
Real-time Video Server with WebRTC

Mingzhou Yang

Master of Science

Department of Computer Science

McGill University

Montreal,Quebec

2015-11-23

A thesis submitted to McGill University in partial fulfillment
of the requirements of the degree of Master of Science

© Mingzhou Yang 2015

DEDICATION

This document is dedicated to the graduate students of the McGill University.

ii

ACKNOWLEDGEMENTS

There are number of people without whom this thesis might not have been

written. First of all, I would like to express my sincere gratitude to my supervisor

Prof. Muthucumaru Maheswaran for the continuous guidance of my research and

the writing of this thesis. Then I would like to thank my parents for educating and

supporting me throughout my life. My friend Ahmed Youssef also helped me a lot

to improve the grammar of this thesis.

iii

ABSTRACT

Traditional Peer-to-Peer (P2P) video streaming services require particular soft-

ware or browser plug-ins to manage peers and distribute content. However, with the

emergence of Web Real-Time Communication (WebRTC), it becomes possible to

accomplish browser-to-browser data exchange without any intermediate servers. In

this work, we design and implement a real-time P2P video server based on WebRTC.

Our server owns both the real-time feature of client-server transmission and the scal-

ability feature of P2P protocols. We apply a simple algorithm to distribute content

to peers and manage all the peers. Fault-tolerance mechanisms are also employed to

improve the server’s stability. We conducted several experiments on various features

of both the server and the clients. Our work also demonstrates current limitations

of our system and discusses features that will be added in the future.

iv

ABRÈGÈ

Les services traditionnels de vidéo en streaming pair à pair (P2P) nécessitent

un logiciel particulier ou des plug-ins de navigateur pour gérer les pairs et distribuer

du contenu. Cependant, avec l’émergence de la communication web en temps réel

(WebRTC), il devient possible d’accomplir des échanges de données de navigateur à

navigateur sans serveur intermdédiaire. Dans ce travail , nous concevons et réalisons

en temps réel un serveur vidéo P2P basésur le WebRTC. Notre serveur possède

à la fois les caracteristiques en temps réel de la transmission client-serveur et la

fonctionnalité de l’évolutivité des protocoles P2P. Nous appliquons un algorithme

simple pour distribuer du contenu aux pairs et gérer tous les pairs. Les mécanismes

de tolérance de panne sont également utilisés pour améliorer la stabilité du serveur.

Nous avons mené plusieurs expériences sur diverses caractéristiques à la fois sur les

serveur et sur les clients. Notre travail démontre dégalement les limites actuelles de

notre système et discute les caractéristiques qui seront ajoutés dans l’avenir.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ABRÈGÈ . v

LIST OF FIGURES . viii

1 Introduction . 1

1.1 Thesis Contribution . 4
1.2 Thesis Outline . 5

2 Related Works . 7

2.1 IP Multicast . 7
2.2 Tree-based Protocol . 7
2.3 Gossip-based Protocol . 9
2.4 Push-Pull Protocol . 13
2.5 WebRTC . 15
2.6 Summary of Existing Protocols . 16

3 Design . 18

3.1 Video Stream Pretreatment . 18
3.2 Common transmission scenario . 24
3.3 Peer Join . 28
3.4 Peer Departure . 34
3.5 Fault Tolerance . 39

3.5.1 Display Previous Piece . 39
3.5.2 Round-Robin Sending . 41
3.5.3 Slow Peer Handling . 42

vi

4 Evaluation . 45

4.1 Server Speed Test . 45
4.2 imageHash Function Performance Test 47
4.3 Group Size Test . 50
4.4 Group Consistency Test . 53
4.5 Slow Peer Capacity Test . 53
4.6 Summary . 55

5 Conclusions and Future Work . 57

5.1 Conclusions . 57
5.2 Future Work . 58

5.2.1 imageHash . 58
5.2.2 Server Capacity . 59
5.2.3 Slow Peer Handling . 60
5.2.4 Grouping Algorithm . 61
5.2.5 Video Encoding . 61

References . 62

vii

LIST OF FIGURES
Figure page

3–1 A frame with size 640 * 480 equally cut into 8 pieces. 19

3–2 Performance comparison of pHash and another image hash function . 20

3–3 Pieces of Frame N . 23

3–4 Pieces of Frame N+1 . 24

3–5 When frame 703 is being received, frame 655 is being displayed 27

3–6 The server’s process to send a frame . 29

3–7 The client’s process to exchange pieces with groupmates and display
frames . 30

3–8 Attributes of Peer Structure . 31

3–9 GroupTable with 4 groups . 31

3–10 Flow Chart of Peer Join Behaviour . 35

3–11 When frame 655 is being displayed, piece 3 and piece 7 are outdated . 40

3–12 Piece Distribution of Frame N . 41

3–13 Piece Distribution of Frame N+1 . 42

4–1 Pretreatment overhead, group management overhead and transmission
time change with the number of peers, with/without imageHash . . 46

4–2 Packet loss rate changes with the number of peers, with/without
imageHash . 48

4–3 Packet loss rate changes with the number of peers, when maximum
group size is 4, 8 or 16 . 50

viii

4–4 Frame rate changes with the number of peers, when groups are
consistent/inconsistent . 52

4–5 Frame rate changes with the number of slow peers 54

5–1 An extra imageHash processor is added to focus on imageHash 59

ix

CHAPTER 1

Introduction

With consumers’ increasing passion about watching live videos online instead

of TV, video streaming service providers like Netflix, Youtube and Youku occupy

an increasing percentage of Internet traffic. According to a report by Sandvine [1],

Netflix and YouTube accounted for nearly half of the downstream traffic during peak

hours in the second half of 2014. It is also predicted that 75 percent of all channels

will be born on the Internet and 90 percent of Web traffic will be video in the next

decade [2]. Considering the enormous bandwidth needed for video service providers,

it has become a big issue for them to offer a great viewing experience as well as

reduce network expenses.

In order to improve consumers’ experience while watching videos, Content Dis-

tribution Network (CDN) is a solution. With the help of CDN, video service providers

can store content in multiple locations. Then, requests for content will be redirected

to the nearest CDN node in order to minimize transmission time and achieve high

performance.

In order to reduce network expenses, Peer-to-Peer (P2P) protocols are consid-

ered to be the most feasible solution. Although there exist some successful commer-

cial sites using P2P protocols like PPTV, CoolStreaming, PPStream and SopCast,

P2P protocols are not adopted by large video service providers like Netflix, Youtube

1

and Youku because P2P solutions always rely on either client end software or browser

plug-ins to coordinate P2P data exchange.

Web Real-Time Communication standard (WebRTC), drafted by the World

Wide Web Consortium (W3C) in 2011, is a feasible method to achieve lightweight

P2P data exchange. WebRTC is an API definition that supports browser-to-browser

applications for voice calling, video chat, and P2P file sharing without the need for

installing either internal or external plug-ins. Even though WebRTC is still un-

der development, it has already drawn the interest of developers. Compared to other

WWWmultimedia technologies like Adobe Flash and Microsoft Silverlight, WebRTC

has the advantage of being open source and potentially compatible. So, it is likely

that, in the near future, WebRTC will provide interoperable multimedia communi-

cations and enable an effective convergence among desktop WWW platforms and

Smartphones [3].

WebRTC implements three APIs: [4]

• RTCPeerConnection API is the WebRTC component that handles stable and

efficient communication of streaming data between peers.

• MediaStream API represents synchronized streams of media (audio and video).

• RTCDataChannel API supports real-time communication for other types of

data.

Here is a common scenario for how users set up a WebRTC connection. Firstly,

peers need to register in a WebRTC connection server and acquire their unique IDs.

Then, they talk to another public server to exchange their IDs with the help of the

server. After being aware of each others’ IDs, one of the peers sends a request to

2

the WebRTC connection server mentioned before with the target ID and the con-

nection server coordinates the connection establishment process between the users

with the help of RTCPeerConnection API. After that, users can communicate with

each other using MediaStream API or RTCDataChannel API without any interven-

tion from servers. Therefore, two servers are needed here: one for peer registration

and connection coordination, and one for peer ID exchange. In our work, these two

servers are located in the same machine.

