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Abstract
Atomistic simulations using molecular dynamics (MD) are emerging as a 
valuable tool for exploring dissipation and material damping in nanomechanical 
resonators. In this study, we used isothermal MD to simulate the dynamics 
of the longitudinal-mode oscillations of an amorphous silicon nanoresonator 
as a function of frequency (2 GHz–50 GHz) and temperature (15 K–300 K). 
Damping was characterized by computing the loss tangent with an estimated 
uncertainty of 7%. The dissipation spectrum displays a sharp peak at 50 K 
and a broad peak at around 160 K. Damping is a weak function of frequency 
at room temperature, and the loss tangent has a remarkably high value of 
~0.01. In contrast, at low temperatures (15 K), the loss tangent increases 
monotonically from 4 10 4× −  to 4 10 3× −  as the frequency increases from 2 
GHz to 50 GHz. The mechanisms of dissipation are discussed.

Keywords: damping, dissipation, amorphous silicon, nanomechanical 
resonators, phonons

(Some figures may appear in colour only in the online journal)

1.  Introduction

Classical molecular dynamics (MD) is emerging as a valuable technique for exploring the 
mechanisms of energy dissipation and predicting the magnitude of material damping (see, 
for instance [1–10]). The computationally-intensive nature of MD restricts the simulations 
to nanoscale structures (such as nanowires, nanotubes, and nanomembranes) oscillating at 
frequencies above 1 GHz. Although these structures are too small, and the frequencies too 
high, to be of interest to the current generation of commercial microelectromechanical sys-
tems (MEMS), they closely match the characteristics of devices that are being developed for a 
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class of nanoelectromechanical systems (NEMS). For instance, the first report of a nanoscale 
device oscillating at gigahertz frequencies came in 2003 [11] and single-wall carbon nanotube 
devices with diameter of 2 nm and oscillating at frequencies as high as 280 GHz were demon-
strated in 2012 [12]. As computational techniques and NEMS technologies continue to evolve 
and mature, it may eventually become possible to use MD simulations to guide the design of 
nanomechanical resonators. This is the context and motivation for the work presented here.

Isothermal MD simulations of damping are still at an early stage of development, but sev-
eral significant milestones have been achieved during the past few years. Using the Nosé–
Hoover thermostat [13, 14] to control temperature, damping was computed in defect-free 
single-crystal nickel [7] and single-crystal silicon [8, 9] nanoresonators. The results indicated 
that dissipation is dominated by phonon damping, which is consistent with expectations based 
on theory and experiments [15–17]. Furthermore, the simulations correctly capture the rela-
tionship between the various measures of dissipation and dynamics [8], and the Duffing-like 
nonlinearity (which is commonly observed in experimental studies of NEMS [18]) emerges 
naturally from isothermal MD simulations [8, 9]. Finally, the Nosé–Hoover thermostat gen-
erates thermomechanical noise in the nanomechanical device that is in quantitative agree-
ment with the stipulations of the Equipartition Theorem and the Fluctuation-Dissipation  
Theorem [8].

Thus far, isothermal MD has been used to simulate resonators constructed using single-
crystal materials. Extending the technique to devices with polycrystalline and amorphous 
microstructures is timely and useful because such materials are widely used in NEMS tech-
nologies. It is well known that the microstructure can have a dramatic influence on damping 
and dissipation. In general, however, it is not yet possible to predict the magnitude, frequency-
dependence, and temperature-dependence of such effects from first principles [15, 16]. 
Therefore, dissipative phenomena in materials with complex microstructures are particularly 
well suited for analysis by MD. As a first step in that direction, we used isothermal MD to 
simulate damping in an amorphous silicon nanoresonator executing time-harmonic longitudi-
nal oscillations at frequencies ranging from 2 GHz to 50 GHz. The remaining sections of the 
paper describe the simulation methodologies and results of our study.

2.  Simulation methodology

Isothermal MD simulations were performed using the large-scale atomic/molecular mas-
sively parallel simulator (LAMMPS) package [19]. The number of atoms (N ), volume (V  ),  
and temperature (T) were maintained constant during simulation. The temperature was con-
trolled by coupling the structures to a thermal bath using the Nosé–Hoover thermostat, and 
the thermostat time constant was set to 0.01 ps [8]. Nanoresonators composed entirely of the 
amorphous phase of silicon were created and simulated. The construction of the simulation 
cell and the amorphization of silicon are described in detail in section 2.1. The methods and 
protocols for computing damping are identical to those used in our previous study of single-
crystal silicon [8], and the main points are briefly summarized in section 2.2.

