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Abstract

The interface of Cosmology and High Energy physics is a forefront area of research

which is constantly undergoing development. This thesis makes various contributions

to this endeavor. String-inspired cosmology is the subject of the first part of the

thesis, where we propose both a new inflationary and a new alternative cosmological

model. The second part of the thesis concentrates on the problems of integrating

cosmology with particle physics beyond the Standard Model.

Inspired by new opportunities due to stringy degrees of freedom, we propose a non-

inflationary resolution of the entropy and horizon problems. In this string-inspired

scenario, ’our’ dimensions expand while the extra dimensions first expand and then

contract, before eventually stabilizing. The equation of state of the bulk matter

(which consists of branes) is negative. Hence, there is a net gain in the total energy

of the universe during the pre-stabilization phase. At the end of this phase, the

energy stored in the branes is converted into radiation. The result is a large and

dense 3-dimensional universe.

Making use of similar ideas, we propose a not-fine-tuned model of brane inflation.

In this scenario the brane separation, playing the role of the inflaton, is the same as

the overall volume modulus. The bulk matter provides an initial expansion phase

which drives the inflaton up its potential, so that the conditions for inflation are

realized. The specific choice of the inflationary potential nicely fits the cosmological

observations.

Another aspect of this research concentrates on the cosmological moduli prob-

lem: namely, the existence of weakly coupled particles those decay is late enough to

interfere with Big Bang Nucleosynthesis. As a solution, we suggest parametric and

tachyonic resonances to shorten the decay time. Even heavy moduli are dangerous

for cosmology if they cause the overproduction of gravitinos. We find that tachyonic

decay channels help to transfer most of the energy of these dangerous moduli into a

scalar sector, preventing the excess gravitino abundance.
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Résumé

L’interface entre la Cosmologie et la Physique des hautes énergies est un sujet de

recherche d’avant-plan en constant développement.

La cosmologie inspirée par la théorie des cordes est le sujet de la première partie

de cette thèse, dans laquelle nous proposons d’une part un nouveau mécanisme pour

l’inflation et d’autre part une nouvelle alternative de modèle cosmologique.

Dans la seconde partie nous nous concentrons sur les problèmes reliés à l’intégration

de la cosmologie dans un modèle de physique des particules au-delà du Modèle Stan-

dard.

Motivés par les nouvelles possibilits venant des degrés de liberté de la théorie des

cordes, nous proposons une résolution non-inflationiste aux problèmes d’entropie et

d’horizon. Selon notre scenario fondé sur la théorie des cordes, les trois dimensions

spatiales habituelles ainsi que les dimensions supplémentaires s’étendent, mais ces

dernières se contractent eventuellement avant de se stabiliser. L’équation d’état de

la matière du bulk, qui consiste de branes, est négative. Il y a donc un net gain

dans l’énégie totale de l’univers durant la phase de pré-stabilisation. A la fin de cette

phase, l’énergie stockée dans les branes est convertie en radiation. Le résultat est un

univers tri-dimensionel large et dense.

En utilisant des idées similaires, nous proposons un modèle d’inflation qui ne

requiert pas d’ajustements fins. Dans ce scénario, la séparation entre les branes, qui

joue le rôle de l’inflaton, est la môme que le module du volume global. La matière

du bulk fournit une phase d’expansion initiale qui pousse l’inflaton vers le haut de

son p`otentiel, réalisant ainsi les conditions pour l’inflation. Le choix spécifique du

potentiel de l’inflaton est en accord avec observations cosmologiques.

Un autre aspect de ma these adresse le problme cosmologique des champs de

module: c’est-à-dire l’existence de particules faiblement couples dont la désintégration

a lieu suffisamment tard pour interférer avec la Nucléosynthèse primordiale. Comme

solution nous suggérons une résonance paramétrique et tachyonique pour réduire le

temps de désintégration. Même les champs de module lourds sont dangereux pour la
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cosmologie s’ils causent une surproduction de gravitinos. Nous obtenons que le canal

de désintégration tachyonique aide le transfert de la plus grande partie de l’énergie

de ces champs de module dangereux dans un secteur scalaire, empêchant ainsi la

surproduction de gravitinos.
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Contributions of Authors

This is a manuscript [1, 2, 3, 4, 5] based thesis with footnotes added in response

to questions received from the thesis committee. The first Chapter introduces the

reader to the cosmological problems and difficulties to integrate cosmology with par-

ticle physics. In particular I discuss puzzles of Big Bang Cosmology, Inflation as a

resolution of these puzzles, nonperturbative techniques to reheat the universe, and

the cosmological moduli problem. Chapters 2,3 and 5 are based on the work I did

with Robert Brandenberger [1, 2, 4], chapter 4 is based on the work with Thorsten

Battefeld [3], and chapter 6 is based on my single author paper [5].

I initiated and contributed main ideas of [1]. In particular, I suggested the mech-

anism to overcome the entropy and horizon problems avoiding an inflationary period.

The main idea of [2] originated in the process of discussions with Robert Branden-

berger and is heavily based on the ingredients developed in [1]. In both papers I

contributed to all calculations. In the followup paper [3], I wrote more than a half of

the manuscript. I mainly worked on the first part, namely I calculated the cosmolog-

ical parameters and made an estimate of the fundamental string length. I was also

involved in detailed discussions of the second part.

In the paper [4] I suggested the specific interaction model based on the particle

physics nature of the cosmological moduli problem and independently performed all

the calculations. I also noticed that triliniar interactions might result in tachyonic

resonance which may help to resolve the problem. This observation led to the main

idea of my single author paper [5] where I performed all the calculations and wrote

all the text.
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Chapter 1

Introduction

Early universe cosmology is a vastly developing area that provides a natural frame-

work to test models of High Energy Physics. The canon of the early universe cos-

mology is the theory of Big Bang Cosmology (BBC), which establishes the thermal

history of the universe. According to BBC, the beginning of time is associated with

an infinitely hot universe. As time progresses the universe adiabatically cools down

and grows. At a temperature of around 1 MeV the nucleosynthesis processes form the

nuclei of light elements. As the temperature reaches 1 eV (the recombination epoch)

electrons no longer have enough energy to overcome the attractive force of atomic

nuclei; hence, atoms form. The universe becomes transparent to photons. Later on,

the tiniest fluctuations of density in the early universe cause structure formation. The

universe continues to expand and cool until it reaches today’s 1 meV temperature.

The evolution of the universe is governed by the Einstein equations

Gμν = 8πGTμν (1.1)

where Gμν is the Einstein tensor, μ, ν = 0, .., 4, Tμν is the energy-momentum tensor

and G is the Newtonian gravitational constant. Experiments reveal that our universe

is homogeneous and isotropic to a high degree of precision. In the homogeneous and

isotropic limit the line element is unique and we obtain the so called Friedmann-

Robertson-Walker (FRW) universe

ds2 = −dt2 + a(t)2
[

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
(1.2)
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where a(t) is the scale factor, t, r, θ, φ are time and spherical spatial coordinates, and

k = 1, 0,−1 is the curvature signature. If the matter is in the state of a perfect fluid

T μ
ν = diag(−ρ, p, p, p) , (1.3)

where ρ and p are the energy density and pressure, the Einstein equations reduce to

the set of equations:

H2 =
1

3m2
pl

ρ− k

a2
; (1.4)

Ḣ = − 1

2m2
pl

(ρ+ p)− k

a2
, (1.5)

where m2
pl =

1
8πG

and H = ȧ
a
. The equations (1.4,1.5) are known as the Friedmann

equations.

Different aspects of BBC are tested to a high level of precision. One of them is

the theory of nucleosynthesis, which correctly predicts the primordial abundance of

the very light elements. Another is the presence of the cosmic microwave background

(CMB) which, according to BBC, has formed once the universe became transparent

to photons.

Despite tremendous success, BBC does not explain why we observe homogeneous,

isotropic and spatially flat universe, nor what is the source of the fluctuations respon-

sible for structure formation as well as other problems (see e.g. [6, 7] for a review).

Inflation – a short period of accelerated expansion – manages to complete the picture.

However, the Standard Model (SM) of particle physics does not incorporate the nec-

essary degrees of freedom to describe inflation. Other cosmological observations, for

example the origin of dark matter and dark energy, are unexplained within the SM

as well. The success of models beyond the SM to explain the above phenomena does

not ensure the absence of new obstacles in a way of successfully integrating modern

cosmology and particle physics. Specifically, various extensions of the SM generi-

cally predict new forces and particles. It may happen that new degrees of freedom

help to explain old puzzles in new, unconventional ways. In particular, what are the

consequences of the dynamics of the extra dimensions in the phase preceding their

stabilization on the evolution of the very early universe?
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As a part of this thesis, a new string-inspired scenario of the evolution of the

universe is presented. The new model makes use of extra dimensions, a gas of p-

branes in the bulk to drive an initial isotropic but non-accelerated expansion of the

universe, as well as orbifold fixed planes responsible for the eventual contraction of

the extra dimensions while our three dimensions continue to expand. Depending on

the details, the toy model either explains the entropy and horizon problems of BBC

without invoking the paradigm of inflation or provides a not fine-tuned emerging

brane inflation model.

While theories beyond the SM present unexplored opportunities, their ingredients

are not always compatible with BBC (e.g. moduli and gravitinos). In the second

part of the thesis, the possibility to overcome one of the cosmological problems asso-

ciated with physics beyond the SM, the cosmological moduli problem, is investigated.

The cosmological moduli problem is the problem of the over-abundance of weakly in-

teracting particles present in supersymmetric models, particularly, in string-inspired

models. To overcome this, nonperturbative decays of moduli into SM degrees of free-

dom are considered. While the final decision regarding the success of the solution

depends upon the details of the model, we find ranges of parameters that avoid the

cosmological moduli problem.

The following part of this chapter is dedicated to a review of the main points and

basic ideas which serve as background material to the thesis.

1.1 Problems of Big Bang Cosmology

One of the cosmological puzzles is the horizon problem. It arises as a result of the

inconsistency of the isotropy of the CMB and predictions of Big Bang Cosmology.

The photons which are observed in the CMB [8, 9], last scattered when Universe was

1200 time smaller (aCMB = 1/1200) at t = trec. The co-moving horizon size at the

surface of last scattering is

lp(trec) =

∫ trec

ti

dt

a
= 2H−1

0

√
aCMB ≈ 6 x 10−2H−1

0 , (1.6)
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Figure 1.1: The sketch of time (t) versus co-moving distance (x). The line at trec

corresponds to the surface of last scattering. The backward light cone (lp) is substan-

tially larger than the forward light cone (lf ). This constitutes the horizon problem.

Fig from Ref [6]

where ti stands for the beginning of expansion. The co-moving distance photons

travel from a point on the CMB surface to an observer on the Earth is

lf(trec) =

∫ t0

trec

dt

a
≈ 2H−1

0 (1.7)

where t0 stands for the current time. Comparing (1.6) to (1.7) (see Fig. 1.1) leads to

the conclusion that the CMB map should consist of a vast number of uncorrelated

regions. Instead, the observations shows that the surface of last scattering is isotropic

to 1 part in 104 [10, 11, 12, 13]. To explain this phenomenon, one is required to modify

the causal structure of Standard Big Bang Cosmology in a way such that∫ trec

ti

dt

a
�

∫ t0

trec

dt

a
. (1.8)

Another issue is the following, anisotropies observed in the form of galaxies and

clusters require a causal mechanism which generates density perturbations. In Stan-

dard Cosmology horizon grows faster than the distance between objects. Pertur-

bations starts to grow once the matter energy density exceeds the radiation energy

density, at teq. The scales above 50Mpc where not in causal contact at teq. Hence,
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Figure 1.2: The sketch of logarithm of any physical length scale λ and the Hubble

radius H−1 versus logarithm of the scale factor. The physical scale crosses the Hubble

radius only once. In the radiation and matter dominated universes, H−1 coincides

with horizon. Hence, correlations on physical scales which at teq are outside H
−1

cannot have causal origin. The dotted line indicates periods when λ is larger than

H−1. Fig. from Ref [14]

the correlations between galaxies and clusters of galaxies observed on scales above

50Mpc [15, 16, 17] are unexplained if the perturbations are generated before teq (see

Fig. 1.2). This is the structure formation problem.

Another puzzle of Big Bang Cosmology is the entropy problem. During the adi-

abatic expansion, the entropy per co-moving volume (S) in the Universe is constant,

and

S ∝ g∗a3T 3 (1.9)

where g∗ is the number of ultra-relativistic degrees of freedom. g∗ doesn’t change by

more than a couple orders of magnitude during the history of the Universe and we

neglect its time dependence in the following analysis. The energy of the co-moving

volume corresponding to the current Hubble patch which is stored in the relativistic

degrees of freedom is

E = ρH−3
0 ≈ g∗H−3

0 T 4
0 ≈ SUT0 � 1090T0 . (1.10)
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SU , the entropy in the current Hubble volume, is a conserved quantity in an adia-

batically expanding universe. Hence, naively extrapolating back to Planck times, one

finds that the energy of the universe is 90 orders of magnitude above the expected

value.

The energy problem can be rephrased in terms of the size problem. The value of

the Hubble radius today is H−1
0 ≈ 1042GeV −1. Since the Planck epoch, the universe

grew up by a factor of

a0

ap

=
Tp

T0

= 1032 . (1.11)

The co-moving size at the Planck epoch corresponding to the current Hubble radius

is lH0 = 1010GeV −1. In a power law expanding Universe the Hubble radius is roughly

equal to the maximal causally connected region (horizon). However, at the Planck

epoch the size of the universe corresponding to the Hubble radius at that time is

lp = 10−19GeV −1. Hence the size of the universe at the Planck epoch is 29 orders of

magnitude above the expected value. To solve the entropy and the size problems one

requires either to explain the large amount of entropy or to blow the initial patch (lp)

to the size lH0 without significant loss in energy density.

Today the universe is very close to being flat (k = 0). To quantify this statement,

it is very useful to define the ratio:

Ω =
ρ

3H2m2
p

. (1.12)

In terms of Ω, the Friedmann equation (1.4) is

Ω− 1 =
k

a2H2
. (1.13)

During the period of radiation domination H ∝ a−2. Hence, extrapolating Ω back to

the Planck era and comparing to today’s value Ω ≈ 1 leads to extreme fine-tuning in

the initial value of Ω

|Ω− 1|T=TPL

|Ω− 1|T=T0

≈
(
a2

PL

a2
0

)
≈

(
T 2

0

T 2
PL

)
≈ O(10−64) (1.14)

This fine-tuning problem is called the flatness problem.
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1.2 Inflation

The puzzles discussed in the previous section as well as other problems of BBC (see

e.g. [6, 7] for a review) are possible to resolve if one invents a new period of cos-

mological expansion. The most successful one is the period of accelerated expansion

of the universe - inflation [18]. A toy model approach to obtain inflation consists

of introducing one or more scalar fields (inflatons), which evolve slowly due to some

appropriately tuned potential. If the energy density of the universe is dominated by

a spatially homogeneous scalar field ϕ

ρ =
1

2
ϕ̇2 − V (ϕ) , (1.15)

and if this scalar field is slowly rolling, i.e

ϕ̇2 << V (ϕ), (1.16)

then the Hubble parameter is constant:

H2 ≈ 1

3m2
pl

[
1

2
V (ϕ)

]
. (1.17)

During the period of applicability of (1.16), the scale factor grows exponentially (a ∝
eHt) while the energy density remains constant (which means inflation). This is

precisely the requirement to solve the entropy problem. Note that V (ϕ) must be

chosen such that (1.16) is satisfied for a sufficient long period. This requires the

condition

ϕ̈� 3Hϕ̇ (1.18)

to be satisfied as well.

Inflation easily solves the horizon and structure formation problems. During the

period of inflation the Hubble radius (H−1) is almost unchanged while the horizon

continues to grow as

lf(tR) =

∫ ti

tR

dt

a
, (1.19)

where i stands for the beginning of inflation and R for its end. Thus, a long enough

period of inflation (in fact fractions of a second) allows the co-moving horizon size

7



to grow much larger than the size of the past light cone at recombination, which

explains the horizon problem (Fig. 1.3). The same argument allows a resolution

of the structure formation problem. Since all scales inside the present Hubble ra-

dius could be fully inside the horizon (Fig. 1.4), a causal microphysical mechanism

to generate perturbations is possible. In particular, quantum fluctuations during

inflation are redshifted and might be a source of the perturbations responsible for

structure formation. The amplitude of quantum fluctuations is independent of time

(for an order H−1). Due to this fact, the inflationary scenario implies an almost scale-

invariant spectrum of adiabatic cosmological fluctuations [19, 20], a prediction which

was made more than a decade before the cosmic microwave background anisotropies

were mapped out [10, 11, 12, 13]. The conditions for successful slow roll inflation

are (1.16) and (1.18). They lead to the conditions

ε =
m2

pl

2

(
V ′

V

)2

� 1 (1.20)

η = m2
pl

V ′′

V
� 1 . (1.21)

In this approximation, one can compute the scalar spectral index (ns), the scalar to

tensor ratio (r) and the tensor spectral index (nT ) to [21]

ns ≈ 1− 6ε+ 2η , (1.22)

r ≈ 16ε , (1.23)

nT ≈ −r/8 , (1.24)

where ε and η have to be evaluated at the time when the relevant scales leave the

Hubble radius during inflation.

Another glance at the Friedman equations

Ω− 1 =
k

a2H2
(1.25)

shows that the flatness problem is resolved as well. During inflation ä = Ḣa > 0,

therefore, the function Ω − 1 decreases as time progresses and the universe becomes

closer to the flat one.
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Figure 1.3: In this sketch, the evolution of the horizon is compared with the past

light cone at recombination. During inflation (a(t) ≈ eHt), the co-moving horizon

size grows exponentially in time. Fig. from Ref [6]

a(t) = e tH
l f (t)
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Figure 1.4: The sketch of an evolution of physical scales as a function of time. If

sufficiently long inflation took a place, the physical separation between two clusters

(dc) is inside the forward light cone at all times. Note that dc crosses the Hubble

radius (H−1) during inflation and re-enters only after the end of inflation. Hence,

during inflation the causal mechanism of structure formation is possible. Fig. from

Ref [6]
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There are many toy model potentials which result in inflation (see e.g. [22]). How-

ever, there is no fully established and accepted inflationary theory. One of the reasons

is the fine-tuning problems involved, another is that there is no well established fun-

damental theory to embed the inflationary scenario in. The last reason is a partial

reason for the ’not fine-tuning’ problems of inflationary cosmology, trans-planckian

and singularity problems [6].

Alternative explanations of the puzzles of the BBC have been proposed alongside

inflationary models. Famous examples of these are the Pre-Big-Bang [23] and Ekpy-

rotic scenarios [24]. However, none of these are able to explain the large initial size

of the universe, and thus the entropy problem remains unsolved. In Chapter 2, we

demonstrate a string theory inspired solution of the entropy and horizon problems.

Note that currently there is no alternative scenario able to overcome all the puzzles

of the BBC, in particular, the flatness problem remains unsolved. Hence, inflation

remains the most attractive paradigm.

1.3 Brane Inflation

Encouraged by the great success of the inflationary paradigm, one is motivated to find

a successful realization of inflation within more fundamental theories, such as string

theory. Branes are fundamental objects of string theory on which strings ends. One

of such constructions with 3 spatial dimensions (3-brane) can represent our world.

Interactions between branes can lead both to attractive and repulsive potentials.

Examples of sources of inter-brane potentials are exchange of massless and massive

bulk modes, and strings stretched between branes. The slow relative-motion of brane

and (anti)brane can be interpreted as inflation on the worldsheet of the brane [25, 26].

In 1998, Dvali and Tye [25] proposed a D-brane inflationary scenario which makes

use of slow motion of branes towards each other. They noticed that the joint force

due to gravitational attraction, exchange of dilaton and Ramond-Ramond fields can-

cels while supersymmetry is preserved. However, once the supersymmetry breaking

10



corrections are included, a potential of the form

V = A+
B

rn
, (1.26)

where A, B and n are constants, results. The basic (and well known [27]) drawback

of this and similar brane-antibrane proposals [26] is the ’η problem’: smallness of the

slow roll parameter η (1.21) requires the inter-brane separation to be larger than the

size of the manifold.

The phenomenological constructions discussed above were the first attempts to

obtain inflation in string theory. These constructions did not take into account the

issue of stabilization of the internal dimensions. Without stabilization of the degrees

of freedom controlling compactification, a typical 4 dimensional effective potential

has a typical form (see e.g. [28])

V (ϕ, ρ, φ) ∼ eaϕ−bρṼ (φ) (1.27)

where a and b are model dependant positive constants, ϕ and ρ are canonically

normalized fields representing the dilaton field and the volume moduli. In order

for the potential Ṽ (φ) to drive inflation, the dilaton field has to be stabilized in order

not to run to minus infinity and the volume not to decompactify. After the discovery

that flux constructions can lead to a stabilization mechanism for most moduli fields

of string theory [29, 30], a lot of attention (beginning with [31, 32]) was focused

on how to obtain inflationary models in the context of flux compactifications (see

[33] for reviews and comprehensive lists of references). These constructions are, once

again, in the context of static bulk configurations, and have to assume very special

configurations (special configurations of branes and special flux choices).

