
Birational Semistability and the
Isotriviality of Smooth Families of
Canonically-Polarized Manifolds

Behrouz Taji

Department of Mathematics and Statistics
Faculty of Science

McGill University
Montreal, Quebec

February 2014

A thesis submitted to the faculty of Graduate Studies and Research
in partial fulfilment of the requirement of the degree of Doctor of Philosophy.

Copyright © Behrouz Taji, 2014.



To my parents.



Abstract

In the first part of the current thesis we prove that the fundamental group of
a smooth complex projective fourfold with zero Kodaira dimension and non-
vanishing holomorphic Euler characteristic is finite. This is a partial resolution of
the so-called almost Abelianity conjecture in dimension 4 which predicts that the
fundamental group of varieties with zero Kodaira dimension admits an Abelian
subgroup of finite index. Our result is a consequence of another theorem where
we prove that the Kodiara dimension of coherent subsheaves of the cotangent
sheaf of fourfolds with non-negative Kodaira dimension is at most equal to the
Kodaira dimension of the variety itself, that is the cotangent sheaf of these vari-
eties is birationally semistable. In the second half of this thesis we prove that any
smooth family of manifolds with ample canonical bundle over a special quasi-
projective variety is isotrivial, i.e. there is no variation in the isomorphism classes
of the fibers of the family. The special varieties were introduced by Campana as
higher dimensional analogues of C and C∗. From this perspective the above re-
sult is a resolution of the generalization of the classical conjecture of Shafarevich,
settled by Parshin, which anticipated the isotriviality of smooth families of curves
of genus g ≥ 2 over C and C∗.



Résumé

Dans la première partie de cette thèse, nous établissons la finitude du groupe
fondamental d’une variété lisse projective complexe de dimension 4 dont la di-
mension de Kodaira est nulle et dont la caractéristique d’Euler holomorphe est
non-nulle. Ceci est une résolution partielle de la soi-disant "almost Albelianity
conjecture" en dimension 4, qui prédit que le groupe fondamental d’une variété
dont la dimension de Kodaira est nulle admet un sous-groupe Abélien d’indice
fini. Notre résultat est une conséquence d’un autre théorème, où nous prouvons
que la dimension de Kodaira des sous-faisceaux cohérents du faisceau cotangent
d’une variété de dimension 4 de dimension de Kodaira non-négative est au plus
la dimension de Kodaira de la variété elle-même, c’est dire que le faisceau cotan-
gent d’une telle variété est birationellement semistable. Dans la seconde partie de
cette thèse, nous prouvons que n’importe quelle famille lisse de variétés ayant des
faisceaux canoniques amples au-dessus d’une variété quasi-projective spèciale est
isotriviale, i.e. il n’y a aucune variation dans les classes d’isomorphie des fibres de
la famille. Les variétés spèciales ont été introduites par Campana comme des ana-
logues de dimension supérieures de C et C∗. D’après cette perspective, le résultat
ci-haut est une généralisation des conjectures classiques de Shafarevich, ètablies
par Parshin, qui anticipaient l’isotrivialité des familles lisses de courbes de genre
g ≥ 2 au-desuss de C et C∗.
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Chapter 1

Introduction

The aim of the current thesis is to investigate two central themes in complex
algebraic geometry: the classification of algebraic varieties and the global geom-
etry of moduli spaces. In the classification problems we often like to know how
global birational (or numerical) invariants such as the Kodaira dimension con-
trol topological properties like the fundamental group. These questions are well
understood for a special class of surfaces, thanks to the classification of complex
algebraic surfaces. In dimension 3 one often resorts to deep results in the mini-
mal model program for similar results (See below). In the absence of such tools in
dimension 4, we investigate the topology of fourfolds with zero Kodaira dimen-
sion and non-vanishing holomorphic Euler characteristic in chapter 2 by exploit-
ing semistability of the cotangent sheaf ΩX in a birational sense (See 1.0.6 for the
definition). The results of this chapter have partially appeared in [Ta13a]. In the
third chapter we investigate the deformation of canonically-polarized manifolds
(manifolds with ample canonical bundle). The moduli theory of such manifolds
have been heavily studied in the past two decades with striking success. We build
upon the spectacular results of many people including Viehweg, Campana, Paun,
Kebekus and Jabbusch to prove a conjecture of Campana 1.0.13 which is itself
a far-reaching generalization of a conjecture due to Viehweg 1.0.15 and Shafare-
vich. Although the two aforementioned questions belong to somewhat different
areas of algebraic geometry, the general techniques that are deployed largely (and
perhaps surprisingly) overlap. These broadly consist of results in the minimal
model theory and positivity results of Miyaoka-type concerning the (log-) cotan-
gent sheaf (See 2.1 and 3.2.1).

The minimal model program (or MMP, for short) is one of the most important
modern tools for classifying algebraic varieties by exploiting the numerical be-
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haviour of the canonical sheaf under certain birational operations. Broadly speak-
ing the program predicts that by contracting the non-nef locus of the canonical
sheaf of a given variety (with "mild" singularities) through some well-known bi-
rational transformations, that leave the birational geometry of the initial variety
intact, one can reach a final well-understood fibered variety: the Iitaka fibered vari-
ety (when the canonical sheaf is nef, i.e. when we have reached a minimal model)
or the Mori fiber space (the fibered variety whose general fiber is log-Fano). For an
in-depth discussion of the key definitions and background in the minimal model
theory we refer to [KM98]. Here we briefly recall the main conjectures and re-
sults in this theory. Although the following statements have been formulated for
a much larger class of varieties (or pairs), we restrict ourselves to those that shall
be used in the rest of this thesis.

Conjecture 1.0.1 (The minimal model conjecture for smooth pairs). Let (X, D) be
a smooth pair (See 3.1.1 for the definition) over a variety Z. If KX + D is pseudo-effective
/Z, then X/Z has a minimal model. Otherwise it has a Mori fiber space /Z.

We recall that by KX + D pseudo-effective over Z, we mean that the numerical
class of KX + D can be realized as limit of effective classes in the relative Neron-
Severi space N1(X/Z).

Conjecture 1.0.2 (The abundance conjecture for minimal models). Let (X, D) be a
log-canonical (or lc, for short) pair. If KX + D is nef over Z, then it is semi-ample over Z,
i.e. it is pull-back of a divisor that is ample /Z.

These two conjectures put together is sometimes referred to as the good min-
imal model conjecture for smooth pairs. The good minimal model conjecture (or
MMC, for short) is known up to dimension 3 through the works of many people
including Mori, Miyaoka, Shokurov and Kollar (See [Ko92]). In dimension 4 the
MMC 1.0.1 has been established by Birkar [Bir09] when �D� = 0, i.e. the boundary
divisor D does not have any reduced components. The abundance conjecture in
dimension 4 has not been completely settled, where the most intractable case is the
case of pairs with zero Kodaira dimension. Finally when (X, D) is of log-general
type and �D� = 0, the MMC is now known by the grace of the groundbreaking
work of Birkar, Cascini, Hacon and McKernan [BCHM10].
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1.0.A The Almost Abelianity Conjecture.

By the classical results of Iitaka, it is well-known that varieties with zero Ko-
daira dimension form an important class of algebraic varieties and therefore their
classification lie at the heart of the classification theory. One of the most funda-
mental results in this direction is the so-called Bogomolov decomposition [Bea83]
which shows that every nonsingular projective variety (or compact Kähler man-
ifold) X with zero first Chern class c1(X) = 0, admits a finite étale covering
σ : X′ → X by a smooth variety X′ that decomposes into a product X′ ∼= Y × Z
of an Abelian variety Y and a simply-connected variety Z with trivial canonical
divisor KZ = 0. Conjecturally a similar structural theorem should hold for all
varieties with vanishing Kodaira dimension.

Conjecture 1.0.3 (Bogomolov decomposition for varieties with zero Kodaira di-
mension, cf. [Ko95, Conj. 4.16]). Suppose X is a projective variety with zero Kodaira
dimension κ(X)=0. Then X admits a finite covering σ : X′ → X, that is étale in
codimension-one, such that X′ is birational to a product of an Abelian variety and a
simply-connected one. In particular the fundamental group π1(X) of X is almost (or
virtually) Abelian, i.e. π1(X) has an Abelian subgroup of finite index.

The second assertion in 1.0.3 is sometimes referred to as the Almost Abelianity
conjecture for varieties with Kodaira dimension zero and is known in dimension
2 by the grace of the classification of algebraic surfaces. In the case of threefolds,
the almost Abelianity of the fundamental group is a deep result of Namikawa and
Steenbrink.

Theorem 1.0.4 (Almost Abelianity in dimension 3, cf. [NS95]). The Almost Abelian-
ity conjecture holds in dimension 3.

The main ingredient of the proof of 1.0.4 is the existence of good minimal mod-
els in dimension 3 together with a certain smoothing technique for (Q-factorial)
Calabi-Yau threefolds. In the absence of these results in higher dimensions, and
when χ(X, OX) 	= 0, Campana has proposed the study of another birational in-
variant for smooth projective varieties defined by

κ+
(
X
)

:= max
{

κ
(
det F

) ∣∣F is a coherent subsheaf of Ωp
X, for 1 ≤ p ≤ dim X

}
,

where det F := (∧rF )∗∗, r = rank(F ), and proves how closely κ+ controls the
topology of X.

