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Abstract

The teleprogramming control paradigm is suggested as a means to efficiently perform tele-
operation tasks in situations where the remote and local manipulator systems are connected
via a low bandwidth delayed communications link. The effects of communication delays in
the order of seconds can be reduced by building a virtual realiry simulated model of the re-
mote site with which the operator can interact to receive immediate quality feedback using
a Human-Machine Interface (HMI) for telepresence applications. This concept overcomes
the delay by transmitting not Cartesian or joint level informations in the form of signals, but
rather symbolic, error tolerant, command program segments to the remote site. Symbolic in-
structions are send to the remote station every time the contact state changes or every second
if no change of contact state has occurred.

Remote robotic systems are often very complex and difficult to operate, especially as
multiple robots are integrated to accomplish difficult tasks in an unstructured or hazardous
environments. In addition, training the operators is time-consuming and costly. A simulated
virtual reality based system will provide a means by which operators can be trained to op-
erate in an intuitive, and cost-effective way. Operator interaction with the remote system is
at a high, task-oriented, level. Real-time state monitoring can prevent illegal robot actions
and provides interactive feedback. A teleprogramming based simulator is essential for cost-
effective Teleoperator Interface & Training (TIT) using supervisory control approach. An
intelligent virtual interface is required which provides a rich means of presenting diagnostic
and visual state information to the operator with reduced fatigue in real-time.

The Mobile Servicing System (MSS) Operations and Training Simulator (MOTS) will be
used as a leading edge implementation of the teleprogramming concepts. MOTS provides
high-fidelity, functional kinematic and dynamic software simulation of the MSS Space Seg-
ment in on-orbit configuration. MOTS is a real-time simulation environment of varying de-
grees of fidelity, along with an aggregate of software tools intended for the support of MSS
space operations and training of crew and ground personnel. Primary interface to MOTS
simulation models is through a Common Data Base (CDB) where telecommands are stored
in acommon shared memory. Hence, all telecommand data elements that are used to control
the simulation modules are exported through the CDB by the Human Computer Interface
(HCI) pages, hand controllers (H/C) and Display & Control (D&C) panel. Communication
between simulation modules is achieved through the CDB in real-time.



Résumé

Un paradigme de commande téléprogrammée est proposé comme moyen d’effectuer effi-
cacement des taches de téléopération dans des situations ot les systémes de manipulation a
distance et locaux sont reliés via une liaison de communications différées a basse largeur de
bande. Les effets des délais de communication (de I’ordre de plusieurs secondes) peuvent
étre réduits par |’élaboration d’'un modéle de simulation en réalité virtuelle de la station dis-
tante, avec laquelle I’opérateur peut intervenir pour recevoir une réaction immédiate efficace
en utilisant une Interface homme-machine (IHM) pour des applications de réléprésence.
Les délais sont éliminés par ce concept parce |’on transmet non pas des signaux contenant
des données cartésiennes ou de position des articulations, mais plutdt des segments de pro-
gramme de commande symbolique a tolérance d’erreur. Des instructions symboliques sont
envoyées a la station chaque fois que 1'état des contacts change, ou a chaque seconde s’il
n’'y a pas de changement dans ceux-ci.

Les systémes robotiques télémétriques sont souvent trés complexes et difficiles a opérer,
surtout si de multiples robots sont intégrés pour accomplir des taches difficiles dans des en-
vironnements non-structurés ou hasardeux. En outre, la formation des opérateurs est longue
et coiliteuse. Un systéme basé sur la réalité virtuelle est un moyen pour former les opérateurs
de maniére autodidacte avec un rendement plus efficace et moins codteux. Les intéractions
entre 1’opérateur et le systéme a distance se font a un haut niveau. La commande en temps
réel prévient des actions indésirables du robot et favorise les réactions interactives. Un sim-
ulateur té€léprogrammeé est essentiel pour une Interface de formation téléopérateur (IFT) ef-
ficace et moins codteuse utilisant I’ approche contréle de surveillance. Une interface virtuelle
intelligente procure un excellent moyen de présenter un diagnostique et des informations vi-
suelles a I'opérateur avec une fatigue réduite en temps réel.

Le simulateur d’opérations et de formation (SOF) pour les Systéemes mobiles de service
(SMS) sera utilisé comme systéme de fine pointe de téléprogrammation. Le SOF est un logi-
ciel fonctionnel de simulation cinématique et dynamique fiable du SMS dans une configu-
ration en orbite. Le SOF est une simulation en temps réel d’un environnement de degrés
variables d’exactitude, assorti de logiciels prévus pour le support des opérations du SMS et
pour la formation de I’équipage et du personnel au sol. L'interface primaire du modéle SOF
se trouve dans une base commune de données (BCD) ol les télécommandes sont stockées
dans une mémoire commune. Donc, toutes les données de télécommande qui sont utilisées
pour commander les modules de simulation sont exportées i travers la BCD a I’intérieur de
I"interface congue pour I'utilisateur, les commandes manuelles et le tableau d’affichage de
commande. La communication entre les modules de simulation se fait a traver la BCD en
temps réel.
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Chapter 1 Problem Statement in Telerobotics

1.1 Introduction on Telerobotics

Robotics is the computerized control of a mechanical system or machines which work in
contact with its environment (e.g. a manipulator arm which performs pick & place mo-
tions). Its control is programmable and behaves in an intelligent way (i.e. the robot senses
and reacts to changes in its environment) [Sheridan, 1989]. In the 1990’s robots are leav-
ing the factory floor to work in new areas such as the resource industries, the sub-sea and
in space. Unlike industrial automation where the robot works in its own world, these envi-
ronments are not structured, are sometimes dynamic, and cannot be completely modelled.
It therefore becomes imperative to have a human operator present who can guide or su-
pervise, rather than control the robot, using a computer-assisted-interface (CAl). Work in
this area of cooperative robot-operator interaction is called telerobotics, and the application
to intervention environments is the focus of current researchers [Browse and Little, 1991,
Grinstein and others, 1992, Haule and others, 1991, Giralt and others, 1991]. The emerging

field of intervention robotics poses new technical and scientific challenges.

In the resource industries such as forestry and mining, in undersea operations and in
space, the word environment is only partially known, has little structure, and may not be
static. Hence, robot actions must be sensor-based, i.e. the execution of an action must be
self-monitored, so that if the circumstances change, the action can be suspended or aborted
or otherwise changed. Most robot manipulators have at least four dof’s in order to pro-
vide independent control in position and orientation in 3D. In the context of telerobotics,
the operator-robot interface may provide extra operational sophistication such as the possi-
bility of storing the operator input and resulting robot motions in order to improve the per-
formance or re-directing the operator input to a simulator for training purposes. Robotics

had good success in industrial environments, while robots have failed to become the logi-
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cal conclusion of the industrial revolution. This is due to the fact that factory automation is
characterised by a structured, well-controlled, static work environment and that the tasks to
be automated are often relatively simple, repetitive and do not require sophisticated envi-
ronmental interaction on the part of the robot. The work pieces are presented to the robot in
precise position and orientation at precise time intervals; the robot blindly and tirelessly ex-
ecutes its task. No attempt at understanding its actions or even recovering from accidental

errors is usually made in these situations.

Robots have been brought into the production process to relieve people of repetitive work
as well as to increase productivity, efficiency, and in some cases quality of labour. A par-
allel application of robotics has been in environments where people can not perform work
themselves. These environments are hazardous and unstructured' or semi-structured”. Ex-
amples of such applications are performing work in areas of biological, chemical, or nu-
clear contamination, which is hazardous or detrimental to humans [Alami and others, 1990,
Thayer and others, 1992]. Similarly, robotic technology has been introduced in applications
such as space and undersea exploration, where the cost and risk of manned missions is often
prohibitive [Sayers et al., 1992, Goforth and Dominy, 1988]. The latter class of applications
is characterised by unstructured and often a priori unknown working environments, as well
as non-repetitive tasks, where the robotic system is required to interact with the environment
and react intelligently to the dynamically changing environmental circumstances. Conse-
quently, if robotic devices are to be effective in such situations, they must possess a much
greater degree of sophistication than their less ambitious industrial counterparts. The de-
velopment of such autonomous robotic devices has proved to be a great challenge. Some of
the major difficulties relate to the need to adequately model the complexities of real world

and the possibility for on-line learning and performance improvement through experience.

The classical approach to tackle these problems has been to introduce problem solvers

and expert systems as part of the remote robotic workcell® control system. However, such

'Structured environments are designed and engineered to somehow cooperate with the machine, i.e.
known to the human operator.

A semi-structured environment is one about which much - but not everything - is known a priori.

3A Roboric Workcell is a collection of robots, sensors, and other industrial equipment grouped in a coop-
erative environment to perform various complex tasks.
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systems tend to be limited in scope and application domain in order to remain intellectually
implementable. They are normally too slow to be useful in real-time robot task execution,
and by virtue of their limited and discretized knowledge of the world and a predetermined
set of inference rules generally fail to adequately model the complexity and generality of real
world interactions. Likewise, detecting and correcting all possible run-time error conditions
poses a major obstacle in the development of autonomous robotic systems. This is a difficult
problem even in well-structured environments and becomes hopeless in situations where the
environment is only partially known and significant modelling, sensing and control errors
exist. These error conditions must be anticipated ahead of time and appropriate detection

and recovery routines must be programmed prior to deployment of the system.

1.2 Master-Slave Mode Teleoperation

Teleoperation remains the most reliable option for performing work in situations where peo-
ple are forced to be physically separated from the actual work environment. Teleoperators
were developed with the advent of nuclear industry in the 1940’s and have since found appli-
cations in many other areas such as undersea resource exploration, waste management and
pollution monitoring, as well as in outer space. The early prototypes were essentially me-
chanical pantographic linkages of kinematically similar master & slave arms. Despite their
simplicity, they provided for good kinesthetic remote control. However, as the spectrum of
tasks to be performed under teleoperated control expanded, the need for kinematically dis-
similar masters and slaves became increasingly more apparent. This was necessitated by
applications where the operator’s actions (displacements & forces) needed to be scaled up-
ward or downward into the task domain so that the relative-motion control would be more

natural to the operator.

The introduction of electrically actuated teleoperators under computer control removed
the limitations of the mechanical linkages, but were unable to provide kinesthetic feedback
to the operator. The development of bilateral, force-refiecting systems once again allowed
the operator to feel the remote environment through the teleoperator. Since then, sophis-
ticated teleoperated systems have been designed and built, offering high dexterity of ma-

nipulation and low fatigue on the part of the operator [Schenker et al., 1991, Hirzinger

3



1. Problem Statement in Telerobotics

Bamate Warkoafl
bioh berstaidih_Ssneary Shaiack
(Osiayes exacAATN, PAMAI SLEONOTY) (ervrmoiete vieual § nesthatic fesdback)

L=

. SYTDoN Futnactions

command ack / emor o -

Figure 1.1: Overview of a classical teleoperator control system

and others, 1989, Grinstein and others, 1992]. These systems feature dissimilar master and
slave manipulators. Coordinated two-arm telemanipulation, high bandwidth communica-
tion between the master and slave sites, high fidelity stereo visual feedback from the remote
site, as well as force-reflecting bilateral servo control for target tasks ranging from molec-
ular docking to mining. The combination of the above affords the operator an effective
working environment and a good sense of telepresence, i.e. the illusion that he is actively
present in the remote environment [Adnan and Cheatham, 1992, Cole and others, 1991,
Ince and others, 1991, Yamakita and others, 1992]. Fig. 1.1 shows an overview of a classi-

cal master-slave teleoperator control system.

1.3 Human Supervisory Control

Supervisory control refers to a human operator who is intermittently programming and con-
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tinually receiving information from a computer that itself closes an autonomous control
loop through artificial effectors and sensors to the controlled process or task environment
[Sheridan, 1992]. This leads to a virtual presence, virtual environments, artificial reality or
virtual reality, i.e. a feeling of being present in an environment other than the one the person
is actually in. With sufficient good technology a person would not be able to discriminate
among actual presence, telepresence and virtual presence. The current motivations to de-

velop supervisory control systems are:

¢ to achieve the accuracy and reliability of the machine without sacrificing the cognitive

capability and adaptability of the human;

¢ to make control faster and unconstrained by the limited pace of the continuous human

sensorimotor capability;

¢ to make control easier by letting the operator give instructions in terms of objects to

be moved and goals to be met;

e to eliminate the demand for continuous human attention and reduce the operator’s

workload;

e to make control possible even where there are time delays in communication between

human and teleoperator;

e to provide a fail-soft capability when failure in the operator’s direct control would

prove catastrophic; and

e to save lives and reduce cost by eliminating the need for the operator to be present in

hazardous environments and for life support required to send the operator there.

This list of motivations for supervisory control reflects the research objectives. The
basic supervisory control paradigm is that the human operator provides largely symbolic
commands (i.e. concatenations of typed symbols or specialized key presses) to the com-

puter. However, some fraction of operator commands may be analogic (e.g. hand-control
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1. Intelligent planning

2. Re-programming

3. Monitoring

Figure 1.2: Five supervisor functions as nested loops

movements) in order to point to objects or otherwise demonstrate ta the computer re-
lationships that are difficult for the operator to put into symbols. The local or human-
interactive computer thus should be human-friendly. Meanwhile, the subordinate remote
or task-interactive computer that accompanies the controlled process must receive com-
mands, translate them into executable strings of code, and perform the execution, closing
each control loop through the appropriate actuators and sensors. [Sheridan, 1992] defined

five generic supervisory functions of the human operator as follows:

—

. Planning: planning what task to do and how to do it;

[

. Teaching: teaching (or programming) the computer what was planned;

W

. Monitoring: monitoring the automatic action to make sure all is going as planned

and to detect failures;
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4. Intervening: the supervisor supplements ongoing automatic control activities, takes
over control entirely after the desired goal state has reached satisfactorily, or interrupts
the automatic control in emergencies to specify a new goal state and re-program a new

procedure; and

5. Learning: learning from experience so as to do better in the future.

These functions are usually time-sequential steps as nested loops. Fig. 1.2 shows these
nested loops and there are three of them. The first loop (i.e. outermost one) is from learn-
ing back to planning where after the learning process, intelligent planning can be achieved.
The second loop (i.e. middle one) is from intervene to teach. Here, re-programming can
be done during intervention process. The third loop (i.e. innermost) is basically constant

monitoring of the automatic control process.

1.4 Problem Statement in Teleoperation

Limiting factor in direct teleoperation is the communications link between the operator and
slave manipulator. This is due to delayed communications and limited bandwidth chan-
nels. Communication delays have devastating effects on task performance & telepres-
ence [Frank and others, 1988, Held and Durlach, 1991]. These tend to disorient teleop-
erators and dramatically decrease the operator’s performance. Classical teleoperation as-
sumes direct high-speed, high-bandwidth communication between the operator’s station
and the remote site. While this can be achieved for most land-based, close proximity teler-
obotic applications, it becomes a problem when the master and slave sites are separated by
a large distance (e.g. Earth-Mars [Campbell, 1988, Wojcik, 1992, Smith and others, 1987,
Haule and others, 1991]) or are forced to communicate over a limited bandwidth commu-

nication link (e.g. acoustic link to an underwater manipulator [Kotoku, 1992]).

Under such circumstances, both the instructions to the slave manipulator (i.e. desired
velocities and forces) as well as the feedback from the slave back to the operator (i.e. visual
and kinesthetic information) are delayed. This adversely affects the efficiency of task per-
formance, as the result of the operator’s motion commands to the slave is not known to him

until 2 communication delay later when the feedback arrives. A typical operator’s response

.
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under such circumstances is to adopt a move-and-wait strategy [Ferrell, 1965], where the
operator repeatedly issues small motion commands and then waits for feedback (resulting
state) from the remote environment to determine the effect of each motion. This is a typical
manual control system which has devastating effects due to delays {Hess, 1984]. Moreover,

these delays tend to increase overall mission costs during remote manipulations.

Communication delays affect task performance while doing teleoperation. Consider a
situation with a one-way time delay T which is due to the combination of transmission and
other delays in the system. From now on, this lumped delay will be referred to as the com-
munication delay or the feedback delay. Let T, be a time to execute a given task without
delay. By executing elementary commands, each of which takes on average time ¢ to exe-
cute, then the total time to execute the same task in the delayed environment by using the

move-and-wait approach is T, [Ferrell, 1965]; where:

Tootat = (1 + ZE)T.,,,k (1.1)

Fig. 1.3 illustrates the effect of communication delays on the total task completion time
using the move-and-wait strategy for ¢ = 1 sec. and five different values of the commu-
nication delay = (i.e. 7 = [0,2,5, 10, 15]. For 7 = O corresponds to the case where there
is no delay in the control loop at all, i.e. Typat = Trask- Hence, in view of Equation 1.1,
consider a twenty minute task (T;,5¢ = 20 min.), with an elementary command time of 1
sec. (f = lsec.) and with a feedback delay time of 10 sec. (r = 10sec.), then the total time

to execute the task would be 7 hours! Clearly this is NOT satisfactory.

Feedback delays can severely reduce the efficiency of task performance by forcing
the operator to wait and can severely degrade (even destroy) the sense of remote pres-
ence during remote manipulation [Sheridan and Ferell, 1963, Adnan and Cheatham, 1992,
Adams, 1962]. This is a direct consequence of the fact that both the video signal, as well
as the information about the forces experienced by the slave arm are delayed by 27. De-
lay in receiving both visual and kinesthetic information causes a problem, however de-

lays in receiving force information has been shown to be perceptually more significant.



1. Problem Statement in Telerobotics

Task Completion Time Vs. Task Length
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Figure 1.3: Effects of communication delays on task performance

Physiological studies have shown that the neurological control of human musculoskeletal
movements operates at the rate of 5 Hz., and that a time delay of approximately 300ms
(= 1/3 sec.) is clearly perceptible and distracting to humans [Beil and Warrick, 1949,
Smith, 1963]. Consequently, delays approaching 1s severely destabilize the performance

of a human operator relying on real-time feedback information [Boff and others, 1986].

Unfortunately in space and undersea, communication delays often exceed the one sec-
ond threshold. Round-trip communication delays between the ground station and a slave
workcell in low earth orbit (e.g. space shuttle) are normally in the range of 2 to 8 seconds,
depending on the number of intermediate geosynchronous satellite relay stations, the exact
nature of the computer processing/buffering at the sending and receiving stations [Bailey
and others, 1987]. If teleoperated work is to be performed in shallow space (e.g. moon,
mars), then delays approaching or exceeding 10 seconds should be expected. Similarly,
substantial delays arise during remote control of autonomous underwater vehicles (AUV)

and their on-board manipulator arms [McMillan et al., 1994, Sayers et al., 1992]. Acoustic
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communication links are normally established between the AUV and the surface ship (or a
land-based operator’s station), and with the sound transmission underwater being limited to
1460 m/s, the round-trip time delay over a distance of 1 mile therefore exceeds 2 seconds

(Sheridan, 1989].

1.5 Research Summary

The goal of this research is to address the issue of communication delays in remote manip-
ulation and to design, as well as experimentally verify, a new control methodology, capable
of controlling a remote robotic workcell in the presence of significant feedback delays with-
out a substantial degradation of the overall system performance. In particular, to develop a
delay-tolerant control strategy, which will allow for continuous and efficient control in real-
time for most, if not all, earth-based, ocean-based, as well as shallow space telerobotic ap-
plications. This is accomplished by providing ways and means in order to have satisfactory

quality sensory feedback to the operator.

According to basic control theory, sustained, stable closed-loop control in the presence
of significant time delay is not possible [Sheridan, 1992]. However, various control strate-
gies and ways of sharing the necessary control functions between the remote site and the
local station in a remotely controlled robotic system are possible, which can dramatically
improve the ability to perform useful and effective work over large distances. This research
work, presents and demonstrates a solution to the problem, based on the concept of telepro-
gramming paradigm for the remote robotic workcell. By so doing, virtual environments are
used to demonstrate the feasibility of the method. The virtual reality technology allows the
operator to reach an ultimate in immersion, interactivity & involvement for potential ubig-
uity using many logical input devices for multi-media interface through a common shared
memory where telecommands can be stored in the form of Common Data Base (CDB). The
CDB can be accessed in real-time by all simulation modules whenever needed. The operator

can view and modify the CDB via a Human Computer Interface (HCI) pages.

Chapter 2: Gives a detailed study as a background framework towards solving the stated

problem in different fields pertaining manual control during teleoperation. A lot of previ-

10
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ous work on overcoming communication delays while enhancing operator performance and
remote presence is reported. Moreover, advantages and disadvantages of these methods are
pointed out so that new methods can take advantage of them in implementing new teleop-
erator control systems. It also gives an overview of remote motion analysis vital for the

simulation purposes in terms of motion collision avoidance, classifications and restrictions.

Chapter 3: Presents the teleprogramming paradigm: a new delay-tolerant control strategy
to be used in most telerobotic applications. Its concept is fully outlined which focuses on
elementary symbolic command generation, transmission and interpretations from the local

site to the remote site. [nitial analytical evaluation of the method is also given.

Chapter 4: In order to understand the rationale of Virtual Reality (VR), this chapter sum-
marises the origin and evolution of VR by providing its potential usage and benefits in teler-
obotics applications. It also gives a survey of VR drawbacks and possible solutions for ul-
timate ubiquiry at present and in the future. Moreover, it outlines the design concepts of

general purpose VR systems to be used for Teleoperator Interface & Training (TIT).

Chapter 5: Outlines the concept of symbolic elementary telecommand generation process.
Different motion phases are identified in terms of execution environments and an algorithm
to be used is provided. The semantics of a symbolic telecommand language is summarised.
The transmission and interpretation mechanisms of these telecommands in terms of parsing,
translation & execution is also outlined. This allows meta-interaction between the local
(master) and the remote (slave) workcell. A management scheme for lag control using a

double-buffering execution scheme is designed and proven satisfactory.

Chapter 6: A control scheme for robotic visual tracking is designed. The scheme is divided
into two parts: a predictor and an observer-based double-loop feedback scheme. Its perfor-
mance is later evaluated using computer simulations in frequency domain by minimising a

squared-error cost function of the motion parameters.

Chapter 7: The flexibility of using Common Data Base (CDB) as a shared memory sec-
tion to which all simulation modules have access at run-time is presented. Primary meth-
ods for interfacing with the simulation via CDB telecommand labels are introduced which

include hand controller (H/C), display & control (D&C) panel, and human-computer inter-

11
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face (HCI) pages. Process scheduling, management and simulation performance analysis
is outlined using the available CDB-based software utilities such as Distributed Interactive

Simulation (DIS) module.

Chapter 8: Summarizes the design of MOTS software in two categories: firstly simulation
models and secondly tools to support execution and configuration management using CDB

telecommand data elements or labels.

Chapter 9: Covers experimental analysis and results obtained. This includes validating the
teleprogramming concept, visual tracking simulation results, and MOTS technical perfor-

mance parameters based on CDB telecommand data elements.

Chapter 10: Summarizes main contributions of this research and suggests possible work for
future improvement with concluding remarks. The dual usage of space-related technologies

is also outlined from which civil-related programs can benefit.

Appendices: Cover all additional materials which are vital in understanding this disserta-
tion. Most important, Appendix A gives a summary of the Manipulator Development and
Simulation Facility (MDSF) which is used as the truth model or benchmark for real-time

space robotic simulations.

12



Chapter 2 Background on Related Work

This chapter offers a brief review of related work in three main areas:

e Manual approaches used to overcome time delays during remote manipulation;
e Teleoperator human-machine real-time interfaces; and

e Automatic generation of robot control programs for hostile environments [Milgram

and others, 1995].

2.1 Manual Control with Delays

Delayed visual feedback has long been known to affect the control input human beings make
when they are an integral part of a system [Crane, 1984, Frank and others, 1988, Garvey
and others, 1958, Hess, 1984]. The latency between system input and output forces human
controllers to change how they maintain a desired system state. These changes have been
documented, as have various schemes to compensate for a delay [Crane, 1983, Kim er al.,
1993, Leslie and others, 1966]. These developments span work on human tracking and the
control of movement, vehicle simulation (e.g. flight training), robotics for manufacturing,
space exploration and current work on virtual reality displays [Pausch er al., 1992, Liang
et al., 1991]. Human input to systems where visual feedback about the results of the input
is delayed has long been a topic of interest. There are many ways time can be lost in the
real world. They may cover the time needed for communications to travel vast distances or
they may come from the time expended on the calculations needed to define the response
of a system and to display it graphically to a human operator. For experimentalists, delay
of visual feedback has served as a reliable variable for human control performance [Archer

and Namikas, 1958, Beil and Warrick, 1949].

Manual control and changes to it caused by the presence of a feedback delay can be

thought of as determined partly by the dynamics of the controlled system, partly by the

13
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size of the delay (or the human controller’s ability to compensate for it) and partly by the
requirements of the task being performed. A sizable literature about the control of sys-
tems with delays has accumulated and much of it is relevant to developments where hu-
man beings will operate either in artificial, computer-generated worlds or remotely through
sensors [Deyo and others, 1988, Bryson and Fisher, 1990]. This work started in the late
1950s as studies of human tracking performance where individuals controlled single-axis
systems with uncomplicated dynamic responses. The purpose was to investigate the accept-
ability of the first- and second-order lags of mechanical systems [Beil and Warrick, 1949,
Garvey and others, 1958, Adams, 1961, Conklin, 1957]. At about that time also, the rela-
tively long transmission times associated with remote space and planetary exploration stim-
ulated interest in how well human controllers could accommodate delays of up to several

seconds [Adams, 1962].

The 1970s brought computer image generation to flight simulation and while the de-
lays involved were only on the order of 100 to 200 msec., they were long enough to pro-
duce demonstrable changes to the control behaviour of pilots. The wide field-of-view dis-
plays of flight simulators made apparent the behaviour of elements in the visual scene and
many of the shortcuts taken in the simulation’s mathematical model. Worry about the fi-
delity of visual or motion cues stimulated the development of software compensators for
display delays. Indeed, much of the work measuring the effects of delayed visual feedback
has been performed in the context of flight simulation because of the need for an update
rate of at least 30 Hz. for the visual scene [Smith and Sarafian, 1986, Pausch er al., 1992,
Crane, 1984]. Current effort is to form networks of distributed simulators and the bandwidth
of the communication between them forces delay to be a problem still. While interest in sim-
ulation fidelity still continues, work on delay compensation changed focus to vehicle con-
trol when significant computational delays were introduced by the development of digital
fly-by-wire aircraft [Berry and others, 1982]. In addition, plans for a national space station
included a remote manipulation capability so that astronauts could use a robotic teleoper-
ation system for repair [Albus and others, 1986]. A teleoperator may be using an artificial

visual display which may contain significant computation or network delays.
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Current interest in graphical environments and the technology to allow people to interact
with them (using head-mounted displays, position tracking devices, directional sound, ges-
ture gloves and suits) faces many of the same problems encountered during the widespread
development of simulation for flight training. Additional time or computational power is
required to increase the resolution or complexity or number of images a display system can
provide. The equivalence of time and computational resources is the trade-off that has main-

tained interest in the problems caused by delays.

2.2 Overcoming Communication Delays

The problem of communication delays has been recognised as one of the central areas of
research in telerobotics for some time [Sheridan and Ferell, 1963, Stark and others, 1987,
Sheridan, 1992]. Many researchers have proposed approaches to solve this problem. Fer-
rell proposed slowing down the motion so as to minimise the effect of the delay [Ferrell,
1965]. He also proposed strengthening the slave arm and the objects which it manipulates
in order to avoid damage (e.g. underwater remotely operated vehicles (ROV’s)). Finally,
he proposed adopting a “move-and-wait” strategy, where the operator proceeds through a

sequence of incremental open-loop motions, each one foliowed by a wait of one round-trip

“supervisory control”: limited autonomy at the remote site, i.e. sensory feedback loops are
closed locally, the slave makes low-level decisions on its own, whereas the operator super-
vises the execution of tasks and supplies high-level goal information [Ferrell and Sheridan,
1967]. [Hirzinger and others, 1989] suggested formally modelling up-link and down-link
delays by augmenting the dynamic state-space model of the system (environment & slave)

- delays are modelled as delay lines on the output and introduce additional number of states.

Other researchers proposed a control theoretic approach such as modelling a teleoperated
system as a two-ported network, and devising control laws which attempt to cancel the ef-
fects of feedback delays [Anderson and Spong, 1988, Hannaford, 1989]. Another approach

is that of using predictive displays' to allow the operator to preview the command effects on

! Predictive display is a graphical simulation of the remote workcell interacting with its environment.
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the remote environment [Bejczy and others, 1990, Christensen and others, 1991]. Full au-
tonomy at the remote site is another approach whereby automatic on-line sensing, sensory
data interpretation, strategy generation, task and motion planning, execution monitoring, er-
ror detection, re-planning and recovery, etc. are being incorporated [Stein and Paul, 1992,
Lindsay, 1992, Wakita and others, 1992]. Most of these approaches have proven to be not
entirely satisfactory. For delays in excess of one second, simple move-and-wait strategies
become impractical for most applications. However, full autonomy at the remote site is be-
yond the state of the art. At present, it seems that the integration of the available, however
limited, remote site autonomy, carefully designed control laws and sophisticated operator
station based on predictive displays offers the best compromise between the desirable and

the feasible.

Supervisory control [Lee and Lee, 1992, Sheridan, 1992] provides a broad conceptual
framework for the design of effective telerobotic systems inspite of communication delays.
The central idea is to distribute decision making and control between the operator’s station
and the slave workcell in favour of the remote site, to the extent possible. This results in
greater independence of the supervisory and the remote control loops, the two now being
coupled only through a low-bandwidth asynchronous exchange of commands (from the op-
erator to the remote workcell) and state information (from the remote workcell to the op-
erator). However, the realization of the full promise of supervisory control during remote
manipulation has been hampered by the difficulty of adequately automating the low-level
environmental interaction at the remote site. This relates primarily to the difficulty of in-
corporating sufficiently sophisticated knowledge of the world and models of contact physics
into on-board reasoning systems, as well as designing corresponding manipulator control al-
gorithms, capable of operating reliably in unstructured and a priori unknown environments.
A related problem is the need to anticipate, detect and provide pre-programmed corrective
actions for the multitude of possible error conditions arising during subtask execution in
order to support the necessary level of autonomy at the remote site. With error handlers
themselves being subject to errors, the error handling code can easily come to dominate an

application program as well as the programming effort itself.
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Many approaches for time-delayed remote manipulation rely on predictive displays as
a means of providing approximate, partial feedback to the operator in real-time. In such
systems, the operator’s station makes use of computer models of the remote workcell and
its environment. These models are then graphically displayed to the operator, and the ef-
fects of operator’s commands are computed in the simulated visual feedback. [Bejczy and
others, 1990] used the so called Phantom Robot for predictive displays while doing teleop-
eration with time delays. State of the art predictive displays can synchronise and overlay
real-time computer graphics with the incoming delayed video camera signal on the same
physical display. [Kotoku, 1992] applied a force feedback to realize predictive displays of
a remote manipulation system with transmission delays. [Merritt and Cole, 1991] applied
stereo-scopic 3D cues in a rapid sequential positioning task for evaluating motion parallax

for teleoperator displays.

Overcoming the communication delay problem has been one of the central issues in teler-
obotic technology. Refer to [Sheridan, 1993] for its intense review and prognosis of the
problem. So far, a releprogramming concept is thought to be a promising way to come over
it [Funda and others, 1992, Kaczor et al., 1993, Paul er al., 1992]. In teleprogramming sys-
tems [Paul er al., 1993], it is assumed that sufficient data has been received from the slave
site so as to enable the construction of a model of the remote environment. The operator can
interact both visually and kinesthetically with the simulated environment. The operator’s
actions are then transformed into a sequence of robot program commands which, when ex-
ecuted by the slave manipulator, seek to mimic the operator’s actions after the delayed time.
In this respect, in order for the the teleprogramming systems to realistically work well, the

following two problems should basically be solved:

e how the master site automatically generates the sequence of robotic commands;

e what format of the commands is adequate for their execution of the remote slave.
(Funda and others, 1992] proposed a class of symbolic language based on the hybrid

force/position model as a solution to the basic problems. [Simon and others, 1994] pre-

sented the approach, algorithms and processes to perform cross-country autonomous nav-
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igation using the teleprogramming context for mobile robots. [Jimenez and others, 1993]
used the teleprogramming concept to predict the dynamic behaviour of a planetary vehicle
while designing it and its associated control mechanisms. [Giralt and others, 1993] con-
sidered using the teleprogramming concept for the class of intervention robots (e.g. Mars
Rover) that have to perform tasks in remote environments which may impose painful, harsh
or utterly dangerous conditions to humans. [Stein, 1993] discussed a case study for porta-
bility issues in any teleprogramming system with a behaviour-based controller [Stein and
Paul, 1994]. [Lindsay and Paul, 1993] used the teleprogramming concept to simplify the op-
erator’s interaction with the manipulator/tool system using the adaptive sensing algorithm
of the remote system. [Lee and Lee, 1994] presented a new method for designing an op-
timal time-delayed teleoperator control system based on Smith’s principle for conventional
teleprogramming. [Cho eral., 1995] proposed a discrete-event-based teleprogramming sys-
tem for enhancing the tolerance to the error condition due to the geometric uncertainty of
the remote slave environment. A new planning and control methodology, which enables
the system to overcome the geometric uncertainty problem as well as the communication
delay problem was designed and verified. [Mitsuishi and others, 1995] described the con-
struction of a tele-handling and tele-machining system at the macro and micro scales that
uses the Internet for communication. A method to compensate for transmission time de-
lays using the physical model of the object is also described. Moreover, [Stein and oth-
ers, 1995] presented an experimental effort to validate the teleprogramming system using
the Internet as the sole medium of communication. The experiment employed a supervi-
sory control approach to time-delayed remote manipulation where an operator directs the
actions of a semi-autonomous remote manipulator. Other researchers use intelligent mon-
itoring systems [Wakita et al., 1995] for limited communication path during overseas con-

nections through the Internet.

