
Concern Oriented Reuse: A Software Reuse
Paradigm

Omar Alam

Doctor of Philosophy

School of Computer Science

McGill University

Montreal, Quebec

2015-12-7

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Doctor of Philosophy

Copyright © Omar Alam, 2016

DEDICATION

This thesis is dedicated to ...

ii

ACKNOWLEDGEMENTS

There are many people I would like to thank for their support during my PhD

studies. First and foremost, my sincere gratitude is due to my supervisor Prof. Jörg

Kienzle for his academic support. Thanks Jörg, for your mentorship and true sense of

humor :-) You made my doctoral studies intellectually stimulating, interesting, and fun.

Thanks also for your advice in scholarship applications in the beginning of my studies,

and job applications now. Special thanks to Prof. Gunter Mussbacher for feedback,

discussions, and collaboration. I also would like to thank my thesis examiners, Prof.

Muthucumaru Maheswaran and Prof. Houari Sahraoui for taking the time out of their

schedules to read my thesis. Additionally, I would like to acknowledge the examiners of my

PhD proposal, Prof. Jörg Kienzle, Prof. Gunter Mussbacher, Prof. Hans Vangheluwe and

Prof. Luc Devroye, for their valuable feedback. Thanks to the members of the Software

Engineering Lab and the TouchCORE team. Specially, Matthias Schöttle, Wisam Al

Abed, Nishanth Thimmegowda, Céline Bensoussan, Julien Gascon-Samson, and Berk

Duran. Their team spirit and true sense of camaraderie served to create a productive and

dynamic work environment. I also would like to thank my friend Shabir Mamodraza for

helping me in translating the thesis abstract to French. In the beginning of my doctoral

studies, I worked with Jörg Kienzle and Gunter Mussbacher in designing the Workflow

middleware, and later with Benoit Combemale Olivier Barais to further investigate using

the Common Variability Language (CVL) with workflow models. It was during the time

I spent working with them, and with the TouchRAM team, the ideas of incremental

modeling and concern-orientation started to cook in my head. Therefore, I would like to

iii

express my appreciation for their collaborations and discussions. Furthermore, I would

like to acknowledge all my collaborators. I would like to specially mention Jörg Kienzle,

Gunter Mussbacher, Philippe Collet, Matthias Schöttle, Benoit Combemale, Wisam

Al Abed and Nishanth Thimmegowda. I came to Canada seven years ago as a foreign

graduate student. Today, I am finishing my PhD as a Canadian citizen. I formed deep

bonds and developed valuable friendships with so many people here from different walks

of life. I would like to acknowledge anyone who gave me an advice, a word of support, or

a nice company. Thanks also to the Natural Sciences and Engineering Research Council

of Canada (NSERC) for financially supporting my studies. Finally, this thesis would not

be possible without the support from my family and friends. Their love and enouragement

are too precious to be recorded in words.

iv

ABSTRACT

Model reuse remains a major challenge in Model Driven Engineering (MDE), despite

the success stories in programming languages as exemplified by class libraries, services,

and components. Modellers usually create models from scratch because modelling lan-

guages offer limited support to reuse existing models and modelling tools in general

are not shipped with a library of reusable models. In addition, the crosscutting nature

of software development concerns complicates the application of software engineering

techniques such as information hiding, decomposition, interfaces, and abstraction in the

context of MDE. This thesis mitigates the aforementioned challenges that reuse faces

in the context of MDE by proposing Concern-Oriented Reuse (CORE), a novel reuse

paradigm that extends MDE with best practices and techniques from advanced modu-

larization and separation of concerns (SoC), goal modelling, and Software Product Lines

(SPL). CORE advocates the use of a three-part interface to describe a new unit of reuse

called concern that spans multiple development phases. The variation interface describes

provided choices and their impact on system qualities. The customization interface allows

adapting a chosen variation to a specific reuse context, while the usage interface defines

how a customized concern may eventually be used. The thesis lays the foundation of

CORE by defining its concepts, a simple three-step reuse process, a metamodel, and

composition algorithms to generate realization models based on feature selections and

customization mappings. The CORE approach is validated in multiple ways. An extensive

literature review compares the concern as a unit of reuse to other reuse units, highlighting

its strengths. The effectiveness and practicality of the proposed CORE metamodel is

v

validated by extending an existing modelling language, Reusable Aspect Models (RAM),

to support concern-orientation. The feasibility of the proposed composition algorithms is

demonstrated by implementing them within the TouchCORE tool. The effectiveness of

the CORE design and reuse process is shown by means of several case studies: the design

of a reusable workflow concern as well as a family of Crisis Management Systems. We

envision that if CORE is adopted on a large scale, it has the potential to transform the

software engineering discipline as a whole. Unlike the current practices that often require

software engineers to deal with and be an expert in many concerns simultaneously within

each software development phase, CORE would enable software engineers to specialize,

i.e., to become concern specialists. Companies could focus on creating long-lived concern

libraries, and provide consulting services to customize concerns to specific application

context, if necessary. Ultimately, concern reuse, concern libraries, CORE-based tools, and

specialization will bring software engineering practices closer to what is done in other

engineering disciplines.

vi

RÉSUMÉ

La réutilisation de modèle reste encore un défi majeur dans le MDE, malgréles dif-

férents succès dans les langages de programmation, illustré par des exemples tels que les

bibliothèques de classe, les services, et les composants. Les modélisateurs créent générale-

ment des modèles à partir de zéro, car les langages de modélisation offrent un support

limité pour réutiliser des modèles existants; de plus, les outils de modélisation en général

ne sont pas livrés avec une bibliothéque de modèles réutilisables. Mais aussi, la nature

transversale des questions sur le développement des logiciels complique l’application des

techniques de génie logiciel tels que cacher l’information, la décomposition, les interfaces

et l’abstraction dans le contexte de la MDE. Cette thèse atténue les défis mentionnés

auparavant, qui réutilisent les faces dans le contexte de la MDE en proposant le CORE,

un nouveau paradigme de réutilisation qui étend la MDE avec des meilleures pratiques,

des techniques de modularisation de pointe ainsi que la séparation des préoccupations

(SoC), le but de la modélisation, et lignes de produits logiciels (SPL). Le CORE préconise

l’utilisation d’une interface en trois parties pour décrire une nouvelle unité de réutilisation

appelée « concern » qui couvre plusieurs phases de développement. L’interface de variation

décrit les choix fournis ainsi que leurs impacts sur les qualités du systéme. L’interface

de personnalisation permet d’adapter une variation choisie á un contexte de réutilisation

spécifique, tandis que l’interface d’utilisation définit comment une concern personnalisée

peut éventuellement être utilisé. La thèse établie les bases du CORE en définissant ses

concepts, un processus de réutilisation simple en trois étapes, un méta modèle, et des

algorithmes de composition pour générer des modèles de reálisation basésur la sélection

vii

des fonctions et des interfaces de personnalisation. L’approche du CORE est validée de

multiples façons. Un examen approfondi de la littérature compare la concern comme une

unité de réutilisation à d’autres unités de réutilisation, en soulignant ses points forts.

L’efficacité et l’utilité du méta modèle proposé (CORE) est validé par l’extension d’un

langage de modélisation existant, le (modèles aspect réutilisables) RAM, pour supporter

la concern-orientation. La faisabilité des algorithmes de composition présentés est dé-

montrée par leur application au sein de l’outil TouchCORE. L’efficacité du processus de

conception et de réutilisation du CORE est affichée au moyen de plusieurs études de cas

: l’élaboration d’une concern d’un flux de travail réutilisable ainsi que d’une famille de

systèmes de gestion de crise. Nous prévoyons que si CORE est adopté sur une grande

échelle, il a le potentiel de transformer la discipline du génie logiciel dans son ensemble.

Contrairement aux pratiques actuelles qui nécessitent souvent des ingénieurs logiciels

ou des expertises concernant moult préoccupations simultanément dans chaque phase

de développement, le CORE permettrait aux ingénieurs logiciels de se spécialiser, par

exemple, dans le domaine des préoccupations. Les entreprises pourraient se concentrer

sur la création de bibliothèques de concern à long terme, et, si nécessaire, de fournir des

services de consultation pour personnaliser les préoccupations au contexte spécifique de

l’application. En fin de compte, la réutilisation de la concern, les bibliothèques de concern,

les outils basés sur CORE, ainsi que la spécialisation rapprocheront la pratique actuelle du

génie logiciel aux pratiques dans les autres branches de l’ingénierie.

viii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

RÉSUMÉ . vii

LIST OF TABLES . xiii

LIST OF FIGURES . xiv

1 Introduction . 4

1.1 Problem Summary and Thesis Statement 7
1.1.1 Problem Summary . 7
1.1.2 Thesis Statement . 8

1.2 Thesis Contributions . 8
1.3 Thesis Organization . 10

2 Background and Definitions . 11

2.1 Three Pillars of Concern-Orientation: MDE, Reuse (SPL), and SoC . . . 11
2.2 Key Characteristics of Reusable Artifacts 13
2.3 Definition of Concern . 17
2.4 Concern Interface . 18

2.4.1 The Variation Interface . 19
2.4.2 The Customization Interface . 23
2.4.3 The Usage Interface . 25

2.5 Concern Hierarchies and Software Concern Lines (SCL) 26
2.6 Conclusion . 28

3 Relation to Related Research . 30

3.1 Units of Reuse . 30

ix

3.2 Related Work . 36
3.2.1 Model Reuse, Customization and Separation of Concerns 36
3.2.2 Feature Model Composition . 41
3.2.3 SPLs and Variable Modules . 45
3.2.4 Goal Models and Impact Analysis 46

3.3 Conclusion . 48

4 Concern Reuse Process . 50

4.1 Concern Reuse Process . 50
4.2 Example: Authentication . 52

4.2.1 Variation Interface of Authentication 52
4.2.2 Requirement modelling of Authentication 57
4.2.3 Design modelling of Authentication 60
4.2.4 Reusing the Authentication Concern 66

4.3 Delaying of Decisions . 72
4.3.1 Concern Hierarchies . 72
4.3.2 Reexposing Features . 74

4.4 Conclusion . 78

5 Composition Rules and Algorithms . 79

5.1 Considerations for Interface Composition. 80
5.2 Feature Model Composition . 80
5.3 Impact Model Composition . 86
5.4 Composing the User-Tailored Concern Realization 94

5.4.1 Dealing with Feature Interactions 94
5.4.2 Generating the User-Tailored Realization 96

5.5 Customization Interface Composition . 103
5.6 Usage Interface Composition . 103
5.7 Conclusion . 104

6 CORE Metamodel . 105

6.1 General CORE Metamodel . 107
6.2 Concern . 107
6.3 Feature . 108
6.4 Impact . 109
6.5 Reuse . 109
6.6 Composition . 111

x

6.7 Conclusion . 112

7 Tool Support . 113

7.1 Corification Strategies of Existing Modelling Languages 114
7.2 Corification of RAM . 116

7.2.1 TouchCORE . 118
7.2.2 Implementation of CORE Composition Rules and Algorithms . . . 120

7.3 Corification of AoURN . 124
7.4 Conclusion . 125

8 Reusable Concern Library . 127

8.1 Incremental Modelling and the Software Design Process 128
8.2 Properties of Design Model Increments 130
8.3 Supporting Incremental Modelling in CORE 134
8.4 Incremental Design of a Workflow Middleware 136

8.4.1 Identifying Features for the Workflow Middleware 137
8.4.2 Realization Models for Workflow 140
8.4.3 Properties of the Model Increments of the Workflow Concern . . . 152
8.4.4 Generating the Complete Design Model 153
8.4.5 Reexposed Features in Workflow 154

8.5 Overview of Other Concerns in the Reusable Concern Library 156
8.6 Conclusion . 158

9 bCMS Case Study . 160

9.1 Modelling of the bCMS with CORE . 162
9.1.1 Identification of Concerns and Reusing Features in the bCMS . . . 163

9.2 Reusing the ResourceManagement Concern 165
9.2.1 Step 1: Feature Selection with the Variation Interface 165
9.2.2 Step 2: Adapting the Reused Concern to the Application with the

Customization Interface . 170
9.2.3 Step 3: Using the Reused Concern in the Application through the

Usage Interface . 171
9.3 Lessons Learnt . 172

9.3.1 Substantial and Scalable Model Reuse 172
9.3.2 Software Product Line Comes for Free 173
9.3.3 Delaying Decision of Feature Selections 174
9.3.4 Iterative Decision Support . 175

xi

9.3.5 Dealing With Crosscutting Concerns in Concern Hierarchies 175
9.3.6 Notations at the Right Abstraction Level 176
9.3.7 Tool Support is Essential . 176
9.3.8 Incomplete Concerns in the Reusable Concern Library 176

9.4 Limitations . 177
9.5 Conclusion . 178

10 Conclusions and Future Work . 180

10.1 Summary . 180
10.2 Future Work . 182

10.2.1 Concern-Driven Development Methodology 183
10.2.2 Applying CORE to Other Domains 186

Appendix I . 190

Bibliography . 191

xii

LIST OF TABLES
Table page

3–1 Comparison table of some popular units of reuse. 35

9–1 Reuse Metrics of the bCMS Case Study. Realizations with * indicate that
some realization models for the concern are still under construction. 174

xiii

LIST OF FIGURES
Figure page

2–1 Syntactic and Logical Reuse/SoC Dependencies 15

2–2 The variation interface of the Observer concern. 17

2–3 Observer RAM Model Interface (Customization and Usage) 17

4–1 Feature Model for Authentication . 53

4–2 Impact Model for Authentication, with Impacts DecreaseCost, IncreaseUser-
Convenience, and IncreaseSecurity . 55

4–3 AoUCM Model for Authentication . 58

4–4 Predefined AoUCM Pattern for Authentication 59

4–5 AoUCM Model for Password . 60

4–6 AoUCM Model for PasswordExpiry . 60

4–7 Authentication RAM Model . 61

4–8 Password RAM Model . 64

4–9 PasswordExpiry RAM Model . 65

4–10 RAM Design Model for a Simple Bank Application 66

4–11 Woven Model of Features PasswordExpiry, Password, and Authentication . . 68

4–12 Woven AoUCM Model for a Simple Bank Application 71

4–13 Woven RAM Model for a Simple Bank Application 73

4–14 Feature Model for the Association Concern 75

xiv

4–15 Authentication Concern with the Features KeyIndexed and Database Reex-
posed from the Reused Association Concern (dashed boxes show the reex-
posed features) . 76

4–16 Impact Model for DecreaseCost for the Association Concern 76

4–17 Impact Model for DecreaseCost with Cost High-Level Goal of Association
Being Reexposed . 77

5–1 Resource Management and Association FMs 82

5–2 Resource Management FM with Reexposition 84

5–3 Association Impact Model . 88

5–4 Resource Management Impact Model . 89

5–5 Association Concern Feature Model and Associated Realization Models in-
cluding Feature Interaction Resolution Models 98

5–6 A Realization Model ConfBC Extends Two Models B and C, Both Extend
a Common Model A. 99

6–1 Named Elements of the CORE Metamodel 106

6–2 The Concern Part of the CORE Metamodel 107

6–3 The Feature Part of the CORE Metamodel 108

6–4 The Impacts Part of the CORE Metamodel 109

6–5 The Reuse Part of the CORE Metamodel . 110

6–6 The Composition Part of the CORE Metamodel 110

7–1 Corification of the RAM Metamodel by Subclassing the CORE Metamodel. . 116

7–2 Feature Model Design Mode in TouchCORE. 118

7–3 Impact Model Design Mode in TouchCORE. 119

7–4 Step 1 of the Reuse Process: Feature Selection Mode in TouchCORE. 119

7–5 Tracing Realization Model Elements of Features of Reused Concerns in Touch-
CORE . 122

xv

7–6 Corification of the AoURN Metamodel - Abstract Metaclasses 123

7–7 Corification of the AoURN Metamodel - Concrete Metaclasses 126

8–1 Extension versus customization increments in CORE. Figure (a) shows that
a reusable concern is built by incrementally adding extension realization
models to a base realization model. Figure (b) illustrates that an applica-
tion is built by composing user-tailored version of the concerns with the
base application. 131

8–2 The Variation Interface (right) and Realization Models (left) of the Work-
flow Concern . 137

8–3 Workflow feature model . 139

8–4 The Base Workflow Model . 143

8–5 The Joining Extension Increment . 144

8–6 Synchronization, Forking, Parallel- and ConditionalExecution 148

8–7 The Nesting Extension Increment . 149

8–8 Two Possible Final Models . 153

8–9 The Feature Model of the Association Concern Including the Reexposed Fea-
tures. 155

8–10 Feature Model for Authorization . 157

8–11 Feature Model for the Networking Concern 157

9–1 The bCMS Feature Model . 162

9–2 Feature Model (top) and Impact Model (bottom) of ResourceManagement
Concern . 166

9–3 Workflow (top) and Design (bottom) Realization Models for User-Tailored
ResourceManagement . 168

10–1 The Complete CORE Metamodel. 190

xvi

Co-Authorship and Related Publications

This thesis is based on several publications co-authored with my supervisor Jörg Kienzle.
Some publications are co-authored with other researchers. Here is the list of papers included
in this thesis (in all these papers, I was the primary author):

• Incremental software design modelling. O Alam, J Kienzle, CASCON, 325-339 (2013).
(Parts of Chapter 8 are based on this paper).

In this paper, I proposed the idea of incremental modeling in software design and incremen-
tally modeled the workflow middleware. Prof. Kienzle participated in the discussions and
manuscript preparations. I presented the paper in the conference.

• Designing with inheritance and composition. O Alam, J Kienzle. Proceedings of the
3rd international workshop on Variability & Composition. 19-24. ACM. 2012. (Parts
of Chapter 8 are based on this paper).

In this paper, I investigated the differences between inheritance and composition in software
design. Prof. Kienzle participated with me in the discussions and writing the findings.

• Concern-oriented Software Design. O Alam, J Kienzle, G Mussbacher. Proceedings
of Model-Driven Engineering Languages and Systems (MODELS’13), 604-621. 2013.
(Parts of Chapter 1, Chapter 2, Chapter 3, and Chapter 4 are based on the MODELS’13
paper).

In this paper, I worked with Prof. Kienzle and Prof. Mussbacher on developing the concepts
of concern and its interfaces. I worked on validating the concepts using examples. The co-
authors participated in the discussions and manuscript preparations. I presented the paper
in the conference.

• Composition of Software Concern Lines. O Alam, J Kienzle, G Mussbacher, P Collet.
Submitted on September 21, 2015 to ACM Symposium of Applied Computing, Pisa,
Italy. 2016. (Parts of Chapter 3 and Chapter 5 are based on this paper).

I developed the algorithms presented in this paper and implemented them in the TouchCORE
tool. I applied the algorithms on the bCMS case study and produced the feature model pre-
sented in the paper. The co-authors participated in the discussions and manuscript prepara-
tions.

• Concern-Oriented Reuse. O Alam, J Kienzle, G Mussbacher. Prepared for Inter-
national Journal on Software and Systems Modelling (SoSyM). (Parts of Chapter 1,
Chapter 2, Chapter 3, Chapter 4, and Chapter 6 are based on this paper).

This paper presents CORE as a reuse paradigm. I performed an extensive literature compar-
ison to compare CORE with other reuse units, and extended the metamodel in the Touch-
CORE tool as part of the validation of CORE and prepared the examples. The co-authors
participated in the discussions and manuscript preparations.

1

• Modelling a Family of Systems for Crisis Management with Concern-Oriented Model
Reuse. O Alam, J Kienzle, G Mussbacher. Submitted to Journal of Software Practice
and Experience on August 1, 2015. (Parts of Chapter 9 are based on this paper).

In this paper, I analyzed the requirement specifications for the bCMS case study, and created
the feature model and design models for the case study. I also collected the reuse metrics
presented in the paper and modeled the feature model in the TouchCORE tool. The co-authors
participated in the discussions and manuscript preparations.

Here is the list of publications based on this thesis that are not included in the
thesis text (the order of authors reflects approximately the amount of work done
on the paper by each author):

Refereed International Conference and Workshop Papers:
1. Feature modelling and traceability for concern-driven software development with Touch-

CORE, M Schöttle, N Thimmegowda, O Alam, J Kienzle, G Mussbacher. Companion
Proceedings of the 14th International Conference on Modularity, 11-14 (2015). ACM.

2. TouchRAM: a multitouch-enabled software design tool supporting concern-oriented
reuse. M Schöttle, O Alam, FP Garcia, G Mussbacher, J Kienzle. Proceedings of
the companion publication of the 13th international conference on Modularity (2014),
25-28. ACM.

3. Specification of domain-specific languages based on concern interfaces. M Schöttle, O
Alam, G Mussbacher, J Kienzle. Proceedings of the 13th workshop on Foundations
of aspect-oriented languages (2014). 23-28. ACM.

4. Concern-Driven Software Development with jUCMNav and TouchRAM. N Thimmegowda,
O Alam, M Schöttle, W Al Abed, T Di’Meco, L Martellotto, Proceedings of the
Demonstrations Track of the International Conference on Model Driven Engineering
Languages and Systems (MODELS). 1-6. 2014.

5. Revising the Comparison Criteria for Composition. O Alam, M Schöttle, J Kienzle.
Proceedings of CMA workshop in MoDELS 2013. 1-6.

6. Concern-Oriented Software Design with TouchRAM. M Schöttle, O Alam, A Ayed, J
Kienzle. Tool demonstration paper at MODELS 2013. 51-54.

7. TouchRAM: A multitouch-enabled tool for aspect-oriented software design. W Al
Abed, V Bonnet, M Schöttle, E Yildirim, O Alam, J Kienzle. Software Language
Engineering (SLE 2012), 275-285. 2012.

8. Using CVL to operationalize product line development with reusable aspect models.
B Combemale, O Barais, O Alam, J Kienzle. Proceedings of the VARiability for You
Workshop: Variability Modelling Made Useful for Everyone. 9-14. ACM. 2012.

2

9. Assessing composition in modelling approaches. G Mussbacher, O Alam, M Alhaj, S
Ali, N Amálio, B Barn, R Bræk, T Clark, . . . Proceedings of the CMA 2012 Workshop,
Barbados. 1-26.

10. CORE Model Submission for the Comparing Modelling Approaches Workshop 2012. O
Alam, M Schöttle, G Mussbacher, J Kienzle. Proceedings of the CMA 2012 Workshop.
2012.

11. Comparing six modelling approaches. G Mussbacher, W Al Abed, O Alam, S Ali, A
Beugnard, V Bonnet, R Bræk, . . .Models in Software Engineering, 217-243. 2012.

12. Concern-Driven Software Development, O Alam, J Kienzle and G Mussbacher, School
of Computer Science, McGill University, January 2015, CS-TR-2015.1

3

Chapter 1
Introduction

Over the years, engineering disciplines have matured to a point where official organiza-

tions now exist that govern and regulate how engineers practice their professions. Different

engineering disciplines, e.g., civil engineering, provide standards and manuals for their pro-

cesses, practices, and even safety guidelines. These manuals guide the engineer in making

proper decisions and choosing the best solution that satisfies stakeholders’ requirements.

Similar to other engineering disciplines, software engineering aims at systematic production

of software, by choosing the best solution, and by applying the best practices that satisfy the

requirements, are cost-effective, and minimize time-to-market. Producing complex software

systems involves many stakeholders such as developers, scientists, engineers of other disci-

plines, the customer, and end users with specialized domain knowledge in their respective

fields. Bridging the gap between the specialized domain knowledges and the development

technologies (e.g., programming languages, technical infrastructure, testing methods) be-

comes a major challenge when different stakeholders work together in a software project.

Previous research has shown that manual efforts to bridge this gap result in accidental com-

plexities [44].

Model-Driven Engineering (MDE) [39] provides means to represent domain specific knowl-

edge within models. MDE aims at developing software through model creation, refinement,

4

and composition. If done with automated tool support, MDE helps reduce accidental com-

plexities and bridge the domain-implementation gap. MDE advocates using the best mod-

elling formalism that expresses the relevant properties of the system under development at

each level of abstraction, for a given stakeholder group. A formalism used at the require-

ment level for scientists is different from the formalism used at the design level for developers.

Through model transformations, models of higher level of abstraction are integrated with

lower-level models that are closer to the solution space, such as algorithms, data structures,

networking. This process continues until an executable model (which can be code) is gener-

ated.

However, MDE has challenges of its own. The crosscutting nature of most models makes

it difficult to apply in a modular way software engineering techniques such as information

hiding, decomposition, interfaces, and abstraction. In addition, modellers usually create

models from scratch as there is limited support for reusable model libraries. Model reuse

is a challenge in MDE, despite the success stories in programming languages as exemplified

by, e.g., class libraries, services, and components. Typically, there exist different reusable

solutions for a particular problem, with each solution impacting differently on high-level goals

and system properties. When reusing existing artefacts, software practitioners usually rely

on their experience to assess the advantages and disadvantages, or have to consult lengthy

and informal documentation, books, blogs, tutorials, etc.

To address the aforementioned issues, this thesis proposes a novel reuse paradigm called

Concern-Oriented Reuse (CORE), that builds on the ideas of MDE, advanced Separation of

Concerns (SoC) [37], Software Product Lines (SPL) [97], and goal modelling [36, 124]. CORE

is a software reuse paradigm that introduces a new unit of reuse called concern, that enables

5

broad-scale model reuse at multiple phases of software development. CORE comes with

a reference implementation, i.e. a metamodel and guidelines for extending the metamodel.

Different modelling languages and tools can extend the CORE reference implementation (i.e.

to become corified) to support broad-based model-reuse.

This thesis lays the foundation of CORE by defining its concepts, reuse process, and

metamodel, and compares concerns with other reuse units. The thesis then validates CORE

by extending its metamodel in existing modelling languages and tools, building a reusable

concern library and conducting a case study of a family of Crisis Management Systems.

Although a CORE concern can span multiple phases of software development, the primary

focus of this thesis is on the design phase.

We envision that large-scale adoption of CORE would revolutionize software development.

Tool vendors can support concern-orientation by extending the CORE metamodel. As a

result, different concern-oriented modelling languages and their tools will emerge allowing

concerns to be developed at different abstraction levels using different modelling formalisms.

Vendors can sell reusable concerns, and libraries of existing reusable concerns can be used

in developing new concerns or applications. Modellers can specialize in developing and

maintaining certain types of concerns. For example, a security expert can specialize in

developing and maintaining security related concerns. Ultimately, tool support, concern

libraries, specialization, and reuse process would bring the software development practice

closer to other engineering disciplines.

6

1.1 Problem Summary and Thesis Statement

1.1.1 Problem Summary

This thesis attempts to solve the issues raised in the introduction. Concretely, the re-

search question this thesis attempts to solve can be summarized as follows: “how can we

build a new model (can be application/system) through reusing existing models?”

To answer this question, this thesis introduces resents Concern-Oriented Reuse (CORE),

a new software development paradigm that introduces the concern as a new unit of reuse.

CORE integrates the ideas of model-driven engineering, advanced separations of concerns

(aspect-orientation) and software product lines (SPL) to address one of the main challenges of

MDD: large-scale model-reuse. A concern groups related software artifacts together (models

and code, simply called models in this thesis) addressing a domain of interest to the software

practitioner.

The lifecycle of a concern starts at its root phase–a certain point during the development

process where it becomes relevant to the software practitioner. For instance, the security

concern appears during the requirement phase since it becomes relevant to the external

stakeholders. Other concerns, such as database integration appear in the design phase. For

each phase, models are built using the most appropriate formalism to express the concern

behaviour and properties. This thesis lays the foundation for CORE by defining the concepts

and the metamodel for concern-oriented reuse (CORE). The CORE metamodel ensures that

modelling approaches under CORE adhere to its guidelines (e.g., they provide the concern

interfaces and support reuse). The thesis then focuses on the design phase of CORE, by

implementing CORE guidelines for software design. We validate the effectiveness of CORE

7

through tool support, developing library of reusable concerns, and reusing these reusable

concerns in an developing a family of crisis management systems.

1.1.2 Thesis Statement

Concern-Oriented Reuse addresses one of the main challenges of MDD: broad-

scale model reuse. Instead of building models from scratch, CORE allows a

model (can be an application) to be built by reusing existing models. In addition,

CORE allows models to be built for reuse from the start, by dedicating a three-

part concern interface and a simple reuse process.

1.2 Thesis Contributions

The contributions of thesis are organized into three parts:

Part I Definitions (Chapter 2 and Chapter 6):

• The thesis introduces and defines the essential concepts of CORE: the unit of reuse

concern, and the three concern interfaces. The variation interface of the concern

allows the modeller to select the most appropriate variant among those encapsulated

within the concern (closed variability), and reason about the impact of the selection

on high-level goals and system properties. The customization interface allows the

modeller to adapt the concern to a specific reuse context (open variability). The usage

interface allows the user to use the functionality provided by the adapted concern in

the application.

• The thesis defines a metamodel that captures the concepts of CORE in a CORE ref-

erence implementation and outlines strategies that allow different modelling languages

to be corified (i.e., to be integrated with the CORE metamodel), so they can support

broad-based model reuse as advocated by the CORE paradigm.

8

Part II Process (Chapter 4, Chapter 5 and Chapter 8):

• The thesis introduces and defines a concern reuse process that allows a concern to

be built by reusing existing concerns and to defer design decisions to a later point

when more requirements and desired qualities have been determined. The process is

illustrated by means of an example Authentication concern.

• The thesis specifies CORE composition rules and algorithms that allow the variation

interfaces and the realization models of concerns to be composed.

• The thesis demonstrates how to build a reusable design concern by incrementally

adding small model increments to a base model. Concretely, this incremental concern

modelling process is illustrated in practice by elaborating the design of an example

concern of considerable size called Workflow.

Part III Validation (Chapter 3, Chapter 7, Chapter 8, and Chapter 9):

• The thesis performs an extensive literature comparison highlighting the advantages

and disadvantages of the CORE paradigm compared to other reuse technologies. The

CORE concern is compared with other units of reuse, such as classes, frameworks, and

services.

• The thesis validates the CORE reference implementation by successfully corifying two

modelling languages (corification of a modelling language means integrating the lan-

guage with the CORE metamodel) and by implementing a modelling language tool

that applies the CORE reuse process.

• The thesis applies the CORE reuse process to design several reusable design concerns,

reusing lower-level concerns whenever possible, to create a library of reusable design

concerns.

9

• The thesis applies the CORE reuse process on a case study application to build a family

of Crisis Management Systems.

1.3 Thesis Organization

This thesis is divided into ten chapters. We start by discussing the principles and the

approaches that CORE builds on, and by defining concern and its three-part interface in

Chapter 2. Then, we provide an overview of popular units of reuse and related work in

Chapter 3, followed by a detailed comparison between concern and other units of reuse.

Chapter 4 describes the concern reuse process illustrated by an example. Chapter 5 details

the composition rules and algorithms that allow variation interfaces of two concerns to be

composed, and to generate a customized concern by composing its realization models. Chap-

ter 6 introduces a CORE metamodel that allows different modelling languages to be corified

(i.e., to support concern-orientation). Chapter 7 discusses how the CORE metamodel was

successfully extended by two modelling languages and discusses in detail how a modelling

language tool (TouchCORE) supports the CORE paradigm. Chapter 8 presents our reusable

concern library and elaborates how we built a particular reusable concern of considerable

size (Workflow). In Chapter 9, we design a family of Crisis Management Systems using the

reusable concern library. We then conclude this thesis and discuss directions for future work

in Chapter 10.

10

Chapter 2
Background and Definitions

This chapter introduces Concern-Oriented Reuse (CORE) concepts and definitions. CORE

is a software reuse paradigm that introduces a unit of reuse called concern which provides

three interfaces to facilitate reuse: the variation interface, the customization interface, and

the usage interface. Modelling languages can implement the CORE reference implementa-

tion to be corified (i.e. to support concern-orientation). Therefore, a concern in a modelling

language, is a unit of reuse that applies the CORE reference implementation in that par-

ticular modelling language. A concrete instance of a concern, however, may contain models

belonging to multiple modelling languages at different software development phases and ab-

stractions. CORE builds on three main pillars: Model-Driven Engineering (MDE), reuse

(i.e., Software Product Lines), and Separation of Concerns (SoC). In this chapter, we detail

how we leverage the strengths of these three fundamental principles of software engineering

to support broad-based model reuse in Section 2.1, stipulate key characteristics of a reusable

artifact in Section 2.2, define concern as a unit of reuse, and its three-part interface in Sec-

tion 2.3, motivate the need for concern hierarchies and so called Software Concern Lines

(SCL) in Section 2.3, and finally conclude this chapter in Section 2.6,

2.1 Three Pillars of Concern-Orientation: MDE, Reuse (SPL), and SoC

CORE builds on ideas belonging to three pillars. As discussed in the introduction, the

objective of MDE, the first pillar, is to create software through model creation, composi-

tion, refinement, and integration. Models are built using the formalisms that best describe

11

and encapsulate relevant properties for each level of abstraction. Models at higher levels of

abstraction can be integrated with solution-specific, detailed models at lower levels of ab-

straction, until a final model is produced which may be executed. CORE uses these concepts,

especially the ability of MDE to embed domain-specific knowledge into models to bridge the

gap between domain and system knowledge.

The second pillar focuses on model reuse. Software reuse is a powerful concept originated

in the sixties and aims at developing software by reusing existing software artifacts instead

of creating them from scratch. To make software reuse applicable, reusing an artifact should

be easier than constructing it from scratch. This entails that the reusable artifacts are easy

to understand, find, and apply [67]. Benefits of reuse include increase in productivity and

maintainability, and reduction in cost and time-to-market. Creating a reusable artifact is

not trivial, requires deep domain knowledge, and involves the definition of clear interfaces

for the artifact that communicate efficiently to the user in what context the artifact can be

reused. Insufficient knowledge of reusable artifacts and their application limits can lead to

catastrophic consequences [8]. The software requirement engineering area has identified reuse

to be a key research topic [88], which should receive more attention [123]. Limitations of

model reuse are discussed in requirements engineering [85] as well as in software design [16].

Several technologies in software development have been successful in supporting reuse.

Programming languages such as Java provide class libraries that contain reusable code with

documented instructions for reuse. Design patterns [46] provide abstractions of recurrent

design problems with informal descriptions on how a pattern impacts high-level goals. Com-

ponents [116] provide well-defined interfaces on how to reuse them in some popular applica-

tion domains, e.g., web applications. Frameworks (e.g., [6]) allow reuse by providing limited

12

extension points to an application, but it is difficult to reuse multiple frameworks in the same

application since they usually impose a specific application architecture. Services [41] are

designed to be self-contained and loosely coupled, allowing dynamic reuse and composition.

Software Product Lines (SPL) [97] specify the commonalities and the variability within a

well-defined scope of products. Features in an SPL allow reuse at multiple levels of software

development, but within the closed scope of the domain for which the SPL is built. We pro-

vide an extensive comparison between the reuse in these approaches and CORE in Chapter

3.

The third pillar of CORE is based on the ideas of Separation of Concerns (SoC)) [37],

information hiding, and encapsulation [92]. There are several successful reuse units that

support encapsulation and information hiding. Procedures hide the details of algorithms

from their callers. Objects encapsulate related functionality and data, while hiding the

detailed structure/behaviour behind well-defined interfaces. Components also hide collabo-

rating objects behind provided and required interfaces. Aspects [60] focus on encapsulation

of crosscutting concerns, modular reasoning, and provide advanced composition mechanisms.

2.2 Key Characteristics of Reusable Artifacts

Based on the reuse success stories stated in the previous section, we identify key charac-

teristics that a reusable artifact should have:

• The reusable artifact must be as generic as possible, i.e., it must not refer to unnec-

essarily specific properties. For example, reusable artifacts such as template classes,

components, and services focus on being as generic as possible.

13

• The reusable artifact must be well-packaged, i.e., it must group all the elements that

logically belong to the artifact. For example, objects package related data and func-

tionality together and components package related collaborating objects together.

• The reusable artifact must provide clear interfaces and instructions for reuse. Reusable

artifacts, such as objects and components, encapsulate related structure/behaviour

behind well-defined interfaces.

• The reusable artifact must be composable and logical dependencies due to reuse and

separation of concerns must be aligned with each other and with their syntactic man-

ifestations, which will be motivated in the remainder of this section.

Fig. 2–1.a shows a Java code example where an Account class reuses Authentication to

authenticate the user when performing banking operations, such as withdraw and deposit.

The syntactic dependency goes from Account to Authentication, since Account calls the

Authentication class. Authentication is unaware of Account. The logical reuse dependency

(see Fig. 2–1.a on the right) goes from the application-specific artifact to the generic, reusable

artifact, which is the way it is supposed to be.

While the code in Fig. 2–1.a nicely separates the reusable artifact from the application-

specific artifact, it does not support SoC. The Account class, which specifies business logic

and functionality, has to deal with Authentication and explicitly refer to it/call it from within

every operation that needs to be authenticated. Fig. 2–1.b shows a different implementation

of Authentication using AspectJ [2], an aspect-oriented extension of the Java programming

language. AspectJ introduces concepts that support SoC into Java, most importantly aspect,

pointcut, and advice. The AuthenticationAspect shown in Fig. 2–1.b defines a pointcut

and advice that specify that, whenever deposit or withdraw are about to be executed on

14

boolean authenticate() {
 ...
 }

Authentication

Application-Specific
Artifact

Generic Composing
Artifact

logical composition

import/call

pointcut toAuthenticate;
around toAuthenticate {
 if (authenticate()) {
 proceed;
 }
}

Authentication Aspect

extension

deposit(int amount) {
 balance += amount;
}
withdraw(int amount) {
 balance -= amount;
}

- int balance
Account

composition
specification

Application-Specific
Artifact

Composition
Specification Generic Composable

Reusable Artifact

logical composition

logical reuse

Logical DependencySyntactic Dependency

Application-Specific
Artifact

Generic Reusable
Artifact

logical reuse
deposit(int amount) {
 if (Authentication.authenticate()) {
 balance += amount;
}}
withdraw(int amount) {
 if (Authentication.authenticate) {
 balance -= amount;
}}

- int balance
Account

a) Only Reuse

deposit(int amount) {
 balance += amount;
}
withdraw(int amount) {
 balance -= amount;
}

- int balance
Account

around execution
 (Account.deposit()) &&
 execution
 (Account.withdraw()) {
 if (authenticate()) {
 proceed;
 }

Authentication Aspect
composition
specification

b) Only SoC

c) Reuse and SoC

pointcut toAuthenticate:
 execution (Account.deposit()) &&
 execution (Account.withdraw())

Composition Aspect

Figure 2–1: Syntactic and Logical Reuse/SoC Dependencies

an instance of the Account class, authenticate is first executed. Only if authentication is

successful, then the flow of control proceeds to executing deposit or withdraw, respectively. To

achieve this flow of control, the behaviour of the AuthenticationAspect has to be composed

with the behaviour of the Account class, which is done by the aspect weaver, using the

pointcut definition inside the AuthenticationAspect. The logical composition dependency is

15

therefore from the generic composing artifact to the application-specific artifact as illustrated

in Fig. 2–1.b on the right.