Theorem 1.0.5 (Finiteness of the fundamental groups, cf. [Cam95, Cor. 5.3]). Let
X be a nonsingular projective variety. If κ+(X) = 0 and χ(X, OX) 	= 0, then π1(X) is
finite.
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More significantly Campana conjectures that the cotangent sheaf ΩX of a non-
uniruled variety is birationally semistable.

Definition 1.0.6 (Birational semistability of ΩX). Let X be a smooth projective variety.
We say ΩX is birationally semistable if the inequality

κ(F ) ≤ κ(X) (1.1)

holds for every coherent OX-module subsheaf F ⊆ ΩX.

Conjecture 1.0.7. The cotangent sheaf ΩX of a non-uniruled variety X is birationally
semistable and the two birational invariants κ(X) and κ+(X) coincide.

Remark 1.0.8 (Generalization, cf. [Ta13a, Appendix]). In fact the conjecture is
slightly more general in the sense that the inequality 1.1 should hold for all subsheaves
F ⊆ Ω⊗m

X , for any positive integer m.

Furthermore Campana proves that the conjecture 1.0.7 holds assuming the va-
lidity of the good minimal model conjecture.

Theorem 1.0.9 (MMP and the equality of κ and κ+ when κ ≥ 0, cf. [Cam95, Prop.
3.10]). Let X be a nonsingular projective variety in dimension n with non-negative Ko-
daira dimension. If the good minimal model conjecture holds for nonsingular projective
varieties of dimension up to n and with vanishing Kodaira dimension, then ΩX is bira-
tionally semistable and that κ(X) = κ+(X).

This in particular refines the so-called Bogomolov-Sommese vanishing (the
celebrated inequality asserting that κ(L ) ≤ p, for every invertible subsehaf
L ⊆ Ωp

X and every integer 1 ≤ p ≤ dim X), when the Kodaira dimension is
relatively small.

We remark that when c1 = 0, then we have κ = κ+ by Bochner’s vanishing
coupled with Yau’s solution [Yau77] to the Calabi’s conjecture.

By Theorem 1.0.9, the two invariants κ(X) and κ+(X) coincide for non-
uniruled threefolds as a consequence of the minimal model program. In the first
chapter of the current thesis we prove Campana’s conjecture in some higher di-
mensional cases.

Theorem 1.0.10 (Birational semistability in dimension 4 and 5, cf. [Ta13a,
Thm. 1.4]). Let X be a nonsingular projective variety. The cotangent sheaf ΩX is bi-
rationally semistable and the equality κ = κ+ holds in the following two cases.

(1.0.10.1) When dim X = 4 and κ(X) ≥ 0.
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(1.0.10.2) When dim X = 5 and κ(X) ≥ 1.

Theorem 1.0.10 is a consequence of a much more general result that we obtain
in this thesis.

Theorem 1.0.11. Let X be a nonsingular projective variety of dimension n. Assume
that the good minimal model conjecture holds for terminal projective varieties with zero
Kodaira dimension up to dimension n − m, where m > 0. If κ(X) � m − 1 then κ = κ+.

An important corollary of 1.0.10 and 1.0.5 is the resolution of the almost
Abelianity conjecture in dimension 4 subject to the condition χ(X, OX) 	= 0.

Theorem 1.0.12 (Almost Abelianity in dimension 4, cf. [Ta13a, Thm. 1.7]). Let X
be a nonsingular projective variety of dimension at most 4. Assume κ(X) = 0 and
χ(X, OX) 	= 0, then π1(X) is finite.

1.0.B Smooth families of canonically-polarized manifolds and
conjectures of Shafarevich and Campana

In 1962 Shafarevich conjectured that a smooth family of curves of genus
g ≥ 2 over non-hyperbolic algebraic curves, namely C, C∗, P1 and elliptic
curve E, is isotrivial. More generally it was conjectured that any smooth family
of canonically-polarized manifolds over these curves does not admit any varia-
tion. In moduli language this is equivalent to the prediction that given a quasi-
projective variety Z◦, parametrizing a smooth family of canonically-polarized
manifolds, the induced muduli map μ : Z◦ → M contracts all the algebraic curves
C, C∗, P1 and E in Z◦, where M is the quasi-projective scheme ([Vie95]) equipped
with transformations

Ψ : M → Hom(.,M),

in the sense that M is the coarse moduli scheme of the moduli functor M of
smooth family of canonically-polarized manifolds (with fixed Hilbert polyno-
mial).

The question then naturally arises as to what other subvarieties of the base
Z◦ behave the same under the moduli map μ. Campana conjectures that special
manifolds are the natural candidates for such subvarieties.

Conjecture 1.0.13 (The isotriviality conjecture of Campana). Let Y◦ be a smooth
quasi-projective variety parametrizing a smooth family of canonically polarized manifolds.
If Y◦ is special (see the definition below), then the family is isotrivial.



6

Definition 1.0.14 (Special logarithmic pairs). Let (Y, D) be a pair consisting of
a smooth projective variety Y and a simple normal-crossing reduced boundary divi-
sor D. We call (Y, D) special, if for every saturated coherent subsheaf of rank one
L ⊆ Ωp

Y log(D) and p > 0, we have κ(L ) < p. Moreover we shall call a smooth
quasi-projective variety Y◦ special, if (Y,D) is special as a logarithmic pair, where Y is a
smooth compactification with a simple normal-crossing (snc, for short) boundary divisor
D.

So by definition C, C∗, P1 and E is the list of all special quasi-projective curves
(in fact conjecturally special varieties are also analytic higher dimensional ana-
logues of these curves in the sense that through every point of a special variety
must pass a subvariety along which the Kobayashi pseudo-metric identically van-
ishes). Rationally-connected varieties are obvious examples of special varieties.
Less obvious, but equally important, are varieties with zero Kodaira dimension
(See [Cam04]) and those with nef anti-canonical divisor [Lu02].

Conjecture 1.0.13 is generalization of the following celebrated conjecture of
Viehweg.

Conjecture 1.0.15 (Viehweg’s hyperbolicity conjecture). Let f ◦ : X◦ → Y◦ be a
smooth family of canonically-polarized varieties over a quasi-projective variety Y◦. As-
sume that Y is a smooth compactification of Y◦ with snc boundary divisor D ∼= Y\Y◦. If
the moduli map μ : Y◦ → M is generically finite, then (Y, D) is of log-general type.

This latter conjecture 1.0.15 has been recently established in [CP13] by using,
among many other things, an important generalization of Miyaoka’s generic semi-
positivity (See 2.1) and the following remarkable result of Viehweg and Zuo.

Theorem 1.0.16 (Existence of pluri-logarithmic forms in the base, cf. [VZ02,
Thm. 1.4]). The notations are the same as in 1.0.15. If f ◦ is not isotrivial, then for a
positive integer N ∈ N+, there exists an invertible subsheaf L ⊆ SymNΩ1

Y log D such
that κ(L ) ≥ Var( f ◦), where Var( f ◦) is defined by the dimension of the image of Y◦ in
the coarse moduli scheme M.

Clearly Viehweg’s (and Shafarevich) hyperbolicity conjecture 1.0.15 when
dim Y◦ = 1 is an immediate corollary of 1.0.16. In particular when the base
Y◦ is 1-dimensional and the moduli map μ is not constant, then Y◦ is Brody-
hyperbolic, that is there are no non-constant holomorphic maps g : C → Y◦ (one
can also see this fact by noticing that in this case the invertible sheaf ΩY log D
is big and therefore Y◦ is Brody-hyperbolic by [Lu91]). In [VZ03] Viehweg and
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Zuo generalize this observation and prove the Brody-hyperbolicity of the mod-
uli stack M: the quasi-projective variety Y◦ serving as the base of a family
( f ◦ : X◦ → Y◦) ∈ M(Y◦) for which the induced moduli map μ : Y◦ → M is
generically finite, is Brody-hyperbolic.

Viehweg’s conjecture 1.0.15 and the isotriviality conjecture 1.0.13 were already
known in dim(Y◦) ≤ 3 by [KK08, Thm. 1.1]. The stronger conjecture of Cam-
pana 1.0.13 is also known when dim(Y◦) ≤ 3, thanks to [JK11b, Thm. 1.5]. In
the final section (section 3.4), and after following Campana and Paun’s proof
of Viehweg’s conjecture very closely, we give a proof to the isotriviality conjec-
ture 1.0.13. The proof heavily depends on a recent generic semi-positivity result
of Campana and Paun (See 3.2.1), existence of log-minimal models for klt pairs
with big boundary divisors established by [BCHM10, Thm. 1.1], and an impor-
tant refinement of 1.0.16 given by [JK11a, Thm. 1.4].

Theorem 1.0.17 (cf. [Ta13b, Thm. 1.4]). The isotriviality conjecture 1.0.13 holds in all
dimensions.

According to Campana’s reduction theory for every projective variety there
exists an almost holomorphic map CY : Y ��� Z, called the core map, whose gen-
eral fiber is special and contracts almost all special subvarieties of Y. By 1.0.17 it
follows that the moduli stack factors through the core in the sense of the following
corollary.

