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ABSTRACT
) A \
We’ interpret & body of results in nonpdrturbct_ive Quantum Chromodynamics
(QCD) as an indication ¢hat hadron structure is governed by two
effective, dynamically generated mass scales: the chiral-symmetry

breaking (Z§B) scale A, and the confinement scale A‘. These scales aust

satisfy the tnequality A ¢ A,. We propose that Z8B determines' pie
AR o

universal distribution of partons in comstituent quarks. To t this
hypothesis, we use an gnaiytic description of X&8B work of a
successful phenomenclogical wodel based on the two-s
gives g good aspproximition to hndronic charge form factors and to the
plon decay constant. We then generalize the msodel in order to analyze
elastic hadron-hadron scattering at high energies. Our tvg-lcale picture
ts shown to offer a natural explanation of the behavior of scattering
observibies. In order to discriminate between Qtvo basic alternatives for
the confinement mechanism, we propose an interquark potential which
incorporates the requirements of the two—-scale picture. This wmodel of
confinement gives rise to color Van der Waals forces which should be
detectable in forthcoming high-precision secarch experiments,
Nondetection of such forces would thus suggest that potential-models
cannot adequately describe confinement, whereas a positive result would

o

rule out "rigid” confinement,

—r
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RESUME

) +

Nous interpre’tona de nombreux résultats en Chi‘onodynuique Quartique,
(QCD)'nonpcrturbctive comme une indication que la structure des hadrons
est rc’gle par deux échelles énerg(tiques génerdes dynamiquenment:
1'échelle Ay de 1a brisure de la symetrie chirale (BSr) et l'échelle du
confincnent,AC . Ces échelles doivent satisfaire a 1'inégalité A(gA,.
Nous nuggér?ma que c'est 'a BSY qui détermine la distribution

universellg\des partons dans les quarks constituants. Pour vérifier

cette hypothlle. n u; intégrons* une description analytique de la BSX
dans un modele phe'none'nologique bas€ mur l'idZe des deux e’che‘lles. Ceci
donne une bonne approximation aux facteurs de forme de charge des
hadrons ainsfi qu'\a la constante de d€sintegration du pion. Ensuite, nous
généralisons le modele afin d’'analyser les collisions €lastiques
hadron-hadron a haute énergie. Nous sommes conduits a une explication
naturelle du comportement des observables de ces collisions. Dans le
but de discriminer entre deux alternatives fondamentales pour le
mécanisme du confinement, nous formulona un potentiel entre quarks qui
tient compte de la structure a deux échelles. Ce potentiel implique
1'existence des forces colordes de Van der Waals qui devralent étre
détectables dans les prochaines expériencu de haute précicion. Ainei,
un résultat négatif de ces expe’rlcnceu lugg‘reuit que le concept -Sne’

d'un potentiel entre quarks est 1nade’q\ut pour décrire le confinement.

Par contre, un resultat positif eliminerait le confinement “rigide™.
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STATEMENT OF ORIGINALITY

‘l'hi-. thesis is an original attempt to correlate concepts and
results in nonperturbative QCD with phenomenoclogical information about -
hadron structure, Chapter 2 is a review of the literature on
nonperturbative QCD, written from the original point of view of our
attempt. There we collect all the concepts and results which we apply to
phenomenological problems in the subsequent chapters. Chapters 3 and 4
are based upon our paper [94]). ‘rhey‘lre rendered more pedagogical by a
more extensive review of related work by other authors than was possible
12 the original article. Chapter 5 is based on our papers [108,109j and

Y

contains a more complete summary of the impact-parameter formalism,
based on'Valin's exposition [119]). Chapter 6 is based on our paper
[140]. An earlier version of a unified presentation of our work can be

found in the conference talk [137].

Any views and interpretations or other statements not literally
contained in the original papers quoted above are the exclusive

responsibility of the present author and do not necessarily express the

views of his co-authors i{n those papers.
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CRAPTER 1: INTRODUCTION

l.1. EFFPECTIVE THEORIES AND NONPERTURBATIVE METHODS

Research efforts in contemporary theoretical high energy physics
are mainly concentrated in two areas: ,
A. Extending the Standard Model;
B. Nonperturbative QCD.

l M

!
. L)
The so-called "Standard\'lodg\l" of strong, weak and electromagnetic
1nter¢ctions provides an adequate description of elementary particles

with masses up to roughly that of the W boson [1]. At such energy scales

(H,,: 80 GeV) the gauge group of the model factors into a direct product

jf auge subgroups, SU(3) x(SU(2)xU(1)),,, which means that strong and

i

X

de

ctrowesk interaction dynamics are independent. For sesthetic as well
practical reasons one believes, however, that the standard model must
e from a more fundamental, unified theory valid at higher energies
{2]. At energy scales of the order of the Planck mass (Hn‘-'-' 10" GeV)

this unification should include gravitation as well.

Problem A consists in finding this fundamental super—high energy
theory and in calculating phenomena at lower energies from it. By _
analogy with known statistical and field-theoretic models, one expects
that the system specified by the fundamental Lasgrangian written in terms
of fields defined at superhigh energies will undergo various phase
transitions as the energy decreases. These transitions would be driven
by the dynsamical breakdown of various sysmetries of the original

Lagrangian. Each phase would be characterized by a specific set of
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degrees of freedom, 1n general composites of the elementary fields in
the fundamental Lagungian‘. Pheno-;enology in each phase would thus .be
calculable from an "effective theory™ written in terms of the degrees of
freedo-' active in that phase. In pa‘rticular, the standard model must be
shown to be an effective theory desqgribilng physics at energies of the .
order M_,. The precise nature of the fundamental theory and the exact
pattern by which it evolves to low energies will determine phenomenology

>

between H"and My, - -

The difficulties involved in solving this problem are daunting. At
the present ti\-\e th}pé/’is profusion of candidate extensions of the
standard model, such as vajious grand unified theories, composite
models, supersymmetries and supergravities, They propose fundamental
Lagrangians and symmetries defined at totally inaccessible energy
scales., They result in diverse phenowmenological predictions for the
world beyond M,, none of which 1is amenable to experimental ver{fication
at the present time {(some of the predictions should, however, be
verifiable at the next generation of colliders), From the theoretical
viewpoint, the wmain problem is that there are as yet no rigorous,
systematic methods for constructing effective theories from a given
fundamental quantum field theory., The only reliable method for
calculating quantum field theories is the perturbation expansion which
Adependl upon the existence of a small parameter (such as the interaction
strength) in which the observables of the theory are analytic. This is a
very special situation which 18 not expected to hold true for all
energies in any of the proposed extensions of the Standard Model. In
general, transitions from one phase of a system to the next involve the
breakdown of the perturbation expsnsion which may have been valid in the

original phase. Even if perturbative techniques are applicable at the
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fundamental super-high energy level, they cannot describe the chain of
symmetry-breakings which leads to lower-energy phenomenology.
Constructing effective theories thus requires systematic, efficient and

power ful nonperturbative methods of calculation.
1.2. QCD AS A THEORETICAL LABORATORY

Now consider Problem B. Quantum Chrc;nodynanics (QCD) 1is believed to
be the fundamental theory of the strong interactions. Its elementary
fields are fermionic “quarks”™ coupled to the gauge fields (“gluons™) of
the nonabelian gauge group SU(3), (the first factor of the Standardl
Model gauge group) by means of a charge called "color”. The validity of
QCD as the fundamental theory can be tested in high momentum-transfer
scattering processes involving hadrons. This is because the interaction
strength decreases as the colored particles approach each other, so that
perturbation theory becomes applicable in the high momentum-transfer
limit. Hard hadronic processes can therefore be systematically
calculated irom the QCD Lagrangian and the results reproduce
experimental data encouragingly well.

P

However , by the same token, the coupling strength must become large

at low momentum transfer, so that the perturbation expansion cannot be

used to calculate the bulk of hadronic phenomenolbgy (“soft” scattering
processes and static propetttiea) from the QCD Lag'rangian. Most
conspicuously, the "“confinement”™ of color fields (the fact that observed
hadrons do not carry color) cannot be proved by perturbative methods.

The problem thus consists in devising nonperturbative schemes to

accouplish this task.
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0f course, Problem B is far easier to solve than Problem A. Indeed,
in the case of QCD we have experimental control over all scales of the
theory. Both the high-energy and low-energy limits are well known; all
experimsental information relevant to intermediate scales either exists
or can be "readily” obtained in today's or tomorrow's labs. This
information can eliminate i{deas, models and calculation wmethods which
fatl to reproduce the totality of hadronic phenomenology. In this way,

the final theory will be extremely reliable.

From the theoretical side, the confidence we Kave in the validity
of the basic QCD Lagrangian pinpoints the symmetry which characterizes
the phases of the system of interacting quarks and gluons. It {8 "chiral
symmetry”, a global symmetry of the QCD Lagrangian written for massless
quarks. Chiral symmetry is very nearly exact at large .nouentu--trmsfer
(the quark masses in the fundamental Lagrangian are determined by
electroweak dynamics and are thus i{rrelevant for color dynamics) but it
must be broken in the static limit in order teo account for
well-established phenowenology. The breaking of chiral symmetry does
not interfere with the local gayge invariance under SU(3)c , vhich

remains unbroken, By contrast, most extensions of the Standard Model

involve several local and global symmetries whose breskings intertwine.

Consequently, the fundamental historic significance of QCD lies in
its being a theoretical laboratory destined to produce the first
rigorous, nonperturbative derivation of\effecttve theories from a given
fundamental Lagrangian. With the successful theory of hadron physics as
a prototype, one will be in a much better position to extract the
phenomenological, accessible—energy consequences of a given candidate

Planck-energy theory. \
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1.3. PURPOSE OF THIS WORK

The above arguments show how essential it 1is to be able to confront
calculations in nonperturbative QCD with experimental data. It 1is
necessary to e;tract the phenomenclogical implicaticns of all results
obtained in nonperturbative QCD and to see whether or not they yield

sensible descriptions of hadronic properties,

Over the past few years, a substantial body of results has been
obtained by various nonperturbative techniques. Many of these results
are consistent with each other and have thus acquired a measure of
reliability. Some calculations yield directly measurable quantities,
such as hadron masses, decay widths and magnetic moments. However, many
of the more elaborate calculations regarding, in particular, the
mechanisms of confinement and chiral-symmetry breaking, are not as

straightforward to interpret,

In this work we propose to fill this gap. Our main idea 18 that the
dynanical mechanism of chiral-symmetry breaking determines the internal
structure of hadrons in terms of color fields, as explorable by means of
lepton-hadron and hadron~hadron scattering. We shall argue that existing
results on this nonperturbative mechanism suggest s certain picture of
hadron structure which seems to explain experimental data quite nicely.
This picture also enables us to propose an experimental test of the

essential features of the confinement mechanism.

Chapter 2 presents the problems, methods and results of
nonperturbative QCD in more detail. It defines the specific questions we

set cut to answer. Chapter 3 contains the arguments leading to our model
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of hadron structure as well as a detailed description of the proposed
picture, Its confrontation with elastic lepton-hadron scattering data
takes place in Chapter 4 whereas Chapter 5 presents the confrontation
with high—-energy hadron-hadron scattering data. In Chapter 6 we use our
picture to set up a new model of the large-distance interquark potential
and show how it can shed light on the confinement mechanism. The final
chapter offers our conclusions and some opinions on future progress in

this field. ‘
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CHAPTER 2: HADRON PHYSICS AND QCD

2

2.1. FACTS AND MODELS

a) Quarks and partons.

The constituent quark msodel was originally wotivated by &
successful classificstion scheme for the hadrons which were known in the
early sixties. Independently, Gell-Mann and Ne'eman [3) recognized that
the eight spin~1/2 baryons of the proton family could be considered as
members of an octet representation of the global symmetry group SU(3).
Two other octet repreaentations of the same group were used to
accomodate the low-lying pseudoscalar and vector mesons. However, SU(3)
also possesses a complex triplet representation, the ,o-called
fundamental representation, out of which all higher-dimensional
representations can be built. This suggested that all hadrons are
combinations of three basic building blocks which were dubbed "quarks”
[4]._ Hadrons were asssumed to be built out of constituent quarks just as
nuclei are built out of protons and neutrons. Each of the three quarks
had to be given a name, corresponding to a value of the quantum number
we now call "flavor®: Up (U), Down (D) and Strange (S). They had to be
assigned fractional charges (2e/3 for the U and -e¢/3 for the D and S, e
being the charge of the ﬁroton) and baryon numbers (1/3 each) as well as
spin 1/2. Thus the proton is built out of two U's and one D and the
neutron oyt of one U and two D's. Being lirac fermions, the quarks wmust
have antiparticles associsted with them: the '5, 3, K] antiquarks which
forn a SU(3) triplet of their own. The octet mesons are co-binu;io;xc of

quarks and antiquarks: for instance, the n* 1s a UD state.

T ——
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Along these lines, all the known weson and baryon resonancee could
bg classified according to the constituent quark model. Hadron masses,
decay widths and electromagnetic properties were generally well
reproduced. Conclusions regarding the masses of the constituent quarks
could be drawn: thus, the masses’of the U and D were found to be
approximately 350 MeV {5]. As nev particles were discovered, the model
was able to incorporate them either as higher angular momentum
excitations of known quark combinstions or by increasing the number of
quark flavors. We nov have reason to believe there are six quark
flaQor-, with the three new constituent quarks being called C (Charm), B

(Bottom or Beauty) and T (Top or Truth) ([6]).

However, it soon became clear that the binding of constituent
quarks into hsdrons i{s in no way snalogous to the binding of nucleons
into nuclei: so far, it has not been possible to liberate fractionally
charged particl~s even in the highest-energy collisions specifically
designed to break up hadrons, For somse dynamical reason, constituent
quarks seem to be “permanently confined”™ in their host hadrons. Om the
other hand, high enaergy lepton-hadron inelastic scattering does lend
support to the hypothesis of hadronic substructure, albeit in s rather
unexpected way. As seen by a high-energy virtual photon, a ptotén
appears to contain not only three “valence”™ quarks whose flavoras
coincide with those of the constituent quarks, but also an infinite
“ocean” of quark-unthunr: pairs of various flavors (the higher the
photon energy, the more flavors are active in the ocesn). Thasa
constifuents are collegtively known as “partons” (7]. Most strikingly,
partons are pointlike, relativistic particles which interact with the

very-high-energy photon as if they wers free and independent of each

other.
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b) QCD,

To make a theory out of the model, one must describe these
apparently contradictory extremes in terms of {nteractions between
partons. It was another serious flaw in the naive model which indicated
what we nov hope to be the correct path towards the solution of this
problem. The spin-3}/2 resonance called A" is wade from three U quarks

with parallel spins. The quark model wants them to be in a relative

orbital symmetric S-state whereas Permi statistice~Tequires the orbital
wavefunction to be antisymmetric. To resolve thij paradox one introduces
a new quantum number called “color” in which the/wavefunction can be
antisymmetrized so that it is ly-etric in orbifal angular momentum.
There is evidence that each quark flavor -u;t come in three colors (call
them red, yellow and blue): this hypothesis allows one to explain the
results of measurements of the ratio

R=€ (&' ¢ ~-> hadrons)/€ (¢ e’-—),u'/t') (8] and of the ° decay rate [9].
Since observed hadrons do not carry color, confinement must be a
consequence of the interactions between colored quarks. Thede must

result in the formation of colorless bound states of colored

constituents.

Once we accept the need for colored quarks we must mske the forces
which bind them color-dependent. The color~exchange quanta are called
“gluons”. The simplest way to explain why a quark and antiquark are
strongly bound fnto a meson while two quarks are not is to attribute
spin 1 to the gluon field. Indeed, fields with even spin couple in the
same way to particles and antiparticles; spin one is the lilpl..lt
odd-spin possibility and the only one which yields a rod‘lﬂ'éuinble

theory.

q_



T T g T

’-«

18

But this reminds us of a familiar situatfon: quantum
¢lectrodynamics (QED) describes the exchange of spin-1 photons between
spin-1/2 electrically charged leptons. The way in which tr§ photon
couples to charged leptons is uniquely determined by the requirement
that the QED Lagrangian be invariant under local U(1l) gauge
transformations [Appendix B]. The photon is called the “gauge boson” of
electromagnetism, i

. ,

QED 1is the best verified physical theory we know. The
generalization of the gauge principle from local U(lka to the gauge
group [SU(Z)LxU(l)]‘v of the electroweak interactign has produced two
Nobel prizes- one for the theoretical prediction of the existence and
properties of the gauge bosons W and Z and one for the experimental
confirmation of these predictions [1!. This suggests that we should
build the fundamental theory of the strong interactions using the same
mould: cougle the three colors of quarks to the eight gauge bosons
(identified with the gluons) of the local gauge group SU(S% (three
colors!) just as electrons are coupled to photons. As outlined in
Appendix B, this requirement defines the Lagrangisn of Quantum
Chromodynamics (QCD), vhic; is postulated to be the fundamental
dynamical theory in terms of which all strong interaction physics must

be explainable. -

Let us rewrite the chromodynamic Lagrangian density(see App.B) as
Leo=={ B P-4 Tpr BRI 4 ¥ ()t (24
s
This implies that the gluon field satisfies Maxwell-like equations of

motion q/‘#’ =_1},770?Y +')_J&‘x?” gj\’ (2.2)

”,

I
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vhiléwthe quarks and antiquarks obey Dirac equations with the ordinary
derivative replaced by the covariant derivative. 4t is easy to check

1
that the fermionic and gauge field contributions to the current density
TV are not conserved separately due to the non-abelian character of the
gauge group, but that the anomalies cancel to ensure that the total
current density is divergenceless. Therefore, the gluon selfcoupling
embodied in the tera g;,x?/‘a is essential for the theory to make gense.
At the quantua level, three-and four-gluon couplings ensure the

-

unitarity of the theory [10].

As a consequence of the nonlinearity of the gluon field equations,
any color source will be surrounded by a cloud of self-interacting
gluons which amplifies the effect of the source. The gluon cloud which
surrounds \a red quark will on the average slso be red. Therefore, a
colored tebt particle that penetrates the cloud will sense a smaller
intersaction if it comes close to the bare quark at the center 4f the
cloud than 1if it pssses at large impact parameter. This “"antiscreening”
effect due to gluon selfinteraction competes with the usual screening
effect of fermionic vacuum polavization which {s familiar from QED. As
long as there are less than 17 quark fl;votl, antiscreening is more
important and the effective color charge increases with the distance

from the bare source.

The weskening of the‘QCD coupling at small distances is called
“asymptotic freedom™ and it explains the success of the parton model.
Photons which come in with high energy probe the hadron at small
distances at which the interactions between colored particles are faint,
This suggests that one may identify Feynman's partons with the

fundamental fields in the QCD Lagrangian: “current”™ quarks and

AR J
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antiquarks along with electrically neutral gluons. In fact, the need
for neutral partons was obvfbul ever since the first attempts to
‘
interpret quarks as partons [11}, since the fraction of proton"o-entu-
carried by charged fermions was uncomfortably small even when the ocean

quarks and antiquarks were taken into account. Today we know that

glue-partons carry about half the proton's momentum [12].

"Infrared slavery” is the counterpart of (ultraviolet) asymptotic
freedom: colored particles interact more strongly as they are pulled
apart so the large-distance structure of a hadron should be described in
terms of collective wmotions of partons. On the other hand, it seems
intuitively clear that this same qualitative behavior ought to explain
confinement. However, it is by no means clear how constituent quarks
are related to the partons which appear directly in the QCD Lagrangian.
In order to relate infrared slavery to the confirement of constituent
quarks, one must thus show explicitly how color field dynamics generates

the constituent quask model as an "effective theory™, in the language of

S~

Chapter 1.

c) Chiral symmetry.

s

Consider the relationship between the gauge theories of the strong
and the electroweak intera&tions., The Standard Model [1] postulates that
the gauge groups of these interactions are orthogonal. This hypothesis
allows one to describe the strong and electroweak properties of hadrons
in a way which naturally conserves parity and strangeness to order Ge
(GF is the coupling constant of the effective low-energy Fermi theory of

the weak interaction) [13].
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The color quantum number of quarks thus plays no role in their
electroweak interactions, just as flavor 1is not active in
chromodynamics. It {s, however, important to recognize the indirect
effect of Quantum Flavordynamics (QFD, the gauge theory of
[SU(Z)LxU(l)]‘w) on the QCD Lagrangian. This stems from the fact that
the gauge group SU(2) must be spontaneously broken: whereas the
Lagrangian of QCD+QFD is invariant under the direct product of gasuge

groups SU(B)‘x[SU(Z)LxU(l)] the vacuum state of the theory (the

ew!
observed physical world) can be {nvariant only under SU(3)‘xU(l)‘n. If
SU(Z)L were not spontaneously broken, just as in a ferromagnetic system
the symmetry under rotations is lost in the spontaneously magnetized
ground state, the W and Z gauge bosons would have to be massless instead
of acquiring their celebrated masses. Indeed, unbroken local gauge
symaetries have fassless gauge bosons, like the QCD gluons and the QED

photon. Physically, a W moving through the asymmetric vacuum of QFD

experiences “"friction” and its velocity must be v<c.

In the Glashow-Salam-Weinberg theory [1] the leptons and quarks
acquire their las;es by the same token as the W and Z. Since SU(Z)L only
affects left-handed fermions, fermion mase terms which produce
left-right transitions are forbidden unlegs SU(2)L is spontaneously

broken.

It is an empirical fact that quarks and leptons come in various
“generations”: sets of two leptons and two quark flavors. To date, we
have evidence of three distinct generations: (e,v ,u,d), (,.vf,s.c) and
(T,Vgsb,t) (we denote the quark flavors with lower-case letters to
indicate that these are the current quarks in the QCD Lagrangian rather

than the constituent quarks). The Standard: Model does not explain
[}



o o T T TR

22

spontaneous gauge-symmetry breaking dynamically and i{s therefore not .
able to account for the origin of generations, nor for the observed mass
differences between the leptons w%thin'one generation. This i{s one of
the main motivations for vanting’to go beyond the Standard Model [2].

As far as QCD is concerned, however, otthogonality to QFD means
that these questions are irrelevant. The only important point is that
the current quark masses in the QCD Lagrangian are to be considered of
extraneous origin and will only play a passive role in color dynamics.
The essential features of chromodynamics can thus be Jgudied, without

any loss of generality, by neglecting the mass terms im the Lagrangian

(2.1).
-

Like any gauge theory with massless fermions, massless QCD enjoys a
set of global symmetri®s known as "chiral symmetry”., On a formal level,
the absence of mass terms which would mix left-handed and right-handed
quarks means that the fermion numbers of qu, and q, are separately
conserved. For Nf flavors, the chiral symmetry of QCD should be
U(N‘)?U(N'). As a consequence, Noether's theorem demands the
couservation of the N; vector currents v and of the N; axial-vector

f

currents {;, which can be formed as bilinear combinations of current
quark fields. At the quantum level, however, an analysis of the Ward
identities satisfied by these currents reveals that the flavor-singlet
axial current has an anomaly and fails to be conserved (see Section
2.4c). The true chiral symmetry of the massless quark-gluon Lagrangian

for N{ flavors (apart from baryon number conservation) is SU(Nﬁ)xSU(ﬂf).

There are NF conserved vector charges

0= (d%vitd  ; [¥,He)=0  (13)
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and N: <1 conserved axial-vector charges

-

o= feaiod 0 [3, Hep)=0 (2.4)

These are symmetries of the current quarks in the QCD Lagrangilan.
Assume they are also obeyed by the constituent quarks of the same
flavors. Then we can construct conserved charges Z: . Z; with the same
properties as z}l , zi . This would have the following consequences for

the hadron spectrum: since [2; JHapl=0, the state Z} |¥> would have

the same energy as the state |xX>. For N =2 this is a very good

4
approximation (isospin symmetry of the strong interactions!) and for
Nf'3 it reproduces the original global SU(3) of Gell=-Mann and Ne'eman.
For the three heavy flavors (N‘- 4,5,6) the electroweak masses in the
QCD Lagrangian are so large that it does not make sense to compare the

predictions or chiral symmetry with hadron epectroscopy.

However, 1f the axial constituent charges were also conserved, then
Z“ |X> should also be degenerate with [¥>. Since the axial charges
carry negative parity, there should be a opposite-parity hadron
mass-degenerate with any given “ordinary™ hadron! Evidently, there is no
trace of this symmetry in:- the spectrum of baryons and mesons. The
current quarks in the QCD Lagrsngian enjoy SU(N‘ )L xSU(N‘ )y chiral
symmetry but constituent quarks only have the SU(N;)ul which classifies
hadrons into multiplets (N;- 2 or 3). QCD wmust spontaneocusly break
chiral symmetry as it gives rise to the long-distance physics described
by constituent quark models. Since the vacuum of QCD is not symmetric

under Zi , we must have

Zi1o> + O (1 5)
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This implies there exist N; -1 states with the quantum numbers of

Zi 10>: no energy, no momentum, no angular momentum and negative
parity. These massless spin-0 bosons are called "Goldstone bosons” [l4].
For N;-Z, the pion triplet is the natural candidate for the GoIdstone
bosons of chiral-symmetry breaking. By postulating this identification,
one implies that the finiteness of the pion masses is due to the
electroweak masses of the u,d current quarks. For N;-3, one identifies
the pseudoscalar octet (n',K,1 ) as Goldstone bosons and attributes

their finite and unequal masses to the existence of the finite and

unequal QFD masses of valence current quarks.

The study of the consequences of chiral-symmetry breaking was a
classic subject in particle physics long before the emergence of QCD
(one realized chiral symmetry had to be broken at low energy scales
before one knew_that {t was unbroken in the high-energy liait).
Effdctive Lagrangi{ans based on the breaking of chiral symmetry and on
thel{existence of Goldstone bosons have led to an extremely successful
phenomenological theory of the interactions of soft pions with hadrons
[(15,16] and such methods are still among the most important analytic
nonperturbative tools in the study of dynamical symmetry-breaking

[17,18]).

d) Summary.

To sum up the situation emerging from our review, the facts of
hadron physics are well described by relatively simple models in two
opposite limits. Static hadron spectroscopy and the Jow-energy
interactions of hadrons are well described by models based on the

existence of constituent quarks and on the breaking of chiral symmetry.

+
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Constituent quark models fall into two main categories: potential models
(5,19], 1n which hadron radii have probabilistic, quantum-mechanical
interpretations, and bag models [20]) in which conflnement i3 explicitly
imposed by means of a cutoff on possible hadron radii. At any rate, the
lightest flavors of constituent quarks must have masseg of around 350
MeV. The unification of constituent quark moaels with models based on
chiral-symmetry breaking (sigma-models [16,17], Skyrmion models [18]) 1s
an open problea: how is the Goldstone character o‘ the pion to be
reconciled with its status as an ordinary hadron, a bound state of a
constituent quark and antiquark? Attempts to solve this problem are
taking place within the bag model (cloudy—-bag models [21], chiral bag
models [22]), in constituent quark models without explicit confinement
{23] and in the Skyramion franework' {24). In all these investigations,
the crucial issue is the evolution of hadron structure as one increases

the resolution away from the static limit.

In the extreme of very high resolution of hadron structure, as
achieved in deep inelastic lepton—hadron scattering and other hard
scattering processes, the model which reproduces experimental dats is
the parton model interpreted in the framework of perturbative QCD., The
partons are the curreat quarks and the gluons of the QCD Lagrangian:
they are asymptotically free and in*eract according to the QCD Feynman
rules. Gluons are exactly marsless because they are the gauge fields of
unbroken SU(3),; the masses of current qua?l/s are determined by their
electroweak properties, For the lightest flavors, the current quark
masses are of the order of a few MeV. Chiral symmetry is an intrinsic
property of the purely chromodynamic sector of the theory. Partons are
field-theoretical quanta: they can be grouped into "valence quarks”

‘ which have the flavor of the constituent quarks defining the host
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hadron, "ocean™ guark-antiquack pairs and gluons. Again, the main open
theoretical andl}phenonenological questions have to do with the
extrapolation of the model and of QCD to lower resolutions, at which
perturbative calculations are beset by large higher-order corrections

and evéntually become inadequate.

¢

We conclude that the fundamental problem in hadron physics 1is to

describe the transition from the parton regime to the constituent quark

regime by means of QCD. In the remainder of this chapter we shall
introduce several perturbative and nonperturbative approaches to this
problem, discuss their results and forsulate the questions which we

attempt to answer in this thesis.

2.2. PERTURBATIVE QCD ~

a) Soft singularities.

OCovariant perturbation theory takes the quantum Lagrangian of a
relativistic field theory and derives the corresponding Feynman rules,
The simplest calculation with direct physical significance one can do
based on the Feynman rules for QCD is to compute the craso—oection for
the pr'oceu e' ¢ —-> hadrons. Let E* be the c.m. energy squared of the
e’ e” annihilation: 1t is equal to ‘Q", the time-like four—momentum
tran’afer squared imparted to its target”’by the created virtual photon
(see‘ ?13: 2.1). PFor Q"-)-o the photon will annihilate into a current
quark-antiquark pair. Fig, 2.l shows the diagrams .required to calculate
& e —->qq to first order in the “strong fine-structure constant”

o= /4n. Setting all quark masses to zero and keeping the quark

momenta squared p"-;{‘fo one finds the following result for the
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cross-section of this process [25]:

o - 2
G =S4+ T#‘I'%‘*’(%)*'%W%)*%%]} (2.6)
where G,-I»WK‘; /E*is the Born (tree) approxination result
corresponding to the first graph in Fig. 2.l. We see that ‘ﬂ' given by
Eq. (2.6) diverges iu the infrared limit p——> O.If this divergence

cannot be removed, QCD corrections to the free parton model result

are infinite and perturbative QCD can never be used.

[
I3

‘e"—->q3 is but one of several

We recognize, however, that e
possible parton subprocesses contributing to e e -->hadrons. By analogy
with the infrared problem in quantum elecrodynamics, we expect that a
quark alone can never be distinguished from a quark radiating any number
of soft or collinear gluons. Therefore the contribution of the diagrams
in Fig. 2.2 should be added to Eq. (2.6). This contribution is [25]

S ﬁ-;“"{”"‘(g) IA(%)-T+t (29

so that the total, observable cross-section to order o(s i8 free of

infrared "mass singularities”:

Sput = €0 4+ %) (29)

This miraculous cancellation of soft singularities has been shown to
persist to all orders in perturbation theory, for cross-sections summed
over all possible final states involving quarks and gluons.

("Kinoshita-Lee-Nauenberg theorem”).

b) Renormalization.

Second-order diagrams in ’ls such as the ones depicted in Fig. 2.3
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glve rise, however, to ultraviolet (p—>es) divergenceb‘t\ Just as in QED,
these must be removed by renormalization: they will be a&sorbed into
redefinitions of the coupling constant, the quark masses k‘ad the scale
of the fields. QCD, like all gauge theories, is ‘renomaliz\able" in the
sense that once this has been done no new divergences arise in higher
orders and all quantities are finite and calculable. There are many
ways to actually carry out renonallzat'ion: the choice of
renormal ization scheme 1s not allowefl to have observable consequences
but one choice or the other may be more convenient for a given problem.

The point we need to make here 1s that any renormalization scheme in QCD

introduces a new parameter with dimensions of mass into the theory.

Consider, for instance, the "sinimal subtraction” (MS) scheme [26]
as applied to the quark self-energy graph of Fig. 2.4 in the Feynman- 't
Hooft gauge (corresponding to a particular choice of the gauge-fixing
tera in the QCD Lagrangian). The quark momentum integral in the
corresponding Green's function is UV-divergent in four dimensions but it
would be finite in n(4 dimensions (n integer). The unrenormalized

Green's function in n dimensions {s
t
Gip)= ¢+ Kl"—. "k g:v(**z)?:" :

where K contains group-theoretical factors, In four dimensions, the
renormalizability of QCD is expressed by the fact that g is
dimensionless. To keep the coupling dimensionless in n<4 dimensions we

nust define
2 2 A‘l"’b

™ =

vhere the “renormalization scale™ A has dinensions of mass. Performing

(2.40)
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the integration we find

G ()= p+icg Lo P vpipe 4 s
20 4 ‘c{}f;,um(e 2DB(2-$4-%)  (2.4)
wvhere f,-;-n and B denotes Euler's Beta-function. This can be

analytically continued from integer to complex ¢ and in the iiut €£~>0

we have .