2.1.  Creation of amorphous silicon

Amorphous silicon was generated by using the method of melting and quenching [20–22].  
The first step was to create a fully-periodic simulation box with dimensions of 
4.3 nm  ×  4.3 nm  ×  12.8 nm and consisting entirely of silicon atoms arranged in a body- 
centered tetrahedral (bct) lattice with lattice parameter of 5.28 Å. The interaction between 

S Mukherjee et alModelling Simul. Mater. Sci. Eng. 24 (2016) 055015



3

atoms was modeled using the Stillinger–Weber potential [23]. After equilibration at 1 K, the 
crystalline silicon was melted by increasing the temperature to 3000 K over 0.05 ns, and the 
liquid phase was equilibrated for 1 ns. Subsequently, the molten Si structure was rapidly 
quenched from 3000 K to 1000 K at a rate of 40 000 K ns−1 to generate the amorphous solid 
phase, and then annealed for 2 ns. Finally, the amorphous structure was cooled to 300 K over 
0.002 ns, and equilibrated at 300 K for a further period of 200 ns (as a check, a series of simu-
lations were also performed with quenching rates of 4000 K ns−1 and 2000 K ns−1 in order to 
rule out any artificial rate dependence on the structure and properties of the amorphous phase).

The structure was characterized using the radial distribution function (RDF), which was 
obtained by calculating the number of atoms within a radial distance of r and r rd+  from 
every other atom in the structure, and binning the results into a histogram. Figure 1 shows the 
RDF for amorphous Si computed using the visual molecular dynamics (VMD) program [24]. 
Also shown is the RDF for single-crystal silicon which exhibits multiple sharp peaks indicat-
ing long range order. The first four peaks for single-crystal Si occur at 2.38 Å, 3.87 Å, 4.61 Å,  
and 5.54 Å. In contrast, the amorphous solid has a primary peak at 2.43 Å and a second shal-
low peak at 3.87 Å, and the long range order is lost after 6 Å. For comparison, experimental 
characterization of amorphous silicon using x-ray diffraction reported the primary and second 
peaks at 2.36 Å and 3.76 Å [25].

Furthermore, we also employed bond order parameters (BOP) to characterize the amor-
phous phase. The BOP are dimensionless measures of geometric disorder given by
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where k and m are integers, Ykm are spherical harmonics, and the unit vector rij�  connects atom 
i with each of its N neighboring atoms j [26–29]. In the absence of any orientational order (as 
in an isotropic liquid), all the bond order parameters are expected to be identically zero [29]. 
For structures with cubic symmetry, the first three non-zero parameters are q4, q6, and q8 [29]. 
Hence, these three BOPs were selected for comparing the degree of order in single-crystal and 
amorphous silicon. Table 1 shows the average values at 300 K. In all cases, the BOP for the 
amorphous solid are significantly lower than those for the defect-free single crystal, indicating 
a higher level of structural disorder in the amorphous phase.

2.2.  Structural characterization

After generating the amorphous phase of silicon, an axial fixed-free nanoresonator was defined 
with cross-sectional dimensions of 4.3 nm 4.3 nm×  and length of L 7.6=  nm. Denoting the 
axial coordinate by x, the boundary at x 0=  was clamped by fixing the position and velocity 
of two rows of atoms, as shown in figure 2. Periodic boundary conditions were imposed on all 
lateral surfaces, and the boundary at x L=  was free. The equations of motion were integrated 
using the velocity form of the Verlet algorithm with a time step of 1 fs.

After equilibration at 300 K, the thermomechanical noise spectrum of the atoms at the 
free end was recorded and analyzed in the frequency domain to obtain a value of 284 GHz 
for the fundamental frequency of longitudinal oscillations. Subsequently, static axial tests 
were simulated by applying a series of forces to the free end and recording the corresponding 
displacements. The force-displacement curve exhibits a linear response for forces less than 
17 nN, corresponding to elastic axial deformation. Linear regression analysis of the elas-
tic response gave values of 389 N m−1 for the axial stiffness and 162 GPa for the effective 
Young’s modulus.
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Figure 1.  Molecular dynamics simulations of the radial distribution functions for 
single-crystal silicon and amorphous silicon at 300 K.