However, the generic Authentication Aspect code now is aware of elements from the

application-specific Account class, which contradicts reuse principles. Consequently, simple

juxtaposition of reuse and SoC techniques results in the two resulting dependencies going

in conflicting, opposite directions. To resolve this problem, the generic artifact has to be

constructed in such a way that it is composable, but the composition specification that

specifies where it is applied in the application must be kept separate, i.e., neither as part

of the application-specific nor the reusable artifact. The result is a generic composable

reusable artifact with non-conflicting logical dependencies as shown in Fig. 2–1.c. In AspectJ

this can be achieved using abstract pointcuts and aspect inheritance. In line with reuse

principles, the Authentication Aspect does not contain any application-specific elements, but

defines an abstract pointcut toAuthenticate that advises potentially any operations, adding

the behaviour of authentication. The Authentication Aspect is extended by the Composition

Aspect that links the AuthenticationAspect’s toAuthenticate to the Account deposit and

withdraw operations. In line with SoC principles, the Account class and the Authentication

Aspect do not contain any elements from other concerns. It is the Composition Aspect

that depends on both by defining a pointcut identifying the location in Account where the

Authentication Aspect is going to be applied. Hence, the AuthenticationAspect is now a

generic composable reusable artifact.

The concerns, the interfaces, and the reuse process defined by CORE described in this

thesis are all enabled by this key idea, but applied to all software development artifacts

16

Increase
performance

Minimize
network
traffic

Minimize
memory usage

mandatory

optional

alternative (XOR)

or (IOR) Notification
Method

!
Controller

!
Concurrent

Update

!
Observer

!
Pull

!
Push

!
Active

!
Passive

Figure 2–2: The variation interface of the Observer concern.

aspect Observer realizes Observer

structural view
|Subject<|modify>

|Observer<|update>

+ * |modify(..)

+ |Subject

+ startObserving(|Subject)
+ stopObserving(|Subject)
~ |update(|Subject)

+ |Observer

Usage Interface Customization Interface

Figure 2–3: Observer RAM Model Interface (Customization and Usage)

(requirement, architecture, design, and implementation). This allows our concerns to be

simultaneously generic and composable, and as a result highly reusable.

2.3 Definition of Concern

As mentioned in the introduction, CORE is a software reuse paradigm that advocates the

concern as its main development artifact, and comes with a metamodel and reference imple-

mentation. Here we define the concern as a modular unit of reuse that encapsulates

a set of models describing all properties of a domain of interest during software

development, often spanning multiple phases of software development and lev-

els of abstraction (from requirements and analysis models to design models to

17

code). Each concern has a root phase, where the concern manifests itself for the first time.

Some concerns appear in early phases of software development, e.g., broadly scoped system

properties with functional, non-functional, or even intentional characteristics. Some con-

cerns appear in later phases of software development, e.g., solution-specific concerns such as

specific communication protocols, concrete authentication algorithms, and design patterns.

A CORE concern has to provide three interfaces to facilitate modular reuse, the usage,

customization and variation interfaces. There are reuse units that support some of these

interfaces as we see in the next section and also when we discuss related work in Chapter 3.

However, as we show when we compare concern with other reuse units in Chapter 3, there is

no reuse unit that support all three interfaces together with guidelines for reuse. The three

interfaces of a CORE concern together (usage, customization, and variation interfaces) allow

for building applications/concerns by easily reusing other existing concerns as shown in the

concern reuse process in Chapter 4, and validated by building a tool and a library of reusable

concerns in Chapter 7 and Chapter 8, and by a family of Crisis Management Systems case

study in Chapter 9. In the next subsection, we explain concern interfaces in detail.

2.4 Concern Interface

The key concept of CORE promoting reuse and modularity is the three interfaces [16]

that every concern must provide. In this subsection, we discuss in detail each interface. In

addition, we use an example design concern called Observer to further illustrate concern

interfaces. Observer is a popular design pattern [46] in which an object called Subject main-

tains a list of dependent objects called Observers. When the state of Subject changes, the

list of Observer objects are updated. There exist many variations of Observer in the liter-

ature, of which we choose three to include in our Observer concern. The first variation is

18

related to the notification method used to update the Observer list. There are two notifica-

tion methods: Push method in which the Subject sends messages to the Observer list when

its state changes, and Pull method in which the Observer periodically check whether the

state of Subject changed. Push reduces the network traffic while Pull reduces the amount of

data exchange. The second variation of Observer concern is about concurrency. In a single

threaded application of Observer, the performance of the system is affected when there is

high volume of messages sent over the network or when the update operations of Observer

objects are computationally intensive. In such cases, a multithreaded application of the

Observer pattern will help reduce network traffic and/or improve performance. Finally, a

design variation of Observer introduces a third object called Controller which reacts to ex-

ternal events and serves as connector between Subject (called Model) and Observer (called

View) according to the Model-View-Controller (MVC) principle. The Controller receives

requests for state changes on the Model and then notifies the View for update. MVC also

has two design strategies–Active and Passive–based on two different ways to pass the control

between Controller, Model, and View objects.

2.4.1 The Variation Interface

The Variation Interface definition: this interface makes reuse simple and straight-

forward by clearly describing the different variations of the solution it encapsulates, as well

as the impact of different variants on high-level stakeholder goals, system qualities, and non-

functional requirements. Typically, there are many ways to solve a specific problem, each

solution having advantages and disadvantages. There are, for example, families of algorithms

for achieving similar behaviour that have varying run-time resource requirements, and dif-

ferent ways of organizing information into data structures. The choice of data structures

19

and algorithms has an effect on application performance and memory usage. The existence

of a multitude of sorting algorithms, for example, shows clearly that there is no one good

way of sorting. A more complex example is transactions [51], a design concept for fault

tolerance that emerged in the database community. A transaction groups together a set

of operations on data objects, ensuring atomicity, consistency, isolation, and durability of

data updates. There are many ways of designing support for transactions, including pes-

simistic/optimistic and strict/semantic-based concurrency control, in-place/deferred update,

and logical/physical and forward/backward recovery. Again, each technique has advantages

and disadvantages.

Because of the multitude of possible solutions, before a developer can focus on choos-

ing a specific solution, she must carefully consider how each possible solution positively

or negatively affects the stakeholders high-level goals and the non-functional properties of

the application. Choosing the best solution is arguably the most important activity of the

development process, and has a crucial impact on the quality of the entire application. Ul-

timately it is the capability of choosing the most appropriate solution that distinguishes a

good developer from a bad one.

Unfortunately, none of the popular units of reuse makes this important activity easy for

the developer. Even if the unit is accompanied with documentation that describes the impact

of the solution, the documentation usually does not mention other alternative solutions.

For example, a class typically only provides one solution to a specific problem. At best,

the class comes with documentation that describes the impact of the encapsulated design.

For example, the ArrayList class provided as part of the Java standard class library [50]

implements a queue, i.e., a data structure that stores a sequence of elements and provides

20

operations to insert and remove elements from the sequence, and iterate over the elements

in the sequence. However, there is no support in Java to capture the impact of a class

on the non-functional properties of an application that uses it. This is not a problem for

an experienced Java developer, since she has probably used the class before. If not, other

sources of information, i.e., the (textual) Java documentation or Java developer websites,

need to be consulted to discover the impact of the class on non-functional application prop-

erties. Likewise, there are many ways to store a sequence of elements in Java, i.e., using

the CopyOnWriteArrayList class, the Vector class, the LinkedList class, or simply a stan-

dard array. Each way has a different impact on performance and memory requirements.

Again, there is no direct support in Java to capture this information. The only way to find

this information is to assume that all classes that implement a sequence are located in the

same Java package (java.util for ArrayList), and that they all implement the List<E>

interface.

Similar arguments can be made for other units of reuse, i.e., components [116]. The sit-

uation is different, however, for patterns, frameworks (e.g., [6, 5]), and SPLs. A description

of a design pattern, for example, is required to contain a Consequences section that contains

a description of the results, side effects, and trade offs caused by using the pattern. There is

also a Related Patterns section, which mentions other patterns that have some relationship

with the pattern that is being described and discusses the differences between this pattern

and similar patterns. Unfortunately, these textual descriptions are informal.

Sophisticated frameworks are often designed in such a way that they provide a variation of

similar functionalities to the developer. Typically, the choices are presented to the developer

in form of class hierarchies from which the developer can instantiate the class that fits her

21

requirements best. Whereas the functional impact of the different options is usually explained

well, the impact on non-functional application properties is rarely documented rigorously.

As a result, using a framework in the most appropriate way for a specific application still

requires considerable expertise.

SPLs inherently describe variations, and, consequently, SPL techniques are certainly

applicable to some aspects of concern-oriented reuse. The crucial difference is that SPLs

are focused on producing a product instead of specifying a possibly crosscutting concern.

SPLs typically lack rigorous interfaces that have been designed to support composition of

crosscutting concerns, allowing many concerns to be combined for one product and a single

concern to be applied to many products.

Based on the aforementioned arguments, we suggest that in order for reuse to be max-

imally effective, a new, broader unit of reuse that encompasses all solutions targeted at

solving a problem is needed. A CORE concern accomplishes this objective by providing

the variation interface. This interface expresses the closed variability offered by the concern

as in an SPL [97]. Developers have to think about feature dependencies and interactions

and express them by means of feature model relationships (mandatory, optional, alternative,

requires, excludes). The variations are typically represented with a feature model [58] that

specifies the individual features that a concern offers, as well as their dependencies such as

mandatory, optional, alternative, requires, and excludes. The impact model, i.e., the impact

of choosing a feature, can be specified with goal models (e.g., with GRL, which is part of

the User Requirements Notation (URN) standard [56], or the NFR framework [30], i* [130],

and KAOS [36]). For example, a security concern may offer various means of authenti-

cation, from password-based to biometrics-based solutions, each with differing impacts on

22

the level of security as well as cost and end-user convenience. These qualities have to be

weighed, when determining which authentication variant is most appropriate in the current

application context.

Fig. 2–2 shows the basic variation interface of the Observer concern. We show the

feature model of Observer and the high level goals for the impact model. A detailed impact

model further breaks down the high level goals and shows how features of the feature model

contribute to them positively or negatively (we explain the feature model and the impact

model in more detail when discussing the CORE reuse process in Chapter 4). Features of the

feature model can be realized by one or many realization models. These realization models

can belong to different modelling notations at different levels of abstractions as discussed in

the previous section. Since Observer is a design concern, we model its realization models

using a design modelling notation called Reusable Aspect Model (RAM) [62]. RAM is an

aspect-oriented multi-view modelling notation based on extended UML. A RAM model is

a UML package consisting three views: a structural view that shows the class diagram, a

behavioural view that shows sequence diagram and a state view shows the state diagram of

the software design. The simple Observer RAM model shown to illustrate the usage and

customization interfaces in Fig. 2–3 realizes the root feature in the feature model shown in

Fig. 2–2. Realization models of features such as Pull and Push incrementally build on the

realization model of the root in a process described in detail in Chapter 8.

2.4.2 The Customization Interface

The Customization Interface definition: the customization interface of a concern

describes how a chosen variant of the concern can be adapted to the needs of a specific

application. Typically, a unit of reuse has been purposely created to be as general as possible

23

so that it can be applied to many different contexts. As a result it is often necessary to tailor

the general model to a specific application context. For example, the customization interface

of generic or template classes allows a developer to customize the class by instantiating it

with application-specific types. For components, the customization interface is comprised of

the set of services that the component expects from the rest of the application to function

properly (i.e., the required interface). The developer can use this information at configuration

time to plug in the appropriate application-specific services. The customization interface for

frameworks and design patterns is often comprised of interfaces/abstract classes that the

developer has to implement/subclass to adapt the framework to perform application-specific

behaviour.

Each variant of a concern is described as generally as possible to increase reusability.

Therefore, some elements in the concern are only partially specified and need to be related or

complemented with concrete modelling elements of the application that intends to reuse the

concern. The customization interface expresses the open variability offered by the concern,

similar to what generic classes in programming languages do. This mechanism meets a

need to handle flexibility and openness while handling variability in a scoped domain, as it

has already been attempted in previous work on components in product populations [125],

more flexible SPLs [52, 95], or variability aware modules [59]. The customization interface

is used when a specific variant of a reusable concern is composed with the application. For

example, a security concern may define a generic User as a partial class that needs to be

merged with the concrete application classes that describe the actual users of the system,

e.g., Administrator or Employee.

24

Although there are reuse units that implicitly designate a customization interface as in

the case of components, CORE allows its modelling languages to explicitly define their cus-

tomization interface. RAM provides an explicit customization interface that specifies how

a generic design model needs to be adapted to be used within a specific application. To

increase reusability of models, a RAM modeller is encouraged to develop models that are

as general as possible. As a result, many classes and methods of a RAM model are only

partially defined. For classes, for example, it is possible to define them without constructors

and to only define attributes relevant to the current design concern. Likewise, methods can

be defined with empty or only partial behaviour specifications. The idea of the customiza-

tion interface is to clearly highlight those model elements of the design that need to be

completed/composed with application-specific model elements before a generic design can

be used for a specific purpose. These model elements are called mandatory instantiation

parameters, and are highlighted visually by prefixing the model element name with a |, and

by exposing all model elements at the top right of the RAM model similar to UML template

parameters. Fig. 2–3 shows that the customization interface for the Observer model com-

prises the class |Subject with a |modify operation, and the class |Observer class with an

|update operation.

2.4.3 The Usage Interface

The Usage Interface definition: the usage interface specifies the structure and be-

haviour that the concern provides to the rest of the application. In other words, the usage

interface presents an abstraction of the functionality encapsulated within the unit to the

developer. It describes how the application can trigger the functionality provided by the

unit.

25

For instance, for classes the usage interface is the set of all public class properties, i.e.,

the attributes and the operations that are visible and accessible from the outside. For

components, the usage interface is the set of services that the component provides (i.e.,

the provided interface). For frameworks, design patterns, and SPLs, the usage interface is

comprised of the usage interfaces of all the classes that the framework/pattern/SPL offers.

The usage interface of a RAM model is comprised of all the public model elements

(preceded with +), i.e., the structural and behavioural properties that the classes within the

design model expose to the outside. To illustrate this, the usage interface of the RAM design

of the Observer design pattern is shown in Fig. 2–3. The structural view of the Observer

RAM model specifies that there is a |Subject class that provides a public operation that

modifies its state (|modify) that can be called by the rest of the application. In addition,

the |Observer class provides two operations, namely startObserving and stopObserving,

that allow the application to register/unregister an observer instance with a subject instance.

While one variation interface consisting of feature and impact models exists for the whole

concern, one customization interface and one usage interface typically exist for each type

of model in the concern with the exception of the models used for the variation interface.

Chapter 4 outlines a three-step reuse process that allows the software practitioners to develop

concerns (or applications) by reusing existing concerns. Each step of the reuse process uses

one of the concern interfaces.

2.5 Concern Hierarchies and Software Concern Lines (SCL)

An application is built by reusing many concerns. When reusing a concern, the user

should be able to select the best solution from the variation interface and perform trade-off

analysis. For example, the user of the Authentication concern can select among different

26

ways of performing Authentication, e.g., using passwords, facial recognition, or fingerprints.

Each solution has impacts on high-level goals such as cost, user-convenience, speed, and

CPU/memory consumption. CORE uses ideas from feature modelling [98, 29] and goal

modelling (e.g., [36, 130, 18]) to guide the concern user to select the best solution and

perform trade-off analysis.

A reusable concern may be used when developing an application, but may also be used

to build other reusable concerns, resulting in a complex reuse hierarchy, a concern hierarchy.

Generally, concerns in CORE are built to be as generic as possible similar to class libraries

/ generic classes in Java. On top of that, they encapsulate all variations of the functionality

and behaviour related to a concern, similar to the way SPLs group all variations of a specific

application domain. However, concerns are not product-specific as SPLs typically are. CORE

concerns express the variabilities they encapsulate just like SPLs, but are not confined to

a specific product family. They are intended for an open, broader reuse scope. To clearly

highlight this key difference and at the same time acknowledge one of the pillars of CORE

(i.e. reuse), we refer to concerns in concern hierarchies as Software Concern Lines (SCL).

When a concern at a higher level (i.e., the reusing concern) reuses another concern (i.e.,

the reused concern), the developer should be able to precisely specify how the interfaces

of the reusing concern are affected by the interfaces of the reused concern. For the usage

interface, the composition needs to determine which elements of the reused concerns should

be part of the usage interface of the reusing concern, if any. This is related to information

hiding, as it makes functionality of the reused concern accessible at the next-higher level.

For the customization interface, mechanisms must be provided so that reused customization

elements that have not been concretized by the reusing concern are reexposed in the reusing

27

concern’s customization interface in addition to any new elements it defines. But the most

challenging problems come from the variation interface. First, choosing the best variant of

a reused concern is only possible when all requirements are known, which is far from being

the case when composing some concern with a lower-level one, because it is typically not

known how the reusing concern will be used in the future. Second, some features from the

reused concern may not be applicable in its specific context of reuse (i.e., when composed at

the level of the reusing concern), and third, the qualities of the features being built for the

reusing concern are affected by the qualities of reused concerns. We discuss how interfaces of

a reusing concern are composed with interfaces of a reused concern in Chapter 5, and detail

composition rules and algorithms for the variation interface that allow an application (or a

concern) to be built through producing a complex concern hierarchy.

2.6 Conclusion

Model reuse has been identified as one of main challenges facing MDE. Models are often

created from the scratch with little means to reuse existing models. The reasons why model

reuse is challenging include lack of proper model interfaces, support for expressing variabil-

ity, trade-off analysis, modularity in reuse units, and reusable model libraries. To overcome

this challenge, we introduce CORE–a software reuse paradigm that builds on ideas from

model-driven engineering, software product lines, separation of concerns (SoC) to support

broad-based model reuse. CORE introduces a new unit of reuse called concern that groups

related models together often spanning multiple development phases and abstraction levels,

and designate three interface to facilitate reuse: the variation interface, customization in-

terface and the usage interface. In addition, CORE provides a metamodel and a reference

implementation that allows different modelling languages to corified. Through CORE reuse

28

process, an application or a concern can be built by easily reusing other existing concerns,

often producing complex concern hierarchies.

29

Chapter 3
Relation to Related Research

Software reuse is a powerful concept that originated in the sixties, and is defined as

the process of creating new software using existing software artifacts. To make software

reuse applicable, reusing an artifact should be easier than constructing it from scratch.

This entails that the reusable artifacts are easy to understand, find, and apply [67]. There

are characteristics of software artifacts that facilitate reuse, e.g., grouping, encapsulation,

information hiding, and well-defined interfaces.

In this chapter we provide an overview of related work to CORE. We start by reviewing

some popular units of reuse in the next section. In Section 3.2, we discuss the body of related

work including efforts by different approaches to overcome the shortcoming of the popular

units or reuse. We conclude this chapter in Section 3.3.

3.1 Units of Reuse

In this section, we review some of the most popular units of reuse. We study if the units

have the following characteristics, and we end this section with a summary comparison table.

• Customization: Whether the approach supports adapting its artifacts when reusing

them. McKinley et al. [76] classifies adaptation into two types: parameter adapta-

tion, and compositional adaptation. Parameter adaptation seeks to adapt the unit

of reuse by introducing changes to it (e.g., through parametrization). Compositional

adaptation adapts the unit for a particular purpose through composing it with other

units. We here make use of this classification, and elaborate it a bit further. We

30

classify customization into three groups: Customization, Static Composition, and Dy-

namic Composition. Customization stands for introducing changes to the unit not

only through parameterization, but also through other means (e.g., partially-defined

entities).

• Static Composition: Support for static composition of software artifacts that belong

to the reuse unit. Static composition stands for composing an artifact with another

artifact before running the system.

• Dynamic Composition: Support for dynamic composition. Dynamic composition stands

for adapting the system by (re)-composing its artifacts at run time.

• Encapsulating crosscutting concerns: Whether the approach addresses the problem of

scattering/tangling by encapsulating crosscutting concerns. This implies that the unit

of reuse also supports advanced composition. Crosscutting concerns, e.g. security,

require the reuse unit to support advanced composition so it can apply code/model

fragments, not only to one location during composition, but to many different locations

scattered over multiple entities.

• Variability: Whether the approach provides a variability interface to its provided so-

lutions.

• Non-Functional Properties: Support for specifying non-functional properties and sys-

tem qualities.

• Impact/Trade-Off Analysis: Support for impact analysis and reasoning about trade-

offs using the non-functional properties when choosing between alternative solutions.

The following paragraphs provide an overview of popular reuse units and discuss whether

they support the aforementioned characteristics:

31

Classes: Classes are the most common unit of reuse in the object-oriented program-

ming. They group related state and behaviour (attributes and operations), and allows to

reuse these properties in different contexts. Classes can nicely encapsulate a “local” design

solution, where design state and behaviour fit into one entity. They fail when the design

behaviour crosscuts several application entities. From the aforementioned comparison list,

classes provide support for customization through generics and templates only, which allow

the user to customize classes by initializing them with types.

Aspects: Aspects [60] address the problem of crosscutting concerns by encapsulating

them separately from the application’s core concerns. Aspects are woven/composed with

core concerns to generate a complete application. Some aspect-oriented modelling approaches

provide support for customization such as RAM (discussed later in this subsection). Popular

aspect-oriented programming languages e.g., AspectJ [2] does not also support dynamic

reuse, however, there are aspect-oriented approaches that support dynamic deployment [3]

and adaptation [40, 99, 117].

Components: Components [116] are more coarse grained entities that package related

functionalities behind well-defined interfaces. They are very popular in some application

domains, e.g., web services, where dynamic configuration is desired. Whereas components

are designed for reuse, they fail just like classes to encapsulate designs that crosscut the

application architectural structure. Components provide some support customization, such

as through configuring the properties file in JavaBeans. Adapter Design pattern is also used

to customize/adapt JavaBeans components [71]. There also have been efforts to express

non-functional properties and support impact analysis for commercial off-the-shelf (COTS)

components [47].

32

Design patterns: Design patterns [46] are abstract design descriptions of solutions to

recurring design problems. They capture interactions between classes, and explain trade-

offs/impacts of the interaction pattern on high-level goals. However, design patterns are

usually described informally in textual format or using incomplete UML diagrams or code

examples that cannot be reused as such in an application design without substantial devel-

opment effort.

Frameworks: Frameworks (e.g., [6, 5]) are software application platforms that are

usually big in size and offer many features. Due to their size, they are usually difficult to

configure/customize for a specific need. Frameworks often define a limited set of extension

points, and dictate the control flow of the application that uses them. They apply the

concept of Inversion of Control (IoC) [43], which allows frameworks to give their control

flow to some custom code written by the application. However, this practice makes it hard

to reuse several frameworks in the same application. Encapsulating crosscutting concerns is

supported by some frameworks to some extend. For example, the testing framework JUnit [5],

uses annotations in pieces of code that need to be tested, allowing testing scattered pieces

of code.

Features of Software Product Lines (SPLs): SPLs [97] specify the variabilities

and commonalities in a family of products and are an example of large-scale reuse. Reuse

is the main focus in the context of software product line (SPL) development [98, 29], and

since software design concerns are very close to SPLs we intend to incorporate best practices

from this field. However, features in an SPL belong to a single domain of interest, cross-

domain reuse of SPL products has not been explored much [75]. Cross-domain reuse requires

modelling crosscutting concerns that define partially-developed artifacts, which are yet to be

33

explored in SPLs. Concern-orientation is about reuse in a broader sense. The customization

interface allows the concern to be customized and reused in potentially many application

contexts. i.e., within contexts that are not envisioned when the concern is created. Also,

concern dependencies – which translates to inter SPL dependencies – are a kind of reuse that

has not been explored by SPLs. Non-functional properties and support impact analysis are

possible in some SPLs that assign attributes to features. There are also some SPL approaches

that allow the features to be dynamically selected during runtime. The possible products in

an SPL are limited to possible valid configurations of its features.

Services: Service-Oriented Architecture (SOA) [41] is a software architecture style that

views the system as set of services that are self-contained, loosely coupled and can be easily

composed. SOA provides set of guidelines that govern how services are represented and

used. The key difference between concerns and services is that services, are designed to

address business-related behaviour and logic. They “Enable assembly, orchestration, and

maintenance of enterprise solutions to quickly react to changing business requirements” [68].

Although there are high-level concerns that address business logic, concerns can also address

design solutions such as different design patterns or implementation solutions such as net-

working. Furthermore, concern allows the user to customize the reused concern according

to her application needs. The ability to customize concerns, as mentioned previously, stem

from their partially-defined entities. Customization allows concerns to be reused in many

different applications and contexts, which is very useful when reusing generic concerns. It

is not possible to define partially-defined services, they are usually composed by sending

messages to invoke other services. Therefore, as in SPLs, the possible ways a service can

34

be composed is limited to the number of pre-existing services. There are, however, some

approaches that allow customizing services described in the next subsection.

A distinctive characteristic of services, is their ability to be dynamically invoked during

run time. There exist SOA approaches that provide some support for variability interface,

which is helpful in choosing the most appropriate service during run-time. Service Level

Agreements (SLA) specify non-functional properties, however, it is not possible to perform

impact and trade-off analysis using SLAs.

Unit of
Reuse

Custom-

ization

Static
Compo-
sition

Dynamic
Compos-
ition

Encapsulating
Crosscutting
Concerns

Variability

Non-
Funct-
ional

Properties

Impact
Analysis

Classes Yes No No No No No No
Aspects Limited Yes Limited Yes No No No

Components Limited Yes Yes Limited No Limited Limited
Design
Pattern No No No No Limited Limited Limited

Frame-
works Limited No No Limited No No No

SPL
features No Yes Limited Limited Yes No No

SPL
features
with

attributes

No Yes Limited Limited Yes Yes Yes

Services Limited Yes Yes No Limited Yes No
Concerns Yes Yes Possible Yes Yes Yes Yes

Table 3–1: Comparison table of some popular units of reuse.

Table 3–1 summarizes the characteristics of the above units of reuse. Units that are

marked as providing limited support for a characteristic have been explained during the

35

description of the unit, or there exists related work addressing this characteristic as described

in Subsection 3.2.

Concerns as described in this paper provide support for all the characteristics used to

classify reuse units in this subsection except for dynamic composition. Exploring dynamic

feature selection in concerns could be possible based on models at runtime techniques [80],

but is out of the scope of this thesis. To the best of our knowledge, there is no other approach

that addresses all above shortcomings together.

3.2 Related Work

The plethora of related work can be organized into four categories. In Subsection 3.2.1,

we discuss the work related to model reuse. In Subsection 3.2.2, we discuss the related work

in the area of feature model composition. In Subsection 3.2.3, we discuss work related to

variable modules. In Subsection 3.2.4, we discuss the work related to goal models and impact

analysis.

3.2.1 Model Reuse, Customization and Separation of Concerns

Our approach aims at grouping logically related models together which is related to the

research in Separation of Concerns (SoC). Approaches towards developing software systems

using concerns (as advocated by aspect-oriented software development) fall into two cate-

gories. The first category puts the concern in the centre of the development process and

modularizes the target system into concerns at the requirement and/or design phase. There

are several approaches that fall into this category, the best known one is aspect-oriented

programming. The second category of approaches analyze the existing systems to find the

related parts of the system that can be organized into concerns. None of the approaches

36

detailed here provide support to express variability or to assess the impact on high level

goals and properties.

Jacobsen [57] shares his experience in developing the telecommunication system at Eric-

sson and lessons he learned from the case study on a subsystem of that system in 1978. He

notices that a use case is not realized in a single component but rather scattered across the

components implementing the system. He concluded from the case study that if the use cases

can be kept separate in all the phases of software development including implementation,

maintaining and understanding the system will be come much easier. Components form the

static structure of a system which usually reflects how the designer organizes the system.

This static structure, however, does not express the dynamic behaviour of the system as de-

scribed by the use cases. Jacobsen proposes a Use Case Driven Development approach where

the the system is not only organized statically, but also dynamically through separation of

use cases in all phases of development. Jacobsen uses use case and concern interchangeably

to refer to the same concept. He defines use case as sequence of instructions performed by

the system that yields a meaning result to the user. In order to achieve modularity in use

cases, Jacobsen proposes two mechanisms. First, use cases need to be kept separate in all

phases of software development process. He categorizes uses cases into two types: extension

use cases and peer use cases. Peer use cases provides the basic functionalities. Extension use

cases depend on other use cases and, hence, need to be properly linked with the dependent

use cases. Using extensions, a system can be developed starting with a base use case and

incrementally adding the extensions to it. The second mechanism that is needed to achieve

modularity is use case composition. There needs to be composition mechanism of extension

37

use cases as well for the peer use cases. Peer use cases may share functionalities with each

where composition mechanisms should compose the overlapping functionalities.

Tarr et al. [118] proposes multi-dimensional separation of concerns using hyperslices to

address the problem of scattering and tangling. A hyperslice slices parts of different units

(e.g., classes) that address a particular concern. Different hyperslices that address a particu-

lar concern are composed together using composition rules into hypermodules. Hypermodules

can be nested to contain other hypermodules allowing more modularity and encapsulation.

The result system, therefore, is a hypermodule that composes different hyperslices and the

composition between hyperslices is based on the common concepts that these hyperslices

share. The composition mechanism follows three simple steps: matching units that describe

the same concept from different hyperslices, reconciling any differences may occur during the

matching process, and finally integrating the hyperslices into a hypermodule. The technique

of hyperslices is flexible to be used in requirement, design or the implementation levels.

Theme [28, 32] is an approach for separating concerns at the requirement and design

levels. The Theme approach consists of Theme/Doc, which provides the framework for

aspect-oriented analysis from the requirement document and allows the aspect to be traced

to the design, and Theme/UML, which provides the framework for aspect oriented design.

Theme refers to an element of the design that provides the structure and behaviour for a

particular feature. There are two types of themes, base themes, which may interact with

other themes and crosscutting themes, which functionalities overlay of the base themes. In

Theme/Doc, the requirement analysis process starts with finding the key actions. Actions are

verbs that appear in the requirement text and they are extracted by the software practitioner

with the help of some lexical analysis implemented by Theme/Doc. For design, Theme/UML

38

provides a three phase approach: modelling phase, composition phase, and transformation

phase. For the modelling phase, Theme/UML provides a marking profile to illustrate the

entities in the design with the relevant composition semantics and a graphical UML tool that

supports the Theme/UML marking profile and traditional UML features. The composition

phase takes the output of the modelling phase and produces a composition model that

is an instance of the composition metamodel using the composition specifications. The

composition model is then executed to produce an object oriented Product Independent

Model (PIM) in an EMF XMI file. Finally, the transformation phase takes the PIM produced

in the composition phase and produce a Product Specific Model (PSM) model and eventually

the code.

Nistor et al. [87] introduces ArchEvol for managing concerns at a high level of abstraction

and tracing the concerns in the code. They develop a tool (an eclipse plugin) that visualizes

the system as group of related concerns at the architecture level. Concerns are visualized as

a tree to ease the navigation for developers. When the developer selects a concern from the

tree, she can view the code fragments that concern is located.

Fuentes et al. [45] uses aspect orientation in developing context-aware pervasive systems.

Context aware systems contain crosscutting concerns that are scattered in many components

across the system. There is also a need to dynamically change these concerns during run

time when the context is changed. The approach developed by Fuentes et al. addresses

these issues. Fuentes et al. model the system using components and class diagrams in UML.

They model the crosscutting concerns separately as aspects and develop a middleware that

weaves aspects at run time. The base aspects in their approach do not refer to the aspects,

the aspects are coupled with base classes as they have references to them as discussed earlier

39

which limits the potential of modularity, the authors are investigating to solve this in the

future.

Solberg et al. [113] proposes a framework for model driven development that uses aspect

oriented techniques to support separation of concerns. Their basic idea is to separate the

concerns in an abstraction level using Aspect-Oriented modelling (AOM) techniques and

have similar multiple levels of abstractions and provide transformations between the levels.

Their framework aims to separate the concerns horizontally in an abstraction level and

vertically across different abstraction levels. Using aspect oriented modelling to separate

the concerns at a given level of abstraction and then use transformations to transform the

models from one level to another. Their framework supports the transformation from PIM

to PSM abstraction levels.

Hovsepyan et al. [55] introduces GReCCo (Generic Reusable Concern Composition),

which is an AOM based concern composition framework. The concerns are developed in a

best way to be independent from other concerns (i.e., increase their obliviousness) and thus

increase their reusability. Concerns allow more variations in their composition by provid-

ing template parameters which increase the number of other concerns that can be composed

with. GReCCo also uses composition symmetry and treats all concerns in a same way (i.e., it

does not differentiate between base and aspect concerns). The composition between concerns

in GReCCo is done through the composition model. A generic composition engine takes as

input the concerns to be composed, and the composition model specifies the composition

between the models and outputs the composed model.

In the previous subsection, we mentioned that encapsulating a crosscutting concern using

components is limited. There exist approaches that support that using help from some

40

aspect-oriented technologies [114, 96]. Suvee et al, [114] introduces JAsCo, a language that

allows encapsulating crosscutting concerns, such as access-control, and composing them with

components. Their approach is built on AspectJ and aspectual components [73].

Support for customization in services is also limited, as discussed in the previous sub-

section. There are efforts, however, to customize services through parameterization [1] and

using templates [119] . Web services have support for adaptation and personalization. Abite-

boul et al. [10] proposes an approach that allows customized use of web services in XML

documents. The approach uses an XML schema that specifies elements/subelements of the

XML document that can be specified/replaced dynamically. They provide an example of a

schema for news exchange, where the element <item> can be given by a service call that

matches the news service call pattern, which allows to use any service call that returns an

element (news <item>) of the correct type.

3.2.2 Feature Model Composition

Many software systems are developed that serve specific domains, and a system can grow

to support different variants of services. Expressing the variability and supporting software

reuse within a closed domain has been the main focus of Software Product Line (SPL)

development [29, 97]. Concern is a unit of reuse that handles variability in the domain of the

concern while ensuring openness for adaptation in arbitrary other domains. The combination

of the variation and customization interfaces allows concerns to be malleable for reuse in

domains or situations that were not originally envisioned. Concerns are close to SPLs, and

therefore we incorporate best practices from this field. However, reuse within an SPL is of

limited scope, i.e., within the product line. For example, Gomaa [48] expresses Software

Produce Lines with extended UML models. He expresses variability using stereotypes, such

41

as, <‌<kernel>‌>, <‌<optional>‌>, and <‌<alternative>‌> and manually relates the model

elements of the system with features in the feature model. The stereotypes used to express

variability reside with the model, which negatively affects the understandability of the model.

Dependencies between concerns - which can be translated to inter SPL dependencies – are

not explored.

A number of different approaches have been proposed to compose feature models in SPLs.

In [12], Archer et al. introduce FAMILIAR, a domain-specific language for feature model

manipulation. FAMILIAR allows the user to manage feature models, compose them with

different operators, and reason about their validity. Boškovic et al. [26] introduce Aspect-

oriented Feature Models (AoFM), which combine aspect-oriented techniques with feature

modelling. Their approach is capable of minimizing maintenance efforts by modularizing

crosscutting concern (e.g. recurring subtrees or feature patterns) within feature models.

Acher et al. [11] similarly support separation of concerns by defining merge and insert com-

position operators for feature models. Bak et al. [21] present Claefer, an approach that

supports mixing feature models and metamodels. They support expressing the variability

in a class diagram through using references to a feature model. They also allow creating

specialized model templates by keeping most of the structure fixed, while allowing some

options for variability.

Research in Multi Product Lines (MPL) use composition models and model interfaces to

compose different interdependent SPLs together. Schröter et al. [110] provides interfaces for

variability modelling, syntactical, behavioural and non-functional levels of the development

process. The variability modelling interface is a separate model that restricts and specializes

the variability model of the reused SPL. All other interfaces conform to the variability model

42

interface. The variability model in their approach comprises only a feature model of the

SPL. Our variation interface, however, comprises feature and impact models. Rosenmüller

et al. [102] automatically generate an initial composition model that connects multiple SPLs

in an MPL. Composition models of different SPLs are connected by creating their instances,

and the SPL developer can further refine the generated composition model by introducing

constraints on the involved SPLs. The MPL approaches are different from our work. Our

approach considers reuse from the start. The customization interface helps to identify the

artifacts that are partially defined and need to become concrete when they are reused. This

allows to define a development process that focuses on reuse, to create small concerns and

reuse them to build larger ones. On the other hand, the approaches mentioned in this

paragraph are founded on the SPL point of view, as they focus on how to use multiple SPLs

to build an MPL. While their work is similar to the variation and usage interfaces of CORE,

they do not provide means to develop artifacts that are partially defined, which is supported

by our approach and identified by our customization interface.

There has been work to introduce aspect orientation to SPLs [42, 126], however, the

research in this line is limited in applying aspect-oriented (AO) techniques within a product

line, and not developing partially developed products that can potentially be composed with

multiple SPLs. For example, Voelter et al [126], use aspect-oriented modelling techniques to

compose optional features with the root feature, they also use Aspect-Oriented Pogromming

techniques when generating code. However, as discussed previously, these aspects address

the domain of interest of the SPL, and do not provide AO interface for cross-domain reuse

by means of partially-developed products.

