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ABSTRACT

The widespread application of next-generation se-
quencing technologies has revolutionized micro-
biome research by enabling high-throughput pro-
filing of the genetic contents of microbial commu-
nities. How to analyze the resulting large complex
datasets remains a key challenge in current micro-
biome studies. Over the past decade, powerful com-
putational pipelines and robust protocols have been
established to enable efficient raw data processing
and annotation. The focus has shifted toward down-
stream statistical analysis and functional interpreta-
tion. Here, we introduce MicrobiomeAnalyst, a user-
friendly tool that integrates recent progress in statis-
tics and visualization techniques, coupled with novel
knowledge bases, to enable comprehensive analysis
of common data outputs produced from microbiome
studies. MicrobiomeAnalyst contains four modules
- the Marker Data Profiling module offers various
options for community profiling, comparative anal-
ysis and functional prediction based on 16S rRNA
marker gene data; the Shotgun Data Profiling module
supports exploratory data analysis, functional pro-
filing and metabolic network visualization of shot-
gun metagenomics or metatranscriptomics data; the
Taxon Set Enrichment Analysis module helps inter-
pret taxonomic signatures via enrichment analysis
against >300 taxon sets manually curated from litera-
ture and public databases; finally, the Projection with
Public Data module allows users to visually explore
their data with a public reference data for pattern dis-
covery and biological insights. MicrobiomeAnalyst is
freely available at http://www.microbiomeanalyst.ca.

INTRODUCTION

The past decade has seen an immense growth in the num-
ber of studies that aim to characterize the structures, func-
tions and dynamics of host-associated microbial communi-
ties (microbiota) within the context of host development,
pathophysiology, diet and environment perturbations (1,2).
These studies have revealed a wide array of important roles
that the microbiota play in human and animal health. Due
to drastic reduction in costs and its high-throughput ca-
pacity, next-generation sequencing has become the pre-
ferred method to study the collective genetic contents of mi-
crobial communities (microbiome). Currently, microbiome
datasets are mainly generated using one of the three com-
mon sequencing strategies including marker gene (i.e. 16S
rRNA) survey to characterize microbial community com-
positions, shotgun metagenomics to study their functional
potentials, and shotgun metatranscriptomics to identify
those actively expressed genes. These studies usually gener-
ate datasets that are both large (with regard to data size) and
complex (with regard to data structure), posing substantial
‘big data’ challenges in downstream data analysis.

The initial computational effort in microbiome data anal-
ysis focused on raw sequence processing, clustering and an-
notation. This led to the development of several powerful
tool suites such as MEGAN, MG-RAST, mothur and QI-
IME (3–6), which together helped to establish the essen-
tial pipelines and procedures for processing raw reads gen-
erated from microbiome studies. Given the ever-increasing
data sizes and computational costs, raw data processing is
now typically handled at the same sequencing center follow-
ing standardized protocols. These procedures produce a key
summary table containing feature (Operational Taxonomic
Units (OTUs), taxa or genes) abundance information across
samples, along with various annotations and sample meta-
data. The Biological Observation Matrix (BIOM) file was
recently developed to store all these types of information
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to facilitate the interoperability of existing bioinformatics
tools and future meta-analyses (7). For most researchers,
their primary challenge in data analysis is how to make
sense of the abundance tables or BIOM files within the con-
text of different experimental factors or study conditions.

Microbiome data analysis can be placed into four gen-
eral categories: (i) taxonomic profiling - to characterize
community compositions based on methods developed in
ecology such as alpha-diversity (within-sample diversity)
or beta-diversity (between-sample diversity); (ii) functional
profiling - to assign genes into different functional groups
(i.e. metabolic pathways or biological processes) to under-
stand their collective functional capacities; (iii) comparative
analysis - to identify features that are significantly differ-
ent among conditions under study and (iv) meta-analysis
- to integrate user data with public data or knowledge
accumulated for improved statistical power or biological
understanding. The first two categories are now relatively
straightforward to perform, while the last two categories
still remain very challenging and become the focus of in-
tense research efforts.

