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Abstract
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-4

As part of this thesis we are concerned with thé numerical proper-
ties of some methods for cdm}auning copttollaﬁility of d’ linear dynamic |
system with constant coefficients. We show, using counterexamples, why
some well known methods forw determining the controllability of such a
sy\st:em are often numerically unat‘able gkgx,computati\onally inefficient.

We also show that rec;antly developed algorithms by C. Paige {[2] and
others [17], [18}, [19], work satisfactorily for e same examples.

We also give a different algorithm which determines whether a system
is controllable or not. The same algorithm with some changes can be used
to compute the distance of: (the given system from the nearest uncontrollable
one, but it is pointed out ghy this algorithm is computationalﬁly ineffi~
cient[.

We also present an algorithm for solving the problem of eigenvalue
allocation for a single~-input controllable, linear dynamic s¥stem with con-

b

stant coefficients. This algorithm is based on numerically stable trans-

formations.

. .
These latter two.algorithms have been developed jointly with C. Paige.




Resumé

e %

Dans cette thése, nous examinons les propriétés numériques de

certaines méthodes pour le calcul de la commandabilité d'un systéme

Y

lié\éaire dynamique avec coefficients constants. Nous montrons,
. ) .

utilisant des contre-exemples, pourquoi certaines méthodes trés connues

pour déterminer’la commandabilité sont souvent instables numériquement
¥

ou inefficaces & calculer. Nous montrons aussi’ que des algorithmes
recemment developpés par C. Paige [2] et autres' [17], [18], [19],
sont satisfaisant pour les mémes exemples.

. Nous indiquons aussi un algorithme différent qui détermine si

.

un systéme est commandable ou non. Ce m!'éme algorithme avec, quelques

'changements peut 8tre utilisé pour calculer la distance du systéme

‘donné av systéme non commandable le plus rapproché, mais on note pour-

j
quol cet algorithme est inefficace.
»

De méme, nous indiquons un algorithme pour résoudre le probléme
d'allocation des valeurs propres pour un systéme linéaire dynamique

commandable monovariable avec coefficients constants. Cet algorithme

est basé sur des transformations numériquement stables.

3

Ces deux derniers algorithmes ont &té developés conjointeﬁlent avec

A

C. Paige.

R
.
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Chapter 1

(1) -Introduction

(1Y*® overview

C. Paige [2] points out that a measure of the distance of a given
dynamic system from the nearest uncontrollable one would be quite useful

because it would not only determine whether a system is controllable or
1

not, but it would also ihdicate, in the case of a controllable gystem,
1f the given system is quite controllable or it is nearly uncontrollable. .

In the same paper it is mentioned that the above problem appears to be

an open problem. o y

This prpblem and the fact that apparently there are no numerically
reliable and efficient algorithms for the problem of eigenvalue alloca-
. & ,.

tion, gave us the Impetus to write this thesis. The outline of the thesis

is as follows.
In the second section of this chapter we establish our notational con-

ventions. In Chapter 2 we first prove three widely used mathematically
!

' equivalent theorems. We also prove another theorem; suggested by C. Paige

in [2], using a reduction of a matrix to a block upper Hessemberg matrix,
also suggested by C. Paige in [2] as a very useful tool. Then we show,
using co\unterexamples, why three well known methods often fail to deter-
mine whether a system is ;ont;'ollable(or not., while the new algorithm in
’[2] succeeds 1n determining the controllability of the systems in the
same examples. Finally in the same chapter we give an algorithm which
uses the notion of the distance of a system from the nearest uncontrol-

lable one to determine the controllability of the system. As we men-

A




3

tioned in the abstract, the same algoritim with some changes can be

B

used for the computation of the distance of a system from the nearest

« s ;

hY

A

‘uncontroll’able one when_ the systém is 'control‘lable,rbut it is pointed’
out why this algorithm is not computafionally efficient.. )

In Chapter 3 we present some new algor:l:thma" for the eigenva‘h}e
allocation problem. First we describe how we can assign a certain

P .
des%red set of real engenvalues to a real upper Hessenberg mai:rix by &
dZtemining its first row‘ using an explicé: method reiated to the QR
' ;1gorit;1m. Then w; do the: same thing but using an implicit version of
‘the method. A good description of the QR algorithm is gi:rqn in [12].‘l
.

Finally we describe how to assign a certain desired set of eigénvalues
which occur ih complex conjugate pairs to a real upper Hessenberg matrix

by determining its first row, using an implicitly shifted method.

In Chapter 4 we comment on the methods which are developed in this

thesis.

-

In the Appendix we present the subroutine EVA which performs the
s

eigenvalue allocation described in Chapter‘3: We also present four

examples, which indicate that the methods described in Chapter 3 are very

efficient and reliable.

(2) Notation

"

a) Matrices will be representec}/, by upper case‘Rpman letters. Vectors
will be represented by lower case Roman. Scalars will be repre-

sented by lower case Greek letters, and indices by lower case RQman.
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)
c)
d)

e)

£)

g)

h)

1)

1)

k) «

1)

3
T ~ ’ ", H
A"  will represent the transpose of the marrix A , while A

will represent the complex conjugate transpose of A .
.
R represents the set of real numbers, ¢ the set of complex

mumbers and N the set of: natural numbers.

\

Va € A means, for every o element of the set A .

ek with k _e¢ N represents a column vector, the elements of

7 .

which are all zero except the kth one which is unity, while e
will represent a column vector with all its elements equal to one.

A= (a,,) means that the matrix A has elements a

13 ; 1]

'i(j)h will represent the arithmeg{ical progfession with first ele-

ment 1 , step j and final element h . j can be either posi-
tive or negative, s0 1 can be less than or greater than h .
AU B medns the union of the sets A and B..

J
An » Where n ¢ N will represent the set of integers in the inter-

val °[1, n] ,thatis,ieAn if andonly if 1 ¢ N ‘and 1 <1 s n.

Let x= [ £ ) be an n-vector. The numbers 51’52""1’511 are
&
4

Q“L n ) f\

called the components or the elements of x . o
) represents the set of all n-vectors with real components. Simi-

larly c” represents the set of Lll n-vectors with complex com-

EN

o

ponents.

Ban (respectively ¢ ) represents the set of all matrices of

dimensions m , n and real (respectively complex) ele;nents.

”
, A

e
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m) c-Let x = (51,62,...,‘%)1‘ , then the 2-norfh of x is represen’ted by

3

! . . o n q)z
- t |Ix||, and defined by ||x|], = / ;Ellgil .

n) Let A be ah mxn matrix with elements _ (aij

, . ) .
(respectively the F-norm) of A is represented by IIAH2 (respec-

) 5 then the 2—norm,

1. e - o
| 1ax|],

tdvely HAH) a,x}dlis\ defined by IIAHf- max
x A 2 a1 yp0 TP

' A,‘-,' m u 2 . ,}’
(respectively HAHF- 121 jzllaul ).

P) A pubspace R 1is called trivial if and only if R = {0}
. . \u tY ¢ a
q) Aﬁpermutation matrixX is the unity matrix with rearranged columns

or equivalently,' Fbws.

e.g. P = 1ﬂ~‘7:"'0 0

- | 0 o 1
‘0 1 o0

r)‘ « Let A.e R ®  then R(A) will represent the subspace spanned by

the columns of A .
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CHAPTER 2

: A1) Introduction : .

-

(1) Dynamic- systems

3

-

) [
’
. 1

A system is called dynamic when it changes states with respectlto

(S

time and the characteristics of)éha state at one time are related with

Y

‘those at -other times. The dynamical systems considered here can be re-

presented mathematically by either difference or differential equations.

%

* The choice of difference or differential equation corresponds to whether

the system is observed in discrete or cont&auona time respectively.

4
¢
. H

~(2) Controllability of dynamic systems »

i

The concept of contrdéllability of a dynamical system is introduced

by the/following qdestion:

I

<xCan.a dynamical system be ‘transferred from any given initiél
i

state to any desired state in finite time by some control

action?>>, C A
‘ ¥

‘e

If we answer <<yes>> then the system is controllabie.

- - e el ¥
[

- (II) The algebraic problem of controllability

Consider the continuous~-time syéteﬁ

i

/. %x(t) = Ax(t) + Bu(t) . (¢))

~\“

. -
W
3 af o

@
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PR
where t ¢ R (t 2 0} is the time; x ¢ r" ig the state of the system;

n*n

AeR » B e BY™ and ue R" .1s the control vector.

i

Note: Throughout this thesis n will represent the order of matrix A

+

and m the number of columns of B , unless it is mentioned that they
represent something else.

The set of all x is a real n-dimensional vector space, called the

state space of the system (1) and it will be denoted by R

7
¢

Definition (I): The system (1) is said to:be conlrollable if for any gilven

pair of states (xI, xF) e R® x R® there exists a time t > 0 and a
control u defined on [0,t] such that the solution of (1) which corres-

ponds to the initial value x(0) = X gives us’ x(t) = X5 -

»
~

The state space R can be decomposed into two parts: the controllable
* P

subspace Rl and the uncontrollable subspace RZ which is the orthogonal

‘complement of Rl [16]. So, R 'is generated by Rl U RZ and we write

. R = Rl @DRZ . (1a)

x

From the definition (1) we can observe the following: 1if the system (1)

¥

is controllable then RZ = {0} . So R= Rl . If (1) is uncontrollable

N

then Rz ¢ {0} but Rl need not be trivial. .

We shall now define the Discrete-time system

le-Axk+Buk° , keN . 2)

»

where the symbols have meaning similar to the previously defined continuous-
) 7

time system.




d ¢

Definition (II): The system (2) %8 called controllable if for -any given
pair of states (xI s xF) € R® x RY there exists a positive integer

.

q and a sequence of controls “1’“2"“'“q such that using (2). we can

|

transfer state X, " X; to state xq_"1 = xp in exactly q steps.
f ‘
Definition (III): Define , 3

ié min [[con, e[| 5 5 e {2,F} , 6A RV® , 6B ¢ RV (3
6A, 6B - - 7 3 :
.such that’the systems . o : <
F‘Xs"e . ., . ’ .
x = (A+ 8A)x + (B + SB)u (4)
and . . ' ‘ . .
C Xeyy ™ A+ X+ (B + EB)u, (4a)

v

are uncontrollable, [2], (amother approach is used by Moore in [15],[16]).