C‘:.(?\t xgi,{,éc‘{f}[%—-«—441«(%)—7;-{«{',%)“ (212)

vhere 7‘5 is Euler's constant. NoWw a counter-term may be added to cancel

the pole in Eq. (2.12) but the renormalized Green's function will

explicitly depend upon the renormalization ocnle-/\ .

Having thus removed all the singularities, one finds GM to second

order in &:
° i
St < &[0 12 0 (8] 4 ol o 7 (H))
: (2.4%)
where

\::,, = 'M— % n (?’4)

n is the number of quark flavors which contribute to the vacuum
polarization subgraph (third diagras in Fig. 2.3). n is a function of

the gluon energy and is bounded above by Nf'

1
We now see a nevw problem for perturbative QCD: A appears in new
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log terms which become large as Q" grows so that the corrections
overwheln the lower-order terms. It turns out, however, that the leading
logs in Eq. (2.13) can be resummed so that §, , car be cast into the

familiar form

oot = S0 (14 3%//\)] + o(a2, 2 La(8]))  (245)

’
+

14
“("leading-log approximation”™ (LLA)). The effective, Q"-dependenc
~N

"running” éoupling Tls has the form

ALY/ . | .
( 149,52 b (8749 (T4)

to second order in perturbation theory, This expresses the asymptotic
freedom of QCD: the effective coupling decreases as Q% increases and

partons become free as Q"-)n.

The resusmation of leading and also of nonleading logs can be done

in a systematic way by using the “"renormalization group™ (RG) [27]. The
~
observable cross-section cannot depend on the value of the

renormalization scale A :
Aoy =0 (2-3)
M ot ‘

{/\ -% +{l9) %X‘M(J,M =0 (2-4)

(strictly speaking, G, also depends on the gauge-fixing parmtetj

defining the gauge-fixing term in the QCD Lagrangian: Eq. (2.18) can be
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considered as written in the Landau gauge where Y=0). The

Callan-Symanzik "beta-function” ri(g) is defined by ’

Q
Q=A% (29

Eqs. (2.18) and (2.19) may be solved to give

Sy (&",A,a) = Gt (4,7 (6fN)) (2-20)
where %_ _
() <
§9 =8

(2-2)

To leading order, I'L(g) can be calculated from the sum of the

UV-divergent subgraphs of c(;’ Feynman diagrams [28]:

ﬁ(a\: -, -j%;‘ (1.22)

Solving Eqs. (2.21) and (2.22) gives:

3

A+ \,oj"% AT (2.23)

32 (O/0) =
] )

We see that keeping the leading-order contribution to the beta-function
and solving the RG equations automatically sums the leading logs. By
calculating the beta-function to higher order one can sum nonleading

logs as well. To the next order [29]:

1 4
. P(&) = - \9,7:‘? - \:, —1—{“‘"‘)

« Stot = 6o ({4 Z(8Y) frr + CE2(BY)  (224)




vhere

CACONY AN

br oo La(O/A
h‘ = 40?- 3:'3‘ "

A

Here A hes been chosen so that there are no terms of order (antM")'z.
Note that there is some ambiguity in BEq. (2.24): changing the arbitrary
renormalization scale to A7 changes the effective coupling. To keep
S+ invariant under such changes, whith amount to changing the
renormalization prescription, ¢ must depend on the rencrmalization
scheme. For instance, cy=5.6/n' while cpppu=—1.7/rt* for another popular

(the “momsentum-subtraction”) scheme.

c) DIS and factorizastion.

Armed with this essential knowledge, which reproduces e'e —>H
phenomenclogy wvery well {30], 'at us nowv consider a more involved
physical process: deep inelastic lepton-hadron scattering 1H~—)1'X (DIS,

see Fig. 2.5). The lepton~hadron cross-section has the form [10]

/ml
S= 1" W (226)

with the leptonic part

\_L/N= GHRP W - gkl - e (223)
and the hadronic part

W,.‘. s [d"fe“"(ﬂf?,(‘f\,],w)]lf)‘r-u“s gIn'Fo 220

be
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vhere
T = i[5 G T(LOR > 2u')
‘\
is defined using hadronic curreats (no conltituer\tjn of hadrons at this
stage). The tensor T/.a may be expanded in terms o} Lorentz invariants

vhich also satisfy current conservation

Tolhe) = (gu-222e) T (8v) +

+ [ Lo + -3-4';—;?-‘4# %ﬂY]T (&) -

- ‘e/“""‘ B T (e
(2-29)

vhere Q"-q" (qt is spacelike) and V=~p.q (in this section ve set the

proton mass to unity). Further defining '

WL = 34; IWT: . (£.="/211) (230)
one finds
d's

o & Grrr—E [(4-vW, +xy1W.+/(4-§)va3] (234)

vhere G 1s the Fermi coupling constant, x-Q?'/za and y=V/E.

The parton wmodel was originally introduced by studying this
cross-section in the "Bjorken limit” Q‘—)u,\’ —>es, x fixed.
Perturbative QCD must reproduce naive parton model "scaling”

(Q ~independence of the cross-section) in lesding order and then compute
higher-order corrections ("scaling- violations™, Q *—dependence). Fig.
2.6 shows the parton model form for Fig. 2.5 and Mg, 2.7 shows the

leading-order QCD flavor non-singlet contribution to the structure

Sok
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function P:(Ql,x)- QHZ(Q",V). Computing these gives [25]:\ .

AO)
CLLISY (TR NP LA TS

(222

vhere

Bagb= 4 [222 2 {(4)) Qw)

The distribution denoted by a + is defined as

de(l«(x)) _ J{‘u u(;a-uu) (233)
{—x + c - X

gh(x) is a suitable test function). Eq. (2.32) 1is in double trouble:
despite the fact that all quark+gluon final states have been summed over
in deriving this result, there still are mass singularities; on the
other hand, there is the anz term threatening perturbation theory as Q?
grows. The hint to the solution of both problems lies in recognizing
that the Kinoshita-Lee-Nauenberg theorem does not work because one has
not susmed over all the quark+soft gluon initial states which are

‘e annihilation, a hadron is

possible in this process (as opposed to e

now present in the initial state). We shall now show that perturbative

QCD can study DIS only at the price of explicitly admitting it cannot
' calculate the large-distance distribution of partons within the host

hadron.

Let us take moments of Eq. (2.32):

fx"'z ) dx =

- 5 (DU g 42 FI) + o)
/ Ma (85859 = 1- gran b (8) + ,(J"t)

(2:34)

-
9
]
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To obtain the observable moments of the proton's structure function Fg»
this M, must be convoluted with the nt* moment of the probability that a

quark of type k has a fraction '3 of the proton's momentum:

‘ {
[ ® B8 = Z [ dyy 2R ™ (5[ Y, (v)dls

, = Z[1- ol ln (89 ] ey b
. (2 35)

wvhere the b, are effective, perturdbatively uncalculable coefficients
representing the initial "preparation” of the quark's wavefunction
inside the proton at a large space-time scale which is irrelevant for
Q"——)u parton physics. The leading-order expression (2.35) can be

trivially rewritten as

(e o =3 [4- ke (640l s )N
E?[1—a.‘,‘\ 3"-,2:. (&1//1 }] g’:
(2:%)

Postulating the existence of the nonperturbative moments b, has thus
provided a refuge for the infrared singularities and perturbative QCD
has found an excusé' for concentrating solely on the ultraviolet problem.
As we sav above, such UV problems are solved by resumming logoi-teru
using the renormalization group. However, the buried soft singularity
has left a trace in the guise of the new mass ICIIC/A » the
"factorization scale™, which ies the renormalization group
analysis. Furthermore, the fa::Zzation step, trivial to leading order

in o¢¢ , Tequires proof for higher orders.

There 18 a more learned justification of factorization which is

appldcable to any order in perturbation theory and which also permits a 5
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transparent discussion of the effects of factorization on the RG:
Wilson's famous “operator product expansion” (CPE) [31]. Wilson

postulates that, for S—-)O, one can write

TDY) =5 T3 Vol V00 (237)

for the case of spinless currents. 0;.._.,,,(0) are local operators formed -

out of the fields avnihble' in a given theory and C‘-_(El) are c—number
coefficient functions. To illustrate this expansion and to clarify the
meaning of the index i, consider free scalar currents. In this case, we

can write the left-hand side of Eq. (2.37) as

(TIDIO) = -20A (Satebi a(Swd) : D10 + %
+ ¢1(T) ¢'L‘o). (2%8)

In the right-hand side of Eq. (2.38) all light-cone singularities reside

in the propagator functions

D 1
2 I
A (S m );\.:o o (2 29)

*

:*s)*(O): has no singularities and can thus be expanded in a Taylor

- (3) $ro): =ﬁ %.T’."..‘s'/"‘¢(o)“3;,..‘g,,¢(0)
- (1-40)

We see that the OPE is identically true for Klein-Gordon theory in the

limit ‘5-—>o with

&) ;
O)..../...(O) = 10 Y. -G’;. ¢(0) (1.44)

The coefficient functions have singularities

CS)  ~ (g (2-42)
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where the dimension d(_" 18 defined in terms of the "twist™ 1 as

de; = 2d; - ¢ (2 473)

(d.} is the dimension of the current J; 1in [31] twist is defined as the
difference between the dimension DD; 'and the spin SD.-"hi‘:h characterize
an operator Oi). The most ainguiar terms, and the ones which doainate
in the small-distance 1imit J-->0, are those with lowest ("leading™)
twist 1-2.*Aa$ becomes larger (Q* smaller) the effect of higher twist
1>2 may become larger but the validity of the OPE itself becomes

questionable at such distances.

With spin-1/2 fields we may form the twist-two operator
lxd
F _,L — € ']
On pu(0)= 4 [wo),r,ﬁ,‘-. '),N@«*pm (2 44)-
3
" The OPE has further been shown to be valid for renormalizable
interactions to all Srders of perturbation theory [31]), provided Q"' is

large enough., Let us therefore insert Eq. (2.37) into Eq. (2.28'):
t+n-3

Tool)=Z [g) " <plohwlolp>qte g Cionl8l)

(2 4%)

In the limit Q"-——)o- the proton mass can be neglected so that

(p]O/.. )\.(0)lp>- -O—.;},'...p/., and finally

Y] -3 _ = —-n ~
Too® e Z (-8 G (0L W™ (1)
&L_,~ (¥ 4
By integrating along the contour shown in Pig. 2.8 we obtain

714}-2 fd.\'x"“ T, &) . (’13){',%)“ 51.»«(&“’)5; P
¢ 7, : (149

where we have displayed the twist-two contribution. The discontinuity of
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Eq. (2.47) 1is just w(x,Q%), so

4 1 =
£ dxx™ ' W (x,Q") Rl %—1 ('%y 02 Cy, (&) (2 48)

We see that the moments of W in the Bjorken limit are related to the
large-Q" behavior of the OPE coefficient functions, which should

therefore be observable in DIS and must obey RG equations:

p) p 1
(A2 +p ,-%—fxog‘) Con(8)= 0O (243)

where the "anomalous dimension” ?‘Dg‘arises because the OPE operators

must also be renormalized:

O:R 2’0; O;u
¥ o, /\%‘205‘ (150

(A}

The solution to Eq. (2.49) is
_ _ . [y
EL (08, 9) = Tl § @M eg[- [ s () %)
(7 s4)

Comparing Eqs. (2.48) and (2.36) we can identify the b?,\'s with the
reduced operator matrix elements 6}‘ and the twist-two coefficient
functions with the M,. In terms of the M,, Eq. (2.51) reads .

WAL ) . —(AYR) ¢ _Ql/A:t'td_Z
Mn(Q/A ,a,)ﬂ)— H“”’J(Q/A‘)V")“F[ { Yo (J( )) Z](‘lgz)

where we have reintroduced the factorization scale whose existence is

now justified by the OPE. The anomalous dimension can thus be calculated
"

from Feynman dlagrams: to leading order, 'ro-a.gz and using Eq. (2.16)

one finds [32]

' M“ (&‘/Al)‘r’)“): [ —1(&1

]'7:/25- )
‘L(/A‘) L

’ "

(153)
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This 1is the result of summing leading logs; non-leadin,; logs are ‘summed

by including higher-order terms in ?_‘ and Eﬂ.

The solution for moments of flavor-singlet combinations of
structure functions involves gluon as well as quark (antiquark)
constituents and can be written to leading order as [32]:
L ~
< ' =1/ ”4/2“. T'/ZL,
— =2 /ol
H“(&)..A“[z(&)] -+B“[3(&ﬂ (254)
where A and B are constants and the are eigenvalues of the

lowest-order singlet anomalous dimension matrix

Y

4 “

8 2 1
(2-——=+4T T - 4N, 24my2
(35 mnun) £ e Va1

PS
m -
_ 16 wlymil [l_ _ bk k4
3 anlw-1) 3 min) {MWND+

SR
(2.5%)

This RG resummation procedure can be cast finto parton model

et A

language in a way suggested by Altarelli and Parisi [33]. The
{

non-singlet moments satisfy the equations

dHa (W) (W) H Ma (Y (15¢)

du b

where u-anl/Al. These authors define a function P1-*1(z) such that

4 m
S,Az Py )= I (159

Inverting Eq. (2.56) we get

d/_&(x,u\/dw - 0;.!;'("“) L‘ %1 {(71‘0?1‘.1 (x/)/) ) ‘SS)
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where f-(x,u) 18 a flavor non-singlet combination of quark distribution
functions. So Prq(z) can be interpreted as the variation per un:l:l n of
the probability of having a given quark evolve into a quark which
carries a fraction z of the original quark's wmomentum. Analogously we
can use the singlet anomalous dimension matrix P“ to define evolution

probabilities P P and P, .. The flavor singlet combinations of

™7 1
ocean quark and of gluon distribution functions Qo(x,u) and G(x,u)
satisfy the following Altarelli-Parisi equations:

% = %%‘}- L‘ %I[&o(y/u)?rq(%)* G()”“)%"T(X')J

46w (! |
o= S [y [y Vg 055+ Gy )
(2 s2)

Confrontations between QCD and deep inelastic leptoproduction
phenomenoclogy are based upon this formalism. Although the leading-twist
predictions are in remarkable agreement with the data on the
Q"-dependence of the structure functions, a sizable contribution of
higher-twist terms to the observed scaling deviations cannot be ruled

out at presently accessible values of Q" [12,34]

d) Summary.

Perturbative QCD gives an encouraging description of high—Q‘L hadron
§ructure in terms of partons identified with the fundamental quark,
antiquark and gluon fields appearing in the QCD Lagrangian while burying
large-distance effects in constants it cannot compute, Nonperturbative

QCD is called upon to calculate this large—scale structure while

A
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connecting smoothly with the perturbative formalism in the hi.gh-—()1
limit,

2.3. NONPERTURBATIVE METHODS

a) Vacuum condensates.

Let us pin down more details on the operator matrix elements 3* -
vhich represent nonperturbative physics at large Q‘. We have seen that
they are to be taken with respect to the “true” physical vacuua out of
which the observed hadrons are excited by the action of the appropriate
currents (Eqs. (2.28) and (2.45)). This must also be the exact ground
state of QCD. It follows that the OPE operators must be composites of
current quark and of gluon fields and that they must be
SU(3)‘ ~-gauge—invariant, Furthermore, they must carry vacuum quantum
numbers. A given operator’'s contribution to the OPE is determined by its
canonical dimension: the contribution from an operator with higher
dimensioy falls off more rapidly with Q” than from a lover—dinenlio;lal
operator. Apart from the identity operator, the operators ';‘Y’ (dimension
3) and _F;,, .-l."" (dimension 4) are the lowest-~dimensional gauge-invariant
operators one can form in QCD. We must therefore expect that the first
nonperturbative effects one feels as one :iecrenel Q" are due to the
“vacuum condensates” <'iY) and <;;.v .;/" >. According to the OPE, any

time-ordered current-current correlation function can thus be

represented as ‘

Q7 (61) = (TT+C5y IFY 10>+ C5 (A #2004+ (L60)

for sufficiently high Q'L. o stands for a set of quantum numbers /

pertaining to the currents in question. Higher—-dimensional operators
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would become more important for lower Q?'.

Assuming that such higher-dimensional contributions can be
— A - ,
expressed in terms of products of < 41> and <Fpw .F/”> and that the
cofficients can be calculated from perturbative QCD in conjunction with
high-Q" DIS data, the famous "ITEP sum rules” (35] allow estimates of
the numerical values of the vacuum condensates, Indeed, consider the
vacuum polarization induced by a hadronic current Jx:
ol , NL \)
0%(&) - 1T (R)
v-- +
T U = ¢ [l POAT(T 0 A ODIO> e

\ (2-61)

whete T~ 18 a space~-time tensor dependent on the chosen current. In

general, the function n(Q") obeys an n-times subtracted dispersion

relation:

W (@ (TwNds | 3= gk
N = L jms_qt) +£a..(73

(162)

The subtraction constants a, can be removed by taking an appropriate
number of derivatives with respect to Q". In turn, the imaginary part of
N 1a related to an observable croés section. In particular, for a

N
vector current we have

TwNV(s) = ‘2"\"_ S s (ete" — Hastons ) ¢

The created particles will be resonances plus a continuum above the
respective production threshold. In a narrow-resonance approximation
(appropriate mainly in the case of heavy quarkonis- the Y and r

fanilies) one can represent Im[|] for the vector cu;nnt as

Tl £ % {le-w)+L (14%)6(c-c.)
C.‘ Reg. m (1‘4)

-
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where 8g is related to the electronic width of the resonance and the

e-function stands for the continuum.

z
4
i

Now we have two repres\qntations of n(Q"): the high—o"' OPE in terms
of QCD parameters and the equations (2.62) and (2.64) in terms of known
hadron masses and decay widths. By equating the derivatives of these
representations with respect to Q" (of sufficiently high order to

eliminate all subtraction constants) one can thus evaluate the vacuum
condensates. Currently accepted results dre [35):
CawD = (dd> = - (225 & . 015)? GeV?
8sV = (082 014) Ccau>
o -ty
<*,-: F}"?)‘v > 4 0012 GV
(1 €S)

(with n(so-l and/\- 0.1GeV). Once one knows these constants, one can

predict hadronic properties corresponding to other currents., The method

works quite well [3‘5‘:36].

b) The effective action.

Nonperturbative QCD thus empirically appears to be characterized by
nonvanishing vacuum condensates. Would it be possible to compute these
values and to understand their physical implications directly from the
QCD Lagrangian, without having to resort to perturbative nor to
phenomenological considerations? Let us go back t‘o the general
path-integral formulation of quantum field theory, which underlies
Feynman diagramatics i{n the first place [37]', and try to find a

different way to calculate with it,
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The sum of all connected Feynman diagrams of a quantum field theory
which have n>] external lines terminating at the Minkowski space-time
points x,,...,x, is the connected n-point Green's function G,(x,,...x,).
Let us define ﬁé functional W[J] as the “generating functional for

connected Green's functions”

L—W[ ] = i (-"-)",L'_ d% . %Gy 2\ - r
W =i n-J 3 ’ﬂ )(z.“)

where J is an auxiliary c~number valued function (“current”™) and we have
explicitly exhibited h, Defining the functional Z[J] as the

vacuum—to-vacuum amplitude of the field theory in the presence of the

sources J

<0'0>a = 2[31 (_'167')
one can show that it i{s related to W[J] by
PN = xp [ F WD) (167")

Therefore, if the Minkowskian action of a generic field theory with

field variables é{ is

STfe) = Jd' L{dhets), Behet)) (168)
then 2[J] can be calculated as

U= CJrdd ep fE (LAY +Jahd) (4 ey

wvhere (D#] is an "integration measure”, that is, a certain prescription

for adding up the coantributions from all possible paths.

To gain some insight into the connection between generating

functionals and vacuum condensates, consider for simplicity a real
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scalar field with Lagrangian density

L= 19,609 ¢ - V(g0)
V(¢)=%’T; ¢"-,1‘7:§ #* (1-70)

The vacuum expectstion value of é in the presence of an external source

J is given by the functional derivative

¢c 2.‘{}‘%%1 (1-31)

The “true phy;ictl" vacuum expectation value of the dynamical field is

the limit of 4i'n| J—>0. We now ask the question: what source function p
J will produce a given, prescribed ¢‘? To answer this question, it is
convenient to replace the independent variable J by ¢&_au the

independent variable. As in thermodynamics, this is achieved by a

Legendre transformation:

Plé) = WIJ)- [(0¢rd (19

r[ ¢L] is called the “effective action™ [38]. The Maxwell-like relations

corresponding to (2.72) imply that

{rLdY _ _ 44
{f6d 1

(1-33)

To take the limit J—>0 we notice that for J=0 @), should be
x-in?opcndcnt by translational invariance. So the functional derivative
A\

becomiti a "straight” derivative and <f) must be among the roots of the
N .

dlg. = o (134)

equation

We conclude that vacuum condensates can be calculated once the effective
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action is known. Of course, to compute [ from the Lagrangian of a theory
like QCD is a highly nontrivial matter.

Let us define the “effective potential” corresponding to " by
f'[] ]--Sll)(, ), wlthf -f‘- constant and S being the total volume of
the space-time domain where the field is supported. We shall show that
the evaluation of the effective potential can be a worthwhile shortcut

to the essential quantum physics of vacuum condensates.,

To proceed, we have to actually do the path-integral for W(J].
This requires that we specify the integration measure [nﬂ. Consider the
®
standard Gaussian integral over one real variasble x:

+ ow

[ax a2 < ()R oy (/22)

80)= faxt- A

~

Next suppose we have a quadratic form Q(u)=(u,Mu)/2-(u,v) where u is a
n-component argument vector (u ,...u,), v a constant n-vector, M a nxn
symmetric nonsingular matrix and (,) denotes the scalar product. Then

(2.75) generaliszes tp

T (1 Y - -dun = (ded MY Zexp§ (11
- (13s’)

To date, the only known analytical method to do a functional integral
for quantum fields # is to use (2.75'). In order to get a quadratic
form in the fields one expands the action around its saddle point and
only keeps the term of order h., If one now defines (Df]-cud ¢(x), then

one can take over the result (2.75'):

(CopYeq[-4 (6,Mp)+ (v, p)) = CldebMT® e flvmy)
(17s%)

G -
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In using this analogy, we have thus di-‘creu:ed the space-time support
of ¢: x is considered to be a di.crete variable. It is implicitly
assumed that the final result remains true as the continuum limit is
taken at the end of the calculation. We may also imagine that we have
enclosed the field in a large but finite space-time box, integrated over
each of the independent Fourler components of ¢ and fidally taken the

infinite~volume limit (hoping nothing dramatic happens as we do so).

In spplying this procedure to our example, it is convenient to
evaluate the scalar product in Euclidean rather than in Minkowski

space-time [Appendix A]. The result is [39]:
U(f\ = V(,f) + kv, (f) + o( k')

_ d“ k; Lt +V"{)
Vi) = [ A (L)

(2136)

where V1 contains the leading-order ("one-loop”) quantum corrections to
the classicsl potential V, and is given by a divergent integral over
Euclidean momentum space. We must therafore renormalize the “bare”
parameters appearing in Eq. (2.70) in terms of fixed and finite values
. » )

&\ and Yo

o= oy + J‘

A al s
and of a renormalization mass scale A (in favor of which f< and J/‘ are
eliminated by the subtraction procedure, as discussed in Section 2.2).

The result for the effective potential to one-loop order is

Uip) = vgmc,”[V'go)]‘(-%Mn%{f)—) (1)

where V is now written in terms of &/ and/, . The expectation value of *

with respect to the true vacuum must correspond to an absolute minimum
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of the function u(<f>):
W(<p>) =0 (2-7¢)

An extremum of U which 1is not an absolute minimum indicates a metastable

vacuum, The renormalized mass and coupling strength can be evaluated as

/41 =’ (f=<¢>)

X = w"(ft {P>)
(7-79)

It is obvious that <’b-0 is always an extreaum of U in this
approximation. If/M?(O, this is a unique stable vacuum. The effective
potential then has the shape shown in Fig. 2.9a. On the other hand, the
situation depicted in Fig, 2.9b corresponds to spontaneocus symmetry

breskdown. As we have repeatedly stressed, the latter case {s often

preferred by physics.

Consider the famous linear sigma-model in its original formulation
by Gell-Mann and Lévy [15]. It describes the interaction of nucleons (an
SU(2)-1sodoublet of fermion fields) with pions (s pseudoscalar

isotriplet) and with the scalar O* sigma-meson:
L="Yegy+ 3%'* 2 Ay )¥- [ () (3] -

~B (st 4R oAY)"
(1-%)

If AT were negative, the corresponding effective potential would have
its only minimum at <€ >=<IT >=0. Then the T and 6’ would have equal
nasses given by (-65}31)95 but the nucleons would be massless! So
physics forces us to take ﬂ?)O. In thisg case we have the situation of

Fig. 2.9b, the true vacuum is characterized by a nonvanishing vacuum
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condensate for the sigma, <6'>f 0, and 1is no longer invariant under the
chiral SU(2)xSU(2) of the Lagrangian but only under SU(2). Redefining

the field € as

S=a'-<s'> (2-84)

we find that the pions are now massless, as becomes the Goldstone bosons
of chiral-symmetry breaking. The nucleons and the sigma meson have their
correct, observed masses. It is customary to express the vacuum
condensate which signals chiral-symmetry breaking in terums of tile “pion
decay constant” fyg which has the egpirical value =93 MeV (in the

normalization we shall use throughout our work):
_ /
v = - <> (2.82)
The Goldberger-Treiman relation

My = 8»{1r/6A (1'53)

then results from the model, to all orders in the N interaction,
347 1.24 is the renormalized axial-vector coupling (g4=! to lowest
order, where m =gf,).
{
Let us now return to the Lagrangian (2.70) and a.nu-e/. =0
(massless neutral scalar field with quartic coupling). The apparent root

of the equation v’=0

2 12
kK‘L‘\ AT = - %3 (?,8‘4)

must be rejected because we are not allowed to equate a quantity of
order h in the loop expansion to a quantity of order 1. <¢>—O is the

only solution in this case.
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Consider, however, massless scalar electrodynamics [40]:

' L= B s [(pocehpp* T ceh3) - (g
(2.§5)

This Lagrangian density has been obtained using the general principle of
U{1)~-gauge-invariant minimal coupling [Appendix B]. The self-coupling
is necessary in order to renormalirze the scalar-scalar scattering
amplitude. The phase of ¢<:ln be eliminated by going to unitary gauge;
the vector field is subjected to the auxiliary coandition '),‘A"-O; e is
congsidered to be the renormalized charge whereas 10 is to be
renormalized by radiative correitlons. Under these conditions, the

action of the theory 1is:

\IR P'5E 14 - A
S[A,ﬂ:jdq,[%,v‘(u +¢¢)A/~‘£¢D¢ 'lf7¢"} (2-86)

One integrates out the vector field to obtain an action for ¢alone:

ST = - [d'% (14 0% « 35 69-F7 Bohveg)
(1-49)

The corresponding one-loop effective potential is

et il
U = T35 +om (-5 50D L)

Now the equation U/=0 has a legitimate nonzero root <¢> which satisfies

el ve>/e) — _ Qe
Clrt b (e#/r) = - 41 (149)
¥y

This relation can be used to eliminate A in favor of <¢):

Up =38 (-4 +talss) (230

6m?

The initially massless scalar field has acquired a mass

‘ Y M = u“(f)|f=z¢> = %2057‘ (2-41)
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which 1s entirely due to its interaction with the gauge field. We thus
see that a nonzero vacuum condensate need not be explicitly generated by
a term in the Lagrangian but can also appear dynamically, as a result of
the "dipensional transmutation” mechanism we have just described. Its
?

scale is set, in this case, not by a parameter like f g, but by the

renormalization scale /\.

By Eq. (2.86), the vector field has also acquired mass by the same

token:

'W\; - L"(?‘)?’ (1 32)

Thus, a dynamical Higgs phenomenon has taken place. It {8 not knewn
whether the electroweak Higgs 1s of explicit or of dynamical origin.

The model (2.85) is the relativistic generalization of the
Ginzburg-Landau phenowmenclogical theory of supercorductivity. It has
many tantalizing features which we would also expect of QCD (purely
dynamical generation of quantities not present in the fundamental
Lagrangian; a finite range for the gauge field configuration). We shall

nov review the indications that this similarity might not be accidental.

- - : )
c) <Fpy .F/"> and confinement in QCD.
7

The effective~action formalism has been applied to SU(Z)C
)
Yang-Mills theory without fermions [4]}, with the result that s minimunm

occurs at a nonzero value of Tr(f;} )

- Te(B3) = 2

(g
One may think of this condition as being realized by a constant,

(1-93)

homogenous color-magnetic field'g pointing in & fixed direction of
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3-space (let us -hoose the z~direction for definiteness). Its magnitude
is B-/\t/g. It turns out, however, that thvis ninimum cannot be absolute
[42]): the energy of the state develops an imaginary part for distances
larger than dcvl/VEE: The gauge field must have an unstable mode W to

cauge the decay of this false vacuum.

In the presence of the fields W and B, the only nonvanishing field

strength 18 [42]:

T _ Z
Fa = B-ZglWl (2-34)

The classical energy is therefore

AR L] &‘—%@lw|‘+?av"lkII"] (235)

The decay of the false vacuum (2.93) can thus be described as a
dynamical Higgs phenomenon and the unstable mode W can be thought of as

a Higgs field of mass

mt = gg/lrr (1-36)

This analysis can be generalized to SU(N). gauge theory [42] and, in
particular, the result is valid for N=3, The physical implication is
that in the true vacuum of QCD, the color-magnetic field cannot be
homogenous over distances larger than derrA". The Copenhagen school has
extensively pursued this clue [42,43]), using in particular the
isomorphism of the Higgs model (2.86) to the relativistic
superconductor. It now appears [43] that the vacuum of pure glue QCD is
a condensate of vortices of characteristic dimension d,. With respect to

(.70 ; LG FP7#0 (24%)

this vacuum:
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Confinement can be thought of as a chromomagnetic Meissner effect and
the confinement scale d. corresponds to the Ginzburg-lLandau coherence

length, ~

This picture of confinement implies that chromomagnetic flux must
be quantized according to the group Z(3), the center of the gauge group
SU(3)0. Z(3) 1is thus fdentified as the dynamical symmetry which
characterizes the confining phase of QCD. Z(3)-invariance can be’ohovn

to imply that the vacuum expectation value of the “Wilson loop” operator
-~ . - - —
W: <D(P (L%&d{uu#)> m)

obeys an “area law":

W= wepl- kgt de GG P (233)

(k=0,1,2) [44]. This behavior 1s& commonly used as an indicator of

confinement in nonperturbative calculations of QCD.

In’ golid state physics there are two distinct types of
supre’l;nducton: type I 1s characterized by positive surface energy at
its interface with normal material, whereas type II has negative surface
energy., Nair and Rosenzweig [45] have shown that, as naively expected
from the requirement that the domain shape should minimize the total
energy, type I corresponds to bag-like spherical vacuum domains sad type
IT to stringlike domains. However, dou{.n walls could have violent
long-wavelength fluctuations and even become delocalized as a
consequence of quantum corrections which cannot be seen in the

semiclassical analysis. By the same token, the field strengths could

present large digpersions about the wean values (2.97).
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We have seen that the nonvanishing of the vacuum condensate
<,
et

QCD must demonstrate. The effective-action formalism is, however, unable

-
.F/’> 1is consistent with some of the main features nonperturbative

to produce a quantitative derivation of such behavior froam the
chromodynamic Lagrangian without introducing a large nusber of ad-hoc
approximations. Another problem is the interplay with the quark fields,

to which we now turn. .