Microbiome abundance data presents several unique
challenges including sparsity (containing many zeros), vast
differences in sequencing depth, and large variance in dis-
tributions (over-dispersion) (8). These unique characteris-
tics have made it inappropriate to directly apply methods
developed in other omics fields to perform comparative
analysis on microbiome data. As a result, non-parametric
permutation-based methods are often employed for identifi-
cation of significant features in microbiome data (9,10). Al-
though robust, the main limitations of such approaches are
the lack of statistical power and the inability to model con-
founding factors to accommodate complex experimental
designs. To deal with uneven sequencing depth, researchers
often resort to two common approaches: rescaling the total
reads in each sample to a constant sum (using proportions),
or resampling the reads in each sample to an equal amount
(rarefying). The former will lead to typical issues associated
with compositional data (11), and the latter may lead to
the loss of important information. In general, it is statis-
tically more appropriate to develop suitable statistical mod-
els for sparse count data to accommodate differences in se-
quence depth, or to develop strategies to transform data to
have distributions that fit the models assumed by other well-
established algorithms. There has been significant progress
towards these directions in recent years. For instance, the
metagenomeSeq algorithm integrates cumulative-sum scal-
ing (CSS) method and a statistical model based on the zero-
inflated Gaussian (ZIG) distribution to improve the power
for differential abundance analysis of microbiome data (12).
It has also been shown that, following proper data normal-
ization, the methods developed for RNAseq such as edgeR
and DESeq2 perform similarly to or better than many other
algorithms developed specifically for microbiome data (13–
15). To account for compositional data, different data trans-
formation approaches have been proposed such as the cen-
tered log-ratio (CLR) transformation (16).

The majority of these recent methods have been imple-
mented as R packages. In particular, the phyloseq package
has been developed to provide a unified framework to al-
low R users to explore different statistical algorithms for

microbiome data analysis (17). Although powerful and flex-
ible, learning R programming and the underlying statis-
tics can be demanding for most clinicians and bench re-
searchers. There is an urgent demand for user-friendly tools
that support these recent approaches for comprehensive
statistical analysis of microbiome data. In addition, with
the increasing number of public datasets and our growing
knowledge about microbiome, it is now possible to perform
meta-analyses to reveal larger pictures or novel insights be-
yond a single study, such as using compatible public datasets
for contextualizing new experiments (18), pooling new data
with existing cohorts for increased power (19), or compar-
ing microbial signatures with those reported from other
studies (20).

To address these gaps as well as to meet new requests aris-
ing from current microbiome data analysis, we have devel-
oped MicrobiomeAnalyst, a web-based program to allow
clinical and basic scientists to easily perform exploratory
analysis on common abundance profiles and taxonomic sig-
natures generated from microbiome studies. The key fea-
tures of MicrobiomeAnalyst include:

• Support for a wide array of common as well as advanced
methods for taxonomic diversity analysis, functional pro-
filing, visualization and significance testing;

• Comprehensive support for various data filtering and
transformation methods coupled with well-established as
well as more recent algorithms for differential abundance
analysis;

• A powerful, fully-featured metabolic network visualiza-
tion framework for intuitive exploration of results from
functional profiling;

• Support for meta-analysis with compatible public
datasets for context reference and pattern discovery
using 3D visual analytics;

• Enrichment analysis based on >300 taxon sets manually
collected from literature and public databases.

MicrobiomeAnalyst also contains a comprehensive list
of frequently asked questions (FAQs) and tutorials to help
researchers easily navigate different analysis tasks. Collec-
tively, these features consist of comprehensive tool suites
for microbiome data analysis. MicrobiomeAnalyst is freely
available at http://www.microbiomeanalyst.ca.