Remark (I): u 1is a useful measure of the distance of the system (1)
(respectively (2)) from the néarest uncontrollablé system (4)

P

(respectively (4a)).

Remark (II): Since the controllability of a problem depends only on the
matrices A and B (as we will see in the following), we conclude
that the distance between the systems (1) and (4) and the distance

between thé systems (2) and (4a) are identical.

rd

Remark (ITT): If u =0 then (1) and (2) are uncontrollable, otherwise

p > 0 and systems (1) and (2) are éontrollable.
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Note: As remark (II) indicates and as we will see in the following the
conditions on A and B for controllability are the same for the
discrete and continuous system. So in the following if-we want to
say that system (1) or (2) is controllable or not we will just say .
that the pair (A,B) 18 controllable or not. In general, if we
/
want to derive a result which can be applied to both (1) and (2)
we can work with the pair (A,B) .
Proposition (1): Applying orthogonal transformations to (1) leaves u
unchanged. ’ .
Proof: After applying the orﬁhogonal transformations to the system (1)
we get:
T. T T T T »

Qx = (QAQ(Qx) + (QBP)(Pu) (4B)
where Q eimpxn, PeRV™ are orthogonal matrices. Then from
definition (III) of u let

~ T T '
- = min [[(Q6aQ, QBR[| , ¢ € {2,F) (5)
such that the system
; T. T T T (T .
- Qx = [Q (A+ 6A)QJ(Q'x) + [Q (B + 6B)PJ(Pu) °
is uncontrollable. Now we can see that
~ T '
(5) => % = min ‘ Q (sA,8B)[ Q@ O
.
//f 0O P r b

’ = min [[(84,68)|],




where p 18 given in (3).

0
Corollary (I). The system (1) is controllable 1f and only if the system

% = AX + Ba (5a)

is controllable, where X = QTx , U = PTu ’ A= QTAQ , B = QTBP
with Q € Ban and P ¢ RFxm orthogonal matrices. In other words

orthogonal transformations do not alter the controllabilfty of (1).

Proof: Obviously (5a) is the same as (48). So from proposition (I) since

‘ the distance of (5a) from the nearest uncontroliable system is the

same as the distance of (1) .from the nearest uncontrollable system,

this implies that corollary (I) 1is true.

Note: The arguments of propositign (I) and corollary (F) can also be applied

for discrete-time systems. ' '

Before #fe mention theorems about controllability, we will transform

the pair (A,B) by orthogonal transformations to another simpler pair’
(A,B) . This transformation will be very useful in the following when we

¥ ‘
will use ‘it to prove theorems about controllability.

It can be shown [2] that (A,B) can be transformed, using orthogonal
\ \

. transformations, to (K,E) where for some positive integer k < n and

.k

A A B=(a,,. ) (6)

11 212 \'. 1,k-1
Ay k-1 A | 0

21 22

. . . - - -

L At A J | o |

-




a

g ) n, xn ’

r 1 = - -
{ where A,, ¢ R . rank(Ai,i_l) n, for 1 = 1(1)k-1 and Ak,k-l

! 13
‘ is either zero or has rank ‘nk . By corollary (I) (A,B) 1is controll-

able if and only i{f (K,E) is controllable. Thus instead .of looking

' for the controllability of (A,B) we will look for the controllability

H

of (X,S) .
Matrix transformations like (6) form some éf the tools of the
numerical Analyaé's trade, and related algorithms are used by Wiikinson
{20], [21] and Van Dooren [22] in analyzing the generalized eigenvalue
problem, and by Van Dooren [23] in analyzing general linear ;;stemezn'
1

There are four mathematically equivalent theorems on controllﬁ%iliiy

for the pair (K,E) : :
.

Theorem (1) [2] 1f Ak k-1 " 0 (in (6)) then (X,E) is uncontrollable,
’

if rank( L) = , then (X,E) is controllable.
k=17~ Pk

Theorem (11){4},[5] The pair (K,S) is controllable if and only if

o

rank(S,XE,...,xn—lg) =n

Definition (IV): Let A ¢ RV

and Ai ,» 1 = 1(1)n be its eigenvalues,

then we define A(A) to be the set which contains the eigenvalues of

A only, (A(a) = {r |1=1(2)n}) .

Theorem (III) [1], [6] The pair (A,B) 1is controllable if and only if

rank[E,Z-Ail] =n for 1=1(1)n

where A i=1(1)n are the eigenvalues of A or A (since

1 L]
A(A) = A(R) , [12]).




¢

\ {

- ‘Theorem (IV) [B8], [9] The pair (Z,E) is controllable if and only A4f -

X
there exists at least one matrix F ¢ Rm n sueh that

AA) n A(A + BF) = ¢

P
ol
H

Proof: We show the equivalence of, and then prove, these four theorfm'éf“‘,;; -

- ¢ -

: e ] “ - N
by first showifig s

< - - &g

i
{‘0
A

(1) If A, ;=0 then
(1) rank[B,3B,...,A% 18] < n

(2) rank[E,z—AiI] < n for at least one integer 1 with

l1<i<n, . -
m)(n ~ ~ ~
9 ~{3) For eyery Fe R » AC(A) n A(A + BF) # 8.
(I1) If rank(Ak k-l) - then -

(1) rank[i,;ﬁ,...,m-lg] = n

. (2) rank_[g,x-lill =n for 1= 1(1)n

(3) \ There exists at least one F ¢ " guch that

A(A) n AA + BF) = @ .
and then proving N
*

(111) (1) The system (1) is"controllable if and only 1if 1

- { i
rank[B,AB,...,An 1B] = -

(2) The syétem (2) 1s controllable if and only if

n

rank[B,AB,...,A 'ln] =n .



(2) Let Ak k=i = .0 then
?

(1) We want to prove that’ rank[i,Xi,...,xn_lil <n ., Since
3
) ~L
Ak,k—l = 0 the last n, rows of the matrix A~ ,
2 = 0(1)n-1 are going to be (0,0,...,0,A: k) . So the

last n, rows of the matrix 'Xlﬁ s £ = 0(1)n-1 are zeto.
n

Thus for every non-zero vector =z, with z ¢ R there
- T T 1
exists a non-zero vector y = (0,0,...,0,27) » Y e R

such that

-

yT[i,ZE,...,K“‘lil =0 => rank[E,Zﬁ,...,xn_lf] <n.

(2) We want to prove that for some integer i with 1 <1 <n
and Ai € A(X) , rank [E,X-AiI] <n. So we have to find a

vector y ¢ EJI which satisfies the folloﬁing conditions:

y * 0 [
'~ q :
y'B = 0 / ¢))

y (A2 D = 0 J

If we choose Ai to be a solution of the eigenproblem

zTAkk = AzT and 2z eIRnk be a left eigenvector of Akk
corresponding to Ai then the vector yT - (0,0,...,0,:TI

satisfies all the conditions (7).°
(3) We want to prove that for every F e ) il
'mx
Let FeR'" bea matrix such that F = (Fl’FZ""’Fk)

ani
where F1 e R for 1 = 1(1)k . Then

» ACA) n A(A+BF) $ p .

12




A+BF =

e

- .
\
(4,148 6F)  Ajp*A oFy AL k-1"10%k-1 AuctArofy
Ay oY) . Ay k-1 A
0 Akk J

If D 1is the matrix which is derived from- A + BF by omit-

ting its last k rows and its, last k columns, then

det[(A + BF) ~ AL ] = det(A, - AInk) det(D - AL __ )

So A(A)

n A(X + EF) 2 A(Akk) for every F ¢ R?xn

4 (I1I) Let rank(Ak k-l) =n

(1)

We want to prove that rank[B,AB,...,Kn_

M-r 3
B Alo
0
L 0 )
where

~

» AB = A A0l ..., AR fgl
451810 Cy
o | )
i ¢,
L 0
A, k-14%-1,k-2"* "A10

i

Ci , 1 = 1(1)k-1 are appropriate n xn, matrices. Be-

sides we know that rank(Ai 4 ) = n, for 1 = 1(1)k . That
. ]

is, the matrices A

4.4-1 ° {1 = 1(1)k are all of full row rank.
»

So the matrices Ai,i—l Ai-1,1¢1 . e AlO » 1 = 1(1)k are of

the matrix

_ full row rank. Thus there is ﬂo non-zero left null vector {or
I

(8,48,...,A%715) .

*

1§] = n . We know that

13

4 L

J
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.

, ~ (2)* We want to prove that ;ank[i,x-kil] =n for every 1 with
- i=1(1)n and Ai e \(A) for 1 = 1(1)n . It is clear

‘that, since A 1s of full row rank for 1 = 1(1)k ql.en

1,i~1
[E,X—lill has full row rank for every }‘i .

i X
(3) We want to prove that there is at least one F e¢ R " such

' . that A(A) n A(A + BF) = # . We know that
~ r . . 1 B e - LN
A=A, AL, . Al kr Al B TAlo wheren .
A 177
g Ay v v - By Ay 0| 4 R
Ayp o o By A :
. L Lo
k Akl )
- y - and the matrices A.‘l jﬂl are of full row rank, that is,
« . v N rJT
rank(Aj’j_l? = x)j s 3= 1(LHR .
/ , We are going to give two proofs, the first will be for the

simple case m = n, = 1, that is, when B 1s a vector and

4 the second will be for the general case.
< - s

First Proof: m = n, = 1, so let Bzb= (0110,0,...,0)T and

2

| A= %1 o, . . . al,n-l aan _where aj,j-l 0,
" %21 999 . e . a2,n—1 %o 3 =1(1)n .
‘ %32 * * * ®3q51 %3
' - a a « !
: n,n~-1 nn|




P

1

/ )
! . ) Let )‘1 » 1 = 1(1)¢ with £ < n-be the £ distinct eigen-
values of A , and ‘X, 1= 1(1)4 the eigenvectors of A
L ’ corresponding to )‘i s Let also F = fT y £ ¢ Rn‘ . . Then,
/ﬁ) 1f for some Al . (K + bfT) - Ail 18 singular there exists
7 7 o n . T T s
Vg € R - {0} , where V¢ (wlf . y2f) and wlf € R,
such that
yg[(X + bET) - NI =0 = ‘ (8) .
: T, T~
‘ yfbf + yf(A - AII) =0 =
N y?bfoi + y?(z - ANDx =0 =
' ygbfoi = (0 => wlf“lOfoi = 0 “‘ o
+
( But wlf # 0, because 1if wlf = 0 then from (8) and because
T .
of the fact aj,j-l ¥0,3=2Un, Yos would be zero too,
s0 y? = 0 , thus wlf ¥ 0 and from wlf“lOfoi =0 =
foi = 0 since 0 # 0 . But if we choose,
T ° N
£ - Tk y (8a)

where the columns of ‘X are the eigenvectors of A » then

fo1 ¥ 0, {=1(1)¢ , which is a contradiction. Sé for. fT

I .
given in (8a) A(A) n A(A + bfL) = ¢ . .
<

Second Proof: For m 21 . Here we shall prove that for almost all mxn

matrices F we have °
\ XA) mAA + BF) = ¢ (9)

§ and we shall construct an F for Which (9) will be true.