Corollary 1.0.18 (Factorization of the moduli stack through the core). Let Y◦
be a smooth quasi-projective variety admitting a morphism μ : Y◦ → M that fac-
tors through the moduli stack of smooth families of canonically-polarized manifolds, i.e.
μ = Ψ

(M(Y◦)
)
. Let μ̃ be the induced morphism between smooth compactifications Y,

M of Y and M, respectively. Then μ̃ factors through the core CY : Y ��� Z.



Chapter 2

Birational semistability and the
almost Abelianity conjecture in
dimension 4

2.1 Generic semi-positivity and pseudo-effectivity of
quotients of ΩX

Let X be a non-uniruled nonsingular projective variety. It is a well known re-
sult of Miyaoka, cf. [Miy87a, Miy87b] that ΩX is generically semi-positive. This
means that the determinant line bundle of any torsion free quotient of ΩX has non-
negative degree on curves cut out by sufficiently ample divisors. Equivalently we
can characterize this important positivity result by saying that ΩX restricted to
these general curves is nef unless X is uniruled. This property is sometimes called
generic nefness. Since nefness is invariant under taking symmetric powers this re-
sult automatically generalizes to Ωp

X. Using the same characteristic p arguments
as Miyaoka and some deep results in differential geometry, Campana and Peter-
nell have shown that in fact such a determinant line bundle is dual to the cone
of moving curves, i.e. its restriction to these curves has non-negative degree. By
[BDPP04] this is the same as saying that it is pseudo-effective.

Theorem 2.1.1 (Pseudo-effectivity of quotients of Ωp
X, cf. [CPT07, Thm. 1.7]). Let

X be a non-uniruled nonsingular projective variety and let F be an OX- module torsion
free quotient of Ωp

X. Then det F is a pseudo-effective line bundle.

8
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2.2 A refined Kodaira dimension

In this section we will use more or less the same ideas as Cascini [Cas06] to
show that κ and κ+ coincide for nonsingular projective varieties of dimension
four with non-negative Kodaira dimension and also for varieties of dimension
five with positive Kodaira dimension. The following proposition is a result of
Campana, cf. [Cam95]. We include a proof for completeness.

Proposition 2.2.1. Let X be a nonsingular projective variety with κ(X) = 0. If X has a
good minimal model then κ = κ+.

Proof. Let Y be a Q-factorial normal variety with at worst terminal singularities
serving as a good minimal model for X. Note that KY is numerically trivial. Let
π : Ỹ → Y be a resolution. Since κ(Ỹ) = 0, Ỹ is not uniruled. Let F ⊆ Ωp

Ỹ
be a

coherent subsheaf with maximum Kodaira dimension, i.e. κ(det F ) = κ+(Ỹ).
Let C be an irreducible curve on Y cut out by sufficiently general hyperplanes

and let C̃ to be the corresponding curve in Ỹ . Now using the standard isomor-
phism: Ωp

Ỹ
|C̃ ∼= KỸ|C̃ ⊗ ∧n−pTỸ|C̃ , we get F ∗|C̃ as a quotient of K∗

Ỹ
|C̃ ⊗ Ωn−p

Ỹ
|C̃.

But K∗
Ỹ

is numerically trivial on C̃ and Ωn−p
Ỹ

|C̃ is nef by Miyaoka, so F ∗|C̃ must
also be nef and we have

deg(det F |C̃) ≤ 0.

But this inequality holds for a covering family of curves and thus κ(F ) ≤ 0.

As was mentioned in the introduction (Theorem 1.0.9), assuming the good
Minimal Model conjecture for varieties up to dimension n and with zero Kodaira
dimension, we have κ = κ+ in the case of n-dimensional varieties of positive Ko-
daira dimension as well. See [Cam95, Prop. 3.10] for a proof. The main result
of this paper is concerned with replacing this assumption with the abundance
conjecture in lower dimensions.

Remark 2.2.2. Following the recent developments in the minimal model program, we
now know that we have a good minimal model when numerical Kodaira dimension is zero.
The proposition 3.1 shows that κ+(X) also vanishes in this case. By [Cam95] this implies
in particular that nonsingular varieties with vanishing numerical dimension have finite
fundamental groups as long as they have non-trivial holomorphic Euler characteristic
(See 1.0.5).
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We will need the following lemmas in the course of the proof of our main
result.

Lemma 2.2.3. Let f : X → Z be a surjective morphism with connected fibers between
normal projective varieties X and Z. Let D be an effective Q-Cartier divisor in X that
is numerically trivial on the general fiber of f . If D is f -nef, then there exist biratioanl
morphism π : Z̃ → Z verifying the following properties:

2.1. Let X̃ denote the normalization of the fiber product X ×Z Z̃ with resulting
commutative diagram

X

f
��

X̃
μ

��

f̃
��

Z Z̃,π��

μ : X̃ → X being the naturally induced biraitonal morphism. Then the induced
fibration f̃ : X̃ → Z̃ is equi-dimensional.
2.2. There exists a Q-Cartier divisor G in Z̃ such that μ∗(D) = f̃ ∗(G).

Proof. The fact that we can modify the base of our fibration to get a morphism
whose fibers are of constant dimension is guaranteed by [Ray72]. This is called
flattening of f . Let X̃ be a normal birational model of X and Z̃ a smooth birational
model for Z such that f̃ : X̃ → Z̃ is flat.

If general fibers are curves, by assumption the degree of μ∗(D) on general
fibers of f̃ is zero. On the other hand μ∗(D) is effective and relatively nef, so it
must be trivial on all fibers. This implies the existence of the required Q-Cartier
divisor G in Z̃.

In the case of higher dimensional fibers, μ∗(D) must still be numerically triv-
ial on all fibers of f̃ . To see this, let C be an irreducible curve contained in a
d-dimensional non-general fiber F̃0 of f̃ . Then for a sufficiently general members
Di of the linear system of an ample divisor H containing C, we have

D1 ∩ . . . ∩ Dd−1 ∩ F̃0 = mC + C′,

where C′ is an effective curve and m accounts for the multiplicity of the irreducible
component of F0 containing C. Now since μ∗(D) is numerically trivial on the
general fiber of f̃ , we have

μ∗D · (mC + C′) = 0.
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But μ∗(D) is f̃ -nef, so that μ∗(D) · C = 0.
We know that μ∗(D) is effective, so μ∗(D) must be trivial on all fibers. Again

this ensures the existence of a Q-Cartier divisor G in Z̃ such that μ∗(D) = f̃ ∗(G).

In the course of the proof of Lemma 2.2.3 we repeatedly used the standard fact
that given a surjective morphism with connected fibers f : X → Z between nor-
mal varieties X and Z, where Z is Q-factorial, and an effective Q-Cartier divisor
D that is trivial on all fibers, we can always find a Q-Cartier divisor G in Z such
that D = f ∗(G). One can verify this by reducing it to the case where X is a surface
and Z is a curve. Here the negative semi-definiteness of the intersection matrix of
the irreducible components of singular fibers establishes the claim.

For applications, a natural setting for lemma 2.2.3 is the relative minimal
model program. The following is a reformulation of this lemma in this context.

Lemma 2.2.4. Let f : X → Z be a surjective morphism with connected fibers between
nonsingular projective varieties X and Z with dimension n and m respectively. Assume
κ(X) ≥ 0 and that X/Z has a minimal model model Y/Z. Denote the morphism between
Y and Z by ψ. Also assume that the abundance conjecture for varieties of vanishing
Kodaira dimension holds in dimension n − m. If the Kodaira dimension of the general
fiber of f is zero, then there exist birational morphisms π : Z̃ → Z, μ : Ỹ → Y, a
Q-Cartier divisor G in Z̃, and an equidimensional morphism ψ̃ : Ỹ → Z̃ such that
μ∗(KY) = ψ̃∗(G).

X ��

��

Y

ψ
��

Ỹ
μ

��

ψ̃
��

Z Z̃π
��

Proof. Since KY is ψ-nef and that the dimension of the general fibers is n − m, we
find that the canonical of the general fiber is torsion by the abundance assumption.
Now apply Lemma 2.2.3 to ψ : Y → Z and take D to be KY.

We now turn to another crucial ingredient that we shall use in the proof of 2.2.7.
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Lemma 2.2.5. Let f : X → Z be a surjective morphism with connected fibers between
normal projective varieties X and Z of dimension n and k respectively. Let D be a Q-
Cartier divisor in Z. If ( f ∗D) · CX ≥ 0, for all CX ∈ Mov(X), then D · CZ ≥ 0, for
any CZ ∈ Mov(Z), Mov(X) ⊆ N1(X)R and Mov(Z) ⊆ N1(Z)R being the movable
cones of X and Z.

Proof. First assume that f is birational. Let C be a moving curve in Z and let
μ : Z̃ → Z, be a birational morphism such that μ∗(C̃) = C, where C̃ is a complete
intersection curve cut out by hyperplanes. Let π : X̃ → X be a suitable modifica-
tion such that f̃ : X̃ → Z̃ is a morphism and we have the following commutative
diagram.

X̃
f̃

��

π
��

Z̃
μ
��

X
f

�� Z

Now let C̃ = H1 · . . . · Hk−1, where H1, . . . , Hk−1 are ample divisors in Z̃. We
have

μ∗D · C̃ = μ∗D · H1 · . . . · Hk−1

= f̃ ∗(μ∗D) · f̃ ∗H1 · . . . · f̃ ∗Hk−1

= π∗( f ∗D) · f̃ ∗H1 · . . . · f̃ ∗Hk−1 by commutativity of the diagram.