PROGRAM DESCRIPTION AND METHODS

MicrobiomeAnalyst is comprised of four modules. The first
is the Marker Data Profiling (MDP) module that is designed
for analysis of 16S rRNA marker gene survey data. The sec-
ond is the Shotgun Data Profiling (SDP) module that con-
tains functions for analyzing metagenomics or metatran-
scriptomics data. The third module, the Taxon Set Enrich-
ment Analysis (TSEA), is designed to test whether there
are biologically or ecologically meaningful patterns from
a given list of taxa of interest. Finally, the Projection with
Public Data (PPD) module allows users to visually compare
their data with our collection of curated public datasets for
novel patterns or biological insights. Figure 1 summarizes
the overall design and the flowchart of MicrobiomeAnalyst.
Different modules provide a variety of options and proce-
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Figure 1. MicrobiomeAnalyst flow chart. MicrobiomeAnalyst accepts taxa/gene lists, OTU/gene abundance tables, or BIOM files. Three consecutive steps
are performed - data processing, data analysis, and result exploration. The associated web interface offers a rich set of options, and produces various tables
and graphics to allow users to intuitively navigate the data analysis tasks.

dures to help users to complete their tasks. We advise users
to start with our tutorials and to first try our example data
to become familiarized with the basic features and main
steps.

Data upload and processing

Overview of data inputs. The four modules (MDP, SDP,
TSEA and PPD) are represented as four interactive circu-
lar buttons on the homepage of MicrobiomeAnalyst. Users
must choose a module based on their data types. The MDP
and PPD are designed for 16S rRNA maker gene survey
data. Users need to provide a taxon or OTU abundance ta-
ble together with a sample metadata file containing group
information. The files can be uploaded as a tab delimited
text (.txt) or in comma separated values (.csv). Microbiome-
Analyst also accepts BIOM files as well as the common out-
put files from the mothur software package. The SDP mod-
ule requires the same formats for data input except that the
features should be genes annotated by KEGG Orthology
(KO), Enzyme Commission (EC) numbers or Cluster of Or-
thologous Groups (COG) IDs. For more details, users can
go to the corresponding FAQs and tutorials, or download
our test examples for inspection.

Data filtering. By default, features containing all zeros or
only appear in a single sample are excluded in downstream
analyses based on technical, statistical and biological con-
siderations. In particular, features with very low counts in
very few samples cannot be distinguished from sequencing
errors, and significant differences in features characterized
by low abundance or rare occurrence are difficult to inter-
pret with respect to their general importance in the whole

community. This ‘minimally cleaned’ data is reserved for
various alpha diversity analyses in which the primary goal is
to understand individual sample diversity. For all other data
analysis, further data filtering is necessary. By default, fea-
tures are filtered based on their abundance levels and sam-
ple prevalence. Users can also filter low-count features us-
ing a minimum count cutoff based on their mean or median
values. If the primary goal is comparative analysis, users
should exclude features that exhibit low variance based on
their inter-quantile ranges, standard deviations or coeffi-
cient of variations. These features are very unlikely to be
significant in the comparative analysis. Filtering those un-
informative features can ameliorate the data sparsity issue,
as well as improve statistical power by reducing the issue of
multiple testing in downstream analysis.

Data normalization. After data filtering, users need to per-
form data normalization in order to make more meaning-
ful comparisons. MicrobiomeAnalyst offers three types of
data normalization - scaling, transformation and rarefying,
based on various options implemented in phyloseq. The
normalized data is used for visual data exploration includ-
ing beta-diversity and clustering analysis. It is also used for
those comparative analysis methods without a known pref-
erence for certain normalization procedures, such as uni-
variate statistics and linear discriminant analysis effect size
(LEfSe). Other comparative analyses will use their own spe-
cific normalization methods. For instance, the cumulative
sum scaling (CSS) normalization is used for metagenome-
Seq, and the trimmed mean of M-values (TMM) normal-
ization is applied for edgeR. MicrobiomeAnalyst also al-
lows users to perform data rarefying. Recent studies have
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suggested that this procedure may still be necessary when
the library sizes are vastly different (i.e. differing more than
10 folds) (21). The function supports rarefaction curve anal-
ysis to allow users to visually assess the sequencing depth
with regard to the number of OTUs detected.