15
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Fact:

16

n

For any integer p 21 , almost all pXp matrices are nonsingular.

By this is meant that if the elements of a matrix are independently

/

chosen from a continuous uniform distribution, then with probability'
s

-

"1 ~the matrix will be nonsingular. L

e

\

. §uppose ‘K has eigenvalues Ai , 1= 1(1)n, theén we perform

(J

" the following construction: - has n"\

1,3 3
linearly independent colummns) for given 1 , with 1 = 1(1)n and - -

(Note that A

A for § = 2(1)k choose nj

to n, 1linearly i;ldependent columns of A
b j,j'l

'
move them to the front of the matrix, that is to

columns of X—lil corresponding

and .

1

positions ,
3-1 3 1 \ ‘
1+ n, to ) n, , (where ] 1is ignored).
i=2 i=2 i=2 .
_For example the matrix
x
* b
[x x x x|x x x|x x will (x x x x x[x x x x])
become N
X X X X |x x x|x x X X X X X|%xX X X X
n
¢ Ll ?nl
X X X X |X X xX|x Xt X x x x x|x x x x
X X 'X X|X X X|x x X X X X X{X X X X|/
* x * * {x x xX{x X * * * x xlx x x x|
* x * % jx x x|¥%x x n, * * ¥ x x/ix X X X
* x * * |x x x|x X ’ * * * x x]x x x XxX|fn-n
. £
* x *ilx x . * kix x x
) 5 n, °
’
| * -x % |x x| | * x| xt X xJ/
n n n n-n n
r 2 3 ' 1 1
L1 = *
e f. F #

4
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where stars represent the n, and n, linearly independent —’\/'
columns 0f. A,, and A respectively.  We may then write
21 32 . -
the result as, with permutation matrix P ,
) \‘Qf
~ RROHENRG) :
CORSLICH Tl IS g O
)
¥
n %‘ i i
. 1,5 . . ' ,
where A;l) 1s 'blo“ck, upper triangular and nonsingular since
it has nonsingular annj blocks on.its diagonal, J =20k . |
w . M p
(These blocks ‘being the same for -all choices of & L0 /
80

i=1(1)n ). Now write BFP = Fi, | Fqyp }'nl

. ) 0 }n-nl, ‘
{/\Qx | M : g ;:;1 f R
[ ) ‘ .

~o ’ 5 o 1) (1),
(E+80) -amp = althe,  aDsr,
(0, )
A A2

) b
'FNs to be singular thefe,exisots x = Ix }n—n-.l » X ¥ 0
Ny

X, n

such that [(A\¢ EF) - AiI]Px =0 so first

N

1

) W, o ow "
‘ Az}x1+A22 x, 0 >

" 5" '[Agi) 1 Ag)"z | (98)

n

/

°
.
“
T Mt e xR L e i o
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From (98) we can see that X, = 0 implies x, =0 and

therefore x = 0 , thus X, $ 0 . Next

(i) =0 =>

(A(“ +E %+ A+ F .

DYy A(i)

(ad + 5, PRI =0 v

-

where X, £0.

o

Let -1 (i) .

“ -

1) (1) , (1) (1)
C7 o= AL T+ Fpy - (A7 + F A7)

" From. (9Y) ;v'ie conclude that (}(i) must be singular. But if ) ’

i

.the elements of F are chdseu randomly from the uniform dis-,

1Y !

will be independent,
(1)

[0 l] s then “f;.l and F12

11.° for almost alil F]_2 c will be nonsingular.
(1)

For a given F there are at most n differem; C

tributdion

so given F

, 80 for
&

ad ~ \
almost all F , (A + BF) -~ A.I 1is nonsingular for all eigen-

i

vﬂalues A i

hade no eigenvalue in common. Now we shall construct an F

" such that A(X) n )\(x + EF) = f . Choose F so that
‘AIOFP'(01‘YIn1),Y€¢
n-7n1 . P .
‘ T
that is let F = A ( 10 10) ‘(0 » -YDP™ .

¢

- Note that (AloAlo) exists since AlO full row rank.

Also note that: F 1is independent of the choiice of - Ai . Then
o - @ @ _
[(A + BF) 111]1’ 11 . 12 =yI -
ReS NONE
4 21 : 5\22 “_
. 7

/

wy

oy
%

of A . fhen with probabllity 1 A and A + BF .
y ,

B A bl Al s




(III) For this part the simplest proof was found in [3] (p. 277—281,; 282~

/ h

} f
" So for tl;ris choice of F the corresponding ‘relation to (9y)
will be: ‘
- .
’ [y - ‘1’[A‘i)] L) e o, x, #0 (96)

— é -

‘ So 'y must be an eigenvalue of the n1><n1 matrix

-

@ _ 40 O D)1,
22

(421

A

\

A(i) has at most n; distince eigenvalues, :’md as there are
at most n distinct eigenvalues of A » there are at most n
distinct A(i) s 8o there are at most nn, distinct values

1
\ ~~ ~ o -
of v for which A +BF has Any eigenvalue equal to any

g

" eligenvalue of A . Thus or almost all F of even this most
restricted form, A and A + BF have completely distince

eigenvalues. ~

A
283) and it is as follows.

5

Lemma (I): Let M = [B,AB,...,An—lB] ‘then for any q 2 n we have

rank[B,AB,...,A 8] = rank(m)

4
Proof: As k iIncreases by one unit the rank of the matrix

k lB] either increases (by at least 1) or

“

L [B,AB,...,A
remains constant. Suppose that k 1is an integer such that
the rank of M'lc+1 is equal to the rank of Hk That meéans

that the m columns comprising AkB are each linearly

13
’ 4

19

LS
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(1)

20

dependent on the (previous) columns in Mk . That is, there
y

is a relation of the forlg

. k-1
A"B = BD + ABD, + ...+ A“T'BD,

wvhere veﬂgch Di 18 an wxm matrix. Now multiplication of

this relation by A leads to the new relation

<
k+l 2 -
. A B ABDO + A BD1 + .0 F AkBDk__:l

which shows that the columns comprising Ak+l

B are linearly
dependent on tht\a columns in M'k+1 . Therefore, the rank of
Mk+2 is the same as the rank of Mk+1 - By continuing this
atgument, we see that for all j > k the rank of Mj is .
equal to that of Mk . Thus we have shown that, in the pro- .
gression of Mk's , once the rank fails to increase, it will
remain constant even as additional colul;xns are a'djoined. R

I'n view of the above, the rank of Mk increases by at least

1 at each increment of k until it attains its maximum rank.
Since the maximum’ rank is at most n , the maximum rank is

attai& within n steps (that is, by Mn) .

Suppose first that the rank condition does not hold. For any
t, > 0 and any integrable control u(t) defined on [0, t1]
we have . ) . /
t, A(tl—t)
x(tl) = I e B u(t) dt => (10)
L 0
- : tl tl -

. x(tl) = B J u(t) dt + AB [ (tl—t) u(t) dt + ...

0 0 )
4 ¢ '




4

7

when evaluated, the inte_grals in the above expression are
simply constant m—dimensiocpal vectors. Therefowre, the expres—
sion shows that x(tl) 13’3 linear combination of the columns
of B,AB,... . By the earlier lemma, if the rank ;nf M is

less than n , then even the infinite set of vectors

B,AB,AZB,... does not contain a full basis for the entire

n-dimensional space. Thus, there is a vector Xy that is

linearlf independent of.all these vectors, and therefore can-

not be.-attained.

Now suppose that the rank condition doe€s hold. We will show
that the system is completely controllable and that in fact

the state can be transferred from zero to an arbifrary point

i

x, within an arbitrary short period of time

1
We first show that for. any t > 0 the matrix
t
1 T
K = J e AtppTe™ b gt

0

»

is nonsingular. To prove this, suppose there is a vector a

such that Ka = 0 . Then

aTKa =
or more explic:ltlyk
t
1 T
[ aleAtgpTe A T g = 0 au
' 0 .
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The integrand above has the form c(t)Tc(t) , Wwhere
T -ATt
a

c(t) = B'e It follows, that the integrand is alwdywg

e
A7
nonnegative. For the integral (11) to vanish, it follows

that the integrant must vanish identiz‘./ally for 0 <t < t; - s

\

Therefore .

#

- * . /
aTe AtB-O for all 't , Oscs"‘tl J
. i - . Iz

Evaluation of this expression, and its éuccessive derivatives,

with respect to t , at t = 0 leads to the following

sequence of equations:

aTB-O

aTAB= 0

aTAn-]'B = 0
' ¥

This means that the vector a must be orthogonal to all columns
of the matrix M . Since it is assumed that this matrix has
rank n , it must follow that a= 0 . Therefore K 1is non-

‘singular. Now, given X, select aﬁy tl > 0 and set

“
4%

T -At ’
u(t) =leBtgl, 1 x, _ (12)
Y A(tl-t) T __A'rt -1 -Atl N
* Then from (10) x(tl) = J e BB e K Xy dt =>

0 v

At -At
1 -1 1

x(cl) e KK ~ e :x1 - xl

Therefdore the control (12) transfers the state from zero to X s

and the system is completely controllable.