On the other hand, one of the compactification moduli can serve as the inflaton at

the last stages of stabilization. An example of modulus inflation, based on the KKLT

construction [31], is Racetrack Inflation [34]. In Chapters 3 and 4, we propose a

scenario with the overall volume modulus playing the roll of the inflaton. The origin

of the potential for the overall modulus is assumed to be in the brane-(anti)brane

interactions. The new ingredient of the scenario is the preceding bulk expansion phase

11



which naturally leads to the required pre-inflationary conditions. The Kahler modulus

inflation model suggested in [35] has similarities with our scenario. In particular the

inflaton is one of the volume components (4-cycle volume) and the potential has the

form

V = V0

(
1− ξe−aφn)

(1.28)

where V0, ξ, a and n are model-dependent constants, and φ is the canonically nor-

malized inflaton. In [35], this form of the potential is obtained in the following way.

The Kahler moduli appear only non-perturbatively in the superpotential and result

in terms in the potential of the form e−aφn
. The uplifting of the potential is achieved

through α′ corrections [36] and provides the potential with a constant piece.

1.4 Framework

The scenario of the multidimensional universe which is developed in Chapters 2,3

and 4 has similar initial conditions to those assumed in the hot Big Bang, the only

difference being the number of dimensions. The universe was born small with a typical

scale of string size, ls. We assume the manifold to be

M = R× T 3 × T d/Z2 , (1.29)

so that our three dimensions have the topology of a torus T 3, and the d extra dimen-

sions are compactified on the orbifold T d/Z2. The d + 3 dimensional universe was

born dense with all stringy degrees of freedom present. To ensure the success of our

scenario, we need to assume a weak attractive force between the orbifold fixed planes

which is generated via some potential V . While the specific form of the potential

is less important for the success of the scenario, the ultimate requirement on V is

to prevent decompactification of the volume. The potential can be generated due to

branes pinned to orbifold fixed planes.

The evolution of the universe has three stages. In the fist stage, the bulk matter

leads to isotropic expansion. Bulk matter consists of stringy degrees of freedom

and specifically p-branes. This pre-inflationary expansion [1, 2] is responsible for

12



a large inter brane separation and volume of the internal space. As the universe

expands, the energy density stored in the gas of p-branes gets diluted until a weak

attractive force generated by the potential V comes into play and changes the overall

dynamics. The second stage is the process of contraction of the extra dimensions

while our dimensions continue to expand (and even inflate). In our scenario, the

volume modulus is identified with the interbrane separation. Thus, the contraction

potential V plays an important role in the overall volume stabilization. Once the

extra dimensions shrink down to a small scale, moduli trapping [37, 38, 39, 40] and

pre-heating [41, 42, 43, 44, 45, 46] occurs. This is the third stage of the process which

is followed by the epoch of BBC.

The evolution of the d+4 dimensional Universe is governed by the Einstein equa-

tions. Let Gab be the metric for the full space-time with coordinates Xa. The line

element of spatially flat but anisotropic universe is

ds2 = GabdX
adXb = dt2 − a(t)2dx2 − b(t)2dy2 , (1.30)

where x denotes the three coordinates parallel to the orbifold fixed planes and y

denotes the coordinates of the d perpendicular directions. The action of the Universe

is described by

S =

∫
dd+4X

√
− detGab

{
1

16πGd+4
Rd+4 + L̂M

}
, (1.31)

where Rd+4 is the d + 4 dimensional Ricci scalar and L̂M is the matter Lagrangian

density with the metric determinant factored out. In the first stage the dominant

component of the Lagrangian is the bulk matter perfect fluid with equation of state

P = wρ (1.32)

where P is the pressure and ρ is the energy density. For p-branes,

w = − p

3 + d
. (1.33)

The universe is isotropic,

a(t) = b(t) ∝ t2/(3+d−p) . (1.34)
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The bulk energy density gets diluted as

ρ(t) ∼ b(t)−d−3+p . (1.35)

and the expansion lasts until the potential V begins to dominate.

To follow the evolutions of ’our’ three spatial dimensions from the effective four

dimensional point of view, we need to replace the b(t) by a canonically normalized

scalar field ϕ(t) which is related to b(t) through

ϕ = β−1mpl ln(b) , (1.36)

where we have defined

β−1 ≡
√
d(d+ 2)

2
. (1.37)

In terms of ϕ the effective reduced four dimensional action after performing a con-

formal transformation to arrive at the Einstein frame is

S =

∫
d4x

√−g̃μν

{
1

2
mplR4 − 1

2
(∂ϕ)2 (1.38)

+ Ve−dϕ/mplβL̂M

}
,

where

V =

∫
ddy = lds (1.39)

is the coordinate volume of the extra dimensions, and g̃μν is the metric in the Einstein

frame. To simplify the notation, let us define:

L̃ = Ve−dϕ/mplβL̂M . (1.40)

In terms of L̃, the reduced energy-momentum tensor takes the form

T̃μ,ν = ∇̃μϕ∇̃νϕ− 1

2
g̃μ,ν g̃

ρσ(∇̃ρϕ)(∇̃σϕ)− 2
δL̃
δg̃μ,ν

+ g̃μ,νL̃ . (1.41)

Then, the FRW equations read:

H2
E = T̃00 (1.42)

ḢE =
1

2mpl

(T̃00 + T̃11/α
2) (1.43)
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where α is the scale factor of our dimensions in the Einstein frame and HE = α̇/α.

The equation of motion for the field ϕ is

g̃μν∇̃μ∇̃νϕ+
∂L̃
∂ϕ

= 0 (1.44)

The three equations (1.42,1.43,1.44) fully determine the evolution of our three dimen-

sions once L̃ is known.

The scenario [1, 2] adopts the mechanism of stabilization of the shape and volume

moduli through trapping at enhanced symmetry points [37, 38, 39, 40, 47]. In string

gas cosmology (see e.g. [48, 49, 28] for an introduction) the self dual radius serves as

a point at which new degrees of freedom become light (see [40] for a toy model). As

the size of the extra dimensions shrink to the string scale, new massless degrees of

freedom get produced and trap the volume moduli [40]. To introduce the main idea

of moduli trapping at enhanced symmetry point, consider the Lagrangian

L = −1
2
∂μϕ∂

μϕ− 1

2
∂μχ∂

μχ− 1

2
m2ϕ2 − 1

2
g2ϕ2χ2 (1.45)

where χ stands for a light field, ϕ for a modulus, m for the mass of the modulus, and

g for the coupling. Assuming homogeneity, the equations of motion for ϕ and χ are

ϕ̈+m2ϕ+ g2ϕχ2 = 0 (1.46)

χ̈+ g2ϕ2χ = 0 (1.47)

As χ gets produced, the energy density of created particles grows

ρχ ≈ m2
χ〈χ2〉 ≈ g2ϕ2〈χ2〉 (1.48)

where mχ is the effective mass of the χ particles. The number density of the created

particles can be defined as

nχ =
ρχ

mχ

≈ g|ϕ|〈χ2〉 (1.49)

Plugging the expression for 〈χ2〉 into the equations of motion for ϕ,

ϕ̈+m2ϕ = −g2ϕ
nχ

g|ϕ| (1.50)

we see that the backreaction of the created particles generates an attractive force

for the modulus towards the point of enhanced symmetry. Since the force remains

attractive while the modulus oscillates around the point, trapping occurs.
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1.5 Preheating Techniques

The process of reheating precedes the radiation epoch. During reheating the pre-

existing form of energy is converted non-adiabatically into radiation. The reheating

process is model dependent. In inflationary models, as soon as the expansion rate

is smaller than the inflaton decay rate (Γ), the inflaton decays within a time 1/Γ.

However, under certain conditions, which will be reviewed below, inflationary models

admit nonperturbative regimes of inflaton decay, e.g narrow and broad parametric

resonance. We will consider a specific, namely the chaotic inflationary scenario.

In the chaotic inflationary scenario the Lagrangian can take the following form

L = −1
2
∂μϕ∂

μϕ− 1

2
∂μχ∂

μχ− 1

2
m2

ϕφ
2 − 1

2
m2

χχ
2 − 1

2
hφχ2 − 1

2
g2φ2χ2 , (1.51)

where ϕ is the inflaton and mϕ is its mass, χ is the matter field inflaton couples to

and mχ is its mass, g and h are coupling constants.

The equations of motion for ϕ and χ are

ϕ̈ +
(−∇2 +m2

ϕ + g2χ2
)
ϕ+

1

2
hχ2 = 0 , (1.52)

χ̈ +
(−∇2 +m2

χ + hϕ+ g2ϕ2
)
χ = 0 . (1.53)

If ϕ is a homogeneous field, i.e. only the zero mode of ϕ is excited, and the initial

excitations of χ are negligible, then ϕ performs oscillations with frequency m−1
ϕ :

ϕ = Φsin(mϕt) , (1.54)

where Φ is the amplitude of ϕ. The situation described above is common for chaotic

type inflationary models where at the end of inflation Φ ∼Mp.

The nonperturbative process we discuss is the excitation process of the k’th mode

of the quantum field χ. The Heisenberg representation of χ in terms of the creation

(âk) and annihilation (â
†
k) operators of the k’th mode is

χ(x, t) =
1

(2π)(3/2)

∫
d3k

(
âkχk(t)e

−ikx + â†kχ
∗
k(t)e

ikx
)

(1.55)

We plug the above representation for ϕ into the equation of motion for the k’th mode

of χ to obtain

χ̈k + ω2
kχk = 0 . (1.56)
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where

ω2
k = k2 +m2

χ + hΦsin(mϕt) + g2Φ2sin2(mϕt) (1.57)

In the adiabatic approximation the solution of (1.56) can be written in term of

the Bogoliubov coefficients αk(t) and βk(t)

χk(t) =
αk(t)√
2ωk

e−i
R

ωkdt +
βk(t)√
2ωk

ei
R

ωkdt (1.58)

If one chooses as initial conditions the positive-frequency solution, then αk(0) = 1

and βk(0) = 0, and the number density of the created particles is

n(t) =

∫
d3k

(2π)3
nk(t) (1.59)

with

nk(t) = |βk|2(t) = ωk

2

(
|χk|2 + |χ̇k|2

ωk

)
− 1

2
. (1.60)

In order to find explicit solutions for χk, we would like to put the equation (1.72)

into the form of the well known Mathieu equation [50]. For the time being we assume

hΦ� g2Φ2 and introduce a dimensionless variables via

z =
1

2
mφt+

π

4
. (1.61)

The differentiation with respect to z will be denoted by a prime. In this case, the

above equation (1.72) takes the form

χ′′k + (Ak − 2q cos 2z)χk = 0 , (1.62)

where

Ak = 4
k2 +m2

χ

m2
φ

q = 2
hΦ

m2
φ

. (1.63)

The behavior of (1.62) is well known [50] and is illustrated in Fig. 1.5. The analytic

investigation is about to follow.
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Figure 1.5: The instability chart of the Mathieu equation. The shaded regions corre-

spond to unstable solutions. From Ref. [50]

1.5.1 Narrow Parametric Resonance

Small values of q � 1 fall in the domain of narrow resonance. In this case the solution

can be found analytically [51, 52]. The most important contribution for χk comes

from the 1’st instability band Ak ∈ [1− q, 1 + q]. The resonance band is centered at

km =
mφ

2
(1− 4m2

χ

m2
φ

)1/2 . (1.64)

with the width

Δk ≈ mφq

2
. (1.65)

All modes which fall into the band get excited with the amplitude

χk(t) ∝ e2μkz (1.66)

where μk is the Floquet index

μk =

√√√√(q
2

)2

−
(
2
√
k2 +m2

χ

mϕ
− 1

)2

. (1.67)

The number density of the created particles with momenta k grows exponentially,

nk ≈ e8μkmϕt . (1.68)
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Hence, the total number density is

n(t) =

∫
d3k

(2π)3
e8μkmϕt ≈ Δk

(2π)3
k2

me
4qmϕt ≈ hΦmϕ

(2π)3
e8hΦt/mϕ . (1.69)

Since the energy density is conserved the number density of the ϕ field decreases.

If the quartic term in (1.57) is more important then the cubic one, we have

z = mϕt

Ak =
k2 +m2

χ

m2
φ

+ 2q

q = 2
g2Φ2

4m2
φ

. (1.70)

and the calculation (1.69) is adjusted accordingly. The process described above is

equivalent to the decay of a ϕ particle with mass mϕ into two particles with energy

mϕ/2 which is exactly what happens in perturbative decay. The main difference is

that the narrow parametric resonance is a nonperturbative process and only particles

with certain momenta get excited.

The above discussion does not take into account the expansion of the universe. In

the expanding universe, the energy density of ϕ red-shifts as matter

ρϕ =
1

2
m2

ϕΦ
2 ∝ a−3 . (1.71)

Therefore, the value of q reduces with time and eventually the perturbative decay

rate Γ dominates. In addition, the equation of motion for χk acquires an additional

frictional term

χ̈+ 3Hχ̇+ ω2
kχ = 0 . (1.72)

The friction dilutes the k’th mode

χk ∝ e−3Ht . (1.73)

Hence, one has to compare the dilution of the k’th mode due to expansion with

its growth due to narrow parametric resonance. We can establish the condition for

efficiency of narrow parametric resonance in the expanding universe for

qmϕ > max (H,Γ) (1.74)
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In the expanding universe the physical momentum p red-shifts as a−1, namely

p = k/a, where k is the co-moving momentum. In a time interval Δt, assuming

mχ < mφ/4, the change in the physical momentum corresponding to the middle of

the lowest resonance band (km) is

Δp = pHΔt � mφ

2
HΔt . (1.75)

Comparing the expression to the width of the resonance band (1.65) we infer that p

remains in the resonance band during the time interval

Δt � qH−1 . (1.76)

To justify neglecting the expansion of space, we must require that the exponent the

growth factor (1.66) is at least 1 during this time interval. This leads to a more severe

constraint on q comparing to (1.74):

q2mφ > H . (1.77)

For cubic interactions the condition (1.77) translates to

h2mp

m4
ϕ

>
1

Φ
∝ t . (1.78)

Therefore, the narrow resonance decay channel eventually shuts off. The same con-

dition for quartic interactions reads

g4mp

m4
ϕ

>
1

Φ3
∝ t3 , (1.79)

and the resonance shuts off even faster.

Along with excitations of the modes in the 1’st resonance band Ak ∈ [1− q, 1+ q],
modes with Ak < 2q are excited as well via the process of tachyonic resonance (see

instability chart in Fig. 1.5). Tachyonic resonance is named after the fact that, during

part of the oscillation period, χk has a negative squared mass. Another glance at the

definitions (1.63, 1.70) reveals that tachyonic resonance occurs only if cubic terms are

dominant. During tachyonic resonance, excitations of χk roughly grow as

χk ∝ e
√

2q−Akz . (1.80)
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All modes with

k <
√
hΦ (1.81)

are excited. Hence, the physical momentum cannot redshift out of the tachyonic

resonance band and the efficiency condition in the expanding universe reads

√
qmϕ > H (1.82)

or equivalently √
hmp

mϕ
>
√
Φ ∝ t−1/2 . (1.83)

As can be seen from the instability chart of the Mathieu equation, tachyonic resonance

shuts off once q = 1/2.

1.5.2 Broad Parametric Resonance

For large q values, particles are created in the broad resonance regime. The analytic

theory of the broad resonance was first proposed in [43, 44]. At the onset of oscillations

the amplitude of the inflaton can be large, e.g. as in the chaotic inflation model where

ϕ ∼Mp/10 , mϕ ∼ 10−6Mp and

q =
g2Φ2

4m2
ϕ

∼ g21010 � 1 . (1.84)

As ϕ crosses zero, the adiabatic condition∣∣∣∣ ω̇k

ω2
k

∣∣∣∣ < 1 (1.85)

is violated, allowing the nonperturbative particle production. Notice that for small

values of ϕ, ϕ̇ = mϕΦ. Thus, for the quartic interaction, the condition (1.85) is

satisfied for a wide range of momenta

k2 ≤ (g2ϕmϕΦ)
2/3 − g2ϕ . (1.86)

This window opens up as soon as ϕ drops below
√
mΦ/g and particles with typical

momentum k =
√
gmϕΦ is produced.

The field ϕ crosses zero at tj =
jπ
mϕ
. The tj are points of time at which creation

of particles is concentrated. While t is far from these points the adiabatic condition
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holds. To study equation of motion (1.56) near the moments of particle production,

let us expand the frequency ω near the points tj as

ω2
k(t) = ω2

k(tj) +
1

2
ω̈2

k(tj)(t− tj)
2 (1.87)

and make the change of variables

τ ≡ [2ω̈2(tj)]
1/4(t− tj) , (1.88)

κ2 ≡ ω2
k(tj)√
2ω̈2(tj)

=
k2 +m2

χ

2gmϕΦ
. (1.89)

In the new variables the equation (1.72) becomes

d2χk

dτ 2
+

(
κ2 +

τ 2

4

)
χk = 0 (1.90)

which can be viewed as a Schrödinger equation for a wave function scattering in an

inverted parabolic potential. The solutions of (1.90) are well known [53]: they are

parabolic cylinder functions, W (−κ2,±τ). In particular, after the first scattering (no
previous particles are present)

nk = e−2πκ2

. (1.91)

Later on, the number density is growing exponentially, nk ∼ e2μkz with typical Floquet

exponent μ ≈ 0.175 [44].

1.6 The Cosmological Moduli Problem

Nowadays, the predictions of the SM are tested to a high degree of precision. How-

ever, some phenomena remain unexplained. The origin of dark matter, neutrino

masses and dark energy demands physics beyond the SM. Components of models

beyond the SM may not only provide the necessary explanation of the phenomena

they are invited to explain but they also pose new problems. The cosmological mod-

uli problem [54, 55, 56, 57] is one of them. Moduli are weakly coupled scalar fields.

The cosmological moduli problem arises if the moduli are overproduced in the early

universe and threaten to spoil the success of the BBC scenario.
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Consider a modulus φ with mass mφ and a potential of the form

V (φ) =
1

2
m2

φφ
2 . (1.92)

In the expanding universe, the moduli slowly roll until the Hubble rate, H , drops

below the mass, mφ and, thus, they start to oscillate. During oscillations the energy

density of the moduli redshifts as a matter field ρφ ∝ a−3 while the energy density

in radiation redshifts as ρr ∝ a−4. Hence, an initially radiation dominated universe

might become overclosed by the oscillations of the moduli. The typical decay rate

Γall of a scalar φ with only gravitational strength couplings is

Γall ∼ 1

4π

m3
φ

m2
p

. (1.93)

The reheating temperature of the universe TR ≈
√
mpΓall is below the scale when

Nucleosynthesis takes place unless the moduli are heavier than ∼ 100TeV . Even

if the initial energy density of moduli is low enough not to overclose the universe

upon their decay, the decay products of moduli threaten to spoil the success of BBN

or overproduce dark matter components. In particular, hadronic or radiative decay

of moduli can significantly affect the primordial abundances of the light elements.

There are stringent constraints on the abundance of moduli coming from the non-

thermal production of D, 3He and 6Li [58, 59]. The range of moduli masses which

are dangerous for cosmology is model dependent but typically is between 10 eV and

100 TeV. The long lived fermions have similar constraints from cosmology as the

moduli fields discussed above. The best known example of a long lived fermion is the

gravitino, a component of the supergravity multiplet.

Supersymmetric or supergravity extensions of the SM are considered to be among

the most promising candidates to explain new physics. They are also a major source

of moduli, fields which have flat potentials in the supersymetric limit and are only

weakly coupled to the SM particles. Another source of moduli are compactifactions

in string theory which yield volume and shape moduli. Moduli obtain masses during

the process of supersymmetry breaking. There are many scenarios of supersymmetry

breaking, among them gravity and gauge mediation scenarios are a natural source of

weakly coupled moduli with masses in the dangerous range.
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Consider for example the Polonyi model [60] which is one of the classical examples

of gravity mediated supersymmetry breaking. The description of the Polonyi model

presented here closely follows [61]. There are hidden and visible sectors. The hidden

sector proposed by Polonyi contains only one chiral multiplet (φp, χp), which has the

following superpotential

Wp = μ2(φp + ω) , (1.94)

where μ and ω are parameters which will be determined by phenomenological require-

ments later on. In additional, we adopt the simplest Kähler potential

K = φ∗pφp . (1.95)

Hence, the combined superpotential of the theory is

W =WP +Wobs (1.96)

where Wobs stands for the superpotential of the observable sector and doesn’t depend

on φp. Calculations of the interaction potential between φp and fields in the observable

sectors show that all mutual interactions are Planck suppressed [61].

