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Abstract 

Nematic polymers are a new class of advanced materials that have excellent 
mechanical propcnies bccause of their anisotropic structure. Successful manu{acturing of 

high performance materials from these polymers depends on control of molec'Jlar 
orientation. A crucial step is then to understand the relaxation phenomena after cessation 

of shear flow defonnations. 

The first part of this thesis studies numerically the effects that the surface 
conditions, defects and backflow have on the relaxation phenomena after cessation of 

simple shear flow for a typical rigid rod nematic polymer. The Leslie-Ericksen 
continuum theory and the Euler-Lagrange equations for surface motion are derived and 

used for this purpose. Predictions are found to be physically consistent. 

Nematic polymers, under certain conditions, develop a transient banded texture 
after cessation of shear flow when observing the sheared sample between crossed pol=trs. 

The second part of this th~sis presents a viscoelastic model that describes the fonnation 
mechanism of this well characterized but yet unexplained phenomenon for a typical rigid 

rod nematic rolymer. This model is composed of the Ericksen and Landau-de Gennes 

continuum ~ 'loories, and predicts that the relaxation of periodic spatial variations of the 
scalar order parameter produces spatially periodic torques on the director. Conscquently, 

a transient baflded texture is secn when viewing the sample between crossed polars. The 

numerical results and digitized opticai patterns are in good agreement with reponed 

experimental observations, and are used to explain these observations. 



Résumé 

Les polymères nématiques sont une nouvelle classe de matéliaux perfectionnés 

présentant dt excellentes pa~priétés mécaniques dues à leur structure anisotrope. La 

réussite de la fabrication de matériel de haute performance à partir de ces polymères 

dépend du contrôle de l'orientation moléculaire. Dès lors, une étape cruciale est de 

comprendre les phénomènes de relaxation après l'arrêt des défonnations d'écoulement 

par cisaillement. 

La première partie de cette thèse étudie numériquement les effets que les 

conditions de la surface, les défectuosités et l'écoulement en retour ont sur les 

phénomènes de relaxation après arrêt de )' écoulement par cisaillement simple pour un 

polymère linéaire rigide nématique typique. La théorie du continuum de Leslie-Ericksen 

et les équations de Euler-Lagrange sur le mouvement de la surface sont dérivées et 

utilisées dans ce but. Les prédictions se sont montrées physiquement cohérentes. 

Lorsqu'on obserJe l'échantillon cisaillé en nicols croisés, on constate que les 

polymères nématiques développent, dans cenaines conditions une texture à bandes 

trarlsitoires après l' arrêt de l'écoulement par cis;tillement. La deuxième partie de cette 

thèse présente un modèle viscoélastique qui d~:crit le mécanisme de formation de ce 

phénomène bien caractéristique et pourtant inex:pHqué dans le cas dt un polymère linéaire 

rigide nématique. Ce modèle fait appel aux théories du continuum d' Ericksen et de 

Landau-de Gennes et prédit que la relaxation des variations spatiales périodiques du 

paramètre dt ordre scalaire produit dans l'espace, des moments de torsion périodiques sur 

la directrice. En conséquence, on peut voir une texture à bandes transitoires lorsque l' 

échantillon cisaillé est observé en nicols croisés. Les résultats numériques et les modèles 

optiques digitalisés sont en accord avec les observations expérimentale~ rapportées et sont 

utilisées pour expliquer ces observations. 
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Chapter 1 

Introduction 

1.1 Historical Note and Introductory Comments 

Although there is a great wealth of infonnatiolJ about low molecular weight liquid 

crystals (LMLC's), the opposite is true for the polymerie ones. The reason for this is that 

the study of LMLCs began as early as 1888 with Reinitzer. Research, however, on 

liquid ~rystalline polymers (LCP's) received its rightful attention only after the 

commercialization of Kevlar in the early 1970's while their synthe sis intensified just a 

decade later. Despite this fact, LCP's, especially nematic polymers, are gaining wide 

usage in a variety of applications. For instance, they are used to make bullet proof vests, 

radial tires, brake linings, tennis rackets, golf clubs, fishing rods and pressure vessels. 
Successful manufacturing of products from nematic polymers depends on control 

of molecvlar orientation. A crucial step is then to understand the relaxation phenomena 

after cessation of shear flow defonnations, because it is the shear flow-induced molecular 

orientation that gives these products their excellent mechanical properties. This 

understanding is the goal of this thesis. 

The rest of this chapter outlines briefly concepts of liquid crystal physics that are 

needed subsequently in the thesis. There is also a review of the ubiquitous banded texture 

that LCP's exhibit after cessation of shear flow. 

1 



( 

( 

1.2 Definition 01 Liquid Crystalline Phases 

Many organic materials do not undergo a single transition between the solid and 
liquid phases, but assume one or more intermediate phases. These phases, called 
mesophases, have bath solid-like molecular order and liquid-like fluidity. 

Mesophases possessing a crystal lattice structure but no rotational order are 
known as disordered crystal mesophases, or plastic crystals [1], and are generally 

composed of globular molecules. In these phases, the thennal energy overcomes the 

rotational bmier but not the lattice encrgy. On the other hand, if the thennal energy 
destroys the crystallattice but does not overcornc the rotational barrier, there is positional 

disorder and rotational order [2]. Mesophase~ h:";mg this kind of order arc known as 

ordered fluid mesophases, or liquid c~ystals, and are generally composed of 

anisodiametric molecules or monomers as sllown in Figure 1.1. 

CH3<>--@- N=N-@-C4fi9 

N-(p-methoxybenzylidene)-p'-butylaniline (MBBA) 

CH30-@-N=N-@-00I3 

i 
4,4'-dirnethoxyazoxybenzene (p-azoxyanisole) 

- (NH- CH- 00)0-

1 
CH2 
1 
CH2 
1 

o=c, / CH2-@ 
o 

monomer of poly(benzyl glutamate) (pDG) 

Figure 1.1. Sorne examples of liquid crystals. 
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1.3 Types of Liquid Crystals 

Ordered fluid mesophases are differentiated by how the phase transition is 

cffected. Lyotropic liquid crystals are obtained by concentration changes. Poly(benzyl­

L-glutamate) (PBLG), hydroxypropylcellulose (HPC) and deoxyribonucleic acid (DNA) 

are examples of solutes that fonn lyotropic ordered fluid mesophases when dissolved at 

sufficiently high concentrations in the appropria te mediums. Hence, the long range 

molecular ordering is due to solute-solute interactions. On the other hand, thennotropie 

liquid crystals are obtained through temperature changes. Since these liquid crystals are 

melts, thcy can be processed by fiber spinning and injection molding. 

1.4 Classification of Liquid Crystalline Phases 

A scheme. devised by Friedel [3] in 1922 according to thcir symmetry, classifies 

liquid crystals into the three main classes: nemaric, cholesteric and smecric. 

1,4.1 Nematie Order 

In a nemarie phase the molecules tend to align parallel to cach other and with the 

director n as shown in Figure 1.2. The director is a unit vector lhat gives the preferred 

average molecular orientation in the neighborhood of any point x [4]. Because of this 

tendency, long range orientation al order and cylindrical (or uniaxial) symme1ry are 

exhibited in this phase. Long range translational disorder (or fluidity), however, is 

,oresent because there is no correlation of the molecular center of mass positions. 

Figure 1.2. The nematie phase of rod-like Molecules. 
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1,4,2 Cholesterlc Order 

As shown in Figure 1.3. cholesteric order is very similar to nematic order on a 
local level; i.e .• the molecules tend to align with the director. The underlying reason for 
this is that cholesteric phases arc obtained from chiral nematic molecules; thus. the terms 

cholesteric and chiral nematic ere synonymous. On a larger scalt. however. the director 

follows a helical path given in Cartesian coordinates as 

(1.1) 

where kq is the wavevector and cp is the phase angle. The spatial period. or half-pitch. is 

given by 

p=...1L 
Iql (1.2) 

and. for a nematic phase. P goes to infinity because q is zero. 

Figure 1,3. The cholesteric phase. 

1,4,3 Smectic Order 

A smectic phase has one degrec of translational order which provides a layered 
structure. There are at least ten identified smectic phases, and the best known are the 

smectic-A and smectic-C phases. In smectic-A ordering, the molecules are aligned 
parallel to the layer normal within cach layer (Figure l.4a). If the molecules. however. 

are uniformly tilted away from the layer normal in each layer, smectic-C ordering resuIts 
(Figure 1.4b). 

4 
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(a) (b) 

Figure 1.4. The (a) smectic-A and (b) smectic-C phases. 

1.5 Orientatiooal Order 

As mentioned above, in a nemati~ phase the molecules tend to align parallel to the 

director o. If ail the moh:cules are aligned perfectly parallel to 0, then a completely 

ordered nematic phase is present. This, however, is an ideal case since a molecule is 

usually oriented at an angle", to 0 because of thermal motion at finite temperatures. 

Since 'JI is not the same for aIl the molecules oriented about a director, the average value 

over all these molecules (i.e., <oos2'f1>) must be considered. Hence, the scalar arder 

parame ter S, whieh i:i a measure of the degree of molecular alignment along 0, is 

expressed as [5] 

S = !<3<eos2 'fi> - 1) 
2 

with 

(1.3) 

(1.4) 

A value of S = 1 defines a perfectly aligned nematie phase, a value of S = 0 defines the 

isotropie liquid phase, and a value of S = -t defines a nematie phase where the molecules 

are lying in a plane nonnal to the director. As an ex ample, for N ·(p-methoxybenzyli­

dene)-p'-n-butylaniline (MBBA) at room temperature, S = 0.64 [6]. It is interesting to 

note that equation (1.3) has the fonn of the seeond-order Legendre polynomial 

P2(COS 'II) = ~cœ2 '" - 1) . Figure 1.5 shows sehematieally how the scalar order 

parame ter varies in the range 0 S S S 1 for the temperature-effeeted thermotropie and 

eoncentration-effected lyotropic liquid crystals. Nematic phases only have first-order 

transitions [5], and this is seen with S at the transition points Tc and cc. 

5 
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o Tc 

(a) 

T 

s 

1 

o 
(b) 

Figure 1.5. Typical variations of the sealar order parameter S for (a) thennotropic 

Iiquid crystals with temperature T and (b) lyotropie liquid crystals with 

concentration c. Tc and Cc are the first-order transition points. 

The scalar order parameter alone, however, ean not describe generally the 

molecular structure in a nematic phase. The director field must also be inc1uded in the 

general description. Therefore, it is convenient to define the symmetric and traceless 

tensor order parameter as [7) 

Q =lS(3nn - Ô) 
2 

(1.5) 

where Ô is the unit tensor. The tensor order parame ter ean be geometrically represented 
as an ellipsoid in the range 0 ~ S S; 1. For an unordered uni axial nematic phase, the two 

shorter semi-axes are equal and the longer semi-axis is parallel to the director (Figure 

1.6a). The ellipsoid gets distorted, however, in the isotropie liquid and perfectly ordered 

uniaxial nematie phases. When 5 = 0, aIl three semi-axes are equaI, and the ellipsoid 

beeomes a sphere (Figure 1.6b). No diteetor is shown in this figure beeause the phase is 

an isotropic liquid. When S = 1, the two shorter semi-axes are zero, and the ellipsoid 

becomes a line para lIe 1 to the director (Figure 1.6c). 

1.6 Frank-Oseen-Zocher Statie Elastic Continuum Theory 

In applications, the director is not oriented 'lnifonnly in a nematie phase but varies 

spatially because of electromagnetic body forces, surface forces and/or flow fields. These 

spatial variations of the average molecular orientation increase the elastie free energy 

6 



(a) (b) (c) 

Figure 1.6. Geometrical representations of the tensor order parameter 

when (a) 0 < S < l, (b) S = 0, and (~) S = 1. 

density Fd of the phase. If the gradIent of the director is evcrywhere small enough slich 

that the change in nover the length of a single molecule is insignificanr, then Fd can be 

derived from a continuum theOl)' [41. The theory used presently was devcJoped by Oseen 

[8], Zocher [9], Frank [10] and Ericksen [Il]. Frank [10] derivcd the formula of the 

elastic free energy density from a variant of Hooke's law using the cylindrical symmetry 

of nematic phases. The result of the derivation is 

(1.6) 

where Kll, K22 and K33 are the splay, twist and bend temperature-dependent elastic 

constants, respectively, and are known collectively as the Frank clastic constants. Thcsc 

tbee modes of director defonnations are depicted individually in Figure 1.7. A basic 

mode having a relatively lower elastic constant value predominates in the defonnation; 

i.e., the distortion contains more of this mode. As an order (If magnitude, using the 

intermolecular interaction energy as the ch,\racteri~tic cncrgy and the separation bctwcclI 

two molecules as the characteristic length, the elastic moduli are e~timalcd ln be 

approximately 10-12 N [12]. This compares very weU with the val UC!) rcporled for 

poly(benzylglutamate) (PBO) [13}: Kll = 1.21 x Hl-II N, K22=7.8 x 10- 13 N and 

K33 = 7.63 x 10-12 N. The effects of the long polymerie moleculcs are ~hown by these 

three elastic constants. Since splay defonnations require concentrations of molccular 

ends, il is very unlikely that a Lep phase will have this distortion; therefore, KIl> K22 

and KIl> K33. 

It is often convenient to assume that the nematie phase i~ elastically isotropie; Le., 

K = Kil = K22 = K33 and Fd simplifies to [14) 

7 
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l,', 1 \ 
ua !l LU L',U!1 UL a - - ---- - .... - -, ---

(a) (b) 

Figure 1.7. Directorconfigurations in (a) splay, (b) twist, 

and (c) bend defonnations. 

,', \ \ \ Il r 
1 " 1 

(c) 

(1.7) 

This assumption is not quantitatively correct, for instance, if one compares the three 

elastic constants above for PBG, but it still is a valuable tool to help understand director 

distortions [14]. The total free energy E of the distorted configuration, cf)tained by 

perfonning a volume integration of Fd, is 

(1.8) 

The condition for equilibrium is a minimum value for E; i.e., [15] 

(1.9) 

whcre ~ is a Lagrange multiplier introduced 10 satisfy the constraint of unit director 

(n-n = 1). 

Equation (1.6) can not account for any externally applied fields, such as a 

magnelic field. To include the effects of a magnetic field, the magnelic free energy 

density Fm, expressed as 

(1.10) 

is added to the elastic free energy density Fd to get the total free energy density Ft; i.e., 

8 
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(1.11) 

XI is the anisotropie magnetic susceptibility and H is the magnetic field. Hence. to 

detennine the equilibrium dircctor configuration, Il is uscd instead of Fd in equation 
(1.9). 

Magnetic fields are used quite often on liquid crystals, especially in detennining 

the values of the Frank elastic constants. This is donc by applying a sufficiently strong 

magnetic field perpcndicularly to a unifonnly aligned nematic phase confincd in a ccli. 

Two conditions must be met in these detenninations. The dircctors are not allowcd to 

reorient on the surface, and must he either parallel or perpendicular to the bounding 

surfaces. Since there are three Frank elastic constants, there are three types of magne tic 

instabilities. These instabilities were observed by Freedericksz in 1927 [16j, and are thus 

called the Freedericksz transitions. They are shown in Figure 1.8. 

- ----
(a) t --=---.---

H --_--- ----
--==- -==- H ---H ------

-- - -------..................... -------- -
(b) ------- ---

(c) 

Figure 1.8. The three types of Freedericksz transitions: (a) splay 

mode, (b) twist mode, and (c) bend mode. His the magnetic field. 

De Gennes [14] showed by manipulating equation (1.11) that the instabilities only 

occur if the applied fields exceed their critical values, which are given by 

(1.12) 

9 
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h is the plate spacing, and i = II, 22,33 stands for splay, twist and bend, respectively. 