2.3 Kinesthetic Feedback

Force reflection dramatically improves the sense of teleperception [Ferrell, 1966, Han-
naford, 1989]. Since visual and kinesthetic information can be supplied to the operator

through different sensory input channels, they naturally integrate and augment each other.
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{t has been shown that kinesthetic feedback can be at least as important as 3-D visual in-
formation and that, in some circumstances, force feedback alone can be more valuable than
visual feedback alone {Ouh-young ez al., 1989, Kotoku, 1992]. Communication delays pre-
clude direct reflection of the reaction forces, experienced by the slave, to the operator’s hand
controller. Many studies have shown that force feedback can destabilize the control loop.
Moreover, experiments indicate that no force information at all may be better than delayed
force feedback, since the perceived loss of the action/reaction causality tends to be con-
fusing to the operator [Buzan, 1989)]. This confusion and disorientation arises regardless
of whether the delayed force signal is fed to the active hand (i.e. the one controlling the
master arm) or the passive hand. Delays in force information motivated research in gen-
erating artificial kinesthetic feedback which would approximate the expected actual force
signal. Most of the effort concentrated on extracting force information from the predictive
displays. Since too few physical parameters of the remote world and the objects therein are
known for a full dynamic model to be useful and meaningful, remote environment simula-
tions are almost invariably non-dynamic. Thus, the best one can do is to compute a reason-
able approximation to the actual forces. A possible solution is to monitor contacts between
objects in the graphical environment and compute the pseudo interaction force as an inverse
function of decreasing distance between objects (beyond some proximity threshold). Both

quadratic and linear laws have been proposed for 1-D force reflection [Fong e al., 1986].

An interesting application for extracting force information from a graphical display was
proposed by [Ouh-young et al., 1989]. In this work, researchers simulate the interaction
forces between a drug molecule and a specific receptor site on a protein or nucleic acid
molecule to find good fits by feel, rather than visualisation alone. Goodness of fit is charac-
terised by minimising the interaction energy, which is a function of electric charges of the
atoms and inter-atomic distances. The operator interacts with a magnified graphical display
of the molecules and attempts to find, kinesthetically, the best geometric and electrostatic
fit. Current telerobotic systems use sophisticated and costly predictive displays but rarely
attempt to generate force information from the interaction between the simulated slave and
its environment. Normally, slave contact interactions are handled via local compliant con-

trol strategies at the slave site without generating kinesthetic feedback to the operator [Kim
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et al., 1990]. [Marapane and others, 1992b] used a real and virtual robot head for active
vision research. In this research, they implemented a Graphical Simulation and Animation
(GSA) environment for a 10 d.o.f. Robotic Research Head. The power and usefulness of the
GSA system as a research tool was demonstrated by acquiring and analysing stereo images
in the virtual world. Same researchers have applied the GSA environment for the design of
flexible robotic structures [Marapane and others, 1992a). They demonstrated its capabili-
ties by simulating the behaviour of a fiexible beam driven by a motor and coatrolled using a
simple PD controller. To overcome the effects of delays, [Schebor and Turney, 1991] devel-
oped key components of a prototype forward simulation subsystem, the Global-Local En-
vironment Telerobotics Simulator (GLETS) that buffers the operator from the remote task.
GLETS totally immerses an operator in a real-time, interactive, simulated, visually updated
artificial environment of the remote site. Using GLETS, the operator, will, in effect, enter
into a telerobotic virtual reality and can easily form a gestalt of the virtual local site* that

matches remote site interactions.

2.4 Automatic Robot Programming

Robots can be used to perform non-contact tasks such as inspection or surveillance. How-
ever, the majority of robotic manipulation tasks require that the robot physically interact
with its environment. This complicates control of robot manipulators due to oscillatory
dynamic effects on contact and time-varying, high-frequency interaction between the ma-
nipulator’s end-effector and the environment. These effects are difficult to model accu-
rately and can result in control instabilities. Consequently, sophisticated control strategies
are needed to deal with contact manipulation and a variety of control laws have been pro-
posed: resolved acceleration control [Luh et al., 1980], operational space method [Khatib,
1985], impedance control [Hogan, 1980, stiffness control {Salisbury, 1980], hybrid con-
trol [Raibert and Craig, 1981], etc. The most popular of these control strategies is the Ay-
brid position/force control method [Raibert and Craig, 1981]. This approach separates the
robot’s Cartesian d.o.f. of motion into force and position (velocity) controlled directions.

Mason proposed a theoretical framework which can analyse the geometry of contact(s) be-

2The concept of virtual reality technology is fully covered in Chapter 4.



2. Background on Related Work

tween the robot and the environment and define mutually orthogonal naturally constrained
and artificially constrained directions [Mason, 1981]. These directions can be thought of
as specifying a task frame, centered at the contact point, in which the robot’s desired force
and position trajectories can be conveniently specified. A task can thus be defined as a se-
quence of task frame specifications and position/force trajectories along the artificially and

naturally constrained d.o.f., respectively, in the current task frame.

While force control enables the robot to perform contact manipulation more stably and
reliably, programming such applications is significantly more complex and intricate than
programming simple positioning tasks. In order to facilitate easier and more convenient pro-
gramming, a variety of programming languages has emerged: WAVE, AL, AUTOPASS, VAL,
etc. The target application for most of these languages were assembly problems in manufac-
turing and automation, and programs were designed either off-line or interactively through
a step-by-step interpretative process. Recently, work has been done on at least partially au-
tomating the process of generating robot programs. [Grossman and Taylor, 1978] used the
manipulator itself as a 3-D pointing device to interactively generate object models and au-
tomatically produce the corresponding object declarations for the AL language. [Asada and
[zumi, 1987, Asada and Yang, 1989] have used a teaching-by-showing technique to auto-
matically generate simple hybrid position/force control instructions for the robot. In this ap-
proach, the operator performs the task by holding on to the robot end-effector. During the
teaching phase, the interaction forces and position trajectories are recorded and later pro-
cessed off-line by using pattern matching techniques to map sensor signals to elementary
motion commands. [De Schutter and Leysen, 1987, De Schutter and Van Brussel, 1988]
proposed a method for automatically tracking and adjusting task frame position and orien-
tation during task execution. The strategy consists of monitoring (on-line, through sensory
readings) the evolution of the natural constraints and aligning the task frame with these dy-
namically determined constraints. Most of the work on automatic robot program genera-
tion, to date, has concentrated in the area of automatic assembly task planning and strategy
generation. Some of the major areas of research in this domain include: Representational
Formalisms & Formal Frameworks for Planning Strategies [Sanderson and others, 1988,

Hoffman, 1989, Lozano-Perez and Brooks, 1985]. Formal models for synthesizing com-
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pliant motion strategies from geometric descriptions of assembly operations and explicitly
estimating errors in sensing and control {Lozano-Perez et al., 1983]. Mathematical models
for describing strategies which are guaranteed to succeed in the presence of sensory, con-
trol and modelling errors [Donald, 1986, Jennings er al., 1989]. Automatically generating
assembly programs from design information by searching through a graph of contact for-

mations [Desai and Volz, 1989].

One can note from the above efforts that automatic generation of robot programs in the
presence of significant modelling, sensory and control errors is extremely difficult and in
general, quite possibly unachievable. Typically, these methods analyse the problem of dis-
assembly (a mathematically more constrained problem), produce a tree or a graph of all
possible plans and call any reverse path through the graph, i.e. an assembly sequence. The
search for a good (or at least feasible) solution in this graph may be guided by rule-based sys-
tems [Noorhosseini and Malowany, 1994a, Noorhosseini and Malowany, 1994b], heuristic
data-bases, etc. Consequently, plan searching and selection must often be done off-line. In
order to cope with the complexities of the problem, many simplifying assumptions are nor-
mally introduced into problem analysis (e.g. planar surfaces only, translations only) which
limit the scope and usefulness of such schemes. Adaptive behaviour and on-line learning
techniques are needed for successful autonomous planning, error detection and re-planning
in the presence of uncertainties. Thus, the potential ultimate in automatic programming is

to have object-oriented languages.

2.5 Programming by Human Demonstration

Different methods are presented by which robots can learn new tasks by monitoring the per-
formance of a human operator. Programming a robot to behave in a desired manner is one
of the most challenging tasks in robotics. Methods such as reach-by-showing, textual pro-
gramming, teleoperation & automatic programming [Kang and Ikeuchi, 1993] have merits,
but they can be either inconvenient or impractical in many situations. To remedy these prob-
lems, new approaches that combine elements of teleoperation and automatic programming
were proposed by many researchers [Takahashi and Ogata, 1992, Pook and Ballard, 1993,

Kuniyoshi er al., 1992, Ikeuchi and Suehiro, 1994]. In these approaches, a robot learns ma-
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nipulation skills by observing a human instructor performing tasks (e.g. assembling). By
extracting relevant task knowledge from the observations, the robot can generate an equiva-
lent action sequence. Although different implementations differ in the way by which leamn-
ing occurs, they can be categorized by the realism experienced by the human instructor dur-
ing the teaching process. In the system presented by [Takahashi and Ogata, 1992], the in-
structor teaches a robot in a virtual world, with no tactile feedback. In [Pook and Ballard.
1993], the human instructs the system by teleoperating an actual robot with no force feed-
back. These two methods direct real-time sensory feedback to the system, since the robot
actively participates in the assembly process, either as a virtual robot or as a teleoperated
robot, during the learning process. While various tasks may be programmed using these
methods, they provide limited sensory reflection to the human operator. This makes it diffi-
cult for the human instructor to exercise hand-eye coordination during the teaching phase. In
the systems of [Kuniyoshi e al., 1992] and [Ikeuchi and Suehiro, 1994}, the human directly
manipulates the objects, so this difficulty due to the lack of human contact with the world
does not occur. These systems employ visual sensors to observe the tasks being carried out

by a human and deduce from these observations the state transitions of a given task.

In [Tung and Kak, 1995] a method in which a robot can learn new assembly tasks by
monitoring the performance of a human operator wearing a Data-Glove® [Inc., 1993b] is
presented. In particular, the system records the motions of the Data-Glove as it is used to
manipulate actual objects and, by using geometric reasoning, deduces the assembly task that
is being performed. Subsequently, the assembly steps are translated automatically by a task
planner into a robot manipulation program. In experimental demonstrations of this system,
the robot can now learn assembly tasks involving pickups, put-downs and various mating
operations. Instead of using vision sensors to observe the human assembly performance,
[Tung and Kak, 1995] employed a Data-Glove to obtain the trajectories of the manipulated
objects in real-time. This allows for fast and efficient computation of the positions and ori-
entations of the objects and provides a natural mechanism through which assembly opera-

tions can be deduced and then transformed into a robot manipulation program. The position

3A Data-Glove is a device that allows the user to measure the gestures of a human hand: it consists of a
cloth glove with ten optical fibers attached to the back and passing over the finger joints.
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and orientation of the hand in space is measured by using a Polhemus 3Space tracking sen-
sor [Inc., 1993al, which is mounted on the back of the Daza-Glove. [Onda and others, 1995]
constructed a teaching system for assembly tasks using a force/position simulator which
extracts a sequence of contact state transitions from the motion performed by the operator.
This makes feasible to achieve an error-tolerant automated assembly motion and studies
of the automatic assembly task system can progress based upon this information. Auto-
matic programming {Lozano-Perez, 1981] requires no human intervention after the speci-
fication of the task, however there is overwhelming complexity of the subtasks. [Paul and
Ikeuchi, 1995] and [Ikeuchi and Suehiro, 1994] presented the Assembly Plan from Obser-
vation (APO) system which observes a human operator perform an assembly task, analyzes
the observations, models the task, and generates the programs for the robot to perform the

same task. This method incorporates the simplicity of reach-by-showing and teleoperation.

In [Hirai and Asada, 1993], they used geometry to analyze the kinematics of contacts
and then model robot assembly tasks using a contact state network. [[keuchi and Suehiro,
1994] proposed the concept of partitioning contact state space and using it to build task mod-
els for a multi-finger hand. Another area of related research is assembly motion planning.
Work such as by [Lozano-Perez, 1981, Lozano-Perez et al., 1984, Mason, 1981] has related
the concept of compliant-guarded motions during assembly to paths traversing the faces of
Cartesian-space obstacles. [Tso and Liu, 1995] described a method of generating robot pro-
gram codes automatically from perception of human demonstration. The movement of a
marker-based mechatronic input device representing the end-effector of the manipulator is
driven by an operator, and recorded by a special visual measurement system. The captured
spatial path is divided into different segments for individual processing. This robust sys-
tem of task-specification capturing and understanding can be applied to the APO system
of a robot arm. With the incorporation of a corresponding mechatronic input device, the
method can be extended to robot-hand operation as well. Some of the typical high-level
robot commands that can be achieved via programming by human demonstration are sum-
marized in Table 2.1. Stanford University’s Aerospace Robotics Laboratory has developed
the Task-Level Command (TLC) architecture [Miles and Cannon, 1995] as a means for a

human operator to direct highly autonomous robotic platforms with simple, intuitive com-
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Command Interpretation

OPEN to open the gripper

CLOSE to close the gripper

MOVE(x.y.z) to translate the robot end-effector from the current position to the (x.y.z)
position

ROTATE(roll,pitch,yaw) to rotate the robot end-effector from the current orientation to the

(roll,pitch,yaw) orientation

GRASP(roll,pitch.yaw.d) to move the robot end-effector along the (roll,pitch.yaw) and out of the
local origin direction for a distance d; then to close the gripper at the end

DEGRASP(roll,pitch.yaw,d) | to do the opposite of GRASP; i.e. to open the gripper at the beginning
and to move the robot end-effector along the (roll,pitch.,yaw) and to-
wards the local origin direction for a distance d

PATH(position-array) to control the robot movement so that the end-effector point will track
the trajectory described by the (posirion-array) at regular intervals

Table 2.1: Typical high-level robot commands

mands. The TL.C architecture is a hierarchical approach to robot control that enables an op-
erator to graphically specify dynamics and sophisticated tasks through an interactive user
interface that is updated in real-time. The low-level details of carrying out those tasks are
handled autonomously by the robot, and therefore do not burden the operator as he is left free
to concentrate on high-level issues. This novel control approach exploits the complemen-
tary capabilities of both robotic control and human decision-making to construct a powerful
human/robot team operating in a semi-structured environment [Miles and Cannon, 1995].
In this approach, the human operator assists the robot in perceiving unexpected situations in
the environment through simple point-and-click type interaction with a live video display
from on-board cameras. This approach overcomes the challenges of semi-structured envi-
ronments without sacrificing the high-degree of autonomy and resilience to time delay of

the TLC architecture.
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2.6 Telerobotic Simulation

The main problems in teleoperation include communication time delays and limited sen-
sory feedback. These tend to disorient teleoperators and dramatically decrease the opera-
tor’s performance during remote manipulations. A solution is to design a key component
of a prototype forward simulation subsystem that buffers the operator from the remote task.
An example of such solution is that of [Kim and Bejczy, 1991}, where they developed high-
fidelity real-time computer Graphic Displays for operator aid in telemanipulation. The roles
of graphic displays in teleoperation include task visualisation, preview prior to actual exe-
cution and predictive displays under communication time delay. Graphic displays are also
useful for task analysis, task planning and operator training. [Schebor and Turney, 1991]
developed a Global-Local Environment Telerobotic Simulator (GLETS) which totally im-
merses an operator in a real-time, interactive, simulated, visually updated artificial envi-
ronment of the remote telerobotic site. Using such simulators, the operator will, in effect,
enter into a telerobotic virtual reality and can easily form a gestalt of the virtual local site
that matches his normal interactions with the remote site. To simplify teleoperation, a de-
signed telerobotic simulator will be able to: (i). simulate a remote manipulator and its local
environment; (ii). continually update the simulated environment using remote visual sen-
sors; (iil). manipulate the simulated environment with an easy-to-use, gesturally and voice
controlled operator interface, which provides rich visual and audio cues; and (iv). provide a
flexible object-oriented software architecture with underlying standard robotics algorithmic

support, which results in software that is reusable, extensible, reliable and portable.

The effectiveness of a telerobotic system as a tool depends largely on the way the system
is interfaced with the operator. Poor interfaces result into extremely expensive teleoperator
training. The key to solving this problem is to make the interface to the simulator more
human-like rather than requiring the operator to be more machine-like. A human-machine
system that requires direct cooperation between the agents that take part in task execution is
an example of a teleoperated work environment. Multi-agent cooperation can take place in
two general modes (i.e. interaction & interface) as shown in model of Fig. 2.1. by [Ntuen

and others, 1991]. Using a telerobotic simulator, the operator will, in effect, be able to in-
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Figure 2.1: Human-machine interaction (interfacing) in a telerobotic system

teract with a telerobotic virtual reality and to form a gestalt of the virtual local telerobotic
site that matches the operator interactions with the actual remote site. These capabilities can
be provided by: (a) displays in the form of 3-D stereoscopic, shaded surface graphics and
synthesised speech; (b) computer-linked glove that allows the system to monitor the posi-
tion, orientation and finger configuration of an operator’s hand, which permits the operator
to control the end-effector. The glove also permits the hand to be used as a pick & place
device on virtual control panels, or through the use of gestures, to provide complex instruc-
tions to the telerobotic simulator, such as grasp, release, insert, open or expand; and (c)

speech synthesis and voice recognition which provides input of more abstract commands.

Voice input and output have contributed productive gains in graphical workstation envi-
ronments. [Apostolos and others, 1992] have done experiments on benefits of using audi-

tory cues for cuing operator manual control actions. The experiments were done on the sim-
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ulated Solar Maximum Satellite Repair to examine a task of unbolting an electrical connec-
tor screw based on the apparent significance of auditory signals. A combination of audio,
vision & force feedback gives the best performance. Unless a robot simulator cin maintain
both a correct and current world model of its environment, it cannot function in a telerobotic
application. Thus, a software architecture has to be designed with visual update systems that
allow the simulator to interact with a remote vision system for update of the world model.
The visual update system serves two purposes: first to determine the minor discrepancies
between the real and simulated world environments and to update the simulator when these
discrepancies become too large to tolerate; second to locate objects that are completely lost
by the simulator. The simulator’s flexibility and extend-ability are very important, hence

the need for object-oriented programming environments.

However, kinematic simulation of the motion of the remote and the manipulated objects
is most simplified or favourable. Hence, the simulation does not account for the dynamic
effects of either the slave robot or the environment. Moreover, the slave plus any grasped
or manipulated object are assumed to be the only moving parts in the environment. From
now on, the movable portions of the remote environment, which are directly under opera-
tor’s control, will be collectively referred to as the Movable Object (MO). Because of the
kinematic nature of the simulation, dynamic changes in the environment, other than the state
of the workcell and the object(s) being directly manipulated, need to be relayed to the op-
erator’s station and incorporated into the virtual model through the available environment
updating mechanisms rather than direct simulation. This applies to the dynamic changes
caused by the slave, as well as those produced by external environmental agents (e.g. winds,
water currents). While kinematic simulation may seem restrictive, it is the most practical
approach since only approximate information about the world is available, no complete in-
formation about the masses, inertias, frictional properties, etc. of the objects in the environ-
ment is available. In addition, the unmodelable and unpredictable external agents may sig-
nificantly affect the dynamic state of the world, further diminishing the utility of a dvnamic
simulation. [Bejczy and others, 1990] discussed whether partial or full dynamic simulation
has to be incorporated in the original conceptual design of the teleoperator control system

for an unstructured environment.
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Motion Mode Classification

Free Space Motion | Free motion (rotations & translations)
Translation (fixed orientations)

Rotation (fixed position)

Contact Motion Sliding (fixed orientation)

Pivoting (fixed position)

Pushing

Table 2.2: Motion mode classifications
2.7 Motion Mode Classifications

A teleprogramming system should offer the operator control over a wide range of slave
workcell motions both in free space (i.e. while approaching/leaving the work area) and
in contact with the surroundings (i.e. while performing the work). Moreover, the operator
should be able to select different subsets of the physically realizable motion, which would
allow him to concentrate on only those motion parameters that are relevant to the current
subtask. This can be accomplished by defining a set of elementary motion modes, which
provide a collection of basic and intuitive motion modalities. To simplify general motion
for both the operator and the slave robot, a natural way is to separate rotations and transla-
tions whenever possible [Funda and others, 1992]. This is crucial in contact motion, as the
contact point is normally physically removed from the wrist-based reference location (F,)
where motion is commanded. This separation gives rise to a remote compliance centre and
consequently introduces complex and dynamically changing coupling between rotational
and translational parameters of the wrist and contact frames. This coupling may lead to
control instabilities at the slave workcell and may result in confusing reflected motion ap-
plied to the master device and perceived by the operator. The choice of elementary motion
modes should strive to eliminate such coupling effects without compromising the flexibil-
ity and power of the teleprogramming system. Table 2.2 summarizes a set of elementary

classes of motion mode classification.
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Given a set of elementary motion modes, a mechanism to switch between them needs
to be designed. In order to minimise the burden on the operator, mode switching should be
done automatically whenever possible. In particular, in contact motion, the motion mode
can be inferred automatically from the current contact state (between MO and the environ-
ment) and the commanded force and moiion input from the operator. In free space, kines-
thetic information can not be used for mode selection. In this case, as well as when the
operator wishes to override the automatically inferred mode, the operator can use the audio
interface to communicate the desired motion mode to the system. During free space motion,
the system should offer the operator the maximum possible maneuver-ability. At the same
time it should aid the operator preserve positional/orientational parameters that he wishes
to keep constant during a significant portion of a2 manipulation task. For instance, if the op-
erator has achieved the desired approach orientation, then the system should allow him to
freeze (lock) it and subsequently concentrate on translational motion of the slave robot (and
MO) only. Similarly, situations may arise (e.g. screwing, valve adjusting), where the oper-
ator has positioned the slave end-effector and wishes to freeze the position and concentrate

on grasping or turning the grasped feature.

As shown in Table 2.2, there are three contact motion modes. In sliding mode, the op-
erator can slide MO along the constraining feature(s) (surfaces, edges) in the permissible
directions, i.e. such that none of the geometric motion constraints are violated. The orienta-
tion of MO remains fixed for the duration of motion in this mode. The system can be asked
to help the operator maintain contact with the environment by providing a small amount
of surface adhesion, if desired, but will allow the operator to break existing contact(s) if he
clearly indicates such intent. This aids the operator in preserving high-order contacts (which
are presumed preferred), while still allowing him to transition to an arbitrary adjacent con-
tact. The second mode of contact motion is pivoting whereby the operator can adjust the
orientation of MO or transition between adjacent contacts by rotating or pivoting about the
contact point. In this mode the contact point is not allowed to slide along or depart from
the supporting environment contact feature. As the contact type changes, the contact point
moves on the surface of MO and with it the pivoting point about which rotational motions

are computed. This allows a variety of re-orienting and contact changing motions of MO.
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Moreover, the system performs motion analysis on the commanded displacements in order
to aid the operator in achieving the desired changes of orientation. The system also pro-
vides a restricted version of this motion meodality for multiple-contact configurations. A
third contact motion mode is pushing. It is provided to support a rudimentary pushing ca-
pability. Predicting the exact outcome of pushing motions in actual situations is extremely
difficult. This is because the motion of a pushed object critically depends on the complex
interactions between the microscopic features of the two sliding surfaces [Mason, 1981].
Consequently, in order to generate instructions, which can be executed successfully and re-
liably under slave’s local sensory supervision, the system offers only a restricted, straight-

line pushing mode.

In [Funda, 1991] and [Haule and Malowany, 1995a] described how the teleprogramming
system detects collisions, examines contacts and maintains the resulting collection of all
currently active contacts as the contact set C. Associated with each contact are one or more
mutually orthogonal Cartesian constraints on the relative motion of the contacting objects
[Mason, 1981]. The number of resulting motion constraints is a function of the geometric
contact type and physical properties of the contacting surfaces (e.g. friction). For situations
where multiple contacts define the current contact state between two objects, one must or-
thogonalize the associated constraints with respect to a set of reference coordinates in order
to obtain a meaningful description of the constraints, restricting the relative motion of the
two bodies. In the trivial case of a single contact, an orthogonal frame can be aligned with
the only contact normal and the resulting constraints can be defined in this frame. In the
case of multiple contacts, however, such a frame in general does not exist. In this case, one
needs to define a set of orthogonal reference coordinates and project the constraints associ-
ated with each contact into the common reference coordinate frame to obtain the constraint
set S. Any subsequent motion imparted on an object, whose contact set is given by C, is
thus constrained by S. In this case, the objects are the MO and the environment. For each
contact configuration a restriction frame F g* is defined. For single contact configuration,

the commanded motion, appropriately mapped into the restriction frame, will be restricted

4 .. . . . . . e
A restriction frame F g will be aligned with the dominant contact features and chosen so as to facilitate
easy and intuitive restriction of commanded motion with respect to the current constraint set S.
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with respect to the only constraint {¢,} = C. For MO/environment configurations with
contact multiplicity greater than 1, on the other hand, the constraints associated with the con-
tacts ¢; € C will be mapped into this restriction frame and the commanded motion will
be restricted based on the resulting orthogonal set of motion constraints. Thus, a motion

restriction is needed for each mode during object motions with single- or multi-contacts.
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Chapter 3 The Teleprogramming Methodology

3.1 Introduction

There is clearly an established and growing need to perform work in remote environments
which are unreachable or unsafe for humans as discussed in Chapters 1 & 2. A purely au-
tonomous manipulative capability would provide the solution to the communication delay
and real-time feedback problem. However, its realization remains beyond the state of the
art in modern robotics. On the other hand, direct teleoperation using the move-and-wait
strategy in the presence of feedback delays degrades task performance and sense of telep-
resence. This research proposes to solve the problem of time-delayed remote manipulation
by using a new control methodology, based on incremental teleprogramming of the remote
workcell. As in supervisory control, the low-bandwidth human-master-slave control loop
is separated into two locally closed, high-bandwidth control loops, which exchange infor-
mation over the low-bandwidth, delayed communication link. However, unlike supervisory
control, the teleprogramming control paradigm requires a relatively modest amount of au-
tonomy at the remote site and relies on a different type of information exchange between
the operator’s station and the remote site. [Giralt and others, 1989] proposed a high-level

view of teleprogramming system shown in Fig. 3.1.

Teleprogramming provides a practical solution to time-delayed remote manipulation by
combining the power of a graphical previewing display with the provision of real-time
kinesthetic feedback, to allow the operator to interactively, through a bilateral kinesthetic
coupling with a virtual environment, define the task to be performed remotely. The locally
closed, high-bandwidth feedback loop at the operator’s station allows for stable interaction
between the operator and the simulated task environment. The immediate visual feedback
provides a strong sense of teleperception while immersed in virtual environments. As the

operator performs the task in the virtual model. the system continuously monitors the oper-
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Figure 3.1: High-level view of a teleprogramming system

ator’s actions and generates a stream of symbolic robot instructions, capturing all essential
features of the task in progress. The action interpretation and telecommand stream gener-
ation process is guided by a priori information about the nature and goals of the task. The
resulting instructions are symbolic in nature and at the level of guarded and compliant mo-
tion primitives to allow for discrepancies between the real world and the virtual model. The
instructions are generated automatically, on-line, as the task progresses and are sent to the re-
mote site incrementally, as they become available. The remote site receives them a transmis-
sion delay later, translates them into the local control language and executes them (delayed
in time) under the control of a local high-bandwidth sensory feedback controller. Due to
modelling, sensing and control errors, execution failures will inevitably occur in the remote
environment. On detecting an error, the slave sends all relevant information about the error

state to the operator’s station. This information is used to alert the operator about the error
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Figure 3.2: Conceptual organisation of a teleprogramming system

condition, properly adjust and update the virtual model, and allow the operator to specify
the necessary corrective actions and proceed with the task. An overview of a more detailed
teleprogramming control paradigm is as shown in Fig. 3.2 which illustrates all major com-

ponents of the conceptual system architecture and indicates the basic inter-relationships.

3.2 Virtual World Model

The assumption in this work is that we are manipulating in an a priori unknown environ-
ment. Upon arrival to the designated work area, the remote workcell obtains the initial de-

scription of the environment through the use of its on-board sensors, such as vision cameras,
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sonars, or range scanners. This sensor information is then sent to the operator’s station,
where it is used to construct an initial virtual model of the remote area. This is a difficult
problem in general, involving sensor fusion, multi-stage image processing and segmenta-
tion of the final regions into 3-D objects [Bolle and Vemuri, 1991]. While automating many
of the stages of this process is within the state of the art of computer vision and image pro-
cessing, it may be difficult to obtain a high-level segmentation, consistent with the opera-
tor’s mental model of the scene, in a purely automatic fashion. This is particularly true if
the original data is noisy and of poor quality, which may very well be the case with data
such as undersea vision images. Likewise, occlusions in cluttered environments result in

incomplete data, further complicating the segmentation process.

As this virtual model is constructed only once at the beginning of a teleprogramming
session, it is proposed that the operator interact with the segmentation process and aid the
system in constructing a model of the environment, that is consistent with the operator’s best
estimate of the nature and relationships of objects in the images. The output of this stage
is an unambiguous description of the environment in terms of identifiable objects, which
in turn are described in terms of faces, edges and vertices. Such descriptions can then be
converted into standard representations, such as polyhedral models, constructive solid ge-
ometrical models, etc. By augmenting this virtual world with a corresponding model of
the manipulator workcell itself, a real representation of the remote environment can be ob-
tained, which can be displayed, animated and manipulated in real-time using standard input
devices in virtual environments. Sensor imperfections will invariably introduce errors into
the initial data and consequently the resulting model. It is important that adequate models of
sensor characteristics exist to estimate and at least bracket the positional and orientational
uncertainties in the resulting virtual world model. This information will be later used by
the symbolic telecommand generation module as well as by the on-line model refinement

process.

After constructing a 3-D virtual model of the remote workcell and its environment, it
becomes possible for the operator to interact with this simulated world and specify tasks to

be performed by the actual remote workcell. With this goal in mind, input devices can be

36



3. The Teleprogramming Methodology

interfaced to the graphical display, allowing the operator to control positional and orienta-
tional parameters of the simulated workcell. While operating in an unstructured and largely
unknown surroundings, many of the dynamic parameters of the remote environment such as
masses, inertial parameters and frictional properties will not be known a priori. This, along
with the difficulty of adequately modelling effects such as hydrodynamics and buoyancy in
underwater applications, suggests that a non-dynamic, kinematic simulation of the remote
environment including the slave robot is to be employed. The role of a virtual simulatorin a
teleprogramming system is to provide a real-time, realistic graphical animation of the slave
workcell operating in the simulated environment under the operator’s control. Secondly,
the simulator software continuously monitors the slave robot and any object in its grasp for
collisions or contacts with the environment. The system distinguishes between desired and
undesired contacts. Desired contacts will normally occur between the slave’s end-effector
or an object it is currently holding and some part of the remote environment involved in the
execution of the task. Undesired collisions are all other collisions which normally invoive

some non-effector part of the slave robot and an environment obstacle.

Each commanded incremental positional displacement to the simulated slave is checked
to see if it causes a collision between any of the object pairs. If so, the offending motion is
modified by computing the fraction of the commanded displacement, which results in a non-
penetrating configuration, placing the most deeply penetrating object pair exactly in contact.
For each new contact, the system records the necessary information to uniquely and unam-
biguously describe the contact geometry. This information is updated at each simulation
step and is used by the motion restriction and kinesthetic feedback computation modules,
as well as by the telecommand generation process. When the operator brings the simulated
workcell into contact with the environment, the commanded motion of the slave manipula-
tor is appropriately modified to prevent penetration of environmental surfaces and the geo-
metric information describing the contact is added to the list of all currently active contacts.
While the operator remains in contact with the environment, the motion constraints result-
ing from these contacts must be enforced on subsequent commanded motions to the slave
manipulator in order to produce correct and realistic motion of the simulated slave. This is

done by computing the set of independent, orthogonal constraints on the motion of the slave
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workcell corresponding to the current contact set and restricting (i.e. modifying) the opera-
tor's commanded motions of the slave manipulator with respect to this constraint set. This
allows the simulated slave to slide along surfaces, follow edges, reach comers, reorient its
end-effector or the grasped object while in contact, etc. This constraint set is also used to

provide the operator with real-time sense of kinesthetic interaction with the environment.

3.3 Generation of Elementary Symbolic Telecommands

The operator can perform tasks in a virtual environment by visually and kinesthetically in-
teracting with the simulation of the remote site. The next important feature of the telepro-
gramming system is that the operator’s station software is capable of monitoring the oper-
ator’s activity in this simulated environment and extracting from it a stream of elementary
robot instructions that capture all essential features of the task in progress. This action inter-
pretation process is guided globally by the a priori information about the nature and goals
of the task. At a more immediate level, the system monitors the elapsed time, the motion
and force trajectories of the simulated slave and manipulated objects, as well as the contact
state information, to generate a stream of instructions, describing the activity in the simu-
lated environment. As the model of the remote environment is only approximate, the na-
ture of these instructions must reflect and accommodate possible discrepancies between the
model and the actual world. This is not critical during free space motion but it is vitally
important when attempting to establish or maintain contact with the environment. For the
case of contact motion, the system generates instructions of the type move along a given
direction until contact (guarded motion) or move along a given feature while maintaining
contact (compliant motion). These instruction are based on the hybrid position/force model
of robot’s interaction with the environment and have model error tolerances built into the
motion parameters. Due to the kinematic nature of the simulation, the necessary dynamic
parameters, such as frictional coefficients or compliance forces, are supplied symbolically,

rather than numerically.

Aside from these low-level instructions, the system should also recognise and correctly
interpret the operator’s intent to initiate special-purpose subtasks such as a grasping action.

Similarly, the system should allow the operator at any point during the execution of a task
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to specify (kinesthetically and orally) a sequence of actions to be encapsulated as an un-
parameterised, unnamed, one-time procedure and be executed repeatedly until some termi-
nating condition is reached. The decision-level support, allowing the telecommand genera-
tion module to correctly disambiguate and interpret operator’s input, is provided by the task
model. Some knowledge of the general goal of the task in progress is required in order for
the simulator software to correctly interpret the operator’s actions or be aware of special
characteristics of the task. For instance, a sequence of rapid contact changes may be inter-
preted either as noisy data (and thus be smoothed) or a purposeful action, such as tapping,
scraping or rocking (in which case it should be kept intact). Similarly, a highly irregular
path of an object during a sliding motion could be taken as unintended or it could corre-
spond to a motion such as polishing or sanding. In order to disambiguate between such
interpretations, the system needs additional information about the task, and in particular,
the types of expected primitive motions (e.g. pick & place, polishing, pounding), which
are to be expected during execution of the upcoming task. Other relevant information in-
cludes a list of environmental objects and features, which are expected to come into contact
with the slave arm during the task. This information can be used by the virtual simulator to
efficiently manage the collision computation load. Similarly, an indication of the relevant
relationships between environmental objects, involved in the the execution of the task (e.g.
which objects are rigidly attached to their support, which ones are detachable, etc.), can be

used by the simulator and the telecommand generation process.