The auxiliary field Fp is given by

Fp ≡ eK/(2m2
p)2Dφ∗

p
W ∗

p (1.97)

≡ eK/(2m2
p)2

{
∂W ∗

p

∂φ∗p
+

1

m2
p

∂K

∂φ∗p
W ∗

p

}
(1.98)

= μ2

{
φp

m2
p

(φp + ω) + 1

}
eφpφ∗

p/2m2
p (1.99)

Fp is the supersymmetry breaking parameter. Since no solution to the equation

Fp = 0 exists, supersymmetry is spontaneously broken. Making the requirement of

zero cosmological constant at the minimum of the potential (〈V 〉 = 0) for φp

V = eK/m2
p

{
|DφpWp|2 − 3

m2
p

|Wp|2
}
, (1.100)
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we determine the following set of parameters

ω = (2−
√
3)mp (1.101)

〈φ〉 = (
√
3− 1)mp (1.102)

〈Wp〉 = μmp (1.103)

〈Fp〉 =
√
3 e2−

√
3μ2 . (1.104)

The Super-Higgs mechanism provides the gravitino with a mass

m3/2 = 〈eK/(2m2
p)2Wp

m2
p

〉 . (1.105)

Hence,

m3/2 = e2−
√

3 μ
2

mp
. (1.106)

Further, plugging φp = (
√
3− 1)mp +

1√
2
(φ1 + iφ2) into the potential (1.100), we can

determine the masses of the excitations φ1 and φ2

mφ1 = 2
√
3m2

3/2 and mφ1 = (4− 2
√
3)m2

3/2 . (1.107)

The masses of squarks and sleptons are related to the mass of the gravitino. For

example, in models with minimal kinetic term, the following (tree level) super-trace

formula among the mass matrixes M2
j ’s holds:

StrM2 ≡
∑
spinJ

(−1)2J(2J + 1)trM2
j ≈ 2(n− 1)m2

3/2 (1.108)

where n stands for the number of the chiral multiplets in the spontaneously broken

local SUSY model. In this case, all the SUSY breaking masses of squarks and sleptons

are of order of the gravitino mass. Therefore, in order to obtain an interesting phe-

nomenology, one struggles to keep the gravitino mass around TeV scale. The relation

between the supersymmetry breaking parameter F and gravitino mass is determined

by the requirement of zero cosmological constant. Roughly speaking, 〈V 〉 = 0 leads

to

〈F 〉 < 〈W
mp

eK/2m2
p〉 ∼ O(m3/2mp) . (1.109)
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This is the relation we obtained in the Polonyi model. The phenomenological require-

ment to keep gravitino mass around TeV scale determines the scale
√
Fp or the μ

parameter around ∼ 1011 GeV.

The Polonyi model is an example of a model which has weakly coupled scalars

with the mass of order the gravitino mass. In fact, this is the situation in a variety

of supergravity mediation models [62]. The ”Polonyi field”, φp is an example of a

modulus. During inflation, quantum fluctuations of a scalar field φ with the effective

mass meff << H yield a variance of φ growing as [63]

〈φ2〉 ≈ 3H4

8π2m2
φ

(1− e−(2m2/3H2)t) , (1.110)

while if meff >> H the variance goes as

〈φ2〉 ≈ H3

12π2m
. (1.111)

Hence, we see that if the effective mass of the moduli during inflation is substantially

lower that the inflation scale, the vacuum expectation value of the moduli can be

of the order of the Planck scale. Even in the case of large effective mass during

inflation, the offset of the high and low temperature minima usually is of the order

of the Planck scale and one generically expects moduli to acquire large expectation

values at the end of inflation. The large expectation values of moduli fields give rise

to the cosmological moduli problem as discussed above.

While moduli with mass above 100 TeV decay before BBN, their decay products

still may be dangerous for cosmology. In particular, the large branching ratio of the

modulus decay into gravitinos may result in the overproduction of gravitinos [64, 65].

Consider the part of the Lagrangian describing the gravitino-modulus couplings in

the unitary gauge in the Einstein frame

e−1L = −1
8
εμνρσ(Gφ∂ρφ+Gφ†∂ρφ

†)ψ̄μγνψσ (1.112)

−1
8
eG/2(Gφφ+Gφ†φ†)ψ̄μ[γ

μ, γν ]ψν (1.113)

where ψμ stands for the gravitino and Gi is a derivative with respect to the field i of

the

G = K/M2
p + ln(|W |2/M6

p ) . (1.114)
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K and W are the Kähler potential and superpotential, respectively. Based on these

couplings, the perturbative decay rate of the real and imaginary components of the

moduli φ, φR and φI , into gravitinos is

Γ3/2 ≡ Γ(φR,I → 2ψ3/2) ≈ |Gφ|2
288πKφφ†

m5
φ

m2
3/2M

2
p

. (1.115)

where Kφφ† is the Kähler metric and the calculations are done in the limit mφ � m3/2

after the canonical normalization φ̂ =
√
Kφφ†φ.

The dimensionless auxiliary field of the modulus φ, Gφ, in general, can be small

to suppress Γ3/2 relative to the total decay rate Γall (6.1). However, suppressed Gφ is

not the typical case. For example, in the framework of 4D supergravity, Gφ obtains

a minimal value ∼ m3/2/mφ. The statement follows from the requirement that the

potential (1.100) at the minimum should vanish. In terms of G, the potential (1.100)

takes the form

V = m4
pe

G(GiGi − 3) (1.116)

where Gi = K−1
ij∗Gj∗. The constraint of having zero cosmological constant requires

that at least one of the Gi ∼ 0(1). For value of Gφ to be much less than 1, we need

to introduce a hidden sector field Z for which Gz ∼ 0(1). To derive the lower bound

on Gφ, we minimize the potential in the φ direction, Vφ = ∂V/∂φ = 0 which leads to

Gi
(
Giφ −Kij∗φK

−1
ij∗Gi

)
+Gφ = 0 . (1.117)

Carefully estimating the contributions to (1.117), we arrive at [64] GφGφφ ∼ O(1).
In the limit mφ � m3/2, Gφφ ∼ Wφφ/W ∼ mφ/m3/2 where mφ = 〈eK/2K−1

ij∗Wφφ〉,
and, hence, Gφ ≥ m3/2/mφ. Since the typical value of Kφφ∗ is of the order one, the

branching ratio Br3/2 = Br(φR,I → 2ψ3/2) ∼ O(0.01− 1).

On the other hand, the abundance of the unstable gravitino is severely constrained

not to jeopardize Nucleosynthesis or overproduce the lightest supersymmetric parti-

cles. The stable gravitino is constrained by the dark matter abundance. For example,

the constraint from the overproduction of 3He [58, 59] yields

m3/2Y3/2 < O(10−14 ∼ 10−11) GeV . (1.118)
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where Y3/2 is the gravitino yield. The gravitino yield is defined as following

Y3/2 ≡
n3/2

s
=
n3/2

nφ

3

4

TR

mφ
(1.119)

where n3/2 and nφ are, respectively, the number densities of gravitino and moduli

particles,

TR =

(
π2g∗
90

)−1/4 √
mpΓall ≈ 5.5 ∗ 10−6GeV

( mφ

103GeV

)3/2

. (1.120)

Each moduli particle can decay to two gravitino particles. Hence, n3/2/nφ ≈ 2Br3/2.

In terms of Br3/2, the relative gravitino abundance is

m3/2Y3/2 =
3

2
B3/2

TR

mφ
m3/2 . (1.121)

In order to satisfy the constraint (1.118), the branching ratio of moduli into gravitinos

cannot exceed

Br3/2 < O(10−6 ∼ 10−3)

(
1GeV

m3/2

)
. (1.122)

In Chapters 5 and 6 of this thesis, a partial resolution of the moduli problem is

investigated. In Chapter 5 we consider nonperturbative decay (see Chapter 1.5) of

the moduli to prevent moduli from dominating the energy density of the universe.

Specificallly, we consider trilinear couplings of moduli to another scalar field χ which

is strongly coupled to SM degrees of freedom. Hence, the transfer of energy into χ

is equivalent to the transfer of energy into radiation. In Chapter 6, we investigate

the problem of large branching ratios of heavy moduli into gravitinos. We again use

triliniar couplings of moduli to an additional scalar field χ in order to show that large

Br3/2 does not pose a problem if the moduli undergo nonperturbative decay into χ. 1

1Further research is required for a successful implementation of the proposal into an explicit

particle model. In particular, one of the expected problems in this direction is the mass of the χ in

Chapter 5, which is required to be much smaller than the expected mass of the new yet undiscovered

particles.
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Chapter 2

The Confining Heterotic Brane

Gas: A Non-Inflationary Solution

of the Entropy and Horizon

Problems of Standard Cosmology

We propose a mechanism for solving the horizon and entropy problems of standard

cosmology which does not make use of cosmological inflation. Crucial ingredients

of our scenario are brane gases, extra dimensions, and a confining potential due to

string gas effects which becomes dominant at string-scale brane separations. The

initial conditions are taken to be a statistically homogeneous and isotropic hot brane

gas in a space in which all spatial dimensions are of string scale. The extra dimensions

which end up as the internal ones are orbifolded. The hot brane gas leads to an initial

phase (Phase 1) of isotropic expansion. Once the bulk energy density has decreased

sufficiently, a weak confining potential between the two orbifold fixed planes begins to

dominate, leading to a contraction of the extra spatial dimensions (Phase 2). String

modes which contain momentum about the dimensions perpendicular to the orbifold

fixed planes provide a repulsive potential which prevents the two orbifold fixed planes

from colliding. The radii of the extra dimensions stabilize, and thereafter our three
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spatial dimensions expand as in standard cosmology. The energy density after the

stabilization of the extra dimensions is of string scale, whereas the spatial volume has

greatly increased during Phases 1 and 2, thus leading to a non-inflationary solution

of the horizon and entropy problems. 1

2.1 Introduction

The Inflationary Universe scenario [18] (see also [66, 67, 68]) has been extremely

successful phenomenologically. It has provided a solution to some of the key prob-

lems of standard cosmology, namely the horizon and flatness problems, and yielded a

mechanism for producing primordial cosmological perturbations using causal physics,

a mechanism which predicted [20, 19] (see also [69, 66]) an almost scale-invariant

spectrum of adiabatic cosmological fluctuations, a prediction confirmed more than a

decade later to high precision by cosmic microwave background anisotropy experi-

ments [10, 11, 12, 13].

In this Chapter, we will pay special attention to the “entropy problem” of standard

cosmology [18]. The problem consists of the fact that without accelerated expansion

of space, it is not possible to explain the large entropy, size and age of our current

universe without assuming that at very early times the universe was many orders of

magnitude larger than would be expected on dimensional arguments.

In the inflationary scenario, the entropy problem is solved by postulating a suf-

ficiently long period of accelerated expansion, after which the universe reheats to a

temperature comparable to that prior to the onset of the period of acceleration. In

most models of inflation, the accelerated expansion of space is sourced by the poten-

tial energy of a slowly rolling scalar field. Such models, however, are subject to serious

conceptual problems (see e.g. [6, 70] for recent overviews of these problems). Most

importantly, the source of the acceleration is very closely related to the source of the

1The homogeneity and isotropy problems is addressed as well in the chapter. A long period of

expansion allows the region corresponding to our current Hubble radius to be in a causal contact

and, hence, to solve the problems.
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cosmological constant in field theory, a constant which is between 60 and 120 orders

of magnitude larger than the maximal value of the cosmological constant allowed by

current observations. Because of the existence of these conceptual problems, it is of

great importance to look for possible alternatives to scalar field-driven inflationary

cosmology.

There have been various suggestions for alternative cosmologies. In varying speed

of light models [71, 72], postulating the existence of a period in the early universe

during which the speed of light decreased very fast leads to a solution of the horizon

problem. In the “Pre-Big-Bang scenario” [23], the Universe is born cold, flat and

large, undergoes a period of super-exponential contraction before emerging into the

period of radiation-dominated expansion of standard cosmology. The contracting

phase and the expanding phase are related via a duality of string theory, namely

“scale-factor duality”. In a more recent cosmological scenario motivated by heterotic

M-theory [73], namely the “Ekpyrotic scenario” [24], the collision of a bulk brane

onto our boundary orbifold fixed plane generates a non-singular expansion of our

brane. However, neither the Pre-Big-Bang nor the original Ekpyrotic scenario can

explain why our Universe is so large and old (without assuming that the Universe is

already much larger than would be expected by dimensional arguments at the end

of the phase of contraction (see e.g. [74, 75]) (this problem is avoided in the “cyclic

scenario” [76], a further development of ideas underlying the Ekpyrotic scenario, but

this is achived at the cost of additional ad hoc assumptions about the cosmological

bounce). The size problem has so far also prevented the “string gas cosmology”

scenario [77, 78] (see e.g. [79, 28] for recent reviews) from making contact with

late time cosmology, although a stringy mechanism for producing a scale-invariant

spectrum of cosmological perturbations does exist in this context [80].

In this Chapter, we present a potential solution of the entropy problem which

does not make use of a period of accelerated expansion. Our solution makes use

of several ingredients from string theory: extra spatial dimensions, the existence of

branes and orbifold fixed planes as fundamental extended objects in the theory, and

a stringy mechanism for stabilizing the shape and volume moduli of string theory
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via the production of massless string states at enhanced symmetry points in moduli

space. Thus, it is possible that our mechanism will find a natural realization in string

theory.

2.2 Overview of the Model

Our starting point is a topology of space in which all but three spatial dimensions are

orbifolded, and the three dimensions corresponding to our presently observed space

are toroidal. Specifically, the space-time manifold is

M = R× T 3 × T d/Z2 , (2.1)

where T 3 stands for the three-dimensional torus, and d is the number of extra spatial

dimensions, which we will take to be either d = 6 in the case of models coming from

superstring theory, or d = 7 in the case of models motivated by M-theory. We will

assume that there is a weak confining force between the orbifold fixed planes 2.

As our initial conditions, we take the bulk to be filled with an isotropic 3 gas of

branes, as in the studies of [83, 84, 85]. These studies show that, in the context of

Type IIB superstring theory, the bulk of the energy density will end up in three and

possibly seven branes. However, if the initial Hubble radius is large relative to the size

of space, there will be no residual seven branes. In the case of heterotic string theory

or taking the starting point to be M-theory, we would be dealing with Neveu-Schwarz

5-branes.

Assuming that the universe starts out small and hot, it is reasonable to assume

that the energy density in the brane gas will initially be many orders of magnitude

2It may be necessary to have branes pinned to the orbifold fixed planes in order to induce such

a potential. Our approach, at this stage, is purely phenomenological, and we simply postulate the

existence of a potential with the required properties

3Note that the orbifolding will prohibit the existence of certain branes along certain of the dimen-

sions and will thus lead to a breaking of the condition of isotropy. The details are fairly model-specific

and will be discussed in a followup paper. The bottom line, however, is that the noninflationary

bulk expansion of the first phase in all directions remains a valid conclusion.
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larger than the potential energy density generated by the force between the orbifold

fixed planes. Thus, initially our universe will be expanding isotropically. We denote

this as Phase 1. Our key observation is that in this phase, the energy density projected

onto the orbifold fixed planes does not decrease. The reason is that the tension energy

of the p-branes increases as a(t)p, where here a(t) is the bulk scale factor. The volume

parallel to the orbifold fixed planes is increasing as a(t)3, and hence the projected

energy density does not decrease (it is in fact constant in the case of 3-branes).

During Phase 1, the bulk energy density will decrease. Hence, eventually the inter-

orbifold potential will begin to dominate. At this point, the cosmological evolution

will cease to be isotropic: the directions parallel to the orbifold fixed planes will

continue to expand while the perpendicular dimensions begin to contract. We denote

this phase as Phase 2.

Once the orbifold fixed planes reach a microscopic separation, a repulsive potential

due to string momentum modes becomes important (one example is the production

of massless states at enhanced symmetry points [40, 39]). The interplay between this

repulsive potential which dominates at small separations and the attractive potential

which dominates at large distances, coupled to the expansion of the three dimensions

parallel to the orbifold fixed planes, will lead to the stabilization of the radion modes

at a specific radius (presumably related to the string scale). In the context of heterotic

string theory, we could use the string states which are massless at the self-dual radius

to obtain stabilization of the radion modes at the self-dual radius [38, 47] (see also

[37]). These modes would also ensure dynamical shape moduli stabilization [89]. We

denote the time of radion stabilization by tR since this time plays a similar role to the

time of reheating in inflationary cosmology. The branes decay into radiation either

during or at the end of Phase 2. This brane decay is the main source of reheating of

our three dimensional space.

After the radion degrees of freedom have stabilized at a microscopic value which

presumably is set by the string scale, the three spatial dimensions parallel to the

orbifold fixed planes will continue to expand. The energy density which determines

the three-dimensional Hubble expansion rate is the projected energy density ρp, i.e.
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the bulk energy density integrated over the transverse directions. The key point is

that during Phase 1, ρp does not decrease. If the bulk is dominated by 3-branes, ρp is

constant, if it is dominated by 5-branes, ρp in fact increases. In Phase 2, the projected

energy density ρp also remains constant if the bulk is dominated by 3-branes, modulo

the conversion of brane tension energy into radiation as the bulk branes decay or are

absorbed by the fixed planes. If we approximate the evolution by assuming that all

of the brane tension energy converts to radiation at the time of radion stabilization,

then the value of ρp at tR, which is the energy density which determines the evolution

of the scale factor of our three spatial dimensions after tR, is equal to the projected

energy density at the initial time, which we take to be given by the string scale 4. If

the branes decay during Phase 2, then the projected energy density at tR is larger than

the initial value, in which case we may be driven to a Hagedorn phase of string theory.

The main point, however, it that since the volume of our three spatial dimensions

has been expanding throughout Phases 1 and 2, the horizon and entropy problems of

standard cosmology can easily be solved by simply assuming that the phase of bulk

expansion lasted sufficiently long (numbers will be given later).

Note that we are assuming in this paper that the dilaton has been stabilized by

some as yet unknown mechanism. In this case, the equations of motion of the bulk

are those of homogeneous but anisotropic general relativity. The metric is in this case

given by

ds2 = dt2 − a(t)2dx2 − b(t)2dy2 , (2.2)

where x denote the three coordinates parallel to the boundary planes and y denote the

coordinates of the perpendicular directions. In the case of d extra spatial directions

4We assume that initial radii and densities are all set by the string scale, i.e. we introduce no

unnaturally small or large numbers.
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the equations of anisotropic cosmology are 5

ä + ȧ
(
2H + dH)

(2.3)

= 8πGa
[
P − 1

3 + d− 1
(3P + dP̃ ) +

1

3 + d− 1
ρ
]
,

b̈ + ḃ
(
3H + (d− 1)H)

(2.4)

= 8πGb
[
P̃ − 1

3 + d− 1
(3P + dP̃ ) +

1

3 + d− 1
ρ
]
,

and

(3H + dH)2 − 3H2 − dH2 = 16πGρ , (2.5)

where H ≡ ȧ/a, H ≡ ḃ/b are the expansion rates of the parallel and perpendicular

dimensions, respectively, ρ is the bulk energy density and P and P̃ are the parallel

and perpendicular pressures, respectively.

2.3 The Phase of Bulk Expansion

During the phase of bulk expansion, the two scale factors coincide, P = P̃ , and both

equations (2.3) and (2.4) reduce to

ä

a
+ (2 + d)

( ȧ
a

)2
=

8πG

3 + d− 1

[
ρ− P

]
. (2.6)

Making use of the equation of state P = wρ, and inserting (2.5), the dynamical

equation (2.6) becomes

ä

a
+ (2 + d)

( ȧ
a

)2
=

1

2
(3 + d)(1− w)

( ȧ
a

)2
, (2.7)

which leads to power law expansion

a(t) ∼ tα (2.8)

5In the following treatment we omit inter-brane potential contribution during the phase of ex-

pansion and the contribution of the bulk matter during the stages of contraction. The full treatment

should include both contributions simultaneously (See, for example, [86, 87]) The work in this di-

rection is in progress. [88]
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where the value of α depends on the equation of state:

α =
2

(3 + d)(1 + w)
. (2.9)

If the bulk energy is dominated by the tension of p-branes, then we have

w = − p

3 + d
. (2.10)

In the example motivated by perturbative Type IIB superstring theory, namely d = 6

and p = 3 we obtain

a(t) ∼ t2/(3+d−p) = t1/3 . (2.11)

What is important for us is that this is not accelerated expansion. Starting with

heterotic string theory, we would have d = 6 and p = 5 and for M-theory we would

take d = 7 and p = 5. These two cases lead to faster expansion rates, namely α = 1/2

in the former case and α = 2/5 in the latter.

2.4 The Phase of Orbifold Contraction

If we want the expansion which takes place in this initial phase to solve the size

and horizon problems of standard cosmology independent of any further expansion

during Phase 2, then the effective four dimensions scale factor, which is defined by

abd/2 needs to increase by a factor F of at least

F ∼ 1030 . (2.12)

This result comes about by demanding that the predicted radius of the universe

evaluated at the present temperature be greater than the presently observed Hubble

radius, i.e. greater than 1042GeV−1, by taking the density at the time tR to be given

by the string scale which we take to be 1017GeV, and taking into account that the scale

factor in standard cosmology increases by a factor of about 1029 between when the

temperature is of string scale and today. Correspondingly, the radiation temperature

of the bulk will decrease by the same factor F .
We now assume the existence of a confining potential V between the orbifold fixed

planes. In order to generate such a non-vanishing potential, we will need to assume
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that branes are stuck to the orbifold fixed planes. In terms of the distance r = lsb

between these planes (ls being the string length), a typical confining potential is

V (r) = μrn = μ(lsb)
n, (2.13)

where n is an integer, μ ≡ Λd+n+4, and Λ is the typical energy scale of the potential.

As we will show below, a value n ≥ √
d(d+ 2) + d is required for our scenario to

work.