Table 1.  Average bond order parameters (BOP) at 300 K.

BOP Single-crystal Si Amorphous Si

q4 0.772 0.575
q6 0.773 0.554
q8 0.603 0.552

Figure 2.  Atomic configuration of the amorphous silicon nanoresonator with cross-
sectional dimensions of 4.3 nm  ×  4.3 nm and length of 7.6 nm. Two layers of atoms 
(shown in red) are fixed in order to simulate a clamped boundary.

S Mukherjee et alModelling Simul. Mater. Sci. Eng. 24 (2016) 055015
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The dynamics of the axial resonator was characterized in the sub-harmonic regime (that 
is, at frequencies lower than the fundamental natural frequency) by applying an axial time-
harmonic force, F t F f tsin 20( ) ( )π= , on the atoms at the free end (x  =  L), and recording the 
time-series of the axial displacement. Here, F0 is the amplitude of the force, f is the frequency, 
and t is the time. The axial response has two components: (i) spontaneous random fluctuations 
due to thermomechanical noise and (ii) steady-state harmonic motion. The former has a root-
mean-square displacement given by k T k 3 10B

12/ = × −  m, where kB is Boltzmann’s con-
stant and k is the axial stiffness. The latter can be expressed as X ftsin 2( )π φ− , where X is the 
steady-state displacement amplitude and φ is the phase angle. All simulations were performed 
with F 4.30 =  nN and the amplitude of the steady-state harmonic response is about five times 
higher than the thermal noise.

3.  Results

Damping was quantified using the loss tangent (tanφ). The phase angle was obtained from 
simulations by analyzing the harmonic force and steady-state displacement in the frequency 
domain. Further, in order to quantify the uncertainty in the simulations, we also computed the 
loss factor which is given by [8]

W

W2
.η

π
=
∆

� (2)

Here W kX0.5 2=  is the maximum elastic energy during the oscillation cycle, and W∆  is the 
energy dissipated per unit cycle. By definition,

W
f
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1

sin 2 d ,
0
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τ
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where τ is the simulation time and v is the axial atomic velocity [7, 8]. The loss tangent and 
loss factor were computed after every nanosecond. Depending on the frequency and temper
ature, the convergence time ranged from 100 ns to 300 ns, which provides an indication of 
the computationally-intensive nature of the simulations. Table 2 presents the two measures of 
damping at 300 K for frequencies ranging from 2 GHz to 50 GHz. The difference between the 
loss tangent and the loss factor ranges from 3.4% to 7.0%. The upper bound gives an estimate 
of the maximum fractional uncertainty in our simulations of damping [8].

The main results of our study are presented in figure 3 in the form of graphs depicting 
the effects of frequency and temperature on the loss tangent. The primary conclusions are as 
follows.

	 (i)	At 300 K, damping is a weak function of frequency, and the loss tangent exhibits a 
remarkably high value of ~0.01.

	(ii)	At 15 K, the loss tangent increases monotonically from 4 10 4× −  to 4 10 3× −  as the fre-
quency increases from 0.5 GHz to 50 GHz.

	(iii)	The dissipation spectrum displays a sharp internal friction peak at around 50 K, and a 
broad peak at around 160 K.

4.  Discussion

Experimental studies of damping in amorphous silicon microresonators have been conducted 
only at frequencies ranging from 5.5 kHz [30] to 13.6 MHz [31]. Therefore, it is not yet 
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possible to compare the simulations with experimental data. Instead, we discuss our results by 
comparing with previous MD simulations of dissipation in single-crystal silicon nanoresona-
tors [8, 9]. A direct comparison can be made because both studies employed the same simula-
tion methodology and simulation parameters (geometry, dimensions, mode and frequencies 
of oscillation, interatomic potential, thermostat, and integration time), as displayed in table 3. 
Figure 4 shows the frequency-dependence of damping for single-crystal Si and amorphous Si 
at 300 K. All else being the same, damping increases by more than one order of magnitude 
when the microstructure changes from single crystal to amorphous. In contrast, the corresp
onding increase in the axial stiffness and fundamental natural frequency is only around 10%. 
The difference in the densities of amorphous and single-crystal silicon is an artifact of the 
Stillinger–Weber potential [32].

