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Abstract 

This thesis addresses the problem of minimum distance localization in environments 

that may have structural self-similarities. In other words, how can a robot most 

efficiently collect sensor data to estimate its position and rule out ambiguity (as op­

posed to merely increasing accuracy). The formalism is that a mobile robot is placed 

at an unknown location inside a 2D self-similar environment modeled by a simple 

polygon P. The robot has a map of P, can sense its environment and hence compute 

visibility data. However, the self-similarities in the environment mean that the same 

visibility data may correspond to several different locations. The goal, therefore, is 

to determine the true initial location of the robot by distinguishing amongst several 

possibilities consistent with the sensed visibility data, while minimizing the distance 

traveled by the robot. We present two randomized. approximation algorithms that 

efficiently solve the problem of minimum distance localization. The performance of 

our localization algorithms is validated and explored via extensive experiments on a 

range of simulated environments. 



Résumé 

Cette thèse s'attaque au problème de localisation à distance minimum dans des en­

vironnements qui peuvent être auto-semblables. En d'autres termes, comment un 

robot pourrait-il amasser des informations le plus efficacement possible dans le but 

d'estimer sa position et annuler toute ambiguité (et non pas dans le but d'améliorer 

son exactitude). Le problème qui se pose est le suivant: un robot mobile est placé dans 

un lieu inconnu à l'intérieur d'un environnement à deux-dimensions auto-similaire et 

devra alors calculer des données de visibilité. Cependant, l'auto-similarité dans un 

environnement signifie que les donnes de visibilité pourraient correspondre à plusieurs 

positions différentes. Le but est alors de déterminer la bonne position initiale du ro­

bot en distinguant parmi les possibilités consistantes avec les données de visibilité 

tout en minimisant la distance parcourue par le robot. On présente deux algorithmes 

d'approximation de nature aléatoires qui résolvent efficacement le problème de lo­

calisation à distance minimum. La performance de nos algorithmes de localisation 

est validée et explorée à travers un grand nombre d'expérimentations sur une plage 

d'environnements simulés. 
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CHAPTER 1 

Introduction 

With the Mars rovers Spirit and Opportunity transmitting satellite images of the 

surface of Mars in unprecedented granular detail, there is no question that the field 

of mobile robotics has indeed come of age. In fact, for the first time in history, two 

mobile robots are exploring Mars at the same time. Breakthroughs in technology 

mean that increasingly, we have the option of sending mobile robots on missions that 

are too dangerous or sim ply infeasible for human beings. There is no dearth of uses 

for mobile robots. For instance, underwater robots have been deployed near active 

faults in the Pacific ocean to observe plate tectonic events. Another potential mission 

for a mobile robot could be to clear landmines in war-torn regions. 

And yet, despite the obvious advances, simple questions remain, to which no 

satisfactory answers exist to date. One such question fundamental to the operation 

of a mobile robot is "Where am J?". Known as the localization problem, it cornes in 

two main fiavours: local localization and global localization. Local localization, also 

referred to as pose maintenance, describes the case where the robot knows its current 

position approximately, and sim ply seeks to refine its current pose estimate. More 

challenging is the globallocalization problem, sometimes referred to as the lost robot 

or kidnapped robot 1 problem, where the robot must determine its initial or current 

pose without any prior estimates. 

IThis term was first coined by Engelson [Eng94] 



1.1 PROBLEM STATEMENT 
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1 

~ J 

1 1 
FIGURE 1.1. A self-similar environment. Visibility data at locations A, B, 
C, D is the same. 

As anybody who has experienced a maze can attest, it is not easy to determine 

one's location when the surrounding environment contains few distinguishing land­

marks. Likewise, global localization of a mobile robot is made even more difficult 

when the robot's environment is structurally self-similar 2. Clearly, the thing to do in 

such situations is to travel, so that we may find sorne distinguishing feature that sheds 

light on our location. This thesis focuses on the problem of global localization of a 

mobile robot in environments that may contain self-similarities, with the condition 

that the distance traveled by the robot in order to achieve localization is minimized. 

We shall begin with a description of the problem that we wish to solve in Section 

1. Following that, we discuss the reaSOns that motivated us to tackle this particular 

problem in Section 2. In Section 3, we present our approach and identify the contri­

butions of this thesis. Finally, we outline the organization of the rest of this thesis in 

Section 4. 

1. Problem Statement 

We consider the problem of minimum distance localization which is defined as 

follows: A mobile robot is placed at an unknown location inside a 2D environment 

modeled by a simple polygon P which may be structurally self-similar. The robot 

2See Section 2 for a more detailed definition. A geometric definition of self-similar polygons is 
provided in Chapter 4 

2 



1.2 MOTIVATION 

has a map of P, can sense its environment and hence compute expected visibility 

data. However, the self-similarities in the environment mean that the same observed 

visibility data may correspond to several different locations (see Figure 1.1). The 

goal, therefore, is to determine the true initial location of the robot by distinguishing 

amongst several possibilities consistent with the sensed visibility data, while mini­

mizing the distance traveled by the robot. 

In other words, we are posing the question: what path should the robot select 

to travel along which will allow it to most efficiently collect sens or data in order to 

correctly estimate its location and rule out ambiguity. The objective of our research 

is to find an efficient solution to the problem of minimum distance localization - one 

that is both efficient to implement, yet also efficient in terms of performance measures 

such as the length of the localization trajectory and the running time. 

2. Motivation 

Before proceeding further, we will define more precisely what we mean by self­

similarityor ambiguity in an environment, two terms that will be used interchangeably 

in the rest of this thesis. In particular, we would like to distinguish between ambigui­

ties in the structure of the environment and ambiguities perceived by the robot which 

can be attributed to sensor noise. In our work, we employa perfect sensor mode!. In 

other words, the sens or contains no noise. Hence, we are solely concerned with struc­

tural ambiguity. As shown in Figure 1.1, an environment may contain several places 

that look alike, thus making it self-similar. Realistic examples of such environments 

include office buildings and hotels where several sets of rooms and even entire floors 

can look identical. Consequently, if a robot were to "wake up" in one such room, its 

estimate of its initial location would be ambiguous since it can not be certain which 

of the many similar-looking rooms it really is in. Environment ambiguity necessarily 

entails travel with the intent to search for distinguishing landmarks. For example, in 

Figure 1.1, the locations A, B, C, and D can be disambiguated as we travel down­

ward to find, that for each location, the next bend in the passage occurs at different 

3 



1.2 MOTIVATION 

distances and consists of different sizes. The geometric definition of a self-similar 

polygon is deferred to Chapter 4. 

Global localization refers to estimating one's position, where the space of possi­

bilities is the entire environment [DJOO]. In general, globallocalization must contend 

with the fact that the observations used to estimate one's position can be ambiguous. 

Even with a perfect map and a perfect sensor model where the sensor is able to de­

tect objects at infinitely long distances (provided that these objects are not occluded 

from the robot's line of vision) this ambiguity can be serious [GMR97]. It follows 

then, that as visibility gets poorer (i.e. the distance at which the sensor can detect 

objects gets shorter), which is the case with real robots, the level of ambiguity in 

the environment can only increase. Note that we still have not taken into account 

sensor noise. If we were to incorporate noise in addition to limited distance visibility 

in a sensor, then the level of ambiguity in the environment would obviously increase 

even further. We conclude, therefore, that ambiguity in an environment is not only 

a difficult problem but also a common one, and hence deserving of our attention 3. 

Globallocalization intrinsically entails combining sensor measurements from mul­

tiple vantage points along sorne path. The problem of selecting an optimal length 

trajectory for minimum distance localization has been demonstrated to be NP-hard 

[DRW98]. 

Simple heuristic strategies for localization have been used in practice but these 

can sometimes exhibit strikingly poor performance [DRW98]. Consider Figure 1.2 

adapted from [DRW98]. The robot, represented by the small shaded square, is 

situated in one ofmany similar corridors. However, each corridor contains a distinctive 

(signature) room that uniquely identifies it from the other corridors. In Figure 1.2, 

the distinctive room is situated a distance d+f to the left of the robot' initial position. 

To the right of the robot's initial position are a long sequence of rooms that provide 

sorne information regarding the robot's location, although none can uniquely identify 

the location. If the robot were to make a purely greedy choice and decide to go to 

3In Chapter 3 we describe experiments that demonstrate the increasing level of ambiguity in an 
environment with deteriorating visibility. Actual experimental results are presented in Chapter 5. 

4 



1.3 APPROACH 

• 
d+ê d 2d ... 

FIGURE 1.2. Simple heuristic leads to exponential path length. 

the nearest place from its current location that can provide any information, then it 

would choose to travel a distance d to the first room to the right instead of traveling 

a distance d + E to the signature room. Next, it would once again choose to travel a 

distance 2d instead oftraveling a distance 2d + E. If the rooms to the right were placed 

at distances d, 2d, 4d, 16d, ... successively from one another, the robot could end up 

traveling an exponentially increasing distance instead of just the d+E required to move 

from its initial position to the signature room. This example clearly demonstrates that 

a simple heuristic can fail quite badly to localize the robot within even a reasonable, 

if not near-optimal, distance margin. Hence we are motivated to search for a more 

intelligent localization strategy which is nonetheless efficient to compute. 

3. Approach 

Previous work in minimum distance localization [DRW98] requires the robot to 

make observations that are arbitrarily difficult to achieve in practice. That is, the 

robot is directed to visit a series of visibility cells - places where specifie combinations 

of landmarks in the environment can be seen - even though these cells may be arbi­

trarily small 4. For any real robot with any odometry error whatsoever, maneuvering 

into such cells may not be feasible. As a result, errors in the robot's position estimate 

4Visibility cells are defined in Chapter 2. 

5 



1.4 THESIS OUTLINE 

might be introduced which would only propagate as the robot continues to travel, 

thereby compromising its chances of effective localization. 

We present two randomized approximation algorithms that efficiently solve the 

problem of minimum distance localization based on visiting a series of randomly 

selected sample points in the environment from which distinguishing landmarks may 

be observed. In the context of our environment model, we consider landmarks to 

be combinations of vertices and edges that define the perimeter of the environment. 

Out of a set of randomly selected locations in the environment, the robot chooses the 

location that promises the most information gain regarding its initial location. The 

robot then proceeds to visit this chosen location where it collects sensor data in order 

to disambiguate its initial position in the environment. This pro cess is repeated in 

an effort to further rule out remaining ambiguities until the robot is able to uniquely 

determine its initial location. We argue that by virtue of random sampling, our 

strategy would direct the robot to visit a particular visibility cell with a probability 

directly proportional to the are a of that cell. Hence vanishingly small visibility cells 

have vanishingly small probabilities of being visited 5. 

The localization algorithms we propose are distinct from the previous work in 

globallocalization in that they are the first algorithms to not only address the problem 

of path optimization, but to also be implemented practically with significant results. 

Randomized approaches to a multitude of hard problems in Computer Science have 

been known to yield simple and efficient algorithms where deterministic techniques 

have failed 6. Our case is no exception. The algorithms we have developed are efficient 

to compute and yet also efficient in their performance. 

4. Thesis Outline 

The remainder of this thesis is organized as follows: 

5The case where the only disambiguating position happens to be in fact a tiny cell requires special 
sampling techniques and is addressed in the Discussion section of Chapter 5. Note however, that if 
the sole disambiguating cell is so small that the robot can not navigate to a position within it, then 
localization is not possible with any algorithm. 
6For a more complete listing see [MR95]. 

6 



1.4 THESIS OUTLINE 

In Chapter 2, we introduce formally the geometric and algorithmic concepts re­

quired to understand the work done in this thesis and examine related literature that 

makes use of similar concepts to solve different problems. 

In Chapter 3, we explore in depth previous work in globallocalization, including 

competing approaches to global localization in ambiguous environments, with the 

intent of placing the research done in this thesis in context. 

In Chapter 4, we describe the algorithms we have developed and provide an 

analysis of our work. We begin by formally defining the localization problem that 

we are solving and stating any assumptions we have made. Next, we present two 

localization algorithms that solve minimum distance localization. Following that, we 

provide a complexity analysis and a discussion of our algorithms. FinaIly, we describe 

the techniques we used to generate random self-similar environments for the purposes 

of testing and experimentation. 

In Chapter 5, we present experimental results obtained for a set of self-similar 

environments. 

Finally, we conclude with a discussion of the work, as weIl as an outline of the 

open questions and possible directions for future research in this area. 

7 



CHAPTER 2 

Background 

The work presented in this thesis brings together three distinct research areas: 

(i) Visibility 

(ii) Randomized Aigorithms 

(iii) Global Robot Localization 

Our algorithms solve the problem of globallocalization of a mobile robot using 

geometric techniques rooted in the fields of visibility and randomized algorithms. 

Research conducted to date on global localization, including competing approaches, 

will be discussed in depth in the next chapter. In this chapter however, we introduce 

formally the geometric and algorithmic concepts required to understand the work 

done in this thesis. As weIl, we examine related literature that makes use of similar 

concepts to solve different problems. 

1. Visibility 

The question of whether two objects can see each other is a fundamental one 

in Computational Geometry. The study of visibility spans a wide range of issues 

from 2D ray shooting, art gallery theorems, and visibility queries in polygons to their 

more complicated 3D counterparts. Visibility problems arise in a diverse array of 

situations. For example in Computer Graphics, when rendering a scene containing 



2.1 VISIBILITY 

FIGURE 2.1. A simple polygon. 

a collection of objects and a light source, we would like to know which objects are 

occluded and which objects receive and reflect light rays from the light source. In 

mobile robotics, determining the visibility of the robot's sensors is imperative to the 

robot fulfilling its mission successfully, and without hazard to itself or other objects 

in the surrounding environment. 