The presence of this potential will lead to a transition between the phase of

isotropic expansion to a phase in which the extra dimensions contract while the

dimensions parallel to the fixed planes keep on expanding (and we will verify below

that the expansion is not inflationary). The transition between Phase 1 and Phase

2 takes place when the bulk energy density and the inter-brane potential become

comparable. The bulk energy density in Phase 1 scales as

ρb(t) ∼ b(t)−d−3+p (2.14)

(recall that in this phase a(t) = b(t)). Assuming that the initial bulk energy density

is set by the string scale, and using the result (2.11), it follows that in order for the

bulk to have expanded by the factor of (2.12), the upper bound on Λ should satisfy:

Λ ∼ l−1
s 10−60 d−p+3+n

(d+4+n)(d+2) . (2.15)

For example, in the case d = 6, p = 3, and n = 14 we obtain

Λ ∼ l−1
s 10−5.31 ∼ 1011GeV . (2.16)

For d = 6 and p = 5 the result is Λ ∼ l−1
s 10−45/8 ∼ 1010GeV.

We will analyse the evolution during Phase 2 using a four-dimensional effective

field theory, where we replace the radion b(t) by a scalar field ϕ(t). In order that ϕ be

canonically normalized when starting from the higher dimensional action of General

Relativity, ϕ and b must be related via (see e.g. [28], Appendix A)

ϕ = mpl

√
d(d+ 2)/2log(b) , (2.17)
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where mpl is the four-dimensional Planck mass. If the bulk size starts out at the string

scale, then b(ti) = 1, where ti is the initial time. With these normalizations, ϕ = 0

corresponds to string separation between the branes. In terms of ϕ, the potential

(2.13) then induces an effective potential for ϕ:

Veff (ϕ) = μl(n+d)
s eñϕ/mpl , (2.18)

where ñ = (n − d)
√
2/(d(d+ 2)). Note that the original bulk potential needs to

be multiplied by the area of the orbifold fixed plane in order to obtain the effective

potential for ϕ, Veff (ϕ). There is also a factor of b−2d coming from converting to

the Einstein frame (see e.g. [28], Appendix A). The equation of motion for ϕ then

becomes

ϕ̈+ 3Hϕ̇ = −ñμl
(n+d)
s

mpl

eñϕ/mpl (2.19)

with

H2 =
1

3m2
pl

[ϕ̇2

2
+
μl

(n+d)
s

mpl
eñϕ/mpl

]
(2.20)

During Phase 2, the scale factor a(t) of the three spatial dimensions parallel to the

orbifold fixed planes will expand according to the usual four space-time dimensional

cosmological equations, where matter is dominated by the scalar field ϕ. The solution

of the equations of motion (2.19 and 2.20) in the cases ñ = 1 and ñ = 2 is given by

ϕ =
mpl

ñ
ln
2m2

pl(6− ñ2)

ñ4μls
(n+d)t2

(2.21)

The corresponding values of the equation of state parameter are

w̃ =
ñ2 − 3

3
. (2.22)

For ñ = 1 this equation of state corresponds to an accelerating background, but

for ñ2 = 2 the background evolution is non-accelerating. In fact, as ñ grows one can

easily show that the usual inflationary slow-roll conditions are grossly violated. Thus,

for a value of ñ2 ≥ 2 or equivalently n ≥ √
d(d+ 2) + d the evolution of a(t) during

this phase will be non-inflationary.

Taking into account the bulk expansion during Phase 1 of (2.12), it follows that

for d = 6 and p = 3 the initial value of ϕ is about 69mpl. The exponential form of
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the potential will lead to a rapid collapse of the extra dimensions. To estimate the

time scale of the decrease, we replace the source of the right hand side of (2.19) by

its initial value and estimate the time interval Δt for ϕ to decrease by an amount

mpl. We find that this time interval equals the initial Hubble time. Thus, a rough

estimate of the duration of Period 2 is 102H−1.

2.5 Modulus Stabilization and Late Time Cosmol-

ogy

The next crucial step in our scenario is to invoke a mechanism to stabilize the radius

of the extra dimensions at a fixed radius. Such modulus stabilization mechanisms

have recently been extensively studied both in the context of string theory models of

inflation (see e.g. [33] for recent reviews) and in string gas cosmology [90]. We will

make use of the mechanism developed in the latter approach.

String modes which carry momentum about the extra dimensions will generate

an effective potential for the radion which is repulsive. These repulsive effects will

dominate for values of the radion smaller than the self-dual radius. Since these modes

are very light at large values of the radion, it is likely that they will be present in

great abundance. Even if they are not, the subset of such modes which are massless

at enhanced symmetry points will be copiously produced when the value of the radion

approaches such points [40, 39] 6. The induced potential will lead to a source term

in the equation of motion for the scale factor b(t) which is of the form [38, 47]

b̈+ 3Hḃ = 8πGn(t)
[(1
b

)2 − b2
]
+ ... , (2.23)

where the dots indicate extra source terms from other string modes, as well as terms

quadratic in ḃ. Note that n(t) is given by the number density of the modes. Trans-

lating to the scalar field ϕ, and neglecting terms quadratic in ϕ̇, the above equation

6As discussed in [47], stabilization via string modes which are massless at the self-dual radius

leads to a consistent late time cosmology.
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becomes

ϕ̈+ 3Hϕ̇ = (2.24)

8πGn(t) e−
√

2/(d(d+2))ϕ/mpl
√
d(d+ 2)/2mpl

(
e−
√

8/(d(d+2))ϕ/mpl − e
√

8/(d(d+2))ϕ/mpl
)
.

Thus, it follows that after approaching the self-dual radius, b(t) will perform damped

oscillations about b(t) = 1, or, in other words, ϕ(t) will undergo damped oscillations

about and get trapped at ϕ = 0 (which corresponds to string scale separation between

the orbifold fixed planes). At this separation, the four dimensional effective potential

Veff becomes

Veff = Λd+4+nln+d
s , (2.25)

and, taking upper limit on Λ from (2.15), this becomes

Veff = l−4
s 10−60(d−p+3+n)/(d+2) . (2.26)

Thus, starting with vanishing cosmological constant in the bare bulk Lagrangian, our

scenario accidently generates a cosmological constant energy density in our present

universe which is suppressed by 60× (d−p+3+n)/(d+2) orders of magnitude. This
will provide the correct order of the cosmological constant to account for the current

acceleration if d = n− p− 1.

Either at some point during the phase of contraction, or else when the distance

between the orbifold fixed planes has decreased to the string scale, all of the bulk

branes will decay, presumably predominantly into radiation along the fixed plane

directions. The three unconfined spatial dimensions will thus emerge in the expanding

radiation-dominated phase of standard cosmology. The energy density which at late

time governs the dynamics of our scale factor a(t) is the bulk energy density integrated

over the transverse dimensions. Since the bulk energy in Phase 1 is dominated by

the p = 3 branes, the integrated energy density is constant. Thus, at the beginning

of the radiation-dominated phase the effective energy density is of the same order of

magnitude as the initial bulk energy density, namely given by the string scale.

From the point of view of late time cosmology, what has been achieved during

Phase 1 is to increase the size of our spatial sections without decreasing the effective
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energy density. Without extra spatial dimensions, the energy density can only remain

constant if the expansion of space is inflationary, but making use of the dynamics of

extra spatial dimensions, constant effective energy density can be achieved using non-

accelerated expansion of all dimensions.

Note that in the case of p > 3, specifically in the cases where we use Neveu-Schwarz

5-branes in the bulk, the projected energy density actually increases in Phase 1. If it

decreases less during Phase 2 than it increased during Phase 1 (which will be the case

e.g. if the branes convert to radiation during Phase 2), then the possibility emerges

that we are driven to a Hagedorn phase of string theory towards the end of Phase 2

[77, 91]. In this case, a very nice mechanism for the generation of a scale-invariant

spectrum of fluctuations [80] can be realized. This possibility will be briefly discussed

in the next section.

There is another key prediction of our model which is closely related to the chosen

topology of space. No odd-dimensional cycles exist on the inner space T 6/Z2, thus

prohibiting certain stable configurations of p-branes. Given that we are using odd-

dimensional branes in our examples, only 1 or 3 brane dimensions can wrap our

three-dimensional toroidal space T 3, because no odd-dimensional stable p-branes can

have an odd number of their brane dimensions wrapped about the inner space. This

prevents the creation of stable “stringy” domain walls and monopoles in our universe,

but it may predict the existence and future detection of cosmic strings.

2.6 Discussion and Conclusions

By making use of some tools coming from string theory, we have proposed a mech-

anism to solve the entropy (size) problem of standard cosmology without inflation.

According to our proposal, the universe begins hot, small and dense. We assume that

the six extra spatial dimensions of perturbative superstring theory are orbifolded, the

three dimensions we see today are not (they are toroidal). The universe emerges with

a gas of bulk branes (e.g. three branes if we have the perturbative limit of Type

IIB superstring theory in mind or 5-branes if we start from heterotic string theory or
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M-theory) which drives an initial phase of isotropic bulk expansion of all nine spatial

dimensions. During this phase, the energy density projected onto the orbifold fixed

planes does not decrease, even though the scale factor is expanding (as t1/3 in the

case of 3-branes in six extra dimensions). We assume the presence of a weak confining

potential between the orbifold fixed planes (the cosmological scenario which emerges

when considering a more conventional type of potential will be discussed in the next

chapter). Such a potential will eventually dominate over the bulk energy density and

will lead to a second phase in which the extra spatial dimensions rapidly contract

while our three spatial dimensions continue to expand. Once the orbifold fixed planes

approach each other to within the string scale, stringy effects previously studied in

the context of string gas cosmology will stabilize the radion degrees of freedom. The

bulk branes decay, and the universe emerges into the radiation-dominated phase of

standard cosmology, with a temperature which is of string scale, but a size which

is many orders of magnitude larger than what would be expected on dimensional

arguments 7.

Since the initial spatial section is in thermal contact, the horizon problem of

standard cosmology is explained, as well. Our scenario, however, does not solve the

flatness problem of standard cosmology. If the initial spatial sections are curved,

then the curvature will lead to a re-collapse of the universe. One way to address the

flatness problem is to invoke a special symmetry such as the BPS symmetry (see e.g.

[93] for a textbook discussion) which prohibits spatial curvature.

In order to provide an alternative to inflation in terms of solving all of the cosmo-

logical problems of standard cosmology which inflation addresses, we need to find a

mechanism for generating fluctuations. Work on this topic is in progress. Since the

universe is initially in causal contact, there are no causality arguments which prevent

the generation of adiabatic fluctuations. It is possible that bulk fluctuations similar to

7Note that our proposal has certain similarities with the approach of [92], in which - in the context

of brane world cosmology - it was proposed that the decay of Kaluza-Klein bulk modes will lead to

an entropy flow from the bulk to the brane which can solve the entropy and homogeneity problem

of standard cosmology without requiring a phase of inflationary expansion.

42



the ones proposed in the Ekpyrotic scenario could play this role. Provided there are

scale-invariant fluctuations in bulk metric variables during the contracting phase, the

work of [94] (see also [95]) shows that such fluctuations will induce a scale-invariant

spectrum of four dimensional metric fluctuations in the radiation-dominated phase.

Another possibility, in particular in the context of branes with spatial dimension

larger than three, is that the post-collapse phase will lead to such high densities that

a quasi-static Hagedorn phase will result. The Hagedorn phase makes a smooth tran-

sition to the radiation-dominated phase of standard cosmology. In this case, string

thermodynamics automatically generates a scale-invariant spectrum of adiabatic fluc-

tuations on all scales smaller than the Hubble radius during the quasi-static phase

[80]. (See [81, 82] for problematic points of this scenario.)
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Chapter 3

Brane Gas-Driven Bulk Expansion

as a Precursor Stage to Brane

Inflation

We propose a new way of obtaining slow-roll inflation in the context of higher di-

mensional models motivated by string and M theory. In our model, all extra spatial

dimensions are orbifolded. The initial conditions are taken to be a hot dense bulk

brane gas which drives an initial phase of isotropic bulk expansion. This phase ends

when a weak potential between the orbifold fixed planes begins to dominate. For

a wide class of potentials, a period during which the bulk dimensions decrease suf-

ficiently slowly to lead to slow-roll inflation of the three dimensions parallel to the

orbifold fixed planes will result. Once the separation between the orbifold fixed planes

becomes of the string scale, a repulsive potential due to string effects takes over and

leads to a stabilization of the radion modes. The conversion of bulk branes into

radiation during the phase of bulk contraction leads to reheating.

3.1 Introduction

The Inflationary Universe scenario [18] (see also [66, 67, 68]) has been extremely

successful phenomenologically. It has provided a solution to some of the key prob-
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lems of standard cosmology, namely the horizon and flatness problems, and yielded a

mechanism for producing primordial cosmological perturbations using causal physics,

a mechanism which predicted [20, 19] (see also [69, 66]) an almost scale-invariant

spectrum of adiabatic cosmological fluctuations, a prediction confirmed more than a

decade later to high precision by cosmic microwave background anisotropy experi-

ments [10, 11, 12, 13].

However, it has proven difficult to find convincing realizations of inflation in the

context of quantum field theory models of matter in four space-time dimensions. It is

usually assumed that the quasi-constant potential energy of a slowly rolling scalar field

(the so-called “inflaton”) leads to the accelerated expansion which inflation requires.

The Standard Model of particle physics, however, does not contain a scalar field whose

dynamics leads to slow-rolling. In single field models with a renormalizable potential,

field values larger than mpl (the four-dimensional Planck mass) are required in order

to obtain slow-rolling as a local attractor in the phase space of homogeneous solutions

to the scalar field equations of motion [96].

Superstring theory and M-theory, on the other hand, contain a lot of degrees of

freedom which at the level of the four space-time dimensional effective field theory are

described by scalar fields. Supersymmetry ensures that some of these fields (the so-

called “moduli fields” are sufficiently weakly coupled to provide potential candidates

to be an inflaton.

In the context of brane world cosmology [97, 98], an appealing possibility is that

the separation between a brane and an antibrane [25, 26] can serve as the inflaton.

A problem with the proposed constructions, which were all in the context of a static

bulk, was that the bulk size was generically too small to allow for the large values

of the inflaton field required to generate inflation. This problem was addressed in

[99, 100]. Another possibility is to have topological brane inflation [101], but this

construction also requires special parameters in order to obtain a wide enough brane.

The constructions mentioned in the previous paragraph were all done in the con-

text of phenomenological field theoretical models inspired by string theory. After

the discovery that flux constructions can lead to a stabilization mechanism for most
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moduli fields of string theory [29, 30], a lot of attention (beginning with [31, 32]) was

focused on how to obtain inflationary models in the context of flux compactifications

(see [33] for reviews and comprehensive lists of references). These constructions are,

once again, in the context of static bulk configurations, and have to assume very

special configurations (special configurations of branes and special flux choices).

In this chapter, we present a new model of brane inflation. In contrast to previous

constructions, the dynamics of the bulk dimensions is essential to our model. Also, in

contrast to previous constructions, we start with initial conditions which we consider

to be very natural, namely a hot brane gas in the context of an initial universe in which

all spatial dimensions are democratically small (of the string scale), similar to what is

assumed in “string gas cosmology” [77] and its brane generalizations [78, 83, 84, 85]).

The hot brane gas leads to an initial phase of isotropic bulk expansion (Phase 1 of

our cosmology). During this phase, the bulk energy density decreases.

The isotropy of space is explicitly broken by our assumption that the extra spatial

dimensions are orbifolded. This leads to the existence of orbifold fixed planes. We

assume the existence of a weak attractive potential between the orbifold fixed planes

1. Eventually, the associated potential energy will begin to dominate the dynamics

and will lead to a contraction of the dimensions perpendicular to the orbifold fixed

planes (Phase 2). We will consider a potential of the form

V (r) = −μ 1

rn
, (3.1)

where r is the separation of the orbifolds, and n is an exponent which we will fix

later. Such a potential could emerge from charges on branes pinned to the orbifold

fixed planes. We will show that such a potential can lead to slow-roll inflation.

The inflationary slow-roll parameters are set by the coefficient μ ≡ Λ4+d−n (where

Λ has dimensions of energy) which characterizes the strength of the potential. The

requirement of a sufficient number of e-foldings to solve the cosmological problems of

standard cosmology [18] sets an upper bound on Λ.

1Note that in terms of having inflation driven by the potential between orbifold fixed planes, our

setup is similar to that of [100].
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Once r decreases to the string scale, a repulsive potential created by stringy effects

will take over. The competition of the repulsive short range force and the attractive

long range force, together with the continued expansion of space parallel to the orb-

ifold fixed planes, will lead to a stabilization of r. This stabilization scenario is an

application of the mechanism of radion stabilization which has recently been studied

extensively in the context of string gas cosmology [38, 47, 37] (see [90] for a short

review). Either during Phase 2, or once the separation of the orbifold fixed planes

has decreased to the string scale, the bulk branes annihilate and decay into radiation.

This leads to a smooth transition into the radiation phase of standard cosmology.

Note that a very similar setup was used to construct a non-inflationary solution to

the entropy and horizon problems of standard cosmology. In Chapter 2, we assumed

that the inter-brane potential was confining, a potential of the type that could be

generated by non-perturbative effects. Here, we take the potential (3.1) which could

come from string exchange between branes [102].

3.2 The Model

Our starting point is a topology of space in which all but three spatial dimensions are

orbifolded, and the three dimensions corresponding to our presently observed space

are toroidal. Specifically, the space-time manifold is

M = R× T 3 × T d/Z2 , (3.2)

where T 3 stands for the three-dimensional torus, and d is the number of extra spatial

dimensions, which we will take to be either d = 6 in the case of models coming from

superstring theory, or d = 7 in the case of models motivated by M-theory. We will

assume that there is a weak force between the orbifold fixed planes given by the

potential (3.1) 2.

2It may be necessary to have branes pinned to the orbifold fixed planes in order to induce such

a potential. Our approach, at this stage, is purely phenomenological, and we simply postulate the

existence of a potential with the required properties
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As our initial conditions, we take the bulk to be filled with a gas of p-branes, as

in Chapter 2. In the context of Type IIB superstring theory we will have D-branes

with p = 3, in the case of heterotic string theory or taking the starting point to be

M-theory, we have Neveu-Schwarz 5-branes (p = 5).

Assuming that the universe starts out small and hot, it is reasonable to assume

that the energy density in the brane gas will initially be many orders of magnitude

larger than the potential energy density generated by the force between the orbifold

fixed planes. Thus, initially our universe will be expanding isotropically. As shown

in Chapter 2, this expansion is non-inflationary. During this phase (Phase 1), the

bulk energy density will decrease. Hence, eventually the inter-orbifold potential will

begin to dominate. At this point, the cosmological evolution will cease to be isotropic:

the directions parallel to the orbifold fixed planes will continue to expand while the

perpendicular dimensions begin to contract: this marks the beginning of Phase 2. In

the following we will show that for a wide class of potentials, the expansion of our

dimensions will be inflationary.

The metric in the non-isotropic phase (and in the absence of spatial curvature) is

given by

ds2 = dt2 − a(t)2dx2 − b(t)2dy2 , (3.3)

where x denote the three coordinates parallel to the boundary planes and y denote

the coordinates of the perpendicular directions. Hence, the radius r of the dimensions

perpendicular to the orbifold fixed planes is given by r(t) = lsb(t) .

We will analyse the evolution during Phase 2 using a four-dimensional effective

field theory, where we replace the radion b(t) by a scalar field ϕ(t). In order that ϕ be

canonically normalized when starting from the higher dimensional action of General

Relativity, ϕ and b must be related via (see e.g. [28], Appendix A for a review)

ϕ =

√
d(d+ 2)

2
mpl log(b) . (3.4)

If the bulk size starts out at the string scale, then b(tb) = 1, where tb is the initial

time. With these normalizations, ϕ = 0 corresponds to string separation between the

branes. The dimensional reduction of the higher dimensional gravitational action to
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the four space-time dimensional Einstein frame action yields the following effective

potential for ϕ [28]

Veff (ϕ) = ldsb(ϕ)
−dV (r(ϕ)) . (3.5)

Note that the dilaton is assumed to be fixed, and the dilaton-dependence of the

potential is neglected. From the potential (3.1) and inserting the relation (3.4) we

obtain

Veff(ϕ) = −Λ4+d−nld−n
s e

−
√

2(d+n)√
d(d+2)

ϕ
mpl

= −Λ4+d−nld−n
s e

−α̃ ϕ
mpl , (3.6)

where we have defined a constant α̃ ≡ √2(d+ n)/
√
d(d+ 2).

To ensure vanishing of the four-dimensional cosmological constant today, we must

add a positive constant V0 to the effective potential (3.6). If the stabilization radius

of the extra dimensions is the string scale ls, then V0 is given by

V0 = Λ4+d−nld−n
s . (3.7)

From the form of the potential, it should be expected that a period of slow-roll

inflation is possible as long as the initial value of ϕ at the beginning of Phase 2 is larger

than mpl. The special feature of our scenario (and the major advantage compared

to previous versions of brane inflation), is that such large values of ϕ dynamically

emerge and do not have to be inserted as ad hoc initial conditions.