% I

/‘*

N
%

-




(2) Suppose a sequence of controls ul’u2""’uq .

the system (2) with lxl -‘2b it follows, that

X

q+1 1

4

" : x « A8 u, + Aq-lB u, +...+Bu
, q

i " From this formula we see that points in state space can be |

23

is applied to

~

H

reached if and only‘if they can be expressed a% linear combina-

tions of powers of A times B . Thus the issue of complete
controllability rests on whether the infinite sequence

B,AB,AZB,... has a finite number of ;olumns that span the \
entire n~dimensional space. By the earlier lemma, however, ‘

.+ these span the full n-dimensional space if and only if

b} & -
il rank[B,AB,...,An 1B] =n .

Remark (IV) From step (III) we can see that (1) is controllable if and only ‘
if (2) 1is controllable. So it is the matrices A and B which

determine controllability and not the type of the system (con-

tinuous or discrete).

; . K

4

\\ (I1I) The computational problem of controllability

In the previous section we presented four mathematically equivalent

theorems on controllabiligxae These theorems can lead to several different

computational approaches, four of which are the following.




P

Cl: Involves transforming A and B to the form in (6) and is
described 1n (2]. '

C2: Form the matrix [B,AB,...,A“.']‘B] and then compute its rank.

C3: Compute the eigenvalues }.‘i »1= 1(1)n of A and then compute
the ranks of the matrices [B,A—AiI] for 1= 1(1)n .

C4:  For a random matrix F ¢ r form the mat-rix A+ BF and
then compute the eigenvalues of A +BF and A .

. <

In this section we will prove that the algorithms which can be made
by using C2, C3, and C4 are poor. This will be done by using counter-
examples. We will also show that the algorithm which is based on Cl works
perfectly for the same examples.
‘ We will show theﬁweaknesa of C2 first. Before this we give two defini-
tions. ‘ >

-

Definition (V) [12), [1l4]: Let D ¢ ¢ with n 2 m , then the singular

value decomposition (SVD) of D is8 D = USVH where U e ¢ 0 .

mxXm S

Vet ,» S=["1{ with Sl=diag (01,...,om) ,
0
oy )\02 2 oee. 2 O 20, U and V are unitary matrices. Let |
nXm '
Vl V and U= (Ul, Uz) where U1 € ¢ . Then D = Ul Sl V]; .

The real scalars oy s i = 1(1)m are called the gsingular values of
D and the columns of V1 and Ul are called the right and left

singular vectors, respectively.

Definition (VI): Let D ¢ ]Rn)fn , then the number

r . a, (D)
o8 s a1
n

24
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x is called the condition number of D for solution of equations,

where cl(D) and cn(D) are the largest and the smallest singular

4
values of D . If yx(D) is large then the problem of the solution

of the equatioi Dy = d , where d ¢ R" » ¥ € R , 18 11l-condi-

tioned, for more details about condition numbers see [12, page 192].
Consider npw the clearly controllable system

X = Anx + Bnu , " (13)

-

where A = diag (1,27%,...,21™% , 3 = (1,1,...,1)7 .
n N \ n e’

n

.

n‘lB ] .

In this case the (1,]) element of the matrix Cn = [B,AB,...,A
(1-1) (1-3)
is 2 which can be formed and stored with full accuracy on most

c:omputers. Even so with n ¢ {8,9,10} we have the following results:
{ c

TABLE T

RESULTS OF COMPUTATIONAL TESTS ON (13) USING C2

-

nlo,(C) og(C,) aq(C) 910¢C,) x(4) x(C))

8 {3.3033 | 2.0688x10~8 - - 128 | 0.1596x10° -
9 |3.4704 | 4.7752x1078 | 1.5846x10710 - 256 | 0.219 x 101!
10]3.6298 | 7.1246x1078 | 3.6402x10710 | 6.1288x1073| 512 | 0.5922x1013

/‘"

*

where © :l(cn) is the 1ith singular value of Cri . Yo the numerical rank

of c, when n € {8,9,10} will be less than n using the SVD on a
computer with relative precision no smaller than 10-7;. Obviously, in

’




-

these c'ases C2 would fail, indicating that the cont;ollab]:e system (13)
is uncontrollable when n ¢ {8,9,10} .

This happens because if we transform a problem by matrix multipli;:a—
tion and the transforming matrix is ill-conditioned with respect to solu~-

tion of equations, that is, it has large condition number, then the trans—

26

formed problem will usually be more sensitive to changes in data, than the

original one. As we can see from table I x(An) >> 1 vhen n € {8,9,‘1‘:0}
and as a consequence of this the resulting matrix \ Cn has much larger
condition number X(Cn) than A;, . So Cn is more sensitive to changes
in data than An .

In order to compare €l with C2 we applied Cl1 to (13) for .
ne {8,9,10} . Since in (13) B 13 a column vector then in (6) k ie;
equal to 8, 9 or 10 when n is equal to 8, 9 or 10 , respectively,

and A, ,_; 1s scalar for i = 1(1)k . Theoretically Cl should give
, !

A $0 , 1= 1(1)k .

i,1-1

The resul'és which were taken from the actual performance of Cl are pre~

-

sented in table II. .

TABLE 11
~
' RESULTS OF COMPUTATIONAL TESTS ON (13) USING Cl
- _ ]
n Ao {=2(1) k-1 Akl
8 | -2.828426 0.024<|A, , ,[<0.323 -0.010119
’ i
9 |-3 0.012¢|A; , ,|<0.314 0.005113 |,
10 | -3.162277 0.006<|A, , ,|<0.305 . =0.002570 ?




So by observing the results presented in table II we can conclude that
(13) 1is controllable when =n ¢ {8,9,10} , and this conclusion would be

reachéd using a relative precision as low as 10—4 . Thus Cl succeeded

.

where C2 failed.

K-

In the rest of this section we will show*utbe weakness of €3 and

=

Cé . We will do tl;is by the same way we showed the weakness of C2Z ,
that 1is, by considering a counterexample, because we know that a good )
example is sufficient to condemn a poor algorithm. The approaches in C3
and C4 depend on finding eigenvalues. Unlike singular values the eigen-l
values of some matrites can be very ill-conditioned, that is, very sensi-
tive to small changes in the matrix. So we choose a matrix which has
already been presented, b)} Wilkinson [13, p. 90], as an extremely 111-
conditioned case reg;rdéng the eigenvalues. Tl’ge matrix Wilkinson con-
sidered was the following: .
| ‘ | [

A= [20 20 o pr

18 20 P

¢ 3

The eigenvalues of 2 are A " i ,1=1(1)20 . Consider now the uncon-

3

trollable system

%X = Ax + Bu ' (14)
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T
- (1’1’ ""1,’0)Q

( with A =-QIAQ , B
» : 19 /

where Q ig a'randm;x orthogonal matrix found by finding the SVD of a

square '1L§trix Yhose elements are uniform’ random numbers on (-1,1)
% obtained by ttfe VNI(0) random number ge;xerator. To test C4 we cal- ﬁ \
- culated the eigenvalues of A and A + BF . The sets A(A) of the

" computed eigenvalues of A<« and 'f(A + BF) of A + BF were obtained
, 4 -

¥
using single prfecision (6 significant hexidecimal digits) on the AMDAHL

470/v7 comﬁuter at:\HcGill University. The elements of F were random

numbers on (-1,1) from the VNI(0) random number generator. To test

“Cxe calculated the values

\\‘ p(B,A—KiI) é"W‘r:ﬁt:m of smallest to largest singular

) ‘ ' - (15)
_ -t ‘ : value of (B,A-AI) .
' where Ti € MA) for 1 = 1(1)20.
R The ratio p(B!A-'XiI) was the same for both eigenvalues of a complex

conjugate pair. The results are given in table III,

PFaw,

[vp—




TABLE III

RESULTS OF COMPUTATIONAL TESTS ON (14)

p(B,A-X,T)

A(A)

X(A + BF)

2.024 x 107>
3,979 x 10”3
7.3203x107>

1.187 x 1072
L.e46x1072

2.5905%x10°2

3.221 x 1072

4.036 x 10™2

a

5.179 x 1077

6.436 x 10~2

-0.32985+11.06242
) \
0.92191+43.13716
3.00339+34.80414
5.40114+16.17864
8.4376937.24713
11.82747£47.47463
15.10917+16.90721
18.06886+45.66313

20.49720+§3.81950

22.06287+31.38948

32.68478

0.95999
-8.958721] 3.73260
-5.11682+4 9.54329
A
-0.75203+414.148167
5.77659%315.58436

11.42828+114 . 28694
13.30227+412.90197"
18.59961+114.34739

23.,948774411.80677

28.45618+ 8.45907




@ .

Theoretically one of the eigenvalues of A should be the same as -
) B
an eigenvalue of A + BF , this one being un?ty. But as we can see from

L]

table III’ the computed eigenvalues of A are almost unrelated with the
! ) 5 8 .

true e:lgem)alues of A and the computed eigenvalues of A + BF . So

'in this case C4 would tell us a clearly uncontrollable system is con~

trollable. As we can conclude from the results of table III the failure
of C4 1is due to the 11l-conditioned eigenvaiues of A. The approach

1

C3 failed too, because in theory oge value of p should be zéro, but

no value of p can be considered as zero within the previously mentToned

-

accuracy. So C3 would have 1:_1dicilted that the uncontrollable system

(14) was controllablet C3 was also carried out with the true eigenvalue,
unity, of A , and this gave .

‘ - r: _8

) p(B,A-T) = 5.293 x 10

-

. J
indicating that it is the eigenvalue computation that caused the failure

of €3, just as for C4 .

*

In'order to compare the ability of approach €l we applied it to

system (14). Since, as in the previous counterexample: B is a column

(2]

vector then in (6) k=20 and A, , ;, 1s scalar for 1= 1(1)20 . :
?

[ 4

Theoretically, C1 should give

[}

0.

$0, 1i=1(1)19 and A20,19 = !

Ai 'Y i‘l

. ) .
In practice Cl gave A, = 4.35887 ; A, , = 8.30008 ; 19<(Ai 14'%’”"
’ ’ Mt

1= 3(1)19 _and A = 0.000006914 , showing that the system is uncon-

20,19
trollable to this precision of computation. To see if this was just a

-
B -

dhatn
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coincidence the algorithm was applied to (14) with 50 different random

\ es similar good results were obtained.