The task model should encode the knowledge of the special-purpose actions and iter-
ative procedures, as well as their associated terminating conditions. This information can
then guide the telecommand generation process to correctly detect and interpret such ac-
tions, when they appear in the input stream. The audio interface can be used in conjunction
with this feature to ensure proper interpretation and facilitate on-line adjustments in the def-
inition and execution of these actions, if necessary. The task model may be also used by the
system to automatically and dynamically adjust the viewing angle, zoom and other viewing
parameters so as to provide the operator an unoccluded and intuitive view of the work area
throughout the execution of the task. This task information can be gathered either by using

a pre-prepared Common Data Base (CDB) in a shared memory, by querying the operator
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prior to the task, or by maintaining an on-line dialogue with the operator. Any combination
of the above methods may also be used. In particular, these approaches can be used as a
run-time supplement allowing the operator to augment and modify the current task infor-
mation while the task is in progress. A detailed method on how symbolic telecommands

can be generated, transmitted and executed is covered in Chapters 5 through 7.

3.4 The Remote Robotic Workcell

The operator’s station sends the symbolic instructions to the remote robotic workcell (RRW)
continuously as the task progresses. These instructions are received at the slave site a trans-
mission delay later. The slave high-level control software then parses incoming telecom-
mand strings, substitutes numerical values for the symbolically specified dynamic parame-
ters, translates them into the local control language and passes them to the low-level con-
troller for execution. The RRW must be capable of some autonomy in executing the com-
manded motion primitives. In order to support its expected degree of autonomy, the RRW
needs to be equipped with sufficient sensing capability to carry out elementary motion
telecommands robustly despite small errors in the command parameters, as well as local
sensory and control errors. In view of the hybrid force/position control paradigm [Raibert
and Craig, 1981], external forces and torques, acting on the slave manipulator, must be
available to the local control algorithm to provide for compliant and locally adaptive re-
sponse in contact motion. Additionally, sensory information from the external sensors (such
as TV cameras, sonars or range scanners) may be gathered, fused into a consistent repre-
sentation of the state of the system and the environment and integrated with the control
algorithm. This is crucial as the commanded motions are derived from imperfect opera-
tor’s station based model of the remote environment. Consequently, the control of the slave
workcell must exhibit sufficient flexibility to accommodate the majority of such discrepan-
cies without execution failures. Additional mechanisms such as robust, low-level, sensor-
based controllers, smart end-effectors, local sensory reflex loops, passive end-effector com-

pliance, etc. may further enhance the performance and reliability of the RRW.

During task performance, the slave workcell must monitor its execution status, verifying

that elementary motions terminate correctly or identifying that an execution error has oc-

40



3. The Teleprogramming Methodology

curred. In either case, this information should be propagated to the operator’s virtual model
to report the status of the RRW. While everything can be well in the simulated world, various
things may still go wrong in the actual work environment. The slave can detect such error
conditions by not reaching an expected motion-terminating condition, by hitting an obsta-
cle, by sensing excessive or premature motor torques, etc. Upon detecting such a condition,
the slave signals the occurrence of an error state to the operator’s station, which in turn alerts
the operator and interrupts the task. Alerting the operator can be done through a variety of
visual or auditory means such as flashing the display, issuing synthesised voice warnings,
etc. as organised in Fig. 3.2. If the error state is not clear from the information supplied
to the operator by the slave workcell, the operator may initiate various exploratory proce-
dures and maneuver at the remote site to clarify the resulting state of the RRW. Both contact
(force based) and non-contact (vision or sonar based) exploratory actions can be invoked in
order to gather additional information about the error configuration. When the state of the
slave and the remote environment has been determined, the virtual model at the operator’s
station is updated to reflect the error configuration and the operator can proceed by taking
appropriate corrective actions and continue with the task. Therefore, by keeping the human
operator in the control loop, the system eliminates the need for elaborate exception and error

handlers to be preprogrammed off-line.

3.5 Error Handling and Recovery

The symbolic instructions arriving at the remote site are based on an imperfect model of the
actual environment. Despite the fact that the critical motion parameters (e.g. distances to
surfaces or edges) have been computed to account for the estimated uncertainties in the mod-
elling, other information, such as constraint normals and therefore task frame axes, may be
out of alignment with the actual environment. This, coupled with sensing and control errors
during execution, may cause execution failures. Consequently, a robust controller and inte-
grated real-time sensing capability is needed to handle contact interactions with imperfectly
known environment. The remote execution process must proceed as a high-bandwidth local
feedback loop with sensory input participating in the real-time control decisions. Among the

sensors that can be used at the remote site are CCD cameras, laser range finders, sonar scan-
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ners, force sensors, etc. At minimum, the remote manipulator needs to be equipped with a
sensor of external forces acting on the manipulator’s end-effector. This is a central require-
ment of the hybrid position/force control strategy which relies on the manipulator’s ability
to realize arbitrary force trajectories in a Cartesian contact-based task frame. Additionally,
a small amount of end-effector passive compliance may dramatically reduce the problem of
coatrol instabilities on contact with the environment. For real-time meta-interactions with
the remote workcell, data can be computed and stored in a shared memory using the CDB

utility as covered in Chapter 7.

The low-level contact motions consist of guarded and compliant moves with built-in es-
timated modelling errors. This, along with the control algorithm should provide for stable
and reliable execution of the commanded motions at the remote site. However, things may
still go wrong as already mentioned. Some of the common errors encountered during execu-
tion are not reaching an expected motion terminating condition (force, distance), hitting an
obstacle in the workspace, stopping prematurely by mistaking friction forces for guard con-
ditions, jamming, etc. The remote workcell should be able to detect most of these error con-
ditions by monitoring its position, velocity, force at the end-effector and motor torques. In-
formation from the external sensors, such as vision cameras, can be used to confirm an error
condition and aid the system in gathering relevant information about the error state. Upon
detecting an error, the remote workcell must respond in a manner that minimises the possi-
bility of damage to itself, as well as to environmental objects. If relatively small and static
unexpected forces are encountered, the remote controller may choose to stop and maintain
the current position until the operator can resolve the situation. Alternatively, the remote
workcell may need to comply with large time-varying forces to avoid damage to the arm.
Low-level default error handlers should be in place to stop the manipulator when significant
forces are encountered along a position controlled direction and designate the corresponding
task frame axis as force controlled until the condition is relayed to the operator and resolved.
Likewise, a sudden acceleration (or velocity) along a force controlled direction should stop
the motion and place the corresponding axis in position mode, as this situation probably

corresponds to loss of supporting surface (i.e. falling).
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Upon detecting an error condition, it is critical that the remote workcell be able to gather
as much relevant information about the error state as possible, and relay this information
to the operator’s station. Because of the transmission and other delays between the opera-
tor’s station and the remote site, the operator learns about an error condition at the remote
site 7 + T seconds later (where 7 is the lag time as discussed in Section 5.5). During this
time, the operator had continued with the task and possibly modified the simulated environ-
ment. The error packet arriving from the remote must therefore contain sufficient informa-
tion to restore the simulated environment (and the display) to the error state and present to
the operator the critical remote site sensory data. Moreover, the error information can also
provide local corrections to the operator’s station based virtual model, by giving more accu-
rate information about the location of various environmental features. The error reporting
and resolving mechanism can therefore also be used to facilitate on-line refinement of the
virtual model. Once the operator has determined the cause of the error, he can specify cor-
rective actions to recover from the error and continue with the task. This approach to remote
manipulation and error recovery eliminates the need for off-line pre-programming of error
handlers for all possible error situations, which is a hopeless undertaking in any realistic

application.

3.6 Pre-evaluation of Teleprogramming Paradigm

The teleprogramming control methodology, as outlined in this chapter, distributes decision-
making and control between the human operator (who provides for task planning and error
recovery) and the RRW control system (which provides for low-level autonomous execu-
tion and control, as well as error state identification). Within this paradigm, telecommands
may be sent from the operator s station one after another in a continuous stream, relying on
the partial autonomy at the remote site to execute these telecommands under local sensery
supervision a communication delay 7 later. Therefore, the operator doesn’t wait for explicit
feedback from the remote site following each elementary telecommand. When an error oc-
curs, the remote control system stops the robot and alerts the operator. The operator then
re-plans from this point, once again starting a stream of telecommands to be executed au-

tonomously by the slave. In view of earlier discussion on the total task completion times
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Figure 3.3: Effects of n telecommand segments on task performance

using the move-and-wait strategy (Section 1.4), one can now compute or evaluate the cor-
responding behaviour for the teleprogramming paradigm. If n is the number of elementary
symbolic telecommands that are executed by the slave workcell on average, without enter-

ing an error state, then the total time to perform a given task is given by T},,,,': where:-

’ T
total = (l + 25)7}031: (31)

Clearly, in the interest of minimising the overall completion time, Equation 3.1 suggests that

the desired behaviour or condition of the teleprogramming system must be:-

!Other parameters are as defined before in Section 1.4.
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nt>r (3.2)

Fig. 3.3 illustrates total completion times (7},,,,) versus task length (T},) for 7 = 10 sec.,
t = 1 sec. and five different values of n, i.e. n = [1,2.5. 10, 100]. Note that for the case
of n = 1, it corresponds to move-and-wait strategy and the solid line on the very bottom
corresponds to direct teleoperation with no communication delay (i.e. T} ,,; = Tisk)- Fig.
3.3 suggests that even a relatively modest amount of remote site autonomy, e.g. nt = 7,
dramatically improves the system’s throughput (task completion times), whereas autonomy
at the level of n¢ = 107 results in completion times which are slightly longer than the times
obtained with direct teleoperation when there is no delay in the control loop at all. For shal-
low space and underwater applications we normally have = < 10 sec., andsont < 100
sec. is the acceptable level of remote site autonomy. This is clearly within the state of the art
of modern robot control strategies. Thus, the teleprogramming control methodology can be
successfully applied in shallow space and underwater environments, effectively eliminating
the adverse effects of transmission delays and allowing for near-optimal remote control of
RRWs. Ideas covered in this chapter will later be augmented with VR technology to come
up with a real-time teleoperator control system. Finally, it can be shown that for nt = 100,
the delay for a given task is only 1% of the delay when nt = 1 (i.e. 99% time savings as
proven in Section 9.3). Thus, nt will be the performance determining factor of a telepro-

gramming system in place as it dictates the level of autonomy.

45



Chapter 4 Virtual Reality and Telerobotics: an overview

4.1 Introduction & General Overview on VR

Virtual Reality (VR) is the realm of the technology that facilitates the operation of complex
systems, consuming information and turning it into knowledge (that most valuable of hu-
man resources). Although the terms cyberspace and VR have been around for years, VR as
an industry is in its infancy. [Sutherland, 1965] demonstrated the first head-mounted stereo
display in 1965. VR takes a fresh look at human interaction which evolves from user inter-
face design, visual simulation and telepresence technologies. VR is unique in its emphasis
on the experience of the human participant. Thus, VR focuses the user’s attention on the
experience as its quality is crucial. To stimulate creativity and productivity, the virtual expe-
rience must be credible. The reality must both react to the human participants in physically
and perceptually appropriate ways, and conform to their personal cognitive representations
of the micro-world in which they are engrossed. The experience does not necessarily have
to be realistic - just consistent. The essence of what VR is and will be, is defined within
three basic ideas taken together, i.e. immersion, interactivity & involvement [Morie, 1994].
The unique aspect of VR is that all three can exist at the same time. VR involves the cre-
ation and experience of environments. Its central objective is to place the participant in an
environment that is not normally or easily experienced. This objective is satisfied by estab-
lishing a relationship between the participant and the created environment. Accordingly, a
three-tiered definition of VR, shown in Fig. 4.1, addresses respectively what VR is, how
it is accomplished and its effect - both of VR on the participant and of the participant on
the environment. The distinguishing what of VR is its extension of the human-computer

interface [Boff and others, 1986].

Virtual environment displays are interactive, head-referenced computer displays that

give users the illusion of displacement to another location. In other words, virtual environ-
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Figure 4.1: VR objective and definition

ments can be defined as interactive, virtual image displays enhanced by special process-
ing and by non-visual display modalities, such as auditory and haptic, to convince users
that they are immersed in a synthetic space [Ellis, 1991]. [Appino and others, 1992] pre-
sented an architecture for virtual worids used for a computational fluid dynamics simula-
tion. Virtual environment displays potentially provide a new communication medium for
human-machine interaction. In some cases, they might prove cheaper, more convenient and
more efficient than former interface technologies. In fact, teleoperations like tasks requir-
ing coordinated control of a viewing position and a manipulator, are the tasks most likely to
benefit from a virtual environment interface. In teleoperation or planetary surface visuali-
sation, virtual environments offer techniques for solving control problems caused by time
delays or awkward camera placements. Additionally, the completely synthetic character of

purely virtual environments allows the introduction of visual, auditory and hap-tic interac-
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tion modes totally unrealizable in physical environments. Considered as communications
media, virtual environment displays have broad applications potential - in education, pro-
cedure training, high-level programming, teleoperation, remote planetary surface explo-

ration, exploratory data analysis, and scientific visualisation, as well as entertainment.

The research and development community associated with vehicle simulation and tele-
operations interface development have the technical training and applications background
required to design usable virtual environment displays and to constitute a tradition of exper-
tise in this field. The illusory virtual environment is created through the operation of three

types of hardware:

1. Sensors, such as head position sensors, to detect the operator's body movement;
2. Effectors, such as a stereo-scopic display, to stimulate the operator’s senses; and

3. Special-purpose hardware that links the sensors and effectors to produce sensory ex-

periences resembling those in a physical environment.

In a virtual environment, a simulation computer establishes this linkage. In closely related
technology of head-mounted teleoperation display, the linkage is accomplished by robot
manipulators, vehicles, control systems, sensors and cameras at a remote work site. The
display technology works by developing a real-time, interactive, personal simulation of the
content, geometry and dynamics of the environment [Foley, 1987]. The software for a vir-
tual environment must address three separate functions: (a) the shape and kinematics of
the actors and objects; (b) their interactions among themselves and with the environment;
and (c) the extent and character of the enveloping environment. A successful environmen-
tal simulation must provide adequate communications channels to address these functions.
(Latta and Oberg, 1994] developed a conceptual VR model that isolates and describes the

human and technical elements that create the participatory environments of VR systems.

Our primary physical connection to the world is through our hands as we perform most
everyday tasks with them. However, when we work with computer-controlled applications,

we are constrained by clumsy intermediary devices such as keyboards, mice and joysticks.
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Little of the dexterity and naturalness that characterise our hands transfers to the task it-
self. In an effort to change this, people have been designing, building and studying ways
of getting computers to read user’s hands directly free from the limitations of intermediary
devices. The development of electronic gloves has been an important step in this direction.
A basis for understanding the field by describing key hand-tracking technologies and ap-
plications using glove-based input is provided by [Sturman and Zeltzer, 1994]. Samples of
developed electronic gloves are summarized in Table 4.1. The teleoperation of multi-finger
robot hands requires a dextrous master that is a multi-DOF controller worn on the opera-
tor’s hand. Use of the hand gestures is a natural form of control that can bring significant
improvements in teleoperation efficiency. Commercially available dextrous masters such as
Data-Glove, control the position of a robot hand or of a simulated hand (in virtual environ-
ment applications) in the open-loop without force or touch feedback to the operator. There
is a need for portable systems that have force feedback, but are still sufficiently compact to
be desktop. [Burdea and others, 1992] discussed a sample prototype master providing force

feedback for the Data-Glove.

VR technologies have not yet crossed the threshold of usability due to display resolutions
rendering the user legally blind. Head- and hand-tracking devices are inaccurate and of very
limited range. Most setups can generate only the crudest of scenes without update lags that
ruin the feeling of immersion. However, VR has so far shown more promise than practi-
cal applications. The promise looks bright for fields such as data visualisation and analysis.
For such problems, VR offers a natural interface between human and computer that will
simplify complicated manipulations of the data. VR also provides an opportunity to rely on
the interplay of combined senses rather than on a single or even dominant sense. So far, it is
not known whether VR is better than other visualisation and analysis approaches for certain
classes of data and if so, by how much. The payoff will come not for those applications or
tasks for which VR is merely better, even if significantly, but for those applications or tasks
for which it offers some unique advantages. To answer some of these questions, [Ribarsky
and others, 1994] embarked on a multi-pronged program involving the Graphics Visualisa-
tion and Usability Centre and other research groups at Georgia Institute of Technology. In-

tegration is mandatory, since these questions involve basic considerations: how immersive
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Glove Type/Name Developer Year
Sayre Glove Sayre et al, lllinois 1976
MIT LED Glove MIT Media Lab 1980
Digital Data Entry Glove Gary Grnimes, AT&T Bell Labs 1983
VPL Data-Glove (fiber-optic) | VPL 1987
Exos Dexterous HandMaster | Exos 1989
(exoskeleton)

Power Glove (low cost) Mattel toy company 1989

CyberGlove (18 sensors) Virtual Technologies 1990

Space Glove W Industries - Virtuality systems | 1991
(England)

Table 4.1: Developed electronic gloves

environments affect user interfaces and human-computer interactions; the ranges and capa-
bilities of sensors; computer graphics and the VR optical system; and applications’ needs.
[Ribarsky and others, 1994] reported some of their results which include using Glyph-maker
to create customised visualisations of complex data variables onto graphical elements in
the virtual environments. More research issues in scientific visualisation can be found in
[Rosenblum, 1994]. These issues include volume visualisation, perception and user inter-
faces, data modelling for scientific visualisation, foundations of visualisation, vector and

tensor field visualisation, etc.

Interactive graphics and especially VR systems, require synchronisation of sight, sound
and user motion if they are to be convincing and natural. A method to accurately predict sen-
sor position to more closely synchronized processes in distributed virtual environments is to
be proposed. Problems in synchronisation of user motion, rendering and sound arise from

three basic causes: noise in the sensor measurements, the length of the processing pipeline
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(i.e. delay times) and unexpected interruptions. Most VR systems either use raw sensor
positions or they make an ad-hoc attempt to compensate for the fixed delays and noise. A
typical method for compensation averages current sensor measurements with previous mea-
surements to obtain a smoothed estimate of position. The smoothed measurements are then
differenced for a crude estimate of the user’s instantaneous velocity. Finally, the smoothed
position and instantaneous velocity estimates are combined to extrapolate the user’s position
at some fixed interval in the future [Haule and Malowany, 1995b]. {Friedmann and others,
1992] presented a solution to these problems based on the ability to more accurately predict
future user positions using an optimal linear estimator and on the use of fixed-log data flow

techniques that are well known in hardware and operating system design.

4.2 Telepresence and Virtual Presence

The term telepresence is often used in discussions of teleoperation, however it has never
been adequately defined. According to [Akin and others, 1983], telepresence occurs when

the following conditions are satisfied:

“At the worksite, the manipulators have the dexterity to allow the operator to
perform normal human functions. At the control station, the operator receives
sufficient quantity and quality of sensory feedback to provide a feeling of actual

presence at the worksite".

A major limitation of this definition is that it is not sufficiently operational or quantitative. It
does not specify how to measure the degree of telepresence. A high degree of telepresence is
desirable in a teleoperator system primarily in situations in which the tasks are wide ranging,
complex and uncertain (i.e. when the system must function as a general-purpose system). In
such situations, a high degree of telepresence is desirable because the best general purpose
system known to us (as engineers) is us (as operators). In a passage that is relevant both to

this issue and to the definition of telepresence, states:

“Teleoperators offer the best means of transmitting man's remarkably adapting

problem solving and manipulative skills into inhospitable environments. The
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anthropomorphic motor approach calls for development of teleoperator sub-
systems which sense highly detailed patterns of visual, auditory and tactile in-
formation in the remote environment and display the non-harmful, task-relevant
components of this information to an operator in a way that very closely repli-
cates the patrern of simulation available to an on-site observer. Such a system
would permit the operator to extend his sensory-motor functions and problem

solving skills to remote or hazardous sites as if he were actually there".

In addition to its value in a general purpose teleoperator system, telepresence is likely to be
useful in a variety of other applications. More specifically, it should enhance performance
in other applications such as in virtual environments, where the operator interacts with syn-
thetic worlds created by computer simulations (i.e. virtual worlds). The most obvious cases
in this category are those associated with training people to perform certain motor functions
(e.g. flying an airplane) or with entertaining people (i.e. providing imaginary worlds for
fun). Telepresence is also important for cases in which the system is used as a research tool
to study human sensorimotor performance and cases in which it is used as an interactive
display for data presentation [Fisher, 1987]. An important obstacle at present to scientific
use of the telepresence concept is the lack of a well-defined means for measuring telepres-
ence. However, the core issue is how one achieves telepresence. In other worlds, what are
the factors that contribute to a sense of telepresence? In fact, what are the essential elements
of just plain presence? Or, how can the ordinary sense of presence be destroyed? Sensory
factors that must certainly contribute to telepresence include high resolution and large field
of view. In addition, the devices used for displaying the information to the operator’s senses
in the teleoperator station should, to the extent possible, be free from the production of ar-
tifactual stimuli that signal the existence of the display. The most crucial factor in creat-
ing high telepresence is, perhaps, high correlation between the movements of the operator
sensed directly via the internal kinesthetic senses of the operator and the actions or the slave
robot sensed via the sensors on the slave robot and the displays in the teleoperator station.
In general, correlation will be reduced by time delays, internally generated noises, or non-

invertible distortions that occur between the actions of the operator and the sensed actions
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Figure 4.2: Principal determinants for sense of presence

of the slave robot. It also seems plausible that identification of above factors and therefore
telepresence, would be increased by a similarity in the visual appearance of the operator and

the slave robot.

It is important to consider the extent to which telepresence can increase with oper-
ator familiarisation by adaptation, training, learning, etc. [Ogata and Takahashi, 1994,
Held and Duriach, 1991]. Although the impression of telepresence or remote presence is
Jjust now becoming a familiar phenomenon in connection with teleoperators and virtual dis-
plays, a closely related phenomenon has received attention in the past by both philosophers
and perceptionists. The phenomenon, which has been referred to as externalisation or distal
attribution, is this:- that most of our perceptual experience, though originating with stim-
ulation of our sense organs, is referred to external space beyond the limits of the sensory
organs [Loomis, 1992]. For a given task, [Sheridan, 1992] proposes three measurable phys-

ical variables that determine telepresence and virtual presence as shown in Fig. 4.2. Sheri-
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dan discussed several aspects of human performance that might be (differentially) affected
by these forms of presence and suggests models by which to characterise both kinematic
and dynamic properties of the human-machine interface and how they affect both sense of
presence and performance. Recent developments promise to make the virtual environment
a medium that can engage researchers attention, which has generated a great deal of pub-
lic interest. [Zeltzer, 1992] presented a taxonomy of graphic simulation systems, based on
three salient components: autonomy, interaction & presence (AIP). The resulting AIP-cube
(shown in Fig. 4.3) provides a useful qualitative tool for describing, categorising, compar-
ing and contrasting virtual environments, as well as more conventional computer animation
and graphic simulation systems. Moreover, such a taxonomy can help researchers to iden-
tify application areas as well as avenues of research to pursue. Most existing research on
VR concerns issues close to the interface, primarily how to present an underlying simulated
world in a convincing fashion. However, for VR to achieve its promises as a rich and pop-
ular artistic form, as have the novel, cinema and television, it will be necessary to explore
well beyond the interface, to those issues of content and style that have made traditional
media so powerful, e.g. VR for art and entertainment. Broad exploration is required if VR

is to achieve its promise of letting researchers go anywhere & do anything [Bates, 1992].

4.3 Virtual Human Interface: applicational areas

VR has been mainly developed in visual applications. In order to improve reality, force
information is very important. Several force display systems have been already proposed
so far. However, the motion ranges are relatively small. Since most of the force display
systems have multi-link structures such as robots, large mechanical part of force display
systems or large robots are necessary to attain enough motion space. However, large me-
chanical parts or large robots are not desirable for safety and cost reasons. To overcome
the difficulty, [Kawamura and others, 1995] proposed a new type of force display using a
wire drive system for the development of a virtual sports machine (i.e. virtual tennis). To
realize virtual tennis, it is necessary to provide player hands with reaction forces from a
tennis ball. Moreover, a head mounted display is needed which is capable of showing mov-

ing objects at high speed. In order for humans to interact more effectively with comput-
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ers, the capability of humans to use various types of sensory data must be exploited. One
means is by haptic perception of forces and torques on a user’s hand while interacting with
an artificial environment. Rendered graphics and virtual reality displays can generate re-
alistic appearances of simulated environments, but do not enable the virtual world to be
felt or manipulated directly. An ideal haptic interface would give a computer user the abil-
ity to feel, grab and manipulate virtual objects [Hui and Gregorio, 1995, Hayward, 1995,
Colgate et al., 1995]. The dynamic reactions of objects in the simulated world would be
instantly transmitted to the hand of the user as the motions or forces of the user’s hand are
sampled by the interface. Tasks that have been integrated with some type of haptic interface
include flight simulators, force-reflecting teleoperation & telepresence, simulated molecu-
lar docking, etc. Additionally, any computer interface task which currently uses an input
device such as a mouse, tablet, or joystick can benefit from an effective haptic interface.
{Berkelman and others, 1995] developed a high-performance magnetic levitation haptic in-
terface to enable the user to interact dynamically with simulated environments by holding

a levitated structure and directly feeling its computed force and motion responses. The re-
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sponse of the levitated device has been made successfully to emulate virtual devices such as
gimbals and bearings as well as different dynamic interactions such as hard solid contacts,

dry & viscous friction, and textured surfaces.

Dextrous manipulation of remote objects can be performed using a multi-fingered robot
hand as the slave end-effector placed at the remote end. A well accepted approach to tele-
operate such a robot hand is by using a glove-like haptic interface capable of measuring the
human finger motions and projecting the measured motions on to the robot hand. In a true
teleoperation, the human operator should feel as if he is directly handling the remote objects
with bare hands. To achieve such realism, the human operator must be provided with such
perceptual information about the remote world as vision, touch, force, sound and vibration
{Shimoga, 1993). [Shimoga et al., 1995] described a touch reflection system suitable for
dextrous interaction with remote and virtual environments. The basic framework involves a
robot hand, teleoperated by a human master wearing a VPL Data-Glove [Inc., 1993b]. The
touch reflection system consists of tactile sensors attached to the tips of the robot fingers
and micro-actuators attached to the finger tips of the human operator’s hand. [McKee and
Schenker, 1995] proposed the use of automated viewing during teleoperation by combin-
ing deliberative task models, modes of human perception and reactive architectures. For
more applicational areas of human virtual interfaces worldwide, one can refer to the fol-
lowing references [Kahaner, 1994, Encarnacao and others, 1994, Voyles and Khosla, 1995,
Caldwell et al., 1994, Anderson and Davies, 1994].

44 VR for Teleoperator Interface & Training (TIT)

Robots are often required to function in environments which would be extremely dangerous
or expensive when using direct human labour, however, computer control and intelligence
are not sufficiently developed to permit the robots to perform these advanced technical tasks
under their own initiative and there is always a human operative in the loop. Ideally the op-
erator would wish to input body motions (from legs, arm, hand and head) which the robot
would duplicate and receive from the remote sensors full visual, audio & ractile feedback
of a quality and form comparable with that normally produced by the eyes, ears and skin.

Thus, this research considers the development of input, control and feedback (visual, audio
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& tactile) systems (human-machine interface) (HMI) for a machine (e.g. a robot) to be used
in the telepresence applications. This multi-purpose human-machine interface provides the
user with an enhanced degree of true control of and fee! for the task in hand. Training the op-
erators of complex robotic systems is time-consuming and costly. Thus, a VR-based robotic
simulation system is required. The VR system provides a means by which operators can op-
erate and be trained to operate complex robotic systems in an intuitive, cost-effective way.
Operator interaction with the remote workcell is at a high, task-oriented level. Continuous
state monitoring prevents illegal robot actions and provides interactive feedback to the op-
erator and real-time training for novice users. With a VR-based interface, the operator is
fully immersed in the graphical environment of the remote system. The VR system can be
set up to stimulate both normal and exceptional behaviours to enhance the training of opera-
tors. The VR system will allow telecommands to be captured, previewed and down-loaded

to the remote workcell for execution.

In both teleoperator and virtual environment systems, the human operator is projected
into a new interactive environment mediated by artificial electronic and electro-mechanical
devices. The operator’s performance, experience and sense of presence in these new envi-
ronments depend strongly on the HMI and the associated environmental interactions. The
primary focus of this research is the understanding and design of these interactions and in-
terfaces. Secondary foci include: (a) the human operator’s own cognitive and sensorimotor
systems, particularly those elements of these systems that are directly related to the HMI or
to the sense of presence; (b) the more peripheral components of the two types of systems;
namely the telerobotic mechanism and its environment in the case of virtual environments;
and (c) the impact of transformed presence, achieved by either teleoperators or virtual en-
vironments. VR is a technique for creating simulated experience, or rather, an experience
of a simulated external world. In VR, the visuals, sounds and sensations create an actual
experience, leaving the freedom to the operator to explore the environment, gather infor-
mation and effectively solve problems. Advances in computer technology are making pos-
sible the development of 3D graphical and VR simulations of ever-increasing realism and
afford-ability. Virtual worlds can be used as direct interfaces for teleoperators (i.e direct

sensing & manipulation user-interface) using VR tools from 3D position sensors to sensing
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gloves, stereo viewing devices and 3D sound generators. The main objective is to put the
user in a 3D environment that enables him to explore the virtual environment and interact
with it in various ways. A comprehensive and interactive TIT system is to be developed
using VR technology. Thus, TIT is a computer-assisted-interface (CAI) to the teleoperator.
Salient features of TIT system include telepresence, telesupervision and autonomous opera-
tion with HMI. A systematic approach for the development of TIT will reduce the lead-times
and costs of facilities for recurrent basic tasks. 3D modelling is realized through VR pro-
gramming using VR toolkits. VR environments are most useful when the communications

bandwidth is low or the time delay is large.

TIT will consist of a virtual world creator and its virtual interface. A multi-media system
consisting of 3D interactive graphics workstation (SGI), 3D mouse, head tracker, stereo-
scopic display systems, glove devices with the position and orientation of the hand regis-
tered by a tracking device and an audio-speech devices are used to enhance the effectiveness
of TIT to be developed. One of the most promising areas to use TIT is in an unstructured
or hazardous environments such as nuclear plants, biological or chemical contaminations,
space, etc. Robots replace humans because of the hostility of the environment or potential
risks involved during operations. These operations range from handling hazardous materi-
als to maintenance operations. However, the problem that immediately arises is the reduc-
tion in the level of supervision achievable by a human operator as he looses his two senses,
i.e. touch & vision. VR provides excellent tools for TIT while compensating this disad-
vantage. A teleoperator can be interfaced to the RRW, in a natural and very efficient way.
The main emphasis will also be teleoperator training in simulated environments. Moreover,
stored plans from a TIT virtual environment simulation can be used to control a real remote
robot and compensate for lengthy transmission delays. The TIT software interface can do
real-time modelling of the digitised images that the remote robot senses. This is a tremen-
dous improvement to the slow, frustrating move-and-wait approach (i.e. a back-breaking

operation that resulted in fatigue and frequent errors) [Ferrell, 1965].

VR is a computer-based virtual environment in which operators can interact with a sys-

tem by means of stereoscopic glasses, 3D pointing devices, hand gesture interface devices,
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etc. The operator demonstrates a task in a computer-generated VR space (i.e. training en-
vironment). The robot performs the task autonomously in a physical world called rask en-
vironment. The system recognises the operations in the training environment as elementary
symbolic commands and transfers them to a robot. The robot by itself uses sensor data and
command interpretation rules to execute the task. The virtual world concept allows the hu-
man operator to interact with real world in a more natural way, i.e. provides a natural user
interface by putting him in the scene during remote task operation. Two modes of opera-
tion are proposed for TIT: the simulation mode and real-world mode. In both modes, the
constructed world is presented to the user in a 3D visual form using 3D stereoscopic VR
interface devices (i.e. 3D mouse, head tracker, data gloves, Crystal Eyes, etc.). The TIT
creates the virtual world interacting with robots, and then refines it using the information
from sensing devices mounted on the robots already in the remote scene and the teleop-
erator’s knowledge from TIT training. In simulation mode, the virtual world is built out
of imagination and with the help of a knowledge-based system for training purposes. TIT
can simulate the individual operations and the interaction of the robots with the world, and
finally a teleoperator can practice the whole mission beforehand. TIT also provides an ex-
cellent test-bed for trial experiments. It allows examining different algorithms and provides

a better understanding of robots behaviour under certain circumstances.

4.5 Virtuality and Control of a Remote Workcell

The elements of a remote workcell in a collaborative job can be observed better in the vir-
tual world than in real world. TIT provides communication tools for interacting with the
real world while in a simulated environment. A complete interface has to be bi-lateral, i.e.
the machine-man & man-machine linkage. TIT allows the teleoperator to feel and sense
the constructed world as if he is actually present at the remote scene. It provides an excel-
lent supervisory environment for the teleoperator in command to successfully accomplish
a mission. The teleoperator can command the robots and other active elements operating
in the remote world. Regular tools such as keyboards or mouse would not be efficient and
even impossible for a teleoperator to use as communicating tools with the robots while in

remote areas. Instead, teleoperator’s voice, hands and head’s gestures can be used to control
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the RRW. The voice commands, 3D mouse, head tracker & glove devices with the position
and orientation registered by a tracking device allows for development of TIT in VR envi-
ronment. For example, in fine manipulation of an object, the robot’s hand can imitate the
teleoperator’s hand and exert the same forces and in the same way that he exerts on a virtual
object, or in some operations a teleoperator can guide two robotic hands to perform the job
by using two gloves and performing the same operation himself in his chamber and letting
the robots imitate his hands. With this concept, TIT can have two modes of operation, i.e.
navigation & manipulation modes. Thus, during navigation mode, the VR input devices
are used for navigation purposes and during manipulation mode, same devices are used for
manipulation purposes. It is also possible to operate using both modes concurrently if suf-

ficient HCI peripherals are available.

