding schedules corresponding to the encoding

examples in Section 5.1.1 are depicted in Figs. 5.2a and 5.2b.

The number of computations required by an asymmetric SC decoder is described

precisely as
ϕ−1∑
l=0

Nl log2 Nl +

ϕ−1∑
l=1

2Nl − (1− asc)

ϕ−1∑
l=0

(
2Nl −

l∑
k=0

Nk

)
, (5.3)

and at most as
ϕ−1∑
l=0

Nl log2 Nl +

ϕ−1∑
l=1

2Nl. (5.4)

We will now prove that APCs always have fewer decoding operations than equivalent

punctured or shortened Arıkan polar codes, and thus have lower decoding complexity

overall. We begin by examining the worst case scenario: when employing the descending

permutation and the block length is one less than a power of 2. This case yields the
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Scheme N = 576 N = 768 N = 1536 N = 2304 N = 3072

APC 5120 7168 15872 25088 34816
PS 10240 10240 22528 49152 49152
MK 4608 6912 15360 23040 33792

Table 5.1: The number of SC decoding operations for the tested block lengths.

highest possible ϕ. It is sufficient to demonstrate that if

ϕ−1∑
l=0

Nl log2 Nl +

ϕ−1∑
l=1

2Nl < 2�log2 N	 log2 2
�log2 N	, (5.5)

is true in the worst case where N = 2n − 1, n ∈ N
+, then APCs always have reduced

decoding complexity compared with rate-matched Arıkan codes. As such, ϕ = �log2 N� =
log2 (N + 1) and A contains all powers of two less than NM = 2�log2 N	:

ϕ−1∑
l=0

2l log2 2
l +

ϕ−1∑
l=1

2 · 2l < 2ϕ log2 2
ϕ,

ϕ−1∑
l=0

l · 2l +
ϕ−1∑
l=1

2 · 2l < ϕ · 2ϕ,

ϕ · 2ϕ − 2(2ϕ − 1) + 2(2ϕ − 2) < ϕ · 2ϕ,
ϕ · 2ϕ − 2 < ϕ · 2ϕ.

(5.6)

Thus, APCs always have lower decoding complexity than PS codes. It can also be shown

that APCs require fewer decoding operations when asc = 1 than when asc = 0 by

replacing the second summation term with
∑ϕ−1

l=1 2 · 2l−1, which results in a maximum

number of decoding operations of ϕ · 2ϕ − 2ϕ < ϕ · 2ϕ. In the case where ϕ ≤ 2, the

ascending and descending APCs have the same number of decoding operations.

FSSC decoding schedules can be obtained for APCs since all symmetric nodes remain

powers of 2 and thus fast nodes can be decoded the same way as with Arıkan polar codes.

The SC tree for an ascending APC where N = 14, along with its FSSC counterpart, can

be seen in Fig. 5.6. Regarding error correction performance, the theoretical FER under

SC decoding for APCs can be analytically computed using GA bit reliabilities, as was

observed for Arıkan polar codes in Section 2.2.3.2.
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Figure 5.6: SC tree for an ascending APC with N = 14 and A = {8, 4, 2}. White, blue, and red
leaves are frozen bits, R0 nodes, and R1 nodes, respectively. Subscripts indicate vector size.

5.4 Error Correction Performance

The error correction capabilities of APCs has been evaluated through a series of simula-

tions using the AWGN channel and BPSK modulation. FER curves have been obtained

for N ∈ {576, 768, 1536, 2304, 3072} and R ∈ {1
4
, 1
2
, 3
4
}. CA-SCL is the decoding algo-

rithm used with list size L = 8 and CRC size C = 16 using polynomial 0x1021. All frozen

sets were reconstructed for each Eb

N0
value in the plots using GA. We compared APCs with

the two standard PS schemes as well as with MK polar codes. The kernel order of the MK
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codes was optimized for highest overall reliability by an exhaustive search, as proposed

in [14].

Under CA-SCL decoding, asymmetric codes have comparable performance to lead-

ing length-compatible schemes when using a range of code rates, as depicted in Figs.

