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Abstract

The interface of Cosmology and High Energy physics is a forefront area of research
which is constantly undergoing development. This thesis makes various contributions
to this endeavor. String-inspired cosmology is the subject of the first part of the
thesis, where we propose both a new inflationary and a new alternative cosmological
model. The second part of the thesis concentrates on the problems of integrating
cosmology with particle physics beyond the Standard Model.

Inspired by new opportunities due to stringy degrees of freedom, we propose a non-
inflationary resolution of the entropy and horizon problems. In this string-inspired
scenario, ’our’ dimensions expand while the extra dimensions first expand and then
contract, before eventually stabilizing. The equation of state of the bulk matter
(which consists of branes) is negative. Hence, there is a net gain in the total energy
of the universe during the pre-stabilization phase. At the end of this phase, the
energy stored in the branes is converted into radiation. The result is a large and
dense 3-dimensional universe.

Making use of similar ideas, we propose a not-fine-tuned model of brane inflation.
In this scenario the brane separation, playing the role of the inflaton, is the same as
the overall volume modulus. The bulk matter provides an initial expansion phase
which drives the inflaton up its potential, so that the conditions for inflation are
realized. The specific choice of the inflationary potential nicely fits the cosmological
observations.

Another aspect of this research concentrates on the cosmological moduli prob-
lem: namely, the existence of weakly coupled particles those decay is late enough to
interfere with Big Bang Nucleosynthesis. As a solution, we suggest parametric and
tachyonic resonances to shorten the decay time. Even heavy moduli are dangerous
for cosmology if they cause the overproduction of gravitinos. We find that tachyonic
decay channels help to transfer most of the energy of these dangerous moduli into a

scalar sector, preventing the excess gravitino abundance.



Résumé

L’interface entre la Cosmologie et la Physique des hautes énergies est un sujet de

recherche d’avant-plan en constant développement.

La cosmologie inspirée par la théorie des cordes est le sujet de la premiere partie
de cette these, dans laquelle nous proposons d’une part un nouveau mécanisme pour

I'inflation et d’autre part une nouvelle alternative de modele cosmologique.

Dans la seconde partie nous nous concentrons sur les problemes reliés a I'intégration
de la cosmologie dans un modele de physique des particules au-dela du Modele Stan-

dard.

Motivés par les nouvelles possibilits venant des degrés de liberté de la théorie des
cordes, nous proposons une résolution non-inflationiste aux problemes d’entropie et
d’horizon. Selon notre scenario fondé sur la théorie des cordes, les trois dimensions
spatiales habituelles ainsi que les dimensions supplémentaires s’étendent, mais ces
dernieres se contractent eventuellement avant de se stabiliser. L’équation d’état de
la matiere du bulk, qui consiste de branes, est négative. Il y a donc un net gain
dans 1’énégie totale de 'univers durant la phase de pré-stabilisation. A la fin de cette
phase, I'énergie stockée dans les branes est convertie en radiation. Le résultat est un

univers tri-dimensionel large et dense.

En utilisant des idées similaires, nous proposons un modele d’inflation qui ne
requiert pas d’ajustements fins. Dans ce scénario, la séparation entre les branes, qui
joue le role de I'inflaton, est la mome que le module du volume global. La matiere
du bulk fournit une phase d’expansion initiale qui pousse l'inflaton vers le haut de
son p otentiel, réalisant ainsi les conditions pour I'inflation. Le choix spécifique du
potentiel de I'inflaton est en accord avec observations cosmologiques.

Un autre aspect de ma these adresse le problme cosmologique des champs de
module: c’est-a-dire I'existence de particules faiblement couples dont la désintégration
a lieu suffisamment tard pour interférer avec la Nucléosynthese primordiale. Comme
solution nous suggérons une résonance paramétrique et tachyonique pour réduire le

temps de désintégration. Méme les champs de module lourds sont dangereux pour la
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cosmologie s’ils causent une surproduction de gravitinos. Nous obtenons que le canal
de désintégration tachyonique aide le transfert de la plus grande partie de 1’énergie
de ces champs de module dangereux dans un secteur scalaire, empéchant ainsi la

surproduction de gravitinos.
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Contributions of Authors

This is a manuscript [1, 2, 3, 4, 5] based thesis with footnotes added in response
to questions received from the thesis committee. The first Chapter introduces the
reader to the cosmological problems and difficulties to integrate cosmology with par-
ticle physics. In particular I discuss puzzles of Big Bang Cosmology, Inflation as a
resolution of these puzzles, nonperturbative techniques to reheat the universe, and
the cosmological moduli problem. Chapters 2,3 and 5 are based on the work I did
with Robert Brandenberger [1, 2, 4], chapter 4 is based on the work with Thorsten
Battefeld [3], and chapter 6 is based on my single author paper [5].

[ initiated and contributed main ideas of [1]. In particular, T suggested the mech-
anism to overcome the entropy and horizon problems avoiding an inflationary period.
The main idea of [2] originated in the process of discussions with Robert Branden-
berger and is heavily based on the ingredients developed in [1]. In both papers I
contributed to all calculations. In the followup paper [3], T wrote more than a half of
the manuscript. I mainly worked on the first part, namely I calculated the cosmolog-
ical parameters and made an estimate of the fundamental string length. I was also
involved in detailed discussions of the second part.

In the paper [4] I suggested the specific interaction model based on the particle
physics nature of the cosmological moduli problem and independently performed all
the calculations. I also noticed that triliniar interactions might result in tachyonic
resonance which may help to resolve the problem. This observation led to the main
idea of my single author paper [5] where I performed all the calculations and wrote

all the text.
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Chapter 1

Introduction

Early universe cosmology is a vastly developing area that provides a natural frame-
work to test models of High Energy Physics. The canon of the early universe cos-
mology is the theory of Big Bang Cosmology (BBC), which establishes the thermal
history of the universe. According to BBC, the beginning of time is associated with
an infinitely hot universe. As time progresses the universe adiabatically cools down
and grows. At a temperature of around 1 MeV the nucleosynthesis processes form the
nuclei of light elements. As the temperature reaches 1 eV (the recombination epoch)
electrons no longer have enough energy to overcome the attractive force of atomic
nuclei; hence, atoms form. The universe becomes transparent to photons. Later on,
the tiniest fluctuations of density in the early universe cause structure formation. The
universe continues to expand and cool until it reaches today’s 1 meV temperature.

The evolution of the universe is governed by the Einstein equations
G = 81GT), (1.1)

where G, is the Einstein tensor, p, v =0, ..,4, T, is the energy-momentum tensor
and G is the Newtonian gravitational constant. Experiments reveal that our universe
is homogeneous and isotropic to a high degree of precision. In the homogeneous and
isotropic limit the line element is unique and we obtain the so called Friedmann-

Robertson-Walker (FRW) universe

dr?
1 —kr?

ds? = —dt? + a(t)? +r2(df? + sin® d¢?) (1.2)



where a(t) is the scale factor, t,r, 6, ¢ are time and spherical spatial coordinates, and

k =1,0,—1 is the curvature signature. If the matter is in the state of a perfect fluid

Tuu = dlag(_p7p7p)p) ) (13)

where p and p are the energy density and pressure, the Einstein equations reduce to

the set of equations:

1 k
H? — 1.4
3z (1.4)

: 1 k
H = - - = 1.5
o, (p+p) =3, (1.5)
where m?2;, = w5 and H = %, The equations (1.4,1.5) are known as the Friedmann
equations.

Different aspects of BBC are tested to a high level of precision. One of them is
the theory of nucleosynthesis, which correctly predicts the primordial abundance of
the very light elements. Another is the presence of the cosmic microwave background
(CMB) which, according to BBC, has formed once the universe became transparent
to photons.

Despite tremendous success, BBC does not explain why we observe homogeneous,
isotropic and spatially flat universe, nor what is the source of the fluctuations respon-
sible for structure formation as well as other problems (see e.g. [6, 7] for a review).
Inflation — a short period of accelerated expansion — manages to complete the picture.
However, the Standard Model (SM) of particle physics does not incorporate the nec-
essary degrees of freedom to describe inflation. Other cosmological observations, for
example the origin of dark matter and dark energy, are unexplained within the SM
as well. The success of models beyond the SM to explain the above phenomena does
not ensure the absence of new obstacles in a way of successfully integrating modern
cosmology and particle physics. Specifically, various extensions of the SM generi-
cally predict new forces and particles. It may happen that new degrees of freedom
help to explain old puzzles in new, unconventional ways. In particular, what are the
consequences of the dynamics of the extra dimensions in the phase preceding their

stabilization on the evolution of the very early universe?



As a part of this thesis, a new string-inspired scenario of the evolution of the
universe is presented. The new model makes use of extra dimensions, a gas of p-
branes in the bulk to drive an initial isotropic but non-accelerated expansion of the
universe, as well as orbifold fixed planes responsible for the eventual contraction of
the extra dimensions while our three dimensions continue to expand. Depending on
the details, the toy model either explains the entropy and horizon problems of BBC
without invoking the paradigm of inflation or provides a not fine-tuned emerging
brane inflation model.

While theories beyond the SM present unexplored opportunities, their ingredients
are not always compatible with BBC (e.g. moduli and gravitinos). In the second
part of the thesis, the possibility to overcome one of the cosmological problems asso-
ciated with physics beyond the SM, the cosmological moduli problem, is investigated.
The cosmological moduli problem is the problem of the over-abundance of weakly in-
teracting particles present in supersymmetric models, particularly, in string-inspired
models. To overcome this, nonperturbative decays of moduli into SM degrees of free-
dom are considered. While the final decision regarding the success of the solution
depends upon the details of the model, we find ranges of parameters that avoid the
cosmological moduli problem.

The following part of this chapter is dedicated to a review of the main points and

basic ideas which serve as background material to the thesis.

1.1 Problems of Big Bang Cosmology

One of the cosmological puzzles is the horizon problem. It arises as a result of the
inconsistency of the isotropy of the CMB and predictions of Big Bang Cosmology.
The photons which are observed in the CMB [8, 9], last scattered when Universe was
1200 time smaller (acpp = 1/1200) at ¢ = t,... The co-moving horizon size at the
surface of last scattering is

trec dt
Ly(tree) = / — = 2Hy acup ~ 6 x 1072H, (1.6)
t;

a



to

1,0

trec

Le()

Figure 1.1: The sketch of time () versus co-moving distance (x). The line at ¢,
corresponds to the surface of last scattering. The backward light cone ([,) is substan-
tially larger than the forward light cone (lf). This constitutes the horizon problem.
Fig from Ref [6]

where t; stands for the beginning of expansion. The co-moving distance photons
travel from a point on the CMB surface to an observer on the Earth is

ot
Ui (tree) :/ — ~ 2H;! (1.7)
t

where t( stands for the current time. Comparing (1.6) to (1.7) (see Fig. 1.1) leads to
the conclusion that the CMB map should consist of a vast number of uncorrelated
regions. Instead, the observations shows that the surface of last scattering is isotropic
to 1 part in 10* [10, 11, 12, 13]. To explain this phenomenon, one is required to modify

the causal structure of Standard Big Bang Cosmology in a way such that

free (i o dt
/ Zs / “ (1.8)
ti a trec a

Another issue is the following, anisotropies observed in the form of galaxies and
clusters require a causal mechanism which generates density perturbations. In Stan-
dard Cosmology horizon grows faster than the distance between objects. Pertur-
bations starts to grow once the matter energy density exceeds the radiation energy

density, at t.,. The scales above 50Mpc where not in causal contact at t.,. Hence,
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log a

Figure 1.2: The sketch of logarithm of any physical length scale A and the Hubble
radius H~! versus logarithm of the scale factor. The physical scale crosses the Hubble

L coincides

radius only once. In the radiation and matter dominated universes, H~
with horizon. Hence, correlations on physical scales which at ¢, are outside H
cannot have causal origin. The dotted line indicates periods when A is larger than

H~'. Fig. from Ref [14]

the correlations between galaxies and clusters of galaxies observed on scales above
50Mpc [15, 16, 17] are unexplained if the perturbations are generated before t., (see
Fig. 1.2). This is the structure formation problem.

Another puzzle of Big Bang Cosmology is the entropy problem. During the adi-
abatic expansion, the entropy per co-moving volume (.S) in the Universe is constant,
and

S o g,.a’T? (1.9)

where g, is the number of ultra-relativistic degrees of freedom. g, doesn’t change by
more than a couple orders of magnitude during the history of the Universe and we
neglect its time dependence in the following analysis. The energy of the co-moving
volume corresponding to the current Hubble patch which is stored in the relativistic

degrees of freedom is
E = pHy? ~ g, H;*T) ~ SyTy ~ 10Ty . (1.10)
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Sy, the entropy in the current Hubble volume, is a conserved quantity in an adia-
batically expanding universe. Hence, naively extrapolating back to Planck times, one
finds that the energy of the universe is 90 orders of magnitude above the expected
value.

The energy problem can be rephrased in terms of the size problem. The value of
the Hubble radius today is H, ' ~ 102 GeV L. Since the Planck epoch, the universe
grew up by a factor of

ag T

=L _—10%. 1.11
ot (1.11)

The co-moving size at the Planck epoch corresponding to the current Hubble radius
is [g, = 10" GeV~!. In a power law expanding Universe the Hubble radius is roughly
equal to the maximal causally connected region (horizon). However, at the Planck
epoch the size of the universe corresponding to the Hubble radius at that time is
I, = 107" GeV~'. Hence the size of the universe at the Planck epoch is 29 orders of
magnitude above the expected value. To solve the entropy and the size problems one
requires either to explain the large amount of entropy or to blow the initial patch (I,)
to the size [y, without significant loss in energy density.

Today the universe is very close to being flat (k = 0). To quantify this statement,
it is very useful to define the ratio:

p
D= —. 1.12
3SH?*m? ( )

In terms of 2, the Friedmann equation (1.4) is

k
Q-1=—0s. (1.13)

During the period of radiation domination H o a~2. Hence, extrapolating € back to
the Planck era and comparing to today’s value ) ~ 1 leads to extreme fine-tuning in
the initial value of )

Q—1|r= 2 T?
| |T*TPL ~ (CLPL) ~ ( 0 ) ~ 0(10—64) (114)

1 — 17—, ag 12,

This fine-tuning problem is called the flatness problem.



1.2 Inflation

The puzzles discussed in the previous section as well as other problems of BBC (see
e.g. [6, 7] for a review) are possible to resolve if one invents a new period of cos-
mological expansion. The most successful one is the period of accelerated expansion
of the universe - inflation [18]. A toy model approach to obtain inflation consists
of introducing one or more scalar fields (inflatons), which evolve slowly due to some
appropriately tuned potential. If the energy density of the universe is dominated by

a spatially homogeneous scalar field ¢

p= 58 V(). (1.15)

and if this scalar field is slowly rolling, i.e

P << V(p), (1.16)

then the Hubble parameter is constant:

H2 o FV((,@)]. (1.17)

~ 3m2,
During the period of applicability of (1.16), the scale factor grows exponentially (a o<
efl') while the energy density remains constant (which means inflation). This is
precisely the requirement to solve the entropy problem. Note that V' (¢) must be
chosen such that (1.16) is satisfied for a sufficient long period. This requires the
condition

¢ < 3H¢ (1.18)

to be satisfied as well.
Inflation easily solves the horizon and structure formation problems. During the
period of inflation the Hubble radius (H~!) is almost unchanged while the horizon

continues to grow as

r @

li(tr) = /t i @, (1.19)

where ¢ stands for the beginning of inflation and R for its end. Thus, a long enough

period of inflation (in fact fractions of a second) allows the co-moving horizon size
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to grow much larger than the size of the past light cone at recombination, which
explains the horizon problem (Fig. 1.3). The same argument allows a resolution
of the structure formation problem. Since all scales inside the present Hubble ra-
dius could be fully inside the horizon (Fig. 1.4), a causal microphysical mechanism
to generate perturbations is possible. In particular, quantum fluctuations during
inflation are redshifted and might be a source of the perturbations responsible for
structure formation. The amplitude of quantum fluctuations is independent of time
(for an order H~'). Due to this fact, the inflationary scenario implies an almost scale-
invariant spectrum of adiabatic cosmological fluctuations [19, 20], a prediction which
was made more than a decade before the cosmic microwave background anisotropies
were mapped out [10, 11, 12, 13]. The conditions for successful slow roll inflation

are (1.16) and (1.18). They lead to the conditions

m2 V/ 2
s=:7%(v) <1 (1.20)
V//
n :7@q7<1. (1.21)

In this approximation, one can compute the scalar spectral index (ny), the scalar to

tensor ratio (r) and the tensor spectral index (nr) to [21]

ns ~ 1—06e+2n, (1.22)
r ~ 16c, (1.23)
np ~ —r/8, (1.24)

where € and 7 have to be evaluated at the time when the relevant scales leave the
Hubble radius during inflation.

Another glance at the Friedman equations

k
Q-1=—0 (1.25)

shows that the flatness problem is resolved as well. During inflation a¢ = Ha > 0,
therefore, the function €2 — 1 decreases as time progresses and the universe becomes

closer to the flat one.



tg 4

p®

trec

tR > Xp

5 a = el

Figure 1.3: In this sketch, the evolution of the horizon is compared with the past
light cone at recombination. During inflation (a(t) &~ e!), the co-moving horizon

size grows exponentially in time. Fig. from Ref [6]

t

dc(®

tH
a(t)y=e
1.0

Figure 1.4: The sketch of an evolution of physical scales as a function of time. If
sufficiently long inflation took a place, the physical separation between two clusters
(d.) is inside the forward light cone at all times. Note that d. crosses the Hubble
radius (H ') during inflation and re-enters only after the end of inflation. Hence,
during inflation the causal mechanism of structure formation is possible. Fig. from

Ref [6]



There are many toy model potentials which result in inflation (see e.g. [22]). How-
ever, there is no fully established and accepted inflationary theory. One of the reasons
is the fine-tuning problems involved, another is that there is no well established fun-
damental theory to embed the inflationary scenario in. The last reason is a partial
reason for the mot fine-tuning’ problems of inflationary cosmology, trans-planckian

and singularity problems [6].

Alternative explanations of the puzzles of the BBC have been proposed alongside
inflationary models. Famous examples of these are the Pre-Big-Bang [23] and Ekpy-
rotic scenarios [24]. However, none of these are able to explain the large initial size
of the universe, and thus the entropy problem remains unsolved. In Chapter 2, we
demonstrate a string theory inspired solution of the entropy and horizon problems.
Note that currently there is no alternative scenario able to overcome all the puzzles
of the BBC, in particular, the flatness problem remains unsolved. Hence, inflation

remains the most attractive paradigm.

1.3 Brane Inflation

Encouraged by the great success of the inflationary paradigm, one is motivated to find
a successful realization of inflation within more fundamental theories, such as string
theory. Branes are fundamental objects of string theory on which strings ends. One
of such constructions with 3 spatial dimensions (3-brane) can represent our world.
Interactions between branes can lead both to attractive and repulsive potentials.
Examples of sources of inter-brane potentials are exchange of massless and massive
bulk modes, and strings stretched between branes. The slow relative-motion of brane

and (anti)brane can be interpreted as inflation on the worldsheet of the brane [25, 26].

In 1998, Dvali and Tye [25] proposed a D-brane inflationary scenario which makes
use of slow motion of branes towards each other. They noticed that the joint force
due to gravitational attraction, exchange of dilaton and Ramond-Ramond fields can-

cels while supersymmetry is preserved. However, once the supersymmetry breaking

10



corrections are included, a potential of the form

V=A+ T—B; ; (1.26)
where A, B and n are constants, results. The basic (and well known [27]) drawback
of this and similar brane-antibrane proposals [26] is the ' problem’: smallness of the
slow roll parameter n (1.21) requires the inter-brane separation to be larger than the
size of the manifold.