Our approach to globallocalization involves visibility in the 2D plane and takes 

inspiration from applications of the art gallery problem. In this section we will offer 

precise definitions for necessary terminology and describe relevant results. 

DEFINITION 1.1 (Polygon [O'R98]). A polygon is the regzon of a 2D plane 

bounded by a finite collection of line segments forming a simple closed curve. Let 

Vo, VI, V2, ... , Vn-l be n points in the plane where n ~ 3. Let eo = VOVI, el = VI V2, ... , ei = 

ViVi+l, ... , en-l = Vn-l Vo be n segments connecting the points. Then these segments 

bound a simple polygon if and only if: 

• The intersection of each pair of segments adjacent in the cyclic ordering is 

the single point shared between them: ei n ei+l = Vi+l, for aU i = 0, ... , n-1. 

• N onadjacent segments do not intersect: ei n ej = f/J, for all j =j:. i + 1. 

The points Vi are referred to as the vertices of the polygon, and the segments ei 

are referred to as the edges. A polygon of n vertices has n edges. Figure 2.1 depicts 

a simple polygon. 

9 



2.1 VISIBILITY 

DEFINITION 1.2 (Visible). Two points x and y contained in a polygon Pare 

visible to each other or can see each other if and only if the closed straight line 

segment connecting them do es not intersect the exterior of P: xy ç P [O'R98] (see 

Figure 2.2). 

FIGURE 2.2. Points x and y are mutually visible. 

In the context of a robot equipped with a range sensor or probe (such as a camera), 

the definition of what is visible to the robot must be modified in accordance with the 

capabilities of the sensor. Since aIl sensors are limited in range, let us assume that 

only those objects lying within a distance r max can be detected. This gives rise to 

the following definition for the visibility of point x from point y, both contained in a 

simple polygon: 

DEFINITION 1.3 (Limited Range Visible). Let P be a simple polygon. Point x E P 

is limited range visible from point y if the closed straight line segment connecting them 

do es not intersect the exterior of P: xy ç P, and d(x, y) ::; rmax , where d(x, y) is the 

Euclidean distance between x and y, and r max > o. 

DEFINITION 1.4 (Visibility Polygon). The visibility polygon V(q) from a point 

q E a polygon P is defined as the set of aU points in P that are visible from q (see 

Figure 2.3). 
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2.1 VISIBILITY 

FIGURE 2.3. Shaded region represents the visibility polygon of point q in 
polygon P. 

Visibility polygons can be computed in linear time [GA81, Lee83]. Next, we 

define a visibility polygon in the context of a range sensor which is only able to detect 

objects lying within a distance r max as follows: 

DEFINITION 1.5 (Limited Range Visibility Polygon). The limited range visibility 

polygon V' (q) from a point q EPis defined as the set of ail points Pi, i = 0,1, , , , ,n-1 

in P that are visible from q, and d(q,Pi) ~ rmax , where d(q,Pi) is the Euclidean 

distance between q and Pi, i = 0,1, , , , ,n - 1, and rmax > O. 

Thus far, we have defined visibility from a point. Now, we will introduce the 

notion of weak visibility from an edge 1. 

DEFINITION 1.6 (Weakly Visible [Tou86]). A set of points Q is said ta be weakly 

visible from an edge e if for each point q E Q there exists a point zEe (depending 

on q) such that q and z are visible. 

DEFINITION 1.7 (Weak Visibility Polygon). Given a polygon P the weak visibility 

polygon W(e) of an edge e EPis defined as the set of ail points y E P that are visible 

from some point on e (see Figure 2.4). 

1 A set of points Q is said to be completely visible from an edge e if for every point q E Q and every 
point zEe, q and z are visible. A set of points Q is said to be strongly visible from an edge e if for 
every point q E Q there exists a point zEe such that q and z are visible [AT81]. 
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e 

FIGURE 2.4. Shaded region represents the weak visibility polygon of edge e. 

Several authors have proposed algorithms for computing the weak visibility poly­

gon of an edge e E a polygon P that run in time 0 (n log n). Shortest path algorithms 

compute the Euclidean short est path from a source vertex in a polygon to a destina­

tion vertex in P. Toussaint [Tou86] and Guibas et al. [GHL +87] present linear-time 

algorithms for computing the weak visibility polygon of an edge e E a polygon P by 

making use of the relationship between visibility and short est path problems. These 

solutions are linear-time because they use the linear-time triangulation algorithm of 

Tarjan and Van Wyk [TW86]. 

DEFINITION 1.8 (Visibility Cell [G MR97]). Given a polygon P a visibility cell 

C of P is a maximally connected subset of P with the property that any two points in 

C see the same subset of vertices of P. 

DEFINITION 1.9 (Visibility Cell Decomposition [GMR97]). A visibility cell de­

composition of a polygon P is a subdivision of Pinto visibility cells (see Figure 2.5). 

The subdivision is created by introducing line segments inside P. Each line 

st arts a reflex vertex u and is collinear with a vertex v which is either visible from u 

or adjacent to it in P. Hence, each such line partitions Pinto two regions, one where 

v is not visible due to the obstruction created by u and another region where v is 

unobstructed by u. The lines are also referred to as visibility cell edges (see dashed 

lines in Figure 2.5). Each time we move from one visibility cell to another, crossing 

a visibility ceIl edge, our view of P changes. 
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FIGURE 2.5. The visibility ceU decomposition of polygon P. 

1.1. The Art Gallery Problem. Consider the following scenario: The owner 

of an art gallery wants to place guards such that the entire gallery is thief-pro of. 

• Where should the guards be placed so that the entire gallery is covered'? 

• What is the minimum number of guards required to protect the art gallery'? 

• What is the optimal placement of the guards which would ensure that only 

the minimum number necessary are used'? 

These questions illustrate sorne of the issues that arise in what has come to be 

known as the art gallery problem. It originated during a discussion between Victor 

Klee and Vasek Chvatal in 1973. The original art gallery problem was as follows: 

determine the minimum set of points G in a polygon P such that every point of P 

is visible from sorne point of G [She92]. Lee and Lin showed this problem to be 

NP-hard [LL86]. Chvatal proved that the number of points of G will never exceed 

ln/3J for a simple polygon of n sides [Chv75] (see Figure 2.6). 

Several variations on the art gallery problem have since been studied [CN88, 

ST88, BGL +97, She89], giving rise to a large body of literature collectively referred 

to as art gallery problems and theorems. In addition, the practical nature of the 

art gallery problem has inspired other problems of a similar geometric flavour. It 

is easy to see the applications of art gallery theorems and results in the field of 

mobile robotics - we need only replace those guards with robots! In particular, art 
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FIGURE 2.6. Chvatal's comb polygon requiring n/3 guards. 

gallery algorithms have been used to compute efficient sensing locations for mobile 

robots. Sensing is a fundamental task imperative for robot exploration, mapping, 

and localization. Therefore, it is important to determine at what locations the robot 

should sense in order to obtain the maximum information regarding its surroundings. 

This formulation is referred to as the next best-view (NB V) problem. We will examine 

sorne art gallery algorithms in robotics in the next section. 

2. Randomized Algorithms 

Algorithms that use random numbers to make choices during computation are 

called randomized algorithms [MR95]. The running time and the quality of the 

output of a randomized algorithm, therefore, differs from one execution to another 

despite a fixed input. Randomized algorithms originated with Monte Carlo methods 

used in numerical analysis and simulation. The notion of a probabilistic Turing ma­

chine in complexity theory was first put forth by de Leeuw et al. [LMSS55]. The 

earliest randomized algorithms were developed by [Ber70, Rab76, SS77]. Since 

then, randomized algorithms have grown in popularity and now enjoy extensive use 

in different fields including mobile robotics. A comprehensive survey can be found in 

the book by Motwani and Raghavan [MR95]. The two most important advantages 

of randomized algorithms are simplicity and speed. They are simple to implement 

and their expected time performance is often substantially better than that of deter­

ministic algorithms. Karp [Kar91] lists sorne of the principles guiding the design of 

14 



2.2 RANDOMIZED ALGORITHMS 

randornized algorithrns. We describe a subset of these principles relevant to our work 

as follows: 

• Random Sampling: Small random samples are viewed to be representative 

of a much larger population. Henee, these samples can be used in algorithms 

to compute sOme feature of the population as a whole. 

• Foiling an Adversary: An adversary may pick a bad input which induees a 

deterministic algorithm to perform poorly. Randomizing the input makes 

aIl inputs behave more or less alike on average. As a result, the adversary's 

strategy is less critical. 

• Abundance of Witnesses: In sorne cases, a solution can be obtained by 

finding a witness which could verify a hypothesis. However, the search 

space containing the witness may be too large to be searched exhaustively. 

If a reasonably large number of witnesses were present, then a randomly 

chosen elernent might weIl turn out to be the witness. 

Hence, due to the principles underlying the design of randomized algorithms, 

such algorithms are ideally suited to tackle NP-hard problems. For example, in lin­

ear programming, the best known combinatorial bounds were exponential in either 

the number of constraints or the number of variables. The first subexponential al­

gorithms were randomized algorithms, obtained independently by Kalai [Ka192] and 

by Matousek et al. [MSW92]. Next, we will describe hard problems in robotics that 

employ randomized techniques to arrive at a solution. 

2.1. The Next Best-View Problem. The next best-view (NB V) problem 

can be forrnulated as follows: determine the next pose which will allow us to ex­

tract the greatest amount of scene information. This issue arises in several fields 

including Computer Vision and Graphies where careful viewpoint selection becomes 

crucial for puposes such as object recognition, 3D scene reconstruction, and 3D mod­

eling. In mobile robotics, next best-view algorithms have been used for a variety 

of tasks. Arnongst other applications, NBV techniques are employed to compute 
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near-optimal sensing locations for exploration and map-building. The NBV problem 

has been shown to be isomorphic to the set covering problem which is known to be 

NP-complete [SRROl]. Local planning methods are often used to solve instances 

of the NBV problem. As a result, computing a succession of (local) NBV positions 

may accumulate a rather large number of sensing operations. In this section we will 

describe sorne randomized algorithms that address the NBV and art gallery problems 

in the context of mobile robot navigation and data acquisition. 

Gonzalez-Banos and Latombe [GBL98, GBLOla] present two randomized al­

gorithms that use a 2D map to estimate the locations where sensing will yield the 

most information through random sampling of the workspace. These randomized 

algorithms solve an extended version of the art gallery problem. The first algorithm 

picks random positions in the interior of a polygonal workspace and computes the 

portions of the workspace boundary that would be covered by "guards" located at 

these positions. In order to choose the near-optimal number of positions such that 

the boundary is completely covered, the algorithm solves the set-coverage problem 

using a greedy strategy. Observing that guards located too deeply in the interior of 

the workspace can not see the boundary leads to the second algorithm. The second 

algorithm begins by sampling a point located on the boundary of the workspace. 

Next, the region from which this point can be observed is computed. This region 

is then sampled and the location with the highest coverage is retained. As a result, 

the unobserved perimeter of the workspace is reduced and the process is repeated 

until the entire workspace boundary has been covered. The authors obtain an upper 

bound on the running ti~e of O(nm2
) for the first algorithm, where n is the number 

of edges in the workspace and m is the number of random samples, and a logarithmic 

upper bound for the second algorithm. 

In [GBL02, GBLOlb, GBML +00] Gonzalez-Banos and Latombe propose navi­

gation strategies for exploring and building polygonallayouts of indoor environments. 

The robot has no a priori information about the environment and must construct a 

model of the environment simultaneously as it explores its surroundings. The authors 
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address the next best-view problem and put forth an algorithm that directs the ro­

bot to construct and navigate through safe regions - the largest regions guaranteed 

to be free of obstacles, given the sensor measurements obtained so far. These safe 

regions are used to predict the overlap between future views and the current environ­

ment model, and to compute locations that are likely to see large unexplored areas 

(in other words, these are the next-best view locations). Safe regions are expanded 

iteratively. A first layout model is built from the data sensed at the robot's initial 

position. Subsequently, at each Iteration, the algorithm updates the layout model by 

calculating the union of the existing safe region with the local safe region computed 

at the new sensing position of the robot. Potential sensing or next best-view posi­

tions are generated by randomly sampling the regions within the visibility range of 

unobserved edges of the current safe region. The candidate positions are evaluated 

according to the expected gain of information that will be sensed at this position and 

the cost of moving there. The authors also describe methods for polyline generation 

from sensor data and model alignment. 

2.2. Probabilistic RoadMaps. Robot motion planning has been shown to 

be a hard problem, requiring time exponential in the number of degrees of freedom 

of the robot to solve it [KL98]. While there exists a wide range of practical path 

planners, the one we are interested in is the Probabilistic RoadMap planner (PRM). 