At the heart of HMI is a powerful Workstation (currently the Silicon Graphics (SGI))
where the user-interface program resides. TIT will provide enough feedback to the teleop-
erator to achieve telepresence and sufficient (i.e. quality & quantity) sensory feedback to
approximate actual presence at the remote site. Use of stereo vision enhances teleoperator
depth perception. The system will provide a user-interface with which an inexperienced
operator can easily teach a task. The operator shows an example of task movements in the
virtual environment and a finite automation defined task-dependently is used to interpret the
movements as a sequence of high-level representations of operations. When the system is
commanded to operate the learning task, it observes the task environment, checks the geo-
metrical feasibility of the task and if necessary re-plans the sequence of operations so that
the robot can complete the task. Then the system uses task-dependent interpretations rules
to translate the sequence of operations into manipulator-level commands and executes the
task by replicating the operator’s movement in the virtual environment. Using TIT system,
the operator interacts with the simulated environment in real-time, with the actual RRW re-
sponding after the time delay. This approach tends to decouple the control of the RRW at

the two sites, compensating for the time delay.

Ogata ez al suggested thatany VR TIT system will have three phases of operations [Ogata

and Takahashi, 1994]. Phase 1: Setting-up the Training Environment:- the operator spec-
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ifies task components by selecting the part name and its colour attribute from the menu.
Then, he specifies its rough layout in the training environment by dragging a mouse. Phase
2: Instruction in the Training Phase:- the operator uses VR interface devices to perform
the task in the training environment created during Phase 1. The system, recognising the
operator’s movements from the interface device-data and the layout information, generates
task-level commands such as pick-up block A during a pick-and-place task environment.
Phase 3: Operation in the Task Environment:- the system interprets the command into ma-
nipulator commands by using the task-dependent interpretation rules defined in advance.
Sensors (i.e. a colour image processing system & a force-torque) are used to determine the
part’s geometrical position and orientation, and the feasibility of the task is examined. If
necessary, the system re-plans the sequence of the commands so that a robot can execute
the task. Finally, the robot uses the interpreted commands to perform the task. Collabora-
tive VR TIT systems will allow multiple network users to simultaneously access the same
virtual environment, interacting with each other and one or more remote robots. Since the
underlying communications protocol used is TCP/IP, users located thousands of miles apart

can use the Internet to inhabit a common environment and share control.

VR is a type of human-computer interface where the user is immersed in an environ-
mental simulation with which he interacts [Helsel and Roth, 1991, Miner and Stansfield,
1994]. As the computer-generated environmental models become more realistic and the
user interaction more intuitive, the virtual world becomes more of a reality. The VR TIT
system being developed for remote control, allows participants to interact with realistic sim-
ulations of complex systems in a natural way using task-level voice commands and hand or
head gestures. Due to this natural interaction and task-level orientation, participants may
be trained to use the system easily and commands may be generated, previewed and exe-
cuted rapidly. The user is immersed in the graphical virtual environment through a stereo
viewer which tracks the user’s head or hand position and orientation. As the operator’s
view changes, the graphics are updated so that the feeling of immersion inside the virtual
environment is achieved. When users are immersed in the virtual environment, they can
get any view of the graphical model of a remote workcell by simply looking at the de-

sired destination and walking or flying to the location. This type of human-computer in-
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teraction is much more intuitive than a flat screen display using a 2D mouse to change the
view. Traditional graphical programming systems have several limitations such as lack of
accurate depth perception, lack of non-visual feedback (audio, force, etc.) and awkward
control interfaces (2D mouse, keyboard, teach pendant and space-ball). VR has the poten-
tial to move the human-robot interface to a new, intuitive and user-friendly level [Miner
and Stansfield, 1994]. Moreover, VR can be used to train operators by taking the physi-
cal robots out of the loop. By using VR TIT system, operators can be trained before the
actual robot hardware is available. During training, the operators progress can be mon-
itored and real-time feedback on their performance can be provided. Training scenarios
are easily set-up, including emergency situation procedure training. By having the op-
erator experience the emergency situation in the virtual world, they are much better pre-
pared to carry out the correct procedures if the actual emergency should arise. Trainers
can also interact with the trainees in the virtual simulation system to further enhance the
training exercise. [Takahashi and Ogata, 1992] proposed a VR interface for robotic as-
sembly task teaching. Tasks were executed by an operator wearing a VPL Data-Glove,
and hand gestures were recognised and translated into robot commands. [Miner and Stans-
field, 1994] described a VR simulation system which provides a different method of com-
plex robotic system interaction by taking more of a task-level, supervisory approach to the
problem. Extensive telerobotics research using VR techniques has been done by NASA-
Ames Research and JPL for control of remotely deployed robots [Stark and others, 1987,
Bejczy, 1980].

4.6 Operator Interactions with VR-based TIT Simulator

The VR-based TIT system can use a combination of off-the-shelf and customised hard-
ware and software. The operator interface consists of an accurate, 3D graphical model of
the test bed which is viewed through a stereoscopic viewer. A Silicon Graphics, Inc. In-
digo/Extreme Workstation can be used to drive the graphics and simulation and provide au-
dio feedback. Operators issue voice commands to interact with the VR TIT simulation. The
voice commands are recognised by the voice recognition systems (e.g. VERBEX 7000) and

are communicated to the SGI host via a serial link. Audio feedback provides the user with
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guidance throughout operations of the system. Fig. 4.4 shows a block diagram of a general-
purpose TIT system configuration. The operator can interact with the system through the
use of an immersive stereo viewer and voice input. Audio feedback can be used to contin-
uously guide the operator and to provide command confirmation. The operator enters the
virtual environment through VR supported input devices. The stereo viewer uses tracking
devices to continuously monitor the location (x,y,z) and orientation (yaw, pitch, roll) of the
participant’s head or hand. The SGI Workstation polls the stereo viewer about 10 times per
second and updates the graphical display so that the user’s movements are synchronised
with his view of the virtual environment. In this way, the participant is given the sensation
of actually being in the graphical world. The operator moves through the graphical envi-
ronment by using VR interface devices while in the navigarion mode for walking or flying.
Operators become accustomed to the environment very quickly and require little instruc-
tions in how to use the system. The VR environment can be developed using the software
platforms (e.g. WorldToolkit by Sense8) which are the modelling and simulation systems
that are used to graphically display the robot motions during robot programming, preview-
ing and monitoring. These platforms provide the capability of adding custom device drivers
and user developed code using the object-oriented C*+ language on which they are based.
During operation, the operator receives continuous audio feedback from the system. This

serves several useful purposes. First, the operator obtains confirmation of voice commands.

Advances in the field of computer graphics favor the emergence of relatively low-cost
visual simulation systems which can be used in a number of situations where the safety
of people and/or equipment is critical. The growing complexity and inherent risks asso-
ciated with the operation of power transmission and distribution systems have made this
industry one of the prime settings for the development of VR-based job-training simu-
lators. Such systems offer the trainee the opportunity to be exposed to a range of sce-
narios and to exceptional conditions which either occur rarely or are hazardous to repro-
duce. Thus, ESOPE-VR! is a prototype developed for a distributed client-server oriented

VR system aimed at the training of operators working in power utility switching or dis-

'ESOPE-VR constitutes an extension of the ESOPE (Expert-System for Operations Environment) simula-
tor by Hydro-Quebec [Okapuu-von Veh and others, 1996].
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Figure 4.4: General-purpose VR-based TIT system block diagram

tribution stations. ESOPE-VR is developed jointly by Ecole Polytechnique de Montreal
and McGill University with the logistic and technical support of Hydro-Quebec. It al-
lows the user to exercise operations that typically consist of changing the topology of elec-
trical networks by energizing or opening transmission lines, isolating equipment such as
circuit breakers and transformers in order to perform maintenance or repair work, pro-
viding appropriate compensation or redistributing the load. The architecture and interac-
tion metaphors of ESOPE-VR are described in [Garant and others, 1995]. Special empha-
sis is made on the generation of the virtual environment resulting from a complex con-
version process between the 2-D schematic representation of a typical power station and
its 3-D equivalent. ESOPE, like other systems, is a job training simulator based on 2-D
user interfaces. While easy to use, they lack the realism and feeling of spatial immersion,

which can be provided by a VR interface. The efficiency of the learning process can be
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greatly improved when trainees not only hear and see, but also practice what they are being
taught. Hence, ESOPE-VR aims to provide improved learning conditions by successfully
integrating a 3-D visual interface, speech recognition, verbal feedback, multimedia facil-
ities, navigation and manipulation devices along with expert system support. When these
human-computer interaction techniques and their support tools are brought together, a train-
ing environment closer to reality is achieved thus reinforcing the soundness of the appren-
ticeship. The overall ESOPE-RV architecture can be found in [Garant and others, 1995,
Okapuu-von Veh and others, 1996]. ESOPE-VR is a highly interactive 3D modelling sys-
tem designed to explore the use of input devices and utilization of new 3D interaction tech-
niques based on the World-Toolkit for SGI platform. Many initial teleprogramming-based

experiments were also performed using the ESOPE system.

4.7 VRin the Future & its Social Implications

After the novelty of visiting a virtual world wears off, it all comes down to one question:
why are we there? There needs to be a reason for being in a virtual environment, whether it
is for escapism (e.g. entertainment), training or education. It is this reason that gives sub-
stance to the idea of involvement. Involvement is what reaches out and engages our minds;
it is the stuff that sparks our imaginations. It is what completes the building of alternative
worlds in our brains [Morie, 1994]. What it will take for VR to truly become the medium
of the future (i.e. the thing that will let it fulfill its true potential) is ubiquity. This brings us
to the concept of VR as a widespread and pervasive medium. Present rudimentary efforts
involve networking some few computers so multiple players can share the same space and
experience. Eventually VRs will be linked in a vast global network. One can see this hap-
pening in a non-graphic form on today’s internet. Graphic servers such as xMosaic gives
first glimpses of a more visual type of network. It is conceivable to imagine that same sort
of functionality for networked VRs, i.e. common graphic and networking protocols that
enable rapid transmission of all the digital data associated with a virtual world to all par-
ticipants. TV, phones, cable systems and the telephone are beginning to merge into one in-
tegrated whole, i.e. the so-called information super-highway. When immersive technolo-

gies are finally folded into this global communication network, VR will finally achieve a
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ubiquitous state. Within the global network, immersive technologies will have widespread
artistic, social and entertainment implications. With the information super-highway barely
in the planning stage and media forerunners establishing the first interactive television net-
works, we're poised on the edge of a future that could change the very fabric of our lives.

However, we are still operating under old paradigms; the new ones are still to come.

What could VR become if it reaches its potential (i.e. if VR could move closer to the con-
tinua previously discussed)? What if it could reach the ultimate in immersion, interactiviry,
involvement & ubiquity? How can it do this? If VRs actually attained ultimate immersion,
we could feel and sense them (i.e. indistinguishable from real life). Recreating real life is
only one type of experience. With ultimate interactivity, we can actually construct worlds or
modify them from within. In the future, the worlds will be ultimately responsive. Ultimate
involvement will bring us worlds intriguing enough to engage us on high emotional and in-
tellectual levels. High levels of immersion, interactivity and involvement will result in syn-
thetic environments of a type which can scarcely be dreamed of now. For all this potential
to be achieved, these environments cannot be rare structures that are accessible to an elite
group. They must be easy to find, easy to use and there must be multitudes of them. Through
new technologies, the computer is taking over functions heretofore regarded as non-rote
pattern recognition and thinking: interacting with sensing devices, building databases of
knowledge or world models, associating what is known from the past with what is currently
happening, making decisions about what actions to take, and implementing those actions.
The human operator is becoming more and more as a supervisor characterized in three terms

[Sheridan, 1992]:

e Super: the human operator is above the computer hierarchically;
o Tele: the supervising is from a distance, both literally and figuratively; and

e Meta: the human operator may oversee many tasks, and may interact with many other
supervisors by communication channels.
Thus, new technologies such as VR for telerobotics, etc. pose a serious challenge for

the years ahead. As robotics automation continues to grow, the optimistic scenario is that
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telerobots will grow in variety and numbers, becoming available to us to do our beck and
call in our homes, schools, government facilities, hospitals, and across the entire spectrum
of our workplaces (i.e. factories, farms, mines, etc.). Some will be of human size, some
the size of insects and some much larger. Positive social implications of these new tech-
nologies include: improved task performance and reliability, improved human safety, re-
duction of human labour as machine labour costs much less, participative technology ad-
vancement and better appreciation of human intelligence in relation to artificial or virtual
intelligence. However, new technologies have some negative social implications for the in-
dividual (i.e. separation & alienation). Developments in broadband communication tech-
nology have allowed the human supervisor to become physically separated from the locus
of action. In large man-machine complexes (e.g. factories, power plants) the human super-
visors are drawn into centralized control rooms to perform their instructing and monitoring
activities aided by flexible and sophisticated command languages and means to communi-
cate either through keyboards or voice, by exotic multi-colour computer-graphic displays,
etc. Thus, the human supervisor becomes an alien to the physical process [Sheridan, 1980].
The components of potential alienation include: threatened or actual unemployment, silent
failures (i.e. undetected for long periods), erratic mental workload and work dissatisfaction,
desocialization, technological illiteracy, sense of not contributing, abandonment of respon-
sibility, blissful enslavement, daily living by remote control (i.e. reduction of social con-
tact), automation of ecoexploitation, electronic tele-governance, etc. As aresult of all these,
in today’s world there are increasingly many situations where our use and appreciation of
technology is closely tied to our srust in it. This is particularly true of large-scale techno-
logical systems such as air traffic control, electric power generation, computerized banking
and fund transfer, and military command and control systems. Some of the attributes of trust

include: reliability, robustness, familiarity, understandability, usefulness, dependence, etc.
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Chapter S Symbolic Telecommands: Generation &
Meta-Interaction

5.1 Introduction

The operator can perform a task in the virtual environment by visually and kinesthetically
interacting with the simulation of the remote site. Another important feature of the telepro-
gramming system is that the operator’s station software is capable of monitoring the opera-
tor’s activity in the simulated environment and extracting from it a stream of symbolic robot
instructions that capture all essential features of the task in progress. Fig. 5.1 illustrates
the black-box view of the telecommand generation process. Two sources of information
are available to this module. The first consists of the low-level position and force trajec-
tories, imparted by the operator, together with the current contact state and motion mode
information. This information is provided directly by the virtual simulator and is updated
at each simulation step. The second source of information, which is available to the sym-
bolic telecommand generation module, is the a priori information about the task in progress.
This task model allows the teleprogramming system to anticipate, recognise and correctly
interpret special-purpose operations which are being performed by the operator. The out-
put of the telecommand generation module are symbolic instructions, which can be again
classified into two groups. The first group is composed of low-level commands, essentially
encompassing guarded & compliant motions. These telecommands are generated to exe-
cute simple tasks such as free-space navigation, motion into contact with the environment,
contour following, etc. and are generated solely on the basis of positional, force and contact

state information.

The special-purpose class of motion commands, on the other hand, encompasses special-
purpose or fine-precision operations, which are best executed autonomously at the remote

site under local sensory supervision (e.g. fine precision object alignment, grasping, etc.). In
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Figure 5.1: Telecommand generation process

this case, the task model provides global guidance to the process of interpreting low-level
motions in the virtual environment, such that these special-purpose operations can be recog-
nised in the input stream and proper symbolic instructions generated. The teleprogramming
system should also provide a facility whereby the operator could perform a small portion of
a repetitive task (such as sawing, valve tightening or polishing) and specify to the system to
continue executing this task fragment until some terminating condition is met. These pro-
cedures should be simple, unparameterised and defined on-line for one-time use. Moreover,
the task model must contain sufficient information about the structure of the task to allow
the system to recognise the operator’s intent to initiate such a subtask. Likewise, the correct
terminating conditions corresponding to an initiated iterative procedure should be specified
in the task model. The rest of this chapter will focus on the low-level telecommand gen-

eration as it is the more basic and fundamental of the two telecommand types. The main
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constructs of the low-level telecommand language interface between the operator’s station

and the remote workcell are also provided.

5.2 Low-level Telecommand Generation

The operator’s station based model of the remote environment is only an approximation
(within known tolerance bounds). Hence, the nature of the generated low-level telecom-
mands must reflect and accommodate the discrepancies between the modelled and the ac-
tual world. This is not critical during free-space motion, but it is vitally important when
attempting to establish or maintain a contact with the environment. Consequently, for the
case of contact motion, the system generates sequences of guarded and compliant motion
primitives with the modelling uncertainties built into the motion parameters. Moreover, as
the operator’s station based virtual model is kinematic in nature, the dynamic parameters
of the requested motions (e.g. guard and compliance forces, frictional parameters) can not
be given precisely. Instead, symbolic (normalised numerical) values for these parameters
are supplied to the remote site, which in turn must substitute its estimate of the actual val-
ues prior to execution. These estimates are based on the workcell’s previous interactions
with the environment, i.e. task history and are derived from the local sensory readings at
the remote site. In order to cope with modelling uncertainties, as well as to increase the
execution reliability and robustness at the remote site despite sensing and control errors,
the hybrid force/position model can be adopted [Raibert and Craig, 1981] for the symbolic
telecommand stream generation process, as well as remote site execution. In this control
methodology the Cartesian space of manipulator’s end-effector motions is partitioned into

free' and constrained® directions.

Thus, during free-space motion all six Cartesian motion directions are designated as free
and thus position controlled. When in contact, on the other hand, the separation of the
Cartesian motion parameters into free and constrained directions is determined by the na-

ture and alignment of contact features. This normally results in position being controlled

'A free direction is one along (or about) which the manipulator can move freely, but can not exert any
forces (or moments) on the envircnment; these directions of motion are therefore controlled in position mode.

2A constrained direction is one along (or about) which the manipulator can not move, but can exert forces
(or moments) on the environment; these axes are controlled in force mode.
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along some of the Cartesian axes, while force is controlled along the others. The symbolic
language, which the system uses to specify low-level actions to the remote workcell, is de-
signed to match the hybrid force/position control paradigm. A description of the syntax &
semantics of the low-level symbolic telecommand language can easily be augmented to VR
toolkit’s languages. The telecommand generation process proceeds in terms of execution
environments. An execution environment is a sequence of elementary instructions which
completely specifies a motion primitive and consists of pre-motion, motion and post-motion
phases. The primary role of the pre-motion phase is to identify the coordinate frame (i.e.
task frame (TF)) in which the subsequent motion parameters are to be interpreted. One of
the two predefined coordinate frames, the end-effector frame (EE) or the kinematic-base
frame (KB), can be selected or an entirely new task frame can be constructed from any three
component vectors (origin plus any two axes). Moreover, the system can specify whether
the task frame is to move along with the manipulator (dynamic task frame) or remain fixed
with respect to world coordinates throughout the upcoming motion (static task frame). By
convention, free-space motions are commanded with respect to EE (dynamic frame). Dur-
ing contact manipulations, the task frame is centred at the primary contact point and aligned
with the contacting features in such a way as to facilitate a clean separation of force and po-
sition controlled Cartesian directions for the remote manipulator [Mason, 1981]. Besides
the task frame, the pre-motion phase of an execution environment musf specify the force
guards in case of a guarded move and ensure that the existing force preloads (if any), as
well as the control mode information are correctly expressed in the new task frame. The
motion phase specifies either a free-space movement, a sliding motion or a pivoting mo-
tion. Finally, following the motion, we may need to reset the force guards to their default
values (if the motion was guarded) and update the motion information and force preloads to
reflect the new contact set (if the motion resulted in addition or deletion of contacts). These

instructions are referred to as post-motion instructions.

5.3 Symbolic Telecommand Generation Algorithm

The teleprogramming system generates low-level symbolic telecommands by monitoring

the elapsed time, contact state information and motion trajectories of the remote manipula-
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tor and the movable object(s) in the simulated environment [Haule and Malowany, 1995c].
A new sequence of instructions is issued after addition or deletion of a contact or after the
same contact state has persisted for ¢,,,, seconds. The time interval ¢,,,. is a function of
the rate at which significant changes occur in the environment. Because this rate is limited
by the human neuro-muscular bandwidth, ¢, can be taken to be on the order of 1 second.
The global outline of the symbolic telecommand generation process is given in Algorithm
5.1. Steps 1 and 2 of the algorithm compute the elapsed time since the time when the last
execution environment was generated. Steps 3 and 4 make available to the system the cur-
rent and old contact state information, as maintained by the virtual simulator. In step 5, the

incremental Cartesian end-effector displacement AX8d = (¢, r) is computed as follows:

t = Trans(A¥8T; r = RPY(Rot(AXET)) (5.1)

where

AXBT = T6; % (T6;-,)" (5.2)
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Algorithm 5.1 (Global low-level telecommand generation)

at the end of each simulation step {

I. t; < current time

[N}

e; <=t; —t,_y
C; < current contact set
Ci;_1 < old contact set

A¥Bd < end-effector displacement

S AW

case motion-mode of {

e free-space (use sub-algorithm for free-space motion)
o sliding (use sub-algorithm for sliding motion)
e pivoting (use sub-algorithm for pivoting motion)

e pushing (use sub-algorithm for pushing motion)

}

7. if command-generated {

L1 &=t
Cio1 <= (G
16, < T6;
t

The RPY operator denotes that the corresponding incremental rotational motion is expressed
as roll/pitch/yaw vector. The homogeneous transform 7°6; denotes the location of the ma-
nipulator’s wrist with respect to its kinematic base (KB) at the k-th simulation step. The
heart of the procedure is step 6, where the changes in the simulated environment since the
generation of the last execution environment are examined and the corresponding symbolic
instructions generated, if appropriate. Different telecommand generation algorithms do ap-
ply for different motion modes. Finally, if a new execution environment was generated in
this step, the relevant current information is stored to serve as old information for subse-

quent iterations of the algorithm. Each sub-algorithm presents the analysis of representa-
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tive cases and gives the corresponding execution environments (telecommand sequences),
as well as the outline of the sub-algorithm (i.e. summarising the results). For example
during free-space motion, telecommand generation proceeds in a straightforward fashion
as shown in Algorithm 5.2. The vectors ¢ and r are the incremental translational and ro-
tational wrist-based displacements of Equation 5.1, appropriately rotated into the current
task frame (EE) and ¢ denotes the duration of the required motion (in seconds). The main
constructs of low-level telecommand language interface between the operator’s station and
the remote workcell are as summarized in Table 5.1 representing three main categories of
motion telecommands: (a) task frame management; (b) force control, and (c) motion con-
trol. All symbolic telecommands must be pre-labelled in CDB data elements and initial-
ized as detailed in Chapter 7. For detailed analysis of these telecommands, one can re-
fer to my published papers (Haule and Malowany, 1995¢c, Haule and Malowany, 1995b,
Haule and Malowany, 1995a].

Algorithm 5.2 (Telecommand generation algorithm: free-space)

if(e; > tmaz) {
case motion-mode of {

free-motion  :Move(t, <t t,, t: >, <1y, Ty, T >)
translation Move(t; <t t,, t. >;<0,0,0>)
rotation ‘Move(t; <0,0,0 > < 1y, ry,7: >)

}
}

54 Telecommand Parsing and Translation

The operator’s station visually and kinesthetically couples a human operator to a graphi-
cal simulation of the remote environment. The operator interactively, via an input devices
supported in the virtual environment, specifies the task to be performed remotely. The final
output of the operator’s station is a stream of execution environments, each containing a de-
scription of an elementary motion or action to be performed by the slave workcell. Thus,

this section and the next one focus on the meta-interaction of the remote workcell with its
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Telecommand Class

Syntax & Semantic

——

Task Frame Management

DefineVector(name; < v, vy, v, >: ref_ frame)

DefineTaskFrame(name:ref-frame;origin; x-axis;y-
axis;z-axis)

UseFrame(frame)

Force Control Telecommands

AssignMode(X, X, X, X, X, X), Xe{P F}
Force(< f:, fy, f: > < 72,1y, 72 >)
GuardForce(< f;, fy, f: > < 7. 7y, T: >)

GuardVelocity(< v;, vy, v; >; < wg, Wy, w: >)

Motion Telecommands

Move(t; < pz, Py, Pz >3 < @z, Oy, O >)

Slide(t: < ¢Iv d’yv ¢z >)

Pivot(t; < ¢z, &y, 9: >)

Table 5.1: Low-level symbolic telecommand language: syntax & semantics

environment as well as the operator’s station virtual model. The analysis will include the

instruction parsing and translation, a strategy for parsing, scheduling and executing the re-

ceived instructions, which guarantees that the time lag between the virtual and the remote

workcell will not increase during

the task. More results were published in [Haule and Mal-

owany, 1994a]. The operator performs a task by interacting with a local-station based graph-

ical simulation of the remote environment. The operator’s station software generates (on

line) a stream of symbolic instructions, describing the operator’s activity in the simulated

environment. These instructions, grouped into execution environments, arrive to the remote

workcell a transmission delay T (i.e. T, in Figure 5.2) after they were generated and sent

from the operator’s station. Remote site execution proceeds by:

1. Parsing and translating the contents of successive execution environments into the

local control language;
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Figure 5.2: Sequential execution management

2. Substituting numerical values for the symbolic (or normalised numeric) dynamic pa-

rameters (e.g. friction coefficients, compliance force levels);
3. Passing the resulting code to the local controller for execution; and

4. Monitoring the execution process; i.e. detecting error conditions, stopping the remote

workcell safely on error and reporting resulting error state to the operator’s station.

The symbolic telecommand language, which is used by the teleprogramming system to en-
code elementary motion and action information, is designed to be closely compatible with
the hybrid force/position control paradigm [Raibert and Craig, 1981]. If the remote con-
trol software supports the same control strategy, then the process of parsing the incoming
symbolic instructions and producing the corresponding instructions, which are directly ex-

ecutable by a local remote controller, is straightforward. The symbolic telecommand lan-

76



RIS

4

5. Symbolic Telecommands: Generation & Meta-Interaction

Operator’s Station
I&)mmunicuzion procc.\'sl r command generation ] r simulation process ]
CommQ -t CmndGenQ Sim(Q)
Ack/Error
delay CmdFile :
I
ExecEnv
—— =]
‘ParseO . | 3 Control()
i W | CmdBuf
B
J -
| communication process| [ reai-time control process i

Remote Controller 7

Figure 5.3: Double-buffering execution scheme

guage is a context-free language and consists of simple declarative statements with no loop-
ing or branching constructs. The corresponding BNF grammar can therefore be readily pro-
duced and fed to an automatic parser generator (such as yacc) to produce a parser. Hav-
ing produced a parser, the code generation process then proceeds in three steps. First step:
Some of the instructions, such as UseFrame, AssignMode, Move, Pivot, Slide, etc. set the
corresponding control parameters (i.e. current task frame, control modes, motion time and

trajectory) in the remote controller directly and no additional processing is necessary.

Second step: Other instructions, such as Force, GuardForce, GuardVelocity, etc. do re-
quire some additional processing. In particular, in view of the kinematic nature of the oper-
ator’s station based simulation, the parameters, supplied by these instructions, do not reflect
proper dynamics of the remote manipulator and the environmental objects being manipu-
lated. These instructions contain symbolic or normalised numeric values to denote dynamic

parameters, such as frictional properties, compliance forces during sliding, guard forces
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t t: ts ts

Figure 5.4: Double-buffering execution management

while approaching a new contact, etc. The translation process must therefore substitute ac-
tual (estimated) values for the symbolic place-holders. These estimates of the dynamic pa-
rameters of the manipulator’s interaction with the environment are refined as the task pro-
gresses and sensory measurements can be used to get a better sense of the frictional char-
acteristics of the immediate environment, masses and inertial properties of the manipulated
objects, etc. The responsibility of obtaining this information lies with the remote controller
which must keep track of the relevant dynamic parameters and record the necessary sensory
data during motion, in order to maintain updated estimates of their actual values. Third step:
Instructions, represented by Define Vector and DefineTaskFrame, serve to update the Symbol
Table of currently defined vectors and coordinate frames, known to the remote controller.
For clarity, the symbol table is a linked list. More time and space efficient data structures,
such as hash tables, should be used in actual implementations. The two frames KB and EE

correspond to the kinematic base and end-effector (wrist) frames respectively. Likewise,
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Notation Explanation
@ the :** execution environment
qT; time when @ started being generated
sT; time when @ was sent from the operator’s station
rT; time when @ was received by the remote controller
eT; time when @ began executing at the remote site
ti execution length of @
pt; parsing time for @
wt; time spent waiting for @

Table 5.2: Sequential dequeue-parse-execute notations

ORG and WST denote their respective origins in local coordinates. This suffices to boot-
strap the task frame definition process, whereby new vectors can be defined with respect to
any combination of these vectors. Task frames are specified to be either static (defined with

respect to KB) or dynamic (defined with respect to EE).

5.5 Lag Control During Execution

During execution care must be taken to avoid increasing the lag time n between the vir-
tual and the remote workcell as the task proceeds. A straightforward dequeue-parse-execute
loop leads to the behaviour of Fig. 5.2, where the lag time increases throughout the duration
of the task. The notations used in Fig. 5.2 are summarised in Table 5.2 and will be adopted

from now on. The waiting time is defined as follows:

rT; — (eTioy + ti—y); ifrT; > (eTi—y + ti-
w; = (eTi-y 1) (eTi— ) 5.3)
0, otherwise

Note that the waiting time can not be negative. Then, using sequential dequeue-parse-
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execute approach, the lag time 7; at time eT; (i.e. just before executing @ ) is given by:

n =eT; —gl, =t +T+Z(ptj + wt;) (5.4)
J=1

Equation 5.4 implies that even if the sum of waiting times is bounded, i.e. if

lim > wt, < W (5.5)
t— 1=1

for some arbitrarily large constant ", we have

i—00

indicating that the lag time not only increases as the task progresses, but is in fact un-
bounded. In order to solve this problem, a double-buffering execution scheme shown in
Fig. 5.3 is employed. The remote controller maintains two such buffers (i.e. CmdBuf A
and B). While one is being executed, the other is being constructed by parsing and translat-
ing the next execution environment. The combination of this parallelism and an artificially
introduced holding time ht,, which delays the execution of the 1% telecommand by ht;, can
be used to control the lag. This execution management scheme is also shown in Fig. 5.4 for

clarity and is for its analytical validation refer to Section 9.2.
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Chapter 6 Design of Teleprogrammable Control Scheme

6.1 Introduction on Visual Tracking

A new method for designing an optimal time-delayed teleoperator control system based on
prediction of object position and its velocity using observers is presented [Hacksel and Sal-
cudean, 1994, Zhu et al., 1992, Haule and Malowany, 1994b]. An observer-based approach
to the determination of moving object positions can be used to correct object velocity esti-
mates generated by observers, leading to accurate, low-noise estimates during remote con-
tact tasks. The control scheme can be used for collision avoidance purposes, visual object
tracking, visual servo systems, etc. A design of a teleprogramming controller consisting of
a predictor with an observer-based double-loop feedback for visual robotic tracking of mov-
ing objects during remote manipulation is demonstrated. The performance of the controller
is evaluated using MATLAB computer simulations in the frequency domain by minimising
a squared-error cost function of the motion parameters for a variety of motion trajectories.
The designed controller is fast and robust enough as it will be shown by simulation results

and control analysis.

A telerobotic system consists of a local and a remote manipulator. Position telecom-
mands are sent forward from the master to the slave. [n order to improve the performance
of the system, force information is send back from the slave to the master. Often there
is a transmission delay incurred when communicating between the two subsystems which
causes instability in the force reflecting teleoperator. Teleprogramming methodology solves
the instability problem as shown in {Haule and Malowany, 1995a]. Other control-based so-
lutions include minimising the behaviour of a lossless transmission line, a scattering tech-
nique developed for a teleoperator system [Anderson and Spong, 1989]. PID controilers
and a lag-lead compensators for a robot system were also developed [Chen, 1989]. 2-port

network models of bilateral remote manipulation are also employed to solve the problem
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[Raju and others, 1989, Anderson and Spong, 1988], etc. Although the resulting control
laws were shown to stabilise an actual teleoperator system and are intuitively stable be-
cause of their passivity properties, stability for the system has not yet been proven. Thus,
the designed tracking controller can be incorporated into the characterisation of the non-
linear, distributed parameter system, human operator and the environment. Tradeoffs be-
tween static accuracy, system stability and insensitivity to disturbances with sampling rate
remain to be derived for a more realistic discrete time system model. Both theoretical anal-
ysis and real tests are required using various control theories. Extensions to include the
development for the full n-DOF system and the use of a gain element is to be accommo-
dated. The resulting controller has to guarantee stability for any passive task object at the
slave port and any passive human impedance at the master port. Different control schemes
exist in both manual and supervised automatic modes of control {Bejczy and Kim, 1995,

Tarn and others, 1995].

One technique for teaching a robot to perform a certain task is to teach it the trajectory
that the mobile object should track to accomplish the task. Once the robot learns the trajec-
tory, it can achieve the task by tracking the trajectory. [Endo and others, 1995] described
a method for controlling the trajectory tracking of a mobile object, enabling the robot to
accomplish some task involving a target object. A visual servoing method [Walters, 1994,
Yoshimi and Allen, 1994] can be used to position a robot with respect to an object before
tracking it and estimating its velocity [Chaumette and Espiau, 1991]. A model registration
system capable of tracking an object through distinct aspects in real-time is presented by
[Ravela and others., 1995]. Their system integrates tracking, pose determination and aspect
graph indexing. The tracking combines steer-able filters with normalized cross-correlation,
compensates for rotation in 2D and is adaptive. [Bensalah and Chaumette, 1995} described
a real-time visual target tracking using the generalized likelihood ratio (GLR) algorithm
by first introducing the visual servoing approach and the application of the task function
concept to vision-based tasks. They also presented a complete control scheme which ex-
plicitly enables pursuing a moving object. In order to make the tracking errors as low
as possible, they used the GLR test, an algorithm able to detect, estimate and compen-

sate abrupt jumps in target motion. Visual servoing [Walters, 1994, Espiau et al., 1992,
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Hashimoto, 1993] is now a classical approach to realize various robotics tasks (i.e. position-
ing, grasping, target tracking, etc.) in closed loop with respect to visual data. As far as target
tracking is concerned, [Papanikolopoulos er al., 1993] used classical approaches in control
theory to track a moving object. However, they consider the object motion as disturbance,
which implies tracking errors in the image. On the other hand, [Allen and others, 1993]
developed an object motion estimation algorithm, based on & — 3 — ~ filters, in order to re-
duce the observed tracking errors. Other similar techniques are based on the use of Kalman
filters [Lee and Lee, 1994, Chaumette and Santos, 1993]. While the first approach has com-
putational advantages, the second one seems much more appealing due to the adaptability
of its coefficients for tracking various target motions. Different researchers design ditfer-
ent control schemes to achieve the same goal while dealing with visual tracking [Richards
and Papanikolopoulos, 1995, Papanikolopoulos et al., 1994, Sharma and Hutchison, 1994,
Bishop et al., 1994, Yokokohji er al., 1994, Lee et al., 1994].