Community profiling

Taxonomic diversity profiling. The community diversity
profiling was implemented based primarily on the R phy-
loseq and vegan packages (17,22). The analysis can be per-
formed at different taxonomic levels based on the avail-
able annotations. The alpha-diversity analysis function cur-
rently supports six common diversity measures. The results
are plotted across samples and are also summarized as box
plots for each group (Figure 2A). The corresponding sta-
tistical significance is estimated automatically using either
parametric or non-parametric tests based on user selection.
Users can also visualize abundance profiles at different tax-
onomic levels using a stacked area or stacked bar plot (Fig-
ure 2B). The beta-diversity analysis supports five common
distance measures. The results are presented as both 2D and
3D ordination plots based on principal coordinate analysis
(PCoA) or non-metric multidimensional scaling (NMDS).
The corresponding statistical significance is assessed us-
ing one of the three statistical methods with Permutational
Multivariate Analysis of Variance (PERMANOVA) as the
default option. To help identify patterns or gain biological
insight, the samples displayed on PCoA or NMDS plots
can be colored based on the metadata (default), their alpha
diversity measures, or the abundance levels of a particular
feature they contain. The last option has often been used to
show the potential association between the metadata and
a specific feature whose abundance levels (shown as color
gradients) vary in the same (or opposite) direction as the
separation patterns according to the metadata (Figure 2C
and D).

Predicting metabolic potentials and profiling functional di-
versity. Based on their phylogenetic distances or se-
quence similarities to those from the microbes whose whole
genomes have been sequenced and annotated, the 16S
rRNA data can be used to infer the metabolic potentials
of the corresponding microbial species. In particular, the
PICRUSt is used for Greengenes annotated data (23) and
the Tax4Fun is used for data annotated by SILVA database
(24). The result is a table containing relative KO abundance
levels. The KO profiles obtained from predictions or ac-
tually measured from shotgun metagenomics or metatran-
scriptomics can be used for functional diversity profiling
based on the KEGG (pathways, modules or EC categories)
or COG annotation systems. Since one KO or COG can be
assigned to multiple functional groups, MicrobiomeAnalyst
offers different approaches to deal with this issue, includ-
ing simple sum, normalized sum, or weighted sum methods.
The results are presented as a stacked area plot organized
by experimental factors to help visualize patterns of varia-
tions across different conditions. The underlying abundance
table is available for download.

Comparative analysis

Differential abundance analysis. This section allows users
to perform formal statistical comparisons to identify fea-
tures that are significantly different. For marker gene data,
the OTU tables can be collapsed to higher levels based on
their taxonomic assignments before conducting differential
analysis. Although this procedure can reduce data sparsity,
a large proportion of OTUs will usually be placed into one
‘Not Assigned’ bin, making it very challenging for biologi-
cal interpretation. MicrobiomeAnalyst supports both com-
mon parametric and non-parametric univariate analysis, as
well as more recent approaches such as metagenomeSeq,
edgeR and DESeq2 (15). The results from the differential
analysis are displayed as a numerical table. Users can click
the ‘Details’ icon to see a box plot summary of any feature
of interest. Since different statistical models sometimes pro-
duce P values that can be vastly different, it is advisable
to compare results from multiple methods and to visual-
ize the features to gain more confidence. By default, Mi-
crobiomeAnalyst will display a maximum of 500 top fea-
tures according to their P values. The rows containing sig-
nificant features (if present) are automatically highlighted
in orange. This implementation allows users to easily focus
on the features of interest while minimizing the chance of
missing important ones. For shotgun data, significant KOs
can be mapped to metabolic networks for enrichment anal-
ysis and visual exploration.