1

_ orthogonal matrices Q . 1In all cas

!

Some of tﬁe ideas and results of Jthis section have dlready been pre-
) L

i

sented in [2]. ‘ .,

‘
@ w

(IV) DISTANCE FROM AN UNCONTROLLABLE ?sysrm

As we saw in equation (3) of section (II), u 19 ‘defined to be_the
distance between the system defined by the matrix (A,B) and the nearest
uncontrollable system defined by the matrix (A + 64 , B+ 8B) . ‘A know-

ledge of u would generally be more ‘'useful than just knowing if the system

¢ ~

~--—__ 18 controllable or not. In this section an-algorithm is giveﬁ which will

e -
— e ~

make use of remark (III) to determine ‘;rhether a system is eontrollable or

not. The approach could be extended to compute u , but this is not done

~—t

N

here as it appears to be inefficient.

We will telate now ¢ with another quantity which gan be calculated,

that is, we are going to prove that . . b N
uw=mn o (B, A-AD , AeC \ (16)
. A ) .
o ) s

vhere o (B, A-AI)- is the smallest singular valué of (B, A-AI) .
” . R L] 1

Note: In the following we will repréﬁ'ént the singular values of (B,A-AI)

> by either o i(ﬁ, A-AI) or oi(k) meaning exactly the same thing,

\

. : K ¥
. that ia, 0,(A) = o, (B, A1) , 1= 1()n and VX el .

o ’

¥
Before we go ahead to prove (16) we shall first prove a lemma which '
\
will. help us in the proof of (16). .

bﬁl *@?"1‘5‘5‘; A
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Lemma (II): Let A € Rmxn , B e\Ran ,, where m 2 n and let
A= U‘A‘T.AV‘};l y B = UBXng be the singular value detompositions of A

and B . ’Let also a, Zazz Zun and ‘BI.Z 82('2 ‘v e Zﬁn be
the singulat values of A and B respectively. Then for given A
\ *

we shall prove that: 1 T
\\v, : , :
. ° . g 3
o minimm ||A - B] I2~- Gyp s kS’ and a ., = 0 (17)

rank(B) <k J

-o .
o -

o

N .
.
[l

Proof: We know ([12],.p. 231, th. 6.6) that ,

Ha - Bll; > loy - 8] i’i = 1(L)n

s0 ol;vioual}) |la - B||2 2 max lai - Bil , 1 ¢ An . Now if .

A -

’

rank(s) < k with k < n we have that 8, 20, i = I()k and

:, ~-'“¢-

8, =0, 1 =%+ (Ln . ' |
Let o be the maximm of |a, - B,| with 1 b, » that is,
) a=max [a, - B,] ,1c¢€ A, + Then we have that
“i - [¢] A\ »
|12 - Bl|, 2 max(a , o)

°
—_ ' ‘

S6 when /rank(B) <k we have’ HA - BI |2 2 Ol for évery B e Rmxn .
Now when rank(B) < k there is’a B such that B = UAZBVT: and
Bi -2 1=1(1)k . .For this B. we obviously have

”A"B.BHZ.GHI .

So indeed minimm ||a - B, = .
rank(B) <k TP T Mg :

Now we are ready to prove f16).

<
< ok

o
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Proof: Let (A,B) define a system and [(A'+ 8A), (B + 8B)] define

an uncpntrollaﬁle systm."‘"]zﬁso let " D(A) = [(B + 6B), (A + 6A) - AI] ,

A

AeC, and h
o (
(B,A-A1) = U, [ o, () ) v (18)
t; f ¢ Uz(A) ' 0
P ) : —
’ ' / ' gn(ky j r 0

be the singular value decomposition of (JB, A-A1) with

0 () 2 0,0 = «o. 30 (N) . : 4 ' |
From lemma (I) [for k < n we get ( O'n_’_]:()t) will be considered zero)
1 1
minimum || (B,A-AI) - [(B + 8B), (A + 6a) - A1l[], = O = \
rank{D(}) ]sk
minimum , |{(6A, 6B)||, = o, , . (}) / (19)
,rank{D(})]<k 2. 'k

2 - /

N L -
The smaller the 2-norm of (8A, 6B) 1is, the nearer the uncontrollable
gystem [(A + S6A), (B + 6B)] 1is to, the system {(A,B) . Sinte
[(A + 8A), (B+ 8B)] 1is uncontrollable obviously k\s n-1 . We can

N 3

see that in (19) there are two parameters A fand k . Regarding k ,

| 164, §B)| |2 gakes its minimum value and at the same time keeps

» —
[(A+ 6A), (B+ é6B)] wuncontrollable, if and only if k = n-1 . So
we have that: ] -
. ' Y
i

u = gin minimum | |¢sa, 53)][2 = min o_(A)
- A | rank[D(\)]<a-1 PO

L]

Thus ¥ ='min Un(B, A-AI) , A e € . (20)
A A

N

¥
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Remark (V): An important property of the singular values is that they
are not very sensitive to changes in the matrix. 1In fact if

f %9 z2 ... 2 o, are the singular values of the matrix D and

1
then

0, 2 ... 2 3; the gingular values of the perturbed matrix D + 6D

“\\év log =8l < [lénl], , 1=1(Dn. (21)

For more information see (12, page 321] or [14, page 24]. Thus,

+
from (21), we conclude that the singular values are well-conditioned
with respect to perturbations in the matrix. So, from (20) we can

also conclude that u is well-conditioned with respect to perturba-

tions in the matrix .[2, page 137].

’

Remark (VI): We can easily observe that On(B, A-AI) 1is a function with

domain D c ¢nX(n+m)

and range P c R , that is,
b4 ot ‘ )
o (B, A-AI):D —> P . (21e)

We are going to present two algorithms, one for ) ¢.R and one for

A € €. But before we present the algorithms we will make some useful
. o}
-1 observations about the function o (B, A-AI)

- ’ ’

N
Let o 2 0y 2 ... 2 o) be the singular values of (B,4) ,
¢

<v/f,.,;/6f (B,A) .by at most |A] , because
e

log ) - af| s |[(8, a-aD) - @, - Il(o:ml'lz = 1Al

‘ for 1 = 1{(1)n .°

,

4
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Since we are interested only in the smallest singular value of

l

(B, A-AI) , we have
logO) = ol s [a] = |
ol - [A] s o (A) . . (22)

§imilar1y, (B,A) can shift the singular values of (0, AI) by at

most . H(B,A)H2 , because

o

log ) - [A[] < ||, A-2D) - ©,=31)[ [, = [|®,8)]], = o1 , q

1=1(1)n .
_For 1 = n we have that )
oG - 7] sop = t’
[A] - oi‘?-"&i(x) . (23)

N

From (22) (respectively from (23)) we cah easily observe that-if--- —
[A] < o, (respectively |[A > o] ) then o (1) > 0 . Since we are ®
interested in finding 1f on(A) i8 ever zero we syould search in the
ring o! < IA] < o; (see fig. 1).

£
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interval A where every eigenvalue Ai s, L= 1(1)n of A

A too, that 1g, A, € A , { = 1(1)n .

i

vhen u = 0 (system uncontrollable).

The plots we obtained
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»
Note: As we can see from fig, 3"f the system 18 uncontrollable then
the function on(B, A-AI) 1is almost linear in the neighbourhood

of A' , where )\' 18 such that Un(B, A-A'I) =0,

Remark (IX): Now (21) will help us bound the rate of change in
on(B,A*AI) with respect to A . Let AI'AZ be two distinct com-

3

plex numbers, then

lon(B,A-xlx) - on(B,A—AZI)I < H(B,A-Azx) - (B,A-AZI)I |2 .

A

1110, O,=xp11l,

lan(B.A-lll) - an(B.A—AZI)I : (24)
<1
S

This means that i&n(B,A-AI)I < 1 wherever the derivative is defimned,
in other worde, (24) means that at every point of the curve on(B,A-AI)
the tangent (if it can be defined) makes an angle w with the hori-

zontal axis such that
weto, v . (25)

Remark (X): In remark (VII) we mentioned that if on(B,A—lI) has a zero,
then this zero will be in the ring of fig. 1. So, we should search
all the ring in order to find the possible root. Now we will show
that v; do not have to search all the ring because the plot of

»

on(B,A—AI) above the axis Re(A) 1is completely identical with the

~

-
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’ corresponding plot below the axis Re()) . So we should prové that ~
o_(B,A-AI) = an(B,A-KI) for every A ¢ € , where A is the complex
conjugate of A . We know that for a matrix D such that {D e chn“

- we have )\(DT) = Xx(D) [.12, page 267]. Also we know that the singu-

, lar values of the matrices (B:A—AI) and (B,A-AI) are the eigen-
values of the matrices (B,A-AI)"(B,A-AI) and (B,A-XD)(8,a-TD) ,
respectively. But

®

- 1(B,AxDE@ AT - BAD T [Ba DT
i - (B,A—AI)T(B,A-XI)

= (B,A—XI)H(B,A-XI)

since A and B are real. Thus . "

' 1
" 0 (B,A-AI) = 0 (B,A-XI) , 1i=1(Dn. ‘" o (26)
5 ¢
Remark (XI): In this remark we will calculate the 6n(p,A-AI) , which

&
will be useful for the esitmation of the derivative of tt:e function
on(B,A-XI) wherever it can be defined. 1In genera;l let De ™™
{

and D=0 I vn be the singular value decomposition of D , then

we have the following. ] .

DV = ULt => . (vhen these derivatives exist)

DV +of =02 + UF =>

viiv + ufov = ooz + uBuE -

vibv + ovi - ofor 4+ £ (27)




-

But we know that if a vector x(t) has constant magnitude then it

1s orthogonal to its defivativ%, that is ix = 0 . So in €27)

the diagonal elements of the matrices tv and UL are zero.

" So, from (27), we have

H .
di. uy D vy (28)

Thus, in our case since D = (B,A-AI) we have from (28)

where Uy v

i

5,0 = - u?(O, I)v, , 1=1(Dn (29)

are the columns of U,V respectively.

