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Abstract

Many geophysical and atmospheric fields exhibit multifractal characteristics over
wide ranges of scale. These findings motivate a study of transport phenomena in
multifractal media, particularly diffusion. In studying the diffusion properties of one-
dimensional universal multifractal resistivity fields, a relation for the diffusion exponent d,,
is derived and is found to depend only on X'(—1), the value of the moment scaling function
K(q) of the resistivity field for the ¢= —1'* order statistical moment. This relation is
subsequenty verified through Monte Carlo simulations of diffusion on these systems. The
onge-to-one correspondance that exists between statistical moments and orders of singularity
suggests that one order of singularity, namely ¥_,, is of special importance to diffusion on
multifractals, as is confirmed by simulations performed using fields that have been
thresholded. Although convergence is quite slow, in the limit of an infinitely large range of
scales a dynamical phase transition occurs about this particular singularity. The relation
derived for the diffusion exponent breaks down for those multifractals where the g =—-1"
order moment diverges, which is typical of 2 muldfractal phase transition. In these cases
d,, must be estimated by taking into account the sample size.



Résumeé

Plusieurs champs atmosphériques et géophysiques posseédent des caractéristiques
multifractales valides sur de tr¥s grandes gammes d'échelles. Ces faits motivent I'étude des
phénomeénes de transport dans des milieux multifractals, particulitrement la diffusion.
Dans 1'étude des propriéiés de diffusion de champs de résistivité multifractals uni-
dimensionels, une relation est dérivée pour l'exposant de diffusivité d,,,. 11 appert que cette
relation ne dépend que de K (1), la valeur de Ia fonction du moment d'échelle K(g) du
champ de résistivité pour l'ordre ¢=-1 du moment statistique. Cette relation est
subséquemment vérifie 3 partir de simulations Monte Carlo de diffusion sur de tels
systtmes. Etant donné€ la correspondence un 2 un entre les moments statistiques et les
ordres de singularité, un seul ordre de singularité, nommément y_,, est d'importance dans
la diffusion sur des champs multifractals; ceci a €t€ confirmé par des simulations sur des
champs tronqués. Bien que la convergence ne soit pas rapide, dans la limite d'une gamme
d'échelle tendant vers l'infini, une mansitdon de phase dynamique apparait pres de cette
singularit€. La relation dérivée pour l'exposant de diffusion n'est plus valide pour les
multifractals ol le moment d'ordre g =—1 diverge, typique d'unc transition de phase
multifractale. Dans ces cas, d,, doit Eoe estimé en tenant compte de la taille de
I'échantillon.
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Chapter 1: Introduction

1.1 Motivation

Many disciplines of science are expressing great interest in the problem of diffusion
in disordered media, a branch of the more general problem of transport phenomena. The
reason thar this interest is so widespread, reaching across areas such as geophysics and
condensed matter physics as weil as a2 host of others, is that most systems found in nature
are disordered in some respect and as 2 result, ransport on these systems cannot be
described by classicai diffusion laws. Instead, models are constructed in order to represent
these systems and through theory and simulation the transport properties of these models
are determined. If the models accurately describe real physical systems, then such studies
provide insight into the ransport that takes place in these systems and in particular may
serve as starting points for the development of various types of prediction schemes (in the
areas of groundwater flow and oil recovery, for exampie).

The area of study to which this work pertains is transport in extremely variable
media. Many geophysical fields exhibit extreme variability (intermittency) over wide
ranges of scale. This variability urises as a consequence of the nonlinear processes
involved in the dynamics of these fields.

The important aspect of nonlinear variability is its scaling pioperties. A geometrical
fractal set can be described by a single power law (a single fractal dimension). A
multifractal ficld exhibits multiple scaling and its description generally requires an infinite
number of exponents and hence fractal dimensions. Fields that are scale invariant are
generally multiple scaling and can therefore be described by multifractals. As an example,
recent empirical findings reveal the structure (pore space geometry) of porous rock to be
multifractal (see, e.g., Hansen er al. {1988), Muller {1992}, and Muller and McCauley
(1992]). :



The process of diffusion is the simplest transport mechanism of interest in random
media. Although many other applicadons are likely, the original motivation for this study
was to understand radiative transport in clouds (see, e.g.. Lovejoy er al. [1990], Gabriel er
al. [1990], Davis er al. [1990]). Over a wide range of scales, the optical density in clouds
has a multfractal distribution; under ceriain conditions, diffusion is an approximation to
radiative transfer in the thick cloud lirmit.

Geophysical multifractals are likely to belong to universality classes that can be
characterized by two basic parameters (Schertzer and Lovejoy [1987]). In this study,
diffusion is employed in order to investigate the transport properties of one-dimensional
universal multifractals. A summary of the preliminary results of the study can be found in
Silas er al. [1993]. Although many studies have been performed in order to understand
diffusion on scaling binary systems (geometric fractals), very few have been performed in
order to understand the same on multifractals. The only directly relevant studies of
transport properties of multifractals, of which the author is aware, are those by Meakin
[1987], which examined the properties of random walks on multifractals generated by
discrete cascades in two dimensions, by Weissman and Havlin [1988], which explored
diffusion on deterministic multifractals, and by Saucier [1992], which studied the effective
transport properties of multifractal permeability fields using renormalization group
methods.

1.2 Fractals and multifractals
A fractal is a geometric set of points that obeys the following power law:

N~ £, (1.2.1)
where N(£) is the number of boxes of size £ required to cover the set. A fractal set can
therefore be characterized by a quantity Dy, which is independent of scale, termed the
fractal dimension (generally non-integer). The fractal and its embedding space constitute a

binary system.

A quantity more fundamcntal than the fractal dimension is the fractal codimension.
The fractal codimension Cy of a particular fractal set is related to the probability of finding

2



a point on the set; it is therefore related to the fraction of the space that is occupied by the
set. The codimension is given by

Cr=D-Ds; C;20, (1.2.2)

where D is the dimension of the embedding space and Dy is the fractal dimension of the
sct. Though the probability space of a stochastic process is infinite (D — o), the
codimension stays finite and constant.

A scaling field cannot be characterized by a single fractal dimension; when
considering sets that exceed various thresholds (exceedence sets), one generally finds that
the fractal dimension of the exceedence set decreases with increasing threshold levels.
Such a multifractal field exhibits multiple scaling (or multiscaling) and in general must be
described by an infinite number of fractal dimensions. In the codimersion formalism
(Schertzer and Lovejoy [1987]), a mulufractal is described by an infinite number of power
laws of the form:

py ~ A7 (1.2.3)

whose exponents ¥ are orders of singularity and constitute the singularity spectrum of the
field. These orders of singulanty indicate the intensity values of the density p; of the
ficld, where 4 is the scale rato: the ratio of the largest scale of the system (taken to be
unity) to the inner scale of homogeneity. The resolution of the field is the reciprocal of the
scale ratio; as 4 — oo the resolution of the field becomes infinitely small.