A probabilistic roadmap is defined as a network of simple paths connecting collision­

free configurations generated by randomly sampling a robot's configuration space 

[HKL +98]. Computing a probabilistic roadmap is divided into two phases: the pre­

processing phase and the query phase. During the preprocessing phase, random free 

configurations of the robot are generated and connected where possible using a local 

motion planner. Thus a probabilistic roadmap is constructed and stored as a graph 

where the nodes rcpresent the frce configurations of the robot and the edges represent 

feasible paths computed by the local motion planner. Subsequently, queries, as king 

for a path between two free configurations of the robot, can be answered by searching 

the graph for a sequence of edges connecting the start and goal configurations. 
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Narrow passages in a robot's configuration space pose a threat to the connectivity 

of a probabilistic roadmap. By virtue of random sampling, very few configurations 

lying in narrow spaces are likely to be picked. Hsu et al. [HKL +98J describe a 

random sampling strategy for finding narrow passages with probabilistic roadmap 

planners. Let F denote the free space. A new roadmap R' is constructed in a dilated 

free space F', generated by permitting the robot sorne penetration distance into the 

obstacles present in the workspace. R' now provides information regarding which 

areas of the original free space F require more dense sampling. As a result, local 

resampling operations are carried out in the neighbourhood of certain milestones and 

links of R' that are not in F. This leads to the discovery of new milestones located 

in F, thereby giving rise to a roadmap R which is wholly contained in F. 
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CHAPTER 3 

Multiple Hypothesis Global Localization 

In order to successfully carry out its tasks, a mobile robot must be able to estimate 

its location with respect to sorne representation of its environment. There exist two 

main types of localization problems: local localization and global localization. Local 

localization, also referred to as pose maintenance, describes the case where the robot's 

initial pose is known and the localization process seeks to refine the robot's estimate 

of its pose and correct any incremental errors in the robot's pose that may arise. 

More challenging is the global localization problem, where the robot must infer its 

initial or current pose without any a priori estimate of its pose given that the space 

of possibilities is the entire environment [DJOO]. The globallocalization problem is 

made even more difficult when the environment the robot resides in contains ambigu­

ities. Previous work in globallocalization in the context of ambiguous environments 

models ambiguity in terms of multiple hypotheses, where the set of similar-Iooking 

locations in the environment constitutes the set of hypotheses. This chapter surveys 

competing works on multiple hypothesis global localizatiou and seeks to place the 

research done in this thesis in context. 

As we established in Chapter l, ambiguity in an environment is not ouly a dif­

ficult problem but also a common one, which can only be exacerbated by limited 

sens or visibility and noise. We carried out experiments on a set of randomly gen­

erated environments measuring the level of self-similarity in each environment. Our 
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experimental results demonstrate that while the number of self-similar locations in 

an environment is large enough with unlimited visibility 1, this number increases 

significantly as visibility gets poorer which is the case with real robots 2. 

Most research to date has focused on the relatively simpler problem of pose main­

tenance [Sug88, SD98, NMN94, LDW91, MD94]. Common techniques involve 

Kalman filtering, triangulation, learning from landmarks, principal components anal­

ysis (PCA) and vision-based models, to name a few. A detailed survey of the various 

approaches to pose maintenance can be found in the book by Dudek and Jenkin 

[DJOO]. 

In contrast, multiple hypothesis global localization has received comparatively 

litt le attention. Existing approaches can be divided into two main categories: the 

probabilistic approach and the geometric approach. The most well-known family of 

probabilistic methods is Markov and Monte Carlo localization and their variations. 

These methods consider practical issues such as sensor noise, drift, and incorrect 

maps. Moreover, they have been implemented on real robots operating in real envi­

ronments. However, sorne techniques utilize simple heuristics for robot motion, like 

wall following, which can be shown to pro duce unnecessarily long trajectories and can 

sometimes even fail to localize the robot. Other methods employ passive localization 

which has no strategy for controlling the robot's motion or its sensors. Thus the robot 

drifts and senses randomly in its environment, hoping to eventually localize itself. 

The purely geometric research on global localization in self-similar environments 

assumes, for the most part, ideal conditions such as perfect sensor visibility, a correct 

map, and zero drift. Issues considered involve near-optimal strategies for localiza­

tion that can detect aIl hypothetical locations and minimize the distance traveled by 

the robot as weIl as schemes to improve the computational complexity of existing 

algorithms. 

IThis is only to be expected given that we are dealing with environments generated to be self-similar. 
2See Chapter 5 for actual experimental results. 
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1. Minimum Distance Localization 

In this section we will focus on research that addresses the problem of minimizing 

the length of the trajectory followed by a mobile robot to achieve globallocalization. 

Dudek, Romanik, and Whitesides [DRW98] consider the problem of localizing a 

robot in a known environment with minimum travel. They show that the problem of 

constructing an optimallocalizing decision tree is NP-hard by giving a reduction from 

the Abstract Decision Tree (ADT) problem, which was proven to be NP-complete by 

Hyafil and Rivest [HR76]. In addition, Dudek et al. present an àpproximation 

algorithm in which the localization problem is treated in two phases: hypothesis 

generation and hypothesis elimination. The hypothesis generation phase computes 

the set of hypothetical locations that match the observations sensed by the robot at 

its initial location. The hypothesis elimination phase rules out incorrect hypotheses 

thereby determining the true initial location of the robot. For the hypothesis gener­

ation phase, the solution proposed by Guibas, Motwani, and Raghavan [GMR97] is 

used. 

Guibas et al. address the problem ?f globallocalization by embedding. They show 

how to preprocess a map polygon P, by computing its visibility cell decomposition, 

so that given the robot's visibility polygon V, the set of points in P whose visibility 

polygon is congruent to V and oriented similarly can be returned. Their technique 

preprocesses Pin 0 (n5 log n) time and 0 (n5 ) space, where n is the number of vertices 

of P. Subsequently, it answers queries in O(m+logn+k) time, where n is the number 

of vertices of P, m is the number of vertices of V, and k is the number of places in 

P at which the visibility polygon is V. Without preprocessing, a single localization 

query can be answered in O(mn) time. 

The preprocessing phase mentioned above decomposes the polygonal map into 

visibility cells. This visibility cell decomposition is used in the hypothesis elimina­

tion phase in the algorithm of [DRW98]. First, the different hypotheticallocations 

21 



3.1 MINIMUM DISTANCE LOCALIZATION 

are overlayed together with their visibility cell decompositions 3. The resulting over­

lay arrangement can yield up to O(n6
) cells. Each cell in the overlay arrangement 

corresponds to a potential probe position which can distinguish between different 

hypothetical locations. Consequently the robot greedily travels to the nearest dis­

tinguishing visibility cell from its starting location in order to rule out hypotheses. 

The robot travels a path of at most (k - 1)d, where d is the length of an optimal 

verification tour. Dudek et al. prove that this competitive ratio is the best possible. 

However, with space and time complexity of O(n6 ), their algorithm is impractical to 

use. 

Kleinberg [Kle94] approaches robot localization by modeling the environment as 

a bounded geometric tree. The sensing model is based on determining the relative 

location and degree of nodes in the tree, where each node corresponds to a specific 

location in space. Schuierer [Sch96] proposes a technique that uses geometric overlay 

trees to speed up the implementation of the greedy localization strategy put forth by 

[DRW98]. While his approach reduces the time complexity to O(kn2
) and space 

complexity to O(kn), no implementation results are shown and it is unclear how to 

extend the technique to address more practical issues. 

Buck, Schafer, and Noltemeier [BSN99] address the hypothesis elimination phase 

of the globallocalization problem by using voronoi diagrams of the environment. The 

mobile robot is assumed to be circular, with a diameter r, and uses a safety margin t 

to aIl obstacles and walls. A shortest-path tree with respect to the voronoi diagram as 

weIl as an overlay tree are built. Next, the robot is moved along the voronoi vertices 

and senses its environment at target nodes. In this fashion, incorrect hypotheses are 

discarded. A running time of O(knlog(n)) is achieved for an environment containing 

obstacles. The authors also give a competitive ratio of 2(k - 1) times the optimum 

verification path restricted to voronoi paths. Clearly, a path that adheres to the 

voronoi diagram is longer than one that do es not have to conform to this restriction. In 

3 see [DRW98] for more details. 
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fact, a voronoi path, while having the property of maximum clearance to aIl obstacles 

in the environment, may even preclude feasible, shorter paths. 

The authors also describe two alternative decision strategies to that proposed 

by Dudek et al. [DRW98] (in which the robot greedily travels to the nearest dis­

tinguishing visibility cell from its starting location in order to rule out hypotheses). 

The first decision strategy, called residual path length (RP L) weights the choice of 

the next sensing point with the expected number of hypotheses to be eliminated at 

that destination. This strategy assumes, rather unrealisticaIly, that aIl hypotheses 

are equally distributed. Decision strategy inverse expected entropy (IEE) does not 

assume an equal distribution of the hypotheses. Instead, it assumes that a set of 

ranked hypotheses have been generated with different probabilities according to their 

rank. A weighting function determines the final decision. 

In realistic scenarios, range sensors do not provide exact visibility polygons which 

we may compare with the visibility ceIl decomposition of the polygonal environment. 

Moreover, range sensors have a limited sensing range in practice and minor obstacles, 

too insignificant to be included in the environment map, or more unpredictably still, 

dynamic obstacles, may affect the robot's view. Karch et al. [KW99, KNW97, 

KNW98] examine polygon distances for modeling the similarity between a range scan 

and the preprocessed visibility information used for robot localization in a polygonal 

map. Given a range scan and a pre-processed visibility ceIl decomposition, their 

algorithm looks for the visibility skeleton that is most similar to the scan. It does 

so by performing a nearest neighbour query in the set of pre-processed visibility 

skeletons with respect to a chosen distance function. The authors describe a distance 

function for star-shaped polygons caIled the polar coordinate metric (PCM). The polar 

coordinate junction (PCF) of a star-shaped polygon P corresponds to a description of 

P in polar coordinat es with its kernel point as the origin and with period 27r. Thus, 

the PCM between two star-shaped polygons P and Q is the minimum integral norm 

between their respective PCFs in the interval [0,27r] over aIl horizontal translations. 

Experimental results show a 90% success rate with small scenes. 
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2. Markov Localization 

Markov localization is a probabilistic approach to pose estimation developed by 

various authors in slightly differing forms [BFHS96, CKK96, NPB95, SK95]. 

This technique is based on the Markov assumption which states that sens or measure­

ments at the current time are independent of past or future sensor measurements and 

depend solely on the robot's current pose. Markov localization proceeds by maintain­

ing a probability distribution (also known as belie/) over the entire configuration space 

of the robot. Initially the state of uncertainty of the robot's location is represented by 

a uniform probability distribution over aIl positions. As the robot moves around and 

senses its environment, the probability density is weighted and modified to reflect a 

higher probability at those hypothetical locations that appear to be more consistent 

with the sensor observations. Eventually most of the probability is centered around 

a single location, which the robot may assume to be its true position with a high 

degree of certainty. 

Fox, Burgard, and Thrun [FBT98a, FBT98b] use Markov localization to de­

termine a mobile robot's pose from sensor data. Their approach is one of active local­

ization, where the localization routine assumes control over the robot's motion and 

sensors. The environment state space is discretized into a position probability grid 

and optimal actions are chosen on the basis of their utility versus their cost. Exper­

imental results demonstrate that global localization is achieved with this technique, 

but the length of the localizing trajectory relative to the optimum is not considered. 

The authors also conducted experiments replacing their active navigation strategy 

with random motion, resulting in several instances where the robot failed to localize 

itself. 

An obvious disadvantage of grid-based Markov localization is that the state space 

for even medium-sized environments can get exceedingly large. Moreover, increasing 

the grid resolution decreases the level of accuracy of the solution. If the state space 

is continuous, which is indeed the case with real mobile robots operating in real 
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environments, updating the belief as the robot moves and senses new information is 

expenslve. 

2.1. Monte Carlo Localization. In order to overcome the high computa­

tional complexity of Markov localization, Monte Carlo localization (MCL) was intro­

duced [FBDT99, DFBT99]. In Monte Carlo localization, the belief is represented 

by a set of N weighted, random samples or particles. When the robot moves, MCL 

generates N fresh samples that approximate the robot's new position. Each sam­

pIe set is generated by randomly picking a sample from the previously computed set 

of samples. The likelihood of a sample being drawn is determined by its current 

weighting factor. Sensor readings are taken into account by re-weighting the samples. 

Experimental results indicate that Monte Carlo algorithms are able to localize a 

robot more efficiently than Markov methods in certain cases, even succeeding where 

grid-based Markov localization fails [TFBDOl, FTBDOl]. A drawback of Monte 

Carlo methods lies in the number of samples generated in those regions of the environ­

ment with high probability distribution. The technique performs poorly if insufficient 

samples are generated in regions where the belief is large [TFBOO]. 

Several papers [TFBOO, MSW02] present global localization results based on 

the theme of Monte Carlo localization. The sampling problem noted above is ad­

dressed in [TFBOO]. Milstein, Sanchez, and Williamson [MSW02] extend MCL to 

introduce the idea of clusters of particles. They point out that a significant limitation 

of MCL is that it converges too quickly on a single pose of high probability. This is 

undesirable in highly symmetrical environments with very few distinguishing features 

that allow for globallocalization. In such instances, it is preferable to track multiple 

distinct hypotheses for long periods of time. In the Cluster-MCL algorithm described 

in [MSW02], the different clusters represent the different hypothetical locations of 

the robot. The probability of each cluster is tracked by multiplying the prior prob­

ability of the cluster by the average of the likelihoods of the points that compose 

that cluster. At any instant in time, the cluster with the highest probability is used 

to determine the robot's location. Experimental results indicate that Cluster-MCL 
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outperforms MCL in highly symmetric environments but sorne drawbacks exist. Clus­

ters may aIl be generated at the same location or no clusters may be generated in 

the correct location. AIso, the number of clusters may grow out of bounds and must, 

therefore, be limited by a pre-defined value in order to stay efficient. 