5.7 to 5.11. In all cases considered, APC performance is in the approximate range of

[−0.05dB,+0.05dB] compared to the best performing state-of-the-art codes for FER =

10−4. Just as with Arıkan polar codes, APC error correction performance generally im-

proves with length. It should be noted that APCs excel when they contain fewer and

larger partial polar codes.

For all code lengths, APCs built with the ascending partial code permutation have

superior error correction performance to APCs utilizing the descending permutation at

low rates, while the opposite is true for high rates. This is due to the fact that the

reliability of partial codes is related not only to their location in the factor graph, but

also their size. Moreover, APCs have reduced performance when indices in I are found

in smaller partial codes. The small partial codes in the descending permutation are

where the few highly reliable indices are located at low rates, and so these bits exhibit

reduced polarization effects due to the smaller partial code size. Conversely, the ascending

permutation allows most information bits to be located in the largest partial codes at low

rates, which present the highest reliability. It should also be noted that ascending and

descending APCs have very similar performance to punctured and shortened polar codes,

respectively. MK codes generally do not outperform PS or APC schemes in the tested

scenarios. However, they are more likely to have worse performance when they have more

than one ternary stage, as seen in Figs. 5.7ac to 5.11ac.

5.5 Complexity Evaluation

We will analyze the complexity of APCs by comparing them with PS and MK schemes

in terms of SC and FSSC decoding complexity, space complexity, and code design. The

SC time complexity was measured for all considered techniques by examining the number

of LLR operations required for decoding a single codeword. The number of operations

required for each scheme is given in Sections 2.3.1, 3.2.2, and 5.3. Table 5.1 outlines the

number of decoding operations required for each tested scenario. Observe that both APC

and MK codes have comparable decoding complexity that is directly related to their block

length. Although MK codes can have reduced time complexity over equivalent punctured
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or shortened codes and APCs, MK codes require concessions for ternary decoding using

eq. 3.5, and kernel order when scheduling the decoder. The logic required for practical

MK implementations is more complex and demands specialized hardware and increased

memory over Arıkan codes [15]. Further, MK codes are limited in their length flexibility

without considering the use of higher order kernels or rate-matching, which introduces

further complication. As such, MK complexity is difficult to compare with that of APCs

or PS codes.

Comparing FSSC decoding complexity requires a more refined metric. Since we are

interested in a highly granular comparison and MK polar codes cannot natively achieve

any block length, they will be excluded from this comparison. It was shown in [25]

that a processing element size of 64 permits an acceptable balance between decoder

throughput and hardware utilization for Arıkan polar codes with block length N = 1024.

We will use this baseline for our comparisons, seeing that our experiments operate on

a similar order of magnitude. Given that specialized nodes R1, R0, SPC, and REP are

available with a maximum node size of 64, each specialized node is considered a single

operation. Additionally, all computations of αl and αr of children nodes are counted as

�Nv

64
� operation(s), where Nv is the child node size. It is worth noting that punctured

or shortened decoders are likely to have a higher number of R0 and REP nodes due to

their higher proportion of frozen bits. However, Fig. 5.12 demonstrates that APCs have

between [2.7%, 27%] time complexity reduction under Fast-SSC decoding when compared

against PS schemes over a range of block lengths and rates. The degree to which APC

complexity is reduced is dependent on φRM . When N is slightly larger than a power of

2, APCs exhibit significant complexity reduction.

Regarding space complexity, ascending APCs have decreased memory requirements

than puncturing or shortening schemes. Using the efficient SC implementations proposed

in [25], ascending APCs only require α and β memory for the largest partial code, which

is at most half that of equivalent puncturing or shortening codes. For example, when

N = 2304, PS decoders require the same α and β storage capacity as an Arıkan code of

N = 4096, while APCs can be decoded with just the memory capacity of a N = 2048

Arıkan code and extended channel memory. Conclusively, PS approaches are not an

efficient use of time and space resources since they must decode their mother code in

order to receive an effectively smaller codeword. Further, MK codes necessitate ternary

β memory, which results in increased storage requirements over purely Arıkan decoders

[15].
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Regarding information set construction, MK schemes must optimize the kernel order

to maximize performance, and PS schemes must build a reliability set after the PS sets are

determined, or vice versa. Thus, APCs demand only a single-step frozen set construction,

while the competing schemes call for further considerations.

