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ABSTRACT I

ABSTRACT

The prediction of fatigue life and evaluation of onset and growth of matrix cracks
and delamination for general composite laminates are studied analytically using theories
of damage tolerance, residual modulus degradation and residual strength degradation.
Damage onset including matrix cracks and edge delamination are predicted by using a
total strain energy release rate criterion which accounts for interactive effects of matrix
cracks and delamination. Based on the assumption of a linear relation between damage
and stiffness loss, the analytical models for modulus degradation, matrix crack density
and delamination size growih as function of fatigue stress and fatigue cycles are
proposed. The proposed approach provides four choices for predicting tension-tension
fatigue life and for assessing fail-safety for structures made of composite laminates:
residual modulus criterion, matrix cracking criterion, delamination size criterion and
fatigue strength criterion. The direct relation of physical damage to fatigue life and
analytical equations for calculating residual clastic moduli E,, E,, v;, and Gy, in terms of
fatigue load and fatigue cycles are proposed. All proposed models in this thesis are
analytical and general. The proposed approach enables prediction of fatigue behaviour
of general laminates using experimental data of a basic lay-up such as unidirectional
laminate. The analytical results have good agreement with four sets of experimental
data. Based on the moduli reduction model developed by this research and O’Brien’s
delamination law, the finite element technique was utilized to model the fatigue failure
process of notched laminates. A simple example of a laminate with a central hole under
tension-tension fatigue loading was performed, and the results of damage growth and

fatigue failure life approximately agree with experimental data.
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RESUME I

RESUME

Cette recherche fait ’object de I’étude de la fatigue des plaques de matériaux
composites soumises a des chargements. La prédiction de I'amorce de la propagation des
fissures matricielles et les délaminations sont étudides e.. termes de tolérance aux
endommagements, de dégradation du module d’élasticite, ainsi que de a dégradation de
la résistance résiduelle. L’initiation de 'endommagement cst prédit par un crittre
d’energie des contraintes qui prend en compte les effets interactifs entre les fissurces
matricielles et les délaminations. En prenant comme hypothese une relation linéaire entre
le dommage et la perte du module d’élasticité, le dévelopement de modtles permet de
prédire la dégradation de la rigidité, les fissures matricielles et les délaminations en
fonction de I'intensiié du chargement et le nombre de cycles de I'épreuve de fatigue. 11
y a quatre choix pour prédire la durée de vie utile en fatigue: un critere de module
d’élasticité résiduel, un critére de fissures matricielles, un critere basée sur la dimension
charactéristique de la délamination et un critere de résistance résiduclle.  Une relation
directe entre le dommage réel et la durée de vie utile en fatigue est proposée ainsi que
des équations pour le calcul de proprietés charactéristiques résiduclles de matériaux (E,,
E,, v;; et G,;) en ionction du chargement et du nombre de cycles en fatigue. Ces
modeles, étant analytiques et généraux, permettent de prédire le rendement de plaques
composites, en utilisant des données expérimentales d’une configuration de base (par
exemple, une plaque unidirectionelle). C’est ainsi que les résultats ont montré un bon
accord avec quatre expériences typiques sur des matériaux composites. A partir du
modele un code 2 éléments finis a été utilis€ avec succes pour modeliser le comportement

en fatique d’une plaque percée d’un trou centrale.
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CHAPTER 1

INTRODUCTION

In this chapter, the history and background of fatigue failure mechanisms for
composite materials are briefly described. The analysis methods and recent developments
related to structures made of composite laminates under fatigue loading are reviewed.

The objectives of this research work are presented.

1.1 BACKGROUND

The rapidly expanding applications of composites in the rccent past have provided
much optimism for the future of technology. Although man-made composites have
existed for thousands of years, high technology of composites has evolved in the

aerospace industry only in the last twenty years. Filament-wound pressure vessels using

glass fibers were the first strength critical application for modern composites. This was

followed by boron filaments in the 1960’s which started many US Air Force programs

to promote aircraft structures made of composites. The F-111 horizontal stabilizer in the

early 1970’s was the first important flight-worthy composite component.

In the early 1980’s the Boeing 767 used nearly two tons of composite materials
in its floor beam and all of its control surfaces. The USSR’s giant transport, Antonov
124, has a total of 5500 kg of composite materials, of which 2500 kg arc graphite
composites. The all-composite fin box of the Airbus industries A310-300 is an
impressive structure in its simplicity. Nearly all emerging aircrafts use composites
extensively; examples include the Dassault-Breguet's Rafale, Saab-Scania JAS-39

Gripen, the European Fighter Aircraft of Britain, West Germany, Canada, Italy and
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Spain, and a new generation of commercial aircraft: Airbus 320, McDonnell-Douglas

MD-11, and Boeing 7J7. Beech Aircraft’s Straship-1 is an all-composite airplane.

In 1986, another all-composite airplane that set a world record for nonstop flight
around the world was the VOYAGER designed and built by Burt Rutan and his
coworkers. As expected the plane was ultra light but it also showed amazing toughness
and resilience against many stormy encounters. Graphite composites were used in the
dual rudders of the revolutionary 12-meter yacht, the USA, St. Francis Yacht Club’s
entry to the 1987 America’s Cup challenge. From the 1980’s to 1990’s more and more
applications have converted composite materials from a high technology domain into
household words. High visibility is an important ingredient for the growth and

acceptance of composite materials as viable engineering materials.

Materials and processing advances have been instrumental to the growth of our
technology. Graphite and Kevlar fibers became commercially available in the early
1970’s. More recently, higher temperature materials and thermoplastics have emerged

for the demanding applications of the future.

The high technology of composites has spurred applications outside the aerospace
industry. The sporting goods industry is a major outlet for composite materials.
Hundreds of tons of graphite composites were used for tennis and squash rackets, and
golf shafts each year since 1983. Other applications include bicycles, oars for rowing,
and just about any equipment where weight, stiffness, and strength are important. It is
believed that the acceptance of composites will inevitably increase because of their

inherent high specific strength and specific stiffness and superior long term properties.




Ra Tt

Chapter 1.  Introduction R}

1.2 FATIGUE FAILURE MECHANISMS

Composite materials exhibit very complex failure mechanisms under static and
fatigue loading because of anisotropic characteristics in their strength and stiffuess
properties. Fatigue failure is usually accompanied with extensive damage which is
multiplied throughout specimen volume instead of a predominant single crack which is
often observed in most isotropic brittle materials. The four basic failure mechanisms for
composites under fatigue loading are matrix cracking, interfacial debonding (fiber/matrix
debonding), delamination and fiber breakage. Figure 1.1 and Figure 1.2 represent basic
damage modes and development of damage in composite laminates under fatigue loading.
Any combination of these can be responsible for fatigue damage which may result in
reduced fatigue strength and stiffness. The typs and degree of damage vary widely
depending on material propetties, lay-up of the composite plies, type of fatigue loading,
etc. It has also been observed that damage development under fatigue and static loading
is similar except that fatigue at given stress level causes additional damage to occur as

a function of number of cycles.

Although four basic failure mechanisms have been observed in composites, many
researchers have indicated that delamination and matrix cracking are the main obscrved
modes of fatigue failure before a composite laminate fails catastrophically, and both have
significant effect on laminate stiffness and strength. Figure 1.1 (a) shows idcalized

schematics of fatigue damage mechanisms for matrix cracking and delamination.
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(a) (b) (©)
Fig. 1.1 Depiction of damage modes: () matrix cracking with delamination,
\ ‘ (b) matrix cracking, (c) fiber breakage with some fiber matrix
debonding [1,2].
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"‘ Fig. 1.2 Development of damage in composite laminates under fatigue loading [3]
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1.2.1 Matrix cracking

For multidirectional laminates under in-plane fatigue loading, failurc usually
occurs successively from the weakest ply to the strongest ply. As an example, consider
the matrix cracking process of a [0/90/ £45] laminate subjected to uniaxial tension. Tt
would be expected that the first cracks occur in 90 degree plies followed by 145 degree
plies. Figure 1.3 presents a series of micrographs of transverse cracks observed at free
edges during fatigue loading. First cracks occurred in the 90 degree plies and propagated
to the interfaces. With increasing fatigue cycles, new cracks occurred in the 45 degree
plies adjacent to the 90 degree plies, and then to the -45 degree plics. Most of these
cracks appear at the tip of the 90 degrec cracks and are extended to the interface of the
+45 degree plies. In fatigue loading, the number of cracks in each angle ply is higher
compared to that cf static loading and increases with fatigue cycles. However, prior to
laminate failure the number of cracks in most cases reaches a limit level where no further
new cracks occur in spite of additional fatiguc cycles. The stress level of onset of matrix
cracking during fatigue loading in the [0/90/ 1 45] laminate was also found to be much
smaller than that of onset of matri:: cracking under static load. Thus, the first ply failure

criterion at static load is not valid for fatigue load.

The laminate stacking sequence plays a significant role in the development of
matrix cracks [4]. Although the same stress state was predicted for different plics of
same or similar laminates by laminate plate theory, different matrix crack densitics are
often observed in these plies or laminates under fatigue loading.  Figure 1.4 shows
fatigue cycles versus number of cracks for [0/90/+45]s and [0/+45/90] laminates.
There is a considerable difference in the development of 90 degree and 145 degree
cracks between two stacking sequences of a quasi-isotropic laminate, as well as in the
development of +45 degree and -45 degree cracks within the [0/90/ +45]; laminatc. The
main reason for this discrepancy is the redistribution of ply stresses due to matrix crack

growth and ply delamination.
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Fig. 1.3 Micrographs showing crack patterns under fatigue loading
in a [0/90/ 1 45] laminate [4]
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Fig. 1.4 Fatigue cycles versus number of cracks for [0/90/+45]; and
[0/ +45/90])s laminates [4]

1.2.2 Delamination

Delamination along the straight free-edges of composite laminates under in-plane
uniaxial load has been observed since the early 1970’s. Since then a considerable amount
of work has been reported on the free-edge problem in composite materials [2,4,5,6],
which indicate that free-edge delamination is attributed to the existence of interlaminar
stresses which are highly localized in the neighborhood of a free-edge. In addition to
interlaminar tensile stress, other mechanisms such as transverse cracking and

interlaminar shearing are also significant in the onset and growth of delamination.

Figure 1.5 shows a x-ray picture of delamination growth as a function of number
of cycles for a [0/90/ £45)s CFRP T300/5208 laminate. The stress level of delamination
during fatigue loading is smaller than that of delamination under static loading. Onset
of dslamination occurred very early in the fatigue life and rapidly propagated toward the

middle of the specimen width as number of cycles was increased.
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Fig. 1.5 X-ray pictures of delamination growth as a function of fatigue
cycles for a [0/90/+45); CFRP T300/5208 laminate [4]
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1.2.3 Change of modulus and strength

Fatigue damage, such as matrix cracking and delamination, often results in a
significant reduction in modulus and strength of composite laminates. A multidirectional
laminate generally shows a gradual strength and modulus reduction until finai failure.
The degree of modulus and strength reduction varics widely, depending upon the lay-up

of laminate, type of loading, material properties, etc.