3. Kalman Filter-based Localization 

Position tracking using an extended Kalman filter is a locallocalization technique. 

The standard argument against using Kalman filters for global localization is that 

the restrictive nature of Gaussians allows only for unimodal distributions, thereby 

representing one pose hypothesis only [FBDT99]. Consequently, the case where the 

robot's pose is ambiguous can not be handled. In contrast, Markov and Monte Carlo 

localization methods represent the robot's belief in a discrete but multi-modal way. 

However, adaptations of the extended Kalman filter approach have been used for 

globallocalization. 

Jensfelt and Kristensen [JKOl] point out that multiple unimodal distributions 

can be used to represent ambiguous pose. They use a hybrid approach, that consists 

of Kalman filtering of Gaussian pose hypotheses and Bayesian probability, to globally 

localize a mobile robot. An incomplete topological world model is utilized and the 

robot's motion is dictated by a simple, greedy strategy. Results from experiments 

performed with a real robot indicate that although the robot is able to localize itself, 

in certain cases, it travels farther and takes longer than necessary (a shorter localizing 

path can be shown to exist). The authors note that sorne exploration strategy is 

neeessary sinee random motion is not likely to lead to successful localization. 

Arras, Castellanos, and Siegwart [ACS02] take a probabilistic feature-driven ap­

proach to multi-hypothesis globallocalization. An interpretation tree is maintained 

which pairs locally observed measurements to a global map of model features. Hy­

potheses are generated by searching the interpretation tree for likely pairings that 

match the observations sensed by the robot to the features in the global map. Geo­

metrie constraints pertaining to the properties of a feature reduce the complexity 
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of the search. Examples of such constraints are intrinsic properties, such as feature 

colour, texture or dimension, relative measures such as distance and angle, and visi­

bility constraints indicating whether a model feature is visible from a robot location. 

The robot's location is estimated using the extended information flUer (EIF) , a re­

formulation of the extended Kalman filter to handle the case where no a priori pose 

estimate is available. Experiments conducted with a simulated environment demon­

strate successful localization. 

Gutmann and Fox [GF02] compare the performances of the Markov, Monte 

Carlo, Kalman filters as weIl as various combinations and extensions of these tech­

niques in a series of localization experiments. 

4. Other Approaches 

Duckett and Nehmzow [DN97] describe a perception-based localization method 

where the robot is expected to rely solely on its own perceptions. Hence, no map is 

provided and the robot has to first explore its surroundings and build a map using a 

neural network. Subsequently the robot is moved to an arbitrary, unknown location 

within the same environment and must re-Iocalize itself. It do es so by comparing old 

and new information and considering the change in its perceptions over time as it 

moves around. A set of competing hypotheses are maintained as stored place mem­

ories, each associated with a confidence level reflecting the robot's certainty in that 

hypotheticallocation being its true location. Evidence accumulated through sensory 

perception narrows down the hypotheses until a single one remains. Experiments 

were carried out with "wall following" as weIl as "random wandering" as motion 

strategies. While better results were achieved with wall following than with random 

wandering, this strategy is not efficient in terms of distance traveled by the robot 

to achieve localization. As observed in [FBT98a], in certain types of environments, 

wall following may even fail to direct the robot to informative places. 

Demaine, Lopez-Ortiz, and Munro [DLOM02] consider the problem of placing 

reflectors in a 2D polygonal environment in such a way that the robot is able to 
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localize itself from any point in the environment. The robot is permitted to rotate at 

its current location and use its laser sensor to determine the angles at which certain 

refiectors are visible. The authors demonstrate that there is always a placement of 

refiectors, computed in polynomial time, that allows the robot to localize itself from 

any point in the environment. Betke and Gurvitz [BG97] solve robot localization 

in a known environment by using angles subtended by landmarks and assuming a 

correspondence between landmarks and points in the map. Avis and lmai [AI90] 

present localization algorithms where the environment is assumed to contain identical 

markers, of which the robot takes angle measurements. 

Brown and Donald [BDOO] describe algorithms for robot localization which allow 

for uncertainty in the data returned by the range sensor. They implement their 

technique on a real mobile robot and present experimental results. Tovey and Koenig 

[TK03] analyze Greedy Mapping, a mapping scheme that moves the robot from 

its current location on a shortest path toward the nearest unvisited or informative 

location until the terrain is mapped. 
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CHAPTER 4 

Methodology and Algorithms 

In this chapter we will describe the algorithms we have developed and provide an 

analysis of our work. We begin by formally defining the localization problem that 

we are solving and stating any assumptions we have made. Next, we present two 

localization algorithms that solve minimum distance localization. Following that, we 

provide a complexity analysis and a discussion of our algorithms. Finally, we describe 

the techniques we used to generate random self-similar environments for the purposes 

of testing and experimentation. 

1. Assumptions 

In this section we formally define the localization problem and state the assump­

tions we have made about the robot and its environment. 

We are given a random environment modeled by an n-vertex simple polygon P 

without holes positioned somewhere in the 2D plane. A mobile robot is placed at an 

unknown initial location within P. The robot has a map of P (see Figure 4.1). First, 

the robot must determine if its initial location is unique by sensing its surroundings 

and matching the resulting visibility data W to the map of the environment. Given 

P and W, the robot must generate the set H of aIl hypothetical locations Pi in P 

such that the visibility at Pi is congruent under translation to W. Next, the robot 



4.1 ASSUMPTIONS 

FIGURE 4.1. Polygonal environment P. Visibility data at locations A and B 
is the same. 

must determine its true initial location by sensing and traveling in order to eliminate 

aIl hypotheticallocations but one from H, while minimizing the distance traveled. 

The robot is assumed to be a point robot moving in this static 2D, obstacle­

free environment. The robot is able to make error-free motions between arbitrary 

locations in the environment. The movement of the robot is restricted to the inside 

and along the boundary of the environment. As weIl, it is able to determine its 

orientation. Otherwise it would be impossible for the robot to uniquely determine its 

exact location in an environment with non-trivial symmetry such as a square 1. 

The robot is also equipped with a range sensing device. The sensor is able to be­

have as a perfect sensor in that it can detect distances to those points on the boundary 

of the environment for which the robot has an unobstructed line of sight. However, 

the distance the sensor can "see" can be bounded by a constant Z. Consequently, 

the sensor can detect distances to those points on the boundary of the environment 

for which the robot has an unobstructed line of sight and which lie within a distance 

Z. If no finite value Z is specified, then the sensor is able to detect objects that are 

infinitely far provided that these objects are not occluded from the robot's line of 

vIsIOn. 

The visibility data W sensed by the robot is composed of the counter-clockwise 

ordering of vertices and edges seen by the robot (see Figure 4.2). Geometrie relation­

ships amongst the data such as vertex angles, vertex and edge adjacencies, distances 

between vertices and edges, distances from the robot to edges and vertices, and the 

1 Note: the robot could still solve the problem up to rotational symmetry. 
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robot's relative position with respect to the data sensed are available. Alternately we 

can define W as the visibility polygon computed from the robot's location. 

The robot must be able to identify those vertices of the visibility polygon that 

are also vertices of P and must know its location within the visibility polygon. Either 

type of data is consistent with the data that can be measured by real sensors such as 

laser range finders. 

The polygonal environment P may be self-similar. In geometric terms, a polygon 

P is considered self-similar if there exists at least one set of points qi E P, i > 1 such 

that no two points are equivalent and the visibility polygon V( qi) of any point is 

congruent under translation to the visibility polygon of any other point in the set. 

2. Description of Algorithms 

We propose two randomized algorithms to solve minimum distance localization. 

Our localization algorithms (like that of [DRW98]) comprise two phases: hypothesis 

generation and hypothesis elimination. The hypothesis generation phase computes 

the set of hypothetical locations that match the observations sensed by the robot at 

its initial location. The hypothesis elimination phase rules out incorrect hypotheses 

thereby determining the true initial location of the robot. However, unlike the hy­

pothesis generation phase of [DRW98], ours do es not involve any preprocessing of 

the map polygon P, nor is the visibility cell decomposition of P computed. Instead 

we generate hypotheses using an online method. Our hypothesis elimination phase 

also differs from that of [DRW98]. In contrast to the deterministic evaluation of each 

visibility cell of P as a potential probe location, performed in [DRW98], we choose 

potential probe locations by randomly sampling points in certain regions of P and 

checking to see if the sam pIed location provides any new information. This avoids 

the computational complexity of calculating the visibility ceIl decomposition together 

with the overlay arrangement as performed in [DRW98]. Moreover, rather than 

pursue a greedy choice, which would move the robot to the nearest location from its 

initial location that can distinguish amongst various hypotheses, our strategy directs 
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A 

~ • 

1 1 

FIGURE 4.2. Visible vertices from location A. 

the robot to make a weighted choice. The utility or information gain of each potential 

probe destination is weighted by its distance from the robot's initial location. We also 

investigate in our experiments, an alternate weighting strategy where the information 

gain at each probe location is weighted by its distance from the robot's current loca­

tion. In general, while we believe that sorne form of weighted choice must be made, 

the actual weighting formula can vary. Our algorithms are flexible and hence, can 

seamlessly incorporate different decision strategies depending on factors such as the 

type of environment, restrictions placed on the robot, and any other objectives that 

the robot might simultaneously be trying to fulfill. Nonetheless, in the descriptions 

of our localization algorithms we will adhere to one weighting strategy - which is that 

the utility of each probe location is weighted with the distance from the robot's initial 

location. Before we proceed to describe the localization algorithms in their entirety, 

we will present the component procedures that make up the final algorithms and give 

sorne definitions. 

2.1. Hypothesis Generation. Guibas et al. [GMR97] propose a technique 

for hypothesis generation which first preprocesses a polygon and then answers queries. 

They also outline a method for answering single shot queries without preprocessing. 

We chose not to use the preprocessing technique of Guibas et al. because of its 

enormous time complexity (see Chapter 3). In addition, the data structures employed 

in their technique appear to be complicated and therefore difficult to implement 
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(a) (b) 

FIGURE 4.3. (a) Visibility polygon sensed by a robot; (b) Hypotheticallocations. 

practicaIly. Hence we opted instead for a more intuitive and easily implementable 

solution. Next, we describe our algorithm for hypothesis generation. 

Let W be the counter-clockwise ordering of vertices and edges sensed by the robot 

at its unknown initial location. Given an environment P and visibility data W, we 

want to determine the set H of aIl points or hypothetical locations Pl, P2, .... . Pk C P 

such that the visibility data or visibility polygon computed at Pk matches W (see 

Figure 4.3). The hypothesis generation algorithm proceeds as follows: 

• Find as many sets V of vertices in P that match W as possible. Start with 

the first vertex in the counter-clockwise ordered set of vertices of P and the 

first vertex Wa in W. While there remain unmatched vertices in W: 

• If Wa finds a match Va then compute the hypothetical initial location Pk 

with respect to this vertex. 

• Select the next vertex Wj in W that we want to match. Determine the 

vertex Vi in P most suit able to match Wj with. This is done as follows: 

- Let the current incomplete set of map vertices matching the vertices 

Wa-Wj in W be called Vk . If Wj-l and Wj are adjacent then select Vi 

in P such that it is adjacent to Vj-l in Vk . If Wj-l and Wj are not 

adjacent and Wj is convex, then get the next vertex in the counter­

clockwise ordered set of vertices of P such that it falls at the same 

distance ve(Ztor from Vj-l as Wj does from Wj-l. 
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- If Wj-l and Wj are not adjacent and Wj is concave, then shoot a ray 

from Pk through Vj-l. Determine the ray's first exit point. Select the 

next vertex occurring counter-clockwise after the exit point such that 

it falls at the same distance vector from Vj-l as Wj do es from Wj-l. We 

must ensure that all intermediate vertices occurring counter-clockwise 

from Vj-l to Vi are not visible from Pk . 

• Finally check that the vertex properties of Vi (angle, incident edges, etc.) 

match those of Wj. Also check that Vi is at the same distance vector from 

Pk as Wj is from the robot's current unknown location and ensure that 

there is an unblocked line of sight between Vi and Pk. If all checks prove 

successful, proceed to matching WHl. Eise start over at Wo and the vertex 

in P following current (erroneous) match for Wo . 

• If our trace brings us back to Vo of Vo, exit. All possible hypotheses have 

been generated. Note that at least 1 valid hypothesis should be generated. 

2.2. Overlay Arrangement. As we described in the previous section, the 

hypothesis generation phase generates a set H =PI,P2, ..... Pk C P of hypothetical 

locations in P at which the robot might be located initially. We select an arbitrary 

hypotheticallocation Pi from H to serve as a reference point or origin. Next, for each 

hypotheticallocation Pj, 1 ~ j ~ k, a translation vector t j = Pi - Pj is defined that 

translates location Pj to Pi. As a result, we compute a set of copies Pl, P 2 , .... . P k of the 

environment polygon P, corresponding to the set of hypothetical locations H such 

that Pj is equivalent to P translated by the vector tj. The point in each translated 

polygon Pj corresponding to the hypotheticallocation Pj is now located at the origin 

Pi. We can now define the overlay arrangement as follows: 

DEFINITION 2.1 (Overlay Arrangement [DRW98]). The overlay arrangement 

for the environ ment polygon P corresponding to the set of hypothetical locations H 

is the structure obtained by taking the union of the edges of each translated polygon 

Pj, 1 ~ j ~ k. 
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------------ -------.--------" 

1 1 

FIGURE 4.4. An Overlay Arrangement. 

FIGURE 4.5. Shaded area represents the overlay intersection region. 