43

In Delta modelling [53, 31, 105], the product line is represented by a core model and a

set of delta models. A valid configuration of the feature model applies the relevant deltas

to the core model incrementally. Their work is related to the our previous work where we

implemented the CORE metamodel for the design phase [16]. A valid configuration of a

design concern applies its realized model increments to the base model incrementally to

generate the customized concern.

The feature model composition operators defined by the aforementioned approaches are

quite powerful, and we are investigating if we could exploit them to compose the feature

models of our variation interfaces. The main difference between these approaches and our

approach is that in our case the composition of feature models of different concerns is driven

by concern reuse. Depending on the specific reuse, some features are kept, some reexposed,

and some removed. In addition, composition of feature models in CDD takes into account

trade-off analysis of stakeholders of the concerns, which is not explored by these approaches.

There is also research to use feature models in services and components. Cubo et al. [34]

use feature models to address the variability of each service. A valid feature model config-

uration corresponds to a particular business process. They have a framework that allows

to dynamically change the product configuration when the context is changed, White et

al. [127] use feature models to represent the composition model of services, and to correctly

reconfigure the system when a failure happens. When a failure happens, their approach uses

feature models to derive correct and valid configurations.

Dynamic Software Product Lines (DSPL) [54] allow for dynamic configurations of SPL at

runtime. Gomaa and Hashimoto [49] use feature models for dynamically selecting services

that are requested at run time. They provide a three-layer architecture for DSPL, that

44

monitors the running system for any triggers that require reconfigurations, prepares feature

requests that meets the new changes in the system, and reconfigures the system to meet the

new feature requests. Dinkelaker et al. [38] use AO technology to model dynamic features of

a DSPL. They use a domain specific language (called dynamic feature language, DFL) that

models dynamic features as aspects, which allows them to express constraints on dynamic

features and provides them the mechanism for safe composition of dynamic features. The

DFL supports modelling late variation points of DSPL via using domain specific pointcut

language that quantify over domain specific join point models. All these approach face the

shortcomings of services and SPLs as previously discussed.

3.2.3 SPLs and Variable Modules

Through the composition of variation and customization interfaces, Software Concern

Lines can be seen as a variable unit of reuse, tackling the problem of handling variability in

predefined domains while ensuring a form of openness. This need was previously identified

when reusing software components between product families – defining the notion of product

populations [125], when proposing variable components [94, 122], when seeking more flexi-

bility in a classic SPL setting [95], or when handling reuse in open-source communities [52].

In [122], Van der Storm defines variable components, but only proposes solving techniques

for checking compatibility among them. Plastic partial components [94] also propose to

handle variability in model-driven software architectures through components equipped with

several variable interfaces and implemented internally with aspect-oriented techniques. Our

contribution differs from these two propositions by being dedicated to concerns and by

handling definition and composition of open variable parts in the reusable units.

45

In [59], Kästner et al. propose a core calculus and C-based implementation for variability-

aware modules with variability handling capabilities inside modules and on module inter-

faces. Modular type checking of internal variability is supported and the composition of two

compatible modules yields a well-typed module with combined variabilities. Our approach

first differs as it aims at supporting hierarchical modularity [25] with concern hierarchies,

by the provision of renaming and hiding capabilities and the separate handling of three spe-

cific interfaces. Our approach also considers an impact model to document the influence of

expressed variability on system qualities and guide configurations.

3.2.4 Goal Models and Impact Analysis

Our approach uses goal models to analyze the impact of choosing features. Research in

goal-oriented SPL investigated the mapping between features and goals in different ways.

Benavides et al. [24] extend feature models to include non-functional features (they call

them extra-functional features) by expressing relations among feature attributes. They then

map the extended feature models onto a Constraint Satisfaction Problem (CSP) that allows

some automated reasoning. Users can ask questions to the CSP solvers such as the total num-

ber of products of a feature model and define some filters on the model. The extra-functional

features in their approach are equivalent to the goals in impact models in our approach. How-

ever, their approach does not allow including stakeholders into the analysis. For instance,

using their approach, we can not reason about the impact of a particular feature selection

on developers versus managers, which is possible using impact models. Our approach also

allows expressing dependencies between different impact models as we discussed in impact

model composition, while expressing dependencies between extra-functional features of dif-

ferent feature models is not possible. In addition, our approach supports expressing relative

46

satisfaction values, which is helpful in earlier stages of software development when the re-

quirements are not well defined. The attribute values of extra-functional values come from

specific domains and can not be relative. Finally, the performance of their approach de-

teriorates exponentially when using more than 25 features. Our approach provides linear

scalability.

Siegmund et al. [111] present SPL Conqueror, an approach to reason about the non-

functional properties in SPLs. They classify non-functional properties into feature-wise

quantifiable, variant-wise quantifiable and qualitative properties. Similar to [24], the non-

functional properties are encoded in an extended feature model. The variant-wise properties

require generating variants, which is costly. They do not discuss assigning properties such as

performance to features instead of variants. SPL Conqueror is useful to present the variabil-

ity of final products, as discussed in their case study section. In our approach, the concerns

that we are developing are not customized and are not final products. Hence, a modeller

can reason about variability during the development process which is not addressed by SPL

Conquerer. In addition, concern dependencies and reasoning about stakeholders are not

possible using this approach.

The MPL approach described in the previously [110] provides textual description of non-

functional impacts. Our impacts are described using goal-models, which are more formal

and provide a concise way to express dependencies among non-functional properties which

makes tool-based evaluation possible.

Moreira et al. [78] proposes an approach for multi-dimensional separation of concerns

at the requirement level. Their proposed model treats both functional and non-functional

concerns uniformly and allows to specify the compositions between concerns. They also

47

support trade-off analysis to resolve conflicts that arise during compositions. Unlike impact

models, their trade-off analysis is done using simple tables and does not allow composing

impacts of different concerns.

Asadi et al. [20] also annotate feature models with non-functional properties and use

Hierarchical Task Network (HTN) [72] to find the optimal feature configuration given stake-

holders’ goals and preferences. HTN is a popular technique to generate plans that lead to

a goal from initial descriptions and goal conditions. Our approach expresses non-functional

(impact models) properties separately from feature models, which allows composition of im-

pact models as previously discussed. However, we can use the techniques provided by Asadi

et al. to derive optimal feature configuration that satisfy given stakeholders’ goals.

Finally, impact modelling is inspired by work of Mussbacher et al. [84], where they

introduced the AoURN-based SPL framework that integrates the concepts of SPL with

the Aspect-oriented User Requirements Notation (AoURN) [83]. Their approach allows

evaluating an SPL while taking into account trade-off analysis for stakeholders and complex

constraints that are not expressed in traditional feature models. Their framework uses

the Goal-Oriented Requirement modelling (GRL) notation for goal modelling. Similar to

other approaches [131, 19, 112], GRL is influenced by the popular framework for conceptual

modelling i* [130]. Impact models of CDD builds on some of the techniques described in [84],

for example, when integrating high-level goals during concern composition.

3.3 Conclusion

Over the years, many units of reuse emerged that allow producing new software by reusing

existing software artifacts. Reuse units such as classes, components, and services provide

ways for reuse through interfaces, libraries, and manual instructions. However, as shown in

48

the comparison table in this chapter, these popular existing reuse units do not support all

key characteristics for reuse. Some reuse units such as classes, aspects and components do

not express variability, do not express non-functional properties and do not support impact

analysis. Similarly, design patterns and services do not support customization and do not

encapsulate crosscutting concerns. CORE concerns build on the strengths of the reuse units

discussed in this chapter to allow modular broad-based model reuse. In addition to comparing

concerns with other reuse units, we study the efforts in the literature to support some of the

reuse characteristics, highlighting the differences between our approach and those efforts. In

the next chapter, we delve into the CORE reuse process in detail.

49

Chapter 4
Concern Reuse Process

Building a concern can be a non-trivial and time consuming task, typically done by or

in consultation with a domain expert. Deep understanding of the nature of the concern is

required to be able to identify its different features (and capture them in a feature model), to

model the common properties and differences of all features of a concern at all relevant levels

of abstraction (by building models that (i) realize the features of the concern using the most

appropriate modelling notations and (ii) are eventually refined into executable specifications),

and to express the impact of the different variants on high-level stakeholder goals and system

qualities (using impact models). However, reusing an existing concern is very easy and

involves a simple three-step reuse process. This chapter introduces this three-step concern

reuse process in the next section, and we illustrate the process through the Authentication

concern, both using requirement and design modelling notations, in Section 4.2. We discuss

delaying decisions and reexposing features in Section 4.3. Section 4.4 concludes this chapter.

4.1 Concern Reuse Process

As we discussed earlier in Chapter 2, a concern has three interfaces that facilitate reuse.

Reusing an existing concern is simple, and essentially involves 3 steps. Each step uses one

of the concern interfaces:

Step 1: The concern user must first select the feature(s) with the best impact on rele-

vant stakeholder goals and system qualities from the variation interface of the

concern based on provided impact analysis. To maximize the reusability of the

50

concern that is being built, the user should select from the concern that is being

reused only the features that are absolutely necessary to achieve the required

functionality and goals. Decisions about potential use of alternative features or

optional features should be deferred by reexposing them (see Section 4.3). Based

on this configuration, the modelling tool then merges the models that realize the

selected features to yield new, user-tailored models of the concern corresponding

to the desired configuration. Depending on the root phase of the concern, the

merging may involve requirement models and/or design models.

Step 2: The concern user has to adapt the generated user-tailored models of the con-

cern to the application context by mapping customization interface elements to

application-specific model elements. Again, depending on the root phase of the

concern, this step might require customizing requirement models and/or design

models.

Step 3: The concern user can use the functionality provided by the selected concern

features which are exposed in the usage interface of the user-tailored, customized

models within his own application models. In requirements models, this may

mean including workflow segments exposed in the concern’s usage interface in

the application’s workflow models. In design models expressed using sequence

diagrams, for instance, using a concern may involve instantiating a class exposed

in the concern’s usage interface and/or calling one of its public operations.

Typically, a domain-specific or solution-specific concern reuses other general-purpose con-

cerns. Hence, concern hierarchies allow the developer to modularize the application into

51

different layers of abstraction. However, these layers again have to be flexible. To success-

fully reduce complexity, layers should allow for separate reasoning, for hiding the complexity

of lower levels from upper levels. On the other hand, the layers cannot be completely opaque,

since the structure and behaviour of most lower-level concerns crosscuts the structure and

behaviour of the upper levels (and the application). At the very least, the quality of the

upper level depends heavily on the qualities of the lower levels.

4.2 Example: Authentication

In this section, we show in practice the concern reuse process through reusing an example

Authentication in a Bank application. Authentication is a security concern that requires the

user to be authenticated before performing a system functionality. It provides different means

to authenticate, e.g., through passwords, retinal scans, or facial recognition. Although the

focus of this thesis is on the design phase, to illustrate the CORE reuse process at more than

one development level, we model the Authentication concern both at requirement and design

levels. For the requirement level, we use the Aspect-oriented User Requirements Notation

(AoURN) [83], and for the design level, we use Reusable Aspect Models (RAM) [66, 62].

However, the focus of this chapter as well as this thesis in general, is not on how to apply any

of these individual modelling notations, describing in detail how to model a system with such

a modelling notation. For that, the interested reader may consult existing documentation

about feature models [58], AoURN models [82], and RAM models [61]. The focus is rather

on how to reuse existing concerns that encapsulate such models to build an application.

4.2.1 Variation Interface of Authentication

As described earlier, the variation interface of a concern consists of feature and impact

models. Kang et al. [58] introduced feature models to capture the problem space of a Software

52

Authentication

AccessBlocking AutoLogoffAuthenticationMeans

Password Biometrics

PasswordExpiry FacialRecognition FingerprintRetinalScan

Optional

Mandatory

OR

XOR

Figure 4–1: Feature Model for Authentication

Product Line (SPL). A feature model captures the potential features of members of an SPL

in a tree structure, containing those features that are common to all members and those

that vary from one member to the next. A particular member is defined by selecting the

desired features from the feature model, resulting in a feature model configuration [35]. A

node in a feature model represents a feature of the SPL (e.g., AccessBlocking in Fig. 4–1).

A set of inter-feature relationships allow to specify (i) mandatory and optional parent-child

feature relationships as well as (ii) alternative (XOR) and or (IOR) feature groups (see legend

in Fig. 4–1). A mandatory parent-child relationship specifies that the child is included in a

feature model configuration if the parent is included. In an optional parent-child relationship,

the child does not have to be included if the parent is included. Exactly one feature must

be selected in an alternative (XOR) feature group if its parent feature is selected, while

at least one feature must be selected in an or (IOR) feature group if its parent feature is

selected. Often, includes and excludes integrity constraints are also specified, which cannot

be captured with the tree structure of the feature model alone. An includes constraint

ensures that one feature is included if another one is. An excludes constraint, on the other

hand, specifies that one feature must not be selected if another one is. Note that integrity

53

constraints are not required to express the variation interface of the example Authentication

concern.

Fig. 4–1 shows the feature model that captures all the distinctive, user-visible charac-

teristics of the Authentication concern. The root feature Authentication has one mandatory

feature (AuthenticationMeans) and two optional features (AccessBlocking and AutoLogoff).

AccessBlocking enforces that the user has only a limited number of attempts to authenticate,

and the system blocks the user when she exceeds the limit. AutoLogoff ensures that the user

is logged off if she remains idle for longer than a certain specified time. The user must

select one of the AuthenticationMeans. There is an XOR relationship between the children

of AuthenticationMeans, which ensures that only one of its children can be selected (either

Password or Biometrics). Password has an optional child, PasswordExpiry, which forces the

user to renew her password when it expires after a certain time. Biometrics has three subfea-

tures with an IOR relation between them (RetinalScan, Fingerprint, and FacialRecognition).

This means the user can select any number of these features simultaneously.

In addition to the feature model, our example Authentication concern provides an im-

pact model for three system qualities that helps the user perform trade-off analysis when

selecting the features. We choose goal models for impact analysis because goal models al-

low vague, hard-to-measure system qualities to be evaluated, such as user convenience or

security, in addition to more quantifiable qualities such as cost, performance, or memory

usage. Goal modelling is typically applied in early requirements engineering activities to

capture stakeholder and business objectives, alternative ways of satisfying these objectives,

and the positive/negative impacts of these alternatives on various high-level goals and qual-

ity aspects. The analysis of goal models guides the decision-making process, which seeks to

54

MustRememberCredentials

AccessBlockingAutoLogoff

-10

90

-2 -1

IncreaseUserConvenience

10

100

Password PasswordExpiry FacialRecognition FingerprintRetinalScan

-1 -50 -10-2

DecreaseCost

-80

Authentication 100

IncreaseSecurity

100
30

20315
3

Figure 4–2: Impact Model for Authentication, with Impacts DecreaseCost, IncreaseUser-
Convenience, and IncreaseSecurity

find the best suited alternative for a particular situation. These principles also apply in our

context, where an impact model is a type of goal model that describes the advantages and

disadvantages of features offered by a concern and gives an indication of the impact of a

selection of features on high-level goals that are important to the user of the concern.

In the context of CORE, the goal model for the variation interface is called impact model,

not only because the main focus is on capturing the impact of features on qualities, but also

as a reminder that goal models in CORE are different from traditional goal models, i.e., their

use is more restricted and specialized. Impact models use features () in place of tasks (e.g.,

Password in Fig. 4–2), and they exclusively use quantitative contributions () to express

the impact on goals () of importance for the concern (e.g., DecreaseCost in Fig. 4–2). Fig.

4–2 shows the impact model of the Authentication concern with the goals IncreaseSecurity,

DecreaseCost, and IncreaseUserConvenience. Features are linked to the goals that they

impact, annotated with a contribution weight (i.e., value on a link) that ranges between -100

and 100. When a goal model is evaluated, values called initial satisfaction values are assigned

55

to nodes in the goal model, and then propagated throughout the goal model taking its links

into account until the satisfaction values of all nodes in the goal model have been determined.

Therefore given a selection of features (called a configuration), an impact model can be

evaluated to determine how well each goal is satisfied by the configuration. The satisfaction

value of a feature is either 0 when it is not selected or 100 when it is selected. The satisfaction

and contribution values are propagated upwards using a weighted sum divided by 100 and

restricted to be between 0 and 100 (as described in the goal modelling literature [18, 56]).

As a result, the satisfaction value of a goal always ranges between 0 and 100.

For example, Fig. 4–2 shows that the most secure configuration is the one where Reti-

nalScan is chosen, as it yields a satisfaction value for IncreaseSecurity of 100. Choosing

Password, PasswordExpiry, AccessBlocking and AutoLogoff would result in [(100 ∗ 1) +

(100 ∗ 3) + (100 ∗ 5) + (100 ∗ 3) + (0 ∗ 20) + (0 ∗ 100) + (0 ∗ 30)]/100 = 12, which is

less than, for instance, choosing only FacialRecognition. Fig. 4–2 also shows the impact

on the IncreaseUserConvenience goal. In this case, all features decrease the contribu-

tion of the root feature Authentication. Two features, namely Password and Password-

Expiry, require remembering credentials, hence, they contribute to a subgoal called Mus-

tRememberCredentials which contributes -10 to IncreaseUserConvenience. For example, if

Password is selected, the satisfaction value of MustRememberCredentials subgoal will be

[(100∗10)+(0∗90)]/100 = 10. However, the contribution of the root feature Authentication

must be considered when calculating the satisfaction value of IncreaseUserConvenience, re-

sulting in [(10 ∗ −10) + (0 ∗ −1) + (0 ∗ −2) + (100 ∗ 100)]/100 = 99. If both Password and

PasswordExpiry features are selected, then the satisfaction value of IncreaseUserConvenience

will be [(([(100 ∗ 10) + (100 ∗ 90)]/100) ∗ −10) + (0 ∗ −1) + (0 ∗ −2) + (100 ∗ 100)]/100 = 90.

56

4.2.2 Requirement modelling of Authentication

AoURN is an aspect-oriented extension of the User Requirements Notation (URN), a

requirement modelling notation standardized by the International Telecommunication Union

(ITU) [56]. We use AoURN to model the Authentication workflow, i.e., the flow of use

cases and the system-user interactions, with the help of the Aspect-oriented Use Case Map

(AoUCM) notation (a subnotation of AoURN).

Fig. 4–3 shows the basic AoUCM model (also called workflow model) for Authentication,

which realizes the root feature in the feature model in Fig. 4–1. A feature can be realized

by more than one model or no model at all according to the CORE metamodel in Chapter

6. The AoUCM model also shows the interactions of the root feature with other features of

Authentication, i.e., AccessBlocking, AutoLogoff, PasswordExpiry, and AuthenticationMeans.

A feature is shown as a static stub (), which serves as a container for one other AoUCM

model that specifies the details of the feature, hence realizing the corresponding feature

from the feature model in Fig. 4–1. The dashed outline of the stub for AuthenticationMeans

indicates that this is a dynamic stub and contains several features, i.e., it contains several

detailed AoUCM models for subfeatures of AuthenticationMeans. If a feature is not selected,

the workflow continues through a stub without visiting its lower-level AoUCM models.

The Authentication workflow starts at the authenticate start point () and ends at the

pointcut stub (PP), if successful, or otherwise at the fail end point (), i.e., only if the pointcut

stub is reached is the application reusing the Authentication concern allowed to continue.

The start point is followed by a responsibility () to check whether the |User is already

authenticated. A responsibility identifies a step in the workflow. The workflow then continues

to the stubs for the AccessBlocking and AutoLogoff features, which both can either succeed

57

Figure 4–3: AoUCM Model for Authentication

or fail. In the latter case, the workflow ends at the fail end point (). If successful, the

workflow continues on to an OR-fork () with two branches corresponding to the possible

results of the earlier checkAuthentication responsibility: one where the |User is already

authenticated and one where the |User is not. In the already authenticated case, the workflow

successfully ends at the pointcut stub. In the else case, the workflow exits the Security Server

subcomponent of the |System component and enters the |User component (). In the |User

component, subfeatures of AuthenticationMeans (i.e., Password, RetinalScan, Fingerprint, or

FacialRecognition) are used to enter the user’s credentials. Afterwards, the PasswordExpiry

feature is executed if selected, which again may fail or succeed. In the success case, the

credentials are authenticated and, if that is also successful, the workflow ends at the pointcut

stub. If authentication fails, then the AccessBlocking feature keeps track of how many invalid

authentication attempts the |User has made and blocks the |User if there were too many or

otherwise allows the |User to reenter the credentials.

The requiresAuthentication pointcut stub (PP) is a special type of stub that represents

the locations where the Authentication workflow is to be applied in the application reusing

the Authentication concern. To reuse the workflow, the reusing application has to specify

a pattern identifying those locations. The pattern is then matched against the workflow

58

Figure 4–4: Predefined AoUCM Pattern for Authentication

model of the application, yielding the actual locations where the Authentication workflow is

to be inserted. Because the Authentication workflow occurs before the pointcut stub in the

AoUCM model, the Authentication workflow is inserted before the identified locations.

The Authentication workflow comes with a predefined pattern shown in Fig. 4–4 that

states that the Authentication workflow is needed whenever an interaction between the |User

and the |System causes a |protectedAction of a |ProtectedResource of the |System to be

performed. The model elements preceded with a vertical bar | have to be customized by

the reusing application and hence constitute the customization interface for the AoUCM

Authentication model. The usage interface, on the other hand, is defined by the authenticate

start point and all the start points of lower-level AoUCM models for the various features

depicted by stubs.

As mentioned earlier, each feature in the feature model is represented by a stub in the

Authentication AoUCM model, and each stub is a container for a lower-level AoUCM model.

As examples, Fig. 4–5 shows the AoUCM model for Password, which simply consists of only

one responsibility to enter credentials. The PasswordExpiry AoUCM model in Fig. 4–6, on

the other hand, checks whether the password is expired and also allows checking the new

credentials entered by the |User.

59

Figure 4–5: AoUCM Model for Password

Figure 4–6: AoUCM Model for PasswordExpiry

4.2.3 Design modelling of Authentication

We model Authentication at the design level using Reusable Aspect Models (RAM).

Reusable Aspect Models (RAM) [62] is an aspect-oriented multi-view modelling approach

for software design modelling. A RAM model consists of a UML package specifying the

structure and the behaviour of a software design using class, sequence, and state diagrams.

In this thesis, we only focus on class and sequence diagrams.

The Authentication Feature

Each feature in the feature model in Fig. 4–1 is realized by a RAM model. Fig. 4–7 shows

the RAM model that realizes the root feature Authentication. The model consists of three

compartments that show the structural view, reuses, and message views. The structural

view is the design class diagram for Authentication. The class Session represents the session

that is authenticated, and has an association to the |Authenticatable class, which is a partial

60

aspect Authentication realizes Authentication
structural view

+ * |protectedMethod(..)

+| ProtectedResource

+ boolean authenticate(| Authenticatable a, | Credential c)
- | Credential getCredentials(| Authenticatable key)
+ void addAuthenticatable(| Authenticatable key, | Credential value)

+AuthenticationManager

+| Authenticatable
~ Session getCurrentSession()
~ void setCurrentAuthenticated(| Authenticatable a)
+ | Authenticatable getCurrentAuthenticated()

+Session

0..1
currentAuthenticated

 ~ boolean | check(| Credential other)

+| Credential

+ create()

+AuthenticationException

| Data → | AuthenticationManager; | Key → | Authenticatable;
| Value → |Credential; | get → getCredentials; | add → addAuthenticatable;
| Singleton → Session; getInstance → getCurrentSession;

Reuses:
Association<KeyIndexed>:

Singleton<Singleton>:
message view | ProtectedResource.| protectedMethod() affectedBy enforceAuthentication()
message view enforceAuthentication()

opt [currentAuthenticated == null]

caller:
Caller

target:
|Protected
Resource

| protectedMethod(..)

Pointcut

*

Advice
<<metaclass>>

Session
currentSession

 := getCurrentSession()

caller:
Caller

target:
| ProtectedResource

| protectedMethod(..)

currentAuthenticated:=
getCurrentAuthenticated()

*

currentSession:
Session

exception:
AuthenticationException

exception:= create()

message view AuthenticationManager.authenticate(| Authenticatable a, | Credential c)
<<metaclass>>:

Session

currentSession :=
getCurrentSession()

credentials := getCredentials(a)

credentials:
|Credential

validCredentials := check(c)

opt [validCredentials]

target:
AuthenticationManager

authenticate(| Authenticatable a,
| Credential c))

currentSession:
Session

setCurrentAuthenticated(a)

validCredentials

| Authenticatable
| Credential< | check>

| ProtectedResource< | protectedMethod>

Figure 4–7: Authentication RAM Model

61

class. Partial classes and methods in RAM are preceded with a vertical | and designate

the customization interface of the RAM model. Upon reuse, all partial classes/operations

need to be completed by mapping them to application-specific classes/operations. Note that

classes and operations that precede with a + modifier are designated to have public visibility,

whereas the ones that precede with ~ or - are respectively designated to have concern or

private visibility. A model element with concern visibility is only visible within the concern,

i.e., only other models within the concern can access them. During the reuse process in

RAM [16, 14], the class |Authenticatable is mapped to a concrete class representing the

entity in the system that needs to be authenticated. There are two other partial classes,

|Credential and |ProtectedResource, which along with their partial methods comprise the

customization interface of the Authentication RAM model and are presented in a dotted

box at the top right of the model. The class |Credential represents the credential that needs

to be checked (through the |check method) and the class |ProtectedMethod contains the

method that requires authentication when it is called.

The reuse compartment in Fig. 4–1 shows that the Authentication aspect reuses two

concerns. The first reuse is the Association concern, which allows instances of |Data to be

associated with instances of |Associated. The reuse selects the feature KeyIndexed, which

provide |Data with the functionality of looking up instances of |Associated using a key.

The customization mappings, shown in the right of the reuse compartment, specify that

the partial class |Data of the KeyIndexed model is mapped to AuthenticationManager, |Key

is mapped to |Authenticatable, and |Value is mapped to |Credential. The second reuse in

the reuse compartment is the Singleton concern, which implements the Singleton design

pattern. The customization maps the class |Singleton to Session to ensure that there is only

62

one instance of Session when the system is running. For both reuses, the operations are

mapped similarly to classes.

In the message view compartment we only show two message views for space reasons.

The first is an aspect message view for |protectedMethod called enforceAuthentication. As-

pect message views consist of two parts: pointcut and advice, and message views can specify

by which aspect message views they are affected (e.g., |protectedMethod is affected by en-

forceAuthentication as shown in Fig. 4–7). The pointcut part shows the intercepted message

in the message view where the advice part will be inserted. In the example here, the in-

tercepted message is the call to |protectedMethod() (in the pointcut part), and the advice

is inserted before the rest of the |protectedMethod body (represented by a box with a star).

The advice of enforceAuthentication gets the currentAuthenticated from the Session, and, if

it does not exist, throws an AuthenticationException. The second message view authenticate

takes two parameters (|Credential c and |Authenticatable a). It checks whether its passed

|Credential c is valid by first calling getCredentials on |Authenticatable a to find the stored

credentials for a, and then comparing the returned credentials with c by calling check.

The Password Feature

Fig. 4–8 shows the RAM model that realizes the Password feature. This RAM model

extends the Authentication RAM model. In RAM, when a model extends another model, all

model elements of the extended model become visible in the extending model [15], allowing

Password to access classes or operations from the Authentication aspect. We discuss model

extension in detail in Chapter 8. The structural view of Password adds the class Password

and the implementation class String. Implementation classes are preceded with a stereotype

<‌<impl>‌> and refer to classes that belong to the target implementation language (in this

63

aspect Password extends Authentication realizes Password
structural view

+ void changePassword(| Authenticatable a, String newPassword)

+ AuthenticationManager
+ boolean equals(String o)

<<impl>>
+ String

+ create(String password)
~ String getContent()
~ void setContent(String password)
~ boolean check(Password other)

+ Password 1

content

message view Password.check(Password other)

other: Password
otherContent := getContent()

target: Password
check(Password other)

ok

| Credential → Password; | check → check
Extensions:
Authentication:

content: String

ok := equals(otherContent)

Figure 4–8: Password RAM Model

case Java). The class Password has an association to a String instance called content to

store the content of the password. Furthermore, a new operation changePassword is defined

for the AuthenticationManager class. Finally, we show one message view check of Password,

which takes as input another password and checks if both passwords have the same content.

In the extensions compartment, we can see that |Credential from Authentication is

mapped to the class Password, and the operation |check is mapped to a concrete opera-

tion check in Password. Because the Password model extends Authentication, when the two

aspects are woven together, both classes of AccountManager (in Password and Authentica-

tion aspects) are going to be merged together, resulting in one class that contains all the

methods.

The PasswordExpiry Feature

The model of Password is further extended in PasswordExpiry in Fig. 4–9 to allow the

password to expire after a certain time set by the user. The idea is to force the user to

periodically update the password to make it more secure. To do that, the setPassword

64

aspect PasswordExpiry extends Password realizes PasswordExpiry
structural view

- long passwordExpiryDuration

+ AuthenticationManager
+ long getTime()

<<impl>>
+ Date

~ Date getLastChanged()

+ Password 1
lastChanged

+ create()

+ PasswordExpiredException

+ create()

+ AuthenticationException

message view Password.setPassword() affectedBy updateLastChanged()
message view updateLastChanged()

caller:
Caller

target:
Password

setPassword
(String password)

Pointcut

*

Advice
caller:
Caller

target:
Password

* lastChanged:
Date

lastChanged := create()

setPassword
(String password)

message view enforcePasswordRenewal()

opt [validCredentials]

caller:
Caller

target:
Authentication

Manager
authenticate

(Authenticatable a,
 |Credential c)

Pointcut

*

Advice
caller:
Caller

*

c:
| Credential

lastChanged :=
getLastChanged()

authenticate
(Authenticatable a,

 |Credential c)
lastChanged:

Date

lastChangedTime := getTime()

currentDate:
Date

currentDate := Date()

 opt [currentTime-lastChangedTime >= passwordExpiryDuration]

target:
AuthenticationManager

exception:
PasswordExpiry

Exception

exception := create()

message view AuthenticationManager.authenticate() affectedBy enforcePasswordRenewal()

Figure 4–9: PasswordExpiry RAM Model

65

aspect Bank
structural view

+ create()

+ InsufficientFundsException

+ void withdraw(int amount)
+ void deposit(int amount)

- int balance
+ Account

+ User 1..*
myAccount

message view transfer(Account src, Account dest, int amount)
src:

Account

withdraw(amount)

dest:
Account

deposit(amount)

target: AccountManager
transfer(Account src, Account dest,

int amount)

|User → User; |Action → Account; |execute → withdraw; |execute → deposit;
IResource → Account

Reuses:
Authorization<Authorization>:

+ void transfer(Account src, Account dest, int amount)

+ AccountManager

Figure 4–10: RAM Design Model for a Simple Bank Application

method is advised by the updateLastChanged aspect message view to remember the last

time the password was changed. The second aspect message view makes sure that the

password is changed periodically. To do so, the advice of enforcePasswordRenewal adds

after the original message of authenticate an optional combined fragment where it checks if

the currentT ime− lastChangedT ime ≥ passwordExpiryDuration.

4.2.4 Reusing the Authentication Concern

Suppose that we have a simple Bank application as illustrated in Fig. 4–10. In our

example, User has an association with Account, which has two operations withdraw and

deposit. The class AccountManager defines an operation transfer to transfer money from one

account to another. The behaviour of transfer is shown in the message view compartment,

which withdraws a given amount from the source account and deposits it into the destination

66

account. To ensure that only authenticated users can execute a transfer, we are going to

reuse the Authentication concern in the Bank application.

Step 1: Selecting the Desired Features using the Variation Interface

To select the features of Authentication that best fulfill the quality requirements and

goals of the bank, the designer of the bank uses the variation interface of the Authentication

concern to perform a trade-off analysis. As shown in the reuse compartment of Fig. 4–10,

the designer chose to select Authentication (which is always selected as it is the root feature),

AuthenticationMeans (which is always selected as it is a mandatory subfeature of the root),

the Password and PasswordExpiry features. Using the impact model of Authentication

shown in Fig. 4–2 the tool determines that this feature selection is relatively cheap (the

DecreaseCost goal is evaluated to [(100 ∗ 100) + (100 ∗ −1) + (100 ∗ −2) + (0 ∗ −50) + (0 ∗

−80) + (0 ∗ −10)]/100 = 97), but decreases the user convenience [(([(100 ∗ 10) + (100 ∗

90)]/100) ∗ −10) + (0 ∗ −1) + (0 ∗ −2) + (100 ∗ 100)]/100 = 90 as shown previously in

Section 4.2.1. PasswordExpiry is chosen although it decreases user convenience, because

it is a cheap feature that increases security albeit slightly (IncreaseSecurity is evaluated to

[(0 ∗ 3) + (0 ∗ 5) + (100 ∗ 1) + (100 ∗ 3) + (0 ∗ 20) + (0 ∗ 100) + (0 ∗ 30)]/100 = 4).

Design Models. As explained before, after the user selects the desired features of the

concern she is reusing, the modelling tool composes the realization models of the selected

features to yield a realization of the concern that only contains the features that the user

intends to use. In our bank example, the RAM weaver composes the realization models

corresponding to the selected features (Authentication shown in Fig. 4–7, Password shown

in Fig. 4–8, and PasswordExpiry shown in Fig. 4–9) to create the Authentication concern

67

Woven_Authentication<Password,PasswordExpiry>
structural view

+ * | protectedMethod(..)

~ | Protected
Resource

+ boolean authenticate(| Authenticatable a, Password c)
- Password getCredentials(| Authenticatable key)
+ void addAuthenticatable(| Authenticatable, Password value)
+ void changePassword(| Authenticatable a, String
newPassword)

- long passwordExpiryDuration
~ AuthenticationManager

~ | Authenticatable

~ Session getCurrentSession()
~ void setCurrentAuthenticated(| Authenticatable a)
+ | Authenticatable getCurrentAuthenticated()

~ Session

0..1 currentAuthenticated

+ create()

~ AuthenticationException

message view AuthenticationManager.authenticate

<<metaclass>>:
Session

credentials := getCredentials(a)

validCredentials := check(c)

opt [validCredentials]

authenticate(|Authenticatable a, Password c)) currentSession:
SessioncurrentSession:= getSession()

validCredentials

+ long getTime()

<<impl>>
~ Date

+ create(String password)
~ Date getLastChanged()
~ String getContent()
~ void setContent(String password)
~ boolean check(Password other)

~ Password

+ create()

~ PasswordExpiredException

1
lastChanged

+ Password put(| Authenticatable arg0,
 Password arg1)
+ Password remove(| Authenticatable arg0)
+ Password get(| Authenticatable arg0)

~ HashMap

+ boolean equals(String o)

<<impl>>
~ String 1

content

setCurrentAuthenticated(a)

opt [validCredentials]
lastChanged := getLastChanged()

lastChanged:
Date

lastChangedTime := getTime()

currentDate: Date
currentDate := Date()

opt [currentTime-lastChangedTime >= passwordExpiryDuration]
exception:

PasswordExpiryException
exception := create()

target:
AuthenticationManager

credentials:
Password

| Authenticatable
| ProtectedResource
| protectedMethod

currentTime := getTime()

Figure 4–11: Woven Model of Features PasswordExpiry, Password, and Authentication

68

realization model tailored to this specific selection as shown in Fig. 4–11. The model compo-

sition uses the RAM weaver, which performs structural and behavioural weaving recursively

by traversing the instantiation directives as illustrated in [62, 64]. The structural weaving is

done by performing class merge between the classes of the same name or between the classes

that have mappings in the instantiation directives (e.g., between |Credential and Password

in Fig. 4–8). The combined and merged classes for all three aspects (Authentication, Pass-

word, and PasswordExpiry) are shown in the structural view of Fig. 4–11. For behavioural

weaving, RAM uses the algorithm specified in [64]. Recall that the message view authenti-

cate in the Authentication aspect is advised in PasswordExpiry by an aspect message view

which defines behaviour that is added after the body of the authenticate method (see Fig.

4–7 and Fig. 4–9). The RAM weaver inserts the advice part of PasswordExpiry after the

message body of authenticate and produces a final woven message view for authenticate as

in Fig. 4–11.

Requirements Models. Similarly, the AoUCM model (see Fig. 4–3) tailored to the

needs of the Bank application also only contains the selected features, i.e., the AccessBlocking

and AutoLogoff stubs are now empty and therefore skipped, while the AuthenticationMeans

stub only contains the Password model. Last but not least, the PasswordExpiry stub still

contains the PasswordExpiry model.

Step 2: Adapting the Reused Concern to the Bank using the Customization
Interface

The customization interface of the generated, user-tailored Authentication concern real-

ization consists of the three partial components |User, |System, and |ProtectedResource and

the partial responsibility |protectedAction in the AoUCM model as well as the two partial

classes |Authenticatable and

69

|ProtectedResource and the partial operation |protectedMethod in the RAM model that need

to be mapped to model elements in the Bank application.

Requirements Models. When the Authentication concern is reused by the Bank ap-

plication, the application developer has to finalize the AoUCM pattern shown in Fig. 4–4

by specifying the concrete model elements of the application that correspond to the model ele-

ments in the customization interface: |User = Customer, |System = Bank, |ProtectedResource

= Account or AccountManager, and |protectedAction = deposit or withdraw or transfer.

Therefore, the customized, user-tailored AoUCM model for the Authentication concern is

created in this case simply by replacing – according to the reuse directives – |User with

Customer and |System with Bank in Fig. 4–3.

Design Models. According to the reuse directives in Fig. 4–10, the Bank application

customizesAuthentication by mapping |Authenticatable to the classUser and |ProtectedResource

to the AccountManager as well as the Account class. The |protectedMethod operation is

mapped to transfer, withdraw, and deposit, since the bank wants to ensure that only au-

thorized users can perform transactions on accounts. The customization step results in a

new model, where all the specified mappings have been applied to the corresponding model

elements. Therefore, the customized, user-tailored design model for Authentication concern

is the same as the tailored model of Authentication shown in Fig. 4–11, with the partial

elements replaced by those specified in the reuse directives defined in this paragraph.