Figure 1.6 and Figure 1.7 show the S-N curves for CFRP AS4/3502 and
T300/5208 laminates, respectively. The graphs represent fatigue cycles versus the fatigue
strength ratio (ratio of fatigue stress to static strength). Laminates with matrix dominant
failure modes exhibit a lower fatigue resistance than laminates with fiber dominant failure
modes. The slope of the S-N curve tends to increase as the content of 0 degree phies
decreases. The fatigue strength of a [+45]; laminate is frequently used to determine

longitudinal shear fatigue strength [4].

Although initial static tensile and compressive strengths arc almost equal to cach
other, strength reduction is much greater in tension than in compression. In most cases
of compression-compression fatigue loading, no appreciable matrix damage is abserved
until final fatigue failure. Most compression failures are characterized by delamination
and compression buckling. Figure 1.8 shows the change of modulus with fatigue cycles
for various fatigue loadings. A significant modulus change is obvious in specimens
subjected to tension-tension and tension-compression fatigue loading, whereas little or no

modulus change is observed in compression-compression fatigue loading.
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Fig. 1.8 Change in modulus as a function of fatigue loading [4]

1.2.4 Notched composite laminates

An important aspect of fatigue analysis of composite materials is the behavior of
laminates with geometric discontinuities such as holes, joints, ply terminations, and
inherent defects. The performance of these notched laminates under fatigue loading is
controlled by the stress fields and material performance in the neighborhood of stress
concentrators, the most common being a joint or access hole. Fatigue data for most
composite laminates indicate that reduction of fatiguc strength resulting from the presence
of small notches, compared to unnotched specimens, is found to be insignificant. The
excellent fatigue resistance of notched specimens is mainly due to types of damage which

relax the stress concentration around the notch tips.

For the case of the presence of large notches, the effect of notches on fatigue
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strength is more significant and must be rigorously investigated. In metals, the problem
of stress concentration resulting from various notches is well defined by the many stress
concentration factors which influence the behavior under cyclic stress and the crack
propagation is easily related to specimen data through the use of fracture mechanics. In
notched composite laminates, however, the damage modes and growth around notches are
seen to be quite different. Multiple cracks coupled with delamination are often observed
in the region around notches where combined stresses are produced that vary widely
around the notch during the fatigue life of the laminate. When damage occurs, changes
of moduli around the notch result in changes of magnitude and redistribution of stresses.
The subsequent stress analysis becomes very difficult because the relation of residual
moduli to cyclic load and number of cycles is very complex. The stress redistribution
after fatigue damage has made it difficult to predict the fatigue strength of notched

laminate using the fatigue strength of the unnotched specimens.

1.3 A REVIEW OF FATIGUE ANALYSIS METHODS OF
COMPOSITE LAMINATES

The prediction of fatigue damage and fatiguc life for composite materials has been
the focus of many investigations during the past two decades. Because composite
laminates exhibit very complex matrix cracking and delamination accumulation processes,
up to now, the models proposed by many investigators for composite laminates under
fatigue loading have been limited to particular laminates and strongly dependent on
experimental data. The residual strength degradation, modulus degradation, and damage
tolerance approaches are the main methods which have been used to study fatigue damage

and to predict fatigue life of composites.

In the residual strength degradation approach, the residual strength is gradually

reduced and fatigue failure occurs when residual strength equals the maximum applied
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stress. Broutman and Sahu [7] proposed a cumulative damage theory using a lincar
strength degradation equation. Hahn and Kim [8] introduced a nonlinear residual strength
degradation equation which assumes that the slope of the residual strength is inversely
proportional to some power of the residual strength itself. This nonlinear degradation
model was investigated further by Yang and Liu [9] for the purpose of reliability study
in fatigue life of composite materials. Charewize and Daniel [10] proposed a damage
model based on the assumption that the residual strength degradation rate is a function
of life fraction, but not a function of residual strength. An advanced residual strength
degradation model which can predict single- and multi- stress level fatigue life of
composite laminate was proposed by Reifsnider and Stinchcomb [11], based on the
assumption that the residual strength degradation rate is a power function of fatiguc
cycles N. After setting up basic equations, they modified them by defining a critical

element and introducing a local failure function deduced from microstructural analysis

in composite laminates.

In the modulus degradation approach, the modulus is gradually reduced and
fatigue failure occurs when the modulus degrades to a certain level. The critical level
of modulus degradation has been defined by many investigators. "Failure occurs when
the fatigue secant modulus degrades to the static secant modulus” was proposed by Hahn
and Kim [12] and by O’Brien and Reifsnider [13]; "Failure occurs when the fatigue
resultant strain reaches the static ultimate strain" was suggested by Hwang and Han [5].
This is an indirect definition of the modulus degradation criterion. O’Brien [2,6,14]
proposed a simple analytical model to predict modulus degradation due to delamination
by using a rule of mixtures in conjunction with laminate plate theory. Based on shear-lag
analysis, the modulus degradatiocn as function of matrix crack density in cross-ply
laminates was predicted by [15] and [16). Beaumont [17], analogous to fracture
mechanics, proposed an equation for evaluating residual stiffness as function of applied
stress and fatigue cycles for cross-ply laminates. Talreja [3], based on cracked laminate

elastic theory and assuming that elastic strain energy is a function of the strain tensor and
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damage vector, derived a set of equations to calculate residual elastic moduli as function

of matrix cracks.

The theory and analysis method of damage tolerance for composite materials were
developed by O’Brien [2]. Fatigue failure was defined such that it will occur if the
maximum global strain, resulting from the stiffness loss associated with damage growth
at a certain number of fatigue cycles, reaches the effective failure strain when the local
delamination forms. This approach combined both residual strength degradation and
modulus degradation by using the concept of strain energy release rate and a delamination
growth law. The fail-safety was assessed by accounting for the accumulation of

delamination through the thickness.

All above theories and approaches were verified by fatigue tests and have good
agreement with test results. However, the validity of analytical equations more or less
depends upon the particular laminates tested, implying that the equations are no longer
valid if material properties, Jaminate lay-up or direction of fatigue loading is changed,
i.e., the solutions are not general. The direct relation of physical damage such as matrix
cracking and delamination to fatigue life and analytical equations for predicting physical
damage in terms of fatigue load and fatigue cycles for general laminates have not been

found.

1.4 OBJECTIVE

The prediction of fatigue life and evaluation of onset and growth of matrix
cracking and delamination for general notched and unnotched composite laminates will
be studied analytically. Based on the analysis of damage tolerance, residual modulus and
residual strength, a new and more generalized analytical approach will be propesed for
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the fatigue response of composite laminates to cyclic loading. The objectives of the

proposed approach are to obtain the following information:

I. The onset and growth as well as type of damage in general laminates as a function

of fatigue stress and number of loading cycles.

| 2. The effect of physical damage on stiffness, strength, and life of the laminate.
3. The fatigue behavior relationship between general laminates and unidirectional
laminates.

4. The prediction of fatigue behavior of a laminate with a central hole subjected to

tension-tension cyclic load using the finite element technique.

3
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¢ 9
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CHAPTER 2

STIFFNESS LOSS DUE TO MATRIX CRACKING
AND DELAMINATION

The models of stiffness loss as function of matrix crack density and delamination
size are reviewed and developed in this chapter. Based on models by Talreja [3] and
O’Brien [6], a fundamental assumption that stiffness loss under static and fatigue load
can be characterized approximately by a linear relation with matrix crack density and

delamination area is proposed.

2.1 STIFFNESS LOSS IN TERMS OF MATRIX CRACK DENSITY

2.1.1 Stiffness loss in cross-ply laminates

In composite laminates, fatigue failure such as matrix cracking is usually
accompanied with extensive damage which is multiplied throughout specimen volume
instead of a predominant single crack which is often observed in most isotropic brittle
materials. Composite laminates exhibit very complex matrix crack accumulation
processes due to redistribution of ply stress at ply interfaces. Although the same stress
state is predicted for different plies by laminate plate theory, different matrix crack
densities at these plies are often observed for composite laminates under fatigue load.
For the specific case where matrix cracking is the dominant mode of failure such as in
a cross-ply laminate, O’Brien [6, 16] and Beaumont [17], based on a shear-lag analysis,
suggested a stiffness degradation model as a function of matrix crack spacing, s, which
was expressed as




]

B e

S

el

¢

Chapter 2.  Stiffness loss due to matrix cracking and delamination 17

E
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where b and d are the thickness of the longitudinal and transverse plies, respectively. E,
and E, are the Young’s modulus of the longitudinal and transverse plics. E and E; ar¢

stiffness of the damaged and undamaged laminate, and w is constant cxpressed as

3G (b+d) E
d* b E, E,
where G is the shear modulus in the longitudinal direction of the transverse ply.

Equation (1) can, almost always, be approximated to give

where K, = 1/2s is the crack density and C,, is constant.
2.1.2 Stiffness loss in general laminates

If both matrix cracking and delamination occur in the composite laminate under
cyclic loading and both have significant effect on fatigue damage, the development of a
workable procedure for prediction of fatigue behavior, such as damage onset and growth,
stiffness loss, fatigue failure life, etc., is very complex. Talreja [3], based on
micromechanics and continuum damage theory and the assumption that elastic strain
energy is a function of the strain tensor and crack damage vector, proposed a model to
represent the relationship between residual stiffness and matrix crack density (sce

appendix A). After extension of Talreja’s work, the proposed equations can be written
as
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E, = E| + 2D [k, +k(v12) kvl

E, = E; + 2D, [k, +ky(v3)" - ky3v3]
1- v 0 ° (C)
B Vi2V21
Vig = V12 + D [—"‘—_——‘](kl;; 2k7v1?)
Ez
G,, = Gloz +2D k,,
and
m 2
i=1 Sme

where t, is the thickness of the ply containing the cracks and t is the total thickness of
laminate. K, and 6, are the crack density and orientation angle of the fiber at a cracked
ply, respectively. The moduli with superscript O refer to the uncracked laminate which
is calculated by laminate plate theory. ki, ks, k;; and k,; are materials constants and are

given by appendix A.

The first line of equation (4) can be expressed by

0 0 0
E -E _ _D 20k, +key(v15) kv ©
E; " E;
or
E,~E
D = 0 =1 - _E = Cm Dm 7
E, E,
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where

0 0
c -- 2k, +k,(v15)* kv 5] @)

E,

D in equation (7) may be called "global damage variable" and D,, may be called "crack
damage variable." C,, is a dimensionless constant which depends on material propertics
and laminate lay-up. Equation (7) characterizes the effect of total matrix cracks in the
laminate on stiffness degradation and reduces to the form of equation (3) for the specific

case of a cross-ply laminate.
2.2 STIFFNESS LOSS IN TERMS OF DELAMINATION AREA

Stiffness loss due to delamination depends on the laminate lay-up and the material
properties of the fiber and matrix, as well as the location and extent of thc delamination.
The laminate stiffness decreases as delamination forms and grows at a particular
interface. O’Brien [6] proposed an analytical equation for the stiffness loss associated

with edge delamination as
=(E" - Ep2 + E ®)
= ( O)Z 0

Where a/b is the ratio of the delamination size to the laminate half-width, E, is
undelaminated laminate stiffness, and E’ is the stiffness of a laminatc completely
delaminated along one or more interfaces, which is calculated by the rule of mixtures,

i.e.,

E___ (10)
t
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where (see Figure 2.1)
m = pumber of sublaminates formed by the delamination.