— S\
d) <¥Y> and chiral-symetry breakinﬂ/(QCD. ARN

N\
The nonvanishing vacuum expectarfon value <'?Y3 mixes left-handed
and right-handed quarks and thus confirms the breaking of chiral
sy’metry by QCD. Cornwa}ll, Jackiw and Tomboulils [46] have generalized
the effective~action formaliem to study (W). Congider a theory of

massless fermions in Euclidean space-time:
LA = [Nt exp{- (d5(4P4Fp1)] (2100

(see Appendix A for the transition from the Minkowskian to the Euclidean
action; we now set h=l), Discard the pure gauge field Lagrangian in
order to concentrate on the specific effects of the fermions. Turning on
the source function sz,y) we have
2[3] = f[D“f’)CxPi- [d% ("F’l‘)”' "Z}Z(x:y)"/{y))-}
: (2-fof)
We can again define an effective action by a Legendre transformation to
the independent variable A -(i’f). The condensate with respect to the
true vacuum is then again among the roots of the equation dr'/dA =0, Eq.

(2.101) can be rewritten as
ep(-WIYD) = [TD¥)exp §- [d%e (Vs ¥ oW (B s¥e]V¥)
= up?—‘rri.\x'rrrla"—z)wb‘g (2-10)
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vhere D stands for the sum of all vacuum diagrams with at least one
gluon vertex. In performing 'the functional integration over fermion
fields, (2.75") has been generalized by representing the spinor fields
Y(x), ’;‘(x) as anticommuting c-numbers (“Grassmann variables”) ,/ ,47
defined at each discrete space-time point, then using the theory of

Grassmann integration to find [47]):

[ o) (g 57 =

(detM)e™ ™
/ (13s")

So the effective action 1is

Ple) = -Telna '+ Tr(a'-9)a +D (7-103)

Now the source term J must be adjusted such as to cancel all corrections
to the prescribed propagator A » For example, the two diagrams in Fig,
2,10 must cancel exactly. Therefore, the only diagrass contributing to
(generated by)P[Al are 2-particle ifrreducible (2PI), see Fig. 2.11.

The final expression

PLe) = ~Tehnd' +Te (8'-9)8 - (2P1) (1404

is thus independent of J and involves only A.

We are again faced vith the generic problem of having to sum an
infinite series of dingrtm. To obtain any results at all one aust
truncate the series somehow. Keeping only the first diagram in Fig. 2.1l

leads to

0= g I~ % [Trln.A‘rTr(A"-ﬂ)A—_G] -

= A aas + (671-F)r O
S A'-9-0 (1-10%)
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This is precisely the Hartree-Fock approximation to the equations of
motion, obtained after integrating out the gauge fields. If the gluon
propagator is denoted by %(x-y), the equation of motion for Y(x) may

be written as

’r/‘ (9/4 —f&A,)Y(Jl) =0

7/‘ ['), +61 I"‘y‘}w (!~y) "hy)tr'"fl,)] Ye) = O
. (2-106)

In the Hartree-Fock approximation this bedomes

?w‘x)_{,a\ (““7' T/f‘)/,(x-y)A)tr‘"Y&) &0 (2,07>

which is indeed equivalent to (2.105). This fact reassures us au}g\t\m//\
4plidicy of simply neglecting the gauge field Lagrangian in writing down

Eq. (2.101) - the result is the same as that obtained, to the same

degree of spproximation, by properly integrating out the gauge field.

One can again draw an analogy to superconductivity, this time to the

microscopic BCS theory vhich leads to an equation analogous to (2.105)

(the “gap equation”).

The effective-action fOHrmalism for the evaluation of (’;‘Y) has
several conceptual pXoble¢ms even after one cures the lack of manifest
gauge—invariance in'the above simplified presentation. In particular,
exsaples are known vhere P(Al is not bounded below. Nevertheless, one
justifiably hopes that even the approximstion (2.105) contains much of
the right physics, for it leads to results which are qualitatively
confim‘d by more reliable computations. For future reference, let us
quote a calculation by Peskin [48] which indicates a major difference

between chiral-symmetry breaking in QCD and superconductivity in BCS

.ﬂé)ry.

i adar hE e ki sk ok w
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Upon inserting ihe Landsu-—-gauge trial form for the propagator

b= Zif ich) (2-08)

into Bq. (2.105) and neglecting coupling strength renormalization, he
finds that the chiral-symsetric¢ vacuum described by Z =0 1s unstable as

soon as

Y

In BCS theory, an arbitrarily small attractive force due to phonon

exchange can bring about the condensation of Cooper pairs. In QCD, gluon
exchange can bring about condensation of quigk-antiquark pairs only when

the coupling strength exceeds a certain critical value.

-

d) Summary.

The success of the ITEP (or "SVZ") sum rules suggests that
nonperturbative chromodynamics 1is characterized by nonvanishing vacuum
expectation values for the operators -;/“'.‘;‘, and w. Such objects are
centnl’ in the effective-action approach to the semiclassical solution
of quantum field theories. Qualitatively, effective—action studies do
produce encouraging results, linking the gluon condensate to confinement
and the pair condensate to chiral-symmetry bresking. However, the
approximation schemes they are forced to employ in order to actually
calculate are not systematic enough tg’ yield truly dependable results. A

more systematic approach to the calculation of 2{J]) 1is thus required.
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2.4. LATTICE QCD

a) Latticization.

hcalf, at this point, equations (2.75'') and (2.75'"''). In
defining the integration measure which was used to cvuluat: the bosonic
snd fermionic functional integrals in the Gaussian approximation,
space~time had to be discretized as an {ntermediate step. The other
tactical device wvhich simplified the calculation of Z[{J] was to do the
integration in Euclidean space-time. Let us take Euclideanization and
subsequent diecretization more seriously and write down the

corresponding Z-functional for the scalar field ¢:
1= [df. 4. U’P[ §5(¢,,-..¢,,)] (2 140)

where *i-é(x;) and we have temporarily reintroduced h, But this looks
exactly like the partition function for s statistical system of n atoms
with velocity-independent interactions at a temperature #i! Thus we have
mapped the original problem in quantum field theory onto a

four—-dimensional problem in classical equilibrium statistical mechanics.

Since statistical mechanics has a rich technology of analytical and
numerical methods, one tries to solve QCD in its statiatical t;r-ulntion
and then tun.latg the results back into quantum field theoretical
language and into the attendant phenomenclogy. The discrete set of
space—time points on which the uttcr fialde are supported is callod a

“lattice” and the Euclidean discretized version of QCD is c‘lleo(

“lattice QCD".

It is customary to latticize on a “hypercubic”™ regular lattice with
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constant “lattice spacing” a (see Fig. 2.12 for d=2). The funda;ontal
length scale a introduces an ultraviolet momentum cutoff A . So
latticization is a regularization prescription (note that a statistical
model like (2.110) always is finite). While 1t is natural to implement
gauge—invariance on the lattice (see below) this regularization scheme
is not O(4) rotation invariant as long as apO. 0(4) rotation invariance
had better be restored when the continuum limit a~~>0 is taken at the
end of the calculation, otherwise the original quantum field theory in

Minkowski space has lost its Lorentz invariance.

Now consider s d=] Euclideanized scaslar field theory

Se= fdx[(U ) +mt$?) (2.444)

and let us discretize the derivative in a naive way:

'3;}5 — f“c-“la): élx)

(2-142)

Since ! dx--> az,
.

Se —» S, =aZ (Lt Vhawzd? (2109

Setting h=1, we scale all dimensional quantities with respect to a:

¢L =ah ¢

Hence, dropping the subscript L from the field variables,

7- J ‘h d ¢nc~(24aﬂ;¢}c+2‘i¢'¢'« (2.445)

This is the partition function of a one-dimensional spin chain at
temperature 1/7 = 1/2 with nearest-neighbor interaction. This problem is

sxactly solvable in statistical mechanics. But we notice that by the act
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of scaling the lattice spacing has disappeared from the partition

function. How are we then to take the continuum limit a~—->0?7

Measuring all lengths in units of a means that any fixed physical
length L will appear larger on a finer lattice (a is small) than on a
coarser lattice (a is large), see Pig. 2.13. In a statistical system of
spins, the spin—spin correlation length depends on the inverse
temperature ‘; o« This correlation length diverges at a phase transition
of order ) 2, and only 1if such a transition 1s present. Therefore, a
given lattice version of a quantum field system only stands chances of
having a sensible continuum limit {f it has a phase transition of order
two or higher when viewed as a statistical system. As meationed above,
all physical sysmetries of the continuum should be restored in this

transition (and any unphysical lattice symsetries should disappear).

Furthermore, different choices of the lattice, of the discrete

derivative or of irrelavant terms in the Lagrangisn (such as total

derivatives) should lead to the same continuum limit; however, they do
give rise to widely different statistical systems, Thus must expect
that all statistical models one can obtain from a given quantum field
system should be in the same “universality class” as far as the
transition to the continuum is concerned: their critical behavior should

be governed by the same critical exponents. !

Mathematically, an observable of dimension mass should behave as .
M= at f(p) (2-446)
If 1t 1s to be unaffected by our taking the continuum limit a—>0, then
there must exist a critical point (‘(‘ such that f(ﬁ)- 0. Por a quantity
of: nass dimension d we pust have

Me . amd O @ ; F“‘((z) =C[ 1((1)]‘ (2413

L
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The last relation is the "scaling hypothesis”™. To transcribe these
requirements for QCD we need to identify p « Let us therefore construct

the lattice action for pure-glue QCD.

b)- Glue on the lattice.

In many respects, it is more natural to state the idea of local
gauge-invariance on the lattice than in the continuum. Consider a
four-dimensional hypercubic lattice and place on each link connecting

site n to site n+)k (,\ =1,2,3,4) an SU(3), matrix

Uptn) = eip (iga A T) (1-418)

With a 1ink in the backward direction one can associate the matrix

A

Uy (n)=l (M/t). If ve imagine a local color frame at each site, then
7

the orientastion of these frames in color space should be locally
srbitrary [49,50]. So L1f a local rotation in color space is

sccomplished by the matrix

G (ft-\) = e " Tf (2.149)

then local gauge-invariance means that U,‘ (n) must transform as

Up(w)—> C (ﬂ)U/. (%) G~ (m ) (1L-20)

~

The action of pure 8!.)(3)c theory on the lattice should thus be
e
built out of U's sych as the continuum action wvas built out of A's. A
simple vay to achieve a gauge-invariant action is to form the product of
U matrices taken aroupd a closed path, because this will cause all
30(3)‘ group indices to contract. The smalles* (most local) closed paths

are elemantary squares or "plaquettes” (Fig. (2.12)). This leads to the
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original Hillor;-Polyakov-Hegner action [50-52]:
= -4
S6 = -LJ-; MZV:WTr(UMﬂUv(ﬂy)l{/‘(M v Uy (mev) + H.C.]
6 4 '
:?EH- §RTrUp) (2. 121)

where [J stands for plaquette.

The classical (g = constant) limit of this action as a—>0 is just
the standard continuum Euclidean act{on S -(l/b)!d‘x ;, .-l:l" and 0(4)
rotation invariance is properly restored in this limit. The difference
between the hypercubic and the O(4)~invariant theory can explicitly be
seen to disappear into higher-order terms in a.

L]

The quantum continuum limit must be obtained as outlined in our
general presentation on latticization: the lattice theory should be
calculated at weaker and weaker color coupling (since ﬁ-é/g") and
scaling should set in at some r‘. The significance of going from strong
to wesk coupling is depicted in Fig. 2.13. Weak coupling lattice QCD
should be equivalent to perturbative continuum -QCD. So setting A -u".
the approach to the continuum limit should be governed by the solution
to the renormalization group equation (2.18) for an observable with

dimension mass. To two-loop order we have (see Bq. (2.25))

Y >
= CAloag) o ] o)

v

Neglecting the o(g?) correction in (2.122) is called “asymptotic

scaling” (53]. Yor mass ratios, we expect

Moo = Oz + o (M) da(8/A)] (2 123)
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This 1is called "pre—asymptotic scaling”™ [53] because the correction
terms are exponentially small in g so (2.123) should be seen at lower
than (2,122). Pre-asymptotic scaling is generally deemed a sufficient

signal for the continuum transition.

In the opposite limit of strong coupling, or high temperature in
the statistical model, one can consider the question of confinement. The
equivalent of the Wilson loop (2.98) teaken around a closed contour of

lattice links is

(MU =[ jg [ BNl E] 2 (1 114)

because, by the interpretation of Z as a partition function, the

expectation value of any observable O must be given by
. -< :
{07 = IQ,fbu/luﬂ O(we /2 (2 174")

In a covact group like SU(3)‘, the integration measure [dU] is the

invariant "Haar measure” defined by the properties [50-52])

fdu) = 4
{rdu) 40 = [Tdut) f(Uelt) (2.125)

vher&'. is an arbitrary element of the group and f an arbdbitrary but

sensiyple function., Por Q(( 1 we can write

e ° x [P - (2-126)

and the properties of the Haar measure yield the leading-order strong

coupling result

SRNO D ~u‘t~(o&8"») (2-129)
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where N is the number of plaquettes enclosed in the minimal surface
determined by the contour C. This is just the loop area measured in
dimensionless units, so we conclude that the strong—coupling limit of

the Wilson action does exhibit confinement. ®

The "heavy quark potential” V(r) which acts between a static color
source (infinitely massive quark) and a static color sink (infinitely

massive antiquark) can be defined on the lattice as [51)]

V= dim La < [ Upnl0)> (- 11)
T-aoe

where C(r,1) is the Euclidean “world line” of the static QQ pair
configuration held apart at a distance r for a timwe T (see Fig. 2.14).

The leading~order strong coupling result (2.127) implies

VD) = ot

— 1 + v
= ,&«a +

s

In this limit, V(r) is linearly confining and the "string tension” 34 is
defined, Sophisticated calculational methods based on high-temperature
techniques in statistical mechanics improve this calculation and pu#h it

to higher orders, that is, to weaker coupling [54].

The Wilson action thus appears to contain the right physics in both
extrame limits (g —>0, § —dee). If confinement {s to survive the
transition to the continuuam, the extrapolation from strong to weak
coupling must be smooth, However, even the most involved analytical
strong-coupling calculations t:.ve so far been unable to match up
smoothly with analytical weak~coupling calculations [S5S]. The odlly knowm

successful way to interpolate between strong and wesk coupling ﬁl to

evaluate the partition function numerically, using the Monte Carlo
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method [56] or ramifications thereof.

This situation can be described by an analogy to the Riemann
integral: we recall that it too is defined in terms of finite
differences, In the 18'”‘ century the only way to evaluate integrals was
to develop the calculus, but nowadays one may use fast computers to
calculate any integral directly from its discrete definition (even
integrals wvhich are not solvable by the calculus), For the
nonperturbative evaluation of functional {ntegrals we have been
illustrating the fact that ;n\advanced calculus does not even exist. One
therefore tries (not without success) to evaluate functional integrals
numerically on the lattice. Analytical calculations remain of course
necessary in order to guide, interpret and check numerical computations,
In particular, Monte Carlo calculations of the average plaquette energy
l—ReTrUn/3 and of the‘ string tension reproduce all reliable analytical
results at strong and weak coupling while interpolating smoothly between

then [55]0

More generally, Monte Carlo methods have been applied to the study
of the phase structure of the Wilgon action. Subject to the ubiquitous
computer—power related limitations of such calculations, all indicatiqqa
are that for SU(N) , N>_ 2 pure gauge theories there 1is no phase
transition at any finite p but that there is a higher-order continuum
restoration transition at (3-—-)00 [S5)}. This is exactly what 1is
necessary for lattice QCD to make sense: a phase transition at finite (3
would sean strong-coupling confinement could not be a property of the
continuum, but a higher—order transition must occur as a-->0.
Restoration of O(4) symmetry in this transition has been demonstrated

for both SU(2). and for SU(3), (57]. In the latter case, rotation -

Pl
.
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invariance seems to be approximately restored at (B- 5.7,

Obviously, the inclusion of quark fields into lattice QCD is {
mandatory before any confrontations with experiment can be attempted.
There are, however, certain quantities specifically associated with the
pure glue sector whose study on the lattice may already be
phenomnenologically significant. Of these, we shall be mainly interested
in the gluonic vacuum condensate (I;, .i"' >, the heavy quark potential

V(r) and the fate of confinement in finite-temperature lattice QCD.

Present calculations of the gluon condensate, as reported in {58},
are consistent with the SVZ value (2,65). The Copenhagen group is
atteapting to test their picture of the vacuum using numerical lattice
methods [59). We have seen that the naive strong-coupling analysis of
the Wilson partition function indeed suggests the existence of thin flux
tubes ("strings”) between a heavy quark and antiquark. The same
conclusion is reached in the Hamiltonlan formulation of pure glue
lattice QCD [60]. In going beyond the Gaussian approximation, lattice
QCD can analyze the effect of string fluctuations. Let us show in more
detail how string fluctuations show up in recent calculations of V(r)

and of the string tension.

Motivated by the phase structure of lattice QCD, let us assume that
?

the glue configuration be"tween static color poles is a fluctuating thin
‘
flux tube even in the continuum. Let the ends of the tube be pinned down
at x=0 and x=r. "Thin" means that the width v of the tube is small
compared to r. The string is sllowed to fluctuate in a transverse

dimension y so the fluctuating string can be described by a

two—~component vector field ?(x,y). At the ende of the string,
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g(O,y)-%(r,y)-O. All relevant physics should be contained in a
long-wvavelength (X >> w) effective Lagrangian which should be built out
of % and its derivatives. One requires [6]1] that this effective
Lagrangian density be invariant under Poincaré transformations in the
(x,y) plane and under 0(2) translations and rotations of the vector ? .
The latter requirement precludes mass terms for the fluctuation field.

Therefore L must be made up of derivatives only:

L= 2323 +L(ar 30D+ (13934 . (1-120)

By dimensional analysis, the terms proportional to the parameters b,
Cc,+.. are of higher order in w/X . So the effective Lagrangian density

for long~wavelength modes reduces to )

‘
- N (

L,,“ = ATNR ) (2 134)

Let us now enclose these massless vector bosons in a
two-diwensional box of side r. The ground state of the system is the
nonfluctuating straight string '-\: =) and we know its energy is
E=V(r)=r. To compute the shift in the energy due to the leading—order

long-wavelength fluctuations we have to do a sum over normal msodes

AE(") zzfn '—Z‘u (1 ‘32)

which 1s divergent. We must first do the sum with a convergence factor

-

e'q" and let "l——)O at the end. We obtain

AE(U”) 7 Z')\L1" <

:_I_ d( {

m d
T Z'-,‘Zc
ir Zf )

>
‘le: (g™
(1-133)
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vhere B, are Bernoulli numbers. Only the n=2 term survives as 4’-—)0 so

g . ,
BEM=-L 22 - -F. 4 (2-134)

In d-2 transverse dimensions we must thus expect that the potential for

sufficlently large quark-antiquar¥ distances has the form
V(r) - - ;‘F(_ + %nr

(d-Vr
24 (2135)

Stack [62] has used the parametrization (2.135) to fit his Monte
Carlo measurements of the potential in pure glue SU(2), and SU(3).
lattice QCD. As expected from the fact that a potential with the same
functional form has been proposed for small r by perturbative arguments
[63]), one finds that o« and 2 are actually functions of r (different
values for o« and ¢ give the best fit to data taken in different
regions of r). However, it is found that an effective global fit with
“compound” r—independent parameter values gives an excellent account of
all numerical data obtained from r=0.0! fw to r=1 fm. The corresponding
SU(3). string tension as reported by Otto and Stack [62) is /\/ri-
(9.44 0.3):10'3. By working with the same functional form but from the
asymptotic-freedon side, the authors of [63] find A/ - 9.6:10’3.
Their work also indicates thnt'aly-ptotic scaling only holds for p) 6
while preasymptotic scaling wmay hold for V) 2 5.6 (compare this to P:SJ

for the restoration of 0(4) iavariance).

We have seen that the very act of latticization defines a
temperature in the ststistical analogue of a quantum field system.
Varying this psrameter means to study the system at various values of

the hypercubic lattice lp&ing. On the other hand, assume that we start
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from a continuum scalar field which is supported not over all of
Euclidean space-time but only over a slab of finite extension ¥ in the
“time” direction., Since the final and initial states are identical in
the Z-functional, we must have ¢(x,0)- *(x,‘c ). With this constraint,

‘?_:fflﬁ]ﬁx‘?i—tf: Jt]l?L(ﬂ’(M)z (2-136)

Upon latticization the factor T which has thus been smuggled into the
theory will give rise to a second temperature variable T=]/Z which will
be present even if we decide to fix (; to unity. Since numerical
computations fnevitably deal with finite lattices, all numerical results
on the lattice will be affected not only by finite~volume effects but
a]’.ao by finite~temperature effects due to the finite number n, of
lattice sites in the time direction: T-l/ant. One must therefore study

such effects in order to correct for them in "ordinary” calculations.

Finite field-temperature lattice QCD is furthermore believed to be
of physical interest in itself, the most often invoked potential
applications being heavy-ion collisions, the early universe and
utrophylici’l satter under extreme conditions [64]. The crucial
parameter in finite field-temperature lattice QCD is the special Wilson
loop defined in Fig. 2.14b (65]. It 1is the product of all link matrices
for the links oriented in the temporal direction at a fixed space
coordinate ¥ and 1s closed by virtue of periodicity. It would correspond
to the world line of a single static color charge placed at a fixed
spatisl position. Thus its expectation value measures the free energy

required to produce such a configuration:

s> = 4xp (-aF/T) * (139
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A confining theory should be characterized by AF=.e and hence by
<L? >=0. Svetiteky and Yaffe {66]) have pointed out that the order
paralgter C(Lg > must be zero as long as the ground state of the theory
1% invariant under 25 , the center of 3U(3),. Indeed, it is easy to see
that the Wilson action 1is invariant under the multiplication of all the
link matrices with an element of the center but Lg1s not, so its
expectation value changes sign: <Ly >—> -<Ly >. Note that this is in
agreement with the analogy to superconductivity (Section 2.3c). These
authors point out, however, that one should expect Z3 symmetry to be
broken for sufficiently high field temperature, at least in the

strong-coupling region.

This is precisely what one sees in Monte Carlo studies of the
problem [67). There is undoubtedly a strong first-order phase transition
from a confinement phase at low temperature, where <L3 >=0, to &
high-temperature “color plasma™ phase with <Ly >¢ 0. The critical
temperature T is estimated to be of the order 260 MeV if the string
tension is used to set the scale (vhich is not an unambiguous
procedure). Would this phenomenon still be present in full QCD with

dynaaical quarks?

¢) Quarks on the lattice,

There is a fundamental problea with the latticization of the Dirac
equation. This may be anticipated from the fact that Lorentz invariance,
which is the guiding principle of the Dirac equation, is abs:nt on the
lattice, While it is natural to sssign (vector) gauge fields to the =
links of the lattice, bosonic matter fields to the sites and teunsors to

the plaquettes, there is no obvious place for the fermions. If one
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places the fermions on the links all the same one runs into trouble.

To understand the origin of the trouble, let us briefly return to
continuum QCD. If the current quark masses ire set to zero, the
chromodynamic Lagrengian will not only have its su(n‘_)L xSU(Nf)‘ chiral

sysmetry but will also be invariant under the axial U(l) transformationm

Vix) —» 156 V1) (2-138)

This is due to the decoupling of left-snd right-handed fermions. It is
known, however, that any theory of massless fermions interacting with
msssless gauge flclt'll s pn;:hological due to infrared singularities (see
Section 2.2). Therefore one may never simply set the quark mass to zero
but must start with a sassive theory and thén take the limit ;—> 0
(note that our argument in Section 2.] was that the electroweak curreat
quark masses are 1rr¢1evmt\ for chromodynamics regardless of their
values). Now, if one starts with s massive theory, then the fermions
will have a definite helicity in the massless limit and will be able to
make a transition to a virtusl state of the opposite helicity by
emitting an on-shell gauge boson. Terefore the radiative corrections

must destroy the formal invariance under (2.138).

The curreat J corresponding to the transformation (2.138) is
indeed not divergenceless. Gauge-invarisnt, lLoreantz-invariant comtinuum
rcgtﬁ:rincion of the "triangle graph™ shown in Fig. 2.15 introduces an

anosalous term: : ¢

PV ~ LerTELES <Fr (2439

’
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(summation over color indices is implied). This is the well-known

Adler-Bell-Jackiv (ABJ) anomaly [9,68]).

At first sight it seems that the anomaly should vanish as »—> 0

~
since FF can be written as a surface integral:

?F': ')I, {‘22"'0[;»' ' %Xp + %K.(Z‘*IF)H (1-440)

-

But 1if ?;,(x) is to vanish as |x}—De, ﬁ;?ﬁ,.r must tend to a gauge

)

") A)‘(x)—-»?u(x)'é/,u*(x) (lxl—;ﬂ) (2-141)

where the SU(J)C’-ntrix U is a mapping of the three-~dimensional sphere
at lx[-ao into the gauge group. For a compact Lie group like SU(3), such

mappings fall into homotopy classes each of which is characterized by an

integer value of the Pontriyagin index n:

2
M = fd x -:-—32"1 FF (2-142)

Therefore coutinuum Euclidean QCD must admit field configurations with
n$0 1f the ABJ anomaly is to persist. The minimum-action solutions to

the classicsl field equations with n=+1 are called “instantons” [69].

The effective-action analysis we sketched in Section 2.3 has been
applied to fermions in a one-instanton gauge fi;ld configuration [48].
It is found thnt, aside from breaking the U(l) axial symmetry,
instantons add s further term to the right-hand side of Eq. (2.105), s
term which dynamically breaks SU(N‘)xSU(ﬁ’) chiral lyunctty\fot
uufficiantly‘large g (corresponding to sufficiently large instanton
radii). The effects of pair condensate formstion through one-gluon

exchange and of inetantons thus both destabilize the chirally symmetric
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vacuuas,

Csn the lattice method ot regularization break the axial U(l)

sysmetry? Consider the massless free Dirac action
Se =25 YOOt Yulon) Vi) (21

and "naively” define the lattice derivative as in Bq. (2.112), so that
the momentum operator becomes (sin ;p,)/l, p,\e (=f/a, M/a]. Thus the

inverse fermion propagator on the lattice will read
. | .
A (p)—*;z:y/‘-f'—“fﬂl*— )Ff.é(“l—rsg] (1-144)

This Q zeros (each p, can be 0 or W/a) corresponding to ZJ
fermions with 2‘/2 components making & total of 27‘/2 degrees of freedom.
Each of the 2% fermion fields is afflicted by an anomaly {n the
weak-coupling limit, but the anomalies cancel between the p,.-O ang the
Pa= T/a modes [70]. Thus “species-doubling™ is just a way of“making the
presence of U(l) axial invariance on the lattice compatible \;uh its

absence in the continuum,

The Susskind-Kogut approach to the fermion problem 1is to make the
best out of this fact [71). The essential point is that lattice fermions
do not need to have 2"3 components like their continuum counterparts
which are ruled by Loreantz invariance., One can therefore diagonalize the
naive action in spin space by ukl.n; a'co-callcd Kawvamoto-Sait
transformation [72] from Zl?-co-ponent "’-—upinorl to one-component

“staggered” spinors 7/. For d=4,

¥ = ()™ ( ro”‘(,,)“‘ ( 14.,)"'“ Z(w) (144s)

t

The fermion degrees of freedom have been spread out over the lattice,

Wit
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with one component at each site. The sixteen species of quarks (per
flavor) corresponding to Eq. (2.144) have been reglized as four spinor
components times four "odors” of 9‘'s. The lattice Qn therefore be
divided into “"even” and "odd” lito.-, depending on whether ?n; (i=1,4)
is an even or an odd integer., One can define the folloﬁiyg

~
transformations: \

~ An) —oe % (n) (even sites)

L(n) —> % %c(n) ( odd ¢ifes) (2 fue)

In the massless limit, this is a continuous U(l)t_xU(l)o symmetry which
is broken {f (;(n)f(n»f 0”(1n particular, by a fermiun mass term). In
the Susskind formulation there is thus a direct lattice analogue of
N chiral-symmetry, of its breaking and restoration. In the continuum
limit, the spinor and odor degrees of freedom untangle, the odors
collapse into a single flavor and continuum regularization creates the
correct ABJ anomaly. Generalizing from the free Dirac action to QCD,
the lattice fermion action according to Susskind and Kogut has the form

Seo =1 :z; XU, [t ZAnp) U () 21 ] ),

( {1' =1 ) ’71 = ('1)0" ' '13._- (,4)“"“t '1"__(_01(4'1"'3
(1447)

Alternatively, one may explicitly bresk the axial U(1) on the

R

ln;tice by adding an artificial mass term to the naive action (73]):
Se Z'm)[)! +Ma] ’f’(n)
P¥n =2 [(7,-r1)u ) Pn) - (gt DU YV

Ma = 8¢
‘ . a m\a + (1.14)
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This is the lattice fermion action according to Wilson. The presence of
an explicit mass term even in the limit of massless quarks (-——)0)‘

removes the spurious poles: the inverse propagator for free massless

quarks now reads
B = 2Z g tingl - UrZesap 4 b (149)

On the other hand, there is no longer any trace of the physically
crucial continuum chiral symmetry and it is quite tricky to take the
limit of zero quark mass in the interacting theory where the “critical

mass” M must be renormalized from its free~field value 1/8.

Still another approach to the lattice fermion problem consists in
constructing the action such as to make the axial U(1) curreant diverge
in the continuum limit., This is the closest reproduction of the
situation in the continuum but it requireg the use of a nonlocal
derivative operator on the lattice ("SLAC derivative™ [74]). Such an
action is quite inconvénient for the standard methods of numerical
computation. The Nielsen-Ninomiya “no-go theorems” [75) rigorously state .
the conditions under which no‘further‘alternativc of putting fermions on

a lattice 1is possible.

The generic form of the lattice QCD action is thus

S = Sg + 2oV R (143 () (1150)

,n

where the matrix Q depcndl'on the fermion scheme. For numerical
simulation purposes, it is convenient to integrate out the fermion
fields in the partition function. This is done analogously to the
procedure for integrating out the photon field in the Coleman-Weinberg

.

model (Section 2.3) but taking into account the rules of Grassaann
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integration. The result 1is

2= Ndu, ded (Q5ud) €7 (2-151)

So the generalization of pure~glue calculations to full QCD with
dynamical current quarka boils down to the calculation of the "fermion

determinant”™ detqQ.

Since this is a difficult numerical problem, the first historical
attempts to include light fermions have been based on the so-called
“quenched approximation”, which consists in simply setting detQ=1 [76].
This amounts to neglecting all closed fermion loops in the Feynman
diagram expansiofi of the theory's functionals (n =0 in the language of
BEq. (2.14)). It has been shown that this rather drastic approximation *
does contain much of the right physics— in particular it permits the
study of chiral-symmetry breaking (77]. It has mainly been used in
hadron mass spectrum calculations (78], where the resulte can (as usual)
be described as "encouraging”. In this approximation, the finite
field-temperature deconfining phase transition persists and remains
strongly first order [79]. At the same time, the study of the order
parameter <‘.ﬁ*> has revealed the existence of a chiral-symmetry
restoration transition at a certain temperature T,: <W)f 0 below Ty
(phase of broken chiral symmetry) and <i;f>-0 for T, Ty [79].

Moreover, the transition appears to be first order and it seems that
‘r’,::'l'c [79]. This last relationship is not understood. Hamber and Parisi
have observed asymptotic scaling for <iaf> in the quenched approximation

[76,80].