The elastic constants are then detennined by measuring the three critical fields. Equation 

(1.12) also sbows tbat the critical fields seale witb the inverse of the cell thickness, which 

has already been detennined by Freedericksz [16}. 

1.7 Orientational Slip 

The tenn orientational slip denotes that the director may reorient at a bounding 

surface. If the surface is treated physically (for example, by robbing in one direction) or 

chemically (for example, by buffing) then surface director reorientati"n is not permitted, 

and this condition is defined as strong director anchoring. However, since a bounding 

surface is usually untreated, orientation al slip is a very imponant phenomenon in liquid 

crystal physics. For instance, Figure 1.9 shows typical director relaxation from a simple 

shear flow-induced orientation for both fixed (or strong) and weak director anchoring at 

the two bounding surfaces. Figure 1.9a shows that for fixed anchoring, all the bulk 

directors relax 10 that of the surface director orientation. On the other hand, Figure 1.9b 

shows that for weak anchoring, both tbe bulk and surface directors reorient toward each 

other during the relaxation and will eventually fonn a homogeneously oriented phase. 

Another example is the recent modeling of the periodic twist instability of nematic 

polymers due to a magnetic field by Rey [17]. He showed tbat at low magnetic fields, the 

surfaces have an effeet on the amplitudes and time scales of the periodic response. 

Therefore, it is necessary to include orientation al slip to the present theories that describe 

the dynamical phenomena of nematic polymers. The mathem~.tical fonnulation for 

orientation slip consists of both elastic and dissipative interactions, and is presented 

below. 

The static interaction between a nematie pol ymer and a bounding surface is 

dcscribed macroscopically by a surface free energy. This free energy is composed of 

both the surface defonnation energy and the coupling energy of the director at the surface 

(18). The surface defonnation energy is due to director gradien ts at the surface, and is 

introduced by surface elastic constants. The coupling energy depend3 on the orientation 

of the surface director with respect to the easy axis of the surface, which is the prefeJTed 

surface director orientation. Tbe easy axis depends on the specifie interaction between 

the nemarÎc pol ymer and bounding surface, and on the surface treatment mentioned above 

f 18). The coupling energy, introduced into the surface free energy by the anchoring 

strength W (14), is a minimum when the director is aligned with the easy axis. When 
W ~ 00 • the director aligns along the easy axis (strong anchoring), and when W is rmite 
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Figure 1.9. Schematic representations of typical director relaxation phenomena for (a) 
fixed anchoring and (b) weak anchoring of the director at the two bounding surfaces. 

the time-dependent surface director orientation is obtained Crom the balance between 
surface elastic and viscous torques about an axis normal to the surface. The surface 

elastic torques are due to bulk direetor defonnations impressed onto the surface. surface 

director gradients, and deviations of the surface director from the easy axis. Viscous 

torques are created from the transient director reorientation, and are introduced by surface 

viscosities. 
The Euler-Lagrange equation for surface motion is used to fonnulate the balance 

of surface elastic and viscous torques. Assuming no position al slip and planar orientation 

in a parallel plate geometry. the Euler-Lagrange equation is written as [19] 

(1.13) 

where RS is the surface Rayleigh dissipation function, cI>. are the elastic forces, and a 

superposed dot denotes time differentiation. cj) is the planar orientation angle and the only 

generalized coordinate. For more complex phenomena, two generalized coordinates are 

used. such as , and 9. Since the frictional force a~s is a linear function of the velocities 
é)Q 

[19], R S is given as 
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(1.14) 

where ');.'i is the surface vi scosi t Y for the surface director reorientation. There are no known 

experimentally reported values for ï..s, but il is bounded in the range from zero (free 

director rotation) ta infinity (strong director anchoring). 

The elastic forces are acquired from the surface contribution to the variation of the 

total el as tic free energy of the system. This energy is eomposed of both bulk and surfaee 

contributions, but with a couple of justifiable assumptions given below, only the bulk: 

tenn is needed. Firstly, for entropie reasons, the planar director orientation bas been 

round to he the most likely scemrio for a nematic polymer at a bc .. nding surface [20], 

and this has been substantiated experimentally for poly(l,4-benzamide) (PBA) [21-23], 

and poly(l,4-phenylene-2,6-benzobis(thiazole» (PBT) [24]. There are, however, 

exceptions such as for poly(benzyl-L-glutamate) (PBLO) [25]. Since this analysis is 

restrieted only to planar director orientations eontained within untreated isotropie parallel 

plates, il is assumed that any planar orientation is an easy axis [17,21]; therefore, the 

coupling energy is a minimum and neglected. Secondly, the surface defonnation energy 

is also neglected since there are no known experimental reports on this energy for 

nematie polymers [17]. The total free energy is, therefore, given by equations (1.6) and 

(1.8). nie variation of equation (1.8) reads 

liE:: f lélFd &!» + élFd • ôVcI>l dV 
aq, aV4» 

(1.15) 

and, after &pplying the divergence theorem, beeomes 

ôE = f lélFd ôcI> - V· dFd ~J dV +f [dFd • v~] dR 
àcI> àVcI> dVcI> 

(1.16) 

where \1 is the outward unit nonnal vector to the enclosing surface R of the volume V. 
Hence, the clastic forces <l>41 caused by bulk defonnations at the two bounding surfaces 

are expressed as 

(1.17) 
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1.8 Leslie-Ericksen Continuum Theor1 

The Leslie-Erieksen (L-E) continuum theory is a viscoelastie nonlinear model that 

applies to nematie phases with rigid rod-like molecules, assumes the scalar order 

parameter is a constant, and takes inlo acc:ount baekflow effeels [26-29]. Backflows are 

present when the direetor reorientation produees transient shear flows. This effeet is 

shown schematically in Figure 1.10 for the bend mode of the Freederieksz transition. 

This theory simplifies to the Frank-Osecn-Zocher continuum theory for the stalie case. 

Beeause flow does not affect S in low molccular weight nematie phases [30], whieh are 

generally eomposed of rigid moleeules, the L-E thCl>ry de scribes very weil the dynamies 

of these phases. Many of its signifieant pn:dictiO!iS have been eonfmned by experiments 

[30,31]. Jenkins [31] gives an extensive summary of conrumations fol' steady plane and 

eylindrieal Poiseuille and Couette flows. He also shows that the L-E theory describes the 

onset of the flow instabilities eonventional nematie phases have d\1ring these two types of 

flows. 

----I~. V 
-V ... ~ ...... _/ __ 

t»O 

Figure 1.10. Sehematie representation of the direetor reorientation-induced 

baekflows V in the bend mode geometry of the Freederieksz transition. 

Nematie polymers are generally composed of nonrigid molecules and flow affects 

S in these materials [30]. Because of this, the extent of the L-E theory in describing 

nematie polymers is still not known. Since the dynamieaI terms in this theory arise from 

the low deformation rate limit of Doi's theory for LCP's [321, it should describe well 

ereeping flows of nematic polymers; however, this does not seem to be true [30J. 

Nevertheless, it has been used sueeessfully by Rey [17] to de scribe the planar periodie 

twist magnetie instability of nematie polymers observed and characterized experimentally 

by Fincher [21]. Therefore, the L-E continuum theory is presented below, as outlined by 
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de Gennes [14], with the aim that it wnt be used to describe the macroscopic relaxation 

phenomena of nerna.tic polymers arter cessation of simple shear flow. 
In Cartesian tensorial notation for an incompressible fluid, the linear momentum 

balance equation is 

(1.18) 

where p is the density, V is the velocity, and F is the extemal body force per unit volume. 

The superposed dot now denotes the material time derivative. The constitutive equation 

for the stress tenson is given as 

't = -p6- aFd - (Vn)T + at(nn:A)nn + U2nN + U3Nn + <X4A + ClSnn-A + Q6Aenn (1.19) 
aVn 

where the kinematic quantities are defined as follow: 

(1.20a) 

(1.20b) 

(1.2Oc) 

The (Oi), i = l, ...• 6 are known as the Leslie viscosities. p is the pressure and 6 is the 

unit tensor. A is the rate of defonnation tensor. N is the angular velocity of the director 

relative to that of the fluid. and il is the vorticity tensor. The ij th Carte sian component 
dn' dV' 

ofVn and VV are? and? respectively. 
uXj UXj 

The internai angular momentum balance equation in Cartesian tensorial form that 

governs the director is 

(1.21) 

The director inertia is neglected here. re and rvare the elastic and viscous torques on the 

director per unit volume, respectively. and their constitutive equations are as follow: 

re = n x h (1.22a) 
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where 

(1.23a) 

(1.23b) 

'YI is the rotational viscosity and 12 is the irrotational viscosity. The equality in equation 
(l.23b) is due to Parodi (33); bence, there are only five independent Lestie viscosities. 

The molecular field h arising from the ~lasticity of the material is defined as follows: 

h=hS+hT+ hD (1.24a) 

hS = KIIV(V·n) (1.24b) 

hT = - ~[aVxn + Vx(an)) (1.24c) 

hD = K33[bxVxn + Vx(nxb)) (1.24d) 

a=n-Vxn (1.24e) 

b=nxVxn (1.24f) 

1.9 Landau-de Gennes Nematic Continuum Theory 

In 1937, Landau [7] speculated that near a second-order phase transition point, the 
free energy density can be expanded as a power series in tenns of one or more long range 

order parameters and their spatial derivatives. Since only the leading tenns are important 

near the transition point, the resuIting expansion is a low-order polynomial with 

temperature-dependent coefficients. De Gennes [7,34) later applied successfully 

Landau's theory to the f'lrst-order phase transition of nematic phases. For a ncmatic 

phase. the order parameter is the scaIar order parameter defined byequation (1.3), and the 

free energy density FL is expressed as 
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FL = ~(T) + lA(T - ~)S2+l.BS3 +ks4 +~L) +lL2)(VS)2 +.lgL2(n.VSf + 
4 4 16 4 6 

2.S2(L) +lL2)(Vt n)2 + L){ntVxn)2 + (Lt +lLû(nx Vxn)2J + (l.25) 
422 

~L2S(Vtn)x(n. VS) + tL2S(nXVXO)tVS 

fofJ) is the isotropie free energy density attemperature T, and A, B, C, LI and L2 are 

constants. ~ is a temperature slightly below the clearing temperature Tc where the flfst­

order transition occurs. 

Equation (1.25) contains four types of tenns. The tirst four tenns contain only the 

scalar order parameter, while the next two contain spatial vallations of this parameter. 

The following tenn accounts for director spatial variations, and is expressed as such to 

resemble the Frank-Oseen-Zocher free energy density (equation (1.6». It should be 

remarked that, to second-order in the Landau··de Gennes theory, there are only two 

independent elastic constants (LI and L2); however, there are three for nematie phases 

(KIl. K22 and K33; i.e., the Frank elastic constants) [10). The last two tenns aecount for 

the couplings in the variations of Sand n. 

Notice that FL simplifies 10 Fd when S is a constant. Therefore, FL can be used 

generally for any nematic phase, but Fd aplJlies only to special cases; this is shown 

schematically in Figure 1.11. Also, FL assumes that the splay and bend elastic constants 

are equal. For most neroatics, this is a good approximation. 

As mentioned in Section 1.8, shear flow affects the scatar order parameter in 

nematic polymers (30], which can result in spatial variations in S. This idea of spatially 

nonhomogeneous S is supported by the predicted temporal oscillations of S in 

l1lonodomain and spatially invariant ne matie polymer systems during shear flow 

(30,35,36J. Nematic polymers also contain high concentrations of defects, which are 

points and lines (or disclinations) where the dil'ector field changes discontinuously [14), 

and this also contributes to spatial variations in S. Since the goal of this thesis is to study 

the relaxation phenomena of ne matie polymers after cessation of shear flow, il is desired 

to use a free energy density that includes spatial variations in S, such as FL. This does not 

mean, however, that Fd is no longer useful. Its simpler form is easier to handle. and will 

be used initially, as explained below in Section 1.13, in the hope of understanding the 

macroscopic behavior of nematic polymers after cessation of simple shear flow. 
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Figure 1.11. Typical nematic structures in which (a) FL and (b) Fd can be used. 

In (al) and (b1) S ~ S(x,O and n -:1: n(x,t); (a2) and (b2) S ~ S(x,t) and n = n(x,t); 

(a3) S = S(x,t) and n ~ n(x,t) ; and (a4) S = S(x,t) and n = n(x,t) . 

1.10 Ericksen Continuum Theory for Nonhomogeneously Ordered Nematic Phases 

Recently, Ericksen [37] proposed a modified version of the Leslie-Ericksen 

continuum theory to accommodate statie and moving defects and to model the more 

complex behavior of nematic polymers [15,30,37J, which include: (1) the formation of 

periodic textures during shear flow, (2) the fonnation of periodic textures after cessation 

of shear flow, (3) the fust normal stress difference changes sign from positive to negative 

and back to positive as the shear rate increases, (4) the viscosity increases with 

temperature, (5) shear thickening, and (6) the Cox-Merz role is nol obeyed. The most 

significant change is the addition of the scalar order parameter S, which is another 

internal structural parameter. Since one of the goals of this thesis is to explain the 

formation of the periodic textures formed after cessation of shear flow in nematic 

polymers, the Ericksen theory is presented below as outlined by Edwards et al. [38). 

The balance equations for S and n are defined as follow: 

(1.26) 
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(1.27) 

The superposed dot denotes the material lime derivative, and --L denotes the functional 
8(*) 

derivative with respect to (*). The superscript S denotes that the material propeny varies 
with S; thereforc, the rotational and irrotational viscosities given in Section 1.8 as 'Yi and 

Yl becomes r. and ,~, respcctivcly. and are now functions of S. The two new viscosities 

introduced by the balance equation for S, p~ and ~, arc also dependent on S. Other 

tenns arc already defined in Section 1.8. The constitutive equation for the stress tensor is 

defined as 

t = -p8- éFL e (Vn)T- éFL VS + fJ'1(S)Snn + ttl (S)(nn:A)nn + 
aVn avs (1.28) 

~ (S)nN + ~l(S)Nn + ~(S)A + ds(S)nneA + ât;(S)Aenn 

where DOW thc Leslie viscosities « <Ii ), i = 1, ... , 6) become ({of), i = 1, ... , 6), and are 
also dependent on S. Ericksen [37] derived expressions in terms of S for these 

viscosities, but they all con tain undennined coefficients. Edwards et al. [38] obtained 
complicated expressions for thesc viscosities through simplifications of their fonnulation, 

which describes the dynamical behavior of liquid crystals through generalized brackets, 
to obtain the Ericksen theory. 

1.11 Liquid Crystal Optics 

1.11.1 Birefrinl:ence 

Since a nematic phase has cylindrical symmetry, it is uniaxially birefringent in its 

natural equilibrium state; i.e., it has two refractive indices. As a result of this, a ray of 
light incident on the phase will be divided into two rays which vibrate onhogonally to 

each other and to the direction of propagation of the incident beam. They are the ordinary 
ray (or O-ray) propagating with velocity Vo, and the extraordinary ray (or E-ray) with 
velocity Ve- The refractive indices are 

(1.29a) 
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(1.29b) 

where cL is the speed of light in vacuum. The measure for birefringence is 

(1.30) 

Nematic phases of rod-like molecules are uniaxially positive; i.e., Ile is greater than no. 
Since the two velocities are different, a phase lag &.. between the two waves is introduced 

as they propagate through the medium. 