In our scenario, inflation has a graceful exit. Once the orbifold fixed planes reach a

microscopic separation, Kaluza-Klein momentum modes of strings (e.g. the momenta

of the massless states produced at enhanced symmetry points) produce a repulsive

potential which scales as b−2 [40, 39] and hence on short distances overwhelms the

large-distance attractive potential (provided n < 2). The interplay between this

repulsive potential which dominates at small separations and the attractive potential

which dominates at large distances, coupled to the expansion of the three dimensions

parallel to the orbifold fixed planes, will lead to the stabilization of the radion modes

at a specific radius (presumably related to the string scale). In the context of heterotic

string theory, we could use the string states which are massless at the self-dual radius
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to obtain stabilization of the radion modes at the self-dual radius [38, 47] (see also

[37]). These modes would also ensure dynamical shape moduli stabilization [89]. The

branes decay into radiation either during or at the end of Phase 2. This brane decay

is the main source of reheating of our three dimensional space. We denote the time of

radion stabilization and reheating by tR. After reheating, our three spatial dimensions

emerge in the radiation phase of standard cosmology.

3.3 The Phase of Bulk Expansion

The phase of isotropic bulk expansion (a(t) = b(t)) proceeds as discussed in Chapter 2.

The equation of motion for a(t) is

ä

a
+ (2 + d)

( ȧ
a

)2
=

8πG

3 + d− 1

[
ρ− P

]
, (3.8)

where ρ is the energy density and P denotes the pressure. Making use of the equation

of state P = wρ, and inserting the Einstein constraint equation

(
(3 + d)2 − 3− d

)
H2 = 16πGρ , (3.9)

where H ≡ ȧ/a, we obtain power law expansion

a(t) ∼ tα with α =
2

(3 + d)(1 + w)
. (3.10)

In the case of bulk energy dominated by the tension of p-branes, we have

w = − p

3 + d
. (3.11)

Thus, in the example motivated by perturbative Type IIB superstring theory, (d = 6

and p = 3) we obtain α = 1/3. Starting with heterotic string theory (d = 6 and

p = 5) we obtain α = 1/2, and for M-theory (d = 7 and p = 5) we get α = 2/5. Thus,

the phase of bulk expansion is non-inflationary.
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3.4 The Period of Inflation

The period of bulk expansion ends when the bulk potential energy becomes equal to

the bulk brane energy density. The bulk energy density in Phase 1 scales as

ρb(t) ∼ a(t)−d−3+p (3.12)

Assuming that the initial bulk energy density is given by the string scale, i.e.

ρb(tb) ∼ l−4−d
s (3.13)

where tb denotes the initial time, then the transition between Phase 1 and Phase 2

takes place at a time ti given by

b(ti)
−(d+3−p−n) =

(
Λls

)d+4−n
. (3.14)

The value of the radion ϕ at this time is given by

ϕ(ti) =

√
d(d+ 2)

2
mpllog(b(ti)) . (3.15)

Since ϕ is canonically normalized, its equation of motion is given by (see the form of

the effective potential of (3.6))

ϕ̈+ 3Hϕ̇ = −Λ4+d−nld−n
s

α̃

mpl

e−α̃ϕ/mpl . (3.16)

The slow-roll conditions are satisfied provided:

ϕ� mpl

α̃
log

{
1 + α̃2

}
. (3.17)

Thus, to get N efolding of inflation, the initial value of ϕ should exceed the bound

ϕ(ti) >
mpl

α̃
log

{
α̃2(N + 1) + 1

}
(3.18)

leading to the condition

lsΛ <
[
α̃2(N + 1) + 1

]− d+3−p−n
(d+n)(d+4−n)

(3.19)

which allows Λ of order of the string scale.

We conclude that, provided the bound (3.19) on the energy scale Λ is satisfied,

Phase 2 will provide a sufficient length of inflation of our three spatial dimensions,

inflation driven by the slow rolling of the modulus field.
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3.5 Discussion and Conclusions

In this paper we have proposed a new way of obtaining inflation in the context

of theories with extra dimensions and branes. We assume that our three spatial

dimensions are singled out by the orbifold construction of (3.2), and that there is

a weak potential between branes pinned to the orbifold fixed planes. We assume

attractive potentials such as could emerge if opposite charges were localized on the

two branes.

In our scenario, the universe begins small and hot, filled with an isotropic gas of

branes. This brane gas drives a period of isotropic bulk inflation which continues

until the potential between the branes localized on the orbifold fixed planes becomes

dominant. We have shown that the potential of the radion supports a period of

slow-roll inflation. The new feature of our model compared to other models of brane

inflation is that the large values of the radion required to obtain sufficient inflation

are dynamically generated during the phase of bulk expansion.

Inflation ends when the radion shrinks to string-scale values, the bulk branes

annihilate into radiation, and the radion becomes stabilized by string gas effects.

An interesting lesson obtained by comparing our present results with those of

the preceding Chapter is that the details of the potential between the orbifold fixed

planes is very important in determining the evolution of our three spatial dimensions.

For a sufficiently confining potential, our three spatial dimensions never undergo a

period of accelerated expansion - but the period of bulk expansion still enables us

to solve the horizon and entropy problems because the energy density of the brane

gas projected onto the orbifold fixed planes does not decrease. The condition on the

power n appearing in the potential (3.1) in order to obtain inflation is n < d+3− p.
This limit mirrors the requirement that orbifold fixed plane potential is diluted slower

than energy density of p-branes in the bulk.
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Chapter 4

Predictions of Dynamically

Emerging Brane Inflation Models

We confront the inflationary proposal of Chapter3 with WMAP3+SDSS, finding a

scalar spectral index of ns = 0.9659+0.0049
−0.0052 in excellent agreement with observations.

The proposal incorporates a preceding phase of isotropic, non accelerated expansion

in all dimensions, providing suitable initial conditions for inflation. Additional obser-

vational constraints on the parameters of the model provide an estimate of the string

scale.

A graceful exit to inflation and stabilization of extra dimensions is achieved via

a string gas. The resulting pre-heating phase shows some novel features due to a

redshifting potential, comparable to effects due to the expansion of the universe itself.

However, the model at hand suffers from either a potential over-production of relics

after inflation or insufficient stabilization at late times.

4.1 Introduction

Inflation provides a natural explanation for major problems of standard cosmology

such as the homogeneity, horizon and flatness problems [18]. An almost scale-invariant

spectrum of adiabatic cosmological fluctuations was predicted [19, 20] more than a

decade before the cosmic microwave background anisotropies were analyzed [13, 12,
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11, 10]. Encouraged by the great success of the inflationary paradigm, one is urged

to find a successful realization of inflation within more fundamental theories, such as

string theory.

The heuristic approach of obtaining inflation consists of introducing one or more

scalar fields (inflatons), which evolve slowly due to some appropriately tuned poten-

tial. Simple single field models require the inflaton to start out at a value larger than

the Planck mass. However, at these values radiative corrections to the inflaton mass

threaten to spoil slow roll dynamics. Therefore, unless some underlying symmetry

protects the inflaton mass, it is hard to implement an inflationary scenario within

gauge theories. Moreover, in the framework of four dimensional inflationary models

the physical interpretation of the inflaton is unclear. Generally, it is taken to be a

singlet of the Standard Model and typically of all of the visible sector too. (See [103]

for a recently proposed exception.)

The advent of extra dimensions [97, 98] opened up a venue for new inflationary

scenarios where the inflaton has a physical meaning; for example, in brane-antibrane

inflationary models the inter-brane separation serves as the inflaton [25, 26]. However,

to provide a sufficient amount of inflation in brane-antibrane models, one requires

fine tuning of initial conditions [99, 100], e.g. large inter brane separation, special

configurations or very weak couplings.

In this chapter, we would like to continue discussions of the proposal of emerging

brane inflation suggested in Chapter 3. The proposal makes use of extra dimensions, a

gas of p-branes in the bulk to drive an initial isotropic but non accelerated expansion

of the universe, as well as orbifold fixed planes responsible for contraction of the

extra dimensions and inflation of our three dimensions. The presence of a string gas

at the end of inflation provides a graceful exit, pre-heating and stabilization of extra

dimensions. The model at hand does not need any fine tuning of initial conditions

and will turn out to be in good agreement with observations.

In this scenario the multidimensional universe starts out small and hot, with our

three dimensions compactified on a torus and the extra dimensions on an orbifold

of the same size. The pre-inflationary expansion is governed by topological defects

54



(p-branes) in the bulk and responsible for a large inter brane separation. As the

universe expands isotropically due to the gas of p-branes, the energy density stored in

the gas gets diluted until additional weak forces come into play, changing the overall

dynamics. For example, branes pinned to orbifold fixed planes, which exhibit an

attractive force, may eventually cause a contraction of the extra dimensions while our

dimensions inflate. From the four dimensional point of view, the inflaton is identified

with the radion and consequently, the pre-inflationary bulk expansion explains the

large initial value of the inflaton. Inflation comes to an end when the extra dimensions

shrink down to a small scale where moduli trapping [37, 38, 39, 40] and pre-heating

[41, 42, 43, 44, 45, 46] can occur.

Our main goal in this chapter is to examine the viability of the emerging brane

inflation model outlined above and to make contact with observations.

The outline of this chapter is as follows: In section 4.2 we review the details of the

model, followed by a computation (section 4.3) within the slow roll approximation

of the spectral index ns, the running of the index d ns/(d ln k), the scalar to tensor

ratio r and the tensor index nT . We confront our predictions with the observation of

the cosmic microwave background radiation measured by the Wilkinson Microwave

Anisotropy Probe (WMAP3) [104, 105, 106, 107] and the Sloan Digital Sky Survey

(SDSS) [108], resulting in good agreement. In order to get sufficient initial expansion

one requires the inter brane potential to remain subdominant for a long time com-

pared to the energy density stored in the bulk p-branes. This requirement imposes

constraints on the scale of interactions between branes pinned to the orbifold fixed

points. This, together with constraints from observational data, will be sufficient to

provide an estimate of the string scale. In section 4.4, we study the viability of pre-

heating after inflation and stabilization at late times. While pre-heating can occur in

the standard manner, albeit some novel effects are present, we do find potential prob-

lems associated with either late time stabilization or relics: if the branes pinned to the

orbifold fixed planes annihilate after inflation they could produce an over-abundance

of relics such as cosmic strings, and if they do not annihilate they will destabilize the

extra dimensions at late times. We conclude with a comment on open issues within
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the framework of emerging brane inflation.

4.2 The Model

Following Chapter 3, we assume a spacetime

M = R× T 3 × T d/Z2 , (4.1)

so that our three dimensions have the topology of a torus T 3, and the d extra di-

mensions are compactified on the orbifold T d/Z2. Note, that this specific choice of

the manifold is not crucial for the model – many other manifolds distinguishing our

three dimensions could be chosen instead. Next, we assume that pairs of branes are

pinned to the different orbifold fixed planes a distance r apart. Furthermore, we also

assume inter brane interactions such that a weak attractive force is generated via

some potential V . It should be noted that we take a phenomenological approach and

postulate the existence of a potential with the desired properties. A discussion of

possible origins of inter-brane potentials can be found in [25].

The special feature of the underlying scenario is the pre-inflationary dynamics

which explains the large size of the extra dimensions just before inflation. Initially,

the universe starts out small and hot with all spatial dimensions of the same size. The

bulk is filled with a gas of p-branes. In this phase, the energy density in the brane gas

is assumed to be many orders of magnitude larger than the potential energy density,

which provides the force between the orbifold fixed planes. Thus, the universe expands

isotropically but not inflationary, as shown in Chapter 2. During the expansion phase

the bulk energy density of the gas decreases and eventually the potential V begins to

dominate, causing inflation of the directions parallel to the orbifold fixed planes, and

contraction of the extra dimensions. It should be noted that whether or not inflation

occurs is sensitive to the form of the inter-brane potential V .

Following Chapter 3, we consider a potential of the form

V (r) = −μ 1

rn
, (4.2)
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where r is the inter brane separation and n > 0 is a free parameter, which could

in principle be computed from the underlying fundamental theory. As we shall see

below, this form of the potential results in inflation.

We shall first compute how dynamics can be described in a four dimensional

effective theory. Let Gab be the metric for the full space-time with coordinates X
a.

In the absence of spatial curvature, the metric of a maximally symmetric space which

distinguishes ’our’ three dimensions is given by

ds2 = GabdX
adXb = dt′2 − α(t′)2dx2 − b(t′)2dy2 , (4.3)

where x denotes the three coordinates parallel to the orbifold fixed planes and y

denotes the coordinates of the d perpendicular directions.

Our goal is to find a four-dimensional effective potential which governs the infla-

tionary phase. We start out with the higher dimensional action

S =

∫
dd+4X

√
− detGab

{
1

16πGd+4
Rd+4 + L̂M

}
, (4.4)

where Rd+4 is the d + 4 dimensional Ricci scalar and L̂M is the matter Lagrangian

density with the metric determinant factored out. Note that the dilaton is assumed

to be fixed already, e.g. via the proposal of [109]. In the effective four-dimensional

action, the radion b(t) is replaced by a canonically normalized scalar field ϕ(t) which

is related to b(t) through [28, 110]

ϕ = β−1mpl ln(b) , (4.5)

where

m2
pl =

1

8πG4

(4.6)

is the reduced four dimensional Planck mass and we defined

β−1 :=

√
d(d+ 2)

2
. (4.7)

After performing a dimensional reduction and a conformal transformation to arrive

at the Einstein frame [28, 110] we are left with

S =

∫
d4xa3

{
1

2
mplR4 − 1

2
(∂ϕ)2 (4.8)

+ Ve−dϕ/mplβL̂M

}
,
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where

V =

∫
ddy = lds (4.9)

is the volume of the extra dimensions, and

ds2
E = bd(dt′2 − α2dx2)

= dt2 − a(t)2dx2 (4.10)

is the effective four dimension metric. Further, assuming that the initial separation

between the orbifold fixed planes is of string length ls one can compute the distance

between the orbifold fixed planes to

r(t′) = lsb(t
′) . (4.11)

Note that b = 1 corresponds to the string scale. Setting L̂M = V yields

V4d(ϕ) = g4
s l

d
sb(ϕ)

−dV (r(ϕ))

= −μg4
s l

d−n
s e

−α̃ ϕ
mpl , (4.12)

where we used (4.2), restored the string coupling dependence and defined

α̃ := (n+ d)β . (4.13)

To account for the brane tension/zero cosmological constant today we add a positive

constant V0 to the effective potential (4.12) and arrive at the effective four dimensional

potential

Veff(ϕ) = V0 − μg4
s l

d−n
s e

−α̃ ϕ
mpl

= V0(1− ζe−α̃/mp ϕ) (4.14)

where we defined

ζ :=
μg4

s l
d−n
s

V0
. (4.15)

This potential yields inflation for large enough values of the radion/inflaton ϕ.

Similar potentials have been considered before, see e.g. [35] in the context of brane

inflation or [111] in the context of supergravity. These proposals differ from ours

in the form of the graceful exit, the details of pre-heating as well as the the pre-

inflationary dynamics of our model, which pull ϕ far from its minimum such as to

provide suitable initial conditions for inflation without fine tuning.
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4.3 Predictions

Inflation gives rise to a viable mechanism of structure formation: quantum vacuum

fluctuations, present during inflation on microscopic scales, exit the Hubble radius

and are subsequently squeezed, resulting in classical perturbations at late times, see

e.g. [112]. Moreover, current observations are precise enough to distinguish between

different inflationary models [104, 105, 106, 107, 108, 21, 113].

In the following, we derive observable quantities within the slow roll approximation

and make contact with observations. Thereafter, we show how one can estimate the

string scale in the model at hand.

4.3.1 Cosmological Parameters

The equation of motion for a scalar field in an expanding universe is given by

ϕ̈+ 3Hϕ̇+ V ′I = 0 , (4.16)

where H = ȧ/a is the Hubble parameter, VI := Veff from (4.14) is the inflaton

potential and V ′I := dVI/dφ. If the scalar field ϕ governs the evolution of the Universe,

the Friedmann Robertson Walker equations become

H2 =
1

3m2
pl

[
1

2
ϕ̇2 + VI(ϕ)

]
, (4.17)(

ä

a

)
=

1

3m2
pl

[
VI(ϕ)− ϕ̇2

]
. (4.18)

If the potential energy of the inflaton dominates over the kinetic energy, accelerated

expansion of the universe results. In other words, if the potential is flat enough to

allow for slow roll of the inflaton field, inflation occurs. In this case (4.16) and (4.17)

become

3Hϕ̇ = −V ′I , (4.19)

H2 =
VI

3m2
pl

, (4.20)

where we assumed ϕ̇2 � VI and ϕ̈� 3Hϕ̇.
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This approximation is valid if both the slope and the curvature of the potential

are small, that is if the slow roll parameters

ε =
m2

pl

2

(
V ′I
VI

)2

, (4.21)

η = m2
pl

V ′′I
V
. (4.22)

satisfy ε� 1 and η � 1. Let ϕi denote the value of the inflaton field N e-folds before

the end of inflation. This value can be determined from

N =

∫ tf

ti

H(t)dt

≈ 1

m2
pl

∫ ϕi

ϕf

V

V ′
dϕ , (4.23)

where ϕf is the value of the inflaton field at which the slow roll approximation breaks

down.

Within the slow roll regime one can then compute the scalar spectral index, the

scalar to tensor ratio and the tensor spectral index to [21]

ns ≈ 1− 6ε+ 2η , (4.24)

r ≈ 16ε , (4.25)

nT ≈ −r/8 , (4.26)

where ε and η have to be evaluated at ϕi. For the potential (4.14) the slow roll

parameters become

ε =
α̃2

2

1

(ζ−1eα̃/mpl ϕ − 1)2
, (4.27)

η = −α̃2 1

ζ−1eα̃/mp ϕ − 1
. (4.28)

Since |η| > ε in our case, inflation ends once |η| = O(1), that is once ϕ approaches

ϕf =
mpl

α̃
ln ((α̃2 + 1)ζ) . (4.29)

By using VI from (4.14) in (4.23) we can compute the required initial value of the

inflaton by solving

N =
eα̃/mpl ϕi − eα̃/mpl ϕf

α̃2 ζ
+

(ϕf − ϕi)

α̃mpl

, (4.30)
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for ϕi, which can be done analytically. Neglecting O(1) terms in (4.29) gives ϕf ≈
mpl

α̃
ln (α̃2ζ) which in turn leads to

N ≈ 1

α̃2

(
eα̃/mpl ϕ − α̃2

)
, (4.31)

after neglecting the second term in (4.30). This expression can be solved to

ϕi ≈ mpl

α̃
ln (α̃2ζN + α̃2ζ) . (4.32)

The slow roll parameters (4.21) and (4.22) evaluated at ϕi can now be approximated

by

ε ≈ 1

2α̃2 (N + 1)2
∼ O

(
1

(Nα̃)2

)
, (4.33)

η ≈ − 1

N + 1
∼ O

(
1

N

)
. (4.34)

Henceforth, the scalar spectral index becomes

ns ≈ 1− 2

N + 1
(4.35)

≈ 1− 2

N
, (4.36)

whereas the scalar to tensor ratio and the tensor spectral index read

nT = −r
8
≈ − 1

α̃2 (N + 1)2
(4.37)

≈ − 1

α̃2N2
. (4.38)

In addition, the running of the scalar spectral index can be evaluated to

d ns

d ln(k)
= −mpl

V ′I
VI

d ns

d ϕ
(4.39)

≈ − 2

N2
, (4.40)

which is negligible.

Now, we can evaluate (4.24)-(4.26) after specifying some parameters: first, since

our model is motivated by string theory and the dilaton is fixed, we have d = 6

extra dimensions. Second, as we shall see in section 4.4, stabilization of the extra
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dimensions after inflation at the string scale is possible. Lastly, we have to specify

the exponent n in (4.14), which in turn determines α̃. This last parameter will barely

influence the scalar spectral index but has some effect on the scalar to tensor ratio

and the tensor spectral index. If we take n = 4 1 and N = 54± 7 we get

ns = 0.9659+0.0049
−0.0052 , (4.41)

r =
(
6.1+1.9

−1.3

)× 10−4 , (4.42)

nT =
(−7.6+2.4

−1.6

)× 10−5 , (4.43)

where we used the more cumbersome exact analytic expressions within the slow roll

regime. These predictions 2 can now be compared with observational data. To be

specific, the combined observational data of WMAP3 [104, 105, 106, 107] and SDSS

[108] was used by Kinney et.al. in [21]: the above predictions for ns and r lie in the

middle of the 1σ region in the case of negligible running (see Fig. 1 in [21]).

Hence, the model of emerging brane inflation presented in Chapter 3 passes this

first observational test.

4.3.2 Estimate of the Fundamental String Length

In the proposed scenario, brane inflation emerges after the inflaton got pushed up its

potential in the preceding bulk expansion phase. The inflaton is related to the scale

factor of extra dimensions, b, through (4.5). Therefore, the requirement to obtain N

e-foldings of inflation (4.32) leads to a constraint on the minimal value of b at the

beginning of inflation,

bi ≥ (α̃2Nζ)β/α̃ . (4.44)

1We have n = 4 in our specific setup, since n = d + 3 − p − 2 is expected from the form of

inter-brane attraction potential, p = 3 corresponds to a 3-brane on the orbifold fixed-planes, and

d = 6 is number of dimensions in some types of string theories.