Bl=
ti=

the laminate stiffness of the ith sublaminates formed by the delamination.
the thickness of the ith sublaminate

{

| .
L‘ ‘ i

J T_/ =
LAMINATED
@) TOTALLY / ; ta_j
DELAMINATED kb
(b) PARTIALLY

DELAMINATED
(c)

Fig. 2.1 Rule of mixtures analysis of stiffness loss [6]

A more general form of equation (9) may be developed by assuming that the

relationship between laminate stiffness loss and delamination area can be represented by

-E 0
EE _a° (11)

E'-E, A*

Bquation (11) can be rewritten as
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p-1-E -¢,p (12)
EO
where

C, = ; Dy= 13)

and

A° = delaminated area

A' = total interfacial area

The D, in equation (12) may be called the "delamination damage variable" and C, is a
dimensionless constant.  Equation (12) characterizes the stiffness loss due to

dclamination.

Based on equation (7) and equation (12), it is reasonable to make an assumption
that stiffness loss can be characterized approximately by a linear relation with matrix
crack density or delamination area for general composite laminates. However, the
prediction of stiffness loss as a function of fatigue load and number of fatigue cycles for

general laminates is very complex. In this research a workable approach is proposed
and will be discussed.
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CHAPTER 3

STIFFNESS DEGRADATION AND FATIGUE
DAMAGE MODELS

Following Chapter 2, another fundamental assumption is proposed, which states
that global damage growth rate dD/dN is proportional to some power of applied fatigue
stress and inversely proportional to some power of current level of the damage variable
D itself. The analytical models of moduius degradation, matrix crack density and
delamination area growth in terms of fatigue stress and number of cycles is derived,
which allows prediction of fatigue damage of composite laminates with arbitrary lay-up,

using a minimum of experimental measurement.

3.1 DAMAGE VARIABLE AND STRAIN FAILURE CRITERION

The selection of damage variable should take account of the following considerations:

1. The damage variable should have a direct physical meaning or be directly related
to physical quantities which are easy to measure;
2. The damage variable should phenomenologically describe the physical process of

damage accumulation and correlate well with damage state in composite materials.

From the above analysis of delamination and matrix cracking, comparing equation (7) and
equation (12), it is reasonable for us to select global damage variable D to predict matrix
crack density and delamination size and to perform fatigue life analysis. Global damage

variable D provides an indirect measureiment of physical damage in composite laminates,
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instead of direct measurement of delamination size and number of matrix cracks. It is
clearly seen that D=0 indicates a material state with no damage and catastrophic failure
occurs when D is gradually increased to a certain critical level D,. The value of D, may

be determined by using the well-known strain failure criterion.

The strain failure criterion is one of most widely used criterion for predicting
fatigue life. The strain failure criterion states that final failure of material occurs when
the fatigue resultant strain reaches the static ultimate strain [5]. Based on the elastic

stress-strain relation under static loading, the following relation is obtained:

o, = E, e, (14)

where ¢, is static ultimate strain and o, is static ultimate strength. The stress-strain

relation under fatigue loading gives

O = Ey ¢, (15)

where ¢ and E; are fatigue strain and fatigue modulus at failure under fatigue stress level
Omax> TESpECtively. Using strain failure criterion (¢, = &) and combining equation (14)
and equation (15) gives the following relation :

E o]

= o max (16)
E, o 1

u

and critical global damage variable D; can be expressed by

E

D,=1--1
EO

¢ =1-q (17)

where q may be called the "failure factor."
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3.2 FATIGUE STIFFNESS DEGRADATION MODEL

In order to make following analysis clear, differentiate equation (7) and equation

(12) to give

_3% -c, % (18)

Many experimental observations report that the crack density growth rate dD,, /dN and
delamination area growth rate dD, /dN are directly proportional to some power of the
fatigue stress and inverse proportional to the some power of current level of damage itself
[6,17,18]. Based on the linear refation of global damage variable growth rate dD/dN
with matrix crack density growth rate and delamination area growth rata (equation (18)
and equation (19)), in this research it is assumed that the global damage variable growth

rate, dD/dN, can be expressed by:

dD _ A Oy’ 20)
dN B DB-]

where A, B and C are unknown constants, N is number of cycles, and ¢,,, is maximum

fatigue stress. Integrating equation (20) and noting that D=0 when N=0 yields

21

% e

D=(ANo °)

Assuming that the S-N relation for a composite laminate under fatigue loading is given

and can be represented by

e e o 1w .
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KN oo," =1 (22)

where K and b are unknown constants, and N, is fatigue failure life at maximum fatigue

stress level o,,,. Rewriting equation (21) gives

A

——ENo € =1 23)
D

max

Comparing equation (22) with equation (23) and noting that D=D; when N=N; obtains
A=KD? C=b @)

Substituting equation (17) into equation (24), then into equation (21) and noting that D
= 1- E/E, yield

1
EE—=1—D=1—(KNomu”)B(1-—q) 25)
0

Equation (25) can be used to evaluate stiffness loss for laminates under fatigue loading
if constants, B, b and K, are given. Based on equation (25), the relationship of matrix
crack density and delamination area growth with fatigue load and fatigue cycles can be

obtained by substitution of equation (25) into equation (12) and equation (7), that is, for

delamination:
1 1-g)
D,=(KNao,")" (cf 26)
and for matrix cracking:
1 1-g)
D,=(KNa,")® (C" @n
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Equation (4) is repeated here

E, = E} + 2D [k, + k,(v%)" kv
2
E, = Ezo + 2D, [k, + 3("21) - kl3v(2)l]
1~ vy 28)
Vip = V(I)Z t Dm[‘—“‘%zﬁ](kla‘zh"?z)
2
0
G, = G, +2Dk,,

D, is now related to number of fatigue cycles and fatigue load and is expressed by

equation (27).
It should be stated that equations (25),(26) and (27) are only valid for predicting
(" growth of fatigue damage. For the case of very low level fatigue strcss or number of

cycles, damage initiation should be determined before using the damage growth

equations. The prediction of fatigue damage onset will be discussed in Chapter 4.

3.3 BI-DIRECTIONAL FATIGUE LOADING

The prediction of fatigue damage and fatigue life under multi-directional fatigue

loads for general laminates is very complicated because of data scatter in fatigue

experiments. The approach of using unidirectional fatigue test data to evaluate the fatigue

failure for multi-directional fatigue loads needs to be developed further. For the specific
q cases of a laminate only subjected to bi-directional fatigue loads o, and ¢,, linear

superposition of the effect of these two load components may be performed. For
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example, a [0/90,]; cross-ply laminate subjected to loads in two directions o, and o, may
be resolved into two cases, one is [0/90,]5 laminate subjected to o, load in the direction
of 0 degree fiber, and another is [90/0,]5 laminate subjected to o, also in the direction of
0 degree fibre. The two cases are first calculated separately and then these results are

added together by linear superposition. The application of this method to notched

laminates will be discussed in Chapter 7.
3.4 DETERMINATION OF CONSTANTS, B, b, AND K.

The validation of equations (25),(26) and (27) is dependent on constants B, b and
K, which are governed by material properties, laminate lay-up, types of loading, etc.
These required constants can be obtained experimentally by using a regression analysis
method and the form of equation (25). This is a direct and simple method, but the
equations will lose generality because measured residual stiffness data is taken from
particular laminates. An analytical method is proposed to calculate the above constants.

Two assumptions must first be made, which are:

1. The ratio of laminate fatigue strength to unidirectional fatigue strength is
approximately equal to that of laminate static strength to unidirectional static
strength. This assumption is reasonable because both static strength and fatigue
strength of the laminate are mainly dependent upon the percentage and strength
of O degree plies. The damage development under fatigue and static loading are
similar except that fatigue causes additional damage to occur as a function of
number of fatigue cycles. Figure 3.1 shows this relationship for various
laminates of CFRP T300/5208.

2. The form of equation (12) is also valid for local delamination. The validation of

this assumption will become evident by the coming equation (37).
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Fig. 3.1 Fatigue and static strength normalized with respect to unidirectional
tensile strength [4]

According to assumption 1, the ratio of laminate fatigue and static strength to unidirec-

tional strength can be represented by

29)

where

o, - laminate fatigue strength,

oy - unidirectional fatigue strength, i.e. 0 degree laminate fatigue strength,
g, - laminate static strength,

g, - unidirectional static strength, i.e., 0 degree laminate static strength.

Assuming the S-N relation for unidirectional laminate can be expressed by
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Ky N (o)™ = 1 (30)

where b, and K, are constants. Also assume that the S-N relation for a general laminate

can be expressed by
KN (o) =1 (R)))
Combination of equation (30) and equation (31) gives

LI

1
K" NB b (32)

% .
o 1

Q{ —
x?*

Substituting equation (32) into equation (29) yields

33)

From equation (33) it is evident that b, must equal to b because o, and ¢, arc

independent of number of cycles N, i.e.,

K,

(_u_’-_’.)”o 34
Tos

From the above equations the constants b and K can be calculated analytically if fatiguc

strength curve of unidirectional laminate is given, i.e., the S-N curve of general laminates

can be determined by a S-N curve of unidirectional laminate.

Constant B, which characterizes the coupled effects of matrix cracking and
delamination on laminate stiffness degradation, is more difficult to obtain than constants
b and K. O’Brien [2], using elastic Hooke's law, proposed an analytical equation to

calculate laminate compliance degradation due to delamination from a matrix crack (see
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Appendix B), i.e.,

Sy e L (35)

where S and a/l are laminate compliance and the ratio of local delamination length to
laminate length, respectively, E, and t, represent the modulus and thickness of
delaminated region in the vicinity of the matrix crack, and E,,, and t represent modulus

and thickness of the undelaminated region. Differentiating equation (35) gives
=os—(—m ) (36)

In another formulation, according to assumption 2 and equation (12), the laminate

compliance degradation can be expressed by

1 1

E,, (1-C, %) E,, (1-C, %)

S =

37

oyl

Making a power series expansion for equation (37) and taking only linear terms, it is
easy to see that equation (37) will reduce to the same form as equation (35), which means
that the assumption 2 is reasonable. Differentiating equation (37) in terms of

delamination length a, and then comparing with equation (36), yields

1 (t Elam 1) Cd
- 38
lE, 't,E, E, 1(-C, 5;_), (38)
Substituting equation (26) into equation (38) and noting that D, = a/! yields
log(X N o>
B = (39)

log(l:g)
1-q

where
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c? = Ca

" 1E, (40)
(—— - D
ty Ey

Constant B now can be calculated by Equation (39) if number of fatigue cycles N at onsct
of local delamination is given; this may be obtained by O’Brien’s equation (see Appendix
B),

2

m logN = Tmax ! (’E“"" -1 -G (41)
2nE, t,E, €

where G, and m are material parameters and n is number of delaminated surface. Ref.

[10] also provides various test curves for determining the values of G, and m.