1.2,1 Universal multifractals

The distribution of orders of singularity of a multifractal field is governed by the
following probability distribution {Schertzer and Lovejoy [19871)

Pr(p; 2 A7)~ A7 (1.2.4)

where again A is the scale ratio, p; is the value of the multifractal field at resolution 1/4,
7 is the corresponding order of singularity and ¢{¥) is the codimension function. The
symbol '~' indicates equality to within constants and slowly varying factors. When



c(7) <D, where D is the dimension of the embedding space, the codimension has a
geometrical interpretation since D(y) = D —c(7y) is the fractal dimension of those regions
with singularity y. The codimension of a particular order of singularity describes the
probability with which this singularity is to be found on the field (sce equadon 1.2.4). A
singularity is space filling if its codimension is zero. Although in general, ¢(y) need only
be convex, Schertzer and Lovejoy [1987] have shown that due to the existence of stable,
attractive generators of muldfractal processes, physical multifractals are likely to belong to
multifractal universality classes characterized by two basic parameters: & (0S¢ <2) and
G, (0<C, €D, where D is the dimension of space). The first of these parameters is the
Lévy index o, which measures the degree of multifractality or the deviation from
monofractality (c¢=0) of the field. The second of these parameters, €, is the
codimension of the mean order of singularity of the ficld and it describes the deviation of
the mean of the process from homogencity (Cy =0). The universal form of the
codimension function is

"

1

cy)= Cl{?z%+-&—j| ., a#l,
1

c(7)=Cxexp[Cll—l]- a=1

Equation 1.2.5 describes conserved universal multifractals; nonconserved multifractals can
be obtained via fractional integration and differentiation of order H (taken to be zero in
what follows). Conserved universal multifractals can be separated into three main,
qualitatively different, classes (figure 1.2.1): =2, 1<a<2 and 0Sax<sl. The
extremes of @ =2 and o =0 correspond respectively to the lognormal multifractal and the
(monofractal) S-model (Frisch er al. [1978]). One can see from this figure that lognormal
multifractals display only one space filling singularity y=-C;, multifractals with
1< a <2 display infinitely many space filling singularities, the largest of which is
¥ =G, /(1 - @), and muliifractals with 0 < or <1 display no finite space filling singularities;
here the singularities are bounded above by ¥ =G, /(1- ).
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Figure 1.2.1. Codimension function ¢(¥) for the qualitatively different classes of
conserved universal multifractals: a) & = 2: the lognormal case displays one space
filling singularity ¥ =—G;; b) 1< & <2: infinitely many space filling singularities
exist, the largest of which is ¥ =G /(1—-a); ¢) 0 S & S1: no finite space filling
singularities exist; singularities are bounded above by ¥ =G /(1 - ).



Just as cfy) describes the multifractal probability distribution, the statistical

moments of the multifracal ficld are described by the moment sealing function K(q),

(ps7)= 2K, (1.2.6)

where g is the order of the moment and the brackets indicate ensemble averaging. When
K(q) is nonlinear in g the moments of the ficld are said to be multiscaling: this is the
signature of multifractality. X(q) and ¢(y) are related via the Legendre transform (Parisi
and Frisch [1985]).

K(q)= m?x(q?-r-‘(?))
c(y)= m;lx(qy— K(q)) (1.2.7)

dK(q)L . dey)
- q! qy-
=q

dgq dy

Y=Yy

where 7, denotes the order of singularity that maximizes the expression for K(g) and qy
denotes the order of the moment that maximizes the expression for ¢(y). The universal
form of the momeni scaling function is (Schertzer and Lovejoy [1987])

C (a_
K@)=—-(a"-q). a1

(1.2.8)
K(gy=Cgqlogg, a=1.

For the -model (& =0) and the lognormal multifractal (¢ = 2) respectively, the form of
the moment scaling function becomes K(gq) = C;(g—1) and K(q) = Gq(g-1).

The connection between the codimension formalism of Schertzer and Lovejoy and
the dimension formalism (strange attractor notation) of Halsey er al. [1986] is as follows.
The orders of singularity of the codimension formalism (¥) and of the strange attractor
notation () are related via ¢ = D— ¥, where D is the dimension of space; & here is not
to be confused with the Lévy index o mentioned above. In the strange attractor notation
the dimension function is f(¢o) = D—¢(7y) and the scaling of the moments is described by

7(q) =(g —1)D - K(q).



1.2.2 Bare and dressed cascade properties

Universal multifractals can be obtained either via continuous cascade processes or
via multiplicatve "mixing" of cascade processes (Schertzer er al. [1991]). The bare
quantitics of a muldfractal field are those that are generated from the cascade process that
has procecded only over a finite range of scales; these are the quantities that obey the
cquations for universal multifractals for all q and y. The dressed quantities are those that
result when the cascade is developed down to an infinitely small scale and the field is
subsequently averaged (dressed) to a larger scale. Dressed quantities are indicated by the
addition of the symbol ",d" in subscript; in other words, this symbol indicates a spatial

average.

The scaling of the statistical moments and singularites of both the bare and the
dressed ficlds are the same for q <qp and ¥ < ¥p (=K'(gp))- For q2qp (72 7p) the
moments will diverge (Schenzer and Lovejoy [1987]):

((pil.d )q) =2X@ 5 e for q2qp, (1.2.9)

where
K(gp)=D(gp-1) (1.2.10)

defines gqp and D is the dimension over which the dressing is performed. This
bare/dressed distinction is a consequence of the singular behaviour of the multifractal field
in the (small scale) limit 4 — . Furthermore, for all universal multifractals save the
lognormal case, all negative statistical moments will diverge for both the bare and the
dressed fields. The divergence of moments problem gives rise to a first order multifractal
phase transition (Schertzer and Lovejoy [1992], Schertzer and Lovejoy [1993]).

1.3 Random walks and diffusion laws

The numerical simulation of the process of diffusion can be accomplished through
the use of random walks. The Monte Carlo method, introduced by Metropolis ez al. in
1953, is employed in order to perform these random walks on the system of interest. The



motion of a random walker in a one-dimensional system is governed by the following
master equation:
dP(x,t)

=T(x+12 )P(x+18)~T(x = x+1)P(x.1) (1.3.1)

+T(x=1->2)P(x-10)~T(x > x-1DP(x.0),

where the T are transition rates for travel between neighbouring sites and P{x,?) refers to
the probability with which the walker can be found to be at site x of the system at time ¢,

The transition rates are related to the diffusive properties of the system; they
determine the type of medium being studied. In a uniform system all the transition rates are
identical; independent of the dimension, diffusion here is said 1o be normal and follows the
normal diffusion law:

2 ~1. (1.3.2)

In other words, in a uniform system the mean square displacement is linear in ime. The
bar indicates an average over an ensemble of walkers on an individual realization of a
particular systemn; brackets are reserved for averages taken over an ensemble of realizations.