5.6 Extensions of Asymmetric Polar Codes

In this section, we will investigate a couple of useful extensions that will enhance the

flexibility of asymmetric polar codes.

5.6.1 Punctured and Shortened Asymmetric Polar Codes

The proposition of a rate-matched asymmetric polar code seems somewhat paradoxical. If

APCs are already length-flexible, what is the purpose of further altering the block length?

Some APCs are constructed from several partial codes, and as such can suffer in error

correction performance from the lack of symmetrically polarized subchannels. Overall,

asymmetric polar codes are quite effective ECCs, but they may suffer from their design at

extreme rates. In some circumstances, it may be beneficial to construct a slightly larger

code that is less asymmetric and then puncture or shorten it. This premise may allow for

an improvement in error correction performance while still maintaining reduced decoding

complexity compared with a standard rate-matched Arıkan polar code.

We must first investigate whether it is possible for APCs to be punctured or shortened.

Since APCs are comprised of Arıkan polar codes, we know that all partial codes can be

punctured or shortened. Further, the sum junctions discussed in Section 5.1 should also be

able to be punctured or shortened since they are the same units found inside Arıkan polar

codes. Then, it should follow logically that some puncturing or shortening patterns from

Section 3.1 should be compatible with APCs. Observe from Fig. 5.15 that APCs reliably

honour the requirements of incapable and overcapable indices. This figure highlights the

use of puncturing (red) and shortening (blue) of an APC with E = 12 and N = 14. Note

that the First and Last patterns are employed. Note that the notion of bit-reversal does

not apply to APCs, and so the BR puncturing and shortening patterns are not valid.

Fig. 5.13 depicts a simulation of a high rate polar code with a block length that is

borrowed from the WiMAX standard for LDPC codes [33]. Because this is a high-rate
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Figure 5.13: CA-SCL, L = 8, C = 16, PC(1440, 1296).

application, puncturing need not be considered. Three different codes were applied to

construct PC(1440, 1296): A standard APC, a shortened APC with N = 1536, and a

shortened Arıkan polar code. The results outline the continuum of performances that are

possible with rate-matched asymmetric polar codes. This particular scenario induces a

direct trade off between decoding complexity and error correction performance. On the

one hand, decoding complexity can be minimized at the expense of one order of magnitude

of FER by simply using a true APC. Alternatively, the shortened Arıkan code can be

used to boost error correction performance with a sharp increase in decoding latency.

Finally, this dichotomy can is mitigated when utilizing the shortened APC. As such, the

size of the mother code, if any, can be selected to suit the needs of the application.

However, not all rate-matched APCs are useful. Through empirical evidence gath-

ered during this research, many simulation cases resemble Fig. 5.14. Many instances of

punctured or shortened APCs end up not improving error correction performance at all

while also escalating decoding complexity. In these scenarios, the true APC is the most

effective coding solution. This issue appears most prominent at medium block lengths

and medium rates. This perhaps indicates that puncturing and shortening of APCs is

only required for extreme rates.
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5.6.2 Systematic Asymmetric Polar Codes

We will now examine whether APCs are able to be systematically encoded with the low-

complexity method described in Section 2.2.2. Recall that the ability of a polar code

to be systematic encoded is dependent on the dominant contiguity of information set I,
as implied by eq. 2.17. If this constraint is not met, then the re-freezing step of the

systematic encoder risks altering codeword values.