What happens 1if one actually calculates the quark determinant?
L ]

This is currently the main topic in lattice QCD and a lot of effort is
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being made, both numerically and analytically, to go beyond the quenched
approximation, As was pointed out by several authors [81), the influence
of dynsmical light fermions on the d=4 gauge system is equivalent to
that of an external magnetic field on a d=3 spin system. Indeed, the
fermion term explicitly breaks the Z;-invariance of the lattice QCD
Lagrangian. The Wilson line L3 can no longer serve as an order
parameter because it 1s nonzero for all values of T due to color
screening by dynamical quarks. In the d=3 spin system without a
magnetic field there is a second-order phase transition in temperature,
It disappears if the external field is strong enough. Does the
first~-order deconfinement transition in QCD share a similar fate? In the
context of numerical calculations this is a quantitative problem which
depends crucially on the dependence of the mass parameter on the QCD
coupling [82]. These simulations are also very vulnerable to
£}nite~volune effects [83], Results obtained so far [84] indicate that
the deconfinement transition persists but it is not yet clear whether it
remains first order. As far as the chiral-symmetry restoration
transition is concerned, its existence in the presence of dynamical
quarks has been rigorously established by analytical methods in the case
of strong-coupling lattice SU(2), [85] and it is argued to be
second~order in strong-coupling SU(3), [86]. Numerically, it seems to
still occur at the same critical temperature as the deconfinement
tranliﬁion and to share its order [84].

The influence of the fermion determinant on the QQ potential has
been studied by Joos and Montvay [87) for the model system of SU(Z%
with dynamical Wilson quarks. Physically, one expects that light
quark-antiquark pairs would screen the color charges of the static pair

from each other. Thus the Q and 73 could experience each other's force

worarM-e
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field only up to a certain, finite distance which should set the scale

of hadron radii, This suggests an analogy to the Schwinger model [88],
(spinor electrodynamics in d=2), whose Lagrangian is made up of
elementary fermions and of photons, while the observable,
gauge-invariant particle spectrum only consists in bosonic bound states

of mass mg. The corresponding potential between two external charges is
-Mg
Vile) =s (4-€¢7"7) (1-152)

Joos and Montvay put this ansatez together with Eq. (2.135) and fit their

numerical data with the parametrization:
VIO = -% +6(4-€™) (2:153)

Note that for r<<m~! the secoud term is & %r, which means that €n
defines an effective string tension in the small-r region where
screening is as yet remote. (2.153) gives a good description of their
Monte Carlo data but the particular values of the best fit parameters
have no physical meaning since they are obtained for SU(Z)c and there is
no corresponding hadron spectroscopy. Only few tentative attempts to
include the fermion determinant into the direct calculation of hadron

nasses have been made so far [89].

d) Conclusions.

/

The numerical investigation of the lattice model of QCD 1is
potentially the most systematic approximation scheme towards the
solution of the functional-integral problem of the full theory. It
relies heavily on advanced and advancing computer technology and has
many quasi-experimental aspects. In particular, it needs a lot of

guidance from anslytical and numerical model calculations. We know,
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however, that a theory can only be tested and developed by making “hard”
predictions for experiments whose results are not yet known or are at
leagt unexplained. This 1s not the case for the static properties of
hadrons which constitute the standard phenomenoclogical "testing” grouéﬁ
for laLtice QCD and other nonperturbative methods: the results are known
in advance and the theory merely tries to reproduce them. On the other
hand, it is natural to ask whether non-static properties of hadrons, as
manifested for instance in scattering experiments, can in any way be
related to the results of nonperturbative calculations.

>

2.5. RELATION TO HADRON STRUCTURE

Deep inelastic lepton-hadron scattering probes hadron structure at
small distances between partons. Perturbative QCD expresses this
:Lructure by means of the Q’—dependent Wilson coefficients. By going
back to the functional-integral formulation of QCD, one gives up
factorization in the hope of calculating hadron structure at all
distance scales. This means that some nonperturbative quantities should

explicitly depend upon QL. ~

The effective-action analysis reveala that the gluonic condensate
is indicative of the structure of the QCD vacuum over distance scales of
the order of )V;'. It is hence relevant for the confinement problem but
does not relate directly to the internal structure of hadrons, as probed
in scattering experiments at finite momentum—transfer. On the other
hand, the pair condensate must depend explicitly upon the QCD coupling
strength g, In the weak-coupling limit, we know how g depends in turn
on Q‘. If one could extend this connection to the nonperturbative

region, one could thus use the machanism of chiral-symmetry breaking to
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calculate hadron structure.

Lattice QCD 18 well suited for the study of the é‘—dependence of
megsurable quantities. The Yl-dependence of lattice observables is
usually investigated in connection with the continuum limit. Let us
remark, however, that Fig. 2.13 can also be {nterpreted ag a succession
of images seen by a "microscope” with increasing resolutfgn, that 1is, by
a photon which communicates increasing four-momentum to the.target
hadron. In this context, the absence of phase transitions at finite (;
confirms that hadron structure evolves smoothly from high to low Q* and
that QCD should be able to interpolate between asymptotic freedom and
confinement. By identifying a suitable observable related to
chiral-symmetry breaking and measuring its fz-dependence, one could thus

extract the nonperturbative dependence of hadron structure on gz.

What 18 the physical meaning of the "field"” temperature T? In
relation to heavy-ion collisions 1: ds argued [64] to be interpretable
as a real, thermodynamic temperature variable which expresses the
deposition of center-of-mass energy f; into the system of colliding
nucleons. Quasi-macroscopic equilibrium conditions may be realized in
certain kinematical regions if the number of participating nutleons is
high enough. Deposition of sufficient energy density can presumably
destroy the structure of ordinary hadron matter, which we know to be
characterized by confinement and chiral-symmetry breaking., The critical

temperatures for deconfinement and chiral symmetry-breaking measure (by

the Stefan-Boltzmann law) the necessary energy densities,

On the other hand, 1t i{s considered unlikely that "QCD plgsma“

could be obtained in any practically realizable hadron~hadron
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collisiona. Furthermore, thermodynamical temperature can probably not be
defined for just two colliding hadrons, But this situation also has
certain advantages: colliding hadrons at high energies are still
ordinary hadrons., so hadron-hadron scattering probes dynamical
“excitations” of ordinary hadron structure. The point now is that
finite T on the lattice 1is relevant for such excitations even if it is
not physically realized in the system of colliding QCD fields. Ifrﬁ is
held fixed, T is identical to the temperature variable of the
statistical model of QCD. The conjugate thermodynamic potential is the
free (Helmholtz) energy which maps onto the vacuu; ene:gy of the quantum
ffeld system [90]. Therefore finite lattice temperature at fixed g’ is a
measure of the c.m. energy {s of the colliding hadron—hadron system.
It follows that any observable temperature measured in lattice °
Y calculations should depend on P o In particular, ;econfinenent and the
restoration of chiral symmetry should occur at different values of n,
for different values of (l . This point ought to be investigated
numerically. Combined with the knowledge of the nonperturbative
Callan-Symanzik function, this might permit the derivation of a

“scaling™ law between s and t-—Q", characteristic of hadron-hadron

scattering. .

Our work is a preliminary investigstion of these pointsf We first

identify a quantity which measures chiral-symmetry breaking and also

provides us with a picture of hadron structure. Using the perturbative
one—loop Callan-Symanzik beta-function ss & crude first approximation to
the relationahip‘between color coupling and parton four—mosentum, one
can then calculate electromagnetic form factors of h;4ron|.

Generalizing the model to the phenoungloxical anllyu. of hadron-hadron
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scattering data, wve find an appealing physical interpretation of the
m0st salient phenomenological trends. In particular, we empirically
discover a relationship between an observable scale of Q™ and the c.s.
energy. -

Once we have a picture of hadron structure which is consistent with
nonperturbative QCD and with acattexjng phenomsenclogy, we' can address
the detailed mechanism of confinegent. Recall that the main question in
this context is the effect of long—wavelength fluctuations on the vacuum
domain structure. We have seen how this has been preliminarily .
investigated within the framework of lattice calculations of the
heavy—quark potential. After correcting Eq. (2.153) according to our
model of hadron structure, we can compare its predictions to heavy-quark
spectroscopy and then propose a direct experimental test for the

large—distance properties of the potential. ,;*
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CHAPTER 3: THE TWO-SCALE PICTURE

3.1. DYNAMICAL QUARK MASS % \
Any quark mass teA destroys the chiral syywetry of the

chromodynanic Lagrangian, The flavordynamic masses which are inserted

into QCD “by hand” provide an explicit breaking. We have seen, however,

that nonperturbative QCD must break chiral symmetry even 1f explicit

breaking is neglected. An obvious and popular [91-93] way to express ’

this 1s to say that QCD generates a dynamical, nonperturbative mass term

in addition to the flavor-dependent “bare” current quark mass. Both masst )l’

terns must depend on Q*: dyramical chiral-symmetry breaking depends on

the QCD coupling and any mass is subjected to renormalization. The mass

of a colored fermion 1is thus

M (80) = May (6) +aing (1) (34)

In particular, the spectroscopical mass of a constituent quark can be

defined as M = Mf(Q"-O). In the following we shall concentrate on the 3

¢
purely chromodynamic term H‘Y“ and neglect the running current quark

nasses. Let us ‘denote M= H‘”(Q‘-O). This must be of the otdc: of the U ~
and D mass (350 Mev). '

Bearing in mind the conclusions of Chapter 2, the masin question of
relevance to hadron structure 1s the functional dependence of H",‘ on
Q". This problem has a dynamical and a kinematical component, as can be
illutrated in the lhort-%(st'nnée limit vhere the OPE and perturbative .
QCD axre applicable, Consider a current quark of four—momentum p. Its

inverse propagator can be expressed in terms of a running normalization

{unction N(p) and of a runnipg self-energy 2(p):

S = ETNT R I Iap (2-2) i
4
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Herea&,p are spinor indices and s,b are color indices. FPor p~->es the

inverse propagator can be expresed as an OPE, following Eq.(2.60):

b aly als - A
o S'p)~ G Cxlp)~ ~pCpppKIVY> + ,,;CFF(P)Q—;,,-F)")

i (2.3)

The coefficient fuhctions can be calculated by perturbative QCD and the
SVZ values (2.65) can be used for the condensates, therefore the

functional dependence of 2. on p can be computed. The result is of the

form

1\ B
2 = L) (2-4)

where the values of A and B are stil]l research topics in perturbative

Qeb [91]).

(

What i{s the physical interpretation of Z(p)? 1In Eq.(3.2), the ‘
quark is treated like an electron in a crystal: it 1is described as a

free particle even though it interacts with other color fields, All its

interactions are nb-orge’; into the p-dependence of 1its aelf-;nergy 2.

Graphically, Z can be represented by the generalization of Fig, 2.4 to

many-gluon exchange along the quark line (Fig. 3.1). For nonasyaptotic
four-momenta p, the summation over all possible gluon exchanges would
have to be done nonperturbativaly, This is the dyx:anical part of‘the

calculation of Q(p). Om the other hand, the quantity which one can hope

to relate to experimental probes of hadron structure 1is (Q"). There

is thus the kinematical pt(iﬁ\gg/g relatir& the four

incident electroweak g.ugetyo.on) and p (of the struck quark) such twt

ta Q '(:);\tﬁi

2.(p) gives rise to an expression for H‘r(Qz) wvhich in turn must have

experimenfally observable consegquences.

i ._‘ ~
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The first step is to find a nonperturbative expression for F(p).
The only one we have encountered in the literature has been obtained by
Peskin [48]) for M < p <<es, within the Hartree-Fock approximation
(2.105). He studies the inverse quark propagator in the Landau gauge, -
where N(p)—>1 for POM. (It 1s assumed that s-! is gauge-invariant so
that ve can pick any gauge convenient for calculations). Then S as given
by Eq.(3.2) can be identified with A given by Eq.(2.108), Coupling

strength renormalization is tentatively incorporated by using the {

- én}vl‘;p result (2.23):

Yo = : .
e 4+¢..(1é; L @s)

Peskin finds it convenient to define g, =g(p,) where

g _y o

T o

(3-6)

(Cg= (N*-1)/2N 1s the quadratic Casimir operastor

of SU(M), in the fundamental representstion). He further assumes that

Bgs CL. «< 4 _ (2,7)

g
Pt 2

r

The generalization of Eq. (2.14) to SU(N), ansd n flavors

Mo 2
- — - - w
) b.= S o~ 3 _
implies that the validity os the condition (3.7) depends on the valuss

of n and N: B3 1s S0.36 for Nen=3 and £0.28 for W=3, nw=6.
PN ’

Within thesé rastrictions, Peskin finds en anslytical solution to
A

L]
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the gap equation satisfied by Z(p):

2 = 2 A (BaaPp) =9

where A1 stands for the Airy function and D is & constant. Ia Fig. 3.2
we show the shape of this function as compared to a Gaussian (the

meaning of the p—scale and of the various parameter choices will be

explained in Chapter 4). For p—Dse,

A '
S L

This expression falls to zero faster than‘ any inverse power of p and 1is
thus inconsistent with the perturbative result (3.4). llo\:ever, this

rapid falloff also weans that the approximation scheme which led to

(3.8) breaks down at sufficiently high values of p [48], so that' the

““true” 2(p) (aspuming it exists) would jbe well approximated by (3.8)

for values of p of the order of the scale p. but would revert to (3.4)

as p—>ee.' Physically, one uy argue that the solution (3.8) is valtd at
strong QCD coupling where the dynsmics is essentially collective

(Section 2.1) but that it is bound to breask down at small distances /))/ .

where radiative processes can be described by perturbative QCD.

-

On the other hand, Peskin shows that not just (3.8), but indeed any

2 vhich solves Eq. (2.105), must te.n:—to a constant Z(0) as p—>0

(48}. Thie is precisely what one would expect of Mgyw and suggests that
Z umight differ from lu’. only by normalization. However, we must
remember that this analysis is not valid for p< M. We may therefore not

.

drav any conclusions before we obtain & quantitative estimate of the

reference somentum Pe+ Let us first investigate its physical seaning.

N .

e e VI
U
(/_.—z‘
i‘ »
N

/
1
4
}
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3.2. THE SCALE OF CHIRAL-SYMMETRY BREAKING

If' quarks become nmassive, chiral symmetry will be broken. Clearly,
dym-;.cnl fernion mass generation is a valid method for ltudﬁn;
chirll;ny-ctry breaking only if the inverse implication is also true.
We therefore ask [944]: does the breaking of chiral symmetry {mply that
constituent quarks are massive? We shall base our answer to this
question upon & theorem first given by 't Hooft [95] and rigorously
proven by Prishman et al. and by Coleman and Grossasn [96]. _

i,

Consider Fig. (2.15) as representing the vertex function of three
symmetry currents of SU(3) . That 1is to u‘;,‘ihi- diagram can be
computed at any energy scale, yith curredts formed out of the particles
of the effective theory valid at that scale, Out of the ‘three currents,
two are conserved but the third (J,.. say) is afflicted by the ABJ

anously. The most general odd-parity amplitude which is symsetric under

the interchange of J, and J, has the structure [96]
r}v\ = A (1")2/\;;.‘ (Q-PY‘ + A, (11)‘7/.&:»-(1 MKPP +
! + A“; (12) ( e, ‘7!!(1 - PX‘/MP ) Ll“FP -+
T+ Aq (1"\) ( h{lf.wfrj—-Po E/a)..({;) W™ PP‘
‘ (2.40)

-

In perturbation theory, A'(q‘) hps & real constant value C determined by

the anomaly [97]). Since k‘f},x =0} by current conservation at the vette_x\?
VA
—A@) + 3 A =0 (24f)
Z \
( — ~ o

e which can further be wtittan as a diupernion relation for A :

LD = F [ds diekyd "cA (s (D)

>,

fao - -
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. N
h Since A|(q7') is real,

: T .
dise A,th'\ = :Z;_ dice Aq(q‘) =0 (3-13)
The only solution to these equations is

disc Al,(c") ==1rC J'(ql) (3-14)

In perturbative QCD, there are two possible explanations for Eq.

-~
K—:he theory

(3.14): either there iy a two-quark interm-:diate state ‘or

contains physical zero-mass states [97]. However, if we apply the result

to energy scales lower than or equal to the confinement scale A‘_. the

first poesibility is ruled out. The theor'y of color-singlet mesons and -

W oy T

baryons must contain zero-mass bound states of the massless elementary
quarks. Two different types of massless bound states could give rise to\
Bq. (3.14): = single pseudoscalar particle created by i,,, with C given
by the product of the couplings to the axial and to the vector currents,
or a pair of massless fermions produced by J,. The first alternative

., clearly signals chiral-symmetry breaking; in the second case, chiral

symmetry is unbroken but the composite massless. fermions must satisfy

the same snomaly equations as the original elementary quarks ("'t Hooft

A e o ST

anomaly matching conditions” {95,96}).

.
-

When applied to scales btlovA‘. thié¢ analysis thus agrees with
Goldstone's theorem in the context of broken chiral symsetry, sassless

pions and massive baryons. In fact, it can be shown that the anomaly
\ .
/matching conditions cannot be fulfilled in QCD with more than two
/ >
massless flavors (95,96]. We are, however, not interested in maasive

b .

S t Py /, baryons but in massive constituent quarks. Phenomenology tells us that
. = Iy chiral symmetry 1is ,Proken below A,', but let us now assume that it is in
;l ) ] ) ) .
f - -
| 3
' ‘ N '
' . AN
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fact already broken at some higher, independent scale A;)/'c.- Then Eq.
(3.14) forbids massless constituent quarks: an effective theory valid

between A,,and Ac contains massive colored fermions and massless

Goldstone hosons.

We conclude that the dcscription’of chirsl~symmatry breaking by
dynamical fermion mass generation is only consistent if one postulates
the existence of a distinct scale A;. independent of the confinement
scale and satisfying A,),A,_. Baryons would thus become wmassive 1in two
stages: massless partons bind into massive constituent quarks which, in

turn, bind into color-singlet baryons, Pions would be massless bound

" states of massive counstituenta, where the binding energy cancels the sum

of the masses (Section 31.3).

Various forms of such a “two—scale picture™ have been proposed in .
the literature [22,23,98]. In realizing that the concept ‘of two scales
is intiutnly linked with fermion mass generation, we have, however,
gained a substantial advantage over other approaches, The fact that
pAS)) can be explicitly calculated allows us to go beyond t{le°rough
“step~function” picture of hadron structure which is characteristic of
all other two-region models., Consider Eq. (3.8). kColo"gcd fermions pick Y
up dynamical mass as they smoothly cyolyc from quark-partons to
full-fledged constituent quarks. Let us define py as the momentum at
which Z(p. 1=2(0) . Impose that JF(p) resch its maximum at p_ and -
nocrmalize Z.(0)=1 for convenience:

Z4d =1

dz/‘? “a—.‘», = O

(3.15)
| £
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following relationships between Po» P and D follow:
U./
Peypoe "

o P |
\,, D Ai (-u0) (3-16)

where u, 1is the uni'que root of the equation
A (u) =RBAU (Ful) (219

(u % 1,775 for n=N=3),

}n this picture, chiral symmetry is thus gradually approached as
p—>oe. 1t is completely broken for P$ Pa- Eg. (3.8) is characterized by
the fact that p, (which uniquely dcteuin;l P.» sccording to Eq. (3.16))
is the only parameter governing the smooth evolution from current quark
to constituent 7(:ark. More generally, the existence of a momentus scale
where conntituqﬁt quarks are fully grown 1is detcrnincd_by the

Hartree-Fock ipproxintion, provided p_>M. If this condition is true, it

is natural to associate the fundsmental scale A;wi h p_. .

3.3, COLOR FIELD CONFIGURATIONS

Cornwall [99] has proposed that dynamical masss generation in QCD
also applies to gluons. As in the analogous case of'the 2d-Schwinger .
nodel, dynamical generstion of a gliuon mass does not violate su(;)c-

_igwariance. Massive g‘ugc-invnriant QCD has vortex solutions and

" Cornwall conjectures that it is this color field configt}ntion which 1is <

responsible for confinement. In other words, the vacuum structure of ,
pure~glue QCD, as described in Section 2.3, would be dug to dyhamical

gluon mass generation, It is interesting that the mechanisa is

PR
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reasonable only if the gluon mass depends on the four-momentum and

vanishes as p—)oe.

Even though no nonperturbative expression for the p—dependence of
this dynamical gluon mass has yet been found, let us accept Cornwall's
lt!l‘nt and associate the confinement scale A¢ with gluon mass
generation by analogy to the association of /',vith quark mass
generation [94). In full QCD one would expect an interplay between the
two mechanisms. Recall that both <¥F> and <?,y JFM> contribute to
T(p) 1n thﬁrmvork of the OPE enhanced by SVZ sum rules. These

° vacuum condensates are each characterized by an independent distance
scale (the range of the bilinear condensate is shorter because it has

! canonical dimension 3) which it seems natural to associate with our

ordered set of momentum lcal“cl A,),A‘, . In our nonperturbative example.

for Z(P). the Hartree-Fock approximation, which is an assumption about

the gluon field, determines the structure of constituent quarks.

We now have » unified picture of the internal structure of hadrons

-

in terme of momentun—dependent qu.ltk and gluon "masses”. In physical

terms, these "masses™ are seen to correspond to color field
conﬁguutgono which can be observed by suitable probes exploring the
hadron at various distance scales (resolutions). Since quarks and
gluons interact at all -ountt;- scales, there is only one hadronic
configuration embodying both confinement (gluon mass) and
chiral-symmetry breaking (quark mass) along with asyaptotic freedom. We
¢ ' have thus found ;zuantitin wvhich are calculable in nonperturbative QCD

, and which directly describe hadron structure. How would one relate them
a L - to cxperiuni? - ,

N B ——
-y
.
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We have pointed out that the natural experimental tool for
observing the quark configuration in a hadron 1is a 74 (or W,Z)
microscope. Let us train it on a proton. By varying Q"‘fro- 0 toe we
resolve smaller and smaller distance scales inside the proton. If the
scale A; characterizes the "full growth”™ of the massive constituent
quark, there must exist a corresponding resolution scale QZ’ such that
we observe the following succession of images (see Pig. 3.3): for
Q"’s[O,Q} ) we shall see three structureless, massive, confined
constituent quarks U,U,D. For Q") Q} s, We start seeing {nto a
constituent quark. The picture becomes complicated. It might be
visualized in terms of a certain distribution of partons. The existence
of other constituent quarks and of confinement would not be apparent at
this scale. At very high Q", we would see uncorrelated partons (valence,

»

sea, glue).

Obviously, if we are to explain the flavor of the constituent quark
U, one of the "u” curreant quarks within it must play a special role.
Let us imagine that a certain "u” quark is created at high Q"' in -o-el"
production process (Fig. 3.4). If Q* s high enough, this quark will" be
noninteracting at the tree level but it must undergo ‘radiative (
p‘ro'ceue., thereby evolving to lower Q"" and creating pairs and gluons.
In the perturbative QCD region, its evolution will be governed by the
Altarelli-Parisi equttonl; The computation of 2 (p) can be doné by /
solving the gap- equation perturbatively. Thus our “valence™ u quark/ has
a “cloud” of partouns of which it is the "parent” (it has radiated %he-)

/

and vhich can be assumed to be flavor~neutral (they are paire and
gluons). ) » /

At still Tower Q", g has become large enough that collective pair

i

/?

dha sumaedd V0
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creation (instability of the chirally symmetric vacuum) dominates over
perturbative radiative processes, This would be the region of \ﬁ){idity
of the sapproximations leading to (3.8). The result will be a conﬁltuent
U quark which consists of the parent u quark and of a flavor-neutral
cloud of ocean pairs and gluons.
)
It 1s {nteresting to examine the consequences of this two-scale

plcture for the Goldstone bosons of chiral-symmetry breaking. By virtue

of the continuous character of chiral-symmetry bt/eak:lng in r model,

these must exist at any finite Q" (however large' t may ?Ribens

that a fraction of the pairs radisted by the vnleL\@ar ty{d together

in the strongly attractive s—wave color-singlet chmnelAuch a

“proto-pion” is of course tachyonic because its constituents are

massless while the binding energy E is large. Now dovmwar(d Q"-evolution

sets in. It seems reasonable to assume that the binding energy is _/\
independent of the evolution process (Fig. 3.5). Hence, when the

constituent quark and antiquark are fully grown, the pion ceases to be

tachyonic and reaches its on~shell mass (zero in this approximation).

Our model thus implies thete must be real plons in the “rim" of any
hadron, That is, an effective theory of hadron structure valid for
resolutions between AtandAy should describe the interaction of
constituent quarks with pions. In this we\ngree with references [21-23].
Note, however, that 'plona don't seem to be gooc} degrees of freedom for

the description of the interior of a constituent duark because there

they are tachyonic. We do not therefore favor wmodels which admit pions

. throughout the hadron. It is better to consider off-she&ll color singlets ke

as part of the flavor-neutral parton cloud of the constituent quark,

Yt Y
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The preceding discussion raises an obviocus question. The notion
that “recombination™ of colored partons into color singlets can take
place at high Q* and thus precede evolution seems to contradict our
arguments that donfinement should act upon fully formed constituent
quarks. In fact ,\confinement is not equivalent to color-singlet
formation: it 1is characteristic of on-shell hadrons only. r versiop
of the two-scale pijture thus govidea a natural reconciliation of the
Goldstone characteX of the pion‘yith its status as an ordinary hadron.

Electro lak gauge boson microscopy has the disadvantage of being
blind to 34:3. To fest the gluonic component of a proton we need gluon
microscopy. But a glyonic probe can be carried into its target only by
another hadron, so wé must do hadron-hadron scattering. Now, a
hadron-hadron scatteriyg process is characterized by two indeperident
Mandelstam variables: let\us choose t*-Q" as in 1H scattering along with,
8, the c.n. energy squared. Section 2.5 we have argued that s
determines the degree of excitation of hadron structure in a
hadron-hadron collision. The dependence of hadron-hadron scattering
observables upon 8 and t thus rpflects the internal structure of the
colliding hadrons at various energies, The temperatures T, and Ty are a
independent of the Q"—acalea A‘ and A;. They measure the energv ) .
densities needed to break up the ordinary structure of hadrous. .

A .
N ;
Té cl'arify these points, let us assume firdt-order deconfinement

and chiral-symmetry restoration phase transitions. Then the two-scale

picture seen by the electroweak microscope would be valid below the

LI
value of s which corresponds to Tc» but the parameter* Q:’ would now have '
to depend on 8., If '[,)TC. a phase of deconfined massive constituent ‘
quarks would follow between the two corresponding values of s; above the '
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energy corresponding to ’I';z t;here would be no more constituent quarks,
either. Note that our inequality A,),A,_ in no way 1implies a similar
inequality for Tc and T,; 1in fac'tN, 1f we balieve that.chiral-symmetry
breaking and confinement result from the same dynamics it 1is reasonable
to expect T =T, as suggested by finite-temperature lattice QCD. In our
interpretation, this would confirm that tlhxe chiral-symmetry breaking
configuration is just the confining color field configuration seen at a
smaller distance scale (at higher resolution). This discussion would be
only slightly modified in the case of "rapid-crossover’ second order

transitions, in that ordinary hadron structure would "melt”™ over a

snall, finite range of s.

3.4, VALONS

The "Valon Model™ has been proposed by Hwa and coworkers [100]
following various earlier attempts at a phenomenological’ implementation
of the two-scale idea [101]. We have chosen it as the bridge between our
vergsion of the two-scale picture and scattering experiments because 1t
expresses the same physics and can be successtully applied to a wide
variety of hard and soft hadronic processes. These include hadronfzation
(100], deep inelastic scattering (study of DIS structure functions [102]
and of DIS fragmentation [103]), low-p., fragmentation (164] s
electromagnetic form factors of hadrons [105,106,94] and high-energy
elastic hadron-~hadron scattering {107,108,109]. We consider this
“universality™ of the model to be especially important, because it is a

necessary feature of any serious attempt to describe hadron structure,

In the language of this model, fully grown constituent quarks are

called "valons™ to indicate that they are clusters of sea and glue
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partons around the palrenc valence quark, of which they inherit the
flavor. Although they are spin-1/2 color triplec;, their color ¥nd their
1
sp%in proje“ct:lon perpetually fluctuate due to sbsorbtion and emission of
"wee" infrared sdft gluons [103] of which there always is s cloud

surrounding any partonic Fock state.

Let us write down such a state for, say, the proton P:

s Pl g (249

where u,u,d are valence current quarks, qq are ocean pairs and g are
non-wee gluons. Our discussion up to this point can be summarized by

—

_inserting the “valon basié": \

Y= 22 LPIVUD> (UUDluudq - - 4> (2-19)

vuvp

where the sum indicates integration over all valon coordinates. To
express the independence of the internal structure of a valon from the

existence of other valons, one factorizes one step further:

<UUD\ouq1 > (Ulugg-><Vluqq 1> <Dldqg >
(3-20)

Thus, the distribution of partons in a hadron 1is expressed as the
convolution of the distribution of valons in the hadron -with the

distribution of partons in a valon.

s

mw in Section 2,2, deep inelastic scattering (DIS) probes
the structure functions of hadrons in the parton basis, at some high
va‘iue o‘f"Q'z' fixeci by the c.m. energy of the lep‘mn-h;.pton scattering
experiment. One might try to transform these structure functions into

the valon basis by writing

Ao zf b [, bral) R (2,8) (224)
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Here FZ (z/x, "') is the structure function of a valon in the parton
basis, which 18 calculable by perturbative QCD if &Js high enough.

The moment equation for (3.21) is obviously related 'to the OPE (Eq.
(2.36)). Therefore Eq. (3.21) is formally independent of the valon model
and 1is valid at all Q". In order to interpret the Ql-independent factor
as the distribution of valons in the host hadron, the calculation must

take place at some low Q"-.Qz; which satisfies .
FEY(e,8Y) = %c; d(2-Ddy, (3.22)

expressing the existence of A;(it corregponds to the Qg' of our
microscope in Secticgg 3)3). Therefore one would need to know the exact
function F\z' at low Q" where perturbative QCD should no longer apply.

Howevey, the validity of the decomposition (3.21) at both low and high

'Q* hints at the possibility of using some sensible extrapolation of the

perturbative evolution function to represent sz .

>

L o
Hwa and Zahir [102] have used the LLA of the perturbative evolution

function in order to extrapolate down to Q"; , the value of which

determines the evolution parameter

T Dun [ (84 /A (83 /4)) (312

For the functional form of the longitudinal distribution of valons in
the hadrop they use an ansatz inspired by the shape of the wavefunctions
calculated in the harmonic-oscillator model of confinement [110] as well
as by the canonlical form of the distribution of hadronic constituents:
W cH
H H _RBY v
L") = AT x®v (4-0) (224)

§
The parameters are determined by fits to the data on DIS structure

functions in various reactions and at various values of Q?' {102). Por

I‘xi
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the proton, the resulting coefficients in Eq. (3.24) are listed in Tablé

i
N L]
3.1. The corresponding values for Q} and A are

A

&3,; 064 GeVP ; AZ D'éf GeV (215)

/7
These results are co:ﬁpatible with the solutions of the

harmonic~oscillator modél. Ounce the valon distributions are determined,
one can use (3.21) to predict the structure functions at 6ther values of
» 3

Q*. The results are very good [102].

0f course, these distributions‘ must be re;arded as “"effective” in
the sense that they depend upon the approximations used in their
derivation. In particular, the numerical wvalues for Q' and especlally
for /\ have no physical sig;lificance- they are the price one pays for
obtaining a reasonable solution within the LLA. It is tperefore
important to check these solutions against distributions obtained by
independent methods, preferably from low—Q" physics in order to avoiq
the extrapolation problem. This will be addressed in Cha;ters 4 and 5.
We shall find that the validity of these solutions is confirmed, so that
the x-distributions of valons within hadrons can be considered as known.
In practice, they have been determined for nucleons and pions. For
convenience, the coefficients obtained from DI§ and from charge form

factors are collected in Table 3.1.

On the other hand, Eq. (3.19) demands the existence of analogous
distributions of partons in a valon. Given the flavor—indeper;dence of
the internal structure of valons, there are two types of longitudinal
distributions of charged partons in a valon: let L, represent the

distribution of current quarks of the same flavor as the valon and L,

the distribution of current quarks and antiquarks of a different flavor.

A
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Instead of L 4 one uees the "flavor-;nonsinglet" distribution
L;vs (g = L, (x) - Lz(?:) (’3'25)

As far .as giuons are concerned, the v:ry smdll probability that
hadronization will result in the productio}x of a glueball indicates that
it is a very good approximation to assume that gluons convert into ocean
pairs (“"saturatien of’ gluons by the ocean”, [101;!")“’: Thus the gluons
would be included in the flavor-nditral distribution Ly. Also inmcluded
in this distribution should be the off-ghell pions ahd other color
singlets which may form out of ocean pairs according to our discussion
in Section 3.3.