In disordered media, whether the disorder be structural or physical, diffusion can
no longer be described by the normal diffusion law; rather, diffusion becomes anomalous
and follows the anomalous diffusion law (Gefen et al. [1983]):

. (1.3.3)

The diffusion exponent d,, characterizes the rate of diffusion in a particular system;
diffusion is normal for d,, =2, anomalously siow for 4, >2 and anomalously fast for

d,<2.

o



1.4 Models of disordered systems

Many models of naturally disordered systems currently exist. In keeping with the
theme of this study, the models reviewed here are some of thuse which seck specifically to
reproduce the scaling properties observed in real systems. These and other important
models of diffusion in disordered systems, although not relevant to this thesis, can be
found in an excellent review article by Havlin and Ben-Avraham [1987].

1.4.1 Fractal models

Anomalous diffusion has been investigated on deterministic fractals such as the
Sierpinski gasket (e.g., Given and Mandelbrot [1983]) as well as on (loopless) fractal
structures embedded in square lattices and Cayley trees (e.g., Havlin and Weissman
[1986]). Expressions for the diffusion exponent in terms of the fractal dimension and other
(usually electrical) properties of the substrate have been obtained.

Fractal media exhibit anomalous diffusion as a consequence of the nonuniformity of
these binary structures. Diffusion on a fractal proceeds as follows. A random walker may
"diffuse” on the fractal only and not in the space which embeds it (the “ant in the labyrinth”
problem, de Gennes {1976]). This statement is equivalent 10 saying that the diffusion
coefficient for points on the fractal is one, while that for points off the fractal is zero. In
this case the word “nonuniformity” refers to the fact that the random walker cannot reach
every point in the system. It must be stressed that this model can only represent binary
scaling systems.

1.4.2 Percolation model

In the percolation model for disordered media (Stauffer and Aharony [1992]), sites
of a regular lattice are randomly occupied with a probability p. Clusters are formed of
nearest-neighbouring occupied sites. At a critical concentration p=p, an infinite
"percolating” cluster appears. The percolation model exhibits anomalously slow diffusion
over the entire range of scales at criticality only, when the incipient infinite percolation
cluster demonstrates fractal characteristics; in fact, this cluster is a random fractal. Because
this Is so, the incipient percolating cluster can be modeled by an infinite deterministic fractal
that is characterized by the same fractal dimension and the same electrical properties.



The slowing of the diffusion process at criticality is due to the dead ends and the
bottlenecks and other obstacles of the percolating cluster. Again this system is birary;
walkers may move only to occupied sites yet every ncarest neighbouring occupied site is
assigned the same transition probability. The pcréolation model therefore is fundamentally
geomertric.

The incipient infinite percolation cluster does however exhibit some multifractal
characteristics. When 2 unit voltage is applied across a2 percolating random resistor
network, where network bonds are of unit resistance, the moments of the voltage drop
distribution are found to be muldscaling (Coniglio {1986]), as are the moments of the
current distribution (Fourcade et al. [1988], Fourcade and Tremblay [19877).

1.4.3 Hierarchical structures and (non-universal) muitifractals

Hierarchical models of one-dimensional disordered systems are comb-like
structures; the "teeth” or potential barriers are meant to act as delays for the transport in
these systems. The barriers are distributed in a hierarchical fashion and the runsition rates,
which satisfy equation 1.3.1, are inversely proportional to the barrier heighis and are given
by (Havlin and Weissman [1986;):

Tz xt)=R. (1.4.1)
The x are the sites of the system and the £ satisfy the following:

x(mod2%) =241 (1.4.2)

In other words, the structures are deterministic multifractals where the central point plays a
special role. Havlin and Weissman [1986], for example, investigate transport on these
hierarchical structures; they find a transition from anomalous diffusion (when R<1/2) to
normal diffusion (when R>1/2). There is no randomness in this model; it was
constructed with the use of a recursive relation. Furthermore, studies of hierarchical
structures do not seem to take into account different possible origins for walks that take
place in these systems. It will be shown that the lack of even approximate translation
invariance in these structures gives them special properties; when starting the particles in

10



the central positon, diffusion properties of such systems are quite different from those that
result from statistically homogeneous multifractals with particles starting from random

origins.

A numerical study of the properties of random walks on two-dimensional discrete
non-universal multifractals using Monte Carlo methods was performed by Meakin [1987].
Meakin examined random walks on square lattices (1024X1024) with multifractal
distributions of transition raics. These (random) multifractals were obtained via a cascade
process; different parameters used in the construction of the cascades resulted in the
different multifractal fields that were studied. On every realization of a particular field, 100
walks of 100,000 steps each were performed. The origins of the walks were chosen at
random. Six hundred realizations were performed for each of the different multifractal
ficlds. Various statistical exponents were measured and probabilities of retumn investigated.
Diffusion upon these multifractals was found to be anomalously slow (subdiffusion).

Weissman and Havlin [1988] derive a result for diffusion on multifractals that
contradicts Meakin's findings. The result states that anomalous diffusion occurs only on
multifractals with discrete ¢(y) spectra. They further apply this result to investigate
diffusion on both the hierarchical model and a deterministic multifractal field (both one-
dimensional). As before, diffusion on the hierarchical structure leads to a transition in the
diffusion exponent indicating that at the critical point, diffusion is no longer anomalous but
becomes normal.

Weissman and Havlin conclude that diffusion is normal on normalized multifractals
and that subsequently the problem is not an interesting one. They found diffusion to be
anomalous only for non-normalized multifractals. Their result can be seen to hold only
when averaging over random walkers that 21l share a common origin; once this averaging is
performed over different starting positions, which for the multifractals of interest here are
all statistically equivalent, a quite different (anomalous) result is obtained. Unfortunately,
interest in the topic of diffusion on multifractals seems to have dwindled following this
article.

1.4.4 A universal multifractal model

In the last secticn some fractal models and the percolation model were discussed;

11

these are scaling systems (the percolation model is scaling at criticality). However, these '



systems can be described by geometric sets; the diffusion cocfficient for these models can
only take on one of two values (the systems are binary). The problem of diffusion on
scaling fields is of a more general nature. The hierarchical model and the (non-universal)
multifractal model, both also discussed in the last section, have as their diffusion coefficient
scaling fields rather than scaling sets; the diffusion coefficient is therefore no longer limited
to two values. Most systems encountered in nature consist of a continuum of intensity
values; when multiscaling, such systems can be modeled using universal multifractals.
This study constitutes the first effort made to understand diffusion on universal
multfractals.