Our WebRTC-based P2P Real-time System (WPRS) is also part of the Reality

over Web (RoW) project [5] at the McGill Advanced Research Lab. RoW is a novel

concept, where a window on the web corresponds to a window onto a real space. Once

the correspondence is established, users should be able to interact or manipulate the

objects or people in the real space through the web window.[6] As a result, our server

is delay-sensitive so that the video can respond to user’s manipulation quickly. In

this way, instead of applying existing P2P video distribution algorithms whose delay

time is unacceptable, we design a simple but effective algorithm for a small and

medium number of users.

WPRS can be divided into two parts: the server end and the client end. In the

server end, we implement a main server that processes captured frames and manages

peers with C++. Peers are divided into several groups and, in a common scenario, all

the peers in the same group receive different portions of data from the server. When

peers connect with the server, disconnect from the server or are reported as slow

by its groupmates, the server takes measures to manage the group and keep other

3

peers unaffected. We also run a WebRTC connection server to coordinate connection

establishment.

Our client end program is totally implemented in JavaScript. After the client

receives the packet including IDs of its group members, it sets up connections with

its group members with the help of the WebRTC connection server. Whenever

this client receives its portion of data from the server, it broadcasts data to all its

groupmates. At the same time, it also collects data from its groupmates and after

a certain period of time, the frames will be displayed on the screen. When a client

notices any of its group members are slow, it reports the main server automatically

to ensure its performance.

1.1 Thesis Contribution

WPRS can be seen as a hybrid system with both the real-time feature of client-

server transmission mode and the scalability feature of P2P protocols. Compared

with traditional P2P protocols who have a playback delay of dozens of seconds [6] [7],

WPRS has a significantly better performance. The frames displayed on our clients’

screens are at most 4 seconds behind the live video.

On the other hand, our server can support more users when comparing with the

traditional client-server transmission mode. Although our server is not fully scalable,

it still greatly improves the server’s capacity.

By applying WebRTC to implement peer-to-peer data exchange, no client end

software or browser plug-ins need to be installed. The client end application is totally

implemented by JavaScript and everything clients need to do is open a web page. It

brings clients convenience and makes our system light weight.

4

Besides, we adopt an imageHash algorithm to decide the similarity of consecutive

frames. If a frame is similar to its previous frame, then a signal is sent instead of the

frame data. This mechanism minimizes redundant frame data sent and saves some

bandwidth.

Finally, due to the highly dynamic nature of the Internet, we design a group

management mechanism to deal with frequent group change such as peer join, peer

leave and slow peers. This mechanism protects other clients in a changing group

from being severely affected.

1.2 Thesis Outline

This thesis includes 5 chapters. For easy reference, the chapters that follow are

organized as below:

• Chapter 2 provides the background and related works of video distribution

protocols, including tree-based protocols, gossip-based protocols and pull-based

protocols. Research about WebRTC standard is also included.

• Chapter 3 introduces the design of our server and clients in detail. It includes

how our video server processes frames captured by the video camera before

distributing them to peers. Also, it will be demonstrated how the server and

clients behave when a peer tries to connect with the server, disconnect from the

server or is reported as slow by other peers. The fault-tolerance mechanisms

employed to improve clients’ watching experience will also be introduced.

• Chapter 4 shows the experiments done about multiple features of both the

server and clients. A comprehensive analysis about the results will follow.

5

• Chapter 5 gives a conclusion on our topic based on the results from our exper-

iments. We will discuss the current limitations of our video server as well as

the improvements needed to be done in the future.

6

CHAPTER 2

Related Works

In this chapter, we provide the related works about P2P video distribution

algorithms and WebRTC.

2.1 IP Multicast

Before talking about P2P algorithms, we introduce IP Multicast first, which

was initially considered as the solution for video distribution. IP Multicast aims

to use network infrastructure (typically network switches and routers) to replicate

packets during the transmission and forward them to corresponding ports. In this

way, the server only needs to send each packet once even if there are a large number

of receivers. Although IP Multicast sounds feasible and has been standardized in

1986 [8], its deployment still remains confined. The main reason is that current IP

Multicast model lacks technical supports for authorization, security, address alloca-

tion and network management [9]. The lack of commercial motivation for Internet

service providers (ISPs) to offer infrastructural support is also an important reason.

2.2 Tree-based Protocol

As a result, researchers turned to application-layer solutions for video distribu-

tion. Chu et al. [10] proposed a scheme called End System Multicast. According to

their work, end systems can self-organize into an overlay structure using a fully dis-

tributed protocol. Via the overlay structure, end systems participate in the multicast

group communication and play the same role as routers in IP Multicast. In this way,

7

these multicast related features such as group membership, multicast routing and

packet duplication can be implemented at end systems through unicast IP services.

Their work has proven it possible to construct an overlay network on top of

a dynamic, unpredictable and heterogeneous Internet environment without relying

on a native multicast medium. For small and medium-sized multicast groups, it is

feasible to use this end system overlay approach to efficiently support all multicast

related functionality. Although the overlay approach to multicast cannot avoid some

delay in end system communication, the performance penalties are acceptable in the

case of small and medium sized groups.

After the work by Chu et al. [10], more works have succeeded in building such

tree-based overlay networks to spread packets from the source to all destinations.

Biersack et al [11] have shown that the tree-based architecture can reach the expected

performance in certain circumstances. The main focus is how to construct and

maintain an efficient distribution tree among the overlay nodes.

• CoopNet [12] uses a central server to collect the information from all the nodes

and manage the tree structure. As a result, a strong and reliable server is

needed to carry the load.

• In contrast, NICE [13] and ZIGZAG [14] achieve logarithmic tree height based

upon a hierarchical clustering and do not require any underlying topology in-

formation.

• Narada [10] constructs trees in a two-step process: meshes are constructed

among participating members first and then spanning trees of the mesh are

8

constructed using well-known routing algorithms. This mesh-based approach

is motivated by the need to support multisource applications.

However, there still exists some vital drawbacks which prevent these protocols

from being put into use [15].

• Leave or crash behavior of the upper-level nodes often causes buffer underflow

in a large population of descendants and the tree has to be reconstructed. Due

to the highly dynamic nature of the Internet, users may suffer from frequent

transmission outages.

• As the upload bandwidth of nodes is much less than that of the server and

also varies with each other, there exists an unfair distribution of the available

bandwidth for each node.

2.3 Gossip-based Protocol

Gossip-based protocols were also a popular solution to multicast message dis-

semination in P2P systems, inspired by the form of gossip seen in social networks.

In a gossip-based protocol, when a node receives a packet, it sends the packet to

some randomly chosen nodes if it is the first time this node receives that packet.

Otherwise, this packet is simply ignored. This behavior continues until all nodes

have this packet.

Among all the works related to gossip-based protocols, Xu et al. [16] designed a

system that achieves most of the designated features of a gossip-based protocol:

• Peers show different behavior with the server;

• Peers contribute differently depending on their own bandwidth;

• Streaming capacity of the system grows dynamically;

9

• Each streaming session may involve multiple supplying peers.

They also solved the problems about how to distribute the media to multiple

supplying peers in the same streaming session and how to amplify the system’s

total streaming capacity efficiently. The solution to the first problem is a video

streaming distribution algorithm called OTSp2p, which can minimize buffering delay

in the consequent streaming session. This algorithm is executed by the requesting

peer. It assigns each participating supplying peer the same proportion of media data

segments as the proportion of this peer’s out-bound bandwidth to the total out-

bound bandwidth. After computing the media data assignment, it initiates the peer-

to-peer streaming session by notifying all the supplying peers of the corresponding

assignment.