Clearly π∗( f ∗D) is pseudo-effective. Now since nef divisors are numerically
realized as limit of ample ones we have

π∗( f ∗D) · f̃ ∗H1 · . . . · f̃ ∗Hk−1 ≥ 0,

which implies μ∗(D) · C̃ ≥ 0. So that D · C ≥ 0 as required.
Now assume that f is not birational and let C = H1 ∩ . . . ∩ Hk−1 be an irre-

ducible curve cut out by general members of basepoint-free linear systems de-
fined by very ample divisors in Z. In particular C is of constant dimension along
the image of fibers. After cutting down by general hyperplanes H′

1, . . . , H′
n−k, we

can find an irreducible curve

C′ = H′
1 · . . . · H′

n−k · f ∗(H1) · . . . · f ∗(Hk−1)
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that maps surjectively onto C. Thus we have (deg f |C′)D · C = f ∗D · C′ ≥ 0.
For a moving curve that is not given by intersections of hyperplanes, we repeat

the same argument as above after going to a suitable modification.

Remark 2.2.6. We know by [BDPP04] that for nonsingular projective varieties, pseudo-
effective divisors are dual to the cone of moving curves. Using the lemma above, we can
easily extend this to normal varieties by going to a resolution. This fact is of course already
well known. For convenience we rephrase Lemma 2.2.5 as follows:

Let f : X → Z be a surjective morphism with connected fibers between normal
projective varieties. Let D be a Q-Cartier divisor in Z. If f ∗D is pseudo-effective then
so is D.

We shall prove Theorem 1.0.11 as a consequence of the following proposition:

Proposition 2.2.7. Let X be a nonsingular projective variety of dimension n with κ(X) �
0. Assume that the good minimal model conjecture holds for terminal projective varieties
with zero Kodaira dimension up to dimension n − m, where m > 0. Let F ⊆ Ωp

X be
a coherent subsheaf and define the line bundle L = det F . If κ(KX + L) � m, then
κ(L) � κ(X).

Proof. First a few observations. The isomorphism K∗
X ⊗ Ωp

X
∼= ∧n−pTX implies

that K∗
X ⊗F is a subsheaf of ∧n−pTX. But X is not uniruled and so by 2.1.1 rKX − L

is pseudo-effective as a Cartier divisor, where r is the rank of F .
We can of course assume that X is not general type. Now if we assume that

KX + L is big then by using the equality (r + 1)KX = (rKX − L) + (KX + L) and
pseudo-effectivity of rKX − L, we conclude that KX must be big as well. So we
may also assume that KX + L is not big and that κ(L) > 0.

Without loss of generality we can also assume that the rational map X ��� Z
corresponding to KX + L is a morphism, since we can always go to a suitable
modification, pull back L and prove the theorem at this level. Denote this map
by iKX+L and note that by definition we have κ((KX + L)|F) = 0 , where F is the
general fiber of iKX+L. Finally, we observe that κ(F) ≤ κ((KX + L)|F) = 0 and as
we are assuming that X has non-negative Kodaira dimension, we have κ(F) = 0.

Claim 2.2.8. Without loss of generality, we can assume L is the pull back of a Q-Cartier
divisor L1 in Z.
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Assuming this claim for the moment, our aim is now to show that after a mod-
ification π : Z̃ → Z, we can find a big divisor in Z̃ whose Kodaira dimension
matches that of X. This will imply that κ(L) = κ(L1) ≤ κ(X), as required.

To this end take Y to be a relative minimal model for X over Z and denote
the birational map between X and Y by φ and the induced morphism Y → Z by
ψ (See the diagram below). Observe that we can assume that φ is a morphism
without losing generality. Denote ψ∗(L1) by LY. Fix KY to be the cycle theoretic
push forward of KX.

Now by lemma 2.2.4 and the abundance assumption after modifying the base
by π : Z̃ → Z, we can find a morphism ψ̃ : Ỹ → Z̃ such that the dimension of
the fibers of this new fibration are all the same and μ∗(KY) = ψ̃∗(G) for some
Q-Cartier divisor G in Z̃.

X
φ

��

iKX+L ��

Y

ψ
��

Ỹ
μ

��

ψ̃
��

Z Z̃π
��

Noting that Y is at worst terminal, i.e. KX + L = φ∗(KY + LY) + E for an effective
exceptional divisor E, we have κ(KX + L) = κ(KY + LY). We also observe that
rKY − LY must be pseudo-effective.

Define L̃1 := π∗(L1), so that μ∗(LY) = ψ̃∗(L̃1) and ψ̃∗(G + L̃1) = μ∗(KY +

LY). This implies that G + L̃1 is big in Z̃. We also know that μ∗(rKY − LY) is
pseudo-effective and μ∗(rKY − LY) = ψ̃∗(rG − L̃1). Thus by lemma 2.2.5 (See also
Remark 2.2.6) rG − L̃1 is pseudo-effective too. Additionally we have

(r + 1)G = (rG − L̃1) + (G + L̃1),

where the right hand side is a sum of pseudo-effective and big divisors. This
implies that G is big and we have

κ(L) = κ(L̃1) ≤ κ(G) = κ(μ∗(KY)) = κ(KX).

Now it remains to prove 3.29.

Proof of 3.29. Let X ��� Z′ be the map given by the global sections of large enough
multiple of L, and let iL : X′ → Z′ be the Iitaka fibration corresponding to L,



2.2. A refined Kodaira dimension 15

where μ : X′ → X is a suitable modification of X. As κ(KX) ≥ 0, we have κ(L) ≤
κ(KX + L), where the right hand side of this inequality is zero on the general fiber
of iKX+L. On the other hand since we have assumed κ(L) to be positive, we find
that κ(L|F) = 0. Hence iKX+L factors through iL via a rational map g and we have
the following commutative diagram:

X′

μ
��

iL �� Z′

X
iKX+L

��

��

Z

g

��

Now by considering suitable modifications of X, Z and X′, we can assume that
g is a morphism. Define the line bundle L′ := μ∗(L)− A = i∗L(H), where A is an
effective divisor and H is an ample Q-Cartier divisor in Z′. Let L” be the pull back
of H in X via g and iKX+L, so that μ∗(L”) = L′ and that μ∗(L”) + A = μ∗(L).
We claim that we don’t lose generality if we replace L by L”. To see this we need
to check the following two properties: (i) rKX − L” is pseudo-effective and (ii)
κ(L”) = κ(L).

To see that (i) holds, note that we have μ∗(rKX − L”) = μ∗(rKX)− (μ∗(L)−
A) = μ∗(rKX − L) + A. Now since rKX − L is pseudo-effective and A is effective,
rKX − L” must also be pseudo-effective.

For (ii) it suffices to show κ(L) = κ(L′) which is a consequence of the following
inequality:

κ(L) = κ(μ∗L) ≤ dimZ′ = κ(L′).

This finishes off the proof of Claim 3.29 after a possible base change corre-
sponding to KX + L”.

Now our main result immediately follows:

Proof of Theorem 1.0.11. Let F ⊆ Ωp
X be a coherent subsheaf with maximum Ko-

daira dimension, i.e. κ(L) = κ+(X), where L = det(F ). Assume that κ(L) >
κ(X). Then κ(L) ≥ m and in particular we have κ(KX + L) ≥ m. Now the propo-
sition above implies that κ(L) ≤ κ(X), which is a contradiction.
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As we discussed in the introduction, this greatly improves the Bogomolov’s
inequality for projective varieties of dimension at most five and with relatively
small Kodaira dimension.

Remark 2.2.9. Theorem 1.0.10 can be further strengthened by replacing κ+ by a stronger
birational invariant ω(X) (See the appendix of [Ta13a] for the definition) which measures
the maximal positivity of coherent rank one subsheaves of Ω1

X
⊗m, for any m > 0, i.e.

κ(X) and ω(X) coincide for fourfolds with non-negative Kodaira dimension. The proof is
identical to that of Theorem 1.0.10 by observing that pseudo-effectivity of rKX − L in 2.2.7
can be be replaced by that of mKX − L, where m denotes the tensorial power of cotangent
bundle containing the line bundle L .

Remark 2.2.10. We would like to point out that when κ(X) ≥ dim X − 3, we have
κ = κ+ by [Cam95, Prop. 10.9] , where 3 in this inequality comes from the abundance
result for varieties of dimension at most 3. So the real improvement provided by 1.0.10 is
when κ = 0 in dimension 4 and κ = 1 in dimension 5.



Chapter 3

Smooth families of
canonically-polarized manifolds over
a special base

3.1 Preliminaries

To approach the isotriviality conjecture 1.0.13, it is essential to work with pairs
(or the orbifold pairs in the sense of Campana) instead of just logarithmic ones.
We refer the reader to [Cam08] and [JK11b] for an in-depth discussion of the def-
initions and background. In the present section we give a brief overview of the
key ingredients of this theory to the extent that is necessary for our arguments in
the rest of the paper.