Chapter 2: Diffusion on a multifractal

2.1 Diffusion on a one-dimensional disordered system

Consider the motion of 2 number of particles in a one-dimensional n-site system,
which is possibly disordered. The average particle concentration is denoted by J(x,r) and
the particle flux by F(x,r). Fick’s law describes the relationship between the flux of
particles and the concentration gradient (Pathria [1972:454-455]), ‘

F(x,t)=—D(x)§ax—f(x.t) . (2.1.1)

where the spatially dependent coefficient of diffusion D(x) describes any disorder that is
characteristic of the medium. The equation of continuity expresses the conservation of the
number of particles in the system:

g—t-l(x,t)+V-F(x,t)=O. 2.1.2)

Substituting equation 2.1.1 into equation 2.1.2 yields the one-dimensional diffusion
equation:

I _ 9 oJ (x,t)}
_at ax[D(x)-——-—-ax (2.1.3)

If the total number of particles contained in the system is denoted by N, the particle
concentration can be expressed as

J(x,t) = NP(x,?) (2.1.4)
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where P(x,r} is the probability density. The total number of particles in the system
remains constant; hence the diffusion equation can equivalently be written as

P(x1) _ 3 [D(x) ?L;;ﬂ} (2.1.5)

ot ox

The diffusion equation can only be solved analytically in special instances of systems with
a simple D(x); this is not the case in this study where D(x) is a random function.

2.2 The numerical simulation of diffusion on a one-dimensional
disordered system

Random walks can be employed in order to model the process of diffusion in a
particular system (Chandrasekhar [1943]). The motion of a random walker in the system
defined by D(x) can be described by the master equation for diffusion in this medium; this
master equation is a discretization of the diffusion equadon. In a one-dimensional system a
particle (or random walker) has the option of proceeding i one of two directions; the
master equation that governs the motion of this particle is (from section 1.3):

dP(x,t) _ -
= =T(x+1= X)P(x+1,0)—T(x = x +1)P(x.1) (1.3.1)

+T(x=-1= x)P(x;- L)-T{(x = x=-1)P(x,1),

where the T are transition rates and P(x,r) now refers to the probability with which the
walker can be found to be at site x of the system at time ¢. Equatior 1.3.1 is also called
the continuous time random walk equation (Zwanzig [1982]). The relationship between the
transiton rates T and the coefficients of diffusion D is obtained following a method
outlined in Aziz and Settari [1979:83-84].

Consider the one-dimensional n-sitc system displayed in figure 2.2.1 where
periodic boundary conditions have been imposed. Note that this system is ergodic; any site
can be reached from any other site, no matter whether a particular move can be realized in
one step or that several steps are required. In other words, there is no absolute "trapping”
possible. Itis clear that the probability for a particle to proceed in a single step to a site that

14



Figure 2.2.1. A one-dimensional r-site system with periodic boundary conditions.
To every site x a diffusion coefficient D(x) and particle concentration J, are
assigned (after Aziz and Settari [1979]).
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1s not its nearest neighbour is zero. This is also the case for a particle wishing 10 stay still;
particles are forced to move at every step of the process: T(x — x)=0.

Sites of the system are equally separated by a distance Ax and to each site x a
diffusion coefficient D(x) and particle concentration J, are assigned. Over a region of
size on the order of the scale length Ax, each of the diffusion coefficients will be uniform
(hence this scale is called the inner scale of homogeneity). Between two such regions one
can imagine an interface, located for simplicity midway between the two sites of interest,
that is characterized by a discontinuity in the diffusion coefficient. To determine the proper
transition rates for travel between sites, consider a discretized version of Fick's law
(equation 2.1.1). The flow of particles from site x; to the interface is given by

-7
==-D(x, )[ ?x/" ] (2.2.1)

Fiosim

where Ax/2 is the distance between the site and the interface and Jy,, is the (unknown)
concentration of particles at the interface. Similarly the flux from the interface to site x;,,
is )

J;
Fioin =—D(x,-+1)[ *;x/z"“] (2.2.2)

The flow of particles on either side of the interface must be the same, i.e., equal to the flow
of particles across the interface and between sites x; and x;,;:

Fiint = Fimsin1 = Fiyina- (2.2.3)

An explicit relation for F;_,;.1,

Fs—u-ﬁ-l = _G( Xil )Ll (2.2.4)

requires the definition of a transmission coefficient g{x;;x;,;). which effectively describes
the conductance (or some quantity proportional to it) between sites x; and x;,;. Equations
2.2.1 10 2.2.4 can be used to solve for o{x;;x;,;). Using equations 2.2.1 and 2.2.2



respectively, expressions for J; and J;,; can be substituted into this last relation (equation
2.2.4):;

-0(X;3 X;41) int—sis1 AX Ft—bmt Ax
F: ... = : —+J |- s 2 . (2.2.5
=i+l A [( D(I‘.,,.l) 2 mnt D(x,) ) Jml ( )

The interfacial particle concentration Ji,, is cancelled out; using equation 2.2.3 to eliminate
the fluxes and then solving for 6(x;;x;,;) yields the following:

ZD(Xg)D(I;+1)
D(x))+ D(x;41)

o(x;3X%,1) = (2.2.6)

Therefore the “conductance” between two adjacent sites is simply the harmonic mean of
their individual coefficients of diffusion. The transition rates are then obtained by
normalizing the transmission coefficients so that the probabilities, for a single particle, of
proceeding to the left and right of a particular site add up to one. In other words the
normalized transition rates for a partcle at site x; are

o(X3 X;1)

T(x; =3 x;.0)=
FTTMT ol x) + 0(x %)

o(x;3 1)
(X3 X41) + O(X53 X))

T(x; = x)= (2.2.7)

T(x; = x;)+T(x; = x;) =1

For systems of a dimension greater than one, equation 2.2.7 can be generalized to

o(x;3x;)
TG = xj) - 2}. o(x;x j)
(2.2.8)
ZT(I; - X J) =1
i

These probabilities must be calculated for every site of the system.
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Hence before every step taken on the diffusivity field, the random walker must
make a choice that is weighted according to the values of the field at sites pertinent to the
next move in the walk. Each step that the walker takes is dependent only upon the previous
one.

Now that the proper transition rates have been determined, the Monte Carlo
simulation may begin. The Monte Carlo method will lead to a determination of the
moments of the position (x‘?) as a function of ime. These statistics must be gathered after
many random walks have been performed on many different realizations of the diffusivity
field.