The refractive index ellipsoid shown in Figure 1.12 is used to show how the 

relative magnitudes of the refractive indices vary with direction of incident light for a 

uniaxial crystal. The optic axis is an axis of symmetry, and runs along the longest semi­

axis of the ellipsoid. For a nematic phase of rod-like molecules, the optic axis coincides 

with the director. If a light beam is propagaterl along OH, then the relative magnitudes of 

no and Ile are OWand OV, respectively. If the beam is propagated along OV, then both 

no and Ile are the radius of the equatorial circle such as OW, and there is no birefringence. 

As a nonextreme case, Do and Ile are OW and OD, respectively, if light is propagated 

along ON. Tberefore, maximum birefringence occurs when the light is incident nonnally 

to the optic axis, and minimum (i.e., no birefringence) if it is parallel to the optic axis. 

Funhennore, the value for no does not depend on the light ray propagation direction. 

Figure 1.12 does not give the actual vibration directions of the 0- and E-rays 

relative to the inddern beam. These directions ne round, again, with the aid of an 

ellipsoid. Figure 1.13 shows an example when th,- incident light wave nonnal Pis near 

the optic axis. The hatched region represents the principal plane, which contains P and 

the optic axis. The elliptical section through 0 made by the plane perpendicular to P is 

symmetrical about the principal plane; therefore, the principal axes of the ellipse are 

perpendicular and parallel to the principal plane [39]. These axes are represented by the 

two vectors D'and D", and are the vibration directions of the ordinary and extraordinary 

waves, respectively. 

1.11.2 Polarized LiKht MicroscQPy of Nematic Phases 

Light which vibrates in only one direction is called plane or linearly polarized 

light. As described above, a ray of light entering a nematic phase is divided into t~'/O 
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Figure 1.12. Refractive index ellipsoid for a uniaxial crystal. 

optic axis 

Figure 1.11 The directions of vibration for a uniaxial crystal. 

rays, which travel at different velocities and vibrate at orthogonal directions. This 
description also applies to linearly polarized light. 
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A polarizing microscope is often used to study the textures of a nematic phase. 

Wh~n the sample is placed between the polars. an interference pattern is ohtained above 

the analyzer. The analyzer allows only the vibration components of the 0- and E-rays 

parallel to it to be transmitted for interference. This means that extinction (or no light 

transmission) only occurs when the vibration and transmission directions are onhogonal. 

The intensity of the interference 1 is [39] 

(1.31) 

where AL is the amplitude of the linearly polarized light, X is the angle between the 

polarizer and the analyzer. and t is the angle between the polarizer and the O-ray 

vibration direction. The phase lag is 

aL = 21thL(ne -1lo)sin2 0/ 

Â.Lcosn 
(1.32) 

where hL is the distance the light ray ttavels in the medium, ÂL is the incident light 

wavelength. '1' is the angle between the incident light and the optic axis, and il is the mean 

value of the two indices of refraction. Polarizing microscopes with X = 9()0 are called 

crossed polars, and are used frequently to study nematic phases. The intensity then 

simplifies to 

( 1.33) 

An application of crossed polars is to classify liquid crystalline phases at rest. For 

instance, a nematic phase exhibits structures li noyaux (or Schlieren texture) shown in 

Figure 1.14. As mentioned in Section 1.9, nematic polymers contain high concentrations 

of defecls. Figure 1.14 shows these defects as disclinalions. The light extinction regions 

originale and terminale al disclinations directed into the page, and are known as brushes. 

Sorne possible director field patterns around these disclinations [4] are depicted in Figure 

1.15. 

The above equations and the next section on lhe banded textures seen after 

cessation of shear flow show that clear insights on the nematic phase microstructure (i.e., 

the director spatial distribution) are obtained by polarized light microscopy. In this thesis, 
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these calculations are perfonned on the predicted transient director fields to obtain 
optical textures 50 that comparisons can he made with experimentally observed results 

acquired using crossed polars. 

Figure 1.14. The Schlieren texture seen using a polarizing microscope. 

(Reprinted from Chandrasekhar and Ranganath [4].) 

Figure 1.15. Some possible director field patterns around the 

disclination in the Schlieren texture. 

1.11 Banded Texture Formed after Cessation of Shear Flow 

1.12.1 Cbaraçteristjcs of the Banded Texture Fonned after Cessation of Sbear Flow 

When a sheared sample of a Lep is placed between crossed polars with one of the 
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polars parallel to the prior shearing direction. a banded texture. subjected to the two 
conditions given below, appears perpendicular to the prior shearmg direction [40-62). 
Figure 1.16 shows a typical banded texture fonned sorne time after cessation of shear 
flow [51]. This texture consists of fine, long. parallel and equidistant black lines [53). 
AlI nematic and cbolesteric LCP's have this characteristic property [58]. This 

phenomenon could then serve as a means to eharaeterize polymers as either being Iiquid 

crystalline or isotropie depending on whether they do or do not. respectively, fonn the 

banded texture after cessation of shear flow. Many experimental results in the literature 

are foreholesterie Lep's. Navard and Zachariades [SI] stated, however, that upon shear. 
a cholesteric-to-nematie transition occurs. which has a relaxation time after cessation of 
shear flow much longer than that of the banded texture. 

A 

p 

c 

s 

Figure 1.16. Banded texture seen between crossed polars after cessation of 
shear flow. A and P are the analyzer and polarizer, respectively, and S is the 

prior shearing direction. (Reprinted from Navard and Zachariades [51J.) 

There is a critical shear rate i. which is a property of the material being sheared, 

below which no bands appear after cessation of shear flow [53,54,56-60). Funhermore, 
even when the applied shear rate y is greater Ihan 1:. Ihere is aise a critical shearing time 

's.e. whieh depends on y [53.54,56-60]. Figure 1.17 shows typical representations of 

experimental eurves for these two conditions. At 1: and ls.c ' the lime for band formation 
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lb is infini te; therefore, the banded texture does not form below these critical values. Both 
these values are dependent on the molecular weight of the sample [53,56], but not on the 
concentration if it is a lyotropic Lep [56]. The applied shear rate, provided that the 
experimental conditions mect the critical values, also affects the width of the bright bands 
formed. With increasing rate of prior shear, the banded texture formed have better 

definitions and thinner bright bands [44]. For instance, Kiss and Porter [44] reported that 
for a 15 wt % poly-y-benzyl-L-glutamate (with molecular weight of 350 OOO)-dioxane 
solution, the bright bands are approximately 3 x IO.S m wide for a low y but only 1 x 10-S 

m for a high y; no values were specified for these two shear rates. Navard and 

Zachariades [51] reported the same qualitative results for the thermotropic 
trifluoroacetoxypropylcellulose (TFAPC). Oenerally, the bright band width ranges from 
1 x 10-6 m to 3 x 10-5 m [42,44,51,53,55-57,61,62] depending on the material and prior 

shearing conditions. 

lb (s) lb (s) 

ls,c ls(s) 

(a) (b) 

Figure 1.17. Typical representations of experimentally detennined relations 
between the time for band formation tb with (a) the applied shear rate y 
and (b) the shearing time ts . The subscript c denotes the critical value. 

As noted above, the time after cessation of shear for the banded texture to appear 

lb depends on the prior shear rate. The time of duration of the banded texture tel also 
depends on y. As y increases, both lb and ld decrease; i.e., with increasing prior shear 

rate, the banded texture fonns more rapidly [44,54,56-60] and relaxes more quickly 
[44,54]. 
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Navard [53] followed the disappearance of the bandcd texture for HPC until the 

sample reached its equilibrium state. Figure 1.18a shows the banded texture he obtained. 

After sorne rime (fd), the bands begin to lose their parallelism and form a wavy banded 

structure as shown in Figure 1.18b, and, eventually, domains appear. After severa! hours, 

this structure is gradually transformed to an equilibrium globular texture as shawn in 
Figure 1.l8c. 

(a) 

(b) 

(c) 

Figure 1.18. Time evolutian of the banded texture seen after cessation of shear 

flow: (a) banded texture growth phase, (b) banded texture relaxation phase, and (c) 

equilibrium phase. (Reprinted from Navard [53].) 

1 
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1.12.2 Director Structure Exhibitin~ the Banded Texture after Cessation of Sbear Flow 

The director structure that exhibits the banded texture when viewed between 

crossed polars follows a serpentine sinusoidal configuration [41,51]. Furtbennore, tbe 

structure does not vary tbrough the sample thickness [42,54,56]. The idea that the 

director is not confined to the sample plane was initially proposed by Viney el al. [41] 

using the results from their Zernicke phase contrast experiments. FurthennoI'C, the use of 

a fll'St order plate at 45° to the crossed polars shows the brigbt bands a1ternate between 

blue and yellow [41,51,62]. This means that along a bright band, the director is 

uniformly oriented, and that ft between two successive bright bands has opposite 

orientations [41,62,63]. Generally, the planar angle that extends from the prior sheanng 

direction to the director ranges from go to 45° [41,42,51,53,57,62] depending on the 

material and prior shearing conditions. 

1,12.3 Possible Explanations for the Fonnation of the Banded Texture after 

Cessation of Sbear Flow 

Recently, several investigators [54,58,60,61] Ieported the idea of stored elastic 

energy as the internai driving force for transient and spatially periodic director 

reorientation. This inerease in elastic energy is due to defects being defonned and 

squeezed together into regions during shear flow [54,58,60]. Fincber [61], bowever, 

attributed this increase in elastie energy to simply a unifonn distortion of the director out 

of the plane of shear during shear flow. Earlier attempted explanations centered on the 

idea that LCP's contraet [50] or recoil [62] after cessation of sbear flow. Despite being 

weil cbaracterized, however, no definite explanation has yet been reported on the 

mecbanism of the ttansient banded texture formation after cessation of shear flow [56,60, 
61]. 

1.12,4lmponance of the Banded Texture Fonned after Cessation of Shear 

Flow in Materials Processio~ 

nIe primary reason tbat nematic polymers are gaining wide usage in a variety of 

applications, such as in the examples given in Section 1.1, is that they can have excellent 

mechanical properties if processed correctly. Shear flow is very common in the 

processing of nematic polymers into three-dimensional objects such as in injection 

molding, and because of tbis the molecules become bighly oriented in the sbearing 
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direction [64]. It is this shear flow-induced molecular orientation that gives these 
materials their excellent mechanical properties. Once the flow is stopped, the fabricated 
pans are be~ng solidiHed, but the shear flow-induced molecular orientation is also 

decaying slowly [64]. During tbis relaxation, the banded texture described above may 
appear after some time (lb); therefore, the shear flow-induced molceular orientation is no 
longer present and the products will not have their excellent mechanical propcrties once 

solidification is over. Hence, it is of utmost importance to understand the cause and 

kinetics of the banded texture formed after cessation of shear flow in order to 

manufacture products from nematic polymers with excellent mechanical propenies. 

1.13 Thesls Oulline and Objedives 

The understanding of the relaxation of nematic polymers after cessation of shear 

flow, as shown above, is of fundamental imponance in the processing of these materials 

into manufactured products with excellent mechanical propenies. The Leslie-Ericksen 

continuum theory describes very weil the dynamics of conventional nematic phases, but 

the extent that this theory can be used for nematie polymers is still not known. 

Nevettheless, it has been used successfully to describe sorne phenomena of nematic 

polymers. Therefore, this theory is used in Chapter 2 to understand the macroscopic 

relaxation phenomena of nematic polymers after cessation of simple shear flow. This 

will cover objectives #1 and 2 of this thesis. 

The recent theory of Ericksen is a more appropriate model to describe the 

complex behavior of nematic polymers, because il also takes ioto account spatial 

variations of the scalar order parameter which nematic polymers have during shear flow. 

Hence, it is intended to use this theory in Chapter 3 to describe the mechanism of the 

transient periodic (i.e., banded) texture formation after cessation of shear flow. This will 

cover objectives #3, 4 and 5 of this thesis. 

The remaining parts of this thesis contain conclusions and recommendations 

(Chapter 4), and the appendices which con tain the equations used in this thesis that are 

not presented in the chapters. 

The objectives of this thesis are as follow: 

(1) To study the effcets of backOows and defects on nematic polymer orientation after 

cessation of simple shear flow using the Leslie-Ericksen continuum theory. 
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(2) To develop. implement and solve a macroscopie wall slip model describing the 

ttansient nematic polymer orientation. 

(3) To develop. implement and solve a model that stuelies the effeet of the scalar order 
parameter on nematic polymer orientation after cessation of shear flow. 

(4) To detennine the stability and cause of fonnation of the banded texture formed 
after cessation of shear flow. 

(5) To explain experimental observations reported in the Iiterature on the banded 
texture formed after cessation of shear flow. 

( 



Chapter2 

Relaxation Phenomena after Cessation of Simple Shear 
Flow for Perfectly Ordered Nematic Polymers 

2.1 Introduction 

Ever since the commercialization of Kevlar by DuPont in the early 1970's, 

nematic polymers are gaining wide usage in a variety of applications. Their popularity 
over that of conventional polymers is due to the fact that they can have superior 
mechanical properties if processed correctly. Shear flow defonnations are invariably a 
part of nematic polymer processing, such as in the injection molding of three-dimensional 
objects. During the defonnations. the molecules are oriented along the flow direction; it 
is this molecular alignment that gives nematic polymers their excellent mechanical 
properties. However. once the shear flow has stopped and heat treatment (i.e., 
solidification) has begun. the shear flow-induced molecular orientation begins to decay 
after sorne finite time [64]. The consequence of this is that the manufactured objects will 

not have the desired mechanical properties. Therefore. it is important to understand the 
relaxation phenomena of nematic polymers after cessation of shear flow. 

This chapter studies the relaxation phenomena after cessation of simple shear flow 
for the typical ne matie polymer PBG using the Leslie-Ericksen continuum theory and the 
Euler-Lagrange equation for surface motion. The simple shear flow configuration is 
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chosen because it is used quite often experimentally on LCP's [51,53,59-62], provides a 

shear flow defonnation [65], and has practical utility in developing an understanding of 

the processing of r,ematic polymers. Although the extent in which the L-E continuum 

theory applies to nematic polymers is still not known yet, it has been used successfully to 

describe the magne tic reorientation of these materials [17]. The rest of this chapter 

consists oi the development of the panial differential equations that describe the 

relaxation pht.!\om;;na of nematic polymers after cessation of simple shear flow. It also 

con tains results and discussion on the solutions of these equations under various 

conditions, and a section containing a summary and concluding remarks. This chapter 

studies specifically the effects that the surface conditions, defects and backflow, which 

are ail present following shear flow, have on the equilibrium director orientation and the 

director orientation al relaxation time. These two quantities are imponant, because, in the 

absence of any heat treatment. they define the state where the director inevitably relaxes 

to and a measure of how long it takes. This information is then helpful, as a first 

approximation since no heat treatment is considered, to those who want to manufacture 

objects with excellent mechanical properties from nematic polymers. 

2.2 Balance Equations 

The simple shear flow configuration is shown schematically in Figure 2.1. The 

phenomena are best described in Carte sian coordinates; therefore, the director field is 

defined as 

n = (sin 9 cos cI». sin e sin cI», eos e) (2.1) 

where the unit length constraint. n· n = l ,is automatically satisfied. 

The following assumptions are used in this study: 

(1) The nematie polymer phase is perfectly ordered, and composed of rigid rod-like 

molecules; hence. the Leslie-Ericksen continuum theory can be used. 

(2) The relaxation phenomena are isothennal. This assumption is invariably made in 

modeling flows of nematic phases [31]. Consequently, the material physical constants, 

such as the Frank elastic constants and Leslie viscosities, are now constants. 
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Figure 2.1. Schematic representation of the simple shear flow configuration, and 

definition of the Canesian coordinate system. The plates are at z = 0 and z = h. 

(3) The plates are infinitely wide; hence, a~) = 0, where (*) denotes a dependent 

variable. 