2The limit p → −∞ of [114] corresponds to an exponential potential like the one discussed in

this article; however, no estimate of r and nT , which depend on the exponent α̃, were given, and

the WMAP3 data set alone was used for comparison. This led Alabidi and Lyth to conclude that

an exponential potential would be allowed at the 2σ level.
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On the other hand, the preceding expansion phase sets an upper limit on the scale

factor b [2]. The end of bulk expansion and the beginning of inflation is indicated by

V = ρb where ρb is the energy density of the brane gas. This yields the condition

μl−n
s b−n = l−d−4

s b−d−3+p , (4.45)

where we assumed that the energy density stored in p-branes at the beginning of the

bulk expansion phase is of the order of the string scale. Rearranging parameters leads

to

bi ≤ (μld+4−n
s )−1/(d+3−p−n) . (4.46)

The bound (4.46) relates the scale of the inter-brane potential Λ = μ1/(d+4−n) to the

scale factor of the extra dimensions. Therefore, the requirement of N e-folds set an

upper bound on Λ

(Λls)
d+4−n ≤ (α̃2Nζ)−β/α̃(d+3−p−n) . (4.47)

Next, we can use observational data to constrain the effective inflationary poten-

tial. To be specific, COBE data implies [22] for the scale of inflation

(V
ε

)1/4

= 0.027mpl . (4.48)

Evaluating this expression N e-folds before the end of inflation leads to

0.027mpl � V0(
√
2α̃N)1/2 (4.49)

=
μld−n

s g4
s(
√
2α̃N)1/2

ζ
(4.50)

≤ g4
s(
√
2α̃N)1/2

ζ (α̃2Nζ)(d+3−p−n)/(d+n)
l−4
s , (4.51)

where we used (4.47) in the last expression. Substituting l−2
s with g2

sm
2
pl, one eventu-

ally arrives at a constraint for the string coupling

g8
s ≥ 0.027

ζ (α̃2Nζ)(d+3−p−n)/(d+n)

(
√
2α̃N)1/2

. (4.52)

For (ζ, d, p, n,N) = (1, 6, 3, 4, 54) this expression reduces to

gs ≥ 0.53 . (4.53)
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In conclusion, we found in the model at hand that inflation of about 60 e-folds

requires the string scale to be slightly below the Planck scale.

A word of caution might be in order here: we assumed the dilaton to be fixed

throughout bulk expansion and inflation; but if the dilaton is rolling during these

early stages, it will modify the above estimate. Hence, a better understanding of the

dilatons stabilization mechanism is of great interest.

4.4 Stabilization and Pre-heating

We saw in the previous sections how brane inflation can emerge in a higher dimen-

sional setup. The specific inflaton potential in the effective four dimensional descrip-

tion was given by (4.14)

VI = V0

(
1− e−α̃ϕ

)
, (4.54)

where we set mp ≡ 1 and fine tuned ζ = 1. The inflaton is related to the radion via

(4.5) where β−2 = d(d + 2)/2 was introduced. Furthermore, we assumed an already

stabilized dilaton, e.g. via the proposal of [109]. It should be noted that a free dilaton

could potentially invalidate the predictions of the model at hand.

In the following we would like to address three questions: How does inflation end,

how does the universe reheat and can the radion/inflaton be stabilized at late times?

4.4.1 Stabilization

Based on the idea of moduli stabilization at points of enhanced symmetry [37, 38, 39,

40, 47] it was advocated in [94, 28] that an inflationary phase driven by the radion

could be terminated by the production of nearly massless states if the radion comes

close to such a point 3. To be specific, if we work within heterotic string theory (d = 6)

3We focus on the overall volume modulus here – all other moduli (e.g. complex structure moduli

and Kähler moduli) are assumed to be stabilized already. Since it is not always possible to find

points of enhanced symmetry, one can not use the notion of quantum moduli trapping [28] for all of

them.
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such a point of enhanced symmetry could be the self dual radius corresponding to

ϕ = 0. This was already anticipated by setting ζ = 1 so that the potential VI in

(4.54) vanishes at ϕ = 0 (the self dual radius) 4.

The mechanism for stabilizing moduli at points of enhanced symmetry was il-

lustrated in detail in [40, 39], and can be implemented in string gas cosmology. In

the specific toy model of [40] it was shown that new massless states, gauge vectors

and scalars, appear at the self dual radius. These states have to be included in the

effective four dimensional action, leading to trapping of the volume modulus: as the

radius shrinks down to the string size, the evolution becomes non-adiabatic and light

states are produced via parametric resonance. Since the coupling of moduli to vector

states is a gauge coupling, one expects parametric resonance to be efficient. The

produced vectors stop to be massless as the radius shrinks further, generating an

effective potential for the volume modulus. As a consequence, the size of extra di-

mensions ceases to shrink. The mechanism of moduli trapping at enhanced symmetry

points (ESP) was discussed more generally in [39]: the trapping force is proportional

to the number of states that becomes massless at the ESP, since enlarging the amount

of new light degrees of freedom effectively causes an enhanced coupling of the moduli.

As a consequence of the larger coupling, the effectiveness of parametric resonance

and the trapping effect are enhanced. Therefore, points with greater symmetry are

dynamically preferred.

We refer the interested reader to [48, 49] for a basic introduction and to [28] for a

technical review of string gas cosmology, and jump into the discussion right after the

string gas got produced.

As mentioned above, the string gas leads to an effective potential from a four

dimensional point of view which is given by [115, 28]

VS =
Ñ

a3
e−

d
2
βϕ

√
q2

a2
+ sinh2(βϕ) , (4.55)

where q parameterizes the momentum of the string gas along the three large dimen-

sions and Ñ is proportional to the number density of strings. We shall treat both

4By choosing ζ = 1 we effectively set the cosmological constant to zero.
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Figure 4.1: The inter-brane potential VS of (4.54), string gas potential VI of (4.55)

and total potential V = VI + VS with d = 6, n = 4. The height of V at the minimum

ϕ = σ ≈ 0 is given by the momentum of the string gas along the three large dimensions

q. We chose l := q/a = 10−6 and Ñ/(V0a
3) = 4α̃/β for instructive reasons only, such

that VI , VS and V are clearly discernable. Note that VS is only viable around ϕ = σ.

In order for a minimum to exist and moduli trapping to occur, conditions (4.58) and

(4.62) need to be satisfied.

parameters as free ones 5. Note the novel feature that the potential redshifts like

matter, unlike potentials usually encountered for scalar fields.

This redshifting leads to a problem if we insist that the present day radion be

stabilized by VS, which can be seen as follows: let us for simplicity set q = 0 for the

time being and ask whether the total potential

V = VI + VS , (4.56)

5Both Ñ and q could in principle be computed via a study of the production mechanism of the

sting gas. This process shares similarities to pre-heating and in fact overlaps with the early stages

of pre-heating. Consequently, pre-heating might be influenced (see section 4.4.2).
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which is plotted in Fig. 4.1, exhibits a minimum. Expanding V around ϕ = 0 yields

V ≈ V0α̃ϕ +
Ñ

a3
|βϕ| . (4.57)

In order to stabilize the radion at ϕ = 0 we need

Ñ

a3V0
� α̃

β
= O(1) , (4.58)

so that the stabilizing potential VS is able to prevent the collapse of the internal

dimensions due to the inter brane potential VI . Since the universe expanded roughly

another 60 e-foldings after inflation until today, we would need

Ñ

V0
� e180 (4.59)

if we want a stable radion at late times, which is clearly an unreasonable condition.

This problem is a simple reflection of the fact that the inter brane potential does not

redshift, whereas the string gas redshifts like matter. Henceforth, it is not surprising

that the attractive force between the branes wins in the long run. Notice that the

same reason makes this type of stabilization incompatible with the presence of a

cosmological constant [116].

If one insists on achieving stabilization via a string gas, there must be a mechanism

present that cancels out VI ; luckily, such a mechanism seems possible in our scenario:

once the branes associated with the orbifold fixed planes approach each other within

the string scale they could annihilate via tachyon decay [117, 118, 119, 120, 121, 122,

123]. It should be noted that the universe itself does not go through a singularity:

the radion gets stabilized at the self dual radius so that there is no big crunch.

What is more, one can imagine that this decay contributes to pre-heating, similar

to the mechanism employed in the cyclic/ekpyrotic scenario 6 or in more recent real-

izations of brane inflation as in the KKLMMT proposal [31, 124, 125]. However, this

mechanism comes with a price: the potential over-production of relics like cosmic

6Note that the cyclic scenario includes a singular collision of branes pinned to orbifold fixed

planes, which is not what we are dealing with here: the branes in the scenario at hand come close

to each other (within string length), but do not actually collide.
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strings. If too many of these un-observed relics are produced, the model at hand

would be ruled out [126] 7. Hence, we shall assume that a mechanism to cancel the

inter brane potential exists without producing too many relics.

Since the redshifting of the string gas potential can potentially spoil stabilization

at late times, it is a concern whether this redshifting will also spoil standard pre-

heating methods or leave them unaffected. Thus, we will address this question in the

next subsection.

4.4.2 Pre-heating

Assuming that the inter brane potential cancels via some unspecified mechanism near

the self dual radius, the complete potential for the radion is provided by the string

gas alone, that is

V =
N

a3
e−

d
2
βϕ

√
q2

a2
+ sinh2(βϕ) . (4.60)

We would now like to address the question whether the standard theory of pre-heating

after inflation can be applied. The novel feature in our model is the dependence of

the potential on the scale factor a. If one could neglect this feature, pre-heating

would progress as usual, see e.g. [41, 42, 43, 44, 45, 46] for a sample of the extensive

literature on the subject.

As a first estimate we can compare the rate at which the potential changes with

the Hubble factor. As we shall see below in (4.66), both quantities are of the same

order. Hence we expect any effects due to the redshifting of the potential to be of

the same magnitude as those directly caused by the expansion of the universe. As a

consequence, whenever the Hubble expansion needs to be included, e.g. in the case

of stochastic pre-heating [44] (broad parametric resonance in an expanding universe),

one should also include the time dependence of the potential.

7One way to avoid the defect overabundance problem is to enhance the symmetry which is broken

during the annihilation; this can be achieved by having several overlapping branes instead of just

one [131, 132].
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In order to examine more carefully whether the redshifting of an inflaton potential

can be neglected under the assumption that the expansion of the universe itself is

unimportant, we will focus on a specific toy model for pre-heating [44, 45]: narrow

parametric resonance [41, 42]. It should be noted that narrow or broad parametric

resonances will not be viable reheating mechanisms if the inflaton is identified with

the radion (as in our case), since the couplings between the radion and other matter-

fields are heavily suppressed 8. Nevertheless, we will focus on narrow resonance as

an instructive example, since the mechanism is quite simple and very sensitive to

changes in the shape of V : any change in the potential during the time-scale of pre-

heating will cause the center of the resonance band to shift. If this shift is larger

than the width of the resonance band, modes would not stay within the band long

enough to get reasonably amplified. But if the shift is small compared to the width,

narrow resonance will commence in the usual way. As we shall see below, the latter

is the case so that there are no new effects and/or constraints due to the redshifting

potential.

To study pre-heating, let us first expand the potential around the minimum of the

potential at ϕmin =: σ and thereafter couple the radion to a scalar matter field χ. At

this first stage we neglect the expansion of the universe so that n := N/a3 ≈ const

and l2 := q2/a2 ≈ const. The minimum of (4.60) can be found at

σ(l) =
1

2β
ln

(
−3l2 + 3

2
−

√
36(l4 − l2) + 1

2

)
, (4.61)

Where we used d = 6. Note that a minimum only exists for

0 ≤ l < l̃ (4.62)

with l̃ := (
√
12 − √6)/6, leading to 0 ≤ σ < ln(2)/(4β). Expanding the potential

around σ leads to

V ≈ Ṽ0 +
m2

2
φ2 , (4.63)

8Nevertheless, there are possibilities to enhance suppressed reheating channels by considering

large vacuum expectation values of scalar matter fields after inflation, see e.g. [127].
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where we used a shifted inflaton φ := ϕ− σ and

Ṽ0 = ne−3βσ

√
l2 + sinh2(βσ) , (4.64)

as well as

m ≈ β

√
n

l
− β

63

4

√
nl3/2 , (4.65)

where we expanded m around l = 0. Note thatm(l = l̃) ≡ 0 exactly, so that any value

of m can be achieved by appropriately tuning l. We will not need the cumbersome

exact expression for m in the following, hence we shall omit it.

At this point we should step back for a second and estimate the rate of change of

the potential. Using l ∝ 1/a and q ∝ 1/a3 we arrive at

ṁ

m
≈ −H , (4.66)

where we only kept the leading order term in (4.65). Hence, we naively expect that

the expansion of the universe and the redshifting of the potential lead to comparable

effects. This estimate can be made more concrete at the level of the toy model of

narrow parametric resonance: if we couple the radion to a scalar matter field via

Vint = −g2φ2χ2, the system will be in the regime of narrow resonance if gΦ� σ � m

holds, where Φ(t) is the amplitude of the oscillating inflaton [44]. This condition can

be satisfied if we are free to tune g and m appropriately. Following the analysis of [44]

closely, we find the first resonance band of the resulting Mathieu-equation for χk at

the wave-number k ≈ m/2 with a width of Δk ≈ q̃m/2 where q̃ := 4g2σΦ/m2 � 1.

Since parametric resonance usually commences during the first few oscillations of

φ around its minimum, the characteristic time-scale is given by the period of these

oscillations T = 2π/m.

Turning on the expansion of the universe yields the requirement

H � q̃2m, (4.67)

in order for narrow resonance to take place 9, otherwise modes would leave the res-

onance band too fast [44]. Given that inequality, we can give an upper bound on

9Notice that g is expected to be small in our model. As a consequence, condition (4.67) is not

satisfied and pre-heating will not progress in the regime of narrow parametric resonance.
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the change of the scale factor a within the period T : because the scale factor makes

a transition from an inflating one to a solution for a radiation dominated universe

during pre-heating, we can use the inflationary solution as an upper bound for the

change in a, that is

a(t0 + T )

a(t0)
≈ e2επq̃2

(4.68)

where we used H ≈ εq̃2m with ε � 1. This results in a change of the potential’s

shape via a change in the inflaton mass

m(t0 + T ) ≈ β

√
n

l
(4.69)

≈ m(t0)e
−ε2πq̃2

(4.70)

≈ m(t0)(1− ε2πq̃2) , (4.71)

where we only kept the leading order term in l from (4.65), plugged in l ∝ 1/a

as well as n ∝ 1/a3 and expanded around q̃ = 0. Since the position of the first

resonance band is located at k = m/2, we see that the shift of its position is given

by Dk = επq̃2m(t0). This shift has to be compared with the width of the band

Δk ≈ q̃m(t0)/2. We immediately see that Dk � Δk and henceforth, we can safely

ignore the slight change of the radion potential.

4.4.3 Discussion

We saw in the previous section that the time dependence of the inflaton potential

does not interfere much with the process of pre-heating. We estimated the effect on

the toy model of narrow parametric resonance, because this pre-heating mechanism

is most sensitive to changes in the mass of the inflaton. We found that new effects

due to the redshifting potential are comparable to the ones already present due to

the expanding universe.

Hence, we expect no novel features during pre-heating if a string gas supplies

the stabilizing potential for the inflaton, and the standard theory of pre-heating can

be applied (we refer the reader to [41, 42, 43, 44, 45] and follow up papers for the

relevant literature). However, whenever the expansion of the universe itself is crucial,
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one should also consider the redshifting of the potential; for example, in the case of

stochastic resonance [44] the Hubble expansion causes a mode to scan many resonance

bands during a single oscillation of the inflaton. Naturally, including the redshifting

of the potential will add to this effect, since the resonance bands themselves shift,

just as in the case of narrow resonance we examined in the previous section.

There is another issue worth stressing again: since the inflaton is identified with

the radion in our setup, its couplings to matter fields are heavily suppressed. As a

consequence, we do not expect parametric resonance to be the leading pre-heating

channel (see however [127] for the possibility of enhanced pre-heating), but instead

tachyonic pre-heating (see e.g. [46, 128, 129] and references therein), which occurs in

case of a negative effective mass term for the matter field. This effect was used to

address the moduli problem in [4] and warrants further study [130].

Yet another possibility to reheat the universe could be provided by the annihilation

of the boundary branes via tachyon decay [117, 118, 119, 120, 121, 122, 123] once the

branes come close to each other. A potential hinderance could be an over-production

of relics such as cosmic strings. It seems possible to avoid this problem in certain

circumstances [131, 132], but we postpone a study of this interesting possibility to a

future publication, since it is beyond the scope of this article.

Last but not least, since the production of the stabilizing string gas will overlap

with the early stages of pre-heating, one should discuss both processes in a unified

treatment.

4.5 Conclusions

In this chapter, we examined observational consequences of the recently proposed

emerging brane inflation model. After reviewing the aforementioned model, observa-

tional parameters were computed within the slow roll regime, once and foremost the

scalar spectral index ns = 0.9659+0.0049
−0.0052. This index is a generic prediction of emerg-

ing brane inflation, independent of model specific details and in excellent agreement

with recent constraints of WMAP3 and SDSS. Furthermore, based one the COBE
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normalization we were able derive a bound onto the fundamental string scale, (4.52).

Thereafter, we examined the consequences of a redshifting string gas potential,

which arises at the end of inflation. Even though the radion/inflaton can initially be

stabilized, the mechanism fails at late times as long as there is a contribution to the

effective potential that does not redshift, like a cosmological constant or a remaining

interbrane potential. Consequently, a mechanism to cancel out all such contributions

needs to be found in order for the model to work.

Related to this mechanism, we encountered another potential problem: since the

interaction of boundary branes is responsible for inflation, but branes have to be

absent at late times in order to keep extra dimensions stable, we concluded that they

had to annihilate after inflation. During this annihilation, which could in principle

be responsible for pre-heating, relics like cosmic strings are expected to be produced.

Mechanisms to avoid an overproduction of said relicts are conceivable, but warrant

further study.

Concerned that pre-heating after inflation might also get disrupted via the time

dependence of the potential, we focused on narrow parametric resonance as a toy

model for pre-heating to estimate the magnitude of new effects: we find that new

effects are comparable to those originating directly from the expansion of the uni-

verse. Henceforth, we concluded that the standard machinery of pre-heating can be

applied to the model at hand, but the time dependence of the potential needs to

be incorporated if expansion effects are crucial for pre-heating, as is the case in e.g.

stochastic resonance. Since the annihilation of boundary branes and the production

of the stabilizing string gas occurs during the early stages of pre-heating, one should

incorporate these effects in a detailed study of pre-heating.

To summarize, the proposal of emerging brane inflation is a viable realization of

inflation, if the potential problems associated with the annihilation of branes after

inflation can be overcome.
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Chapter 5

Nonperturbative Instability as a

Solution of the Cosmological

Moduli Problem

It is widely accepted that moduli in the mass range 10eV - 104GeV which start to

oscillate with an amplitude of the order of the Planck scale either jeopardize suc-

cessful predictions of nucleosynthesis or overclose the Universe. It is shown that the

moduli problem can be relaxed by making use of parametric resonance. A new non-

perturbative decay channel for moduli oscillations is discussed. This channel becomes

effective when the oscillating field results in a net negative mass term for the decay

products. This scenario allows for the decay of the moduli much before nucleosynthe-

sis and, therefore, leads to a complete solution of the cosmological moduli problem.

5.1 Introduction

In many theories beyond the Standard Model of particle physics, in particular in

supergravity and string theories, there are many scalar and fermionic fields with

masses smaller or equal to the electroweak scale and gravitational strength couplings

to ordinary matter. Such fields are called moduli fields and behave as non-relativistic

matter at late time. Since they decay late because of their weak interactions, they lead
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to the so-called cosmological moduli problem [54, 55, 56, 57]. Below, independently

of their origin, fields having only Planck scale couplings and weak scale mass are

denoted collectively as moduli fields.

In the case of moduli in supersymmetric theories, the mass mφ of these fields φ is

generated during supersymmetry breaking. A wide variety of these scenarios predict

masses of the moduli in the dangerous range, mφ ∼ 10eV − 104GeV . According to

our ideas of early Universe cosmology, we expect moduli to be produced in great

abundance in the early universe. In the context of Big Bang cosmology, both scalar

and fermionic moduli particles will be part of the initial thermal bath of particles

of the very early universe. Even assuming that the moduli particles are not part of

the initial thermal bath (for example in the context of inflationary cosmology) it is

hard to avoid the presence of excited moduli fields at late times. For example, in

the case of scalar moduli, since the moduli are massless before supersymmetry break-

ing, there is no reason that the moduli field values before supersymmetry breaking

coincide with the values which turn into the minima of the potential after super-

symmetry breaking [133]. The offset will lead to moduli fields which oscillate about

their potential minima. An offset of a scalar modulus can also be produced by quan-

tum fluctuations in the early phases of inflation, as follows from the computation

of the coincident point two point function of a low-mass scalar field during inflation

[134, 135]. The excessive production of moduli is predicted during the preheating

stage of inflationary cosmology in a wide variety of models [136]. A further source of

moduli particles is gravitational particle production between the end of inflation and

the time of nucleosynthesis [137, 138].

Due to their weak interactions, the decay of the moduli fields is slow. Widely used

estimates based on dimensional analysis for the perturbative decay rate Γ give

Γ ∼ m3
φ

M2
p

. (5.1)

The presence of excited moduli fields at late times is dangerous since the presence

of the extra moduli field energy during the time of nucleosynthesis could spoil the

success of the standard Big Bang nucleosynthesis scenario [139]. This danger is acute
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in particular for the heavier moduli fields. Both lighter moduli fields and heavier

fields which do not decay before the time of equal matter and radiation threaten to

overclose the Universe at that time (and thus also today if they do not decay between

the time of equal matter and radiation and the present time).