2.3 Diffusion on a one-dimensional multifractal

In this study the medium is modeled using a one-dimensional multifractal density
field p, (x), where A4 is the scale rato. The coefficient of diffusion is taken to be its
reciprocal since regions of high resistance to diffusion are likely to correspond to rare,
dense (impenetrable) regions of the medium:

1
P ()’

D, (x)= (2.3.1)

The diffusion approximation to radiative transfer, for example, involves taking p, (x) to be
proportional to the (multifractal) optical density' and then taking its reciprocal to be the
diffusion coefficient. In electrical conductivity problems, p; (x) would be identified with
the resistivity; regions of extremely large resistance (large singularities) are expected to be
rare and regions of weaker resistance (smaller singularities) are expected to be more
common.

Substituting equation 2.3.1 into Fick's law (equation 2.1.1) and noting that at the
inner scale of homogeneity all (uniform) regions are the same length, it can be seen that the
time it takes to diffuse across a region centred about a particular site is proportional to the
value of the field at that site. Hence, in simulating diffusion on a multifractal, time is
incremented in units of density; for each step thatis taken by the walker, the time increment
is determined by the value of the field at the new site.

I8



Also note that, when subtituting equation 2.3.1 into equation 2.2.6, the expression
for the ransmission coefficients in terms of p; (x) becomes

2

. (2.3.2)
P2 (x:) + P (Xi41)

O (X3 xp1) =

The ansition rates remain as in equation 2.2.8, only now using this last expression for the
wransition coefficients so that the tranport that occurs from site to site is directly related to
the values of the density field. '

Consider a single random walk performed on a single realization of a random
medium. The long time, large distance properties of the walk can be derived analytically by
taking Fourier and Laplace transforms of the master equation (equation 1.3.1).
Subscquently, the following relation has been shown to hold (Machta [1981], Zwanzig
[1982]):

1 3 1%
D x* N,

=]

1
_, 2.3.3

D, (2.3.3)
where N; is the number of distinct sites visited by the random walker and the D; are the
diffusion coefficients associated with those sites. The random walker experiences an

effective diffusion coefficient D for that particular walk that is equal to the harmonic mean
of the D.'. ‘

This equation will now be applied to a multifractal that has been developed over the
range of scales A (smallest scale = A”1). At some larger scale A%, where the scale ratio
A is smaller than the ratio A (see figure 2.3.1), the effective diffusion coefficient in the
j™ interval of length 47! is

i=1

-1
1& _
D, ;= [IZPA.;‘] =(0y.j.q) 1 (2.3.4)

where the sum is over all the p, ; for the N, = 21/ A? sites in the interval, The term
Pa.j.q indicates a dressing of the p, field: a spatial average of the field taken over the j™
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Figure 2.3.1 A one-dimensional multifractal diffusivity field that has been
developed over the range of scales A. The D; are the diffusion cocfﬁcxcms
assigned to the each site i of the system at thc smallest scale A™ 'I‘hc
effective dlﬁ'usxon coefficient D, ; thata walker experiences in thc j
region of size 17 (A <A)is thc harmonic mean of all the D; in that
interval.



—12 . =12
region of scale 1/4 ~ x2" . Therefore, for random walks over distances of YA ~ x*

whose origins are in the j** interval, the corresponding time is estimated by:

D, .
4~k (2.3.5)
> 4

In the limit of longer and longer times, the scale 27! over which these walks take place is
simultancously increased and will eventually reach the size of the system in a finite time.
Sceing that this is the case, one must use equation 2.3.4 for regions of a finite size and then
average over all such regions of the field; this procedure further takes into account the
diffusion of particles with random origins. Hence, averaging over all intervals of length
27! yields:

1 —_
IZD:L.;' =(Pr.2) 75 (2.3.6)
J=1

D=
the double bar indicates a spatial average taken over all intervals of the field.

Two properties are now required. The first is the equivalence of the scaling of the
bare and dressed moments; this will be true if ¢<gqp (section 1.2.2) and if the bare
moment exists. Here ¢ =-1 and since gp >0, the only requirement for this moment to
exist is for K(—1) to be finite. This requirement will hold for most multifractals considered
in the literature; however, it will not hold for universal muldfractals with ¢ <2. The
second property required is the equivalence of spatial averaging over a single realization
and ensemble averaging over many realizations. This will be true for & =2 and as long as
the sampling dimension is large enough (see Schertzer and Lovejoy [1989]).

Applying these two assumptions yields:

) ={a ") =(py ") = 25D, 23.7)

Hence from equations 2.3.6 and 2.3.7,

D= (:27] = 2keD (2.3.8)
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and since /4 = (;5) it follows that

(?z) Y ¢Y8 TRV /S : (2.3.9)

therefore for diffusion on multifractals,
d,=2+K(-1). (2.3.10)

For multifractals with & <2, K(-1)~ e (corresponding to a multfractal phase transition)
and the above result breaks down. In these cases d,, can be estimated by taking into
account the sample size (the number of realizations of the ficld); diffusion on these
multifractals will be further investigated elsewhere.

To obtain the results for hierarchical systems and those cited by Weissman and
Havlin [1988], the walkers are given a fixed origin and there is no averaging performed
over different regions of the field. In this case,

1
——=pra 2.3.11)
D, j

is (generally) a random variable that depends on the starting point since
Pag~ AP, (2.3.12)
where ¥, 4 is the corresponding (dressed) order of singularity of p. Since D; =1/p; ,
Y04 =""pd (2.3.13)

and therefore

- 270,
TDd _ 2 0.a/2

pra==g= (2.3.14)
X



so that

S Er0dl (2.3.15)

Hence when different particle origins are not considered, i.e., when there is no averaging
over different intervals of the field

d,=2+7Ypg- (2.3.16)

The various results for the hierarchical model, as well as those of Weissman and Havlin
[1988], correspond to ¥p 4 > 0 (subdiffusion) and ¥p 4 =0 (normal diffusion). These
results are therefore seen to be direct consequences of considering walks with special
origins.

For lognormal universal multifractals, the form of the moment scaling function
(equation 1.2.8) is K(q)=Cyq(g—1); therefore K(—~1)=2C; and hence from equation
2.3.10

d, =2+2G,. (2.3.17)

Findings from the simulations that were performed for this study confirm that this indeed is
the form of the diffusion exponent for lognormal multifractals. These results will be
discussed in the next chapter.