The phenomenological constructions discussed above were the first attempts to
obtain inflation in string theory. These constructions did not take into account the
issue of stabilization of the internal dimensions. Without stabilization of the degrees
of freedom controlling compactification, a typical 4 dimensional effective potential

has a typical form (see e.g. [28])

V(. p. ) ~ eV () (1.27)

where a and b are model dependant positive constants, ¢ and p are canonically
normalized fields representing the dilaton field and the volume moduli. In order
for the potential V(¢) to drive inflation, the dilaton field has to be stabilized in order
not to run to minus infinity and the volume not to decompactify. After the discovery
that flux constructions can lead to a stabilization mechanism for most moduli fields
of string theory [29, 30], a lot of attention (beginning with [31, 32]) was focused
on how to obtain inflationary models in the context of flux compactifications (see
[33] for reviews and comprehensive lists of references). These constructions are, once
again, in the context of static bulk configurations, and have to assume very special
configurations (special configurations of branes and special flux choices).

On the other hand, one of the compactification moduli can serve as the inflaton at
the last stages of stabilization. An example of modulus inflation, based on the KKLT
construction [31], is Racetrack Inflation [34]. In Chapters 3 and 4, we propose a
scenario with the overall volume modulus playing the roll of the inflaton. The origin
of the potential for the overall modulus is assumed to be in the brane-(anti)brane

interactions. The new ingredient of the scenario is the preceding bulk expansion phase
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which naturally leads to the required pre-inflationary conditions. The Kahler modulus
inflation model suggested in [35] has similarities with our scenario. In particular the
inflaton is one of the volume components (4-cycle volume) and the potential has the
form

V=V (1-¢& ") (1.28)

where Vj, &, a and n are model-dependent constants, and ¢ is the canonically nor-
malized inflaton. In [35], this form of the potential is obtained in the following way.
The Kahler moduli appear only non-perturbatively in the superpotential and result

a

in terms in the potential of the form e~*". The uplifting of the potential is achieved

through o’ corrections [36] and provides the potential with a constant piece.

1.4 Framework

The scenario of the multidimensional universe which is developed in Chapters 2,3
and 4 has similar initial conditions to those assumed in the hot Big Bang, the only
difference being the number of dimensions. The universe was born small with a typical

scale of string size, ;. We assume the manifold to be
M=RxT*xTZ,, (1.29)

so that our three dimensions have the topology of a torus 72, and the d extra dimen-
sions are compactified on the orbifold T¢/Z,. The d + 3 dimensional universe was
born dense with all stringy degrees of freedom present. To ensure the success of our
scenario, we need to assume a weak attractive force between the orbifold fixed planes
which is generated via some potential V. While the specific form of the potential
is less important for the success of the scenario, the ultimate requirement on V is
to prevent decompactification of the volume. The potential can be generated due to
branes pinned to orbifold fixed planes.

The evolution of the universe has three stages. In the fist stage, the bulk matter
leads to isotropic expansion. Bulk matter consists of stringy degrees of freedom

and specifically p-branes. This pre-inflationary expansion [1, 2] is responsible for
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a large inter brane separation and volume of the internal space. As the universe
expands, the energy density stored in the gas of p-branes gets diluted until a weak
attractive force generated by the potential V' comes into play and changes the overall
dynamics. The second stage is the process of contraction of the extra dimensions
while our dimensions continue to expand (and even inflate). In our scenario, the
volume modulus is identified with the interbrane separation. Thus, the contraction
potential V' plays an important role in the overall volume stabilization. Once the
extra dimensions shrink down to a small scale, moduli trapping [37, 38, 39, 40] and
pre-heating [41, 42, 43, 44, 45, 46] occurs. This is the third stage of the process which
is followed by the epoch of BBC.

The evolution of the d 4+ 4 dimensional Universe is governed by the Einstein equa-
tions. Let G, be the metric for the full space-time with coordinates X“. The line

element of spatially flat but anisotropic universe is
ds® = GupdX*dX" = dt* — a(t)?dx® — b(t)*dy?, (1.30)

where x denotes the three coordinates parallel to the orbifold fixed planes and y
denotes the coordinates of the d perpendicular directions. The action of the Universe

is described by

S = /dd+4X\/ —det G {#RdJ’»ZL + ﬁM} , (1.31)

167TGd+4

where Rg4.4 is the d 4+ 4 dimensional Ricci scalar and L is the matter Lagrangian
density with the metric determinant factored out. In the first stage the dominant

component of the Lagrangian is the bulk matter perfect fluid with equation of state

where P is the pressure and p is the energy density. For p-branes,

D
= ——. 1.33
YT TR d (1.33)
The universe is isotropic,
a(t) = b(t) oc t/B+d=p) (1.34)
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The bulk energy density gets diluted as
p(t) ~ b(t)~ 3P, (1.35)

and the expansion lasts until the potential V' begins to dominate.
To follow the evolutions of ’our’ three spatial dimensions from the effective four
dimensional point of view, we need to replace the b(t) by a canonically normalized

scalar field () which is related to b(¢) through

© = B my In(b), (1.36)
where we have defined
d(d—+2
51 = % . (1.37)

In terms of ¢ the effective reduced four dimensional action after performing a con-

formal transformation to arrive at the Einstein frame is
4 ~ 1 1 2
S= [ dz\/—guw imle4 - 5(8@) (1.38)
+ Vefd“’/mplﬁﬁM} ,

where
Y = /ddy = (1.39)
is the coordinate volume of the extra dimensions, and g,, is the metric in the Einstein

frame. To simplify the notation, let us define:
L=Ve WmibL,, (1.40)

In terms of £, the reduced energy-momentum tensor takes the form

Tyw = VupVop — %éu,ué’”(@m(@as@) - 2%5” + Gl (1.41)

Then, the FRW equations read:
H% = Ty (1.42)
Hy — 2”1%1 (Too + Tt J0?) (1.43)



where « is the scale factor of our dimensions in the Einstein frame and Hg = &/a.

The equation of motion for the field ¢ is

. oL
gV, vV, — =0 1.44

The three equations (1.42,1.43,1.44) fully determine the evolution of our three dimen-
sions once £ is known.

The scenario [1, 2] adopts the mechanism of stabilization of the shape and volume
moduli through trapping at enhanced symmetry points [37, 38, 39, 40, 47]. In string
gas cosmology (see e.g. [48, 49, 28] for an introduction) the self dual radius serves as
a point at which new degrees of freedom become light (see [40] for a toy model). As
the size of the extra dimensions shrink to the string scale, new massless degrees of
freedom get produced and trap the volume moduli [40]. To introduce the main idea

of moduli trapping at enhanced symmetry point, consider the Lagrangian
1 1 1 1
L= ~3 Lp0F o — Eauxa“x — §m2g02 — §g2<p2x2 (1.45)

where y stands for a light field, ¢ for a modulus, m for the mass of the modulus, and

g for the coupling. Assuming homogeneity, the equations of motion for ¢ and x are
g+mPo+giox® = 0 (1.46)
X+9%x = 0 (1.47)

As x gets produced, the energy density of created particles grows
px = my(X%) & g% (%) (1.48)

where m,, is the effective mass of the x particles. The number density of the created

particles can be defined as
Px 2
oy m, glel(x7) ( )

Plugging the expression for {x?) into the equations of motion for ¢,
I
glel

we see that the backreaction of the created particles generates an attractive force

¢ +m’p=—g’p (1.50)

for the modulus towards the point of enhanced symmetry. Since the force remains

attractive while the modulus oscillates around the point, trapping occurs.
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1.5 Preheating Techniques

The process of reheating precedes the radiation epoch. During reheating the pre-
existing form of energy is converted non-adiabatically into radiation. The reheating
process is model dependent. In inflationary models, as soon as the expansion rate
is smaller than the inflaton decay rate (I'), the inflaton decays within a time 1/I.
However, under certain conditions, which will be reviewed below, inflationary models
admit nonperturbative regimes of inflaton decay, e.g narrow and broad parametric
resonance. We will consider a specific, namely the chaotic inflationary scenario.

In the chaotic inflationary scenario the Lagrangian can take the following form

1 1 I 50 1 55 1 5 145545,
L=—§ ucp(?“(p—iaux(?“x—iqub T olhX _§h¢x —§Q¢X7 (1.51)

where ¢ is the inflaton and m,, is its mass, x is the matter field inflaton couples to
and m, is its mass, g and h are coupling constants.

The equations of motion for ¢ and y are

) 1
¢ + (—V2 + mi + 92)(2) v+ éhx2 =0, (1.52)
X+ (=VPEmi+ho+g'e?)x = 0. (1.53)

If ¢ is a homogeneous field, i.e. only the zero mode of ¢ is excited, and the initial

excitations of x are negligible, then ¢ performs oscillations with frequency m;l:
© = ®sin(myt), (1.54)

where ® is the amplitude of ¢. The situation described above is common for chaotic
type inflationary models where at the end of inflation ® ~ M,,.

The nonperturbative process we discuss is the excitation process of the k’th mode
of the quantum field x. The Heisenberg representation of y in terms of the creation

(a),) and annihilation (a}) operators of the k’th mode is

V(1) = m [k (e ™+ o) (1.55)

We plug the above representation for ¢ into the equation of motion for the £’th mode
of x to obtain
e +wixe = 0. (1.56)
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where
wp = k* + m2 + h®sin(myt) + g*®*sin®(myt) (1.57)

In the adiabatic approximation the solution of (1.56) can be written in term of

the Bogoliubov coefficients oy (t) and [(t)

w(t) = 2O i gy Bl i (158)

vV ka vV ka

If one chooses as initial conditions the positive-frequency solution, then a;(0) = 1

and f(0) = 0, and the number density of the created particles is

n(t) = / %nk(t) (1.59)

with

.12
ni(t) = |Bel*(t) = % (|Xk|2 + %) — % : (1.60)

In order to find explicit solutions for yy, we would like to put the equation (1.72)
into the form of the well known Mathieu equation [50]. For the time being we assume

h® > ¢?®? and introduce a dimensionless variables via

1 T
= —myt + —. 1.61
z 2m¢ + 1 ( )

The differentiation with respect to z will be denoted by a prime. In this case, the

above equation (1.72) takes the form

i+ (Ax —2qcos2z)x, = 0, (1.62)
where
Mg
q = 2%. (1.63)

The behavior of (1.62) is well known [50] and is illustrated in Fig. 1.5. The analytic

investigation is about to follow.
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Figure 1.5: The instability chart of the Mathieu equation. The shaded regions corre-
spond to unstable solutions. From Ref. [50]

1.5.1 Narrow Parametric Resonance

Small values of ¢ < 1 fall in the domain of narrow resonance. In this case the solution
can be found analytically [51, 52]. The most important contribution for x; comes
from the 1’st instability band A; € [1 — ¢, 1+ g]. The resonance band is centered at

2
4mX

me 1/2
k, = — ) 1.64
n = S (1.64)
with the width
Ak ~ —m;q . (1.65)

All modes which fall into the band get excited with the amplitude
Xk (t) oc ek (1.66)

where pi is the Floquet index

2
B g\ 2 2./k%2 + mi

@)

The number density of the created particles with momenta k grows exponentially,
ng /2 SRl (1.68)
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Hence, the total number density is

d*k Ak h®m
1) = Burmet ]{32 dgmet ¥ 8hdt/my ) 1.
n(t) /—(2w)3€ 2n)? € 2n)? e (1.69)

Since the energy density is conserved the number density of the ¢ field decreases.

If the quartic term in (1.57) is more important then the cubic one, we have

z = myt
k% 4+ m?
Ay = 72X+2q
Mg
25,2
qg°®
= 2 . 1.70
q im? (1.70)

and the calculation (1.69) is adjusted accordingly. The process described above is
equivalent to the decay of a ¢ particle with mass m,, into two particles with energy
m,/2 which is exactly what happens in perturbative decay. The main difference is
that the narrow parametric resonance is a nonperturbative process and only particles
with certain momenta get excited.

The above discussion does not take into account the expansion of the universe. In

the expanding universe, the energy density of ¢ red-shifts as matter

1
Py = §mi®2 oxa . (1.71)

Therefore, the value of ¢ reduces with time and eventually the perturbative decay
rate I' dominates. In addition, the equation of motion for yj acquires an additional

frictional term

N+3HY +wix = 0. (1.72)

The friction dilutes the £’th mode
i oc e SHE (1.73)

Hence, one has to compare the dilution of the k’th mode due to expansion with
its growth due to narrow parametric resonance. We can establish the condition for

efficiency of narrow parametric resonance in the expanding universe for
qmy, > max (H,T) (1.74)
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In the expanding universe the physical momentum p red-shifts as a™, namely

p = k/a, where k is the co-moving momentum. In a time interval At, assuming
m, < mg/4, the change in the physical momentum corresponding to the middle of

the lowest resonance band (k,,) is
Ap = pHAL ~ %HA:&. (1.75)

Comparing the expression to the width of the resonance band (1.65) we infer that p

remains in the resonance band during the time interval
At ~ qH . (1.76)

To justify neglecting the expansion of space, we must require that the exponent the
growth factor (1.66) is at least 1 during this time interval. This leads to a more severe

constraint on ¢ comparing to (1.74):
¢*my > H. (1.77)

For cubic interactions the condition (1.77) translates to

h*m, 1
> —xt. 1.78
g (178)

Therefore, the narrow resonance decay channel eventually shuts off. The same con-

dition for quartic interactions reads

4
g m, 1 3

and the resonance shuts off even faster.

Along with excitations of the modes in the 1’st resonance band A € [1—¢q,1+¢],
modes with A; < 2¢ are excited as well via the process of tachyonic resonance (see
instability chart in Fig. 1.5). Tachyonic resonance is named after the fact that, during
part of the oscillation period, y; has a negative squared mass. Another glance at the
definitions (1.63, 1.70) reveals that tachyonic resonance occurs only if cubic terms are

dominant. During tachyonic resonance, excitations of y; roughly grow as

Xi o eV Az (1.80)
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All modes with
k< Vh® (1.81)

are excited. Hence, the physical momentum cannot redshift out of the tachyonic

resonance band and the efficiency condition in the expanding universe reads

Vame > H (1.82)

or equivalently

Vhmy > Vo o t712 (1.83)

My
As can be seen from the instability chart of the Mathieu equation, tachyonic resonance

shuts off once ¢ = 1/2.

1.5.2 Broad Parametric Resonance

For large ¢ values, particles are created in the broad resonance regime. The analytic
theory of the broad resonance was first proposed in [43, 44]. At the onset of oscillations
the amplitude of the inflaton can be large, e.g. as in the chaotic inflation model where
© ~ M,/10, m, ~ 107%M, and

2@2
g=T" < 2100 > 1. (1.84)
4m§,

As ¢ crosses zero, the adiabatic condition

W
2

<1 1.85
- (1.85)

is violated, allowing the nonperturbative particle production. Notice that for small
values of ¢, ¢ = m,®. Thus, for the quartic interaction, the condition (1.85) is

satisfied for a wide range of momenta
K < (gPpme®)** — g% (1.86)

This window opens up as soon as ¢ drops below /m®/g and particles with typical
momentum k = /gm,® is produced.
The field ¢ crosses zero at t; = % The t; are points of time at which creation

of particles is concentrated. While ¢ is far from these points the adiabatic condition

21



holds. To study equation of motion (1.56) near the moments of particle production,

let us expand the frequency w near the points t; as

(0 = wi(t) + 5t 1) (1.87)

and make the change of variables

T = [2w(t)]YAt — t), (1.88)

2 wl%(tj) _ K’ +mi

(1.89)

=
Il

2w2(ty)  29me?®
In the new variables the equation (1.72) becomes

d® X 2 7
— =0 1.90
72 + (/@ + 1) X (1.90)

which can be viewed as a Schrodinger equation for a wave function scattering in an
inverted parabolic potential. The solutions of (1.90) are well known [53]: they are
parabolic cylinder functions, W (—«?, +7). In particular, after the first scattering (no
previous particles are present)

ny, = e~ (1.91)

Later on, the number density is growing exponentially, nj ~ e?*** with typical Floquet

exponent p & 0.175 [44].

1.6 The Cosmological Moduli Problem

Nowadays, the predictions of the SM are tested to a high degree of precision. How-
ever, some phenomena remain unexplained. The origin of dark matter, neutrino
masses and dark energy demands physics beyond the SM. Components of models
beyond the SM may not only provide the necessary explanation of the phenomena
they are invited to explain but they also pose new problems. The cosmological mod-
uli problem [54, 55, 56, 57] is one of them. Moduli are weakly coupled scalar fields.
The cosmological moduli problem arises if the moduli are overproduced in the early

universe and threaten to spoil the success of the BBC scenario.
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Consider a modulus ¢ with mass mg and a potential of the form

V(o) = %midf. (1.92)

In the expanding universe, the moduli slowly roll until the Hubble rate, H, drops
below the mass, m, and, thus, they start to oscillate. During oscillations the energy

density of the moduli redshifts as a matter field p; o< a™®

while the energy density
in radiation redshifts as p, o< a=*. Hence, an initially radiation dominated universe
might become overclosed by the oscillations of the moduli. The typical decay rate

[y of a scalar ¢ with only gravitational strength couplings is
3

Lo~ i:—g (1.93)
The reheating temperature of the universe Tx =~ \/m is below the scale when
Nucleosynthesis takes place unless the moduli are heavier than ~ 1007eV. Even
if the initial energy density of moduli is low enough not to overclose the universe
upon their decay, the decay products of moduli threaten to spoil the success of BBN
or overproduce dark matter components. In particular, hadronic or radiative decay
of moduli can significantly affect the primordial abundances of the light elements.
There are stringent constraints on the abundance of moduli coming from the non-
thermal production of D, 3He and %Li [58, 59]. The range of moduli masses which
are dangerous for cosmology is model dependent but typically is between 10 eV and
100 TeV. The long lived fermions have similar constraints from cosmology as the
moduli fields discussed above. The best known example of a long lived fermion is the
gravitino, a component of the supergravity multiplet.

Supersymmetric or supergravity extensions of the SM are considered to be among
the most promising candidates to explain new physics. They are also a major source
of moduli, fields which have flat potentials in the supersymetric limit and are only
weakly coupled to the SM particles. Another source of moduli are compactifactions
in string theory which yield volume and shape moduli. Moduli obtain masses during
the process of supersymmetry breaking. There are many scenarios of supersymmetry
breaking, among them gravity and gauge mediation scenarios are a natural source of

weakly coupled moduli with masses in the dangerous range.
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Consider for example the Polonyi model [60] which is one of the classical examples
of gravity mediated supersymmetry breaking. The description of the Polonyi model
presented here closely follows [61]. There are hidden and visible sectors. The hidden
sector proposed by Polonyi contains only one chiral multiplet (¢,, x,), which has the

following superpotential

W, = 1i?(¢p +w), (1.94)

where p and w are parameters which will be determined by phenomenological require-

ments later on. In additional, we adopt the simplest Kahler potential

K =¢,0,. (1.95)
Hence, the combined superpotential of the theory is
W =Wp 4+ Wops (1.96)

where W, stands for the superpotential of the observable sector and doesn’t depend
on ¢,. Calculations of the interaction potential between ¢, and fields in the observable

sectors show that all mutual interactions are Planck suppressed [61].

The auxiliary field F}, is given by

F, = Mem) p.wr (1.97)
a2 [OWX 1 0K
= /@Mt Py T 1.98
e {8¢;+m§a¢; p} ( )
— u2{¢—g(¢p+w)+1}e¢"¢;/2mg (1.99)
mp

F, is the supersymmetry breaking parameter. Since no solution to the equation
F, = 0 exists, supersymmetry is spontaneously broken. Making the requirement of

zero cosmological constant at the minimum of the potential ((V) = 0) for ¢,

2 3
V = el {|D¢)pwp|2 — W|Wp|2} : (1.100)
p
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we determine the following set of parameters

w = (2-V3)m,
(0) = (V3-1)m,
(Wp) = nmy
(F) = V3erVip?,

The Super-Higgs mechanism provides the gravitino with a mass

212 W,
2m)) p

My = (e ). (1.105)

2
mp
Hence,

My = e V3L (1.106)

Further, plugging ¢, = (v/3 —1)m, + %(qﬁl +i¢y) into the potential (1.100), we can

determine the masses of the excitations ¢; and ¢,
My, = 2\/§m§/2 and mg, = (4 — 2V/3) m§/2 . (1.107)

The masses of squarks and sleptons are related to the mass of the gravitino. For
example, in models with minimal kinetic term, the following (tree level) super-trace

formula among the mass matrixes M f’s holds:

StrM® = > (=1)*(2] + DtrM; ~ 2(n — 1)m3 (1.108)

spinJ

where n stands for the number of the chiral multiplets in the spontaneously broken
local SUSY model. In this case, all the SUSY breaking masses of squarks and sleptons
are of order of the gravitino mass. Therefore, in order to obtain an interesting phe-
nomenology, one struggles to keep the gravitino mass around TeV scale. The relation
between the supersymmetry breaking parameter F' and gravitino mass is determined
by the requirement of zero cosmological constant. Roughly speaking, (V') = 0 leads

to

w >
(F) < <m—eK/2mP> ~ O(mgamy,) . (1.109)
P
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This is the relation we obtained in the Polonyi model. The phenomenological require-
ment to keep gravitino mass around TeV scale determines the scale \/Fp or the p
parameter around ~ 10" GeV.