The solution to the second problem is a distributed differentiated admission

control protocol called DACp2p. It achieves efficient system capacity amplification

by differentiating between requesting peers based on their upload bandwidth. Each

supplying peer individually decides whether or not to support requesting peer in a

probabilistic fashion. The higher the out-bound bandwidth a requesting peer can

contribute, the greater the possibility that it will be admitted. At the same time,

the peers with low out-bound bandwidth should not starve. This mechanism can

encourage requesting peers to contribute their truly available out-bound bandwidth

to the peer-to-peer streaming system and make use of the upload bandwidth of most

peers efficiently.

In addition, [17], [18], [19], [20], [21] and [22] are all pioneering works related

to gossip-based protocols. Compared to tree-based protocols, gossip-based protocols

10

are more fault-tolerant and decentralized. However, the random push behavior also

results in redundancy, which can be a vital problem for high-bandwidth streaming

applications. In addition, several other questions need to be addressed. [23].

Membership - Membership is a vital issue in P2P protocols. Before a peer

can request media data from supplying peers, it needs to acquire its own specific

membership information. This who knows whom relationship is probably the most

important issue to consider while designing scalable implementations of gossip-based

protocols. In the original protocol [24], it is assumed that every peer knows the

existence of every other peer. However, this scheme is not practical when deployed

in large systems because the storage required to store the membership information

and the extra load on the network to maintain consistent views of the membership

grow linearly with the size of the system. As a result, a decentralized protocol

providing each peer only with a partial view of the system is needed to improve

scalability. Such an algorithm must trade scalability against reliability: small views

growing sublinearly with the system size obviously scale better, while large views

reduce the probability that peers become isolated.

Network awareness - Network topology is also an important issue in gossip-

based protocols. Without considering network topology, it is possible that a peer

always request media data from remote supplying peers, which results in low trans-

mission efficiency and significantly limits the applicability of these protocols. Most

solutions rely on a hierarchical architecture to reflect the network topology. This

mechanism then ensures that most data packets are forwarded to peers within the

same branch of the hierarchy and the transmission efficiency can be improved to

11

a large extent. However, organizing peers into a hierarchy in a dynamic and fully

distributed manner is not straightforward and is still an active area of research.

Buffer Management - Every peer has a buffer with limited size to store re-

ceived messages. These messages are forwarded a limited number of times to some

random selected peers. The problem is, it is possible that the rate of new information

production in the system may overwhelm these peers. That is, the buffer capacity

of peers may be insufficient to ensure that every message is buffered long enough

so that it can be forwarded a sufficient number of times to achieve an acceptable

reliability.

Message Filtering - So far, the gossip-based protocols aim to spread messages

to every peer in the system. However, it becomes complicated when different groups

of peers have different interests. It is ideal if a peer has a higher probability to receive

a message it is interested in than a message it does not want. But the deployment

of an adequate filtering mechanism is not trivial and at least two issues need to be

addressed. The first one is that in a decentralized system, it is not trivial for a

peer to know other peers’ interest. The other problem is, even when peer A knows

that peer B is not interested in a message, it is possible that peer B still have to

receive that message if peer B is a critical node for peer A to reach other peers that

are interested in the message. These issues can be seen as a consequence of the

brittleness of membership information. If every peer knows all other peers, including

their interests, it becomes much easier to use a global algorithm to route messages

to interested peers only.

12

2.4 Push-Pull Protocol

Before introducing the push-pull protocol, I would like to explain a pull-based

protocol called Coolstreaming [25], which is considered to be the world’s first suc-

cessful large-scale peer-to-peer live video streaming (P2PTV) system [26].

Coolstreaming is called a pull-based protocol since all the packets need to be

fetched based on receiver’s own initiative. Thus, it is a receiver-driven approach.

Coolstreaming is an efficient, robust and resilient system which is easy to implement.

The core behavior of Coolstreaming is that every node requests needed chunks from

its neighbours who own the chunks and also supplies data to its neighbours. To

achieve this, Coolstreaming system has three key features: membership management,

buffer map presentation and scheduling.

Membership management - Each node has a unique ID and a list of the IDs

of other active nodes. When a node joins, it firstly contacts the original supplier,

which is a dedicated server in most cases. The original supplier randomly chooses

a node as the deputy node and redirects the newcomer to the deputy node, who

will provide a list of nodes as the newcomer’s potential neighbours. After joining

the system, every node generates a membership message to announce its existence

periodically. These messages are flooded to other nodes using the Scalable Gossip

Membership protocol [27]. Upon a node’s departure or failure, its neighbours also

flood a message to other nodes to inform this news.

Buffer map presentation - Before transmission, the video stream is divided

into segments of identical size and a Buffer map is employed in every node to represent

13

segments’ availability. Every node exchanges its Buffer map information with its

neighbours so that it knows which segment to request and supply.

Scheduling - Given the Buffer map of a node and its neighbours, the node

uses a scheduling algorithm to decide the currently needed segments. Coolstreaming

uses a heuristic algorithm here. It calculates the availability of each segment in

its neighbours and the segments with fewer potential suppliers are assigned higher

priority. If multiple suppliers exist then the one with the highest bandwidth is

selected. This algorithm can meet the two key constraints: heterogeneous bandwidth

for nodes and playback deadline for segments.

Although Coolstreaming achieved good video playback quality, there were still

two main drawbacks in the earlier system. The first one is that peers sometimes

suffer from unacceptable initial start-up delay because of the random peer selection

process and per block pulling behavior. The other drawback is a high failure rate in

joining a program during flash crowd. Due to these two drawbacks, Coolstreaming

failed to meet the commercial system requirement.

Later, Li et al. [26] improved the original pull-based protocol and implemented

a hybrid pull and push mechanism. In the new Coolstreaming system, segments

are divided into several groups. If a node pulls a segment from its neighbour, then

the neighbour automatically pushes the rest of the segment group to the requesting

node. In this way, pull overhead can be greatly reduced. Besides, multiple servers

are also deployed to reduce initialization time to less than 5 seconds. A multiple sub-

streams scheme is also implemented to enable multi-source and multi-path delivery

14

of the video stream, which significantly improve the video playback quality and the

system’s robustness.

As our work aims at low-latency synchronous real-time video distribution, pull-

based protocols are not a good fit for us. Instead, we divide peers into groups and

peers exchange data inside their group using a push-based protocol. Every peer

automatically pushes data received from the server to all the other group members.

2.5 WebRTC

WebRTC was drafted by W3C in 2011 and currently still under development by

W3C [28] and the IETF [29]. As a result, few works have been done on this topic

and only Google Chrome, Mozilla Firefox and Opera have implemented WebRTC

specifications.

Among the limited number of works about WebRTC, Eriksson et al. [30] an-

alyzed the fields that WebRTC can be utilized. They pointed out that WebRTC

can enrich communication within a community or a vertical application such as e-

health, education or social network, and enables faster deployment of massmarket

communication services.

Loreto et al. [31] explained WebRTC’s architecture, principle and APIs in detail.

They also indicated that WebRTC does not have a congestion control mechanism

at this time because IETF is still working on it. It is ideal to use only one single

congestion control instance for audio, video and data. At the same time, WebRTC

should be able to prioritize part of the transfer. Besides, WebRTC also brings some

security threats when direct browser-to-browser communication is allowed. We must

consider communications security as we do with other network protocols (such as

15

SIP) that allow for direct P2P communication. It is also essential to create a process

to let users verify each other before the connection is established.

Rhinow et al. [15] implemented a simplified pull-based protocol which shares

many key features of Coolstreaming and GridMedia. Their experiments show that

WebRTC has the features to implement P2P protocols with a large set of clients.

Nevertheless, they also demonstrate that it is not practical to implement a complete

Coolstreaming protocol using WebRTC, due to its current limitations. In addition to

the issuses mentioned in [31] and [32], three more problems exist. First of all, there is

currently an interoperability issue among browsers, which results in implementation

difficulties. Second, the browsers’ integration of WebRTC is still in beta status

and there exists some bugs, which may terminate web applications unexpectedly.

Moreover, the WebRTC API does not yet offer functions for connection management

and establishment. As a result, a second communication channel is necessary to

establish a connection. In our work, we use our main server to help establish WebRTC

connection.