(4) There are no external body forces, such as the gravitational field. Hence, F = O. 

(5) The nematic polymer phase is incompressible [31]; i.e. p is a constant. 

(6) The director reorientation-induced backflow is a creeping flow; i.e., the viscous 

forces predominate over inenial forces. Therefore, p V = 0 . 

(7) There are no flows along the x- and z-axes; i.e., Vx = 0 and Vz = O. Since the 

backflow is director reorientation-induced, pressure does not affect the linear momentum 

balance. 

(8) There is no positional slip on the surfaces; this assumption holds weil for viscous 

liquids and polymer melts [65]. 

(9) The inenia of the director is sma!l [66] and neglected. 

The velocity field during the relaxation process then simplifies to 

v = (0, Vy,O) (2.2) 
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and the three dependent variables are as follow: 

9 = 8 (x, z, t) (2.3a) 

(2.3b) 

vy = vy (x, z, t) (2.3e) 

Since there are three unknowns, three equations are needed. They are the y-component of 

the linear momentum balance equation, and the y- and z-eomponents of the internai 

angu)ar momentum balance equation. The symbolic algebra program Theorist [67] is 

used to help derive these equations. To derive the y-component of the linear momentum 

balance equation, assumptions #1 to 7 given above, equations (1.6), (1.18) to (1.20), 

(1.23), and (2.1) to (2.3) are used. The final result of this derivation is 

av a, av ae av ae 
1121 ~ - + 1122 ~ - + 1123 ~-az az ax az az az 

where the angle-dependent viscosity functions {11i ), i = 1, ... , 23, are given in Appendix 

A. Assumptions #1 to 3, 7 and 9, equations (1.20) to (1.24), and (2.1) to (2.3) are used to 

obtain the y- and z-components of the internai angular momentum balance equation. 

They are, respectively, expressed as follow: 

ae dl» 2 a iJ4» a a, ~ a af 
1'124-= 'q (-) + "2--+K3--+ q{_)2 + "5--+ 

àt ax ax ax ax az az az az 
~2 aae aae ae aae 

K6 (~-) + "7--+ K8- - + "9 (_)2 + "10-- + àx ax ax àx az az az az 
(2.5) 
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Kn--+ KI2--+ K13--+ K14-- + K1S--+ 
~~ ~~ ~~ ~~ ~~ 

aeae a, av av 
K16- - + 1115 - + 1126 ~ + 1'\27 ~ ax az at ax az 

wherc the angle-dependent elastic functions { ICi J, i = l, ... , 29, and viscosity functions 
{11i J, i = 24, ... , 30, are also given in Appendix A. The material physical constants use<! 

in this study are for the polymer PBG rI3], and are tabulated in Table 2.1. 
Since there are two generalized coordinates here (9 and ~), two Euler-Lagrange 

al 

a2 

a3 

«4 

as 
CX6 

'YI = a3 - a2 

12 = Cl(; - aS 

Table 2.1 

Physical Constants for PBO [13] 

Viscosities, N s m-2 

Frank Elastic Constants, x 10-12 N 

- 3.66 
- 6.92 

1.85 x 10-2 

3.48 x 10-1 

6.61 
-2.93 x 10-1 

6.94 

- 6.90 

12.1 

0.78 

7.63 
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equations goveming surface motion are needed. Section 1.7 derives the Euler-Lagrange 
equation for the planar component of surface motion only; i.e., for ,. To obtain the 

goveming equation for the nonplanar companent, , is replaced by a in the derivation of 

Section 1.7. Furthermore, in Section 1.7, it is assumed that any planar orientation is an 

easy axis so that the coupling energy is a minimum and can he neglected. Since the 

swface director need not be planar [25] and nonplanar easy axes also exist [14], it can he 

assumed that any surface orientation is an easy axis and, therefore, the coupling energy is 

a minimum which can he neglected. Hence, the results of the derivation using equations 

(1.6), (1.13), (1.14), (1.17) and (2.1) are as follow: 

(2.7a) 

(2.7b) 

where the angle-dependent elastic functions ( 1<i ), i = 30, ... , 35, are given in Appendix 

A. A superposed dot den otes time differentiation. Vz is the z-component of the outward 

unit nonnal vector to the plates; therefore, Vz = 1 at z = h (top plate) and Vz = -1 al z = 0 

(boltom plate). Since there are no known experimental values in the literature on the 

surface viscosities of nematic polymers, )..S is allowed to sample the range from zero to 

infinity. 'A,s = 0 corresponds to an orientational free surface, and 'A. S ~ 00 corresponds to 

fixed surface director orientation because. in this case, ~~ = ~~ = O. 

The initial and periodic boundary conditions are as follow: 

e = ai (x, z) at t = 0, 0 ~ x ~ L,OS z ~ h (2.8a) 

(2.8b) 

v y = 0 al t = 0, 0 S; x S L,OS; z S; h (2.8c) 

09 
OX = 0 at t > 0, x = 0, 0 S z S; h (2.8d) 

ëJ9 ox = 0 at t > 0, x = L,OS; z S; h (2.8e) 
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a, 
ax = 0 at t > 0, x = 0, 0 S z S h (2.8t) 

:: = 0 at t > 0, x = L,OS; z S h (2.8g) 

Vy=O at t>O, x=O, OSzSh (2.8h) 

Vy = 0 at t > 0, x = L,OS z S h (2.8i) 

(2.8j) 

(2.8k) 

(2.81) 

(2.8m) 

Vy = 0 at t > 0, 0 S x S; L, z = 0 (2.8n) 

Vy = 0 at t > 0, 0 S x S L, z = h (2.80) 

Equations (2.4) to (2.6) and (2.8) are solved numerically in dimcnsionless form 

using the material physical constants for PBG. The scaling variables, dimensionless 

governing equations, and dimensionless initial and periodic boundary conditions are 

given in Appendix A. The Galerkin finite element method is used with ten linear basis 

functions over ten elements in each coordinate [68]. The time integnttor is the first-order 

Euler predictor-corrector method [69], and the Newton-Raphson method is used for 

solving this system of nonlinear partial differential equations. For ail calculations, the 

plate spacing is chosen as h = 5 x 10-5 m, and the plate length is chosen as L = 3 x h. The 

code is written in FORTRAN, and executed on the IBM 3090 Sl30 mainframe at M,,-Gill 

University. A copy of the code is available, upon request, from Prof. A. D. Rey. 
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2.3 Results and Discussion 

This section presents predictions from the model oudined above. Comparisons 
between the predictions from this model and experimental observations can not be made 
because there are no known experimental reports in the literature. The analysis in this 
section is limited. ft contains the essential effects that the surface conditions (surface 
viscosity), defects (surface irregularities) and bacld10w have on the cquilibrium dircctor 
orientation (Ocq and ~) and the dircctor orientational relaxation times ('te and 't+) after 

cessation of simple shear flow. 

2.3.1 Effects of Surface Conditions 

This section examines the effccts that the surface conditions have on 8eq, feq, 'te 
and 't+ during the relaxation stage aCter cessation of simple shear flow. The initial 

conditions for the dircctor field are expressed as follow: 

o = t 1t rad at t = 0, 0 S x S L, z = 0 (2.9a) 

9 = t 1t rad al 1 = 0, 0 S x S L, z = h (2.9b) 

9 = à 1t rad at t = 0, 0 S x S L, 0 < Z < h (2.9c) 

~ = 0 rad al 1 = 0, 0 S x S L, z = 0 (2.9d) 

~ = 0 rdd at t = 0, 0 S x S L, z = h (2.ge) 

~ = k 1t rdd al t = 0, 0 S x S L, 0 < Z < h (2.9f) 

These initial conditions specify a typical director configuration that a nematic pol ymer 

possesses at sufficiently high shear rates [30,35,36,61], and is shown schematically in 

Figure 2.2. Since these initial conditions stipulate a unifonn director rotation, except at 
the bounding surfaces where no rotations are initially present, the initial bacldlow Vy is 

zero everywhere. This has already been specified by equation (2.8c). Furthennore, there 

is no backflow on the surfaces because of the no slip condition. 
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Figure 2.2. Schematic representation of a typical director configuration for a 

nematic polymer being sheared between parallel plates at high shear rates. 

Figure 2.3 shows the time evolution of the tilt angle a (first row), twist angle cp 
(second row) and dimensionless velocity Vy• (third row) profiles along the dimensionless 
length x* = ~ after cessation of simple shear f10w at a dimensionless height of z* = : = 0 

(f1l'St column), z* =0.1 (second column ), z* = 0.3 (third column) and z· = 0.5 (fourth 

column). The parameter is lime, and the dimensionless surface viscosity is).,</I = 1. Only 

the resuIts from the bottom half of the simple shear f10w configuration, as shown in 

Figure 2.1, are given bec au se the resuIts are symmetric about the midplane (z· = 0.5). 

The initial conditions, given by equation (2.9), specify director gradients near the 
bounding surfaces (see Figure 2.2), and uniform bulk orientation. These gradients 

translate into elastic director distortions, which, consequently, rai se the elastic free energy 

of the system as shown at time t = 0 s in Figure 2.4. To lower this stored free energy, the 

directors on the surface and in the bulk but adjacent to the surface, which is approximated 

as z· = 0.1 in this study, reorient toward each other. Since a nematie phase transmits 

torques [14], the act of director reorient~::=:1 near the surface diffuses through the sample 

thickness. Consequently, aU the bulk directors reorient. This phenomenon is evident in 

this model primarily through: 

(1) the k'4. KS. 1C9, 1(10 and KIS terms in equation (2.5), 

(2) the 1(20 and K28 terms in equation (2.6), and 

(3) the 1(30 and K33 terms in equations (2.8j) to (2.Sm). 

In addition, Figure 2.3 shows that the directors closest to the surface relax first, and the 

directors in the midplane (z* = 0.5) relax last to equilibrium. This is due to the fact that 

the driving force for director reorieutation, which are the direetor gradients, is located 

adjacent to the surface. In addition, it also takes time to tmnsmit the direetor reorienting 

torques from the surface into the bulk. The nine Je terrns mentioned above, along with the 
1124 tenn in equation (2.5) and the 1128 term in equation (2.6), show that these ideas are 

ecntained in this model. Figure 2.3 also shows that the directors relax almost uniformly 

at eaeh z· and for each time step. The word almost is used to describe the director 
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Figure 2.3 (continued on next page). Tilt angle 8 (first row), twist angle' (second row) 

and dimensionless velocity Vy* (third row) spatial profiles at dimensionless heights of z* 

= 0.0 (first column), z* = 0.1 (second column), z* = 0.3 (third column) and z* = 0.5 

(fourth column). The times are: t = 0 S (--), t = 372 s (-- - - -), and t = 1413 s ( .. 
... ). 
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orientation, because director gradients are needed to create the backflows shown in the 

bottom row of this figure. Backflow is not created at z* ::: 0.0 because of the no slip 

condition. The nonuniformity in the director field and the shape of the dimensionless 

velocity profile are attrlbuted primarily to the periodic boundary conditions; i.e .• 

equations (2.8d) to (2.8i). The maximum magnitude of the velocity profile is a measure 

of the rate of director reorientation; the faster the director rotales, the stronger is the 

rcorientation induced-backflow. Figure 2.3 shows that the direclors rotate the fastest at 

z* ::: 0.1, and the slowest at the midplane where Hule director reorientation-induced 

backflow is created; thif' is consistent with the aforesaid discussion. Lastly, in the order 

of tens of minutes, the directors reorient to an equilibrium state. In this stale. the director 

orientation is given by 9eq == 1.492 rad and ~ == 0.026 rad, and has no elastic free energy 

(Figure 2.4). Therefore, during the relaxation phenomena arter cessation of simple shear 

flow, the directors 1'C0rient to minimize the shear flow induced-elastic free energy. 

Figure 2.5 shows the dependence of the tilt angle (top graph) and twist angle 

(bottom graph) relaxation times on the dimensionless surface viscosity. The parameter is 

the dimensionless height. The relaxation times are defined to be the times for 8 and, to 

attain a state of 63.2 % of the difference between their initial and equilibrium values [70). 

Once more the phenomenon that directors relax fastest at z* ::: 0.1 and slowest at z* = 0.5 

is present, which is characteristic of the given initiaI conditions, as evident in Figure 2.5. 

Figure 2.6 shows the dependence of the final orientation, 8cq (top graph) and 'cq (bollom 
s· 

graph), on ~ . 

There are three points that are of interest in Figures 2.5 and 2.6. Firstly, al cach z* 

and ~t , t, is longer than ta. This is due to the fact that the splay and bend elastic 

constants are each about ten limes greater than the twist elastic constant, and that the 

initial conditions contain more splay than twist director defonnations. Hence, the system 

tries to relax the splay and bend distonions first since they cost more energetically. The 

second point to note is the effect of ~ on the relaxation times and equilibrium angles. 

Figure 2.6 shows that the equilibrium angles are closest to the initial bulk angles but 

furthest away from the initial surface angles wh en Â.~ = O. Upon increasing the 

magnitude of ~f!' ,the equilibrium orientation begins rnoving away from the initial bulk 

orientation, but approaches the initial surface orientation. At ~s· ~ -, the equilibrium 

orientation is parallei to the initial surface director ori'!ntation. In short then, the 

equilibrium director orientation is governed by the surface conditions, which are given in 

this model byequations (2.8j) to (2.8m). There is maximum director reorientation on the 

surfaces when 'A.s* =0. Conversely, there is minimum (no) director reorientation on the 
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surfaces when 'AS-~ 00; i.e., ~ = 0 and : = O. Figure 2.S shows that upon increasing 

)..rJI, 'te and,.. increase. This is consistent with the results given in Figure 2.6. Upon 

increasing )t, swface director reorientation decreases to the point where no reorientation 

is pcnnitted at 'AS-~ 00. The relaxation times are then fasteSl al)..~ = 0 since the surface 

dircctors reorient freely towards the bulk directors, which themselves reorient minimally. 

On the other hand, when ).,rJI ~ -, ail the bulk dircctors must reorient to the surface 

director orientation. As discussed above, il takes time to transmit torques over distance 
from the surface into the bulk; therefore, the relaxation times are longe st for fixcd 

anchoring conditions. 
The last point of interest is that 'to, ~ geq and ~ vary dramatically within the 

range 0 s)..~ S 2, but then only slowly and slighdy for )..~ > 2. This can he explained by 

comparing the magnitudes of the surface and bulk viscosities. The dimensionless surface 

viscosity is defined as 

(2.10) 

Notice the units of 'As is N s m- I, and not the usual bulk viscosity units of N s DT 2. To 
s 

then compare magnitudes of viscosities, the quotient <f> should be used instead of simply 

'As, If 'As· < 2, then 'YI > ct) and surface director reorientation is easier than bulle director 

• :t reorientation. Conversely, if 'Ar; > 2, then ~h) > 'YI. and bulk director reorientation is now 

casier than surface director reorientation. Hence, the value).,S- = 2 can then he thought of 

as a criticaI point separating two different types of dep'.;ndence on 'As· as described above. 

2.3.2 Effects of Defects 

Defects, as already defined in Section 1.9, are points and Hnes (or disclinations) 

where the director field changes discontinuously [14]. This section examines the effects 
that defects have on ~ and ~ by using two simple types of irregularities in the swface 

director configuration. The initial conditions of the director field in thesc IWO cases are 
expressed as follow: 
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Case! 