The Polonyi model is an example of a model which has weakly coupled scalars
with the mass of order the gravitino mass. In fact, this is the situation in a variety
of supergravity mediation models [62]. The ”Polonyi field”, ¢, is an example of a
modulus. During inflation, quantum fluctuations of a scalar field ¢ with the effective

mass mesr << H yield a variance of ¢ growing as [63]

4
(@) ~ 1

~ 2,72
87rm¢

(1 — e~ Gm*/3H)y (1.110)

while if m.s¢y >> H the variance goes as

(¢%) ~ ah (1.111)

T 1omm

Hence, we see that if the effective mass of the moduli during inflation is substantially
lower that the inflation scale, the vacuum expectation value of the moduli can be
of the order of the Planck scale. Even in the case of large effective mass during
inflation, the offset of the high and low temperature minima usually is of the order
of the Planck scale and one generically expects moduli to acquire large expectation
values at the end of inflation. The large expectation values of moduli fields give rise
to the cosmological moduli problem as discussed above.

While moduli with mass above 100 TeV decay before BBN, their decay products
still may be dangerous for cosmology. In particular, the large branching ratio of the
modulus decay into gravitinos may result in the overproduction of gravitinos [64, 65].
Consider the part of the Lagrangian describing the gravitino-modulus couplings in

the unitary gauge in the Einstein frame

1 _
e L = —ge“”P”(G¢ap¢+Gwapqﬁ)wﬂ,,wa (1.112)

292G+ G )b+ o (1113)

where 1, stands for the gravitino and Gj; is a derivative with respect to the field 7 of
the
G = K/M; +In(|W[*/M). (1.114)
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K and W are the Kahler potential and superpotential, respectively. Based on these
couplings, the perturbative decay rate of the real and imaginary components of the
moduli ¢, ¢ and ¢y, into gravitinos is

|Gy m;,

F325F(¢R,I—>2¢32)% .
/ 127 2881 K gy m3, M2

(1.115)

where K4t is the Kahler metric and the calculations are done in the limit mg > ms3/;
after the canonical normalization ¢ = VEss1 0.

The dimensionless auxiliary field of the modulus ¢, G, in general, can be small
to suppress I's j; relative to the total decay rate I'yy (6.1). However, suppressed G is
not the typical case. For example, in the framework of 4D supergravity, G4 obtains
a minimal value ~ mgs/, /mg. The statement follows from the requirement that the
potential (1.100) at the minimum should vanish. In terms of GG, the potential (1.100)
takes the form

V =me®(G'G; — 3) (1.116)

where G* = KZ;*I Gj+. The constraint of having zero cosmological constant requires
that at least one of the G; ~ 0(1). For value of G4 to be much less than 1, we need
to introduce a hidden sector field Z for which G, ~ 0(1). To derive the lower bound
on G, we minimize the potential in the ¢ direction, V,, = 0V/0¢ = 0 which leads to

G (Gip — KijroK;1Gi) + Gy = 0. (1.117)

Carefully estimating the contributions to (1.117), we arrive at [64] G?Gyy ~ O(1).
In the limit mg > myjs, Gy ~ Wo/W ~ my/mss where mg = ("/2K 1 Wy,),
and, hence, G4 > mg/y/mg. Since the typical value of Ky4- is of the order one, the
branching ratio Brs, = Br(¢rr — 213/2) ~ 0(0.01 — 1).

On the other hand, the abundance of the unstable gravitino is severely constrained
not to jeopardize Nucleosynthesis or overproduce the lightest supersymmetric parti-
cles. The stable gravitino is constrained by the dark matter abundance. For example,

the constraint from the overproduction of ®He [58, 59] yields

masaYsp < O(107" ~ 107M) GeV. (1.118)
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where Y35 is the gravitino yield. The gravitino yield is defined as following

3T
Vi = M3/ _M325 1R (1.119)
5 Ng 4meg

where n3/, and ng are, respectively, the number densities of gravitino and moduli

particles,

=y —1/4 m 3/2
e T ~ 5.5 % 105G V<7¢> . 1.120
& ( 90 ) M’ all . “\105Gev (1.120)

Each moduli particle can decay to two gravitino particles. Hence, ngz/, /ny = 2Br; /2-

In terms of Bry/,, the relative gravitino abundance is

3 Tr
Y30 = =B3/0— . 1.121
mg/ats/2 5 3/2 Mg mg/2 ( )

In order to satisfy the constraint (1.118), the branching ratio of moduli into gravitinos

cannot exceed

1GeV
Bras < O(107° ~ 107%) ( ‘ ) .

1.122
o (1.122)

In Chapters 5 and 6 of this thesis, a partial resolution of the moduli problem is
investigated. In Chapter 5 we consider nonperturbative decay (see Chapter 1.5) of
the moduli to prevent moduli from dominating the energy density of the universe.
Specificallly, we consider trilinear couplings of moduli to another scalar field x which
is strongly coupled to SM degrees of freedom. Hence, the transfer of energy into y
is equivalent to the transfer of energy into radiation. In Chapter 6, we investigate
the problem of large branching ratios of heavy moduli into gravitinos. We again use
triliniar couplings of moduli to an additional scalar field y in order to show that large

Brs ) does not pose a problem if the moduli undergo nonperturbative decay into x. *

!'Further research is required for a successful implementation of the proposal into an explicit
particle model. In particular, one of the expected problems in this direction is the mass of the y in
Chapter 5, which is required to be much smaller than the expected mass of the new yet undiscovered

particles.
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Chapter 2

The Confining Heterotic Brane
Gas: A Non-Inflationary Solution
of the Entropy and Horizon
Problems of Standard Cosmology

We propose a mechanism for solving the horizon and entropy problems of standard
cosmology which does not make use of cosmological inflation. Crucial ingredients
of our scenario are brane gases, extra dimensions, and a confining potential due to
string gas effects which becomes dominant at string-scale brane separations. The
initial conditions are taken to be a statistically homogeneous and isotropic hot brane
gas in a space in which all spatial dimensions are of string scale. The extra dimensions
which end up as the internal ones are orbifolded. The hot brane gas leads to an initial
phase (Phase 1) of isotropic expansion. Once the bulk energy density has decreased
sufficiently, a weak confining potential between the two orbifold fixed planes begins to
dominate, leading to a contraction of the extra spatial dimensions (Phase 2). String
modes which contain momentum about the dimensions perpendicular to the orbifold
fixed planes provide a repulsive potential which prevents the two orbifold fixed planes

from colliding. The radii of the extra dimensions stabilize, and thereafter our three
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spatial dimensions expand as in standard cosmology. The energy density after the
stabilization of the extra dimensions is of string scale, whereas the spatial volume has
greatly increased during Phases 1 and 2, thus leading to a non-inflationary solution

of the horizon and entropy problems. !

2.1 Introduction

The Inflationary Universe scenario [18] (see also [66, 67, 68]) has been extremely
successful phenomenologically. It has provided a solution to some of the key prob-
lems of standard cosmology, namely the horizon and flatness problems, and yielded a
mechanism for producing primordial cosmological perturbations using causal physics,
a mechanism which predicted [20, 19] (see also [69, 66]) an almost scale-invariant
spectrum of adiabatic cosmological fluctuations, a prediction confirmed more than a
decade later to high precision by cosmic microwave background anisotropy experi-
ments [10, 11, 12, 13].

In this Chapter, we will pay special attention to the “entropy problem” of standard
cosmology [18]. The problem consists of the fact that without accelerated expansion
of space, it is not possible to explain the large entropy, size and age of our current
universe without assuming that at very early times the universe was many orders of
magnitude larger than would be expected on dimensional arguments.

In the inflationary scenario, the entropy problem is solved by postulating a suf-
ficiently long period of accelerated expansion, after which the universe reheats to a
temperature comparable to that prior to the onset of the period of acceleration. In
most models of inflation, the accelerated expansion of space is sourced by the poten-
tial energy of a slowly rolling scalar field. Such models, however, are subject to serious
conceptual problems (see e.g. [6, 70] for recent overviews of these problems). Most

importantly, the source of the acceleration is very closely related to the source of the

'The homogeneity and isotropy problems is addressed as well in the chapter. A long period of
expansion allows the region corresponding to our current Hubble radius to be in a causal contact

and, hence, to solve the problems.
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cosmological constant in field theory, a constant which is between 60 and 120 orders
of magnitude larger than the maximal value of the cosmological constant allowed by
current observations. Because of the existence of these conceptual problems; it is of
great importance to look for possible alternatives to scalar field-driven inflationary

cosmology.

There have been various suggestions for alternative cosmologies. In varying speed
of light models [71, 72], postulating the existence of a period in the early universe
during which the speed of light decreased very fast leads to a solution of the horizon
problem. In the “Pre-Big-Bang scenario” [23], the Universe is born cold, flat and
large, undergoes a period of super-exponential contraction before emerging into the
period of radiation-dominated expansion of standard cosmology. The contracting
phase and the expanding phase are related via a duality of string theory, namely
“scale-factor duality”. In a more recent cosmological scenario motivated by heterotic
M-theory [73], namely the “Ekpyrotic scenario” [24], the collision of a bulk brane
onto our boundary orbifold fixed plane generates a non-singular expansion of our
brane. However, neither the Pre-Big-Bang nor the original Ekpyrotic scenario can
explain why our Universe is so large and old (without assuming that the Universe is
already much larger than would be expected by dimensional arguments at the end
of the phase of contraction (see e.g. [74, 75]) (this problem is avoided in the “cyclic
scenario” [76], a further development of ideas underlying the Ekpyrotic scenario, but
this is achived at the cost of additional ad hoc assumptions about the cosmological
bounce). The size problem has so far also prevented the “string gas cosmology”
scenario [77, 78] (see e.g. [79, 28] for recent reviews) from making contact with
late time cosmology, although a stringy mechanism for producing a scale-invariant

spectrum of cosmological perturbations does exist in this context [80].

In this Chapter, we present a potential solution of the entropy problem which
does not make use of a period of accelerated expansion. Our solution makes use
of several ingredients from string theory: extra spatial dimensions, the existence of
branes and orbifold fixed planes as fundamental extended objects in the theory, and

a stringy mechanism for stabilizing the shape and volume moduli of string theory
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via the production of massless string states at enhanced symmetry points in moduli
space. Thus, it is possible that our mechanism will find a natural realization in string

theory.

2.2 Overview of the Model

Our starting point is a topology of space in which all but three spatial dimensions are
orbifolded, and the three dimensions corresponding to our presently observed space

are toroidal. Specifically, the space-time manifold is
M =RxT*xT2Z,, (2.1)

where 7% stands for the three-dimensional torus, and d is the number of extra spatial
dimensions, which we will take to be either d = 6 in the case of models coming from
superstring theory, or d = 7 in the case of models motivated by M-theory. We will
assume that there is a weak confining force between the orbifold fixed planes 2.

As our initial conditions, we take the bulk to be filled with an isotropic * gas of
branes, as in the studies of [83, 84, 85]. These studies show that, in the context of
Type IIB superstring theory, the bulk of the energy density will end up in three and
possibly seven branes. However, if the initial Hubble radius is large relative to the size
of space, there will be no residual seven branes. In the case of heterotic string theory
or taking the starting point to be M-theory, we would be dealing with Neveu-Schwarz
5-branes.

Assuming that the universe starts out small and hot, it is reasonable to assume

that the energy density in the brane gas will initially be many orders of magnitude

2Tt may be necessary to have branes pinned to the orbifold fixed planes in order to induce such
a potential. Our approach, at this stage, is purely phenomenological, and we simply postulate the
existence of a potential with the required properties

3Note that the orbifolding will prohibit the existence of certain branes along certain of the dimen-
sions and will thus lead to a breaking of the condition of isotropy. The details are fairly model-specific
and will be discussed in a followup paper. The bottom line, however, is that the noninflationary

bulk expansion of the first phase in all directions remains a valid conclusion.
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larger than the potential energy density generated by the force between the orbifold
fixed planes. Thus, initially our universe will be expanding isotropically. We denote
this as Phase 1. Our key observation is that in this phase, the energy density projected
onto the orbifold fixed planes does not decrease. The reason is that the tension energy
of the p-branes increases as a(t)?, where here a(t) is the bulk scale factor. The volume
parallel to the orbifold fixed planes is increasing as a(t)®, and hence the projected

energy density does not decrease (it is in fact constant in the case of 3-branes).

During Phase 1, the bulk energy density will decrease. Hence, eventually the inter-
orbifold potential will begin to dominate. At this point, the cosmological evolution
will cease to be isotropic: the directions parallel to the orbifold fixed planes will
continue to expand while the perpendicular dimensions begin to contract. We denote

this phase as Phase 2.

Once the orbifold fixed planes reach a microscopic separation, a repulsive potential
due to string momentum modes becomes important (one example is the production
of massless states at enhanced symmetry points [40, 39]). The interplay between this
repulsive potential which dominates at small separations and the attractive potential
which dominates at large distances, coupled to the expansion of the three dimensions
parallel to the orbifold fixed planes, will lead to the stabilization of the radion modes
at a specific radius (presumably related to the string scale). In the context of heterotic
string theory, we could use the string states which are massless at the self-dual radius
to obtain stabilization of the radion modes at the self-dual radius [38, 47] (see also
[37]). These modes would also ensure dynamical shape moduli stabilization [89]. We
denote the time of radion stabilization by tg since this time plays a similar role to the
time of reheating in inflationary cosmology. The branes decay into radiation either
during or at the end of Phase 2. This brane decay is the main source of reheating of
our three dimensional space.

After the radion degrees of freedom have stabilized at a microscopic value which
presumably is set by the string scale, the three spatial dimensions parallel to the
orbifold fixed planes will continue to expand. The energy density which determines

the three-dimensional Hubble expansion rate is the projected energy density p,, i.e.
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the bulk energy density integrated over the transverse directions. The key point is
that during Phase 1, p, does not decrease. If the bulk is dominated by 3-branes, p, is
constant, if it is dominated by 5-branes, p, in fact increases. In Phase 2, the projected
energy density p, also remains constant if the bulk is dominated by 3-branes, modulo
the conversion of brane tension energy into radiation as the bulk branes decay or are
absorbed by the fixed planes. If we approximate the evolution by assuming that all
of the brane tension energy converts to radiation at the time of radion stabilization,
then the value of p, at ¢, which is the energy density which determines the evolution
of the scale factor of our three spatial dimensions after ¢y, is equal to the projected
energy density at the initial time, which we take to be given by the string scale 4. If
the branes decay during Phase 2, then the projected energy density at ¢ is larger than
the initial value, in which case we may be driven to a Hagedorn phase of string theory.
The main point, however, it that since the volume of our three spatial dimensions
has been expanding throughout Phases 1 and 2, the horizon and entropy problems of
standard cosmology can easily be solved by simply assuming that the phase of bulk

expansion lasted sufficiently long (numbers will be given later).

Note that we are assuming in this paper that the dilaton has been stabilized by
some as yet unknown mechanism. In this case, the equations of motion of the bulk
are those of homogeneous but anisotropic general relativity. The metric is in this case

given by

ds* = dt* — a(t)*dx® — b(t)*dy?, (2.2)

where x denote the three coordinates parallel to the boundary planes and y denote the

coordinates of the perpendicular directions. In the case of d extra spatial directions

4We assume that initial radii and densities are all set by the string scale, i.e. we introduce no

unnaturally small or large numbers.
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the equations of anisotropic cosmology are °

i + a(2H +dH) (2.3)

. 1

= P——— (3P+dP)+ —F—
87Ga| 3+d—1(3 +d )+3+d_1p],

b + b(3H + (d—1)H) (2.4)

N 1 . 1

and

(3H + dH)? — 3H?* — dH* = 167G, (2.5)

where H = a/a, H = b/ b are the expansion rates of the parallel and perpendicular
dimensions, respectively, p is the bulk energy density and P and P are the parallel

and perpendicular pressures, respectively.

2.3 The Phase of Bulk Expansion

During the phase of bulk expansion, the two scale factors coincide, P = 15, and both

equations (2.3) and (2.4) reduce to

g+ (2+d)(9)2 8rG [p—P]. (2.6)

o T 3+d—-1

Making use of the equation of state P = wp, and inserting (2.5), the dynamical

equation (2.6) becomes

a a2 1 a2
—+2+d)(-) ==383+d)(1 - — 2.7
—+2+d)(-) = 5B+ -w)(2), (2.7)
which leads to power law expansion
a(t) ~t° (2.8)

5In the following treatment we omit inter-brane potential contribution during the phase of ex-
pansion and the contribution of the bulk matter during the stages of contraction. The full treatment
should include both contributions simultaneously (See, for example, [86, 87]) The work in this di-

rection is in progress. [88]
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where the value of o depends on the equation of state:

= 2 2.9
T Brdlrw) (2.9)

If the bulk energy is dominated by the tension of p-branes, then we have

p
___r 2.10
v 314d (2.10)

In the example motivated by perturbative Type IIB superstring theory, namely d = 6

and p = 3 we obtain

a(t) ~ t2/Brdp) — 41/3 (2.11)

What is important for us is that this is not accelerated expansion. Starting with
heterotic string theory, we would have d = 6 and p = 5 and for M-theory we would
take d = 7 and p = 5. These two cases lead to faster expansion rates, namely o = 1/2

in the former case and o = 2/5 in the latter.

2.4 The Phase of Orbifold Contraction

If we want the expansion which takes place in this initial phase to solve the size
and horizon problems of standard cosmology independent of any further expansion
during Phase 2, then the effective four dimensions scale factor, which is defined by

ab®? needs to increase by a factor F of at least
F ~ 10%. (2.12)

This result comes about by demanding that the predicted radius of the universe
evaluated at the present temperature be greater than the presently observed Hubble
radius, i.e. greater than 102GeV ™!, by taking the density at the time ¢z to be given
by the string scale which we take to be 10!7GeV, and taking into account that the scale
factor in standard cosmology increases by a factor of about 10?° between when the
temperature is of string scale and today. Correspondingly, the radiation temperature
of the bulk will decrease by the same factor F.

We now assume the existence of a confining potential V' between the orbifold fixed

planes. In order to generate such a non-vanishing potential, we will need to assume
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that branes are stuck to the orbifold fixed planes. In terms of the distance r = [,b

between these planes (I being the string length), a typical confining potential is
V(r) = pwr™ = u(lsh)", (2.13)

where n is an integer, u = A"+ and A is the typical energy scale of the potential.
As we will show below, a value n > \/m + d is required for our scenario to
work.

The presence of this potential will lead to a transition between the phase of
isotropic expansion to a phase in which the extra dimensions contract while the
dimensions parallel to the fixed planes keep on expanding (and we will verify below
that the expansion is not inflationary). The transition between Phase 1 and Phase
2 takes place when the bulk energy density and the inter-brane potential become

comparable. The bulk energy density in Phase 1 scales as
py(t) ~ b(t) 43P (2.14)

(recall that in this phase a(t) = b(t)). Assuming that the initial bulk energy density
is set by the string scale, and using the result (2.11), it follows that in order for the
bulk to have expanded by the factor of (2.12), the upper bound on A should satisfy:

A ~ 170" O@EE (2.15)
For example, in the case d = 6, p = 3, and n = 14 we obtain
A~ 1711073 ~ 101 GeV . (2.16)

For d = 6 and p = 5 the result is A ~ [71107%/8 ~ 10°GeV.