6.2 Design Methodology: for controllability & observability

A design was performed for the visual robotic tracking of moving objects during remote
manipulation. Using the knowledge of gripper and object positions at uniform time inter-
vals, a control system was designed. The design consists of two phases: first an estimator
or predictor was designed; second a double-loop feedback controller which receives signals
from the predictor was designed. A predictor algorithm which gives future positions of the
moving object two sampling instants later was implemented in software. The motion of the
object was estimated by minimising a squared-error cost function of the motion parameters
[Isidor and Byrnes, 1990]. The performance of both predictor and controller was evaluated
by performing MATLAB computer simulations. The results are satisfactory for a variety of
remote object motion trajectories. Detailed results are presented in {Haule and Malowany,
1995b). The configuration of the system under discussion is shown in Fig. 6.1. A number
of fixed cameras act as sensors capturing the position of both the robot’s gripper and the
moving object every T seconds. In response to this information, the robot system must re-
act by moving its gripper towards the moving object. Once the gripper is within a tolerable

distance from the object, it must maintain that relative position.
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Figure 6.1: A generic remote robotic workcell

The design assumptions include: dynamics of the robot (i.e. its matrices) are known [Lei
and Ghosh, 19931, no noise or friction is present, the visual sensors are fixed cameras that
give the position of the gripper and the moving object, the information from the camera is
already in the world coordinate frame (WCF) whose origin is at the base of the robot frame,
the moving object has a smooth and continuous motion in time (i.e. no acceleration) within
the vision field of all the cameras, the robot is actuated such that the speed of its arm is
greater than that of the moving object so as to ensure that the object can be reached and the
object is confined to move in the X-Y plane. The information available from the sensors is
limited to the positions of both the gripper and the moving object in WCF. The solution is
directly related to the minimisation of the position error between the gripper and the object.
The gripper has to be actuated in such a way that its motion is directed towards a predicted
future position of the object in order to catch it. This implies that the gripper’s speed has to
be greater than that of the moving object. A tracking scheme is shown in Figure 6.2. The

controller responds to the position error between gripper positions X, (k) and object posi-
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Tracking completed (i.e. Xg(i)=Xc(i))

Xc(k+3)

Xc(k+10)

Xe(k+2)
Xc(k+3)

Xc(k+1)

Figure 6.2: Error between gripper’s and object’s position

tions X.(k) and drives the robot arm while the predictor estimates the position of the object
at time ¢ + kT, where & is an integer taking care of the delays present in the control sys-
tem. Equation 6.1 gives the matrices of the continuous-time robot system [Lei and Ghosh,
1993]. The output of the robot system y(t) represents the position of the gripper in WCF.

This corresponds to the three components of the state vector in Equation 6.2'.

O T [I O =4

A=| 7 P2 B=| 7P| C=(I430m), D=0  (6.1)
O3z3 O3 Lz3

Y (t) = (Xq(t) Yo(t) Z, ()T (6.2)

The other three states of the robot system represent velocities in 3-D space. Equation 6.3

shows a complete state vector.

VA state of a system is the minimum amount of information necessary to fully describe the system.
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X(t) = (X,(t) Yy(t) Z,(t) X,(t) Y,(t) Zo(t)T (6.3)

Matrices A and C are unit-less, matrix B has units of 1/mass so that the input u(¢) to the robot
system is a force and the output y(¢) isa 3 x | column vector having units of position. For
no coupling between the three orthogonal coordinates, the overall system can be simplified

and divided into three subsystems, one for each axis as shown in Equations 6.4, 6.5 and 6.6.

U(t) = X,(t) (6.4)
Uy(t) = Yy(t) (6.5)
U(t) = Z,(¢) (6.6)

Each subsystem was assumed to have identical state-space equations given as:

HEIHEE

Y = .Y| (68)

U (6.7

Since the sensors (i.e. cameras) are discrete-time systems and the plant to be controlled
is given in the continuous-time domain, a discretization of the plant is necessary. This is
achieved by installing a zero-order hold (ZOH) in front of the plant. This discretization is
assumed to be done with a periodic sampling 7. The ZOH equivalent state-space equations

of each subsystem are as given in Equations 6.9 and 6.10.

X\ (k+1) } { LT [ xuk) [o.srz
- + Uk) 6.9)
Xa(k + 1) 01 || Xa(k) T
Y (k) = X, (k) (6.10)
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The controllability® of the ZOH equivalent model was assessed before designing the con-
troller. Similarly, the observability® was counter-checked. The controllability (C') and ob-
servability (O") matrices are as given in Equation 6.11. Since C’ and O’ exhibit full rank®,
each subsystem is controllable and observable [Franklin and others, 1990]. This means that
the states can be placed arbitrarily via a controller and that an observer can be designed to
estimate the unavailable state .X>(4). Still, due to the presence of two simple real poles on
the unit circle in the Z-plane, the subsystem is unstable. One requirement for the controller

is thus to stabilise the closed-loop system.

0.5T* 1.5T¢ 1 O
C'= . O = (6.11)

T T 1 T

6.3 Prediction Scheme

The discrete-time predictor receives the current position of the object as given by the sensors
and sends an estimate of the future position of the moving object in WCF to the feedback
control system. Since the motion of the object is unknown, a discrete time model of Equa-

tion 6.12 or 6.13 was used to approximate the motion of the centroid of the object.

Xk+1)=aX(k)+8 (6.12)
or equivalently
Xe(k+1) oy ap aps X(k) 8
Ye(k+1) | =] an an an Y(k) || G (6.13)
Z(k+1) a3 an a3 Z(k) Gs

A minimisation of the cost function .J was done in order to generate the parameters of the

2The system is controllable if the states can be moved in any direction in the state space, i.e. poles can be
arbitrarily placed.

>Observability is the ability to estimate the system states from a record of output measurements.

*For observability & controliability, matrices C & O must have full rank n (i.e. n = dimension of C or Q).
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motion equation which is subsequently used to predict positions of the object.

J = i(.‘f(i) —aX(i-1)-8)? (6.14)

=1
The cost function J is a second order polynomial in & and 3 with positive coefficients in
front of the parameters of highest degree. Thus, J has only one extremum point which is
a minimum whose value is J,,;,, obtained by differentiating J with respect to o and 3 and
equating it to zero. After differentiation was completed (see Section 6.7), the parameters
minimising the cost function were found by solving Equation 6.15 where the matrix M is
given in Equation 6.16. A computer algorithm whose structure is outlined in Algorithm 6.1
was used to compute the parameters necessary for prediction using MATLAB software on

a Sun Workstation. Appendix B gives the MATLAB listing of the controller program.

Algorithm 6.1 (OQutline of predictor algorithm)

1. Initialisation of variables; i = 0;

2. Get position of object from cameras: i =1t + |;

3. Compute o: matrix and 3 vector for all positions collected;
4

. Check error between predicted and actual positions, if error is
less than the maximum allowable (i.e. €) then go to step 5, else
goto2;

5. Send the predicted position (i + 2) to the control system based
on known i positions of the object;

6. Get position of the object from cameras: j = j — i+ |;

7. Use the last i positions of the object to compute the predicted
J = J + 2 posttion;

8. Go to step 6 (predicted positions are thus generated up to the
completion of the experiment).

88



M=

‘Yc(z)y'c(l - I)
_ - z;l
an X(1)Z.(i — 1)
(87 }] =1 N
X,
o > X
B Zn X(i—1)
Mizs Oua O ot e
Maza 4z4 az4 - Z:[ yc 2 - 1)
0424 1‘/1424 041:4 =
Q3 —
041:4 041:4 Maiza z:ch(l Z (z l
123 N
at 2 Ye(7)
N
a3z ZZc DX (i - 1)
Q33
|5 ZZ WYe(i— 1)
Z Z(i)Z(i - 1)
=1 N
PIAQ)
=1
N N N
Y X (G- DX(E-1) DX (G- DY (G-1) D X(i-1)Zc(i—1)
‘7\(1 ITVI 1=N[
NY(i-1DX(i-1) SY(@E-1DY.E-1) Y Y(i-1Z(G-1)
Nl N! Nl
Z(i— )X (i —=1) Y Z(i - DY(i-1) ZZC i-1DZ(i-1)
=1 N i=l N =1
Y X li-1) PR ACENY ch(z' -1)
i=l =1 1=1

6. Design of Teleprogrammable Control Scheme

Yc(i - l) -

(6.15)

(6.16)

It can be noticed that the predictor algorithm is divided into two parts: (1) At start up of

the experiment, the predictor uses as many sensed positions of object as necessary to sat-

isfy a convergence criterion. If the distance vector between the predicted position at time ¢
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and the current position of the object is less than a certain value (say €), then convergence
is achieved. Otherwise, more sensed positions of the object are needed to meet the error
criterion and more time is required in order for the predictor to generate a reasonably accu-
rate prediction; (2) Once the parameter approximation is done, the predictor starts sending
signals to the control system. The predictor receives current positions of the object (at time
t) and sends to the control system the predicted values at times ¢t + T and ¢ + 27 where
T = sampling period. The predictor also updates the value of the motion parameters at

each sampling instant.

6.4 Double-loop Feedback Scheme: observer-based

Position error alone as input to the control system cannot achieve tracking nor stabilise the
closed-loop system. The feedback of the gripper velocity was added into the design, i.e.
double-loop feedback controller. Since the velocity state is assumed not to be available for
measurement, an observer had to be designed in order to generate estimates of the velocity.
This was achieved by selecting identical initial values for the estimates to be equal to the
true state. This is possible since the initial state of the gripper is known to be motionless.

Thus, the observer equations are as presented below.

X2(0) = X5(0) = X.(0) 6.17)
. o T? .

Xa(k+ 1) = Xo(k) +TU(k) + K, |Y(k+ 1) — X, (k) - TU(k) - TX,(k)| (6.18)
Note that the observer is of first order. Since the dynamics of the gripper are decoupied,
the motion is divided into three independent components. Thus, we have three first order
observers (i.e. one for each Cartesian coordinate). Due to the choice of the initial state,
the gain K, can be arbitrary since the bracketed terms it multiplies have their sum equal to
zero at each sampling instant. Still, for the sake of rigour, the gain K was calculated to be
1/(2T') due to the choice of the poles of the state error equation which was conveniently
placed at z = 0.5. By so doing, the speed of the observer was made faster than that of the

robot system. The overall design block diagram of the visual tracking scheme is shown in
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Fig. 6.3 which is based on the observer and predictor configurations. This control scheme

was implemented in software form. The control law used is quite simple and is given by:

U(k) = K [E\(k) — Ex(k)] = K [E1(k) — TuXa(k)] 6.19)

Algorithm 6.2 (Outline of the computer control algorithm)

1. Initialisation of variables; m = 0;

2. Receive predicted position of object: m = m + 1,

3. Compute the states £,(m), y,(m), zi(m) and the inputs;
4

. Compute the estimated states z,(m), y2(m), z2(m) from the
observer equation;

5. Go to step 2 (outputs of the system are thus generated up to the
end of experiment).

The computer was used to compute recursively the value of the states of the gripper and
of the observer. The algorithm used for the controller is as summarised in Algorithm 6.2
and its program written for MATLAB software simulations is given in Appendix B. During
simulations, the choice of the gains K and T; was based on the desired properties and char-
acteristics of the overall closed-loop system such as stability, speed of response and settling
time. However, it was found that values of K = 1 and T; = 1.5 gave a dead-beat response
to a step input. Still, the system subjected to other types of inputs will not exhibit dead-beat
response. This is of no major consequence as long as the output response of the closed-loop
system is stable, has a relatively small overshoot and settles down in a reasonable amount

of time. Finally, in order to achieve smooth tracking, K" was reduced to 0.6.

6.5 Initial Stability Analysis

For stability reasons, the overall closed-loop control system was initially analysed. The
graph of the root locus based on a T value of 1.5 with respect to a varying gain K is shown
in Fig. 6.4. It has to be noted that this plot is obtained by neglecting the observer dynam-
ics since the state equation of the observer is identical to that of the robot system for state

X>(k). From Fig. 6.4, it can be noted that the closed-loop transfer function with a gain of
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Figure 6.3: Block diagram of tracking control system

K = 0.6 corresponds to a point on the root locus lying inside the unit circle. This im-
plies that the stability criterion is met and smooth tracking can be achieved. Thus, this gain
value was chosen for further manipulations and was kept constant throughout the rest of the
experiment. A complete derivation of the overall closed-loop transfer function is given in

Section 6.8. Detailed experimental simulation results is covered in Section 9.4.

The rank of the matrix M depends on the type of motion taken by the moving object along
the x-, y- and z-directions. Since the motion of the object was confined to the XY plane, the
z-component has no contribution to the computation of the parameters. Thus, the rank of
the matrix M was reduced from size four to three. If the motion of the moving object along
the x-axis is linearly dependent on that along the y-axis, the rank of the matrix M is further
reduced to size two. The choice of ramp-, circular-, square- and wave-like motions (see

Section 9.4) was meant to prevent another reduction of the rank of matrix M. The algorithm
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Figure 6.4: Root Locus of the closed-loop system

for the predictor has been set to check the rank of the matrix M before computation of the
parameters is done. This step is necessary at the initialization stage. The accuracy of the
predictor depends on the tolerance specified and complexity of the trajectory of the moving
object. Prediction of future positions of the moving object can be done for one or more
sampling instants ahead. At present time, the only information available to the predictor
about the motion of the moving object is its present and past positions. In order to predict
more than one sampling instant ahead, the predictor has to use the last prediction, present
and past positions. This situation is desired in order to take into account the delays present
in the overall system. However, it was found that two step prediction gives more accurate

tracking of the moving object.

The time it takes for the gripper to go to the moving object and move together with it de-

pends on the trajectory of the object. Since the predictor algorithm requires a certain num-
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ber of actual positions of the object in order to estimate the motion parameters, the gripper
cannot move before this calculation is completed. This period of time is approximately 3
seconds (refer to Section 9.4). In fact, it takes three steps of batch computation to converge
within the desired accuracy of 0.1 units of position. Once the gripper starts moving, it is
very fast to catch the object. This is true for the proportional feedback controller which has
no parameter penalizing the size of its output. Hence, the error between estimates of ob-
ject positions and gripper positions is going to be within the pre-specified tolerance rather
quickly. However, the error between actual position of the object and gripper does not nec-
essarily go to zero depending on the predictor’s accuracy. Thus, a2 need for improvement

using linear quadratic (LQ) controller is required as outlined below.

6.6 Improved LQ Controller

A K value of 0.6 was used for proportional feedback control. Still, the gripper takes more
time to stabilize its motion around the object’s position as compared to the case where K was
larger. So varying K is changing the stability configuration of the system, the smoothness
of the motion, as well as the demand on the inputs. This can be related to the performance
index of a Linear Quadratic (LQ) controller. A compromise between speed of response and
control effort can be found and this resulting compromise affects the shape of the motion:
smoother control inputs implies smoother motion of the gripper in time. An improvement
of the design would be to use LQ control. The controller drives the robot via forces in each
Cartesian direction. Since the goal of tracking is to make the position and the relative ve-
locity between the gripper and the object go to zero quickly, it is possible that an excessive
demand be placed on the actuators. The purpose of the LQ controller is to reduce the effect
imposed on the actuators so as to avoid saturations. The major drawback of such a con-
troller is the slowing down of the tracking process. Still, the performance index ./, g can be
defined and offers the possibility of compromising between speed of tracking and demand

on the control input.

N -
Jig = Y (XTQ X (k) + Q.U (k)) (6.20)

k=0
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where

_ Finite time of ezperiment

N = 6.21
Sampling period T e.21)
The matrix @, and scalar (), are given as follows:
I O
Q= : Q= (6.22)
00

The greater & is, the smaller is the control input (force). A compromise between a reason-
able speed of tracking and a maximum input force must be selected using ¢. Concerning
stability, since the robot system is controllable and that @, is symmetric and positive semi-
definite, the LQ controller always gives a stable closed-loop system. The computer control
algorithm uses a proportional controller with output feedback regulation of a reference in-
put. In order to apply LQ control to the robot system, the block diagram form of Fig. 6.3
would have to be changed so that no reference input appears and that the state is fed back
to the input of the controller. To achieve this new state space representation of the system,

states would have to be redefined as follows:

AX(t) = (AX () AX ()T (6.23)

where

AX(t) = X,(t) — X,(t); AX(t) = X,(t) - X,(t) (6.24)

It is assumed that the moving object has no acceleration. Thus, the relative acceleration be-
tween the object and the gripper would be equal to the acceleration of the gripper alone. The
main difference between the LQ controller and the proportional feedback controller is that
the gain K is a function of time, characterized by K (k). Therefore, the LQ controller would

be found by calculating the gain K'(k) at each sampling instant such that the performance
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index Jiq is minimized. The control input would be calculated as follows:

U(k) = —-K(k)AX (k) (6.25)

It has to be noted that all simulations were performed only in the discrete-time domain.
The control input was held constant between sampling instants by the ZOH. Still, the robot
motion is in the continuous-time domain. In discrete-time, the behaviour of a system is con-
sidered only at the sampling instants. [t is known that a system can have a stable discrete
output response and be unstable between samples in the continuous-time domain. There-
fore, inter-sampling behaviour has to be addressed so as to check the continuous-time out-
put response of the system. If the number of data needed to achieve convergence of the
batch computation is large, then some form of weighted recursive calculation has to be per-
formed so as to reduce the computation time. To design a more realistic control system,
the recursive computation could be optimized with respect to its complexity and time con-
sumption. Another addition to the control system would be a disturbance-rejection feature.
Disturbance could be modelled based on friction or drag present in any real physical envi-
ronment. In presence of no physical obstacles, the gripper tends to keep its velocity constant
once it has caught up to the moving object. To reject a disturbance input to the control sys-

tem, another compensator would have to be added into the design.

6.7 Motion Estimation of Moving Object

A prediction algorithm used to estimate the motion of a moving object was discussed in

Section 6.3. The motion of the centroid of the moving object can be expressed as:

X(k+1)=aX(k)+3 (6.26)

or equivalently

96



6. Design of Teleprogrammable Control Scheme

Xe(k+1) o o a3 X (k) By
Yo(bk+1) | =] 02 an an Yo(k) [+ | B2 (6.27)
Z.(k+1) a3 a3 033 Z.(k) 3

where X (k) is the position vector of the object. Using the present and past positions of the
moving object, its future position is estimated by computing the parameters of the matrices

« and 3 by minimizing the cost function J:

h'l
J=Y(X() —aX(@-1)-3) (6.28)

=1

In x-coordinate, the cost function is given by:

Jr = Z(z —auz(i — 1) = apy(i — 1) — apz(i — 1) = 81)° (6.29)

Differentiating with respect to ¢, yields:

fj ——2Z(z(z —onz(i—1) —opy(i-1) —anz(i-1)-8)  (6.30)
t =1

Equating to zero and rearranging terms, yields:

N N
Zz(z)z(z—l) —auzz(z Dz(i- l,+al;Zz(z-l)y(t-—l)+a|3Zx(:—l)z(z 1)+5 Zz(i—l)
=1 =l =1 i=l

(6.31)

The procedure is repeated for the rest of the parameters (i.e. a and 3) in J;, J, and J; to

obtain a total system of twelve linear equations as follows:
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fjrm (:—1)-anZz(z—1 y(t—n)+apZy(z-l)y(z—l)muZy(:—n (z—l)+612y(z—l
=1 =1 t=I
N i , 632
iz(z) (l—l)—a“Zz(z—-l) (i-D+an Yy = z—l)y(i—l)+algz:(i—l)::(i—l)+,3;Zz(i—l)
=1 =1 =] =1
(6.33)
iz(' ) = ay ir(z -D+an Zy(z -D+a; Z (i- 1)+ 5 (6.34)
=1 i=1 =l
A' N N N N
Y ylz(i-1) =en Y z(i-Dz(i-1)+an y_ (i-y(i-1)+an Y z(i-Dz(i-D+3; > z(i-1)
zzl i:l :zl z:rl izl (6.35)
gy(i)yu-l) =y ;z(i- Ly(i- 1)+an§y(i—l)y(i-l>+au ; y(i—l)z(i—t)wz;y(f— ()
(6.36)
Zy(l)z i-1) = ay Zz(z—l)z(z—l)-{-aggi (i-y(i-1) +agz ’(z—l)z(t—l)+8'»z‘.(z—l
=l =1 =1 (6 37)
Zy(l)—auz.r(l— 1)+amZy(z— 1)+anze(l- 1) + 65 (6.38)
=l
N N
> z(@)z(i=1) —auzz(z Dz(i=+an Y z(i-1)y(i- l)+033Zz(l—l)z(l—l)+532$(l )
i=1 =1 =1
(6.39)
iz(t)y(z—l)—a:uZz(z—l)y(l—l)+asﬂZy(t—l)y(t-l +asszy(z—1)2(z~l)+532y(t 1)
l;l i=! ;;-l i=1 l;’i (640)
Zz(t)z(z—l)—a;lZz(z-—l)z(z—[)+a3azz(z—l)y(z-—l)«}-anzz(z—[)z(t—l)+ﬁsz’(i-l)
=l i=! i=] (6.4[)
ﬁ:z(z —a;.Zr(z—l +a3-nz:y(z—l +a33z H(i-1)+ 55 (6.42)

=1 =1 =1

Therefore, these 12 equations (i.e. Equations 6.31 through 6.42) were used to solve for the
parameters as shown in Equation 6.15. Since, from the assumption, the motion of the object
is confined within XY plane, then all terms containing a z-coordinate vanish. Hence, the

dimension of the matrix M is reduced to 3 by 3.
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6.8 Derivation of Overall Transfer Function

The overall block diagram of the tracking control system is shown in Figure 6.3. Using
this diagram, the closed-loop transfer function can be obtained as follows (neglecting the

dynamics of the observer):
Ej(s) = X;(s) = Y*(s)
E*(s) = K [-TuX3(s) + X;(s) = Y™ (s)]

E*(s) =U~(s)

However;
Y(S) = GZOH(S)~Gplant(s)-U(5) 6.43)
Where;
Gzon(s) = ‘—‘:—: where T is the sampling period;

Goptant(s) = % (for each coordinate axis); and

Gobscrver(s) = s, ie. X‘_"(S) = [SY'(S)].

So; :
_(l—e=T) 1
Y(s) = ————=(3)-U"(s) (6.44)
Starring;
v(s) =[1-eT]" .U‘(s).(;lg)' (6.45)
Now.
Xa(s) = sY(s)
= 5[40 (4).U(5)]
= (L-eT).(4).U(5)
Starring;
X3(s) = [t —e=T]" .U'(s).(siz)‘ (6.46)
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Using the fact that U~(s) = E*(s). we get:

Y™ (s)

K |-TyX3(s) + X (s) =Y~ = - 6.47
[-TuXi(9) + XG0) - V()] = o ar (6.47)
Regrouping terms we get:
1
K |-TzX3 X; =Y K+ 6.48
[ d _(S) + p(S)] (S) [ [I _ e_,r]v (;[3_). ( )
Since X3 (s) is known (from Equation 6.46), substituting and rearranging it, gives:
. WAL _ —sTys
Y(s) _ KRG e (6.49)
X;(s) K[l —e T [5]" + 1 + KTyt — e~sT]*
Now in terms of z-transforms we get:
Z{(l —e‘“)'} = |-z'=
SCINEE
Z{[;‘sl'} = G
The pulse transfer function of the closed-loop system is thus given as follows:
- T z(z+1) (z=1
1’ (Z) —_ K 2(:-;.; .L_Z—l (6.50)
Xo(2) KR + 1+ KT Dy (22)
By reducing the expression we get:
Y K (z+1
(2) _ 2 (2t 1) (6.51)

Xo(2)  EE(z+1)+(z- 12+ TyKT(z- 1)

By factorization and regrouping terms we get:
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" -~ K_T:i >
() _ (2 +1) (6.52)

Y
Xp(2) 2+ z(KE + TLKT -2) + (1 + K& - T,KT)

F(z) = %((l}) is the closed-loop transfer function of the proportional feedback control sys-
tem. All the constants (i.e. K, T & T;) were selected accordingly ( see section 6.4) and
substituted into Equation 6.52 before the initial stability analysis was done using root-locus

method (see section 6.5).
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Chapter 7 Managing Telecommands using CDBs

7.1 Overview & Rationale of CDBs

Telecommand labels will be handled in real-time using Common Data Base (CDB)'
[CAELIB., 1995s] which is a section of shared memory to which all simulation modules
have access during run-time in real-time. The CDB concept is modelled after the Fortran
Common Block. It is defined by CDB declaration file that is processed into a set of binary
files which are used during run-time to access the telecommand data elements. The sim-
ulation models export their CDB labels by embedding data import/export statements. The
Visualization And Display (VAD) item and the simulator communicate with all of their in-
terface data elements through the simulation CDB interface. All data that is used to con-
trol the simulator must be exported through the CDB by the Human-Computer Interface
(HCI) pages. The list of HCI page variables is amongst the Telecommand Data Elements
Table. The CDB interface between the VAD and the simulator hardware allows the simu-
lation, video recording, playback and distribution equipment, as well as reading the hand
controllers and switch panels. The CDB VAD interface for MOTS system (see Chapter 8)
is as shown in Figure 7.1. The MOTS system will be used as a valid example of a telepro-
gramming system since the author is part of the team working on the project. The author
worked as a system CDB integration specialist in which he was fully responsible in formu-
lating and designing the CDB interface telecommand labels for all simulation models. The
MOTS Interface Control Document (ICD) was used as a key guidance to formulate most
telecommands and other relevant data elements needed for telemetry, etc. Furthermore, the
author was responsible for their organization and scheduling all telecommand data elements
in the simulation environment running SIMEX as discussed in Section 7.5. Finally, the au-

thor was responsible for the creation and processing of CDB source files known as CDB

'Refer to Appendix A for more details on CDB Utility.
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Figure 7.1: MOTS internal interfaces with CDB

bases (in total MOTS has 7 bases).

Source files containing all telecommands and their associated data are maintained, and
are referred to as the CDB data elements. When processed the CDB has many support files.
The Common Data Base Processor (CDBP) uses the CDB source file(s) to produce the block
data file(s), the label file(s), and the index file(s). The label file contains all the essential in-
formation contained in the Common Database source file, plus the relative position of data
items. The label file provides a detailed description for each data item, which can be re-
trieved using the Common Database access routines. The FORTRAN Pre-Compiler, the C
Pre-Compiler and Instructor’s Facilities programs make intensive use of these routines. Fol-

lowing any modification other than adding spare labels or telecommands using the Common
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Database Spare Utility (CDBS), the Common Database source file must be re-processed by
the CDBP. If the CDB is segmented and any of these segments has been recompiled by the
CDBP utility, one must use the XMerge utility to rebuild the integral CDB to reflect the
changes. Every FORTRAN/C program using the telecommand labels of the CDB source
file must be recompiled and replaced in the configuration. The Common Database is struc-

tured into bases of related data. Each CDB segment requires one data block or base.

7.2 CDB-based Software Interface Structure

The source data definition line format for each telecommand data element or label comprises

the following (including their respective column locations):

e Compulsory information:

1. Label Name [up to 32 characters] (COL: 1-32),

2. Data Type (COL.: 33-36),

3. Initialization and Alignment Boundary (COL: 33-36),
4. Default Initial Value and Dimension (COL: 38-51),

o Optional information:

Description (COL: 52-105),

Circuit breaker bus (COL: 92-97),
Interface Assignment (COL: 99-104),
Unit (COL: 106-113),

Display Format (COL: 114-118),

RAP (Record And Playback) (COL: 120),
Schematic or ID Number (COL: 122-128)

Nk W=

Each segment source file must be processed individually by CDBP to produce a set of
files that are used by the foreground software or the background utilities. The data files are
used to load the CDB into memory at simulator load time. When the user loads the simula-
tor, a CDB-LOAD routine will use the CDB description inside that file to load the data into
memory. The other files (except the log file) are used by some other CDB oriented utilities
(e.g. CDBS, CDBA, CDBCOM, Mini, XMerge, FPC and CPC) to extract information about
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SOFTWARE BLOCK DIAGRAM

Figure 7.2: CDB-based interface to simulation softwares

the CDB segment. Communication between different simulation utilities which need to ac-
cess real-time simulation data must be interfaced via CDB which is itself interfaced to the
simulator via a Data Management Controller (DMC). A software organization structure for

a general purpose flight simulator (such as MOTS) is as shown in Figure 7.2.

The software involved in MOTS simulation (as discussed in Chapter 8) is defined as a
set of sub-programs, data, input/output and utilities used to operate and maintain the simula-
tion. This includes both the operating system software and a written software that is specific
to MOTS simulation environment. Figure 7.2 shows the interaction of software and utilities
in the simulation environment. The software development environment was designed to aid
the user during the development life cycle of real-time software. It consists of several house

keeping tools, a screen editor, several CDB tools, a Pre-Compiler and Compiler (for both
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FORTRAN & C/C**), a run-time executive, a run-time library, a debugging tool. a config-
uration management tool and performance monitoring tool. These tools are designed pri-
marily to reduce engineering costs and provide the user with a flexible, attractive, state-of-
the-art software environment. They are closely integrated through the use of global common
database, logical names and file revision handling system. Most tools support the following
features: telecommand recall, line editing, online help and input re-direction. The software
is re-usable for a wide range of real-time applications and can be available on VMS/VME

and most UNIX computer systems.

7.3 CDB Management and Task Scheduling

A configuration is a set of vital resources (software, data, processors) that is currently used
to control the simulation. Each configuration is defined in a configuration data base binary
file used by the SIMEX-Plus utility. For each configuration a user can load alternate mod-
ules, protect files, monitor the configuration history and automatic building of simulation
load modules. The mother process (MOM) is the heart of simulation. It is the memory res-
ident high priority real-time process which is started up at boot time. It also has access to
operating system call routines. Its functions are to: monitor the simulation status and in-
form users via system messages; communicate with other background tasks; execute op-
eration commands for SIMEX such as: LOAD, FREEZE, RUN, etc. Moreover, there will
be auxiliary mother processes (i.e. MOMn) for each simulator CPUn which reports to the
Host Computer Mother task (CPUO). The relationship between users and the Mother Pro-
cess is as shown in Figure 7.3 using a Data Management Controller (DMC) with Digital
Force Control (DFC) algorithms. All simulation communication interfaces are through a

shared memory in the form of CDB data elements or labels.

The run-time environment consist of the Application Software, the Executive Software
and the Run-Time library. In order to meet real-time constraints required for real-time sim-
ulation, all simulation modules cannot be run at once. It then becomes necessary to pri-
oritise sub-programs so enough spare time will be left for background activities to take
place. Hence, it is mandatory to maintain a scheduler or dispatcher tables which priori-

tise the simulation modules forcing some modules to run at a lower apparent rate than oth-
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Figure 7.3: MOM communication hierarchy

ers. This technique provides enough spare time so that effective work can be completed
on the computer even if the simulator is running. The Executive Software consists of the
‘“main” program of each real-time process (i.e. the Dispatcher) and servers that process
incoming requests from the PerFormance monitoring Utility (i.e. PFU) or from the Com-
puterized Test System (i.e. CTS-PLUS) tool. The Dispatcher functions’ include to schedule

sub-systems and compute run-time statistics such as CPU spare time and over-runs.> The

2Qver-runs occur when there is insufficient CPU time to meet hard deadlines, i.e. the execution time of
the synchronous process exceeds the basic frame time.
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Dispatcher can be configured to meet “hard deadlines” (i.e. Synchronous Dispatcher) or
‘““soft deadlines” (i.e. Asynchronous Dispatcher). A real-time system will require several
sub-programs, some using the synchronous dispatcher and others using the asynchronous

dispatcher.

Some of the computer’s memory is loaded with executable instructions which are nec-
essary to maintain the simulation. When several simulation modules and other related files
are linked into one process, the process is known as a task. For purposes of the simulation
there are two types of tasks: synchronous & asynchronous which are foreground tasks. The
remaining time on any iteration is referred to as background (i.e. spare time). Foreground
tasks have priority over background tasks, but within the foreground, synchronous tasks
have a higher priority than asynchronous tasks. The CDB is organized in such a way that

the variables are separated in two groups:

o The restorable area. This contains variables that describe the state of the simulation.
Once restored, the simulation can be restarted from the point where the recording was

made using the snapshot.

e The non-restorable area. This contains variables that are used by non-simulation

modules, such as the RT Dispatcher, Snapshot and Data Gathering.

Communication through CDB aiso helps the interlocking mechanism between the operator
input and the simulation models. In either case, the same CDB variables are used as in-
put to the simulation module; the interlocking mechanism is transparent to the simulation
modules. The same data is shared through the CDB by all sub-modules, which are executed
at different rates within the synchronous and asynchronous dispatcher processes. The RT
Dispatcher is responsible for controlling the execution of all simulation modules using three

simulation processes; namely:

1. sp0:- main synchronous process:

e synchronously dispatched;
e solves the equations of motion;
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updates modal coordinates;

e computes generalized coordinates constraint forces, etc.;
¢ handles inputs; and

¢ handles transients.

2. ap0:- main asynchronous process:

¢ asynchronously dispatched;
e updates equations of motion; and
e initializes simulation.
3. apl:- low priority asynchronous process:

e asynchronously dispatched; and
¢ handles low priority functions such as I/O and snapshot.

The process sp0 is scheduled each basic iteration period of the simulation. Its critical
functions are performed within a super-band of sp0 at the integration rate. Other functions
are typically scheduled at the basic iteration rate or more slowly within a sub-band. This
process is not interruptible by other modules. The process ap0 is scheduled in order to per-
form functions at a regular rate of at least | Hz. The scheduling of ap0 is controlled by sp0
which allows a fixed number of iterations to elapse in between. The priority of ap0 is lower
than that of sp0 so that critical computations, which can be very time consuming, do not
prevent the simulation outputs from being delivered in real-time. The process ap1 is used
to perform low priority tasks such as snapshots. This process has the lowest priority and
its scheduling is not controlled by sp0. Due to the fact that RT-DS functions are performed
on separate processes, a buffering mechanism is required to ensure data integrity. Two sets
of buffers are utilized, one for transfers from sp0 to ap0 referred to as output buffers. The
second set used for transfers from ap0 to sp0 is referred to as input buffers. The proper syn-
chronization of data transfers between processes is necessary to avoid run to run variation.
This is achieved in RT-DS by swapping output buffers only before sp0 schedules ap0 and
swapping input buffers a fixed number of iterations later. If ap0 has not been completed

before input buffers are to be swapped, an overrun is recorded®.