2.6 Summary of Existing Protocols

Table 2–1 gives a summary of the P2P protocols mentioned above. Their con-

cept, drawbacks and representative protocols are recalled.

16

Protocol
Category

Concept Drawbacks
Representative
Protocols

Tree-
based
Protocol

End systems self-
organize into a tree
structure and per-
form multicast

1. Leave or crash behavior of
upper-level nodes may affect
many descendants 2. There
exists an unfair distribution
of the available bandwidth
for each node

CoopNet,
NICE,
ZIGZAG,
Narada

Gossip-
based
Protocol

Nodes forward
newly received pack-
ets to randomly
chosen nodes

1. Data redundancy 2. Mem-
bership 3. Network aware-
ness 4. Buffer management
5. Message filtering

ostream,
P2CAST,
PROMISE

Push-
pull
Protocol

Nodes request
needed chunks from
neighbors with the
chunks and supply
data to neighbors

Does not support real-time
video transmission

Coolstreaming,
GridMedia

Table 2–1: Summary of P2P Protocols

17

CHAPTER 3

Design

In this chapter, we introduce how the WebRTC-based P2P Real-time Sys-

tem(WPRS) is designed in detail. WPRS is a hybrid server providing both the

real-time feature of client-server transmission mode and the scalability of P2P pro-

tocols. As soon as a frame is captured, the server cuts this frame to smaller pieces

and distributes these pieces to each client immediately to ensure low latency. Then

clients exchange data received from the server with their groupmates so that they

each obtain a complete frame. This chapter is divided into five parts: video stream

pretreatment, common transmission scenario, peer join, peer departure and fault

tolerance.

3.1 Video Stream Pretreatment

In this section, we discuss how to process the live video before it can be dis-

tributed to the users. The process includes two stages: frame cut and image hash.

Traditional P2P video distribution algorithms cut the whole video into small

blocks and distribute these blocks to peers. However, since WPRS aims at low

latency, the server cannot wait for the collection of the complete video, split the

video and, at last, send the blocks. Instead, WPRS collects the video frame by

frame and distribute parts of each frame to peers.

After the camera captures each frame, the server continues to cut the frame

to pieces of equal size. The number of the pieces equals the maximum number of

18

takes an image as input and outputs a 64-bit integer. Unlike cryptographic hash

functions which rely on the avalanche effect of small changes in input leading to

drastic changes in the output, the imageHash function returns close hash values if

the features are similar. Therefore, this algorithm can be used to test similarity of

images.

When deciding whether two images are identical or not, we need a mechanism

to compare their hash values. Let’s denote their hash values by p1 and p2, then their

discrepancy value is ∣p1/p2 − 1∣. A discrepancy value close to 0 means that these two

images are very similar. When the discrepancy value is less than a certain threshold,

we can decide that these two images are identical.

For a given threshold, the performance of the imageHash function can be cal-

culated based on the falsely classified images. Falsely classified images are either

perceptually different images that are recognized as identical or perceptually iden-

tical objects which are recognized as distinct. These two kinds of misclassification

can be represented by False Accept Rate (FAR) and False Reject Rate(FRR). For an

ideal image hash function, both of its FAR and FRR should be close to 0. However,

currently no algorithm can achieve it.

Zauners [34] used FAR and FRR as the benchmarks to measure the hash func-

tion’s reliability. Figure 3–2 shows the performance comparison of pHash and another

image hash function. The red line is another image hash function with worse per-

formance and here we only focus on the blue line. We can see that the relationship

of FAR and FRR value is like a reciprocal function. So it is reasonable to set the

21

threshold to a certain value that FAR and FRR values become equal. According to

figure 3–2, the balance point is around 0.2 for FAR and FRR.

In our work, we firstly calculate the hash values of all the pieces of the frame.

Then we compare these values with the values of the previous frame and check their

similarity. If the difference between them exceeds the threshold, then this piece of

frame needs to be transmitted to clients. Otherwise, the server only needs to send

a DUPLICATE PIECE signal, this piece’s ID and the frame’s sequence number to

every client. This allows the clients to know that this piece did not change during

the last frame and the piece from the previous frame is displayed on the screen again.

When a changed piece is recognized as unchanged, the video frame may be odd

and the user’s watching experience is influenced. On the other hand, if an unchanged

piece is considered as changed, it only costs the server some extra bandwidth. There-

fore, we prefer to pursue low FAR at the cost of a relatively high FRR and apply a

conservative threshold. Depending on the experiments, we set the threshold to be

0.01 to ensure that the FAR is less than 5%.

The imageHash function’s processing speed is closely related the size of the

images. When processing original frames, the speed is so low that the server is

overwhelmed. As a result, it is necessary for the server to resize the original frame

to a smaller size before hashing. In this way, the time spent on imageHash becomes

acceptable. This comes at a price of a reduction in accuracy. Besides, multiple

threads are used here and each thread deals with one piece of the frame to accelerate

imageHash.

22

there exist six peers in this group, then two of the peers receive one more piece than

other peers from the server. We later show how to decide the destination of each

frame piece. It is guaranteed that there do not exist two peers in the same group

receiving the same piece of the frame from the server. It is also ensured that every

group receive all the pieces of each frame from the server, regardless of the group

size.

When a client receives a piece of the frame from the server, it forwards its piece

to all its groupmates using WebRTC. At the same time, each client has a listener

waiting for packets from its groupmates. The received packets include not only frame

pieces, but also this piece’s frame sequence number and piece ID. Sequence number

is the ID of the frames, which is sequential and increasing for all the frames. Piece

ID is a non-negative integer less than maximum group size. For all the pieces of the

same frame, their piece IDs are guaranteed to be unique.

Each client has a buffer called ReceiveBuffer to store frame pieces received from

both the server and its groupmates. ReceiveBuffer behaves like a circular buffer of

size is M*N, where M is the number of frames saved in the buffer and N is the number

of pieces in each frame. Normally, N pieces stored in the same row belongs to the

same frame. So each row in ReceiveBuffer can be displayed as a frame.

If all the frames are received in order, that is, all the pieces of framei must

be received before any piece of framei+1, then ReceiveBuffer can be seen as a real

circular buffer. As a circular buffer, ReceiveBuffer has a write index indicating the

row to store the next frame. Piece ID is used to determine the exact slot in this

row to keep the piece. Assume the current write index is W and the received piece’s

25

ID is P, this piece is stored in ReceiveBuffer[W][P]. There is also a read index

indicating the row in which the frame to be displayed is stored. Whenever a frame is

completely stored or displayed, the relevant index is increased by one. When either

index reaches M, it is set to 0, which makes the buffer circular.

However, when considering the unpredictable and heterogeneous Internet envi-

ronment, peers cannot expect to receive the frames in order. Thus, the sequence

number received with the piece is needed to find the correct row to keep the piece.

Assume that a piece’s sequence number is S and piece ID is P, the piece is stored

in ReceiveBuffer[S mod M][P]. The module function used here makes the buffer

circular.

Let’s denote the largest sequence number received by S, then the read index

of ReceiveBuffer is always set to (S + 2) mod M . It does not mean that the frame

displayed is ahead of the latest frame received. Instead, it means that the latest frame

is (M-2) frames ahead of the displayed frame. Let’s denote the video’s frame rate

by F, then the approximate delay between the video captured by the server and the

video displayed on clients’ screen is (M-2)/F seconds, regardless of the transmission

delay. In other words, after the client receive the first piece of the frame, it has

(M-2)/F seconds to wait for other pieces before the frame is displayed. The reason

why we do not set the read index to (S + 1) mod M is that the frame stored in row

(S + 1) mod M is reserved for fault tolerance, which will be demonstrated later in

detail.

We need to decide the value of M carefully because a large M means a long

delay and more storage space. On the other hand, if M is not large enough, it is

26

If DUPLICATE PIECE signal is received instead of frame pieces, we set

receiveBuffer[S mod 50][P] = receiveBuffer[(S −1) mod 50][P], where S and

P are the piece’s sequence number and piece ID. In this way, this piece from the last

frame is displayed on screen.