We will analyse the evolution during Phase 2 using a four-dimensional effective
field theory, where we replace the radion b(t) by a scalar field (). In order that ¢ be
canonically normalized when starting from the higher dimensional action of General

Relativity, ¢ and b must be related via (see e.g. [28], Appendix A)

© = my/d(d+ 2)/2log(b) , (2.17)
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where my,; is the four-dimensional Planck mass. If the bulk size starts out at the string
scale, then b(t;) = 1, where t; is the initial time. With these normalizations, ¢ = 0
corresponds to string separation between the branes. In terms of ¢, the potential

(2.13) then induces an effective potential for :
Verslip) = pl{tOemelman, (2.18)

where 7 = (n — d)y/2/(d(d+ 2)). Note that the original bulk potential needs to
be multiplied by the area of the orbifold fixed plane in order to obtain the effective
potential for o, V.;s(¢). There is also a factor of b~** coming from converting to

the Einstein frame (see e.g. [28], Appendix A). The equation of motion for ¢ then

becomes
Iul(ner) )
$+3Hp = —n ;’m e/ my (2.19)
P
with )
1 .92 l8n+ ~
= il + 2 im 220
mpl Myl

During Phase 2, the scale factor a(t) of the three spatial dimensions parallel to the
orbifold fixed planes will expand according to the usual four space-time dimensional
cosmological equations, where matter is dominated by the scalar field ¢. The solution

of the equations of motion (2.19 and 2.20) in the cases 7 = 1 and 1 = 2 is given by

2m2,(6 — n?
o Tty 26— ) (2.21)

n ﬁ4ul8(”+d)t2

The corresponding values of the equation of state parameter are

~2_3
w:”3 . (2.22)

For n = 1 this equation of state corresponds to an accelerating background, but
for 72 = 2 the background evolution is non-accelerating. In fact, as i grows one can
easily show that the usual inflationary slow-roll conditions are grossly violated. Thus,
for a value of 72 > 2 or equivalently n > \/m + d the evolution of a(t) during
this phase will be non-inflationary.

Taking into account the bulk expansion during Phase 1 of (2.12), it follows that

for d = 6 and p = 3 the initial value of ¢ is about 69m,;. The exponential form of
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the potential will lead to a rapid collapse of the extra dimensions. To estimate the
time scale of the decrease, we replace the source of the right hand side of (2.19) by
its initial value and estimate the time interval At for ¢ to decrease by an amount
my. We find that this time interval equals the initial Hubble time. Thus, a rough
estimate of the duration of Period 2 is 102H .

2.5 Modulus Stabilization and Late Time Cosmol-

ogy

The next crucial step in our scenario is to invoke a mechanism to stabilize the radius
of the extra dimensions at a fixed radius. Such modulus stabilization mechanisms
have recently been extensively studied both in the context of string theory models of
inflation (see e.g. [33] for recent reviews) and in string gas cosmology [90]. We will
make use of the mechanism developed in the latter approach.

String modes which carry momentum about the extra dimensions will generate
an effective potential for the radion which is repulsive. These repulsive effects will
dominate for values of the radion smaller than the self-dual radius. Since these modes
are very light at large values of the radion, it is likely that they will be present in
great abundance. Even if they are not, the subset of such modes which are massless
at enhanced symmetry points will be copiously produced when the value of the radion
approaches such points [40, 39] 5. The induced potential will lead to a source term

in the equation of motion for the scale factor b(t) which is of the form [38, 47]
. . 1
b+3Hb = 8Gn(t)[(3)" "] + .. (2.23)

where the dots indicate extra source terms from other string modes, as well as terms
quadratic in b. Note that n(t) is given by the number density of the modes. Trans-

lating to the scalar field ¢, and neglecting terms quadratic in ¢, the above equation

6As discussed in [47], stabilization via string modes which are massless at the self-dual radius

leads to a consistent late time cosmology.
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becomes

¢+3Hp = (2.24)
St Gn(t)e V 2/(d(d+2))o/mpi d(d +2)/2my, (e—\/S/(d(d+2))¢/mpz — e\/S/(d(dJr?))eo/mm) )

Thus, it follows that after approaching the self-dual radius, b(¢) will perform damped
oscillations about b(t) = 1, or, in other words, ¢(¢) will undergo damped oscillations
about and get trapped at ¢ = 0 (which corresponds to string scale separation between
the orbifold fixed planes). At this separation, the four dimensional effective potential
Vers becomes

‘/eff — Ad-|—4-i-nl;z-i—al7 (2.25)
and, taking upper limit on A from (2.15), this becomes

‘/eff —_ l8—410—60(d—p+3+n)/(d+2) ) (226)

Thus, starting with vanishing cosmological constant in the bare bulk Lagrangian, our
scenario accidently generates a cosmological constant energy density in our present
universe which is suppressed by 60 x (d—p+3+4n)/(d+2) orders of magnitude. This
will provide the correct order of the cosmological constant to account for the current
acceleration if d =n —p — 1.

Either at some point during the phase of contraction, or else when the distance
between the orbifold fixed planes has decreased to the string scale, all of the bulk
branes will decay, presumably predominantly into radiation along the fixed plane
directions. The three unconfined spatial dimensions will thus emerge in the expanding
radiation-dominated phase of standard cosmology. The energy density which at late
time governs the dynamics of our scale factor a(t) is the bulk energy density integrated
over the transverse dimensions. Since the bulk energy in Phase 1 is dominated by
the p = 3 branes, the integrated energy density is constant. Thus, at the beginning
of the radiation-dominated phase the effective energy density is of the same order of
magnitude as the initial bulk energy density, namely given by the string scale.

From the point of view of late time cosmology, what has been achieved during

Phase 1 is to increase the size of our spatial sections without decreasing the effective
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energy density. Without extra spatial dimensions, the energy density can only remain
constant if the expansion of space is inflationary, but making use of the dynamics of
extra spatial dimensions, constant effective energy density can be achieved using non-
accelerated expansion of all dimensions.

Note that in the case of p > 3, specifically in the cases where we use Neveu-Schwarz
5-branes in the bulk, the projected energy density actually increases in Phase 1. If it
decreases less during Phase 2 than it increased during Phase 1 (which will be the case
e.g. if the branes convert to radiation during Phase 2), then the possibility emerges
that we are driven to a Hagedorn phase of string theory towards the end of Phase 2
(77, 91]. In this case, a very nice mechanism for the generation of a scale-invariant
spectrum of fluctuations [80] can be realized. This possibility will be briefly discussed
in the next section.

There is another key prediction of our model which is closely related to the chosen
topology of space. No odd-dimensional cycles exist on the inner space T°/Z,, thus
prohibiting certain stable configurations of p-branes. Given that we are using odd-
dimensional branes in our examples, only 1 or 3 brane dimensions can wrap our
three-dimensional toroidal space T, because no odd-dimensional stable p-branes can
have an odd number of their brane dimensions wrapped about the inner space. This
prevents the creation of stable “stringy” domain walls and monopoles in our universe,

but it may predict the existence and future detection of cosmic strings.

2.6 Discussion and Conclusions

By making use of some tools coming from string theory, we have proposed a mech-
anism to solve the entropy (size) problem of standard cosmology without inflation.
According to our proposal, the universe begins hot, small and dense. We assume that
the six extra spatial dimensions of perturbative superstring theory are orbifolded, the
three dimensions we see today are not (they are toroidal). The universe emerges with
a gas of bulk branes (e.g. three branes if we have the perturbative limit of Type

IIB superstring theory in mind or 5-branes if we start from heterotic string theory or

41



M-theory) which drives an initial phase of isotropic bulk expansion of all nine spatial
dimensions. During this phase, the energy density projected onto the orbifold fixed
planes does not decrease, even though the scale factor is expanding (as t'/ in the
case of 3-branes in six extra dimensions). We assume the presence of a weak confining
potential between the orbifold fixed planes (the cosmological scenario which emerges
when considering a more conventional type of potential will be discussed in the next
chapter). Such a potential will eventually dominate over the bulk energy density and
will lead to a second phase in which the extra spatial dimensions rapidly contract
while our three spatial dimensions continue to expand. Once the orbifold fixed planes
approach each other to within the string scale, stringy effects previously studied in
the context of string gas cosmology will stabilize the radion degrees of freedom. The
bulk branes decay, and the universe emerges into the radiation-dominated phase of
standard cosmology, with a temperature which is of string scale, but a size which
is many orders of magnitude larger than what would be expected on dimensional

arguments .

Since the initial spatial section is in thermal contact, the horizon problem of
standard cosmology is explained, as well. Our scenario, however, does not solve the
flatness problem of standard cosmology. If the initial spatial sections are curved,
then the curvature will lead to a re-collapse of the universe. One way to address the
flatness problem is to invoke a special symmetry such as the BPS symmetry (see e.g.

[93] for a textbook discussion) which prohibits spatial curvature.

In order to provide an alternative to inflation in terms of solving all of the cosmo-
logical problems of standard cosmology which inflation addresses, we need to find a
mechanism for generating fluctuations. Work on this topic is in progress. Since the
universe is initially in causal contact, there are no causality arguments which prevent

the generation of adiabatic fluctuations. It is possible that bulk fluctuations similar to

"Note that our proposal has certain similarities with the approach of [92], in which - in the context
of brane world cosmology - it was proposed that the decay of Kaluza-Klein bulk modes will lead to
an entropy flow from the bulk to the brane which can solve the entropy and homogeneity problem

of standard cosmology without requiring a phase of inflationary expansion.

42



the ones proposed in the Ekpyrotic scenario could play this role. Provided there are
scale-invariant fluctuations in bulk metric variables during the contracting phase, the
work of [94] (see also [95]) shows that such fluctuations will induce a scale-invariant
spectrum of four dimensional metric fluctuations in the radiation-dominated phase.
Another possibility, in particular in the context of branes with spatial dimension
larger than three, is that the post-collapse phase will lead to such high densities that
a quasi-static Hagedorn phase will result. The Hagedorn phase makes a smooth tran-
sition to the radiation-dominated phase of standard cosmology. In this case, string
thermodynamics automatically generates a scale-invariant spectrum of adiabatic fluc-
tuations on all scales smaller than the Hubble radius during the quasi-static phase

[80]. (See [81, 82] for problematic points of this scenario.)
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Chapter 3

Brane Gas-Driven Bulk Expansion
as a Precursor Stage to Brane

Inflation

We propose a new way of obtaining slow-roll inflation in the context of higher di-
mensional models motivated by string and M theory. In our model, all extra spatial
dimensions are orbifolded. The initial conditions are taken to be a hot dense bulk
brane gas which drives an initial phase of isotropic bulk expansion. This phase ends
when a weak potential between the orbifold fixed planes begins to dominate. For
a wide class of potentials, a period during which the bulk dimensions decrease suf-
ficiently slowly to lead to slow-roll inflation of the three dimensions parallel to the
orbifold fixed planes will result. Once the separation between the orbifold fixed planes
becomes of the string scale, a repulsive potential due to string effects takes over and
leads to a stabilization of the radion modes. The conversion of bulk branes into

radiation during the phase of bulk contraction leads to reheating.

3.1 Introduction

The Inflationary Universe scenario [18] (see also [66, 67, 68]) has been extremely

successful phenomenologically. It has provided a solution to some of the key prob-

44



lems of standard cosmology, namely the horizon and flatness problems, and yielded a
mechanism for producing primordial cosmological perturbations using causal physics,
a mechanism which predicted [20, 19] (see also [69, 66]) an almost scale-invariant
spectrum of adiabatic cosmological fluctuations, a prediction confirmed more than a
decade later to high precision by cosmic microwave background anisotropy experi-
ments [10, 11, 12, 13].

However, it has proven difficult to find convincing realizations of inflation in the
context of quantum field theory models of matter in four space-time dimensions. It is
usually assumed that the quasi-constant potential energy of a slowly rolling scalar field
(the so-called “inflaton”) leads to the accelerated expansion which inflation requires.
The Standard Model of particle physics, however, does not contain a scalar field whose
dynamics leads to slow-rolling. In single field models with a renormalizable potential,
field values larger than my, (the four-dimensional Planck mass) are required in order
to obtain slow-rolling as a local attractor in the phase space of homogeneous solutions

to the scalar field equations of motion [96].

Superstring theory and M-theory, on the other hand, contain a lot of degrees of
freedom which at the level of the four space-time dimensional effective field theory are
described by scalar fields. Supersymmetry ensures that some of these fields (the so-
called “moduli fields” are sufficiently weakly coupled to provide potential candidates
to be an inflaton.

In the context of brane world cosmology [97, 98], an appealing possibility is that
the separation between a brane and an antibrane [25, 26] can serve as the inflaton.
A problem with the proposed constructions, which were all in the context of a static
bulk, was that the bulk size was generically too small to allow for the large values
of the inflaton field required to generate inflation. This problem was addressed in
[99, 100]. Another possibility is to have topological brane inflation [101], but this

construction also requires special parameters in order to obtain a wide enough brane.

The constructions mentioned in the previous paragraph were all done in the con-
text of phenomenological field theoretical models inspired by string theory. After

the discovery that flux constructions can lead to a stabilization mechanism for most

45



moduli fields of string theory [29, 30], a lot of attention (beginning with [31, 32]) was
focused on how to obtain inflationary models in the context of flux compactifications
(see [33] for reviews and comprehensive lists of references). These constructions are,
once again, in the context of static bulk configurations, and have to assume very
special configurations (special configurations of branes and special flux choices).

In this chapter, we present a new model of brane inflation. In contrast to previous
constructions, the dynamics of the bulk dimensions is essential to our model. Also, in
contrast to previous constructions, we start with initial conditions which we consider
to be very natural, namely a hot brane gas in the context of an initial universe in which
all spatial dimensions are democratically small (of the string scale), similar to what is
assumed in “string gas cosmology” [77] and its brane generalizations [78, 83, 84, 85]).
The hot brane gas leads to an initial phase of isotropic bulk expansion (Phase 1 of
our cosmology). During this phase, the bulk energy density decreases.

The isotropy of space is explicitly broken by our assumption that the extra spatial
dimensions are orbifolded. This leads to the existence of orbifold fixed planes. We
assume the existence of a weak attractive potential between the orbifold fixed planes
! Eventually, the associated potential energy will begin to dominate the dynamics

and will lead to a contraction of the dimensions perpendicular to the orbifold fixed

planes (Phase 2). We will consider a potential of the form

Vir) = —urin, (3.1)
where r is the separation of the orbifolds, and n is an exponent which we will fix
later. Such a potential could emerge from charges on branes pinned to the orbifold
fixed planes. We will show that such a potential can lead to slow-roll inflation.
The inflationary slow-roll parameters are set by the coefficient u = A*t4=" (where
A has dimensions of energy) which characterizes the strength of the potential. The
requirement of a sufficient number of e-foldings to solve the cosmological problems of

standard cosmology [18] sets an upper bound on A.

'Note that in terms of having inflation driven by the potential between orbifold fixed planes, our

setup is similar to that of [100].
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Once r decreases to the string scale, a repulsive potential created by stringy effects
will take over. The competition of the repulsive short range force and the attractive
long range force, together with the continued expansion of space parallel to the orb-
ifold fixed planes, will lead to a stabilization of r. This stabilization scenario is an
application of the mechanism of radion stabilization which has recently been studied
extensively in the context of string gas cosmology [38, 47, 37] (see [90] for a short
review). Either during Phase 2, or once the separation of the orbifold fixed planes
has decreased to the string scale, the bulk branes annihilate and decay into radiation.
This leads to a smooth transition into the radiation phase of standard cosmology.

Note that a very similar setup was used to construct a non-inflationary solution to
the entropy and horizon problems of standard cosmology. In Chapter 2, we assumed
that the inter-brane potential was confining, a potential of the type that could be
generated by non-perturbative effects. Here, we take the potential (3.1) which could

come from string exchange between branes [102].

3.2 The Model

Our starting point is a topology of space in which all but three spatial dimensions are
orbifolded, and the three dimensions corresponding to our presently observed space

are toroidal. Specifically, the space-time manifold is
M =RxT*xTZ,, (3.2)

where T° stands for the three-dimensional torus, and d is the number of extra spatial
dimensions, which we will take to be either d = 6 in the case of models coming from
superstring theory, or d = 7 in the case of models motivated by M-theory. We will
assume that there is a weak force between the orbifold fixed planes given by the

potential (3.1) 2.

2Tt may be necessary to have branes pinned to the orbifold fixed planes in order to induce such
a potential. Our approach, at this stage, is purely phenomenological, and we simply postulate the

existence of a potential with the required properties
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As our initial conditions, we take the bulk to be filled with a gas of p-branes, as
in Chapter 2. In the context of Type IIB superstring theory we will have D-branes
with p = 3, in the case of heterotic string theory or taking the starting point to be
M-theory, we have Neveu-Schwarz 5-branes (p = 5).

Assuming that the universe starts out small and hot, it is reasonable to assume
that the energy density in the brane gas will initially be many orders of magnitude
larger than the potential energy density generated by the force between the orbifold
fixed planes. Thus, initially our universe will be expanding isotropically. As shown
in Chapter 2, this expansion is non-inflationary. During this phase (Phase 1), the
bulk energy density will decrease. Hence, eventually the inter-orbifold potential will
begin to dominate. At this point, the cosmological evolution will cease to be isotropic:
the directions parallel to the orbifold fixed planes will continue to expand while the
perpendicular dimensions begin to contract: this marks the beginning of Phase 2. In
the following we will show that for a wide class of potentials, the expansion of our
dimensions will be inflationary.

The metric in the non-isotropic phase (and in the absence of spatial curvature) is
given by

ds* = dt* — a(t)*dx* — b(t)*dy?, (3.3)

where x denote the three coordinates parallel to the boundary planes and y denote
the coordinates of the perpendicular directions. Hence, the radius r of the dimensions
perpendicular to the orbifold fixed planes is given by r(t) = [sb(t).

We will analyse the evolution during Phase 2 using a four-dimensional effective
field theory, where we replace the radion b(t) by a scalar field (). In order that ¢ be
canonically normalized when starting from the higher dimensional action of General

Relativity, ¢ and b must be related via (see e.g. [28], Appendix A for a review)

d(d + 2)

Y = Tmpl log(b) . (3.4)

If the bulk size starts out at the string scale, then b(¢,) = 1, where t; is the initial
time. With these normalizations, ¢ = 0 corresponds to string separation between the

branes. The dimensional reduction of the higher dimensional gravitational action to
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the four space-time dimensional Einstein frame action yields the following effective
potential for ¢ [28]

Vers(p) = L50(9) ™"V (r(9)) - (3.5)
Note that the dilaton is assumed to be fixed, and the dilaton-dependence of the
potential is neglected. From the potential (3.1) and inserting the relation (3.4) we

obtain

V2(d+n) ¢

Vaslp) = —AHHnidne” Viten

d“P

e N T (3.6)

where we have defined a constant & = v/2(d +n)/+/d(d + 2).
To ensure vanishing of the four-dimensional cosmological constant today, we must
add a positive constant V{ to the effective potential (3.6). If the stabilization radius

of the extra dimensions is the string scale 4, then Vj is given by
Vo = Atrdnpd=n (3.7)

From the form of the potential, it should be expected that a period of slow-roll
inflation is possible as long as the initial value of ¢ at the beginning of Phase 2 is larger
than my,. The special feature of our scenario (and the major advantage compared
to previous versions of brane inflation), is that such large values of ¢ dynamically
emerge and do not have to be inserted as ad hoc initial conditions.