Definition 3.1.1 (Smooth Pairs). Let X be an n-dimensional normal (quasi-) projective
variety and D = ∑ diDi, where di ∈ Q ∩ [0, 1], a Q-Weil divisor in X. We shall call the
pair (X, D) a smooth pair, if X is smooth and supp(D) is simple normal-crossing.

Definition 3.1.2 (C-Multiplicity). Let (X, D) be a smooth pair as in Definition 3.1.1.
When di 	= 1, let ai and bi be the positive integers for which the equality 1 − bi

ai
= di

holds. For every i, we define the C-multiplicity of the irreducible component Di of D by

mD(Di) :=
{ 1

1−di
= ai

bi
if di 	= 1

∞ if di = 1.

17
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A classical result of Kawamata (See [Laz04, Prop. 1.12]) proves that given a
collection of smooth prime divisors {D1, . . . , Dl} and positive integers {c1, . . . , cl},
one can always construct a smooth variety Y together with a finite, flat morphism
γ : Y → X such that

γ∗(Di) = ci ∑ Dij,

where (∑ Dij) is a simple normal-crossing divisor in Y. In particular, given a
smooth pair (X, D), we may take the coefficients ci to be equal to ai (ai being
the numerator of mD(Di), as in Definition 3.1.2), so that the resulting Kawamata
cover γ : Y → X is, in a sense, adapted to the structure of the pair (X, D).

Definition 3.1.3 (Adapted Covers). Let (X, D) be a smooth pair, Y a smooth variety,
and γ : Y → X a finite, flat, cyclic cover with Galois group G such that if mD(Di) =
ai
bi

< ∞, then every prime divisor in Y that appears in γ∗(Di) has multiplicity exactly
equal to ai. We call γ an adapted cover for the pair (X, D), if it additionally satisfies the
following properties:

(3.1.3.1) The branch locus is given by

supp(H +
⋃

mD(Di) 	=∞

Di),

where H is a general member of a linear system |L| of a very ample divisor L in X.

(3.1.3.2) γ is totally branched over H.

(3.1.3.3) γ is not branched at the general point of supp(�D�).

Notation 3.1.4. Let γ : Y → X be an adapted cover of a smooth pair (X, D), where
D = ∑ diDi, di = 1− bi

ai
as in Definition 3.1.2. For every prime component Di of D with

mD(Di) 	= ∞, let {Dij}j(i) be the collection of prime divisors that appear in γ−1(Di).
We define new divisors in Y by

Di,j
Y := biDij , mD(Di) 	= ∞, (3.1)

Dγ := γ∗(�D�). (3.2)
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Definition 3.1.5 (C-Cotangent Sheaf). Given a smooth pair (X, D) with an adapted
cover γ : Y → X, define the C-cotangent sheaf ΩY∂ to be the unique maximal locally-free
subsheaf of ΩY log(Dγ) for which the sequence

0 �� ΩY∂ |(Y\Dγ)
�� γ∗(ΩX log(�D�)

)|(Y\Dγ)
ρ

�� ⊕
i,j(i)

O
Di,j

Y

�� 0,

induced by the natural residue map, is exact.

Remark 3.1.6. The C-cotangent sheaf defined in 3.1.5 coincides with Campana and
Paun’s notion [CP13, Sec. 1.1] of the coherent sheaf on Y which they denote by
γ∗Ω1(X, D). It is also identical with the sheaf defined in [Lu02, Lem. 4.2]. See
also [JK11b, Def. 2.13] for an equivalent definition in the classical setting, i.e. when
the C-multiplicities are all integral.

Notation 3.1.7. We shall denote the dual of the C-cotangent sheaf by TY∂ , i.e.

TY∂ := (ΩY∂)∗

.

Remark 3.1.8 (Determinant of C-Cotangent Sheaf). Given a smooth pair (X, D), let
γ : Y → X be an adapted cover of degree d. There exists a natural isomorphism between
the two invertible sheaves det(ΩY∂) and OY

(
γ∗(KX + D)

)
det(ΩY∂) ∼= OY

(
γ∗(KX + D)

)
. (3.3)

This follows from the ramification formula for the adapted cover γ:

KY + Dγ = γ∗(KX + �D�) + ∑
i

mD(Di) 	=∞

∑
j(i)

(ai − 1)Dij + (d − 1)H̃

= γ∗(KX + D)− γ∗(D − �D�) + ∑
i

mD(Di) 	=∞

∑
j(i)

(ai − 1)Dij + (d − 1)H̃

= γ∗(KX + D)− ∑
i

mD(Di) 	=∞

∑
j(i)

(ai − bi)Dij + ∑
i,mD(Di) 	=∞

∑
j(i)

(ai − 1)Dij

+ (d − 1)H̃

= γ∗(KX + D) + ∑
i

mD(Di) 	=∞

∑
j(i)

(bi − 1)Dij + (d − 1)H̃,
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for H̃ := γ∗H, where H is the very ample divisor given in Definition 3.1.3. As a conse-
quence, we find that the isomorphism (3.3) holds by construction:

det ΩX∂
∼= OY

(
(KY + Dγ)− ∑

i
mD(Di) 	=∞

∑
j(i)

(bi − 1)Dij − (d − 1)H̃
)

by definition

∼= OY
(
γ∗(KX + D)

)
,

where the last isomorphism follows form the ramification formula. Clearly, the isomor-
phism (3.3) implies that the C-cotangent sheaf ΩY∂ can be seen as the unique locally-
free subsheaf of ΩY log(Dγ) whose determinant is isomorphic to the pull-back bundle
OY

(
γ∗(KX + D)

)
.

Definition 3.1.9 (Symmetric C-Differential Forms, cf. [Cam08, Sect. 2.6-7]). Let
(X, D) be a smooth pair, D = ∑ diDi, and Vx an open neighbourhood of a given
point x ∈ X equipped with a coordinate system z1, . . . , zn such that supp(D) ∩ Vx =
{z1 · . . . · zl = 0}, for a positive integer 1 ≤ l ≤ n. For every N ∈ N+, define the
sheaf of symmetric C-differential forms SymN

C
(
ΩX log(D)

)
by the locally-free subsheaf of

SymN(ΩX log(�D�)
)

that is locally-generated, as an OVx-module, by the elements

dzk1
1

z�d1·k1�
1

· . . . · dzkl
l

z�dl ·kl�
l

· dzkl+1
l+1 · . . . · dzkn

n ,

where ∑ ki = N.

Remark 3.1.10 (An Equivalent Definition). There is an alternative definition for the
sheaf of C-differential forms: Let Vx be an open neighbourhood of x ∈ X as in Def-
inition 3.1.9 and take γ : W → Vx to be an adapted cover for (Vx, D|Vx). Let
σ ∈ Γ

(
Vx, SymN(ΩX(∗�D�)

))
, that is σ is a local rational section of SymN(ΩX) with

poles along �D�. Then,

σ ∈ Γ
(
Vx, SymN

C
(
ΩX log(D)

)) ⇐⇒ γ∗(σ) ∈ Γ
(
W, SymN(ΩW∂)

)
, (3.4)

So that, in particular, γ∗(σ) has at worst logarithmic poles only along those prime divi-
sors in W that dominate (�D� ∩ Vx), and is regular otherwise.
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Explanation 3.1.11. Assume that σ ∈ Γ
(
Vx, SymN

C
(
ΩX log(D)

))
is a local C-

differential form in the sense of (3.4). By the classical result of Iitaka [Iit82, Chap. 11],
it follows that σ ∈ Γ

(
Vx, SymN(ΩX log(�D�)

))
. In particular we find that along the

reduced component of D the equivalence between the two definitions trivially holds. So
assume, without loss of generality, that mD(Di) 	= ∞, for all irreducible components Di
of D. Furthermore let us assume, for simplicity, that

σ = f · dzk1
1

ze1
1

· . . . · dzkl
l

zel
l

· dzkl+1
l+1 · . . . · dzkn

n ∈ Γ
(
(Vx, SymN(ΩX log(�D�)

))
,

where f ∈ OV(x) with no zeros along Di’s, is the local explicit description of σ. Since
γ∗(σ) ∈ SymN(ΩW∂), the inequality

ki · (ai − 1)− ai · ei ≥ ki(bi − 1)

holds for 1 ≤ i ≤ l, where di = 1 − (bi/ai), i.e.

ei ≤ ki.di, for all 1 ≤ i ≤ l.

In particular σ is a symmetric C-differential form on Vx in the sense of Definition 3.1.9.

Remark 3.1.12 (Tensorial C-Differential Forms). Similar to the Definitions 3.1.9 and
(3.4), we can define the sheaf of tensorial C-differential forms

(
ΩX log(D)

)⊗CN, that is,

roughly-speaking
(
ΩX log(D)

)⊗CN is the maximal subsheaf of
(
ΩX log(�D�)

)⊗N such
that

γ∗
((

ΩX log(D)
)⊗CN

)
⊆ (ΩY∂)⊗N.

As we shall see in section 3.3, the Viehweg-Zuo subsheaves generically come
from the coarse moduli space, as long as we extend the sheaf of symmetric dif-
ferential forms to that of C-differential forms associated to the naturally imposed
C-structures or orbifold structures (See Definition 3.1.15 below or [Cam08, Sect. 3])
that appear over the moduli variety. But, as the usual Kodaira dimension of sub-
sheaves of symmetric C-differential forms is not sensitive to the fractional positiv-
ity of the non-reduced components of the bounder divisor (See Remark 3.1.14 be-
low), a new birational notion is needed to measure the positivity of the Viehweg-
Zuo subsheaves in the moduli.