When one piece of frame is replaced by a new piece, its memory needs to be

deallocated to avoid a memory leak. However, as mentioned above, when DUPLI-

CATE PIECE signal is received, the URL of the previous piece is copied to the

current slot. So it is possible that one piece is displayed in several frames. Deallocat-

ing a piece which is needed by other frames can result to a display failure. Therefore,

before one piece is deallocated, we need to check whether this URL exists anywhere

else in ReceiveBuffer. Only when no frame needs this piece can it be deallocated.

Figure 3–6 and Figure 3–7 show the transmission process of the server and clients

in common transmission scenario.

3.3 Peer Join

Before introducing the behaviour of clients and the server when a new peer joins,

we first describe the server’s main data structures.

The server stores clients’ information in a structure called Peer. Figure 3–8

shows all the attributes of Peer. Among them, id is the unique identifier that clients

use to set up WebRTC connections with each other. According to the mode at-

tribute, the server sends different packets to clients to inform group changes. There

are four modes: NORMAL, GROUP JOIN, GROUP DELETE and RESPONSIBIL-

ITY MAP. Besides, peerToConnect queue keeps IDs of the peer’s new groupmates

28

channels over a single TCP connection, which was standardized by the IETF as

RFC 6455 in 2011 [35]. All communication between this client and the server will be

done through the Websocket channel. After the connection is established, the client

sends its peer ID to the server in order to join a peer group.

Algorithm 1 manageGroup

1: procedure manageGroup(New Peer)
2: N ← −1
3: for each groupi ∈ GroupTable do

4: if groupi.size! = MAX GROUP SIZE then

5: N ← i

6: end if

7: end for

8:

9: if N == −1 then

10: Create a new group G

11: G.add(New Peer)
12: else

13: for each peeri ∈ GroupTableN do

14: peeri.mode← RESPONSIBILITY MAP

15: New Peer.PeerToConnect.add(peeri)
16: end for

17: New Peer ← GROUP JOIN

18: GroupTableN .add(New Peer)
19: Redistribute(New Peer, GroupTableN)
20: end if

21: end procedure

22:

As soon as the server receives the request, it calls the manageGroup function

to put the new peer into a proper group. If no group exists or all the groups are

full, then a new group is created and the new peer becomes the only member of

the new group. Otherwise, the new peer is added to that group and its mode is

32

Algorithm 2 Redistribute Join

1: procedure Redistribute Join(New Peer, Group)
2: max num← 0
3: max index← −1
4: for each peeri ∈ Group do

5: if peeri.pieceNum >max num then

6: max num = peeri.pieceNum

7: max index = i
8: end if

9: end for

10: for half of piecei ∈ peermax index do

11: peermax index.delete(piecei)
12: New Peer.add(piecei)
13: end for

14: end procedure

set to GROUP JOIN. The new peer will be aware of all its groupmates’ peer IDs

so that it can later set up WebRTC connections with them. All the other peers in

the group are changed to RESPONSIBILITY MAP mode. Algorithm 1 explains the

manageGroup function in detail.

The next step is to redistribute the frame pieces so that the new peer can

receive pieces from the server. All the peers in this group are checked and the one

who receives the most pieces from the server is selected to hand out half of its pieces

to the new peer. Algorithm 2 show more details about the redistribute algorithm.

Before sending frames, the server needs to check the mode of each peer. If a

peer’s mode is RESPONSIBILITY MAP, a responsibility map is sent to this peer to

inform the ownership of frame pieces after group member changes. Peers store the

responsibility map for slow peer detection, which will be introduced later.

33

Otherwise, if a peer’s mode is GROUP JOIN, the server sends not only the

responsibility map but also its new groupmates’ peer IDs to the peer. As mentioned

above, only the newcome peer’s mode is set to GROUP JOIN. That is because

according to WebRTC connection mechanism, only the peer who requests for the

connection needs to know its groupmates’ peer IDs. Peers waiting for the connection

do not need to be aware of their groupmates until the connection is established.

As soon as the newcome client receives its groupmates’ peer IDs, it sends a

connection request to the WebRTC connection server with its groupmates’ peer IDs.

This server stores all the peers’ registration information and coordinates connec-

tion between peers. After the connection is set up, the newcome client can receive

data from both the server and its groupmates. After that, all these peers return to

NORMAL mode.

Figure 3–10 shows the overall process of peer join behaviour.

3.4 Peer Departure

When a peer leaves, the server can detect the Websocket connection is discon-

nected. In this case the manageGroup function is called to delete the departed peer

from its group. This process is similar to peer join process. Firstly, all its group-

mates are set to GROUP DELETE mode. The peer with the least pieces in the

group receive all the pieces from the departed peer. After that, the peer is removed

from GroupTable. If the group is empty, then the whole group is deleted.

Afterward, the mergeGroup function is called to check if there exist two groups

that can be merged together. The mergeGroup function iterates all the peer groups

and finds the group with the least group members. If the sum of the size of the found

34

Algorithm 3 mergeGroup

1: procedure mergeGroup(Group)
2: min size←MAX GROUP SIZE

3: N ← −1
4: for each groupi ∈ GroupTable do

5: if groupi.size <min size then

6: min size← groupi.size

7: N = i
8: end if

9: end for

10: if Group.size +min size <=MAX GROUP SIZE then

11: for each peeri ∈ Group do

12: for each peerj ∈ groupN do

13: peeri.peerToConnect.add(peerj)
14: peeri.mode← GROUP JOIN

15: end for

16: end for

17: for each peerj ∈ groupN do

18: peerj.mode← RESPONSIBILITY MAP

19: groupN .delete(peerj)
20: Group.add(peerj)
21: end for

22: GroupTable.delete(group N)
23: Redistribute(Group)
24: end if

25: end procedure

36

Algorithm 4 Redistribute Merge

1: procedure Redistribute Merge(Group)
2: Piece Per Peer ←MAX GROUP SIZE/Group.size

3: Extra←MAX GROUP SIZE mod Group.size

4: id← 0
5: for each peeri ∈ Group do

6: peeri.pieceID.clear()
7: if i < Extra then

8: for j ← 0, P iece Per Peer + 1 do

9: peeri.pieceID.add(pieceid)
10: id + +
11: end for

12: else

13: for j ← 0, P iece Per Peer do

14: peeri.pieceID.add(pieceid)
15: id + +
16: end for

17: end if

18: end for

19: end procedure

37

group and the group with the departed peer does not exceed the maximum group

size, then these two groups are merged together.

Let’s call these two groups being merged group A and B. To merge them, all

the peers in group A are set to mode GROUP JOIN and all the peers in group B are

pushed to their peerToConnect queues. That is, every peer in group A requests for

a WebRTC connection with every peer in group B. As all the peers inside group A

and B have already set up a connection with each other, they do not need to connect

again. Then all the peers in group B are set to mode RESPONSIBILITY MAP.

After that, all the peers in group B are moved to group A in GroupTable and the

empty group B is deleted. The detailed algorithm to merge two groups is explained

by Algorithm 3.

The next step is to redistribute the pieces. Since the group has multiple new

members, the redistribution mechanism applied here is different from the one used

when only one peer joins. All the pieces need to be totally redistributed. If the

maximum group size is S and the new group has P peers, then (S mod P) peers

are assigned (S/P + 1) pieces and rest peers receive (S/P) pieces, as shown in Algo-

rithm 4.

Before sending frames, these peers in mode GROUP DELETE or RESPONSI-

BILITY MAP receive the responsibility map from the server so that their local map

can be updated. Peers in mode GROUP JOIN also receive its new groupmates’ peer

IDs. Then all these peers return NORMAL mode again.

38

The goal of merging groups is to decrease the number of groups while affect-

ing as few peers as possible. As mentioned, every group needs to receive a com-

plete frame. So the network traffic is roughly number of group ∗ frame rate ∗

average frame size. Hence, merging groups can directly decrease the server’s net-

work traffic.