4.1.  Mechanisms of dissipation

In general, the value of the loss tangent (tan φ) is governed by three different sources of dissi-
pation, namely, (i) boundary damping, (ii) fluid-structure interactions, and (iii) material damp-
ing [15, 16]. However, the first two sources are negligible in our simulations because of the 

Table 2.  Loss tangent and loss factor for the amorphous Si nanoresonator at 300 K.

Frequency (GHz) Loss tangent, φtan Loss factor, η η φ
η
− tan  (%)

2 × −9.48 10 3 × −1.02 10 2 7.0

3 × −8.86 10 3 × −9.50 10 3 6.4

4 × −6.25 10 3 × −6.66 10 3 6.2

5 × −7.21 10 3 × −7.66 10 3 5.8

10 × −8.46 10 3 × −9.05 10 3 6.5

15 × −7.41 10 3 × −7.67 10 3 3.4

25 × −8.67 10 3 × −9.20 10 3 5.8

30 × −8.99 10 3 × −9.55 10 3 5.8

40 × −1.10 10 2 × −1.17 10 2 6.0

50 × −1.19 10 2 × −1.25 10 2 4.8

Figure 3.  Results from MD simulations for the effects of (a) frequency and (b) 
temperature on the loss tangent for the amorphous silicon nanoresonator.

S Mukherjee et alModelling Simul. Mater. Sci. Eng. 24 (2016) 055015
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idealized boundary conditions. Therefore, the dissipation is entirely due to material damping 
(also called internal friction). For amorphous solids at room temperature (300 K), the mech
anisms of material damping include quantum tunneling between two-level systems (TLS), 
thermally-activated relaxation of defects, thermoelastic damping, Akhiezer damping due to 
bulk scattering of thermal phonons, and scattering of phonons at surfaces [15, 30, 32–35]. In 
this section, we seek to gain some insight into the roles of these various mechanisms.

For crystalline solids, the frequency dependence of Akhiezer damping due to bulk scatter-
ing of phonons can be estimated using [15]

CT

V

f

f
tan

2

1 2
.Akhiezer

2

s
2

r

r
2( )

φ
γ
ρ

π τ
π τ

=
+
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Here, C is the specific heat per unit volume, γ is the average Grüneisen parameter, ρ is the 
density, Vs is the speed of sound, and rτ  is the phonon relaxation time. However, equation (4) 

Table 3.  Comparison of simulation parameters and properties for axial nanoresonators 
constructed using single-crystal Si and amorphous Si.

Amorphous  
silicon (current work)

Single-crystal 
silicon [8, 9]

Interatomic potential Stillinger–Weber Stillinger–Weber
Cross-sectional dimensions ×4.3 nm 4.3 nm ×4.3 nm 4.3 nm
Length 7.6 nm 7.6 nm
Thermostat Nosé–Hoover Nosé–Hoover
Temperature 300 K 300 K
Density 2560 kg m−3 2315 kg m−3

Speed of sound, Vs 7955 m s−1 7815 m s−1

Axial stiffness, k 389 N m−1 352 N m−1

Fundamental frequency 284 GHz 256 GHz

Figure 4.  Comparison of results from isothermal MD simulations of damping in the 
longitudinal-mode oscillations of nanoresonators constructed using amorphous silicon 
and single-crystal silicon.