In our scenario, inflation has a graceful exit. Once the orbifold fixed planes reach a
microscopic separation, Kaluza-Klein momentum modes of strings (e.g. the momenta
of the massless states produced at enhanced symmetry points) produce a repulsive
potential which scales as b=2 [40, 39] and hence on short distances overwhelms the
large-distance attractive potential (provided n < 2). The interplay between this
repulsive potential which dominates at small separations and the attractive potential
which dominates at large distances, coupled to the expansion of the three dimensions
parallel to the orbifold fixed planes, will lead to the stabilization of the radion modes
at a specific radius (presumably related to the string scale). In the context of heterotic

string theory, we could use the string states which are massless at the self-dual radius
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to obtain stabilization of the radion modes at the self-dual radius [38, 47] (see also
[37]). These modes would also ensure dynamical shape moduli stabilization [89]. The
branes decay into radiation either during or at the end of Phase 2. This brane decay
is the main source of reheating of our three dimensional space. We denote the time of
radion stabilization and reheating by ¢z. After reheating, our three spatial dimensions

emerge in the radiation phase of standard cosmology.

3.3 The Phase of Bulk Expansion

The phase of isotropic bulk expansion (a(t) = b(t)) proceeds as discussed in Chapter 2.

The equation of motion for a(t) is

Cevaly =

r e (38)

where p is the energy density and P denotes the pressure. Making use of the equation

of state P = wp, and inserting the Einstein constraint equation
(3+d)*—3—d)H* = 167Gp, (3.9)

where H = a/a, we obtain power law expansion

2

t) ~t* with a = . 3.10
a(t) with « EEIET (3.10)
In the case of bulk energy dominated by the tension of p-branes, we have
p
= ——. 3.11
YT T3 (3:11)

Thus, in the example motivated by perturbative Type IIB superstring theory, (d = 6
and p = 3) we obtain a = 1/3. Starting with heterotic string theory (d = 6 and
p =5) we obtain o = 1/2, and for M-theory (d = 7 and p = 5) we get o = 2/5. Thus,

the phase of bulk expansion is non-inflationary.
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3.4 The Period of Inflation

The period of bulk expansion ends when the bulk potential energy becomes equal to

the bulk brane energy density. The bulk energy density in Phase 1 scales as
po(t) ~ a(t)= 7 (3.12)

Assuming that the initial bulk energy density is given by the string scale, i.e.
po(ts) ~ 1771 (3.13)

where t;, denotes the initial time, then the transition between Phase 1 and Phase 2

takes place at a time ¢; given by
b(ti)—(d—i—i’)—p—n) _ (Als)d+4fn . (314)

The value of the radion ¢ at this time is given by

d(d+2)

o(t;) = Tmpllog(b(ti)) ) (3.15)

Since ¢ is canonically normalized, its equation of motion is given by (see the form of
the effective potential of (3.6))

«

¢+ 3Hp = —AHHddn _—_pmae/ma (3.16)
mpi
The slow-roll conditions are satisfied provided:
g0>>@10g{1+@2}. (3.17)
a

Thus, to get N efolding of inflation, the initial value of ¢ should exceed the bound

o(t) > % log {&Q(N 1)+ 1} (3.18)

leading to the condition
+3—p—n

__d¥3—p—m _
(d+n)(d+4—n)

LA < [dZ(N +1)+ 1} (3.19)

which allows A of order of the string scale.
We conclude that, provided the bound (3.19) on the energy scale A is satisfied,
Phase 2 will provide a sufficient length of inflation of our three spatial dimensions,

inflation driven by the slow rolling of the modulus field.
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3.5 Discussion and Conclusions

In this paper we have proposed a new way of obtaining inflation in the context
of theories with extra dimensions and branes. We assume that our three spatial
dimensions are singled out by the orbifold construction of (3.2), and that there is
a weak potential between branes pinned to the orbifold fixed planes. We assume
attractive potentials such as could emerge if opposite charges were localized on the
two branes.

In our scenario, the universe begins small and hot, filled with an isotropic gas of
branes. This brane gas drives a period of isotropic bulk inflation which continues
until the potential between the branes localized on the orbifold fixed planes becomes
dominant. We have shown that the potential of the radion supports a period of
slow-roll inflation. The new feature of our model compared to other models of brane
inflation is that the large values of the radion required to obtain sufficient inflation
are dynamically generated during the phase of bulk expansion.

Inflation ends when the radion shrinks to string-scale values, the bulk branes
annihilate into radiation, and the radion becomes stabilized by string gas effects.

An interesting lesson obtained by comparing our present results with those of
the preceding Chapter is that the details of the potential between the orbifold fixed
planes is very important in determining the evolution of our three spatial dimensions.
For a sufficiently confining potential, our three spatial dimensions never undergo a
period of accelerated expansion - but the period of bulk expansion still enables us
to solve the horizon and entropy problems because the energy density of the brane
gas projected onto the orbifold fixed planes does not decrease. The condition on the
power n appearing in the potential (3.1) in order to obtain inflation is n < d + 3 — p.
This limit mirrors the requirement that orbifold fixed plane potential is diluted slower

than energy density of p-branes in the bulk.
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Chapter 4

Predictions of Dynamically

Emerging Brane Inflation Models

We confront the inflationary proposal of Chapter3d with WMAP3+SDSS, finding a
scalar spectral index of ny = 0.965970003 in excellent agreement with observations.
The proposal incorporates a preceding phase of isotropic, non accelerated expansion
in all dimensions, providing suitable initial conditions for inflation. Additional obser-
vational constraints on the parameters of the model provide an estimate of the string
scale.

A graceful exit to inflation and stabilization of extra dimensions is achieved via
a string gas. The resulting pre-heating phase shows some novel features due to a
redshifting potential, comparable to effects due to the expansion of the universe itself.

However, the model at hand suffers from either a potential over-production of relics

after inflation or insufficient stabilization at late times.

4.1 Introduction

Inflation provides a natural explanation for major problems of standard cosmology
such as the homogeneity, horizon and flatness problems [18]. An almost scale-invariant
spectrum of adiabatic cosmological fluctuations was predicted [19, 20] more than a

decade before the cosmic microwave background anisotropies were analyzed [13, 12,
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11, 10]. Encouraged by the great success of the inflationary paradigm, one is urged
to find a successful realization of inflation within more fundamental theories, such as

string theory.

The heuristic approach of obtaining inflation consists of introducing one or more
scalar fields (inflatons), which evolve slowly due to some appropriately tuned poten-
tial. Simple single field models require the inflaton to start out at a value larger than
the Planck mass. However, at these values radiative corrections to the inflaton mass
threaten to spoil slow roll dynamics. Therefore, unless some underlying symmetry
protects the inflaton mass, it is hard to implement an inflationary scenario within
gauge theories. Moreover, in the framework of four dimensional inflationary models
the physical interpretation of the inflaton is unclear. Generally, it is taken to be a
singlet of the Standard Model and typically of all of the visible sector too. (See [103]

for a recently proposed exception.)

The advent of extra dimensions [97, 98] opened up a venue for new inflationary
scenarios where the inflaton has a physical meaning; for example, in brane-antibrane
inflationary models the inter-brane separation serves as the inflaton [25, 26]. However,
to provide a sufficient amount of inflation in brane-antibrane models, one requires
fine tuning of initial conditions [99, 100], e.g. large inter brane separation, special

configurations or very weak couplings.

In this chapter, we would like to continue discussions of the proposal of emerging
brane inflation suggested in Chapter 3. The proposal makes use of extra dimensions, a
gas of p-branes in the bulk to drive an initial isotropic but non accelerated expansion
of the universe, as well as orbifold fixed planes responsible for contraction of the
extra dimensions and inflation of our three dimensions. The presence of a string gas
at the end of inflation provides a graceful exit, pre-heating and stabilization of extra
dimensions. The model at hand does not need any fine tuning of initial conditions

and will turn out to be in good agreement with observations.

In this scenario the multidimensional universe starts out small and hot, with our
three dimensions compactified on a torus and the extra dimensions on an orbifold

of the same size. The pre-inflationary expansion is governed by topological defects
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(p-branes) in the bulk and responsible for a large inter brane separation. As the
universe expands isotropically due to the gas of p-branes, the energy density stored in
the gas gets diluted until additional weak forces come into play, changing the overall
dynamics. For example, branes pinned to orbifold fixed planes, which exhibit an
attractive force, may eventually cause a contraction of the extra dimensions while our
dimensions inflate. From the four dimensional point of view, the inflaton is identified
with the radion and consequently, the pre-inflationary bulk expansion explains the
large initial value of the inflaton. Inflation comes to an end when the extra dimensions
shrink down to a small scale where moduli trapping [37, 38, 39, 40] and pre-heating
[41, 42, 43, 44, 45, 46] can occur.

Our main goal in this chapter is to examine the viability of the emerging brane

inflation model outlined above and to make contact with observations.

The outline of this chapter is as follows: In section 4.2 we review the details of the
model, followed by a computation (section 4.3) within the slow roll approximation
of the spectral index ng, the running of the index dny/(d Ink), the scalar to tensor
ratio r and the tensor index ny. We confront our predictions with the observation of
the cosmic microwave background radiation measured by the Wilkinson Microwave
Anisotropy Probe (WMAP3) [104, 105, 106, 107] and the Sloan Digital Sky Survey
(SDSS) [108], resulting in good agreement. In order to get sufficient initial expansion
one requires the inter brane potential to remain subdominant for a long time com-
pared to the energy density stored in the bulk p-branes. This requirement imposes
constraints on the scale of interactions between branes pinned to the orbifold fixed
points. This, together with constraints from observational data, will be sufficient to
provide an estimate of the string scale. In section 4.4, we study the viability of pre-
heating after inflation and stabilization at late times. While pre-heating can occur in
the standard manner, albeit some novel effects are present, we do find potential prob-
lems associated with either late time stabilization or relics: if the branes pinned to the
orbifold fixed planes annihilate after inflation they could produce an over-abundance
of relics such as cosmic strings, and if they do not annihilate they will destabilize the

extra dimensions at late times. We conclude with a comment on open issues within
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the framework of emerging brane inflation.

4.2 The Model

Following Chapter 3, we assume a spacetime
M=RxT*xT%Z,), (4.1)

so that our three dimensions have the topology of a torus 7, and the d extra di-
mensions are compactified on the orbifold T¢/Z,. Note, that this specific choice of
the manifold is not crucial for the model — many other manifolds distinguishing our
three dimensions could be chosen instead. Next, we assume that pairs of branes are
pinned to the different orbifold fixed planes a distance r apart. Furthermore, we also
assume inter brane interactions such that a weak attractive force is generated via
some potential V. It should be noted that we take a phenomenological approach and
postulate the existence of a potential with the desired properties. A discussion of
possible origins of inter-brane potentials can be found in [25].

The special feature of the underlying scenario is the pre-inflationary dynamics
which explains the large size of the extra dimensions just before inflation. Initially,
the universe starts out small and hot with all spatial dimensions of the same size. The
bulk is filled with a gas of p-branes. In this phase, the energy density in the brane gas
is assumed to be many orders of magnitude larger than the potential energy density,
which provides the force between the orbifold fixed planes. Thus, the universe expands
isotropically but not inflationary, as shown in Chapter 2. During the expansion phase
the bulk energy density of the gas decreases and eventually the potential V' begins to
dominate, causing inflation of the directions parallel to the orbifold fixed planes, and
contraction of the extra dimensions. It should be noted that whether or not inflation
occurs is sensitive to the form of the inter-brane potential V.

Following Chapter 3, we consider a potential of the form

Vir) = s (4.2)
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where r is the inter brane separation and n > 0 is a free parameter, which could
in principle be computed from the underlying fundamental theory. As we shall see
below, this form of the potential results in inflation.

We shall first compute how dynamics can be described in a four dimensional
effective theory. Let G, be the metric for the full space-time with coordinates X®.
In the absence of spatial curvature, the metric of a maximally symmetric space which

distinguishes 'our’ three dimensions is given by
ds® = GupdXdX® = dt” — a(t')?dx® — b(t')*dy?, (4.3)

where x denotes the three coordinates parallel to the orbifold fixed planes and y
denotes the coordinates of the d perpendicular directions.
Our goal is to find a four-dimensional effective potential which governs the infla-

tionary phase. We start out with the higher dimensional action

1 R
S = /dd+4X\/ —det G {7Rd+4 + ﬁM} , (4.4)

167G g4y
where Rg4.4 is the d 4+ 4 dimensional Ricci scalar and Ly is the matter Lagrangian
density with the metric determinant factored out. Note that the dilaton is assumed
to be fixed already, e.g. via the proposal of [109]. In the effective four-dimensional
action, the radion b(t) is replaced by a canonically normalized scalar field ¢(¢) which

is related to b(t) through [28, 110]

© = B my In(b), (4.5)
where
m = 8;04 (4.6)
is the reduced four dimensional Planck mass and we defined
ph= @ : (4.7)

After performing a dimensional reduction and a conformal transformation to arrive

at the Einstein frame [28, 110] we are left with
1 1
S = /d4:1:a3 {Empllﬁ — 5(6@)2 (4.8)
+ Veidgo/mplﬁﬁM} ,
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where
V= / dty =19 (4.9)
is the volume of the extra dimensions, and
ds% = bi(dt? — a’dx?)
= dt* — a(t)?dx? (4.10)
is the effective four dimension metric. Further, assuming that the initial separation

between the orbifold fixed planes is of string length /5 one can compute the distance

between the orbifold fixed planes to
r(t") = 1b(t) . (4.11)
Note that b = 1 corresponds to the string scale. Setting Ly=V yields

Vilp) = gilib(o) ™V (r())
= —pgllre (4.12)
where we used (4.2), restored the string coupling dependence and defined

a:=(n+d)p. (4.13)

To account for the brane tension/zero cosmological constant today we add a positive

constant Vj to the effective potential (4.12) and arrive at the effective four dimensional

potential
—a—f
Verp(p) = Vo— pgild e =
= Vp(1 — e %/me¥) (4.14)
where we defined
pgald™ L15
(:= T. (4.15)

This potential yields inflation for large enough values of the radion/inflaton ¢.
Similar potentials have been considered before, see e.g. [35] in the context of brane
inflation or [111] in the context of supergravity. These proposals differ from ours
in the form of the graceful exit, the details of pre-heating as well as the the pre-
inflationary dynamics of our model, which pull ¢ far from its minimum such as to

provide suitable initial conditions for inflation without fine tuning.
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4.3 Predictions

Inflation gives rise to a viable mechanism of structure formation: quantum vacuum
fluctuations, present during inflation on microscopic scales, exit the Hubble radius
and are subsequently squeezed, resulting in classical perturbations at late times, see
e.g. [112]. Moreover, current observations are precise enough to distinguish between
different inflationary models [104, 105, 106, 107, 108, 21, 113].

In the following, we derive observable quantities within the slow roll approximation
and make contact with observations. Thereafter, we show how one can estimate the

string scale in the model at hand.

4.3.1 Cosmological Parameters
The equation of motion for a scalar field in an expanding universe is given by
$+3Hp+ V=0, (4.16)

where H = a/a is the Hubble parameter, V; := V sy from (4.14) is the inflaton
potential and V] := dV;/d¢. If the scalar field ¢ governs the evolution of the Universe,

the Friedmann Robertson Walker equations become

i = 3nlzgl E"buvf("")} ) (4.17)
(%) - 3731;1 Vile) —¢7] - (4.18)

If the potential energy of the inflaton dominates over the kinetic energy, accelerated
expansion of the universe results. In other words, if the potential is flat enough to
allow for slow roll of the inflaton field, inflation occurs. In this case (4.16) and (4.17)

become

3Hy = V|, (4.19)
Vi

H?> = —, (4.20)
3m2,

where we assumed ¢? < V; and ¢ < 3Hp.
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This approximation is valid if both the slope and the curvature of the potential

are small, that is if the slow roll parameters
2 I\ 2
Myl VI
= — (= 4.21
= 2 (H) (421
V//
2 V1
satisfy ¢ < 1 and n < 1. Let ¢; denote the value of the inflaton field N e-folds before

the end of inflation. This value can be determined from

tf

N = / H(t)dt
t;
1 iy

2 177
= Vv

d, (4.23)

where @ is the value of the inflaton field at which the slow roll approximation breaks

down.

Within the slow roll regime one can then compute the scalar spectral index, the

scalar to tensor ratio and the tensor spectral index to [21]

ns ~ 1—06e+2n, (4.24)
r ~ 16e, (4.25)
np ~ —r/8, (4.26)

where € and 7 have to be evaluated at ;. For the potential (4.14) the slow roll

parameters become

a? 1
e = ?(gfle&/mms& e (4.27)
1
2
n = — e 1 (4.28)

Since |n| > € in our case, inflation ends once |n| = O(1), that is once ¢ approaches

o = % In (6% + 1)¢). (4.29)

By using V; from (4.14) in (4.23) we can compute the required initial value of the

inflaton by solving

N e®/mpLpi _ p&/mpi o5 N (SOf _ SDi)

4.30
a? C a mpi ( )

)
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for ¢;, which can be done analytically. Neglecting O(1) terms in (4.29) gives ¢ ~

“2LIn (&*¢) which in turn leads to

N ~ % (e/mme _ G2 | (4.31)

after neglecting the second term in (4.30). This expression can be solved to

0 ~ 20 (G2CN + &2C). (4.32)

Qa
The slow roll parameters (4.21) and (4.22) evaluated at ¢; can now be approximated

by

2
l

m ~ O ((Nld)2> , (4.33)

1 1
~ —— 0=, 4.34
1 N+1 O(N) (4.34)

Henceforth, the scalar spectral index becomes

2
s ~ 11— —- 4.35
" N+1 (4.35)
2
~ 11— — 4.36
N ? ( )
whereas the scalar to tensor ratio and the tensor spectral index read
T 1
np = ——~ —————— 4.37
’ 8 & (N+1)? (4.37)
1
In addition, the running of the scalar spectral index can be evaluated to
dng V] dng
= —My— 4.39
d In(k) Y A (4.39)
2
~ N (4.40)

which is negligible.
Now, we can evaluate (4.24)-(4.26) after specifying some parameters: first, since
our model is motivated by string theory and the dilaton is fixed, we have d = 6

extra dimensions. Second, as we shall see in section 4.4, stabilization of the extra
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dimensions after inflation at the string scale is possible. Lastly, we have to specify
the exponent 7 in (4.14), which in turn determines &. This last parameter will barely
influence the scalar spectral index but has some effect on the scalar to tensor ratio

and the tensor spectral index. If we take n =4 ! and N = 54 & 7 we get

ny = 0.965975:9049 (4.41)
ro= (6.1773) x107*, (4.42)
nr = (=7.6775) x107°, (4.43)

where we used the more cumbersome exact analytic expressions within the slow roll

2 can now be compared with observational data. To be

regime. These predictions
specific, the combined observational data of WMAP3 [104, 105, 106, 107] and SDSS
[108] was used by Kinney et.al. in [21]: the above predictions for ns and r lie in the
middle of the 1o region in the case of negligible running (see Fig. 1 in [21]).

Hence, the model of emerging brane inflation presented in Chapter 3 passes this

first observational test.

4.3.2 Estimate of the Fundamental String Length

In the proposed scenario, brane inflation emerges after the inflaton got pushed up its
potential in the preceding bulk expansion phase. The inflaton is related to the scale
factor of extra dimensions, b, through (4.5). Therefore, the requirement to obtain N
e-foldings of inflation (4.32) leads to a constraint on the minimal value of b at the
beginning of inflation,

b; > (G2N¢)P/e (4.44)

"'We have n = 4 in our specific setup, since n = d + 3 — p — 2 is expected from the form of
inter-brane attraction potential, p = 3 corresponds to a 3-brane on the orbifold fixed-planes, and
d = 6 is number of dimensions in some types of string theories.