3.5 Fault Tolerance

Due to the highly dynamic nature of the Internet, it is common that some of the

clients may be in a poor network condition and fail to provide data to their group-

mates on time. Furthermore, as our system is delay-sensitive, we employ unreliable

data channels for inter-group communication, which can result in packet loss. In

order to increase the server’s stability and the client’s performance, several measures

are taken.

3.5.1 Display Previous Piece

The first thing that needs to be done is that the client end program should

be able to detect unreceived packets. Here, a buffer called SequenceNum is used,

whose size is exactly the same as ReceiveBuffer. SequenceNum[i][j] stores the se-

quence number of the frame piece saved in ReceiveBuffer[i][j]. By iterating the Se-

quenceNum buffer, we can easily distinguish updated pieces from outdated pieces

by comparing their sequence numbers. For example as shown in Figure 3–11, be-

fore ReceiveBuffer[5] is displayed, all the sequence numbers in SequenceNum[5] are

checked. Then we can find that the most updated pieces’ sequence numbers are 655,

while two outdated pieces’ sequence number are 605.

39

on time, then we can find out the peer who is in charge of this missing piece by the

responsibility map.

As mentioned above, the server sends pieces in a round-robin way, so some

calculation is needed to find the responsible peer. Let’s denote the number of pieces

each frame includes by N. If the lost packet’s sequence number is S1 and its piece

ID is P1, while the sequence number of the responsibility map is S2 and the slow

peer was responsible for piece P2 according to the responsibility map, then we can

have this equation: (P2+S1−S2) mod N = P1. This equation means that the peer

who was in charge of piece P2 is now responsible for piece P1, after (S1−S2) frames

are received. After calculation we can have P2 = (P1 + S2 − S1) mod N . Finally,

according to the responsibility map, the peer who was responsibility for piece P2 is

the slow peer.

However, a peer should not be simply judged to be slow whenever it fails to

transmit a packet on time, considering that packet loss is common when using unre-

liable data channels. Thus, each client end program maintains a buffer to keep the

slow values of its groupmates, which is used to measure how slow these peers are.

When a peer is responsible for a missing piece, its slow value is increased by 10. On

the contrary, if a piece is successfully transmitted, its slow value is decreased by 1.

In other words, a 10% packet loss rate is considered to be acceptable, as observed in

experiments. As soon as a peer’s slow value exceeds a certain threshold, this peer is

reported to the server as a slow peer.

When the server receives a slow peer report, this peer is not considered to be

slow arbitrarily. It is a possible situation that a peer with low download speed cannot

43

collect data from its groupmates on time and reports all its groupmates. To avoid

mistaking normal peers for slow peers, only when half of the group members report

a peer can this peer be judged as slow.

If a peer is determined as a slow peer, it is removed from its group immediately

because it is not able to provide data to its groupmates on time. Indulging slow peers

in the group can only ruin its groupmates’ watching experience. However, removing

a slow peer from its group does not mean that it is abandoned. It is put into a slow

group instead. All the peers in the slow group can receive full frames from the server

and do not need to provide data to any other peers. The transmission mode in the

slow group is the simplest client-server mode.

However, since slow peers receive full frames from the server, supporting these

slow clients may cost much more bandwidth than the normal clients. It is possible

that the server spends too much resources on the slow peers, which is inadvisable.

These normal clients should have higher priority than the slow peers. Thus, when

the server do not have enough bandwidth, it sends frames with a lower resolution as

well as lower frame rate to slow clients.

Considering the situation that a peer may be only temporarily slow, after a

certain period of time a peer is put into the slow group, it will be given the second

chance and moved to a normal group again. But if it is reported by its groupmates

again, it will stay in the slow group forever.

44

CHAPTER 4

Evaluation

In this chapter, we conducted several experiments to evaluate our system’s per-

formance and capacity. The main yardstick we apply to measure the system’s per-

formance is the client’s packet loss rate. High packet loss rate means the peer group

or the server is in an unhealthy condition. In the following sections, we will demon-

strate how factors like total peer number, maximum group size, imageHash function

and group consistency impact clients’ packet loss rate. It is also shown that how

pretreatment time, group management time and transmission time change with in-

creasing number of peers. Besides, the server’s capacity of both normal peers and

slow peers is measured as well.

4.1 Server Speed Test

Figure 4–1 shows how pretreatment overhead, group management overhead and

transmission time vary when the total number of peers is increasing, with and without

the imageHash function. Pretreatment overhead includes the time spent to capture

frame, cut the frame to pieces and imageHash. Group management overhead is the

time to add new peers to the groups, delete departed peers from the groups, merge

groups and redistribute the pieces.

From the graph, we can see that when the imageHash function is implemented,

much more pretreatment time is consumed, even though multiple threads are already

applied and the frame is resized to accelerate the imageHash function. Due to the

45

Figure 4–1: Pretreatment overhead, group management overhead and transmission
time change with the number of peers, with/without imageHash

46

imageHash function, the pretreatment overhead also becomes slightly more floating.

The pretreatment time barely change with peer quantity because the time needed

to preprocess the frames only relate to the frames. With a growing size of groups,

group management overhead slightly increases. There is only one curve of group

management overhead because it is not affected by imageHash at all.

Transmission time always increases with the quantity of peers as the time needed

to send each piece of frame remains while the number of pieces sent raises with the

peer number. However, when the imageHash function is applied, the curve’s slope

is not so sharp as the one without the imageHash function because the imageHash

function can prevent similar pieces from being sent again so that the total number of

pieces sent is reduced to some extent. Thus, considering that imageHash itself is time

consuming, only when the number of peers exceeds a certain value can we determine

that the imageHash function is rewarding. To examine the effect of imageHash,

clients’ packet loss rate is a more straightforward measure, as shown in Figure 4–2.

4.2 imageHash Function Performance Test

Figure 4–2 demonstrates how packet loss rate changes with the number of peers,

with and without imageHash function. It is mentioned in the last chapter that we use

the responsibility map to detect the missing pieces of the frames. Hence, by counting

the number of missing pieces and received pieces, we can calculate the packet loss

rate.

It can be seen that both packet loss rate curves increase with peer quantity.

The reason is that when there exist more peers, the server spends more time on

transmission, as shown in Figure 4–1. However, since the server has to finish a

47

Figure 4–2: Packet loss rate changes with the number of peers, with/without image-
Hash

48

complete process of pretreatment, group management and transmission before the

next frame is captured, the server processing is very time-sensitive. As a result,

when the time spent on transmission approaches a certain threshold, the server is

overwhelmed and can not respond to clients in time. That is why the curve without

imageHash suddenly becomes sharp after 40 peers.

However, it is surprising that the curve with the imageHash function is above

the one without imageHash. Since the imageHash function can reduce the number of

pieces sent to some extent, the expected result is that the curve with the imageHash

function may have a higher initial value but it can perform better when the quantity

of peers grows. The most likely reason for the poor performance is that the resources

needed for the imageHash function is way beyond expectation. Even if the imageHash

function decreases the transmission time, it fades next to the massive time spent on

the imageHash function itself. As a result, we can draw the conclusion that the

bottleneck for the server at this moment is processing time instead of bandwidth.

An efficient imageHash algorithm is needed to improve the server’s performance and

capacity.

Moreover, it should also be taken into consideration that even if the similar

pieces are not sent, the server still needs to send DUPLICATE PIECE signal to

inform clients. In this way, despite bandwidth can be saved to some degree, the

server still has to communicate with clients through the reliable data channel, which

can cost some time. In addition, recall that in order to reduce the probability that

a changed piece is mistakenly considered as unchanged, a conservative threshold is

set. Thus, many unchanged pieces are regarded as changed and are still transmitted.

49

From Figure 4–3 we can see that the shape of the curve whose maximum group

size is 4 is similar to the one of size 8. The blue curve has a steeper slope than

the red one because, for the same number of peers, it needs to send twice as much

data as the groups of size 8. As a result, it takes more time to transmit data and

more bandwidth is occupied. Even if a smaller group can ease clients’ burden of P2P

data transmission, it can not counteract the negative effect due to the overwhelmed

server.