S Mukherjee et alModelling Simul. Mater. Sci. Eng. 24 (2016) 055015
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cannot be applied directly to amorphous solids because of the complicated nature of thermal 
vibrations. Instead, we rely on the estimates obtained by Fabian and Allen [33] for sound 
attenuation in amorphous Si due to the scattering of thermal phonons in the Akhiezer regime. 
In that study, the attenuation coefficients due to Akhiezer damping Akhiezer( )Γ  were computed 
using the Stillinger–Weber potential with atomic coordinates based on the model of Wooten, 
Winer and Weaire [36]. We calculated the Akhiezer loss tangent from the Fabian–Allen atten-
uation coefficient values according to

V

f
tan

2
,Akhiezer

s Akhiezerφ
π

=
Γ

� (5)

and the results are tabulated in table 4. At 300 K, Akhiezer damping increases monotonically 
from 4.59 10 4× −  at 2 GHz to 5.96 10 3× −  at 50 GHz. This mechanism is insignificant at the 
lower end of the spectrum (contributing less than 5% of the damping at 2 GHz), but is respon-
sible for over 50% of the damping observed in the nanoresonators at frequencies ranging from 
25 GHz to 50 GHz. The residual damping (that is, tan φ  −  tan φAkhiezer) is also presented in 
table 4.

The mechanisms responsible for the residual damping are currently unknown. Comparison 
with experimental studies of sound attenuation in silica suggest an important role for ther-
mally-activated relaxation of defects [34, 35]. Mousseau and Barkema [37] analyzed activated 
mechanisms in amorphous silicon using MD simulations and identified over 8000 processes 
associated with topological defects. However, correlating these processes with dissipation and 
quantifying the magnitude of damping are open questions of formidable difficulty.

Next, let us consider the relaxation peak at 50 K and 10 GHz (figure 3(b)). Calculations of  
Akhiezer damping due to bulk scattering of phonons report a relaxation peak at 50 K and  
1 GHz, but the peak vanishes above 5 GHz [33]. Measurements of internal friction in thin films 
of amorphous silicon at low frequencies (5.5 kHz) have observed relaxation peaks at temper
atures ranging from 40 K to 60 K [30]. The location and intensity of the peaks were found to 
depend on the processing conditions (hot-wire chemical vapor deposition or plasma-enhanced 
chemical vapor deposition) and level of hydrogenation, and the peak was attributed to struc-
tural disorder and defects in the amorphous phase [30]. However, a detailed understanding 
of the nature and structure of the defects has remained elusive. Thus, in common with the 
residual damping at 300 K, it is possible that defect relaxation is responsible for the internal 
friction peak in our simulations, but further studies are required to verify this claim.

Finally, we note that our classical MD simulations cannot capture quantum phonon dynam-
ics and tunneling between TLS. These mechanisms are negligible at room temperature, but 
can influence dissipation at cryogenic temperatures [15]. Therefore, ab initio methods are 
required for probing damping below 10 K.

4.2.  Evaluation of the Stillinger–Weber (SW) potential

Several interatomic potentials are available for silicon, each with its own merits and limita-
tions [38]. We selected the Stillinger–Weber (SW) potential for our simulations because it 
has been extensively used, tested, and validated in simulations of the mechanical and ther-
modynamic properties of bulk single-crystal and amorphous silicon. However, additional 
simulations with other potentials are needed to evaluate whether the SW potential can capture 
all dissipative mechanisms, especially those associated with surface defects. Chu et al [10] 
compared the SW and Tersoff potentials in their study of the dissipative dynamics of single- 
crystal silicon nanobeams, but the simulations were performed under non-isothermal condi-
tions with damping arising due to energy transfer between different normal modes. Extending 
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the comparison to isothermal MD simulations of damping in single-crystal and amorphous 
silicon is an important, but computationally-intensive, topic for further investigations.

5.  Summary

In this paper, we used isothermal MD to simulate the dynamics of the longitudinal-mode oscil-
lations of an amorphous silicon nanoresonator as a function of frequency (2 GHz–50 GHz)  
and temperature (15 K–300 K). Damping was characterized by computing the loss tangent 
with an estimated uncertainty of 7%. The dissipation spectrum exhibits a sharp peak at 50 K 
and a broad peak at around 160 K. Damping is a weak function of frequency at room temper
ature, and the loss tangent exhibits a remarkably high value of ~0.01. In contrast, at low 
temperatures (15 K), the loss tangent increases by an order of magnitude as the frequency 
increases from 2 GHz to 50 GHz. To the best of our knowledge, this study constitutes the first 
application of isothermal MD to characterize dissipation in an amorphous nanoresonator. Our 
results present many challenging and interesting opportunities for modeling the mechanisms 
of dissipation that are responsible for the damping observed in the nanoresonators.
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