¥

We will firset present an algorithm for real A and then we will

extend 1t for complex A . Acutally our problem is the solution of the

equation on(B,A-AI) = 0 with one uﬁknown, where in the real case the

root, if there exists any, will be in the interval

»

-g

b = ["oi ’ "0;1] U [OI'I N Ui] (30)

! -g' 0 o

L
n-1 n n %n-1 T 1

Fig. 4

-

Of course we do not have any formula for this equation but we can find as -

many values of the function on(B,A-AI) as we want, and numerically in

many cases that is what really counts. A first thought is to use Newton's

method, but using Newton's methed”ﬁe may face the following problem.

41
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As we can see from fig. 5, st&rting from )‘1 . we will get the reot,

but etarting from X! we will miss it. So we cannof use Newton's

1

method. We will try an iterative method of the following form

»
! ‘ B - 1 - —
A\d-l - Xk + step, where }‘1 9 and step, on(B,A AkI) » that is,

the step, in order to go from A

k k+t

to A 1 is the value of the func-

tion, the root of which we are looking for, at Ak . Using this step

size and because of remark (IX) we will never miss the root.

" algo be seen from fig. 6.

This can’

42
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Figo 6 -

3

~ Since we are looking for a possible root in the interval 2 s this
algorithm can be quite fast if the system is quite controllable, that is,

if u 1is quite greater than zero, this can be observed from fig. 7.

v \
[}
L4

~n *i’
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But the same’algorithm can be inefficient if the system is uncontrollable
, ~ .
and we have reached the point where the function on(B,A-H) is almost

li:near, this can be seen from fig. 8.

1]

*

1 cn(B,A—H)

Fig. 8

In order to improve this situation we should take the fact
o(A) = o(B,A-AI) = do(B d:—AI into account. We can use the quantity

90,y - 0O ]
—5———5—— 48 an estimate for o(}) . This quantity will be quite

v . . {
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accurate for the calculation of the derivative when we hgve
¥,

* point where the fungtion an(g,A-AI) is almost limear. At

v

. two congecutive points will have almost the same derivative

" gee from fig. 9. So this will be the criterion for detecting if we have

reached the poi\nt where the function on(B,A—u) 4is almost

"h

4 on(B,A—AI) /

cn(Al)
Un(XZ) e e e e — —
°n()‘3)

reached the
this point

a8 we can

linear. . _

~._ .

-

‘ ¥
) nﬁ‘. "9 '
]

\ - \{/T/
From fig. 9 we can obviously see that |on(>\1) - &n(kz){ < § where & 1is
an appropriate, small enough, positive real number.  So from now on, unéil
we reach the root we will use Newton's nethog, for example in fig, 9 we can
have the following: : ) - . -
% = { O(A ) i" -
. A, =), - -r——g— '
~ * 4 2 a(lz) 5
So the algoritim for A ¢ R is as follows: '3 ¥ —
t ) ) “7/"—) ;:
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‘Part 1 (It;itializaﬁon)

.~ Al: Calculate the singular.vaiues of (B,A) and let them be

ol 2002 ... 2 cxt'l :

‘ 172
) . A2: Set A = -oi 3 )‘oldx =2 | "
. ’ < A3: . Eval“tmt% on(B,A—AI) ; and set %14 " an(B,A-AI) :
Ad: }f aold:< eai » Where e“ is a small positive real number,

then system uncontrollable, stop;

x
1. 12
§: ¢lse s
i ' . . . .
» . - . om . 5
f* . A5: A= Ao i A A .
' © A6: If X > ~g! then go to A7 ‘ o
y & .. else /4 ' ' R )
A7: Evaluate cn(B,A-AI); O ew tm cn(B,A-AI) ;
) A8: If O ew < aoi then system uncontrollable, stop;
. ( * else
. - o -0
’ . . = JDew old - . . .
AL T Ll S 5 %1d *™ %new ¥ “old '~ *new
~ . new old N -~
N, “Jiea

Part 2 (We search the interval [~o7 , -¢']) °

s

AlO: X := A + g 3 A LI S

old {new ‘ ~
’ ' }All: 1f )\>-cxt'x then golto Al7 p
else © /) I
) Al2: Evaluate op(BAAD) § 0, = 0, (B,A-AD) ;
L M13: If o (B,A-AI) < co then system uncontrollable, stop;
- ( Alé: o = Dew ” ‘old |
. ne¥ * M ew " %o1a

mas: 1t o -0 ., <& them go to A18

i new
else ‘ «
! .
] (~ . Al6: %1d ™ %pew * Aold s= A 5 9014 ™ %pew b #° to AlO;
g
¢ v » \ .

'l46
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Part 3 (We search the interval [0:. " oij)_ . s

-

. 1 e gt . om .
Al7: If A<on then A : an’Aold' A ; and go to A3 but

instead of atel'ps A6 and All we shall have

" the following step in both cases:

If x> oi then system controllable, stop;

else go to A10 but instead of step All we shall

have the above mentioned step.

Part 4 (Newton's method)

[s)
Al8: ) 1= A + 2
Unew

. . *
A19: “If A =2 | > u(™) then go to Al6;
new

A20: Aold o= lnew ; Anew

= X 3
A21: Evaluate an(B,A—AI) 3 Og1q " o] 30 ew T an(B,A_-AI);

A22: 1If on(B,A—AI) < ec'i~ then system uncontrollable, stop -

. * %new ~ %014
else o s- T’L____..____. ; go to Al8;

new new - Aold , '

Now we will extend the algorithm A for X ¢ € . Ag we saw in
remark (X), we do not have to search all the ring but only the part of
the anulus which 1is above the real axis. In order to be able to apply

an algorithm similar to algorithm A we will first do the following:

o

(*) There~might be some case where* 601&' <8 in Al5 but we

g -
_ new
are not in a neighborhood of the possible roqt, so we must have a

bound and a check built in for safety (see fig. 5).

4

)

2
”
¥
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# .
c Let us imagine a plané\ P which contains the axis ' Re()) and is
\ vertical to the complex plane. Now weAtake the projection of the sur-
: face which is above the upper half and is defined by the function
on(B,A-J\I) onto the plane P . The curve we get gd/l;lane P 1is gimilar
witl; the curve we had for A € R (see fig. 10 and fig. 11). Theu most
3 .:hnportant‘ thing is that remark (IX) can be gpplied in th:l; case too. 4
algorit n A ¢an also—lge applied in'k thi;/case with the following chanées.
. /Let us assume that Ai - ai + j;i » Where _12 = -1 , then we start
;:it?/ a = f—oi and B1 =0, s0 }‘l - --ai . The corresponding value of
th¢/ function is oﬁl) = on(B,A-—llI) . At the next step we have the

%lléwing: ay = a, + ot(\l) » but we do not know ‘B, . So we will find
. & . / 0!(12) as the minimum of the curve, which lies on the plane perpendicular

/
/

2 ~/ to the complex plane and contains the line segment a2k (see fig. 10),
(._ . / considering &, and k as boundaries of the curve,.the minimum of which

- we are looking for. ‘Thus for calculating cii) we have the following:

| o{? = min o_[B,A~(o, + 1B)I] , vhere B¢ [0, /(oD ?*- ol ]

.\ 82
. ’ : see triange \GZOk fig. 10
’ i

In general we have the following:

(1) ’ :
o ' = min o [B, A-(a; -gthBi)I} , . 1

81 . .

5 © (.0, Aopp?el1 1 oy < (o, o3l v (9], oj]

where B, €

i (32)

. [v/(o;)z—a: . v/(oi)z—ui 1 1if o € (—a;x , 01;)

. (see fig. 10). ’ 3 }

48
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So the algorithm for A € € is as follows:

Algorithm B

Part 1 (Initialization)

A
else
- ° ‘
B7: Evaluate min cn[B, A-(o+{B)I] with b1 B < b2 , where .
B S
bl,b2 are appropriate bounds (see (32));
. Set Oew - mén oh[B, A-(at+jB) Y]
B8: If o < g0} then system uncontrollable, stop
new 1 .
else o
o -0
. new old . . =
B3: %i1d ¥ & - 3 914 *7 %new * %1d T %new ’
: new old

Part

» \
Bl: Calculate the singular values of (B,A) and let them be

' 20! 2 ... 2 0; ;

1 2
B2: Set o := —oi 3 ¥1q T rci H
B3: Evaluate én(B,ﬁ—aI) : gold t cn(B,A—aI) ;
B4: If %1d < eci‘ then system uncontrol}able, stop
else .

1

B5: a =a 4+ 0

= a s -

old ; anew

B6: If o > ¢! then system dontréllable, stop

2 (We search in the interval [-o’, 0:])
oL A

Bl0: o :=a + o

o = Q.
old ’ “new » ,

1

Bll: If a > ai then system controllable, stop
else ‘

Bl2: Evaluate min cn[B, A~(a+iB8)I] with bl < B s b2 , where
bl,b2 are gppropriate bounds (see (32))

set o __ = m:n On[B. A-(at+iB)1] ;

e



-

xS E

(
. 1
\ ' Bl13: If onew < col then system uncontrollable, stop
-,
else
o -0
\ Bl4: ¢ - M; \
\\ new Gnew Gold +
. B15: If lonew - ooldl < 6 then go to Bl7
else
i ‘ B16: 901d ™ new ’ %old ™ “new * %old *™ new 5 £° to B10;
> i . Part 3 (Newton's method)
C o
¥ \\ . Bl7: a := o + —¥ H
‘ \\ %new
\ Bl8: If |a~-a | >M then go to Blé:
new ,
B19: % 1d ™ %ew b %new t="q 3
f B20: Evaluate min[B, A-(a+jB)I] with bl SB<b,;
B .
f 9%1d ™ %new ’ “new - m;n[B, A-(ot+jB)1] ;
| -
i { B2l: If o < go! then system uncontrollable, stop
, new 1
’ " a -0
- \\\, else o om _E'.e_!__.._..p_l_d. H g&o B17
new a -a k

, new old

T PRI o T e N S
-

Note: Obviously the algoritlms A and B are quite expensive because
we need to evaluate the function cn(B,A—lI) many times. We feel

there may be a much more simple approach to this problem, but have

not yet found one. *

;.\ Note: n page 32 it 1ai§ointed out that in order to decide whether a

A

i ‘GL; system 1s controllable or not it is adequate..to see whether the

. equatign cn(§,4~AI) = 0 has any root\or not, with respect to
A € € .'\But instead of finding the roots of on(B,ArAI) =0, if

any, we can solve the optimization'problem
L
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min o _(B,A-AI) [A] € (o}, o]] (32a)

\3? which will not only tell us if the system is controllable or not,

%,
)
o

2
\but in the case of a controllable“system it will also tell us how

far the system is from the nearest uncontrollable one, that is, it

\

s\%l\\give us the distance of the system from the nearest uncontrol-

lable one. But we have already pointed out that even the solution
AV

of th? equation

\

\ A
\ \

o (B,A-AI) = 0 (328)

\

8 quite ex ené;\[ve, so the minimization problem (32a) will be more

expensive, at\,;eé\gt, with the methods we have so far.
3 % .