2The limit p — —oo of [114] corresponds to an exponential potential like the one discussed in
this article; however, no estimate of » and ny, which depend on the exponent &, were given, and
the WMAP3 data set alone was used for comparison. This led Alabidi and Lyth to conclude that

an exponential potential would be allowed at the 20 level.
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On the other hand, the preceding expansion phase sets an upper limit on the scale
factor b [2]. The end of bulk expansion and the beginning of inflation is indicated by
V = p, where pj is the energy density of the brane gas. This yields the condition

pl;mb™™ = AT (4.45)

where we assumed that the energy density stored in p-branes at the beginning of the
bulk expansion phase is of the order of the string scale. Rearranging parameters leads

to

bi S (ulg+4fn)fl/(d+37p7n) ) (446)

The bound (4.46) relates the scale of the inter-brane potential A = p!/(@+4=") to the
scale factor of the extra dimensions. Therefore, the requirement of N e-folds set an

upper bound on A
(Als>d+4fn < (d2NC>7ﬁ/&(d+3fp7n) ) (4.47)

Next, we can use observational data to constrain the effective inflationary poten-
tial. To be specific, COBE data implies [22] for the scale of inflation

<g)1/4 = 0.027m, . (4.48)

Evaluating this expression N e-folds before the end of inflation leads to

0.027my, ~ Vo(v2aN)Y? (4.49)
ldfn 4.2 N 1/2

gg(\/ﬁdN)l/2 l74
C (&2NO(d+37pfn)/(d+n) s 0

(4.51)

where we used (4.47) in the last expression. Substituting ;2 with ggmzl, one eventu-
ally arrives at a constraint for the string coupling

C (&2N€)(d+3—p—n)/(d+n)

8> 0.027 4.52
For (¢,d,p,n, N) = (1,6,3,4,54) this expression reduces to
gs > 0.53. (4.53)

63



In conclusion, we found in the model at hand that inflation of about 60 e-folds
requires the string scale to be slightly below the Planck scale.

A word of caution might be in order here: we assumed the dilaton to be fixed
throughout bulk expansion and inflation; but if the dilaton is rolling during these
early stages, it will modify the above estimate. Hence, a better understanding of the

dilatons stabilization mechanism is of great interest.

4.4 Stabilization and Pre-heating

We saw in the previous sections how brane inflation can emerge in a higher dimen-
sional setup. The specific inflaton potential in the effective four dimensional descrip-

tion was given by (4.14)
Vi=Vy(1—e %), (4.54)

where we set m,, = 1 and fine tuned ¢ = 1. The inflaton is related to the radion via
(4.5) where 372 = d(d + 2)/2 was introduced. Furthermore, we assumed an already
stabilized dilaton, e.g. via the proposal of [109]. It should be noted that a free dilaton
could potentially invalidate the predictions of the model at hand.

In the following we would like to address three questions: How does inflation end,

how does the universe reheat and can the radion/inflaton be stabilized at late times?

4.4.1 Stabilization

Based on the idea of moduli stabilization at points of enhanced symmetry [37, 38, 39,
40, 47] it was advocated in [94, 28] that an inflationary phase driven by the radion
could be terminated by the production of nearly massless states if the radion comes

close to such a point ®. To be specific, if we work within heterotic string theory (d = 6)

3We focus on the overall volume modulus here — all other moduli (e.g. complex structure moduli
and Kahler moduli) are assumed to be stabilized already. Since it is not always possible to find
points of enhanced symmetry, one can not use the notion of quantum moduli trapping [28] for all of

them.
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such a point of enhanced symmetry could be the self dual radius corresponding to
¢ = 0. This was already anticipated by setting ( = 1 so that the potential V; in
(4.54) vanishes at ¢ = 0 (the self dual radius) *.

The mechanism for stabilizing moduli at points of enhanced symmetry was il-
lustrated in detail in [40, 39], and can be implemented in string gas cosmology. In
the specific toy model of [40] it was shown that new massless states, gauge vectors
and scalars, appear at the self dual radius. These states have to be included in the
effective four dimensional action, leading to trapping of the volume modulus: as the
radius shrinks down to the string size, the evolution becomes non-adiabatic and light
states are produced via parametric resonance. Since the coupling of moduli to vector
states is a gauge coupling, one expects parametric resonance to be efficient. The
produced vectors stop to be massless as the radius shrinks further, generating an
effective potential for the volume modulus. As a consequence, the size of extra di-
mensions ceases to shrink. The mechanism of moduli trapping at enhanced symmetry
points (ESP) was discussed more generally in [39]: the trapping force is proportional
to the number of states that becomes massless at the ESP, since enlarging the amount
of new light degrees of freedom effectively causes an enhanced coupling of the moduli.
As a consequence of the larger coupling, the effectiveness of parametric resonance
and the trapping effect are enhanced. Therefore, points with greater symmetry are
dynamically preferred.

We refer the interested reader to [48, 49| for a basic introduction and to [28] for a
technical review of string gas cosmology, and jump into the discussion right after the
string gas got produced.

As mentioned above, the string gas leads to an effective potential from a four

dimensional point of view which is given by [115, 28]

N 2
Vg = _e_gﬁ“’\/% + sinh?(By), (4.55)

a3
where ¢ parameterizes the momentum of the string gas along the three large dimen-

sions and N is proportional to the number density of strings. We shall treat both

4By choosing ¢ = 1 we effectively set the cosmological constant to zero.
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Figure 4.1: The inter-brane potential Vg of (4.54), string gas potential V; of (4.55)
and total potential V = V; 4+ Vs with d = 6, n = 4. The height of V' at the minimum
@ = o = (1is given by the momentum of the string gas along the three large dimensions
q. We chose [ := g/a = 1070 and N/(Voa®) = 4@/ for instructive reasons only, such
that V7, Vg and V' are clearly discernable. Note that Vs is only viable around ¢ = o.
In order for a minimum to exist and moduli trapping to occur, conditions (4.58) and

(4.62) need to be satisfied.

parameters as free ones °. Note the novel feature that the potential redshifts like

matter, unlike potentials usually encountered for scalar fields.

This redshifting leads to a problem if we insist that the present day radion be
stabilized by Vg, which can be seen as follows: let us for simplicity set ¢ = 0 for the

time being and ask whether the total potential

V=V + Vs, (4.56)

5Both N and q could in principle be computed via a study of the production mechanism of the
sting gas. This process shares similarities to pre-heating and in fact overlaps with the early stages

of pre-heating. Consequently, pre-heating might be influenced (see section 4.4.2).
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which is plotted in Fig. 4.1, exhibits a minimum. Expanding V' around ¢ = 0 yields

N
V& Voap + — [0 . (4.57)

In order to stabilize the radion at ¢ = 0 we need

N
a3V

>%:om, (4.58)

so that the stabilizing potential Vg is able to prevent the collapse of the internal
dimensions due to the inter brane potential V;. Since the universe expanded roughly

another 60 e-foldings after inflation until today, we would need

N 180
4.59
A >e ( )

if we want a stable radion at late times, which is clearly an unreasonable condition.
This problem is a simple reflection of the fact that the inter brane potential does not
redshift, whereas the string gas redshifts like matter. Henceforth, it is not surprising
that the attractive force between the branes wins in the long run. Notice that the
same reason makes this type of stabilization incompatible with the presence of a
cosmological constant [116].

If one insists on achieving stabilization via a string gas, there must be a mechanism
present that cancels out V7; luckily, such a mechanism seems possible in our scenario:
once the branes associated with the orbifold fixed planes approach each other within
the string scale they could annihilate via tachyon decay [117, 118, 119, 120, 121, 122,
123]. It should be noted that the universe itself does not go through a singularity:
the radion gets stabilized at the self dual radius so that there is no big crunch.

What is more, one can imagine that this decay contributes to pre-heating, similar

6 or in more recent real-

to the mechanism employed in the cyclic/ekpyrotic scenario
izations of brane inflation as in the KKLMMT proposal [31, 124, 125]. However, this

mechanism comes with a price: the potential over-production of relics like cosmic

6Note that the cyclic scenario includes a singular collision of branes pinned to orbifold fixed
planes, which is not what we are dealing with here: the branes in the scenario at hand come close

to each other (within string length), but do not actually collide.
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strings. If too many of these un-observed relics are produced, the model at hand
would be ruled out [126] ”. Hence, we shall assume that a mechanism to cancel the
inter brane potential exists without producing too many relics.

Since the redshifting of the string gas potential can potentially spoil stabilization
at late times, it is a concern whether this redshifting will also spoil standard pre-
heating methods or leave them unaffected. Thus, we will address this question in the

next subsection.

4.4.2 Pre-heating

Assuming that the inter brane potential cancels via some unspecified mechanism near
the self dual radius, the complete potential for the radion is provided by the string

gas alone, that is

2
V= _egﬁv\/ % + sinh2(By) . (4.60)

We would now like to address the question whether the standard theory of pre-heating
after inflation can be applied. The novel feature in our model is the dependence of
the potential on the scale factor a. If one could neglect this feature, pre-heating
would progress as usual, see e.g. [41, 42, 43, 44, 45, 46] for a sample of the extensive
literature on the subject.

As a first estimate we can compare the rate at which the potential changes with
the Hubble factor. As we shall see below in (4.66), both quantities are of the same
order. Hence we expect any effects due to the redshifting of the potential to be of
the same magnitude as those directly caused by the expansion of the universe. As a
consequence, whenever the Hubble expansion needs to be included, e.g. in the case
of stochastic pre-heating [44] (broad parametric resonance in an expanding universe),

one should also include the time dependence of the potential.

"One way to avoid the defect overabundance problem is to enhance the symmetry which is broken
during the annihilation; this can be achieved by having several overlapping branes instead of just

one [131, 132].
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In order to examine more carefully whether the redshifting of an inflaton potential
can be neglected under the assumption that the expansion of the universe itself is
unimportant, we will focus on a specific toy model for pre-heating [44, 45]: narrow
parametric resonance [41, 42]. It should be noted that narrow or broad parametric
resonances will not be viable reheating mechanisms if the inflaton is identified with
the radion (as in our case), since the couplings between the radion and other matter-
fields are heavily suppressed ®. Nevertheless, we will focus on narrow resonance as
an instructive example, since the mechanism is quite simple and very sensitive to
changes in the shape of V: any change in the potential during the time-scale of pre-
heating will cause the center of the resonance band to shift. If this shift is larger
than the width of the resonance band, modes would not stay within the band long
enough to get reasonably amplified. But if the shift is small compared to the width,
narrow resonance will commence in the usual way. As we shall see below, the latter
is the case so that there are no new effects and/or constraints due to the redshifting
potential.

To study pre-heating, let us first expand the potential around the minimum of the
potential at ¢,,;, =: 0 and thereafter couple the radion to a scalar matter field y. At
this first stage we neglect the expansion of the universe so that n := N/a® ~ const
and [? := ¢*/a® ~ const. The minimum of (4.60) can be found at

o(l) = % In (—3l2 + g - V36 2_ ks 1) , (4.61)

Where we used d = 6. Note that a minimum only exists for
0<l<lI (4.62)

with [ :== (v/12 — v/6)/6, leading to 0 < o < In(2)/(43). Expanding the potential
around o leads to

2

Vo~ Vo+m7¢2, (4.63)

8Nevertheless, there are possibilities to enhance suppressed reheating channels by considering

large vacuum expectation values of scalar matter fields after inflation, see e.g. [127].
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where we used a shifted inflaton ¢ := ¢ — ¢ and

Vo = ne=3%° \/l2 + sinh?(B0) , (4.64)
as well as

n 63
m = 3 i 5Zﬁl3/2, (4.65)

where we expanded m around | = 0. Note that m(l = 1) = 0 exactly, so that any value
of m can be achieved by appropriately tuning [. We will not need the cumbersome
exact expression for m in the following, hence we shall omit it.
At this point we should step back for a second and estimate the rate of change of
the potential. Using [ o< 1/a and ¢ o< 1/a® we arrive at
m

Z~-H, (4.66)

m

where we only kept the leading order term in (4.65). Hence, we naively expect that
the expansion of the universe and the redshifting of the potential lead to comparable
effects. This estimate can be made more concrete at the level of the toy model of
narrow parametric resonance: if we couple the radion to a scalar matter field via
Vit = —g?¢?x?, the system will be in the regime of narrow resonance if ¢® < o0 < m
holds, where ®(t) is the amplitude of the oscillating inflaton [44]. This condition can
be satisfied if we are free to tune g and m appropriately. Following the analysis of [44]
closely, we find the first resonance band of the resulting Mathieu-equation for y; at
the wave-number k ~ m/2 with a width of Ak ~ gm/2 where ¢ := 4¢°c®/m? < 1.

Since parametric resonance usually commences during the first few oscillations of
¢ around its minimum, the characteristic time-scale is given by the period of these
oscillations T' = 27 /m.

Turning on the expansion of the universe yields the requirement
H < @m, (4.67)

in order for narrow resonance to take place ?, otherwise modes would leave the res-

onance band too fast [44]. Given that inequality, we can give an upper bound on

9Notice that g is expected to be small in our model. As a consequence, condition (4.67) is not

satisfied and pre-heating will not progress in the regime of narrow parametric resonance.

70



the change of the scale factor a within the period T because the scale factor makes
a transition from an inflating one to a solution for a radiation dominated universe
during pre-heating, we can use the inflationary solution as an upper bound for the
change in a, that is

a(to + T)
a(to)

where we used H =~ eG’*m with e < 1. This results in a change of the potential’s

~ 2T (4.68)

shape via a change in the inflaton mass

mto+T) ~ B % (4.69)
~ m(ty)e ¥ (4.70)
~ m(ty)(1 — 27§, (4.71)

where we only kept the leading order term in [ from (4.65), plugged in [ « 1/a
as well as n o< 1/a® and expanded around ¢ = 0. Since the position of the first
resonance band is located at k = m/2, we see that the shift of its position is given
by Dy = emg®m(ty). This shift has to be compared with the width of the band
Ak =~ qgm(ty)/2. We immediately see that Dy < Ak and henceforth, we can safely

ignore the slight change of the radion potential.

4.4.3 Discussion

We saw in the previous section that the time dependence of the inflaton potential
does not interfere much with the process of pre-heating. We estimated the effect on
the toy model of narrow parametric resonance, because this pre-heating mechanism
is most sensitive to changes in the mass of the inflaton. We found that new effects
due to the redshifting potential are comparable to the ones already present due to
the expanding universe.

Hence, we expect no novel features during pre-heating if a string gas supplies
the stabilizing potential for the inflaton, and the standard theory of pre-heating can
be applied (we refer the reader to [41, 42, 43, 44, 45] and follow up papers for the

relevant literature). However, whenever the expansion of the universe itself is crucial,
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one should also consider the redshifting of the potential; for example, in the case of
stochastic resonance [44] the Hubble expansion causes a mode to scan many resonance
bands during a single oscillation of the inflaton. Naturally, including the redshifting
of the potential will add to this effect, since the resonance bands themselves shift,
just as in the case of narrow resonance we examined in the previous section.

There is another issue worth stressing again: since the inflaton is identified with
the radion in our setup, its couplings to matter fields are heavily suppressed. As a
consequence, we do not expect parametric resonance to be the leading pre-heating
channel (see however [127] for the possibility of enhanced pre-heating), but instead
tachyonic pre-heating (see e.g. [46, 128, 129] and references therein), which occurs in
case of a negative effective mass term for the matter field. This effect was used to
address the moduli problem in [4] and warrants further study [130].

Yet another possibility to reheat the universe could be provided by the annihilation
of the boundary branes via tachyon decay [117, 118, 119, 120, 121, 122, 123] once the
branes come close to each other. A potential hinderance could be an over-production
of relics such as cosmic strings. It seems possible to avoid this problem in certain
circumstances [131, 132], but we postpone a study of this interesting possibility to a
future publication, since it is beyond the scope of this article.

Last but not least, since the production of the stabilizing string gas will overlap
with the early stages of pre-heating, one should discuss both processes in a unified

treatment.

4.5 Conclusions

In this chapter, we examined observational consequences of the recently proposed
emerging brane inflation model. After reviewing the aforementioned model, observa-
tional parameters were computed within the slow roll regime, once and foremost the
scalar spectral index n, = 0.965915-904. This index is a generic prediction of emerg-
ing brane inflation, independent of model specific details and in excellent agreement

with recent constraints of WMAP3 and SDSS. Furthermore, based one the COBE
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normalization we were able derive a bound onto the fundamental string scale, (4.52).

Thereafter, we examined the consequences of a redshifting string gas potential,
which arises at the end of inflation. Even though the radion/inflaton can initially be
stabilized, the mechanism fails at late times as long as there is a contribution to the
effective potential that does not redshift, like a cosmological constant or a remaining
interbrane potential. Consequently, a mechanism to cancel out all such contributions
needs to be found in order for the model to work.

Related to this mechanism, we encountered another potential problem: since the
interaction of boundary branes is responsible for inflation, but branes have to be
absent at late times in order to keep extra dimensions stable, we concluded that they
had to annihilate after inflation. During this annihilation, which could in principle
be responsible for pre-heating, relics like cosmic strings are expected to be produced.
Mechanisms to avoid an overproduction of said relicts are conceivable, but warrant
further study.

Concerned that pre-heating after inflation might also get disrupted via the time
dependence of the potential, we focused on narrow parametric resonance as a toy
model for pre-heating to estimate the magnitude of new effects: we find that new
effects are comparable to those originating directly from the expansion of the uni-
verse. Henceforth, we concluded that the standard machinery of pre-heating can be
applied to the model at hand, but the time dependence of the potential needs to
be incorporated if expansion effects are crucial for pre-heating, as is the case in e.g.
stochastic resonance. Since the annihilation of boundary branes and the production
of the stabilizing string gas occurs during the early stages of pre-heating, one should
incorporate these effects in a detailed study of pre-heating.

To summarize, the proposal of emerging brane inflation is a viable realization of
inflation, if the potential problems associated with the annihilation of branes after

inflation can be overcome.
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Chapter 5

Nonperturbative Instability as a

Solution of the Cosmological

Moduli Problem

It is widely accepted that moduli in the mass range 10eV - 10*GeV which start to
oscillate with an amplitude of the order of the Planck scale either jeopardize suc-
cessful predictions of nucleosynthesis or overclose the Universe. It is shown that the
moduli problem can be relaxed by making use of parametric resonance. A new non-
perturbative decay channel for moduli oscillations is discussed. This channel becomes
effective when the oscillating field results in a net negative mass term for the decay
products. This scenario allows for the decay of the moduli much before nucleosynthe-

sis and, therefore, leads to a complete solution of the cosmological moduli problem.

5.1 Introduction

In many theories beyond the Standard Model of particle physics, in particular in
supergravity and string theories, there are many scalar and fermionic fields with
masses smaller or equal to the electroweak scale and gravitational strength couplings
to ordinary matter. Such fields are called moduli fields and behave as non-relativistic

matter at late time. Since they decay late because of their weak interactions, they lead
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to the so-called cosmological moduli problem [54, 55, 56, 57]. Below, independently
of their origin, fields having only Planck scale couplings and weak scale mass are
denoted collectively as moduli fields.

In the case of moduli in supersymmetric theories, the mass mgy of these fields ¢ is
generated during supersymmetry breaking. A wide variety of these scenarios predict
masses of the moduli in the dangerous range, m, ~ 10eV — 10*GeV. According to
our ideas of early Universe cosmology, we expect moduli to be produced in great
abundance in the early universe. In the context of Big Bang cosmology, both scalar
and fermionic moduli particles will be part of the initial thermal bath of particles
of the very early universe. Even assuming that the moduli particles are not part of
the initial thermal bath (for example in the context of inflationary cosmology) it is
hard to avoid the presence of excited moduli fields at late times. For example, in
the case of scalar moduli, since the moduli are massless before supersymmetry break-
ing, there is no reason that the moduli field values before supersymmetry breaking
coincide with the values which turn into the minima of the potential after super-
symmetry breaking [133]. The offset will lead to moduli fields which oscillate about
their potential minima. An offset of a scalar modulus can also be produced by quan-
tum fluctuations in the early phases of inflation, as follows from the computation
of the coincident point two point function of a low-mass scalar field during inflation
[134, 135]. The excessive production of moduli is predicted during the preheating
stage of inflationary cosmology in a wide variety of models [136]. A further source of
moduli particles is gravitational particle production between the end of inflation and
the time of nucleosynthesis [137, 138].

Due to their weak interactions, the decay of the moduli fields is slow. Widely used

estimates based on dimensional analysis for the perturbative decay rate I' give
~ —. (5.1)

The presence of excited moduli fields at late times is dangerous since the presence
of the extra moduli field energy during the time of nucleosynthesis could spoil the

success of the standard Big Bang nucleosynthesis scenario [139]. This danger is acute
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in particular for the heavier moduli fields. Both lighter moduli fields and heavier
fields which do not decay before the time of equal matter and radiation threaten to
overclose the Universe at that time (and thus also today if they do not decay between
the time of equal matter and radiation and the present time).