3The overrun counter must always be zero to ensure simulation repeatability.
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Figure 7.4: Synchronous banding scheme

7.4 Process Banding Scheme

The purpose of processes or tasks banding scheme is to pre-define the order and rate of ex-
ecution for all available sub-programs in the simulation environment. Each task is subdi-
vided into units known as bands where modules can be placed according to their average
execution times. The proper placement of modules into appropriate bands is the key to pro-
viding the contractual amount of spare time. There are four levels of bands which start off
at a base rate as described by the logicals “‘system-frame’ and “system-asched” for the
synchronous and asynchronous tasks respectively. When the simulator is running and the

tasks are called upon, each task will start at its base rate and pick up a band from each level
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e

----- Critical Band

,
crit_table:

leg 1_1 ; DESCRIPTION OF CRITICAL BAND
end_crittable:

e==== Non-Critical Bands

.. W Wy

sync_table:

leg 2_1 3_1 4_1 S_1; LEG COMPOSITION
leg 2_2 3_2 4_2 5_2
leg 2_1 3_3 4_3 5_3
leg 2_2 3_4 4_4 5_4
leg 2_1 3_14_5 5_5
leg 2_2 3_2 4_6 5_6
leg 2_1 3_3 4_7 5_7
leg 2.2 3_4 4_8 5_8
leg 2_1 3_14_1 5_9
leg 2.2 3_2 4_2 5_10
leg 2_1 3_3 4_3 S_11
leg 2_2 3_4 4_4 5_12
leg 2_1 3_1 4_5 5_13
leg 2_2 3_2 ¢4_6 S5_14
leg 2_1 3_3 ¢_7 S_15
leg 2_2 3_4 4_8 5_16

end_synctable:
Iaclusion of simulacion modules into a band.

band2 1:
“PROG" STATEMENT USED TO INCLUDE SIMULATION MODULES
ENTRY POINT NAME OF SIMULATION MODULE
“FREEZE/UNFREEZE” FLAG
|

ae v wp W

Avionics EIS, rMS, CAWS mapping
Avionics GPWS bus mapping

ECS Instrumantation

Turbulence coefficient

prog avala.u
prog awvalg.u
prog dind.f£
prog veturcof.f

YR TIR YR

Figure 7.5: Sample synchronous program table

below it whose composition will be unique on each iteration. These unique compositions
are called “legs”. It is important that the execution time of each leg is roughly the same

within a task for balancing reasons.

The number of legs a task has will determine how many iterations are necessary to com-
plete a “cycle”.* Figure 7.4 shows a sample of a synchronous banding scheme. Each band
name is comprised of a level number and a placement number. For example, the band-name
$3-2” is a third level band in second place. Note that the logical “system-frame” is set at

60 Hz (i.e. 16.67ms). A sample format of a synchronous program Table is shown in Figure

*A cycle is the minimum amount of iterations required to execute all modules within a task.
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Figure 7.6: Asynchronous banding scheme

7.5. Similarly, Figure 7.6 and 7.7 show a sampie of an asynchronous banding scheme and
a corresponding program Table. In this case, the logical “system-asched” is set at 50 Hz
(i.e. 50ms). Also note that at each iteration, the dispatcher traverses one leg of the tree from
root to leaf, thus calling the modules in the visited nodes. During one complete cycle, all 16
legs are traversed in the indicated priorities (i.e. leg #1 will be computed first and leg #16
last). The user can modify the scheduler/dispatcher tables if a simulation module requires

moving from one band to another to achieve balance and/or possibly more spare time.
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I Critical Band

crit_table:
end_crittable:

’

;P mm—— Non Critical Bands

sync_table:

leg 1.1 2 13141

leg 1.1 2.2 3 242

leg 1.1 2.1 3.3 4_3

leg 1_1 2.2 3_4 &_¢

leg 1_1 2_1 3_1 4_5

leg 1.1 2.2 3.2 4_6

leg 1.1 2.1 3.3 4_7

leg 1_1 2_2 3_4 4_8
end_synctable:
;"'."."Q'.".'..Q...""'.'.""".0".
: User update section o
"..ﬁ.'..""'."'.'..""."."'0.'..'."'

bandl_1:
aprog call_local_copy.u
aprog xsca.u

aprog gdmn.f ! W/X: Landmass i/o
aprog glod.¢ ! W/X: Landmass i/o
aprog host_ovp.u ! I08: ovp

band2_1:
aprog tcmnia.u I I08 : cnia
aprog x9da.:x I I0S: digital voice
aprog x9play.f ! IOS: digital voice

Figure 7.7: Sample asynchronous program table

7.5 CDB Simulation Expert Utility

SIMex-Plus’ is the primary utility used for the development, maintenance and operation of
a CDB-based simulation software such as MOTS (as discussed in Chapter 8). It provides a
controlled environment for the software life-cycle of the simulator. SIMex-Plus is respon-
sible not just for storing the simulation software, but for maintaining a history of the evo-
lution of the projects development and use, letting users know when and why steps were
taken, and allowing them to return to previous steps. It is also responsible for the security

and integration of the simulation, providing an environment in which users can follow a set

SSIMEX is an acronym for SIMulation EXpert.
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of basic rules that will result in no loss of files of significance and no confusion about which
files must operate together to create a configuration. It will protect and group files not only
for organizational reasons, but to reduce the chance of accidental or malicious corruption

or loss. Thus, the responsibilities of SIMex-Plus can be grouped into three categories:

o Configuration Control (i.e. configuration file management);
e Software Construction (i.e. BUILDING elements); and
e Simulation Operation (i.e. LOAD, UNLOAD, RUN, SUSPEND, FREEZE).

SIMex-Plus is a general purpose simulation manager and operator. The ability to use it
on a wide variety of CDB-based simulators and on different computer systems with minimal
alteration is highly desirable. To meet this objective, SIMex-Plus was designed to be trans-
portable between projects and computer systems with no actual changes to the code. Func-
tionality specific to the operation of the computer, such as File I/O, has been extracted into a
separate general software package. Project specific information such as which compilers to
use for building or the order of loading executable files has been extracted into a set of data
files to be read by SIMex-Plus, and is known collectively as the Specific Support Environ-
ment (SSE). The remainder is the set of functions standard to all applications of SIMex-Plus,
such as all of the user telecommands and the user interface, and is contained in the code of
the General Management Program. Some of the advanced features of SIMex-Plus include:
file reservation, smart invalidation, parallel build, source file versioning, external build &
load, semaphore (purge, operation & configuration), etc. Finally, with SIMex-Plus, one can
easily perform numerous procedures for software maintenance such as add a new simula-
tion module; modify an existing simulation module; delete a simulation module; reschedule

a simulation module; change an initial CDB value; add a new CDB label; and CDB updates.

7.6 CDB-based Simulation Performance & Test Utilities

The Program Performance Utility (PFU) provides an accurate set of execution times of real-
time programs. It allows the user to do individual time measurements for specific sub-
programs or group of sub-programs during a pre-selected number of iterations. A summary

containing timing information on all sub-programs can also be requested. Sub-programs
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Figure 7.8: CTS linkage to processes and CDBs

can be linked or unlinked from the real-time process and moved from one execution band
to another. Timings are available in the following forms: band timing; iteraiion timing; sub-
program timing; & summary table. Band, leg and module sampling/monitoring displayed
in tabular form with minimum, average and maximum time statistics. The total CPU time

used, based on the basic iteration time, is also given in the summary sheet.

The Computerized Test System (CTS) is a powerful tool used to debug and test real-time
software. It is designed to assist in development, debugging and validation of the simula-
tor programs. It supports both interactive and telecommand file modes. CTS-Plus provides

control over program execution, gives access to variables, and automates the test process.
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It also records real-time data and produces tabular or graphic outputs. CTS-Plus can exam-
ine or modify, in real-time, local and global CDB variables interactively (using EXAMINE
& DEPOSIT commands) or continuously (using MONITOR command). The variable val-
ues can be collected in memory (using COLLECT command) or continually updated (using
DRIVE command). These values can be plotted on screen or paper (using PLOT & GRAPH

commands) and/or saved on disk for future use (using PUT command).

The purpose of the CTS-Plus utility is to link the user’s modules with an independent
CDB and a CTS server. Independent CDB refers to an area of memory which is similar to
the real CDB but which is not permanently mounted, it is part of the executable. The CTS
server is also a module, but it has the ability to communicate between the user’s CTS-Plus
session and the user’s modules or the independent CDB. Hence, it allows the user to work
on one or several modules in a stand-alone mode, independently from the simulation. This
means that while simulation is running, you can run your modules, have them communicate
together with your own CDB, and have access to all the CTS-Plus features. The structural
organization of the CTS-Plus is as shown in Figure 7.8. Note that a “fake”’ file is maintained
that will allow the simulator to run even though modules are not linked into the executables
where they have been defined. A source file named “fake-entry” is maintained containing

the entry point names of all modules in the tasks used by the simulator.

7.7 Distributed Interactive Simulation Module

The Distributed Interactive Simulation (DIS) module is an additional tool or utility for CDB-
based real-time simulations. DIS module is meant for interfacing and interacting with other
simulation applications across a network. The exchange of information across the network
is performed by sending and receiving Protocol Data Units (PDUs). The interface with the
network is performed by two external PDU Manager processes, i.e. PM-WRITE and PM-
READ, which are launched by the dis-main object. The PM-WRITE process initializes the
outgoing ethernet connection and writes PDUs directly to the network. It receives these
PDUs from objects in the DIS module via a queue in shared memory. The DIS objects write
to this queue, from which the data is read by PM-WRITE to be sent to the network. The PM-

READ process initializes the incoming ethernet connection and reads PDUs directly from
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Figure 7.9: An overview of DIS modules

the network. It receives these PDUs to a queue in shared memory, from which they are read

by the dis-main object and distributed to other modules.

DIS modules may be subdivided into three main categories according to their scope and
function. Modules which may only have a single instance, such as dis-main, are called
Executive-Level DIS Modules. They communicate information that is not particular to a
single entity in the simulation or which control or communicate the status of the DIS pro-
cesses. Modules which are associated with a particular simulation entity (whether the entity

is simulated locally or in another simulation) may have multiple instances and are called
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Entity-Level DIS Modules. They communicate particular information regarding the entity
with which they are associated. The remaining modules are DIS Data Type Conversion,
which serve to convert between the raw data contained in the simulation, and the specific
data formats required for some DIS PDUs. The interface between the DIS external pro-
cesses, the DIS modules executing in SIMex-Plus simulation processes, and the network is

shown in Figure 7.9.

The external process is launched by the dis-main module during initialization. It moni-
tors the status of the simulation and of the DIS module in order to inform other simulation
applications of changes in the status which cannot be detected from within SIMex. The SM-
MONITOR process is responsible for sending all Stop/Freeze and Start/Resume PDUs, ac-
cording to the status of the simulation (i.e. frozen, unfrozen, or suspended), and the status of
the DIS modules (i.e. initialization or run mode). When DIS modules are re-initialized, the
SM-MONITOR process notifies other simulation applications, so that they may re-initialize
any data required to ensure proper communication after the DIS modules resume normal op-
eration. Moreover, when the simulation is terminated, the SM-MONITOR process handles
all the required cleaning up, including removal of the PDU Manager modules, PM-WRITE,
PM-READ, and removal of the shared memory segment used for communication between

DIS modules and the rest of SIM modules.
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Chapter 8 Telecommand CDB Labels for MOTS

8.1 Introduction on MOTS

The MSS Operations and Training Simulator (MOTS)!, being developed by CAE Electron-
ics for the Canadian Space Agency (CSA), will be used to develop procedures for operat-
ing the Mobile Servicing System (MSS), and to train astronauts, mission controllers and
instructors. Among the many activities to be performed by astronauts, the two most impor-
tant will be payload handling and spacecraft berthing/de-berthing. The training curriculum
will provide astronauts with all the necessary skills to operate the MSS. MOTS simulates, in
real-time, the end-to-end MSS Space Segment, replicating its full functionalities, especially
that of the Human-Machine Interface (HMI). Operator telecommands are input from control
consoles that faithfully emulate the flight article. These telecommands are processed by the
arm, joint and end-effector control system models to generate the appropriate control ac-
tions. The dynamics simulation model then determines the actual position and orientation
of the arm and the end-effector. MOTS also provides the operator with a high fidelity sim-

ulation of the camera views and on-orbit lighting conditions.

MOTS software is twofold: first simulation models and second tools to support execu-
tion and configuration management of the simulation models. MOTS simulation configu-
ration & load control uses SIMex-Plus [CAELIB., 1995s] capabilities (e.g. CTS & PFU
utilities for MOTS Specific Support Environment (SSE))?. Primary methods for interfacing
with the simulation include hand controllers, D & C panel and Human Computer Interface
(HCI) pages via CDB servicing routines as depicted in Figure 8.1. MOTS training scenar-
ios will use virtual reality, 3-D audio, 3-D imaging, artificial proprioceptive feedback and

expert systems to meet MSS training requirements. The simulation management user in-

'Refer to Appendix C for list of acronyms and their description.
2CAELIB Utilities are summarized in Chapter 7 while CAE Space Engineering Workbench is outlined in
Appendix A.
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Figure 8.1: MOTS intemal interfaces

terface is as summarized in Figure 8.2. Hence, in summary, MOTS facility is a real-time

simulation environment of varying degrees of fidelity, along with an aggregate of software

tools intended for the support of MSS space operations and training of crew and ground

controllers. Main technical design decisions include:

e Follow an equipment-like breakdown as much as possible and use equipment Inter-
face Control Documents to define interfaces between equipment simulation models;

o Use stub models for the equipment that is not fully simulated but which is necessary

to close the loop along with re-using MDSF models;

¢ Malfunctions® performed directly at source equipment level, thus ensuring cascading
effects; and

e Simulate hardware power-on, software down-loads and power-on self-tests (POST)

simulated with programmable time delays.

manner.

-4 3Malfunction simulation is a simulated condition where an object or system fails to function in a normal
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Figure 8.2: MOTS user interfaces

8.2 MOTS Hardware and Data-flow

The MSS is Canada’s contribution to the International Space Station Alpha (ISSA). The
MSS is a multi-purpose, versatile complex equipped with manipulators, advanced control
systems and “human in the loop” capability. It will support construction, operation and
maintenance aspects of the Space Station and its attached payloads, and will be the primary
tool used by astronauts to support Extra Vehicular Activity (EVA) on the Space Station. The
MSS is comprised of two robotic manipulator systems, a base system, a mobile transporter,
and two robotic and command workstations as shown in Figure 8.3. The first of the two

MSS manipulators is the Space Station Remote Manipulator System (SSRMS) which is a
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Figure 8.3: Mobile Servicing System (MSS)

self-relocatable, 16.8-m manipulator arm with seven degrees of freedom. The SSRMS will
be used for large scale manipulation of payloads; e.g. installation of pressurized modules
and truss elements for ISSA assembly. It will also be used to position EVA crew at work-
sites for [SSA maintenance. The SSRMS is symmetric relative to its elbow joint; this allows
it to be attached and operated from either end, by means of its Latching End Effector (LEE)
for grapple fixtures and payloads attachments. The second MSS manipulator is the Special
Purpose Dexterous Manipulator (SPDM), which is shown attached to the tip of the SSRMS
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in Figure 8.3, is a smaller, dexterous robotic system consisting of an articulated body and a
pair of 2 meter long arms, each having seven degrees of freedom. The SPDM will be used
for small and precise movements, in general tasks similar to those performed by a space
suited extravehicular astronaut. The next MSS component is the Mobile Remote Servicer
(MRS) Base System (MBS) which serves as an attachment structure and stable work-base
for the SSRMS and SPDM. It will also be used as a temporary attachment point for [SSA
payloads and elements. In turn, the MBS is attached to the Mobile Transporter (MT) which
is used to move payloads and robotic equipment to strategically located positions along the

truss of the ISSA, thus providing mobility to reach various maintenance sites.

Decomposition of a teleprogramming system is crucial for its controllability and observ-
ability in real-time. For a teleprogramming system, the allocation of requirements from
a Computer Software Configuration Item (CSCI) to its Computer Software Components
(CSCs) and Computer Software Units (CSUs) is necessary. Thus, MOTS hardware device
interface to CSCI is as shown in Figure 8.4. It has to be noted that MOTS software is divided
into three CSCls:

1. SIM CSCI: responsible for simulating the MSS equipment and environment,

o

. VAD CSCI: responsible for all MOTS visualization functions and user interfaces; and

(8]

. 888 CSCI: which essentially consists of the tools and utilities required to build and
run simulations.

MOTS equipment-like breakdown into CSCs is essential where each CSC can be broken
down to smaller CSCs which are finally broken down into CSUs. In total, there are about
150 MOTS CSUs from 19 CSCs as summarized in Table 8.1. The CSC data-flow overview
is shown in Figure 8.5. Table 8.2 shows a sample CSUs breakdown for the CSC SSRMS

LEE along with their descriptions and execution rates.

The control of all the MSS activities originates from the Robotic Work Station (RWS)
which will provide robotic system telecommand and control to on-orbit crew-members, and
will enable the MSS to interface with the ISSA. It will be used to monitor robotic system

performance and operations. The RWS contains four types of input/output devices which
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Figure 8.4: MOTS CSCl interfaces overview

enable the control of the various MSS equipment, namely: three video monitors with split-
screens, two 3-D hand controllers (translational/rotational), a display and control (D&C)
panel to allow the operator to enter telecommands using switches or dials, and a Portable
Control Station (PCS) that provides interface with the MSS via HCI pages. The PCS is
physically a part of the RWS but is connected to the Space Station, which in turn processes
the HCI pages inputs and sends the telecommands to the MSS via the RWS. MOTS pro-
vides an end-to-end simulation environment in real-time of the MSS and the Space Station
components that interface with it, coupled with monitoring and control functions to allow

effective training of crew and ground controllers in the operation of the MSS. MOTS archi-
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Figure 8.5: CSC data-flow for the SIM CSCI

tecture provides the necessary hardware and software elements to re-create the MSS opera-
tional environment through simulation, for the primary purposes of training and procedures

development [Cyril et al., 1992].

8.3 CDB Interface to MOTS Components: HCI pages

The main hardware components of the MOTS are a simulation host computer, an Instruc-
tor Station (IS), an Operator Station (OS), a Crew Station (CS), two Software Development
Workstations (SDW), and a video distribution and recording system as shown in Figure 8.6.

The IS is designed to provide the capability for instructors to monitor and control all aspects
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CSC Name CSS Description Total CSUs
SSRMS ACU SSRMS Arm Control Unit 16
SSRMS LEE SSRMS Latching End Effector 19
SSRMS Joint SSRMS Joints’ Unit 8
SSRMS Video SSRMS Video Unit 13
SSRMS Power Distribution | Power Unit for SSRMS 2
SSRMS Thermal Thermal Unit for SSRMS 7
MBS MCU MBS Control Unit 6
MBS POA MBS Payload/ORU Unit 16
MBS PDGF MBS Power Data Unit 1
MBS Video MBS Video Unit 2
MBS Power Distribution MBS Power Unit 5
MBS Thermal MBS Thermal Unit 2
RWS Robotics Work Station 1
Payload/ORU Payload/ORU Unit 1
SS and C&C Video Control | Space Station Control Unit S
SS C&C SSRMS Control | Space Station SSRMS Control Unit |
SS Time Space Station Time Unit |
SS Power Distribution Space Station Power Unit 1
Telemetry Telemetry Unit 10
Dynamics Dynamics Unit 23

Table 8.1: MOTS SIM to CSC decomposition

of training sessions on the simulator and to insert malfunctions. A 3-D translational and a
3-D rotational hand-controllers will be provided to control the manipulator. The IS will se-
lect one of the MOTS stations to be the simulation session control authority; i.e., only one
station can control the MOTS simulation at any time. The IS will provide the instructor the
ability to view any arbitrary viewpoint (God's eyes view) of the simulated MSS in addition
to the camera views. Also, the instructor will be able to control the manipulator and the MSS
simulation via the HCI pages which contain malfunctions, data monitoring, volatile update,
scripting, sound, etc. (all shown in Figure 8.7). All HCI pages are interfaced to the MOTS
X-Runner and Library via CDB. The CS provides the crew with simulated camera views
of the MSS on the video monitors and MSS on-orbit HCI pages on the workstation. Con-
trol inputs are provided via the workstation’s keyboard and track-ball, and two 3-D hand-

controllers (translational/rotational). The CS will also be equipped with a D&C panel which
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CSU Name CSU Description Rate (Hz)
LEE-EXEC-1 - Calls all LEE modules with an execu- | 2000
tion rate of 2000 Hz
LEE-EXEC-2 Calls all LEE modules with an execu- 20
tion rate of 20 Hz
LEE-COMPUTE-STATE Computes LEU current state 20
LEE-VALIDATE-LEEMMM-CMDS | Validates all LEEMM telecommands 20
that have passed ACU validation
LEE-CMD-PRECONDITIONS Checks the preconditions of the 20
LEEMM telecommands
LEE-EXEC-STATUS Determines the execution status of 20
LEEMM telecommands
LEE-SET-MOTOR-DRIVE Decomposes auto telecommands into 20
sequence of manual telecommands
LEE-CONTROL-MODE Determines the appropriate control 20
mode of LEEMM telecommand
LEE-EXECUTE-LEEMM-CMDS Computes position telecommands in 125
incremental, step or combined mode
LEE-MOTOR-POS-AND-RATE Computes position and rate of motor 125
LEE-SERVO-CONTROLLER Executes position, rate and current 2000
loops of LEE servo controller
LEE-HARDWARE Simulates the LEE hardware 2000
LEE-STATUS-SWITCHES Computes LEE devices’ switches 125
status
LEE-LOAD-CELL Computes LEE rigidize load cell force 125
LEE-PROCESS-TELEMETRY Computes LEE telemetry 20
LEE-DATA-LOGGING Performs high speed data logging and 125
logged data upload
LEE-MALFUNC-APPLICABILITY | Determines the applicability of all 20
LEE malfunctions
LEE-FMS Computes sensor force and moment 1000
LEE-POWER Computes LEE components power 20

Table 8.2: CSC SSRMS LEE to CSU decomposition

will send telecommands to the MSS simulation via switches and push buttons.

The OS provides a capability for operations personnel to do MSS procedures develop-

ment, operations analysis and HCI pages prototyping. OS will provide control of the simu-

lation session, as well as monitoring of the simulator status. OS will also be equipped with

hand-controllers to manually control the manipulator. The SDWs provide a comprehensive
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Figure 8.6: MOTS hardware design

software tool-set required to develop, configure and run simulation models. They permit
the developer to build and run complete simulations, including models and HCI configura-
tions. MOTS video distribution system is responsible for the distribution of simulated cam-

era views to the video monitors available in the MOTS stations. MOTS record and playback
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system, controlled by the HCI pages hierarchy, can record up to four channels of video and
audio simultaneously. The tapes can be later replayed, either in real-time, slow motion or
frame by frame. Finally, the CS for the MOTS is provided in two phases. In the first phase, a
Class Il replica of the MSS RWS, referred to as C2CS, is provided. Simulated camera views
are presented on NTSC monitors and MSS display pages are presented on the work station.
In the second phase, a Class [ replica of the RWS, referred to as the Class I Crew Station
(C1CS), is integrated into the MOTS. CS provides the capability for training crew, validat-
ing on-orbit procedures (with a person in the loop), and prototyping new HCI displays for

the MSS.

8.4 CDB Telecommand Data for MOTS Simulation Models

MOTS will provide a simulation of the nominal and malfunction behaviour of the MSS in
real-time via CDB interface. Malfunctions can be inserted by the instructor via the simula-
tion control HCI pages, and processed directly by the appropriate simulation model. The dy-
namics model has the capability to simulate a multi-body system with a chain, tree or closed
loop topology [Carr and others, 1990]. The software residing in the RWS, namely the Con-
trol Electronics Unit (CEU), will provide an interface between the HCI pages, D&C panel
and hand-controller inputs and the simulated MSS elements. It forwards telecommands to
the SSRMS and MBS, and receives telemetry data and status information back. The Arm
Computer Unit (ACU) represents the central processing unit of the SSRMS. Residing in
the ACU is the SSRMS arm control simulation code. It receives arm telecommands from
the RWS, validates them, and operates the arm in the selected mode of operation (manual
or automatic). Based on the arm commanded status, low level telecommands are issued to
control SSRMS joint servos. The ACU also processes Latching End Effector (LEE) and
video-based telecommands and forwards them to the appropriate SSRMS equipment mod-
els. The ACU model also computes the power consumed by the heaters and the electronics
and the heat generated by the ACU hardware. The SSRMS Joint receives low level posi-
tion and velocity telecommands from the ACU and computes the drive signals for the joint
motors. The control model computes the power consumed by the joint electronics, motors,

brakes and heaters. The heat generated by the joint hardware is computed as well.
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Figure 8.7: MOTS HCI pages

The SSRMS LEE receives telecommands to capture and release payloads, from the
ACU. It then performs validation checks based on the status of the LEE hardware and is-
sues position-based telecommands to the LEE servo controller model, which in turn sends

the appropriate signals to the simulated LEE motors and drive trains in order to drive the
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LEE snare, rigidization, and latch mechanisms. The LEE software will execute LEE-related
telecommands in both manual and automatic modes of operation. The LEE model also
computes the power consumed and the heat generated by the LEE electronics, heaters, mo-
tor modules and video equipment. The MBS Computer Unit (MCU) is equivalent to the
ACU model on the SSRMS. It processes CRPCM, video and Payload ORU Accommoda-
tion (POA) telecommands from the RWS and forwards them to the appropriate equipment
model. It also computes the power consumed and heat generated by electronics and heaters.
The Video model is common to both the SSRMS and MBS. It receives telecommands from
the ACU or MCU respectively, to control the Video Distribution Units (VDUs), lights and
cameras. It also computes the power consumed and heat generated by the video equip-
ment, as well as turning on and off video equipment heaters for temperature control. The
MBS POA has the same functionality as the SSRMS LEE with the exception that it receives
telecommand from the MCU. The MBS CRPCM is responsible for switching and distribut-
ing power to output loads from a common input power feed connected to the MT/MBS in-
terface. It also processes telecommands from the MCU and sends back requested data and
health status. All these telecommands data are initialized, stored and updated in real-time

in the CDB common shared memory using HCI pages interface.

The operator interacts with the HCI pages using a keyboard and track-ball and is able
to issue telecommands to the simulated MSS elements, modify input parameters and mon-
itor output parameters. The actual content and layout of the displays is reconfigurable by
the instructor or operator before the start of a simulation session. A sample list of CDB
telecommands data is given in Table 8.3. In total, MOTS will have over 10,000 telecom-
mands & telemetry data stored in CDB shared memory to be accessible in real-time by any

simulation module.

8.5 MOTS Critical Design Issues & Intended Training Usage

MOTS must provide a faithful simulation of the MSS in order to effectively train astronauts.
This is achieved by using simulation models (dynamics and control system) that have al-
ready been validated. Also, MOTS will run in a robust real-time environment, developed at

CAE, which has proven to provide deterministic and consistent simulation results (see Ap-
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Telecommand data | Type Description
tc-hc-por-x-rate integer | Linear deflection of the H/C along X-axis
tc-hc-por-y-rate integer | Linear defiection of the H/C along Y-axis
tc-hc-por-z-rate integer | Linear deflection of the H/C along Z-axis
tc-hc-por-roll-rate integer | Angular deflection of the H/C along roll-axis
tc-hc-por-pitch-rate integer | Angular deflection of the H/C along pitch-axis
tc-hc-por-yaw-rate integer | Angular defiection of the H/C along yaw-axis
tc-confirm-autoseq logical | Telecommand to confirm autosequence
tc-desel-line-tracking logical | Telecommand to deselect line motion
te-limp logical | Telecommand to select joint limp
tc-sel-por-ori-offset real | POR angular target commanded offset
tc-set-fma-limits-force real | Maximum FMA limits for forces
tc-set-fma-limits-moment | real | Maximum FMA limits for moments
tc-checkout-lee logical | Telecommand to exercise LEE mechanisms
tc-close-snares logical | Telecommand to manually close LEE snares
tc-power-on-camera logical | Telecommand to power-on cameras
tc-power-on-camera-id integer | Camera ID to be powered-on
tc-power-off-vdu logical | Telecommand to power-off video units
tc-power-off-vdu-id integer | Video unit ID to be powered-off
tc-mbs-terminate-diag logical | To stop diagnostics for MBS
tc-sync-pan-stop logical | Pan stop telecommand flag for cameras
tc-sync-tilt-down logical | Tilt down telecommand flag for cameras

Table 8.3: Sample list of MOTS CDB telecommands data

pendix A). Another issue arises from the fact that a computer simulation runs much faster
than a real system. Hence, time delays have to be incorporated in the design in order to sim-
ulate latencies of the real system. Time delays will be incorporated in the design of control
system models and all models that simulate the MSS equipment (powering-up, state tran-
sitions, etc.). Most of the robotic tasks, such as assembly and maintenance, on the Space
Station will be carried out with only camera views. This puts a requirement on the simula-
tor to provide imagery with a very high resolution and detailed representations of the sim-
ulated objects. MOTS visualization models are designed with the purpose of providing the
users with very high quality camera views of the simulated MSS elements. CSA is respon-
sible for skills, knowledge, and attitude training for MSS operations and maintenance. This
training will be conducted in Canada, within the Canadian MSS Training Facility (CMTF).

The CMTF comprises computer-based training (CBT) systems, multimedia learning cen-

132



8. Telecommand CDB Labels for MOTS

tre, and training aids, such as models, mock-ups, and cut-aways. CMTF will also interface
with other MSS Operations Complex (MOC) facilities, such as the MOTS and the Space
Operations Support Centre (SOSC) in order to meet CSA's MSS training responsibilities.
MOTS will be used for familiarization training, MSS-specific comprehensive skills train-
ing, integrated EVA crew training, and on-board training. This training will be provided in
distinct learning modules to allow customization based on the previous experience of each
trainee. MSS trainees will typically be self-motivated and self-directed, with varying back-
grounds and experience. Training will be provided using demonstration, prepared training
scripts, and discovery methods (e.g. free play). These self-administered, self-paced training
methods will require automated feedback to trainees in real-time, in the form of comments,

graphs, training cues, etc.

For group learning, simulation could be run from the CMTF multimedia learning centre
for training sessions which involve group discussion and problem solving. Training sce-
narios will use virtual reality, 3-D audio, 3-D imaging, and expert systems to meet MSS
training requirements. Training on MOTS will range from simple to complex scenarios
(e.g. trainees will control the MSS, first in a single plane, then progress to two and finally
three planes, under kinematic and/or dynamic simulations). Static displays of MSS compo-
nents will be provided as well. The IS will provide all the tools required by the instructor
for concurrent monitoring, interaction with and intervention in trainees’ learning. Instruc-
tor actions are based on principles of adult learning, rather than pedagogy, and consist of:
advising; monitoring; mentoring,; and being a subject-matter expert. The instructor-trainee
relationship will be interactive, via over-the-shoulder video, audio, and computer interfaces.
The inputs to the workstation are numerous and may include video camera images, feedback
from trainee consoles, audio/video data, etc. The instructor will be able to control the infor-
mation provided to trainees, and can replicate trainee actions. For example, the instructor
could reposition the SSRMS to a previous location and the trainee could observe the instruc-
tor perform the same task. The IS will also be used to author training scenarios. Instructors
will have the utilities necessary for the off-line preparation of training scenarios using pre-
stored libraries of simulation objects, e.g. Space Station configurations, set ups, and pay-

load configurations. Authoring will require minimal programming knowledge on the part
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of instructors, and will include on-line help and run-time debugging capabilities. Applica-
ble MOTS data files will be exchanged with CMTF systems for the purpose of course-ware

development.