Definition 3.1.13 (C-Kodaira Dimension, cf. [Cam08, Sect. 2.7]). Let (X, D) be a
smooth pair and L ⊆ Symr

C
(
ΩX log(D)

)
a saturated coherent subsheaf of rank one.
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Define the C-product Symm
C (L ) of L , to the order of m, to be the saturation of the image

of Symm(L ) inside Sym(m·r)
C

(
ΩX log(D)

)
and define the C-Kodaira dimension of L by

κC(X, L ) := max{k | lim sup
m→∞

h0(X, Symm
C (L )

)
mk 	= 0},

and when h0(X, Symm
C (L )

)
= 0 for all m ∈ N+, then, by convention, we define

κC(X, L ) = −∞.

Remark 3.1.14 (Comparing Kodaira Dimensions). When D = 0 or when D
is reduced the sheaf of symmetric C-differential forms Symr

C
(
ΩX log(D)

)
is equal

to Symr(ΩX) and Symr(ΩX log(D)
)
, respectively, so that the C-Kodaira dimension

κC(X, L ) of a rank one coherent subsheaf L of Symr
C
(
ΩX log(D)

)
coincides with the

usual Kodaira dimension κ(X, L ) of L .

Let (Y, D) be a smooth pair, Z a smooth variety, and f : Y → Z a fibration
with connected fibres. Assume that every f -exceptional prime divisor F, that is,
codimZ

(
f (F)

) ≥ 2, is a reduced component of D. Then, simple local calcula-
tions show that there exists a maximal—in the sense of multiplicities of the irre-
ducible components—divisorial structure Δ on Z, whose support coincides with
the codimension-1 closed subset of the log-discriminant locus B of f : (Y, D) → Z
(recall that B is the smallest closed subset of Z such that f is smooth over its com-
plement, and that for every point z ∈ Z\Δ, the set-theoretic fibre f−1(z) is not
contained in D, and that the scheme-theoretic intersection of the fibre Yz with D is
a simple normal-crossing divisor in Yz) and that the natural pull-back map

(d f )m : f ∗
(
Symm

C
(
ΩZ log(Δ)

)) → Symm
C
(
ΩY log(D)

)
is well-defined. We call Δ the C-base (or the orbifold-base) of the fibration f :
(Y, D) → Z.

Definition 3.1.15 (C-Base of a Fibration). Given a smooth pair (Y, D), let f : Y → Z
be a fibration with connected fibres onto a smooth variety Z. Let {Δi}i be the set of the
irreducible components of the divisorial part of the log-discriminant locus of f . For every
i, define {Δij}j to be the collection of prime divisors in f−1(Δi) that are not f -exceptional.
To each divisor Δi, assign a positive rational number mΔ(Δi) defined by

mΔ(Δi) := min
j
{dj · mΔ(Δij)},
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dj being the positive integer verifying the equality

f ∗(Δi) = ∑
j

djΔij + E.

We define the C-base of the fibration f : (Y, D) → Z by the divisor

Δ := ∑
i

(
1 − 1

mΔ(Δi)

)
Δi.

We finish this section by collecting the various notations that we have intro-
duced in the following table.

Table 3.1: Notations
ΩY∂ C-cotangent sheaf 3.1.5

SymN
C
(
ΩX log(D)

)
Symmetric C-differential forms 3.1.9(

ΩX log(D)
)⊗CN Tensorial C-differential forms 3.1.12

SymN
C (L ) C-product 3.1.13

κC(X, L ) C-Kodaira dimension 3.1.13

3.2 The orbifold generic semi-positivity

According to [BDPP04] Miyaoka’s generic semi-positivity result (see [Miy87a]
and [Miy87b]) can be interpreted as a characterization of positivity of the canon-
ical bundle by the generic nefness of the cotangent sheaf. This positivity result
was achieved by certain characteristic p-arguments which cannot be adapted to
the context of pairs. In [CP13] Campana and Paun have overcome this obstacle by
deploying an important refinement of Miyaoka’s theorem, due to Bogomolov and
McQuillen, concerning the algebraicity of leaves of foliations induced by positive
subsheaves of the tangent sheaf. The generic semi-postivity result of [CP13] has
been formulated for G-linearized quotients of the C-cotangent sheaf (See [CP13,
Def. 1.2]). We recall that given a finite surjective morphism γ : Y → X with
G := Gal(Y/X), we say that an OY-module coherent sheaf F on Y is G-linearized,
if there exists a sheaf isomorphism

ψ : pr∗1(F ) → ρ∗(F ),
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where pr1 : Y × G → Y is the natural projection onto the first factor and ρ :
Y × G → Y is the gruop action G, that verifies the natural cocycle conditions.

Theorem 3.2.1 (Generic Semi-Positivity of C-Cotangent Sheaf [CP13, Thm. 2.1]).
Let (X, D) be a smooth pair with an adapted cover γ : Y → X, whose Galois group
we denote by G. If (KX + D) is pseudo-effective, then every G-linearized, torsion-free,
coherent, OY-module quotient F of (ΩY∂)⊗N verifies the inequality

c1(F ) · γ∗(H1) · . . . · γ∗(Hn−1) ≥ 0, (3.5)

for all (n − 1)-tuples of ample divisors (H1, . . . , Hn−1) in X.

Corollary 3.2.2. Let (X, D) be a smooth pair. Let L ⊆ (
Ω1

X log(D)
)⊗CN be an in-

vertible subseheaf and L a divisor in X such that OX(L) ∼= L . If (KX + D) is pseudo-
effective, then for every collection of (n − 1) Q-Cartier nef divisors P1, . . . , Pn−1 the fol-
lowing inequality holds:

(N(KX + D)− L) · P1 · . . . · Pn−1 ≥ 0.

Proof. Since for any fixed ample divisor H in X the equality

(N(KX + D)− L) · P1 · . . . · Pn−1 = (N(KX + D)− L) · (P1 +
1
t

H) · . . . · (Pn−1 +
1
t

H)

holds as t → ∞, it suffices to prove that

(N(KX + D)− L) · H1 · . . . · Hn−1 ≥ 0 (3.6)

for any collection of (n − 1) Q-Cartier ample divisors H1, . . . , Hn−1.
Take γ : Y → X to be an adapted cover with the corresponding Galois group

G. We observe that according to the Remark 3.1.8, the sheaf isomorphism

(ΩY∂)⊗N ∼= (
det(ΩY∂)⊗∧n−1TY∂

)⊗N

reads as
(ΩY∂)⊗N ∼= (

OY(γ
∗(KX + D))⊗∧n−1TY∂

)⊗N. (3.7)

Furthermore, we know, by definition, that γ∗(L ) is a subsheaf of (ΩY∂)⊗N. Let
us for the moment assume that this is a saturated inclusion. As a result (γ∗(L ))∗
is a quotient of the dual of the locally-free sheaf given in the right-hand side of the
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isomorphism (3.7). Thus we arrive at the following exact sequence of locally free
sheaves:

(Ωn−1
Y∂ )⊗N �� γ∗(L ∗ ⊗OX(N(KX + D))) �� 0.

Here the generic semi-positivity result (Theorem 3.2.1) applies and we find that

γ∗(N(KX + D)− L
) · γ∗(P1) · . . . · γ∗(Pn−1) ≥ 0 (3.8)

holds. The required inequality (3.6) then follows from the projection formula.
Now, if γ∗L is not saturated inside (ΩY∂)⊗N, define L to be its saturation.

Since L is not necessarily G-invariant anymore, consider (L )⊗r, for any positive
multiple of the degree of the cyclic cover γ. Local calculation shows that (L )⊗r is
G-invariant. Moreover, (L )⊗(r·N) is saturated inside (ΩY∂)⊗(r·N). This is because
tensorial powers of saturated subsheaves of locally-free sheaves remain saturated.
At this point we can argue, as we did in the case of γ∗L , to find that the inequality

c1

(
(L )∗ ⊗OY

(
γ∗(rN(KX + D))

)) · γ∗(H1) · . . . · γ∗(Hn−1) ≥ 0, (3.9)

holds. From the inequality (3.9) we can readily establish the inequality (3.8).
Again, the required inequality (3.6) will follow from the projection formula.