It must be emphasized that equation (38) is not valid for the case where matrix
cracking is the dominate failure mode such as in cross-ply laminates because constant C,
will reach zero. For this case we have to obtain new equation to calculate constant B.
Based on the assumption proposed by Beaumont [17], the crack density growth rate

dD,/dN for cross-ply laminates can be expressed as

2
9 _ 4 (Cmryc (2)
dN D

m

where A and C are unknown constants. Integrating equation (42) and noting that D, =

0 when N=0 gives

1 2C
D, = [(C+1) 4 N°! o, "

max

43)

Assuming that expression of S-N curve is given by
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KN.o, =1 @4)

where N; is fatigue life under maximum fatigue stress o,,, . b and K are unknown

constants. Rewriting equation (43) gives

2¢ -1 45)

Comparing equation (44) with equation (45) and noting that C, D, = D; when N=N;

gives

b
1+)
c-?t A= _K_ (___Df_) 2 (46)
2 1+2) Cn

Substituting equation (17) into equation (46}, then into equation (43) yields

b.-1
D,=[KNo,?] * 49 o
m max Cm
Substituting equation (7) into equation (47) gives
E , ey
z = 1-[KNo, '] (1-g) “8)
0

Now the constant B for cross-ply laminate can be obtained by comparing equation (25)
with equation (48), i.e.,
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49)

- -]

H

[ 3

+
e

Equation (49) will be used to calculate constant B for the case of C, = 0. Up to now,
all laminate parameters B, b and K can be determined analyticaily by the above equations
for general composite laminates. The prescribed parameters are, except for static
materials properties, b, and K, which are from the S-N relation of a unidirectional

laminate, G, and m which are from the delamination resistance curve (sec Appendix B
or |2,14]).

Finally, it must be stated that analytical determination of constant B depends on
many material parameters and equations, which means that the value of constant B is
sensitive to these material parameters and equations. Thus if it is possible and accurate
results are required, it is better to determine constant B by using experimental methods,

which can be performed by use of measured stiffness data and the form of equation (25).
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CHAPTER 4

ONSET OF EDGE DELAMINATION AND
MATRIX CRACKING

The theory of total strain energy release rate is used to predict the onset of both
matrix cracking and delamination. A simple analytical equation for prediction of onset
of matrix cracking and delamination for the general laminates is developed in this
chapter. The onset of critical strain ¢, should be prescribed by experiments but
approximately, one can use first ply failure theory at static load for onset of matrix

cracking and fracture mechanics analysis for onset of edge delamination.

4.1 STRAIN ENERGY RELEASE RATE DUE TO MATRIX
CRACKS

To predict the onset of edge delamination and matrix cracking, a theory of strain
energy release rate was used. Considering an elastic body containing a crack of area A
that grows under a constant applied nominal strain e, the strain energy release rate G is

given by [16]

G=-V (50)

2

S

where V is the volume of the body and dE/dA is the rate of stiffness change as the crack

extends. The fundamental assumption of this work is that all of the matrix cracks in the

s s ——
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volume V is treated as a single equivalent crack. The crack area A can be expressed by

u " " Ky b

A=)YYA4 = KL————-t =V
§' ; m ™ cosa =1 sin® ¢

(1)

Where (see Fig.4.1)

m = total numbers of cracked plies

K, = number of cracks per unit length at ith-cracked ply

t, = thickness of ith-cracked plies

t = laminate thickness

V = laminate volume, V=W Lt

6 = fibre angle of cracked plies orientated to the direction of loading ( «+60 = 90)

!
*\

Fig. 4.1 Matrix cracking in a Iaminate [25]
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L_»&:i‘

Comparing equation (51) with equation (5) obtains

A= tz D, (52)

c
Where ¢, is thickness of first failure ply. Differentiating equation (52) yields

dA = tl’ db, (3)

c

The strain energy release rate due to matrix cracking, G,, is obtained by substituting

equation(53) into equation(50).

G = -Vf.z.d
2

dE
dA 2 dD

m

62 tc dE (54)

m

Differentiating equation (7) and then substituting into equation (54) yields a simple
expression of the strain energy release rate due to matrix cracking for the general
laminates.

2
G =f__£2_t‘_€1"_ (5%)

" 2

4.2 STRAIN ENERGY RELEASE RATE DUE TO DELAMINATION

The expression of strain energy release rate due to edge delamination G, can be

obtained by differentiating equation (12) and then substituting the result into equation (50)
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e ¢

G, = =y (E,-E”) (56)

Equation (56) was first proposed by O’Brien [6] and was suggested for predicting onsct
of edge delamination. O’Brien states that equation (56) is not valid for the situation

where the matrix cracking is the dominate failure mode because E, -E’ will reach zero.
In this research a new equation is proposed, based on the theory of total strain energy

release rate.

4.3 TOTAL STRAIN ENERGY RELEASE RATE

The total strain energy release rate, G, should include the effect of both matrix cracks

and delamination, defined as
G =G, + G, )
Substituting equation (55) and equation (56) into equation (57) gives

Ey Cpgt,  t(E<ED)
2 2

G=¢2] (58)

The critical value of strain energy release rate G, for the onset of edge delamination
or matrix cracking is obtained from the actual onset strain & which should be determined
by fatigue test, but, approximately, can be calculated by use of first ply failure theory for
matrix cracking and fracture mechanics method for edge delamination. The equation (58)
is more general than equation (56) for predicting the onset of delamination. Clearly, if
the effect of matrix cracking on onset of edge delamination can be neglected, the equation
(38) will reduce to equation (56). Instead of using equation (58), Equation (55) would
be used to predict the onset of matrix cracking due to fatigue loading because matrix

cracking always occurs earlier than delamination.
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CHAPTER 5

FATIGUE LIFE PREDICTION

Fatigue life prediction of composite materials has been the subject of many
investigations during the past two decades. Since composite materials exhibit very
complex failure processes, an analytical model for predicting fatigue life dircctly in terms
of physical damage such as matrix cracking and delamination for general composite
laminates has not been found. The proposed approach in this chapter provides four
choices for predicting fatigue life and for assessing fail-safety in structures made of
composite laminates. These are: residual modulus criterion, matrix cracking criterion,

delamination size criterion, and fatigue strength criterion.

5.1 FATIGUE LIFE PREDICTION IN TERMS OF MATRIX
CRACK DENSITY

Substituting equation (5) into equation (27) gives

m t2
C ] m-\B
n E, ¢ sinei) (59)

N =

K oxbnax (1 —Q)B

Equation (59) can be used to predict fatigue life for general laminate if the allowable
crack density K at each ply in the laminate is prescribed. All constants can be calculate

by the equations derived in Chapter 3.
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5.2 FATIGUE LIFE PREDICTION IN TERMS OF
DELAMINATION

Fatigue failure life in terms of delamination area may be predicted by substituting
allowable normalized delamination area D; = A® /A" into equation (26), that is,
(o

B
A % (60)

b
K Omax (1 "‘I)B

N =

It must be emphasized that C, is a test constant and should be determined by fatigue tests.
However, approximately, C, can be obtained analytically by equation (13) if delamination

is the dominant failure mode.

5.3 FATIGUE LIFE PREDICTION IN TERMS OF RESIDUAL
STIFFNESS

Fatigue life in terms of residual stiffness can be calculated by use of equation

(25). Rewriting equation (25) gives

(1-2)"
N - E, (61)
K 0p,y (1-9)°

Equation (61) is used to predict fatigue life for general laminates if the allowable residual
stiffness in the laminate is prescribed. Clearly, if allowable residual stiffness E is cqual

to laminate failure stiffness E;, then equation (61) will reduce to equation (22), i.e.,
reduced to the form of S-N curve.
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5.4 FATIGUE LIFE PREDICTION IN TERMS OF FATIGUE
STRENGTH CURVE

Fatigue life prediction in terms of applied stress is performed by using the S-N
curve of a laminate, i.e., by using equation (22). The constants of S-N curve for a
general laminate can be calculated by use of the relevant S-N curve of a unidirectional
laminate (equation (34)). This is a traditional fatigue life analysis method but the direct

relation of physical damage to fatigue failure life is not clear.

The meaning of all constants and variables in the equations of this chapter are
same as those in Chapter 3. It is easy to see that all equations for prediction of fatigue
life are other forms of equations in Chapter 3. The validity of these equations depends
upon the credibility of equations in Chapter 3. Next chapter will provide four examples
to illustrate and verify the proposed equations in Chapter 3.
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CHAPTER 6

EXAMPLES

In this chapter, [0/90])s, [+45/0/90],, [0/ +45]s glass/epoxy and {0/90/+45];
T300/5208 graphite/epoxy laminates under tension-tension fatigue loading (R=0.1) were
used to illustrate and verify the proposed approach. Figure 6.1 shows description of the
problem, and static material properties are listed in Table 1. Experimental data was
taken from [4, 16, 19, 20, 21]. Due to fact that an S-N relation for unidirectional
laminates was not available, the best fit method and forms of equation (25) and equation
(34) was applied to the measured stiffness loss data of a [0/90]; glass/epoxy laminate and
S-N curve of a [0/90/+45]s T300/5208 graphite/epoxy laminate to obtain constants of
the unidirectional S-N curve (b, and K;), and then calculations were performed for other
laminates using these constants as prescribed parameters.

- Ll
__>
s lay-up of iaminates : 2
G = [os0]s —* 9
[+45/-45/0/90]s —
S = [ias/as/o)s | 3
% < {0/90/+45/-45]s S—- %
-

Fig. 6.1 description of the problem
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Table 1. Material properties of three E-glass/epoxy and one T300/5208 laminates

—

)

laminates E, | E | E v, K, 0o 0y
[+45/0/90] 4371 16.0 | 6.3 0.28 7.0 1.0E-25 1060{ 330
[0/90] 41.7 | 13.0 3.4 0.3 7.0 1.0E-25 1060{ 520
[0/ +45])¢ 41.7 ] 13.0 | 3.4 0.3 7.0 1LOE-25 | 1060] 400
[0/90/ +45]; 181 | 10.3 | 7.171 0.28] 17.3] 2.38E-50 | 1500] 540

The units of moduli and stress in Table 1 are GPa and MPa, respectively. The
laminate static strength g,, is calculated by last-ply failure theory. Applied tension-tension

maximum fatigue stress ¢, = 160, o, = 207, o,,,, = 175 and ¢,,, = 335 have been

used for the [+45/0/90];, [0/90]s, [0/+45]s and [0/90/ £45], specimens, respectively.

6.1 CROSS-PLY E-GLASS/EPOXY LAMINATE

Substitution of given material properties into equation(34) gives the following

values for constants b and K.

Using laminate plate theory and equation (13) gives C, = 0, which means that the effect
of delamination on stiffness degradation is very small and the dominant mode of failure

is matrix cracking. Equation (39) is no longer valid for this case, thus equation (49) is

b=7 ; K= 1.28E-23

used to calculate constant B, i.e.,

B=1+b/2=45

Using equation (16) and noting that safety factor F; is taken as 1.25 (see [4]) gives

4= Ope / 0, = O Fs /0y, = 207 X 1.25/520 = 0.5
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Using equation (8) gives the value of constant C,,
C, = 045

Substituting the values of B, b, K, q, and C,, into equation (25) and equation (27) gives

1-05(128x10B N o )P (62)

E
EO
and

D, = 1.1 ( 128x10% N o], ** (63)

max

Figure 6.2 represents the comparisons of equations (62) and (63) with test data [19].