To be more specific, it is the fact that the interactions of moduli fields come from

non-renormalizable terms in the supersymmetry (SUSY) potential that leads to the

moduli problem. For example, the following term in the Kähler potential

δK =
1

M2
p

φ†IφIφ
†φ , (5.2)

results in a contribution to the square mass for φ of the form ρ/M2
p [140]. By φ we

denote a canonically normalized modulus field (with bare mass mφ), by Mp - the

Planck mass, by φI - a field which dominates the energy density of the universe, the

inflaton, and by ρ - the energy density contained in the inflaton. Since ρ = 3H2M2
p ,

the effective mass meff becomes

m2
eff = cH2 +m2

φ , (5.3)

where c is a constant. If c � 1, then inflation drives the moduli to the minima of

their high temperature effective potential. However, typically the high temperature

minima are offset from the zero temperature minima of the moduli potentials by a

value which has Planck order of magnitude. If c � 1 then H > meff , and then

quantum fluctuations during inflation will also excite the field φ to a value of the

order of the Planck mass. During reheating the energy density of the inflaton stops

dominating the Universe and the effective mass of φ relaxes to mφ. After reheating,

the Hubble constant decreases in the radiation dominated phase. Once H ∼ mφ the

condition for slow rolling of φ (V ′′(φ) < H2) is no longer satisfied, and at that point

the field φ starts to oscillate around its low temperature minimum which we take to

be zero. The energy density of φ decreases like that of non-relativistic particles (i.e.

proportional to a(t)−3, where a(t) is the cosmological scale factor), whereas the energy

density of the radiation dominated universe falls as a(t)−4. Thus, the modulus field φ

may come to dominate the energy density of the universe, or at least contribute too
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much during the period of nucleosynthesis, unless the field decays early. The problem

is that the modulus fields are coupled only gravitationally to themselves and other

particles and thus have very small perturbative decay rates.

There has been some previous work to try to mitigate the cosmological moduli

problem. Entropy production at late times will dilute the moduli density. For ex-

ample, weak scale inflation [141] or thermal inflation [142] could sufficiently dilute

unwanted moduli (see e.g. [143] for a detailed study of the potential of thermal infla-

tion to solve the moduli problem for masses in the above-mentioned dangerous range

predicted in models with hidden sector and gauge-mediated supersymmetry break-

ing). For certain ranges of parameters of a gauge-mediated supersymmetry breaking

model, the oscillations of the modulus field itself might sufficiently dilute the string

moduli density [144]. The decay of an unstable domain wall network [145] is another

way to generate entropy and dilute the moduli density at late times. A common

danger of these approaches is that the baryon density might also be diluted to an

unacceptably low value. Another approach is to invoke effects which give the moduli

fields a contribution to the square mass of the order of H2 which would allow them to

roll down their potential during inflation [146, 147] and prevent them from acquiring

a large expectation value during inflation (see also [148]). However, this solution does

not work if the low temperature minimum of the moduli potential does not coincide

[133] with its high-temperature ground state (new symmetries which could force the

two states to be the same were analyzed in [140]). A recent proposal to solve the

moduli problem is moduli trapping at enhanced symmetry points [39, 40]. In terms

of the use of parametric resonance instabilities, our work has similarities with that

of [39, 40]. However, in contrast to these works, in our study the focus is on the

traditional moduli problem as formulated in [54, 55, 56, 57].

In this chapter, we propose a way to solve the cosmological problems of scalar

moduli fields which requires no external mechanism for the dilution of moduli. In-

stead, it makes use of non-perturbative decay channels. Non-perturbative decays have

been shown to completely change the scenario of reheating in inflationary cosmology.

In particular, the decay of the inflaton field by a parametric resonance instability has
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been shown to be very important [149, 43, 150, 44]. In certain models, a tachyonic

instability renders the inflaton decay even more efficient [151].

We consider a toy model which potentially gives rise to a cosmological mod-

uli problem. In the framework of this model we investigate non-perturbative decay

channels (decays into particles whose lifetime is much shorter than that of the moduli

fields). We study the decay of the oscillating modulus field via parametric resonance,

and propose a new tachyonic decay channel. We quantify the conditions on the pa-

rameters of the model for which the decay channels are effective. Note that the decay

channels work for an initial field amplitude up to the order of the Planck scale. No

external mechanism for diluting the moduli density is required.

5.2 The Model

If the moduli problem arises as a consequence of supersymmetry breaking, the moduli

potential takes the form (see e.g. [141])

V(Φ) = m2
3/2M

2
pG(|Φ|/Mp) , (5.4)

where m3/2 is the gravitino mass and G is some function. We will assume that the

modulus field couples to some matter field χ which we treat as a scalar field (following

the analyses in the study of fermionic preheating [152] it could also be taken to be a

fermionic field). Making use of (5.4), and of the fact that the dimension five and six

operators are suppressed by Mp and by M
2
p , respectively, we can construct a typical

potential for the modulus φ and the matter scalar field χ

V =
1

2
m2

φφ
2 +

1

2
m2

χχ
2 +

1

2

m2
I

Mp
φχ2 (5.5)

+λ1φ
2χ2 + λ2χ

4 + λ3φ
4 ,

where the coupling constants λ1, λ2, λ3 are small enough such that for |φ|, |χ| < Mp

the low energy effective potential for φ takes form

Vl =
1

2
m2

φφ
2 +

1

2
m2

χχ
2 +

1

2

m2
I

Mp

φχ2 . (5.6)
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Thus, the toy model we consider is described by the following Lagrangian:

L = ∂μφ∂μφ+ ∂μχ∂μχ (5.7)

−1
2
m2

φφ
2 − 1

2
m2

χχ
2 − 1

2

m2
I

Mp

φχ2 .

In the above, the mass mI sets the scale of the interaction between φ and χ. It is

reasonable to assume that this scale is much less than Mp.

In analogy to the situation encountered in the study of the decay of the inflaton, if

we want to study the decay of the modulus field, it is crucial to focus on the equation

of motion for matter fields χ which the modulus field couples to. In the presence of

the oscillating modulus field, this equation (in an expanding space-time) is

χ̈k + 3Hχ̇k +

(
k2

a2
+m2

χ +
m2

I

Mp
Φ(t) sin(mφt)

)
χk

= 0 , (5.8)

where Φ(t) is the amplitude of φ. The amplitude Φ decreases as a consequence of the

expansion of space. In the above, k denotes the comoving wavenumber and a(t) is

the cosmological scale factor.

In a first step, we will put the above equation into the form of the well-known

Mathieu equation. To absorb the expansion of space, we define a rescaled field via

ηk = a3/2χk . (5.9)

Then, the equation of motion for ηk becomes:

η̈k +

(
k2

a2
+m2

χ +
m2

I

Mp
Φ(t) sin(mφt)−Δ

)
ηk = 0 , (5.10)

where

Δ =
3

4
H2 +

3

2

ä

a
=

3

2
(1/2 + (p− 1)/p)H2 , (5.11)

where for the second equality we have assumed that a(t) ∝ tp.

It is convenient to introduce a dimensionless time variable via

z =
1

2
mφt+

π

4
. (5.12)
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The differentiation with respect to z will be denoted by a prime. In this case, the

above equation (5.10) takes the form

η′′k + (Ak − 2q cos 2z)ηk = 0 , (5.13)

where

Ak = 4
k2

m2
φa

2
+ 4

m2
χ

m2
φ

− 4m−2
φ Δ (5.14)

q = 2
m2

IΦ

m2
φMp

. (5.15)

If it is justified to neglect the expansion of space compared to the rate of the

processes which will be discussed in the following, then Δ vanishes, and the equa-

tion (5.13) takes the form of the Mathieu equation. Note that k/a is the physical

wavenumber.

5.3 Parametric Resonance Instability

The modulus field φ is frozen until the Hubble parameter H drops to a value com-

parable to mφ. Then, φ begins to oscillate about φ = 0 with a frequency mφ, its

amplitude Φ(t) being damped by the expansion of the spatial background and by the

energy loss of φ to other fields. The second effect is a back-reaction effect which we

will neglect. The condition required that the oscillation of φ begins before the time

of nucleosynthesis is that the Hubble damping term in the equation of motion for φ

becomes smaller than the force term V
′
(φ) driving the oscillations. It yields

H(TNS) < mφ , (5.16)

(where TNS is the temperature at which nucleosynthesis takes place) a condition

which is satisfied for all masses in the dangerous range. Once the modulus field starts

to oscillate, resonant excitation of all fields coupled to φ is possible, in particular the

excitation of η.

The first instability we will study is the parametric resonance instability, first

applied to the decay of the inflaton field in [149]. There are two types of resonance
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[43], broad parametric resonance and narrow parametric resonance. The condition

for broad resonance is q > 1. where q is the parameter appearing in equation (5.13).

This condition is satisfied for large values of the amplitude Φ, namely for

Φ > Φb ≡Mp

(mφ

mI

)2
. (5.17)

Evaluating this condition at the time when perturbative decay of the modulus field

sets in, i.e. when Γ = H , and using for formula for Γ applicable to our toy model

(given below in (5.29)), we find that unless

mφ � mI

( mI

10Mp

)1/2
, (5.18)

broad parametric resonance can relax but not solve the moduli problem without an

additional decay channel being present. Both narrow resonance (discussed below)

and the tachyonic decay discussed in the following section can provide the additional

channel.

For smaller values of Φ, we are in the domain of narrow parametric resonance. In

this phase, the growth of ηk is known [51, 52]:

ηk ∼ eqz ∼ eqmφt/2 . (5.19)

Only modes in narrow resonance bands are amplified, and the first such band is

centered at a value of k = km given by [51, 52]

Ak = 1 , km =
mφ

2
(1− 4m2

χ

m2
φ

)1/2 (5.20)

from which it follows that the band does not exist unlessmχ < mφ/2. Other resonance

bands occur for larger values of Ak but are of higher order in perturbation theory and

hence have a negligible effect.

The first condition for resonance to be effective is that the typical time scale for

the growth of ηk is shorter than the Hubble time, i.e.

qmφ > H . (5.21)

In addition, one should take into account the change of the momentum as a result

of the background expansion [44]. In a time interval δt, assuming mχ < mφ/4, the
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change in the physical momentum p = k/a(t) corresponding to the middle of the

lowest resonance band is

Δp = pHΔt � mφ

2
HΔt . (5.22)

The width of the resonance band is

Δp =
qmφ

2
. (5.23)

Thus, p remains in the resonance band during a time interval

Δt � qH−1 . (5.24)

To justify neglecting the expansion of space, we must require that the exponent in

the growth factor (5.19) is at least 1 during this time interval. This leads to a more

severe constraint on q:

q2mφ > H . (5.25)

Inserting the value of q from (5.15), we find that narrow resonance is efficient provided

Φ(t) > Φc(t) ≡
√
HMpm

3/2
φ

m2
I

. (5.26)

Since
√
H decreases as t−1/2 whereas in a radiation-dominated phase Φ(t) de-

creases only as t−3/4, the narrow resonance decay channel eventually shuts off. In

order that the moduli field does not dominate the energy density at the time of the

shutoff at temperature T , the following condition needs to be satisfied:

m2
φΦ

2
c � T 4 , (5.27)

which, inserting the expression (5.27) for Φc, turns into the condition

mφ � mI

( T 2

mIMp

)1/5
. (5.28)

For narrow parametric resonance to solve the cosmological moduli problem, one

needs to check that at the time of moduli decay (which occurs when Γ ∼ H), the

condition (5.28) still holds. The decay rate of φ for our Lagrangian (5.7) is given by

Γ =
m4

I

32πM2
pmφ

. (5.29)
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Thus, the solution of the cosmological moduli problem requires:

mφ � mI

( mI

10Mp

)1/3
. (5.30)

Inserting the temperature of nucleosynthesis to get lower bound from (5.29) on the

potentially dangerous mass range, and using the value mI = 102 GeV, the problem

is solved for values of mφ satisfying (more general results are shown in Fig. 5.1)

10−7GeV < mφ < 10−4GeV . (5.31)

In the context of our model (for mI = 102GeV), moduli with masses smaller than

10−7GeV decay before time of nucleosynthesis and thus do not cause the problem.

Note that this scaling of the decay rate with the mass of the decaying particle is

going against the intuition that lighter moduli should decay later than heavier one.

This curious aspect of our toy model decreases the potentially dangerous mass range,

and this realization might be useful in some concrete models suffering from a moduli

problem.

It appears at this point of our study that the period of narrow parametric reso-

nance has the potential of solving the moduli problem for values of mφ and mI which

satisfy the relation given by (5.30). One issue which we have not taken into account

is the fact that late moduli decay may provide a large source of non-thermal photons

which could distort the black-body nature of the CMB. The constraints resulting from

this effect must be studied in any concrete model with late-decaying moduli fields.

The previous analysis has missed a second important condition for the efficiency

of narrow parametric resonance. It is not sufficient that the modes ηk increase with

a rate faster than H . Since the resonance occurs only in narrow bands [51, 52], it is

important to check that the rate of energy increase integrated over all modes of η be

larger than the decrease in the energy density of φ taking into account the expansion

of space alone. Otherwise, the energy stored in the moduli field would still scale as

matter in spite of the exponential increase in the occupation number of certain field

modes. This condition reads

ρ̇η > Hρφ . (5.32)
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Range of effective parametric resonance 
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Figure 5.1: The shaded region represents the parameter space where parametric res-

onance alone completely solves the cosmological moduli problem. The upper bound

is obtained from a combination of two conditions: the moduli never dominate the

universe and parametric resonance is effective up to the moment when the moduli

decay perturbatively. The lower bound limits the shaded region to moduli masses

which are potentially dangerous.

The rate of increase ρ̇η in the energy density of η can be estimated by considering the

increase in the amplitude of all modes of η in the lowest instability band. This band

is located at k ∼ mφ and its width is given by qmφ. Since the rate of increase (from

(5.19)) is qmφ and since the initial mode (vacuum) energy is about k, we obtain

ρ̇η ∼ m5
φq

2 . (5.33)

Hence, the condition (5.32) for efficiency of the resonance process becomes

mφ < mI
m2

I

T 2

mI

Mp
, (5.34)

which is to be evaluated at the temperatures when the presence of moduli fields are

dangerous for cosmology. Using, as before, the value mI = 102GeV, and evaluating

the above condition at the temperature of nucleosynthesis, we find that the condition

is satisfied as long as the mass mφ is smaller than about 10−5GeV. The condition

(5.34) becomes increasingly well satisfied at lower temperatures, and is no longer a

concern at the time of recombination. Note that the condition (5.32) for the efficiency
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of narrow resonance is a very conservative one. As long as the first condition (5.25) is

satisfied, the mode amplitude will grow, and hence the vacuum mode amplitude used

in the above estimate should be replaced by the excited amplitude, thus relaxing the

constraint by an exponential factor.

The problem, however, is that the condition (5.34) conflicts up to coefficients of

order unity with the condition that the perturbative decay rate is negligible. Thus,

in our toy model, and using the very conservative form of our conditions for the

effectiveness of the resonance process, the narrow resonance decay channel is only

effective near the time when the perturbative decay is also become important. This

result, however, is a consequence of the particular scaling of Γ with mφ, Γ ∝ m−1
φ .

In models where moduli decay to fermions, Γ ∝ mφ, and, therefore, we expect those

models do not suffer from this specific problem.

The above discussions neglected the expansion of the universe. Taking into ac-

count this expansion changes the Mathieu equation into a more general equation of

Floquet type, and leads to a stochastic nature of the resonance process [44]. However,

the property that the number of particles is growing exponentially at a rate given by

(5.19) is preserved.

5.4 Tachyonic Decay of the Oscillating Modulus

Field

In the case of the decay of the inflaton field at the end of the period of inflation, it

is known [151] that for certain models there is a tachyonic instability channel which

is more efficient than parametric resonance. In this section, we will study a similar

process for moduli decay.

Let us return to the basic equation (5.13), with the values of the parameters Ak

and q given by (5.14) and (5.15), respectively. We immediately see that for large

values of Φ, the effective m2 term in the equation will be negative for part of the
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oscillation period of φ. This tachyonic instability occurs provided

m2
IΦ

m2
φMp

>
m2

χ

m2
φ

. (5.35)

The minimal value for which the tachyonic decay channel is open is given by setting

the two sides in (5.35) equal and will be denoted by Φm.

The condition under which the tachyonic decay channel can solve the moduli

problem is then given by

m2
φΦ

2
m � T 4 , (5.36)

where T is the temperature corresponding to the period one is interested in 1. Eval-

uating (5.36) at the time of nucleosynthesis, we obtain

mφ � TNS
TNS

Mp

m2
I

m2
χ

. (5.37)

The upper mass bound on mφ for which the above tachyonic decay is effective thus

depends sensitively on the ratio of mI and mχ. Unless the latter mass is much

smaller than the former, the tachyonic decay channel cannot reduce the amplitude of

moduli oscillations to a level consistent with the observational constraints. Further

constraints on mχ come from the requirement that the tachyonic channel be more

efficient than pertubative decay (see Fig. 5.2).

The range of values of mφ for which the two decay channels - narrow parametric

resonance (neglecting for a moment the issue that in our model it starts to be efficient

together with the perturbative decay) and tachyonic decay - are open depends on the

values of the masses. While if mχ > mφ, the only allowed channel is the tachyonic

one, the narrow parametric resonance works for a wider range of masses mφ when

mχ ∼ mφ. The latter can be seen by inserting mχ = mφ into (5.37) and comparing

1While the energy density of χ is built up there is no reduction in Φ amplitude. In the case that

the space expansion can be neglected, conservation of the total energy density eventually causes

reduction in the moduli amplitude, Φ decreases. Thus, potentially, Φ can reach even lower values

than Φm, however, the non-negligible fraction of the energy density might still remain in the moduli.

All we ask for is to lower the energy density of the moduli below the total energy density 5.36 at

the moment the perturbative decay takes place, namely, below Γ2
allm

2
p. See Fig. 5.2
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Figure 5.2: The combination of two conditions - moduli never dominate the universe

and tachyonic resonance is effective up to the moment the moduli decay perturbatively

- sensetively depends on the mass of the decay products (mχ). As an example, we

take mχ = 5, 10 and 15 eV. The upper bound set by the above conditions seriously

reduces the range of applicability of the tachyonic resonance for decay products with

large masses. The situation can be fixed by dropping the condition that the moduli

never dominate, which will remove the bound and still allow the method to work.

The lower bound limits the parameter space to moduli masses which are potentially

dangerous.
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with (5.28). However, as the value ofmχ is reduced, the range of masses for which the

tachyonic decay channel is open grows and begins to dominate over that of narrow

parametric resonance. Tachyonic decay can be made to work even for mI ∼ mφ.

For values of mφ for which both decay channels are open, the tachyonic decay is

more efficient for two reasons. First, it leads to the excitation of all long wavelength

modes, and not just to modes in a narrow resonance band. Modes with

k2
p < m2

I

Φ

Mp
≡ k2

crit (5.38)

are excited. For such modes, the value of ηk increases with a maximal rate given by

ηk ∼ exp(
√
qz) , (5.39)

which for q < 1 is a larger rate than that which occurs for modes in the resonance

band during narrow resonance (see (5.19)). This is the second reason for the larger

efficiency of the tachyonic decay channel.

Let us estimate the energy density ρη stored in the quanta produced during the

tachyonic decay process. The phase space of modes which are excited tachyonically is

of the order k3
crit. Each mode grows with a rate which varies in time, the maximal rate

being given by (5.39), and the growth occurs for approximately half the oscillation

period (the period during which the effective square mass is negative). The mean

growth rate is given by 1/
√
2 of the maximal rate. Thus

ρη(t) ∼ m4
I

Φ2

Mp
2 exp(

1√
8
mI

√
Φ/MP t) . (5.40)

The prefactor in front of the exponential factor is much larger than the corresponding

factor in the case of the narrow resonance decay process.

5.5 Discussion and Conclusions

In this chapter we have studied two non-perturbative decay processes which can

substantially dilute the density of dangerous moduli fields. Both processes occur

during the phase in which the moduli fields oscillate about their ground states. The
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first non-perturbative process is parametric resonant excitation of fields coupled to

the modulus field. In this paper we modeled such fields as a scalar field χ coupled

to the modulus field φ via dimension five operators suppressed by the Planck mass.

The second decay process is tachyonic decay which makes use of the fact that the

effective square mass of χ in the presence of the oscillating φ field is negative for

part of the oscillation period. These decay processes are analogous to the parametric

resonant decay of the inflaton during reheating [149], and to tachyonic preheating

[151], respectively.