~

In references {104}, patrticle production data at low laboratory

transverse momentum (pr) were used to fxtrnct and to test the
distributions L“and Ly. 'Consider inclusive ;ion production in
hadron-hadron scattering. Partons with large longitudinal
momentum—fraction (2>, 0.2) are widely separated in rapidity and will
not interact effectively in the collision., Therefore they fly through
the interaction region essentially unchanged in their z-glettibuuon. e
This means that by observing the produced pions in the forward direction
in the lab (at small pT) we can learn about the orl)ginal longitudinal
distributions,of partons in the initial val;ms. Recall that these
distribut(f:{ are defined to be independent of the flavor of the valon
as well as of the host hadron. By the analysis of the reaction

D

x*p-nr'x at ppa =70 GeV/c with the pions in the proton fragmwentation

region, using the valon distribution from DIS, the results for L,y and

Leere ) ) = D™ ((-9) 7
Loty = Lalost (-]~ (329)
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where n 1is the number of flavors active in the ocean -and gluons are
assumed to be saturated by the ocean, For n =3, these distributions

satisfy the nomentum constraint '

4 Tl + L) = £ (320

-

ane the L-~distributions are known, they can be used to predict qhe

diatribut'i,or) of n’* in /the same experiment, The results are good [104].

4
»

»

3.5. CONCLUSIONS

We have investigated the physical implications of the assumption
that the formalism of dynamical quark mass generation can
compute ch;lral-‘symetry breakir;g. We find that this approach
consistent only.1f the dynamical quark aself-energy Z(p) describes the
internal structure of hadrons in' terms of color fields: this structure
must be characterized by two independent effective momentum scales
A,),A,_. The shape of J(p) is determined by the interaction of gluon
and quark deyrees of freedonm, Pe;turbative QCD enhanced by ITEP sum

&
rules, arguments about dynamical gluon mass generation and the

 Hartree-Fock approx.iwation to the gap equation suggest that the

confinement scale 1s associated with the vacuum structure of pure-glue
nch ny Axwith the nomentum scale at which constituent quarks are fully
grown. In Eq. (3.8) the paraseter Pe signals the existence of A,. This-
interpretation only makes sense if we can show that P >>M 350 MeV.

Exploring the interior of an ordinary hadron with a t-microscope
does n%Jreveal any phase transitions according to this picture:

chiral-symmetry is broken smoothly, following the function 3 (p), and is

coaplete at the full~growth scale of the constituent quark. The
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constituent q\‘urk is viewed as a clouyd of partons distributed around a
“parent” valence quark. This distribition is just a local detail of tt:e
global hadron structure: A‘ ie associated with the size of a hadron and
A)g with the size of a constituent quark. Goldstone pions must exist
belov‘A,; above A; they coexist with the massive constitueht quarks with
which they‘ interact. : .
M

Assuming rapid-crosso’ver "melting” of ordinary hadron structure

upon deposition of sufficient center-of-mass energy into 'a system of

c&lliding hadrons, the above plcture should b¢ valid below the threaholg

ueasured by T =T,. Our interpretation in terms of color field

configurations suggests W'stcer equality should hold exactly.

We are now in a position to pursue our orog;am outlined in ‘Section
2.5, We consider the dynamical problem of calculating Z(p) to be solved
by Eq. (3.8) and use the two-scale picture to solve the kinematical
problem and to relate Eq. (3.8) to observable quantities. To this end,
we use the "valon™ model, which {8 a quantitative, phenomenologically
applicable formulation of t;le two—scale picture, It transforms the

wavefunction of a hadron from the pa‘rton basis into a representation

spanned by valons (alias constituent quarks).

Simple parametrizations of the distributions of valons in hadrons
and of partons in valons (in terms of the parton—model lonentun—fractign
variable x) are obtained from the study of deep inelastic scattering and
of low-p, fragmentation. The fact that one can use extrapolations of
one~loop perturbative QCD to obtain satisfactory results for these
distributions is grounded in the compatibility of the convolution

property of valon model distributions with the OPE. In other words, the

Y
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valon model can describe x-distridutions by inteipreting the

nonperturbative Wilson operato\f matrix elements.
¥

.
\

The Feynman x—variable does not, however, shed any ligﬁt on the

3

geometrie distributions of censtituents within hadrons and valons (fo:l.'
example, on the size of & valon). Such questions are traditib\’nally
addressed by measuring the electrougneﬁtic form factors of the extended
charge distribution. We shall see that the study of hadron an:i valon
charge form factors connects the geometry of parton distributions to

] .
2(p) and also pe ts a verification xé the results on longitudinal

distributions. o I \
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CHAPTER 4: HADRON AND VALON CHARGE FORM FACTORS

4.1, CHARGE FORM FACTORS IN THE TWO-SCALE PICTURE#
L]

The spatial distribution of charged constituents within a composite
system is measured by the system's charge form factor (é??), which is
defined as the Fourier transform of the charge density. For the case of
a hadron, we first need to specify a suitable set of kinematical

variables in terms of which the charge distributions shall be expressed.

We shall use “transverse coordinates”, a kinematical framem;rk
introduced by Soper [110] for the very purpose of relating the parton
distribution in a hadron to scattering experiments. Let any four-vector
a,‘be described by its components (a‘,zz,a*,a') with af -(aoi 81)/’—.
The scalar product is 5_!)/‘ = atb +a b -'a‘.g, wvhere d=(a’,a’). As 1is
customary in the parton model, consider a reference frame in which the
hadron H moves in the z—direction close to the velocity of lightl. The
wavefunction of the partonsg which are distributed in this hadron, when
viewed from the rest frame of H, looks as {f it had\ been detemined by )
local measurements on a space-time surface of equation r®+r3¥=conat.~—>0.
Trans\;erse coordinates in the rest frame of H are'defined by treating rt
a8 a "time” coordinate so that the distribution of partons in H is
described at fixed rt. This reduces the hadron to a system of
nonrelativistic particles, because the subgroup of the Poincare group
which leaves the surface r'=const. invariant is isomorphic to the
Galilei group in two dimensions [110]. Let R", PH refer to the hadron
and r/, p)* to any component parton. p? plays the role of the total
“"mass” of the Galilean parton systém and p* 1is the "mass” of p;rton\

© 4
"1", The center of P* 18 1ike the center of masd of the parton
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collection. By evaluating the invariant p’p/‘ ve find that p~ plays the
role of the total energy of a parton (P~ corresponds to the total energy

of the hadron) so the motion of a parton in H is described only by

9.
With respect to the center of P' in R consider parton “i” with P
and position T and denote by ¥ its position’relative to the center of +
momentum in the residual system H\{1]. If the longitudinal
é .

momentum-fraction is defined as x=p*/Pt 1t follows that [105]

* “

. # .

? = (4*)()(; ’(tl")

Let us then denote the probability distribution for striking a
current quark of flavor "i" and of longitudinal momentum-fraction x and
transverse position T in a hadron H with a virtual photon at Qq' by

qy (x,¥,Q*). The corresponding CFF is [105] .

F, )= Ze; L“x [d' c‘.a}q‘-" (%7, & (4-2)

As Q‘-)ao, the oscillatory factor in thf Fourier transgform selects the
z
dominant contribution to Fy to come from the region ?—--—)0. By Eq. (4.1),

this means either x—>1 or ?—-—)O or both. If qE' (x,?, %) does not variish

‘very fast as x—>1, perturbative QCD leads to the Drell-Yan-West

4\
relation between the hadron’s CFF Fl and the DIS structure fumction W,

[111]: P -—? (
Fy (&) T (&) ; W, 00 ~ “-x)?f' (4.%)
X1 ’

.

It has been argued that, in the general case, QCD will cause qr to

vanish so fast as x-->] that Eq. (4.2) becomes invalid and the ?—-)0

region dominates at high Q" [112]. A schematic diagram for the pion
W

a
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electric form .f"act:or gotresponding to this situation 18 shown in Fig.
4.1, There is large momentum transfer between the probed colored
feruions (which can be considered as curreat quarksa), mediated by hard -
gluop exchange. Perturbative QCD is directly applicable to this
situation and leads to beautiful, cléar-—cut predictions [112}.
6nfortunate1y, these would apply only at asymptotically large Q%; 1t

‘ ¢ appear’s that they canhot be tested agai_rmt presently existing CFF data

{113) (the highest available Q" 18 33 GeV? for the proton [114]).
g

_JPerturbative QCD thus does not seem to be applicable as a
theoretical framework for the explanation of existing CFF data. These
_appear to be dominsated by nonperturbative, "soft” contributions. The
problem is ideal for the application of the two-scale picture. The
basic valon-model equations (3.18-3.20) suggest the following

representation for q!" (x, ?,Q"): -

q* Lot ) = Zj Ja‘*'V" ’*')p’(;,,“'a‘) (4.4)

However, as opposed to the case of Eq. (3.21), Eq. (4.4) cannot be
related to the OPE because of the ?—dependqnce of the¢ integrand., This
means that this representation, characteristic of‘the valon model, must

break down before asymptotically large Q? are reached.

B

To exploré the consequences of Eq. (4.4) for F"(Ql), let us insert

it into (4.2) [105]. Defining z-x/x',?-r'-?', we have

F (&) = [‘2_‘ J’ dx]dlh“”V”(y)—,z)]

. [Z“ H%fd p (zf,Q)]
L z l{u(o}ﬁ-l—',(&l) (4-5)
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We see that the valon-model ansatz (4.4) predicts the factorization of
the hadron's CPF into a factor due to the distribution of valons 1in R
(K" which is normalized to e at Ql-O) and the CFi’ of the valon 1itself
(P, which is nornalized to 1 at (*=0). The valon form factor must be
universal apart from the overall charge es (independent of the valon's
flavor and of the host hadron) because it expresses the internal
structure of the valon in terms of 1its component partons. This
factorizability clearly only makes sense in the impulse approximation
for the interaction of the pHoton with the probed colored fermions (Pig.

4.2).

/
On the other hand, there 1s no multiplicative valon CFF in the

limit depicted inﬂl?ig. 4,1. This suggests that the mechanism by which
E?;' (4.4) br&aks down as Q" —ee has'to do with the gluons exchanged
between colored fermions becoming so hard that the impulse approximation
fails and the very notion of z; valon loses its meaning. Therefore, we
cannot ho to calculate Fy, by any downward extrapolation scheme from
perturbaf{iive QCD. Before we address tl';e problem of finding a
nonpertu ative calculation scheme for the valon's CFF, let us review

the detemin\tion of valon distributions in hadrons from CFF's.

4.,2. VALON DISTRIBUTIONS FROM CFF's

Hwa and Lam [105) postulate that the L-distribution of valon j in H
shall be related to V‘;‘ (x,?) by
Lo H H
L 6 = fdr2r V¥ (e,2) (49
- .

so that V factorizes into an %-dependent and an ?-dependent part:

V¥, = (4= LY T (5) (4§)
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where

[d9T1 )= 1 (4-8) .

“a

Note that factorization in k‘and ‘; is suggested by the form of Eq.

(4,1). 1f one further defines the Pourler transform of ';5" (x}):
*(
Py 1 kY 2 VIR -
TV () = [#5e yT,(/) (49)
one can finally express K"(Q") as
&* g
) A LI
. ’l = . T‘ l..l
Kl ?eiL‘xL) LT (1) e 08
(Y4-0)

For Q o enouglm hat valons are structureless, F  should be equal
to one and KN by itself’'should account for the measured CFF's, Hwa and
Lam study the CFF data for p, n and the pion at Ql{ 1 Gev:., The ansatz
for the longitudinal distributions is the same as in Eq. (3.24) for DIS.
As for the tranaverse distribution of valons in hadrons, we know that it
is governed by confinement. Based on this observation, Ref, {105] uses a

simple Gaussian ansatz for T(k):

_
T'iy= e ¥ )

With the parameter values listed in the second column of Table 3.1, they

obtain a good simultaneous fit to the data (see Fig. 2 in Ref. [105]).

Furthermore, they observe that the factorizability predicted by Eq.
(4.5) can be checked by cancelling the universal valon CFF between the

pion and the proton CFF:

Fe(6) = - ““‘“) R (60) (412)
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For values of QZ up to 10 GeVl. the pion CFF predicted from proton CFF

data (parametrized by the dipole approximation .

Fo (&) = (1+ &0 HY (4 13)

which 18 a good description of the data up to Q*=33 GeV") agrees very
well with the measured values (Fig.2 in Ref, [105])). therefore Eq. (4.4)
is good at least up to 10 GevZ,
3

In Ref. [106], Hwa goes on to build a "macroscopic”™ model for the
valon CFF itself. Without reference to the dynamical mechanism which
generates the parton distribution in a valon, he argues that the
empirically striking universal l-pole structure of hadronic CFFs must be
an intrinsic property of the universal valoun CFF. His effective

expression for F, reads

(D) = —ﬁf;— (444
p

+Q*

To obtain the corresponding fit to nucleon and pion CFF's, Hwa uses the

Y

valon distributions as given by DIS along with

H
K _ B)
_‘3 Lk) - VIR (H’§>
Ly
)‘
/ .
to obtain essentially the same results as had been obtained in the paper

[105] (compare Fig. 5 in [‘106] to Fig. 2 in [105]). This underlines the
compatibility of the various pasrametrizations and shows that, regardless
of the method used, the valon pict':ure allows a good simultaneous
deacriptlon of DIS and of charge fogm factors. However, the Isl channel
has not ‘been 1solated in Hwa's analysis and the global fit to charge

form factors also depends on the effective parametrizations used for the

(‘,‘:.ﬁ&‘
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valon distributions. The fair quality of the fit. implies that there must
be some I=0 admixture in this effective, “macroscopic™ description of

the valon's CFF., We shall therefore eeek'al""microecopic". dynamical

model of the internal structure of valoms. -

4.3. A MODEL OF VALON STRUCTURE [94)
We begin by expressing the valon's CFF in terms of longitudir{al and

transverse parton distributions, by analogy with Eq. (4.10):
{
R = [ de [Lus D+ L] TE) ek (618)

Like Eq. (4.10), this 18 justified by the form of Eq. (4.1). Recall
that the longitudinal distributions of charged partons in the valouo are
given by Eq. (3.27). We assume that gluons are sattﬁ-ated by the ocean

and take n=3,

The difficult part is, of course, to find a dynamically motivated
expression for T(3). We know- that this expression c¢annot be inferred
from perturbative QCD, and we expect that it should be common to the
flavor-singlet and non—singlet cou;pon'em:s because it describes the
geometry of t}xe entire valon and does not refer to individual partons,
Now, since our two-scale picture isx based upon/ the description of
chiral-gsymmetry breaking by dynamical quark mass generation, it 18

¥

natural to correlate valon structure with the momentum-dependence of the

colored fermion's self—-energy.

Specifically, let us use 2P (p) as given by Eq. (3.8). In transverse:
t
coordinates, all structural information about the parton distribution is

carried by the Jﬁ-depéndence. We therefore interpret the argument of

e
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as hﬂ (also assuming that the parton distribution is 1isotropic in '5).
According ;o the convention for form factors, we normalize Z(0)=l. At
this point, using Eqs. (3.15-3.17), we can write down an explicit model

for the distribution 1‘(3):

. i ’ 'ﬁl < P,
= o Blepe T
~ ~ (413
- )
We combine this with the longitudinal dietriﬁut'iions (3.27),

acgording to Eq. (4.16).

In order to use the longitudinal distributions consistently, we must
work with a three—-flavor ocean. If we take N=3 for the number of colors,
the parameters B and u, in Equation (3.8) can be evaluated from their

definitions (3.7) and (3.17):
R'= 02 ; u.z47¥S (4 16)

We conclude that (3.8) should indeed be agplicable for not too large
values of p. N

To test opt,aodel and to determine the fundamental parameter pg,
we have calculated the proton’s CFF by using Eq. (4.17) in Eq. (4.16).
For Kp we have \}sed the expressions given by Hwa and Lam {105] (the
longitudinal valon distributions from low-Q* CFF's along with the
@aussian form of the transverse valon distribution). The result for
P,=600 MeV 18 compared to the dipole approximarion (4.13) in Figure 4.3.
Note that we have not attempted any systenatic\ best fit in order to

improve the determination of p,, because we can already see that our

N
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one-parameter model is Afly a (good) first guess and because we have not

compared to actual data but only to the dipole approximation.

We are now in a position to explain Figure 3.2: T(p) is plotted
for three values of p, and its shape is compared to a Gaussian chosen to
be numerically close to the curve parametrized by p =600 MeV. Since the

‘('ﬁ.}) of this Gaussian would have to be x 2.6 GeV, we a&g that our
1

‘

distribution differs significantly from a simple Gaussian
representation. Its detailed shape critically determines the order of
magnitude of the valon size parameter. .
Another essential test of our model 1s the calculation of the pion
decay constant fy. In Ref, [105] Hwa and Lam have argued that one can
relate fg to the transverse-momentum distributions of valons in the pion

and of partons in the valon, by the following formula:
P N n 1/
ﬁr. =%z [T (DT W] "” (4 19)-

By using our expression for T(‘p’), we obtain f“:-'-87.8 MeV for p°-600 MeV
\
as compared to the experimental value of 93 MeV,

S

4.4. DISCUSSION

We conclude from these results that our model seems to be
phenomenologically reasonable for p, of the order of 600 MeV. Within
the approximations which define our model, p, 18 the only parameter
governing the size of a valon. By Eq, (3.16), it is related to pqwhich
in turn corresponds to the critical QCD coupling for ZSB. p o 18

therefore an expression of the fundamental scale parameter A)z)//’c .

Most importantly, note that p  ia of the order of 2M so that the

%ﬁwﬁ-“l"' ’
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two~scale picture based on the Hartree-Fock appr;)xi'mation does make
sense (see Chapter 3). The numerical value for Po 18 in rough agreement
with Politzer's estimate that ETH"‘- M at a momentum scale of 2M (first
reference under [91)) as well as vi.th the usually employed value of the
“primordial™ average transverse momentum of partons participating in

hard collisions (massive lepton-pair production; large—p_r reactioas)

[115].

By studying the CFF problem, we have also solved the problem of
relating J(p) to H"‘(Qt). Indeed, since FV(Q‘) is generated by Z (p)
and the same must be true, by definition, for M"_(Q"), these quantities
should be proportional. The factor of proportionality must be M because

Py(0)=1 while My (0)=H:

My (&) = M F, (&) (420)

In this context, it is interesting to compare an expression used by

Cornwall [92] to calculate f, from the effective propagator of a

confined constituent quark:

1 ,
‘ Hiya(&q'\: _:%;:f_&f— (‘11‘1)

with the effective expression of the valon's CFF written down by Hwa
(Eq. (4.14)). Cornwall also sets the scale by the rho mass and obtains
the experimental value for f“. for M= 340 MeV. This tends to confirm our

conclusion that botK M‘Y" and F, are generated by 2P .

o .
The main shortcoming of our one-parameter model (as well as of

Hwa's effective fit in [106]) is that the CFFs go too high as QY

Bk
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{
increases. To stay closer to the data we should decrease p,~ but the
the CFF goes too low for low dl. Ori-the other hand, 1f we wanted to

improve ocur numerical value for f we should increase P, We must

w
conclude that our 'l'(i;) neecia improvement- one parameter is not enough
beyond a good first approxination‘/\li fact, this situation lends
support to the idea that the mechanism which leads to the breakdown of
the approximation (3.8) for Z(p) ‘na p>>p, must be identical to the one
which makes the notion of a multiplicative valon form factor inadequate
at high ,Q". What is needed is, of course, a rigorous calculation of
Z(p) at all p, directly from the QCD Lagrangian. This could be done,
for instance, by calculating the (appropriately defined) quark
propagator in full lattice QCD with dynamical ferqions as a function of
the inverse coupling. In conjunction with the extraction of the
nonperturbative Callan-Symanzik function from, say, Monte-Carlo

i

renormalization group studies, this would amount to a calculation of

T (p) in lattice QCD.

~

g

B -
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CHAPTER 5: HADRON AND VALON MATTER FORM FACTORS

5.1. ELASTIC HADRON-HADRON SCATTERING AT HIGH ENERGIES

We pursue our program by turning to the study of the "gluon
microscopy” of hadron structure, which we have argued to be revealed in
hadron—-hadron scattering. The elastic channel obviously contains the
most direct information about the structure of the colliding hadrons.
Elastic HH scattering is a field of the utmost historical importance in

hadron physice [115], where a huge body of data and a)wealth of

phenomencological models have accumulated but whi¢h still awaits a

successful connection to QCC. One of the fundamehtal facts which have s
been established in long years of study is that gthe relationship of the

neasured observables to hadron structure becomes simpler and clgarer as

8, the c.m., energy squared of the collision, increases [iig;if7l.

»

Consequently, we “shall be concerned with "high energies”. More

specifically, we shall analyze differential cross-section (dcs) data

taken in pp scatCerigg at the CERN ISR for Vs between 23 and 63 GeV and
-t-d‘ up to 10 Gev?, in pp scattering at Fermilab (FNAL) for f;e(19,28)
GeV and ~t up to 14 GeV™Y, in F'p scattering at FNAL for {s= 19 GeV and
-t up to 10 Gev" and in Pp scattering at the CERN SppS for fs= 546 GeV
ayd.-t (at present) up to 1.5 GeV: As an output of our study,

predictions will emerge for the dcs to be measured at the SppS for

L]
larger Q"and f0£ the s—dependence of elastic scatterirg observables.

In the energy range under study, the following assumptions are well .

justified by their results [118]:

-

’

> oo
Gy .



1. Asymptotic Pomeron dominance is valid:

._éil _ d
dt Hp at fip

vhere R will be p or ™ in our applications.

(S1)

2. The analysis can be performed in terms of only one,
predominantly ifmaginary (absorptive) spin non-flip scattering amplitude
f(s,t). As we shall see in more detail below, the real part of f(s,t) is

automatically generated from Im f by the even orossing symmetry of Eq.

»
' /(5.1). .

3. 8 is high enough‘that the impact—-parameter formalism is a

consequence of partial-wave analysis. N

\

This formalism is the nagural framework for connecting scattering
observables (the amplitude f) to the structure of the colliding hadrons
[117-126]. Let us collect the formulae relevant to our tasks. The
elastic differential croas-seccign (dcs) 18 related to the elastic

®

amplitude f(s,t) by
as T

f(s,t) can be represented as the Fourier-Bessel transforn
(two~dimensional Fourier transform) of a quantity h(s,b) called the

“elastic profile™:

(O \{u;,\;ﬂ - Z‘us,mg.(w:?_)ug -
‘ (s

(this follows from ;artial-wnve analysis if s 1s high enouggt Assumption
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3 above). The optical theorem reads:
.

. e
Qs = bp vaf(s,b) (S-4)

By unitarity in b-space, we must have for any s:
T

d's dlﬁd‘ b 1.
Pl alale (5%)

which is equivalent to

7 T kls) = e+ Glslo) (S-6)

The quantity G(s,b) defined by (5.6) 18 called the "inelastic overlap

function”. Assuming it to be purely imaginary, one can solve (5.6) for

-

the elastic profile:

h.(sV) = ¢ [1- Y166 ) ($F)

The subscript reminds us that this is an approximate solution, obtained
by neglecting the real part of h. The positive root to the quadratic
equation (5.6) is ruled out by the requirement that G be continuous and
vanish at large b together with h(s,b). It ig customary to define the

"eikonal” {)(s,b) from h_(s,b)

QGA) = = £n [1-Uo(e) (s-8)

In terms of G:

SL(s\) = - £ T1- G () (5-9)

The full complex amplitude can Be obtained from fo-‘h;y by imposing

Assumption 1 atove (crossing-even symmetry):

i(s;D = ¢ Iwa’- (se=5"2  ¢) (S-10)

oty
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Equivalently, the relationship between the full elastic profile and h

is:

| _ . . -inf2
- hls) = ¢ Tw he (5272, ) (5-11)

y
-

5.2, HADRONIC MATTER FORM FACTORS

The classical connection between elastic scattering and the
structure of the colliding hadrons, pioneered by Chou and Yang [117],
congists in building models of the eikonal jQ(s,b), in principle
starting from some quantity related to the intrahadronic matter
distributions. In general, such "geometric” models assume that the
eikonal of the reaction AB-~>A§ 18 a function of the electromagnetic

form factors of the hadrons [117,120,121):

i

L5 (59 = A B (RO, R(b)) (512)

Since electromagnetic form factors only depend on the variable t, the
s-dependence nust necessarily factorize in all such models. It turns
out, however, that this factorizability condition is too afrong to
accomodate the observed dependences of quantities like thes:§§$\$he
total cross-section and the Gprward logarithmic slope on s and t [119].
In order to fit the data, the function ¢§ in (5.12) must actually depend
on 8 as well as on a host "6f ad-hoc parameters and factors [120-125].

To us, this failure of the simple connection (5.12) seems hardly
surprising, because we see no reason why the dynamically excited matter

distributions in the overlapping hadrons at high c.m. energies should be

®

L
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be 1dept1cal to the static charge distributions. If lepton-hadron
elastic scattering defines the electromagnetic form factor of the
hadronic target, then hadron-hadron elastic scattering must be expected
to define its own "matter form factor™ which should, in principle,

depend on the two hadrons involved as well as on the s-value of the

collisicn. We define this matter form factor (MFF) as [108,109]
4
Mag (5t = {ﬂ(s,\aﬂ (S13)

and, without imposing any a priori theoretical constraints upon it,
extract it from the differential cross—-sections measured in the
experiments quoted in Section 5.1. Concerning our definition Eq.
(5.13), note that the so-called MFF actually has the dimensions of a
sca‘%bfT“g amplitude. By analogy with CFF's, one can normalize MFF's to

unity at t=0 by redefining

o~ NG -
ng(‘sl )'-: %E%% = 4(9\) M&Q(Ipé) (S"Ll)

The two definitions should be physically equivalent at fixed s, but in
order to analyze the s-dependence of MFF's one must use (5.13) because
any factorizable contribution F(s) cancels out upon normalization.

We have used two methods to extract the (normalized) MFF from the
differential cross-sections measured in pp elastic scattering in the ISR
range [108]. The input to the first is the tabulation of G(s,b) at the
five ISR energies by Amaldi and Schubert PT!T@T We transform to eikonal
values according to Eq. (5.9), performing a a;th;a{/cubic 60-?ode Sspline
at each energy. Then we extract g'? by Eq. (5.14), usin;fa
double~precision 32-point Gaussian quadrature between Bessel-function

zeros. The results for four ISR energies are shown in Fig. 5.1. We have

e e o e i e o
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not included the top ISR energy because the resulting MFF had violent

- oscillations, probably due to several questionable data points signaled

in [126]). This numerical method can be trusted only up to -t= § cev?.

To do better, we fit the pp dcs measured at the ISR for V?-SZ.S GeV
[128] anélat FNAL for ppy =400 Gev/c and large ~t [129]. Taking data at
very large -t into consideration improves the numerical Fourier-Bessel

transform. Generalizing a form used in Ref., [118], we set
. % £
((Srt) = A‘) Lg) (S-15)
=t :

with J=5, A) and Bj

are listed in Table 5.1. The fit is shown inm Fig. 5.2.$;e perform the

as obtained by using the CERN-MINUIT fitting routine

Fourler-Bessel transform of the eikonal obtained from (3.15) and get an
independent extraction of(ghe pp MFF at (approximately) {s=52 GeV. The
extracted MFF8 at that value of s by both methods are compared in Fig.

5.3;

Note that Method 2, which should be reliable at large —t, reveals a
most striking feature of the pp MFF: it has a zero at QF =5.65 GeV® and

\l!i\'

then remains negative. This had been observed before [120,130}.

. Let us now use Method 2 in order to extract the Wp MFF fron the
differential cross-section measured at FNAL (pg,, =200 Gev/c) [131]). We
compute d6/dt at t=0 from the total cross-section given in Ref, [132].
With a four-exponential form for the scattering amplitude (J=4) we
obtain the dashed curve in Fig. 5.4. The fit to the M p differential
crogs—-section i8s shown in Fig. 5.5 and the corresponding values of Aj

and B, are given in Table 5.1. We see that the occurrénce of a zero in

h
the MFF is\confirmed - for this reaction at this energy, it is at
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QL = 8.5 cev?. we may suspect at this point that the presence of the MFF
zero has to do with the absence of further diffraction dips in our fits

to the dcs. Indeed, let us replace our parametrization by the following

form used-by Lai et al. [133):

frp (6) = et e(rt g oME 00 (g

(their coefficients are reproduced in Table 5.2). This amounts to
xlntetpreting the data point at —-t=9 Gev? as a second dip. The resulting
extraction is almost i{dentical to ours in the Qz%range shown in Fig. 5.4

but stays positive up to dt-zo GeV .

The preceding results definitely suggest that MFFs explicitly
depend upon s. However, as 1s apparent from Fig. 5.1, there 18 no clear
trend in the s-dependence over the narrow range covered by the ISR. On
the contrary, we may expect a well-defined change from the ISR to the
SPpS. Let us therefore proceed to the extraction of the Pp MFF
corresponding to the data collected up to now by the UA4 collaboration
at the CERN SppS [109]. Their elastic dcs data {134,135} are
represented by the full dots in Fig. 5.6.’ We shall use the following

parametrization of f,(t), based on the UA4 fits of Ref. [135]

116se¥**  peppeods

Img.(e): U121t DS <lti <0621
= / S|
{01961t DU <ltf=sog (s:3)

For ]tl),O.S Gevq'we take [119,126]

SUs(e-te) (p+13(t-ba
e s )-(—6“(* 3 7)]

Ton folt) = Re [0 107252 (
(s18)

o
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with -t =0.81 GeVz, Lf- m-0.39 and P=0.13. We calculate the
corresponding “(normalized) MFF as in Method 2 above. The results are
represented by the dotted curve 1n.Fig. 5.7. This extraction can only be
trusted up to roughly 1| Gev? becaﬁse the dcs has as yet only been
measured up to -t=1.5 Gev?. We have verified by explicit computation
that the MFF for -t 1 Gev? 18 unsensitive to the changes in Eq. (5.18)
which are required in.order to fit‘ the newest UA4 data (third paper

under [135]).

To make a statement about the MFF at larger Qz, and most
importantly about the occurrence of a zero, we must thus rely on same
prediction for the dcs at large -t. By Assumption 1 in Section 5.1, the
pp and pp MFFs at the same (high) s must be identical, therefore we can
’perform a simultaneous fit to the measured SppS dcs and to the pp dcs at
{8=52.8 Gev, using the Short Range Expansion (SRE) ansatz [118,129,136]
for G(s,b):

4R X b - () 4B
Glsy= P8 oo f (F2 70T

(5-13)

This is an expansion of G(a,b) around a Gaussian form, in terms of the
short-range variable (be'(ThSVLB); the argument of the power serius is
chosen such that its maximal value be unity. Given the simplifying
agsumptions that 7; 18 constant and J"-[:/lo [136], a simultaneous fit to
the dcs data at two c.m., energies determines a well-defined evolution of

each of the three remaining parameters with the increase of s. Setting

y-ln‘(a/s,) with 8,~100 GeV one writes

Py = bicy
1+ ey
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as discussed 1in the Bern talk of Ref. [136) and in the Syracuse talk of
Ref. [119]. The MINUIT fit to a selected set of data shown in Fig. 5.6

13 obtained for the parameter values listed in Table 5.3.

The errors on these parameters (corresponding to those of the
fitting routine) induce errors in the corresponding MFFs. In Fig. 5.7,
the full curve corresponds 1o the lowest value of B(Ye=546 GeV)
compatible with the fit and the error bars show the effect of the
uncertainty in the SRE parameters upon the extracted MFF. We have
represented this curve (instead of the one coftespxﬁgding to the central
values of the parameters) because it coincides with the direct
extraction (dotted curve) up to 1 GeV? and clearly shows our prediction

for the MFF at large Q", corresponding to the dashed curve for the dcs

in Fig. 5.6. We note that our predicted SPpS MFF has a zero at Q" =3.2

>

. .
Gev ™.