~ .. 
9 = t "rad at t = 0, ° S x S L,OS z S h (2.11a) 

+=Orad at t=O, OSxSL, O<z<h (2.11b) 

+=Orad at t= 0, OSx <fL utL<x SL, z=O (2. Ile) 

• = 0 rad al t = 0, 0 Sx <f Lut L < x S L, z = h (2.11d) 

• = 1" rad at t = 0, x = ~ L z = 0 22' 
(2.1 le) 

+ = 1" rad al t = 0, x = ~ L z = h 
22' 

(2.110 

Case 2 

e = ~ "rad at t = 0, ° S x S L,OS z S; h (2.12a) 

+ = 0 rad al t = 0, 0 S; x S L, 0 < z < h (2.12b) 

.=Orad al 1=0, 0S;x<O.3125 LuO.3125L<x<0.6875 Lu 
(2.12c) 

0.6875 L< x SL, z= 0 

.=Orad al t=O, OS;x <0.3125 LuO.3125L<x <0.6875 Lu 
(2.12d) 

0.6875 L < x S L , z = h 

.=t" rad at t = 0, x = 0.3125 Land 0.6875 L, z = 0 (2.12e) 

• =t" rad at t = 0, x = 0.3125 Land 0.6875 L, z = h (2.120 

The director configurations for these two cases are depicted schematically in Figure 2.7. 

- Since there are no direclor rotations initially, except at the bounding surfaces, the initial 

backflow Vy is everywhere zero. This is specified by equalion (2.8c); there is no 
,", 
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backflow on the surfaces because of the no slip condition. Thesc two types of surface 
irregularities are IDOtivatcd by the work of CUJTie and Lcslie [71]. They predicteci evenly 

spaccd disclinations ronning along the width of the plates. 

- - • - - - • - • -- - - - - - -- --- - - --- - - ---- - - - - -- ---- - • - - - • - • -
(a) (b) 

Figure 2.7. Schematic representations of the director configurations 
containing surface disclinations for (a) Case l, and (b) Case 2. 

Figure 2.8 shows the time evolution of the tilt angle 8 (fust row), twist angle' 

(second row) and dimensionless velocity Vy* (third row) spatial profiles for Case 2 at a 

dimensionless height of z* = 0.0 (fll'St column), z* = 0.1 (second column), z* = 0.3 (thinl 
column) and z* = 0.5 (fourth column). The parameter is time, and the dimensionless 

surface viscosity is ')..st = 1. Once again, only the results from the bottom half of the 

simple shear flow configuration are given because the results are symmetric about the 
midplane (z* = 0.5). There are two intriguing points to note from the results contained in 

this figure. The directors are not tilted in the stressed state (t = 0), but are tilted during the 

relaxation phase (t > 0). The exception to this is at the midplane, where no noticeable tilt 
is observed. The director field reorients in this manner so as to release the stored elastic 

free energy as fast as possible (Figure 2.9). This phenomenon is contained primarily in 
this model by: 

(1) the ICI, K2, IC3, 1\4, KS and Kil terms in equation (2.5), and 
(2) the IC31 term in equation (2.8j) and (2.8k). 

Thus, any spatial gradients in the twist angle • causes the dircctors to tilt. This then 

explains why no noticeable tilt is observed at z* = 0.5; there is no significant twist angle 
gradient herc. This leads ta the next point. 

Secondly, it is noted here as well (sec Section 2.3.1) that the dircctor reorientation 

dynamics are very slow al z* = 0.5. This is evidenl by observing principally the 

dimensionless velocity profile. High rates of director reorientation create strong 
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(fourth column). The times are: t = 0 s (--), '. = 158 s (-- - - -), and 1= 623 s ( ... 
. . ) 

47 



48 

( 

1.65...-------------y------------, 

1.60 -

! ,,*"'----
.,J 

CIl - - --
1.55 . 

1.5 

1.0 

0.5 -

0.2 . 

0.1 
J 

" < , 
• ~ -4 - ... 1 

>h 0.0 l - -- i -, ... 
~ 

'().I 1 
'().2 j 
'().3 --- 1 

0.0 0.5 1.0 0.5 1.0 1.S 

x· 

Figure 2.8 continued. 

( 



49 

- 25 -'e 
0- 20 -', 
~ . -• 
-= 15 -èI) 
c 
~ ...... 

~ 10-

~ 
~ 5 -
~ 

" , 

0 1 1 1 1 

0 200 400 600 800 1000 

Time (s) 

-
Figure 2.9. Transient relaxation of the stored elastic free energy fJe,. unit length. 



( 

( 

bacldlow (sec z* = 0.1); however, the backflow at z* = 0.5 is insignificanL This is due to 
the fact that the driving force for director rcorientation (director gradients) is located ncar 
the surfaces, and that il takes timc 10 transmit these reorienting torques over distance from 

the surfaces into the bulk. 
The relaxation time and equilibrium value for, arc given in Table 2.2. Values of 

1+ for other thickness levels are not reported. This is due 10 the difficulties encountered in 

n'ying to find these values embedded in the complex reorientation dynamics of these two 

systems (see Figure 2.8). The presence of disclinations during simple shear flow then 
prevents the equilibrium director field after cessation of flow to lie within the prior shear 
plane; Le., the x,z-plane. In addition, this phenomenon is not affected by the surface 

conditions (À.~). Even for flXed anchoring at the surfaces (AS-~ 00), there will still be 

out of shear plane components; however, due to the nonuniformity of the initial 
conditions of the surface directors, the resulting equilibrium configuration is not uniform. 

Case 

1 

2 

Table 2.2 
Relaxation Time (t.) and Equilibrium Value (~for 

the Twist Angle (,) at the Midplane (z* = 0.5) 

~(s) ~ (rad) 

(with (without (with (without 

bllCkflow) backflow) backflow) backflow) 

2220 2440 0.0686 0.0686 

2000 2270 0.1377 0.1377 

Table 2.2 a1so shows that ~ for Case 2 is faster than that for Case 1 despite 

containing more defects and a larger equilibrium twist angle (see Section 2.3.1). The 

underlying reason for this is that the reorientation induced-backflow is sbOnger in Case 2, 

because of the presence of more defects in this case. As the director field around the 
disclination relaxes to equilibrium, backflow is created. When the surface disclinations 
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move closer to cach other. as in going from Case 1 to Case 2. the resulting backflow then 
bccomes stronger. Since bacld10w and director reorientation are couplcd. the rate that the 
dircctor relaxes to cquilibrium is increascd with increasing backf10w strength. This efTcct 
of backflow is further considered in the next section. 

2,3,3 Effects of Backflow 

This section investigates the effccts that the presence of the dircctor reorientation­
induccd backflow have on ~ and feq. Figure 2.10 shows results for't+ using the initial 

conditions from Section 2.3.1 and)"~ = 1. Furthennore. Table 2.2 gives ~ for the initial 

director fields and conditions used in Section 2.3.2. It is noticed rather quickly that the 
presence of backflow docs have an impact on the dynamics of the director reorientation 
process. Backflow increases the rate of reorientation. which results in shoner relaxation 
times. The cquilibrium state, however. is not affected if the backf10w is not present. The 
consequence is that it will only take longer to reach the equilibrium orientation. This 
transient shear flow is a result of the intimate coupling between flow and orientation. In 
short. backf10w relaxes the constraint on director rotation. which is the rotation al 
viscosity 'YI [72]; hence, the rate of director reorientation after cessation of simple shear 

flow is increased. 

2.4 Summaryand Concluding Remarks 

This chapter examined numerically the consequences that the surface ronditions 
(A.\ defects (surface irregularities) and backflow (Vy) have on the relaxation phenomena 
(18, 'f+. 9eq and feq) after cessation of simple shear flow for the typical ne matie polymer 

PDG. The Leslie-Ericksen continuum theory and the Euler-Lagrange equations for 

surface motion were derived and used for this purpose. 
The conclusions from this chapter are as follow: 

(1) The director relaxation time and equilibrium director orientation vary with the 
surface viscosity. For dIe initial conditions used in this study, the variation is sU'ong 

when 'YI > t ' but weak when t > 'YI. In addition, as )..S increases, 18 and 1+ also increase , 

and the cquilibrium director orientation approaches the initial surface orientation. 
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(2) The presence of surface disclinations, as described in Section 2.3.2, prevents the 
equilibrium director orientation from lying within the shear plane. At a given )!, ~ 
decreascs and ~ incrcases with incrcasing number of surface disclinations. 

(3) The director reorientation induced-backflow relaxes the constraint for director 

rotation; consequently, the rate of director reorientation increases. Backflow, however, 

does not affect the resulting equilibrium configuration. 

(4) This model does not predict the growth of a serpentine sinusoidal director 

configuration. Therefore, it cao not explain the fonnation of the banded texture that 

nematic polymeJs exhibit wben observed between crossed polars after cessation of 

simple shear flow (sec Section 1.12). 
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Chapter 3 

Relaxation Phenomena after Cessation of Shear Flow 
for Partially Ordered Nematic Polymers 

J.l Introduction 

During the past two decades, nematic polymers have been replacing conventional 

materials in the manufacturing of various products. For instance, to name a few, nematic 

polymers are used to make bullet proof vests, brake linings, radial tires, tennis rackets and 

pressure vessels. The wide and popular usage of these novel high perfonnance materials 

is due to the excellent mechanical propenies they can have when processed conectly. 

Shear flow defonnations are invariably a part of nematie polymer processing, such as in 

the injection molding of three dimensional objects. During these deformations, the 

molecules are highly oriented along the flow direction; il is this shear tlow-induced 

molecular orientation that gives nematie polymers their excellent mechanieal propcrties. 

However, once the flow bas stopped and heat treatrnent (i.e., solidification) has begun, 

the shear tlow-induced molecular orientation decays away slowly [64]. During the 

relaxation period, the directors may reorient into a periodic pattern along the prior shear 

tlow direction after sorne finite time [53,54,56-60]. This periodic pattern is due to a 

serpentine sinusoidal director field [41,51], and is known as the banded texture [40-62]. 

The banded texture is described in Section 1.12. Consequently, the shear tlow-induced 

molecular orientation is no longer present, and the rnanufactured products will not have 
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·r. the desired excellent mechanical properties once solidification is over. Therefore, il is of 
utmost importance to understand the cause and kinetics of the bandcd texture fonncd after 
cessation of shear flow in order to manufacture products from nematic polymers with 

c,,:"!'Uent mechanical properties. 
The study in Chapter 2 shows that the Leslie-Ericksen continuum theory can not 

be uscd to predict the formation of the banded texture aCter cessation of shear flow for 
nematic polymers. This important conclusion, by no means, comes as a total surprise, 

because the extent to which this theory applies to nematic polymers is still not known yet. 
The inadequacy of this theory is due to the fact that il docs not cake into account the 
scalar arder parametcr S. Shcar flow affects S in nematic polymers, which can imply 

spatial variations of S [30]. This idea of spatial variations of S is also supponed by the 
predicted periodic temporal oscillations of S in monodomain and spatially invariant 
nematic polymer systems during shear flow [30,35,36]. Consequently, this chapter 
studies the relaxation phenomena and pattern fonnation after cessation of shear flow for a 
typical nematic polymer using the more general Ericksen and Landau-de Gennes nematie 
continuum theories. Funhennore, this chapter examines specifieally the effeets that an 
initial periodic spatial variation of S (i.e., base value Sn and amplitude As) have on the 
time for pattern formation lb and the maximum planar orientation ~ (sec Figure 2.1) in 

the resulting transient periodic director configuration. These two quantities are imponant 
becausc, in the absence of any heat ueatment, they give a measure of how long the 
directors remain oriented in the shear flow direction and how much the directors can 
ratate away from this direction. This infonnation is then helpful, as a first approximation 

since no heat treatment and only phlllar director orientation are considered, to those who 

want to manufacture objects with excellent mechanical propenies from ne matie polymers. 

The rest of this chapter consists of the development of the partial differential 

equations that govern the relaxation phenomena of nonhomogeneously ordered nematie 

polymers after cessation of shear flow. It also contains results, physieal and mathematical 
interpretations of these results, discussions on the solutions of these equations under 

various conditions, and a section containing a summary and concluding remarks. 

3.2 Balance Equations 

The foUowing assumptions are used in this study: 

(1) The nematic polymer phase is composed of rigid rod-like molecules~ hence, the 

Ericksen continuum thcory can he used. 
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(2) Figure 3.1 shows the dependenee of the viscosities ( af ), i = l, ... , 6, for the 

nematie pol ymer poly( 4,4' -dioxy-2,2' -dimcthyl azoxybenzcne dodccanediyl) (DDA9) 

[73] whose values werc used in this study. The complex relations for the depcndenee of 

the viscosities on S arc specificd by Edwards el al. [38], and are given in Appcndix B. 

The values reponed by Martins et al. [73] are taken ta he at S = 1 in Figure 3.1. This 

figure shows that therc is a depcndence of the viscosities on S in the desircd working 

range of O. 35 S S s 0.75. For simplieity, however, it is assumcd that ~ .. of (S) in this 

study. Hence, the viscosities will not he denoted with the supcrscript S below. 

(3) The relaxation phenomena are isothennal. This assomption is invl'riably made in 

modeling flows of nematie phases [31]. Consequently, the material physieal constants, 

sueh as the elastic constants and viscosities, are constants. 

(4) The simple shcar flow and cone-and-plate configurations have bcen the only flow 

geomctries (sec Figure 3.2) used to study expcrimentally the banded texture fonncd after 

cessation of shear flow. It is then useful to assume that the plates arc infinitely wide; 

hence, ~) = a~) = 0, where (*) denotes a dependent variable. In addition, since there is 

no variation of the banded texture in the sample thickness direction [42,54,56], it is 
ac*) assumcd that az = O. For simplicity, in the ensuing analyses, the simple shear flow 

configuration is used. 

(5) There arc no extemal body forces, such as the gravitational field. Hence, F = O. 

(6) The nematic polymer phase is incompressible [31]; i.e., p is a constant. 

(7) The director remains within the sample (x,y-) plane. This is a good assumption, 

because il is the planar director orientation that is used to detennine the light intensity 

pattern. 

(8) The director reorientation-indueed backflow is a creeping flow; i.e., the viscous 
forces prcdominate over inenial forces. Therefore, p V = 0 . 
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(9) There are no flows along the x- and z-axes, i.e., Vx =0 and Vz=O. Since the 
backllow is director reorientation-induced, pressure docs not affect the linear momentum 

balance. 

(l0) The inertia of the director is small [66] and neglected. 

(a) 

x 

(b) te 
r 

Figure 3.2. Schematic representations of the (a) simple shear 
flow, and (b) cone-and-plate configurations. 

Th~ simple shear flow configuration is shown schematically in Figure 3.3. The 

phenomena are best described in Cartesian coordinates; therefore the director field is 
defined as 

n = (cos " sin ~, 0) (3.1) 

where the unit length consttaint, n • n = l, is automatically satisficd. The velocity field 
during the relaxation process then simplifies to 

v =(0, Vy, 0) (3.2) 

and the three dependent variables are: 
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s = S (x, t) 

Vy=Vy{x,t) 

z 

Vx .. - - - - -- - - - -- - - - -- - - - -- - - - -
//////////// 
~ 

L 
~ 

x 

Figure 3.3. Schematic representation of the simple shear flow 

configuration, and definition of the Cartesian coordinate system. 

(3.3a) 

(J.3b) 

(J.3c) 

Since there are three unknowns, three equations are needed. They are the y­
component of the linear momentum balance equation, the z-component of the internai 
angular momentum balance equation, and the scalar order parameter balance equation. 