Figure 4.4 illustrates an overlay arrangement. We consider only the connected 

component of the intersection region of the overlay arrangement that contains the 

origin since it is the area known to exist in aIl hypotheses (see Figure 4.5). We will 

refer to this connected overlay intersection component containing the origin as DI. 

In this respect, we differ from [DRW98] in recognizing that clearly, we do not need 

to examine visibility cells lying outside this overlay intersection region, corn mon to 

aIl hypothetical locations, for new information. Since we only require the connected 

component of the overlay intersection region containing the origin, the mOre compli­

cated simple polygon intersection algorithms are not required. Instead the overlay 

intersection are a is computed using an algorithm similar to the linear time algorithm 

by O'Rourke et al. for convex polygon intersection [OCON82]. The algorithm per­

forms a counter-clockwise traversaI of the edges of the polygons containing the origin. 

It begins with an arbitrary edge e which is cither partially or fully visil>le to the origin. 

Every time an intersection point of two or more edges is encountered, the edge that 

makes the sharpest counter-clockwise turn with respect to the origin is selected. If no 

intersection points are encountered then the algorithm follows the edge it is currently 
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FIGURE 4.6. Random points chosen within overlay intersection. 

traversing to its counter-clockwise adjacent edge. The algorithm terminates when it 

returns to its starting point on e. 

2.3. Hypothesis Elimination. A set R of points is picked randomly from 

the connected intersecting region of the overlay arrangement surrounding the origin 

(see Figure 4.6). Ris th en evaluated to see if any of the points contained in R yield 

new information that could help to disambiguate the robot's initial location. 

DEFINITION 2.2 (Random Point). A random point refers to a location zn the 

connected component Olof the overlay intersection region containing the origin for 

a given P, H, and origin, chosen by randomly sampling the interior of 01 according 

to a uniform distribution. 

DEFINITION 2.3 (Useful Point). A random point q is termed useful if sensing 

at this location is guaranteed to yield new information that distinguishes amongst the 

different hypotheticallocations. In other words, the Vis(q) with respect to the different 

hypotheses are not all congruent under translation. 

For each random point picked, r E R, a value function Value(r) = info/ distanceOI 

is computed, where info is the expected number of hypotheses that could be elim­

inated at r, assuming all the hypothesized initial locations are equally likely, and 

distanceOI is the short est path trajectory, constrained to lie within 01, from the 

robot's initial location at the origin of the overlay to r. We calculate info for a point 

r as follows: 

We assume that all hypotheses are equally likely. We say two hypotheses hi 

and hj are equivalent at r if Vis (hi, r) is congruent to Vis (hj , r) and has the same 
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orientation. Vis(hi , r) refers to the visibility data computed at a point z such that 

the relative position of z with respect to the hypotheticallocation Pi is equivalent to 

the relative position of r with respect to the overlay origin. If there exist b equivalence 

classes of hypotheses at r of sizes SI, S2, .... , Sb respectively, where the total number of 

hypotheses k = SI + S2 + ..... + Sb, then 

info(r) = (sI/k)(k - SI) + (s2/k)(k - S2) + ..... + (Sb/k)(k - Sb)' 

The robot is moved to the random point r' in the overlay with the highest non­

zero value of Value(r' ). Those hypotheses hi where Vis(hi , r') do es not match the 

visibility data sensed by the robot at its new location are ruled out. 

2.4. Cornrnon Overlay Localization Algorithrn. We can now present the 

common overlay localization (COL) algorithm. Given an input polygonal environment 

P and a robot placed at an unknown initial location in P, the COL algorithm proceeds 

as foIlows: 

(i) Sense visibility data W from the robot's current unknown initial location. 

(ii) Generate the set of aIl hypotheticallocations H in the environment P that 

match the visibility data sensed W. 

(iii) Choose an arbitrary hypotheticallocation in H as the origin. 

(iv) Construct an overlay arrangement centered on the origin. 

(v) Compute the connected overlay intersection component containing the ori­

gin, 01. 

(vi) Randomly choose a predetermined number of locations or points wi thin 01. 

(vii) For each random point picked, r, compute the value function Value(r) = 

inf 0/ distanceQ[. 

(viii) Observe that at each overlay intersection, there is latent information to be 

gained that is guaranteed to eliminate sorne hypotheses. Therefore, if none 

of the random points yield non-zero inf 0, then the number of random points 

required is increased and chosen aIl over again within the current overlay 
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intersection area 01. Steps 6, 7 and 8 are repeated for a predetermined 

number of trials 2. 

(ix) The robot moves to the random point r' in the overlay with the highest 

non-zero value of Value(r' ). 

(x) Now, eliminate hypotheses by comparing visibility data sensed by the robot 

at r' with the visibility data computed at aU the equivalent random points 

corresponding to aU the active hypotheses. 

(xi) Let us caU the set of eliminated hypotheses E. We repeat the overlay 

arrangement with the reduced set of hypotheses H - E. Steps 3-10 are 

repeated until only 1 hypothesis, corresponding to the true initial location 

of the robot, is left in H - E. 

In step 8, we observe that each overlay intersection contains latent information 

that may be used to disambiguate hypotheses. RecaU that in order to calculate 

the overlay intersection region 01, we first compute an overlay arrangement with 

the set of remaining, active hypotheticallocations. 01 comprises the connected are a 

surrounding the origin common to aU the remaining, active hypotheses. As hypotheses 

are eliminated, 01 gets larger and larger until it consists of the entire polygonal 

environment P, corresponding to the case when only one hypothesis remains (the 

true initial location of the robot). Therefore, while 01 c P, sorne random points 

lying within 01 should be able to see distinguishing landmarks or features lying 

outside 01. The useful points that are closest to the robot's initial location clearly lie 

inside 01. The robot need not travel outside the current 01 to gather disambiguating 

information. As a result, the COL strategy repeatedly chooses greater numbers of 

random points within the current 01 until at least one useful point is uncovered. 

2.5. U seful Region Localization Algorithm. The useful region localiza-

tian (URL) algorithm differs from the COL algorithm with respect to the region 

where random points are chosen. RecaU that the COL algorithm randomly chooses 

2In our implementation, we terminate the algorithm if no useful points are obtained after this 
predetermined number of trials. Hence we proceed to the next step only if useful points exist. 
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------------ -------,-----------' 

el 

------------------------'----------~------" 

FIGURE 4.7. el and e2 are internal edges. 

points within the overlay intersection area DI. NaturaIly, not aIl of these points are 

useful in eliminating hypotheses. The COL algorithm therefore, selects only those 

points that yield non-zero information and then, chooses amongst these select few, 

points with the highest weighted ratio. It turns out that we can do even better. In 

fact, we can determine precisely the portions of DI where any random point chosen 

is guaranteed to yield non-zero information. 

Let us first observe that in large sections of DI, the visibility cells provide zero 

information gain for unambiguous localization. We must look to the boundaries of 

DI which is where the are a common to aIl hypotheses ends and the"geography" 

changes. But the robot can spot this change from a distance as it approaches the 

afore mentioned boundaries. We refer to these boundaries as internal edges, which 

we define as follows: 

DEFINITION 2.4 (InternaI Edge). An internaI edge of an overlay intersection area 

DI is defined as an edge (one of many) that separates the inside of DI from other parts 

of the overlay arrangement, as opposed to those edges of DI that pertain to the outer 

silhouette of the overlay arrangement which separates the inside of DI from the rest 

of the 2D plane (see Figure 4.7). 

Once we have determined the set of internaI edges of the overlay intersection area 

DI, the useful portions U of DI can be computed using the following procedure: 

• Let us calI the set of internaI edges of the overlay intersection area DI, B. 

For each edge in B, compute its weak visibility polygon within DI. The 

union of aIl such weak visibility polygons should give us a region or set of 
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FIGURE 4.8. Shaded area represents the useful region. 

FIGURE 4.9. Random points chosen within the useful region. 

disjoint regions U where U is a subset of al. We daim that any random 

point chosen in U provides non-zero information whereas any random point 

chosen in 01- U provides zero information. 

Figure 4.8 depicts the useful region of polygon P. Note that in the background 

chapter we have described algorithms that can be used to calculate the weak visi­

bility of an edge. Steps 1-5 of the URL algorithm remain the same as in the COL 

algorithm.Consequently, the URL algorithm proceeds as follows: 

(i) Sense visibility data W from the robot's current unknown initial location. 

(ii) Generate the set of an hypotheticallocations H in the environment P that 

match the visibility data sensed W. 

(iii) Choose an arbitrary hypothetical location in H as the origin. 

(iv) Construct an overlay arrangement centered on the origin. 

(v) Compute the connected overlay intersection component containing the ori­

gin, 01. 

(vi) Compute the useful region U of 01, 
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(vii) Randomly choose a predetermined number of locations or points within U 

(see Figure 4.9). 

(viii) For each random point picked, r, compute the value function Value(r) = 

info/distanceOJ. 

(ix) The robot moves to the random point r' in the overlay with the highest non­

zero value of Value(r' ). Note that we are guaranteed that all the random 

points chosen provide non-zero information for hypothesis elimination. As 

a result, we do not need to choose more random points repeatedly as is 

done in the COL algorithm. 

(x) Now, eliminate hypotheses by comparing visibility data sensed by the robot 

at r' with the visibility data computed at aIl the equivalent random points 

corresponding to aIl the active hypotheses. 

(xi) Let us call the set of eliminated hypotheses E. We repeat the overlay 

arrangement with the reduced set of hypotheses H - E. Steps 3-10 are 

repeated until only 1 hypothesis, corresponding to the true initial location 

of the robot, is left in H - E. 

It must be noted that once we have computed the useful region U, we need choose 

only one random point lying within U at each stage in order to guarantee that we 

eventually localize successfully (we could even just move the robot to the closest 

vertex or edge of U). A larger number of random points only serves to improve the 

performance of the algorithm by eliminating several hypotheses in one shot or by 

reducing the distance traveled by the robot. Unlike the COL algorithm, the URL 

algorithm has comput able and finite time bound. Consider a situation where the 

useful region comprises a small fraction of the entire overlay intersection are a 01 

(this need not mean that the useful region is in itself a small area where a robot 

can not navigate - simply that it lS relatively small compared to the entire overlay 

intersection area). In such cases, choosing points randomly from the entire overlay 

intersection region may yield a useful point only with a large number of random points 
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and after several trials. The advantage of the URL algorithm is that we can instantly 

access the useful portions of the overlay intersection and hence the useful points. 

2.5.1. Praof of Correctness. We prove the validity of our daim that any random 

point chosen in the region U provides non-zero information for hypothesis elimination 

and points lying in the region 01- U provide zero information. Before we can proceed, 

however, we must first show that being able to see an internaI edge partially or fully 

from a point in al imp1ies that that point provides disambiguating information. 

Likewise, any useful point in al must be able to see an internaI edge partially or 

fully. 

PROOF. al is defined as the connected component of the intersection region of 

the overlay arrangement that contains the origin and is common to aIl hypotheses. 

Pick an arbitrary point p located in al and such that it can see sorne point(s) on an 

internaI edge e of al. Let us assume that p provides no new information. This implies 

that the visibility polygon at p, Vis(p), is wholly contained in al and therefore 

common to aIl hypotheses 3. However, p was chosen such that it could see sorne 

point (s) on e and e is defined as an edge separating the connected area common to 

aIl hypotheses from the area that is not common to aIl hypotheses. Without 10ss of 

genera1ity, we may assume that p can a1so see sorne point(s) on an edge e', e' = e + 6, 

where 6 represents a small displacement of e in a direction away from al such that 

e and e' remain parallei and e' is not contained in al. No point on e' is corn mon to 

aIl hypotheses. Hence we have a contradiction. 

Likewise, choose an arbitrary point p located in al and such that it can not 

see any points on any internaI edges of al. Let us assume that p provides new 

information. This implies that the visibility polygon at p, Vis(p), indu des areas of 

the overlay arrangement not corn mon to aU hypotheses and therefore 1ying outside 

al. Since an internaI edge is defined as an edge separating the interior of al from 

3Disambiguating information necessarily consists of landmarks/features that differ amongst the set 
of hypotheses 
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other parts of the overlay arrangement, it follows that Vis(p) must include sorne 

point(s) on at least one internaI edge. Hence we have a contradiction. 

o 

We can now proeeed to prove that any random point chosen in the region U 

provides non-zero information for hypothesis elimination and points lying in the region 

01- U provide zero information. 

PROOF. Pick an arbitrary point q located within the useful region U. Let us 

assume that q provides no new information to rule out hypotheses. As we have 

already established, this implies that q can not see any point on any of the internaI 

edges of the current overlay intersection area 01. In turn, this implies that no point 

lying on any internaI edge e can see q. In other words, the weak visibility polygon 

of e does not include q. However, U is defined as the union of aIl the weak visibility 

polygons of aIl the internaI edges. Henee we have a contradiction. 

Similarly, pick an arbitrary point q' located within the region 01- U. Let us assume 

that q' do es provide new information to rule out hypotheses. As we have already 

established, this implies that q' can indeed see at least one point on at least one of 

the internaI edges of the current overlay intersection are a 01. Therefore, there exists 

at least one point on an internaI edge e' that can see q'. Henee the weak visibility 

polygon of e' must include q'. However, U is defined as the union of aIl the weak 

visibility polygons of aIl the internaI edges and we picked q' from the region 01- U. 