N
\
v n
N
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-CHAPTER 3

(I) 1Introduction

3

(1) Open-loop (Nonfeedback) and closed-loop (Feedback) control syatems.

1

A control action 18 required to take a controllable dynamic system from
a given initial state to any other desired state. The two basic ways for

carrying out such a control are the following:

(a) Open-loop control or nonfeedback:

4
When the determination of the contrpl action is independent of output
measurements on the system.

b) Closed-l‘oop control or feedback: .

When the determination of the control action is based on the output

behavior of the systenm.

-

Closed-loop control is8 often preferable to open-loop control. The
following example will illustrate the difference between closed-loop and
open—loop controls and will also illustrate some of the advantages of closed-

loop control.

Example: Consider a home heating ;yst. Also consideritwo different con-
trol systems. The first (open-loop) turns the heating on every 30 minutes
and keeps it on for 20 minutes. The second (closed-loop) has a thermostat

which turns on the heating when the temperature of the home drops under 20°C

/
and turns it off wvhen the temperature exceeds 25°C.

|

The advantages of the closed-loop system here over the open-loop system

are obvious. While the closed-loop system will keep the temperature between

-




20°C - 25°C the open—loop system may make the home too hot or too cold.

For more details and examples see [3], [7].

(2) Stability problem in dynamical systems

Stability in dynamical systems is defined with respect to equilibrium

points, s0 we first need to give the definition of the equilibrium point.

Definition (VII): A vector x is an equilibrium point of a dynamical

system when it has the following property; when the state of the system

reaches X it remains équal to x forever (as time approaches infinity),

when there is no control input.

An equilibrium point is stable if when the state vector is moved slightly
away from that point, it tends to return to 1t, or at least does not keep
woving further away (marginal stability). The following example will

W,

1llustrate this point.

Example: Let a stick be perfectly aligned with the vertical. Then the
dynamical system which describes the movements of the stick is in an éqtrili-
brium point. If the stick is balanced on its bottom end ,M then the slighest
impulse input will destroy the balance and the stick not only is not going
to return to the same equilibrium point but it will keep movipg further away.
So if the stick is balanced on its bottom end, it is in an unstable equili-
brium point. If on the other hand it is hanging from a support at the top
end‘and an impulse input moves it from this equilibrium point then the stick

tends to return to it. So in thie case the stick 1is in a stable equilibrium

point.

L
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Now we will defipe when an equilibrium point is stable, marginally stable,

or unstable.

Definition (VIII):

An equilibrium point' "X of a dynamical system is

called stable when in response to an impulse input, if the system is at the

equilibrium point X , the output of the system tends to return to x as

time increases.

Otherwise X is called either an unstable or margipally

stable equilibrium point according to whether the output of the system goes

‘to infinity or settles at another equilibrium point, see [7].

In fig. 12 we give one example for each case.

”

x(t)t

Mt

Ty

a. Stable equilibrium b. Unstable equilibrium
point N point
- Fig. 12

. / h

Remark (XII): Consider the systems ' .
N X =Ax + b
s
T4y " ARt D

!

-

[

o

t

Marginally stable

equilibrium point

(33) \5

(34)

E TR

(L YR ISR N S



A

AR 6T

O e e

b rwE e

Ment W v w eyt e e e e W T

e

BN AT s A

and let x be an equilibrium point for these two systems, then‘from (33)

we have

=Ax + b .
- }-> (x - x) = A(x - X (35)
X =AXx + b )
‘ A
\

from (34), we have

M

Tty T A + D

) ~ => (k. =% --A(xk - X) . (36)

x=Ax + Db

Setting z = x - X and Y ™ X - X , the equations (35) and (36) give,

respectively

i = Az ' : (37)

and

" Ve ™ Ay (38)

S0, it is clear that the conditions

“

t++w ) k4o
X <

are equivalent to the conditions

1im %(t) = X and Um x =-x

i

1im z(t) =0 and . lim " 0
t>+w . k+rte

(
regpectively, that is, the condition for x(t) and x, to tend to X 1in
(33) and (34), respectively, is equivalent to the condition for z(t) and

Y to tend to zero in the homogeneous sytems (37), (38), respectively.

RIS
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w
b

So, instead of looking for the stability of (33) and (34), we will look ‘for
the stability of (37) and (38) r:'spectively.
(a) Stability for discrete-time systems’ .
Cohsider the system - v
° X1 ™ A% (39)
S
; k . n
then L) A Xy for the given initial state X € R Therefore
‘lm x . =0 <> ln Akxl = Q <=> lzil <1 for 1 =1(1)n where
e+ k++e ’

Ai € AMA) , 1 = 1(1)n and for every initial state x;

Thus system (34) is stable if and only if the maganitude of each of the

e R® [3, page 155].

eigenvalues of A 1s less than one (see figure 13).

(b) Stability for continuous-time systems hd

Consider the system

¢ x(t) = Ax(t) (40)

then x(t) = eAtx(O) for the g:fven initial stage x(0) € ) So,

lim x(t) = 0 <=> 1lim eAtx(O) =0 <=> Re(xi) <0 for 1= 1(1)n sghere
tte t+tw

Ai € A(A) , 1 = 1(1)n and for every initial state x(0) ¢ e [3, page 157].
Therefore system ‘(33) 1k stable 1if and ot;xly if the real parts of each of the

eigenvalues of A are less than zero (see figure 14).

-

§
y
'
%
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a, ‘étable system b. Uégi:blé system ¢ c.: Marginally stable
: - /
. N system
i o Fig. 13 Discrete-time case
o e . o
(i& 4 $ - Iy A
“  Im(1) N In(}) Im(})
3
» e . » 1 -
Re(}) * Re(A) Re())
o > Ty *- > —— >
L 3
* * * +
(L +
8. Stable system b, Unistable system ¢. Marginally stable

¥ |

? Fig. 14 Continuous-time cdse

system
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N a (II) On pole assigmment in single-input controllable linear systems
. . -
The problem of pole assigmnment or eigenvalue allocation for control-

lable linear systems arises as follows: consider the controllable systmi

i .
| x = Ax + Bu . (41)
I
|
/’ " which is made into a closed-loop system by defining *
] l * *3
B / u=Fx, (42) 5
L N , - . Co
‘IXn ~ :
where F ¢ R « Then (41), inview of (42), gives
P ’ x = (A + BF)x . (43) S
L ’ .
We want t chobge F such that the system (43) is stable at every equili- .
~> ) 1
£ (ﬂ briun poén X . So we should choose F such that the real parts of each
¥ : '
; - of the eigenvalues of the matrix ‘A + BF are less than zero. 3
; ' ) %
Note: Instead of a time-continuous system, we can also have a discrete-time
R system. The only difference from continuous-time systems is that in the 1
i . N . , . k4
; ’ discrete case we will choose F such that the magnitude of all the eigen-
: values of the matrix A + BF 1is less than one. i
i
So the pole aasignment or eigenvalue allocation probelm is as follows: T s
° . «3

" e X

Given A ¢ Ran and B ¢ ann find . F ¢ R n such that the

matrix A + BF has a desired set of eigenvalues,

Luenberger in [3] gives a theprea (p. 299) based on a controllability canoni-

cal form also discugsed in the same text which can be used to derive an
‘ \
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algorithm to solve the above problem when = = 1 , that is, when we have

-m;le-inﬂ controllable linear system. But this algoritim is basedmoﬁ
the ;alcuhtion of the coefficients of the characteristic polynomial of
A, which can be achieved by calculating the eigen{:]::e} of A.' But the
calculation ‘of the eigmaluea of a matrix A , wvhen A 1 t symmetric,
“can be an ill-conditioned problem ;13]. [12], [2]. The s#me problem (sin-
gle-input) is also considered in [32]. The generalizationiof the canonical
forms, discussed l,:l.n [3], to sulti-input linear dyn;-ical systen: are dis-
cussed by Luenbet/'ger in [10]. One of these f“,f.' might be useful in the
eigenvalue ailocation problem (e.a.p.) fpr the multi-input cnsew, but it
should be pointed out that it is quite difficult to ke an algorithm which
golves the\,e .a.p. using this canonical form, and one of the reasons is :hat
in gene;‘al, there is not a unique way to bring the system to such a canonical
fo;.:m. One particular derivation of a canonical form of a multi-input dyﬁ-
Tical systen i‘"s givg\p in [11) vher® a different gpproach from [10) is hsad. |
F;; 8 more explicit way of bringing a systen to its canonical form see WontumH
[9], vhere the fundnantal result of pole-assignability was preamted. The
fadt thnt ‘the e.a .p. is quite difficult for the mlti-input case, is euphaaized -
in- [ans] vhere a geometric vicvpoint of the problem 1: given. Azlgoritl-
which partially solved the e.a.p..was gﬁwb}"».viaonJﬂ]l where he proved
the following: s J 3
Lett&ety;tu x = Ax + Bu (v . 3
- ‘ : ) } ’ - (Rﬂl)

. R y = Cx

Rl
i

wh.ere‘. X,u,A and B u:e as we have already described, and C ¢ lr*n R
y € »' , (r sﬂn) . Then if (43a) is controlladble an?nnk((:) = r , there