To be more specific, it is the fact that the interactions of moduli fields come from
non-renormalizable terms in the supersymmetry (SUSY) potential that leads to the

moduli problem. For example, the following term in the Kahler potential
1
I = 0010’0 (5:2)

results in a contribution to the square mass for ¢ of the form p/]\/[p2 [140]. By ¢ we
denote a canonically normalized modulus field (with bare mass my), by M, - the
Planck mass, by ¢; - a field which dominates the energy density of the universe, the
inflaton, and by p - the energy density contained in the inflaton. Since p = 3H 2]\/[102,

the effective mass m.;; becomes
m?;; = cH® +mj (5.3)

where ¢ is a constant. If ¢ > 1, then inflation drives the moduli to the minima of
their high temperature effective potential. However, typically the high temperature
minima are offset from the zero temperature minima of the moduli potentials by a
value which has Planck order of magnitude. If ¢ < 1 then H > m.ss, and then
quantum fluctuations during inflation will also excite the field ¢ to a value of the
order of the Planck mass. During reheating the energy density of the inflaton stops
dominating the Universe and the effective mass of ¢ relaxes to my. After reheating,
the Hubble constant decreases in the radiation dominated phase. Once H ~ my the
condition for slow rolling of ¢ (V”(¢) < H?) is no longer satisfied, and at that point
the field ¢ starts to oscillate around its low temperature minimum which we take to
be zero. The energy density of ¢ decreases like that of non-relativistic particles (i.e.
proportional to a(t) ™3, where a(t) is the cosmological scale factor), whereas the energy
density of the radiation dominated universe falls as a(t)~*. Thus, the modulus field ¢

may come to dominate the energy density of the universe, or at least contribute too
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much during the period of nucleosynthesis, unless the field decays early. The problem
is that the modulus fields are coupled only gravitationally to themselves and other

particles and thus have very small perturbative decay rates.

There has been some previous work to try to mitigate the cosmological moduli
problem. Entropy production at late times will dilute the moduli density. For ex-
ample, weak scale inflation [141] or thermal inflation [142] could sufficiently dilute
unwanted moduli (see e.g. [143] for a detailed study of the potential of thermal infla-
tion to solve the moduli problem for masses in the above-mentioned dangerous range
predicted in models with hidden sector and gauge-mediated supersymmetry break-
ing). For certain ranges of parameters of a gauge-mediated supersymmetry breaking
model, the oscillations of the modulus field itself might sufficiently dilute the string
moduli density [144]. The decay of an unstable domain wall network [145] is another
way to generate entropy and dilute the moduli density at late times. A common
danger of these approaches is that the baryon density might also be diluted to an
unacceptably low value. Another approach is to invoke effects which give the moduli
fields a contribution to the square mass of the order of H? which would allow them to
roll down their potential during inflation [146, 147] and prevent them from acquiring
a large expectation value during inflation (see also [148]). However, this solution does
not work if the low temperature minimum of the moduli potential does not coincide
[133] with its high-temperature ground state (new symmetries which could force the
two states to be the same were analyzed in [140]). A recent proposal to solve the
moduli problem is moduli trapping at enhanced symmetry points [39, 40]. In terms
of the use of parametric resonance instabilities, our work has similarities with that
of [39, 40]. However, in contrast to these works, in our study the focus is on the

traditional moduli problem as formulated in [54, 55, 56, 57].

In this chapter, we propose a way to solve the cosmological problems of scalar
moduli fields which requires no external mechanism for the dilution of moduli. In-
stead, it makes use of non-perturbative decay channels. Non-perturbative decays have
been shown to completely change the scenario of reheating in inflationary cosmology.

In particular, the decay of the inflaton field by a parametric resonance instability has
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been shown to be very important [149, 43, 150, 44]. In certain models, a tachyonic
instability renders the inflaton decay even more efficient [151].

We consider a toy model which potentially gives rise to a cosmological mod-
uli problem. In the framework of this model we investigate non-perturbative decay
channels (decays into particles whose lifetime is much shorter than that of the moduli
fields). We study the decay of the oscillating modulus field via parametric resonance,
and propose a new tachyonic decay channel. We quantify the conditions on the pa-
rameters of the model for which the decay channels are effective. Note that the decay
channels work for an initial field amplitude up to the order of the Planck scale. No

external mechanism for diluting the moduli density is required.

5.2 The Model

If the moduli problem arises as a consequence of supersymmetry breaking, the moduli

potential takes the form (see e.g. [141])
V(®) = mj), MG(|®|/M,)., (5.4)

where mj3/9 is the gravitino mass and G is some function. We will assume that the
modulus field couples to some matter field y which we treat as a scalar field (following
the analyses in the study of fermionic preheating [152] it could also be taken to be a
fermionic field). Making use of (5.4), and of the fact that the dimension five and six
operators are suppressed by M, and by Mﬁ, respectively, we can construct a typical

potential for the modulus ¢ and the matter scalar field y

1 1 1m?2
V = —m2p? + —m2xE+ ==Ly (5.5)
2 ¢ 2 X 2 M,

+Md° X + )\2X4 + )\3¢4 )

where the coupling constants A1, A2, A3 are small enough such that for |¢|, |x| < M,

the low energy effective potential for ¢ takes form

1 1 1m?
Vi = omie? + omix’ + 5 ox?. (5.6)
2 ¢ 2 X 2 M,
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Thus, the toy model we consider is described by the following Lagrangian:

L= 00,0+ 0"xD,x (5.7)
1 1 1 m2
—5med” = 5mx’ ———cbx

In the above, the mass m; sets the scale of the interaction between ¢ and y. It is
reasonable to assume that this scale is much less than M,,.

In analogy to the situation encountered in the study of the decay of the inflaton, if
we want to study the decay of the modulus field, it is crucial to focus on the equation
of motion for matter fields x which the modulus field couples to. In the presence of
the oscillating modulus field, this equation (in an expanding space-time) is

2

k
Xt + 3Hyxi+ ( +m + ﬁ@( )sin(m¢t)> Xk

= 0, (5.8)

where ®(t) is the amplitude of ¢. The amplitude ® decreases as a consequence of the
expansion of space. In the above, k denotes the comoving wavenumber and a(t) is
the cosmological scale factor.

In a first step, we will put the above equation into the form of the well-known

Mathieu equation. To absorb the expansion of space, we define a rescaled field via

e = a3/2xk. (5.9)

Then, the equation of motion for 7, becomes:

]432
Tk + ( —I—m + ﬁcb( ) sin(mgt) — A) e = 0, (5.10)
where
A= SH 0 =202 - 1)) H?, (5.11)

where for the second equality we have assumed that a(t) o t7.

It is convenient to introduce a dimensionless time variable via

1 T
= —myt + —. 5.12
z 2m¢ + 1 ( )
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The differentiation with respect to z will be denoted by a prime. In this case, the

above equation (5.10) takes the form

n + (Ax — 2qcos2z)n, = 0, (5.13)
where
k2 m?
mia my
2
m7®
. 5.15

If it is justified to neglect the expansion of space compared to the rate of the
processes which will be discussed in the following, then A vanishes, and the equa-
tion (5.13) takes the form of the Mathieu equation. Note that k/a is the physical

wavenumber.

5.3 Parametric Resonance Instability

The modulus field ¢ is frozen until the Hubble parameter H drops to a value com-
parable to m,. Then, ¢ begins to oscillate about ¢ = 0 with a frequency my, its
amplitude ®(¢) being damped by the expansion of the spatial background and by the
energy loss of ¢ to other fields. The second effect is a back-reaction effect which we
will neglect. The condition required that the oscillation of ¢ begins before the time
of nucleosynthesis is that the Hubble damping term in the equation of motion for ¢

becomes smaller than the force term V'(¢) driving the oscillations. It yields
H(TNS) < My, (516)

(where Tyg is the temperature at which nucleosynthesis takes place) a condition
which is satisfied for all masses in the dangerous range. Once the modulus field starts
to oscillate, resonant excitation of all fields coupled to ¢ is possible, in particular the
excitation of 7.

The first instability we will study is the parametric resonance instability, first

applied to the decay of the inflaton field in [149]. There are two types of resonance
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[43], broad parametric resonance and narrow parametric resonance. The condition
for broad resonance is ¢ > 1. where ¢ is the parameter appearing in equation (5.13).
This condition is satisfied for large values of the amplitude ®, namely for

O > Py, = Mp(%’)?. (5.17)

Evaluating this condition at the time when perturbative decay of the modulus field
sets in, i.e. when I' = H, and using for formula for I' applicable to our toy model

(given below in (5.29)), we find that unless

my >1/2

1

mey K mI(

broad parametric resonance can relax but not solve the moduli problem without an
additional decay channel being present. Both narrow resonance (discussed below)
and the tachyonic decay discussed in the following section can provide the additional
channel.

For smaller values of ®, we are in the domain of narrow parametric resonance. In

this phase, the growth of 7 is known [51, 52]:
M ~ e~ etmol/2 (5.19)

Only modes in narrow resonance bands are amplified, and the first such band is

centered at a value of k = k,,, given by [51, 52]

2
me Amy 1/2
A = 1, k= —2(1 — —) (5.20)
2 my,

from which it follows that the band does not exist unless m, < my/2. Other resonance
bands occur for larger values of A, but are of higher order in perturbation theory and
hence have a negligible effect.

The first condition for resonance to be effective is that the typical time scale for

the growth of ny is shorter than the Hubble time, i.e.
gmg > H. (5.21)

In addition, one should take into account the change of the momentum as a result

of the background expansion [44]. In a time interval d¢, assuming m, < my/4, the
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change in the physical momentum p = k/a(t) corresponding to the middle of the

lowest resonance band is
Ap = pHAL ~ %Hm. (5.22)
The width of the resonance band is
Ap = —. (5.23)
Thus, p remains in the resonance band during a time interval
At ~ gH ™. (5.24)

To justify neglecting the expansion of space, we must require that the exponent in
the growth factor (5.19) is at least 1 during this time interval. This leads to a more

severe constraint on ¢:

¢my > H. (5.25)

Inserting the value of ¢ from (5.15), we find that narrow resonance is efficient provided

3/2
O(t) > Do(t) = VHMymg (5.26)

mi
Since vH decreases as t~'/? whereas in a radiation-dominated phase ®(t) de-
creases only as t3/4, the narrow resonance decay channel eventually shuts off. In
order that the moduli field does not dominate the energy density at the time of the

shutoff at temperature T', the following condition needs to be satisfied:
mi®2 < T, (5.27)

which, inserting the expression (5.27) for ®., turns into the condition

r ). (5.28)

my K ml(mﬂ\/[p
For narrow parametric resonance to solve the cosmological moduli problem, one
needs to check that at the time of moduli decay (which occurs when I' ~ H), the
condition (5.28) still holds. The decay rate of ¢ for our Lagrangian (5.7) is given by
m;

r=———. 9.29
32#M5m¢ ( )
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Thus, the solution of the cosmological moduli problem requires:

mr )1/3
10Mp

my < my( (5.30)

Inserting the temperature of nucleosynthesis to get lower bound from (5.29) on the
potentially dangerous mass range, and using the value m; = 10? GeV, the problem

is solved for values of m, satisfying (more general results are shown in Fig. 5.1)
107"GeV < my < 107*GeV . (5.31)

In the context of our model (for m; = 10°GeV), moduli with masses smaller than
10~ "GeV decay before time of nucleosynthesis and thus do not cause the problem.
Note that this scaling of the decay rate with the mass of the decaying particle is
going against the intuition that lighter moduli should decay later than heavier one.
This curious aspect of our toy model decreases the potentially dangerous mass range,
and this realization might be useful in some concrete models suffering from a moduli
problem.

It appears at this point of our study that the period of narrow parametric reso-
nance has the potential of solving the moduli problem for values of m, and m; which
satisfy the relation given by (5.30). One issue which we have not taken into account
is the fact that late moduli decay may provide a large source of non-thermal photons
which could distort the black-body nature of the CMB. The constraints resulting from
this effect must be studied in any concrete model with late-decaying moduli fields.

The previous analysis has missed a second important condition for the efficiency
of narrow parametric resonance. It is not sufficient that the modes 7 increase with
a rate faster than H. Since the resonance occurs only in narrow bands [51, 52], it is
important to check that the rate of energy increase integrated over all modes of n be
larger than the decrease in the energy density of ¢ taking into account the expansion
of space alone. Otherwise, the energy stored in the moduli field would still scale as
matter in spite of the exponential increase in the occupation number of certain field

modes. This condition reads
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Range of effective parametric resonance

[l - allowed parameter space

m, [GeV]

Figure 5.1: The shaded region represents the parameter space where parametric res-
onance alone completely solves the cosmological moduli problem. The upper bound
is obtained from a combination of two conditions: the moduli never dominate the
universe and parametric resonance is effective up to the moment when the moduli
decay perturbatively. The lower bound limits the shaded region to moduli masses

which are potentially dangerous.

The rate of increase g, in the energy density of n can be estimated by considering the
increase in the amplitude of all modes of 1 in the lowest instability band. This band
is located at k ~ my and its width is given by gm,. Since the rate of increase (from

(5.19)) is gmy and since the initial mode (vacuum) energy is about &, we obtain
Py ~ myq” . (5.33)

Hence, the condition (5.32) for efficiency of the resonance process becomes

m% mry

Mo < Mimy 31 (5.34)
p

which is to be evaluated at the temperatures when the presence of moduli fields are
dangerous for cosmology. Using, as before, the value m; = 10°GeV, and evaluating
the above condition at the temperature of nucleosynthesis, we find that the condition
is satisfied as long as the mass my is smaller than about 107°GeV. The condition
(5.34) becomes increasingly well satisfied at lower temperatures, and is no longer a

concern at the time of recombination. Note that the condition (5.32) for the efficiency
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of narrow resonance is a very conservative one. As long as the first condition (5.25) is
satisfied, the mode amplitude will grow, and hence the vacuum mode amplitude used
in the above estimate should be replaced by the excited amplitude, thus relaxing the

constraint by an exponential factor.

The problem, however, is that the condition (5.34) conflicts up to coefficients of
order unity with the condition that the perturbative decay rate is negligible. Thus,
in our toy model, and using the very conservative form of our conditions for the
effectiveness of the resonance process, the narrow resonance decay channel is only
effective near the time when the perturbative decay is also become important. This
result, however, is a consequence of the particular scaling of I" with my, I' oc m;l.
In models where moduli decay to fermions, I' oc m,, and, therefore, we expect those

models do not suffer from this specific problem.

The above discussions neglected the expansion of the universe. Taking into ac-
count this expansion changes the Mathieu equation into a more general equation of
Floquet type, and leads to a stochastic nature of the resonance process [44]. However,
the property that the number of particles is growing exponentially at a rate given by

(5.19) is preserved.

5.4 Tachyonic Decay of the Oscillating Modulus
Field

In the case of the decay of the inflaton field at the end of the period of inflation, it
is known [151] that for certain models there is a tachyonic instability channel which
is more efficient than parametric resonance. In this section, we will study a similar

process for moduli decay.

Let us return to the basic equation (5.13), with the values of the parameters Ay
and ¢ given by (5.14) and (5.15), respectively. We immediately see that for large

values of ®, the effective m? term in the equation will be negative for part of the
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oscillation period of ¢. This tachyonic instability occurs provided

(5.35)

The minimal value for which the tachyonic decay channel is open is given by setting
the two sides in (5.35) equal and will be denoted by ®,,.
The condition under which the tachyonic decay channel can solve the moduli
problem is then given by
mi®., < T, (5.36)

where T is the temperature corresponding to the period one is interested in !. Eval-

uating (5.36) at the time of nucleosynthesis, we obtain

T 2
my K TNSLSm. (537)

2
M, ms

The upper mass bound on m, for which the above tachyonic decay is effective thus
depends sensitively on the ratio of m; and m,. Unless the latter mass is much
smaller than the former, the tachyonic decay channel cannot reduce the amplitude of
moduli oscillations to a level consistent with the observational constraints. Further
constraints on m, come from the requirement that the tachyonic channel be more
efficient than pertubative decay (see Fig. 5.2).

The range of values of mg for which the two decay channels - narrow parametric
resonance (neglecting for a moment the issue that in our model it starts to be efficient
together with the perturbative decay) and tachyonic decay - are open depends on the
values of the masses. While if m, > my, the only allowed channel is the tachyonic
one, the narrow parametric resonance works for a wider range of masses mg4 when

my, ~ mg. The latter can be seen by inserting m, = my into (5.37) and comparing

'While the energy density of x is built up there is no reduction in ® amplitude. In the case that
the space expansion can be neglected, conservation of the total energy density eventually causes
reduction in the moduli amplitude, ® decreases. Thus, potentially, ® can reach even lower values
than ®,,,, however, the non-negligible fraction of the energy density might still remain in the moduli.
All we ask for is to lower the energy density of the moduli below the total energy density 5.36 at

the moment the perturbative decay takes place, namely, below Fgllmz. See Fig. 5.2
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Bounds on tachyonic decay

3.00E-03

S5eV
2.50E-03
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1.50E-03 1 —— low bound
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0.00E+00

o 200 1200
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Figure 5.2: The combination of two conditions - moduli never dominate the universe
and tachyonic resonance is effective up to the moment the moduli decay perturbatively
- sensetively depends on the mass of the decay products (m,). As an example, we
take m, = 5, 10 and 15 eV. The upper bound set by the above conditions seriously
reduces the range of applicability of the tachyonic resonance for decay products with
large masses. The situation can be fixed by dropping the condition that the moduli
never dominate, which will remove the bound and still allow the method to work.
The lower bound limits the parameter space to moduli masses which are potentially

dangerous.
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with (5.28). However, as the value of m,, is reduced, the range of masses for which the
tachyonic decay channel is open grows and begins to dominate over that of narrow
parametric resonance. Tachyonic decay can be made to work even for m; ~ my.

For values of m, for which both decay channels are open, the tachyonic decay is
more efficient for two reasons. First, it leads to the excitation of all long wavelength

modes, and not just to modes in a narrow resonance band. Modes with

(5.38)

P
K < mi— = k2,
D I crit
Mp

are excited. For such modes, the value of 7 increases with a maximal rate given by

M ~ exp(y/qz), (5.39)

which for ¢ < 1 is a larger rate than that which occurs for modes in the resonance
band during narrow resonance (see (5.19)). This is the second reason for the larger
efficiency of the tachyonic decay channel.

Let us estimate the energy density p, stored in the quanta produced during the
tachyonic decay process. The phase space of modes which are excited tachyonically is
of the order k2.,,. Each mode grows with a rate which varies in time, the maximal rate
being given by (5.39), and the growth occurs for approximately half the oscillation

period (the period during which the effective square mass is negative). The mean

growth rate is given by 1/v/2 of the maximal rate. Thus

2 1
p

The prefactor in front of the exponential factor is much larger than the corresponding

factor in the case of the narrow resonance decay process.

5.5 Discussion and Conclusions

In this chapter we have studied two non-perturbative decay processes which can
substantially dilute the density of dangerous moduli fields. Both processes occur

during the phase in which the moduli fields oscillate about their ground states. The
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first non-perturbative process is parametric resonant excitation of fields coupled to
the modulus field. In this paper we modeled such fields as a scalar field x coupled
to the modulus field ¢ via dimension five operators suppressed by the Planck mass.
The second decay process is tachyonic decay which makes use of the fact that the
effective square mass of x in the presence of the oscillating ¢ field is negative for
part of the oscillation period. These decay processes are analogous to the parametric
resonant decay of the inflaton during reheating [149], and to tachyonic preheating
[151], respectively.