Biomarker identification and classification. This section
provides two well-established methods - LEfSe (10) and
Random Forests (25). The former has been developed
specifically for microbiome data to help identify robust and
biologically relevant features for biomarker discovery; while
the latter is a generic non-parametric machine learning al-
gorithm which has been shown to perform well in many
recent microbiome data analyses and classifications (26–
28). In particular, LEfSe uses the non-parametric Kruskal-
Wallis rank sum test to detect features with significant dif-
ferential abundance in different groups, followed by linear
discriminant analysis to evaluate the effect size of those sig-
nificant features. Users can select significant features using a
combination of P value and effect size. The Random Forests
algorithm uses an ensemble of classification trees (forest),
with class prediction based on the majority vote of the en-
semble. As the forest is built, it can provide an unbiased
estimate of the classification errors by aggregating cross-
validation results using bootstrapped samples. In addition,
the algorithm also measures the importance of each feature
based on the increase of the classification errors when it is
permuted. A graphical output is generated to summarize its
classification performance with regard to increasing num-
ber of trees (Figure 2E).

Other features. MicrobiomeAnalyst also provides other
useful features for visual comparison and clustering anal-
ysis. Users can generate stacked bar or stacked area plots
to view the abundance profiles across samples at differ-
ent taxonomic levels. The interactive pie chart summarizes
the taxonomic compositions for a selected group. Users
can click a particular section of interest to further inves-
tigate its compositions at a lower taxonomic level. Micro-

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/45/W

1/W
180/3760191 by M

cG
ill U

niversity Libraries - Serials U
nit user on 24 N

ovem
ber 2021



W184 Nucleic Acids Research, 2017, Vol. 45, Web Server issue

Figure 2. Example outputs from MicrobiomeAnalyst. (A) A box plot summary of the Shannon diversity index across different groups. (B) A stacked
bar chart showing Phylum level abundance profiles across samples. Sample names in red and green colors indicate mice fed a low fat diet (LFD) and a
western-style diet (WSD), respectively. (C) A PCoA plot with sample colors based on different diets. (D) The same PCoA plot with color gradients based
on the abundance levels of family Bacteroidaceae. (E) A graphical summary of the classification performance on different diets using the Random Forests
algorithm. (F) A dendrogram showing the clustering of samples with colors based on diet and sex. (G) A clustered heatmap showing the variation of
taxonomic abundance with regard to diet and sex. (H) An interactive network summarizing enriched taxon sets from TSEA. (I) A 3D PCoA plot from the
PPD module, with the taxonomic composition of the currently selected sample shown in the middle and the session history on the right. (J) A screenshot
showing functional enrichment analysis and visualization within the global metabolic network.

biomeAnalyst also provides comprehensive support for the
widely used hierarchical clustering coupled with dendro-
grams and heatmaps. Figure 2F and G shows the example
outputs from these two functions. All graphical outputs can
be downloaded as either Portable Document Format (PDF)
or Scalable Vector Graphics (SVG) files for publication pur-
poses.

Taxon set enrichment analysis (TSEA)

Taxon set collection. The taxon sets have been collected
from literature and public databases using a combination
of text mining and manual curation. The 105 strain sets
were obtained mainly from the Genomes Online Database
(GOLD) database (29) and the Pathosystems Resource In-
tegration Center (PATRIC) (30), organized primarily based
on their phenotypic traits. The 174 species sets were manu-

ally collected from over 60 literature publications, organized
based on their associations with various host physiological
and biochemical measures, disease states or life style fac-
tors. Finally, the 40 higher level taxon sets were obtained
from the MicroPattern website (20). These taxon sets were
manually annotated to improve name readability with links
to their original databases or publications.