From equation 2.3.10 it is seen that diffusion on (one-dimensional) lognormal
multifractals is corpletely characterized by X (—1). This indicates that only one moment
(that of order g=-1), and hence only one singularity due to the one-to-one
correspondance between moments and orders of singularity, is important for the diffusion
process on these systems. The moments and the orders of singularity are related through
the Legendre transform (equation 1.2.7); hence the significant order of singularity is
¥Y-1 =K' (-1). Taking the derivative of the moment scaling function for lognormal
multifractals (see above) with respect to ¢ and evaluating it at ¢ =~1 yields for the
corresponding order of singularity

74=-3G. (2.3.18)
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Hence it is anticipated that this singularity will be of special importance to diffusion on
lognormal multifractals; it is believed that there will be a dynamical phase transition about
this singularity in the limit A — <. This last statement will be investigated in the chapter to
follow as well.



Chapter 3: Simulation results

3.1 Scaling of the moments of random walks on one-dimensional
multifractals

The steady state solution of the one-dimensional diffusion equation (equation 2.1.5)
using equation 2.3.1 is )

-3; 2 (X)=Ap; (x), (3.1.1)

where A is a constant, which is determined by the boundary conditions. The derivative of
the steady state concentration field P;(x) is therefore proportional to the original
multifractal density field p; (x). Altematnvely, P;{(x) is an integral of p,;(x). The
integration of the density field is 2 smoothing operation; it has the effect of degrading the
resolution to a larger scale, which does not change the multifractal character of the field.
Hence the steady state probability density P, (x) is 2 (nonconserved) multifractal, with the
same a and C as p; (x).

Though the steady state probability density is muldfractal, requiring in general an
infinite number of exponents for its specification, the statistical moments x? will scale with
a single exponent (the bar indicates an average over an ensemble of walkers on an
individual realization),

x7 ~ 5@ (3.1.2)

where

S(@)=H,q; (3.1.3)



H, =1/d, is called the gap exponent and for normal diffusion H, =1/2 (see, e.g..
Havlin and Ben-Avraham [1987:711]). This monoscaling of the moments is a
consequence of the fact that a random walk is 2 random additive process whereas
multiscaling arises from rmudriplicative processes. The only singularity that determines the
diffusion on lognormal multifractals is 7., =—3C, (comesponding to the ¢ =-17 order
moment; see section 2.3). The maximum and minimum orders of singularity that can exist
on 2a single realization of a one-dimensional multifractal are such that
C(Ymax) = C(Ymin}=1. Using the universal form of the codimension function for
lognormal (& = 2) multifractals to solve for these singularities ylelds ¥, =—C +24/G;
and Ypin =—C; —2+/C; - The Legendre transform is employed to find the corresponding
Gnax =-1-1/-\[E1 and @i ==1/[C,. Therefore g, <1 as long as C; <1, so that in
this case the q=—1”' order moment and hence the y_, singularity exists for every
realization of 2 lognormal multifractal. Because this is so, averages taken over an ensemble
of realizations of these multifractals are equivalent to averages taken over individual
realizations: < x9 >= x?.

Results from this study confirm that S(g) is linear and hence that the moments of
the walk are monofractal. The moments of the position as a function of tme are

(x9) = [x9P(x,0)dx. (3.1.4)

Equation 3.1.3 implies that P(x,) must be of the scaling form
1 X
P(I.f) ~ ?H:H(?H:) . (3.1.5)

Figure 3.1.1 displays a plot of IH"P(I.I) versus x/ tHv for diffusion (random walks) on a
multifractal field with ¢ =2, ¢; =0.2 and A =1024. Each curve on this plot represents a
different time in the walk. All of these curves collapse onto one, hence the scaling form of
equation 3.1.5 holds here. Accordingly, though the steady state field is multiscaling
(multifractal), the moments of the walk are indeed monoscaling.
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Figure 3.1.1. This plot displays that the scaling form of the probability
density P(x,t) for random walks on a one-dimensional multifractal (here
using @ =2, C; =0.2 and A =1024)is P(x,?) ~ /¢ I(x/t"*). Each
set of data points represents a different time in the walks. The collapse of
these curves onto one indicates that the moments of the walks are
monoscaling (here H,, =0.4167, see section 3.2).



3.2 Simulations

A typical one-dimensional continuous universal (Schertzer and Lovejoy [1987],
Wilson et al. [1991), and Pecknold er al. [1993]) multifractal field is displayed in figure
3.2.1 with ¢ =2, C; =0.2 and 4 =1024. Consider a particle injected into the center of
this field (periodic boundary conditions are imposed); this random walker follows the rules
outlined in section 2.2 for random walking on a one-dimensional multifractal. After
121,810 steps the walker is stll contained within the inset of figure 3.2.1. Figure 3.2.2
shows a blow-up of the inset with the trail of the walker superimposed upon it. It is clear
from this figure that the diffusion is slowed due to the delaying of the walker between large
values of the field (Qow diffusivity regions). The scaling exponent of the second order
moment S(2) for diffusion in this medium is determined from figure 3.2.3, which displays
the scaling of the mean square distance with time. Statstics for 10,000 realizations of the
field upon each of which 10 particles were made to walk for a time of 210 units yield
S(2)=0.837+0.002. The scaling exponent and its error have been determined from a
least squares fit to the straight line segment. The region of the plot that will be fitted is
ascertained in the following manner. The finite size of the system introduces a systematic
error into the problem that will be amplified for certain statistics. In particular, statistics for
short walks as well as those for long walks will be unreliable. In the first case, the
problem with the statistics derives itself from the discreteness of the field. The smallest
length scale is the length of the pixel; within this distance the field is uniform. Overlarger
length scales the field is scaling and hence between these two régimes there will be a scale
break in the statistics due to the break in the scaling of the system. In the second case, i.c.,
long walks approaching the size of the system {the largest scale), any random walkers that
cross the boundary will be traveling distances larger than the outer scale of the scaling
regime; these statistics will no longer be scaling either. The lengths of the walks performed
on the multifractals studied here turn out 1o be much smaller than the size of the system
(walk lenghts are limited by computer running time); hence only short walks must be
avoided in the fit for the scaling exponent in order to minimize these finite size effects. The
above result for S(2) was found by making a fit between the limits of 25 and 210 time
units, which corresponded to walks covering about 1.2 to 5.1 percent of the system.

An explicit relation for the diffusion exponent d,, for lognormal multifractals was
obtained in section 2.3. Since d,, =1/H,, =2/5(2), this expression can be rewritten as
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Figure 3.2.1. A one-dimensional multifractal field with @ =2, G =02
and A =1024.
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Figure 3.2.2. A random walk performed on a one-dimensional multifractal

field with ¢ =2, C; =0.2 and 2 =1024. A superposition of the trail of

the walk (121,080 steps taken) upon the region of the field explored by the
walker (inset of Figure 3.2.1) is pictured here. The walker is delayed
between large values of the field, hence a slow-down of the diffusion

process.
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Figure 3.2.3. Determination of the scaling exponent S(2) for the scaling of
the mean square distance with time for diffusion on a one-dimensional

multifractal with @ =2, ; =0.2 and A =1024. Here
§(2)=0.83710.002.
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=—. 3.2
S(2) 1+, (3.2.1)

Using this last relation, the scaling exponent of the second order moment for lognormal
muldfractals with €, =0.2 is §(2)=0.833. These last two results for $(2) fall within
0.4% of each other.