The symbolic algebra program Theorist [67] is used ta help derive these equations. The 

coefficients A, Band C in the Landau-de Gennes free energy density (equation (1.25» 

are not known for a nematie polymer. It is then convenient ta replace the spatially 
invariant tenns in this free energy by an expression given by Dai and Edwards (32), 

whieh is as follows: 

(3.4) 

kB is the Boltzmann constant, " is the rod concentration, T is the temperature, and U is 
the dimensionless nematie potential. The shape of this curve is shawn schematically in 
Figure 3.4 for a typieal nematie polymer phase. Now,only U is unknown, but typieal 
values are known. 
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FS 

s 

Figure 3.4. Typical dependence of the Cree energy FS on the 
scalar order parameter S. S~ is the equilibrium value of S. 

To derive the y-component of the linear momentum balance equation, 
assumptions Il to 9 given above, equations (1.18), (1.20), (1.23), (1.25), (1.28), and (3.1) 

ta (3.4) are used. The final result of this derivation is 

à à9 ~ a~ a~ aV à aV 
0= 1131-- + 1132 - - + 1133 - ~ + 1'\34 - ~ àx àt ax é)t é)x é)x ax àx 

(3.5) 

where the angle-dependent viseosity funetions { 1li }, i = 31, ... , 34, are given in Appendix 

B. Assumptions #1 to 4, 7, 9 and 10, equations (1.20), (1.23), (1.25) to (1.27) and (3.1) to 

(3.4) are used to obtain the z-eomponent of the internaI angular momentum balance 

equation and the scalar order parame ter balance equation. They are. respeetively, as 
follow: 

a~ as é)~ a é)~ a as av. 
1'\35 - = 1\36 - - + 1\37 - - + "38 - - + 1136 ~ ëlt ax ax ax ax é)x ax àx 

(3.6) 

(3.7) 

where the angle-dependent elastie funetions ( ICi ), i = 36, ... , 44, and viscosity funetions 
(11i ), i = 35, ...• 38 are also given in Appendix B. 
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The material physical constants used in this study arc for the polymer DDA9 [73], 
and arc tabulated in Table 3.1. The values for Pl, ln, K, Ks and 1«; are assumed, because 

no experimentally determined values can he found for them. The magnitudes of the thrce 
elastic constants are around the estimated value of 10.12 N [12]. Funhennore, the thrce 

elastic constants fulfill the constitutive hypothesis set up by Maddocks [74]. He studied 

static disclinations in nematic phases using a much simpler free energy density than the 

Landau-de Gennes one, and hypothesized the following inequality: 

Ks+K6>K (3.8) 

The values for Pl and P2 are chosen as such 50 the following predicted ratios are satisfied 

[32,36,38]: 

11!!.L. 1o ; Pl = 1 ; lM: 2 
'YI 'YI P2 

al 

a2 

a3 

«4 + as 
«4+06 

Pl' 
Pl' 

Table 3.1 

Physical Constants for DDA9 [731 

Viscosities. N s m- 2 

·393 

·415 

-4 

429 

10 
-41lx 102 

205.5 x 102 

3.78 

3.78 

37.8 

Il These values are assumed, since no experimentally 

detennined values are reponed. 

(3.9a,b,c) 
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The initial and periodie boundary conditions are as follow: 

(3.lOa) 

s = So + As sin (kg 1tX + t 1t) at t = 0, 0 S x S L (3. lOb) 

Vy = 0 at t = 0, 0 S x S L (3.lOc) 

~ = 0 att > 0, x = 0 (3.lOd) 

~ = 0 att> 0, x = L (3.10e) 

as ax = 0 att > 0, x = 0 (3.1ot) 

as ax = 0 att > 0, x = L (3.10g) 

Vy = 0 at t > 0, x = 0 (3.IOh) 

Vy = 0 att> 0, x = L (3.10i) 

where ~ and As are the wave amplitudes, and k+ and les are the wave length scales. Sa 
is the base value for the wave. 

Equations (3.5) to (3.7) and (3.10) are solved numerically in dimensionless fonn 

using the material physieal constants for DDA9. The scaling variables, dimensionless 

governing equations, and dimensionless initial and periodic boumiary conditions are 

given in Appendix B. The Galerkin finite element method is used with 252 linear 

elements [68]. The time integrator is the first-order Euler predietor-correetor method 

[69], and the Newton-Raphson method is used for solving this system of nonlinear partial 
differential equations. For all calculations, the length L is chosen as 157.5 x 10- 6 m. For 

a typieal nematie polymer, U = 5.769; the equilibrium S value is then Seq = 0.8 [32]. In 

addition, for a typical nematic pol ymer, the moleeular length is 1.5 x ur 7 m and the 

molecular diameter is 1.5 x 10- 9 m [75,76]. Hence, the coneenttation, using the relation 

(32) 
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~=~ U 
3 (molecular length)2 x molecular diameter 

(3.11) 

is 2.53 x 1023 rods m- 3 • At room temperature (T = 298 K), the product kB"T = 1.04 

x t<P J DT 3. The code is written in FORTRAN, and executed on the IBM 3090 S130 

mainframe at McGill University. A copy of the code is available. upon roque st. from 

Prof. A. D. Rey. 

3.3 ResuUs and Discussion 

This sec'~on is divided into two parts. The frrst part presents typical relaxation 

phenomena and IJattern formation after cessation of shear flow. The second part presents 

the effeets of the base value 50 and amplitude As of the initial S periodie spatial variation 

on the relaxation phenomena and pattern formation after cessation of shear flow. As 

mentioned in Section 3.1, the emphasis in this chapter is on the time for periodic pattern 

fonnation (tb) and the maximum planar director orientation (cpm> of the resulting pattern. 

3.3.1 '[mical Results on the Relaxatjon Phenornena and pattern Eonnatjon 

The initial condition used in this section is as fol1ows: equation (3.l0a) with ~ = 

0.01 rad and ~ = ~ m- l • equation (3.l0b) with So = 0.75. As = 0.108 and ks = ~ 

m-I, and equation (3.1Oc). The length scale ~ is chosen such that the periodic director 

field wavelength is 1.5 x 10- 5 m. This is a typical wavelength, as measured 

experimentally, for the director field in the banded texture [42,44,47,51,53,55-57]. 

Funhermore, il is shown below that this wavelength is the fastest growing one when 

eompared to longer and shortcr wavelengths according to the principle that the fastest 

growing wavelength optimizes the effects due to elasticity and backflow [13,17]. The 

length scale kg is chosen to represent a possible spatial variation in S. This is certainly 

not the only possible value; however, there are no known experimentally detenruned 

results on the spatial effects that shear flow h~s on S. The value As = 0.108 is not rather 

large and unrealistic if one considers the large temporal periodic oscillations of S in 

eertain shear rate ranges of nematic polymer flows [35,36). For instance, Larson [35] 

predicted, for one shearing condition, that this temporal oscillation of S ranges from S = 

0.2 to S = 0.8. This gives an amplitude of 0.6. Furthermore, the ide a that these temporal 

oscillations indeed represent spatial variations in S have already been cited by Marrucci 

[30] and Larson [35]. 
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From the above initial conditions. il is noticed that the shear flow has an aligning 
effeet on the directar field; Le .•• == 0 rad for 0 S x ~ L. Conversely. the shear flow does 
not smootb the spatial variations in S. This is due ta the d !pendency of the viscosity Pl 
on S during sheu flow (sec Figure 3.5). As shown schematically in Figure 3.5. the 
magnitude of ~l inereases with S [36]. In addition. the scalar order parameter during 

shear Dow Sr is below the equilibrium value Scq [35.36]. During shear flow. as staled 

above. there arc S spatial variations. When 0 < S < Sr, the elastic force driving S back ta 

equilibrium increases. but the flow force driving S ta lower values decreases. Dy a 
balance of net forces, il would then be consistent for S to retum quickly back to 
cquilibrium. However, SiRCe the magnitude of Pl has decreased (sinee S is lower here), 

the weaker flow force faces a lower viscosity; this increases the effectiveness of the flow 

force. The net force cou Id then be zero, and S remains at this value for a while longer. 
Similar arguments are made when Sr < S < Seq • 

Figure 3.6 shows typical relaxation phenomena for S (first row), • (second row) 

and Vy• (third row) along x· after cessation of shear flow at t = 0.0 s (Cust column), t = 
4.0 s (second column), t = 14.3 s (third column), and t = 31.7 s (fourth column). The 

initial state contains minor director gradients, but considerable S gradients. These 

gradients raise the elastic free energy of the system as shown at t = 0.0 s in Figure 3.7. 
Since the shear flow has stopped, the effeet of the dependency of Plon S, as described 

above, is no longer present. Consequently, the S spatial variations relax after cessation of 

shear flow. This produces spatially periodic torques on the director (t = 4.0 sand 14.3 s) 

to rotate away from the prior flow direction. As shown in Figure 3.7, this is the faste st 

route for the system to release its stored elastic free energy, even though the director 

distortions are growing (t = 4.0 sand t = 14.3 s). This is primarily due to the couplings 
between n and VS inttoduced by the L2 (or, equivalently, K6) constant in the Landau-de 

Gennes free energyexpression (equation (1.25». The dot product n· VS goes to zero 

when n and VS are normal to each other. Since VS is along the prior flow direction, 

VS ~ 0 and only planar director orientation is considered, the magnitude of. then grows. 

As the S spatial variations continue to deeay, so do the driving torques and the director 

begins to reorient towards ils initial state (t = 31.7 s). Figure 3.7 also shows that the 
periodic director pattern is unstable. At t ~ 31.1 s, VS == 0; therefore, FL reduces to the 

spatially invariant terms (Fs) and the equivalents of the director splay and bend distortion 

terms in the Frank-Oseen-Zocher elastic free energy density (equation (1.6». The present 

fastest route that minimizes the stored elastic free energy is that where the dire:tors 

reorient to a uniform orientation. This part of the relaxation phenomenon (i.e., relaxation 
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Figure 3.5. Scbematic representations of (a) the effect shear flow has on the scalar order 
parameter S, and (b) the dependence of the magnitude of the viscosity Plon S. Scq and 

Sc are the equilibrium and f10w values of S, respectively. 
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Figure 3.6 (continued on next page). Scalar order parameter S (tirst row), planar 

orientation angle cp (second row) and dimensionless velocity Vy* (third row) spatial 
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of director distonions) has already been discussed in Chapter 2, where S(x,t) = 1.0 is 

assumed. 

The response is viscoelastic since periodic director reorientation crea tes periodic 

backf1ows, as shown in the third row of Figure 3.6. This is due to the intimate coupling 
between flow and orientation [26-29). The phase difference of t Jt rad between the, and 

Vy• spatial profiles is physically consistent. Maximum director rotation couples with 

minimum flow, and minimum director rotation couples with maximum flow. This kind 

of periodic coupling is seen in the magnetic reorientation of nematic polymers [13,111. 
Unlike the magnetic reorientation phenomenon, however, the sign (±) of Vy* at t = 14.3 

sand any position x· switches to the opposite sign at t = 31.7 s; i.e., at any x*, Vy* 

becomes (-Vy*). This is due to the reversai of director rotation; at t = 14.3 s the directors 

are rotating away from x·, but al t = 31.1 s the directors are rotating back to x*. The 

coupling between reorientation and flow is evidenl in this model through: 

(1) the Tl3l, Tl32, and 1133terms in equation (3.5), and 

(2) the Tl36 tenn in equation (3.6). 

Equation (1.33) is used to calculate the relative intensily patterns. as seen belween 

crossed polars, for the director fields shown in the second row of Figure 3.6. Dy 
assuming a constant phase lag II [11] and taking ep to be ~ (63,181. the relative intensity 

is 

Ir = sin2 (2ep) (3.12) 

Figure 3.8 shows the digitized opticallight patterns of the corresponding director fields in 

Figure 3.6. A strong resemblance between the patterns al t = 14.3 and 31.1 s and the 

banded textures shown in Figures 1.16 and 1.18 is noted. At t = 0.0 s, the optical pattern 

is ail black. This implies that the directors, as specified by the initial condition, are highly 

aligned along the prior shear flow direction [56). At early times (t = 4.0 s), a banded 

texture of weak contrast begins to appear. As time progresses (t = 14.3 s), the directors 

rotate away from the prior flow direction, and the banded texture develops into a weil 

defined periodic pattern with good contrasl. ft then remains for some lime (t = 31.1 s). 

The development of these optical patterns are consistent with the experimental 

observations of the development of the banded texture fonned after cessation of shear 

flow made by Kiss and Paner [44] and Marsano et al. [56]. This rnodel, with the given 

physical material constants and initial and boundary conditions, demonstrates that the 

relaxation of stored elastic energy due to periodic S spatial variations resubs in a transient 
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Figure 3.8. Time evolution of the digitized opticallight patterns representing the patterns 

seen between crossed polars for the director fields in Figure ~ o. The times are: (a) t = 0.0 

s. (b) t = 4.0 St (c) t = 14.3 s and (d) t = 31.7 s. The relative maximum intensity is white 
and the relative minimum is black. 
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periodic distortion of the director field, such that a transient banded texture is seen when 

the sample is viewed between crossed polars. 

In a periodic director reorientation response, backflows are created. As explained 

in Chapter 2, backflows relax the consttaint of director rotation; the rotational viscosity is 

replaced by a lower effective one. The response speed is now increased; therefore, 

viscous flow favors short wavelengths. However, short wavelengths contain large 

director distortions which increase the elastic free energy. The elastic forces then tend to 

favor long wavelengths. Hence, the macroscopically observable wavelength optimizes 

the effects due to the viscous and eJastic forces [13.171. and is the fastest growing one 

[79]. Since the initial condition for the direetor field contains a slight periodic 

modulation, it is necessary to use this optimization theory to show that the wavelength 

used in the above calculations was not arbitrarily chosen but, rather, is the fastesl 

growing one when compared to shoner and longer wavelengths. 
Figure 3.9 shows q"... (tirst row), VY.)TI* (second row) and the free energy per unit 

area (third row) as a function of time at the early (first column) and later (second column) 

stages of the banded texture formation. The parameter is the director field wavelength 4. 
From the f1rst row, it is noticed that the banded texture with Âb = 1.5 x 10· 5 m is the 

fastest growing one wh en compared to a longer and shoner one. ConsequentJy, it is the 
macroscopically observable one [79]. There is a cross over of the ~m curves for 4 = 1.5 

x 10- 5 m and 4 = 6.3 x 10- 5 m at t :: 50 s. Since there are Jess eJastic distortions in lhe 

latter wavelength than in the former, it willtake longer for 4'm in the longer wavelength to 

relax to equilibrium. The free energy (third row) decays similarly for the three 4's. This 

is attributed to the fact that the spatially invariant terms (equation (3.4» in the free energy 

are mueh greater than the other terms, and that So relaxes to equilibrium independently of 

the other variables. 

Thus far, many similarities between the developments of a transient banded 

texture after cessation of shear flow and that due to a magnetie field 113,17 ,79J have been 

cited. There are, however, differeilces. In the magnetic field case, the initial optimal 
wavelength corresponds to the fastest growth rate of VYJO* [13.17). ConverseJy, this is 

not true for the optimal wavelength in this study (Figure 3.9, second row). This 

difference can be accounted for by examining the director fields formed during the 
relaxation phenomena. Figure 3.10 shows the relaxation phenomena of. along x * after 

cessation of shear flow for Âb = 5.0 x 10- 6 m (fust row), 4 = 1.5 x 10- 5 m (second row) 

and Âb = 6.3 x 10- 5 m (third row) at t = 0.0 s (first column) and t = 14.3 s (second 

column). Although the initial periodic modulations (ficst column) for the three 4's are 

quite similar, the resulting director fields at t = 14.3 s are not. In addition. the director 
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fields at t = 14.3 s do not resemble the sm<x>th sinusoidal director fields predieted for the 

magnetie reorientation phenomenon [13,17]. Further insights are obtained by studying 

the power spectrums of the director fieldsl.1
2 

as shown in Figure 3.11. 