Enrichment analysis and interpretation. The goal of this
analysis is to determine whether members in a particular
taxon set are represented more frequently within the user-
uploaded list of taxa than expected by random chance. Such
a list can be those significant features identified in differen-
tial abundance analysis, or those exhibiting similar behav-
iors based on clustering analysis. The enrichment analysis
is calculated using hypergeometric tests. The results are pre-
sented as an interactive network (Figure 2H) at the top and
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Table 1. Comparison of MicrobiomeAnalyst with other web-based tools. The URL for each tool is given below the table. Tools dedicated solely for
sequence annotation are not included

Tools Microbiome-Analyst METAGEN-assist EBI-Metagenomics MG-RAST VAMPS

Registration No No Yes Yes Yes
Data Processing
Input Count tables; BIOM;

mothur output
Count tables; BIOM;
outputs from 4 tools

Sequences Sequences Sequences

Filtering Abundance, variance,
manual

Abundance, variance – Abundance Abundance

Normalization Scaling,
transformation,
rarefying

Scaling,
transformation

– Scaling,
trans-formation

Scaling

Taxonomic Profiling
Alpha-diversity Multiple – – Shannon Multiple
Beta-diversity PCoA & NMDS (2D

& 3D)
PCA, PLS-DA PCA PCoA PCoA & NMDS (2D

only)
Functional profiling
Functional prediction PICRUSt & Tax4Fun – – – –
Functional
annotation

COG & KEGG – GO SEED, KEGG COG,
eggNOG

–

Pathway visualization Yes (JavaScript) – – Yes (SVG) –
Comparative analysis
Differential analysis Univariate methods,

DESeq2, edgeR,
metagenomeSeq

Univariate methods – – –

Biomarker discovery
& classification

LEfSe, Random
Forests

SVM, Random
Forests

– – –

Meta-analysis
Taxon set enrichment
analysis

105 strain sets, 174
species sets, 42 others

– – – –

Integration with
public data

Visual analytics with
3D PCoA

– – – –

• MicrobiomeAnalyst:http://www.microbiomeanalyst.ca/
• METAGENassist:http://www.metagenassist.ca/

• EBI-Metagenomics:https://www.ebi.ac.uk/metagenomics/
• MG-RAST:http://metagenomics.anl.gov/
• VAMPS:https://vamps2.mbl.edu/

a detailed result table at the bottom of the page. The en-
richment network offers a high-level overview of important
taxon sets and their relationships (31). Each node represents
a taxon set with its color based on the P value, and its size
based on the number of hits. Two taxon sets are connected
by an edge if the number of their shared hits is >20% of the
total number of their combined taxa. Users can manually
drag and drop a node to improve the layout. Double click-
ing a node will display the members in the taxon set with
those hits highlighted in red.

Projection with public data (PPD)

This module allows users to visually explore their 16S
rRNA data within the context of a compatible public
dataset. Such comparisons have been increasingly used to
reveal microbiome compositional differences in different
developmental stages (18) or across different populations
(32). The public datasets were collected from the Qiita
database (http://qiita.microbio.me) by selecting those well-
annotated 16S rRNA marker gene datasets collected from
different body sites in human, mouse and cow. The key
metadata (sequencing platforms, regions targeted by the
primers and associated publications) are displayed to help
users choose a suitable dataset. In order to achieve mean-
ingful comparisons, MicrobiomeAnalyst requires that there

must be at least 20% OTU overlap between the user data
and the selected public reference data.

The results are presented as an interactive 3D PCoA plot
(Figure 2I) with node colors based on different experimen-
tal factors and node shapes representing different datasets.
Users can intuitively rotate (mouse dragging), zoom in and
out (mouse scrolling), or directly click on any node (sample)
of interest to view its taxonomic composition. The view his-
tory is displayed on the right. By comparing the composi-
tions of nodes in distinctive clusters, users can easily identify
key taxa underlying the separation patterns. Unlike alpha
diversity, beta diversity is mainly affected by those abundant
taxa that are shared across samples. Normalization (includ-
ing data rarefying) tends to have very little effect on data
clustering patterns, which has been confirmed in a recent
large-scale benchmarking test (33). These observations have
been applied in the PPD module to help save computing
time, in which the default PCoA is computed from the top
20% most abundant taxa using the Bray-Curtis index dis-
tance measure. Users can choose to use the complete dataset
or other distance measures to explore the cluster patterns.