3.3 Viehweg-Zuo subsheaves in the parametrizing
space

The fundamental result of Jabbusch and Kebekus [JK11b] shows that the sym-
metric C-differential forms is the correct framework to study the positivity of sub-
sheaves of forms in the coarse moduli space of canonically-polarized manifolds.
In this section we give a brief explanation of how one can then reduce the isotriv-
iality conjecture (Conjecture 1.0.13) to the problem of showing that existence of
rank one subsheaves of the sheaf of symmetric C-differential forms, attached to a
smooth pair, with maximal C-Kodaira dimension implies that the given pair is of
log-general type (see Theroem 3.3.3 below). To prepare the correct setting for this
reduction, we introduce a notion that, as far as the author is aware, is originally
due to Campana.
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Definition 3.3.1 (Neat Model of a Pair). Let (Y, D) be a normal logarithmic pair (Y
is normal and the Weil divisor D is reduced) and h : Y → Z a fibration with connected
fibers onto an algebraic base Z. We call a smooth pair (Yh, Dh) a neat model for (Y, D)

and h, if there exists a fibration h̃ : Yh → Zh that is birationally equivalent to h, that is,
there are birational morphisms μ : Yh → Y and α : Zh → Z such that the diagram

Y

h
��

Yh
μ

��

h̃
��

Z Zh
α��

commutes, for which the following conditions are satisfied:

3.10. Dh is the extension of the μ-birational transform D̃ of D by some reduced
μ-exceptional divisor, i.e. Dh = D̃ + E′, where E′ is μ-exceptional.
3.11. (Zh, Δh) is a smooth pair, Δh being the C-base (See Definition 3.1.15) of the
fibration h̃ : (Yh, Dh) → Zh.
3.12. Every h̃-exceptional prime divisor P in Yh (P verifies the inequality
codimZh(h̃(P)) ≥ 2) is contained in supp(Dh).

The interest in the neat models of pairs (that are equipped with fibra-
tions), is two-fold. First, the conditions (3.11) and (3.12) ensure that (h̃)∗
defines a well-defined pull-back map from symmetric C-differential forms
SymN

C
(
ΩZh log(Δh)

)
attached to (Zh, Δh) to the sheaf of symmetric logarithmic

forms SymN(ΩYh log(Dh)
)

(see the discussion before the Definition 3.1.15). Sec-
ondly, according to the property (3.10), the neat model (Yh, Dh) inherits the bira-
tional properties of the original pair (Y, D). For example if (Y, D) special, then so
is (Yh, Dh). These attributes will be crucial to the proof of the main result (Theo-
rem. 3.3.3) of this section.

Proposition 3.3.2 (Construction of Neat Models, cf. [JK11b, Sect. 10]). Every normal
logarithmic pair (Y, D) and a surjective morphism with connected fibers h : Y → Z,
where Z is a projective variety, admits a neat model.

Proof. Let α1 : Z1 → Z be a suitable modification of the base of the fibration h such
that the normalization of the induced fiber product Y ×Z Z1, which we denote by
Y1, givers rise to an equidimensional fibration h1 : Y1 → Z1, i.e. a flattening of h,
and a birational map μ1 : Y1 → Y (see the diagram below). Define D1 to be the
maximal reduced divisor contained in the supp(μ−1

1 D) and let

D1 = Dver
1 + Dhor

1
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be the decomposition of D1 into sum of its vertical Dver
1 and horizontal Dhor

1 com-
ponents. Introduce a closed subset in Z1 by DZ1 := h1(Dver

1 ). Let Δ1 ⊂ Z1 denote
the log-discriminant locus defined by the fibration h1 and the divisor D1. Now, let
α2 : Zh → Z1 be a desingularization of Z1 such that the maximal reduced divisor
in the supp(α−1

2 Δ1 ∪ α−1
2 DZ1) is snc. Set Y2 to be the normalization of the fiber

product Y1 ×Z1 Z2, and μ2 the naturally induced birational morphism. Define D2

in Y2 by the maximal reduced divisor contained in the supp(μ−1
2 D1). Finally let

μ3 : Yh → Y2 be a log-resolution of (Y2, D2) and take h̃ : Yh → Zh to be the induced
fibration.

Y

h
��

Y1
μ1��

h1
��

Y2
μ2��

h2
��

Yh
μ3��

h̃��
Z Z1

α1�� Zh
α2��

Now set D̃2 to be the maximal reduced divisor in supp(μ−1
3 ). Note that h1 remains

equidimensional under the base change of α2, i.e. h2 is also equidimensional. This
implies that when we desingularize Y2 by μ3, every h̃-exceptional divisor is μ3-
exceptional. Let E3 be the sum of all h̃-exceptional prime divisors in Yh and define
Dh := D̃2 + E3 to be the extension of D̃2 by E3. We finish by defining the birational
morphisms μ and α in Definition 3.3.1 by (μ3 ◦ μ2 ◦ μ1) and (α2 ◦ α1), respectively.
Now by construction, the C-structure Δh on Zh induced by Dh and h̃ defines a
smooth pair (Zh, Δh), as required.

Theorem 3.3.3 (Reduction of the Isotriviality Conjecture). The isotriviality conjec-
ture 1.0.13 holds, if the following assertion is true:

3.13. Let (T, B) be a smooth pair. If SymN
C
(
ΩT log(B)

)
admits a saturated rank-one

subsheaf L with κC(T, L ) = dim T, then (T, B) is of log-general type.

Proof. Let f ◦ : X◦ → Y◦ be a smooth family of canonically-polarized manifolds,
where Y◦ is a special quasi-projective variety, and let Y be a smooth compactifi-
cation with boundary divisor D such that D ∼= Y\Y◦ and that the induced map
μ̃ : Y → M to a compactification of M is a morphism. Aiming for a contradiction,
assume that the family f ◦ : X◦ → Y◦ is not isotrvial. Now, if μ̃ is generically finite,
then thanks to Campana and Paun’s solution to Viehweg’s conjecture (Conjec-
ture 1.0.15), we find that (KY + D) is big, contradicting the assumption that (Y, D)
is special. Therefore to prove the theorem, we only need to treat the case where
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μ̃ : Y → M is not generically finite. In this case, by the Stein factorization, we
can find a projective variety Z such that the morphism μ̃ factors through a fibra-
tion with connected fibres h : Y → Z and a finite morphism Z → M. According
to Proposition 3.3.2, we can find a neat model (Yh, Dh) of the pair (Y, D) and the
fibration h : Y → Z.

Y
μ̃

		
h
��

Yh
μ

��

h̃
��

M Zfinite�� Zh
α��

We observe that since Yh\Dh is isomorphic to an open subset of Y◦, it also
parametrizes a smooth family of canonically polarized manifolds. Thus by [VZ02,
Thm. 1.4], for some positive integer N, we can find a line subbundle L ⊆
SymN(ΩYh log(Dh)

)
such that κ(Yh, L ) ≥ dim Zh. Moreover by [JK11a, Thm. 1.4],

we know that the Viehweg-Zuo subsheaf L generically comes form the coarse
moduli space. More precisely, there exists an inclusion L ⊆ SymNB, where B is
the saturation of the image of

dh̃ : (h̃)∗(ΩZh) → ΩYh log(Dh).

Let us now collect the various properties of the pairs (Yh, Dh) and (Zh, Δh), and
the fibration h̃ : Yh → Zh (recall that, by definition, the divisor Δh is the C-base of
the fibration h̃ : (Yh, Dh) → Zh), that we have found so far:

3.14. (Yh, Dh) and (Zh, Δh) are both smooth pairs (property (3.11)).

3.15. Dh contains all h̃-exceptional prime divisors (property (3.12)).
3.16. There exists a saturated rank-one subsheaf L ⊆ SymNB, for some
positive integer N, such that κ(Yh, L ) ≥ dim Zh.

With these conditions, we can apply [JK11a, Cor. 5.8] to find a saturated rank-one
subsheaf LZh ⊆ SymN

C
(
ΩZh log(Δh)

)
such that

κC(Zh, LZh) = κ(Yh, L ) ≥ dim(Zh). (3.17)

Finally, if the statement (3.13) holds, then (Zh, Δh) is of log-general type. On
the other hand by property (3.10), for every 1 ≤ p ≤ n, we can push-forward
invertible subsheaves of Ωp

Yh
log(Dh) to those of Ωp

Y log(D). In particular, since
(Y, D) is special, then so is (Yh, Dh). But, this is a contradiction to our previous
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finding that (KZh + Δh) is big (recall that for a neat model h̃ : Yh → Zh, and for
sufficiently divisible positive integer m, we always have

h0(Yh, G ⊗m) = h0(Zh, OZh(KZh + Δh)
⊗m), (3.18)

where G denotes the saturation of the pull-back bundle (h̃)∗
(
OZh(KZh)

)
inside

Ωdim(Zh)
Yh

log(Dh)).

3.4 The Isotriviality conjecture: The approach of
Campana and Paun

In this section we prove the statement (3.13) in the previous section. The
isotriviality conjecture will then follow from Theorem 3.3.3. The proof is com-
pletely based on the solution of [CP13, Sect. 4] to the Viehweg’s hyperbolicity
conjecture 1.0.15. In particular, Theorem 3.4.2 should be taken as the generaliza-
tion of [CP13, Thm. 4.1] from the category of purely logarithmic smooth pairs (the
boundary divisor is reduced) to that of smooth pairs in general.

For the ease of notation we have replaced the pair (T, B) in the reduction state-
ment (3.13) by (X, D) with the warning that D should not be confused with the
boundary divisor of the compactification of Y◦ that was introduced in the previ-
ous sections.