We have established the conditions under which either of the two decay processes

can solve the moduli problem, i.e. reduce the energy density of the modulus field to

values consistent with big bang nucleosynthesis. It appears that narrow parametric

resonance has the potential to solve the modulus problem but, for the toy model

considered here, and using very conservative conditions for the effectiveness of the

resonance process, it happens only at the time when the pertubative decay rate also

becomes important. Undoubtedly, tachyonic decay successfully solves the problem

given masses of decay products which are much smaller than the scale of interaction

- mI . Moreover, the tachyonic decay channel allows for excitation of particles with

masses heavier than that of the decaying particle. Depending on the values of the

other masses in the Lagrangian, either of the two decay processes can be open for

a wider range of masses mφ. For values of mφ for which both decay channels are

open, the tachyonic decay is much more efficient, as is true in the case of the decay

of the inflaton. Note that the presence of an interaction term in the Lagrangian

linear in φ was important in order to obtain the tachyonic decay. For example, it can

be generated as a result of a nonrenormalizable term in the Kähler potential after

integrating out the field I responsible for F-type SUSY breaking:

∫
dθ4I†I

φχ2

M3
p

=
F 2

M3
p

φχ2 ≈ m2
3/2

φ

Mp
χ2 , (5.41)

where m3/2 is the gravitino mass.

It will be of great interest to study the applicability of these decay channels to

concrete models with moduli fields. This work is left for future research.
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The form of the potential in our toy model Lagrangian inevitably suggests inflation

at low scales. This natural source of inflation does not only dilute heavier relics

but could also mitigate the flatness, horizon and entropy problems. It needs to be

studied whether this type of models can provide a successful reheating mechanism,

if the inflaton has only gravitationally suppressed interactions. Once again, non-

perturbative instabilities like those used in preheating [149, 43, 150, 44, 151] are

likely to be successful. If the modulus field comes to dominate the energy density of

the universe for some period (without necessarily leading to inflation), it can provide

a candidate for the curvaton (see e.g. [153] for an extensive discussion of moduli fields

as candidates for the curvaton).
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Chapter 6

A Note on the Moduli-Induced

Gravitino Problem

The cosmological moduli problem has been recently reconsidered. Papers [64, 65]

show that even heavy moduli (mφ > 105 GeV) can be a problem for cosmology if a

branching ratio of the modulus into gravitini is large. In this paper, we discuss the

tachyonic decay of moduli into the Standard Model’s degrees of freedom, e.g. Higgs

particles, as a resolution to the moduli-induced gravitino problem. Rough estimates

on model dependent parameters set a lower bound on the allowed moduli at around

108 ∼ 109 GeV.

6.1 Introduction

The cosmological moduli problem is a disease of many supersymmetry/supergravity

theories [54, 55, 56, 57]. Many supersymmetry/supergravity theories contain fields

which have flat potentials in the supersymetric limit and only Planck suppressed

couplings to Standard Model (SM) particles. We generically call them moduli. The

cosmological moduli problem arises whenever the decays of moduli are in conflict with

cosmological observations. Masses of moduli depend on the type of supersymmetry

breaking. Moduli much lighter than the Hubble scale during inflation acquire a vac-

uum expectation value (VEV) of order the Planck scale [134, 135]. Later on, a large
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abundance of moduli threatens to overclose the Universe or jeopardize the processes

of nucleosynthesis. Several solutions of the moduli problem have been suggested, see

e.g. [154, 155, 140, 4].

The cosmological moduli problem is automatically avoided in heavy moduli sce-

narios. A widely used estimate for the perturbative decay rate Γall of moduli is

Γall ∼ 1

4π

m3
φ

M2
p

. (6.1)

where φ is the modulus field and mφ is the modulus mass. Moduli decay once the

Hubble rate is of the order of Γall. Therefore, moduli of mass below 100 TeV decay

near or after the time of nucleosynthesis, when the universe is nearly 1 second old.

If the mass is above 100 TeV then the moduli decay before the time of Big Bang

Nucleosynthesis (BBN). Examples of scenarios with heavy moduli exist [156, 141,

157, 158, 159].

The heavy moduli scenario as a solution of the cosmological moduli problem has

recently been reconsidered starting with the papers [64, 65]. It was shown that the

decay of moduli into gravitinos is unsuppressed (for an opposite example see [160]).

The part of the Lagrangian describing the gravitino-modulus couplings is

e−1L = −1
8
εμνρσ(Gφ∂ρφ+Gφ†∂ρφ

†)ψ̄μγνψσ (6.2)

−1
8
eG/2(Gφφ+Gφ†φ†)ψ̄μ[γ

μ, γν ]ψν (6.3)

where ψμ stands for the gravitino and Gφ is a non vanishing dimensionless auxiliary

field with G = K/M2
p + ln(|W |2/M6

p ). The subscript i denotes the derivative with

respect to the field i. K and W are Kähler potential and superpotential respectively.

Based on these coupling, the perturbative decay rate of moduli into gravitinos is

Γ3/2 ≡ Γ(φ→ 2ψ3/2) ≈ |Gφ|2
288π

m5
φ

m2
3/2M

2
p

. (6.4)

The auxiliary field of the modulus, Gφ, in general, can be small to suppress Γ3/2

to the total decay rate Γall (6.1). However, suppressed Gφ is not a typical case,

e.g. in the framework of the 4D supergravity Gφ ≥ m3/2/mφ. Performing elaborate

calculations, authors of [64, 65] have shown that the typical branching ratio Br(φ→
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2ψ3/2) ∼ O(0.01−1). The large branching ratio of heavy moduli into gravitinos causes
gravitino overproduction. Hence, even having a modulus mass above 100 TeV does not

resolve the cosmological moduli problem. A detailed re-analysis of the cosmological

moduli problem taking into account constraints on gravitino overproduction pushes

up the gravitino mass above 105−106 GeV [65]. This is the moduli-induced gravitino

problem.

The previously published literature on the moduli-induced gravitino problem does

not include nonperturbative decay channels. We propose a solution of the moduli-

induced gravitino problem by having most of the moduli energy decay into the SM

degrees of freedom through a tachyonic decay into a boson pair, e.g. Higgs. The

decay process moduli − > bosons is rapid and occurs before moduli start to pertur-

batively decay into gravitinos. The scheme allows to find a range of moduli masses

(mφ > 108 ∼ 109 GeV) which does not suffer from the moduli-induced gravitino

problem. Making use of conservative approximations, we find a range of masses with

no overproduction of gravitinos.

6.2 Basic Idea

The general idea can be introduced in the following way. As was mentioned previously,

moduli have only Planck suppressed couplings to other fields and during inflation

obtain a VEV of the order of the Planck scale. After inflation, the modulus field

slowly rolls preserving its energy. When the Hubble parameter reaches the value of

mφ, the modulus field starts to oscillate. In the following, we assume that moduli

have a trilinear coupling to a scalar field χ,

φχ2 . (6.5)

The effective potential, V (φ, χ) is

V (φ, χ) =
1

2
m2

φφ
2 +

1

2
m2

χχ
2 +

1

2

α

MP l
m2

φφχ
2 +

1

4
λχ4 . (6.6)

The equation of motion for χ field with switched off the expansion of space is

χ̈k +
(
k2 +m2

eff

)
χk = 0 . (6.7)
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where

m2
eff = m2

χ + λχ2 +
α

Mp
m2

φφ , (6.8)

The oscillations of the field φ induce a negative mass for the field χ. The modes of

the field χ with k <
√
−m2

eff are excited,

χk ∝ e
√
−m2

eff−k2t (6.9)

and the energy is transferred from the oscillating φ into excitations of χ in a preheating-

like process. The process has a name of tachyonic resonance and is widely discussed

in the literature starting with [149, 129, 46], in particular, the implementation of

tachyonic resonance in the context of the resolution of the moduli problem is dis-

cussed in [4]. Thus, we see that for a certain range of parameters, the energy density

stored in the moduli nonperturbatively transfers into excitations of χ field much be-

fore moduli perturbatively decay into gravitinos. The couplings of χ to Standard

Model particles are assumed to be unsuppressed and, as a result, the decay rate of

χ is much larger than 1 sec−1. Thus, the modulus energy is converted into radiation

much before the time of BBN.

To study the stability of the potential (6.6), we find the minimum of the V (φ, χ)

in the φ direction which occurs for

φ = −1
2

α

Mp

χ2 . (6.10)

Substituting (6.10) into V (φ, χ) leads to

V (φ, χ) = −1
4

(
1

2

α2

M2
p

m2
φ − λ

)
χ4 +

1

2
m2

χχ
2 , (6.11)

and, we see that the effective potential is unstable for

1

2

α2

M2
p

m2
φ > λ . (6.12)

Thus, the presence of additional terms with Planck suppressed couplings is important

to stabilize the potential (6.6) at large values of the fields.

The efficiency of the tachyonic resonance must be carefully checked against the

effects of dilution due to the expansion of space. For the tachyonic resonance to
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be effective, the growth of the mode k (6.9) shall dominate the dilution due to the

expansion of space. The appropriate condition would be√
−m2

eff − k2 > H (6.13)

or
α

Mp
m2

φΦ >
m2

φΦ
2

M2
p

(6.14)

where Φ is the amplitude of the φ field. The above condition is fulfilled once

αMp > Φ . (6.15)

At the onset of oscillations Φ < Mp, thus for α ≥ 1 we can neglect the expansion of

space in our analysis.

In addition to the growing mode (6.9), there is also the decaying mode

χk ∝ e−
√
−m2

eff−k2t . (6.16)

The decaying mode causes inference terms and may put further restrictions on the

region of applicability of the tachyonic resonance. The equation 6.7 can take the form

of the well known Mathieu equation (see e.g. [50]). In fact as it can be seen from the

instability chart of the Mathieu equation, the resonant production is terminated as

soon as q ≡ αΦ/mp ≤ 1/2; hence α � 1. In the context of gauge supersymmetry

breaking and anomaly mediation scenarios the interaction couplings are expected to

be larger than Planck suppressed which corresponds to α� 1 in our parametrization.

In gravity mediation supersymmetry breaking scenarios relatively large couplings α

can also be obtained if moduli couples to Bose Condensate [127]. Another way to

increase α is to consider many trilinear interactions which effectively causes an en-

hanced coupling of the moduli to the scalar sector.

Tachyonic preheating in the parameter range corresponding to large α was exten-

sively studied in [128]. The authors have shown that trilinear terms lead to faster

re-scattering and thermalization. As a bonus, trilinear terms allow complete decay of

the moduli. In addition to positive effects, enhanced resonance and fast subsequent

thermalization may enlarge the reheating temperature beyond the allowed region

which threatens to overproduce gravitinos through re-scattering processes [161].
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The trilinear interaction term (6.5) may arise, for example, from the non-renormilizable

term in the Kähler potential 1

LH =

∫
d4θ

λH

Mpl

φH∗
uH

∗
d + h.c. (6.17)

where Hu and Hd are up-type and down-type Higgs supermultiplets or correspond-

ing scalar fields, respectively. The φ field is the moduli supermultiplet and, in the

following, its scalar part. After integrating out the superspace coordinates, we obtain

LH =
λ

Mp
(DμD

μφH∗
uH

∗
d (6.18)

+FφH
∗
uF

∗
d + FφH

∗
dF

∗
u + c.c.+ · · · )

where Fi = −M2
p e

G/2(G−1)ijGj is the auxiliary field of the i’th supermultiplet, Dμ is

the covariant derivative. The process of energy transfer described above makes use of

on-shell degrees of freedom. Hence, we make use of the equation of motion for the φ

field to replace DμD
μφ with m2

φφ. As a result, the following interaction term is part

of the Lagrangian:

LH ⊃ λH

Mpl
m2

φφH
∗
uH

∗
d + h.c. (6.19)

In the low energy effective Lagrangian, the term (6.19) is responsible for the interac-

tion (6.5), where χ is the neutral scalar component of the lightest Higgs field in the

mass basis.

6.3 Estimates

In the following we would like to estimate the region of moduli mass for which the

moduli-induced gravitino problem is resolved. Another glance at the equation of

motion of the χ field

χ̈k +

(
k2 +m2

χ + λχ2 +
α

Mp
m2

φφ

)
χk = 0 ,

1Here we provide only one example of the origin of trilinear terms. Large α might require other

interactions.
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reveals that the tachyonic process is more effective for larger masses of the moduli.

We assume that the tachyonic resonance works as long as m2
eff can obtain negative

values,
m2

χ

m2
φ

< α
Φ

Mp
. (6.20)

All the energy converted into excitations of the χ field afterwards is transferred to

SM degrees of freedom. Further, since Br3/2 = O(0.01 ∼ 1) we assume that once

the bound (6.20) is violated all the energy is transferred to gravitinos. The above

assumptions allow us to estimate the gravitino abundance neglecting the effect of

the expansion of space. At the end, we insert the known bounds on the gravitino

abundance and derive the lower bound on the gravitino mass.

We distinguish between two cases at the onset of moduli field oscillations: in the

first case, the universe is supercooled and 〈χ2〉 ∼ 0; or, in the second case, the universe

is dominated by radiation and 〈χ2〉 ∼ T 2 =
√
mφMp. The universe is supercooled

if oscillations of the moduli were preceded by an inflationary period, and the energy

is still stored in the oscillations of an inflaton, or if the modulus itself is the inflaton

(see [162, 163] for discussions on the moduli-induced gravitino problem in this case).

In this paper, we primary concentrate on the first case. In this case, we omit the self

interaction term to obtain order of magnitude estimates for the bound on the allowed

moduli mass.

While the tachyonic resonance is in effect, the energy density in φ is transferred

to χ particles and then to radiation. Neglecting the expansion of space,

ρrad = m2
φM

2
p (6.21)

The tachyonic resonance ends as soon as Φ reaches the value 2

Φmin =
m2

χ

m2
φ

Mp

α
. (6.22)

At this point, the remaining energy density in the moduli is

m2
φΦ

2
min =

m4
χM

2
p

α2m2
φ

≡ ρ3/2 . (6.23)

2We have assumed that tachyonic resonance ends before the perturbative decay takes place. This

assumption is equivalent to mχ > Γall.
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The energy density stored in the gravitino, ρ3/2, allows us to determine the grav-

itino abundance.

m3/2Y3/2 ≡ m3/2

n3/2

s
(6.24)

=
ρ3/2

s
(6.25)

=
m4

χM
2
p

α2m2
φs

(6.26)

where Y3/2 is the gravitino yield, n3/2 is the number density of gravitino particles and

s is the entropy of the ultra-relativistic particles.

s =
ρ+ p

TR

=
4

3

ρrad

TR

≈ (mφMp)
3/2 , (6.27)

where TR is the reheating temperature (temperature of ultra-relativistic plasma at

the moment it reaches thermal equilibrium). While the actual reheating temperature

depends on the thermalization processes, the upper bound is

TR <
√
mφΦin ≤

√
mφMp (6.28)

where Φin is the amplitude of the field φ at the onset of oscillations. Since we have

neglected the expansion of space throughout the calculations, we have plugged TR =√
mφMp to obtain the last equality in (6.27).

The gravitino abundance is severely constrained in order not to jeopardize the

success of BBN or from the danger of overproducing of lightest supersymmetric par-

ticles. The most stringent constraint comes from the overproduction of 3He [58, 59]

which yields

m3/2Y3/2 < O(10−14 ∼ 10−11) GeV . (6.29)

The limit (6.29) is equivalent to

m3/2Y3/2 =
m4

χ

α2m4
φ

TR (6.30)

=
3

4

m4
χ

α2m4
φ

√
mφMp

< O(10−14 ∼ 10−11) GeV
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where we have inserted the expression for s (6.27). Making further assumptions:

α ∼ O(1), mχ ≈ 100 GeV, the moduli is safe from the overproduction of gravitinos

in direct decay if

108 ∼ 109 GeV ≤ mφ . (6.31)

The lower bound (6.31) is the main result of the paper.

In the second case, when the field χ is a part of the thermal bath and the contri-

bution of the self interaction term to the effective mass can be large, we have

m2
eff = m2

χ + λ〈χ2〉+ α

Mp
m2

φφ

= m2
χ + λT 2 +

α

Mp
m2

φφ , (6.32)

where we have used the Hartree approximation to go from the first to the second line.

The large λT 2 term threatens to prevent the tachyonic resonance from occurring.

Particulary, if, at the onset of oscillations, the condition

1 <
α

λ

mφ

Mp
(6.33)

is not satisfied, the effective mass (6.32) is positive. In an expanding moduli-dominated

universe, the temperature redshifts as

T 2 = mφMp

(
Φ

Mp

)4/3

(6.34)

Hence, m2
eff remains positive during oscillations of the φ if

1 >
α3

λ3

mφ

Mp
(6.35)

where we have inserted Φf =
m2

φ

Mp
- the value of Φ at the time of perturbative de-

cay (6.1). In the case m2
χ > λT 2, the estimates on moduli mass reduce to (6.21-6.31).

The decay of moduli dilutes the pre-existing abundance of gravitinos. Let us

denote the initial gravitino yield by Y3/2. The entropy produced in the decay of

moduli into radiation sn ∝ T 3
n , hence, the new gravitino yield is

Y n
3/2 =

n3/2

sf + sn

Y n
3/2 ≈

Y3/2sf

sn

=
Y3/2sf

sn

=
T 3

f

T 3
n

Y3/2 . (6.36)
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where sf and Tf stands for the values of the preexisting entropy and temperature of

radiation at Γall = H . Making use of (6.34), we deduce

Y n
3/2 =

mφ

Mp
Y3/2 (6.37)

6.4 Conclusions

In this chapter, we have discussed the influence of the tachyonic resonance on the

moduli-induced gravitino problem. We primarily have discussed the case when χ is

not a part of the thermal bath at the onset of oscillations of the modulus field. In this

case, the rough estimates shows that moduli masses above 108 ∼ 109 are free from

overproduction of gravitinos in direct decay of moduli. The estimates omit several

model dependent points which may either enhance or diminish the influence of the

resonance. In particular, in the process of calculations we did not take into account

the expansion of space. In the case when χ is a part of the thermal bath at the onset

of the oscillations of φ, we have found that the tachyonic resonance is less likely to

work. In any case, even if the tachyonic resonance is inefficient, the decay of moduli

dilutes the initial abundance of gravitinos.
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Chapter 7

Conclusions

Integration of Cosmology with High Energy Physics is one further step towards the

theory of everything. The interface of early universe cosmology and string theory

is not yet possible on a rigorous basis since string theory is not yet fully developed

theoretically. Nevertheless it can be mutually beneficial to combine ideas from string

theory and cosmology. From one side, new degrees of freedom open up new venues

for string-inspired scenarios - both inflationary and alternative cosmologies. On the

other side, the main drawback of string theory, the lack of predictability, may be put

aside if connections to the cosmological observations are found. Later time cosmology

constraints put further restrictions on models beyond the Standard Model. This thesis

contributes to this interface area.

Inflationary cosmology is a robust and predictive paradigm. Because of its robust-

ness the chances are high that inflation is indeed a part of the history of the universe.

However, there are many ways to obtain inflationary expansion of the universe which

makes it difficult to agree on the unique model of inflation. Past decades gave rise

to many models of inflation which cannot be distinguished on the basis of current

observations. A successful alternative model which predicts yet untested deviations

from inflation could open up a further way to test the inflationary paradigm. Finding

an alternative scenario is a difficult task and tackling only part of the problems of

BBC remains useful. Note that no currently known alternative scenario solves all the

puzzles of BBC which are solved by inflation.

101



In Chapter 2, we propose an alternative string-inspired scenario which solves the

entropy and horizon problems of BBC. Inspired by the idea of a hot big bang, we

propose that the 4+d dimensional universe emerges with all stringy degrees of freedom

present, and being compact. The topological difference between 3 and d spatial

dimensions leads to a difference in the evolution of the extra dimensions compared to

the evolution of our three currently observed spatial dimensions. During the phase of

bulk expansion, the total energy density of the matter is growing. The following phase

in which the extra dimensions contract is necessary to obtain later on am effectively

4 dimensional cosmology. Once the size of the extra dimensions is stabilized and the

energy of the bulk transfers into radiation, the radiation epoch proceeds as in the

BBC scenario. Note, that the expansion is non-accelerated in all stages of evolution.

A weak point the inflationary models is the fine-tunings involved in order to obtain

inflation. Special initial conditions are not naturally expected to emerge in most of

the models. In the inflationary string inspired model presented in Chapter 3, this

weak point is ameliorated by the existence of a period of preceding expansion which

results in the correct initial conditions. The setup of the scenario is very similar to

the one used in Chapter 2. The difference is in the way the extra dimensions contract.

In Chapter 3, the contraction is inflationary.

Chapter 4 follows up on Chapter 3. The observational consequences of the model

presented in Chapter 3 are investigated. In particular, spectral index is found to

be in excellent agreement with observations. Furthermore, we derive a bound on the

fundamental string scale, examine compatibility with late time cosmology and discuss

preheating.

Compatibility of late time cosmology with particle physics models is a subject

under investigation. In particular, predictions of Nucleoshynthesis are challenged

if the particle physics model at hand contains moduli fields. In Chapters 5 and 6

we consider decay channels for moduli which have been so far neglected, namely

nonperturbative decay channels. In Chapter 5 we build a toy model Lagrangian

which is inspired by the nature of the problem. Coupling of moduli to another

scalar field through trilinear terms allows transfer of energy by virtue of parametric
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and tachyonic resonances. We find a parameter range which does not exhibit the

cosmological moduli problem. In Chapter 6, the nonperturbative decay of moduli

prevents domination of the moduli energy-density upon its perturbative decay, and

as a byproduct it avoids the overproduction of gravitinos. We estimate the range of

moduli masses for which the theory is free from the moduli-induced gravitino problem.

While the final resolution of the cosmological moduli problem is model-dependent,

our investigations open a new window of opportunity to solve the problem.
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