Metabolic network visualization

For shotgun data, users can perform enrichment analysis
and visually explore the results within a metabolic network.
The framework has been developed based on the KEGG
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global metabolic network using the KEGGscape (34) fol-
lowed by manual curation. A screenshot of the metabolic
network view is shown in Figure 2J. It is composed of three
main components - the central network visualization area,
the toolbar at the top, and the pathway table on the left.
The network is displayed at the central area, with nodes and
edges representing metabolites and enzymatic reactions, re-
spectively. In the KEGG layout, certain reactions are rep-
resented multiple times at different places to reduce clut-
tering. A KO is assigned to one or several edges if it en-
codes the corresponding enzyme. Double click on an edge
will show the corresponding reaction information (KO and
compounds). Users can use the mouse scroll to zoom in
and out of the network. The top toolbar contains functions
for common tasks such as changing the background color,
switching the view style, specifying a highlighting color, or
downloading the current network view as images. The left
panel displays the names of the metabolic pathways or mod-
ules ranked by their enrichment P values. Clicking on a
name will highlight its KO members (edges) within the net-
work, with the edge thicknesses reflecting their abundance
levels.

USE CASE

To illustrate the utility of MicrobiomeAnalyst, we con-
ducted a gut microbiome study on the effects of two dif-
ferent diets - a low fat diet (LFD) or a western-style diet
(WSD), using male and female wild-type (C57BL/6) mice
born in the same family. Fecal samples and cecal contents
were collected after 10 weeks on the diets, and DNA ex-
tracted from the samples were used to generate 16S rRNA
gene libraries. Raw reads processing and taxonomy assign-
ment were performed using the MG-RAST pipeline (4).
The BIOM file was then uploaded to the MDP module of
MicrobiomeAnalyst. We first compared libraries from fecal
samples and cecal contents. According to Shannon alpha-
diversity index, the cecal samples displayed higher diversity
than fecal samples (Figure 2A); however, both the fecal and
cecal samples showed a consistent decrease in microbial di-
versity when mice were consuming the WSD as compared
to the LFD. Additional analyses were carried out using the
data from the fecal samples to represent the gut microbiota.
As shown in Figure 2B, the abundance of Bacteroidetes phy-
lum was lower, while the abundance of Firmicutes and Pro-
teobacteria phyla were both higher, in mice consuming the
WSD as compared to the LFD, an expected effect of the
WSD on the gut microbiota (35). Furthermore, the PCoA
plot (Figure 2C and 2D) indicated significant difference in
beta diversity between the two diet groups at the family level
(P < 0.01), and the abundance variations of Bacteriodacea
family were closely associated with the patterns of separa-
tion. Application of the Random Forests algorithm indi-
cated that the diet types could be predicted with high ac-
curacies based on the microbiome profiles of fecal samples
(Figure 2E). MicrobiomeAnalyst also detected sex dimor-
phic changes in gut microbiota composition in response to
WSD feeding. The dendrogram (Figure 2F) showed that the
samples clustered more effectively according to diet as com-
pared to sex. The heatmap (Figure 2G) showed two distinct
abundance patterns for males and females when comparing

the LFD to the WSD. Differential abundance analyses were
performed using edgeR and DESeq2 at both OTU and fam-
ily levels. Comparison of the result tables indicated that the
significant features were largely consistent between the two
methods.