6.2 [145/0/90])s E-GLASS/EPOXY LAMINATE

Substitution of given material properties into equation (34) gives the following
values for constants b and K.
b=7 ; K= 3.53E-22

Based on the first ply failure theory and Appendix B, using equation (13) in conjunction
with laminate plate theory yields
t/ty =133 ; E,=27.11GPa ; C; = 0.135

The number of cycles N at onset of local delamination due to matrix cracking is obtained

by using equation (B11) in Appendix B, that is,

N = 6850 cycles
Using equation (8) and equation (16) gives
C,=044 ; q= 0pux/ 0, = Opax Fs /0, = 0.61
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Substituting above constants into equation (41) yields

B =9.82

Substituting all results into equation (25) and equation (27) gives

EE =1 - 039 (3.53x10%2 N g7, )°! (64)
0
D, = 0.89 ( 3.53x102 N o, ) (65)

Figure 6.3 represents the comparisons of equations (64) and (65) with experimental data
[16]}.

6.3 [0/145]; E-GLASS/EPOXY LAMINATE

Analogous to calculations in section 6.2, it is easy to obtain following constants

I

b=7 ; K=9.18E-23 ; B=34 ; q =0.55

substituting the values of B, b, and K into equation (25) yields

EE = 1 - 045 (9.18x10# N o7 )02 (66)
0

Figure 6.4 represents the comparison of equation (66) with experimental data [19].
Matrix cracking damage D,, is not calculated because the test data is not available.

6.4 [0/90/145]; T300/5208 LAMINATE

Similar to calculations in sections 6.2 and 6.3, the following constants are
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obtained
b=17.33 ; K=1.16E-50 ; B=6 ; q =0.776 ; C, = 0.47

Substituting the above results into equation (25) and equation (27) gives

}? =1 - 0224 ( 1.16x19°° N ¢T3 17 67)
0
D, = 0477 ( 1.16x10°% N o)> )o7 (68)

Figure 6.5 represents the comparisons of equations (67) and (68) with experimental data
4, 211.

6.5 FATIGUE STRENGTH CURVES

The fatigue strength (S-N curve) for the above laminates can be represented by

KNat =1 (69)

max

Constants b and K in equation (69) can be calculated by use of the relevant S-N curve
of a unidirectional laminate, i.e., equation (34). The figure 6.6 shows the fatiguc

strength versus fatigue cycles for the above laminates.

6.6 SUMMARY

From figures 6.2 to 6.5 it is seen that analytical results are in good agrccment
with experimental data for the above examples. However, duc to experimental data
unavailable for the unidirectional laminates and very complex fatigue behavior of the
laminates, more experiments should be performed to verify or modify the models

developed by this research.
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Fig. 6.4 Variation of longltudinal stitfness versus fatigue cycles
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Fig. 6.5 Variation of longitudinal stiffness and crack damage versus
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Fig. 6.6 S-N curves for [0/90]s, [+45/-45/0/90]s, [0/+45/-45]s glass/epoxy
and [0/90/+45/-45)s T300/5208 graphits/epoxy laminates
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CHAPTER 7

NOTCHED LAMINATES UNDER
CYCLIC LOADING

The fatigue response of unnotched composite laminates to cyclic loading has been
studied in detail in previous chapters. Another particularly important aspect of the
fatigue of composite materials is behavior of laminates with geometric discontinuitics
such as holes, joints, ply terminations, and/or inherent defects. The performance of

notched laminates under fatigue loading is controlled by the stress fields and material

¢ 9

performance in the neighbourhood of stress concentrators such as cutouts of various
types, the most common being a joint or access hole. While the initiation of damage in
these regions has been studied in some detail [22,23], growth of damage from such
geometric discontinuities under cyclic loading has received relatively little systematic
attention, and modelling of such growth has been limited to particular laminates. At the
present time, the complex damage growth process has not been rigorously investigated
or described, fatigue strength and fatigue failure life can not be reliably predicted, and,
consequently, new and existing material systems can not be exploited safely, efficiently,

and completely.

In metals, the problem of stress concentration resulting from various notches is

well defined by the many stress concentration factors which influence the behavior under

cyclic stress, and crack propagation is easily related to specimen data through the use of

fracture mechanics. In notched composite laminates, however, the damage modes and

N

growth around notches are seen to be quite different. Multiple cracks coupled with

¢
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delamination are often observed in the region around notches, and combined stresses are
produced and vary widely around the notch during the fatigue life of a laminate. When
damage occurs, changes of moduli around the notch result in changes of magnitude and
redistribution of stresses. The subsequent stress analysis becomes very difficult. The
stress redistribution after fatigue damage has made it difficult to predict the fatigue

strength of notched laminate using the fatigue strength of the unnotched specimens.

This chapter addresses the specific subject of fatigue response of a laminate with
a central hole subjected to tension-tension cyclic load. Due to changing of materials
properties at failed regions, the closed form solution of stresses around the hole is not
valid. The finite element technique is used for stress analysis in this research and the
stress analysis was carried out by using well-known NASTRAN Software. Equation (28)
is used to model changes of residual moduli as function of fatigue load and number of

cycles. This new analysis approach will be compared with experimental results.

7.1 OVERVIEW OF FINITE ELEMENT METHOD FOR
COMPOSITE LAMINATES

The following overview of the theory in NASTRAN's capability for the analysis
of laminated composites is based on classical lamination theory which incorporates the

following assumptions:

1. The laminate consists of perfectly bonded plies.
2. displacements are continuous across laminate boundaries.

3. Each of the lamina is in a state of plane stress.

The material properties of structures modeled with plate and shell elements including
the isoparametric quadrilateral element and the triangular element are reflected in the

following matrix relation between force and strains.




¢ 3

Chapter 7.  Notched laminates under cyclic loading 5t
f G, T*G, © €, €
my=|T°G, IG, 0 |{x _ (70)
1 0 0 TSG3 Y
where
[
)
{f)Y =131, { . membrane forces per unit length
fe
mX
{m}=qm , bending moments per unit length (72)
My
q, ) 73)
{q} = , transverse shear force per unit length
1y
ex
{€n} =1 % [ » membrane strains 74
€o
xx
(X} =4%x 1 , curvatures (75)
Yy
(76)

Y
{v}-= { . } , transverse shear strain
Y)’

The quantity [G;] is a 2 X2 matrix of elastic coefficients for transverse shear and
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T, is the effective thickness for transverse shear. The vectors {¢,'} and {X'} are thermal
strains and curvatures respectively (note that thermal effects are not considered in this
research). The terms T and 7 are the membrane thickness and bending inertia per unit

width, respectively. The terms G,, G,, and G, are defined by the following integrals:

G, = 2 [ 161 &

1

G - = [2 16 & (77
1

G, = [216) dz

The limits on the integration are from the bottom surface to the top surface of the
laminated composite. The matrix of material moduli, [G,], has the following form for

orthotropic materials:

E, v,E, 0 1

1-v,v, 1-v V2

Ga =| vE _E (78)
I-vv, 1-vv,
0 0 G,

L

For linearly elastic materials, », E, = v, E, in order to satisfy the requirement that the
matrix of elastic moduli is symmetric. In general, the analysis may supply properties
with respect to a particular orientation which does not necessarily correspond to the
principal materials axes. In this case, the analysis must also supply the value of the
angle, 0, that orients the element axis relative to side of the element. The materials

stiffness matrix is then transformed into the element stiffness matrix through the relation
[G) = VI [G,] [V] (79)

where
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cos?0 sin0 cosBsind

v] = sin’0 cos’®  -cosOsinf (80)

-2¢0s0sin® 2cosOsin® cos?0sin’0

Finite element models for structures made of composite materials require the
evaluation of the matrix of clastic moduli for each plate element of the model. The
characteristics of composite materials are totally contained in these matrices. Once these
matrices of elastic moduli are calculated, the analysis will proceed in a standard manner
of finite element technique. The calculation of stresses and strains in individual ply can

be performed by using the lamination theory of transformation.

7.2 CALCULATION OF RESIDUAL MODULI UNDER
BI-DIRECTIONAL CYCLIC LOADING

The main difference in the finite element model between static load and cyclic
load is the degradation of elastic moduli. The degradation of elastic moduli under cyclic
loading in a damaged region is a function of both stress level and number of cycles. An
analytic model relating residual moduli to fatigue stress and number of cycles has already
been developed in Chapter 3. Equation (28) and equation (22) will be utilized to

represent this relation. The following assumptions have to be made :

1. When an element is subjected to bi-directional fatigue load, linear superposition
of the effect of these two load components on change of elastic moduli is
performed.

2. The effect of shear load on change of elastic moduli is neglected. This is
reasonable because the shear stresses around the hole are much smaller than

tension stresses.

Based on the above assumptions, the reduction of elastic moduli under bi-directional
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plane cyclic loading can be modeled as follows

E, = E)~(AE;+AE})
E, = E;-(AE,+AE})
v‘l)— (Av}*rAvf)

Gloz —(AGI'2+A6122)

81)

1)

Vi
G,

where the reduction of elastic moduli under cyclic loading o, can be obtained by using
equation (28) and equation (29), i.e.,
1

1_ b (_)
AExl = —Z(C q)(Kl N o) 5 [k, + "7("(1)2)2 ’kxsv(l)z]

ml

1
- b (‘—)
AE, = "’Z%j_) (K, N o)) "y +kyvg)" - kypvasl

ml (82)
1 (1-9) b, (7:_) 1- V?z"gl 0
avi = 2 & N o) 1[T](k,3-2k7v,2)
ml 2

1
AG, = - (C q)(Kx Noh™ k,

ml

and the reduction of elastic moduli under cyclic loading o, gives

1
21 - b )
m2

] () »
AE? = -l(él_‘_’l K, N ) %[k, +k,(v%) - kyyvly]

" 1 0.0 83)
2 (1-9) b, (F,),l‘ VizVay 0
Avi = =28 U N o) % iRk -2kv)
m2 )

1
2 2(1- b, B
AGY, - ———-—(C Dk, Nop® k,
m2

The detenmination of constants of the above equations can be performed by using relevant

e o .
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equations in Chapter 3.