70

Figure 4–12: Woven AoUCM Model for a Simple Bank Application

Step 3: Using the Reused Concern in the Bank through the Usage Interface

The usage interface consists of all the start points in the customized, user-tailored

AoUCM model of the Authentication concern as well as all the public classes and opera-

tions defined in the customized, user-tailored Authentication design model, which can now

be used from within the Bank application.

As a result of reusing the Authentication concern, the AUTH aspect markers () are

added automatically by the AoUCM composition mechanism before the matched pattern in

the final Bank application example in Fig. 4–12, i.e., when an aspect marker is reached, the

Bank application workflow continues with the Authentication workflow and only returns to

the Bank application workflow if the pointcut stub is reached.

The final design model that combines the design model of the Bank application and the

design model of the customized, user-tailored Authentication concern is shown in Fig. 4–13.

The aspect message view |protectedMethod is woven with transfer as shown in the message

view compartment where the body of |protectedMethod is inserted before the message view

71

of transfer. The withdraw and deposit message views are also woven similarly (not shown

here). Note that the visibility of elements of the reused concern (Authentication) are changed

from public to concern (preceded with ~ in Fig. 4–13), to apply the information hiding

principles [92] by concealing internal design details, in this case the elements of the reused

concern in the woven model, from the rest of the application.

4.3 Delaying of Decisions

The previous section presented models of the Authentication concern at both require-

ment and design levels. As explained in Chapter 2, a concern encapsulates sets of models

that describe relevant properties at all levels of abstraction required to sufficiently under-

stand the concern. Typically, a requirement concern, e.g., security, needs to comprise not

only models that specify different ways of achieving security (authentication, role-based ac-

cess control, encryption, etc.), but also different ways of realizing them (password-based

authentication vs. biometrics, etc.). Even for a given realization, there are different possible

implementation architectures (centralized password server vs. local, distributed databases,

etc.). It comes with no surprise that low-level design solutions, such as various design pat-

terns, transaction controls, or resource allocation are quite general solutions that can be

reused in many contexts. Complex applications consist of many intertwined, interacting

concerns, and concern-orientation advocates developing an application by reusing as many

already existing concerns as possible. The same principle applies to the development of a

concern itself.

4.3.1 Concern Hierarchies

To fully reap the benefits of reuse, it is therefore important to allow the creation of concern

hierarchies. To increase scalability and avoid duplication of effort, a high-level concern (or to

72

Woven_Bank
structural view

~ boolean authenticate(|Authenticatable a, |Credential c)
- |Credential getCredentials(|Authenticatable key)
~ void addAuthenticatable(|Authenticatable key, |
Credential value)

- long passwordExpiryDuration
~ AuthenticationManager

~ User
~ Session getCurrentSession()
~ void setCurrentAuthenticated(|Authenticatable a)
~ |Authenticatable getCurrentAuthenticatable()

~ Session

0..1
user

~ create()

~ AuthenticationException

message view AccountManager.transfer(Account src, Account dest, in amount)

~ long getTime()

<<impl>>
~ Date~ Date getLastChanged()

~ void setPassword(String password)
~ boolean check(Password other)

~ Password

~ create()

~ PasswordExpiredException

1
lastChanged

~ Password put(|Authenticatable
arg0, Password arg1)
~ Password remove(Object arg0)
~ Password get(Object arg0)

- long passwordExpiryDuration
~ HashMap

~ boolean equals(Object
arg0)

<<impl>>
~ String

1
password

~ void transfer(Account src, Account dest,
int amount)

~ AccountManager

opt [currentAuthenticated == null]

<<metaclass>>
Session

currentSession
 := getCurrentSession()

caller:
Caller

target:
AccountManager

transfer(Account src,
Account dest, in amount)

currentAuthenticated:=
getCurrentAuthenticated

currentSession:
Session

exception:
AuthenticationException

exception:= create()

src:
Account

withdraw(amount)

dest:
Account

deposit(amount)

~ void withdraw(int amount)
~ void deposit(int amount)

- int balance
+ Account1..*

myAccount

Figure 4–13: Woven RAM Model for a Simple Bank Application

73

be more precise, a feature of a high-level concern) should be able to reuse the functionality

(structure / behaviour / properties) of a lower-level concern when appropriate. Doing so

creates a concern hierarchy where a concern at a higher level of abstraction reuses other

lower-level concerns. Similarly, a more domain-specific or solution-specific concern can reuse

other more general concerns.

Concern hierarchies allow the developer to modularize the application into different layers

of abstraction. But these layers again have to be flexible. In order to successfully reduce

complexity, the layers should allow for separate reasoning, and hide the complexity of the

lower levels from the upper levels. On the other hand, the layers must be composable,

since the structure and behaviour of most lower-level concerns crosscuts the structure and

behaviour of the upper levels (and the application). At the very least, the qualities of the

upper level are heavily influenced by the qualities of the reused concerns at the lower levels.

Concern-orientation addresses this problem by allowing the concern designer to precisely

specify how the variation, customization, and usage interface of the concern being built are

affected by the interfaces of the lower-level concerns that are reused.

4.3.2 Reexposing Features

When building a reusable concern A, the concern designer of A who is designing a feature

FA might decide to reuse another, lower-level reusable concern B. In this situation, the

concern designer should select from B only the features that are absolutely necessary to

achieve the required functionality and goals that FA needs. If there are several features

within B that can provide the required functionality but with different impacts, the concern-

orientation paradigm advocates to defer such decisions by reexposing those features in the

74

Association

Ordered Unordered KeyIndexed

ArrayList LinkedList TreeSet HashSet TreeMap HashMap

Database

Optional

Mandatory

OR

XOR

Figure 4–14: Feature Model for the Association Concern

variation interface of A. As a result, they become subfeatures of FA in the feature model of

A, where they encode different variations of achieving the functionality of FA.

For example, we demonstrated in the previous section how the Bank application reuses

Authentication using both AoURN and RAM models. The RAM models of Authentication

reuse other low-level concerns such as Singleton and Association. The design of the Bank

application, hence, creates a three-level hierarchy of concern reuse. In the design of Au-

thentication (see Fig. 4–7), the AuthenticationManager needs to lookup the |Credential of a

given |Authenticatable, which can be achieved by reusing the Association concern. Fig. 4–14

shows the feature model of the Association concern. The features KeyIndexed (with sub-

features TreeMap and HashMap) as well as Database provide the needed key-based lookup

functionality. At this point, though, Authentication does not know which of these features

would be most appropriate. This is only known by the user of Authentication, which in our

case is the Bank application. Only the bank knows that the mapping from |Authenticatable

to |Credential should be persisted by using the Database feature, for example, even if this

solution is slower and costs more. In other reuse contexts, using a Database might have been

prohibitively slow.

75

Authentication

AccessBlocking AutoLogoffAuthenticationMeans

Password Biometrics

PasswordExpiry FacialRecognition FingerprintRetinalScan

Optional

Mandatory

OR

XOR

Association

DatabaseKeyIndexed

TreeMap HashMap

Figure 4–15: Authentication Concern with the Features KeyIndexed and Database Reexposed
from the Reused Association Concern (dashed boxes show the reexposed features)

Database

-100

Decrease
Cost

Association

100

Figure 4–16: Impact Model for DecreaseCost for the Association Concern

Therefore, instead of directly reusing an arbitrary feature that provides key-based lookup,

the designer of Authentication opts for reexposing the parent feature of HashMap and

TreeMap (KeyIndexed) along with Database in the variation interface of the Authentica-

tion concern. This allows the designer to defer feature selection to a later point when more

requirements and desired qualities have been determined.

Fig. 4–15 shows how the Authentication feature model reuses and reexposes features

from the Association concern. The reused root feature of Association becomes a mandatory

child of Authentication, and only its reexposed subfeatures are added to the Authentication

variation interface, according to feature model composition algorithms for concerns [121].

If features of a reused concern are reexposed in the variation interface of the reusing

concern, the impact model of the reused concern needs to be connected with the impact

76

Password PasswordExpiry FacialRecognition FingerprintRetinalScan

-1

-50

-10

-2

DecreaseCost

-80

100

Association.DecreaseCost 2
Authentication 98

Figure 4–17: Impact Model for DecreaseCost with Cost High-Level Goal of Association
Being Reexposed

model of the reusing concern. This is necessary because the features of the reused concern

have an impact on the goals and qualities of the reusing concern, and hence their impacts

need to be considered in the trade-off analysis.

Fig. 4–16 shows the impact model for DecreaseCost in the Association concern. All

features of Association contribute 100 to DecreaseCost (shown by a contribution link with

weight 100 from the parent feature Association to the goal), except Database which con-

tributes -100. When Database is selected, the satisfaction value of DecreaseCost becomes

[(100 ∗ 100) + (100 ∗ −100)]/100 = 0, i.e., the worst choice from a cost point of view.

When Association is reused in Authentication, the impact model for DecreaseCost of

Association contributes to the impact model for DecreaseCost of Authentication as shown

in Fig. 4–17. Since the reuse is done by the Authentication root feature, the model element

representing the Authentication feature in the impact model lists all the impacts of its reused

concerns that contribute to DecreaseCost. In our example, the cost coming from Associa-

tion.DecreaseCost contributes 2 to the overall cost of the feature, whereas the contribution

of the feature itself is 98.

To evaluate the impact model, the contributions of the reused goals are combined with

the contribution of the feature itself. In our example, if the concern user of Authentication

77

selects FacialRecognition and the reexposed Database feature, the satisfaction value for the

Authentication feature will be [(0 ∗ 2) + (100 ∗ 98)]/100 = 98, which is then combined with

the contributions of all other features of the Authentication concern to yield [(0 ∗ −1) + (0 ∗

−2) + (100 ∗ −50) + (0 ∗ −80) + (0 ∗ −10) + (98 ∗ 100)]/100 = 48.

4.4 Conclusion

Creating a new concern can be a nontrivial task that requires considerable domain knowl-

edge and expertise. However, once a concern is created, it becomes easy to reuse it to build

other concerns or applications. This chapter outlined a simple three-step concern reuse pro-

cess through reusing an example Authentication concern in a Bank application. The reuse

process starts with selecting features from the variation interface and performing a trade-off

analysis based on the impacts of the feature selection on the high level system qualities.

A user-tailored version of the concern is then generated, the user adapts this concern to

be application-specific by mapping the partial elements from its customization interface to

concrete elements from the application. Finally, the concern user can use the functionality

provided by the selected concern features which are exposed in the usage interface of the

user-tailored, customized models within her own application models. In the next chapter,

we discuss the composition rules and algorithms that allow the interfaces and the realization

models of the reusing concern and the reused concerns to be composed.

78

Chapter 5
Composition Rules and Algorithms

For the CORE reuse process to work, detailed algorithms are needed to compose concern

interfaces and models. This chapter discusses in detail the CORE composition rules and

algorithms. It starts by listing the requirements for appropriate composition mechanisms

on the three types of interfaces of a Software Concern Line, explaining how a concern can

reuse other concerns. Then, it describes detailed algorithms that specify how the variation

interface that consists of feature models and impact models of the reusing concern and the

variation interface of the reused concern are composed based on the concern reuse speci-

fication. It notably describes how a reusing concern can internally depend on features of

lower-level, reused concerns, or decide to defer decisions and as a result reexpose relevant

lower-level features in its own interface. Furthermore, the chapter shows how goal-based

impacts of lower-level concerns are integrated with high-level impact models to yield a vari-

ation interface that specifies the combined impact of the reused and reusing concerns. The

chapter then presents an algorithm that, based on a selection of features from the variation

interface of a concern, generates the composition of the associated realization models to

yield a user-tailored concern realization, applying dedicated resolution models to deal with

feature interactions, if necessary. Finally, it explains how the customization and usage inter-

faces of the reusing concern are affected by the interfaces of the user-tailored reused concern

realization.

79

5.1 Considerations for Interface Composition.

When designing a concern, the developer decides which variations, customizations, and

functionality to expose in the three interfaces. When a concern reuses another concern,

the interfaces of the reused concern may have an impact on the interfaces of the reusing

concern. Hence, rules need to be defined that describe how interfaces are composed in

concern hierarchies. The following considerations have to be taken into account:

C1 Choosing the best variant of a reused concern is only possible once all desired system

qualities are known. These may not be known at intermediate levels in a concern

hierarchy, but only at the top when the complete application is being built.

C2 A concern encapsulates all possible variants that can be useful in any context. When

reused in a specific context, some of these variants may not be applicable.

C3 The qualities of the reusing concern are affected by the qualities of the reused concerns.

C4 In order to obtain an executable application, all customization elements must be con-

cretized.

C5 In alignment with information hiding principles [92], internal details of reused concerns

that are irrelevant for the developer should be encapsulated and hidden whenever

possible to reduce complexity and minimize unnecessary dependencies.

This chapter’s main contribution is to present composition rules and algorithms that address

these considerations as detailed in the following sections.

5.2 Feature Model Composition

The rest of this chapter uses a crisis management system (CMS) to illustrate concern

hierarchies and explain how variation interfaces are composed. Crisis management involves

80

identifying, assessing, and handling a crisis situation. A CMS facilitates this process by or-

chestrating the communication between all parties involved in handling the crisis. The CMS

allocates and manages resources, and provides access to relevant crisis-related information

to authorized users of the CMS in a timely and reliable manner [63]. Chapter 9 discusses

the bCMS case study in more detail.

In a CMS, resources such as vehicles and emergency personnel need to be tracked and

assigned to missions. The feature model of the generic, reusable Resource Management con-

cern is shown on the left of Fig. 5–1. The main functionality that this concern provides is to

keep track of the availability of resources. Resources can be allocated to tasks, in which case

they are marked as unavailable until they are released again. This base functionality is part

of the mandatory feature Allocation. In more elaborate cases, resources can be heterogenous,

i.e., each resource can exhibit a set of possibly different capabilities. In that case, Resource

Management offers the possibility to search for available resources that exhibit desired capa-

bilities. This is encoded in the optional feature Search. Because finding an optimal solution

for assigning resources with capabilities to tasks is np-complete, the algorithm that finds the

optimal solution is provided in Optimal, an optional subfeature of Search.

To associate a task with many resources, the mandatory Allocation feature reuses a low-

level design concern called Association (a condensed version of its features is shown on the

right of Fig. 5–1). Association is useful whenever some design object needs to be related to

multiple objects of some other design class. The association might need to be ordered, or

indexed by a key, or even persisted. There are many ways of designing such an association,

ranging from using a simple array or linked list, to using hash tables or even databases.

81

Allocation Search Kind

Unordered Database

Resource Management

Optimal

HashSet TreeSet

Ordered

ArrayList LinkedList

KeyIndexed

LinkedHashMap

Association

ThreadSafe

Figure 5–1: Resource Management and Association FMs

Furthermore, if the association implementation is used in a multi-threaded application, it

should also be thread safe.

To address C1 and C2 from Section 5.1, the developer should be able to explicitly reexpose

all features of the reused concern that provide the required functionality in the reusing

concern’s variation interface (and indirectly exclude those features that do not have the

desired properties) to defer the decision about which specific variant to use to the next level

in the concern hierarchy. Hence, for each concern reuse, we propose that the reusing concern

needs to specify the variation interface composition as follows:

1. Select the features that the reusing concern needs from the variable features of the reused

concern as specified in its variation interface. The best strategy from a reuse standpoint

is to select the minimally required features from the reused concern. This selection is

used to compose the realization models associated with the features as presented in

Section 5.4 to generate a customization and usage interface of the reused concern for

this specific selection. These interfaces are then used within the realization models

of the reusing concern wherever the functionality provided by the reused concern is

needed.

2. Reexpose features of the reused concern in the variation interface of the reusing concern,

if appropriate, so that they may be reused by even higher-level concerns or the final

82

application. Sometimes, the reused concern offers features that provide alternatives

to the functionality minimally needed by the reusing concern. However, since the

desired system qualities of the final application are not known to the developer of the

reusing concern, it is impossible to decide which alternative is the best choice. Also,

sometimes the reused concern provides additional, variable functionality that could

also be useful to the developers of even higher-level concerns in certain contexts. In

such cases, the best strategy from a reuse point of view is to propagate any alternative

and optional features of the reused concern to the variation interface of the reusing

concern by explicitly reexposing them (and optionally renaming them to better reflect

their semantics in the context of the reusing concern).

The syntax for specifying a concern reuse is:
FEATURE ’reuses’ CONCERN’<’[FEATURE_LIST]

[’reexpose’ RENAMING_FEATURE_LIST]’>’

where the optional FEATURE_LIST stands for a comma-separated list of selected fea-

tures, and the optional RENAMING_FEATURE_LIST represents another comma-separated

list of reexposed features with optionally specified renamings in the form of FEATURE ’to’

NEW_NAME.

In our resource management concern example, certain features that Association provides

are not useful in the context of Allocatable, e.g., Key-Indexed and its subfeatures, since we

do not need to index resources with a key. Likewise, there is no need for the collection of

resources that are associated with a task to be ordered. The functionality required by Alloca-

tion is offered by any of the subfeatures of Unordered, and, depending on the requirements of

the application that are going to reuse Resource Management, it might also make sense to use

a database to persistently keep track of allocations between tasks and resources. Since the

83

Allocation Search

Association

Unordered Database

Resource Management

Optimal

HashSet TreeSet

Allocation reuses Association<reexpose
 Unordered, HashSet, TreeSet, Database>

Kind ThreadSafe

Figure 5–2: Resource Management FM with Reexposition

developer of the Allocation feature in the ResourceAllocation concern does not know which

one of these variants is the most appropriate for future users of ResourceAllocation, and since

it is not known if Resource Management is going to be used in a multi-threaded environ-

ment, these choices are reexposed in the variation interface of ResourceAllocation. Fig. 5–2

shows how parts of the variation interface of Association, namely Unordered, TreeSet, Hash-

Set, Database, and ThreadSafe, are reexposed as subfeatures of Allocation. The equivalent

textual concern reuse specification is shown on the left of Fig. 5–2 (no selected feature, four

reexposed features without renaming).

Based on the concern reuse specification defined by the developer, a CORE tool first

verifies the correctness of the reuse, and then composes the variation interface of a reusing

and reused concern as described by the following rules and algorithms.

Verification of Reuse Specification

Because of the intricate interaction of selection and reexposing, the correctness rules for

specifying concern reuse are as follows:

84

• General Rule: All ancestor features (from the parent of a feature to the root feature)

of a selected or reexposed feature must either be mandatory, selected, or reexposed.

• XOR Group Rule: If the parent of an XOR group is mandatory, selected, or reexposed,

then either exactly one feature of the XOR group must be selected, or at least two

features of the XOR group reexposed.

• OR Group Rule: If the parent of an OR group is mandatory, selected, or reexposed,

then either at least one of the features of the OR group must be selected, or at least

two reexposed.

• Requires and Excludes Rules: A feature that is required by a selected feature has to

also be selected. A feature that is required by a reexposed feature has to be either

selected or reexposed. A feature that is excluded by a selected feature is neither allowed

to be selected nor reexposed. A feature that is excluded by a reexposed feature is not

allowed to be selected.

If these rules are followed, then either the current selection is already a valid selection in

the classical sense of feature models, or it is possible to complete the current selection with

additional features from the set of reexposed ones to obtain a valid selection.

Composition Algorithm

Based on a valid reuse specification defined in feature F of the reusing concern, Algo-

rithm 1 composes the feature model of the reused concern (REUSED) with the feature model

of the reusing concern (REUSING).

There is a special case that requires the feature model of the reusing concern to be

restructured after step 5 and before executing step 6. Attaching a mandatory subfeature to

85

Algorithm 1 Feature Model Composition Algorithm
1. Create REUSED_Copy, a copy of REUSED.
2. Remove from REUSED_Copy all features that are not selected or reexposed. The

root feature is always kept. A mandatory feature is kept if all its ancestor features are
either mandatory, selected, or reexposed.

3. For each feature Fi in an XOR group in REUSED_Copy: if Fi is selected, replace the
XOR link from Fi to the parent feature with a mandatory link (given the verification
rules explained above, there can only be at most one such selected feature).

4. For each feature Fi in an OR group in REUSED_Copy: if Fi is selected, replace the
OR link from Fi to the parent feature with a mandatory link.

5. For each feature Fi in an OR group in REUSED_Copy: if Fi is reexposed and if at
least one feature Fj in the OR group is selected, replace the OR link from Fi to the
parent feature with an optional link.

6. The root feature of REUSED_Copy is added to REUSING as a mandatory subfeature
of F.

a parent feature is structurally only possible if the parent feature is not the parent of an

XOR or OR group. Otherwise the resulting model is not a valid feature model anymore. In

this case, an intermediate, mandatory child feature of F is introduced as the new parent of

the XOR or OR group. After the restructuring, step 6 can be executed safely.

5.3 Impact Model Composition

To address C1, C2, and C3, specific algorithms are needed to compose impact models of

the reusing concern with those of the reused concern.

An impact model is a variant of a GRL goal graph [56] and contains features (which

represent specific solutions), goals (for intentions/objectives), and weighted contribution

links between features and goals. Contribution weights are expressed relatively by numerical

values. Satisfaction values for nodes in the impact model determine the degree with which

an element is satisfied, and typically range from 0 (not satisfied at all) to 100 (fully satisfied).

During impact model analysis, satisfaction values of leaf elements in the goal model (typically

86

solutions) are propagated up towards the root(s) of the goal model (typically relevant system

qualities). Consequently, trade-off analysis compares the satisfaction values of high-level

system qualities given the sets of solutions that are to be considered. Even though feature

models may be augmented with feature attributes to capture system qualities [23], CORE

uses goal models – called impact models in the context of CORE – to more easily express

complex relationships among goals.

Fig. 5–3 shows the impact model part of the variation interface of the Association con-

cern for the Performance quality. This allows each feature to be compared against the other

features of the concern with respect to a single quality. A key point of impact models is

that a feature’s comparison against other features is relative, e.g., the HashSet feature with

contribution 100 increases performance twice as much as the LinkedHashMap feature with

contribution 50. The impact model, however, does not capture whether this is an improve-

ment from 100 milliseconds to 50 milliseconds or 2 minutes to 1 minute – the evaluation

remains strictly relative. This allows high level qualities of interest to stakeholders such as

user convenience, security, or ease of use to be captured and reasoned about, even though

these qualities can typically not be measured precisely. The best solution in a concern for

a particular quality results in a satisfaction value of 100 for the top-level quality goal (e.g.,

this is the case for HashSet in the performance example).

The quality properties of a concern depend on the design of the models encapsulated

within the concern, but also on the quality of the reused concerns. Given a feature selection

for each reused concern, the impact model associated with the reused concern yields satisfac-

tion values for several qualities. All of these impact models contribute to the satisfaction of

qualities of the reusing concern. Consequently, there is a need to compose all impact models

87

Increase Insertion/Deletion
Performance

ArrayList LinkedList

Database

Linked HashMap HashSet

TreeSet
50

1 2

1 100

85
Increase

Performance

Increase Access
Performance

5050

12

Figure 5–3: Association Impact Model

of reused concerns with the impact model of the reusing concern. Since each quality can be

addressed individually (i.e., the quality’s impact models from the reused concerns only need

to be composed with the same quality’s impact model of the reusing concern), we will use

one quality as an illustrative example: Performance. Furthermore, the composition mecha-

nism is the same regardless of whether a high-level concern reuses one or several lower-level

concerns. Therefore, we can illustrate without loss of generality the composition of impact

models with the performance impact model.

An impact model may contain several goals as shown in the Performance example, where

the top-level goal is further refined into two lower-level goals. For some features of the

Association concern it is necessary to differentiate between Insertion/Deletion Performance

and Access Performance. Note that at each level, sibling features are compared in a relative

manner (e.g., ArrayList contributes twice as much to access performance as LinkedList).

The variation interface is defined by all goals in the impact model. Hence, the variation

interface of the Association concern contains the three goals from the impact model shown

in Fig. 5–3.

There are two key prerequisites for successful composition and subsequent impact analysis

of concern hierarchies:

88

Search Optimal
-9

510

Increase
Performance

Increase Performance
[Association]

Allocation propagates
Association.IncreasePerformance to

 IncreasePerformance
with 5

Figure 5–4: Resource Management Impact Model

1. Comparability. It must be possible to compare the results of impact models. In par-

ticular, this requires that the scale used within an impact model does not conflict with

the scales of all other impact models. In other words, if the satisfaction results for a

quality in the impact models of two reused concerns are the same value n, then the

relative degree of satisfaction for each of the two reused concerns must be the same.

2. Determinability. It must be possible to determine for a particular quality of a reused

concern, if the set of features selected from the reused concern is the optimal or worst

solution for this quality of the reused concern.

These two prerequisites are satisfied by following the relative comparison scheme for contri-

butions and by normalizing the result of the contributions to the [0,100] range for each node

within each impact model. In other words, the unifying feature across all impact models is

the fact that the best possible solution results in a satisfaction value of 100 and the worst

in 0. If this is the case, then the developer again only needs to think about the relative

comparison of features of the reusing concern and the respective quality goals of the reused

concerns as shown in Fig. 5–4. In this figure, it is determined that the Search feature of

the Resource Management concern contributes twice as much to increase performance as the

performance goal from the reused Association concern (10 vs. 5)1 . In other words, Search

1 Of course, when the impact model is evaluated during impact analysis, a goal from a
reused concern only contributes to the goals of the reusing concern if the feature that reuses

89

contributes two thirds and the reused concern potentially one third. If the reused concern

contributes the best possible performance result (i.e., its satisfaction value is 100 because the

HashSet feature is selected in the reuse specification), it will contribute the full third to the

performance goal of the reusing concern (i.e., 33 after normalization to the [0,100] range).

If the satisfaction value of the reused concern is less than 100 (e.g., because the Database

feature is selected instead), then the contribution is proportionally less. Hence, continuity

from the reused impact models to the impact model of the reusing concern is ensured.

The composition of a reused impact model with the impact model of the reusing concern

is hence the set of contribution links including their weights that have to be added from

the reused impact model to the reusing one. In the example in Fig. 5–4, this set contains

only one link for the reuse of the Association concern (i.e., the link between Increase Per-

formance [Association] and Increase Performance). The composition can either be specified

graphically or textually given the following syntax (see Fig. 5–4):
(FEATURE ’propagates’

CONCERN’.’GOAL ’to’ GOAL ’with’ WEIGHT)*

where FEATURE is the high-level feature reusing the lower-level CONCERN, the first

GOAL is the source quality from the reused concern defined in the variation interface, the

second GOAL is the target quality from the reusing concern, and WEIGHT is a relative

number. Any number of such statements including zero may be specified for a feature that

is reusing a lower-level concern.

the concern is actually selected. In the case of Resource Management, the reuse is done in
Allocation, which is a mandatory feature, and hence always selected.

90

Recall that the performance impact model in Fig. 5–3 contains three goals. Because all

of them are part of the variation interface, any of them could be used in the composition

specification depending on the needs of the reusing concern. In the case of the Resource

Management impact model, it was decided that the top level goal Increase Performance

should be used instead of the other goals for insertion/deletion as well as access performance.

From the composition mechanism described in the previous paragraph, it follows that a

goal from a reused impact model is only important to the reusing concern, if it contributes

to one of the goals defined explicitly for the reusing concern. All other goals of the reused

concern are irrelevant (i.e., those goals that are not connected to a goal explicitly defined for

the reusing concern). Only goals from the reusing concern are part of the reusing concern’s

variation interface. For example in Fig. 5–4, all goals with solid outlines are part of the

variation interface (only Increase Performance in this case) and all goals with dashed outlines

(i.e., they come from reused concerns – only Increase Performance [Association] in this case)

are not part of the variation interface of the Resource Management concern. Intuitively, it is

not necessary to include goals with dashed outlines in the variation interface, because these

goal must have a contribution to a goal with a solid outline, which is part of the variation

interface. Therefore, the contribution of the reused concern still propagates upwards the

impact model hierarchy.

Up until now, the contribution of the Optimal feature in Fig. 5–4 has not been discussed.

This feature highlights the need to take into account feature relationships (see Fig. 5–2) when

determining contribution weights. Consider the following feature selections for the Resource

Management concern and the resulting satisfaction value of Increase Performance:

91

• HashSet → Increase Performance [Association] = 100 → Increase Performance = 33

(normalized, because we selected 100*5 out of a possible maximum of 100*15)

• Database → Increase Performance [Association] = 1 → Increase Performance = 0.33

(normalized, because we selected 1*5 out of a possible maximum of 100*15)

• HashSet, Search→ Increase Performance [Association] = 100, Search = 100→ Increase

Performance = 100 (normalized, because we selected 100*5 + 100*10 out of a possible

maximum of 100*15)

Assume that the search functionality of the Resource Allocation concern can be improved

through the selection of the Optimal feature, but at a performance cost, which has been

determined to be at a factor of 10, i.e., the optimal search is ten times slower than the regular

search feature. Since the impact model captures relative comparisons between features, one

could be tempted to assign the weight of 1 to the contribution of the Optimal feature (10%

of the weight of the contribution of the Search feature, which is 10). However, the impact

model is always evaluated based on a valid selection of features. As the selection of the

optional Optimal feature also requires its parent to be selected (i.e., the Search feature), the

satisfaction value would be determined as:

• HashSet, Search, Optimal → Increase Performance [Association] = 100, Search = 100,

Optimal = 100→ Increase Performance = 100 (normalized, because we selected 100*10

+ 100*1 + 100*5 out of a maximum of 100*16)

Obviously, this is not the desired result. The accumulative impact of the Search and Opti-

mal features on performance is supposed to be 10 times less than Search on its own (or in

other words, Optimal reduces the performance of Search by 90%). Consequently, the correct

weight assignment for the Optimal feature is -9 as shown in Fig. 5–4, because the resulting

92

satisfaction value of the Increase Performance goal is then 40 (normalized, because we se-

lected 100*10 + 100*-9 + 100*5 out of a maximum of 100*15), as expected. This clearly

shows that the topology of the feature model must be taken into account when determining

contribution weights.

In general, the following guidelines help with the definition of impact models:

• Each variable feature in a feature model has its own contribution link to a quality. The

weight of the contribution link of a variable feature F considers other variable features

in the feature model that have to be selected because F is selected.

• Because there is no choice in the selection of mandatory features, the impact of all

mandatory features on a quality can be summarized into a single contribution link

from the root feature to the quality. Even this single contribution is often omitted,

especially when the topology of the feature model guarantees that at least one variable

feature must be selected (e.g., the feature model contains an OR or XOR group with a

mandatory parent), thus guaranteeing an impact to the quality in any case. Note that

the contribution of a variable feature with mandatory children takes the contributions

of its mandatory children into account, i.e., there are no separate contributions from

the mandatory children as the contribution from the variable parent features also covers

the mandatory children.

• Features in an OR group have to take into account that there are potentially many

simultaneous impacts from siblings.

• Features in an XOR group can rely on the fact that there will only be one impact from

siblings at a time.

93

Algorithm 2 Impact Model Composition Algorithm
1. Make a copy of the impact model of the reused concern.
2. Create the specified contribution links between the copy and the reusing impact model,

resulting in a composed impact model.

The composition algorithm for impact models is quite straightforward, as shown in Algo-

rithm 2 :

5.4 Composing the User-Tailored Concern Realization

5.4.1 Dealing with Feature Interactions

Feature interaction refers to a situation where the functionality provided by a feature is

influenced by the presence of other features that are not among its ancestors. Just like in

SPLs, feature interactions can occur in Software Concern Lines. The concern designer, who

is a domain expert, is the one who must identify all feature interactions within a concern

and determine whether each interaction can be resolved or not.

Unresolvable feature interactions, sometimes also called feature conflicts, are situations

in which it does not make sense to simultaneously use the conflicting features in combina-

tion. For example, the Association concern shown in Fig. 5–1 encapsulates different ways of

implementing an ordered association: an array (feature ArrayList) or a linked list (feature

LinkedList). Both achieve the same goal, and hence it does not make sense to use them in

combination. Similarly, in transaction processing systems, there are different ways of pro-

viding support for recovery, including the creation of physical copies of the data (SnapShot),

deferring the update of the original data (Deferred), and keeping intention lists (Intention-

Lists). Also, there are different ways of performing concurrency control, e.g., LockBased

and Optimistic. However, it makes no sense to use Optimistic concurrency control with

SnapShot recovery, since optimistic concurrency control allows the concurrent execution of

94

potentially conflicting transactions. In case a transaction is aborted, the recovery support

has to undo the changes of the aborting transaction only, which is not always possible with

snapshot-based recovery. Unresolvable feature interactions have to be expressed by the con-

cern designer in the concern’s feature model using XOR or excludes relationships. As a result,

the concern user is prevented from choosing conflicting features when using the concern’s

variation interface during step 1 of the reuse process.

In many cases, though, feature interactions can be resolved. This is the case in situations

where it makes sense to use the features in combination, but the structure and behaviour

of the realization of one or several of the interacting features need to be changed to provide

the desired, combined functionality. Resolvable feature interactions therefore do not need

to be exposed to the concern user, as they can be dealt with by the concern designer in

the realization. For example, the Association concern shown in Fig. 5–1 has a ThreadSafe

feature that should be selected by the user of Association in situations where the reusing

concern is accessing the association from multiple threads. The realization of a thread-

safe association differs significantly from a non-concurrent realization depending on the data

structures that are used. It typically requires acquiring and releasing semaphores whenever

the underlying data structures are accessed. In Java, for example, a standard ArrayList

should be replaced with a CopyOnWriteArrayList to correctly deal with multi-threading.

Similarly, in transaction processing systems, the implementation of LockBased or Optimistic

concurrency control has to adapt when transactions can be nested. Therefore, for each

resolvable feature interaction, the concern designer needs to create realization models that

describe the realization for the desired, combined functionality. In case these realization

95

models affect the goals of the concern, the concern designer must also specify their impact

in the impact model.

5.4.2 Generating the User-Tailored Realization

During the concern reuse process, the concern user selects the desired features of the

concern that is being reused from the variation interface (see step 1 in the concern reuse

process discussed in Chapter 4). In CORE, this selection of features is called a configuration.

Before the concern user can proceed to step 2 and customize the concern, a CORE tool has

to create the user-tailored realization of the concern according to the desired configuration

by composing all relevant realization models and dealing with resolvable feature interactions,

if any.

This composition involves several algorithms that are detailed in the following subsec-

tions. First, the set of realization models that need to be composed has to be determined by

taking into account possible feature interactions, if any, as described in Algorithm 3. Then,

all selected realization models belonging to the same corified modelling notation have to be

composed in a certain order. That order is determined using the algorithm presented in Al-

gorithm 4. Finally, the realization models are composed in pairs by invoking the composition

algorithm defined for each modelling notation.

Realization Model Selection Algorithm

In CORE, realization models are associated with the features whose functionality they

realize. Most realization models realize a single feature, except for the ones that address a

resolvable feature interaction. Those models are associated with the set of features involved

in the interaction. As a result, features that have no interactions with other features are

associated with a single realization model. Features that have resolvable interactions with

96

Algorithm 3 The Realization Model Selection Algorithm that Determines All Realization
Models that Need to be Composed for a Given Configuration.

1. Initialize the set of features that need to be realized to contain all selected features, and
initialize the set of chosen realization models for language lang : ToRealize = Conf ,
ChosenRMlang = Ø

2. Repeat until ToRealize is empty:
(a) Determine the set of realization models expressed using lang and involved in

realizing only the features that still need to be realized: Possible = {rmlang |
∃f (f ∈ ToRealize ∧Realizes(f, rmlang)}. If Possible is empty, then none of the
features in ToRealize has associated realization models expressed in lang and the
algorithm terminates.

(b) Add all the rms in Possible that realize the highest number of features to
ChosenRMlang, and eliminate from ToRealize the features that these rms realize.

other features have multiple realization models, one for each combination of features that

requires resolution. Features that have no associated realization model are usually features

that do not provide functionality and were introduced by the concern designer simply to

group or classify related features in the variation interface to simplify feature selection during

reuse.

Algorithm 3 determines for each modelling language lang all the realization models of

lang that need to be composed to realize a given configuration of a concern. The algorithm

resolves any conflicts arising from feature interactions. In the description of the algorithm,

a feature is denoted f , a realization model rm, the input configuration containing the set

of selected features Conf = {fi}, and the realization relationship defined by the concern

designer Realizes = {fi, rmi}.

The algorithm ensures that the realization models realizing n features take precedence

over the ones realizing m features, where n > m. This is necessary in the rare cases where

there are feature interactions involving more than 2 features. For example, for a concern

97

Kind

Unordered Database

HashSet TreeSet

Ordered

ArrayList LinkedList

KeyIndexed

LinkedHashMap

Association

ThreadSafe UnorderedRM DatabaseRM

HashSetRM TreeSetRM

OrderedRM

ArrayListRM LinkedListRM

KeyIndexedRM

LinkedHashMapRM

AssociationRM

ConcurrentLinkedListRM

CopyOnWriteArrayListRM

ConcurrentHashMapRMConcurrentHashSetRM

ConcurrentTreeSetRM

Legend
RM Model Dependencies

Realization Mapping

RM Models dealing with Feature Interactions

Figure 5–5: Association Concern Feature Model and Associated Realization Models includ-
ing Feature Interaction Resolution Models

with 3 features A, B, and C, it is possible that selecting {A,B}, {B,C}, and even {A,B,C}

requires different resolution models. If {A,B,C} is selected, a CORE tool should simply use

rmabc. In the case where {A,B} is selected, it should use rmab. If {A,C} is selected, it should

however compose rma and rmc. With Algorithm 3, this can be achieved by specifying that

A is realized by rma and rmab and rmabc, B is realized by rmb and rmab, and C is realized

by rmc.