&

Finally, let us note that, once having adopted a parametrization
such as (5.19,5.20) as a trustworthy representative of the data, we can
generate the MFF at intermediate (as.yet unmeasured) values of s. We can
thus display the motion of the zero in the MFF from ISR to SppS
energies, The result of this exercise is shown in Fig. 5.8b. Fig. 5.8a
displays the normalization function F(s) defined in Eq. (5.14). Error
bars are again induced by the parameter uncertainties listed in Table
5.3. Slightly larger error bars are obtained if we compare different
versions of the SRE/BEL analysis: one which gives a detailed description
of the ISR regime and yet another one which 1s__;specially design;zd for

the analysis at very high energies (the SSC and beyond) since it

. explicitly satigfies unitarity at asymptoti'callj large s by saturating

the edge strength fz(y) with an analytic form stmilar to that for P(y).
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We find that this does not affect the conclusions we draw from Figures

5.8a and 5.8b, namely that F(s) is very well described by

F(S) NSE , €=a0- 1o (g.'24)

'

and that the zero in the MFF decreasés in a very specific way as s
increases.
A

The question arises whether the decrease of the zero required by
the SRE formalism also takes place at ldv 8 (in the ISR range :md
below) , where the quality of the data 18 not sufficient to allow the
extraction of a clear signal. We hape performed an SRE extraction of the
PP MFF at p, . =400 GeV/c and have fo\nd %IF zero at « 6.02 GeV?,
Together with our observation that the [Tp MFF at pgy, ~200 GeV/c has its
zero at 8.5 GeV", this tends to confirm that the MFF zero decreases with
the increase of 8 also at lower energies, However, Fig. 5.1. seems t$

indicate that, in this region, the relevance of the motion of the MFF

zero for the dcs is overshadowed by Regge effects.
5.3. MFF's IN THE TWO—SCALE PICTURE

We shall now try to understand these empirical facts starting from
our two-8scale picture of hadron structure, Let us assume that we stay
below the :ieconfinement/chiral-symetry restoration threshold for 4ll
s-values under study. It follows that the confir;ement mechanism acts
upon valons in the same way at all s, so that the matter distributions

of valons in their host hadrons only dépend upon Q%. Ve write [109,137]
{ A ~ A
ng&r&l)'—‘ Ld"d4";[K4(¥4»Ql)“s(”s.&l)\/(nal)] ($-22)

This 18 obviously a generalization of the Eq. (4.5) for charge form
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factors. The "reduced MFF” 6(3,0") describes the elastic scattering of
two valons, one from each hadron, at a c.m energy squared of S-x4xsa.
The existence of a multiplicative valon-valon MFF must again be
" -
consldered as a low-energy approximation which should break down when
hard gluon exchanges between partons become important.

EA stands for the matter distributi‘on in hadron A 1in terms of its
component valons and f(g denotes the corresponding distribution in hadron
B. These are easily obtained from the distributions extracted from DIS
or from CFF's, by, weighing the contributions from various valon flavore

.

by the number of such valons in the hos#t hadron rather than by their

charges, We shall use
A

K p o) = M bol)= 4 [ 205 6T )+ (")T”?CE)] T

» PN\ _ T " -
Kplok) = L") T @\‘Q,“_,)Q (523)

L

A}

with the coefficients marked by an asterisk in Table 3.1.
¢ A )

While the K's are thus completely deteriined, we don't know much
about the reduced MFF. From our model of the static parton distribution
in a valon we may, however, expect that the scale A,x should again play
an essential role. We have seen in the preceding chapter how this scale
determines the momentum scale at which a valon 1s fully grown -
equivalently, the spatial size of the valon. It is also related to the
momentum scale at which the notion of a valon'form factor becomes
inadequate. We shall therefore interpret the empirical zero in the MFF
as a manifestation of Ap and as a measure of th;a relative size of a
valc;n within its host. In other words, as the s—dependent

A
generalization of the resolution scale QZ’. It is natural that a scale

]

b
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of Q‘L should run with s; this corresponds to a “"scaling™ law between Qz
and s which physically means that a given resolution with the gluon o
microscope can be achleved by varying either s or Qq'. The decrease)of
the position of the MFF zero with growing s is ti1en intuitively \
understandable: the higher s is, the lower need Qt be to bring the \

1

complicated internal dynamics of the colliding valons into play.

If this interpretation is to make any sense in the context of Eq.
(5.22), we must show that the relative size of a valon compared to its
host does not depend on 8. Let us take -t , the position of the single
zero in the pp or Pp elastic amplitude f(s,t), as an indication of the
size of the colliding hadronic system at a given s. Then the radii of

the VV and of the pp systems are in the ratio
1
R = (-5l /8" (5-24)

At {8=52.8 GeV, we have -t,51.3 GeV® and Q. =5.65 GeV® so R¥ 0.48; at
the Spps, —t /0.8 GeV' and 01:53.2 Gev therefore RS0.5. We conclude
that the VV system stays roughly half the size of the pp system while
both grow by a factor of 1.7 between ISR and SppS. These fifl\dings are
qualitatively compatible with what one would expect from the increase of
GM.(s) or by using the forward slopés of the pp and VV amplitudes as an
indication of theb relative sizes. Equations (5.19) and (5.20) imply
that the proton becomes Blacker, Edgier and Larger (or "BEL") as P, (/
and B increase with s, respectively. The above discussion thus suggests
that the evolution of the shape of the proton is driven by the evolution
of the shape of its constituent quarks, The same exercise, applied to

the Jp system (see Figs. 5.4 and 5.5), reveasals that the ratio is

approximately 2/3 in that case, This is, of course, in agreement with

[

N '_-'-/

the fact that the (Goldstone) pion 1is a very tightly bound state in

L g gy L
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which the constituent quark and antiquark overlap significantly so that

the f1lling ratio is large.

Now let us note that the two-scale picture also requires the
presence of a purely s-dependent factorlin the MFF. As we have mentioned
in Section 3.4, one can only define the color and the spin projection of
a valon in the average, because they are perpetually changed by random
emigssion and absorption of "wee™ infrared gluons. Like in QED (see
Section 2.,2) there must be an infinite cloud of such wee gluons mixed in
with any Fock states containing valons at any stage of their
Qa-evolution. It has been known for a long time [138] that wee gluons
contribute significantly to the rise of the total cross-section with
increasing s, so the collision of these clouds should have important

effects on the MFF, but their contribution should not depend on Qi.

The presence of a factor of the form

F(s)* ~ st (s-25)

has long ago been argued to be a general consequence of field-theoretic
models with soft infrared quanta [139]), 1In fact, these arguments

underlie the s-dependence of "factorizable-eikonal” (FE-type) geometric
models (Eq. (5.12)). The value of € for QCD has not been calculated by

field—theoretic considerations, but, as in all problems involving soft

infrared quanta, one can only expect 'an effective value obtained from

phenomenology.

-

This seems therefore a natural physical explanation of the function
F(s) in the empirical MFFs, and Fig. 5.8a is a surprisingly good

confirmetion of Eq. (5.25) with £= 0.105. This value for £ 1is
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consistent with the estimates of FE modellers [120,123,139].

The two-scale picture thus implie\that the factor 6 in Eq. (5.22)

can further be written as

Va8 = FWns) (5-26)

<

A
where F(g) is of the form (5.25) and W/Pé/atures an a-dependent zero in

Q?.. - v

§ 5.4. MFFs IN THE VALON MODEL

-

The present status of nonperturbative QCD does not allow any direct

derivation of W(s,t). We are therefore compelled to use certain

simplistic guesses and assumptions in any attempt to go beyond the
purely qualitative discussion of the preceding section. Observing that
the simplest ansatz for a form factor which has a zero in Q%, whose

value also determines the effective size of the corresponding matter

distribution (cf. Eq. (4.14)) is

T g WD Nl AT walafmee T ey TN ¢ vt org, et erea

Yot _ AME)- 6 '
W(S)&) —m (S'l?,)

s ~

A
’ we employ this as a simple model for W. Eq. (5.27) with s-independent

! a

parameter values hag been written down originally by Bourrely et al.

[119j.

] .
; L To test the valon—-model description of MFFs at some fixed s for a

- given rea"ction, without knowing the function a"(a), .we night approximate

s

o oy
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A — D e
K“(X“,Q'L)- J(xn-xu )K“(Q"') with x,, appropriately defined for each

hadron. Indeed, in this approximation Eq. (5.22) reduces to a factorized
expression:

Mag (67) = K, (61 Ka (60 W (&0) (s128)

®

where
{ -
4 A
KH(&'L\ = Ld’(ﬂ Ky (’(N)&'L) (529

For pp scattering at Y5=52.8 GeV we use the appropriate valén
distributions from Eq. (5.23) to generate K’ and, upon ‘@xing a® to the
observed Q':; at that cziuergy, we obtain the dashed-dotted curve in Fig.
5.3. We repeat this exercise for the SppS MFF (with a*= 3,2 Gev®) and
obtain the dashed curve in Fig. 5.7. A result of the same quality is
obtained for the mp MFF (this valon-model curve is'not shown in Fig.
5.4). These approximations are quite good, considering that there is no
free parameter (the coefficients in the t-distributions are
independently determined and a® 18 constrained to coincide with the zero
in tl;e MFF). Obviously, one could improve them "esthetically” either by
untying a® from the value of the zero tc come ciloser to the positive
portion of the MFF (we have done this at 52.8 GeV and obtained a close
reproduction of the full curve in Fig. 5.3 for a=7 Gev®) or by
redeternining the coefficients in the valon distributions to givé\she
best fit to the MFFs at all energies. However, such procedures would not
bring us any cleser to the solution of the real problem, which is the
calculation of the true a(a,t) from nonperturbative QCD. In this
interpretation, Fig. 5.8b displays the dependence of a% on s (not on Q)

which corresponds to BEL phenomenology.
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The factorized expression (5.28) is8 of course unable to describe
the a-dependence of the MFF or to correlate MFFs for different
reactions. In particular, if we try to reproduce the valon-model

predfction of the mp CFF from the pp CFF in the case of matter form

factors, by computing
M. - Kr &
Mvrp T — Mﬂ: ' (S30) -

we obtain the solid curve in Pig 5.4 which actually is a quite good
approximation‘to the empirical dashed curve up to near the zero in the
pp MFF (5.65 Gev® as opposed to 8.5 Ge.V" for the dashed Ap MFF). To
understand this result, note that Eq. (5.22) implies the existence of
“"equivalent energies"rg at which Eq. (5.2;) could indeed be uséd to
correlate the MFFs for reactions AB-->AB and CD—->CD. Fig.‘ 5.4
indicatesp that, due to the shape of the valon distributions in pions and
protons,f; ‘=19 GeV 1s not too far from the M energy which would be
equivalent to a pp c.m. energy of 52.8 GeV, In fact, if we calculate the

pp MFF by applying Eq. (5.30) to the empirical mp MFF, we obtain a curve

_which is nearly the median of the MFF's over the Q‘—tange shown in Fig.

5.1. ¥

We conclude that, even with the substantial simplifications forced
upon us by our lack of knowledge of the nonperturbative valon-valon MFF,
the valon model provides tantalizingly close approximations to the

empirical MFFs.

5.5. DISCUSSION

We have shown that our two—-scale picture of hadron structure, when
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suitably generalized to the dynamical excitations produced in
hadron-hadron scattering, provides us with a qualit‘ative understanding
of the essential features of the MFF's extracted from pp, pp and Fp
elas‘tic differential cross—-sections at various v\alues of 8. The
requirements imposed by the analysis of valon- aion elastic scattering
are compatible with the "BEL™ effect which has feen convincingly shown
to characterize all aspects of elastic hadton-hadron'scattering from ISR
to SppS and beyond {ll}yl’9,l36]. The SRE analysis improves upon the
performance of both geometrical scaling (GS) and FE models, whose
s-dependences can be viewed as too restrictive particular cases of BEL
behavior. Indeed, GS. hadrons only become larger as s increases, while FE
hadrons become excessively black at the expense of an insufficient size
increase which causes too small an increase of the forward logarithmic
slope of the dcs as a function of increasing s. We have seen that the
two-scale picture also leads to an MFF which is reminiscent 0f FE models
(the factor F(8)) but which at the same time features a scaling
component embodied in the function a"(s). This scaling expresses the

requirement that the confinement mechanism must act in the same way at

. all 8, even though valons expand as 8 increases, Thus, the size of the

overlapping valon-valon system relative to the overall hadron-hadron
system appears to be s-independent for a given reactlon (approximately

1/2 for pp, 2/3 for Mp).

The relationship between the two-scale model and other geometric
models of elastic hadron-hadron scattering can be seen by n&ting that

the latter can be considered as particular cases of the generic form

Mag (s, 88) = F() Kan (B W(c, 8 (S-34)

which 18 the factorized approximation to our Bgs. (5.22) and (5.26).
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The new “edgy” version of the Chou-Yang model parametrizes the eikonal

as [122]
JUsh) = A (—S‘-.)Cb L2, () o (s-32)

Upon Fourier-Bessel transformation, this will yield an expression of the

fom (5031)0

Chiu [124] writes
M(s,t) = c K (1:”:»_-"’/1)"@(?[T B( f-e)’/z_k]
B =bo+ by [4n(55) -inh ] ; € = 14006V
(€332)

with E-s/Zn'. His parametrization of W(s,t) does not have a zero because
1t does not apply for |t|) 1.2 Gev®.

Glauber and Velasco [125] analyze the small-t SppS data using
ﬁﬂ’ () = G;(t) f((:) (S-34)

with G', given by various parametrizations of the proton's electric form
factor at small |t}., A future extension of their model to variable s
and to large —t would presumably also lead to t}le form (5.31). Indeed,

i
if we too restrict our analysis to small -t dats, we see that, since our
az(s) increases from SppS to ISR, their equivalent pa;'aneter in f(t)
has to follow suit, a fact which these authors"i)teliminurily report.
Their é(t) would thus become s-dependent, like the factor W(s,Q%) in
Eq. (5.31). -

T

Bourrely, Soffer and Wn (BSW) still use a purely FE-type ansatz

nGk) = (1- 5’,)" (4-.%;-)'2,(5)&';_7'2- (S35)

(123}
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The presence of the MFF zero enables them to analyze the large Q" region
but its lack of s~dependence leads to the aforementioned, generic FE
problem with the forward logarithmic slope. However, it is interesting
to note that the simultaneous BSW fit to ISR and SppS data reported in
Ref. [123) requires a*~ 3.8 cev". whereas their previous fit to ISR data
alone required a =5.1 GeV® [119].

We conclude that our model embodies the data-reproducing features
of other modaa while explaining them in terms of fundamental
characteristics of hadron structure. The hope is, of course, that we can
egtablish valon-valon scattering as the nonperturbative dynamics behind
BEL behavior, Recall oyr suggestion in Section 2,5 that one might obtain
a scaling law between s and Q'L by studying the deconfinement temperature
for various values of the number of lattice sites in the timelike
direction. In this context, it is interesting to compare Figure 3 in
Kripfganz's report on the work of Kennedy et al. [58] to our Fig. 5,8b:

the right tendency seems already to be seen in pure-glue lattice QCD.

Once a®(8) were known from many more such measurements, performed
in full lattice QCD with dynamical fermjons, one might try to use it in
the simple ﬁ given by Eq. (5.27) *to calculate the G corresponding to
M(s,t) a8 given by Eq. (5.13). Hopefully this inelastic overlap function
would then be describsble by an SRE with parameters close to those
presently imposed by phenomenology. A more ambitious project woyld be to
calculate the "true” G(Q,Q") by lattice QCD, generalizing the rigorous

version of the computation of 2 (p).
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CHAPTER 6: INTERQUARK AND INTERHADRON POTENTIALS

6.1. THE QQ POTENTIAL IN THE TWO-SCALE PICTURE

4

In the preceding two chapters we have used the valon model to

explore the phenomenological implications of the Ewo-scale picture for
lepton-hadron and hadron-hadron elastic scattering. The valon model,
however, has nothing to say about the confinement mechanism itself -
confinement 18 imposed at an effective level by the parametrizations
chosen for the valon distributions in their host hadrons. We recall from
Sections 3.3. and 2.3. that the main problem concerning the confinement
mechanism has to do with the importance of vacuum domain fluctuations at
distance scales > AZ‘. To apply the two—scale picture to this problem,
we have to explicitly parametrize the effective theory of interacting

valons and pions which describes hadron structure at resolutions lower

than '\l

*

Bag models [20-22] and potential models [5,19] are t%mﬁ;;c’l—
categories of phenomenological descrip&tions of this resolution region.
As we have already mentioned, the potentia% picture differs from the
"classical” bag models by the interpretation of A,_. In the latter type
of models, confinement is “sharp™ in that I/AL:: 1 fm 18 a cutoff on the
possible hadron radii. On the other hand, unboundedly rising‘ pogentials
allow foruarbitrarily large rms radii of (excited) hadrons, so that /\.-_
has a probabilistic interpretation. Color screening by dynamical quarks
(Section 2.4.) can be expected to limit the possible bound-state radii
in the potential model, while the inclusion of pions could in principle

modify the characteristics of both models.
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h An important effort is being made in the literature to coumbine the
bag model with the existence of Goldstone pions [21,22,24;18]. The
problem is a complicated one and requires the use of ingenious
analytic;l techniques. No definite conclusions about the confinement
mechaniem (the large-scale structure of QCD vacuum domains) have been
reached ag yet. The spectroscopy of all such models is only qualigative
at pregent. On the other hand, we have seen in Section 2,4, that the Qa
potential can be relastively easily calculated from lattice QCD, both in
the presence and in the absence of dynamical fermions. It is well-known
that even flavor— and spin- independent potentials (flavor-dependent
masses are parameters of such models) can give a surprisingly good
description of quarkonium spectroscopy. As we have explicitly seen in
the model described by the effective Lagrangian (2.131), which leads to
the potential (2.135), such models automatically incorporate the effect
of long-wavelength fluctuations. Therefore, it seems more

straightforward to incorporate pion effects into the potential-model and

to explore the phenomenologicdl consequences of this modification.

Let us first reformulate the poténtial picture according to the
two—scale 1dea [140]. V(r) acts between flavor non-singlet “"valence”
current quarks, It should amount to an effective, low-resolution
description of the flavor-independent structure of the valons formed
around the parent valence quarks by XSB, of the color interactions

between these constituent quarks and of their interactions with pions.

If the flavors of the valence quarks are heavy enough (f= ¢, b) V{(r) can

be used in the nonrelativistic Schrodinger equation to calculate hadron
masses; for light flavors a relativistic wave equation would be remtired

[141].

&
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Thus, some of the effects of dynamical sea pairs - those related to
their dressing up the valence quarks to form constituent quarks‘ - are
absorbed into the definition of the color string itself. On the other
hand, dynamical pairs can also screen the valence quark and antiquark
from each other and thereby lead to the saturation of V(r). In the
language of fluctuating color strings, this phenomenon can be
represented as a competition between stretching the string out further

K
than a given r and the alternative of creating a valence quark—antiquark
pair out of the vacuum, so that the original string 18 replaced by two
strings of length r: one connecting the original quark to the new
antiquark and the second one connecting the new quark to the original
antiquark. If r 1s large enough the second alternative would become
energetically more favourable and very long strings would be suppressed.
Therefore V(r) would not increase indefinitely but reach a constant,
finite limit for r-->ve., We have introduced a possible parametrization
of this effect in Eq. (2.153). Note that the Schwinger—-model description
of screening can also be viewed as a "decay law” which governs the

suppression of long strings. We shall now try to incorporate pions into

the model leading to Eq. (2.153).

We have interpreted the string fluctuation field % as an effective
strong-coupling description of the structure and color interactions of
constituent quarks. To implement our assumption that this effective
theory is valid at resolutions lower than A;, the ?—field must also

interact with pions.

Let us consider the fluctuating-string picture to hold in a certain
reference frame where the two-dimensional transverse fluctuation vector

? is defined. However, we postulate that the description of the hadron

]
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in terms of string fluctuations holds in any reference frame so that
can be "extended” to a four-vector T/* 0?.‘the other hand, plons are to
be considered as structureless elementary fields U (they must not be
replaced by their internal string-fluctuation field) and shall e

. defined as the Goldstone bosons of '“SB. These requirements can be
satisfied by' considering T as a massless “gauge field" exchanged
between sigma-model pions, 1in analogy with (pseudo)scalar

electrodynamics (Eq. (2.85)):

SR P (W AT (RS AT

4
. Since <IJ>--f'r in the chiral limit, where f, = 93 MeV is the pion decay
~
\c\onabant, the Higgs mechanism operates in the usual way and gives mass
.

to the fluctuation field:

' \M? 3w (6-2)

-

Radiative corrections a la Coleman-Weinberg will also contribute to the
'5' mass as would the u and d current quark masses 1f we were to consider

them. Let us denote the resultant ";-mass by m,.

Physically, it 1is known that -{ is to be interpreted as the
Goldstone boson field corresponding to the spontaneous breakdown of the
Euclidean symmetry enjoyed by time straight—string state {142]. In the
present model, the pion would thus act as a Higgs fleld which gives mass

to the would—be Goldstone mode.

The Coulomb term in the interquark potentials (2.135) and (2.153)
was due to the masslessness of the f’-field. Now that '}' has become
magsive, the Coulomb term should be replaced by a Yukawa potential of

range r,. Our 8iscussion thus suggests the following generalization of

e
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the screened potential (2.153):

Vir) = -& S +<s'{4-e.'r/") (6-3)

Let us see 1f there are values of the parameters in Eq. (6.3) for which
d
(V’and I spectroscopy can be reasonably déscribed.

‘{e use the potential (6.3) in the computer programme employed by
Margoli;, De Takacsy and Roskies [143] to solve the nonrelativistic
Schrodinger equation for the n= 0,1,2,3, 1=0 ‘Vand x masses, The
parameters are estimated by fitting the calculatéd masses to the
experimental values [144), using the CERN-MINUIT routine. The masses
co?responding to the parameters listed in Table 6.1 are compared to

exberiment in Table 6.2. -

The large values for & and r, lead to a large effective string
tension which is coun.erbalanced by a value of ¢ a factor 1.7 larger
than ;;/12. Since r, is also very large, the good reproduction of
spectroscopic data means that oux: potential 1s close to the traditional
potentials for the range of r probed by "f’ and Y spectroscopy (see Fig.
6.1). The fact that ry>r, is in agreement with Peskin's arguments that
the Coulomb term should survive string breaking [145]. Equation (6.3)
with the parameter values in Table 6.1 would imply that string breaking

18 a8 very slow process, the confining potential being felt out to

interquark separations of the order of 3 fm (see Fig. 6.1).

The inclusion of pions and the determination of the screening
paraneters from spectroscopic data has radically modified the “JM
potential® (2.153). A comparison of the potentials (2.153) and (2.135)

(with the parameter values given in Table 6.3) to the empirical

P
e g
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flavour~and spin-independent quark-antiquark potential between 0.l and 1
fm (Fig. 6.2) confirms that our modification goes in the right
direction: even though it negle;:ts vacuum polarization effects, Stack's
SU(Z)C potential (2.135) resembles the empirical potentials better than
the JM potential, whicix is seen to start flattening out at too low r =~
it takes too long to reach its asymptotic wvalue. Clearly, the value of

N

G given by Joos and Montvay is unrealistically low.
)

We have thus formufated a potential-model of confinement which
expresses the two-scale picture and which gives a reasonable
reproduction of spectroscopic data. It only begins to differ from the
conventional, unboundedly rising confining potenfials at Q-Q. separations
of the order of 3 fm. Such distance scales are clearly not
experimentally accessible to spectroscopy; to do a lattice calcul‘acion
at 3 fm would require a huge lattic;, beyond present technical
capabilities, It would therefore seem difffcult to discriminate between
our potential and any other potential (vhich reproduces spectroscopy.
There 18, however, one aspect of potential-models which is extremely *
gengicive to the detailed shape of V(r) and which can therefore

distinguish between various parametrizations (and possibly between the

potential and the bag descriptions of confinement).
6.2, THE COLOR VAN DER WAALS PROBLEM .

The Yukawa potential is a key concept in the theory of the strong
interaction; it describes the force due to the exchange of an ordinary
hadron of mass m. It falls off exponentially with the distance between
the interacting particles, within a range of the order of the Compton

wpvelength of the exchanged hadron,k- t/lc. The maximum-range
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potential, withX= 1.4 fm, is that due to the exchange of a pion, the
lightest state in the hadron spectrum. Is there room for a strong
interaction of a longer range? There 18 an experimental and a

theoretical side to the answer of this question: there is room but no

signal yet. )

No experime;xts, up to now, have been done with the specific aim to
search for such a strong, long-range interaction. Existing experiments,
however, have been analyzed by a number of authors [146-148] to see
whether there was any evidence for the presence of such a force. These
efforts resulted in a set of upper limits for its strength. On the
experimental side, then, the answer to our question is, indeed: there is
room but no signal yet, This situation has prompted a group of
experimentalists at SIN to plan a dedicated high-precision search
experiment [149] in which they will study the energy levels of pionic

atoms, correct for electromagnetic and meson-exchange effects and thus

place improved upper bounds on the strong long-range W’p interactibn.

Theoretical considerations may be grouped into three categories:
general principles of field theory, quantum chromodynamics (QCD)

arguments for and against such a force. The usual, general principles of

.~ quantum field theory seem to exclude the strong loug-range interaction \

because it entails a singularity in the famous singularity-free
Lehmann-Martin ellipse [150,151] <~ at zero square of momentum—transfer,
t=0, in the case of a l/RN interhadron potential. The same general
principles would correlate such a singularity with physical states whose
mass spectrum extends down to zero (no Lehmann~Martin ellipse). Since

the observed spectrum of hadrons does not do this, the discovery of a

strong, long—~range force between hadrons might profoundly affect the
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choiée of what are considered to be the general principles of field
theory (traditionglly, Wightman's axioms). Thede considerations, at
present, unfortunately allow no-definite conclusion about the occurrence
of a long-range force in QCD because it is not known yet whether QCD

satisfies the usual axioms.

Quantum chromodynamic arguments in favor of the strong long-range
force hold that, in analogy to the well-known Van der Haaﬁg,force due to
the exchange of two photons between two electrically neutral atoms, the
exchange of two or more massless gluons can give rise to a strong,
long-range force between two color-neutral hadrons. By analogy with
electrodynamics} this is called the "Color Van der Waals (CVDW)" force.
Such forces have been calculated from perturbative QCD <[147,152,153] and

from potential-models [146,154,155].

QCD arguments against the CVDW force typically maintain .that the
gluons are confined inside a hadron bag and cannot travel to another
hadron far away. Somewhat similar to this, Greenberg and Hietarinta
[156]) extended the traditional interquark potential model by adding a
particular version of the string concept: there is no strong long-range
force between hadrons because the confiniﬁg string stays within the
hgdron. Then there is the belief held by some that,\although hadrons
fundamentally interact Fhrough multiple-gluon exchange (and quark
interchange), this interaction, at large distance, is equivalent to
meso?—exchange effects. Neither of these arguments, howevet,hhas been
derived from general field theory or from QCD.

»
On the theoretical side, then, one sees that the apparent

nonobservation of massless hadrons iakes the occurence of the strong

"
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long-range force less trivial but nevertheless not impossible at
present. So the answer to our \inftial question is, once again: therc is
room but no "signal”™ yet. It is clear, however, that either the
existence or the nonexistence of CVDW forces has profound implications.
Indeed, the issue is the detffied confinement mechanism, or,
equivalently, the true large~scale structure of the QCD vacuum, CVDW
forces exist if confinement 18 "soft™ and allows virtual gluons 'to
tunnel through the vacuum. They must be absent if vacuum domain walls
are very rigid.to long-range fluctuations. This i& why CVDW forces are
character%stic of potential models but are automatically eliminated in

the bag picture.

As ve have indicated above, there are two "tradit'onal” methods for
calculating CVDW forces: perturbative QCD applied to the exchange of twe
or more gluons and the use of the potential approach. Perturbative
many-gluon exchange calculations can yield CVDW forces which fall off
like l/R'J with N large enough that exisfing experimental bounds
[146,147,152) are not violated. However, the use of perturbative QCD at

distance scales R>>]1 fm seems impossible to justify. .

The methods for deriving the CVDW potential U(R) between, say, two
mesons, given the quar?-antiquark potential V(r) as an input
[146,154,155), ‘assume the existence of a virtual color-octet
intermediate state for each meson, in which the two octets combine to
give an qut&il color singlet. Color sources located in different
singlet mesons will thus interact by means of an octet potential V‘(r),

which 18 argued to be proportional to -V(r).

In the case of the conventional confining potentials of the form
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v(r)=kr®* (2> 0), éhe corresponding color-octet potential is clearly
unrealistic: it is unbounded below since it tends to -2 as ?°‘>qo. The
CVDW potential one obtains if one uses the method in spite of this grave

problem 1s of the form KR"Q and strongly violates existing experimental

bounds [146-148].

We have seen that cclor screening reducgs the "sdftneas” of
confinement in the potential picture by limiting the possible radii of
hadronic systems from above. Correspondingly, it is easy‘to see that
the saturating JM potentfal does not lead to the problems encountered by
unboundedly increaaing potentials. 1Indeed, we n?te that the color-octet
potential corresponding to Eq. (2.153) 1s bounded below by =€ and yet
it does not allow the formation of unphysical color-octet bound states
because the finite-energy minimum 18 only reached at infinite
geparation. The same is true for our two-scale potential model (é:s).
It is therefore interesting to calculate the CVDW potentials
corredponding to the interquark potentials (2.1537 and (6.3). A word of
caution 18, however, required concerning the applicability of the
potential picture to multihadron gystems. The concept of an interquark
potential is phenomenologically justified for color-singlet hadrons
only. There i8 no corresponding argument for the applicability of this
concept to the virtual color exchange interactions between hadrons, even
if these exist. The other argument for the interquark potential as a
valid description of color-singlet hadrons is its calculability from
lattice QCD; because of the large distance scales involved, 1at£ice QCDh
can of course not be applied yet to the calculation of CVDW forces.
Therefore, the traditional approach to the derivation of the CVDW
potential from the interquark potential must be viewed as yet another

siuplistic approximation we have to make in order to estimate the
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consequences of our ideas about hadron structure. With these
considerations in mind, we proceed to the calculation of the CVDW
poteniial. '

.

6.3. CALCULATING CVDW POTENTIALS

In the textbook problem of the classical, interatomic Van der Waals
potential [157] , the input is the Coulomb potential. The interaction
hamiltonian can be treated as a small perturbation at large R and the
classical r-¢ pover law results from second-order perturbation theory.
The atomic excitation energy serves as energy denominator. This
procedure can obviously not apply to an unboundedly riain;'interquark
potential, The standard treatment [146,154,155] , known as “modified”
second—-order perturbation theory, consists in replacing the atomic
excitation energy by V(R), which ig the dominant large~R term in this
case, For the JM potential, the situation is intermediate between these
two extremes. It is hence natural to still use modified perturbation

theory, but with V(R)-V(rq;) as energy denominator. The followling

formula

2—(% V’)”lr=k + v"l/rslz.
V(R) - V(r.,;)

UR) =-K 2 (6.4)

has been written down by Greenberg and Lipkin [154] to describe the CVDW
potential between two mesons. They calculate the "absolute strength”
K-(r%)"/ 162 for stationary mesons and then argue that the effects of
kinetic energy should rescale K to about 3K. Gavela et al. [146] use
the same formula (6.4 ) for the large-R CVDW potential between two
nucleons, but with K=2{rg >2/3, where rq is the distance of a

constituent quark from the center of mass of the nucleon.