Hence we have a contradiction. 

o 

2.6. Lirnited Visibility. When the sensor visibility is limited, the robot sees 

only a subset of the vertices and edges of its environment that it could otherwise see 

with unlimited visibility. Let Si denote the set ofvcrtices seen by the robot at visibility 

di. In general, for visibility values dl < d2 < d3 < ..... < d* where d* represents 

unlimited or infinite visibility, the corresponding sets of vertiees seen by the robot 

have the foIlowing relationship: SI C S2 C S3 C ..... C S*. Consider Figure 4.10. 
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FIGURE 4.10. What the robot sees un der a range of visibilities. 

The robot, labeled L, is situated at the centre of the polygonal environment. With 

visibility dl the robot sees none of the vertices of the polygonal environment. With 

visibility d2 the robot sees only those vertices represented by squares. With visibility 

d3 the robot sees the vertices represented by squares as weIl as those represented by 

triangles. With unlimited visibility d* the robot is able to see all the vertices of the 

polygon but not beyond since it cannot see through waIls or solid edges. 

AlI visibility computations and comparisons are restricted by the distance limit d 

beyond which the robot is assumed to not see. When computing the initial visibility 

data W sensed by the robot, those vertices and edges lying outside the circular area 

of radius d centered at the robot's initial location are not included. Likewise, in the 

hypothesis generation phase, we only look for patterns of vertices that conform to 

W as calculated incorporating the distance limit. During the hypothesis elimination 

phase, the robot's visibility at a particular random point is calculated in the same way 

as W. In addition, the distance limit is taken into account when we determine which 

random points provide non-zero information. As a result, in the COL algorithm, the 

number of random points yielding any information gain as a proportion of the total 

number of random points chosen in the entire overlay intersection region decreases as 

the visibility gets poorer. 
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In the URL algorithm, when computing the weak visibility polygon of the internaI 

edges, we clip the polygon by a factor equivalent to d. This is accomplished by aligning 

an infinitely long rectangle along each internaI edge, where the width of the rectangle 

(the axis aligned to the width is perpendicular to the internaI edge) is equivalent to 

the distance limit d. The intersection of the rectangle with the original weak visibility 

polygon pro duces the clipped polygon. 

As long as the set of points comprising the initial visibility data W sensed by the 

robot contains at least one vertex, both localization algorithms are able to successfully 

estimate the robot's initial location. However, if W is an empty set then localization 

is not feasible since the number of potential hypothetical locations is infinite. This 

situation can only occur if the robot's visibility is limited to a finite value d such that 

the circular area of radius d centered at the robot's initial location do es not coyer any 

vertices or edges (see Figure 4.10). 

It follows that the more limited the visibility of the robot's sensor, the more 

the number of hypothetical locations that are likely to be generated. As well, the 

length of the localization trajectory is likely to be longer. The increased length of 

the localization trajectory can be attributed to the robot's "short-sightedness" which 

requires it to move much closer to distinguishing features in order to be able to see 

them than otherwise. Sim ply having a larger number of hypotheses to eliminate do es 

not necessarily imply longer path lengths. 

3. Complexity Analysis 

In this section we will analyze the running times of the component algorithms 

that comprise our localization algorithms and estimate the overall complexity of the 

two localization algorithms. We begin by determining the running times of procedures 

common to both localization algorithms. 

The number of hypotheticallocations k is bounded above by the number of reflex 

vertices in the polygonal environment 4. Let n den ote the number of vertices in the 

4For a proof see [GMR97]. 
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map polygon P. Hypothesis generation takes time O(mn) where m is the number of 

vertices in the visibility polygon W. 

The intersection of two simple polygons takes O(nlogn) time [CE92]. While we 

are using a simpler algorithm in our implementation to compute only the intersecting 

portion around the origin, for the purposes of this complexity analysis we will adhere 

to the time of 0 (n log n). Therefore, calculating the overlay intersection area around a 

chosen origin takes time O(Jnlogn) where 1 is the number of hypotheses remaining 

(J S k), and therefore, the number of translated polygons. Since k = O(n) and 

1 = O(k), we get O(n2 Iogn) as an upper bound on the time taken to compute the 

overlay intersection. Observe that as hypotheses are ruled out the value of 1 will 

decrease. If we only rule out only one hypothesis per intersection then the overlay 

intersection is computed a maximum of k times. 

To compute visibility data at each random point takes O(n) time. Likewise, to 

compare the visibility data at two points also takes O(n) time. Since we will have 

to make 1 comparisons, where 1 is the number of hypotheses remaining (J S k), in 

order to calculate the information that each random point can give, we take O(Jn) 

time per random point. 

3.1. Cornrnon Overlay Localization Algorithrn. At each intersection let 

us say that we drop X random points on average. We say "on average" because this 

number could increase or decrease with respect to the size of the overlay intersection 

area and depending on our strategy. Experimental results described in the next 

chapter give empirical measures of the range of values we may expect for X to achieve 

localization with different environments. 

We spend a total time of O(X ln) computing and comparing visibility data in 

order to determine which of the X random points provide new information. Of the 

X points chosen, let only Y be useful points where Y :::; X. The useful points are 

sorted according to their weighted ratio. In order to compute the distance of each 

point from the initial location, a shortest path algorithm is used. This amounts to 

O(nlogn) cost per point and so O(Yn log n) for an the useful points. 
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Assuming that we only eliminate one hypothesis at each overlay intersection, we 

will have to calculate the overlay intersection area, compute and compare visibility 

data of aU the random points and calculate the shortest path distance of the useful 

random points, a total of k times. Therefore we estimate the overaU time complexity 

of the COL algorithm to be O(mn) + k(O(Jnlogn) + O(Xfn) + O(Ynlogn)). A 

looser but simpler bound for the overaH time complexity of the COL algorithm is 

0(n3 1ogn+Xn2
) . 

3.2. Useful Region Localization Algorithm. The maximum number of 

internaI edges possible at any overlay intersection is O(Jn) where f is the number of 

hypotheses remaining (J :s; k). We argue our claim as follows: 

PROOF. By definition, the overlay intersection are a 01, being the region corn mon 

to aIl the hypotheses, is a subset ofthe entire polygonal environment P. As hypotheses 

are eliminated, 01 gets progressively larger, until there is only one hypothesis left in 

which case 01 is equivalent to P. 01 is calculated by traversing the boundary of the 

overlay arrangement lying around the chosen origin in a counter-clockwise direction. 

Everytime a point is encountered where two or more edges intersect, the edge that 

makes the sharpest counter-clockwise turn with respect to the origin is picked. As 

a result, each edge of the polygon translates comprising the overlay arrangement is 

traversed either once (fully or partially) or not at aH. In the instance where an edge 

is traversed partially, it is never re-visited since the algorithm would have abandoned 

that edge in favour of one that makes a sharper counter-clockwise turn, and given that 

these polygon edges are straight-line segments. Hence, the number of internaI edges 

present in any overlay intersection is bounded above by the total number of edges 

of aIl the polygon translates. If we have f hypotheses remaining (f :s; k), and each 

polygon consists of n edges, then the maximum number of internaI edges possible at 

any overlay intersection is O(fn). 

o 
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4.4 ENVIRONMENT GENERATION 

Computing the weak visibility of an edge takes O(nlogn) time. As a result 

the total cost of computing the useful region is 0 (f n2 log n). Therefore we estimate 

the overall time complexity of the URL algorithm to be O(mn) + k(O(fnlogn) + 
O(fn2 logn) + O(Y in) + O(Ynlogn)) which in turn reduces to O(n4 logn + Yn3

). 

If the number of random points gets very large then the running time likewise in­

creases for both localization algorithms. However, in the URL algorithm we compute 

the region where any random point chosen is guaranteed to be useful. While this 

computation cornes at a cost, it nonetheless reduces the number of random points 

required to obtain path lengths equivalent to those produced by the COL algorithm. 

Besides, with the URL algorithm, we can fix the number of random points to be a 

constant and the algorithm will still localize the robot successfully. This is not the 

case with the COL algorithm where increasing numbers of random points have to be 

chosen again if no useful points exist in the current lot. In environments where the 

useful region comprises a very small fraction of the entire overlay intersection area, 

the COL algorithm might require a large number of random points in order to achieve 

successful localization. 

4. Environment Generation 

In order to test the localization algorithms, random self-similar environments, 

any number of which could be generated automatically, were needed. Moreover, 

the environments were required to contain challenging, and potentially large number 

of self-similarities, while at the same time, displaying sufficient variation in shape 

and size to be interesting. We generated simulated office environments using three 

different techniques. 

The first set of environments were modeled after mazes. The algorithm that gen­

erates these environments proceeds as follows: First a fixed initial space is divided 

into a rectangular grid of cells of a specified size (e.g. lOOunits x lOOunits). A prede­

termined quantity is chosen which limits the number of grid cells in the environment 

(and hence its size) we are about to generate. Next we randomly picked a grid cell 
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4.4 ENVIRONMENT GENERATION 

FIGURE 4.11. A room cell. 

FIGURE 4.12. A simulated office environment. 

as the start cell. This cell serves as a "room cell" (see Figure 4.11). We randomly 

determine the number of passages leading to other room cells from this start cell. 

There can be a maximum of 4 passages, corresponding to the available adjacent grid 

cells of the start cell. For each of the destination room cells, we repeat this procedure 

until the environment size limit is reached or until the canvas boundaries are encoun-

tered. Finally the room cells and passage cells are connected to form a closed simple 

polygon (see Figure 4.12). 

Signature step environments, where each step contains a distinctive structure 

(signature) identifying it uniquely from the other steps, were created as well 5. The 

signature is produced by randomly generating a sequence of characters and determin­

ing the ASCII number representation for each character. The number of characters 

in the sequence determines how many steps will be built whereas the binary encoding 

of each character determines the signature on the step corresponding to that char­

acter. This signature takes the form of a sequence of protrusions on the step, where 

5The code for generating these environments was implemented by Rob Sim. 
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4.4 ENVIRONMENT GENERATION 

the length of each protrusion indicates whether that binary bit is on or off in the 

encoding (see Figure 4.13). 

.~.11IUU 

FIGURE 4.13. A signature step environment. 

We also considered environments that consist of a "basic unit" polygon which 

is replicated and placed in several recurring positions in a fixed space. An input 

polygon or basic unit is initially placed at a randomly chosen position in a given 

space. Next, this polygon is replicated and the duplicate is placed at one of a set of 

fixed positions that are offsets from the first polygon's position. The two polygons 

are then connected via a passage. The resulting simple polygon then becomes the 

basic unit input for the next iteration. This process is repeated for a pre-determined 

number of iterations or until the size limit for the final environ ment is reached. Figure 

4.14 displays an example polygon. 

FIGURE 4.14. Another type of environment. 
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CHAPTER 5 

Experimental Results 

This chapter presents experimental results that demonstrate the performance and 

scope of our algorithms. Each set of experiments will highlight different aspects of 

our solution to minimum distance localization, such as the variation in path lengths 

for a multitude of environments with increasing numbers of random points, the effect 

on path length of a range of sensor visibility values, comparisons of the performance of 

different decision strategies, measures of self-similarity in a set of environments, etc. 

In addition to these statistical experimental results, we also include visualizations 

of our localization technique for a few sam pIe environments. FinaUy we provide a 

discussion of our work. 

Unless otherwise stated, the reader may assume that the algorithm used to achieve 

localization in a particular experiment was indeed the COL algorithm. AIso, aU 

experiments were performed on the simulated office environments that were modeled 

after mazes (see Figure 4.12). Visibility ranges were measured in pixel units 1. 

1. Measure of Environment Ambiguity 

The objective of these expcriments was to measure the average number of hypo­

theticallocations that may correspond to a randomly chosen initial location. In other 

IThe algorithms were implemented in Java Version 1.4.1 and the simulations were run on Linux 
machines. 



5.1 MEASURE OF ENVIRONMENT AMBIGUITY 

Average Number of Ambiguous Locations versus Environment Size 
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FIGURE 5.1. Level of ambiguity increases with the size of the environment. 

words, we wanted to estimate the level of ambiguity in the environments. The proce­

dure was as foUows: For each environment in our set of environments, we randomly 

chose 10 initial locations. We then generated hypotheses for each of these 10 loca­

tions. We picked the maximum number of hypotheses generated for an initial location 

as representative of the level of ambiguity possible for that particular environment. 

FinaUy we took the average of aU the maximum number of hypotheses obtained for 

aU the environments in the set as the average value for that set of environments and 

for a particular range of visibility. 

We generated 100 simulated office environments of 3 sizes. The first set were of 

size equivalent to 100 grid ceUs or approximately 400 vertices on average. The second 

set of environments were of size 200 grid ceUs or 800 vertices on average. The third 

set of environments were of size 300 grid ceUs or 1200 vertices on average. 

Two sets of experiments were conducted. The first set of experiments measured 

the variation in the level of ambiguity as the environment size gets bigger. The 

visibility of the robot's sensors was assumed to be unlimited. Figure 5.1 shows the 

level of ambiguity plotted against environment size . These results indicate that the 

level of ambiguity is directly proportion al to the size of the environment. In fact, 

we observe an almost linear increase in the number of hypotheses as environment 
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Average Number of Ambiguous Locations versus Visibility Range 
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FIGURE 5.2. Level of ambiguity increases as visibility gets poorer. 

size gets bigger. This makes sense given that each set comprised the same type of 

environments - only the size varied. 

Next, we carried out experiments to evaluate the effect of varying visibility on 

the level of ambiguity. Two sets of environment were used, those of size 400 vertices 

and those of size 800 vertices. Figure 5.2 shows the level of ambiguity plotted against 

decreasing visibility range. The level of ambiguity increases very sharply as visibility 

dips below the 200 mark. As the size of each "cell" in the environment is 100 pixels, 

visibility range values below 100 give rise to the case where the robot is increasingly, 

not able to see the edges and vertices that comprise its immediate surroundings. 