DESIGN AND IMPLEMENTATION

MicrobiomeAnalyst is based on Java, R and JavaScript. In
particular, the R package phyloseq (17) is used extensively
for parsing different data formats, statistical analysis and vi-
sualization, with further optimizations for better comput-
ing efficiencies and visual effects. The Java Server Faces
(JSF) technology is used as a high-performance web frame-
work. The entire system is deployed on a Google Cloud
server with 32GB of RAM and eight virtual CPUs with 2.6
GHz each. The performance of such implementation has
been shown to be able to deal with ∼100s of users on a daily
basis, based on the performance of our other tools deployed
with the same configurations (36–38). MicrobiomeAnalyst
has been tested with major modern browsers such as Google
Chrome (5+), Mozilla Firefox (3+) and Microsoft Internet
Explorer (9+).

COMPARISON WITH OTHER TOOLS

Several excellent web-based applications have been devel-
oped over the past decade to support microbiome data anal-
ysis (39–43). Most of these tools have been developed pri-
marily for raw sequence processing, annotation and stor-
age, with limited support for advanced statistical analy-
sis and interactive visual exploration. MicrobiomeAnalyst
complements these tools and data repositories by provid-
ing comprehensive support for statistical, visual and meta-
analysis on the universal abundance tables and BIOM out-
puts. STAMP (44) and Shiny-phyloseq (45) are two options
of locally installable applications equipped with graphical
user interface. Based on the detailed comparisons among
those web-based tools (Table 1), it is evident that Micro-
biomeAnalyst offers a unique set of features and functions
with regards to comprehensive statistical data analysis and
visualization, metabolic network visual analysis, taxon set
enrichment analysis and meta-analysis.

LIMITATIONS AND FUTURE DIRECTIONS

The data processing and statistical methods in MDP and
SDP modules can be used for analysis and visualization
of data for both human and environmental microbiome
studies. However, the TSEA and PPD modules were devel-
oped based on resources primarily from human and mouse
microbiome studies, and they are not suitable for analysis
of data from other environments. Currently, Microbiome-
Analyst does not support correlation or association analy-
sis. Unlike other largely established analysis in which dif-
ferent algorithms usually produce results that agree with
each other very well, current approaches for detecting cor-
relations among taxa often gives very inconsistent results
and could be misleading for inexperienced users. In addi-
tion, most of these methods require a large number sam-
ples and use computationally intensive re-sampling and
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permutation-based approaches to compute statistical sig-
nificance, making it unsuitable for a real-time interactive
web application. The current functions for meta-analysis
focus on providing visual exploration against public data
or supporting enrichment analysis against microbial signa-
tures identified from other microbiome studies. In future re-
leases, we intend to further enhance the support for more
rigorous statistical meta-analysis (19,46).

CONCLUSIONS

As a new frontier in biomedical research, current micro-
biome studies and data analyses are mainly exploratory
in nature. Despite the development of many new statisti-
cal algorithms in recent years, there is no single statisti-
cal method that performs universally well, as clearly shown
by a recent large-scale benchmarking test (33). It is there-
fore critical to enable researchers in the microbiome field
to easily explore their own datasets using a variety of algo-
rithms, in real-time and through interactive visualization,
to facilitate data understanding and hypothesis generation.
MicrobiomeAnalyst fulfills these requirements by offering
comprehensive support for diversity profiling, comparative
analysis and metabolic network visual exploration. It also
provides novel functions that allow users to interpret their
findings with regard to curated taxonomic signatures or to
compare their own data with public datasets. We believe Mi-
crobiomeAnalyst fills a critical gap in current microbiome
research. The microbiota is complex and dynamic, and to
fully understand its behavior as a system and its interactions
with the host, more than one type of omics data needs to
be collected, analyzed and integrated. Indeed, multi-omics
approaches are increasingly adopted for many microbiome
studies (47). The future development of MicrobiomeAna-
lyst will focus on supporting these expanding trends, partic-
ularly in the integration of metabolomics data and systems
biology (48–51).
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