Fig. 5–5 shows the features of the Association concern on the left, and the realization

models (ending in RM) and their dependencies on the right. The realization models in red

with dashed outlines are the ones that address feature interactions involving the ThreadSafe

feature. Our algorithm, if only ArrayList is selected, would choose the realization model

ArrayListRM. However, if ThreadSafe is selected as well, it would use CopyOnWriteArrayList

instead, since it realizes both ThreadSafe and ArrayList. On the other hand, if Database and

ThreadSafe are selected, only DatabaseRM is chosen. This makes sense, since the concern

designer knows that databases are inherently thread safe, and hence no feature interaction

occurs.

98

ModelA
Model Element: |EA

Model Element: EC
Mapping: |EA->EC

ModelC
Model Element: EB
Mapping: |EA->EB

ModelB

Model Element: EBC
Mapping: EB->EBC

ModelBC

Mapping: EC->EBC

Figure 5–6: A Realization Model ConfBC Extends Two Models B and C, Both Extend a
Common Model A.

Composition Scheduling Algorithm for Realization Models

After applying the realization model selection algorithm (Algorithm 3), the CORE-based

modelling tool then generates user-tailored realization models of the concern. To this aim,

for each corified modelling language lang, the tool creates an empty model UserTailored−

ConcernRealizationModellang that extends all the selected realization models specified us-

ing lang. The resulting model hierarchy can be represented as a graph, where models are

nodes, and extension links are directed edges from the extension model to the model that

is extended. In the graph representing the extension hierarchy of a user-tailored concern

realization models there is one source node (i.e., the aforementioned empty model created

by the tool) and one or several sink nodes (i.e., the base realization models of the concern

that do not extend other models). In order to flatten the hierarchy, i.e., to create the a wo-

ven user-tailored lang realization model, the tool successively invokes the model composition

99

algorithm for lang, which takes two lang models as input and produces a lang model as an

output, on the UserTailoredConcernRealizationModel and one of the models that it extends.

For efficiency reasons, in particular to avoid duplicate weaving of models that have multiple

incoming extension links, the order of composition is determined using Algorithm 4.

For illustration purpose, let us consider the realization models written in RAM for the

Association concern. The right-hand side of Fig. 5–5 shows the extends hierarchy for the

realization models of the Association concern. In the context of RAM, these models are

either base realization models or extension realization models. Models are base realization

models if they are self-contained, i.e. they can fulfill their purpose as is, whereas so-called

extension realization models have to be applied to some base realization model to fulfill their

purpose. The AssociationRM model on the right hand-side of Fig. 5–5 is a base realization

model, whereas other models such as OrderedRM are considered extension realization models.

We discuss these two types of realization models in detail in Chapter 8. The composition

algorithm ranks a model in the extension hierarchy based on the longest line of ancestor

models. For example, the rank of HashSetRM in Fig. 5–5 is 2, since it has two ancestor

models (UnorderedRM and AssociationRM).

Fig. 5–6 shows the directed graph representing the extension hierarchy for the models of

an example concern that has three features: feature A which is realized by ModelA, feature

B which is realized by ModelB and feature C which is realized by ModelC. Both ModelB

and ModelC are considered extension realization models that extend a base realization model

ModelA. ModelA has a partial model element |EA, ModelB has a model element EB, and

ModelC has a model element EC. Composition specification mappings are also shown in

Fig. 5–6: |EA→EB in ModelB and |EA→EC in ModelC. Because of a feature interaction

100

Algorithm 4 Composition Scheduling Algorithm for Generating the User-Tailored Realiza-
tion Models

1. Initialize WovenUserTailoredConcernRealizationModellang to
UserTailoredConcernRealizationModellang. Initialize ToBeComposedlang =
ChosenRMlang (as obtained by running the algorithm defined in Subsection 5.4.2)

2. Rank each modelm in ToBeComposedlang based on the longest path of ancestor models
it extends. More formally:
Let B represent the set of base models in an extends dependency graph, i.e., the models
bi that do not extend any other models. For these models, rank(bi)= 0.
Let M represent the set of extension models, i.e., the models mi that extend base
models or other extension models.
In this case, rank(mi) = maxbi∈B(pathlength(mi, bi)).

3. Repeat until ToBeComposedlang = φ:
(a) Pick m such that rank(m) = maxmi∈ToBeComposed(rank(mi)) (in case there are

several models with the maximum rank, pick any of these models).
Compose WovenUserTailoredConcernRealizationModellang with
m by calling the composition algorithm provided by lang, pass-
ing as an input WovenUserTailoredConcernRealizationModellang,
m and the composition specifications from models ele-
ments of WovenUserTailoredConcernRealizationModellang to
model elements of m. Store the resulting model back into
WovenUserTailoredConcernRealizationModellang.

(b) For all models ni such that m extends ni:
if WovenUserTailoredConcernRealizationModellang already extends ni, merge
the corresponding composition specifications.
else calculate rank(ni), and add ni to ToBeComposedlang.

(c) Remove m from ToBeComposedlang.

101

between B and C, both features are additionally realized by ModelBC, which extends both

ModelB and ModelC. ModelBC has a model element EBC, and specifies two mappings:

EB→EBC and EC→EBC. When we feed Algorithm 3 with a configuration of selected fea-

tures B and C, the output ChosenRM = {ModelBC}, because it realizes both features. The

CORE-based modelling tool creates an empty model UserTailoredConcernRealizationModel

that extends the set of models in ChosenRM, in this case only ModelBC. The output set of

models are then ranked by Algorithm 4, presented above, and the model with the highest

rank is chosen to be composed with WovenUserTailoredConcernRealizationModel, which is

initialized to UserTailoredConcernRealizationModel. The rank of ModelBC is 2 because it

has two ancestor models through two paths (ModelB and ModelA through one path, and

ModelC and ModelA through another path). Algorithm 4 then asks the RAM composi-

tion algorithm to compose WovenUserTailoredConcernRealizationModel with ModelBC. As

a result of the RAM composition, WovenUserTailoredConcernRealizationModel now extends

both ModelB and ModelC, and contains the model elements and the mappings originally

contained in ModelBC. Then, Algorithm 4 calculates the ranks of the new extended mod-

els of WovenUserTailoredConcernRealizationModel, in this case, ModelB and ModelC, which

both have rank 1. One of these extended models is chosen next to be composed with Wo-

venUserTailoredConcernRealizationModel. Suppose that ModelB is chosen, and composed

using the RAM composition algorithm. The composition specification mapping |EA→EB

originally in ModelB is updated to |EA→ECB by the RAM composition algorithm. Now,

WovenUserTailoredConcernRealizationModel extends ModelA and ModelC, and Algorithm 4

ranks ModelA with 0 and ModelC with 1. Therefore, ModelC is chosen next to be composed

102

with WovenUserTailoredConcernRealizationModel, and the composition specification map-

ping |EA→EC that was updated to |EA→ECB by the RAM composition algorithm is now

merged with the previous mapping |EA→ECB. Finally, ModelA is chosen to be composed

with WovenUserTailoredConcernRealizationModel.

5.5 Customization Interface Composition

To satisfy C4, the rule is that the customization interface of the reusing concern is a union

of the new customization elements introduced by the reusing concern and the customization

elements of the reused concerns that have not been customized, i.e., that were not mapped

to specific elements in the reusing concern. This makes it possible to grow or shrink the

customization interface within concern hierarchies, depending on the intent of the developer.

A “more specific” concern, for instance, would abstain from introducing new customization

elements, and map some of the lower-level customization elements to specific elements of

the “more specific” concern. The same rule also ensures that customization elements that

are part of reexposed features of the reused concern are incorporated into the customization

interface of the reusing concern.

5.6 Usage Interface Composition

In order to satisfy C5, information hiding principles are applied by default. In other

words, the accessible structure and behaviour exposed in the usage interface of the reused

concern are not included in the usage interface of the reusing concern, unless explicitly

indicated by the developer. In these situations, which occur when the reused concern pro-

vides functionality that the reusing concern wants to offer, it often makes sense to rename

the reexposed functionality to reflect the change in level of abstraction. For example, a

concern encapsulating many variants of accessing doors in a building may internally reuse

103

the Password feature of the Authentication concern described earlier in Chapter 4. In this

case, the getPassword functionality of the Authentication concern might be reexposed as

getAccessCode in the usage interface of the concern.

5.7 Conclusion

In this chapter, we discussed the composition of the variation interface, i.e., feature

models and impact models, and the composition of realization models.

Before generating the composed feature model, the developer must decide which reusable

features should be selected and which reusable features should be reexposed in the variation

interface of the reusing concern. As for the composed impact model, the developer must

decide on the relative impact of the reused concern on the reusing concern for a number of

qualities – one quality at a time – by specifying relative contribution weights. All goals of

the reusing concern in the impact model are exposed in the variation interface of the reusing

concern, while all goals of reused concerns are hidden.

In addition, we introduced two algorithms that help in generating the user-tailored re-

alization models. The realization model selection algorithm determines which realization

models of a concern need to be composed given a desired configuration, taking into account

feature interactions, if any. The composition scheduling algorithm determines the most ef-

ficient ordering for invoking the pairwise composition algorithms defined by the involved

modelling languages.

104

Chapter 6
CORE Metamodel

The growing number of modelling tools that are used in developing ever-evolving di-

versified systems require advanced techniques for supporting software reuse. The ideas of

concern-orientation can be adopted when creating new modelling languages, but also inte-

grated into existing modelling languages. To this aim, the concepts presented in this thesis

are captured in a metamodel that simplifies the corification (i.e., support for CORE) of

different modelling languages. A summary of the key concepts in the metamodel follows:

• Concern: A concern is a named element that groups related models together. A

model itself groups a set of model elements that belong to its modelling language. By

default, a concern consists of at least a feature model, which along with an optional

impact model belongs to the variation interface of the concern. In addition, a concern

provides two other interfaces to facilitate reuse: the customization interface and the

usage interface.

• Feature: The feature model groups a set of features and defines relationships between

them.

• Impact : The impact model shows the contributions of features and goals to other goals.

• Reuse: A concern can reuse other concerns by following the reuse steps described

earlier in Chapter 4. In addition to selecting the features of the reused concern, the

reusing concern may choose to reexpose in its interface some features of the reused

concern. This allows the concern designer to delay the decision of selecting features of

105

name : String
CORENamedElement

COREModel

COREConcern COREReuseCOREModelElement COREConfiguration

Figure 6–1: Named Elements of the CORE Metamodel

the reused concern that provide alternative or optional functionality to a later point

in time, which is particularly helpful when trade-offs and high-level goals are not yet

fully known.

• Composition: Last but not least, the reusing concern creates compositions between

its model elements and the model elements of the reused concern. Three different

techniques for composing model elements are covered by the metamodel.

A modelling language that wants to be corified (i.e., wants to add support for CORE) extends

the CORE metamodel to include any CORE concepts that are missing in the modelling

language and/or align any similar concepts that already exist in the modelling language with

CORE. We have successfully used the CORE metamodel to corify two modelling languages:

AoURN and RAM, which will be discussed in the next chapter. This chapter includes seven

sections. In the next section we discuss the named elements of CORE. Then, we discuss each

key concept of CORE in a separate section. The concern part of the metamodel is discussed

in Section 6.2, the feature part in Section 6.3, the impact part in Section 6.4, the reuse part

in Section 6.5, and the composition part in Section 6.6. Finally, we conclude this chapter in

Section 6.7.

106

6.1 General CORE Metamodel

As mentioned above, the CORE metamodel is divided into five different parts that de-

scribe the Concern, Feature, Impact, Reuse, and Composition concepts. Each concrete class

in the metamodel represents a concept that must be added to the corified modelling lan-

guage. Abstract classes represent concepts that may exist in the modelling language, but

have associations to the concrete CORE classes. The CORENamedElement abstract class

provides naming facilities to COREConcern, COREModel , COREReuseConfiguration, CORE-

ModelElement and COREReuse as shown in Fig. 6–1. The grey elements in the figures of this

chapter highlight the concepts discussed in detail by the section for each of the five parts of

the CORE metamodel, while the white elements are discussed in more detail by a different

section. The complete metamodel is shown in Fig. 10–1 in Appendix I.

6.2 Concern

COREModel modelElements
0..*

COREFeatureModel

0..* customizable

COREFeature

selectable 0..*

models
1..*

COREConcern
mandatory: Boolean
COREModelElement

COREImpactModel

COREInterface

interface 1

usable
0..*

im
pa

ct
M

od
el

0.

.1

featureModel
 1

concern
1

COREImpactNode

impacted 0..*

Figure 6–2: The Concern Part of the CORE Metamodel

A concern (COREConcern) groups related models (COREModel) together (see Fig. 6–

2). The abstract class COREModel must be subclassed by a corified modelling language to

represent its model types. A concern provides at least one model by default – a COREFeature-

Model (subclass of COREModel), representing the feature model. The feature model and the

optional impact model (COREImpactModel) form the variation interface of the concern. A

107

COREModel

COREFeatureModel

COREModelElement

featureModel 1

0..*
features

 None
XOR
OR
Mandatory
Optional

<<enumeration>>
COREFeature

RelatonshipType

reuses
0..*

COREReuse
parentRelationship:
 COREFeatureRelationshipType

COREFeature
requires 0..*

0..* children

0..1
parent

0..* excludes0..*
realizes

0..*
realizedBy

Figure 6–3: The Feature Part of the CORE Metamodel

COREModel groups related model elements (COREModelElement), which is also an abstract

class that needs to be subclassed by the corified modelling language to represent its model

elements. The interface (COREInterface) is a main characteristic of a concern. The variation

interface references COREFeatures (selectable role) and COREImpactNodes (impacted role).

The usage interface and customization interface are represented by the usable and customiz-

able roles, respectively. Any COREModelElement that has to be customized when reused

(i.e., it designates a partial model element) is indicated by its mandatory attribute being set

to true.

6.3 Feature

A feature (COREFeature) is contained in COREFeatureModel as shown in Fig. 6–3. COREFea-

ture has an attribute (parentRelationship) which is an enumeration type that specifies a fea-

ture’s relationship with its parent, i.e., whether the feature is part of an XOR or OR group,

whether it is Mandatory or Optional , or whether it is the root (None). A feature selection

may require or exclude the selection of other features (requires and excludes roles). Each

feature has at most one parent and may have many children (parent and children roles).

A feature may be realized (realizedBy role) by many COREModels, and similarly, a CORE-

Model may realize (realizes role) many features. This association is used to link features to

108

COREImpactModel

COREModelElement

scalingFactor: real
offset: real

COREImpactNode

relativeWeight: int
COREContribution

1 impacts 0..* incoming

 impactModelElements
0..*

contributions 0..*
0..*

outgoing
1
source

relativeFeatureWeight: Real
COREFeatureImpactNodeCOREFeature 1

represents

COREModel

Figure 6–4: The Impacts Part of the CORE Metamodel

the models of the corified modelling language. Finally, the reuses composition indicates that

a COREFeature may reuse (COREReuse) many other concerns.

6.4 Impact

A COREImpactModel contains both COREImpactNodes and COREContributions (see Fig.

6–4). A goal is represented by a COREImpactNode (a subclass of COREModelElement). A

COREFeature, on the other hand, is represented by a COREFeatureImpactNode (a subclass of

COREImpactNode) in the impact model. Each COREContribution has an integer attribute to

store its contribution value, which is a relative weight, describing how one COREImpactNode

(source role) impacts another COREImpactNode (impacted role).

6.5 Reuse

The class COREReuse is the centre of this concept and has a reference to one reused

COREConcern (reusedConcern role) (see Fig. 6–5). Whenever a feature reuses a concern,

an instance of COREReuse is created and associated with it using the reuses association.

COREReuse contains a set of configurations (COREReuseConfiguration) of which at most one

can be selected. Each COREReuseConfiguration has a set of selected and reexposed features

of the reused concern (selected and reexposed roles, respectively). When a feature reuses a

109

COREModel

COREModelComposition
SpecificationCOREModelReuse

re
us

ed
C

on
ce

rn
1

COREConcern

0..*
compositions

COREReuseConfiguration

se
le

ct
ed

0.
.1

co
nfi

gu
ra

tio
ns

0.
.*

COREReuse

reuse 1

modelReuses 0..*

modelReuses 0..*

COREFeature

re
ex

po
se

d
0.

.*se
le

ct
ed

0.
.*

re
us

es 0.
.*

Figure 6–5: The Reuse Part of the CORE Metamodel

COREModelCompositionSpecification

COREPatternCOREBinding

fro
m

1

0..*
mappings

COREModelElement

COREMapping

CORECompositionSpecification

to 1

weight : Integer
COREWeightedMapping

COREImpactModelBinding

COREReuseConfiguration

COREReuse 1

reuse

Figure 6–6: The Composition Part of the CORE Metamodel

concern, a model of the corified modelling language (COREModel) that realizes the feature

can reuse models of a reused concern through COREModelReuse, which has an association to

the COREReuse it belongs to. COREModelReuse contains COREModelCompositionSpecifica-

tions to allow specifying customization compositions of the reused models with the reusing

model.

110

6.6 Composition

Two abstract classes, CORECompositionSpecification and COREModelCompositionSpecifi-

cation, define different kinds of composition specifications (see Fig. 6–6); the latter is a sub-

class of the former. CORECompositionSpecification captures the fact that all compositions

are related to one specific COREReuse (reuse role). COREReuseConfiguration (a concrete sub-

class of CORECompositionSpecification) is dedicated to the composition of feature models (see

Fig. 6–5). COREModelCompositionSpecification has two abstract subclasses (COREBinding

and COREPattern), representing two general ways for specifying compositions for modelling

languages other than feature models [81, 17]. COREPattern is used when the composition

is specified using pattern matching, while COREBinding is used when a set of COREMod-

elElement pairs are composed. Therefore, COREBinding contains a set of COREMapping

(mappings role), another abstract class to specify the mapping from (from role) and to (to

role) COREModelElements (the two inputs to the composition). The from element always

refers to a model element from the reused concern while the to element refers to a model

element from the reusing concern. A specialized COREBinding called COREImpactModelBind-

ing establishes the binding between impact model elements with the help of a specialized

COREMapping called COREWeightedMapping to establish mappings that contain weights.

To calculate the total impact of a feature F that reuses one or more lower-level concerns on a

goal of the reusing concern as described at the end of Section 4.3, the following three inputs

are combined with each other: (i) the weight of all COREWeightedMappings where the to role

is the COREFeatureImpactNode representing feature F, (ii) the weight of the COREFeatureIm-

pactNode (see relativeFeatureWeight in Fig. 6–4) representing F, and (iii) the relativeWeight

of the COREContribution that has the COREFeatureImpactNode representing F as its source.

111

6.7 Conclusion

This chapter presented the CORE concepts discussed in this thesis in a common meta-

model. The metamodel is divided into five parts. The first part presents concern which is

a reuse unit that groups related models together. The second part presented the feature

model which groups a set of features and defines relationships between them. The third part

presented the impact model which shows the contributions of features and goals to other

goals. The fourth part specified how a concern can reuse other concerns by following the

reuse steps. Finally, the fifth part specified how the reusing concern creates compositions

between its model elements and the model elements of the reused concern. In the next chap-

ter, we show how we corified two modelling languages, AoURN and RAM by extending the

CORE metamodel in their respective tools.

112

Chapter 7
Tool Support

For validation purposes, the metamodel discussed in the previous chapter was extended

by two modelling languages: the Aspect-Oriented User Requirements Notation (AoURN)

and Reusable Aspect Models (RAM), which are at opposite ends of the spectrum of mod-

elling languages with respect to the means of corification required. AoURN, a modelling

notation specialized in requirement modelling, already supports feature modelling [74], goal

and workflow modelling [56], with aspect-oriented extensions [83], but does not offer any ded-

icated support for reuse. On the other hand, RAM, which is an aspect-oriented multi-view

modelling language for software design, does not support feature and goal modelling, but sup-

ports aspect-oriented class, sequence, and state modelling with some support for reuse. Both

corified languages are supported by modelling tools that allow for creating, visualizing, sav-

ing, and updating models. AoURN is supported by an eclipse-based requirement modelling

tool called jUCMN av [90, 74] and RAM is supported by a stand-alone, multitouch-enabled

tool called TouchCORE [109]. Initially, both tools did not support CORE. We extended the

tools to support the corified versions of their modelling languages, therefore, they provide

CORE properties such as reuse, feature modelling and impact modelling.

As mentioned in the beginning of this thesis, our contribution is implementing and val-

idating CORE in the design phase of software development. Therefore, we discuss the

corification of RAM and some key features of the TouchCORE tool in more details as one

113

of contributions of this thesis. Additionally, we discuss the corification of AoURN to further

demonstrate the effectiveness of our approach.

7.1 Corification Strategies of Existing Modelling Languages

Abstract and concrete classes of the CORE metamodel shown in Chapter 6 are extended

differently when corifying a modelling language. The abstract classes CORENamedElement,

COREModel , COREModelElement, COREPattern, COREBinding , and COREMapping serve as

extension points and are intended to be subclassed by a modelling language. This allows

for consistent naming, the addition of arbitrary modelling languages to CORE, and uniform

treatment of a canonical set of compositions. The remaining abstract classes CORECompo-

sitionSpecification and COREModelCompositionSpecification are typically not extended. An

actual need to extend them indicates a new form of composition, which should after thor-

ough consideration be added to the CORE metamodel as a new abstract class, so that it

is available in the canonical set of compositions to all corified modelling languages through

subsequent subclassing.

Concrete classes, on the other hand, are intended to be used as is in the corified modelling

language, which ideally directly implements and visualizes these concepts in its modelling

tool. However, if a CORE concept already exists in the modelling language, then a di-

rected association from the class representing the CORE concept in the metamodel of the

modelling language to the concrete class in the CORE metamodel needs to be established,

and the instances of these two classes must be kept in sync. The association approach is

necessary, because all concrete CORE metaclasses (with the exception of COREModelReuse)

are always contained either directly or indirectly in the root of the CORE metamodel, i.e.,

the COREConcern. Similarly, the concepts of a modelling language naturally exist in the

114

containment hierarchy of the modelling language. Consequently, subclassing (i.e., intro-

ducing a generalization relationship from the metaclass in the modelling language to the

concrete CORE metaclass) is not an option, because a subclass cannot be contained in two

containment hierarchies at the same time.

Therefore, four distinct means of corification exist:

(A) subclassing (introduce a generalization relationship from an existing metaclass

in the modelling language to an abstract CORE metaclass),

(B) add and subclass (first add a new metaclass to the modelling language and then

introduce a generalization relationship from the new metaclass to an abstract

CORE metaclass),

(C) associate (introduce a directed association from an existing metaclass in the

modelling notation to a concrete CORE metaclass), and

(D) use a concrete CORE metaclass as is.

Which of the four means is used for a specific modelling language depends on the type of

modelling language. The CORE metaclasses cover concepts from feature modelling, goal

modelling, aspect-oriented modelling, and reuse. If the modelling language that is to be

corified offers feature or goal modelling, then association is most likely the best choice for

the classes related to feature and goal modelling. If the modelling language is aspect-oriented,

then it is likely that advanced composition techniques are already supported and subclassing

the CORE metaclasses related to composition is most likely the best choice. If the modelling

language does not support aspect-orientation, then adding a class for the desired type of

composition to the modelling notation and subclassing it from the relevant CORE metaclass

related to composition is most likely the best option.

115

AspectNamedElement

StructuralView

MappingMappableElement

structuralView 1

instantiations

0..*

COREBinding

COREMapping

COREModel

COREModelElement

Classifier

classes 1..*

Class ObjectType

Instantiation

CORENamedElement
- name

Figure 7–1: Corification of the RAM Metamodel by Subclassing the CORE Metamodel.

7.2 Corification of RAM

Because RAM has no support for feature or goal modelling and does not cover the

concepts of concern, all concrete CORE metaclasses can be used as is (corification means

D).

Fig. 7–1 shows a partial view of the RAM metamodel, focusing on the parts that ex-

tend the CORE metamodel (i.e., corification means A). The grey elements in the figures

of Section 7.1 are the abstract classes that come from the CORE metamodel. RAM’s

NamedElement subclasses CORENamedElement which allows providing names to different

model elements. Initially, NamedElement provided an attribute name which we removed to

avoid clashing with the name attribute provided by CORENamedElement. Aspects in RAM

are named elements (Aspect subclasses NamedElement) and also subclasses COREModel .

Since RAM already provides advanced support for composition through Instantiation and

Mapping , corification means A is again the best choice. Aspect groups a set of instantiations

116

that allows reusing other aspects, and the Instantiation class subclasses COREBinding . Be-

cause of that, Instantiation contains a set of mappings (Mapping class), which is a subclass

of COREMapping, and the latter has references to COREModelElement subclassed by Map-

pableElement (Fig. 6–6 showed two references from COREMapping to COREModelElement

one reference ends with a role name from to record the source of the mapping, and the other

ends with to to record the destination of the mapping). An Aspect contains several views,

including the structural view that is shown in the figure. Among the model elements that the

structural view contains is Classifier . The class Class is a subclass of Classifier , and can also

be mapped to other classes (because Classifier is a subclass of ObjectType, which is a subclass

of MappableElement. StructuralView contains other model elements such as operations and

attributes that are not shown in Fig. 7–1.

By subclassing the abstract classes of the CORE metamodel, RAM successfully provides

all the properties of CORE. A RAM model may now belong to a concern by realizing at least

one of its features, which may have impacts on high-level goals. A RAM model may now

also reuse another RAM model that belongs to a different concern, by asking the feature it

realizes to reuse the other concern with the selection of feature(s) it wants to reuse. The

reusing RAM model then establishes the mappings to the reused RAM model that realizes

the reused feature(s). This is achieved as follows. Aspect subclasses COREModel , which

makes it part of a COREConcern and allows an Aspect to realize a feature (see Fig. 6–3, a

COREModel realizes COREFeature). Therefore, the feature realized by the aspect can create

a COREReuse to reuse another concern, and since COREReuse contains COREReuseConfigu-

ration, it can create a configuration and select the feature from the reused concern (by setting

117

Figure 7–2: Feature Model Design Mode in TouchCORE.

the selected role). The reusing aspect also creates a COREModelReuse which has an associ-

ation to the COREReuse, and an association to COREModelCompositionSpecification. Now,

the reusing aspect creates Instantiation, which is a subclass of COREBinding (COREBinding

is a subclass of COREModelCompositionSpecification) as shown in Fig. 6–6. Mappings to the

model elements of the reused aspect are now established, because the class Mapping is a

subclass of COREMapping as shown in Fig. 7–1, consequently allowing a RAM aspect in a

concern to successfully reuse another aspect belonging to a different concern.

7.2.1 TouchCORE

The corification of RAM described above was implemented by updating the RAM tool,

TouchRAM [13], to support CORE. TouchRAM, a multitouch-enabled, aspect-oriented tool

for incremental software design modelling, underwent many updates over the years to add

support for new features and to incorporate metamodel changes [109, 107, 120, 106]. We

recently changed the tool’s name to TouchCORE [109] to reflect its additional support for

concern-orientation.

TouchCORE User Interface

The extensions that had to be made to the user interface of TouchCORE to support

concern-orientation are outside the focus of this thesis, since they were implemented with

118

Figure 7–3: Impact Model Design Mode in TouchCORE.

Figure 7–4: Step 1 of the Reuse Process: Feature Selection Mode in TouchCORE.

the help of master students and internship students over the last two years. Nevertheless,

we provide in this subsection an overview of some key features of the tool to give the reader

a feel of how a modeller experiences concern-orientation during the modelling activity. The

interested reader should consult the related publications [109, 107, 120, 106, 13] for more

details on the technical aspects of the tool.

TouchCORE is specialized in modelling design concerns. Particularly, modellers can

design, edit and save RAM realization models, feature and impact models, and assign real-

ization models to features. Each RAM realization model, as shown throughout this thesis,

includes a structural view consisting of a class diagram, and message views consisting of

sequence diagrams. For feature and impact models, TouchCORE provides two modes of

visualization to the modeller [121]: a design mode and a reuse mode. In the design mode,

119

the concern designer builds the feature and impact models, assigns realization models to

features in the feature model, and specifies impacts of features on high-level goals in the

impact model. The reuse mode is the one that the concern user sees during step 1 of the

concern reuse process shown in Chapter 4. It presents the modeller that is reusing a concern

with the concern’s variation interface, and allows her to select features from feature model,

while continuously evaluating the underlying impact model based on the current selection

and displaying the results to allow the modeller to perform trade-off analysis.

Fig. 7–2 illustrates the design mode for feature models, where the feature model for the

Authentication concern is shown in the middle, the list of RAM realization models are shown

on the left, and the list of high level goals are shown on the right. A realization model is

assigned by selecting it from the list and clicking on the feature(s) that it realizes. The design

mode for impact models is illustrated in Fig. 7–3, where the impacts of the Authentication

features on the Security goal are shown. The modeller can add features and subgoals, and

edit feature contributions to goals in this mode. The RAM realization models are visualized

in TouchCORE similarly to how the Authentication realization models are shown in Chapter

4. The tool provides sophisticated editing facilities for RAM realization models, which are

not presented here since they are out of the scope of this thesis.

The reuse mode is illustrated in Fig. 7–4. The green coloured features are the ones that

are selected, and the high level goals on the right show the impact evaluations based on the

current selection accordingly.

7.2.2 Implementation of CORE Composition Rules and Algorithms

In addition to extending the CORE metamodel, this thesis contributes to TouchCORE

by implementing the CORE composition algorithms discussed in Chapter 5 that are related

120

to generating the woven RAM model. The realization model algorithms are implemented

to generate the user-tailored RAM realization models. The realization model selection algo-

rithm is implemented to determine which RAM realization models of a concern need to be

composed given a desired configuration, taking into account any feature interactions. The

composition scheduling algorithm is implemented to determine the most efficient ordering

for invoking the pairwise RAM composition algorithm. The implementation of these algo-

rithms were straightforward, we replaced lang in Algorithm 3 and Algorithm 4 with the

RAM composition algorithm (i.e., the RAM weaver [13]).

Beside supporting the essential MDE features such as model hierarchies, interfaces and

abstraction, TouchCORE supports some additional features, we highlight two important

ones here:

Library of Reusable Concerns

TouchCORE comes with a growing library of reusable design concerns, ranging from

high-level concerns such as Authentication to low level concerns providing detailed design

solutions such as Networking. Many of the concerns in the library are discussed in more

detail in Chapter 8.

Traceability

As discussed previously in Chapter 4, the CORE reuse process allows for building ap-

plications/concerns by reusing other existing concerns, often producing complex concern

hierarchies. The involved concerns in the hierarchy apply the principles of information hid-

ing as discussed in Chapter 2, and by preventing the model elements of the reused concerns

from being publicly visible in the interface of the reusing concern (the visibility of public

elements of the reused concern are changed from public to concern during the composition

121

Figure 7–5: Tracing Realization Model Elements of Features of Reused Concerns in Touch-
CORE

as discussed in as discussed in Chapter 4). Adhering to the principles of information hiding

during concern reuse produces different levels of abstractions in concern hierarchies as dis-

cussed in detail in Chapter 4 and Chapter 8. However, the modeller may want to find and

trace elements of the reused concerns to better understand how the are internally used and

how they interact with each other, despite the fact that they are hidden from the outside

world of the reusing concern. TouchCORE keeps tracing information for all model elements

of the reused concerns (and as well for elements of the extended RAM models) and allows

the modeller to highlight the model elements in the reusing concern that are composed with

model elements from realization models of features of the reused concerns using colours as

illustrated in Fig. 7–5.

122

CORENamedElement

COREModel

COREModelElement

COREPattern

URNmodelElement

map
0..1

UCMmodelElement

UCMPattern

UCMmap

Responsibility

Component

ComponentRef

PathNode

COREBinding COREMapping

URNBinding URNMapping

Figure 7–6: Corification of the AoURN Metamodel - Abstract Metaclasses

To summarize, this section of the thesis presented an overview of TouchCORE, a concern-

oriented multitouch-enabled tool for modular and incremental modelling of design concerns.

The fact that TouchRAM was successfully corified with support for concern-orientation (and

hence transformed into TouchCORE) validates several of the theoretical contributions of

this thesis: (a) it shows that it is possible to use the CORE metamodel to add the CORE

concepts into an existing modelling language, in this case into RAM , (b) it implements the

CORE reuse process discussed in Chapter 4, and therefore allows modellers to experience

the simplicity of model reuse based on concern-orientation, (c) and it implements the CORE

composition rules and algorithms discussed in Chapter 5, which allowed us to actually execute

the algorithms and verify the correctness of the resulting woven models.

123

7.3 Corification of AoURN

This section outlines how another modelling language, AoURN, was corified. As men-

tioned before, corification of AoURN is discussed here for illustration purpose only, and is

not the focus of this thesis. Similar to RAM, the corified AoURN metamodel also subclasses

the abstract CORE metaclasses using corification means A (i.e., subclassing) as shown in

Fig. 7–6. Therefore, URNmodelElement subclasses CORENamedElement, UCMmap subclasses

COREModel , and all workflow elements (PathNode, Responsibility , Component, Componen-

tRef) subclass COREModelElement. The remaining abstract CORE metaclasses relate to

composition specifications: COREPattern, COREBinding , and COREMapping . However, sup-

port for composition is provided only implicitly by AoURN, i.e., it is not reified as a first-

class modelling element in the AoURN metamodel, but rather existing modelling elements

are identified as composition specifications depending on context. A UCMmap may be a

COREPattern, and COREBindings and COREMappings are typically captured in the names

of model elements. The integration with the CORE metamodel forces these concepts to now

be clearly identified in the AoURN metamodel with the help of corification means B. There-

fore, the new AoURN metaclass UCMPattern is introduced as a subclass of COREPattern and

a directed association from UCMPattern to UCMmap is created, i.e., the metamodel now ex-

presses when a UCMmap functions as a COREPattern. Note that the directed association goes

from UCMPattern to UCMmap to allow all composition specifications to be accessible from

COREModelReuse. For COREBinding and COREMapping new subclasses URNBinding and

URNMapping , respectively, are introduced, which now explicitly encode what was formerly

expressed in the name of model elements.

124

To the contrary of RAM, AoURN cannot use all concrete CORE metaclasses as is (i.e.,

through corification means D), because the AoURN metamodel already contains concepts

related to concerns, feature models, and impact models. Consequently, all already exist-

ing concepts use corification means C as shown in Fig. 7–7, while corification means D

is used for the remaining concepts. A directed association is introduced from Concern to

COREConcern, FeatureModel to COREFeatureModel , Feature to COREFeature, ImpactModel

to COREImpactModel , IntentionalElement to COREImpactNode, Contribution to COREContri-

bution, and EvaluationStrategy to COREReuseConfiguration. The COREFeatureImpactNode is

treated slightly differently in that a new AoURN metaclass FeatureImpactElement is intro-

duced before associating it with the COREFeatureImpactNode. This is done to ensure that

all nodes in an impact model are modelled with native AoURN metaclasses, which simplifies

the management of AoURN models. All of these model elements have to be kept in sync, i.e.,

when an AoURN model is loaded, changes in the CORE model elements are propagated to

the AoURN model and when an AoURN model is saved, changes in the AoURN model are

propagated to the CORE model elements. The remaining concrete CORE metaclasses, which

are all related to concepts from the reuse and composition parts of the CORE metamodel,

which are missing in AoURN, are used as is.

These modifications to the AoURN metamodel allow all concepts of CORE to be provided

for AoURN, analogously to RAM as already explained earlier in the previous section.

7.4 Conclusion

This chapter outlined strategies to integrate the CORE metamodel into the metamodel

of any modelling language that wants to use the concepts of CORE using subclassing and/or

125

COREConcern COREImpactModel

COREContribution

COREImpactNode

URNspec

Concern GRLspec ImpactModel

FeatureModel COREFeatureModel

COREFeature

FeatureImpactElement

COREReuseConfiguration

COREFeatureImpactNode

EvaluationStrategy ElemenLink

0..1

0..1

0..1

0..1

0..1

0..1 0..1 0..1

IntentionalElement

Contribution Feature

Figure 7–7: Corification of the AoURN Metamodel - Concrete Metaclasses

creating directed associations. The chapter validates the CORE reference implementa-

tion/metamodel presented in Chapter 6 and the aforementioned strategies by corifying two

modelling languages: AoURN and RAM. Both languages have dedicated modelling tools,

jUCMNav and TouchCORE, which were extended with support for concern-orientation. We

provided details about the corification of the RAM modelling tool TouchCORE. In the next

chapter, we discuss how we developed some reusable design concerns in RAM, most of which

are part of the reusable concern library of TouchCORE.

126

Chapter 8
Reusable Concern Library

As discussed earlier, building a reusable concern can be a non-trivial and time consum-

ing task, typically requiring the modeller to have extensive domain knowledge. Since all

the knowledge needed for building a reusable concern may not be available at the time of

its construction, the concern should be extensible for future development, allowing it to be

continuously updated by adding new features (and their realization models) when the spec-

ifications of these features are known. However, evolving models generally tend to grow in

size, to the extent that it becomes difficult to understand and maintain them, posing a scala-

bility problem for developing evolving reusable design concerns. We address this problem by

incrementally modelling concerns, in which a reusable concern is built by adding small model

increments to a base model. We apply this methodology in building our growing number of

reusable design concerns. In this chapter we demonstrate how we build a particularly large

Workflow concern incrementally.

Incremental modelling proposes to build large software design models specifying complex

structure and/or behaviour by incrementally putting together models of smaller size. In the

context of incremental modelling, models are named base models if they are self-contained,

i.e. they can fulfill their purpose as is, whereas so-called model increments have to be applied

to some base model to fulfill their purpose. Therefore, by its nature, model composition in

the context of incremental modelling is asymmetric, i.e., we obtain an incremented model by

127

composing a base model (also called base realization model or base application) with a model

increment.

Breaking down the concern into small model increments not only allows the modeller

to add an increment when it is needed by the reusing application/concern, but also to add

the increment when the knowledge required to model it becomes available. Additionally,

incremental modelling contributes towards addressing the scalability problem provided that

a model increment is small in size and that specifies a logical step towards the final model.

This chapter discusses how we incrementally modelled concerns for the reusable concern

library. We start this chapter by discussing how incremental modelling integrates with

modern software design processes and practices including Software Product Lines in the next

section. We then discuss the properties of model increments in Section 8.2. We then present

how incremental modelling can be used for incrementally developing a concern in Section 8.3.