In the limit, we approach the case where the robot sees only empty space which 

corresponds to an infinite number of hypotheses. 

2. Path Lengths with Unlimited Visibility 

We generated 73 simulated office environments, each with average number of 

vertices approximately 400. For each of the 73 environments an initial robot location 

was randomly selected. We then ran the COL algorithm with these environments and 

their respective initial locations for a series of different quantities of random points. 

The sensor visibility distance was unlimited or infinite (perfect sensor model). The 

objective was to measure the average distance traveled by the robot or average path 
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FIGURE 5.3. Performance of weighted strategy with simulated office envi­
ronments based on 73 trials. 

length as the number of random points are increased and to compare these average 

path lengths to the near-optimum result (recall that computing the optimum path is 

NP-hard). The number of random points was varied from 20 to 1000 and the average 

path length obtained for 1000 points was used as the near-optimum result. Figure 5.3 

shows the ratio of the average path length to the near-optimum path length plotted 

against the number of random points. Our results indicate that the average path 

length gets significantly shorter initially as the number of random points is increased. 

However, after approximately the 500 random point mark, the incremental reduction 

in path length decreases, eventually settling at a more or less steady value. 

Note that the number of random points specified in our plots showing the per­

formance of the COL algorithm refers to the number of points chosen initially at 

every overlay intersection. Since this algorithm chooses increasing numbers of ran­

dom points by doubling the quantity each time none of the existing points prove 

useful, we do not know exactly how many points were chosen in total at each stage 

of the localization process. In particular, as hypotheses are ruled out, the overlay 

intersection are as get larger, leading to a greater likelihood of increasing numbers of 

random points being picked repeatedly at each stage. 
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5.3 WEIGHTED DECISION STRATEGY VERSUS GREEDY STRATEGY 

Ave. Path Length for Wtd and Greedy Strategies 
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FIGURE 5.4. Performance of weighted versusgreedy strategies based on 120 trials. 

3. Weighted decision strategy versus greedy strategy 

In the next set of experiments we compared the performance of our decision 

strategy (which we will refer to as the weighted strategy) versus its greedy version, 

where the robot is directed to move to the nearest location to its initial location which 

provides any non-zero information. This greedy alternative approximates the greedy 

strategy of [DRW98] but is not equivalent to it since we require an appropriate 

minimum number of points in order to adequately coyer aIl the visibility ce Ils in the 

overlay intersection region. 

20 simulated office environments of average number of vertices approximately 

400 were generated for this purpose. For each of the 20 environments, 3 initial 

robot locations were randomly selected. We then ran both weighted and greedy 

strategies with each of the 3 initial locations of each environment for a series of 

different quantities of random points, where each quantity was repeated twice to 

balance out any abnormal distributions. The total number of experimental trials 

was, therefore, 20 x 3 x 2 = 120 trials 2. 

Once again, we used the perfect sensor model (unlimited or infinite visibility). 

The initial set of random points picked for the very first overlay intersection was 

2This set of trials will be used repeatedly for the experirnents described in the rernainder of this 
chapter. 
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5.4 WEIGHTED DECISION STRATEGY VERSUS TRADITIONAL HEURISTIC 

kept the same for both strategies in order to ensure a fair comparison. Figure 5.4 

shows the average path length for weighted and greedy strategies plotted against the 

number of random points. Even with very large numbers of random points (see 1000 

points case), where we may reasonably assume an adequate sampling of most of the 

visibility cells in the overlay intersection region, on average the weighted strategy still 

outperforms its greedy counterpart. 

Theoretically, the greedy technique of [DRW98] has been shown to have the best 

possible worst case bound on the distance travelled by the robot. In our weighted 

algorithm as weIl as its greedy variant, it is possible that a tiny visibility cell which 

might hold the key to an optimally short path was never sampled. This is a theoretical 

disadvantage but a practical advantage as the probability that the robot is directed 

to visit an arbitrarily tiny, and hence inaccessible, visibility cell is small. 

4. Weighted decision strategy versus traditional heuristic 

A set of experiments was performed where our weighted algorithm was compared 

with a traditional heuristic used in many localization papers, where the robot is 

directed to sim ply visit the closest point from its current location which provides any 

non-zero information. We used the same 20 environments with 3 initial locations per 

environment as described in Section 3, repeating each quantity of random points twice 

to balance out any abnormal distributions. The total number of trials was 120. Aiso 

we kept the same perfect sensor model as for the previous set of experiments. Figure 

5.5 shows the average path length for our weighted algorithm and the traditional 

heuristic plotted against the number of random points. According to these results, the 

weighted algorithm pro duces shorter path lengths than the heuristic. Recall that the 

traditional heuristic can produce pathlengths of potentially exponential complexity 

as was demonstrated in Chapter 1 (see Figure 1.2). 
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FIG URE 5.5. Performance of weighted strategy versus tradi tional heuristic 
based on 120 trials. 

5. A suggestion for the quantity of random points 

As hypotheses get eliminated, the successive overlay intersection areas get larger 

and larger. Selecting the same number of random points at each stage of the local­

ization process, therefore, may not sam pIe aIl the overlay intersection areas equaIly. 

Although the COL algorithm proceeds to choose increasing numbers of random points 

by doubling the quantity each time none of the existing ones prove useful, this still 

do es not guarantee an adequate sampling of a given overlay intersection area. In 

this set of experiments we considered choosing the number of random points to be 

proportional to the size of the overlay intersection area which we measured in terms 

of the number of vertices. In choosing a size-proportionate number of random points 

we expect that useful points would be uncovered in the first few sets of points picked, 

without having to re-select points too many times. We performed the experiments 

over 120 trials as described in Section 3 with an unlimited visibility sens or model. 

Figure 5.6 shows the average path length plotted against the proportion of the size 

of the overlay intersection which specifies the number of random points selected. We 

seem to obtain fairly short path lengths when we choose the number of random points 
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FIGURE 5.6. The number of random points are chosen to be proportional 
to the number of vertices of the overlay intersection region. 

to be equal to the number of vertices of the overlay intersection region. The near­

optimal value is attained when the number of random points is chosen to be 5 times 

the number of overlay intersection vertices. 

6. Experiments with Limited Sensor Visibility 

The following set of experiments measured the effect of limited sensor visibility 

on the localization path length for two weighted decision strategies. The first decision 

strategy is the strategy that we have described in Chapter 4 and have used in most 

of our experiments. Here, the information gain of each random point is weighted by 

its distance from the robot's initial location. As before, we will continue to refer to 

this strategy as the weighted strategy or the standard weighted strategy. The second 

decision strategy, which we will refer to as the hybrid strategy, operates by weighting 

the information gain at each random point by its distance from the robot's current 

location. We performed the experiments over 120 trials as described in Section 3. 

Note that the size of each grid ceIl in the simulated office environments we used is 

100 pixel units. 

Figure 5.7 depicts the average path length obtained for both the standard weighted 

strategy as weIl as the hybrid strategy with unlimited visibility. While both strategies 
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FIGURE 5.7. Weighted versus hybrid strategies with unlimited visibility. 120 
trials were performed. 

exhibit an improvement in performance as the number of random points is increased, 

the hybrid strategy pro duces significantly shorter path lengths. 

Figures 5.8, 5.9, and 5.10 show the path lengths obtained for both strategies with 

visibility ranges 500, 200, and 90 respectively. For the limited sensor visibility value 

of 500, the path length for the standard weighted strategy gets shorter as the number 

of points is increased. Somewhat curious however, is the fact that for visibility values 

200 and below the path length for the standard weighted strategy appears to be more 

or less the same even as the number of random points are increased. We will explain 

this behaviour in the next section. 

Figures 5.11, 5.12, and 5.13 plot the average path length produced by the two 

strategies with decreasing visibility range and number of random points 40, 100, and 

250 respectively. As expected, the results indicate that as the visibility gets poorer 

the path lengths for effective localization get longer. The poorer the robot's vision 

the closer it has to get to a distinguishing feature in order to eliminate hypotheses. 

As a result, it ends up travelling longer trajectories. 

In terms of minimizing path length, the hybrid strategy soundly outperforms the 

standard weighted strategy for aIl the values of visibility and the different numbers 

of random points. In fact, the difference in path length between the two decision 
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FIGURE 5.8. Weighted versus hybrid strategies with visibility range 500. 
120 trials were performed. 

strategies seems to get larger as the visibility gets poorer. Since the overlay inter­

section gets increasingly larger as hypotheses are ruled out, it follows that the robot 

moves progressively further away from its initial location each time it makes a deci­

sion to eliminate hypotheses. If the distance of a potential destination point is always 

measured from the robot's initial location, then it is possible that this could lead to 

extreme "zigzagging" of the robot's trajectory, depending on the shape of the envi­

ronment and the placement of the initial location within the environment (see Figure 

5.22). In addition, the distance travelled by the robot to observe a disambiguating 

feature gets larger as visibility decreases. 

On the other hand, a weighted strategy that directs the robot to move to the most 

informative point nearest to its current location might avoid such a zigzagging effect 

on the robot's trajectory. Hence, as the visibility gets poorer the hybrid strategy 

produces path lengths that are shorter than those of the standard weighted strategy 

by a wider margin. Unlike the traditional heuristic which we demonstrated in Chapter 

1 to yield potentially exponential path lengths, there is no reason we can come up with 

to show a similar theoretical worst-case bound for the hybrid strategy. If we were to 

use the very same example as in Figure 1.2 to evaluate the hybrid strategy, it would 

clearly direct the robot to travel to the signature room as its very first destination 

and thereby achieve localization. 
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FIGURE 5.9. Weighted versus hybrid strategies with visibility range 200. 
120 trials were performed. 
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FIGURE 5.10. Weighted versus hybrid strategies with visibility range 90. 
120 trials were performed. 

7. Performance of U seful Region Localization Algorithm 

Experiments were carried out to evaluate the performance of the URL algorithm 

with respect to different numbers of useful random points as well as various values of 

limited sensor visibility. We performed 120 trials. with simulated office environments 

as described in Section 3. Figure 5.14 depicts the average path length obtained for 

number of useful random points ranging from 1 to 500, with unlimited visibility. 

Since we are choosing points directly from the useful region, the algorithm is able 

to effectively localize the robot with just one random point, although the path length 

is understandably high in that case. Increasing the number of random points serves 

to reduce the path length. We observe that the values of pathlength for the different 
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FIGURE 5 .11. Performance of weighted versus hybrid strategies as visibility 
decreases, with 40 random points. The results are based on 120 trials. 
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FIGURE 5.12. Performance of weighted versus hybrid strategies as visibility 
decreases, with 100 random points. The results are based on 120 trials. 

numbers of random points in the case of unlimited visibility are somewhat higher 

than those obtained for the same number of points when running the COL algorithm. 

This is because the COL algorithm chooses increasing numbers of random points in 

Iterations by doubling the quantity each time none of the existing points prove useful. 

As a result, we do not know exactly how many points were chosen in total at each stage 

of the localization process. In particular, as the overlay intersection areas get larger, 

it is more likely that a greater number of Iterations would be required before any 

useful points appear. Since we double the number of points picked at each successive 

Iteration, useful points, when they finally appear, they may do so in large quantities. 

On the other hand, the URL algorithm adheres to exactly the same number of points 

initially specified, regardless of the size of the subsequent overlay intersection regions 
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FIGURE 5.13. Performance of weighted versus hybrid strategies as visibility 
decreases, with 250 random points. The results are based on 120 trials. 

(and hence the size of the subsequent useful regions). Given that these regions get 

larger as hypotheses are eliminated, this leads to potential undersampling. 

Figure 5.15 plots the variation of average path length with increasing numbers of 

useful random points, for different visibility ranges. Poorer visibility pro duces longer 

path lengths. And unlike the COL algorithm, with any visibility range, increasing 

the number of random points leads to shorter path lengths. Figure 5.16 shows the 

effect of deteriorating visibility on the average path length for 500 useful points as 

weIl as for 1 useful point. Figure 5.17 compares the performance of the COL and 

URL algorithms with decreasing visibility range, for 250 random points. 

When we examine the results for limited sensor visibility, we find that upwards 

of 80 random points, the URL algorithm produces path lengths that are at least 

equal to those produced by the COL algorithm, and at times much shorter. For 

example, in Figure 5.17 the average path length obtained for the URL algorithm 

starts out to be longer than that of the COL algorithm but very quickly becomes much 

shorter than that of the COL algorithm for lower visibility range values. As visibility 

gets poorer, the size of the useful region gets sm aller since the robot is compelled 

ta appraach the disambiguating landmarks at very close proximity in arder to see 

them. In such circumstances, choosing points from the entire overlay intersection 

region might result in very few of them actually coming from the useful region. The 

path lengths generated by the COL algorithm for the entire range of random point 
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Ave. Path Length with Unlimited Visibility lor Increasing Num. Uselul Pts. 
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FIGURE 5.14. Performance of URL algorithm with unlimited visibility. The 
results are based on 120 trials. 

quantities for limited visibility values 200 and below appear to be more or less the 

same. The COL algorithm functions by selecting increasing numbers of points in 

iterations until some happen to be useful. Since the useful region itself gets sm aller 

as visibility is reduced, the number of useful points uncovered by the COL algorithm 

remains approximately the same regardless of whether it starts off with a relatively 

small number of points which are augmented in iterations in order to yield useful 

ones, or it starts off with a relatively large number of points which might not require 

much reinforcement in order to uncover some that are useful. Incrementing the total 

number of points chosen in the overlay intersection will tend to increase the number 

that prove useful but the relative increase is not sufficient to really make a difference 

to the path length. 
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FIGURE 5.15. Performance of URL algorithm with different visibility 
ranges. The results are based on 120 trials. 
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Ave. Path Length with Decreasing Visibility for Num. Useful Pts. 1 and 500 
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FIGURE 5.16. Performance of URL algorithm with only 1 useful random 
point versus 500 use fuI random points. The results are based on 120 trials. 
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FIGURE 5.17. Performance of URL algorithm versus COL algorithm as vis­
ibility decreases, with 250 random points. The results are based on 120 
trials. 