Findings for the scaling exponent S(2) confirm the subdiffusive behaviour of the
random walkers as found by Meakin [1987]. Naturally, the variability of the field will
differ depending on & and C; and subsequently S(2) will vary as well; the diffusion will
be slowed at different rates. For instance, the rate of diffusion decreases with increasing
C,; the further away the field from homogeneity, the harder it is for the walker to move
about due to the increased chance that there will be delaying between large values of the
field. Figure 3.2.4 shows the dependence of §(2) on C for lognormal multifractals.
Here, the values for S(2) that were obtained from the simulations were superimposed upon
a plot of equation 3.2.1. This figure confirms the validity of equation 2.3.10 in describing
diffusion on lognormal multifractals.

The monoscaling of the moments as found in section 3.1 is further illustrated by
figure 3.2.5, a plot of the scaling exponents S(g) versus the order of the moment « for
these same random walks. The straight line, whose slope is the gap exponent, confirms
the monofractal nature of the moments. Here H,, =0.412+0.002 and this value differs
by approximately one percent from the theoretical value of H,, = 0.416.

3.3 Thresholding

In section 2.3 it was argued that one singularity will dominate the diffusion process
on a lognormal multifractal: that which determines the g = —1’* moment of the p; field.
The theoretical predictions were accurately verified in section 3.2. It is of some interest
however to have a more direct confirmation of the role of the y..; =—3C, singularity. To
this end, diffusion is studied using a series of thresholded fields. The threshold T is
characterized by a threshold order of singularity ¥, such that

T=2", 3.3.1)

(3]
-2
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Figure 3.2.4. Dependence of the scaling exponent S(2) of the second arder
moment of x (< 2>~ :S(Z)) on C;, the codimension of the mean, for
one-dimensional lognormal (& = 2) multifractals. The solid line is a plot of
equation 3.2.1. The superimposed data points were obtained from
simulations.
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Figure 3.2.5. Scaling exponents S(g) versus order of moment ¢g. The
straight line behaviour indicates that the moments <x9 > can all be
characterized by a single exponent H,,, where S(@)=H,.q. H,=1/d,is
called the "gap exponent™. Here H,, =0.412+0.002.



where A is the scale ratio. Thresholding is a scale breaking operation; therefore, an
extremely wide range of scales may be necessary to yield the appropriate dressed behaviour
of the fields.

To discover the effect of the various orders of singulariry on the diffusion (in the
limit of an infinitely large range of scales, 4 - o), the systematic elimination of the
individual orders of singularity is performed in either of two ways. The thresholds may be
imposed in such a way that the orders of singularity become bounded from above, ie.,
singularities of the field are removed, one by one, starting with the largest and progressing
to lower ones. Alternately, the orders of singularity may be bounded from below; this is
the case when first imposing 2 threshold at the lowest order of singularity and then
progressing to higher ones. Note that this thresholding is performed on each realization of
the field and that each time a threshold is imposed the random walk process is repeated so
that the statistics at these new thresholds may be monitored. Figure 3.3.1 clarifies the
concepts of thresholding the field by bounding the singularities either from above or from
below.

The actual thresholding procedure undertaken is the following. Consider the case
where on each realization of the field the thresholding is such that the singularities are
bourded from above. Once the first threshold has been determined and imposed, any
region of the field with a value that exceeds it is assigned the threshold value. Clearly, for
different threshold values of a particular field there will be different rates of diffusion and
therefore the asymptotic régime, from which the scaling exponents are determined, will be
attained at different imes. For instance, eliminating large singularities from the field will
cause the diffusion to be more rapid. Therefore each time a threshold is imposed and
before the random walk process is repeated the field is normalized, for the sake of
numerical simplicity, such that §; =1. Normalizing the field (multiplying it by a constant)
does not affect the diffusion process; it merely shifts the dmescale of the problem.
Consider the one-dimensional diffusion equation (equation 2.1.5). Make the following
change of variables:

D'—aD

. (33.2)
p—=Yop,

where a=<p, > isaconstant. Substituting this into the diffusion equation one can see
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that

r=ar. (3.3.3)

Normalizing the field serves only to standardize the scaling region from which the scaling
exponents, which describe the diffusion, are obtained.

In theory, the process of thresholding should not affect the muldfractal parameters
of the ficld. To elaborate, the codimension function c(7y) is related to the probability of
finding a particular singularity of the field to be of an order equal to or greater than 7, or
rather, it is related to the probability that a particular singularity of the field will be found to
belong o the exceedence set that is characterized by the order of singulanity ¥ (see equation
1.2.4). When a threshold characterized by an order of singularity ¥, is imposed (still
bounding from above), all singularities which have an order greater than 7, are eliminated
and hence the probability of finding any is zero; the largest order of singularity that will
then exist for the field is 7, The exceedence set characterized by this same 7y,, however,
remains unchanged (and so does ¢(y,) and c(y) for y<1y,) since all the orders of
singularity that were previously larger than 7, are setequal to ¥,. This idea is illustrated in
figure 3.3.2, which indicates how the bare codimension function changes for lognormal
multifractals when the singularities are bounded (thresholded) from above, In practice
however, thresholding is observed to be a scale breaking operation and therefore care must
be taken when looking at the statistics of the new (dressed) field (Hooge [1993:67-70]).

A first glimpse of how this thresholding affects the statistics of the random walks is
provided by figure 3.3.3. This graph displays several plots of the scaling of the mean
square distarice with time for walks that took place on a field with =2, ¢;=0.2 and
A =1024; each plot represents the statistics for walks on the field when 2 panictilar
threshold was imposed. Here again, the singularities were bounded from above. As the
threshold was lowered the extreme singularities were eliminated; this facilitated transport
throughout the field; hence the diffusion rates (the scaling exponents) increased.