»
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The SIN experiment [149] will geatch for the ﬂJLp Van der Waals
interaction. A first gueu. for the corresponding K v;ould be the
ggo-etric mean of the meson-meson and baryon-b;aryon strengths (including
the effects of kinetic energy according to [154]). With a realistic

choice of <r:i>-<r:>- 0.25 fm® , one finds
-2

We shall, however, treat K as a free parameter. For an} given input

-]

potential V(r), comparing the result of (6.4) to existing experimental

data places an upper bound on K. One can then check how this bound

[}

compa;res to ‘the estimate (6.5).

One should not forget that modified perturbation theory only
applies to the asymptotic large~R region. For the case of the lingar
interquark potential, Liu {155]) has used a more general method to

calculate an interhadron potential which is valid for all R. He finds

. the corrections to the asymptotic result to be small. We thus feel

justified to proceed on the basis of formula (6.4).

To begin with, we compute U(R) for R between 1.5 fm and 100 fm,

using (2.153) with the parameters X and & listed in Table 6.3. Fig. 6.2
. tells us that V(rﬁ), the v;1u of the interquark potential B
corresponding to a typical separation of the constituent quark and
antiquark in a nes\on (r«:O.S fm), should be of the order of 200 MeV.
Next, we investigate the asymptotic behaviour of‘ U by dropping all
exponentially damped terms in the numerator of (6.4) and by neglecting
the Coulomb term in the denominator with respect to §, This ylelds a

‘ Law nwro -
Uus = :ﬁ:z R—‘ (G-C)

London—-type R~

KT
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We find that Eq. (6.6) i8 a very good approximation to (6.4) down to
about 10 fa (see Fig. 6.3). The presence of the non-saturated screened
interquark potential at "intermediate” distances (between 1.5 and 10 f;)
gives rise to a stronger interhadron attraction than predicted by the
-t

R~ law. Let us call 1.5 fm <R IO fm the "near-force zone” and R, 10

fm the "far-force zone".

The rise of the interhadron attraction in the near-force zone
requires an upper limit on the otherwise free parameter K, gsuch as to
avoid conflict with existing experimental data. Lyth {138] condenses the
experimental bounds obtained up to June 1982 fromfaccurate ﬂ*;p

scattering date and from pionic atom energy levels into an analytic

parametrization of the upper limit line:

R, = 0-025 ©** (67

valid for interhadron separations ranging from {.5 to 100 fm. This line

is labeled "EL" in Fig. 6.3. We choose a maximal value of K such that
the limit (6.7) be saturated by Eq.(6.4) at R=1.5 fm (see Table 6.3).

This Kuax 4,72x103 fm4 is seen to be a factor 2.54 lower than our
™~
apriori estimate (6.5). It yilelds the theoretical upper bounds shown in

‘"

Fig. 6.3. The full curve labeled "R " " represents Eq.(6.4) for the JM

potential: it saturates the Lyth bdund at 1.5 fm and merges into the

¢

corresponding R~ Y asymptote slightly above 10 fa.

¢ law 18 valid up

In the classical interrtomic case, the London R~
to values of R which are sufficlently large compared to the largest
wavelength X\ assocfated with electric‘dipole excitations of the atomic
ground state - when B>}, a BT law takes over [158]). Let us assume the

wavelength of the color—-singlet to color-octet transition in hadrons to
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be of the order of 1 fm [146]. We would then conclude that measurements
of the interhadron attraction at distances of more than, éhy, 5 fm

should detect the retarded force, not the one we calculated above.

All past discussions of the color Van der Waals force have assumed
that the retarded asymptotic potential can be estimated from the
nonretarded one by multiplication with X/R, as is done in the classical
interatomic problem. In our case, application of this rule would simply

change the asymptotic interhadron potential (6.6) to
ret AN -
Wa (R)= =K== K w (6.9)

and its effect on the complete eq. (6.4) is represented in Fig. 6.3 by
the full curve labeled “R—1". As a finishing touch, we might argue that
the true intermediate-range potential would start off nonretarded and
merge smoothly into the retarded curve. We have drawn the dashed curve
in Fig. 6.3 as a possible example of such interpolation. Needless to
say, the future complete theory of U(R) will have to include a rigorous

A}
treatment of retardation.

Let us now compute the CVDW potential corresponding to our
potential (6.3). Fig. 6.4 shows the retarded U(R) between 2 and 100 fm
predicted for the parameter values in Table 6.2 by setting the CVDW
strength equal to 0.011 fm* 1n order to saturate the existing
experimental upper bound at 2 fm. The agreement of this Kag with the
expected value (6.5) is striking.f In using Eq. (6.4), V(zh‘-O.S fm) has

been computed directly from (6.3).

a
"

The JM interquark potential has two components: the Coulomb term

and the parametrization of the approach to saturation. To see how each
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of these components influences the result for the CVDW potential, let us

delete them one at a time and compute the corresponding U(R). First

define a "fagt—screening”™ (FS) potential:

Hr , r<&fg
Vi=-% 4+ &
r Q_ ,) T"?rs (6’3)

where Iy 18 determined by the condition 2rg=§ . If we use the values of
oL and % corresponding to the empirical "Cornell” potential shown in
Fig. 6.2 together with JM's &, we obtain Te™ 0.8 fm. Calculating the
corresponding CVDW potential, we find that the asymptotic regime applies
all the way down to 1.5 fm. As can be seen from Fig. 6.3, Kyee 18

shifted to 0.49 fmY .

Now let us delete the Coulomb term from V(r) beyond 1 fm:
~C/r
’%‘*V(f-e i) , T <1

V(f) =
c[{-c7m) ) oA (6-10)

This "cut-off Coulomb™ (CC) potential results in the rapid falloff
indicated by the dash-dotted curve in Fig. 6.3. If gcreening were more
abrupt, the Van der Waals potential would vanish still earlier. Only if
a long-range Coulomb term is present can one expect a detectable Van der
Waals force beyond R>y 10 fm. Therefore, we can explain the two
characteriq}ic regions of the CVDW potential in Fig. 6.3 in terms of the
components of the input JM potential: screening controls the
"near-force” and the Coulomb term controls the “far-force" (see Table

a

6.4).

This .discussion now allows us to interpret the three regions in the

¥ @

R
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CVDW potential shown in Fig. 6.4 in terms of the parameters in our
potential (6.3): the first is dominated by color screening (the
parameter r') the second by the as yet nonvanishing Coulomb term and the
third by the Yukawa-type vanishing of this term (the parameter ;2).

. ?
6.4, DISCUSSION

W:‘have seen that potential models which take the cqlor screening
effects of dynamical quarks into account do not lead to unphysical
potentials in the color-octet channel and can avoid conflict with
existing upper limits on CVDW forces. The characteristics of these
forces depend on the detailed screening mechanism and on the shape of
the interqu;rk potential at large distances (several fermi). In
particular, the conjectured large-distance Coulomb term implies that the

CVDW force extends out to large interhadron separations.

The potential (6.3) with the parameters listed in Table 6.1 18 a
definite prediction for the outcome of SU(3)C LQCD calculations with
dynamical quarks at large values of r. It is a generalization of the
standard Cornell-type parametrization to igclude the screening effect of
dynamical current quarks and the effect of the interaction between pions
and constituent quarks. The parameter values imposed by 10 and )f
spectroscopy mean that these additional effects are only felt at
interquark separations of about 3 fm. This slow saturation'ip a feature
of the Schwinger-model description of color screening by vacuum -

!

polarization.

(S
If our potential is correct, the experimentalists at SIN should

detect a CVDW signal, because our prediction between I0 and 20 fm is
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quite close to the present experimental limit (Fig. 6.4). What could a
negative result of the search mean? Obviously, our parametrizations of
screening and of valon-pion interactions could be wrong. _Another
possibility is that the traditional potential-model approach for
deriving the CVDW force is not valid. If one could eliminate both of
these possibilities, this would indicate that potential models for
color-singlet hadrons can only "mimic” real hadrons up to a certain

point, while failing to describe the true confinement mechanism. This

conclusion would then favar the bag picture.

Future progress in lattice QCD should be able to solve these
problems. In addition to the investigation of the QQ potential at
distances larger than 1 fm, a promising approach seems to be the
computation of the gluonic vacuum condensate or, equivalently, of the
dynamical gluon mass [Section 3,3]. This would go beyond the limitations
of model representations (potentials, bags...) and would amounf to a

rigorous theory of multihadron systems.

.
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CHAPTER 7: SUMMARY AND OUTLOOK

7.1. SUMMARY OF THE TWO-SCALE PICTURE

kl
»

»

We were led to a two-scale picture of hadron structure by examining
the 1mp11ca;10ns of the assumption that chiral-symmetry breaking by QCD
can be described as dynamical quark mass generation. If this
description 18 to be consistent, the breakdown of chiral symmetry must
imply that not only baryons, but also constituent quarks are massive and
are accompanied by massless Goldstone bosons (which are transmutéd into
pions in the real world of nonzero electroweak masses). This requires
the existence of a separate scale sz independent of the confinement
scale A_ ( AZ'~1 fm is the characteristic hadron size) so that A,),Acl

s

(see Section 3.2).

At scales between Acand A;, QCD gives rise to an effective theory
of pions interacting with confined constituent quarks. In terms of the
Mandelstam variable -t=Q%, which can be physically represented as the
resolution of a picture of hadron structure seen by means of an
"electroweak gauge boson microscope”, the existence of A; i8 expressed
by a scale Q’,; which characterizes the size of a comstituent quark. The
"walon model” is used to determineé the effective distribution of
co.@\tltuent quarks (="valons”) within a given hadron from deep inelastic
scattering or from low-Q" charge form factor data., These distributions

presumably incorporate the effect of confinement as well as that of the

interaction of valons with pions.

To elucidate the confinement mechaniss, that is, the large-scale

structure of the QCD vacuum, the pion—-valon interactions aust be
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explicitly taken into account, since pions dominate the
non-electromagnetic interactions between hadrons, We have studied this
effect within the potential picture of confinement and have been led to
a test of the validity of the latter picture as a description of
large~distance hadron physics in terms of the ensuing color Van der

Waals forces,

At scales higher than Ax, corresponding to hadron structure as
explored at resolutions higher than Q% » OCD generates a certain
distribution of partons within the valon. This distribution 1is the same
for all valons and is 1ndei>endent of the confinement problém. In terms

of transverse coordinates (Section 4.1), the factorizabi)ity of the

lotgitudinal nomentum-fraction (“Feynman x") distriby¥ions of partons in
the hadron into a parton-in-valon and a valon—-in-hadron term 1is
explicitly compatible with perturbative QCD. This is not true for the
transverse (geometric) distributions, w;uch must therefore be calculated
nonperturbatively. Since our two-scale picture 1s based on dynamical
quark mass generation, we use the only available nonperturbative s
parametrization of this mechanism to genera'te the transverse
distribuytion of partons in the valon., By calculating hadronic charge

form factors and the pic;ﬁ‘ decay constant, we show that this approach

glves good phenomenological results.

In hadron-hadron elastic ac.al‘:terlug at high c.n. energiles J;. the
scale A;, manifests itself by the occurrence of a zero in the valon-valon
scattering amplitude ("matter form factor™) as a function of Q". The
position of the zero is found to decrease with growing s in such a way
that the valon-valon system alwvays stays approximately one-half the size

of the proton-(anti)proton system. For the pion-proton ﬁsyate-“, this



152
ratio is about 2/3, in agreement with the fact that the pion 1s a very .
tightly bound system. Physically, the colliding valons become larger
with the increase of s whereas the confinement mechanism acts upon them
in the same way at all s, The existence of "'wee" infrared soft gluons
radiated by colored fermions at all stages of their Q"-evolution is

manifested in the function F(e)~s£ in the matter form factor.

7.2. SUMMARY OF RESULTS

The application of the phenomenological valon model to the study of
hadronic charge form factors has been completed by the fomul?tion of
our microscopic model of the transverse distribution of charg;d partons
in a valon. The resulting proton CFF reproduces the data up to Q"z 10
GeV? while the deviation observed for higher Q" expresses the fact that
radiative contributions have been neglected in the simple

nonperturbative model for the dynamical quark mass which we have used.

In the field of high-energy elastic hadron-hadron scattering, our
application of the two-scale picture has led to a qualitative dynamical
interpretation of the observed trends in the differential cross—sections
of pp, Pp and r'p scattering at various c.m. energies. Valon-valon
elastic scattering emerges as a promising candidate for the dynamical-

mechaniszm behind the BEL effect, .
|
By incorporating the 1n£eraction of valons with pions into an
expression for the QQ potential which is favored by recent studies in
lattice QCD, we have obtained a new potential-model for the confinement
of valons in hadrons which gives a good reproduction of Y andY s-vave

energy levels while offering a definite prediction for the
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large~distance region which is as yet unexplored by hadron spectroscopy
and by lattice QCD calculations. This potential, in conjunction with the

.
tf‘aditional formalism for the calculation of the color Van der Waals
potential from the interquark potential, implies the existence of
long-range virtual color-exchange forces which ghould be observable in
the dedicated high~-precision search ‘expetinent [149]. If this
prediction fails to materialize, whereas the prediction for the
interquark potential 1is independently confirmed, one would conclude that
the standard poéential plcture fails to describe either the dynamics of
multihadron 1ntera9t1mxs or the true nature of the confinement mechanism
itself. In particular, bag models of confinement naturally suppress CVDW
forces. In the terminology of Section 2.3, this experiment might thus
help to decide whether hadrons are “type I" or "type II” color

guperconductors.

7.3, CONCLUSIONS AND OUTLOOK

Our attempt to relate results of calculations in nonperturbatve QCD
to static and dynamic hadron structure as manifested in various types of
experiments has been quite successful, in that the outcome 18 consistent
with phenomenology and generally improves upon the performance of
existing models in the respective fields whiie offering a fundamental
interpretation of the problems under study. Therefore, it seems

worthwhile to pursue this line of research on a more tigorous and

systematic basis.

The main limitation of our work is the use of simple guesses for
key nonperturbative quantities. The distributions of partons and valons =~

within hadrons, their dynamical excitations in the course of

&‘é gm?&s e



N
:

i
'
t
'

L R

154
hadron-hadron collisions at various c.m. energies as well as the
large—scale structure of the QCD vacuum should all be calculated
directly from the“QCD Lagrangian, without the use of other assumptions,
of gupplementary constructs or of effective theories. As we reviewed at
length in Section 2.4., latticel QCD sppears to offer realistic hopes of

achieving these goals in a not-too-remote future.

The study of quark and gluon propagators in full lattice QCD at
zero field-temperature should, by t:t;e atgu:;ents of S:ggtion 3.3, yield
the true 2(p) a‘nd elucidate the exact confinement mechanism. Omne would
have to define {cAheae quantities in an optimal fashion (with respef':t to
the approach to the continuum limit and to computational requirements),
to measure their dependence on the inverse coupling and would need to

know the nonperturbative Callan-Symanzik function to obtain the

t

5
momentum—-de pendent quark and gluon masses. It should also be possible to

calculate the longitudinal distributions of partons in hadrons by using
la ce QCD to evolve known perturbative distributions down to
intermediate and low Q". Hopefully, the valon picture would (to some
approximation) emerge at a scale Q.: det:ernineci by the "true” 3 (p). The
next step would be to do these calculat%ons at finite field-temperature,
nimicking the dependence of had/ron lMure upon the c.m. energy in

r
multihadron collisions.

One lattice QCD calculation which one could do much more easily is
the study of the dependence of the deconfinement/chiral-symmetry
regtoration transition in full lattice QCD upon the number of sites in
the timelike lattice direction (Section 2.5). As we have remarked in
Section 5.4, the "scaling law” between s and t wvhich would thus be

established might be of immediate help in understanding valon-valon
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elastic scattering. Also, with the advent ofﬂ parallel proceazors, of
supercomputers, 0of the fifth generation..., one may hope for a
calculation of the Q-Q' pol:ential*at sufficiently large distances to test
our pot:em:.fnl (6.3), even before the huge co‘-puting power which 1is being
developed for the benefit o-f lattice gauge theories can be brought to .

bear upon the rather ambitious program outlined in the previous

-

paragraph.
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APPENDIX A: CONVENTIONS

1. Units.

The system of units used throughout this work is defined from SI by
setting the speed of light in vacuum (c-3x10' m/s) and the reduced

Planck's constant (¥ = 1.05x10"%“J.s) to (dimensionless) unity. In

“

these units,

[L)=CT) =M (4-1)

Mass is neasured in MeV (leV= 1.6x10" " J) and length in fm (lfn-lO-Km).

The following conversion relation holds true:

1=%e 21333 HeVofm (A-2)

Scattering cross-sections are measured in mb., The following conversion

relation holds true:

4= (he) = 0383 GeVE mb (4-3)

2. Special Relativity.

Minkowski space~time is defined by the constant diagonal metric
tensor:

00

gn

™ g

3’&‘
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]uv
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A contravariant Minkowski 4-vector has components:
M_ 0 4 L3 .
X, = («°, x /X)X) (A-Sa)
and the corresponding covariant 4-vector is given by:

Xp= Oy -x') R, ) (A -sl)

Euclidean space~time is defined by the constant diagonal metric

tensor:

fe=gt-qc-g¢ =1 . (A6)

Note that x4 =1x0 ig real, The corresponding Euclidean momentum gpace

18 defined such that:

E € N
Hence,

2 T Y dY

"E’:-—h" )d l(M—:L‘ L‘E (A 8)

Lorentz invariance in Minkowski space translates into 0(4)
invariance in Buclidean space. A real scalar field defined on Minkowski
space-t{me can be continued into a real scalar field defined on
»

) :
Euclidean q;?ce—time. The corresponding functional 1'ntevlls for the

vacuum—-to-vacyum amplitude are related by:

Sel#) = (4% LTB60] = - S T#) (4-3)
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Derivatives with respect to space time shall be denoted by 9‘-3/2)[/',
'b"-aﬁy.. 4~indices are denoted by Greek lower-case letters while
2=-indices 9nd 3-indices are denoted by the Latin letters 1,j,k... .

Summation over repeated indices is implied unless explicitly stated

othervise.

Dirac matrices are &xé matrices with the following properties
(4= 9" V=4
(fy -t (7‘)"2: -4 (=12,
v(A 10)

—

where the dagger denotes hermitian conjugation. ?Aria defined by
. 2 \
Ps =-iqtplptu? o (pe) =4 (4-11)

Spinor indices are denoted by X ,F yeee o We shall use the notation

7= 9= 4

3. Internal Symmetries.

The Pauli matrices are:
'O 4 \ Q --L'
“=1o i‘zz"(t o) ;

1 O)
T3 = (o - (A-12)

gyl
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The Gell-Mann matrices are

Cc 4 O 0 -C O Y © o
l1: 4 00 } lz: L 0 0) ll )\3: 0_10
ODO OOO 000
o o1 0 0O-c 0Oo
Xy={@ 00 ) Xs=[p o o X,=[0 o014
1 0o . e j
{ O 0 o 40/’
O0O _/L 1 O 0O
)}2 00”1' ) l&‘.‘r o 10
O¢ O *lo 0-2

(A13)

’ Internal—-symmetry indices are denoted by a,b,c,«.. . We ghall

_Tepragent the generators of SU(3) as T%(1/2))" (see Appendix B).

Vectors in internal-symmetry spaces are denoted by arrows
(two~-dimensional spatial vectors are also denoted by drrows: no
confusion 1s possible since the contexts are clearly separated). All
“local” notations specific to a given argument or calculation are

defined in the corresponding portion of text.
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APPENDIX B: QCD AS A GAUGE THEORY

1. Maxwell's equations without matter fields can be derived from

the following Lagrangian density:

L = -1 Buto™t (B-4)

o

where f/“,(x) is the electromagnetic field tensor obtained from the

vector potential A’(x) which represents the spin-] photon field:
Bw (X)'-T Q/AAV (X)'—QVA)A(X) (B'Z)

This object 1s invariant under the “gauge transformations” of the vector

potential

Aule) —> Apl) + Y ELO (B-3)

where ¢ (x) is an arbitrary function of spuce-time. Thus the Lagrangian
of free electromagnetism is invariant under a one-parameter group of

“local” (.space-time dependent) transformations.

2. In coupling charged matter fields to the photon field, it is
desirable to keep this invariance property intact. Consider a Dirac
field with electric charge —e and mass m. It is straightforward to check

that the Lagrangian density
Ve = YLy (it ml Y (84)
Al =5 At - 4 U L (B3a)
Vi) = €0 1) (B-Sb)



Yo

161
inducea by €(x) on the photon and the lepton flelds. Eq. (B.4) describes
the "minimal gauge—-invariant coupling” of photons to charged leptons,
The full Lagrangian density of classical electrodynamics 18 given by the

"

sum of (B.l) and (B.4). From this one derives the equations of

ES

electromagnetism with sources

%rFf“ = §v |
9/.* F U7+ W F¥ =0 (R-6)

where j"-e?’-r'y is the electric current density. Quantum elect‘tﬁ'odynanics

- v

18 obtained from the classical L;grangian dengity by adding a
gauge—-fixing term. We conclude that the requirement of invariance under
the local U(1) group of gauge transformations affecting matter fields as

in Eq. '(B.5b) completely determines electrodynamics.

3. Ve have seen in the main text that quarks are Dirac fermions
transforming in the fundamental representation of the local color group
SU(3)c and that gluons are gpin-l vectors transforming in the adjotint
representation of the same group. QCD 1is defined by the requirement that
quarks couple to gluons in the minimal gauge-invariant way. A local

SU(3), transformation
. L. ‘ - ) Q - -
Ub) = exp[F 2 dae=t0] = “Y[‘ST'“‘)] (8-F)

where l‘ka-l,...B) are the Gell-Mann matrices (A.13), transforms a
three—component spinor Y-(qn‘ »qysllew ,quu_) representing one flavor of
colored quarks into the spinor UY. Arrows indicate vectors in SU(3)
group space. The group generators T, (a=1,2,...8 is the color index)

satisfy the Lie commutation relations

[Tay Tu} = ¢ fahe TE (B-8)



At

162
where f,,  are the structure constants of SU(3)C‘ The main difference
between SU(N),2) and U(1) gauge theories is that [T,,T ]#0 whereas the
generator 'of U(1) coumutes with 1tself (the latter group is "abelian”
whereas the former are "nonabelian”). This observation allows us to
generalize the transformation law of the gauge field from the abelian

Eq. (B.5a) to

B> = K 0= 49,80 + €00xAu

$ (8.3)

(tﬁe vector product in group space is induced by Eq. (B.8)). The field

strength tensor is
o, -

o 00 = Do olo) = W oe ) 4 8 9000 x Al
4 4 4 P& (B-10)

Correspondingly, the "covariant derivative” of electrodynamics
k2 E - le
Du = G - ie A (R.4")
generalizes to
AT
Do = G =g A (A1)

where g 18 the color coupling constant.

With these properties, the classical chromodynamic Lagrangian
dk?éity for a given quark flavor, written by analoéy to Egqs. (B.l) and

«4)

Lep =~ £5 P77+ ¥ [y Dpeme ] (842

is indeed SU(J)(_ gauge—-invariant. ~Since the covariant derivative 1is
diag6n31 in flavor space, the fermion Lagrangian for Nf flavors 1{s just

the sum of Nf fermion terms differing only in their masses. The



163
unrenormalized quantum Lagrangian density 1s obtained from Eq. (B.11)
upon adding a gauge-fixing term and some prescription to preserve
unitarity in all gauges (a popular way to do this 1is to add a

"FPadeev-Popov ghost"™ term in troublesome gauges).



R T )

1]

2]

3]

4]

5]

164

REFERENCES AND FOOTNOTES h

S. Weinberg, Phys, Rev. Lett. 19 (1967) 1264; A. Salam, in
“Elementary Particle Theory: Relativistic Groups and
Analyticity" (Nobel Symposium 8), ed. N. Svartholm
(Alnqviet and Wiskell, Stockholm 1968); S.L. Glashow,
Nucl. Pilys. 22 (1961) 579; S.L. Glashow, J. Iliopoulos and
L, Maiani, Phys. Rev. D2 ('1970) 1285; G. Arnison et al.,

Phys. Lett., 122B (1983) 103 and 126B (1983) 398.

H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32 (1974) 438;
H. Georgl, H.R. Quinn and S. Weinberg, Phys. Reév, Lett. 33
(1974) 451; P. Fayet and S. Ferrara, Phys. Reports 32C (1977)
249; P. van Nieuwenhuizen, Phys. Reports 68C (1981) 189;

A. Zee, "Unity of Forces in the Universe” (World Scientific,

Singapore, 1982).

M. Gell—Mann, Phys. Rev. 125 (1962) 1067; Y. Ne'eman, Nucl.

Phys. 26 (1961) 222,

M. Gell—Mann, Phys. Lett. 8 (1964) 214; G. Zweig, CERN-TH 401

(1964) and CERN-TH 412 (1964) (unpublished).

JeJsJe Kokkedee, The Quark Model (Benjamin, New York, 1969);
A. De Rujula, H.*“Georgi and S.L. Glashow, Phys. Rev. DI2

(1975) 147.



{ 10}

[ 11]

[ 12]

1S

S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2 (1970)
181 and Phys. Rev. D3 (1971) 1043; S.W. Herb et al., Phys. Rev.

Lett. 39 (1977) 252.

M. Breidenbach et al., Phys. Lett. 23 (1969) 935;

rd Int, Conf. on High Energy

R.P. Feynman, in Proc. of the 3
Collisions, Stony Brook, Sept. 1969; J.D. Bjorken and

E.A. Paschos, Phys. Rev, 185 (1969) 1975.

H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys.lett. 47B kL
(1973) 365; W. Marciano and H. Pagels, Phys. Rep. 36C (1978)

137.

The following work implies that this decay rate is proportional
to the number of colors: S.L. Adler, Phys. Rev. 177

(1969) 2426.

G. Ross, in Proc. gf the Zl‘t Scottish Univ. Summer School in

Physics, Edinburgh 1981 (SUSSP Press 1981) p.l.

S.D. Drell, D.J. Levy and T.M, Yan, Phys., Rev, 187 (1969) 2159f*

v

¢

F. Dydak, in Proc. of the Int. Symp. on Lepton and Photon Inter.

at High Energies, Cornell University Aug. 1983,

{ 13)&/S. Weinberg, Phys. Rev. Lett. 31 (1973) 494; D.V. Nanopoulos,

1

Nuovo Cim. Letters 8 (197,32‘ 873.



I
B

14]

15)

16}

17}

18)

19]

166

Y. Nambu, Phys. Rev. Lett. 4 (1960) 380; J. Goldstone, Nuovo

Cim. 19 (1961) 154.

H. Nishijiaa, Nuovo Cim. 11 (1959) 698; F. Gursey, Nuovo Cim.
16 (IQGP) 230; M. Gell-Mann and M. Levy, Nuovo Cim. 16 (1960)

705,

'

4

H. Pagels, Phys. Reports -16C (1975) 219; S.L. Adler and

W, Dashen, "Current Algebras” (Benjamin, N,Y. 1968)

S. Weinberg, Phys. Rev. 166 (1967) 1568; S. Coleman, J. Wess
and B. Zumino, Phys. Rev. 177 (1969) 2239; G. Moore and !

P. Nelson, Phys, Rev. Lett. 53 (1984) 1519.

T.H.R. Skyme, Nucl. Physo 31 (1962) 556 and J. _Hath- Phyao
12 (1971) 1735; E. Witten, Nucl. Phys. B223 (1983) 422 and 433;

A.P, Balandacharan, Syracuse preprint 4222-288 (June 1984).

K. Gottfried, Hadronic Spectroscopy, in Proceedings of the
EPS Conference on High Energy Physics, Brighton (July 1983),
J. Guy and C. Costain eds., (1984) 743;

P.M., Tuts, Experimerntal Results in Heavy Quarkonia, in
Proceedings of the International Symposium on Lepton

and Photon Interactions at High Energies, Cornell Univ.
(Sept. 1983), D.G. Cassel and D.L. Kreinick eds. (i98«‘o) 284;

W. Buchmuller, preprint CERN~TH 3938, July 1984,



Yan s g 4 gt M @ -

» o A e A

@ e a % vy AR A ER

[ 20]

[ 22]

£ 23]

[ 24]

t 25]

[ 26]

[ 27]

1 28]

L= e e

163

<)

A, Chodos et al., Phys. Rev, D9 (1974) 3471; K. Johnson, Acta

Phys. Pol. B6 (1975) 865; P, Hasenfratz and J. Kuti, Phys.

Reports 40C (1978) 75.

A.W. Thomas, in "Advances in Nuclear Physics™ Vol, 13

(Plenum, N.Y. 1984) p.l.

G.E. Brown and M. Rho, Phys, Lett. 82B (1979) 177; H.K. Lee

and V. Vento, CERN-TH 3994 (Sept. 1984).
A. Manokhar and H. Georgi, Nucl. Phys. B234 (1984) 189.

M. Rho, A.S. Goldhaber and G.E. Brown, Phys. Rev, Lett. 51
(1983) 747; J. Goldstone and R.L. Jaffe, Phys. Rev. Lett. 51

(1983) 1518.

°

G.. Altarelli, R.K. Ellis and G, Martinelli, Nucl. Phys. Bl43
A -
(1978) 521, Erratum Nucl. Phys. B146 (1978); Nucl. Phys. B157

(1979) &461.
G. 't Hooft and M, Veltman, Nucl. Phys. B&4 (1972) 189,

E.C.Gl. Btueckelberg and A. Petermann, Helv. Phys. Acta 26 (1953)

499; M. Gell-Mann and F.E. Low, Phys. Rev. 95 (1974) 1300.

H.D. Politzer, Phys. Rev, Lett. 30 (1973) 1346; D.J. Grosa and
' ]
¥.A. Wilczek, Phys. Rev.\hcﬁ/w (1973) 1343.



L S T T " THA

.

([ 29]

[ 30]

[ 31]

[ 32]

[ 33]

[ 34]

[ 35]

{ 36]

168 :

W. Cashwell, Phys. Rev. Lett. 33 (1974) 244; D.R.T. Jones,
Nucl. Phys. B75 (1974) 531,
R.M. Barnett, M. Dine and L. McLerran, Phys. Rev, D22 (1980)

594.
\

N,

N
K.G. Wilson, Phyaf Rev. 179 (1969) 1499; B.L. Ioffe, Phys. Lett.
308 (1969) 123; R.A. Brandt and G. Preparata, Nucl. Phys. B27

(1971) 541; Y. Frishman, Ann. Phys. (N.Y.) 66 (1971) 373.

1

-

D.J. Gross and F.A. Wilczek, Phys. Rev. D8 (1973) 3633 and D9
(1974) 980; H. Georgl and H.D. Politzer, Phys. Rev, D9 {1974)
416; D. Bailin, A. Love and D.V. Nanopoulos, Lett. Nuovo Cim.
9 (1974) 501,

-

G. Altarelli and G. Parisi, Nucl. Phys. Bl126 (1977) 298,

D.W. Duke and R.G. Roberts, Ph%s. Lett. 85B (1979) 289 and

Nucl. Phys. B166 (1980) 243,

M.A. Shifman, A.I. Vainghtain and V.I. Zakharov, Nucl. Phys. B
147 (1979) 385, 448, 519; L.J. Reinders, 'H.R. Rubinstein and
8. Yazakys Nucl. .{:Z-. B186 (1981) 109 and CERN-TH 4079/84
§198;); S.N. Nikolaev and A.V. Radyushkin, Nucl. Phys. B213
t1983) 285. '

-

B.L. loffe, ITEP preprint 150 (1984),

o~

3



’)-1

{ 37)

{ 38}

[ 39]

[ %0)

[ 41]

[ 42]

[ 43]

169

R.P. Feynman and A,R. Hibbs, "Quantum Mechanics and Path
Integrals”™ (McGraw-Hill, N.Y. 1965); P. Ramond, "Field Theory

A Modern Primer™ (Benjamin, Readiﬁg (Mass.) 1981).

In many texts (e.g. in Ramond's book) W[J] denotes the .

vacuum— to- vacuum functional and Z[J] the generating functional
for connected Green's functions. We interchange these symbols

to conform with the convention preferred in lattice gauge

theories, . ] 1
. x
G. Jona-Lasinio, Nuovo Cim. 34 (1964) 1790;
&

S. Coleman, in "Laws of Hadronic Matter”, Proceedings.of the

Erice Summer School 1974 (Academic Press, N.Y. 1975).
R. Jackiw, Phys. Rev. D9 (1974) 1686.
S. Coleman and E. Weinberg, Phys. Rev. D7 (1973) 1888.