7.3 FATIGUE ANALYSIS BY USING THE FINITE ELEMENT
TECHNIQUE

It is very difficult to model fatigue damage growth and to predict fatigue life by
using finite element techniques due to lack of analytical modeis for predicting clastic
moduli degradation. Fortunately, a new approach for calculating residual moduli as a
function of stress level and number of cycles for general composite laminates has been
developed by the present research and is extended to the analysis of notchied laminates
in conjunction with finite element techniques. The modulus degradation criterion is
chosen to define failure of the elements around the hole because modulus reduction may
include damage in both delamination and matrix cracking modes. The value of critical
residual modulus can be obtained from an unnotched specimen by many methods
described in previous chapters including fatigue test data, strain failure criterion,
delamination law, and so on. In general, if it is possible and accurate results are
required, fatigue test data should be used for determining the value of critical residual
modulus, but approximately, delamination law or strain failure criterion can be used to
calculate critical residual modulus analytically. Figure 7.1 represents the flow chant of

this analytical process.
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Fig. 7.1 Flow chart of fatigue analysis process in notched laminated
( plate using the finite element method.
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7.4 EXAMPLE

To illustrate and verify the fatigue failure process by using finite clements,
consider a quasi-isotropic plate containing a circular hole located at the center of the plate
as shown in Figure 7.2. The specimen is a [0/90/+45)s T300/5208 graphite/cpoxy
laminate. Width W and length L of the specimen ar¢c 38 mm and 90 mm, and diameter
d and thickness t are 9 mm and 2 mm, respectively. A tension-tension fatigue load with
maximurna stress 218.5 MPa is applied at two ends of the specimen, and the ratio of
maximum stress to minimum stress R is equal to 0.1. Figure 7.3 represents the finite
element model of this problem. Dimensions of the specimen used in the calculation are

taken from Ref.[24]. The material properties are listed in Table 2.

Table 2 Material properties for a [0/90/145])s T300/5208 specimen

0 0 0 0
E 1 E 2 G 12 14 1 0-08 (Ih "] G ho KU

3

(GPa) | (GPa) | (GPa) | (-) | (MPa) [(MPa) } () | (/)| () | ()

69.68 | 69.68 |26.88 0.3 1500 | 540 | -23 | 200 |17 33 |2.4E-58

In Table 2 the laminate engineering moduli E°,, E%, , G°, and »°), are calculated
by using laminate plate theory (GENLAM software), oy, 0, , b, and K, are taken from

Table 6.1 in Chapter 6, and constants m and G, are from Appendix B.
Analogous to the calculation process in Chapter 6, it is easy to obtain the
following constants in equations (82) and (83)

For [0/90/ +45]; lay-up, i.e., in the direction of ¢, :

B, =6, b =173, K, =1.16E-50, C,, = 0.47
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For [90/0/ +4S5]s lay-up , i.e., in the direction of o, :
B, =8, b, =173, K, =1.16E-50, C,, = 0.47

Substituting all constants into equation (82) and equation (83), and then into equation (81)
gives the expression for residual moduli of a [0/90/ +45]5 T300/5208 specimen under bi-

dircctional fatigue load as

E, = E/-(3.15x1071N°17}% + 3325107 4N°1%q ')
E, = E;-(1.61x107 N0 167¢2% 652510 12N0 12552
v, = V]~(6.95x107 N 167628 | 1 65510 14N0 1235216
Gy, = Gp-(621x107°N1¥762% 1 1 285107 14N0125¢] 1€

(84)

Critical residual stiffness has to be prescribed. Based on O’Brein’s delamination theory, :
in this example the delamination law is utilized to calculate critical value of residual
stiffness because of its simplicity. The accuracy of this choice is verified by test data.
The residual stiffness when completely delaminated along O degree and 90 degree

interface is defined as critical residual stiffness and is obtained by using equation (10)

E'=E = 0.86 E = 60 MPa

where E,’ is defined as the critical value of residua! stiffness E,. This result is evident
from test data in figure 6.5 where E, / E,° approaches to 0.85 after a large number of
cycles. During the calculation using the finite element method, the failure level for an
element of the structure is defined as "when residual stiffness of an element is equal to

its critical stiffness, the element is failed."

Figure 7.4 shows graphical representation of damage growth of a [0/90/+45];
T300/5208 graphite/epoxy laminated plate under fatigue loading. Figure 7.5 presents
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radiographs of damage growth for the same specimen under fatigue loading. From
Figure 7.4 the predicted life is about 1< 10° cycles which agrees with experimental data
[24].

7.5 SUMMARY

From the above theoretical analysis and example it can be scen that analytical
results using finite element techniques approximately agree with experimental data for a
[0/90/ +-45)s T300/5208 graphite/epoxy laminate under fatigue loading. As we know,
the fatigue behavior of notched laminates is very complex and analytical methods in
conjunction with finite element techniques to solve this kind of problem is just beginning.

In general, it must take following factors into account:

(S

. Credible residual moduli reduction model after damage.

™

Appiopriate failure criterion to check failure of elements.

(98]

. Powerful computer software which includes finite element techniques.

In this research a simple example of a quasi-isotropic laminate was performed to
illustrate and verify above analysis processes. The computer software developed in this
research included GENLAM, NASTRAN software. Due to time limitations, iteration
loops for computing damage extension are not performed automaticaily. In order to
obtain detailed analysis of damage extension and fatigue failure life under fatigue loading,
further work is needed to develop more powerful software, which should be able to
integrate the whole computing process automatically (see flow chart in figure 7.1). In

addition, more experiments should be performed to verify or modify the proposed

models in this research.
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Fig. 7.3 - Finite element model of the problem
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(a) N = 1 CYCLES

(b) N = 10 CYCLES

{c) N = 1000 CYCLES

Fig. 7.4 Graphical representation of damage growth of a {0/90/ 1 45]; T300/5208
graphite/epoxy laminated plate under fatigue loading (o,,,, =
0.8 0, = 218.5MPa, R = 0.1).
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(d) N = 10,000 CYCLES

(¢) N = 100,000 CYCLES

(N N = 600,000 CYCLES

Fig. 7.4 continued
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3

¢

(b) N=1000 cycles

Fig. 7.5 Radicgraphs of damage growth in a [0/90/ +45]; T300/5208
graphite/epoxy laminated plate under fatigue loading (0,,, =
0.8 0, = 218.5 MPa, R = 0.1) [24]

¢
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(d) N=1x10° cycles

Fig. 7.5 continued
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(e) N=6x10° cycles

Fig. 7.5 continued
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

The proposed analytical approach in this research is generic and allows for
evaluation of the onset and growth of fatigue damage and prediction of fatigue failure life
of laminated composites with arbitrary lay-up using a minimum of experimental

measurements. The conclusions and recommendations are described as follows:

1. Based on the models by Talreja {3] and O’Brien [6], Residual Stiffness under
fatigue load can be characterized approximately by a linear relation with matrix

crack density and delamination area. Residual stiffness can be used as a global

sty

variable to predict matrix cracks, delamination area and fatigue failure life for the
laminates under fatigue loading. Such an approach seems to have advantages over
residual strength methods in that the residual stiffness can be measured
nondestructively in service, whereas the measurement of the residual strength is

destructive.

2. Global Damage variable growth rate dD/dN is proportional te some power of
applied fatigue stress and inversely proportional to some power of current level
of damage variable D itself(see equation(20)). Based on this assumption, the
analytical model of modulus degradation in terms of fatigue stress and number of

cycles was derived.

3. Strain energy release rates may be used to predict the onset of both matrix

e

cracking and delamination. The onset of critical strain ¢, should be prescribed

by experiments but approximately, one can use first ply failure theory at static
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load for onset of matrix cracking and fracture mechanics analysis for onset of

edge delamination.

The proposed approach provided four choices for predicting tension-tension
fatigue life and for assessing fail-safety for structures madc of composite
laminates, that is, residual modulus criterion, matrix ciacking criterion,

delamination area criterion and fatigue strength criterion.

The proposed approach enables prediction of fatigue behavior of general laminates
using experimental data of a basic lay-up such as the unidirectional laminate.
Three [0/90)s, [1+45/0/90), [(/+45])s E-glass/epoxy laminatcs and onc
[0/90/ 1:45] graphite/epoxy laminate under tension-tension fatigue loading were
used to illustrate and verify the proposed approach and have good agreement with
analytical results. For other layup configuration and different materials, more

experiments should be performed to further verify the proposed model.

The fatigue behavior of notched laminates is very complex. The performance of
rotched laminates under fatigue loading is controlled by stress {ields and materials
performance in the neighbourhood of stress concentrators.  The stress
redistribution after fatigue damage has made it very difficult to perform stress
analysis of notched laminate by using analytical or closed form methods. The
moduli reduction model developed by this research and O’Brien’s delamination
law in conjunction with finite element techniques may be a useful method to
model the fatigue process of notched laminates. In general, using this approach

must take the following factors into account:

¢ Credible residual moduli reduction model after damage.
e Appropriate failure criterion to check failed elements.

e Powerful computer software which includes finite element techniques.

——————
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In this research a simple example of a [0/90/+£45]; T300/5208 graphite/epoxy
laminate with a central hole under fatigue loading was performed to illustrate and
verify the above analytical processes. The results, approximately, agree with
experimental data. Due to time limitations, the iteration loop for computing
damage extension is not performed automatically. In crder to obtain detailed
analysis of damage extension and fatigue failure life under fatigue loading,
further work is needed to develop more powerful software. which should be able
to integrate the entire computing process automatically (see flow chart in figure
7.1). 1In addition, more experiments should be performed to verify or modify

the proposed models in this research.
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APPENDIX A

RESIDUAL MODULI AND CRACK DENSITY
(from Talreja, R. [3])

Consider a two-dimensional solid containing m sets of parallel planar cracks. To
each parallel planar crack, we assign a vector V oriented normal to the crack plane as
illustrated in Figure Al for two sets of parallel cracks. The vector V can be expressed

by
VO = pO n® | j=12,.m (AD)

where D@ is the magnitude of the vector V® and n® is a unit vector oriented normal to

the planes of the ith set of planar cracks.

Fig. Al. A solid containing two sets of parallel cracks

For a set of same orientation cracks in a laminate, The vector magnitude is given
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Appendix A. Residual moduli and crack density IA)

by,
t. K t?
D2 =V V:BC lC WC (—-‘-) = ’m -~ (Az)
t sinf 1t

where B, is the number of crachs per unit surface area and / and w_are the average
length and width, respectively, of the cracks. t_is the thickness of the plies containing
the cracks and t is the total thickness of laminates. K,, and # is crack density and

orientation angle of fiber, respectively.

Assuming that elastic strain energy function is a function of the strain tensor and
damage vector sets V" | and assuming further that the strain components and the damage
vector magnitude are small, Talreja derive the elastic constitutive equations for a

orthotropic laminate expressed as

P g

o, = (C°, + Z;C’pq) e,=C,e, » Pq=126 (A
-

where
2%, k, O
.= |k 2k O (Ad)
0 0 2,
and
Cu € Ce
Cpe = [Cy Cp Cy (A3)
_Csl Cer Ces




Appendix A, Residual moduli and crack density 74

where
C, = 2kD!m} + 2kDln}
C,, = k;,D’m’ + k,D!n?
2
Ci = ~0.5kD;mpn,
22 2 2
C,, = 2k,D;m; + 2kD/n, (A6)
2
Cy = ~0.5k,D'mpn,
2 2 2 2
Ces = 2k, \D;/m; +2k,D/'n,

where

m,=smﬂ, ’ ni =COSOI ’ C21=C12 s C61=C16 ; C62=C26

k, in equation (A6) are material constants, C°,, is the stiffness matrix of the undamaged
laminate which can be determined by laminate plate theory, C'., i=1,2,...m, are (e
stiffness reduction matrix components due to matrix cracking whose coefficients are

functions of the component of the damage vector V*, and C, is the total stiffness matrix

For the case of one set of cracks, i.e., m=1, Figure A2 shows a cross-ply
laminate with cracks in the transverse plies and no cracks exist in the 0°-ply. The
damage vector for this case is given by V=D{1,0}, i.e., # = 90. Substituting m=1 and

# = 90 into equation (A6), and then into equation (AS), we obtain

2k,D? k,D* 0

1
C,, = |k;sD?* 26,D* 0 (a7
0 0 2,D?

%ﬁﬁ’ﬁq B T
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The residual stiffness matrix due to matrix cracking becomes

(2k,+2k,D?)  (k,+k,,D?) 0 |
C,, = | (;+ksD?) (2K +2Kk,D?) 0 (A3)
0 0  (2kg+2k,D?)