In order to study more clearly the behaviour of the random walkers, the scaling
exponent of the second moment S(2) was plotted as a function of the threshold singularity
7:- The entire procedure was executed using both methods of thresholding for several
different cases of & and C;. For a given @ and G, the results for S(2,7,) that were
obtained when the singularities of the field were bounded from above were sumperimposed
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Figure 3.3.2. The effects of thresholding on ¢(7), the bare codimension
function, for lognormal (& = 2) multifractals when bounding the orders of

singularity from above.
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with those obtained when the singularities were bounded from below. Figure 3.3.4
displays the two plots of S{2,%;) versus the order of singularity ¥,, which characterizes
the threshold, for random walks on a multifractal field with =2, €;=0.2 and
A =1024. These plots indicate a fransition from anomalous to normal diffusion; the
transition region begins roughly about the anticipated order of singularity (s¢e scction 2.3),
7-1 ==3C; =-0.6, and the transition itself is centred roughly about ¥y =—0.2. Toward
the end of the thresholding process in both plots there occurs a slight fluctuation about
S(2) =1, the value of the scaling exponent for normal diffusion. These statstical
fluctuations could be reduced by allowing longer walks to take place; longer watks would
provide more points for the scaling regime, from which the scaling exponent is determined.
The transition that is observed in figure 3.3.4 appears smeared. Figure 3.3.5 demonstrates
that the smearing is a finite size effect; for systems with smaller 4 the transition region is
broader and for systems which have larger A the transition is clearly steeper.
Furthermore, as 4 is increased, the point at which the transition is centred moves steadily
(although the motien is slight) toward smaller order singularities yet the transition region
always seems to begin at y=-0.6. Therefore, although the convergence is slow, it is
plausible that in the limit A — oo there is a "dynamical phase transition” about y_; =-3C;.

In section 2.3 it was found that the singularity y_, ==3C; must have some special
significance for diffusion on one-dimensional lognormal multifractals. Thresholding
essentially confirmed this hypothesis; findings indicate that in the limit 4 5 e the
transition should occur about 7., =—3C,. This effect was very slight however, as
convergence is quite slow, and could only be made more evident by using an exceedingly
large range of scales. Itis stressed that although this procedure (thresholding) was used to
verify the importance of this singularity, it is a scale breaking operation.

3.4 Extensions to higher dimensions

Meakin [1987] examined random walks on two types of two-dimensional random
multifractals; they were each constructed using a cascade process characterized by four
parameters (or probabilities): P, P», P; and P4.. The first multifractal studied, which he
calls "type I", was constructed with =P, =1 and P3=Ps=R. The second
multifractal, "type II", was constructed with Py =1, P,=R, P3=R> and P;=R’.
Though equation 2.3.10 completely determines diffusion on one-dimensional lognormal
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multfractals, it is of interest to apply it to Meakin's multifractals for the sake of
comparison. Table 3.4.1 compares these results with the higher dimensional results
obtained by Meakin for the scaling exponent of the second moment §(2)=2/d, for
diffusion on both types of multifractals, '

Some simulations of diffusion on higher dimensional lognormal multifractals have
been performed by J. Tobochnik (private communication, 1992). The results from these
simulatons are given in table 3.4.2. The reladon d,, =2+ K(-1) has been shown to hold
for one-dimensional multifractals. From these tables one sees that the numbers are
different in higher dimensional systems. Nevertheless, the trends are the same;
furthermore Tobochnik’s results show that increasing the dimension systematically lowers
d,. Tt is believed that diffusion, even on these higher dimensional muliifractals, is
dominated by one singularity.
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S(2) $(2)
R 2-D (numerics, 1-D (theory:
Meakin [1987]) | S(2) =212+ K (-D)])

Y4 0.8641 0.7565
Y8 0.7514 0.5988
Typel | 116 0.6447 - 0.4791
y32 0.5534 0.3930
1/64 0.4926 0.3309
3/4 0.9694 0.9313
12 0.8373 0.7108
Typell | 14 0.5830 0.4150
/8 0.4079 0.2708
/16 0.3008 0.1963

Table 3.4.1. Comparison of results found by Meakin [1987] for the scaling
exponent S(2) for two-dimensional multifractals with those from the one-
dimensional theoretical $(2) =2/[2 + K(-—1)] for the corresponding cases.

The numbers are different but the trends are the same.,



$Q2)
Dimension Size of system G S(2) 1-D (theory:
S)=111+CD

2-D 256X256 0.2 0.91 0.833
2D 256X256 0.5 0.82 0.667
2-D 256X256 0.8 0.77 0.556
3-D 64X64X64 0.2 0.91 0.833
3-D 64X64X64 0.5 0.85 0.667

Table 3.4.2. Results of some simnulations of diffusion on higher
dimensional lognormal multifractals (J. Tobochnik, private communication,

1992).
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Conclusion

A study of the mansport properties of mulifractals is motivated by findings that indicate that
many geophysical and atmospheric fields are multifractal. Multifractals are found
theoretically and empirically to belong to universality classes, which are characterized by
two parameters (for conserved processes). This study established the first investigation of
transport on universal multifractals by examining diffusion on one-dimensional lognormal
multifractals.

In this study a muldfractal served as the diffusion coefficient and hence the
diffusion equation could not be solved analytically; diffusion is anomalous on disordcred
systems. Therefore, numerical simulations were employed in order to investigate diffusion
on multifractal media. The transition rates that were appropriate for diffusion on a
multifractal were determined in section 2.2. In section 2.3 a theoretical expression for the
diffusion exponent for one-dimensional multifractals was derived: d,, =2+ K(~1), where
K(-1) is the value of the moment scaling function K(g) for the g =-1" order moment.
Due 10 the one-to-one correspondance between orders of singularity and statistical
mornents, it was further argued that one order of singularity would be of special importance
to diffusion on these multifractals: y_; = K" (—1) (=-3C; for lognormal multifractals).

Although the steady state concentration field was found to be multifractal, the
moments of the walks were found to scale with 2 single (gap) exponent (section 3.1).
Simulations of diffusion on one-dimensional lognormal multifractals confirmed this and
showed also that the diffusion here was anomalously slow; the subdiffusion was a
consequence of the delaying of the random walkers that resulted from the existence of
regions of high resistance to flow. These simulations further proved the validity of the
relation found in secton 2.3, which provided a theoretical description of diffusion on
lognormal multifractals. In order to verify that one singularity is particularly important to
diffusion on lognormal multifractals, the studies were systematically duplicated for these
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ficlds when thresholds of different levels were imposed. Indeed. a transition from
anomalous 1o normal diffusion was observed; although convergence is quite slow, in the
limit A — o= a dynamical phase transiton will occur at y_; = -3C;.

Diffusion on universal multifractals was found to be much less rivial than formerly
thought; previous results were explained in section 2.3 as special cases where no averaging
over different particle origins took place. While transport on one-dimensional lognormal
universal multifractals is completely determined by equaton 2.3.10, this result breaks
down for multifractals with @ <2 since here K (~1) — ee (indicating a multifractal phase
transition); it is still believed in these cases that one order of singularity dominates the
diffusion process. The general features of these cases must therefore be deduced; this is to
be undertaken in future studies. Future studies will also concentrate on the problem of
diffusion on higher dimensional universal multifractals.
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