The incremental design of the Workflow concern is shown in Section 8.4. Section 8.5 provides

an overview of other concerns we designed for our reusable concern library and Section 8.6

concludes this chapter.

8.1 Incremental Modelling and the Software Design Process

Incremental modelling integrates very well with modern software design processes such

as prototyping, iterative methodologies or the Unified Process [70]. These methodologies

design and implement an application in phases. First, a simple version of the application

is developed that only provides core functionality and services. Detailed and additional

functionalities are added in subsequent iterations.

Vertical Decomposition of Design: Within each iteration, software design typically

follows a top-down and/or bottom-up strategy, depending on whether the focus is to first

128

elaborate high-level abstractions and functionality, or rather to initially flesh out certain

important low-level details of parts of the design. For instance, if detailed functional re-

quirements for the software under development have been elaborated, the initial design

phase might begin with deciding on a high-level architecture for the system, and how the

required functionality is to be decomposed into subfunctionalities and allocated to different

components. On the other hand, if a certain subfunctionality is crucial to the functioning

of the software under development, or if reusing an existing software artifact such as a mid-

dleware is mandatory or highly cost-effective, then low-level details of a specific required

functionality might be designed first in order to determine if the design is actually feasible.

To enable such top-down or bottom-up design, abstraction and information hiding are

key to tame the inherent complexity of a system [93]. Information hiding is the activity

of consciously deciding what parts of a software module should be exposed to the outside,

i.e., the “rest” of the software under development, and what parts should be hidden from

external use. To allow a modeller to state what is internal and what is external to a model,

the modelling language must provide constructs to define a model’s interface. The interface

of a software design model describes an abstraction of the actual model. Only the structural

and behavioural properties that are relevant to use the model and its provided functionality

are shown in the interface. The design details pertaining to how this functionality is provided

are not relevant to the user.

Horizontal Decomposition of Design: When transitioning from one iteration of the

software design to the next, it is typical to consider additional functionality. As a result,

the core parts of the existing design are complemented with additional functionality, or new

components are introduced that take care of providing the additional functionality and the

129

existing design is adapted to integrate the new components. To make incremental modelling

useful in this context, the modelling language and composition techniques used to combine

models needs to support adaptation of existing model interfaces.

Feature-Oriented Decomposition of Design: Finally, incremental modelling also in-

tegrates well with software product line (SPL) engineering, a software development method-

ology in which a family of applications is developed that share common functionality. In

SPLs it is common practice to specify the variability in terms of features that an application

might have separately from the associated artifacts that provide implementations of the fea-

tures. If incremental modelling is applied in an SPL context, mandatory features would be

designed in base models, whereas optional features would be designed in model increments.

To obtain a software design model for a specific application (commonly called product in SPL

terms), the base models would be composed with all the model increments that correspond

to the selected features for the product.

8.2 Properties of Design Model Increments

In this section we comment on properties that, according to our experience, a good design

model increment should have.

Size: Each individual model increment should be small, as it has been shown in psy-

chological studies that the active working memory of a human is limited [77]. When an

individual undertakes a mental task (e.g. attempting to analyze a model or answer questions

about a model) that exceeds their working memory capacity, errors are likely to occur [115].

Examining or building a model of a system induces a certain mental effort on the modeller,

which corresponds to the amount of working memory a certain task utilizes [91]. This value

depends on model-specific factors, one of which is model size.

130

Base
Realization

(a) A reusable concern

(b) An application

Extension
Realization

Extension
Realization

Extension
Realization

Extension
Realization

Extension
Realization

Customized
Concern

Application
base

Customized
Concern

Customized
Concern

Customized
Concern

Figure 8–1: Extension versus customization increments in CORE. Figure (a) shows that
a reusable concern is built by incrementally adding extension realization models to a base
realization model. Figure (b) illustrates that an application is built by composing user-
tailored version of the concerns with the base application.

131

Completeness: What is even more important than size though is coherent modulariza-

tion. Each model increment specifies a logical step towards the final model, and therefore

needs to contain all the structural and/or behavioural elements pertaining to that logical

step. This is important for two reasons:

• Internal Consistency : Having all model elements pertaining to a logical increment in

one place is useful for reasoning about the increment itself. It also simplifies making

coherent changes to the structure and/or behaviour modelled by the increment.

• Consistent Use: Since the model contains all relevant model elements of the logical

increment step, the result that is obtained when applying the increment to the self-

contained base model is also self-contained.

Kind/Type of Model Increment: Because of the way incremental modelling is used

within the software design process, there are essentially two kind of model increments: ex-

tension increments (also called extension realization models in the context of CORE) and

customization increments (reused concerns in the context of CORE).

When using extension increments, the modeller’s intent is to add additional structural

and/or behavioural model elements to the base model that provide additional, alternative or

complementary properties to what already exists in the base model. The extension increment

augments the interface of the base model with additional structure and behaviour. In a sense,

an extension increment specifies a horizontal model transformation that maintains the level

of abstraction of the base model. The incremented model can still fulfill the same purpose

as the base model did, and can be also used for additional purposes that are introduced as

a result of the extension. Consequently, the model elements exposed in the interface of the

incremented model can stem from both the base and the incremented model. Regardless of

132

where they stem from, all the model elements in the interface are equally relevant to the

outside. A extension realization model in the context of CORE is an extension increment,

as it provides additional or alternative properties to what other realization models within

the same concern already provide.

Fig. 8–1 (a) illustrates extension increments in the context of CORE. Extension realiza-

tion models of a concern are built incrementally by adding them to some base realization

model(s). Therefore, some features of the concern are realized by base realization models,

while others are realized by extension realization models. The relationship between features

and realization models is shown in the metamodel discussed in Chapter 6, which states that

a feature can be realized by many realization models, or by no realization at all (for example,

to resolve a conflict with another feature, a feature can be realized by two realization models,

one to resolve the conflict). However, usually a feature is realized by one realization model

in design concerns. The incremented model resulting from composing a base realization

model with an extension realization model is still at the same level of abstraction (i.e., the

abstraction level of the concern containing these models).

When reusing a concern, a user-tailored reused concern in the context of its reuser –

regardless of whether the reuser is another concern or an application – is considered a cus-

tomization increment. The structure and the behaviour of a customization increment is

adapted to serve the purpose of its reuser. In other words, the modeller alters or augments

the properties of the reused concern to render them useful for a new purpose. In a sense,

a customization increment specifies a vertical model transformation that produces an in-

cremented model (i.e., the reused concern + the reusing concern/application) that is at a

different level of abstraction (or domain). The incremented model fulfills a new purpose,

133

where part of the structure and/or behaviour is provided by model elements of the reused

concern. The interface of the incremented model exposes only elements produced as a result

of customization. These model elements and properties can stem from the reusing con-

cern/application or the altered/augmented reused concern. The fact that the incremented

model is partially based on a reused concern is hidden.

Fig. 8–1 (b) illustrates customization increments in the context of CORE. An application

is typically built by reusing many concerns, by applying the three-step reuse process discussed

in Chapter 4. During the reuse process, a user-tailored version of the reused concern is

produced, and the partial elements in its customization interface are concretized in the

application. The incremented model resulting from this reuse process is at a different level

of abstraction or domain. For example, the incremented model resulting from reusing the

Association concern in the Authentication concern is no longer at the low abstraction level

of Association. Similarly, the incremented model resulting from reusing the Authentication

concern in the Bank application no longer serves only the security domain.

In summary, vertical transformation in the context of CORE occurs when reusing a

concern in another concern or an application, moving the reused concern to a different

level of abstraction or domain. Whereas horizontal transformation happens as a result of

extending a realization model by another realization model within the same concern, adding

additional functionality to what already existed, while still serving the same domain of the

concern.

8.3 Supporting Incremental Modelling in CORE

Incremental modelling is integral to CORE. In fact, all three types of decompositions

discussed in Section 8.1 are present in the CORE metamodel. The variation interface of

134

a concern supports the feature model decomposition, and the metamodel allows modelling

languages to specify the two types of model increments described in Section 8.2 . In CORE,

horizontal decomposition is achieved by breaking down the structure and the behaviour of

a concern into a set of realization models, while vertical decomposition is achieved through

the CORE reuse process. Concretely, incremental modelling is supported in the CORE

metamodel by the following:

• CORE allows modelling languages to define their own composition specifications for

their realization models through subclassing from COREBinding, COREPattern, and

COREMapping . A realization model can specify composition specifications to other

realization models within a concern, allowing for horizontal decomposition through

extension increments.

• The CORE metamodel specifies how to reuse a concern by defining two metaclasses,

COREReuse and COREModelReuse (discussed in detail in Chapter 6). As mentioned

earlier, building an application/concern by reusing existing concerns results in vertical

decomposition.

• In addition, CORE allows modelling languages to explicitly specify the visibility of

model elements through the COREVisibilityType enumeration in the metamodel. CORE-

VisibilityType provides two options: public and concern, specifying whether the model

element is visible from outside the concern or only from within the concern, respec-

tively, making it part of the usage interface in the former case. When a concern

is reused, the model transformation implementing the composition (i.e., the weaver)

changes the visibility of its public model elements to concern. Additionally, the meta-

model requires languages to specify whether the partial elements need to be concretized

135

within the concern, or outside the concern through the COREPartialityType enumer-

ation. COREPartialityType provides three options: (i) none: means that the model

element is complete (i.e. it is not partial), (ii) concern: the model element is par-

tial and needs to be concretized within the concern, as shown in the example of the

Authentication concern in Chapter 4. Elements of a realization model of a feature,

such as |Credential in the realization model of the root feature of Authentication, can

have their partiality type set to concern so that they must be concretized later on for

every possible feature configuration of the concern (|Credential became concretized as

Password later on), (iii) public: the model element is partial and must be concretized

outside the concern, i.e. the model element is part of the customization interface. To-

gether, COREVisibilityType and COREPartialityType allow for scoping of model elements

in the context of concern reuse, supporting the principles of information hiding [93].

• Finally, the COREmetamodel requires the concern to specify a feature model (COREFeatureModel

and COREFeature) allowing the concern to be decomposed into features.

8.4 Incremental Design of a Workflow Middleware

To illustrate incremental modelling in the context of CORE, this section describes how

we incrementally modelled a design concern for workflow execution engines. A workflow is

a depiction of a set of operations that need to be completed in a certain order to fulfill a

goal or task. For example, workflows have been used in software development to describe

how a system under development is supposed to interact with its environment. A well-

known modelling formalism that can be used to describe general workflows is UML Activity

Diagrams [89]. Another example is the User Requirements Notation (URN) [56], a visual

136

Synchronization

TimedSynchronization

ConditionalSynchronization

Input

Output

ConditionalExecution

ParallelExecution

Joining Forking

Workflow

JoiningForking
Resolution

Legend
Extends Dependencies
Mapping Realization Models to Features

Timed
Synchronization

Conditional
Synchronization

NestingOutputInput

Synchronization

Parallel
Execution

Conditional
Execution

Workflow

Legend
optional feature

Joining

Forking

Nesting

Figure 8–2: The Variation Interface (right) and Realization Models (left) of the Workflow
Concern

language standardized by the International Telecommunications Union (ITU) intended for

modelling interaction scenarios between a system under development and its environment.

In [33, 15, 14] we have presented an initial aspect-oriented design of a workflow execution

engine that provides the user with the functionality to define URN workflows and execute

them. In this section, we show how we redesigned that workflow middleware following the

guidelines of incremental modelling presented in this chapter.

8.4.1 Identifying Features for the Workflow Middleware

This subsection discusses the features of the Workflow concern and its reuses. In the

next subsection, we will discuss the realization models of Workflow in more detail. The

requirements for our workflow middleware were clear: all the workflow constructs defined

in the URN standard must be supported. That way, our workflow engine would be able to

execute any workflow defined within a URN scenario model, also called a use case map.

137

An initial decomposition of the design was suggested by the URN standard, as the lan-

guage defines many different workflow nodes, such as start and end nodes, conditional nodes,

timers, synchronization nodes, etc. The right-hand side of Figure 8–2 shows the feature

model part of the variation interface for the workflow concern, which specifies that all work-

flow middlewares are based on the feature Workflow, and optionally can be configured with

any of its subfeatures. The left-hand side of Figure 8–2 shows the realization models for the

Workflow concern, and illustrates how each model extends from other models, with Work-

flow being the base model for all extension realization models. We discovered that nesting,

synchronization, conditional synchronization nodes, share a common property: both nodes

need to be able to handle multiple incoming paths. We therefore encapsulated the structure

and behaviour needed to support multiple incoming paths in an extension increment named

Joining, which Synchronization and ConditionalSynchronization extend (Synchronization

directly extends Joining, while ConditionalSynchronization extends Synchronization). Like-

wise, or-forks, and-forks, timers and stubs are all URN workflow nodes that have more than

one outgoing path. We designed a extension increment Forking to provide this functional-

ity, which ConditionalExecution, ParallelExecution, Input, and Output extend. TimedSyn-

chronization and Nesting (Nesting nodes are the workflow nodes that are used in URN to

represent entire subworkflows within a workflow) use functionalities provided by both Join-

ing and Forking, however, unwanted interactions need to be resolved when using these two

models together. Therefore, TimedSynchronization and Nesting extend a realization model

(JoiningForkingResolution) which resolves the interaction between Joining and Forking.

Note that Joining and Forking are shaded in the right-hand side of Figure 8–2; they

are only important internally for other features within the Workflow concern. These two

138

features are not selectable, i.e., the selectable role name (see the metamodel in Chapter 6)

is set to zero for these two features. In other words, Joining and Forking are not part of the

variation interface, therefore, the user of the Workflow concern can not select them, they are

designed as internal features because they reuse other concerns as we will discuss shortly.

Association

Copyable

Timed
Synchronization

Conditional
Synchronization

Nesting

Output

Input

Synchronization

Conditional
Execution

Parallel
Execution

Workflow

Legend
optional feature

mandatory feature

Association Named

AssociationAssociation NamedCopyable

CommandAssociation NamedCommandSingleton

AssociationKeyCounter

AssociationNamed

Joining

Forking

Association Named

Association Named

Figure 8–3: Workflow feature model

When designing each feature, we tried to reuse as many existing concerns as possible that

we had created for other designs in the past. The reuse dependencies are shown in Figure 8–

3, where reuses are shown as mandatory subfeatures in grey rectangles. There are six reused

139

concerns in total encapsulating: the singleton design pattern (Singleton), copying functional-

ity (Copyable), naming functionality (Named), counting functionality (KeyCounter), and a

concern that groups common data structures such as arraylist to create associations between

two classes (Association). In cases where a concern is reused more than once in a feature, we

only show one reused concern as a mandatory subfeature. Except for KeyCounter, all reused

concerns had been developed previously while modelling other concerns or applications. We

decided to model KeyCounter as a separate concern because of its potential to be reused in

the future. Some of these reused concerns themselves reuse other concerns, resulting in a

complex reuse hierarchy. This is the case, for example, with KeyCounter, which itself reuses

Association.

When features of the Workflow concern are selected (i.e., when the Workflow concern is

reused), the resulting user-tailored version of the Workflow concern (i.e. the incremented

model) will be at a different level of abstraction/domain than its reused concerns, demon-

strating vertical decomposition. For instance, the resulting user-tailored version of the Work-

flow concern does not provide the naming functionality (which is provided by the Named

concern) in its interface. The functionality of Named is reused in the design of several

realization models, but this reuse is hidden from the users of Workflow.

8.4.2 Realization Models for Workflow

This section discusses in more detail the realization models of the Workflow concern

shown in Figure 8–2. We explain how we incrementally modelled the Workflow realization

models with RAM. Incremental modelling is possible in the context of RAM using model

transformation and composition techniques such as extends dependency between aspects,

inheritance and class merge for structural design modelling, and overriding and advising

140

for behavioural design modelling. We will outline the resulting composition algorithm for

structural and behavioural views. All presented concepts are illustrated with example models

from the Workflow concern case study.

Initially, RAM did not support extension increments. To be compatible with CORE

concepts, we added the concepts of extension increments, so an aspect can extend from other

aspects inside the same concern. Extension increments should use the extends dependency

using the syntax: aspect A extends B. If a model increment B extends a base model A,

no mapping of model elements of A to model elements of B need to be specified by the

modeller. All model elements of A are automatically visible in B. It is as if B was part of A,

and hence classes in B can access properties of classes in A that are not part of A’s usage

interface. In particular, B can use inheritance and overriding to extend the structure and

behaviour provided by A. Since B is an extension increment, A is likely to define core design

concepts that B wants to provide alternatives for. To do this, B can use classes defined

in A as a superclasses for new classes introduced in B to extend the structure. To extend

base behaviour with additional functionality, overriding of operations naturally complements

inheritance. Exploiting polymorphism, the extensions to A introduced through inheritance

in B can collaborate with the other core classes defined in A.

Note that in the case where the structure and behaviour provided by A needs to be

adapted within the concern in order to work correctly with the behaviour introduced by B,

the modeller can also additionally use class merge and advising when specifying an extension

increment. Of course this means that instantiation directives that map elements of A to

elements of B need to be provided. The workflow design example illustrates such a case.

141

When the weaver combines an extension increment A with a base model B, it combines

the aspect interfaces of A and B by performing a union operation: the interface of the

incremented model contains all model elements of A and B and exposes all public operations

defined in A and B. As a result, the user of the incremented model is given the alternative

to either instantiate core (super) classes provided by A or alternative, extended (sub) classes

provided by B. In other words, the user can access core functionality provided by A or rely

on alternative functionality modelled in B.

The Workflow Base Model

After careful analysis we grouped all essential structure and behaviour necessary for

defining and executing the most basic workflows within a base realization model that we

named WorkFlow. It contains the structure and behaviour necessary for supporting start

nodes, activities and end nodes, sequential composition, as well as execution infrastruc-

ture implementing token-passing semantics for these base constructs. We then designed

the more sophisticated workflow constructs of URN as extension increments of Workflow:

ParallelExecution (and-fork in URN terms), ConditionalExecution (or-fork in URN terms),

Synchronization (and-join in URN terms), ConditionalSynchronization, TimedSynchroniza-

tion, and Nesting (stub in URN terms). Some URN constructs, for example the or-join, did

not exhibit any behaviour not already covered by Workflow, and therefore did not need to

be modelled at all.

Figure 8–4 depicts the RAM realization model for the root feature Workflow, which

defines the essential model elements for any kind of workflow execution middleware. The

structural view shows that a workflow is comprised of WorkflowNodes, which can be sequence

or control flow nodes. StartNode and |CustomizableNode are sequence nodes, the EndNode

142

message view |CustomizableNode.depositToken

message view SequenceNode.depositToken

aspect Workflow realizes Workflow reuses Association<Ordered, HashMap>,
Copyable

Reuses:
Copyable:
Association<Ordered>:

Association<Ordered>:
Association<Ordered>:

Association<HashMap>

Copyable → LocalContext
|Data → ControlFlowNode; |Associated → WorkflowNode; getAssociated → getNextNodes; add
→ addNextNode
|Data → Workflow; |Associated → WorkflowNode; getAssociated → getNodes; add → addNode
|Data → Workflow; |Associated → StartupNode; getAssociated → getStartupNodes; add →
addStartupNode
|Data → WorkflowUtility; |Key → Thread; |Value → WorkflowExecutor; getValue →
getWorkflowExecutor; add → addWorkflowExecutor

Implementation:
Thread: java.lang.Thread

target: SequenceNode
depositToken(c)

e := getCurrentExecutor()

structural view

~ depositToken(LocalContext c)
+ addNextNode(WorkflowNode n)
~ initialize()

+WorkflowNode

+ addNode(WorkflowNode n)
- Set<WorkflowNode> getNodes()
+ addStartupNode
 (StartupNode n)
- Set<StartupNode>
 getStartupNodes()
+ initialize()
+ launch(LocalContext c)

+Workflow

Runnable
start

1

1 myContext
~ depositToken(LocalContext c)
+ addNextNode(WorkflowNode n)

+SequenceNode

next
0..1 Conceptionally the

multiplicity is 1, but for ease
of construction set to 0..1

+ LocalContext

next 0..1

<<metaclass>>
WorkflowUtility

~ Set<WorkflowNode>
 chooseNextNodes
 (LocalContext c)

+EndNode +StartupNode

~ depositToken(LocalContext c)
+ |execute(LocalContext c)

+ |CustomizableNode

|CustomizableNode<|execute>

target: |CustomizableNode
depositToken(c)

 super(c)

 execute(c)

+WorkflowExecution
Exception

+ GlobalContext getGlobalContext()
+ WorkflowExecutor getCurrentExecutor()
+ spawnExecution(WorkflowNode n, LocalContext c)

+WorkflowUtility

- WorkflowExecutor create(WorkflowNode
 start, LocalContext myContext)
+ scheduleNextNode(WorkflowNode n)
+ LocalContext getMyContext()
+ setMyContext(LocalContext myContext)
+ run()

+WorkflowExecutor

~ depositToken(LocalContext c)
+ addNextNode(WorkflowNode n)
~ Set<WorkflowNode> getNextNodes()
~ Set<WorkflowNode>
 chooseNextNodes(LocalContext c)

+ControlFlowNode

+Global
Context

scheduleNextNode(next)

e: Workflow
Executor

Figure 8–4: The Base Workflow Model

143

is a control flow node. The class WorkFlow has methods to add nodes and startup nodes.

WorkflowExecutor defines the methods to spawn the execution of a workflow and to schedule

the next node in the execution sequence. Figure 8–4 shows the behaviour of two methods

using sequence diagrams: the depositToken method of SequenceNode , and the depositToken

method of |CustomizableNode, the full models of the Workflow concern are downloadable

from [9].

aspect Joining extends Workflow reuses Association<HashMap>, Named

structural view

~ addInPath(String pathName, JoiningNode n)
+ JoiningNode getInpath(String pathName)
+ Set<JoiningNode> getInpaths()

~ ¦CFNWithInpaths

Reuses:
Association<HashMap>:

Named:

|Data → |CFNWithInpaths; |Key → String; |Value → JoiningNode; add →
addJoiningNode; getValue → getJoiningNode; getValues → getJoiningNodes
|Named → JoiningNode; getName → getPathname; name → pathname

+ addNextNode
 (|CFNWithInpaths succ, String inPathname)

+WorkflowNode +ControlFlowNode

+SequenceNode

~ JoiningNode

~ JoiningNode create(String pathname)
~ String getPathname()
~ depositToken(LocalContext c)

- JoiningNode getPrevious()
- setPrevious(JoiningNode n)
+ JoiningNode getCurrentPrevious()
+ setCurrentPrevious(JoiningNode n)

+WorkflowExecutor

0..1
previous

message view depositToken

caller: WorkflowExecutor target: JoiningNode
depositToken(c)

setCurrentPrevious(target)

<<metaclass>>
WorkflowExecutor

 super(c)

Figure 8–5: The Joining Extension Increment

As mentioned earlier, the usage interface is comprised of all the public model elements,

i.e., the structural and behavioural properties that the classes within the model expose to

the outside. These usable elements are highlighted in the model with a + modifier (such

as the addNode operation). The elements of COREVisibilityType: concern are prefixed

144

with a ~, such as the depositToken operation. Classes with COREVisibilityType: concern

are also prefixed with ~, and the public classes are prefixed with +. The names of public

customizable elements (i.e., COREPartialityType: public) are prefixed with a |, and they

are grouped together in a template parameter box on the top right corner of the aspect

model (which means they are part of the customization interface of the concern). Model el-

ements that must be concretized within the concern when a final model is created are given

COREPartialityType: concern and are prefixed with a discontinuous vertical bar ¦, as in case

of ¦CFNWithJoinings in Joining shown in Figure 8–5. The customizable elements of Work-

flow, for example, specifies that |CustomizableNode and |execute are a generic class and a

generic method, respectively, that need to be concretized by the reusing concern/application

in order for these elements to be useful.

Structural Increments

RAM supports the CORE incremental modelling concepts presented in Section 8.3 by

extending the CORE metamodel, which we describe in Chapter 7. RAM’s structural and be-

havioural model composition operators (i.e., the RAM weaver) have been adapted to support

incremental modelling (inheritance and class merge for structural composition, and method

overriding and advising for behavioural weaving) as outlined in Subsection 8.4.2. Here we

illustrate how structural increments are possible in RAM with some Workflow realization

models.

Class Merge: RAM provides class merge as a way to share structural model elements

between classes. In RAM, if an aspect B wants to define a class ClassB that needs, among

others, the properties of a class ClassA defined by some other aspect A, then B can extend

A. In this case, class merge (sometimes also called class diagram composition) is used to

145

merge the model elements in each of the models according to the instantiation directives

defined by the modeller. Because of the asymmetry of model increments, the directives are

defined in the increment model, and specify how the elements of the base are mapped to

elements in the increment. In aspect-oriented terms, the mapping specifies how A is woven

into B.

As shown in Figure 8–4, the Workflow model customizes Association<Ordered>, which is

the reused Association concern after selecting the feature Ordered, three times through class

merge. Association is a concern at a lower level of abstraction that provides the structure

and functionality to associate an instance of |Data to multiple instances of |Associated.

Workflow reuses Association<Ordered> to associate a WorkFlow with multiple, follower

WorkflowNodes. The mapping, described in the reuses box, also specifies that the oper-

ation getAssociated should be exposed in the interface of Workflow as getNextNodes, and

that add should be used as the behaviour for addNextNode. The weaver uses class merge to

merge |Data with |Workflow and |Associated with |WorkflowNode.

Joining in Figure 8–5 is an extension increment of Workflow which provides structure

and behaviour to allow control flow nodes to have multiple, named incoming paths. Since

Joining extends Workflow, all model elements in Joining that have the same name as model

elements in Workflow are automatically merged. Using this mechanism, Joining adds a new

method addNextNode to all WorkFlowNodes. Similarly, the WorkflowExecutor is augmented

with an association to a JoiningNode, which is used to remember through which path a node

was reached during execution. JoiningNode also reuses the Named concern, and customizes

|Named, which provides the structure and behaviour to associate a name in form of a String

with a class. The class |Named is merged with JoiningNode as specified in the reuses

146

compartment. In a similar way, Joining also reuses the Association<HashMap> concern

and maps Strings to JoiningNode.

Inheritance: Inheritance, or generalization-specialization as defined by the UML [89],

is a well-known concept of object-orientation that makes it possible to share structural

properties among objects. Concretely, common structure is defined in what is called a

superclass. Any subclasses that inherit from it also have the same structural properties, and

can define additional properties, if needed.

In RAM, incremental modelling with inheritance in class diagrams is supported as illus-

trated in the Joining aspect shown in Figure 8–5. Joining extends Workflow, and defines a

subclass ¦CFNWithJoinings that inherits from the class ControlFlowNode, which is defined

in Workflow. Likewise, a new kind of SequenceNode is defined called JoiningNode.

Structural Weaving: The model transformation technique that the TouchCORE tool

uses in order to combine the structural elements of two aspects A and B, regardless of whether

they use inheritance or class merge, is based on the class composition technique published

by France et al. [101].

In the case where B extends A, the weaver creates explicit mappings for all the implicit

mappings (an implicit mapping is between an element in A to an element in B that has the

same name and signature for the element in A), and copies all model elements that are not

mapped from A to B. In the case where B specifies an instantiation mapping, the mapping is

first used to change the names of all model elements in A to the corresponding model elements

in B. Then, our tool combines A and B by moving for each pair of model elements (classes,

associations, operations, parameters), i.e., (ma,mb) | ma ∈ A ∧ mb ∈ B ∧ ma.name =

147

 -String pathName
~ForkingNode

+ WorkFlowNode
 findNextNode(String outPathname)

~ ¦CFNWithInpath

aspect Forking extends WorkFlow

+ControlFlowNode+SequenceNode

aspect ParallelExecution extends Forking

+ Set<WorkflowNode> chooseNextNodes()
+ParallelExecutionNode

Instantiations:
OutPath:

¦CFNWithOutPath → ParallelExecutionNode

Instantiations:
Joining:

aspect Synchronization extends Joining

+ Set<WorkflowNode> chooseNextNodes()
+SynchronizationNode

¦CFNWithInPath → SynchronizationNode

aspect ConditionalExecution extends Forking

+ Set<WorkflowNode>
 chooseNextNodes()

+ConditionalExecutionNode

Instantiations:
Forking:

¦CFNWithOutPath → ConditionalExecutionNode

~ForkingNode

Figure 8–6: Synchronization, Forking, Parallel- and ConditionalExecution

mb.name all properties attached to ma to mb. The result is a new self-contained model

which can therefore be used as a base for further increments.

Figure 8–6 presents very simplified versions of the structural view of additional extension

realization models of the Workflow concern. A SynchronizationNode as defined in Syn-

chronization is a node that blocks all incoming executors until it has received a token on

each incoming path. The instantiation directives show that ¦CFNWithInpath from Joining is

merged with SynchronizationNode.

Some nodes in a workflow are not just connected to one following node. Figure 8–6 shows

an increment Forking that extends the WorkFlow base model to provide an alternative

control flow node that can have multiple outgoing paths. Again, inheritance is used to

provide this alternative. ParallelExecution is an increment based on Forking that defines

a control flow node that executes all following nodes in parallel. The ConditionalExecution

aspect shows how the designer can increment Forking in a different way to define another

alternative control flow node that represents conditional execution.

148

aspect Nesting extends JoiningForkingResolution, reuses Association<Ordered>

structural view

Nesting
Instantiations:
Association<Ordered>:

|Data → Nesting; |Associated → Binding

+ pushToStubHierarchy
 (StubNode s)
+ StubNode
 popFromStubHierarchy()

WorkflowExecutorBinding

+ StartupNode create
 (.., boolean local, ..)
~ boolean isLocal()

- boolean local
StartupNode

1 plugin

~ launchLocal(LocalContext c)
- boolean locallyLaunched := false

Workflow

message view Workflow.launch affected by globalSpawning

Pointcut

Advice

caller:
Workflow

<<metaclass>>
WorkflowExecut

or
spawnExecution(n,c)

message view globalSpawning

spawnExecution(n, c)

<<metaclass>>
WorkflowExecutor

n: StartupNode
local := isLocal()

caller: Workflow

opt [not local]

Figure 8–7: The Nesting Extension Increment

Behavioural Increments

Overriding: Operation overriding is an object-oriented technique that is used in the

context of inheritance that allows a subclass B1 to replace the behaviour of an operation

o provided by a superclass A1 by providing a new definition of o. Often though, since B1

shares structural properties with A1, the behaviour of o for B1 – the overriding operation

– needs to include the behaviour defined for o in A1 – the overridden operation. If that is

the case, the overriding operation invokes a special operation called super, which results in

executing the overridden operation in the superclass. If super is invoked, then the overriding

operation can be seen as a behavioural increment of the overridden operation.

All workflow nodes in Figure 8–4 provide the operations addNextNode and depositToken

which define shared behaviour. depositToken represents the behaviour of all workflow nodes

within a workflow, and it is triggered by the workflow executor when it traverses the workflow.

149

SequenceNode, |CustomizableNode and ControlFlowNode each provide different behaviour

for depositToken. SequenceNode simply schedules the execution of the following node as

shown in the depositTokenmessage view in Figure 8–4. Figure 8–5 shows how the behaviour

of operation depositToken in SequenceNode is overridden by the model increment Joining

simply by specifying a new message view for depositToken (with the same signature) as the

one that is to be overridden. The behaviour shown specifies that the workflow executor first

remembers the Joining node it came from before executing the original behaviour provided

by SequenceNode.

Advising: Besides overriding, RAM also provides a way for a model increment to specify

a modification to the behaviour of an operation provided by a base model. This technique is

often referred to as advising. It allows a model increment to define new (partial) behaviour

with a sequence diagram, and specify at which point in the base behaviour this new behaviour

should be inserted. To enable advising, sequence diagram weaving technology is used to

combine the two behaviours.

The Nesting realization model illustrates this in Figure 8–7. Nesting provides the struc-

ture and behaviour to allow workflows to be nested. According to the URN specification,

nesting has an impact on what is supposed to happen when a workflow is launched. Without

nesting, execution should begin concurrently at all startup nodes in the workflow. Nested

workflows, however, can specify startup nodes to be local or global. When launching a nested

workflow, execution should only begin at the startup nodes marked as global. To realize this

change in semantics, Nesting uses advising. The message view globalSpawning defines a

pointcut sequence diagram that detects calls to operation spawnExecution on instances of

Workflow. The message view then states that for each detected call, it checks whether the

150

StartupNode is local, and calls spawnExecution only if the startup node is not local. After

weaving Nesting with Workflow, the message view launch in Workflow is augmented with

the messages found in the advice part of spawnExecution.

Behavioural Weaving: The model transformation technique that the TouchCORE

tool uses in order to combine the behavioural elements of two aspects A and B, regardless of

whether they use overriding or advising, is based on the sequence diagram weaving approach

published by Klein et al. [65]. In case B extends A, the weaver creates explicit mappings for

all the implicit mappings, as done in the structural weaving. In the case where B specifies an

instantiation mapping, the mapping is first used to change the names of all model elements

in A to the corresponding model elements in B. Then all message views of A are moved to

aspect B. Next, any advising specified in B is processed. To do that, for each message view

oa coming from A that is advised by a message view mb in B, the match(es) of the pointcut

sequence diagram of mb in the sequence diagram of oa are replaced with the advice sequence

diagram of mb. Finally, standard and overridden operation invocations are processed as

follows: for each message view mb in B, any call to operations oa originally specified in A or

calls to super are replaced with the sequence diagram specified in the message view oa that

came from A, respectively with the message view mb coming from A1 .

1 It should be noted that this last step is optional and should be executed only if the
modeller wants to show the details of the called operation behaviour in the message view
where the behaviour is called.

151

8.4.3 Properties of the Model Increments of the Workflow Concern

• Size: The sizes of the model increments in the Workflow concern are small. The

biggest model increment is the Workflow realization base model with 10 classes and

11 public operations, the smallest model is ParallelExecution with 1 class and 1 public

operation. This remains within the cognitive capacity of a modeller according to [91].

• Completeness: All model increments include all the structural and/or behavioural

elements needed to define workflows with the desired functionality and to execute the

workflow with the correct semantics. The reuse process ensures that after selecting

features from the feature model in the right-hand side of Figure 8–2, a user-tailored

version of the concern is produced in which the extension realization models are woven

with the base model following the composition algorithms presented in Chapter 5. An

analysis revealed that all possible feature selections allowed by the feature model result

in a woven model, i.e., the base model + extension increment(s), that is complete, i.e.,

it does not contain any concern partial model elements any more.

• Kind of Increment: The layout of the dependency graph shown in the left hand side

of Figure 8–2 is such that all models above Workflow represent extension increments,

i.e. they all directly or indirectly extend the interface provided by Workflow, directly in

the case of ConditionalExecution, and indirectly, such as, TimedSynchronization. They

all are useful for workflow specification and execution, and simply provide different

variants of workflow constructs. Reuses in Figure 8–3 illustrate the customization

increments, as each reused concern is customized, i.e., after configuring the reuse by

selecting the desired features, the model elements from the customization interface are

mapped to model elements in Workflow to adapted them to the context of Workflow.

152

WorkFlowNode

SequenceNode ControlFlowNode

EndNode

WorkFlow 0..*

Stub Parallel
Execution
Node

Conditional
Execution
Node

Synchronization
Node

WorkFlowNode

SequenceNode

EndNode

WorkFlow 0..*

Conditional
Execution
Node

ControlFlowNode

A

WorkflowExecutor

Thread

Workflow
Executor

Thread B

Figure 8–8: Two Possible Final Models

8.4.4 Generating the Complete Design Model

Given all model increments, we are now ready to generate a complete woven model after

the user makes a valid feature selection. Figure 8–8 illustrates the power of incremental

modelling in CORE. The user of the workflow concern is presented with a feature model

(see right-hand side of Figure 8–2), from which he is to select the desired functionality of

the workflow design that is to be generated.

The top half of Figure 8–8 (A) shows the generated design model when the features

ConditionalExecution, ParallelExecution, Synchronization and Nesting are chosen by the

user. Because we used alternatives in the increments that designed the individual con-

trol flow nodes, a user of the middleware can instantiate the subset of the nodes it needs.

For example, one workflow instance can be composed of SequenceNode, EndNode, and

ConditionalExecutionNode only, whereas another workflow instance can use a different

153

subset, e.g. SequenceNode, EndNode, and SynchronizationNode. However, if all work-

flows that the workflow middleware needs to support do not use one kind of node, then a

new design model can be generated by selecting only the required features. Figure 8–8 (B)

illustrates a generated design model in which only the ConditionalExecution feature was se-

lected, and hence only the ConditionalExecution extension realization model was composed

with Workflow.

8.4.5 Reexposed Features in Workflow

As previously discussed, the reexposed features are added to the variation interface of

the reusing concern, allowing the developer to defer the decision about which specific variant

to use to the next level in the concern hierarchy. The Workflow concern reexposes fea-

tures from two concerns: Association and Networking. Multiple Workflow features reexpose

features from the Association concern. For example, the root feature Workflow, reexposes

the subfeatures of Ordered : Arraylist and LinkedList as shown in Figure 8–9. These re-

exposed features will provide the user of Workflow to choice of selecting the feature that

performs best when there are resource constraints, e.g., limitation on CPU usage. Under

such circumstances, the user can weigh the impact of selecting ArrayList versus LinkedList,

as shown previously in Figure 5–3, LinkedList performs better than ArrayList when insert-

ing/deleting elements, while ArrayList performs better when accessing the elements. Under

limited CPU capacity, and increased frequency of insertion/deletion of elements, ArrayList

should be selected. Another example of reexposed features is shown in the Input feature,

where the network protocol features of the Networking concern are reexposed. Input reuses

the Command concern and selects the NetworkCommand feature to send commands over

154

Association

Copyable

Timed
Synchronization

Conditional
Synchronization

Nesting

Output

Input

Synchronization

Conditional
Execution

Parallel
Execution

Workflow

Legend
optional feature

mandatory feature

Association Named

AssociationAssociation NamedCopyable

CommandAssociation NamedCommandSingleton

KeyCounterAssociation

Association Joining

Forking

Association Named

Association Named

Ordered

ArrayList LinkedList

Ordered

ArrayList LinkedList

NetworkCommand

Association

Ordered

ArrayList LinkedList

SOAP

Networking

HTTP SocketCommunicationSSL

Figure 8–9: The Feature Model of the Association Concern Including the Reexposed Fea-
tures.