However, the trend of the green curve seems intricate. It has a sharp rise at

the beginning, drops a little bit and then ascend again slowly. The reason of the

sudden rise lies in the fact that the group is too large. Every peer has to send its

piece to 15 other peers and process pieces received from its groupmates in a short

time. Therefore, the client end program is overwhelmed and is not able to transmit

data to its groupmates in time. When there exist only 8 peers, they behave exactly

the same as the red curve because the group is not full. However, when the peer

number reaches 16 and a full group comes into being, the factors mentioned above

increase packet loss rate by a big margin. Then 8 more peers connect with the

server and constitute a new group. Since the new group is only half full, peers in

this group can work properly and do not suffer from large packet loss rate. As a

result, the average packet loss rate of all the peers is lowered to some extent. After

that, with an increasing number of peers, the server is also gradually overwhelmed

by transmission so that packet loss rate keeps rising.

51

4.4 Group Consistency Test

Figure 4–4 compares the packet loss rate between consistent groups and incon-

sistent groups. For all the other experiments in this chapter, peers are assumed to

keep staying in the group once the connection is established and never leave. As a

result, those experiments were performed under ideal conditions. However, due to

the highly dynamic nature of Internet, it is important to see how frequent peer join

and leave can affect the system. In the experiment, every 10 seconds an old peer

leaves the group and then a new peer joins the group.

According to Figure 4–4, we can see that peers in inconsistent groups always

suffer from a higher packet loss rate comparing to consistent groups. The result is

reasonable because frequent peer join and peer leave mean that the server has to

spend more time on group management. In addition, the server needs to send new

RESPONSIBILITY MAP to the affected clients as well. It also costs some time for

clients to set up WebRTC connection with new groupmates. On account of the 10%

packet loss rate threshold, the server can support 32 normal peers even if groups

change frequently.

4.5 Slow Peer Capacity Test

Figure 4–5 shows server’s capacity when all peers are slow peers. If all the

peers are slow peers, there is no peer-to-peer communication anymore and only

client-server data transfer exists. Considering that data channel employed between

client and server is a reliable data channel, packet loss rate is no longer a suitable

benchmark to weigh the server’s capacity. Instead, we use frame rate to measure

it. From Figure 4–5 we can see that frame rate drops when peer number rises. The

53

Figure 4–5: Frame rate changes with the number of slow peers

54

reason is quite straightforward. An increasing number of slow peers means more

transmission time and bandwidth consumption, which can make the server congested

and overwhelmed. If 10 frames per second is the minimum frame rate allowed, then

the server can support no more than 6 slow peers.

Recall that there is no P2P communication among the clients when all the

clients are slow. At this time, the server works exactly the same as a server using

traditional client-server transmission mode. So the server’s capacity for slow peers

equals its capacity when our P2P algorithm is not applied. The server’s capacity is

6 when using traditional client-server transmission mode and it is increased to 32 by

our algorithm.

4.6 Summary

ImageHash Function Performance Test - According to the experiments

on the imageHash function, it can be seen that imageHash does not work as we

expected. When the server applies the imageHash function, clients suffer from a

more severe packet loss rate. The main reason is that the imageHash function is

resource-consuming and the bottleneck for the server at this moment is processing

time instead of bandwidth. The performance of the server depends greatly on the

efficiency of the imageHash function.

Group Size Test - When testing different size of the groups, we can see that

growing the size of the groups increases the clients’ burden to forward the packets

received from the server. Finally, clients are overwhelmed by frequent data exchange

within their groups. On the other hand, it cost the server more bandwidth and time

to transmit data to the clients when the groups are small. So we need to find a

55

balance point for the group size. Based on the experiments, 8 is found as the default

group size.

Group Consistency Test - When considering the dynamic nature of Internet,

where peers join and leave the groups frequently, the server needs more time to

manage the groups and the clients suffer from a larger packet loss rate. Therefore,

the capacity of the server in the real world is less than that in the ideal condition.

Slow Peer Capacity Test - Depending on the experiments, the server can

only support at most 6 slow peers, if it has to provide every peers with full frames.

In other words, the server can only support 6 clients if the P2P data transmission

mechanism is not applied. Considering that its capacity becomes 32 when using our

P2P algorithm, we can draw the conclusion that the algorithm improves the system’s

capacity to a large extent.

56

CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

Traditional P2P protocols rely on either client-end software or browser plug-ins

to coordinate data exchange between clients. Furthermore, no existing P2P protocols

can achieve real-time video distribution. These two drawbacks prevent P2P protocols

from being widely deployed in the field of real-time video distribution even though

they save considerable bandwidth for servers.

In this work, we design a hybrid system with both the real-time feature of client-

server transmission mode and the scalability feature of P2P protocols. Compared

with the traditional client-server transmission mode, our server can support more

users. According to the experiments discussed in the last chapter, the server can

only support 6 clients when completely using client-server transmission; however,

when P2P data exchange is enabled, 32 peers can enjoy video service from the server.

Although our server is not a fully scalable server that can support hundreds of clients,

its capacity is still greatly increased.

Our server also addresses the second drawback by achieving low-latency com-

pared to other P2P protocols. The frames displayed on clients’ screens are at most

4 seconds behind the live video while traditional P2P protocols usually have a delay

of dozens of seconds.

57

Finally, by applying WebRTC to implement peer-to-peer data exchange, no

client end software or browser plug-ins need to be installed. All clients need to do is

to open a web page and the server will help coordinate WebRTC connection between

peers. Based on the experiments, we can see that if neither the server nor clients are

overwhelmed, packet loss rate is less than 1% even if the unreliable data channel is

deployed. Thus, we can draw the conclusion that WebRTC can be the data channel

to support a P2P protocol.

5.2 Future Work

Although our work achieves real-time, scalability and is plug-in free, we can also

find several limitations of WPRS from experiments. More work about the imageHash

function, server capacity, slow peer handling mechanism, grouping algorithm and

video encoding still needs to be done in the future to improve the system.

5.2.1 imageHash

The most significant problem found from the experiments is the imageHash

function overloading the server. Although imageHash can indeed prevent similar

pieces from being sent again and reduce the server’s total transmission time, it fades

next to its negative effect.

We can use a fast machine to improve the server’s performance and capacity.

But if we want to completely free the server from the imageHash function, we need

an extra machine focusing on the imageHash function, as shown in 5–1. As soon as

the frame is captured, it is first received by the imageHash processor. The image-

Hash processor forwards the frame to the main server immediately and then execute

imageHash. After imageHash is finished, the hash values are sent to the main server.

58

will also inevitably rise and overload the server. Besides, since images are sent instead

of video, data can not be fully compressed to decrease transmission time.

In future work, I think the frame distribution algorithm should be improved to

reduce transmission time so that the server can have a larger capacity. Based on

the current mechanism, every frame is cut into smaller pieces and sent to each peer.

Even though this mechanism minimizes redundant frame data sent, it also raises the

number of packets sent between clients and the server. According to the experiments

discussed in the last chapter, the server’s current bottleneck is processing time instead

of bandwidth. Thus, it may not be an efficient mechanism to cut every frame to

pieces. If we consider the frames as the smallest data unit and distribute different

frames to different peers, the number of packets sent can be greatly cut down and

transmission time can also be reduced, with the sacrifice of more bandwidth usage.

5.2.3 Slow Peer Handling

Based upon the experiments, the server can support at most 6 slow peers or 32

normal peers. When the server determines to provide a slow peer full frames, the

server’s capacity is decreased by 6 or 7. Even if slow peers only receive frames with

a lower resolution and frame rate, they still cost a bit deal of transmission time and

cannot contribute.

As a result, slow peer management mechanisms should also be reformed in future

work. One possible solution to set up a 1-1 relation between normal peers and slow

peers. Every normal peer is responsible for a corresponding slow peer and sends

the slow peer frames with a lower resolution and frame rate. As a normal peer can

collect the whole frame first and then send it to the slow peer in one packet, the

60

transmission time for the normal peer should be acceptable. The number of slow

peers allowed equals the number of normal peers at most and the server does not

need to burden these slow peers at all.