Through the investigation conducted in Section 4.4 for testing T3 for dominant con-

tiguous codes, it was demonstrated that failing to maintain a diagonal of all ”1”s in the

generator matrix proved detrimental to the systematic encoding of MK polar codes. Since

APCs are assembled from Arıkan polar codes, their generator matrices, defined in eq. 5.1,

always satisfy this property. Just as with MK polar codes, binary dominance is not an

appropriate dominance relation for APCs. Column dominance, defined in eq. 2.20, will

then serve as the dominance relation metric for APCs.

We can demonstrate that APCs can certainly achieve systematic encoding with an

example. For an ascending APC with N = 7, we have the following column dominance

relations:
6 � 5, 4, 3, 2, 1, 0

5 � 3, 1, 0

4 � 3, 2, 1, 0

3 � 1, 0

2 � 1, 0

1 � 0

0

(5.7)

Note that the highest order index is the most dominant, while the lowest order index is

the least dominant, just as with Arıkan polar codes. As long as I honors this dominance

order, this APC is able to be systematically encoded. For example, if we set K = 4 and

use R from Fig. 5.5 to set I = {2, 4, 5, 6}, which is dominant contiguous, we can confirm

that this code can be systematically encoded:
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E ·G ·ET ·E ·G−1 ·ET =

⎡
⎢⎢⎢⎢⎣
0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 0 0

1 1 0 1 0 0 0

1 1 1 1 1 0 0

1 1 0 1 0 1 0

1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣
0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 1 0 1 0 0 0

0 1 1 1 1 0 0

0 0 0 1 0 1 0

0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ = I.

(5.8)

Alternatively, if we set K = 5 and use the same reliability vector, we obtain I =

{0, 2, 4, 5, 6}, which is not dominant contiguous. We can confirm that this violation

results in an invalid systematic encoder:
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E ·G ·ET ·E ·G−1 ·ET =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 0 0

1 1 0 1 0 0 0

1 1 1 1 1 0 0

1 1 0 1 0 1 0

1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 1 0 1 0 0 0

0 1 1 1 1 0 0

0 0 0 1 0 1 0

0 0 0 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
�= I.

(5.9)

The conclusion from this example is that APCs can indeed be systematically encoded,

but that care must be taken when designing the information set. Since APCs have a

tendency to exhibit unusual reliability orders, it is possible for an index to be dominated

by another that is stochastically less reliable. Such is the case when N = 7: index 0 is

dominated by all other indices, but it is more reliable than indices 1 and 3. Empirically,

this eccentricity tends to happen in APCs with small block lengths and a large number of

partial codes. In practical scenarios with long block lengths, APCs are largely dominant

contiguous. In [18], it was suggested that if I is not dominant contiguous for Arıkan

polar codes, that the error can simply be corrected by removing any violating indices and

replacing them appropriately. Indeed, this fix can easily be applied to APCs as well.
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Conclusion

This thesis presented several analyses and improvements of existing length-compatible

polar coding algorithms, as well as a novel polar coding scheme that was demonstrated to

be an effective channel coding solution. This final chapter will summarize the presented

research and propose avenues for future work.

Summary

After presenting the state-of-the-art for length-compatible polar codes in Sections 3.1

to 3.3, Section 3.4 presented an original simulation campaign that visualizes the error

correction performance of all outlined coding techniques. Section 3.5 analyzed the sim-

ulation results to conclude that the 3GPP rate matching system presents a similar FER

compared with the remaining length-compatible codes, but does so with a simplified

code construction. This finding suggested that the 3GPP standard shows little indica-

tion of performance compromise. Further, multi-kernel polar codes were shown to exhibit

a negative correlation between their proportion of ternary kernels and error correction

performance.