The orthotropic symmetry in the co~*cients of stiffness matrix is thus retained for this

crack mode. x,

-——————-———’12

Fig. A2. A cross-ply laminate with cracks in the 90° ply

The residual elastic moduli can now be calculated by use of equation (A8)

E = E? + 2D2["3 + kv("(l)z)z "kxs"?z]
E, = Ezo + 2D2[k7 + 3(Vgl)2 - k13vgl]

1- vov? (A9)
Vi2 "(1)2 + Dz[———%—z[](kudk,v?,)

2

G,, = G?z *2021‘11
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For the case of a laminate with two sets of cracks (m=2), figure A3 shows two off-axis
plies placed symmetrically about the axis X;. The damage vectors in this case are
V, = D, { sinf, -cosb }
(A10)
V, = D, { sin@, cos6 }

Considering the case of § = 45° and noting that k, = k,, k; = k;, and k,; = k,, due to sinf=

cosd, the residual stiffness matrix is obtained by use of equation (A3)
C,, = Cpy + Coy + Coo (A1D)

that is,

2k, 26D1DD]  [hyoky@IDD]  Co@i-D1

Cp * [2ks+ 2k(D?+D)] [%k,(D,z- ) (A12)

| SYMMETRY [2k,,+2k, (D} +D}))

Fig. A3. Cracks in two plies symmetrically placed about the X, axis
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It is seen that, for D, = D,, the orthotropic symmetry is retained. However,
it is assumed that, even for D, # D,, the orthotropic symmetry for the stiffness matrix
will be retained approximately. It is reasonable assumption because the constants kg and
ko, which represent the interactions between normal and shear strain, are often small.

The residual elastic moduli for this case are given by

= E? + 2(DI2+D22)[k3 + k7("(1)2)2 “km"(l)zl

E,
E, Ef + 2(D12+D22)[k7 +k3("(2)l)2 - kl3v(2)l]

(A13)

' 1- vj,vs
Vi = Vi + (D D)1k 2V )

2

G, Gxoz *2(1)12 +D22 Dk,

From the above analysis the laminates which contain 0%, 90°, and + 0 plies if we
neglect the coupling effects between normal and shear strain, the orthotropic symmetry

will be maintained. The residual moduli for these cases can be given by

E, = Elo + 2Dm[k3 + k—;(V(l)z)z "kn"?z]
2
E, = Ezn + 2D, [k, *ka("?z) - kla"il]
1- vivo (Ald)
Vip © vig * Dm[—“——%z‘_z‘l](kxz'2k7v(:2)
2
Gy = Gy +2D k),
where
m
i=1

The crack damage variable D, for example, can be expressed for the [0/90/+t0]s
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| laminate by

|

|

|

D, = (Dy + Dy + D) (A16)
The material constants k,, k; and k,; were given for the glass/epoxy laminate to be
k; =-6.713 GPa , k, = -0.762 GPa, k;; = -4.467 GPa
and for the graphite/epoxy laminate
ky, =-17.875 GPa , k, = -0.141 GPa, k; = -5.557 GPa
Due to the uncertainty in measurement of the shear modulus Ramesh Talreja does
not give the constant k,;. However, this does not affect determination of the remaining

g constants, We assume in this research that shear modulus may has same reduction ratio

as that of longitude modulus approximately due to lack of experimental data, i.e.,

E G
_z_ - __t)_z (A17)
It is easy to obtain
0.2 0
k“ } [k, +hy(v5) -k 3v 5] (A18)

0 0
Gl2 El

From above equations developed by Talreja [3] and slightly extended by this
research, we can see that the relations between residual elastic moduli and matrix
cracking damage have been established. The proposed equations have good agreement

sgI with experimental data [3).
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APPENDIX B

ONSET OF LOCAL DELAMINATION
(from O'Brien, T.K. [2,14])

B.1 STRAIN ENERGY RELEASE RATE

For an elastic body containing a crack that grows under a constant applied load,

P, the strain energy release rate, G ,is given by

2
G - P2dC (B1)
2dA
where C is the compliance and A is the crack surface area created. A similar expression
may be written for G in terms of the remote stress, ¢ , and the compliance of clastic

body, S , by substituting

c-3 (B2)
wt
into equation (B1). This yields
G-1ypd (B3)
2 dA

where dS/dA is the rate of changes in S as the flow extends, and V is the volume of the
body. For the case where the elastic body is a composite laminate containing a matrix ply
crack through the thickness of n off-axis plies, with delamination forming at the matrix
crack tip and growth in the ply interfaces (Fig.Bl1), the strain cnergy release rate

associated with the growth of delamination from a single matrix crack will be considered.
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considered. In order to cvaluate dS/dA in cquation (B3), an equation for laminate

compliance as a function of delamination size was developed.

| LOCAL
1] HT DELAMINATION
i
thHENQ
[~ MATRIX
PLY CRACK —
0
qoﬂ
EDGE VIEW FRONT VIEW

Fig. B1 Depiction of local delamination growing from matrix cracks

/<

~! w

T

Fig. B2 Model of local delamination

Figure B2 illustrates a composite laminate containing delaminations growing from
a matrix ply crack. The composite gage length,l, is divided into a locally delaminationed
region, a , and a laminated region l-a. Assuming the composite displacements are the
sum of the displacements in these two regions, and the total load, P, is equal to the loads

carried by the two regions individually, then using Hooke’s law, Al = PI/AE, yields
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so 1 Awm (B4)

E l

(l-a) , _a
IamEIam AldE Id

where A, and E,,, are the cross-sectional area and modulus of the laminated region, and

A

A, and E, arc the cross-sectional area and modulus of the locally delaminated region.
Each of the areas in equation (B4) represeats only the cross-sectional area that carries the

applied load; hence

=wt (BS)

Ay=wiy (B6)

where w and t are the laminate width and thickness, respectively, and t, is the thickness
of the locally delaminated region that carries load (i.e., the thickness of the uncracked

plies). Substituting squations (B5) and (B6) into equation (B4) yiclds

s-@erf L L}, 1 (B7)
! tldEld tElam Elam

Returning to figure (B2) the strain energy release rate associated with the growth of

delamination from a matrix ply crack can be calculated by assuming

twl
n (BS)

14
A wa
dA = nwda
where n is the number of delamination growing from the matrix ply crack. For the case
illustrated in figure (B2). n=2, but for a delamination growing from a cracked surface
ply, n=1. Substituting equation (B8) into equation (B3) and differentiating cquation (B7)
yields

G = 02t2 1 ~ 1 (B9)
2n \t,E, IE,,
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Hence, as indicated in equation (B9), the strain energy release rate is independent of
delamination size. The magnitude of G depends only on the laminate layup and
thickness, the location of the cracked ply and subsequent delamination (which determines

E,, t4, and n), the applied load, P, and the laminate width, w.

B.2 PREDICTION OF LOCAL DELAMINATION ONSET

In order to predict the onset of local delamination with fatiguc cycles, the G
versus log N characterization of the compositc material must be gencrated. Data from
several materials with brittle and tough matrices indicate that between 10° < N < 10°
cycles, the maximum cyclic G may be represented as a linear function of log N (figures
B3 and B4), where N is the number of cycles to delamination onset at a prescribed G,,,,, .

Hence,

G=mlog N + G, (B10)

where G, and m are material parameters that characterize the onset of delamination under
static and cyclic loading in the material. This characterization may be accomplished
using a variety of interlaminar fracture test methods. Next, G must be calculated for the
first local delamination that will form. This typically occurs at a matrix crack in the
surface ply but it may be confirmed by calculating G for matrix cracking in all of the off-
axis plies in the laminate. The one with the highest G for the same applied load will be
the first to form. This G may be calculated using equation (B9). In order to calculate
the number of cycles for the first local delamination to form, N, equation (B9) is set

equal to equation (B10) and then solved for N,. Hence,

\ 2,2
logh, = — 2L - -1y -g, (B11)
m|2n tE, tE

lam

Equation (B11) can be used for predicting the onset of local delamination under cyclic

loading.

-
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Fig. B3 Strain energy release rate at delamination onset as function

of fatigue

cycles
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Fig. B4 Strain energy release rate at delamination onset as function
of fatigue cycles for X751/50 E-glass/epoxy
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APPENDIX C

COMPUTER CODES

COMPUTER CODE 1.

THIS PROGRAM IS TO GENERATE A NASTRAN PROGRAM

CODE FOR STRESS ANALYSIS AND PLOTTING

( GENNAS)

C
C GENERATING A GRID PLOT FOR FEM
C

CLEAR , , 2000

DIM x(250), y(250), A(100)

CLS

B =26

w =19

R=95/2

m = 33

A=314159/@2*@m- 1))
NUM =0

FORi=1TOm

K=i-1

x(@i) = R * COS(A *K)

y(@i) = R * SIN(A * K)

A@l) = A*K *180/ 3.14159
x(m + i) = 1.2 * R * COS(A *K)
y(m + i) = 1.2 * R * SIN(A *K)
NEXT

FORi=1TO ((m + 1)/ 2)
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K=i-1

X2*m +1i) = 1.5*R*COS2 * A *K)
y2*m 2 i) = 1.5 * R *SIN2 * A * K)
xX(G*m+1D/2+1)=2*R*COSR2 * A *K)
y(5*m+1)/2 + i)y =2*R*SIN2 * A *K)
NUM=G*m+ 1)/2+i

NEXT

FORi=1TO((m+ 1)/4 + 1)

K=i-1

x(NUM + i) = 2.5 * R * COS(4 * A *K)
y(NUM + i) = 2.5 * R *SIN(4 * A *K)
NUMI! = NUM + i

NEXT

FORi=1TO((m + 1)/4 + 1)
K=i-1

x(NUM! + i) =3 *R*COS“4 * A *K)
y(NUM1 + i) = 3 * R * SIN@4 * A *K)
NUM2 = NUMI + i

NEXT

FORi=1TO({(m + 1)/4 + 1)
K=i-1

x(NUM2 + i) = 3.5 *R*COS(4 * A *K)
y(NUM2 + i) = 3.5 * R * SIN@4 * A *K)
NUM3 = NUM2 + i

NEXT

FORj=1TOG®6

n=j-1

x(NUM3 + j) = 4 *R

y(NUM3 + j) =w *n/$
NUM4 = NUM3 + j

NEXT

rmmm=(m+1)/2+1)/2

FORI| = 1 TO mmm - $

X(NUM4 + 1) = 4 *R- (4 * R/ (mmm - 6)) * |
yNUM4 + I) = w

NUMS5 = NUM4 + 1

NEXT

FORj = 1TO6

n=j-1

X(NUMS +j) =4*R-+B/2

yINUMS + j) =w*n/$§
NUM6 == NUMS5 -+ j

NEXT
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oNeoNe!