155

the network. However, selecting the type of network protocol (e.g., HTTP, SOAP, SSL, etc.)

is left to the user based on what network type is supported by the Workflow user.

8.5 Overview of Other Concerns in the Reusable Concern Library

Using incremental modelling, we additionally designed a number of concerns in our grow-

ing reusable concern library. The concerns range from high-level concerns such as Authentica-

tion that are identified during requirement analysis, to low-level concerns such as Networking

that address implementation details. Thanks to incremental modelling, we continue to build

new concerns by reusing other concerns in the library, and adding new features to existing

concerns. Here we provide an overview of some of the concerns in the library beside the

Workflow concern that we discussed above.

Authentication

This is a requirement-level concern that allows to authenticate the user before provid-

ing her access to the system. The variation interface along with some realization models

for Authentication were shown in Chapter 4. Authentication can be done in different ways,

including password-based, voice recognition, fingerprint scan, and facial recognition tech-

niques. The password-based authentication feature offers an option of expiring the password

after a certain time. In addition, as shown in Figure 4–1, the concern provides features for

Auto Logoff and Access Blocking that allow for automatically logging off the system after a

certain idle time and blocking access after a set number of failed trials.

Authorization

The Authorization concern provides controlled access to resources. This requirement-

level concern is designed to provide functionality of well-known Role-Based Access Control

(RBAC) [104] systems. It encapsulates different variants of RBAC, such as using constraints

156

Hierarchical

Authorization

SeparationOfDuty

Optional

Mandatory

OR

XOR

Figure 8–10: Feature Model for Authorization

SOAP

Networking

HTTP SocketCommunicationSSL

Optional

Mandatory

OR

XOR

Figure 8–11: Feature Model for the Networking Concern

(Separation of Duty) and hierarchies, as shown in the feature model in Figure 8–10. The

concern internally reuses the Authentication concern.

Resource Management

The Resource Management concern provides functionality to manage resources, i.e., find

available resources according to a desired set of capabilities and allocate the resources to

tasks according. Basic search and optimal search for resources are supported by the concern.

The Resource Management concern is discussed in more detail in Chapter 9.

Networking

The Networking design concern provides different ways of establishing network commu-

nications between processes in distributed systems. So far, the concern provides features

for socket-based communication, which we use for sending/receiving messages and objects.

However, other means of networking, such as HTTP, SSL, and SOAP shown in Figure 8–11

are planned to be realized in a near future.

157

Observer

The Observer design pattern [46] is a popular software design pattern in which an object,

called the subject, maintains a list of dependents, called observers. The functionality pro-

vided by the pattern is to make sure that, whenever the subject’s state changes, all observers

are notified. We discussed the Observer concern previously in Chapter 2.

Other low-level design concerns are available in the library such as Singleton – models

the singleton design pattern that allows objects to restrict its number of instantiated in-

stances to only one instance, Named – allows naming and changing the names of objects,

Copyable – allows creating copies of an object, and Association – previously discussed in

Chapter 2, provides different ways of establishing associations between classes, particularly

covering the case where a class is associated with multiple other classes, and allows ordered,

unordered and key-indexed access to the other classes. All of these concerns commonly

appear in the design of a system.

8.6 Conclusion

This chapter discusses how we designed concerns for our reusable concern library by ap-

plying the incremental modelling methodology. Concepts of incremental modelling such as

information hiding, horizontal and vertical decompositions, and assigning models to features

are integral to CORE. More specifically, all three types of decomposition necessary for incre-

mental modelling are supported by CORE. Extension realization models allow for horizontal

decomposition of a concern, the concern reuse process allows for vertical decomposition of

an application or a concern, and the feature model part of the variation interface allows

for feature-oriented decomposition. We demonstrated using the Workflow concern how a

158

concern of a considerable size can be modelled incrementally. The same methodology was

used to design all other reusable concerns in our reusable concern library.

159

Chapter 9
bCMS Case Study

So far, the validation of CORE was carried out in this thesis by conducting extensive

comparison between concern and other units of reuse, successfully using the CORE reference

implementation to corify two modelling languages, and by applying by the CORE reuse

process on a growing number of reusable design concerns. This chapter discusses the final

contribution of this thesis towards validating CORE: applying the CORE reuse process on

a case study of a product family of crisis management system (CMS). A crisis management

system (CMS) facilitates the handling of a crisis by orchestrating the communication between

all involved parties. The CMS allocates and manages resources, and provides access to

relevant crisis-related information to authorized users of the CMS in a timely and reliable

manner. In [7], a CMS is proposed as a common case study to evaluate the strength and

weaknesses of different modelling approaches. The CMS domain was chosen on purpose,

because it represents at its core reactive, distributed systems. Furthermore, a CMS needs to

be highly dependable, and hence incorporates many crosscutting concerns, such as security

and resource management. Additionally, the CMS domain contains much variability due to

the different natures of potential crises and ways to address them. The CMS case study has

been used extensively by the modelling and software engineering community to demonstrate

and evaluate modelling approaches (e.g., to compare aspect-oriented modelling approaches in

a special issue of the journal Transactions on Aspect-Oriented Development [7]). Because of

the fact that the CMS case study should be applicable to modelling approaches targeting all

160

software development phases including requirements and variability engineering, the scope

of the CMS case study was intentionally very broad. Unfortunately, this broadness prohibits

modelling approaches that focus on the detailed design phase to model it in its entirety or

at least a significant part of it. Hence, a smaller subset of the case study called bCMS was

proposed [27], describing the requirements of a family of car crash CMSs. Because our goal is

to demonstrate CORE on a complete system as much as possible, we focus on modelling the

bCMS. The bCMS itself has been used to demonstrate concepts of many modelling notations

in the workshop series on Comparing Modelling Approaches (CMA) [4].

Fig. 9–1 shows the features of the bCMS as derived from the requirements. Features

with a white background are specific to the bCMS. Features with a shaded background

represent reused concerns and will be discussed in the next section. The bCMS consists

of one main use case (represented by the MissionExecution feature), which focuses on the

communication between a police station coordinator (PSC) and fire station coordinator

(FSC) to handle a crisis. VehicleManagement involving police vehicles and fire trucks is

also required to accomplish this task. Seven variation points are explicitly mentioned in the

requirements document: (i) the bCMS may either handle a Single crisis or Multiple crises

at the same time, (ii) the crisis may be handled by one PSC and one FSC (SinglePSCFSC)

or multiple coordinators (MultiplePSCFSC), (iii) Authentication/Authorization choices are

handled by the respective concerns, (iv) Encryption may optionally be provided, (v) the

communication among coordinators may vary (handled by the Networking concern), (vi)

the VehicleCommunication may vary, and (vii) the communication between PSC, FSC, and

various vehicles may be manual or provided by the system (PSCToPoliceAndCitizenVehicles,

FSCToFireTrucks, CitizenVehiclesToPSC).

161

bCMS_SPL

Vehicle
Management

bCMSEncryption

Optional

Mandatory

OR

XOR

Mission
ExecutionCrisis

Multiplicity

Multiple Single

Coordinator

CoordinatorMultiplicity

Authentication

SinglePSC
FSC

MultiplePSC
FSC

PSCToPolice
And

CitizenVehicles

FSCTo
FireTrucks

CitizenVehicles
ToPSC

Vehicle
Communication

Authorization

Resource
Management

Encryption
Workflow

Workflow

Association

Networking

Networking

Figure 9–1: The bCMS Feature Model

In the next section, we discuss how we identified the reusing features and the reused

concerns from the bCMS requirement document. Then, in Section 9.2, we discuss in detail

how we reused a particular reusable concern called ResourceManagement in bCMS following

the three-step concern reuse process. We discuss the lessons learnt from this case study in

in Section 9.3. Section 9.4 discusses the limitations. Finally, we conclude this chapter in

Section 9.5.

9.1 Modelling of the bCMS with CORE

Since a concern uses the most appropriate modelling notations to describe its properties,

how a system is modelled follows from the notations used by the concern. The number and

types of modelling notations used to describe a concern beyond feature and impact models is

rather open-ended. They vary as they are determined by what is best for a particular concern.

Without loss of generality, we limit ourselves to workflow and software design notations in

this chapter, similar to what we did previously in Chapter 4. Workflows are expressed

with the Aspect-oriented User Requirements Notation (AoURN). We use them to capture

162

a system view of all use cases of a concern and their relationships, i.e., the requirements

described as the interaction of the system with its environment. The software design of a

concern, on the other hand, is expressed with Reusable Aspect Models (RAM), describing

structure and behaviour with class and sequence diagrams, respectively. Consequently, best

practices in each of these areas are used to model a system and the bCMS is no exception.

However, as mentioned earlier in Chapter 4, we focus in this thesis on how to reuse existing

concerns that encapsulate AoURN and RAM models to build an application. We do not

focus on how to apply any of the individual modelling notations, describing in detail how

to model a system with such a modelling notation. The realistic size of the bCMS allows

us to gain valuable experience in concern-driven development, which we discuss further in

Section 9.3.

9.1.1 Identification of Concerns and Reusing Features in the bCMS

To fully reap the benefits of reuse, i.e., increasing scalability and avoiding duplication of

effort, a feature of a high-level concern should be able to reuse the structure/behaviour/properties

of a lower-level concern when appropriate. We have shown examples of concern reuse in sev-

eral examples in this thesis. Note that if an optional feature reuses another concern and

the feature is not selected, then the reuse does not need to be considered. Hence, concern

hierarchies allow the developer to modularize the application into different layers of ab-

straction. To develop the bCMS, we loosely follow the strategies of existing aspect-oriented

development methodologies to identify concerns within textual requirements or requirements

models [79], adapted to the existence of our reusable concern library. Considering that the

number of existing concerns in the library is still manageable, a simple match based only

on the name of the concern is often sufficient to yield an initial list of reusable concerns.

163

At the time the bCMS was modelled, ten existing reusable concerns were determined to

be applicable to the bCMS. The feature model in Fig. 9–1 shows two levels in the concern

hierarchy: the features with white background belong to the bCMS at the top level and the

features with shaded background belong to the second level as these are concerns that are

reused by features of the bCMS.

As described previously, a concern in CORE may contain models from various abstraction

levels, but does not have to contain all of these models. Each concern has a root phase in

the software development life cycle, where the concern manifests itself for the first time.

Depending on what is described by a concern, this phase may be the requirements phase,

in which case, e.g., workflow models of the use cases of the concern do exist as well as the

corresponding design models. The root phase may also be the design phase, in which case

workflow models are not needed, because such a concern does not have interactions with

users and other systems in the environment. An example of the former is the Authentication

concern shown in Chapter 4, which allows a user to gain access to a protected system. An

example of the latter is the Observer concern which handles how changes in one design

artifact are communicated to another design artifact. In the following list of applicable

reusable concerns, the root phase of the concern is indicated in parentheses after the concern

name. We described each concern in the bCMS in detail in Chapter 8.1 . Representative

of all other reused concerns, the ResourceManagement concern is described in more detail

throughout this chapter.

1 See http://www.ece.mcgill.ca/~gmussb1/bCMS/ for all bCMS models.

164

Authentication (requirements) and Authorization (requirements) are applied system-wide

to the root feature of the bCMS. Resource Management (requirements) allows resources to

be managed and allocated to tasks according to the desired capabilities of resources. Basic

search and optimal search for resources are supported by the concern. The ResourceMan-

agement concern is needed by the VehicleManagement feature of the bCMS. Encryption

(requirements) is an optional feature that applies system-wide. Workflow (design) is used to

model the MissingExecution feature. Networking (design) is needed for vehicle and coordi-

nator communication. Other low-level design concerns such as Observer (design), Singleton

(design), Named (design), Copyable (design), and Association (design) commonly appear

in the design of a system (they appear at the third or lower levels in the bCMS concern

hierarchy).

9.2 Reusing the ResourceManagement Concern

We previously demonstrated the three-step CORE reuse process using an example Bank

application and the Authentication reused concern in Chapter 4. This section describes

in detail the three-step process of concern reuse applied to reuse the ResourceManagement

concern in bCMS. The same process is carried out 102 times for 158 feature reuses in bCMS.

9.2.1 Step 1: Feature Selection with the Variation Interface

The feature model of ResourceManagement at the top of Fig. 9–2 indicates that the

concern supports the management of resources, the allocation of tasks, and optionally two

ways of searching for resources. In addition, the feature model shows that the ResourceMan-

agement concern itself reuses the Association concern four times. The developer of the Re-

sourceManagement concern has already decided that only six variations out of all variations

available in the Association concern are applicable in the context of ResourceManagement

165

Allocation Search

Association

Unordered Database

Resource Management

Optimal

HashSet TreeSet

Allocation reuses Association<reexpose
 Unordered, HashSet, TreeSet, Database>

Kind ThreadSafe

Figure 9–2: Feature Model (top) and Impact Model (bottom) of ResourceManagement Con-
cern

(Database, the children of KeyIndexed (HashMap and TreeMap), and the children of Or-

dered (ArrayList, LinkedList, and Stack); the children are not shown in Fig. 9–2). Thus, the

developer reexposes these features in the variation interface of ResourceManagement. The

developer of the bCMS may now decide which one of the remaining variations is best for the

specific context of the bCMS. In other words, the developer of ResourceManagement deferred

some decisions about features of the Association concern to the developer of the bCMS, who

has a better idea of what is suitable in the context of where ResourceManagement is actually

reused, i.e., the bCMS.

Also part of the variation interface, the impact model at the bottom of Fig. 9–2 helps the

developer of the bCMS make this decision, as it allows the developer to perform trade-off

analyses for different feature selections. The impact model shows that Database impacts

Persistence and each available feature of Association impacts Performance. In addition,

ResourceSearch as well as Optimal also impact the Performance goal with ResourceSearch

being the better option. Generally, the Database feature is better in terms of persistence, but

worse in terms of performance, compared to other features of Association. The impact model

166

also shows that ResourceSearch and ResourceAllocation are more important than Resource-

Management in terms of performance, because the former are used much more frequently

than managing resources. Therefore, the contributions of their reused Association concerns

to Performance are higher. Considering the impact model, the developer of the bCMS selects

ResourceSearch, because a quicker response time is more important in a crisis management

system than optimal resource use, and Database, because the status of existing resources

and their allocations must be persisted to guard against loss of this vital information.

Each feature of a concern is modelled by one or more realization models (e.g., AoURN

workflow models and/or RAM design models depending on the root phase of the concern).

Once the developer has selected the desired features, a CORE tool then merges the models

that realize the selected features to yield a user-tailored set of realization models of the

concern corresponding to the desired feature selection (see Fig. 9–3 for the user-tailored

workflow and design models of ResourceManagement). Fundamentally, a concern is described

as generally as possible to increase reusability. Therefore, as previously pointed out, some

elements in the concern are only partially specified and need to be related or complemented

with concrete modelling elements of the application that intends to reuse the concern. The

user-tailored set of realization models for ResourceManagement still contains these partially

defined structural and behavioural elements, indicated by a vertical bar ’|’.

The workflow models in Fig. 9–3 define the management of resources (Feature: Re-

sourceManagement). Two model elements (|Administrator and |Resource) are only partially

defined, because the developer of ResourceManagement cannot know the application-specific

resources that will have to be managed when the concern is actually reused and who will be

167

Feature: ResourceManagement

Feature: ResourceSearch Feature: ResourceAllocation-Deallocate

Feature: ResourceAllocation-Allocate

`

myCapability
1

Woven ResourceManagement
structural view

|Request
|Resource
|Capability

|ResourceManager
|Task

+ Request create()
+ Set<|Resource> find()
+ add(|Capability cap, Integer num)
+ Set<|Capability> getCapabilities()
+ int getNumber(|Capability c)
+ delete()

bool allocated
|Request

+ |Resource create
 (.., |Capability myCapability, ...)
+ |Capability getCapability()
+ bool isAllocated()
+ allocate()
+ deallocate()

|Resource

+ Set<|Resource> getResources()
+ add (int index, |Resource r)
+ remove(int index)

|Capability

<<impl>>
Integer

+ allocateResources(Set<|Resource> r)
+ Set<|Resource> getResources()
+ deallocateResources()
+ add(String key, |Resource r)

|Task

<<impl>>
String

+ add (String key, |Resource r)
+ remove(|Resource r)

Collection<|Resource>

1 setResources

0..* resources+ add (int index, |Resource r)
+ remove(int index)

OrderedCollection

1 rCollection

resources
0..*

+ add (|Capability key, Integer r)
+ remove(|Capability c)

Collection<Integer>

1
setIntegers

0..* number

+ Set<|Resource> getResources()
+ add (String key, |Resource r)
+ remove(|Resource r)

|ResourceManager

1
setResources + add (String key, |Resource r)

+ remove(|Resource r)

Collection<|Resource>

0..* resources

Figure 9–3: Workflow (top) and Design (bottom) Realization Models for User-Tailored Re-
sourceManagement

168

managing them. In addition, the concern allows resources to be allocated/deallocated (Fea-

ture: ResourceAllocation-Allocate/Deallocate). These behaviours are to be merged with the

application as indicated by the pointcut stub (the dashed, diamond-shaped symbol with a

P). The pointcut stubs represent the locations in the application where allocation and deallo-

cation are needed. Once these locations have been specified, the allocation and deallocation

behaviour is added to the application before and after the specified location, respectively.

This is visually indicated, because the allocation behaviour is shown before the RequiresAllo-

cation pointcut stub and the deallocation behaviour is shown after the RequiresDeallocation

pointcut stub. |Task is a partial element, because it is application-specific for what tasks

resources are allocated/deallocated. Before resources can be allocated, they need to found.

The stub Find (dashed, diamond-shaped symbol) in the allocation scenario links to other

features in the ResourceManagement concern, i.e., only the ResourceSearch feature is con-

nected to the stub in this case, because the Optimal feature was not selected and is hence

not anymore connected to the stub in the user-tailored realization models of ResourceMan-

agement.

Fig. 9–3 shows the structural diagram of the woven model generated for the user-tailored

ResourceManagement concern, which contains all design realization models for the selected

ResourceManagement, ResourceAllocation, and ResourceSearch features. |ResourceManager

allows adding/removing resources (|Resource), while |Task allows allocating/deallocating

them. |Request adds capabilities (|Capability) to be searched. The find operation in |Re-

quest finds all the resources in its list of capabilities that are currently not allocated. The

Collection and OrderedCollection classes come from the Association concern, which was

reused four times and for which the developer of the bCMS still needs to make decisions.

169

The OrderedCollection class will become more concrete after selecting one of the subfea-

tures of the Ordered feature (ArrayList, LinkedList, Stack) in Association. Similarly, Col-

lection<|Resource> and Collection<Integer> will be concretized upon selecting one of the

subfeatures of KeyIndexed (HashMap, TreeMap). If the Database feature of Association is

selected, the Collection classes will be used to cache data retrieved from the database and

the methods of the Collection classes will be adapted by the Database feature to access the

database when needed.

9.2.2 Step 2: Adapting the Reused Concern to the Application with the Cus-
tomization Interface

In the second step of the concern reuse process, the developer of the bCMS adapts the

generated, user-tailored but still partially defined realization models of the concern to the

needs of the bCMS. This is done by mapping customization interface elements of Resource-

Management to model elements of the bCMS. A customization interface element is identified

by the vertical bar ’|’, i.e., it is a partially defined element. The customization interface

therefore describes how ResourceManagement may be adapted to the needs of a bCMS and

is used when ResourceManagement is composed with bCMS. Consequently, the customiza-

tion interface allows ResourceManagement, which is a generalized concern, to be specialized

to the application under development, i.e., bCMS. The mapping of partially defined elements

is done for each type of model and hence may involve requirements and/or design models.

For example in the workflow models, |Administrator is mapped to Coordinator in the

bCMS and |Resource is mapped to PoliceVehicle and FireTruck. In addition, the loca-

tions represented by the pointcut stubs need to be specified for the workflow models. For

example, the locations for RequiresAllocation are specified as “proposeRouteForPoliceVehi-

cles” and “proposeRouteForFireTrucks”. Consequently, the allocation behaviour is added

170

before these two locations in the bCMS workflow. Partial elements of design models are also

mapped similarly, from Fig. 9–3, |ResourceManager is mapped to VehicleManager in bCMS,

|Capability to VehicleKind, |Task to Crisis, and |Request to the concrete class Request in

the bCMS.

The result of the second step is a set of realization models that are customized to the

specific application context of the bCMS and that are ready to be used in the bCMS. The

resulting models are essentially those shown in Fig. 9–3, except that the partial elements are

replaced by concrete elements from the bCMS as defined by the mappings. Note that this

additive approach guarantees compositional correctness and consistency of the user-tailored

and customized set of design models by construction [62]. The same additive approach applies

to the customization of workflow models. The tailoring of workflow models, however, uses

the built-in hierarchical structuring mechanism of AoURN [56] to guarantee compositional

correctness and consistency by construction.

9.2.3 Step 3: Using the Reused Concern in the Application through the Usage
Interface

The composition enabled by the customization interface integrates ResourceManagement

into bCMS. As a result, the usage interface describes how bCMS can finally access Resource-

Management ’s structure/behaviour/other properties. Concretely, the usage interface further

connects bCMS and ResourceManagement, e.g., through method calls from an application-

specific bCMS class to a class provided by the ResourceManagement concern or by incorpo-

rating a workflow of the ResourceManagement concern into the bCMS ’ workflow. While the

variation interface is always expressed with feature and impact models and the fundamental

concept of the customization interface to identify partial elements is the same for all models

in a concern, the exact nature of the usage interface depends on the modelling notation.

171

For example, the usage interface of the design model of a concern is typically comprised of

the concern’s public classes and methods (e.g. allocateResources(...), allocate(), and deallo-

cate()). For workflow models, on the other hand, the usage interface consists of the starting

points of the top-level workflows that are made available to the developer reusing the concern

(e.g., the start point manage in ResourceManagement).

9.3 Lessons Learnt

This section first presents metrics to quantify the achieved model reuse, and then de-

scribes our experience in applying CORE to a large system.

9.3.1 Substantial and Scalable Model Reuse

This case study is applied to the design of an application of considerable size with real-

world requirements. We were able to reuse a substantial number of pre-existing concerns

within our bCMS requirements and design models. Some of these concerns themselves reuse

other concerns, which creates a concern hierarchy with complex concern dependencies. The

maximum depth of the concern hierarchy for our bCMS design is 4. Table 9–1 shows reuse

metrics collected during the case study. The case study involves 102 reuses of 12 concerns.

The reused concerns contain a total number of 61 features that are currently realized by 43

different design models and 16 different requirements models. The number of feature and

realization models for a concern may not be identical. Some features may not be realized

by any model, and there may exist models that realize more than one feature for resolving

feature interactions.

Reuse of previously developed concerns suggests the effectiveness of CORE. All concerns

apart from Encryption have been developed when building other applications. Some concerns

were reused multiple times, possibly with more than one configuration resulting in a total of

172

158 feature reuses. The 158 feature reuses involve 32 unique reused features (i.e., features

that are reused at least once). The most reused concern is the Association concern with 38

reuses. The Named concern allows to set and modify names and is reused 32 times. The

largest concerns in terms of features and realization models are Association and Workflow

(12 features, 11 realization models each).

The concern hierarchy shows that a concern may appear at any level of abstraction. The

first number after the concern name in Table 9–1 represents the reuse depth, i.e., a concern of

depth 1 does not have any reuses, and a concern of depth 2 reuses one or multiple concerns

of depth 1. The second number or range explains at which level in the bCMS hierarchy

the concern is reused. For example, Association (1)(1-3) means that Association does not

reuse any other concerns, and that in the bCMS it is reused at levels 1, 2, and 3 (the

bCMS concern at the top of the hierarchy is level 1). Both numbers serve as an indicator

of the level of abstraction of a concern. The range additionally serves as an indicator of the

concern’s genericity. Concerns with a wide reuse range (reused at a wide range of levels)

are applicable at many levels of abstraction, which is the case for generic concerns such as

Singleton, Association, Networking, and Named.

9.3.2 Software Product Line Comes for Free

Reexposing features of lower-level concerns at the bCMS level automatically creates a

bCMS product line, since a developer can then configure bCMS according to her needs by

selecting among the reexposed features. For example, the developer can choose authenti-

cation methods by selecting the reexposed features from Authentication. In addition, the

composition of impact models allows the impacts of the reexposed features to be included

173

Reused Concern
(Depth)(Reuse Range) Features Realizations

(AoURN / RAM) Reuses Unique
Configurations

Reused F.
(Unique)

Reexposed F.
(Unique)

Association (1)(1-3) 12 0 / 11 38 8 76 (4) 35 (11)

Named (1)(1-3) 2 0 / 2 32 1 32 (1) 32(1)

Singleton (1)(1-3) 1 0 / 1 11 1 9 (1) –

Copyable (1)(2) 3 0 / 2 3 2 6 (3) –

Networking (1)(1-3) 6 0 / 1* 7 1 7 (1) –

Encryption (1)(1) 5 0 / 0* 1 1 1 (1) 4 (4)

KeyCounter (2)(2) 1 0 / 1 2 1 2 (1) –

Command (2)(2) 2 0 / 2 3 2 4 (2) –

Authentication (2)(2) 10 8 / 6* 1 1 2 (2) 8 (8)

Res. Mgmt (2)(1) 4 5 / 4 1 1 3 (3) 1 (1)

Authorization (3)(1) 3 3 / 2* 1 2 1(1) 1(1)

Workflow (3)(1) 12 0 / 11 2 2 15 (12) –

Total 61 16 / 43 102 23 158 (32) 81 (26)

Table 9–1: Reuse Metrics of the bCMS Case Study. Realizations with * indicate that some
realization models for the concern are still under construction.

in the trade-off analysis when configuring bCMS. In total, there are 81 reexposed features in

the bCMS (26 of them are unique).

9.3.3 Delaying Decision of Feature Selections

With CORE, it is possible to delay decisions that do not need to be taken until they

actually have to be taken. For example, the bCMS requirements document describes Autho-

rization rather vaguely. CORE allows the Authorization concern to be added to the system,

but without deciding on its exact features. The features are simply reexposed, adding new

variation points to bCMS that can be finalized when more information is available. De-

laying the decision of selecting features may also be beneficial when the system needs to

change feature selections based on evolving environmental conditions. A reevaluation of the

impact model may trigger a change in the current feature selection, allowing systems to be

more adaptive. Furthermore, modellers have to make many decisions when building complex

174

systems, and some of them may be forced upon them because the project needs to move

forward. With CORE, it is possible to move a project forward, i.e., concerns are chosen and

integrated into the system, while still retaining the freedom to choose the most appropriate

feature at a later point.

9.3.4 Iterative Decision Support

The features and trade-off analysis provided by a concern expose the modeller and other

stakeholders to concern variations that embody important domain knowledge, which may

help uncover missing requirements by making the modeller aware of possible solutions. Re-

quirements and associated solutions may be explored more iteratively. The types of models

provided by a concern may also influence the software development process. If a particu-

lar type of analysis model (e.g., for performance analysis) exists in the concern, it may be

incorporated into the development process for further decision support.

9.3.5 Dealing With Crosscutting Concerns in Concern Hierarchies

The Authentication concern in bCMS is needed in various parts of the system (e.g., vehicle

management and mission execution), making this a crosscutting concern. With CORE, it is

possible to integrate the Authentication concern once into bCMS and then selectively apply

it to where it is needed in the system with advanced techniques for Separation of Concerns.

The Authentication concern was reused in the root feature in Fig. 9–1, hence, we are able to

apply it anywhere in bCMS through extending the realization model of the root feature as

explained in Chapter 8. Without such support, the Authentication concern would have to

be added to each location individually, leading to duplication of effort and evolution issues.

175

9.3.6 Notations at the Right Abstraction Level

With workflow and design notations describing a concern, CORE supports the compo-

sition of concerns at the most appropriate abstraction level. Compositions that are purely

behavioural and hence relate to the organization of activities in a workflow are best performed

with AoURN at the workflow level, whereas data-centric compositions are best performed

using structural diagrams at the RAM design level. Furthermore, in cases where both re-

quirements models and design models of a concern need to be composed with the system,

the composition locations identified during the requirements phase often help in locating the

composition locations for the design phase.

9.3.7 Tool Support is Essential

We used two CORE-based tools, jUCMNav and TouchCORE. In addition to providing

model-editing capabilities, these tools expedite the reuse process by automating impact

analysis for feature selections, automated composition of feature models when features are

reexposed within concern hierarchies, as well as composition and subsequent customization

of realization models based on feature selections.

9.3.8 Incomplete Concerns in the Reusable Concern Library

The requirements of the bCMS mention that several communication protocols should

be supported, including HTTP, SSL, and SOAP. The existing reusable Networking concern

provides inter-process communication, but unfortunately only over TCP/IP sockets. While

the reuse of a concern is quite streamlined, building or extending a concern requires signif-

icantly more effort than directly adding support for another communication protocol into

bCMS. We envision software companies or open-source communities in support of concern-

orientation, actively requiring the deep understanding of all features within a concern to

176

extract the common properties, structure, and behaviour, deal with feature interactions, as

well as crystallize common customization and usage interfaces.

9.4 Limitations

The variation interface makes it easy to reuse an existing concern by capturing its vari-

ations and impacts. However, reexposed features and goals from lower-level concerns that

are added to a variation interface pose several challenges to the modeller.

First, the names of the reexposed features and goals may not be relevant in the context

of the reusing concern. For example, the names of the reexposed features of Association

are not intuitive in the context of ResourceManagement. The Ordered reexposed feature

should be renamed to be OrderedSearch. Manual renaming can become challenging when

the number of reexposed feature is large.

Second, the reexposed features require additional decision-making effort by the modeller.

This could be mitigated by allowing the tool to automatically select among the reexposed

features using optimization and constraint solving algorithms, or by allowing the concern

designers to specify default configurations that can be automatically selected in case the

reuser does not want to make explicit selections. We are exploring automatic selections of

reexposed features in future work.

Third, if the philosophy of delaying decisions as much as possible is followed by all

concern developers, the number of features of high-level concerns may grow significantly.

This might cause serious scalability issues for CORE tools, both from an algorithmic (e.g.,

model composition run-time) and resource consumption (e.g., memory use) point of view.

Furthermore, the impact model in CORE captures the impacts of the reused concern

independently of the reuse context. The context of the reusing concern, however, may

177

influence impacts. For example, when application-specific data is sent over the network, the

size of the data that is sent has a huge impact on performance and number of messages

transmitted. In future work, we are exploring how to support parametrization of CORE

impact models by reuse context.

9.5 Conclusion

This chapter records our experience in modelling a large family of crisis management

systems using CORE. Without loss of generality, we model the requirements of this family

of systems with the Aspect-Oriented User Requirement Notation (AoURN) and the design

with Reusable Aspect Models (RAM). Some concerns have both AoURN and RAM realiza-

tion models, conforming with the vision of CORE of using the most appropriate modelling

notation to express system properties at a given level of abstraction. CORE advocates the

creation of reusable concerns that are combined with each other in a reuse hierarchy. Twelve

concerns were reused in building this family of systems with a total number of 102 reuses in

a reuse hierarchy spanning four levels. This substantial number of reuses is possible because

of CORE’s streamlined three-step reuse process.

Based on collected metrics and our experience in the design of this system, we observe that

there is substantial and scalable reuse of concerns in the crisis management system. A key

insight gained is that CORE allows for decisions not to be taken prematurely with the help of

CORE’s reexposing mechanism. A concern can be added to the system without deciding on

the exact features, leaving this decision to a later point when more information is available

about which feature’s impact on system qualities is most desirable. The study indicates

the feasibility of CORE’s vision to create large-scale, generic, reusable entities that are

expressed with the most appropriate modelling formalisms at the right level of abstraction.

178

High-level concerns that are reused during requirement modelling such as Authentication can

be composed further during the design phase by applying their design realization models in

the locations initially identified during requirement modelling. We note that tool support

was essential during the design of this family of systems.

179

Chapter 10
Conclusions and Future Work

10.1 Summary

Model reuse is a major challenge in Model-Driven Engineering (MDE). This thesis pro-

poses Concern-Oriented Reuse (CORE), a novel reuse paradigm that uses ideas from MDE,

Software Product Lines, goal modelling and impact analysis, and advanced Separation of

Concerns to support broad-based model reuse. CORE introduces the concern, a new unit

of reuse that groups related models spanning all software development phases and relevant

levels of abstraction together. Some concerns appear in early phases of software develop-

ment, e.g., broadly scoped system properties with functional, non-functional, or even inten-

tional characteristics. Other concerns appear in later phases of software development, e.g.,

solution-specific concerns such as specific communication protocols, concrete authentication

algorithms, and design patterns. The concern provides a three-part interface to facilitate

reuse. The variation interface expresses the variability that the concern offers and the im-

pact the different variants have on non-functional requirements and system qualities, thus

enabling systematic trade-off analysis. The customization interface exposes the generic and

partial elements within the concern that have to be adapted to the reuse context. The usage

interface highlights the structure and behaviour that is made available by the concern to the

user.

After introducing the CORE concepts and definitions in the beginning of this thesis, we

perform an extensive literature comparison to demonstrate the strengths of concern as a unit

180

of reuse that tackles the challenges facing other reuse units. Then, we show how a concern

is constructed by modelling an example Authentication concern at both requirement and

design levels. We also discuss the concern reuse process, and how a concern modeller can

defer decisions by selecting only the minimally required features from the variation interface

of the concerns that she reuses and by reexposing any alternative and optional features in her

own variation interface, thus creating a Software Concern Line (SCL). In addition, we in-

troduce algorithms that allow concern interfaces and the realization models to be composed,

allowing SCL to be operational. To allow modelling languages that want to adapt large-scale

model reuse to become concern-oriented, we define the CORE metamodel that specifies all

the CORE concepts. We illustrate the corification of modelling languages by showing how

two modelling languages, Aspect-oriented Use Case Maps (AoUCM) and Reusable Aspect

Models (RAM), successfully integrated the CORE concepts by extending the CORE meta-

model. Using the concepts presented in the metamodel, we show how to incrementally model

design concerns by adding model increments and reusing existing concerns, illustrated by an

example Workflow concern. Incremental modelling is further used to develop other concerns

in our growing reusable concern library. The library is part of the TouchCORE tool, which

along with another tool, jUCMnav, support modelling with the corified versions of the RAM

and AoUCM modelling languages. The reusable concerns in the library are used to build a

family of crisis management system named bCMS.

Our vision is that if CORE is successfully adopted on a large scale, it will transform

the software engineering discipline as a whole. While current practises often require software

engineers to deal with and be an expert in many concerns simultaneously within each software

development phase, CORE would enable software engineers to specialize, i.e., to become

181

concern specialists. In companies selling concern libraries, security concern specialists, e.g.,

would solely concentrate on maintaining and evolving the models within the security concern,

i.e., adding new security requirements, solutions, techniques, and platforms as they become

relevant. Within a company developing applications, a security concern expert would focus

on composing the security concern with the other application concerns. Ultimately, concern

libraries, concern reuse, and concern specialization would provide a clear structure to software

development, and as a result align the practice of software engineering closer to what is done

in other engineering disciplines.

To recap, this thesis lays the foundations of CORE, by defining the concepts of concern

orientation and introducing a metamodel that allows different modelling languages to be

corified (covered by Chapter 2 and Chapter 6). It then introduces the concern reuse process,

CORE composition algorithms, and incremental design modelling of concerns (covered by

Chapter 4, Chapter 5 and Chapter 8). Finally, it validates CORE by performing extensive

literature comparison between concern and other units of reuse, successfully corifying two

modelling languages, building a reusable concern library, tool support (both AoUCM and

RAM are supported by modelling tools), and conducting a case study of a family of crisis

management systems (covered by Chapter 3, Chapter 7, Chapter 8, and Chapter 9).

10.2 Future Work

The foundational work on CORE done in this thesis gives rise to a plethora of possible

future work. In this section, we outline some areas that are in our immediate interest,

broadly organized into two research directions. The first one groups ideas that aim at

defining a concern-driven development methodology and process, and the second one applies

CORE to other domains.

182

10.2.1 Concern-Driven Development Methodology

This thesis has laid the foundation for concern-oriented reuse. We discussed in detail the

three-step reuse process that allows building concerns or applications by reusing existing con-

cerns. Our focus, however, throughout this thesis has been on the design phase of software

development. The modelling notations supported by our CORE reference implementation are

mainly notations for specifying software designs, and we presented an incremental modelling

process for the design of the Workflow concern. To achieve CORE’s vision of broad-scale

model reuse, additional modelling notations need to be corified to cover requirements, anal-

ysis, architecture and implementation models. On top of that, there is a need to define a

concern-driven development (CDD) methodology, that integrates the ideas of model-driven

engineering with concern-oriented reuse. In particular, this requires recognizing features

during the requirement elicitation phase, identifying concerns that can be reused during all

development phases, and defining consistency rules between customizations of models across

different levels of abstraction / phases.

To move in this direction, we plan to carry out the following research activities:

Incorporating Model Transformation Techniques into CORE

Similar to what is done within the context of MDE, CDD relies on model transformations

to automate software development as much as possible. Within a concern, model transforma-

tions would link models across different levels of abstraction. We will endeavour to transform

compositions at the requirements level into skeleton compositions at the design level, further

streamlining and automating the reuse process across abstraction levels. The modeller may

still have to perform some manual tasks, however, our vision is that the majority of design

and execution models are automatically generated. We also plan to integrate testing into

183

CDD. Testing should focus on testing of features, configurations, and entire concerns in iso-

lation, but also to establish the correctness of a reuse, the correctness of concern hierarchies,

and finally the correctness of the application..