Proposition 3.4.1. Let (X, D) be a smooth pair and L ⊆ SymN
C
(
ΩX log(D)

)
a satu-

rated rank one subsheaf with κC(X, L ) = dim X. For every ample divisor A in X, there
exists a rational number c ∈ Q+(A, L ), depending on A and L , such that the inequality

vol(KX + D + G) ≥ c · vol(A), (3.19)

holds for every Q-Cartier divisor G satisfying the following properties:

3.20. (D + G) ∼Q P, for some big Q-Cartier divisor P such that �P� = 0.
3.21. (X, D + G) and (X, P) are both smooth pairs.
3.22. The Q-Cartier divisor (KX + D + G) is pseudo-effective.
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Proof. First, let us fix an ample divisor A. We notice that by an argument similar
to that of Kodaira’s lemma [Laz04, Prop. 2.2.6]), we can always find a (sufficiently
large) positive integer m such that

H0(X, Symm
C (L )⊗OX(−A)

) 	= 0.

Let the invertible subsheaf L ′ ⊆ Symm·N
C

(
ΩX log(D)

)
denote the line-bundle

Symm
C (L ), so that the inequality

A ≤ L′ (3.23)

holds between Cartier divisors L′ and A, L′ being the divisor verifying the iso-
morphism OX(L′) ∼= L ′. We shall prove the proposition in two steps. First, we
run the log-minimal model program (or LMMP, for short) for the smooth pair
(X, P). We notice that since P is big and has no reduced components (assumption
(3.20)), according to [BCHM10, Thm. 1.1], after a finite number of divisorial con-
tractions and log-flips, the program terminates in a log-minimal model (X′, P′),
i.e. (KX′ + P′) is nef. Here, at the minimal level, we shall find a lower-bound
for vol(KX′ + P′) in terms of vol(A) and independent of G. The second step of the
proof is standard; we will just use the negativity lemma in the minimal model the-
ory and replace vol(KX′ + P′) by vol(KX + P) to establish the required inequality
(3.19).

Step. 1: Log-minimal model of (X, P) and the volume of its log-canonical divi-
sor. Let π : (X, P) ��� (X′, P′) be the birational map defined by the LMMP. Take
μ : X̃ → X to be a modification of X resolving the indeterminacy of π, with result-
ing morphism π̃ : X̃ → X′, and such that supp(Exc(μ) ∪ D̃ ∪ G̃), where D̃, G̃ are
the μ-birational transforms of D and G, respectively, is simple normal-crossing in
X̃:

Ỹ
γ

adapted cover
�� X̃

μ
��

π̃, birational




(X, P) π

LMMP
�� (X′, P′)

Let γ : Ỹ → X̃ be an adapted cover for the pair (X̃, D̃ + G̃ + E), where E is the
maximal reduced divisor contained in Exc(μ). We notice that, as L ′ is a subsheaf
of Symm·N

C
(
ΩX log(D)

)
(⊆ Symm·N(ΩX log(�D�)

)
), the inclusion

μ∗(L ′) ⊆ Symm·N
C

(
ΩX̃ log(D̃ + G̃ + E)

)
.
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follows from the definition. Now, in order for us to use the generic semi-
positvity result (Corollary. 3.2.2), we need (KX̃ + D̃ + G̃ + E) to be pseudo-
effective. This is indeed the case: from the ramification formula for μ we have
(KX̃ + D̃+ G̃) = μ∗(KX + D+G)+ Ẽ, Ẽ being an effective exceptional divisor (the
effectivity follows from our assumption that (X, D + G) is a smooth pair (3.20)).
So, from the pseudo-effectivity of (KX + D + G) (assumption (3.22)) it follows that
(KX̃ + D̃ + G̃) is pseudo-effective, and thus so is (KX̃ + D̃ + G̃ + E), as required.
Therefore Corollary 3.2.2 applies and the inequality

μ∗(L′) · Pn−1 ≤ (m · N)(KX̃ + D̃ + G̃ + E) · Pn−1

holds, for any nef divisor P in X̃. In particular, for any fixed ample divisor H′ in
X′ and positive integer r, we have

μ∗(L′) · π̃∗(KX′ + P′ + 1
r

H′)n−1 ≤ (m · N)(KX̃ + D̃ + G̃ + E)·

· π̃∗(KX′ + P′ + 1
r

H′)n−1. (3.24)

Now, let U be a Zariski open subset of X′ of codimX′(X′\U) ≥ 2 where π−1|U
and π̃−1|U are both isomorphisms. For every r ∈ N+, define dr to be a suffi-
ciently large positive integer such that the linear system |dr(KX′ + P′ + 1

r H′)| is
basepoint-free and that the irreducible curve Cr := B1

r ∩ . . . ∩ Bn−1
r , cut out by

general members Bi
r ∈ |dr(KX′ + P′ + 1

r H′)|, is a subset of U. We notice that as
Cr ⊂ U, and because of our assumption (3.20), the left-hand side of the inequality
(3.24) is equal to ( 1

dr
)n−1(m · N)(KX′ + P′) · (KX′ + P′ + 1

r )
n−1. Therefore, we may

write the inequality (3.24) as

(dr)
n−1μ∗(L′) · π̃∗(KX′ + P′ + 1

r
H′)n−1 ≤ (m · N)(KX′ + P′ + 1

r
H′)n,

so that

μ∗(L′) · π̃∗(KX′ + P′ + 1
r

H′)n−1 ≤ (m · N)vol(KX′ + P′ + 1
r

H′). (3.25)

Next, we notice that, as (L′ − A) ≥ 0 (inequality (3.23)), the pull-back μ∗(L′ −
A) is also effective. Therefore, and again by using the fact that the nef cone in
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the Néron-Severi space N1(X̃)R is equal to the closure of the ample one, we have
μ∗(L′ − A) · π̃∗(KX′ + P′ + 1

r H′)n−1 ≥ 0. Hence we can rewrite the inequality
(3.25) as

μ∗(A) · π̃∗(KX′ + P′ + 1
r

H′)n−1 ≤ (m · N)vol(KX′ + P′ + 1
r

H′) (3.26)

Now, by applying the Teissier’s inequality [Laz04, Thm. 1.6.1] (to the left-hand
side of the inequality (3.26)), we have

vol(A)
1
n · vol(KX′ + P′ + 1

r
H′)

n−1
n ≤ (m · N)vol(KX′ + P′ + 1

r
H′),

i.e.

vol(A)
1
n ≤ (m · N)vol(KX′ + P′ + 1

r
H′)

1
n . (3.27)

Finally, thanks to the continuity of vol(.), by taking r → ∞ in the inequality (3.27)
we have

1
(m · N)n · vol(A) ≤ vol(KX′ + P′), (3.28)

that is, the inequality (3.19) holds for the log minimal model (X′, P′), if we take
c := 1

(m·N)n .

Step. 2: Lower-bound for the volume of (KX + P). By the negativity lemma in the
minimal model theory, we know that H0(X, m(KX + P)) ∼= H0(X′, m(KX′ + P′)),
for all m ∈ N+. In particular the equality vol(X, KX + P) = vol(X′, KX′ + P′)
holds. The required inequality (3.19) now follows form the inequality (3.28) in the
previous step and assumption (3.20).

Theorem 3.4.2. Let (X, D) be a smooth pair and L ⊆ SymN
C
(
ΩX log(D)

)
a saturated

rank-one subsheaf. If κC(X, L ) = dim X , then (KX + D) is big.

Proof. Let H be a very ample divisor such that H − D is ample, and let r be a
(fixed) sufficiently large positive integer for which the divisor

(
r(H − D)

)
is very

ample. Define the hyperplane section BD to be a general member of the linear
system |r(H − D)|. From construction it follows that, for every integer M > r, the
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Q-divisor (D + 1
M BD) is Q-linearly equivalent to an snc divisor, which we denote

by PM, with no reduced components:

D +
1
M

BD ∼Q D +
1
M

(
r(H − D)

)
= (1 − r

M
)D +

r
M

H =: PM.

Claim 3.29. The divisor (KX + PM) is pseudo-effective, for all integers M verifying the
inequality M > r.

Let us for the moment assume that the claim holds. Define the Q-Cartier divisor
G in Proposition 3.4.1 by G := 1

M BD. As the conditions (3.20), (3.21) and (3.22) in
Proposition 3.4.1 are all satisfied, it follows from the inequality (3.19) that for any
fixed ample divisor A, there exists a constant c such that

vol(KX + D +
1
M

BD) ≥ c · vol(A), ∀M ∈ N such that M > r. (3.30)

Therefore, by taking M → ∞, the continuity property of vol(.) and the fact that
the constant c in Proposition 3.4.1 is independent of M, it follows that the divisor
(KX + D) is big.

It now remains to prove the claim 3.29.

Proof of claim 3.29. Aiming to extract a contradiction, suppose that (KX + PM) is
not pseudo-effective for some positive integer M > r. Let H′ be a suitably-chosen
very ample divisor such that the effective log-threshold given by

ε := min{t ∈ R+ : KX + PM + tH′ is pseudo-effective},

is smaller than 1. According to [BCHM10, Cor. 1.1.7] ε is rational. Now by ap-
plying Proposiotion 3.4.1 to the pair (X, D) with G := 1

M BD + εH′, we find that
KX + PM + εH′ is big. But as the big cone forms the interior of the cone of pseudo-
effective Q-Cartier classes, for sufficiently small δ, KX + DM + (ε − δ)H′ is also
pseudo-effective, contradicting the minimality assumption on ε.

The isotriviality conjecture (Conjecture 1.0.13) now follows from Theorem 3.4.2
together with Theorem 3.3.3 in the previous section.
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