Fourier transfonn, or power spectrum, is a common method of analyzing a set of 

numerical data points (80). The goal is then to detennine the periodie eomponents of the 

set of data points with panicular wavelengths. For example, Srajer et al. [13] used 

transient power spectrums of' to show that the wavelength of the transient periodie 

director configuration due to a magnetie field switehes from a shon wavelength to a 

longer one as the magnitude of • grows. The power spectrums in Figure 3.11 are for Âb 
= 5.0 x 10- 6 m (top graph), Âb = 1.5 x 10- 5 m (middle graph) and 4 = 6.3 x 10- 5 m 

(bottom graph). They are obtained by squaring the moduli of the Fourier transfonns 

180,81 J of the corresponding director fields at t = 14.3 s in Figure 3.10. The fast Fourier 

transfonn operation in MA TI..AB [82J is used for this purpose. MA TLAD [82] is a high­

performance interactive software package for scientific and engineering numerie 

computation. Figure 3.11 shows that the director relaxation phenomenon is very different 

for each Âb. There are only two modes at the shortest Âb. four modes at the longest Âb. 

but six modes at the intermediate 4. As mentioned previously, periodic director 

rotations create periodic backflows, which tend to increase the rate of director 

reorientation by reducing the magnitude of the rotation al viscosity. Consequently, since 

the intennediate wavelength has the most modes of periodie director rotation, it is then 

expected that this Âb be the optimal one. Since the longest Âb has the second largest 

number of modes, it is then expected to be the second fastest growing wavelength. 

Lastly, since the shortest Âb has only two modes, it is the slowest growing wavelength of 

the three. This is consistent with the results shown in the fust row of Figure 3.9. The 

results for Vy,m* shown in the second row of Figure 3.9 is then a manifestation of the 

intimate couphng between the multiple modes of periodic director rotation and flow. 

3.3.2 Effects of the Base Value and Amplitude of the Initial Periodic Sealar Order 

Parame ter Spatial Variation on Pattern Formation 

ft has been e~lablished in Section 3.3.1 that the present model, along with the 

given physical materia! properties and initial and boundary conditions, predicts a periodie 

light intensity pattern that is believed to the ubiquitous banded texture nematie yolymers 

exhibit aCter cessation of shear flow. This section examines the effects that the base value 

So and amplitude As of the initial periodic spatial variation in the scalar order parameter S 

have on the time for banded texture formation lb, the resulting maximum orientation 
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angle in the banded texture cItm. and the time to reach this maximum angle ,+,11'1 for the 

optimal wavelength detennined above. 8ased on these results. several experimental 

observations reponed in the literature on the banded texture are explained. 

Figure 3.12 shows the dependence of lb on 50 with As as the parame ter. The 
region of interest for So is chosen as 0.35 S So S 0.75. because Sr < Seq during shear flow 

135.36). The region of intereSl for As is chosen as 0.080 S As S 0.108, because il 

represents a possible range for S spatial variations (see Section 3.3.1). A banded texture 
is deemed subjectively [56] to be present when Ir = 0.005 (i.e .• ~ = 0.035 rad). Figure 

3.12 resembles very much like Figure 3.13. which shows the dependence of lb on the 
shear rate y and with the shearing lime ls as the parameter [57]. It is known, from 

numerical predictions on monodomain and spatially invariant ne marie pol ymer systems 
during shear flow, that S increases with y at sufficiently high shear rates [35.36] as shown 

schematically in Figure 3.14. This could then explain the fact that bands only appear 
when y ~Yc [53,54.56-60). In the decreasing region of Figure 3.14, the directors during 

shear flow are predicted to be oscillating between two orientations. Conversely, the 

directors are highly aligned in the flow direction in the increasing region, which is the 

prerequisite for banded texture formation after cessation of shear flow [44,54.56,57]. For 

instance, Farhoudi [36J predicted for one set of conditions that the tilt angle (see Figure 

2.1) is 9 == 1.763 rad. In addition, by making the plausible hypothesis that As increases 

with ls during shear flow, several experimental observations can be explained. For 

instance, this model predicts that a minimum AS is needed for banded texture formation. 
By this hypothesis, the minimum AS is then related to the critieal shearing dme 's,c 

needed for banded texture formatbn [53,54,56-60]. Figure 3.12 ean then be used to 

explain the experimental findings contained in Figure 3.13. Figure 3.12 demonstrates 

that, at a given As, lb decreases as So increases. The reason for this behavior is that any 

increase in Sn at t = 0 s increases the initial stored free energy primarily through the 

second and third L2 terms in equation (1.25). Furthermore, this stored energy makes the 

system unstable aCter cessation of shear flow, and must be dissipated as fast as possible 

through direetor rotation anô viscous baekflow. ConsequentIy, a system with a higher 

energy level will dissipate its stored energy faster than a system with a lower energy 

level; therefore, the banded texture appears faster. This figure also shows thal. at a given 

So, tb decreases as As increases. This is due to the faet that the stored free energy, 

through the three L2 terms in equation (1.25), increases during flow as As increases. As 

explained above, the banded texture appears faster for a system with a higher ~ü"Jgy level 

than one with a lower energy level. 
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initial periodic scalar order parameter spatial variation So. The amplitudes of the periodic 
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Figure 3.14. Schematic representation of the dependence of the 
scalar order parameter S on the s~lear rate 1 during shear flow. 

Seq is the equilibrium value of S. 
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Figure 3.15 shows the dependenee of +m on So with AS as the parameter. The 

resuJts in this figure are used to explain the phenomenon that the contrast of the banded 
texture increases with increasing priOI' y or ts. Examples of the contrast differentials are 

shown in Figure 3.16 for As = 0.108 and (a) 50 = 0.35, (b) So = 0.55 and (c) So = 0.75 at 

t = 14.3 s, and in Figure 3.17 for Sa = 0.75 and (a) As = 0.080, (b) As = 0.095 and (c) 

As = 0.108 at t = 14.3 s. ft is noted that the contrast of the banded texture inereases with 
So and As, whieh is consistent with the established faet that 50 is taken as '1 and the 

hypothesized fact that As i~ taken as ts. It has been established that the stored fi'ee 

energy increases with either So or AS through the L2 tenns in equation (1.25), and that 

the system dissipatts this energy through periodie director rotation and ~~cous backflow. 
To counter any increases in S (or, equivalently, 50) or vS (or, equivalently, As ) in these 

L2 terms, n rotates more away from the prior flow direction (or, equivalently, the 
magnitude of 'm increases). Consequently, the magnitude of n • VS decreases, and by 

equation (3.12) the rdative intensity (or, equivalently, contrast) increases. 
Figure 3.18 shows the dependence of VY1f1* on So with AS as the parameter. The 

results in this figure are consistent with the faet that stronger (or more) director rotations 
produce stronger backflows. Figure 3.19 shows the dependence of the time to reach 'm 
(~,m) on So with AS as the parame ter. Sinee backflow reduces the constraint for director 

rotation [72J, it Is then expected that for a given As , l+.m decreases as Vy.m* increases. 

3.4 Summary and Concluding Remarks 

This chapter examined numerically the consequences that a spatially periodie 

scalar order parame ter variation have on the relaxation phenomena after cessation of 

shear flow for the typicaJ nematie polymer DDA9. The study was coneentrated on the 

effects that the amplitude (AS) and base value (50) of thr. initial periodic S spatial 

variation have on the time for pattern formation (th) and the maximum planar director 
orientation <4W ira ibis pattern. The Ericksen and Landau-de Gennes continuum theories 

were used for this purpose. A plausible mechanism has been developed for the long 

sought causes of the fonnation of the mysterious and ubiquitous banded textures that 

nemarie polymers exhibit between crossed polars after cessation of shear flow. The 

explanation for this nearly two deeade old problem has been developed into a model, 

which was extensively studied. 

The conclusions from this chapter are as follow: 
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Figure 3.16. Digitized optical light patterns represcnting the patterns seen between 

crossed polars for the director fields at t = 14.3 s. The amplitude of the initial periodic 

sealar order parame ter variation is As = O. 108, and the base values of the variation ;tIe: (a) 

So = 0.35, (b) So = 0.55 and (c) So = 0.75. The relative maximum intensity is white and 
the relative minimum is black. 
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Figure 3.17. Digitized optical light patterns representing the patterns seen between 

crossed polars for the director fields at t = 14.3 s. The base value of the initial periodic 

scalar arder parameter variation is So = 0.75, and the amplitudes of the variation are: (a) 

As = 0.080, (b) As = 0.095 and (c) As:: 0.108. The relative maximum intensity is white 

and the relative minimum is black. 
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Figure 3.18. Maximum dimensionless velocity Vy,m* as a function of the base value of 

the initial periodic scalar order parameter spatial variation So- The amplitudes of the 
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Figure 3.19. Time to reach the maximum planar orientation angle ~.m as a function of 

the base value of the initial periodic scalar order parameter spatial variation So. The 

amplitudes of the pe!Ïodic variation are: As = 0.080 ( ), As = 0.095 ( - - - - - ) 
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(]) The relaxation of stored elastic free energy due to periodic spatial variations in the 

scaJar order parame ter result~· in a transient periodic distortion of the director field, such 

that a banded texture is seen when the sample is viewed between crossed polars. Since 

any spatial variations in S due to shear flow relaxes very quickly in conventional nematic 

phases (30J, these materials do Rot exhibit the banded texture after cessation of shear 

flow. 

(2) The banded texture fonned is energeth;ally unstable. 

(3) The wavelength of the periodic director pattern exhibiting the banded texture after 

cessation of shear flow optimizes the effects due to viscous flow and elasticity 

(4) The power spectrums for the optimal wavelength, a shorter wavelength and a 

longer wavelength show that the director response is different for each wavelength. Th~ 

optimal wavelength has the most number of modes. 

(5) The following commonly reponed experimental observations are explained by 

noting that the base value So of the initial periodic S spatial variation varies with the 
prior shear rate y and hypothesizing that the amplitude As of this variation varies with the 

prior shearing rime ts : 

(a) the rime for banded texL_te formation lb decreases as y or tR increases. and 

(b) the contrast of the banded texture increases as y or ts increases. 

The relaxation phenomena exhibit these observations in response to the fact that the free 
energy increases as y orts increases. 
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Chapter4 

Thesis Summary, Conclusions and Recommendations 

This final chapter is divided into three sections. The first section gives an overall 

summary of this thesis. The second section gives the conclusions to this thesis. Thirdly, 

the last section presents recommendations on funher work that can he done on the subject 

matter contained in this thesis. 

4.1 Thesis Summary 

Nematic polymers are a new class of high perfOlmance materials. Since the 

invention of Kevlar nearly two decades ago, they have been replacing conventional 

materials in many applications. For example, they are used to manufacture bullet proof 

vests and pressure vessels. The main reason that these novel materials are !~aining wide 

and popular usage is that they can have excellent mechanical properties if processed 

correctly. Shear flow deformations, such as in the injection molding of three dimensional 

objects, are invariably a part of nematic polymer processing. During these deformations, 

the molecules are highly aligned along the shear flow direction; it is this shear fJow­

induced molecular orientation that gives these materials their superior mechanical 

propenies. In addition, however, once the flow has stopped and heat treatment has 

begun, the shear flow-induced molecular orientation decays away slowly. Consequently, 

the manufactured products will not have the desired excellent mechanical propenies. 
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Therefore, it is of utmost imponanee to understand the relaxation phenomena of nematic 

polymers after cessation of shear tlv v in order to manufacture r-oduets from nematic 

polymers with superior mechanica! propenies. This was the goal of this thesis. 

Chapter 1 presented briefly the fundamentals of Iiquid crystal physics that were 

needed in this thesis. This ineluded the definition of Iiquid crystaIIine phases, 

orientational order, several nematie continuum theories, orientational slip, and Iiquid 

crystal opties. In addition, it contained a thorough description of the mysterious banded 

texture that nematie polymers exhibit when observed between crossed polars after 

cessation of shear flow. 

Chapter 2 studied numerically the relaxation phenomena after cessation of simple 

shear flow for the lypicaJ nematie polymer PBG using the Leslie-Erieksen continuum 

theory and the Euler-Lagrange equation for surface motion. The major assumption made 

in this chapter was that the scalar order parame ter S(x,t) = 1. This study was concentrated 

on the consequences that the surface conditions (Le., surface viscosity Â.
S
), defects (i.e., 

surface irregularities) and backflow (Le., the director reorientation-induced transverse 

velocity Vy) had on the director orientation al relaxation time (ta and t,> and equilibrium 

orientation (9cq anct q,cq). Predictions from this ehapter were thoroughly discussed, and 

eoncluded to he physically consistent. 

The numeric;al study in Chapter 3 was on the relaxation phenomena and pattern 

fonnation after cessation of shear flow for the typical nematic polymer DDA9. This time, 

however, the more general Ericksen and Landau-de Gennes nematic continuum theories 

were used, and S = S(x,t). In addition, this study examined specifically the effeets that 

the base value So and amplitnde As of an initial scalar order parameter S periodic spatial 

variation have on the time for pattern formation th and the maximum planar director 

orientation ~ in the resulting transient periodic director configuration. Results from this 

chapter were thoroughly discussed, and shown to be able to describe the cause and 

kinetics of the puzzling transient banded texture that nematie polymers exhibit when 

observed between crossed polars after cessation of shear flow. 

4.2 Conclusions 

Chapter 2: 

(1.1) The director reorientation induced-backflow relaxes the constraint for direetor 

rotation; the rotational viscosity is replaced by a lower effective one. Consequently, the 
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rate of director reorientation increases. Backflow, however, does not affect the 

equilibrium director field. 

(1.2) The presence of surface àisclinations zlong the width of the plates prevents the 

equilibrium director orientation from lying withiil the prior shear plane. At a given )..S. 

the planar orientation angle relaxation rime ~ decreases and the equilibrium planar 

orientation angle CPeq increases with increasing number of surface disclinations. 

(2) A macroscopic wall slip model nas been developed. implemented and solved to 
de scribe the transient nematic polymer orientation. 'TO, t,. 8cq and cpcq have been shown 

to vary with).. s. 

Cha,pter 3: 

(3) A model that studies the effects of S on nematic polymer orientation after 

cessation of shear flow has been developed. imp1cmentt',d and solvcd. 

(4.1) The relaxation of stored elastic free energy due to periodic spatial variations in S 

results in a transient periodic distortion of the director field, such lhat a banded texture is 

seen when the sample is viewed between crossed polars. The wavclength of the periodic 

director configuration exhibiting the banded texture has been shown to optimize the 

effeets due to elasticity and viscous flow. 

(4.2) The banded texture was shown to be energeucally unstable. 

(5.1) Low mokcular weight nematic phases do not exhibit the banded texture aCter 

cessation of shear flow, because any shear flow-effected S spatial variations relaxes very 

quickly in these phases. 

(5.2) The following commonly reported experirnrntal observations have been 

explained: 

(a) the time for b~nded texture fQnnation lb decreases as the prior shear rate '1 
or prior shearing time ts increases, and 

(b) the contrast of the banded texture increases as y orts increases. 

The relaxation phenomena exhibu these \)bservations in response to an increase in the 

free energy as y or ts increases. 
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4.3 Recommendations 

The model outlined in Chapter 3 contained many simplifying assumptions. 

Nevenheless, since this is the first known study on the relaxation phenornena of nemaùc 

polymers after cessation of shear flo'v, these assumpùons were warranted. The following 

recornmendations are "ffered for funher work in the subject area of this thesis: 

(1) The simplifying assumption that the viscosiùes are not dependent on S should be 

removed. 