Enhancing Concern Interfaces

To further assist the concern user to make advanced feature selection and trade-off analy-

sis across development phases, we plan to enhance the variation interface with additional ca-

pabilities. In our feature models, we plan to add the strengths of other types of feature mod-

els, such as cardinality-based feature models [100], and extended feature models [12, 21, 24].

Cardinality-based feature models allow for features and feature groups to be selected

more than once and to specify additional constraints. A child feature can specify how

many times it can be contained in its parent feature. This information is encoded with a

[n..m] interval, where n denotes the lower bound and m denotes the upper-bound. Adding

properties of cardinality-based feature models to CORE will allow the modeller to encode

relevant information early early on during requirement modelling. For example, the modeller

can specify that an application server must be selected no more than five times.

Extended feature models, e.g., [24] allow adding attributes to features and to express

relations among feature attributes. They then map the extended feature models onto a

Constraint Satisfaction Problem (CSP) that allows some automated reasoning. Users can

ask questions to the CSP solvers such as the total number of products of a feature model and

define some filters on the model. Other extended feature models, such as FAMILIAR [12]

, allow for advanced cross-tree constraints, which can be used in the context of CORE to

support sophisticated feature configurations.

184

Furthermore, as impact models allow the concern user to perform extensive trade-off

analysis of different feature configurations, we will explore a more proactive approach that

suggests the most appropriate selection instead of the interactive, explorative approach cur-

rently supported. Additionally, we would like to enhance impact models with other concepts

from goal modelling such as stakeholders. A concern can have more than one stakeholder,

and including them will allow for more sophisticated impact analysis. For example, an

Encryption concern can be important for the Border Control Agency and the User stake-

holders. Encryption’s feature ePassport, a kind of travel passport that contains electronic

data of the passport bearer in a chip, impacts two high level goals, Security and Privacy.

The stakeholders can have different interests; Security can be more important to the Bor-

der Control Agency while Privacy can be more important to the User. In addition, we are

planning to include other types of models to impact models such as Analytic Hierarchy Pro-

cess (AHP) [103] and performance models [128]. AHP allows for a goal to be decomposed

in subgoals and alternative solutions, and integrates both pairwaise comparisons and the

importance of subgoals into the decision making. Performance models allow for advanced

analysis of the system performance goal.

Finally, we would like to investigate how Domain Specific Languages (DSL) can be used

to provide simpler interfaces for concerns than the variation, customization, and the usage

interfaces presented in this thesis. In [108], we explored how the three-part concern interface

of the Association concern can be used to define a DSL that in turn can be used in software

design models to establish associations between classes. We further plan to exploit the

impact model of a concern when defining a DSL for the concern. For example, in a DSL for

185

the Association concern, a user should be able to specify that she wants a high performant

data structure when making feature selection.

Adaptive Systems

In future, we would like to exploit the variability provided in CORE concerns for the

development of adaptive systems. Approaches such as Dynamic Software Product Lines

(DSPL) [54] allow for dynamic configurations of SPL at runtime. Similarly, concerns can

adapt to changing requirements or to changes in the environment at run time by reconfiguring

its features. Reconfiguration can benefit from feedback received from re-evaluation of impact

models at run time. Dynamic adaptation will benefit a growing number of systems that have

to reconfigure at run time, such as cyber-physical systems.

10.2.2 Applying CORE to Other Domains

We plan to apply the concepts developed in CORE to other domains, such as Software

Language Engineering and Systems Engineering. We further plan to conduct empirical

studies to improve our CORE-based tools. Here are the concrete steps that we plan to

undertake in this direction:

Concern-Driven Security

Model-Driven Security (MDS) [22] is a special type of MDE that focuses on modelling

secure systems. However, there are challenges for applying MDS in practice. A recent

study has shown that MDS catalogs systematically neglect multiple security patterns [86].

Furthermore, empirical studies have shown that using existing MDS catalogs of security

concerns does not improve the productivity of developers [129], or the security of systems.

Since our experience has shown that concerns are easy to reuse and group models in a

modular way, we believe CORE will help overcome the challenges of MDS. Therefore, we

186

plan to introduce Concern-Driven Security (CDS) for secure systems, that applies the CORE

concepts on MDS. We believe that CDS will allow for incremental growth of security patterns

in one place, reducing the chances for missing patterns. In addition, we believe that our three-

step reuse process will increase the applicability of security concerns and the productivity

of the developers. We started to explore CDS in collaboration with a research group from

Université du Luxembourg, initial results are being prepared to be published in the Journal

of Software and System Modelling (SoSym).

Modular Design of Heterogeneous Modelling Languages

We plan to use the concepts of CORE interfaces to facilitate the communication be-

tween heterogeneous modelling languages. In cyber-physical systems, different modelling

formalisms need to interact with each other. Certain laws of physics are modelled using

continuous-time formalisms, while responding to events is represented using discrete-time

formalisms. A hybrid formalism [69] allows for continuous-time and discrete-time modelling

to be in one unit by combining discrete model elements with continuous model elements. For

example, a hybrid formalism that combines Discrete Event-Scheduling (DES) with Ordinary

Differential Equations (ODEs) can be used to model a bouncing ball, where a free-falling

ball bounces on the ground. Models of more complex cyber-physical systems such as the

ones used in the automobile or aerospace industry can be similarly modeled using hybrid

formalisms. For such hybrid formalism to work, dedicated simulators are required that sup-

port syntactic and semantic adaptation of the involved model elements belonging to different

formalisms.

Currently, the syntactic and semantic adaptations of modelling formalisms involve manu-

ally encoded adaptation and synchronization, which is very inefficient. We aim at solving this

187

problem through using composable units that provide definitions for modelling formalisms

called language definition fragments. Each fragment models the specifications of abstract

syntax, concrete syntax, semantics, and user interface behaviour. Fragments of different

heterogeneous languages are composed by linking their respective specifications. We plan

to use CORE-based modelling languages to model these fragments, and exploit the power

of customization and usage interfaces to link fragment specifications. The user interface

behaviour can be modelled using behavioural modelling formalisms such as state machines.

Similarly, modelling of the semantics can be done using other suitable formalisms such as

rule-based action model transformation languages, state machines, and action language. Af-

ter modelling the components, composition of different fragments is specified to produce a

hybrid formalism. The same process is then used to experiment with other fragments, and

the experience gained will be used to develop a general technique and process for the design

through composition of fragments to produce hybrid formalisms. This work is a subject of

an ongoing collaboration with a group from University of Antwerp.

Empirical Studies

We will use controlled user experiments to further improve our CORE-based tools. Users

can be assigned to model sample case studies using older versions of the TouchCORE or

jUCMNav tools before corification, and using the corified versions of the tools. Such user

studies can be used to collect metrics such as the number of reused models, time-to-finish

modelling the systems, etc. Comparisons between the collected metrics will help assess the

productivity of modellers, reusability, and quality of models of the corified tools compared to

their older versions before corification. In addition, empirical studies can be used to compare

the productivity of Concern-Driven Security (CDS) mentioned in the previous subsection,

188

compared to traditional Model-Driven Security. This comparison study is a subject of pro-

posed collaboration with research groups from Katholieke Universiteit Leuven and Université

du Luxembourg.

189

Appendix I

0.
.*

re

al
ize

dB
y

na
m

e
CO

RE
Na
m
ed
El
em

en
t

CO
RE
M
od
el

CO
RE
Co
m
po
si
tio
nS
pe
ci
fic
at
io
n

CO
RE
Pa
tte
rn

CO
RE
Bi
nd
in
g

m
an

da
to

ry
: B

oo
le

an
CO

RE
Cu
st
om

iz
at
io
n

 m
od

el
El

em
en

ts 0.
.*

from
1

CO
RE

Fe
at

ur
eM

od
el

0.
.*

cu

st
om

iza
bl

e

CO
RE

M
od

el
Re

us
e

pa
re

nt
 R

el
at

io
ns

hi
p

:
CO

RE
Fe

at
ur

eR
el

at
io

ns
hi

pT
yp

e

CO
RE

Fe
at

ur
e

re
us

es
 0

...
*

se
le

ct
ab

le

0.
.*

reusedConcern
1

0.
.*

re
al

ize
s

m
od

el
s

2.
.*

0.
.*

m
ap

pi
ng

s

CO

RE
Co

nc
er

n

to
1

CO
RE
M
od
el
El
em

en
t

CO
RE
Im
pa
ct
M
od
el

CO
RE

In
te

rfa
ce

CO
RE

Im
pa

ct
M

od
el

El
em

en
t

im
pa

ct
ed

0.

.*

in
te

rfa
ce

 1

CO
RE
M
ap
pi
ng

0.
.*

co
m

po
sit

io
ns

1

so
ur

ce
us

ab
le

0.
.*

CO
RE

Co
nfi

gu
ra

tio
n

se
le

ct
ed

 0
…

1
co

nfi
gu

ra
tio

n
 0

…
*

selected
 0...*

rexposed
0...*

de
fa

ul
ts

0…

*

CO
RE

Re
us

e

m
od

el
Re

us
e

 0
…

*

m
od

el
Re

us
e

 0
…

*

va
lu

e
: I

nt
eg

er
Co

nt
rib

ut
io

n

0.
.*

re
qu

ire
s

0.
.*

ch
ild

re
n

0.
.1

pa
re

nt

0.
.*

co
nt

rib
ut

io
n

0.
.*

co
nt

rib
ut

io
ns

Im
pa

ct
 M

od
el

1

Fe
at

ur
e

M
od

el

1

0.
.*

ex
clu

de
s

0.
.*

fe
at

ur
es

1
im

pa
ct

ed

 N
on

e
XO

R
O

R
M

an
da

to
ry

O
pt

io
na

l

<<
en

um
er

at
io

n>
>

CO
RE

Fe
at

ur
eR

el
at

on
sh

ip
Ty

pe

co
nt

rib
ut

io
ns

 0
…

*

co
nc

er
n 1

co
re

Im
pa

ct
M

od
el

El
em

en
ts

 0
..*

na
m

e
: S

tri
ng

CO
RE
Na
m
ed
El
em

en
t

CO
RE
M
od
el

 CO
RE

Co
nc

er
n

CO
RE

Re
us

e
CO

RE
M
od
el
El
em

en
t

CO
RE

Co
nfi

gu
ra

tio
n

Figure 10–1: The Complete CORE Metamodel.

190

Bibliography

[1] Amazon: Amazon web services.

[2] AspectJ website: https://eclipse.org/aspectj/.

[3] CaesarJ Homepage. http://caesarj.org/.

[4] CMA series. http://cserg0.site.uottawa.ca/cma2013models/approaches.htm.

[5] JUnit website.

[6] Swing Framework. http://java-source.net/open-source/swing .

[7] Transactions on Aspect-Oriented Development (TAOSD VII), Special Issue on a Com-
mon Case Study for Aspect-Oriented Modeling, volume 6210 of LNCS. Springer, 2010.

[8] European Space Agency, Ariane 5, Flight 501 Failure. 1996., 2013.

[9] Models of bCMS and its reused concerns. URL:
http://www.ece.mcgill.ca/ gmussb1/bCMS/ for all bCMS models., 2015.

[10] S. Abiteboul, B. Amann, J. Baumgarten, O. Benjelloun, F. Dang Ngoc, and T. Milo.
Schema-driven customization of web services. In Proceedings of the 29th International
Conference on Very Large Data Bases - Volume 29, VLDB ’03, pages 1093–1096.
VLDB Endowment, 2003.

[11] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France. Composing
feature models. In Mark Brand, Dragan Gasevic, and Jeff Gray, editors, Software
Language Engineering, volume 5969 of Lecture Notes in Computer Science, pages 62–
81. Springer Berlin Heidelberg, 2010.

[12] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. Familiar: A
domain-specific language for large scale management of feature models. Science of
Computer Programming (SCP), 78(6):657–681, 2013.

[13] Wisam Al Abed, Valentin Bonnet, Matthias Schöttle, Omar Alam, and Jörg Kienzle.
TouchRAM: A multitouch-enabled tool for aspect-oriented software design. In 5th

191

192

International Conference on Software Language Engineering - SLE 2012, number 7745
in LNCS, pages 275 – 285. Springer, October 2012.

[14] Omar Alam and Jörg Kienzle. Designing with inheritance and composition. In 3rd
International Workshop on Variability and Composition, pages 19–24, New York, NY,
USA, 2012. ACM.

[15] Omar Alam and Jörg Kienzle. Incremental software design modelling. In Proceedings
of the 2013 Conference of the Center for Advanced Studies on Collaborative Research,
CASCON ’13, pages 325–339, Riverton, NJ, USA, 2013. IBM Corp.

[16] Omar Alam, Jörg Kienzle, and Gunter Mussbacher. Concern-oriented software de-
sign. In Proceedings of the 16th International Conference on Model-Driven Engineering
Languages and Systems - MODELS 2013, volume 8107 of Lecture Notes in Computer
Science, pages 604–621. Springer Berlin Heidelberg, 2013.

[17] Omar Alam, Matthias Schöttle, and Jörg Kienzle. Revising the comparison crite-
ria for composition. In Proceedings of the Fourth International Comparing Modeling
Approaches Workshop 2013 co-located with the ACM/IEEE 16th International Confer-
ence on Model Driven Engineering Languages and Systems (MODELS 2013), Miami,
Florida, USA., 2013.

[18] Daniel Amyot, Sepideh Ghanavati, Jennifer Horkoff, Gunter Mussbacher, Liam Pey-
ton, and Eric S. K. Yu. Evaluating goal models within the goal-oriented requirement
language. International Journal of Intelligent Systems, 25(8):841–877, 2010.

[19] Sandra Antonio, Joao Araújo, and Carla Silva. Adapting the i* framework for software
product lines. In CarlosAlberto Heuser and GÃŒnther Pernul, editors, Advances
in Conceptual Modeling - Challenging Perspectives, volume 5833 of Lecture Notes in
Computer Science, pages 286–295. Springer Berlin Heidelberg, 2009.

[20] Mohsen Asadi, Samaneh Soltani, Dragan Gasevic, Marek Hatala, and Ebrahim
Bagheri. Toward automated feature model configuration with optimizing non-
functional requirements. Information and Software Technology, 56(9):1144 – 1165,
2014. Special Sections from ÒAsia-Pacific Software Engineering Conference (APSEC),
2012Ó and Ò Software Product Line conference (SPLC), 2012Ó.

[21] Kacper Bak, Krzysztof Czarnecki, and Andrzej Wasowski. Feature and meta-models in
clafer: Mixed, specialized, and coupled. In Proceedings of the Third International Con-
ference on Software Language Engineering, SLE’10, pages 102–122, Berlin, Heidelberg,
2011. Springer-Verlag.

193

[22] David Basin, Jürgen Doser, and Torsten Lodderstedt. Model driven security: From
uml models to access control infrastructures. ACM Trans. Softw. Eng. Methodol.,
15(1):39–91, January 2006.

[23] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analysis of
feature models 20 years later: A literature review. Inf. Syst., 35(6):615–636, September
2010.

[24] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Automated reasoning
on feature models. In Proceedings of the 17th International Conference on Advanced
Information Systems Engineering, CAiSE’05, pages 491–503, Berlin, Heidelberg, 2005.
Springer-Verlag.

[25] Matthias Blume and Andrew W. Appel. Hierarchical modularity. ACM Trans. Pro-
gram. Lang. Syst., 21(4):813–847, 1999.

[26] Marko Boskovic, Gunter Mussbacher, Ebrahim Bagheri, Daniel Amyot, Dragan Gase-
vic, and Marek Hatala. Aspect-oriented feature models. In Juergen Dingel and Arnor
Solberg, editors, Models in Software Engineering, volume 6627 of Lecture Notes in
Computer Science, pages 110–124. Springer Berlin Heidelberg, 2011.

[27] Alfredo Capozucca, Betty H.C. Cheng, Geri Georg, Nicolas Guelfi, Paul Istoan, and
Gunter Mussbacher. Requirements definition document for a software product line of
car crash management systems. URL: http://cserg0.site.uottawa.ca/cma2011, 2011.

[28] Andrew Carton, Cormac Driver, Andrew Jackson, and Siobhan Clarke. Model-driven
theme/uml. In Shmuel Katz, Harold Ossher, Robert France, and Jean-Marc Jezequel,
editors, Transactions on Aspect-Oriented Software Development VI, volume 5560 of
Lecture Notes in Computer Science, pages 238–266. Springer Berlin / Heidelberg, 2009.

[29] Lianping Chen and Muhammad Ali Babar. A systematic review of evaluation of vari-
ability management approaches in software product lines. Information and Software
Technology, 53(4):344–362, April 2011.

[30] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-Functional
Requirements in Software Engineering. Springer, 2000.

[31] Dave Clarke, Michiel Helvensteijn, and Ina Schaefer. Abstract delta modeling. In
Proceedings of the Ninth International Conference on Generative Programming and
Component Engineering, GPCE ’10, pages 13–22, New York, NY, USA, 2010. ACM.

194

[32] Siobhán Clarke and Elisa Baniassad. Aspect-Oriented Analysis and Design: The Theme
Approach. Addison Wesley, 2005.

[33] Benoit Combemale, Olivier Barais, Omar Alam, and Jörg Kienzle. Using cvl to opera-
tionalize product line development with reusable aspect models. In Proceedings of the
VARiability for You Workshop: Variability Modeling Made Useful for Everyone, pages
9–14. ACM, 2012.

[34] Javier Cubo and Ernesto Pimentel. Damasco: A framework for the automatic composi-
tion of component-based and service-oriented architectures. In Ivica Crnkovic, Volker
Gruhn, and Matthias Book, editors, Software Architecture, volume 6903 of Lecture
Notes in Computer Science, pages 388–404. Springer Berlin Heidelberg, 2011.

[35] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Staged configuration
through specialization and multilevel configuration of feature models. Software Process:
Improvement and Practice, 10(2):143–169, 2005.

[36] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements acquisi-
tion. Science of Computer Programming, 20:3–50, 1993.

[37] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 1997.

[38] Tom Dinkelaker, Ralf Mitschke, Karin Fetzer, and Mira Mezini. A dynamic software
product line approach using aspect models at runtime. In Fifth Domain-Specific Aspect
Languages Workshop, volume 39, page 40, 2010.

[39] Douglas C. Schmidt. Model-Driven Engineering. IEEE Computer, 39:41–47, 2006.

[40] Robert Dyer and Hridesh Rajan. Supporting dynamic aspect-oriented features. ACM
Trans. Softw. Eng. Methodol., 20(2):7:1–7:34, September 2010.

[41] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[42] Eduardo Figueiredo, Nelio Cacho, Claudio Sant’Anna, Mario Monteiro, Uira Kulesza,
Alessandro Garcia, Sérgio Soares, Fabiano Ferrari, Safoora Khan, Fernando Cas-
tor Filho, and Francisco Dantas. Evolving software product lines with aspects: An
empirical study on design stability. In Proceedings of the 30th International Confer-
ence on Software Engineering, ICSE ’08, pages 261–270, New York, NY, USA, 2008.
ACM.

195

[43] Martin Fowler. Inversion of Control Containers and the Dependency Injection pattern,
January 2004.

[44] Robert France and Bernhard Rumpe. Model-driven Development of Complex Software:
A Research Roadmap. In Future of Software Engineering, FOSE ’07, pages 37–54.
IEEE, 2007.

[45] Lidia Fuentes, Nadia Gamez, and Pablo Sanchez. Aspect-oriented design and imple-
mentation of context-aware pervasive applications. ISSE, 5(1):79–93, 2009.

[46] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison Wesley, Reading, MA, USA, 1995.

[47] Bart George, Régis Fleurquin, and Salah Sadou. A component selection framework for
cots libraries. In Proceedings of the 11th International Symposium on Component-Based
Software Engineering, CBSE ’08, pages 286–301, Berlin, Heidelberg, 2008. Springer-
Verlag.

[48] Hassan Gomaa. Designing software product lines with UML - from use cases to pattern-
based software architectures. ACM, 2005.

[49] Hassan Gomaa and Koji Hashimoto. Dynamic software adaptation for service-oriented
product lines. In Proceedings of the 15th International Software Product Line Confer-
ence, Volume 2, SPLC ’11, pages 35:1–35:8, New York, NY, USA, 2011. ACM.

[50] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specifica-
tion, Third Edition. The Java Series. Addison-Wesley, Boston, MA, 2005.

[51] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, San Mateo, California, 1993.

[52] Jilles Van Gurp and Christian Prehofer. From SPLs to open, compositional platforms.
In Combining the Advantages of Product Lines and Open Source, Dagstuhl Seminar
Proceedings. Schloss Dagstuhl, 2008.

[53] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina Schaefer. Delta-
oriented architectural variability using monticore. In Proceedings of the 5th European
Conference on Software Architecture: Companion Volume, ECSA ’11, pages 6:1–6:10,
New York, NY, USA, 2011. ACM.

[54] S. Hallsteinsen, M. Hinchey, Sooyong Park, and K. Schmid. Dynamic software product
lines. Computer, 41(4):93–95, April 2008.

196

[55] Aram Hovsepyan, Stefan Van Baelen, Yolande Berbers, and Wouter Joosen. Generic
reusable concern compositions. pages 231–245. 2008.

[56] International Telecommunication Union (ITU-T). Recommendation Z.151 (10/12):
User Requirements Notation (URN) - Language Definition, approved October 2012.

[57] Ivar Jacobson. Use cases and aspects-working seamlessly together. Journal of Object
Technology, 2(4):7–28, 2003.

[58] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-oriented domain
analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, November 1990.

[59] Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. A variability-aware mod-
ule system. In OOPSLA ’12, pages 773–792. ACM, 2012.

[60] G. Kiczales. Aspect-oriented programming. ACM Comput. Surv., 28(4es), December
1996.

[61] Jörg Kienzle, Wisam Al Abed, Franck Fleurey, Jean-Marc Jézéquel, and Jacques Klein.
Aspect-oriented design with reusable aspect models. In Shmuel Katz, Mira Mezini, and
Jörg Kienzle, editors, Transactions on Aspect-Oriented Software Development VII,
volume 6210 of Lecture Notes in Computer Science, pages 272–320. Springer Berlin
Heidelberg, 2010.

[62] Jörg Kienzle, Wisam Al Abed, and Jacques Klein. Aspect-Oriented Multi-View Mod-
eling. In AOSD 2009, pages 87 – 98. ACM Press, March 2009.

[63] Jörg Kienzle, Nicolas Guelfi, and Sadaf Mustafiz. Crisis Management Systems: A
Case Study for Aspect-Oriented Modeling. Transactions on Aspect-Oriented Software
Development, 7:1 – 22, 2010.

[64] Jacques Klein, Franck Fleurey, and Jean Marc Jézéquel. Weaving multiple aspects in
sequence diagrams. TAOSD, LNCS 4620:167–199, 2007.

[65] Jacques Klein, Loic Hélouet, and Jean-Marc Jézéquel. Semantic-based weaving of
scenarios. In AOSD, pages 27–38. ACM Press, 2006.

[66] Jacques Klein and Jörg Kienzle. Reusable Aspect Models. In 11th Aspect-Oriented
Modeling Workshop, Nashville, TN, USA, Sept. 30th, 2007, September 2007.

[67] Krueger. Software reuse. CSURV: Computing Surveys, 24, 1992.

197

[68] R. Krut and S. Cohen. Service-oriented architectures and software product lines -
putting both together. In Software Product Line Conference, 2008. SPLC ’08. 12th
International, pages 383–383, Sept 2008.

[69] S. Lacoste-Julien, H. Vangheluwe, J. de Lara, and P.J. Mosterman. Meta-modelling hy-
brid formalisms. In Computer Aided Control Systems Design, 2004 IEEE International
Symposium on, pages 65–70, 2004.

[70] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented Anal-
ysis and Design and the Unified Process. Prentice Hall, 3nd edition, 2002.

[71] Kung-Kiu Lau and Zheng Wang. Software component models. Software Engineering,
IEEE Transactions on, 33(10):709–724, Oct 2007.

[72] S. Liaskos, S.A. McIlraith, S. Sohrabi, and J. Mylopoulos. Integrating preferences into
goal models for requirements engineering. In Requirements Engineering Conference
(RE), 2010 18th IEEE International, pages 135–144, Sept 2010.

[73] Karl Lieberherr, David H. Lorenz, and Mira Mezini. Programming with aspectual com-
ponents. Technical Report NU-CCS-99-01, College of Computer Science, Northeastern
University, Boston, MA 02115, March 1999.

[74] Yanji Liu, Yukun Su, Xinshang Yin, and G. Mussbacher. IEEE 4th international
model-driven requirements engineering workshop, modre 2014, 25 august, 2014, karl-
skrona, sweden. IEEE, 2014.

[75] Silvia Mazzini, John Favaro, and Tullio Vardanega. Cross-domain reuse: Lessons
learned in a multi-project trajectory. In John Favaro and Maurizio Morisio, editors,
Safe and Secure Software Reuse, volume 7925 of Lecture Notes in Computer Science,
pages 113–126. Springer Berlin Heidelberg, 2013.

[76] P.K. McKinley, S.M. Sadjadi, E.P. Kasten, and B.H.C. Cheng. Composing adaptive
software. Computer, 37(7):56–64, July 2004.

[77] G.A. Miller. The magical number seven, plus or minus two: some limits on our capacity
for processing information. Psychological review, 63(2):81, 1956.

[78] Ana Moreira, João Araújo, and Awais Rashid. A concern-oriented requirements en-
gineering model. In Proceedings of the 17th International Conference on Advanced
Information Systems Engineering, CAiSE’05, pages 293–308, Berlin, Heidelberg, 2005.
Springer-Verlag.

198

[79] Ana Moreira, Ruzanna Chitchyan, João Araújo, and Awais Rashid, editors. Aspect-
Oriented Requirements Engineering. Springer Berlin Heidelberg, 2013.

[80] Brice Morin, Olivier Barais, Jean-Marc Jezequel, Franck Fleurey, and Arnor Solberg.
Models@ run.time to support dynamic adaptation. Computer, 42(10):44–51, October
2009.

[81] Gunter Mussbacher, Omar Alam, Mohammad Alhaj, Shaukat Ali, Nuno Amálio,
Balbir Barn, Rolv Bræk, Tony Clark, Benoit Combemale, Luiz Marcio Cysneiros,
Urooj Fatima, Robert France, Geri Georg, Jennifer Horkoff, Jörg Kienzle, Julio Cesar
Leite, Timothy C. Lethbridge, Markus Luckey, Ana Moreira, Felix Mutz, A. Padua A.
Oliveira, Dorina C. Petriu, Matthias Schöttle, Lucy Troup, and Vera M. B. Werneck.
Assessing composition in modeling approaches. In Proceedings of the CMA 2012 Work-
shop, pages 1–26, New York, NY, USA, 2012. ACM.

[82] Gunter Mussbacher, Daniel Amyot, João Araújo, and Ana Moreira. Requirements
modeling with the aspect-oriented user requirements notation (aourn): A case study. In
Shmuel Katz, Mira Mezini, and Jörg Kienzle, editors, Transactions on Aspect-Oriented
Software Development VII, volume 6210 of Lecture Notes in Computer Science, pages
23–68. Springer Berlin Heidelberg, 2010.

[83] Gunter Mussbacher, Daniel Amyot, and Jon Whittle. Composing goal and scenario
models with the aspect-oriented user requirements notation based on syntax and se-
mantics. In Aspect-Oriented Requirements Engineering, pages 77–99. Springer Berlin
Heidelberg, 2013.

[84] Gunter Mussbacher, JoÃ£o Araújo, Ana Moreira, and Daniel Amyot. Aourn-based
modeling and analysis of software product lines. Software Quality Journal, 20(3-4):645–
687, 2012.

[85] Gunter Mussbacher and Jörg Kienzle. A vision for generic concern-oriented require-
ments reusere@21. In 21st IEEE International Requirements Engineering Conference,
RE 2013, Rio de Janeiro-RJ, Brazil, July 15-19, 2013, pages 238–249, 2013.

[86] Phu H. Nguyen, Max Kramer, Jacques Klein, and Yves Le Traon. An extensive system-
atic review on the model-driven development of secure systems. Inf. Softw. Technol.,
68(C):62–81, December 2015.

[87] Eugen C. Nistor and Andre van der Hoek. Explicit concern-driven development with
archevol. In ASE, pages 185–196. IEEE Computer Society, 2009.

199

[88] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: A roadmap. In
Proceedings of the Conference on The Future of Software Engineering, pages 35–46,
New York, NY, USA, 2000. ACM.

[89] Object Management Group. Unified Modeling Language: Superstructure (v2.4.1), De-
cember 2011.

[90] University of Ottawa. jUCMNav website: http://softwareengineering.ca/jucmnav,
2013.

[91] F. Paas, J.E. Tuovinen, H. Tabbers, and P.W.M. Van Gerven. Cognitive load measure-
ment as a means to advance cognitive load theory. Educational psychologist, 38(1):63–
71, 2003.

[92] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Com-
munications of the Association of Computing Machinery, 15(12):1053–1058, December
1972.

[93] D. L. Parnas. A technique for software module specification with examples. Commu-
nications of the Association of Computing Machinery, 15(5):330–336, May 1972.

[94] Jennifer Pérez, Jessica Díaz, C Costa-Soria, and Juan Garbajosa. Plastic par-
tial components: A solution to support variability in architectural components. In
WICSA/ECSA 2009, pages 221–230. IEEE, 2009.

[95] Gilles Perrouin, Jacques Klein, Nicolas Guelfi, and Jean-Marc Jézéquel. Reconciling
automation and flexibility in product derivation. In Proceedings of the 2008 12th In-
ternational Software Product Line Conference, SPLC ’08, pages 339–348, Washington,
DC, USA, 2008. IEEE Computer Society.

[96] Nicolas Pessemier, Lionel Seinturier, Thierry Coupaye, and Laurence Duchien. A model
for developing component-based and aspect-oriented systems. In Software Composi-
tion, volume 4089 of Lecture Notes in Computer Science, pages 259–274. Springer
Berlin Heidelberg, 2006.

[97] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

[98] Klaus Pohl and Andreas Metzger. Variability management in software product line en-
gineering. In Proceedings of the 28th international conference on Software engineering
(ICSE ’06), pages 1049–1050. ACM, 2006.

200

[99] Andrei Popovici, Thomas Gross, and Gustavo Alonso. Dynamic weaving for aspect-
oriented programming. In Proceedings of the 1st International Conference on Aspect-
oriented Software Development, AOSD ’02, pages 141–147, New York, NY, USA, 2002.
ACM.

[100] Clément Quinton, Daniel Romero, and Laurence Duchien. Cardinality-based feature
models with constraints: A pragmatic approach. In Proceedings of the 17th Interna-
tional Software Product Line Conference, SPLC ’13, pages 162–166, New York, NY,
USA, 2013. ACM.

[101] Y. Raghu Reddy, Sudipto Ghosh, Robert B. France, Greg Straw, James M. Bieman,
N. McEachen, Eunjee Song, and Geri Georg. Directives for composing aspect-oriented
design class models. Transactions on Aspect-Oriented Software Development, I:75–105,
2006.

[102] Marko Rosenmüller and Norbert Siegmund. Automating the configuration of multi
software product lines. In VaMoS, pages 123–130, 2010.

[103] Thomas Saaty. How to make a decision: The analytic hierarchy process. European
Journal of Operational Research, 48(1):9 – 26, 1990. Desicion making by the analytic
hierarchy process: Theory and applications.

[104] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-
based access control models. Computer, 29(2):38–47, February 1996.

[105] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tanzarella.
Delta-oriented programming of software product lines. In Jan Bosch and Jaejoon
Lee, editors, Software Product Lines: Going Beyond, volume 6287 of Lecture Notes in
Computer Science, pages 77–91. Springer Berlin Heidelberg, 2010.

[106] Matthias Schöttle, Omar Alam, Abir Ayed, and Jörg Kienzle. Concern-oriented soft-
ware design with touchram. In Joint Proceedings of MODELS’13 Invited Talks, Demon-
stration Session, Poster Session, and ACM Student Research Competition co-located
with the 16th International Conference on Model Driven Engineering Languages and
Systems (MODELS 2013), Miami, USA, September 29 - October 4, 2013., pages 51–55,
2013.

[107] Matthias Schöttle, Omar Alam, Franz-Philippe Garcia, Gunter Mussbacher, and Jörg
Kienzle. Touchram: A multitouch-enabled software design tool supporting concern-
oriented reuse. In Proceedings of the Companion Publication of the 13th International

201

Conference on Modularity, MODULARITY ’14, pages 25–28, New York, NY, USA,
2014. ACM.

[108] Matthias Schöttle, Omar Alam, Gunter Mussbacher, and Jörg Kienzle. Specification
of domain-specific languages based on concern interfaces. In Proceedings of the 13th
Workshop on Foundations of Aspect-oriented Languages, FOAL ’14, pages 23–28, New
York, NY, USA, 2014. ACM.

[109] Matthias Schöttle, Nishanth Thimmegowda, Omar Alam, Jörg Kienzle, and Gunter
Mussbacher. Feature modelling and traceability for concern-driven software develop-
ment with touchcore. In Companion Proceedings of the 14th International Conference
on Modularity, MODULARITY 2015, Fort Collins, CO, USA, March 16 - 19, 2015,
pages 11–14, 2015.

[110] Reimar Schröter, Norbert Siegmund, and Thomas Thüm. Towards modular analysis
of multi product lines. In SPLC Workshops, pages 96–99, 2013.

[111] Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner, Sven
Apel, and Gunter Saake. Spl conqueror: Toward optimization of non-functional prop-
erties in software product lines. Software Quality Control, 20(3-4):487–517, September
2012.

[112] Carla T. L. L. Silva, Fernanda M. R. Alencar, Joao Araujo , Ana Moreira, and
Jaelson Brelaz de Castro. Tailoring an aspectual goal-oriented approach to model
features. In SEKE, pages 472–477. Knowledge Systems Institute Graduate School.

[113] Arnor Solberg, Devon Simmonds, Raghu Reddy, Sudipto Ghosh, and Robert France.
Using aspect oriented techniques to support separation of concerns in model driven
development. In Proceedings of the 29th Annual International Computer Software and
Applications Conference - Volume 01, COMPSAC ’05, pages 121–126, Washington,
DC, USA, 2005. IEEE Computer Society.

[114] Davy Suvée, Wim Vanderperren, and Viviane Jonckers. Jasco: An aspect-oriented
approach tailored for component based software development. In Proceedings of the
2Nd International Conference on Aspect-oriented Software Development, AOSD ’03,
pages 21–29, New York, NY, USA, 2003. ACM.

[115] J. Sweller. Cognitive load during problem solving: Effects on learning. Cognitive
science, 12(2):257–285, 1988.

202

[116] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

[117] Éric Tanter and Jacques Noyé. A versatile kernel for multi-language aop. In Generative
Programming and Component Engineering, volume 3676 of Lecture Notes in Computer
Science, pages 173–188. Springer Berlin Heidelberg, 2005.

[118] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton. N degrees of
separation: Multi-dimensional separation of concerns. pages 107–119, 1999.

[119] Annette ten Teije, Frank van Harmelen, and Bob Wielinga. Configuration of web
services as parametric design. In Enrico Motta, NigelR Shadbolt, Arthur Stutt, and
Nick Gibbins, editors, Engineering Knowledge in the Age of the Semantic Web, volume
3257 of Lecture Notes in Computer Science, pages 321–336. Springer Berlin Heidelberg,
2004.

[120] Nishanth Thimmegowda, Omar Alam, Matthias Schöttle, Wisam Al Abed, Thomas
Di’Meco, Laura Martellotto, Gunter Mussbacher, and Jörg Kienzle. Concern-driven
software development with jucmnav and touchram. In Proceedings of the Demon-
strations Track of the ACM/IEEE 17th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2014), Valencia, Spain, October 1st
and 2nd, 2014., 2014.

[121] Nishanth Thimmegowda and Jörg Kienzle. Visualization algorithms for feature models
in concern-driven software development. In Companion Proceedings of the 14th Inter-
national Conference on Modularity, MODULARITY Companion 2015, pages 39–42,
New York, NY, USA, 2015. ACM.

[122] Tijs van der Storm. Variability and component composition. In Software Reuse:
Methods, Techniques, and Tools, pages 157–166. Springer, 2004.

[123] Axel van Lamsweerde. Requirements engineering in the year 00: A research perspec-
tive. In Proceedings of the 22nd International Conference on Software Engineering,
pages 5–19, New York, NY, USA, 2000. ACM.

[124] Axel Van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In
Proceedings of the Fifth IEEE International Symposium on Requirements Engineering,
RE ’01, pages 249–, Washington, DC, USA, 2001. IEEE Computer Society.

203

[125] Rob van Ommering. Building product populations with software components. In
Proceedings of the 24th International Conference on Software Engineering, pages 255–
265, New York, NY, USA, 2002. ACM.

[126] M. Voelter and I. Groher. Product line implementation using aspect-oriented and
model-driven software development. In Software Product Line Conference, 2007. SPLC
2007. 11th International, pages 233–242, Sept 2007.

[127] Jules White, Harrison D Strowd, and Douglas C Schmidt. Creating self-healing ser-
vice compositions with feature models and microrebooting. International Journal of
Business Process Integration and Management, 4(1):35–46, 2009.

[128] Murray Woodside, Greg Franks, and Dorina C. Petriu. The future of software perfor-
mance engineering. In 2007 Future of Software Engineering, FOSE ’07, pages 171–187,
Washington, DC, USA, 2007. IEEE Computer Society.

[129] Koen Yskout, Riccardo Scandariato, and Wouter Joosen. Do security patterns really
help designers? In Proceedings of the 37th International Conference on Software En-
gineering - Volume 1, ICSE ’15, pages 292–302, Piscataway, NJ, USA, 2015. IEEE
Press.

[130] Eric Yu. Modelling strategic relationships for process reengineering. PhD thesis, De-
partment of Computer Science, University of Toronto, 1995.

[131] Yijun Yu, Julio Cesar Sampaio do Prado Leite, Alexei Lapouchnian, and John My-
lopoulos. Configuring features with stakeholder goals. In Proceedings of the 2008
ACM Symposium on Applied Computing, SAC ’08, pages 645–649, New York, NY,
USA, 2008. ACM.