5.2.4 Grouping Algorithm

Currently, all the peers are grouped randomly. This is not a problem right

now because, in these experiments, all the machines used are located in the same

laboratory so that delay among these machines can be ignored. However, when the

server is put into use in the real world, the fact that group members are located all

over the world will be an issue. As a result, a grouping algorithm is necessary to put

peers close to each other into the same group.

5.2.5 Video Encoding

In order to use the imageHash function, we choose to send images instead of

video streams. However, as the imageHash function fails to improve the server’s

performance, it maybe a better idea to distribute video streams to clients. First, the

server cut the video stream captured in the same way as we cut frames. Then the

server has several video streams of smaller size and distribute them to clients. The

clients forward the video stream to their groupmates and also collect video steams

from the group. At last the clients splice these video streams and display them on

the screen.

This idea sounds to be feasible, but more researches are needed to achieve it.

For example, it is a problem for the clients to forward the video stream received from

the server to their groupmates efficiently. Furthermore, the clients need an algorithm

to synchronize all the received video streams so that they can be played together.

61

References

[1] Sandvine, “Global internet phenomena report 2h 2014.” https:

//www.sandvine.com/downloads/general/global-internet-phenomena/

2014/2h-2014-global-internet-phenomena-report.pdf, 2015.

[2] H. Tsukayama, “Youtube: The future of entertainment is on the web.”
Published on Washington Post. http://www.washingtonpost.com/business/
technology/youtube-the-future-of-entertainment-is-on-the-web/

2012/01/12/gIQADpdBuP_story.html, January 2012.

[3] L. L. Fernández, M. P. Dı́az, R. B. Mej́ıas, F. J. López, and J. A. Santos,
“Catalysing the success of webrtc for the provision of advanced multimedia
real-time communication services,” in Intelligence in Next Generation Networks,
IEEE, October 2014.

[4] S. Dutton, “Getting started with webrtc.” http://www.html5rocks.com/en/

tutorials/webrtc/basics/, 2012.

[5] M. Maheswaran and D. Bhattacharya, “Reality over web: Pervasive comput-
ing meets the web,” Tsinghua Science and Technology, vol. 18, pp. 568 – 576,
December 2013.

[6] F. Huang, On Reducing Delays in P2P Live Streaming Systems. PhD thesis,
Virginia Polytechnic Institute and State University, Oct. 2009.

[7] I. Fette and A. Melnikov, “Can p2p real-time streaming
video be successful?.” Quora Answer https://www.quora.com/

Can-P2P-real-time-streaming-video-be-successful, 2010.

[8] S. E. Deering, “Host extensions for ip multicasting.” IETF Standard. http:
//tools.ietf.org/html/rfc988, 1986.

[9] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “Deployment
issues for the ip multicast services and architecture,” Network, vol. 14, pp. 78 –
88, Jan/Feb 2013.

62

63

[10] Y. hua Chu, S. G. Rao, S. Seshan, and H. Zhang, “A case for end system
multicast,” Selected Areas in Communications, vol. 20, pp. 1456 – 1471, October
2002.

[11] E. W. Biersack, P. Rodriguez, and P. Felber, “Performance analysis of peer-
to-peer networks for file distribution,” in QoFIS, Springer Berlin Heidelberg,
October 2004.

[12] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai, “Dis-
tributing streaming media content using cooperative networking,” in NOSSDAV
’02, Association for Computing Machinery, Inc., May 2002.

[13] S. Krause and C. Hubsch, “Scalable application layer multicast,” in Consumer
Communications and Networking Conference, IEEE, January 2010.

[14] D. A. Tran, K. A. Hua, and T. Do, “Zigzag: an efficient peer-to-peer scheme for
media streaming,” in INFOCOM 2003, IEEE, March/May 2003.

[15] F. Rhinow, P. P. Veloso, C. Puyelo, S. Barrett, and E. O. Nuallain, “P2p live
video streaming in webrtc,” in WCCAIS, pp. 1 – 6, IEEE, January 2014.

[16] D. Xu, M. Hefeeda, and S. Hambrusch, “On peer-to-peer media streaming,” in
ICDCS’02, pp. 363 – 371, IEEE, 2002.

[17] S. Jin and A. Bestavros, “Cache-and-relay streaming media delivery for asyn-
chronous clients,” in the 4th International Workshop on Networked Group Com-
munication, October 2002.

[18] Y. Cui, B. Li, and K. Nahrstedt, “ostream: asynchronous streaming multicast
in application-layer overlay networks,” IEEE Journal on Selected Areas in Com-
munications, vol. 22, pp. 91 – 106, January 2004.

[19] Y. Cui and K. Nahrstedt, “Layered peer-to-peer streaming,” in NOSSDAV ’03,
pp. 162–171, June 2003.

[20] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “Promise: peer-to-
peer media streaming using collectcast,” in ACM Multimedia (MM’03), pp. 45–
54, November 2003.

[21] Y. Guo, K. Suh, J. Kurose, and D. Towsley, “P2cast: peer-to-peer patching
scheme for vod service,” in WWW’03, pp. 301–309, May 2003.

64

[22] H. Deshpande, M. Bawa, and H. Garcia-Molina, “Streaming live media over a
peer-to-peer network,” technical report, Stanford InfoLab, April 2001.

[23] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulié, “From epidemics
to distributed computing,” Computer, vol. 37, pp. 60 – 67, May 2004.

[24] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky,
“Bimodal multicast,” ACM Transactions on Computer Systems, vol. 17, pp. 41
– 88, 1998.

[25] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “Coolstreaming/donet: a data-
driven overlay network for peer-to-peer live media streaming,” in INFOCOM
2005, pp. 2102 – 2111, IEEE, March 2005.

[26] B. Li, S. Xie, Y. Qu, G. Y. Keung, C. Lin, J. Liu, and X. Zhang, “Inside the
new coolstreaming: Principles, measurements and performance implications,”
in INFOCOM 2008, pp. 13 – 18, IEEE, April 2008.

[27] A.-M. K. Ayalvadi J. Ganesh and L. Massoulié, “Peer-to-peer membership man-
agement for gossip-based protocols,” IEEE Transactions on Computers, vol. 52,
pp. 139 – 149, February 2003.

[28] A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan, “Webrtc 1.0:
Real-time communication between browsers.” W3C Editor’s Draft http://w3c.
github.io/webrtc-pc, 2015.

[29] B. Leiba, A. Cooper, and B. Campbell, “Rtcweb status pages.” IETF Draft
http://tools.ietf.org/wg/rtcweb/charters, 2015.

[30] G. A. Eriksson and S. H̊akansson, “Webrtc: enhancing the web
with real-time communication capabilities.” Published on Ericsson Re-
view http://www.ericsson.com/cn/news/120405_webrtc_enhancing_the_

web_with_real-time_communication_capabilities, 2012.

[31] S. Loreto and S. P. Romano, “Real-time communications in the web: Issues,
achievements, and ongoing standardization efforts,” Internet Computing, vol. 16,
pp. 68 – 73, Sept/Oct 2012.

[32] J. K. Nurminen, A. J. R. Meyn, E. Jalonen, Y. Raivio, and R. G. Marrero, “P2p
media streaming with html5 and webrtc,” in INFOCOM WKSHPS, pp. 63 – 64,
IEEE, April 2013.

65

[33] E. Klinger and D. Starkweather, “phash - the open source perceptual hash
library.” http://www.phash.org/, 2008.

[34] C. Zauner, “Implementation and Benchmarking of Perceptual Image Hash Func-
tions,” Master’s thesis, Upper Austria University of Applied Sciences, Hagen-
berg Campus, July 2010.

[35] I. Fette and A. Melnikov, “The websocket protocol.” IETF Standard. https:
//tools.ietf.org/html/rfc6455, 2011.