FORj=1TO6

n=j-1

X(NUM6 +j) =4*R + B

yINUM6 + j) =w*n/5

NUM7 = NUMS6 + j

NEXT

FOR i = 1 TO 100

PRINT "I, X, Y, A()= "; i, x(i), y(i), A()
NEXT

GENERATING GRAPHICS FOR PLOTTER (SEE Fig.7.3)

SCREEN 12

COLOR 10

CLS

VIEW (104, 5)-(536, 430), , |

WINDOW (0, 0)-4 *R + B, 4 *R + B)
CLS O

LINE (0, 0)-4 *R, w), , B

LINE (0, 0)-4 *R + B, w), , B
FORi=2TOm

LINE (x(i), y()-(x( - 1), yGi - D)

NEXT

FORj=m+2TO2 *m

LINE (x(), y0)-(x( - 1), y( - 1))

LINE (x(), y§)-(xG - m), yG - m))
NEXT

mm = (m + 1) /2

FOR kk = 1 TO mm - 1

jj=2*kk-1

LINE (x(jj + m), y(jj + m))-(x(kk + 2 * m), y(kk + 2 * m))

LINE (x2 * kk + m), y(2 * kk + m))-(x(kk + 2 * m), y(kk + 2 * m))

LINE (x(2 * kk + m), y(2 *kk + m))-(x(kk + 1 + 2 * m), y(kk + 1 + 2 * m))

NEXT

FORK =2*m + 2702 *m + mm
LINE (x(K), yK))-(xK - 1), yK - 1))
NEXT

FORj =2 *m + mm + 2 TO NUM
LINE (x(jj, y()-xG - 1), y§ - 1))
LINE (x(j), y())-(x( - mm), y(j - mm))




¢

Appendix C.  Computer codes

87

Q0On

NEXT

nm =2 *m -+ mm

mmm = (mm + 1) /2

FOR kk = I TO mmm - 1

j=2*kk-1

LINE (x(jj + nm), y(jj + nm))-(x(kk + NUM), y(kk + NUM))
LINE (x(2 * kk + nm), y(2 * kk + nm))-(x(kk + NUM), y(kk + NUM}))
LINE (x(2 * kk + nm), y(2 * kk + nm))-(x(kk + 1 + NUM), y(kk + 1 + NUM))
NEXT

FOR i = NUM + 2 TO NUMI

LINE (x(i), y())-(x(i - 1), y(i - 1))

NEXT

FOR j = NUMI + 2 TO NUM2

LINE (XG), y(l))"(x(‘ - l)’ y(] - l))

LINE (x(j), yG)-(x(j - mmm), y(j - mmm))

NEXT

FOR K = NUM2 + 2 TO NUM3

LINE (x(K), y(K))-(x(K - 1), y(K - 1))

LINE (x(K), y(K))-(x(K - mmm), y(K - mmm)}

NEXT

FOR i = NUM3 + 2 TO NUMS

LINE (x(i), y(i))-(x(i - 1), yG - 1)

NEXT

FORj =1TO®6

LINE (x(NUM3 + j), y(NUM3 + j))-(x(NUM2 + j), y(NUM2 + j))
NEXT

FOR j = 7 TO (NUMS - NUM3)

LINE (x(NUM3 + j), y(NUM3 + j))-(xtNUM2 + j), y(NUM2 + j))
NEXT

FORi =1TO6

LINE (x(NUM3 + i), y(NUM3 + i))-(x(INUMS + i), y(NUMS + i))
LINE (x(NUMS + i), y(NUMS + i))-(x(NUM6 + i), y(NUM6 + i))
NEXT

FORi1=2TO6

LINE (x(NUMS + i), y(NUMS + i))-(x(NUMS5 + i - 1), y(INUMS + i - 1))
NEXT

GENERATING PROGRAM CODE FOR NASTRAN SOFTWARE

OPEN "FEMC.DAT" FOR OUTPUT AS #1
FOR i = | TO NUM7
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PRINT #1, "GRAD,"; i; ", ,"; x(i); ","; y@): ","; "0"

NEXT

FORi=1TOm-1

PRINT #1, "CQUAD4,";i; ","; "10,"; i; ",";m + ;" "m + 1 +10;" "0+ 1" -A@)
NEXT

K=10

j=m

FORi =m+ 2TO2 *m-1STEP 2

ANG = -(180/ 3.141159) * ATN((y2 *m + K) - y(i- 1)) / (x(2 * m + K) - x(i- 1)))
PRINT #1, "CTRIA3,";j-3; ","; "10,";i-1;",";2*m + K: "",i; ","; ANG
ANG = -(180/ 3.141159) * ATN((y(2 *m + K) y(l)) [ (x(2 *m + K) - x(i)))
PRINT #1, "CTRIA3,";j-2; ","; "10,";1; ",";2*m + K; ","; 2*m + 1 + K;"."; ANG
ANG = -(180/ 3. 141159)*ATN((y(2 *m+ K+ 1D)-yi)/ x@2*m + K + 1)- x(i))
PRINT #1, "CTRIA3,"; j-1; ","; "10,";i; ",";2*m+ K + 1;",)";i + 1,")"; ANG
j=i-1

NEXT

mmin = 2 *m + mm

FORi=2*m 4+ 1 TO mmm - 1

=g+ 1

PRINT #1, ‘CQUADA4,"; jj; ","; "10,"; i; ",";ymm + i; “,";mm + 1 + i; """} i + 1
NEXT

K=0

j=u+1

FORi=2*m + mm + 2 TO NUM STEP 2

K=K+ 1

j=j+3

PRINT #1, "CTRIA3,";j-3; ","; "10,";i-1;","; NUM + K; ","; i

PRINT #1, "CTRIA3,"; j-2;","; "10,";i; ","; NUM + K; ","; NUM + K + |
PRINT #1, "CTRIA3,";j-1; ","; "10,"; '; "," NUM+ K+ 1;""i+1

i=j-1

NEXT

mmm = (mm + 1) /2

FORi = NUM + 1 TO NUMI - 1

j=j+1

PRINT #1, "CQUADA4,"; jj; ","; "10,"; i; ","; i + mmm; ","; mmm + 1 +1; ","; i + 1
NEXT

FORi = NUMI + 1 TONUM2 - 1

=+ 1

PRINT #1, "CQUAD4,"; jj; ","; "10,"; i; ","; i + mmm; “,": mmm + 1 +i; ",";i + |
NEXT

FORi = NUM2 + 1 TONUMS3 - 1
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jj = jj + 1
PRINT #1, "CQUAD4,"; 3; ","; "10,";i; ","; 1 + mmm; ","; mmm + 1 + §; ",";1 + i
NEXT

FOR i = NUM3 + | TO NUM4 - 1

=gt

PRINT #1, "CQUAD4,"; j;; “,"; "10,"; i; ","; i + mmm; ","; mmm + 1 + 1; ",";1 + i
NEXT

FOR i = NUMS + 1 TO NUM6 - 1

ij =j + 1

PRINT #1, "CQUAD4,"; jj; ","; "10,"; i; ","; i+ 6;","; 7 +1i;","; 1 +i

NEXT

PRINT #1,"MUN,-NUM7";NUM; NUMI; NUM2; NUM3; NUM4; NUMS5; NUM6; NUM7
CLOSE #1

END
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COMPUTER CODE 2.

THIS PROGRAM IS DEVELOPED IN NASTRAN LANGUAGE FOR STRESS
ANALYSIS AND PREDICTION OF FAILURE MECHANISMS OF NOTCHED

COMPOSITE LAMINATES UNDER CYCLIC LOADING

( NASCOM)

$
$ NASTRAN EXECUTIVE CONTROL DECK
$

/INF MVS CL(90) ROUTE (MUSICA) TI(40)
/l EXEC MASTRAN

SOL 24

DIAG 49,44

TIME 40

.. BM 2 RF24D79

CEND

$
$ CASE CONTROL DECK
$

TITLE= ANALYSIS OF FEM FOR COMPOSITE

SUBTITLE= MATERIAL PROPEKRTIES OF PLATE ELEMENT
SUBCASE=1

ECHO = BOTH

LOAD =1

OUTPUT

DISP = ALL

FORCE = ALL
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STRESS = ALL
STRAIN = ALL
GPFORCE = ALL
OLOAD =ALL
GPSTRESS = ALL
BEGIN BULK

$
$ INPUT BULK DATA DECK
$

$ INPUT DATA FILE "FEMC.DAT"

PARAM, AUTOSPC, YES

PCOMP, 10, -0.5, ,1000.0 ,HOFF

, 100, 1.0, 0.0, YES

MATS, 100, 69.68+9, 69.68+9, 0.3, 26.88+9
ENDDATA



<
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COMPUTER CODEF 3.

THIS PROGRAM IS DEVELOPED FOR COMPUTING
RESIDUAL ELASTIC MODULI OF A NOTCHED COMPOSITE LAMINATE

UNDER CYCLIC LOADING (EQ. (81) TO EQ.(83))

( RMODULI)

INPUT "N=?, SIGMA1=7SIGMA2="", N,SIGMAI,SIGMA?2

E10 = 69.68
E20 = El0
EsO = 26.88
vi20 = .3
K3 = -17.875
K7 = -.141
K13 = -5.557
KK = 1.16 * (10) © (-50/ 17.3)
b=173

BB = 6
q=.8

Cm = -2 * (K3 + K7 * (v120) * 2 - K13 * v120) / EIO

Dm = (KK * N * (1 / b) * sigmal) * (b/ BB)) *(1 -q) / Cm

El = EI0 + 2 * Dm * (K3 + K7 * (v120) * 2 - K13 * v120)

E2 = E20 + 2 * Dm * (K7 + K3 = (v120) * 2 - K13 * v120)

vl2 = v120 + Dm * (1 - v120 * v120) * (K13 - 2 * K7 * v120) / E20
Es = EsO * E2 / E20

PRINT Dm; Cm; El; E2; Es; vi2

BB =8

DDm = ((KK * N * (1 / b) * sigma2) * (b/BB)) *(l - q) / Cm

EEl = E10 + 2 * DDm * (K3 + K7 * (v120) © 2 - K13 * v120)

EE2 = E20 + 2 * DDm * (K7 + K3 * (v120) * 2 - K13 * v120)
vvl2 = vI20 + DDm * (1 - v120 * v120) * (K13 - 2 * K7 * v120) / E20
EEs = EsO * EE2 / E20

EEEl = El - (E20 - EE2)

EEE2 = E2 - (El10 - EEl)
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nul2 = v12 - (vi20 - vvl2)

EEEs = Es - (Es( - EEs)

PRINT "El,E2,5s, vi2="; EEEl; EEE2; EEEs; nul2
END