We have established the conditions under which either of the two decay processes
can solve the moduli problem, i.e. reduce the energy density of the modulus field to
values consistent with big bang nucleosynthesis. It appears that narrow parametric
resonance has the potential to solve the modulus problem but, for the toy model
considered here, and using very conservative conditions for the effectiveness of the
resonance process, it happens only at the time when the pertubative decay rate also
becomes important. Undoubtedly, tachyonic decay successfully solves the problem
given masses of decay products which are much smaller than the scale of interaction
- my. Moreover, the tachyonic decay channel allows for excitation of particles with
masses heavier than that of the decaying particle. Depending on the values of the
other masses in the Lagrangian, either of the two decay processes can be open for
a wider range of masses my. For values of mg for which both decay channels are
open, the tachyonic decay is much more efficient, as is true in the case of the decay
of the inflaton. Note that the presence of an interaction term in the Lagrangian
linear in ¢ was important in order to obtain the tachyonic decay. For example, it can
be generated as a result of a nonrenormalizable term in the Kahler potential after

integrating out the field I responsible for F-type SUSY breaking:

2 2
47t X _ F 2, .2 ¢ 5
/dQ I I—g = —1§¢X NmS/Q—pX : (5.41)

where mjz/; is the gravitino mass.
It will be of great interest to study the applicability of these decay channels to

concrete models with moduli fields. This work is left for future research.
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The form of the potential in our toy model Lagrangian inevitably suggests inflation
at low scales. This natural source of inflation does not only dilute heavier relics
but could also mitigate the flatness, horizon and entropy problems. It needs to be
studied whether this type of models can provide a successful reheating mechanism,
if the inflaton has only gravitationally suppressed interactions. Once again, non-
perturbative instabilities like those used in preheating [149, 43, 150, 44, 151] are
likely to be successful. If the modulus field comes to dominate the energy density of
the universe for some period (without necessarily leading to inflation), it can provide
a candidate for the curvaton (see e.g. [153] for an extensive discussion of moduli fields

as candidates for the curvaton).
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Chapter 6

A Note on the Moduli-Induced

Gravitino Problem

The cosmological moduli problem has been recently reconsidered. Papers [64, 65]
show that even heavy moduli (m,; > 10° GeV) can be a problem for cosmology if a
branching ratio of the modulus into gravitini is large. In this paper, we discuss the
tachyonic decay of moduli into the Standard Model’s degrees of freedom, e.g. Higgs
particles, as a resolution to the moduli-induced gravitino problem. Rough estimates
on model dependent parameters set a lower bound on the allowed moduli at around

108 ~ 10? GeV.

6.1 Introduction

The cosmological moduli problem is a disease of many supersymmetry/supergravity
theories [54, 55, 56, 57]. Many supersymmetry/supergravity theories contain fields
which have flat potentials in the supersymetric limit and only Planck suppressed
couplings to Standard Model (SM) particles. We generically call them moduli. The
cosmological moduli problem arises whenever the decays of moduli are in conflict with
cosmological observations. Masses of moduli depend on the type of supersymmetry
breaking. Moduli much lighter than the Hubble scale during inflation acquire a vac-

uum expectation value (VEV) of order the Planck scale [134, 135]. Later on, a large
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abundance of moduli threatens to overclose the Universe or jeopardize the processes
of nucleosynthesis. Several solutions of the moduli problem have been suggested, see
e.g. [154, 155, 140, 4].

The cosmological moduli problem is automatically avoided in heavy moduli sce-
narios. A widely used estimate for the perturbative decay rate I'y; of moduli is
L my

Tt ~ — .
i 47 Mg

(6.1)

where ¢ is the modulus field and mg is the modulus mass. Moduli decay once the
Hubble rate is of the order of I'y;. Therefore, moduli of mass below 100 TeV decay
near or after the time of nucleosynthesis, when the universe is nearly 1 second old.
If the mass is above 100 TeV then the moduli decay before the time of Big Bang
Nucleosynthesis (BBN). Examples of scenarios with heavy moduli exist [156, 141,
157, 158, 159].

The heavy moduli scenario as a solution of the cosmological moduli problem has
recently been reconsidered starting with the papers [64, 65]. It was shown that the
decay of moduli into gravitinos is unsuppressed (for an opposite example see [160]).

The part of the Lagrangian describing the gravitino-modulus couplings is

1 -
e 'L = —ge“”p”(G¢8p¢+Gw@pqﬁ)zﬁﬂﬂﬁa (6.2)

— Gy + Gord )l 7o (63

where 1, stands for the gravitino and G is a non vanishing dimensionless auxiliary
field with G = K/M? + In(|[W|*/M}). The subscript i denotes the derivative with
respect to the field i. K and W are Kahler potential and superpotential respectively.

Based on these coupling, the perturbative decay rate of moduli into gravitinos is

(Gol* 3
2887 m2 , M2

The auxiliary field of the modulus, G, in general, can be small to suppress I's/;
to the total decay rate I'y; (6.1). However, suppressed Gy is not a typical case,
e.g. in the framework of the 4D supergravity G > mg/2/my. Performing elaborate

calculations, authors of [64, 65] have shown that the typical branching ratio Br(¢ —
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213/2) ~ O(0.01—1). The large branching ratio of heavy moduli into gravitinos causes
gravitino overproduction. Hence, even having a modulus mass above 100 TeV does not
resolve the cosmological moduli problem. A detailed re-analysis of the cosmological
moduli problem taking into account constraints on gravitino overproduction pushes
up the gravitino mass above 10° —10% GeV [65]. This is the moduli-induced gravitino
problem.

The previously published literature on the moduli-induced gravitino problem does
not include nonperturbative decay channels. We propose a solution of the moduli-
induced gravitino problem by having most of the moduli energy decay into the SM
degrees of freedom through a tachyonic decay into a boson pair, e.g. Higgs. The
decay process moduli — > bosons is rapid and occurs before moduli start to pertur-
batively decay into gravitinos. The scheme allows to find a range of moduli masses
(my > 10® ~ 10° GeV) which does not suffer from the moduli-induced gravitino
problem. Making use of conservative approximations, we find a range of masses with

no overproduction of gravitinos.

6.2 Basic Idea

The general idea can be introduced in the following way. As was mentioned previously,
moduli have only Planck suppressed couplings to other fields and during inflation
obtain a VEV of the order of the Planck scale. After inflation, the modulus field
slowly rolls preserving its energy. When the Hubble parameter reaches the value of
mg, the modulus field starts to oscillate. In the following, we assume that moduli

have a trilinear coupling to a scalar field y,

x> (6.5)
The effective potential, V (¢, x) is
1 1 1 « 1
v _ L 2,2 1 2 9 1 2002 L Ty A 6.6
(6, X) = 5mgd” + 5myx +2—Mplm¢¢x + X (6.6)

The equation of motion for y field with switched off the expansion of space is
)‘ék’ + (k2 + mgff) Xk = 0. (67)

93



where
mgff = mi + 2%+ &mﬁﬁ, (6.8)
M,

The oscillations of the field ¢ induce a negative mass for the field xy. The modes of

the field x with k < |/—mZ, are excited,

Xie o eV mers TR (6.9)

and the energy is transferred from the oscillating ¢ into excitations of y in a preheating-
like process. The process has a name of tachyonic resonance and is widely discussed
in the literature starting with [149, 129, 46], in particular, the implementation of
tachyonic resonance in the context of the resolution of the moduli problem is dis-
cussed in [4]. Thus, we see that for a certain range of parameters, the energy density
stored in the moduli nonperturbatively transfers into excitations of y field much be-
fore moduli perturbatively decay into gravitinos. The couplings of y to Standard
Model particles are assumed to be unsuppressed and, as a result, the decay rate of

X is much larger than 1 sec™

. Thus, the modulus energy is converted into radiation
much before the time of BBN.
To study the stability of the potential (6.6), we find the minimum of the V (¢, x)

in the ¢ direction which occurs for

1l o ,
- - 6.10
¢=—3 TR (6.10)
Substituting (6.10) into V (¢, x) leads to
1/1a? 1
Vg, x) = 1 (Qﬁmi - /\) X'+ QmiXQ ; (6.11)
P
and, we see that the effective potential is unstable for
1a?
P

Thus, the presence of additional terms with Planck suppressed couplings is important
to stabilize the potential (6.6) at large values of the fields.
The efficiency of the tachyonic resonance must be carefully checked against the

effects of dilution due to the expansion of space. For the tachyonic resonance to
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be effective, the growth of the mode k (6.9) shall dominate the dilution due to the

expansion of space. The appropriate condition would be

Jomi — k> H (6.13)

2H2
a my®
Zomie > 4 6.14
M, T M2 (6.14)

where ® is the amplitude of the ¢ field. The above condition is fulfilled once

or

aM, > . (6.15)

At the onset of oscillations ® < M,, thus for a > 1 we can neglect the expansion of
space in our analysis.

In addition to the growing mode (6.9), there is also the decaying mode
X o< eV e TR (6.16)

The decaying mode causes inference terms and may put further restrictions on the
region of applicability of the tachyonic resonance. The equation 6.7 can take the form
of the well known Mathieu equation (see e.g. [50]). In fact as it can be seen from the
instability chart of the Mathieu equation, the resonant production is terminated as
soon as ¢ = a®/m, < 1/2; hence a > 1. In the context of gauge supersymmetry
breaking and anomaly mediation scenarios the interaction couplings are expected to
be larger than Planck suppressed which corresponds to o > 1 in our parametrization.
In gravity mediation supersymmetry breaking scenarios relatively large couplings «
can also be obtained if moduli couples to Bose Condensate [127]. Another way to
increase « is to consider many trilinear interactions which effectively causes an en-
hanced coupling of the moduli to the scalar sector.

Tachyonic preheating in the parameter range corresponding to large o was exten-
sively studied in [128]. The authors have shown that trilinear terms lead to faster
re-scattering and thermalization. As a bonus, trilinear terms allow complete decay of
the moduli. In addition to positive effects, enhanced resonance and fast subsequent
thermalization may enlarge the reheating temperature beyond the allowed region

which threatens to overproduce gravitinos through re-scattering processes [161].
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The trilinear interaction term (6.5) may arise, for example, from the non-renormilizable

term in the Kahler potential !

A
Ly = / d%VHa;H;H;; + h.c. (6.17)

pl

where H, and Hy are up-type and down-type Higgs supermultiplets or correspond-

ing scalar fields, respectively. The ¢ field is the moduli supermultiplet and, in the

following, its scalar part. After integrating out the superspace coordinates, we obtain

A

p

+F¢HZF; + F¢H;F: +cc. + -- )

where F; = —MgeG/Q(Gfl)éGj is the auxiliary field of the i’th supermultiplet, D, is

the covariant derivative. The process of energy transfer described above makes use of

on-shell degrees of freedom. Hence, we make use of the equation of motion for the ¢

field to replace D,D"¢ with méqb As a result, the following interaction term is part

of the Lagrangian:

Ar

M,

pl

Ly D ——mipH Hy + h.c. (6.19)

In the low energy effective Lagrangian, the term (6.19) is responsible for the interac-

tion (6.5), where x is the neutral scalar component of the lightest Higgs field in the

mass basis.

6.3 Estimates

In the following we would like to estimate the region of moduli mass for which the

moduli-induced gravitino problem is resolved. Another glance at the equation of

motion of the y field

. (6]
p

'Here we provide only one example of the origin of trilinear terms. Large o might require other

interactions.
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reveals that the tachyonic process is more effective for larger masses of the moduli.

We assume that the tachyonic resonance works as long as mgf s can obtain negative

values,
m? )
X <a—. 6.20
mé aMp ( )

All the energy converted into excitations of the y field afterwards is transferred to
SM degrees of freedom. Further, since Brz;, = O(0.01 ~ 1) we assume that once
the bound (6.20) is violated all the energy is transferred to gravitinos. The above
assumptions allow us to estimate the gravitino abundance neglecting the effect of
the expansion of space. At the end, we insert the known bounds on the gravitino
abundance and derive the lower bound on the gravitino mass.

We distinguish between two cases at the onset of moduli field oscillations: in the
first case, the universe is supercooled and (x?) ~ 0; or, in the second case, the universe
is dominated by radiation and (x*) ~ T2 = \/mgM,. The universe is supercooled
if oscillations of the moduli were preceded by an inflationary period, and the energy
is still stored in the oscillations of an inflaton, or if the modulus itself is the inflaton
(see [162, 163] for discussions on the moduli-induced gravitino problem in this case).
In this paper, we primary concentrate on the first case. In this case, we omit the self
interaction term to obtain order of magnitude estimates for the bound on the allowed
moduli mass.

While the tachyonic resonance is in effect, the energy density in ¢ is transferred

to x particles and then to radiation. Neglecting the expansion of space,
Praa = MM (6.21)

The tachyonic resonance ends as soon as ® reaches the value 2

m2 M
D,in = —;‘—p_ (6.22)
my o
At this point, the remaining energy density in the moduli is
4772
2 5,2 my My _
m5dr . = = . 6.23
¢ F min oﬂmé p3/2 ( )

2We have assumed that tachyonic resonance ends before the perturbative decay takes place. This

assumption is equivalent to m, > I'qy.
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The energy density stored in the gravitino, ps/s, allows us to determine the grav-

itino abundance.

n
m3/2Y},/2 = 77’L3/237/2 (624)
_ P (6.25)
s
m? M?
= X P 6.26
a?m?s (6.26)

where Y35 is the gravitino yield, ns/, is the number density of gravitino particles and

s is the entropy of the ultra-relativistic particles.

_p+p_4p7‘ad
5= EXP _ Pt o

= ~ 3/2 6.27
TR 3 TR p) 9 ( )

m¢]\/[

where Ty is the reheating temperature (temperature of ultra-relativistic plasma at
the moment it reaches thermal equilibrium). While the actual reheating temperature

depends on the thermalization processes, the upper bound is

Tr < /me®in < \/myM, (6.28)

where ®;,, is the amplitude of the field ¢ at the onset of oscillations. Since we have
neglected the expansion of space throughout the calculations, we have plugged T =
v/meM, to obtain the last equality in (6.27).

The gravitino abundance is severely constrained in order not to jeopardize the
success of BBN or from the danger of overproducing of lightest supersymmetric par-
ticles. The most stringent constraint comes from the overproduction of >He [58, 59]
which yields

mz/eYse < O(107M ~ 107') GeV . (6.29)

The limit (6.29) is equivalent to

m4

m3/2Y3/2 = aQ—n)fo;TR (6-30)
3 mi
= T/ me M,

A 2o
404m¢

< 010" ~ 107 GeV
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where we have inserted the expression for s (6.27). Making further assumptions:
a ~ O(1), my, = 100 GeV, the moduli is safe from the overproduction of gravitinos
in direct decay if

10° ~ 10 GeV < my. (6.31)

The lower bound (6.31) is the main result of the paper.
In the second case, when the field y is a part of the thermal bath and the contri-
bution of the self interaction term to the effective mass can be large, we have
2 = m2 A3+ a9 &
Mepr = My X7 e
p

— m2 4T+ %migﬁ, (6.32)
p

where we have used the Hartree approximation to go from the first to the second line.
The large AT? term threatens to prevent the tachyonic resonance from occurring.
Particulary, if, at the onset of oscillations, the condition

ozm¢

l<=-2¢ .
<3 (6.33)

is not satisfied, the effective mass (6.32) is positive. In an expanding moduli-dominated

universe, the temperature redshifts as

& \4/3

T% = mgM, (ﬁ) (6.34)
Hence, mgf  remains positive during oscillations of the ¢ if
o® my

1> ¢
~ N,

(6.35)

2
where we have inserted ®; = Z—j - the value of ® at the time of perturbative de-

cay (6.1). In the case m? > AT?, the estimates on moduli mass reduce to (6.21-6.31).
The decay of moduli dilutes the pre-existing abundance of gravitinos. Let us
denote the initial gravitino yield by Y3/,,. The entropy produced in the decay of

moduli into radiation s, oc T, hence, the new gravitino yield is

n _
3/2 — 3/2 ~
/ Sf+ Sp / Sn Snp,

= Ty, (6.36)
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where sy and T stands for the values of the preexisting entropy and temperature of
radiation at I'y; = H. Making use of (6.34), we deduce

me

YE%%:M
p

Y32 (6.37)

6.4 Conclusions

In this chapter, we have discussed the influence of the tachyonic resonance on the
moduli-induced gravitino problem. We primarily have discussed the case when y is
not a part of the thermal bath at the onset of oscillations of the modulus field. In this
case, the rough estimates shows that moduli masses above 10% ~ 10° are free from
overproduction of gravitinos in direct decay of moduli. The estimates omit several
model dependent points which may either enhance or diminish the influence of the
resonance. In particular, in the process of calculations we did not take into account
the expansion of space. In the case when y is a part of the thermal bath at the onset
of the oscillations of ¢, we have found that the tachyonic resonance is less likely to
work. In any case, even if the tachyonic resonance is inefficient, the decay of moduli

dilutes the initial abundance of gravitinos.
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Chapter 7

Conclusions

Integration of Cosmology with High Energy Physics is one further step towards the
theory of everything. The interface of early universe cosmology and string theory
is not yet possible on a rigorous basis since string theory is not yet fully developed
theoretically. Nevertheless it can be mutually beneficial to combine ideas from string
theory and cosmology. From one side, new degrees of freedom open up new venues
for string-inspired scenarios - both inflationary and alternative cosmologies. On the
other side, the main drawback of string theory, the lack of predictability, may be put
aside if connections to the cosmological observations are found. Later time cosmology
constraints put further restrictions on models beyond the Standard Model. This thesis
contributes to this interface area.

Inflationary cosmology is a robust and predictive paradigm. Because of its robust-
ness the chances are high that inflation is indeed a part of the history of the universe.
However, there are many ways to obtain inflationary expansion of the universe which
makes it difficult to agree on the unique model of inflation. Past decades gave rise
to many models of inflation which cannot be distinguished on the basis of current
observations. A successful alternative model which predicts yet untested deviations
from inflation could open up a further way to test the inflationary paradigm. Finding
an alternative scenario is a difficult task and tackling only part of the problems of
BBC remains useful. Note that no currently known alternative scenario solves all the

puzzles of BBC which are solved by inflation.
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In Chapter 2, we propose an alternative string-inspired scenario which solves the
entropy and horizon problems of BBC. Inspired by the idea of a hot big bang, we
propose that the 44+-d dimensional universe emerges with all stringy degrees of freedom
present, and being compact. The topological difference between 3 and d spatial
dimensions leads to a difference in the evolution of the extra dimensions compared to
the evolution of our three currently observed spatial dimensions. During the phase of
bulk expansion, the total energy density of the matter is growing. The following phase
in which the extra dimensions contract is necessary to obtain later on am effectively
4 dimensional cosmology. Once the size of the extra dimensions is stabilized and the
energy of the bulk transfers into radiation, the radiation epoch proceeds as in the

BBC scenario. Note, that the expansion is non-accelerated in all stages of evolution.

A weak point the inflationary models is the fine-tunings involved in order to obtain
inflation. Special initial conditions are not naturally expected to emerge in most of
the models. In the inflationary string inspired model presented in Chapter 3, this
weak point is ameliorated by the existence of a period of preceding expansion which
results in the correct initial conditions. The setup of the scenario is very similar to
the one used in Chapter 2. The difference is in the way the extra dimensions contract.

In Chapter 3, the contraction is inflationary.

Chapter 4 follows up on Chapter 3. The observational consequences of the model
presented in Chapter 3 are investigated. In particular, spectral index is found to
be in excellent agreement with observations. Furthermore, we derive a bound on the
fundamental string scale, examine compatibility with late time cosmology and discuss

preheating.

Compatibility of late time cosmology with particle physics models is a subject
under investigation. In particular, predictions of Nucleoshynthesis are challenged
if the particle physics model at hand contains moduli fields. In Chapters 5 and 6
we consider decay channels for moduli which have been so far neglected, namely
nonperturbative decay channels. In Chapter 5 we build a toy model Lagrangian
which is inspired by the nature of the problem. Coupling of moduli to another

scalar field through trilinear terms allows transfer of energy by virtue of parametric
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and tachyonic resonances. We find a parameter range which does not exhibit the
cosmological moduli problem. In Chapter 6, the nonperturbative decay of moduli
prevents domination of the moduli energy-density upon its perturbative decay, and
as a byproduct it avoids the overproduction of gravitinos. We estimate the range of
moduli masses for which the theory is free from the moduli-induced gravitino problem.
While the final resolution of the cosmological moduli problem is model-dependent,

our investigations open a new window of opportunity to solve the problem.
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