For all CSUs that are called by the Synchronous Scheduler (as discussed in Chapter 7),
there can be no external error messaging. In general, synchronous CSUs must have work-
arounds for all situations which can result in error. There are two design guidelines to be
followed during CSUs design to prevent run-time errors from crashing the simulation: (a)
there should be no assumption on the range of values of a CSU input. Values that would cre-
ate an arithmetic fault should be replaced by an acceptable value, or the computation should
be bypassed; and (b) vector and matrix indexing should be verified to prevent writing into
an illegal area of the CDB shared memory. Asynchronous CSUs can detect errors returned
by the IRIX Operating System (OS), issued by function call return statuses and local errors.
When CSUs catch relevant signals returned by the OS, appropriate signal handlers are called
for error recovery. Irrelevant signals will be processed by default signal handlers. When
CSUs detect status errors from function calls, messages are returned to stdout and, where
possible error recovery is engaged. Although for the majority of cases exithn() is called.
CSUs local errors typically have error recovery mechanisms. For example, if a CSU can-

not translate a system logical name, a message is returned and a default one is used.
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Chapter 9 Experimental and Analytical Results

9.1 Introduction

Although much more work remains to be done in refining the CDB-based teleprogramming
system, analytical and experimental results have decisively confirmed the validity and ef-
fectiveness of the teleprogramming methodology. Remote site autonomy at the level of nt
= 100 seconds is realistically formulated as it reduces the delay by 99% during delayed-
teleoperated tasks. Thus, verifying the feasibility of near-optimal teleoperated control sys-
tem. In more challenging applications, the degree of attainable remote site autonomy will
dictate the overall efficiency. A double-buffering execution management scheme ensures
that the lag time 7 between a remote and virtual workcell remains constant throughout the
execution of a task. Contributing to the importance of this issue is the negative psycholog-
ical effect of the increasing lag time on the operator, who naturally expects the lag to be
constant even though it delays the first telecommand. This can manifest itself in the frustra-
tion on the part of the operator if the setback in the progression of the task, when an error is
detected at the remote site, is significantly larger, or even unpredictably different, than ex-
pected. Experimental results of a teleprogrammable virtual tracking system while assessing
the controllability and observability of the control system are provided. A typical simula-
tion experimental run for teleoperator interface and training is also outlined for a CDB-based

MOTS system. Through-out this research, critical issues being observed were:

1. the generation, parsing, translation and execution of telecommands in real-time;

2. the convenience and naturalness of the operator’s interaction with the virtual simula-
tor mimicking a remote workcell;

3. the correctness and adequacy of on-line extracted symbolic instructions or telecom-
mands describing the operator’s actions while using interface devices as sensors;

4. the stability and reliability of remote site execution management;
5. feasibility and effectiveness of on-line error recovery; and

6. overall efficiency while performing remote tasks.
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Figure 9.1: Double-buffering execution scheme

9.2 Analytical Validation of a Teleprogramming Paradigm

As noted from Chapter 3, it was found that by following the standard sequential dequeue-
parse-execute management scheme, care must be taken to control the lag time 7; at time
eT; (i.e. just before executing telecommand @ ; all symbols used are defined in Table 5.2)

which depends on the waiting time wt,.

rT; = (eTioy + tic1); ifrT; > (eTi—y + tiy)

wi; = 9.1)
0 otherwise
m=el,—gTi=ti+7+ Y (pt; + wt;) (9.2)
£ =
- Equation 9.2 implies that even if the sum of waiting times is bounded, in limit 7; can sig-
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nificantly grow to co. This indicates that the lag time not only increases as the task pro-
gresses, but is in fact unbounded. In order to solve this problem, a double-buffering execu-
tion scheme, as illustrated in Fig. 9.1 is proposed. In this scheme, each dequeued execution
environment is translated and placed into a command buffer. The remote controller main-
tains two such buffers (i.e. CmdBuf A and B). While one is being executed, the other is
being constructed by parsing and translating the next execution environment. The combi-
nation of this parallelism and an artificially introduced holding time ht,, which delays the
execution of the first telecommand by At,, can be used to control the lag. h¢; initially in-
creases the lag time, but keeps it constant and bounded from then on. In terms of the above

nomenclature, the necessary & sufficient condition to ensure non-increasing lag time 7, is:

Vi:rT; +pt; < el + iy 9.3)

A stricter version of the above condition can be stated as the following pair of requirements:

Vi:rT; < €T,y (9.4)

Viipti < tig (9.5)

Satisfaction of Equations 9.4 and 9.5 implies satisfaction of Equation 9.3. This requires
telecommand @ to have arrived at the remote site before the (i — 1)** execution environ-
ment begins executing and that @ be ready for execution (parsed and translated into the
back-up command buffer) before the (i ~ 1)* telecommand finishes executing. Practical
considerations allows to assume that the requirement of Equation 9.5 will be satisfied in all
situations. Now it remains to show that the condition of Equation 9.4 is guaranteed. The

following propositions establishes this result as illustrated in Fig. 9.2.

Proposition: Let ht| = (2¢,,,; — t;) and assume that V; : pt; < t;_,. Then:
Vi:rT; <eTiyand n < (2tmaz + 7)
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Proof: In the double buffering execution paradigm, the times ¢7T;, sT;, rT; and eT; are for-

mally defined as follows:
9Ti = Sz tiito=0
sTi=%5_t;=gTi+t;
=Y t+r=sTi+7
eT: =t + 7+ ht; + Zisi t;
Recalling that t; < ¢,,,z, Wwe have:
rT; = }:;=l ti+T1
=it Hti + i+ T
STt + 2mac + 7T
=it + 6+ Qlmaz — 1) + T

=Z;-_=zltj+t[+ht|+T

=el;_,
Moreover,
n = lim; o 7
= lim;_o(eT; — g73)
= lim;_o(t1 + 7 + hty)
=2tmaz + T
a

This completes the proof that the double-buffering execution scheme keeps the lag time be-
tween the virtual and the remote workcells not only bounded, but constant throughout the
execution of a teleprogramming task. Also notice that, the above execution scheme main-
tains a lag time of = 2t,,,. €ven in the presence of no communication delay (i.e. 7 = 0).
This is a direct consequence of conditions given in Equations 9.4 and 9.5 which are appli-

cable in all cases even if an execution failure occurs after any arbitrary n telecommands.
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Figure 9.2: Double-buffering execution management scheme

9.3 Justification of Teleprogramming Autonomy Level

The level of autonomy during teleprogramming depends on the number of telecommand
data elements or teleprograms available to be communicated to the remote workcell. The
communication media can be managed by the CDB Distributed Interactive Simulation
(DIS) module for real-time interface as discussed in Section 7.7. All telecommand data el-
ements (i.e. subprograms) are stored in the shared memory during run-time. Procedures
for their formulation, initialization, management and interfacing to simulation modules are
well discussed in Chapter 7. In Chapter 3, the teleprogramming paradigm was discussed
while Chapter S discusses the formulation of telecommands and their meta-interaction. The
main focus in using the teleprogramming control methodology is to overcome the commu-
nication delays when operating at a distance such as in space or underwater. Moreover,

teleprogramming dramatically improves the operator task performance due to its richness
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in feedback based on virtual reality aids which support human-machine interface (HMI) or
human-computer interface (HCI) in real-time. Thus, HCI pages are essential in manipulat-
ing telecommands as discussed in Section 8.3 for the case of MOTS. Now, what remains is

to justify the effect of time delays in relation to the time taken to perform a given task.

As stated in Sections 1.4 and 3.6, the total time taken to perform a given task is given by

Tiotar; Where:

)Ttask (96)

2T
Ttotal = (I + t

nt
NB: All symbols are as defined earlier in Sections 1.4 and 3.6.

Thus, with classical teleoperation (i.e. using a move-and-wait strategy with nt = 1) the

total time to perform same task wiil be Ty, ; Where:

'Ttotall = (1 + 27')Ttask = Ttask + ZTTta.sk = T'task + Tdelayl (97)

Similarly, using teleprogramming method (with at leat 100 sup-programs or nt = 100) the

total time to perform same task will now be Tio¢a1,,,; Where:

27 2T
Tiotatie = (1 + E)Ttask = Ttask + mek = Trask + Taetayuo (9.8)

It has to be noted that in both cases there is a time delay given by Tyeiay, and Tyejay,,, respec-

tively as shown in Equations 9.7 & 9.8; where:

Tdelay; = 2TTtask (99)
2T
Tde[a.y|m = WO”T'task (910)

From above, one can compute the total time savings due to teleprogramming autonomy

given by Tyuionomy; Where:
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1
Tauwnomy = Tdelay; - Tdelay“m = 2Tnaak(1 - m) = 0-99Td¢layl (9.11)

Hence, we have 99 % time saving due to teleprogramming autonomy with just 100 telecom-
mand data elements. This criteria will always be used to justify the level of teleprogram-
ming autonomy in improving the task performance. With higher levels of autonomy (i.e.
nt > ), the operation will run as in real-time since the effect of communication delays

will asymptotically vanish.

9.4 Simulation Results of a Visual Tracking Scheme

To prove whether or not visual tracking can be achieved by the controller and if the pre-
dicted positions of the object were accurate, the proposed control methodology and the de-
signed visual robotic tracking controller (of Fig. 6.3) were applied to an experimental sys-
tem shown in Fig. 6.1. The predictor and the double-loop feedback controller were realized
by a computer simulations using MATLAB on a Sun Workstation. A variety of object mo-
tion trajectories used are shown in Fig. 9.3. For each motion trajectory a root locus of the
closed-loop system of the controller was performed and a closed-loop transfer function with
a gain of K equal to 0.6 was selected on the root locus lying inside the unit circle (i.e. im-
plying that the stability criterion is met). In order to study a variety of motion classifications
(as discussed in Section 2.7), the simulation was done using the object motion trajectories

defined by the following models:

1. Translation motion: ramp-like (fixed orientation) with initial point at (10, 10,5) (Fig-
ure 9.3a);
z. = 10+40.2t
ye = 10+0.8t
2. Rotation metion: circular-like (about a fixed position) with initial point at (10,10,5)

and frequency of 0.5Hz. (Figure 9.3b);
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(a) X-Y Transtation ramp-like motion (b) X-Y Rotation circular-like mation
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Figure 9.3: Object motion trajectories

= 10 + 30sin( ft)
= 10 + 30cos(w ft)

3. Free motion: square-like (orientation and position changes) with initial point at

(10,

Zc

Ye

10,5) and frequency of 0.02Hz (Figure 9.3c);
= 10 + 2sin(w ft)
= 10+ 2cos(m ft)

4. Contact motion: wave-like with initial point at (10,10,5) and frequency of 0.02Hz.

(Figure 9.3d);
zc = 10+ 2cos(x ft)
Y. = 10+ 0.002¢?
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In all cases the initial point of the gripper was set at (5,5,10) and the simulation interval of
600 seconds was used. For simplicity, results for each case are summarised in the following
figures. Fig. 9.4 shows four plots for case 1 (i.e. translation motion) where (a) shows the
comparison between actual and predicted motions, (b) is the root locus of the closed-loop
system, (c) compares the motions of object and gripper along Z-axis versus time and (d)
compares the motions of gripper and object in X-Y plane. Fig. 9.5 shows the motion posi-
tion errors along the three axes versus time and Fig. 9.6 shows the input forces along each
axis versus time. The main performance criteria was improved settling time as compared t(;
other existing standard control methods such as PID controllers. The comparison can easily

be shown by tuning the control parameters as discussed in Chapter 6.

The accuracy of the predictor depends on the tolerance specified and the complexity of
the trajectory of the moving object. In this case, a tolerance of 0.1 units of position was
used as 2 maximum allowable error from the predictor. Moreover, it was found that two
prediction step interval gives more accurate tracking results of the moving object. It was
also found that a smaller period length increases the number of waves of a sinus or cosine
function within a certain time period. The waves are then narrower and have the same effect
as spikes. In the limiting case these spikes act as discontinuities which affects the tracking
performance. Similar results for the other three cases (i.e. rotation, free & contact motions)
are presented in Figures 9.7 through 9.17. However, in the case of free motion, position er-
rors along X, Y, and Z axes are zero (i.e. coincides with the time axis as shown in Figure
9.12). In general the results are satisfactory enough and further efforts to improve the per-
formance of the controller may be studied by introducing the new robust control theories
such as H,, approach. However, the overall system is stable and is amenable to real-time

performance.
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Figure 9.4: Analysis for translation motion: ramp-like
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(a) Input Force along X-axis

(b) Input Force along Y-axis
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Figure 9.7: Predictor performance for rotary-like motion
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Figure 9.9: Position errors for rotation motion
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(a) input Force along X-axis

(b) Input Force along Y-axis
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Figure 9.11: Analysis for free motion
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(a) Position Error along X-axis

(b) Position Error along Y-axis
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Figure 9.12: Position errors for free motion (zeros in this case)
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Actual and predicted motions
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Figure 9.14: Predictor performance for contact motion: wave-like
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Function L P__gameter/Rate
Man-in-the-loop Latency 150 ms to 200 ms
HCI Latency 500 ms

Snapshot Rate 0.2 Hz

Dynamics Equation Integration Rate | 1000 Hz

Model Coefficient Update Rate 1 Hz

Control System Update Rate 20 Hz to 2000 Hz

Highest Retained System Frequency | 100 Hz

CAE Env. Data Transfer Rate S0 KB at 40 Hz

Table 9.1: MOTS technical performance parameters

9.5 Telecommands for a CDB-based MOTS Simulator

MOTS will play a very important role in preparing astronaut for the operation of MSS. It
will provide a faithful simulation of the dynamic and kinematic behaviour, control system
algorithms, malfunctions, graphics, thermal properties, power consumption and telemetry
of MSS elements. The user will be able to issue CDB telecommands from the MOTS sta-
tions to the MSS simulation via the HCI pages and hand-controllers. Camera views of the
MSS with different viewpoints will also be shown on video monitors in the MOTS stations.
Thus, MOTS will provide a high-fidelity, functional kinematic and dynamic software sim-
ulation of the MSS space segment in on-orbit configuration. MOTS will be used for train-
ing crew, instructors and ground personnel. MOTS technical performance parameters are
as summarized in Table 9.1. As mentioned before, over 10,000 telecommand & telemetry
data were formulated and stored in a CDB shared memory where over 150 CSUs will be
able to access them in real-time during MOTS training and operation phases (refer to Sec-
-tions 8.3 through 8.5). This data was mainly deduced from the MOTS system requirements

and design specifications. In terms of MOTS simulator, the Dispatcher has the following
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capabilities:!

e Calls simulation routines in defined order and at regular iteration rates;

Is “main” routine for simulation processes: spO(+ superband), ap0 & apK (K > 0);

Runs SIM modules, and SSS RT modules for snapshot, playback, etc.;

Superbanding allows iteration rates in excess of the basic simulation rate; and

Runs a slow asynchronous process (ap0), with stop/start control from the simulation

models, allowing for deterministic processing of low priority computations.

MOTS CSC Dispatcher has a superband node whose modules are executed a number of
times each time a leg is traversed, as opposed to the modules in the other bands which are
executed only once. Each level of a tree represents a different time band, and by placing
the modules in appropriate strategic bands, their execution rate and execution sequences
can be controlled. In this way real-time synchronization is not at the level of the dynamic
system integration time period, but rather is enforced at the start of each dispatcher time
frame period. The dispatcher may have associated with it up to two scheduling trees, i.e.
a critical & non-critical tree. At the start of each time frame a leg from the critical tree
is executed, and if sufficient processing time remains before the beginning of the next time
frame a leg from the non-critical tree is then executed. The modules from the critical tree
are non-interruptible, and furthermore they can interrupt the execution of the modules from
the non-critical tree. The Asynchronous Dispatcher, uses only the non-critical tree. The
Synchronous Dispatcher process contains the modules handling output to the VAD CSCI
and input from the operator. The dispatcher has only three interfaces: one to PFU to monitor
the performance of individual modules in the foreground processes, one to CTS to examine
and deposit data in foreground processes, and one to the mother process (MOM) to display

message on the system'’s console (refer to Sections 7.5 & 7.6 for details).

The general performance of all MOTS SIM modules was assessed using the PFU Utility.

Moreover, computerized tests were performed for all CDB telecommand data using CTS

'For details on CAELIB Dispatcher utility refer to Sections 7.3 & 7.4.
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Utility. Finally, best execution rates were defined for each CSU before final scheduling was

done. Hence, a preliminary description of the CSUs scheduling, based on the design guide-

lines described in Chapter 8 and their execution rates, is as follows:?

1. Superband 1000 Hz:

D-FASTLOOP; CSUs belonging to CSC Dynamics:
D-MALFUNCTION;

POA-SERVO-CONTROLLER (2X); CSUs belonging to CSC MBS POA:
POA-HARDWARE (2X);

POA-EXEC-I;

POA-MOTOR-POS-AND-RATE (8X);
POA-EXECUTE-LEEMM-CMDS (8X);

POA-STATUS-SWITCHES (8X);

POA-LOAD-CELL (8X);

POA-DATA-LOGGING (8X);

LEE-SERVO-CONTROLLER (2X); CSUs belonging to CSC SSRMS LEE:
LEE-HARDWARE (2X);

LEE-FMS;

LEE-EXEC-1 (2X);

LEE-MOTOR-POS-AND-RATE (8X);
LEE-EXECUTE-LEEMM-CMDS (8X);

LEE-STATUS-SWITCHES (8X);

LEE-LOAD-CELL (8X);

LEE-DATA-LOGGING (8X);

JEU-JOINT-CNTRL (2X); CSUs belonging to CSC SSRMS Joint:
JEU-DATA-LOGGING (8X).

2. Band X 20 Hz:

ACU-EXEC; CSUs belonging to CSC SSRMS ACU:
ACU-COMPUTE-STATE;

ACU-PROCESS-CMDS;

ACU-PROCESS-LEE-CMDS;
ACU-MCU-PROCESS-VIDEO-CMDS;
ACU-PROCESS-TELEMETRY;
ACU-MALFUNCTION-APPLICABILITY;

*The notation nX implies that the module is called n times.
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SSRMS-EXEC;

SSRMS-HC-INPUTS (2);

C-SOFTCD-BUFFER,;

ARM-TOP-LEVEL,;

C-SSRMS-MONITOR;

BI-DIR-ACU-TO-JEU;

BI-DIR-JEU-TO-ACU;

LIMP;

ACU-POWER;

LEE-EXEC-2; CSUs belonging to CSC SSRMS LEE:
LEE-COMPUTE-STATE;
LEE-VALIDATE-LEEMM-CMDS;
LEE-EXEC-STATUS;

LEE-SET-MOTOR-DRIVE;

LEE-CONTROL-MODE;
LEE-CMD-PRECONDITIONS;
LEE-PROCESS-TELEMETRY;
LEE-MALFUNCTION-APPLICABILITY;,
LEE-POWER;

JEU-COMPUTE-STATE; CSUs belonging to CSC SSRMS Joint:
JEU-PROCESS-TELEMETRY,
JEU-MALFUNCTION-APPLICABILITY;,

PHF;

COP;

JOINT-POWER;

VDU-COMPUTE-STATE; CSUs belonging to CSC SSRMS VIDEO:
VDU-PROCESS-BUS-COMMANDS;
VDU-PROCESS-SYNC-COMMANDS;
VDU-PROCESS-VIDEO;
VDU-PROCESS-BUS-TELEMETRY;
CAMERA-COMPUTE-STATE;
CAMERA-PROCERSS-COMMANDS;
CAMERA-PROCESS-TELEMETRY;
LIGHT-COMPUTE-STATE;
SSRMS-VIDEO-COMMANDS-EXEC;
SSRMS-VIDEO-TELEMETRY-EXEC;
VIDEO-MALFUNCTION-APPLICABILITY;
VIDEO-POWER,;

SSRMS-POWER; CSUs belonging to CSC SSRMS Power:
SSRMS-HEATER-CONTROL;

MCU-EXEC; CSUs belonging to CSC MBS MCU:
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MCU-COMPUTE-STATE;
MCU-PROCESS-POA-CMDS;
MCU-PROCESS-CRPCM-CMDS;
MCU-PROCESS-TELEMETRY;

MCU-POWER;

POA-EXEC-2; CSUs belonging to CSC MBS POA:
POA-COMPUTE-STATE;
POA-VALIDATE-LEEMM-CMDS;
POA-EXEC-STATUS;

POA-SET-MOTOR-DRIVE;

POA-CONTROL-MODE;
POA-CMD-PRECONDITIONS;
POA-PROCESS-TELEMETRY;

MBS-PDGF; CSUs belonging to CSC MBS PDGF, Video, Power & Thermal:
MBS-VIDEO-COMMANDS-EXEC;
MBS-VIDEO-TELEMETRY-EXEC;

MBS-POWER,;

MBS-CRPCM-POWER;
MBS-PROCESS-CRPCM-TELEMETRY,
MBS-CRPCM-COMPUTE-STATE;
MBS-CRPCM-PROCESS-FUNCTIONS;
MBS-THERMAL;

MBS-BASE-ORIENTATION;

RWS-CEU; CSUs belonging to CSC RWS, Payload/ORU, & SS:
PAYLOAD-ORU;

MSS-VIDEO-EXEC;
SS-PROCESS-PANEL-COMMANDS;
SS-VIDEO-PROCESS-ROUTING;
SS-PROCESS-TELEMETRY;
SS-COLLECT-CAMERA-DATA;
SS-SSRMS-CONTROL,;

SS-TIME;

SS-POWER;

D-SIM-MODE; CSUs belonging to CSC Dynamics:
D-FMS;

D-COLLISION-MON;

D-SIMTIME;

D-MONITOR:

D-ORG-VAR;

D-DIST-MONITOR;

D-CONSTRAINT-FORCE;
TELEMETRY-GENERATION; CSUs belonging to CSC Telemetry:
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TELEMETRY-MODEL-CONTROL;

e TELEMETRY-PLAYBACK.
3. Band Z 1 Hz:
D-CON-INFO; CSUs belonging to CSC Dynamics:
D-RT-INIT;

D-CL-TIP-CORRECTION;
D-INTERBODY-COORDS;
D-CL-CONSTRAINT-MATRIX;
D-CL-NULL-SPACE;
D-NONLIN-FORCE;

D-MASS;

D-CL-RED-MASS;
D-EIGEN-SOLUTION;
D-RED-SYSTEM,;
D-SLOW-DONE;
MBS-THERMAL; CSUs belonging to CSC MBS Thermal:
MBS-BASE-ORIENTATION;

SSRMS-THERMAL,; CSUs belonging to CSC SSRMS Thermal:

SSRMS-BASE-ORIENTATION;
JOINT-THERMAL;
LEE-THERMAL;
BOOM-THERMAL,;
ORBITAL-HEAT-RATES; and
THERMAL-SOLVER.
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Chapter 10 Conclusion, Contributions & Future Work

10.1 Conclusion

A virtuality & reality of a near-optimal time-delayed teleoperator control system based on
the teleprogramming paradigm is fully described in this dissertation. Teleoperation is es-
sential while performing tasks at a distance in unstructured environments such as underwa-
ter, nuclear contaminations, etc. It therefore becomes imperative to have a human operator
present who can guide or supervise, rather than control the robot arm. However, its lim-
iting factor is the communications link between the operator and remote site due to time
delays which tend to dis-orient teleoperators and dramatically decrease the system perfor-
mance. Hence, teleoperator systems tend to be costly, unstable and inefficient due to trans-
mission delays. This is because there is no supervisory control from the teleoperator as a
result of delayed feedback. This research addressed the application of a human-machine
computer-assisted-interface under virtual reality (i.e. simulation) environments for teleop-
erator multi-media interface using a CDB-based telecommand data in a shared memory. A
CDB-based teleprogramming system is thus proposed to be used as a telecommand interface
to the remote site. During execution, care must be taken to avoid increasing the lag time n
between the virtual and remote workcell. Hence, a double-buffering execution scheme is
proposed instead of a classical dequeue-parse-execute scheme (i.e. direct sequential man-
agement scheme). Some of the advantages of using the system include: reduction of to-
tal task time (7T}0.q:) and overall mission cost during remote manipulations, to achieve safe,
efficient and simple operations, to improve the frustrating move-and-wait approach (i.e. a

back-breaking operation that results in fatigue and frequent errors).

A CDB-based teleprogramming concept described in this research provides the neces-
sary bridge between classical teleoperation and fully autonomous remote manipulative ca-

pability. Teleprogramming a remote workcell under virtual environments corresponds to
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visually, orally, kinesthetically, etc. interacting with a virtual world and on-line, automati-
cally generating a sequence of elementary symbolic telecommands to the remote workcell
via a multi-dimensional virtual interface devices. Coupled with a small degree of autonomy
at the remote site, the system is able to provide for continuous and efficient remote control.
The flow of control is interrupted only in case of errors. Error occurrence poses a constraint
on the maximum allowable lag time n between the virtual and the remote workcell, and
thus limits the maximum length of operation time before feedback update that the system

can gracefully tolerate.

Virtual reality technology, along with the teleprogramming concept have primary appli-
cations in underwater and shallow space environments where communication delays pre-
clude direct remote control. However, a CDB-based teleprogramming system can be em-
ployed in a non-delayed situations as well such as nuclear plants, biological contaminations,
or any other hazardous or unstructured environments. Industrial applications are also vi-
able as such machines can be easily set up under virtual environments by cost-effectively
trained operators who can re-program them quickly for a desired task in the simulated envi-
ronment. In shallow space, a CDB-based teleprogramming system can be used in perform-
ing a variety of routine exploratory, maintenance, or even construction tasks. Cost justifi-
cations in this domain relate to the possibility of eliminating the need for astronauts in per-
forming extra-vehicular activities (EVA), or even the prospect of eliminating human crews
altogether. In the latter scenario, the entire mission, together with on-board experiments
and routine vehicle maintenance, would be controiled remotely from a ground-based con-
trol centre, vastly reducing both the cost and risks involved during manned missions. Thus,
a teleprogrammable CDB-based system (i.e. MOTS) will be used to develop procedures for
operating the MSS and to train astronauts, mission controllers and instructors from various

workstations (e.g. operator station, instructor station, ground station, on-board station).

10.2 Significance of the Dual Usage of Teleprogramming Methodology

Teleprogramming control methodology is not only meant for space-based systems where we
have feedback delays. As shown in Chapter 5 and proven in Section 9.2, this method can be

used even in a non-delayed systems. This justifies that space-based technologies can also
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be integrated for civil usage. Simulations are a valuable and highly cost effective means to
better understand the complexities of long duration space-flight and create systems that can
reliably weather the trying demands on crew, complex high technology systems and human-
machine interfaces, that form a large part of these missions. Results from simulations are
used to build prototype vehicles. Unique and versatile facilities already exist that might be
adapted for obtaining results for incorporating into a2 manned space mission vehicle archi-
tecture in a timely and economic manner (e.g. International Mars Mission (IMM) [Haule
and others, 1991]). The prevailing global political climate should permit the use of surplus
super power space or defense assets for civilian uses. In fact, in USA, the federal dual use
technology transfer mechanism was initiated a few years ago expressly for this purpose.
The thawing of the cold war and consequent reduction of strategic force arsenals among
traditional rivals should allow the dual use of U.S. Navy submarines for civilian purposes

including it’s use as a platform for simulation of long duration manned space missions.

A manned Mars expedition simulation experiment could be an ideal first candidate mis-
sion. Systems aboard advanced submarines may have a lot in common with the design of
long duration spacecraft including the handling of nuclear fuel and components for power
generation and propulsion, environmental control and life support, hard technology driven
interior habitat architecture, mission operations procedures, large crew assignments, com-
mand and control, as well as more primary habitation issues like crew health and psyche
maintenance during the six months to a year long tour of duty, crew productivity enhance-
ment and conflict resolution methods, recreation, nutrition, hygiene and waste management.
Though there are substantial differences between navy submarines and civilian spacecraft
stemming from the contrastive physical environments in which they operate, their technolo-
gies and management, their similarities surely warrant detailed comparative investigation.
After all, we may not need to reinvent the wheel regarding many issues, saving precious

taxpayer resources in the process.

In a candidate simulation mission, a Mars expedition crew is launched aboard a specially
outfitted and programmed Trident class nuclear submarine that attempts to simulate many of

the known human factors and environmental parameters on a long duration space mission.
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Though free fall conditions are hard to simulate on this platform, virtual reality and other
stimuli present conditions as might be encountered on a real mission. Programmed, random
system failures and malfunctions (i.e. anomalies) are introduced and crew response mon-
itored and evaluated throughout the course of the mission. An attempt is made to develop
a civilian command and control code for the crew. At the end of the simulated out-bound
trip, the crew are disembarked in a remote region of the globe, posing a hostile environment,
such as the coast off Northern Alaska or the Antarctic, where they unload, erect and oper-
ate a completely sustainable outpost or perform other tasks for a duration similar to those
recommended in prior studies. High bandwidth satellite communications with a built in pro-
gressive/regressive Earth-Mars time delay is provided. It may be feasible to use optical links

at certain favourable wavelengths to communicate with the submerged vessel.

At the end of their stay and prescribed activity at this outpost, the crew are subjected to
the experience of a long duration Earth-bound mission simulation. Emergency evacuation
measures are put in place using units of the special tactical armed forces that are placed on
alert during the entire course of this mission. Activities in extreme conditions, habit-ability,
and human productivity in isolation thus monitored will enhance our understanding of long
duration missions. Such a dynamic mission simulation will also help us to ferret out short-
comings and would shed light into the design of several critical soft human factors param-
eters that will have to be dealt within a hard technology environment like that encountered
in long duration space missions, where a thorough understanding of human factors as well
as the treatment and quality of human-machine interfaces will be the major determinant in
mission outcome. There are several interesting aspects to this simulation architecture. First
of all, this mission simulation can be begun well in advance of space station deployment in
1998. While station activities will focus on human adaptation and performance in free fall,
providing high fidelity data on a small sample of astronauts, the submarine simulation, by
virtue of the large crew complement and ample enclosed volume can simulate several pro-
grammed mission scenarios in parallel. Such a mission could drastically cut short the time
otherwise necessary to obtain the statistical data needed for designing and operating a long
duration Mars mission spacecraft. Unlike static simulators, this platform would provide a

more real setting in a mobile environment, providing dynamic stimuli akin to a real journey.
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[t may be possible to conduct these missions without much exchange of funds (e.g. between
the Navy and NASA of USA), each providing their own hardware and expertise to achieve

synergetic results.

As in any other, there are challenges to this architecture as well. The most obvious being,
is it possible for the armed forces to really share their assets for elevated civilian, human-
itarian purposes like space exploration? If so, why has open literature yet to address these
missions regarding relevant habitation parameters, given the fact that the super powers have
been plying the ocean depths for decades in these crafts ? A treasure trove of valuable data
must exist in the log books and operations manuals of these vessels. However, we cannot
compromise national security in handling this information. Traditionally, NASA and the
Department of Defense have been at logger-heads over missions and technology transfer
matters. Civilian space missions have suffered failures due to a lack of interchange of ex-
perience. However, in the recent past, the willingness to cooperate has started to yield sig-
nificant synergetic and cost effective results. Creative mechanisms could be invented and
put in place, so that space and defense related, strategic and sensitive material are safely
screened and censored out of this experiment. The access to this knowledge for the design
of long duration civilian spacecraft could be a spring board for further cooperation and dual
use of space technology. Simulations and the harvest of hard empirical data leading to the
rapid and cost effective synthesis of highly effective long duration spacecraft prototypes

would follow.

10.3 Contributions

The main contribution of this research work can be summarized as follows:

“Formulated a teleprogramming control methodology for the generation, pars-
ing, translation and execution of CDB-based telecommands data elements
while overcoming communication delay during remote manipulations (see
Chapters 5 & 7); a related teleprogrammable control scheme based on a pre-
dictor and a double-loop observer-based feedback is designed with control-

lability & observability criteria being fulfilled (see Chapter 6). Moreover, a
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double-buffering execution management scheme which ensures a bounded con-
stant lag time between local and remote workcells is introduced (see Sections
5.5 & 9.2). Finally, the meta-interaction of CDB-based telecommands with the
simulation modules in real-time is shown to be adequate while using a CDB-
based run-time configuration for robotics simulations (see Chapter 8); telepro-
gramming with modest remote site autonomy is shown to dramatically reduce

the effect of communication delays (see Section 9.3)".

A detailed study on the stated problem was carried out in Chapters | and 2, and as a
result different approaches or ideas were integrated in this research. Chapter 2 summarizes
most contributions done by researchers while dealing with the problem from a control point
of view using classical teleoperation (i.e. move-and-wait strategy). In Chapter 4, the au-
thor presented the ubiquity and potential of virtual reality in dealing with the problem and
promising applicational areas in the future along with their social implications. The orig-
inality and novelty of a teleprogramming control paradigm is summarized in Chapters 3,
S and 6 while the real-time execution management of CDB-based telecommand data ele-
ments (or subprograms) is outlined in Chapter 7. A model CDB-based teleprogrammable
system (i.e. MOTS) is presented in Chapter 8 where the author initially worked as a CDB-
integration specialist. Contribution of this research work is also very well presented in sev-
eral publications (national and international) as can be deduced from the published papers
(two of them ended getting a best paper award in the area of robotics at two different oc-
casions). With this kind of an overall research integration on the stated problem, following

are some related contributions in a detailed fashion:

e adesign of a delay tolerant control methodology for remote manipulation, which re-
quires a relatively modest amount of remote site autonomy and offers the possibility
of near-optimal task performance in the presence of substantial communication de-

lays between the local and remote sites is presented;

e an effective approach for providing the operator with realtime feedback information

despite the communication delays is formulated; this information is derived by ana-

162



10. Conclusion, Contributions & Future Work

lyzing the operator’s interaction with the virtual world (i.e. simulation) which pro-

vides a good approxirmation to actual remote presence.

e asymbolic low level telecommand language which can adequately describe the oper-
ator’s interaction with the virtual environment to allow accurate reproduction of the
operator’s activity at the remote site is accomplished using CDB labels; thus, on-line
reprogramming of a remote workcell is possible and real-time extraction of the cor-

responding instructional sequences for errcr recovery;

e adesign of aremote site execution strategy, relating to generation, parsing, scheduling
and execution management of the incoming instructions, which guarantee a bounded

time lag based on a double-buffering scheme is successfully shown and proven.

e presented a sample design and analysis of a CDB-based simulation system which
can be used for teleoperator interface and training using real-time shared memory for

telecommand meta-interaction using a DIS module;

e outlined how new computer graphics based technologies can be applied to enhance
operator performance via a human-machine interface for multi-media remote feed-

back (i.e. visual, audio, tactile, etc.) using CDB labels via HCI pages;

e presented an observer-based design for guaranteed stability & controllability to en-

sure feasibility of near-optimal remote manipulation based on prediction scheme.

10.4 Future Work

The teleprogramming paradigm for most telerobotic applications is fully described in this
document and can be considered as the basis, upon which more general control methodolo-
gies can be developed. However, there are some immediate as well as some of the more

far-reaching issues or extensions which need to be addressed:

l. World modelling for virtual environments: The issue of constructing a perfect ini-
tial model of the remote site is to be considered carefully. However, the necessary

technology needed to facilitate interactive off-line construction of the initial remote
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environment model exists. What is needed is a relatively low-complexity, practical
approach for integrating existing results and algorithms in image processing and data
fusion, along with a convenient mechanism to allow operator’s participation in the
high-level segmentation process. The operator will participate as a supervisor (i.e.
supervisory control), resolving necessary ambiguities and ensuring that the extracted

model is consistent with the real remote environment.

Special-purpose telecommands and procedures in a virtual world: Virtual real-
ity motivates the need for special-purpose telecommands in the context of actions,
which are more conveniently executed as local high-bandwidth feedback processes
at the remote site. Such actions include: fine precision object alignment, grasping
and handling of fragile or deformabie objects, and high-dexterity dynamically reac-
tive manipulation tasks. Hence, a more general framework for interpreting operator’s
activity in the virtual environment must be designed, which in turn will require a more
sophisticated a priori knowledge about the task in progress. A related enhancement
to the system would be the provision of an on-line procedural facility, where the op-
erator would be able to specify a general pattern of an iterative subtask. The system

can then perform the action repeatedly until some terminating condition is reached.

. Error recovery routines: During error recovery, the state of the virtual graphical

simulation is updated to reflect the error state. However, because of the discrepancies
between the virtual and the actual remote environment, purely kinematic error sta-
tus information does not suffice to unambiguously reconstruct the state of the remote
workcell. A more sophisticated error recovery mechanism may attempt to monitor the
operator’s corrective actions and resume autonomous execution. By so doing, it will

significantly improve the overall system efficiency as well as operator satisfaction.