N
S.G. Matinyan and G.K. Savvidy, Nucl. Phys. B156 (1979) 1;
M.J. Duff and M. Ramon-Medrano, Phys. Rev, D12 (1976) 3357;

H. Pagels and E. Tomboulis, Nucl. Phys. Bl143 (1978) 435.

N.K. Nielsen and P. Olesen, Nucl. Phys. Blé4 (1978) 376

and Phys. Lett. 79B (1978) 304.

" L]
~

N.K. Nielsen and P. Olesen, Nucl. Phys. 8160'61979) 380;

J. Aubjdrn and P. Olesen, Mucl. Phys. B170 (1980) 60 and 265. .



st e sk

ar .

=

44)

45]

46)

47]

48]

)

50]

51]

52]

53]

130

G.C. Callan, B, Dashen and D. Gross, Phys, lLett, 66B (1977) 375;

J.M. Cornwall, Nucl. Phys. B157 (1979) 392.

V.P. Nair and C. Rosenzweig, Phys. Lett. 131B (1983) 434 and

Phys. Lett. 135B (1984) 450.

J.M. Cornwall, R. Jackiw and E. Tomboulis, Phys. Rev. D10

(1974) 2428.

“

[

F.A. Berezin, "The Method of Second Quantization” (Academic

©

Press, N.Y., 1966).

N\

M. Peskin, in Proc. of the Les ‘Houches Summer School in

Theoretical Physics Aug. 1982 (North Holland, Amsterdam, 1984).
C.N. Yang and R.L. Mills, Phys. Rev. 96 (1954) 1605. ,
F. Wegner, J. Math. Phys. .12 (1971) 2259.

K.G. Wilson, Phys. Rev., D14 (1974) 2455 and Phys. Reports 23C

(1975) 331.

A.M. Polyakov, Phys. Lett. 59B (1975) 79 and 82.

B. Berg, S. Meyer and I. Montvay, Nucl. Phys. B235(FS11) (1984)

149. \

2 PRI
?:r&«h*f



"y

T

[ 54]

[ 551

{ 56]

57}

[ 58]

(591

P 60)

[ 61)

[ 62]

{“#

13

JsM. Drouffe and J:B. Zuber, Phys. Reports 102C (1984) 1.
<,
i
B. Berg, A. Billoire and C. Rebbi, Ann. Phys, (N.z:z 162 (1982)
185; M. Creutz; L. Jacobs and C. Rebbi, Phys. Repodts 95C (1983) . '

201.

K. Binder, in "Phase Tranpitions and Critical Phenomena™, Vol.
5B (Academic Press, N.Y. 1976); C. Rebbi, "Lattice Gauyge

Theories and Monte Carlo Simulations™ (World Scieagfttic,

Singapore 1983).

C. Lang and C. Rebbi, Phys. Lett. 115B (1982) 137;
A, Hasenfratz, P. Hasenfratz, U. Heller and F. Karsch, glﬁﬁi;ﬂ

3842 (1984) .

.

J. Kripfganz, in Proc. of the 22“"EPS Conf. on High Energy

Physics, leipzig 1984,

J. Ambj¢rn, P. Olesen and C. Peterson, Phys. Letf. 142B (1984)

4100 i

M. Lischer, Nucl, Phys. B180O[PS 2] (1981) 317; J.D. Stack and

M. Stone, Phys. Lett. 100B (1981) 365.

J.D. Stack, Phys. Rev. D27 (1983) 412; S. Otto and J.D. Stack,

Q

B B



S ———

7

63]

664]

65]

66]

67]

68]

69]

112

Phys. Rev. Lett, 52 (l984f

D, Barkai, K.J.M. Moriarty and C. Rebbi, Phys. Rev, D30 (1984)

1293 and 2201.

A.D. Linde, Rep. Prog. Phys. 42 (1979) 389; M. Jacob and

Tran Thanh Van, eds., Phys. Reports 88C (1982) 321.

A.M. Polyakov, Phys., Lett. 72B (1978) 477; L. Susskind,

Phys. Rev, D20 (1979) 26l10.

B. Svetitsky and L.G. Yaffe, Nucl. Phys. B210[FS 6] (1982) 423;
for a rigorous proof of finite field-temperature deconfinement
in SU(N) lattice gauge theories, see C. Borgs and E. Seiler,

Comm. Math. Phys. 91 (1983) 329.

L. McLerran and B. Svetitsky, Phys. Lett 98B (1981) 195;
K. Szlachanyi, Phys. Lett, 98B (1981) 199; T. Celik, J. Engels
and H, Satz, Z. Phys. C22 (1983) 301; A.D, Kennedy, J.Kuti,

S. ﬁeyer and B.J. Pendleton, preprint UCSDF-10P10-234 (1984).

J.S. Bell and R. Jackiw, Nuovo Cim. A60 (1969) 47;
S.L. Adler and W.A. Bardeen, Phys. Rev. 182 (1969) 1517;
S.L« Adler, in "Lectures on Elementary Particies and Quantum

Field Theory", Vol.,1<(H.I.T. Press, Cambridge, MA, 1970).

A. Belavin, A.Polyakov, A. Schwartz and Y. Tyupkin, Phys.

Al



“*

T e -

70]

71]

72]

73]

74]

‘751

76]

77)

78]

133

Lett. 59B (1975) 85; G. 't Hooft, Phys. Rev. Lett. 37 (1976) 8;

S. Coleman, im "The Whys of Subnuclear Physics”, Proc. of the

Erice Summer School 1978 (Plenum, N.Y. 1979).

E. deGroot, Zakopane Lectures 1984, preprint BI-TP 26/84.

J. Kogut and L. Susskind, Pnys. Rev. D11 (1975) 395;

L. Suaskind, Phys. Rev. D16 (1977) 3031.

N. Kawamoto and J. Smit, Nucl. Phys. B192 (1981) 100.

K.G. Wilson, in "New Phenomepa in Subnuclear Physics", Proc.

of the Erice Summer School 1976 (Plenum, N.Y. 1977).

S.¢ghrell, M. Weinstein and S. Yankielowicz, Phys. Rev. Dl4

(1976) 1627.

H.B. Nielsen and M. Ninomiya, Nucl. Phys. B185 (1981) 20 and

B193 (1981) 173.

H. Hamber and G. Parisi, Phys. Rev. Lett. 47 (1981) 1792;

D. Weiffgarten, Phys. Lett. 109B (1982)/57.

)

J. Kogut et al., Nucl. Phys. B225[FS 9] (1983) 326.

H.'Lipps. G. Martinelli, R. Petronzio and-F. Rapuano, Phys.

Lett. 126B (1983) 250; K. Bowler et al., Nucl. Phys. B 220



R

.o"\

79]

80)

81}

82]

83}

84)

85)

86)

174

{PS 8] (1983) 137; C. Bernard, T, Draper and K. Olymnik,

Phys. Rev., D27 (1983) 227; R. Gupta and A, Patel, Phys. Lett.

J.

124B (1983) 94.

-

Kogut et al., Phys. Rev, Lett. 50 (1983) 393 and 51 (1983)

869; T. Celik, J. Engels and H. Satz, Phys, Lett. 129B (1983)

323; F. Fucito and B, Svetitsky, Phys. Lett. 131B (1983) 165.

E.

1795 and references under (76].

T'

Marinari, G. Parisi and C. Rebbi, Phys. Rev. Lett, 47 (1981)

Banks and A. Ukawa, Nucl. Phys. B225[FS 9] (1983) 145;

T.A. De Grand and C. De Tar, Nucl. Phys B225[FS 9] (1983) 590.

P.

Hasenfratz, F. Karsch and I.0. Stamatescu, Phys, Lett. 133B

(1983) 221.

M.

F.

E.

Fischler and R. Roskies, Phys. Lett. 145B (1984) 99,

Celik, J. BEngels and H. Satz, Phys. Lett. 1338 (1983) 427;
H

Polonyl et al,, Phys. Rev, Lett. 53 (1;86) 644; R.V. Gavai,
Lev and B. Petersson, Phys. Lett. 140B (1984) 397;

Fucito and S. Solomon, Phys. Lett. 140B (1984) 387.

Tomboulis and L.G. Yaffe, Phys. Rev. Lett. 52 (1984) 2115.

P.H. Damgaard, N. Kawamoto and K. Shigemoto, Phys. Rev. Lett,

§

b



87)

88)

89)

90])

91)

92]

93]

94])

95]

96]

1S

53 (1984) 2211; A. Gocksch and M. Ogilvie, Phys. Lett. 141B

(L?Bk) 407.
H. Joos and 1. Montvay, Nucl. Phys. B225[FS 9) (1983) 565.

P. Becher, Ann. Phys, (N.Y.) 146 (1983) 223 and references

therein.

I. Montvay, Phys. Lett. 1398 (1984) 70; W. Langguth and
I. Montvay, Phys. Lett. 145B (1984) 261.

J. Kogut, Rev. Mod. Phys. 51 (1979) 659.

H.D. Politzer, Nucl. Phys. Bl17 (1977) 397; T.I. Larsson,

J. M. Cornwall, Phys, Rev, D22 (1980) 1452.
M.D. Scadron, Ann. Phys. (N.Y.) 148 (1983) 2574

M. Nicolescu, S, Sanielevici and P. Valin, McGill report (1984),

to appear in Phys. Rev, D.

G. 't Hooft, in "Recent Developments in Gauge Theories™

(Plenun, N.Y., 1980). 1

Y. Frishman et al,, Nucl. Phys. B177 (1981) 157; S, Coleman and



[ 97]

[ 98]

[ 99]

[100]

116

B. Grossman, Nucl. Phys. B203 (1982) 205.

S. 'Adler and W.A. Bardeen, Phys. Rev. 182 (1969) 1517.

t

E.V. shuryak, Nucl.lPhys. B203 (1982) 93 and 140.

J.M. Cornwall, Nucl. Phys. B157 (1979) 352 and Phys. Rev. D26
(1982) 1453; J.M. Cornwall and A. Soni, Phys. Lett. 120B (1983)

431; R. Akhoury, Nucl. Phys. B234 (1984) 533.

R.C. Hwa, Phys. Rev. D22 (1980) 759 and 1593; R.C. Hwa, in
Proceedings of the Europhysics Study Conference, Erice 1981

(World Scientific, Singapore, 1981).

[101] MT. Kanki, Prog. Theor. Phys. 56 (1976) 56; N. Cabibbo and

(102]

(103]

[104]

[105]

R. Petronzio, Nucl. Phys. B137 (1978) 395; V.V. Anisgovich,

Yu.M. Shabelsky and V.M. Shekhter, Nucl. Phys. B133 (1978) 447.

-
%,

- -
R.C. Hwa and M.S. Zahir, Phys}.Rev. D23 (1981) 2539 and D25

(1982) 2455.
R.C. Hwa and M.S. Zahir, Z. Phys. C20 (1983) 27.

L. Gatignon et al., Z. Phys. Cl6 (1983) 229 and work quoted

in Ref. [106] below.

R.C. Hwa and C.S. Lam, Phys. Rev. D26 (1982) 2338.



4

[106]

[107]

[108]

{109]

[110]

[111]

[112]

[113]

[114]

[115]

111

R.C. Hwa, in Proc. of the l3+k Int'l Conf. on Multiparticle

Dynamics, Volendam 1982 (World Scientific, Singapore, 1983).
R.C. Hwa, Phys. Rev, Lett. 50 (1983) 305.

S. Sanielevici and P. Valin, Phys. Rev, D29 (1984) 52.

S. Sanielevici énd P. Valin, Phys. Rev. D32 (1985) 586.
D.E. Soper, Phys. Rev. D15 (1977) 1141.

S.D. Drell and T.M. Yan, Phys. Rev. Lett. 24 (1970) 181;

G.B. West, Phys. Rev. Lett. 24 (1970) 1206.

G.P. Lepage and S.J. Brodsky, Phys. Lett. 87B (1979) 359,
/
Phys. Rev. Lett. 43 (1979) 545 and Phys. Rev. D22 (1980) 2157;

A. Duncan and A.H. Mueller, Phys. Rev. D21 (1980) 1636.

N. Isgur and C. Llewellyn-Smith, Phys. Rev. Lett. 52 (1984)

1080.
0. Dumbrajs et al., Nucl. Phys. B2l6 (1983) 277.

G. Altarelli, G, Parisi and R. Petronzio, Phys. Lett. 76B
(1978) 351 and 356; R.K. Ellis, G. Martinelli and R. Petronzio,
Phys. Lett. 104B (1981) 45; R.R. Horgan and P.N. Scharbach,

Nucl. Phys. B181 (1981) 421.



1 e e

(1169

(117]
{118]

[119])

f120)
{121]
[122]
[123)
[124]
[125]

[ 126}

[127])

13§

-7
Pl

See, for instance, the following review articles:
G. Alberf and G. Goggi, Phys. Reports 74C (1981) 1;

A, Castaldi and G, ia%uinetti, CERN EP 85-36 (1985).

L]

* /
T.T. Chou and C.N. Yang, Phys. Rev. 170 (1968) 5.

R. Henzi and P. Valin, Nucl. Phys. B148 (1979) 513.

P. Valin, 1in Proc. of the 6'”‘ Montr%l;tet—l‘oronto-
O :

Syracuse High Energy Theory Meeting (Syracuse, May 1984) ﬂp.68.‘
C. Bourrely, J. Soffer and T.T. Wu, Phy's. Bev. DI9 (1979) 3249.
H. Miettinen and G. Thomas, Nucl. Phys. B166 (1980) 365.

T.T. Chou and C.N. Yang, Phys. Lett. 128B (1983) 1:37.

C. Bourrely, J. Soffer and T:T. Wu, Nucl. Phys. B247 (1984) 15.

C. Chiu, Phys, Lett. 142B (1984) 309.

R.J. Glauber and J. Velaco, Phys. Lett. 147B (1984) 380.

»

' 9 .
P. Valin, Nucl. Phys. B219 (1983) 215 and

Z. Phys. C25 (1984) 259.

U. Amaldi and K.R. Schubert, Nucl. Phys. Bl66 (1980) 301.

’

[



[128]

(129])

[130]

[131])

[132]

[133]

[134]

[135]

(136]

[137]

133

K.R. Schubert, in "Landolt-Bornstein: Numerical Data and
Fui.ctional Relationshipe in Science and Technology™,Group I,

Vol. 1 (Springer, Berlin 1979).

S. Conetti et al., Phys. Rev. Lett. 4l (1978) 924.

]

V. Franco, Phys. Rev, DIl (1975) 1837. -

A. Schiz et al., Phys. Rev. D24 (1981) 26; W.F. Baker et al.,
Phys. Rev. Lett.47 (1981) 1683. \

A.S. Carroll et al., Phys. Lett. 80B (1979) 423.

C.H. Lai, S.Y. Lo and K.K. Phua, Report NUS-HEP-82001 (unpubl.)
A

F. Cervelli, Invited Talk at the lon‘ Topical Workshop}/d PP

Collider Physics (Bern, 1984). . \-.

M. Bozzo et al., Phys. lett. 142B (1984) 385 and 392;

Phys. Lett. 155B (1985) 197. c__j./

R. Henzi and P. Valin, Phys. Lett.,” 132B (1983) 443 and N
Phys. Lett, 1498 (1984) 239; R. Henzi, in Proc. of the 4tk

Topical Workshop on Pp Collider Physics (Bern, 1984) 314,

S. Sanielevici, in Proc. of the 6"‘ Montreal-Rochester-Syracuse—

Toronto High Energy Theory Meeting (Syracuse, May 1984) p.43. Y

!

i -

;
\/d-—-& p
2

’ "é



o S e et

o pan

PR TP ety gt . e e

k]

-

[138]
AN
(~1139]
(140]
-
" [141]

{142]

[143]

[144)

4180

L, Van Hove, Acta Phys. Pol. B7 (1976) 339 and Nucl. Phys. 2

(1977) 525; H.I. Miettinen and J. Pumplin, Phys. Rev. D18 (1978)

b4

1696 .

H. Cheng and T.T. Wu, g\hys. Rev, Lett. 24 (1970) 1456;

H. Cheng, J.K Walker and T.T. Wu, Phys. Lett. 44B (1973) 97.

R. Henzi and S. Sanielevici, McGill report June 1985, submitted
to Nucl. Phys. B, Part of the discussion on color Van der Waals
forces can be found in the Contributed Paper 676 to the 22”‘"

EPS Conference on High Energy Physics, Leipzig 1984 (by the same

authors).

For a recent assessment of this traditional idea, see e.g.
D.B. Lichtenberg and W. Namgung, Indiana preprint I(UHJBT 95

(1984).

D.J+ Wallace, in Proceedings of the 21“"‘ Scottish Univet?/itiea
Susmer School in Physics (SUSSP Press 1981) p. 459.
£ .
B. Margolis, R. Roskies and N. De Takacsy, in Proc. of the
4'"‘ European Antiproto‘n‘Synposiuu, ed. by A. Friedman
(Ed. du CNRS, Strasbourg 1978), Vol. 2 p. 455.

v

Particle Data Group: C.G. Wohl et al., Rev. Mod, Phys. 56 (1984)

81,

ﬁﬁ 20 ol P »



*
T TN oty T b SR 2 8 PR, P AR e e e e 5,

-

[ o Y

[145)
[146]
[147)
(148]

lldél

[150]

[151]

[152]

(153]

[154)

[155}

‘D.H. Lyth, Z.Phys. C15 (1982) 177.

Al

M. Peskin, Phys. Lett. 94B (1980) 161.
M.B. Gavela et al., Phys.Lett. 82B (1979) 431.

G. Peinberg and J. Sucher, Phys. Rev. D20 (1979) 1717.

I

W. Beer et al., Proposal for an Experiment at S.I.N. ,
No. R~82-10.1 (1982)
o W
H. Lehmann, Nuovo Cimento 10 (1958) 579 and Fortschr. d. Phys.

6 (1959) 159.

v

A. Martin, Nuovo Cimento 42 (1966) 930.
R.S. Willey, Phys. Rev. D18 (1978) 270;

Y. Fuji and K. Mima, Phys. Lett. 79B (1978) 138. )

P.M. Fishbane and M.T. Grisaru, Phys. Lett. 74B (1978) 98;
T. Appelquist and W. Fischler, Phys. Lett. 77B (1978) 138;

L. Braccl, G. Fiorentini and R. Tripiccione, Nucl. Phys. B217

(1983) 215. . ~ v
0.W. Greenberg and H.J. Lipkin, Nyc . 'A370' (‘1981) 349, ——
%

KnF. Liu, Physoutto 1313 (1983) 1 . *



B

THR B o sy Ao An o

R e T

. L.

~
-l

i

[156]

[157]

(158]

—

¥
‘. 182 :

\

0.W. Greenberg and J. Hietarinta, Phys. Lett. 868 (1979) 309.

F. London, Z. Phys. 63 (1930) 245;
L. Schiff, Quantun Mechanics, 2“ edition
(McGraw—-Hi11 1955) 176.
.o )
H.B.G. Casiair and D, Poldtr, Phys.Rev, 73 (1948) 360;

G. Feinberg and J. Sucher, Phys.Rev. A2 (1970) 2395.

\ o

s
Y

e




2 P

B R s aaan i BT Tare R L SN,
.

183

TABLES

»

. Table 3,1: Coefficients pf the distributions of valons in protons and

pions, as extracted by two different methods.

“ [
B,( l-x)cv

o coefficients are defined by Lv(x)-Av x

L P H.,2
and T (k)=exp(-Dj k™), where H=p,IT and'V-U,D.

Asterisks denote the values which we employ in the study

of hadronic matter form factors (see Eq. (5.23).

A *

Deep Inelastic Scattering (102] : Hadron Charge Form Factors [105]

'
af 7.98 * : 10.74 |
U * . L]
Bf 0.65 * : 0.9
ct 2.  # : 2. !
f : 671 x
* ¥
i 3, ‘g
A% . 6.01 ' : 4.63
B} 0.35 * : 0.1
c? 2.3 % : 2.8
’
D : 3. *
P . s
A" : 1,77 *
—
BT : 0.3 *
cw - . 0.3  *
D" | H 6. * -
¥y,
T =
;;—.‘ ¢ r

N4

[
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Table 5.1: Pntan;atera for fite to the pp and fp differential

cross-sections. Aj is in (nb)'/'- Gev!, hj in Gev 't
) PP e »
> b -
j A } B S A j B 3
1 0.60666 15.042 1.8075 6.4557
2 3.2310 © 6.6985 1.2652 2.8597
3 1.6289 3.8590 0.03529 1.0190
4 -0.03443 1.0353 '€f00426 0.42799
5  -0.0008 0.38062 b N,
¢

*
)

Table 5.2: Parameters for the fit to the rp dcs as reported in

. Ref. {133}, All parameters are in Gev'z.

&, 2.863 fr se120
' 2.038 . 286
“s 0.001265 , - Ps 0;6667.‘
> . 0.6237 »
&
. -
}
- \l 5
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Table 5.3: Parameters used for the fit ghown in Fig. 3.6. d and ¢ are

in cev-Z,
b 0.912 £ 0.004 c 0.026 + 0.006
d 6.530 + 0.211 e 0.045 + 0.008
f 0.118 + 0.0026 g 0.0009 + 0.0001

Table 6.1: Parameters in Equation (6.3) which lead to the
—- 8

predicted Y and Y nasses listed in Table 6.2.

< 3076.2 MeV
&< = " 88.55 7 MeV. fw
s
r, V_ 2.215 fm
[
i
. %
y N
\ 1}
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i
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s

Properties of ”r and Y s-states as calculated from

the potential (6.3) with the parameter values given in

Table 6.1. Masses are listed in MeV; in brackets

we show ratioa of leptonic widths of the excited atates

with feapect to the ground state of the respective Qﬁ system,
The ¢ and b current quark masges were also treated

as parameters: for the predictions below, their values are
me= 1304.7 MeV and my= 4722.4 HeV.

Experimental values are from Ref. [144}, | . ;

n Experiment Prediction

0 3097 3096
1 3686 (0.46) 3683 (0.45)
2 5030 (0.16) 4077 (0.22) -

3 4415 (0.11) 4379 (0.09) :

0 9460
1 10025 (0.44)
2 10355.(0.32)

9463
10013 (0.40)
10342 (0.28)

e s
3 | 10575 (0s24) 10596 (0.25) "
. < . 4
. e

«?
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Table 6.3: Parameters of the CVDW potenfials shown in Fig. 6.3.

Parameter Value uae‘cl Units
" 32.3 ' MeV.fm
S 0~ Gev
v 0.8 fm

K / K=l . 72%1073 5 fmé
V(ras) 0.2 Gev

X . 1 \ fm

~

) Table 6.4: Relationships between the components of the V(r) input and
the retarded CVDW force.
1 -
The near-force is taken to include all exponentially"

damped terms in the derivative of Eq. (6.4).

Interquark V CVDW Force
Near-~Force Far-Force 4

JM, Eq. (2.153) stronger than R" R;‘ ™
¥S, Eq. (6.9) -t r-t

-t ) 3 .

- . cc, Eq. (6.10) stronger than R" absem:' ‘
) £
’ v

-

K
wEe
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FIGURE CAPTIONS

Feynman diagrams up to order & for ¢ e -->qq annihilation.

The photon carries E"-Q"; the quark four-momenta are Po

»

d p/.
an ]}.

Feynman diagrams up to order & for e’ e -->gqg.

Feynmad®graphs of order &} in e*e™ annihilation.

\

Quark self-energy subgraph.
Inelastic lepton-hadron scattering 1H=-->1'X.
X stands for any final-state hadrons produced in the

collision. The process is "deep inelastic” 1if the c.m.

energy 1is large.

Parton-model interpbetation of deep inelastic scattéring.
The electroweak gauge boson (photon, W or Z) interacts
with a singfe .quark-parton which carries a. fraction x

of the proton's longitudinal light-cone momentum, :

Feynman diagrams up to order f\(f fqr photon~quark
scattering.

s
’

Contour ysed for computing moments of T(x.Qz).
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Figure 2.9: The effective potential of the theory Eq. (2.70) in the
absence (A) and 1in the presence (B) of spontaneous
symmetry breaking.

Figure 2.10: J in the second diagram must be adjusted to cancel the

o
contribution of the first diagram to the effective

actione..

Figure 2.11: ...which leaves only two-particle irreducible diagrams
in the sum D. v

Figure 2.12: "Hypercubic” 3x3 lattice in d=2 dimensions. a 18 the
“lattice spacing”, n, n+’l,... are the "sites”,
‘(, /,v,... are the "links™ and the closed contour is a

"plaquette”,

N

Figure 2.13: To take the contifnuum limit of lattice QCD is

-a) to make any physical length measured in units of a ~

»
o

diverge;
b) to resolve smaller and smaller distancé scales inside

. a hadron (indicated by the circle inscribed into the

s

lattice).

A coarser lattice corresponds to stronger QCD coupling.

5

-

FigureJ 2.14: a) A "Wilson loop”, used to compute the static potential

in a heavy QQ system on the lattice. r is measured in

M A
N

[N

the "gpace” diredtion X and T in the "time” directi,éﬁ.‘" ’
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Figure 2.15:

Figure 3.1:

Figure 3.2:

Figure 3.37
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b) A "Wilson-Polyakov 1line”, used as the order parameter
of the deconfinement phase transition at finite

field-temperature (i‘ is fixed). Here nk-‘“

v
{

The "triangle graph” which spoils the conservation of the
flavor—-singlet axial current Jﬂforme\d out of colored
fermions.

J/
The nonperturbative gelf-energy of a colored fermion can
be visualized as the n:il\nn of all Feynman diagrams having
all possible gluons exchanged along the internal line

which represents the fermion propagator.

The function 2(p) for three values of the parameter P,
(see Eqs. (3.8), (3.16)). The full curve is for

Po=600 MeV, the dash-dotted curve for p,=400 MéV and the
dash~-double~dotted curve for p_=800 MeV. The origin of
these parameter values 1s explained in Section 4.3,

For comparison, the dashed curve representg a Gaussian
chogen to be :umerically close to the other curves,

Its ‘('ﬁp would have to\_be ~2.6 Gev,

#
v

Images of & proton seen by an "electroweak gauge boson

microscope™ at increasing resolution Q% (indicated by the
\

boxes and arrows). The interior of a constituent quark

appears as an ordered distribution of partons for

A »
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‘wpderate Q"; at high Q" the partons appear uncorrelated.

Figure 3.4: Downward Q"-evolution of a "u” current quark into the

"U" constituent quark in & proton.

N Figure 3.5: Downward Q"-—evolution of a "protopion” into an on-shell
pion.
'id
Figure 4.1: Schemat’ftﬂiggram for the plon CFF at high Q* (from
Ref. {105)),/ The photon interacts with a current quark
which can exchange hard gluons with the spectator

-

partons.

Figure 4.2: The pion CFF at low Q* (following Ref. [105]). The photon
interacts with a valon (antivaion) which does not exchange

hard gluons with the spectator antivalon (resp. valon).
b

Figure 4.3:. Our computed proton charge form factor (full curve) as
compared to the standard dipole approximation (dots).

- No best fit was attempted.

Figure 5.1: The pp matter form factor from overlap data at four ISR

energies. Dotted curve at (8=23.5 GeV, dashed curve at

{s=30.7 GeV, dash-dotted curve at Yomb4 .7 GeV ar)d solid

s . \ . curve at (s=52.8 Gev, .
~ 7, : R -

¢

. Figure 5.2: Five-exponenti.;l fit to the pp differential g¢ross-section.
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Data are from the ISR at (s=52.8 GeV and from Fermilab at L

p&\.-boo GeV and large —-t. Typical error bars are‘shovm.

&
-»

Figure 5.3: pp matter form factors by v;lrioup methods at Vs=52.8 GeV
with Q':\('5.3 GeV®. The points repro;luce the solid curve of
~ Pig. 5.1. Solid curve: extraction by method ’2.
The dashed curve represents K?,' . The dash-dotted curve

te represents K ;' (a"—Qt)/_( n‘+Q") with at=5.65 Gev* .

Figure S.4: The {p matter form factot. Solid curve: prediction from
the pp matter form factor extracted at Ve=52.8 Gev,
Dashed curve: direct extraction from Fermilab data at

s

p‘\. =200 GeV. -

FPigure 5.5: Four-exponential fit to the n"p differential, .
cross-gection. Data from Fermilab at pgf, =200 GeV.

Typical error bars are shown.

Figure 5.6: Simultaneous SRE fit to the pp differential

cross-section st {#=52.8 GeV and to the Pp differential ’
cross-section at {s=546 GeV. ISR data are represented by -
open dots and ‘85p8~data by full dots. The full cutve is

the fit to the ISR data and the dashed curve f{s the fit to

the UA4 dsta (up to -t=1.5 GeV ). Beyond -t=1.5 Gev',

the dashed curve is a prediction. Typical et;or bars are

shown.
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FPigure 5.8:

Figure 6.1:
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N s
Various Bp MFFs at {e=546 Gev. Dots represent the .. ,
extraction from UA4 dcs data, The full curve corresponds
to the smallest value of the SRE :parsmeter B co-patiblé
with the fit in Fig, 5.6. The error bars ,'are induced by

the errors listed in Table 5.3, The ddshed curve

represents K:' (a8 =Q*)/(&*+Q") with &=3.2 Gev™,

-

“x

F(s) (Fig. 5.8a) and a*(s) (Pig. 5.8b) according to the )
S ,fit:\ in Fig. 5.6. Error bars are induced by the errors
lj.%ed in Table 5.3. The straight line in Fig, 5.8a
corresponds to ¢ =0.105 in Eq. (5.21).

The potential (6.3). The full curve repr;sents

n‘V(r)/ﬁ" with the parameter values in Table 6.1.

The dashed curve is obtained from the "empirical™

’ potetit.ial slown 1n Fig. 6.2. n. has the value quoted

in the caption of 'l‘a‘ble 6.2. This once, 4=197.3

(dimensionless: compare to Eq. (A.2)). In these .mnits,

the asymptotitc value of the full curve is at

.

. \n%ﬂ' 103 Mev®: '
- - 13

Figure 6.2 :’ — Vnric;ul ;Ef vpotentiah. The full curve represents the

standard empirical potentials talloving Refs, [19].
. E'd .

Shaded areas represent ths dispersion of the various

potentials which coincide betwesn 0.1 fm and 1 fum.

The dashed curve repruent; Bq. (2.135) and the

e

kst ot



Figure 6.3:

’ ¢

Figure 6.4:

k4

dashed~dotted curve, which below 0.3 fu
éoincidel with the dashed curve, represents Bq. (2.153).
The full iine labeled "¢ " indicates the asymptotic vdlue

of tim JM potential, as quoted in 'l‘a'ble 6.3.

v

Various upper bounds on the strength of the colour

Van d¥r Waals potential. The full lin{a} beled "EL"
rqp'roéucn Eq. (6.7). The solid curvinvjllled "R“'
and‘ ~g-1- correspond to the nonretarded resp. retarded
iootent:l.ala discussed in the text. The dashed curve shows
a possible interpolation between the nonretarded and
retarded regimes. Dotsratress ':hvc.l asyaptétic charggter
of the ltfnight lineg which regtesent Egs. (6.6) and
(6.8) . The li'ne‘ represeuting. Kq".‘ (6.8) has been
coni.inuad down to 1.5 fm to illustrate the effect of
rnph::ing the JM potential (2.153) by the FS potential
(6.9). 'l'held,lh-dottod curve indicates the CVDW pote_ntial

which céruponds to the CC 1nterquai'k potential,

‘Bq. (6.10) , o

The retarded ’CVDH potential corresponding to the
interquark potential in Pig. 6.1. The line ladeled "EL”
is the same as in Fig. 6.3.

The full curve is the upper limit on the
predicted CVDW potential, corresponding to a maximal

strangth parameter K.~ 0.011 =t
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