Chapter 4 presented several optimizations for multi-kernel polar codes. Section 4.1

demonstrated that when constructing a multi-kernel polar code, the kernel order opti-

mization step is largely unnecessary. Error correction performance was shown not to suffer

when placing all ternary kernels at either the first or last positions of the Kronecker prod-

uct, especially for long block lengths. This outcome signified that optimizing the kernel

order for highest overall reliability is not essential. Section 4.2 presented a FSSC decoder
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that is compatible with MK polar codes using the ternary kernel. The decoder was shown

to have a minimum complexity reduction of 72% over SC for all tested cases. This MK-

compatible FSSC decoder was documented in a research paper titled “Fast Decoding of

Multi-Kernel Polar codes”, which was accepted to IEEE Wireless Communications and

Networking Conference (WCNC) 2019 in February 2019. Puncturing of MK polar codes

was confirmed to be possible in Section 4.3, where it was also verified that MK shorten-

ing is not feasible. Finally, it was shown that low complexity systematic encoding of MK

polar codes using T3 is not achievable.

Asymmetric polar codes are a novel length-flexible polar coding scheme that were in-

troduced in Chapter 5. Two different generator matrix constructions, ascending and de-

scending, were proposed, along with the corresponding information set design algorithms.

SC and FSSC scheduling were demonstrated to be possible for asymmetric polar codes

using the same decoding functions as Arıkan polar codes. Asymmetric polar codes were

demonstrated to have excellent error correction performance; they exhibit virtually the

same FER as the other considered polar coding schemes while maintaining a reduced de-

coding complexity compared with punctured and shortened codes. Moreover, asymmetric

polar codes were proven to have a decoding complexity that is directly dependent on their

block length, much like LDPC codes. The preceding research on asymmetric polar codes

was presented in a research paper titled “Asymmetric Construction of Low-Latency and

Length-Flexible Polar Codes”, which was accepted to IEEE International Conference on

Communications (ICC) 2019 in February 2019. Furthermore, rate-matching techniques

were revealed to be compatible with asymmetric polar codes due to their lower trian-

gular generator matrix. For this same reason, asymmetric polar codes were illustrated

to be able to be systematically encoded under the constraint of a dominant contiguous

information set.

Future Work

Although the work featured in this thesis is sound, appropriate extensions exist for any

piece of good research. This section outlines some possible continuations of the presented

work.
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Lower Triangular Ternary Kernel

Although most multi-kernel polar code literature deals with the ternary kernel T3 pre-

sented in Chapter 3, the research in this thesis has demonstrated that this kernel suffers

from several shortcomings. Namely, this ternary kernel cannot be systematically encoded

or shortened, which are both byproducts of the lack of a lower triangular generator matrix.

To overcome this issue, one might consider constructing a multi-kernel polar code using

an alternate ternary kernel with the same polarization exponent that is lower triangular;

perhaps the example presented in [31] would be sufficient.

Nested Reliability Sequences for Asymmetric Polar Codes

The onset of nested sequences and universal partial order for Arıkan polar codes presented

a revolution in fast and simple code construction. This feature is currently not available

for asymmetric polar codes. As such, discovering a way to construct nested reliability

sequences for asymmetric polar codes would surely cement their potential for practical

application.

Asymmetric Polar Code Hardware Implementation

Asymmetric polar codes are an excellent candidate for a hardware implementation of

an SC or SCL decoder since their latency reduction properties are most likely to be

beneficial in a dedicated architecture. In fact, the SC schedules presented in this thesis

for asymmetric polar codes suggest that only minor modifications might be needed on

existing polar code hardware designs to generate a valid asymmetric polar code decoder.

Partially Asymmetric Polar Codes

For some desired code lengths, asymmetric codes have a large set of partial polar codes,

which can affect error correction performance in extreme cases. If the code length is

limited to even numbers, it could be possible to construct partially asymmetric polar

codes where only a limited number of the stages in the factor graph are asymmetric.

This adjustment then allows the polar code overall to remain symmetric, which may

improve the error correction performance over asymmetric polar codes for lengths with

extreme asymmetry. For example, if we consider N = 10, an asymmetric polar code
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would typically construct this code with A = {8, 2}. Alternatively, we could first build

an asymmetric code with N = 5 and A = {4, 1} and then compute the Kronecker

product of the resulting generator matrix and the Arıkan kernel, resulting in a partially

asymmetric polar code with N = 10.

The end of this chapter thus marks the end of this graduate thesis.
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