8. Discussion 

Since global localization in the context of ambiguous environments intrinsically 

entails travel, the decision strategy influencing the robot's motion is crucial for ef­

ficient localization. Several authors [FBT98a, DN97] have reported that naive 

strategies for robot motion such as wall-following and random drifting can fail to 

localize the robot. In addition, we established in Chapter 1 that a traditional heuris­

tic can pro duce pathlengths of potentially exponential complexity (t:iee Figure 1.2). 

Moreover, our experimental results have shown that the weighted strategy performs 

better than the traditional heuristic. Although the greedy strategy of [DRW98] has 

been proven to have the best possible worst case bound for the distance travelled by 
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the robot, experimental results showed that our weighted strategy pro duces shorter 

pathlengths on average. Finally, the hybrid decision strategy that we evaluated in 

Section 6 outperformed the standard weighted strategy 3. 

In general, while we believe that sorne form of weighted choice must be made, 

the actual weighting formula can vary. It is important to note that the choice of 

decision strategy is not critical to our technique. On the contrary, the flexibility of 

our algorithms means that different decision strategies, depending on factors such as 

the type of environment, restrictions placed on the robot, and any other objectives 

that the robot might simultaneously be trying to fulfill, can be accommodated. A 

probabilistic decision strategy proposed by [BSN99] assumes that the hypothetical 

locations possess different probabilities. In realistic scenarios, such a practical decision 

strategy might be effective as clearly, we would rather move to a probe position where 

a few highly probable hypotheses may be eliminated as opposed to a position where 

a large number of hypotheses of low probability may be eliminated. 

The main drawback of our work is that it is set in a rather idealized context. 

We rely on a perfect sensor, a perfect map, and a point robot that makes error­

free motions. Consequently, our technique risks being too sensitive to any sort of 

noise that may occur, especially in the sensed data and the map of the environment. 

However, we do not suffer mu ch from the error-free motion model of the robot due 

to the randomized approach we have taken. Random sampling of the environment 

means that the probe destinations that our algorithm might choose will have a higher 

likelihood of coming from large, navigable visibility cells rather than small ones. 

Therefore, even if the robot do es not position itself precisely at the point where it 

intended to, it is nonetheless likely to remain within the same visibility cell. Besides, 

a real robot with non-zero mass would be able to manoeuvre itself better in the large 

spaces where random points are more likely to be selected from. The randomized 

3Recall that the hybrid strategy weights the information gain per random point with the distance 
of that point from the robot's current location whereas the standard weighted strategy weights the 
information gain with that point's distance from the robot's initial location. 
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approach also enables our technique to avoid horrendous worst-case scenarios in terms 

of path length (as depicted in Figure 1.2). 

Relying on a perfect map of the environment may lead the robot to spot too 

few ambiguities. A small glitch in the map may make two hypothetical locations 

appear different when, in reality, they are identical. In order to effectively recognize 

and eliminate hypothetical locations, undeterred by any noise that may be present 

in the map, we might consider assigning probablities to different hypotheses as dis­

cussed above. Fairly accurate polygonal layouts might be available for certain in­

do or environments but this restricts us to only such indoor environments. Karch 

et al. [KW99, KNW97, KNW98J examine polygon distances for modeling the 

similarity between a range scan and the preprocessed visibility information needed 

for localization in an attempt to adapt the theoretical scheme to more realistic sce­

narios. Gonzalez-Banos and Latombe [GBL02, GBLOlb, GBML+OOJ describe 

methods for polyline generation from sensor data and model alignment. They argue 

that due to range-finding technology being now more precise and reliable, polygonal 

representations can be considered, especially given the added advantage of polygons 

possessing geometric properties that can be efficiently computed. The perception­

based localization scheme of [DN97J requires the robot to first build its own map 

before attempting localization. This approach might have the advantage of imposing 

consistency between the map and the robot's perceptions of its environment during 

localization. 

Special sampling strategies for narrow passages as described in [HKL +98J might 

be required in order to adequately cover regions of the overlay intersection that are 

relatively small compared to the entire overlay intersection area. This issue is relevant 

only for the COL algorithm, since in the URL algorithm we sample only within the 

computed useful region. It is exactly this narrow passage effect that occurred when 

we evaluated the performance of the COL algorithm with low visibility ranges. When 

the visibility is poor, the size of the useful regions relative to the overlay intersection 

area becomes very small, and therefore hard to sample. Hence we observed that the 
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length of the localization trajectory did not reduce much as the number of random 

points was increased. 

We have not established any correlation between the number of hypotheses gen­

erated and the path length, keeping visibility range and environment size constant. 

A larger number of hypotheses may give rise to shorter path lengths than a sm aller 

number of hypotheses. As visibility gets poorer, the number of hypotheses increases 

as does the path length. However, the increased length of the localization trajectory 

can be attributed to the robot's "shol't-sightedness" which requires it to move mu ch 

closer to distinguishing features in order to be able to see them than otherwise. 

9. Visualization of Cornrnon Overlay Localization Aigorithrn 

In this section we present visual simulation results illustrating the localization 

trajectory taken by the robot in a multitude of environments. The shaded area in 

these figures represents the overlay intersection area. The square black points labelled 

HO, Hl, ... , Hk indicate the different hypothetical locations. The small round dots 

scattered across the shaded region represent the random points. The localization 

path taken by the robot goes through the most useful of these random points. 

Figure 5.18 depicts the localization path taken by a robot with unlimited visi­

bility for a staircase-like environment. Figures 5.19 and 5.20 show simulated office 

environments of the type modeled after mazes, where the size of each grid cell is 100 

pixel units. Localization is achieved with unlimited visibility. 

Figures 5.23, 5.21, 5.22, and 5.24 illustrate various simulated office environments 

of the type modeled after mazes, where the size of each grid cell has been reduced to 

50 pixel units instead of 100 as before 4. Each environment contains approximately 

400 vertices on average. The visibility range was reduced to 30 pixel units. Fig­

ures 5.23, 5.22, and 5.24 show localization trajectories obtained with the standard 

weighted decision strategy. Figure 5.21, on the other hand, depicts the same envi­

ronment and initial location as Figure 5.22 but with a trajectory obtained using the 

4The grid cells used to generate these environments had to be made sm aller in order to fit an entire 
environment on a page. 
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hybrid decision strategy. The initial location is the centre "room cell" in the top row 

of room cells. Observe that in Figure 5.21 the robot proceeds to successfully localize 

itself by moving in one direction from its initial location. The total distance traveled 

by the robot amounts to 614.74 units. In contrast, Figure 5.22 shows the robot mov­

ing in a "zigzagging" fashion from the initial location, resulting in a total pathlength 

of 3429.59 units. This example illustrates clearly the types of situations where mea­

suring the weighted distance of a potential probe destination from the robot's current 

location pro duces significantly shorter localization trajectories, while simultaneously 

avoiding the pitfalls faced by the traditional heuristic. 

Figures 5.25 and 5.26 depict the localization path t,aken by the robot in two 

signature step environments with visibility range 50. In both cases, the robot explores 

only the distinctive structure on the step it is situated on in order to estimate its true 

location. 
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,. 1 A Randomlzed Strategy for Rollot locallzatlOll 1 X 

H2 

FIGURE 5.18. Localization trajectory in staircase environment with unlim­
ited visibility. 
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FIGURE 5.19. Localization trajectory in simulated office environment with 
unlimited visibility. 

FIGURE 5.20. Localization trajectory in simulated office environment with 
unlimited visibility. 
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FIGURE 5.21. Localization trajectory in simulated office environment with 
limited visibility. The hybrid decision strategy was used which directs the 
robot to weight the information gain at a potential probe destination with 
its distance from the robot's current location. 
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FIGURE 5.22. Localization trajectory in simulated office environment with 
limited visibility. The standard weighted decision strategy was used which 
directs the robot to weight the information gain at a potential probe desti­
nation with its distance from the robot's initial location. The robot travels 
in a zigzagging fashion, resulting in a long trajectory. 
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FIGURE 5.23. Localization trajectory in simulated office environment with 
limited visibility. 
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FIGURE 5.24. Localization trajectory in simulated office environment with 
limited visibility. 
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FIGURE 5.25. Localization trajectory in signature step environment with 
limited visibility. The robot explores only the distinctive structure on the 
step it is situated on in order to estimate its true location. 
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FIGURE 5.26. Localization trajectory in signature step environment with 
limited visibility. The robot explores only the distinctive structure on the 
step it is situated on in order to estimate its true location. 

1 1 
1 
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CHAPTER 6 

Conclusion and Future Work 

1. Conclusion 

In this thesis, we have presented two randomized approximation algorithms that 

efficiently solve the problem of minimum distance localization. Ours is the first work 

to address the problem of path optimization in global localization theoretically as 

weIl as practicaIly. Our techniques are able to effectively localize a robot in large­

scale environments with high degrees of ambiguity and limited sensor visibility. The 

algorithms we have developed are efficient to compute and yet also efficient in their 

performance. 

Globallocalization in the context of ambiguous environments intrinsically entails 

combining sensor measurements from multiple vantage points along sorne trajectory. 

Therefore an intelligent motion strategy is imperative to achieve unambiguous 10-

calization. Theoretically, while the greedy decision strategy of [DRW98] has been 

proven to have the best possible worst case bound on the distance traveled by the 

robot, our weighted strategies pro duce shorter path lengths on average. Existing de­

terministic techniques may direct the robot to visit arbitrarily small visibility cells. In 

practice, reaching such cells may be infeasiblc and crror-prone for a real robot. The 

algorithms we have proposed are based on visiting a series of random sample points 

from which distinguishing landmarks can be seen. Thus, it is certainly possible that 



6.1 CONCLUSION 

a tiny visibility cell which might hold the key to an optimally short path is never 

sampled. This is a theoretical disadvantage but a practical advantage. 

Simple heuristic strategies have been shown to exhibit strikingly poor perfor­

mance with respect to the length of the localization trajectory. In addition, naive 

motion strategies such as wall-following and random wandering have been reported 

to fail to localize the robot. The weighted decision strategies that we employ are 

able to effectively localize the robot with competitive path lengths, while at the same 

time avoiding worst-case pitfalls. In general, although we believe that sorne form of 

weighted decision strategy must be used, the actual weighting formula can vary, de­

pending on factors such as the type of environment, restrictions placed on the robot, 

and any other objectives that the robot might simultaneously be trying to fulfill. Our 

technique is flexible and can therefore accommodate different decision strategies. 

We generated a variety of self-similar environments in order to validate and ex­

plore the performance of our localization algorithms. Experimental results show that 

although the performance of our algorithms improves with the number of random 

sample points used, the incremental improvement decreases as the number of sam­

pIes increases, so that a fairly limited number of samples typically is sufficient. In 

the case of the URL algorithm, where we directly compute the portion of the overlay 

intersection region where any point chosen is guaranteed to yield new information, 

we require as little as 1 random point in order to unambiguously localize the robot. 

A greater number of random points only serves to minimize the path length. 

As the sensor visibility range decreases, the robot is required to travel increasingly 

longer distances in order to achieve localization. Poor vision means that the robot 

has to move much doser to distinguishing features in order to be able to see them 

than otherwise. Experimental results indicate that for any fixed visibility range, 

the path length produced by the URL algorithm becomes shorter as the number of 

random points is increased. In contrast, at low visibility range values, the path length 

produced by the COL algorithm improves only marginally as the number of random 

points is increased. Since the regions of the overlay intersection that are likely to 

79 



6.2 FUTURE WORK 

provide new information get sm aller as visibility gets poorer, the number of useful 

points uncovered by the COL algorithm does not increase sufficiently to really make 

a difference to the path length. In such situations the URL algorithm seems to clearly 

be the better choice. 

2. Future Work 

The flexible nature of our technique suggests natural extensions to more realistic 

contexts. It would be interesting to adapt our algorithms to handle noisy sensor data 

and a noisy map. Hypotheses would then have to be generated in a probabilistic 

fashion and the decision strategy might have to be modified to reflect the likelihood 

estimates for the different hypotheses. 

Polygonal environments containing holes might be accommodated with our ex­

isting technique. It would be worthwhile to consider what modifications are required 

in order to implement minimum distance localization in environments with obstacles. 

Due to time limitations, we were not able to perform as many experiments as we 

would have liked. In particular, we would like to carry out experiments with different 

types of environments and in larger quantities. In addition the performance of the 

URL algorithm could be more thoroughly explored. 

Sorne open questions raised are: Can we express the path length as a function 

of the number of concave vertices in the environment? What would such a function 

look like? 

One aspect of this work that deserves more attention is the average case behaviour 

of our randomized algorithms and their expected time complexity. 

Ultimately, we would like to implement our technique on a real mobile robot. 
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