. On-line model refinement: Using the above ideas, one may want to take advantage

of the interruption during error recovery and try to refine the operator’s virtual model
of the remote workcell based on the error information packet supplied. The opera-
tor’s station software can then use this (possibly sparse) local corrective information

to refine the geometric relationships in the virtual model.
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5. Virtual editor: Further extensions of the releprogramming control paradigm under
virtual environments, may generalize the idea of having a model-based virtual ed-
itor. The operator could control multiple robotic and other devices simultaneously
through a multiple of available virtual input devices. In such a system, the operator
would no longer be constrained by the execution rates of the actual workcells or ve-
hicles (agents) in the remote environment. Instead, the operator could interleave task
specifications for different agents in the virtual editor, with the execution of the re-
mote site proceeding at a slower, agent-dependent rate. This type of control re'ieves
the operator of continuous interaction with the operator’s station and provides the ba-

sis for more general forms of supervisory control of robotic devices.
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Appendix A Real-time Space Robotics Simulation

A.1 Hardware Configuration

In the development of complex robotic systems', simulation plays an important role in pro-
viding an environment to evaluate behaviour, capabilities and operation effectiveness of the
system under design. Simulations are extensively used for verification of flight systems and
will play an indispensable role in aiding mission planning and crew training. The Cana-
dian contribution to the International Space Station program is the Mobile Servicing System
(MSS). The MSS main components are two robotic devices: a large, symmetric, relocatable
manipulator arm with seven degrees of freedom; and a smaller, dexterous robotic system
consisting an articulated trunk and two arms, each having seven degrees of freedom. The
Manipulator Development and Simulation Facility (MDSF), developed for the MSS pro-
gram, is a facility capable of simulating arbitrarily configured robotic manipulators [Carr
and others, 1990]. MDSF can be used both for engineering development and for crew train-
ing activities [Cyril et al., 1992]. The engineering segment of the facility (i.e. hardware)
provides generic capability of modelling and simulating robotic manipulator systems. The
requirement to provide a generic simulation facility is driven by the long MSS program life,
the modification of requirements throughout the life cycle of the project, and the lack of a
unique robotic system configuration. This generic capability is reflected, among other fea-
tures, in a software reconfigurable control and display station, the user interface which al-
lows a building block approach to robotic system synthesis, the utilities, and the equations

of motion.

MSS is a multi-purpose, versatile complex equipped with manipulators, advanced con-
trol systems and hurnan in the loop capability as shown in Figure A.1. The MSS will support

construction, operation and maintenance aspects of the Space Station and its attached pay-

'This Appendix contains selected abstracts from (CAELIB., 1995s] plus personal training notes during
internal CAELIB course at CAE Electronics.
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Figure A.1: Mobile Servicing Systemn (MSS)

loads. The main components of MSS are two robotic devices: the Space Station Remote

Manipulator System (SSRMS) and the Special Purpose Dexterous Manipulator (SPDM).

The SSRMS is a large (17.6m long), self-relocatable manipulator arm with 7 dof used for

large scale manipulation of payloads and astronauts. The SSRMS is symmetric relative to
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its 4-th (elbow) joint; this allows it to be attached and operated from either end. The SPDM
is a smaller, dexterous robotic system consisting of an articulated trunk (body) and a pair of
2m long arms, each having 7 dof. The SPDM is used for small and precise movements, in
general tasks similar to those performed by a space suited extra-vehicular astronaut. Simu-
lations will be extensively used during design, development and operation of the MSS. To
carry out these simulations the MDSF is being developed at CAE. It encompasses within one
facility two kinds of simulator, one for engineering development and the other for training
and operational support. Although developed for Space Station applications, MDSF archi-
tecture is sufficiently flexible to aliow the simulation of other space, terrestrial or underwater

robots.

The Real-Time Simulation (RTSIM) CSCI simulates in real-time the dynamics of artic-
ulated multi-body robotic systems. It allows to call simulation modules in a specific or-
der, with specific iteration rates, and provides data gathering and snapshot functions. The
RTSIM CSCI includes a number of CSCs, all designed to run in real time, synchronised
with each other and with external hardware or software components. RTSIM includes the
Real-Time Dynamics Simulation (RT-DS) CSC and various executive software components
such as the Real-Time (RT) Dispatcher CSC. The RTSIM CSCI decomposition overview is
shown in Figure A.2. Communication between the Simulation Control Function (SCF), RT-
DS, the visualization system, the user-supplied control system, the background monitoring
utilities and any other process that runs concurrently with, and which communicates with
the simulation, is achieved through the Common Data Base (CDB) as discussed in Chapter
7. The Data Gathering function of RTSIM allows the user to gather data from the CDB at
regular intervals. This data is saved to disk, in order to be analyzed later by the Data Re-
duction and Analysis Function (DRAF). The different software components will reside in
the Host and Auxiliary Processing Systems (HPS and APS) or in the Control, Development
and Animation Work-centre (CDAW).

A.2 Robotics Real-time Simulations Environment

The RT-DS CSC simulates the dynamics of the robotic or teleoperated system defined in

the simulation definition. The purpose of RT Dispatcher CSC is to call the simulation rou-
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Figure A.2: RTSIM CSCI decomposition

tines in a specific order, within processing bands which execute at specified iteration rates.
The Synchronous Dispatcher is activated by a clock signal and the simulation process that it
controls is non-interruptible. The Asynchronous Dispatcher controls the execution of mod-
ules whose immediate scheduling is not critical to the operation of the RT simulator. The
process can be interrupted because it runs with lower priority than the synchronous pro-
cess. The Dispatcher Tables allow the user to specify how the simulation modules are to be
dispatched within each process. The Timing Utility allows the monitoring of the CPU time
taken by modules, bands and legs of each process. The Data Gathering CSC allows the user

to gather data generated during the simulation run for later analysis (by DRAF) and/or for
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post simulation visualization (i.e. edit, record, translate, etc.). The Snapshot CSC allows
the user to record the state of a simulation at any given time during its run and to restore
the simulation to the recorded state, from which it may be restarted. The Task Definition

Language Executive (TDLEXEC) processes the telecommands passed to it.

All communication between the CSC simulation modules is through the CDB. The input,
output and the state variables of the modules comprising the RT-DS CSC are located in the
CDB. When the Data Gathering CSC is recording simulation data, it accesses the variables
located in the CDB without interfering with the normal execution of the dynamic simulation
modules (i.e. the recording operation is transparent to the simulation modules). The CDB

is organized in such a way that the variables are separated in two groups:

e The restorable area. This contains variables that describe the state of the simulation.
Once restored, the simulation can be restarted from the point where the recording was

made using the snapshot.

e The non-restorable area. This contains variables that are used by non-simulation

modules, such as the RT Dispatcher, Snapshot and Data Gathering.

Communication through CDB also helps the interlocking mechanism between the operator
input and the CSC TDLEXEC. In either case, the same CDB variables are used as input to
the simulation module; the interlocking mechanism is transparent to the simulation mod-
ules. The same data is shared through the CDB by all sub-CSCs, which are executed at dif-
ferent rates on the APS within the synchronous and asynchronous dispatcher processes. The
RT Dispatcher CSC is responsible for controlling the execution of all other RTSIM CSCs.
RTSIM is implemented using three simulation processes, i.e. (a) sp0:- main synchronous
process; (b) ap0:- main asynchronous process; and (c) apl:- low priority asynchronous
process. For more details on process scheduling and management, are presented in Chapter

7.
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A.3 Rationale for an Engineering Simulator

Engineering simulator facilitates analysis and design, system level software tests and per-
formance verification. Simulations may be either real-time or non-real time; the former al-
lowing human-in-the-loop interaction for the development and fine tuning of control sys-
tems and human interfaces, and the later for complete analysis of modes of vibration beyond
the limits of human perception. The MDSF consists of a computer complex and CDAW as
shown in Figure A.3. The computer complex consists of a VAX cluster and an auxiliary pro-
cessing system. The latter, a Convex C220 computer, is used exclusively for the execution
of real-time simulation processes. Non-real time simulations may be executed anywhere in
the cluster. The CDAW is a reconfigurable workcenter that processes the operator’s inputs
to the simulated robotic system, and displays, in real-time, the response and dynamic evo-
lution of the system. [t consists of hand controllers, a Controls and Displays Workstation
(an IRIS 4D/25), a Real-Time Engineering Visualization Workstation (IRIS 4D/120GTX),
and a terminal connected to the host processing system. The 6 dof can lock out dof to form
rotational or translational controllers. The CRT terminal is used for simulation control, task

definition, and changing and monitoring parameters.

The requirement for a generic capability has affected every aspect of the MDSF design;
itis reflected, among other features, in a building block approach to robotic system synthesis
arrd the definition of simulator configurations, in the user defined robotic control systems,
software reconfigurable control and display station, and in the generic mathematical model
of kinematics and dynamics of articulated muiti-body structures which constitutes the nu-
cleus of the MDSF. There are no limitations on the shape of the bodies, nor on the relative
orientation between contiguous articulations, nor on the topological configuration. MDSF
algorithms permit general relative motion with up to three translational and three rotational
dof. Articulations with 6 dof permit the introduction of separate bodies or structures, with
or without attached manipulator systems, co-existing in proximate orbits. This allows the
presentation of a payload prior to being captured or after release from one of the manipula-
tors or the approach of an orbiter to the SS. With MDSF, the parameters and the algorithms

modeling the associated control systems are user defined. In MDSF the task of defining the
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Figure A.3: MDSF - an engineering simulator

system is simplified, i.e. the user can choose to define the system at the level of his exper-
tise through a step-by-step, menu-driven, interactive process. At the disposal of the user
is a database of bodies, articulations and systems. The user may wish to create, modify or

delete new bodies, articulations or systems.

Simulation definition is a function, built upon CAE'’s configuration management utility,
it allows the user to define, configure and manage simulators of specific robotic manipula-
tor systems. The object of the process is a simulator configuration which contains all the
information needed to define, configure, build, manage and control a simulator. The idea

of MDSF as a facility that is reconfigured into or supports different simulators is central to
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the MDSF architecture. A configuration consists of software elements and relationships be-
tween them’. The configuration identifier and its elements are stored in a database which has
a dependency graph structure where each node represents an element and each link repre-
sents a relationship between elements. A relationship describes build, configure or load de-
pendencies. A simulation contains a simulator configuration and may contain robotic sim-
ulation task definition, initial conditions, on-line monitoring and data gathering lists and
post-processing telecommand files (all stored in a common shared memory as CDB data

elements or labels).

Other utilities included in the simulation control function include the Page Monitoring
System (PMS) and the Computerized Test System (CTS). PMS allows users to monitor one
or several pages of numerical outputs of the simulation processes, and to modify the values
of simulation variables. CTS is a utility that supports the integration, testing and debugging
of simulation software in either an off-line stand-alone mode, or in on-line mode which in-
teracts with a loaded, running simulation. Input variables can be dynamically ramped to
follow a given time history, while outputs may be plotted or monitored to check against ex-
pected values. CTS allows users to examine and modify any simulation variable or block
of variables, and makes possible full automation of setups and checkout tests. Real-time
engineering visualization allows the animation of the dynamics of the system being sim-
ulated. Visualization is achieved by a 3D renderer developed for RTEVW. The ability to
update the scene rapidly is enhanced by a 3D graphics editor developed for MDSF appli-
cation. A graphics display function is used for the software emulation of the control and
display panels of teleoperated robotic systems. It is based on CAE's TIGERS? package.
This function allows a user to design a control and display panel which may include levers,
sliders, switches, analog gauges, digital displays, warning lights, etc. A graphics editor fa-
cilitates this operation. This panel is then linked to the CDB of simulation parameters, and

driven in real-time. Both a pointing device and a touch screen are used for operator input.

2Refer to Chapter 7 for Software Configuration.
3TIGERS is an acronym for The Integrated Graphics Environment for Real-time Systems.
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Figure A.4: MDSF - training simulator

A.4 Robotics Training Simulator’s Benchmark

Under the Canadian Space Station Program there is a mandate to produce a training sim-
ulator for the MSS. The training simulator will be built as an enhancement to the MDSF
real-time engineering capability. The enhancement will be achieved by adding upgraded
dynamics models, specific implementations of the MSS control systems and HMIs, a crew
control station, an instructor facility, and an image generation and display system to the
existing MDSF infrastructure. A conceptual diagram of the training simulation facility is
shown in Figure A.4. Typical tasks to be carried out by MSS are: Payload/ORU handling;

manipulator handling tasks; space station assembly operations and orbiter berthing and de-
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berthing by SSRMS. A vast array of systems will be monitored and controlled by crew mem-
bers in the SS. To minimise the crew load and training required to operate any given sys-
tem a common set of standards and guidelines are defined for the HCI. The HCI resides
on common workstations known as the Multi-Purpose Applications Console (MPAC) al-
lowing crew members to interact with systems on-board. The flight hardware of the MPAC
Cupola (MPAC-C) consists of displays, a keyboard, a trackball, hand controllers, and a pro-
cessor. During the human-in-the-loop operations the hand controller commands can either
be applied in Cartesian space to a point of resolution (e.g. the end-effector) or as telecom-
mands to individual joints. The crew training workstation will emulate the visual and hard-
ware interface of the flight system. The workstation will consist of a mockup structure, flat
panel CRTs, interactive control devices, and an optical display system for simulated out-the-
window scenes. To fulfill the flight MPAC-C functionality the HCI software is simulated as
part of the MDSF. The Instructor Station (IS) must allow the instructor to choose the train-
ing scenario by: specifying the orbital structures to be included; specifying the orbital and
environmental parameters; activating and deactivating malfunctions; and participating in
hand-off operations (i.e. coordinated movement between two manipulators, one controlled
by the student, the other by the instructor). The hardware necessary to complete the IS is
closed circuit TV and two-way communication device, and a visual repeater for the MPAC-

C displays.

For visual imagery, station assembly and maintenance tasks will require very high scene
content, particularly in the details represented on each object. The display system will re-
quire high resolution to match the scene content. Because of the space environment, bright-
ness and contrast requirements will be high as well. Thus, a number of Closed Circuit TV
(CCTV) cameras are to be mounted on the SSRMS, SPDM, and SS to provide views to
the crew at the workstations. An arrangement to provide a crew with a wide Field of View
(FOV) [Barrette, 1992} is required. The Fibre Optic Helmet Mounted Display (FOHMD)
is a compact display system which provides the trainee with a bright, high-resolution, full-
colour display over his entire FOV. The characteristics of the display presented to the trainee
are designed to mimic the performance of the human eye (i.e. for stereo-scopic). At CAE,

there more tools and software utilities [CAELIB., 1995s] that are very well suited for real-
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time robotics simulations either for operations and/or training. A good example is that of

MOTS as discussed in Chapter 8.
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Appendix B Program Listings for the Control Scheme

The following THREE pages gives a MATLAB source listing for the predictor algorithm

and a double-loop observer-based controller algorithm as discussed in Chapter 6.
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Dec 5 1996 02:20:27 Controller.m Page 1 Dec 5 1996 02:20:27 Controller.m
1 clear all; 67 dxy=sqrt{{xc(i)-Xa)*2 + (ycl1)-Ya)"2);
2 clg; 68

3 format long; 69 if aba{dxy)<=0.1, % *** maximum allowable error valua
4 70 break;

5 N=600; 71 end;

6 t=(0;1:N]"; 72

7 73 sxl = axl + xc{i)*xc(i-1};

8 % ssssrses Translation Motion: ramp-like (fixed orientation) *eenee " 8x2 a 8x2 + xcl(i)*yc(i-1);

9 1 3 sessnss Injcial point is (10,10) eesee 75 sxd4 = 8x4d ¢+ xc(i);

10 16

11 xc=10¢0.2°¢; 17 syl = 8yl ¢ yec(i)*xc{i-1);

12 yc=10+0.8*¢; 78 sy2 = 8y2 + ycli)*yc(i-1};

13 79 syd = syd ¢ yc(i);

14 ) ssasense potation Motion: clrcular-like (fixed position) ®esene 80

15 % neesnsr Injtial point is (10,10) and frequency of 0.005Hz sanes 81 x11 = x11 ¢ xcti-1)*2;

16 82 x12 = x12 + yeti-l)*xcli-));

17 $£220.005; 83 x14 = x14 + xcii-1);

18 txc=10+30°sin(f2epi*t); 84

19 Syc=10+30%cos{f2'pict); 85 x21 = x21 + xc{i-1)*ycti-});

20 86 x22 = x22 ¢+ ycli-1)"2;

21 % ssranes Frge Motion: square-like (rotations and translations) eeess* 87 %24 = x24 + yc{i-1)

22 assssers Initial point is (10,10} and frequency of 0.5Hz ***ee 88

23 89 x41 = xdl + xc{i-1);

24 $£350.5; 90 x42 = x42 ¢+ ycli-1)

25 Wxc=10¢2*sin(f3*pi‘c); 91 x44 = 1;

26 Syc=10¢2°cos(f3*pi‘t); 92

27 93 C={xll x12 x14; x21 x22 x24; x41 %42 x44),
28 Y assssss Coptact Motion: Wave-like motion s#*eeee 94 X=(sxl sx2 8xd)';

29 L ) sesssns Injtial point is (10,10} and frequency of 0.02Hz ***** 95 ¥=-[(syl sy2 syd)"';

30 96 r-rank(C);

31 $£4s0.02; 97

32 Sxca)0+2%cos(fdepirc); 98 if ra=3,

33 Yyc=10+0.002*t.~2; 99 B=iav(C);

34 100 Al=B*X; A2=B*Y;

15 2zcs5+0%t; % **¢ same Z-motion for all cases with z-value = 5 for all t **** 101 Xa=AY(1l)exc{i} + AL(2)*yc(i) + AY(D);
36 102 Ya=A2{1)*xc(il) ¢ A2(2)*ycii) + A2(3);
37 sxl=xc(l)*xc(2}; 103

38 sx2=xc(2)*yc(l}; 104 end;

39 8x3=0; 108

40 sx4=xc(2); 106 end;

41 107

42 sylsyc(2)*xc{l); 108 if i==N/4,

43 sy2=ycl(2)*yc{l}; 109

44 8y3=0; 110 msg='Convergence Failure. The motion is undeterministic’;
45 sydaycl(2); 111 dispimsg);

46 t12 end;

47 xillaxc(l)*xc{l); 113

48 x12=yc(l)*xc{l}); 114 4 *** If the above condition is verified, the (i¢1)th position
49 x13=0; 115 % *** is sent to the contiol system
50 xld=xc(1); 116

51 117 Xal=[Xa); Yals{Ya];

52 x21=xc(l)*yc{l}); 118 Xaa=Al(l)*XatAl(2})*YarAl(]);

53 x22=yc (1) *yc(l); 119 Yaa=A2(1}*XasA2(2)*YasA2(3);

54 x2320; 120 Xa2=(Xaa); Ya2=z=|Yaal;

55 x24=ycil); 121

56 122 tor j=i:N,

57 xdl=xc(l); 123

58 x42=yc(l); 124 Xal=(Xal;Xa);

59 X43=0; 125 Yal=(Yal;Ya);

60 x44=l; 126 Xa2s(Xa2; Xaa);

61 127 Ya2=(Ya2;Yaa);

62 Xa=1000; 128

63 Ya=1000; 129 tor k=j-i+3:3,

64 130

65 for i22:N/2, 131 sx) = sx1 ¢+ xct(k)*xcik-1)

66 132 sx2 = 8x2 ¢+ xc{k)*yc{k-1);
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133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

sx4 = sxd4 + xc(k);

syl = 8yl + ycik)*xc(k-1);
8y2 = sy2 + yc(k)*ycik-1);
syd = syd ¢+ ycik);

x11 = x11 + xc(k-1)"2;
x12 = x12 + ycik-1)*xc(k-1);
x14 = x14 + xc{k-1);

x21 = x21 + xc{k-1)*ycik-1);
%22 = x22 + yc{k-1)"2;
x24 = x24 + ycik-1);

x4l = x41 + xcik-1);
x42 = x42 + yc(k-1);
x44 = 1;

end;

Cla(x1ll x12 x14; x21 x22 x24; x41 x42 x44});

% *** This is singular and the entries in 2nd column and 2nd vrow
% *** are linearly dependent

Xa(sx) sx2 sxd]';

Y=(syl sy2 syd)’;
Bl=invi{Cl);

Al=B1*X; A2=Bl*Y;
Xa=Al(h)*xc(j) « AL(2)*yclj} A )i
Ya=A2{1l)*xc(}) + A2(2}*yc(j) + A2(3);
Xaa=Al{l}*Xa+Al(2)*Yar+Al(]);
YaasA2(l}1*Xa+A2(2)*YarA2(]1);

end;
1Y eseseee print to a posteript file one after the other *****»

print line0.ps
Sprint circularl.ps;
tprint squarel.ps;
tprint wavel.ps;

clg;
subplot{221); % *** for actual and predicted motions comparison

plot(xclirl:30),.ycii¢1:30), 'r*,Xa2(1:30-1),Ya2(1:30-i),*'xb’); grid
title{’{a) Actual and predicted motions‘});

xlabel (" X-value’);

ylabel('¥Y-value');

gtext ('Predicted {(x-mark)’);

gtext ('Actual (solid)’);

pause(5);

K=0.6;

Kd=1.5; % *** We have PD feedback;
T=1;

Td=T*Kd;

Ke=1/{2°T);

k1=T"2°K/2;

k2=-2¢T*K*Td+k];

k3=1-T*K*Td+kl;

num= ((T*Td+T*2/2) (-T*Td+T*2/2)]);
dens(1,-2,1);

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
218
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

subplot {222); ¢ *** root locus of closed-loop system

rlocus (num, den);

title('{b) Root Locus'‘});
{k,poles)arlocfind(num,den);

disp(k);

gtext('Pick k=0.6 (inside unit circle)’);
pause(S);

Sneds=(kl kl);

tded=(1 k2 k3);

$1=0:19; t=i*T;yadstepined,ded, 20);stairs(t,y);grid;
tpause;

$td=[0:60}°;

$Xcs2+4°td; Yc=5+24td."1.2; Zce=-10+0%td;
$Xc=5+5*8in{0.1*pi*t); Yc=5+¢5°cos(0.1%pi*t);
$2c=2+0%¢;

Ux={0); Uy={0}'; Uz=(0}"';

X1={S)*; X2=(0)*; X22=(0)'; Ex=(0}';

¥Y1=(S)'; ¥2=(0); Y22s(0]'; EyalO)’;

21=(10)'; 22=(0)°; Z22+(0})'; Ez=(0]';

for ma2:N-§-2,

X11=X1(m-3}+T*X2(m L)+ ((T"2)/72)*Ux{m-1);

Y11=YL{m-1)¢T*¥2(m 1)+ {(T"2)/2)*Uy(m-1),
211=21(m-1) +T*Z2(m-1) +((T"2)/2)*Uz(m-1},

X21=X2(m-1) +ToUx(m-1) tKe* {X11-X1(m-1)-({T"2)/2)*Unim-1)-T*X2(m-1));
Y21=Y2(m-1)+T*Uy(m-1) +Ke* {¥Y1l-Y1(m-1}-((T"2)/2)*Uy(m-1)-T*Y2(m-1));
221=22(m~1}eT*Uz(m-1}+Ke* (Z11-22(m-1)-(({T*2)/2)*Uz(m-1}-T*Z2(m-1));
REx1a2X21-X22};

BEy12¥21-Y221;

Ez1=221-2221;

Uxl=K*(Xa2{m)-X11-Td*X21);

UylsK*{Ya2{m}-Y11-Td*¥2l1);

Uzl=K*(zc(me¢2)-211-Td*221);

X1=(X1;X11);

X2={X2;X21);

Ux=[Ux;Ux1]);

$X22=(X22;X221); Ex=(Ex;Exl};

Yi={Y1l;¥Y1l};

¥2=(Y2;Y21};

Uy=[Uy;Uyl);

1Y22=[Y¥22;¥221); Ey=[Ey,Eyl);

Zl=(21;211});

22=(22;221});

Uz={Uz;Uz}};

N222=(222;2221); Ez=[Ez;Ezl},

end;
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265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
hY1)
325
326
327
128
3129
130

gubplot (223); & *** Motions of gripper and object along Z-axis

plot(t(i-1:20),2c(i-1:20),'xg’, t{i-1:20), Z1{}.20-i+2),°r'); grid
title(’(c) Motions along Z-axis');

xlabel (‘Time (s}');

ylabel('Z-value'});

gtext ('Object (x-mark)');

gtext (‘'Gripper (solid)');

pause{5);

subplot (224); % *** Motions of gripper and object along X-Y plane

plot({xcti-1:20),yc{i-1:20), *xb’,X1(1:20-1+2),Y1(1:20-3+2),°Q@*); grid
title(’'(d} Motions in X-Y plane’};

xlabel {‘X-value');

ylabel('Y-value');

gtext {‘Object (x-mark}');

gtext('Gripper (solid)'};

pause(5};

% sasesss pPrint to a postcript file one after the other ****re

print linel.ps;
$print circularl.ps;
tprint squarel.ps;
tprint wavel .ps;

clg;
Ex=X1(1:50-i+2)-xc{i-1;50);
Ey=Y¥1(1:50-1+2)-yc(i-1:50);

E2RZ1(1:50-3+2)-2c(i-1:50);

subplot(221); § *** Position error between gripper and object

plotic(i-1:20),Ex(1:20-i¢2),'c*); grid
title{’'(a) Position Error along X-axis‘);
ylabel {'Position Error'};

xlabel (‘Time {8]°*);

pause(s);

subplot {222); § **+ Positlon error between gripper and object

plot{t¢i-1:20),Ey(1:20-1+2),°'b*); grid
title('(b) Position Error along Y-axis’);
ylabel {'Position Error'};

xlabel (‘Time (8)'});

pause({5);

subplot {223); ¢ *** Position error between gripper and object

plot(t{i-1:20),E2(1:20-i+2),'g"'); grid
title(*(c) Position Error along Z-axis’);
ylabel{‘'Position Error');

xlabel(‘Time (s8}°);

pause(5);

% asecece pPrint to a postcript file one atter the other ***e=e

print line2.ps;
fprint circular2.ps;
tprint square2.ps;
iprint wave2.ps;

3131
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

clg;
subplot (221}; % *** Input forces

stalra(t(i-1:15-2+14),Ux{1:15)); grid
title('(a) Input Force along X-axis');
xlabel{'Time (s)°);

ylabel {'Magnitude of force’);
pause{$);

subplot(222); % *** Input forces

stairs(t(i-1:15-2+1),Uy(1:15)); grid
tictle(* (b} Input Force along Y-axis‘);
xlabel{'Time [s8]');

ylabel ('Magnitude of force');
pause(5});

subplot{223); § *** Input forces

stalrs(t(i-1:15-2+¢4),Uz(1:195)); grid
title{‘(c) Input Force along Z-axlis');
xlabel {'Time [8]°*);

ylabel {*Magnitude of force');
pause({5};

% aerecer pPrint to a postcript file one after the other ***eer
print linel . ps;

fprint circularl.ps;

tprint squareld.ps;

iprint wavel.ps;

end;
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Appendix C List of Acronyms

Acronym Description
_AEA Arm Control Algorithm

ACDB Arm Control Data Bus

ACS AVU Control Software

ACU Arm Computer Unit

A/D Analog/Digital

AHS ACU Host Software

AIFF Audio Interface File Format

APPC Arm Pitch Plane Change

APS Auxiliary Processing System

ASCI American Standard Code for Information Interchange

ASTM AVF Supported Tracking Mode

ATF Automatic Trajectory File

AUV Autonomous Underwater Vehicle

AVF Artificial Vision Function

AVTEL Audio/Video Teleconferencing

AVU Artificial Vision Unit

BC Bus Controller

BCDB Backup Control Data Bus

BDU Backup Drive Unit

BDUCS BDU Control Software

BDUS Backup Drive Unit Software

BGF Base Grapple Fixture

BIT Built-In Test

BITE Built-In Test Equipment
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C. List of Acronyms

Acronym Description
CI1CS Class I-Erew Station

C2CS Class 2 Crew Station

C&C Command & Control

C&DH Command & Data Handling

C&T Communications & Tracking

C&wW Caution & Warning

CAE CAE Electronics Limited

CAI Computer Assisted Interface

CAS Common Attachment System

CCC Control Centre Complex

CCTV Closed Circuit Television

CDAW Control, Development and Animation Workcentre
CDB Common Data Base

CDBP Common Data Base Processor

CEU Control Electronics Unit

CI Configuration Item

CLA Camera/Light Assembly

CLPA Camera/Light/Pan-tilt unit Assembly
CMTF Canadian MSS Training Facility

COTS Commercial Off-The-Shelf

CPAF Collision, Protection, and Avoidance Function
CPU Central Processing Unit

CRPCM Canadian Remote Power Control Modules
CS Crew Station

CSA Canadian Space Agency

CSC Computer Software Component

CSCI Computer Software Configuration Item
CSR Camera Status Reader
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C. List of Acronyms

Acronym

Description

D&C
DG
DFC
DFD
DFR
DMC
DMCS
DOF
DRAF
EDP
EEOCS
EPS
EVA

FOV

FMS
FTS
GFE
GLETS
GN&C
GS
GSA
GUI
H/C
HCA
HCI

Computerized Test System

Display & Control

Data Gathering

Digital Force Control

Data Flow Diagram

Dead Face Relay

Data Management Controller

Dextrous Manipulator Control Software
Degree Of Freedom

Data Reduction and Analysis Function
Embedded Data Processor

End Effector Operating Coordinate System
Electrical Power System

Extra Vehicular Activity

First In First Out

Field Of View

Force Moment Accomodation

Force Moment Sensor

Flight Telerobotic System

Government Furnished Equipment

Global-Local Environment Telerobotics Simulator

Guidance Navigation & Control
Ground Segment

Graphical Simulation and Animation
Graphics User Interface

Hand Controller (or HC)

Hand Controller Assembly

Human Computer Interface
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C. List of Acronyms

Acronym Description
HMI Human Machine Interface

HPS Host Processing System

HWCI HardWare Configuration Item

IG Image Generator

/O Input/Output

[I0C Input/Output Controller

IOP Increment Operations Plan

I0S Instructor Operator Station

IS Instructor Station

ISR Interrupt Service Routines

ISSA International Space Station Alpha
ISSAP ISSA Program

JCS Joint Control Software

JDA Joint Drive Assembly

JPA Joint Pivotal Assembly

JEU Joint Electronics Unit

JMM Joint Motor Module

JPA Joint Pivotal Assembly

JPC Joint Power Conditioner

LCS LEE Control Software

LEE Latching End Effector

LEEMM LEE Motor Modules

LEU LEE Electronics Unit

LMM Latch Motor Module

LPC LEE Power Conditioner

MAM Manual Augmented Mode

MBS MRS Base System

MCCF MSS Command and Control Facility
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C. List of Acronyms

Acronym Description
MCE MSS Control Equipment

MCS Manipulator Control System

MCS MBS Control Software

MCU MBS Control Unit

MDA Motor Drive Amplifier

MDM Multiplexer/Demultiplexer

MDSF Manipulator Development and Simulation Facility
MHS MBS Host Software

MLB MSS Local data Bus

MMD MSS Maintenance Depot

MO Movable Object

MOC MSS Operations Complex

MOCS MSC Operating Coordinate System
MOM MOther Main process

MOTS MSS Operations and Training Simulator
MRCS MSS Robotic Control Station

MRS Mobile Remote Servicer

MSS Mobile Servicing System

MT Mobile Transporter

MTCL MT Capture Latch

MTE Mobile Transporter Element

MVS MSS Video Subsystem

NASA National Aeronautics Space Administration
N/A Not Applicable

NRTSIM Non-Real-Time Simulation Model
OCAS Operator Commanded Auto Sequence
OoCIM Operator Commanded Joint Mode
oCcpPM Operator Commanded POR mode
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C. List of Acronyms

Acronym Description
OCS Operations Control Software

OMCS Operation and Management Control Software
ORU Orbital Replaceable Unit

(O Operator Station

(07 Operating System

OTCM ORU/Tool Changeout Mechanism
OTS Off-The-Shelf

ovP Online Validation Program

PCR Portable Control station for Robotics
PCS Portable Computer System

PDGF Power Data Grapple Fixture

PFM Pulse Frequency Modulation

PFU Program perFormance Utility

PHSM Position Hold Submode

PJAM Pre-stored Joint Autosequence Mode
PLB PDGF Local data Bus

PMS Page Monitoring System

POA Payload/ORU Accomodations

POR Point Of Resolution

POST Power On Self Test

PPAM Pre-stored POR Autosequence Mode
PSA POA Support Assembly

PTU Pan Tilt Unit

PVS PFM Video Selector

PWM Pulse Width Modulator

RDC Resolver to Digital Converter

ROV Remotely Operated Vehicle

RPC Remote Procedure Calls
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C. List of Acronyms

Acronym

RT
RT-DS
RTEVF
RTSIM
RWS
SACS
SCF
SCLC
SCU
SDW
SED
SJRM
SIM
SIMEX
SMC
SOFT-CD
SOP
SOSC
SOW
SPA
SPDM
SRD
SRS
SRT

SS
SSBA
SSD

Description

Remote Robotic Workcell

Remote Terminal

Real-Time Dynamics Simulation
Real-Time Engineering Visualization Function
Real-Time Simulation Model

Robotics WorkStation

SSRMS Arm Control Software
Simulation Control Function
Simulation Configuration and Load Control
Sync and Control Unit

Software Development Workstation
SED Systems Inc.

Single Joint Rate Mode

SImulation Models CSCI

SIMulation EXpert

Station Management Controller

Soft Controls and Displays

System Operation Procedure

Space Operations Support Centre
Statement Of Work

Servo Power Amplifier

Special Purpose Dexterous Manipulator
System Requirements Document
Software Requirements Specification
Safing Remote Terminal

Space Segment

Space Station Buffer Amplifier

System Specifications Document
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C. List of Acronyms

Acronym Description
SSRMS Space Station Remote Manipulator System
SSTF Space Station Training Facility

SSS Simulation Support System

TBD To Be Determined

TCF Thermal Control Function

TDL Task Definition Language

TDLEXEC TDL Executive

TIT Teleoperator Interface and Training

TVC TeleVision Camera

UIL User Interface Language

ULC Unpressurized Logistics Carrier

VAD Visualization And Display

VDU Video Distribution Unit

VGS Video Graphics Software

VOTE Virtual Operations Training Environment
VR Virtual Reality

WHS Workstation Host Software
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IMAGE EVALUATION
TEST TARGET (QA-23)
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