(2) The assumption that there is no variation in the thickness direction (i.e., ~:) = 0) 

should be removed. By doing so, orientation al slip can be incorporated into the mcxlel to 

better refleet the physics of the system. 

(3) The tilt angle a shOllld be included in the mode!. Hence, the serpenrine 

sinusoidal director configuration can be predicted from this model instead of Sihlply a 

sinusoidal one. Furthennore, by doing this, the two velocities Vx and Vz must be 

included in the model. 

(4) The genera) flow problem of nematie po)ymers ShOl'~d be solved; i.e., the 

assumption of a spatially invariant and monodomain system Clught to be lifted. This 

would give the director configuration during shear flow, and, consequently, the iniùal 

state of the system before il starts to decay (i.e., the relaxation phenomena). 
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AppendixA 

Equations for Chapter 2 

The viscosity functions (l'Ii l, i = 1, ... , 23, in equation (2.4) are defined as follow: 

111 = a2 sin2 8 - 'Y2 sin2 8 sin2 ~ (A.la) 

1')2 = i 12 sin (2~) sin (28) (A. lb) 

113 = - 12 sin (2~) sin2 8 (A.1c) 

1')4 =t12 sin (29) cos (2q,) (A. Id) 

115 = - a3 sin (28) + 12 cos2 • sin(28) (A.le) 

116 =t Yl sin (2q,) cos(29) (A.IO 

117 = t a2 cos ~ sin (28) (A. tg) 

- 118 = - a3 sin. + 12 sin q, cos2 8 (A. th) 
~. ,-. 
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( 119 = -~ a2 sin (29) sin ~ 
2 

(A. li) 

1110 = - a3cos ~ + 12 cos ~ cos2 9 (A.lj) 

Tlii = a2 cos ~ cos (29) (A.1k) 

Tll2 = -"t1. sin (28) sin ~ (A. 11) 

Tl13 = ~ al sin2 (2~) sin4 9 - 12 sin2 9 cos2 '" t (a3 + <X6) sin2 8+ t Œ4 (A.1m) 
: , 

Tl14 = a) sin ~ sin (2~) cos 9 sin3 9i-f (as - (2) cos ~ sin(29) (A.ln) 

Tlis =t al sin (~) sin4 9 + Yl sin (2~) sin2 8 (AJo) 

Tll6 = - al cos 8 sin ~ sin3 e+i al cos ~ sin (2~) cos 8 sin3 9 + 
(A.lp) t (a2 - as) sin (28) sin ~ 

" 

Tll7 = al sin2 (24)>) cos 9 sin3 9 - "12 cos2 4» sin (~t (a3 + Œ6) sin (28) (A.lq) 

1118 = -t al sin (24)>) sin ~ sin4 9+i UI sin (24)>) sin 4» sin2 (29) + 
(A. Ir) ! (as - (2) cos ~ cos (29) 

1119 = ;} a1 sin2 (20) sin2 ~+ t (as - (2) cos2 e + t (a3 + <X6) sin2 ~ sin2 9 + 
(A.ls) 

lŒ4 
2 

1120 = i a) cos 4» sin (2~) cos 9 sm.) e -al cos 9 sin 4» sin3 9 + 
(A.It) t (a2 - us) sin (29) sin ~ 

1121 = f al sin (2~) sin2 (2() +t (a3 + CX6) sin (24)>) sin2 e (A. lu) 

( 



1122 = -tat sin (2e\) sin e\) sin29-+-tal sin e\) sin (2e\) sin2 (29)-+­

t (as - a2) cos 41 cos (29) 

1123 =t al sin (48) sin2 ()+t (a2 - as) sin (2() + t (a3 -+- 06) sin (29) sin2 e\) 

(A. Iv) 

(A.lw) 

The elastic functions { 1G J, i = l, .•. , 29, and viscosity functions (lU l, i = 24, ... , 

30, in equations (2.5) and (2.6) are defined as follow: 

Kt = -t Ktt COS e\) sin (29) -+- 2 (~ - K33) cos cj) cos 8 sin3 e + 

t (K33 - K22> sin (2~) cos e sin3 8 sin cj) 

K2 = -t Ktt sin (28) sin ~+t (K22 - K33) cos cj) sin (2~) cos 8 sin3 9 

K4 = (K33 - 2K22) cos cp cos 8 sin3 8 - ~3 cos cp eos3 6 sin e 

KS = - tK22 sin (28) sin ~ + (J(Q2 - K33) cos3 8 sin ~ sin 8 

lC6 =t (K33 - Ktl) cos cp sin (2~ +t (K22 - K33) sin (2~) sin (26) sin cp 

K? = (KIl - K33) cos cj) cos2 8+ ~ (K22 - K33) sin (2$) sin2 e sin cj) + ~3 cos cp 

Kg = (K33 -t K22 - t KI Il cos2 ~ sin (2~ + t (K22 . KI}) sin (2.6) 

K9 = f<K Il - K33) cos cp sin (26) 

KIO = (Kll - K33) cos cl> sin2 8 + K33 cos cj) 

KIl = (KIl - 2 K22 + K33) cos2 cp sin2 a + ~ (K22 - K33) cos2 ~ sin2 (26) + 

à (K33 - K22) sin2 (29) 

(A.2a) 

(A.2b) 

(A.2e) 

(A.2d) 

(A.2e) 

(A.20 

(A.2g) 

(A.2h) 

(A.2i) 

(A.2j) 

(A.2k) 
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..- Kl2 = -2 Kil cos2 9 sin ~ + <K22' K33) cos ~ sin (~) sin2 9 + (A.21) \ t (K22 - K33) cos «1» sin (2«1») sin2 (29) 

K13 =t (K 11 + 3 K22 - K33) sin (2cj») sin (2~ +t (K33 

- 4 K22) sin (2~) cos 9 sin3 a-~ K33 sin (2~) cos3 9 sin 9 
'"' 

(A.2m) 

Kl4 =t (Kil - K22) sin (2cj») sin (29) + 2 <*l2 - K33) sin (2~) cos3 9 sin a (A.2n) 

KIS = -2 K33 cos2 9 sin cp + (K33 - K22) sin cp sin2 (29) (A.2o) 

Kl6 = (K33 - KIl) cos2 9 + (Kt 1 - K33) cos2 ~ sin2 9 + 2 (~2 - K33) cos2 9 sin2 • (A.2p) 

Kt7 = f<K It - K22) sin (2cj» sin2 9 + 4<K22 - K33) sin (2cj» sin4 9 (A.2q) 

Jet8 = K33 sin2 9 + (Ktt - K33) sin2 cl» sin2 9+ l (K22 - K33) sin2 (29) cos2 cl» (A.2r) 

KI9 = 2 (K33 - K22) cos ~ cos 9 sin3 9 (A.2s) 

K20 = K22 sin2 9 + l (K33 - K2Û sin2 (29) (A.2t) 

K2t =t (K33 + KIl - 2 K22) sin (2(/) sin2 9 (A.2u) 

K22 =t (K22 - KI t> sin (2cj») sin (29) (A.2v) 

K23 = (KIl - K2Û sin ~ sin2 9 (A.2w) 

K24 = (K22 - K33) cos e sin cj) sin3 9 (A.2x) 

K2S = K22 sin (29) + (Kt 1 - K22) sin (29) sin2 cj» + 
(A.2y) 

4 (K33 - K22) cos2 cl» cos 9 sin3 9 

( 
K26 =i (K33 - K22) cos cp sin2 (29) + (~2 - K33) cos cj» sin4 9 (A.2z) 

-, 



,.,....,. 

lC27 = (K22 - K33) cos ~ sin4 9 + i (1(33 - K22) sin2 (29) cos ~ 

lC28 = K33 sin (29) + 4 (1<22 - K33) s;~3 9 cos 9 

lC29 = J (K II - 2 K22 + K33) sin (29) sin, 

1124 = YI cos ~ 

1125 = ~ YI sin (29) sin , 

1126 = -t<YI + 12) sin, sin (29) 

1127 = f YI + 12) sin (2,) sin2 9 

1128 = YI sin2 9 

1129 = t YI sin2 8 - 4 Yl cos (2~) sin2 9 

1130 = i (YI - 12) cos, sin (28) 

(A.2aa) 

(A.2bb) 

(A.2cc) 

(A.2dd) 

(A.2ee) 

(A.2ft) 

(A.2gg) 

(A.2hh) 

(A.2ii) 

(A.2ij) 

The elastic funetions { lCi }, i = 30, ... , 35, in equation (2.7) are defined as follow: 

lC30 = Kil sin2 e + K33 eos2 9 (Aja) 

lC31 = KlI sin ~ sin2 9 (A.3b) 

lC32 = t (K33 - KIl) eos ~ sin (29) (A.3c) 

lC33 = K22 sin4 9 +:t K33 sin2 (29) (A.3d) 

lC34 =t (K33 - K22> sin2 8 sin (29) cos ~ (A Je) 

lC35 = -K22 sin2 8 sin, (A.3f) 
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The dimensionless equations are obtained by sealing the elastic tenns with K22, 

the viscosity tenns with 112/, the distances x and z with h, the velocity with 1 ~i2h ' and 

'YI h2 
the time with K22 . By doing this, the angle-dependent viscosity and elastic funetions 

beeome: Tli· =,~, and IG· =IGï. A superscript asterisk denotes a dimensionless 

variable. Equations (2.4) to (2.6) dlen beeome the following set of dimensionless 

nonlinear partial differential equations: 

(A.4a) 

• a9 _ ... (àq,)2 ..lie a a<p • a aq, • (aq,)2 
1124 at* - KI ax* + K:.t ax* ax* + K3 ax. az* + 1C4 "dz* + 

• a aq, • ae 2 a ae * a ae 
K5 az* az* + lC6 ~x*) + Kf dx. ax* + Kg ax* az. + 

• ae 2 a ae * aq, a<p • aq, ae 
K9 ~z*) + Kld" az* az* + Kil ax. az* + KI2 ax* ax. + (A.4b) 

... àq, ae * à4> ae • aq, ae 
KI3 az* ax. + KI4 ax* az. + KI5 az. az* + 

K16* ~ ae + '125* aq, + 1126* avy• + 1127* ayy* ax* dz· at· a,,· az· 
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·~ .a'2 aa$ .aa$ .aa$ 
1128 at. = "17 <ax.) + "It ax* ax. + "19 ax* az. + "20 az. az. + 

• 00 2 a as • a as • a$ a, 
"21 <ax.) + "2'! ax. ax. + "23 ax* aZ. + "24 ax* az. + 

.~ae .iJ$ae .a,ae .a,ae 
"2S ax* ax* + "26 az. ax.* + K21 ax. az* + "28 Jz. az. + 

* ae aa • avy• • aVy· 
"29 ax. az. + 1129 ax.. + 1130 az. 

Funhennore, the dimensionless initial and boundary conditions are as follow: 

a = ai (x·, z·) at t* = 0, 0 ~ x* ~ 1.5, 0 ~ z· ~ 1 

,= 4»iCx*, z·) at t· = 0, 0 ~ x· S 1.5, 0 ~ z· ~ 1 

Vy* = 0 at t* = 0, 0 S; x· S; l.S, 0 S; z· S; 1 

ae 
ax* = 0 at t* > O. x* = o. 0 s; z* s; 1 

ae 
:\"i = ° at t* > 0, x* = 1.5, 0 S; z* S; 1 
(IX 

:~ = 0 al t* > 0, x* = 0, 0 S; z· SI 

:x~ = ° at t* > 0, x* = 1.5, 0 S; z* S; 1 

y y* = ° at 1* > 0, x* = 0, 0 S; z* S; 1 

Yy* = 0 at t* > 0, x* = 1.5, 0 S; z* SI 

s· ae ae a, àe 
-2Â. -=K3O*-+"31*-+K32·- al t*>O, OSx·S1.5, z·=O at· az· ax· ax* 

100 

(A.4c) 

(A.Sa) 

(A.Sb) 

(A.Sc) 

(A.5d) 

(A.Se) 

(A.SO 

(A.5g) 

(A.5h) 

(A.5i) 

(A.5j) 
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(A.5k) 

(A.51) 
o s x· S 1.5, z* = 0 

(A.5m) 
o S; x'" S; 1.5, z* = 1 

Vy• =0 al t* >0, OSx* S 1.5, z*=O (A.5n) 

Vy* = 0 at t* > 0, 0 S x* S 1.5, z* = 1 (A.50) 

.( 
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Appendix B 

Equations for Chapter 3 

The relations for the dependence of the Leslie viscosities on the scalm order 

parameter S are as follow [38]: 

(B.la) 

(B.lb) 

(B.lc) 

(B. Id) 

(B.le) 

(B.lf) 
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<. 

where 

~ = ~ (a2 ~ (3) 

(3 + 6S2) 
(B.lg) 

(B.lh) 

(B. li) 

(B.lj) 

(B.1k) 

(B. 11) 

(B.lm) 

(B. ln) 

The viscosity functions ( T'Ii ), i = 31, ... , 34, in equation (3.5) are defined as 

follow: 

1131 = a2 cos2 ~ ~ a3 sin2 ~ (B.2a) 

'1132 = ~ «(12 + 0.3) sin (2~) (B.2b) 

1133 ={ al sin (~) + (0.2 + (3) sin (2q,) (B.2c) 

The elastic functions (Ki ), i = 36 ..... 44, and viscosity functions {1li }. i = 35 • 

... ,38, in equalions (3.6) and (3.7) are defined as follow: 
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I~ K36=-KS (B.3a) , 
f-4J 

K37=_lKS2 (B.3b) 
2 

K38 =t K6 S sin (2~) (B.3e) 

K39=lKS 
2 

(B.3d) 

"40 = - K5 (B.3e) 

"41 = K6 sin (2~) (B.30 

"42 = - K6 eos2 ~ (B.3g) 

i\43 = K6 S cos (2~) (B.3h) 

lC44 =t K6 S sin (2~) (B.3i) 

1'\35 = -'YI (B.3j) 

1'\36 = 4 [12 ('~C\ (2~) - 'YI] (B.3k) 

1'\37 = -~2 (B.31) 

1'\38 = t ~1 sin (2~) (B.3m) 

where the relations 

K= 9Ll+.2.L2 
2 

(B.3n) 

K5=.3.Ll +lL2 
2 4 

(B.3o) 

.- K6=lL2 
4 

(B.3p) 

... 
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' .. 

have been used. 

The dimensionless equations are obtained by scaling the elastic tenns with K, the 
viscosity terms with 1), the length x with L, the velocity with ..lLL' and the time with 

'YI 

YIKL 2 • By doing this, the angle-dependent viscosity and elastic functions become: 'li* = Tli 
'YI 

and 1Ci* = i. The superscript asterisk denotes a dimensionless variable. Equations (3.5) 

to (3.7) then become the following set of dimensionless nonlinear partial differential 

equations: 

(B.4a) 

(B.4b) 

(B.4c) 

Furthennore, the dimensionless initial and boundary conditions are as follow: 

~ = ~ sin (~* xx* +t n) at t* = 0, 0 ~ x* S 1 (B.Sa) 

s = So + AS sin (kS* xx· +t x) at t* = 0, 0 S x* S; 1 (B.Sb) 

Vy* = 0 at t* = 0, 0 ~ x* S 1 (B.Sc) 

~ = 0 at t* > 0 x* = 0 ax* ' (B.Sd) 

a~ 
- = 0 at t* > 0 x* = 1 ax* ' (B.Se) 

lOS 
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as 
(B.St) ax* = 0 al l* > 0, x* = 0 

.... .Ill 

as 
(B.Sg) ax* = 0 al t* > 0, x* = 1 

Vy* = 0 al t* > 0, x* = 0 (B.Sh) 

Vy* = 0 al t* > 0, x* = 1 (B.Si) 