©
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mXr

is a matrix F ¢ R such that r eigenvalues can be assigned to the

c matrix A 4+ BFC . An algorithm is given. This result was further extended

2o e T

by Davison and Chatterjee [28] and by Sridhar and Lindorff [29] as follows:

by

Under the same conditigns of [27] max(r,m) eigenvalues can be assigned

-

‘ to A + BFC . Numerical difficulties of the algorithm given in [27], when
n >> 10 led Davison and Chow to extend the result of [27] to systems where
I
n >> 10 [31]. An algorithm is given. The results of [27], [28], [29] are
: ‘.

further extended by Davison and Wang [30] where they show that under the

same conditions of [27] min(n, mtr-1) eigenvalues can be assigned to

RS

A+ BFC . An nlgorithn is also given. A similar extension to [27], [28], T29]

is given by Kimura [25] where he proves that under the same conditions of [27]
Iy . ’ X .
- nsm+r -1, an arbitrary set of distinct eigenvalues can be

; as‘éignéd to A+ BFC . In this paper, different from the coﬁentional (up
v i ,\ to that time) approach using the characteristic equation, an approach based
; {- on the properties of’the eigenvect?rs is used. This result is further

% extended by Kimura in [ié], where an algoi‘ithn i8 also given.
%

.
Although the above mentioned works are important theoretically, the

PRRETEL P

W R resulting algorithms have usually notl been designed with as wide an under-

. standing of numerical difficulties as we have today. The main ajm of this

x ‘thesis is to present algorithms which are reliable pumericaily, as well as
theo;eticaliy, and to do this we start with the most simple form of the

: problea. <

‘ Note: "In this section we will deal with single-input controllable systeas,

that is, m= 1 o B=b , be B® . So that F = f-

s f € R" . The
‘algopithe we will present will calculate an n—dimensional real vector f

c such that given an n*n matrix A and an n-dimensional real vet:t:v.:n.j b

the matrix A + th has a desired set of eigenvalues Al,lz,...,)}n .

° -

«
- [ e e - w— s — - AUy s — o - -~

e

AT A v B
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z Remark (XIII): For a controllable system we can always find an F ¢ e
: !

such that the matrix A + BF has any desired set of eigenvalues. A proof

for this can be found in [9], [10] or [11] (see also earlier here, page 14).

-

Remark (XIV): The problem of /;nding a matrix F such that the matrix

’ A + BF has any desired set/'c’;} eigenvalues is equivalent to the problem of

: finding a matrix F such that the matrix A + BF has the same desired set

of eigenvalues as A + BF , where A= QTAQ . B = QTBP » F = PTFQ with P

and Q ;ortho'gonal matrices. The above mentioned property holds because .

v

-~ e d

+ X+ BF = QTaQ'+ (QTBP) (PTFQ) = QT(A + BF)Q
So, ) .

(_ A(A + BF) = A(A + BF) .

If P, Q are chosen-such that A and B are of the form (6), then the

- . »
problem 18 much simpler, for example in our case where m = 1 .we have the

£

following:

~ ! ~ "”r \'
b T T LT B A TR R T
: . | 0
g %1 %2 * * * %2451 %2 .
o e o+« +» Q o ¢
X 32 3,0-1 %3
¥ ’ \ 0 J
¥ - Py . -

| %1 %on 2

S
,

-

ﬁ?ﬁ%ﬁ“vz o

e
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where 4 4 # 0 for 1= 1(1)n , because the system defined by (X,E)
1]
is considered to be controllable. So,
~ o~ \
A + bf ( appbargty G, F by o o Ay gl g ekl
%21 %22 Coe %2,n-1 %2n
%32 .. . %2,n-1 *3n .
§ O‘n,n-—l nn J

Thus the original problem can be stated as follows:
4

Given an upper Hessenberg matrix A ¢ man with elements ai j
i ¥ !

i=1(n, j = 1(1)n , and é@"f-—l £ 0, i\- 2(1)n , we are concerned in
»

, where

14 j =1(1)n (that is, we are concerned in choosing the
]

first row of A ) in order to give A a certain desired set of eigenvalues

choosing real o

which m; occur in complex conjugate pairs. Thus from now on we will talk
about determining the first row of A , rather than determining f in
A +DE .
We shall now describe a method which solves this problem. The descrip-
tion will be divid;,d into’ two par'ts: as an easy introduction the first part
will describe how to fleal with real eigenvalues, while t% sec;nd will deal
with the more difficult case of eigenvalues which occur in complex conjugate
pairs. The first part also will be-divided into two other parts, the first ;

part will describe an explicitly shifted method, while in the second part we

n{xaﬁ show how the same thing can be done implicitly. As in methods for

\

o
]

R
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solving the eigenproblem, the implicltly shifted approach will not only

be more accurate in some cases, but will also allow the complex case to be

handled in real arithmetic.

From now until the end of this ¢

describe immediately.

-

1)

* . x, 0 or blank, meaning ‘that the corresponding element 1is a

=

pter we will use a notation which we

Sometimes the elements of the matrices will be represented by either

variable, a known scalar, or in the last two cases is zero regdec-

tively. By 'variable" we mean an element that has not yet been

described. For example usually the first row‘of our upper Hessenberg

matrix A dis "variable".

13

¢

-~
[}
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4
!

. Defimition (IX) [12], [14]: °

T
a= (al""f“i""’aj""’an) be an

n-dimenaional vector with uj # 0%, let also

L
g - ey 4 !
) :‘i- :) Lo - rﬁ.m_uz&’.ﬂ, < Edpedan .

-T.“»EF

bl

-
)

.
;
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: : Ra = | a
< 1)

5, quef A bl
- B SR, Fe Snesaprdghe.d A A R ?, e
-
L -
-

y,._
.

has its jth element zero. Thus c¢,8 should be chosen such that 1if

e

1 .
in the 1,3 plane.

o o
f p = /ui + u2 then ¢ = -54- , 8 = —F;t Then matrix R 1is a rotation matrix
Ed

IR O
};‘\

"

2) The following notation for a 3x3 matrix

»
»
[
+
*
»
-~
+
*
%
*
+
*
*
»
N‘
+
*
»
»

]
]
]
]
"
»
R
‘-‘-
M
]
M
M
]
]
*
%
*

(74

-3
™
™o
s
L
™
L]
L]
M

H IS
means that, first ?le mult/iply our matrix from the right by a rotation
matrix which combines the second and third columns without eliminating any
elesent, then we apply the transpose of the same rotation from the left
" combining the second and third row, so a non-zero element is 1ntrgduced at

; the place (3,1) . After this the element (3,1) 1is eliminated into the %
A

Ct element (3,2) by applying anqt;her rotation matrix from the right, and b

il
)
2.
: }
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4

finally the transpose of the same rotation matrix is applied from the left

and it introduces variable elements at the second row of the matrix.

Note: All the methods we will describe in the following have twﬁ main

parts, the forward sweep and the backward sweep.

(1) The case of real eigenvalues

(a) Explicitly shifted method:

Let A be the n*n upper Hessenbe;g real matrix with given real eigen-
values Ai » 1 = 1(1)n , but unknown first row, also note that if ai,j ,
i=1()n, j = 1(1)n are the elements of A , then oy , , #0, 1 =2(1)n .
Then in the forward aweep we do thé following: Let Al Z A then we start
with the first eigenvalue Al . We want the matrix Al - klI ’to be singular,
80 we choose an grthogonal nXn matrix Q1 " such that the matrix

Qi(Al—ﬂll)Ql is clearly singular. Let us consider the following example

- - = * * * -
with n=3 Al AlI z then we multiply Al AlI by Ql from
X X X
X X

from the right, where Ql is a product of appropriate rotation matrices
det ned such that (Al-—AII)Q1 - R1 where Rl is upper triangular, that

is,

H

(A;-A DGy

‘.{aﬂt



z Since a4 ¥0, 1=2(1)n, the (1,1) elements of (Ml) will be
1]
nonzero, 1 = 2(1)n . Thus the element (1,1) of the matrix (Ml) must
¥

be zero for (Ml) to be singular; but since this S}Gment is variable we

set i1t equal to zero, thereby using some of our freedom in choosipg the

first row of A .

L}

Thus (Ml) becomes 0 * * = (Al-AII)Q1
AN 3 0 x x
d \

Then we multiply (Al-AII)Q1 - from the left by Q{ and w%.get

T ~
Ql(Al—AlI)Q1 = 0 * * } ) + {0 * * M2)
0 X x 0 * *
1 .
0 X J 0 X X

We set the row vector which is formed by the elements (1,2) , (,3) of

. (M2) equal to b{ ?nd the matrix which i1s formed by the elements (2,2) ,
Y ‘ ( (2,3) , (3,2) , (3,3) equal to Az-kll . So we have the following:
\ . ¢
Qf(Al-xlx)Ql = (0 b ) = Q{AlQl- A\, bl )
" “lo Ay-\ I 0 A, | e

- .
From relation (44) we can obviously see that A(Alb - {Al] u A(Az) . Note
that the rotations in (Ml) were nontrivial since O 41 $#0, 1i=2(1)n-1

»
and the (2,2) element of (Ml) 1s nonzero, as a result the (3,2) ele-

ment in (M2) 1s nonzero and" A, has the same form as ﬁ} (the general

case will be proved in’'remark (XV)).



wn
-

' 68
|
§
J
L l
( In the next atep we will work with A, , the first row of which can |
+ |
be chosen arbitrarily and we will choose an orthogonal (n-1)x(n-1) |
matrix Q2 such that the matrix Q"I,;(A:Z—)\ZI)Q2 is singular. At t\he kth
, step, we choose an orthogonal (n-k+1l)x(n-k+l) matrix, Qk , such that
. .
the matrix Qk(Ak--).kI)Qk is singular, that is,
) T, T T T
Q (A -2\ 1) =1 0 b => QAQ =1 A b k=1(1)n-1
A MDY ko 1tk ko Pk |
(45)
: 0 Al wl O A
so that A(Ak) - {Ak} UbA(A.k_’_l) for k = 1(1)n-1 .
At the final step, when k = n-1 , we choose an orthogonal 2x2 matrix
"33;/ L 4 ’
,&"Qn-l such that
( ‘ Q" (4 -2 Q. = (0 B -> '.
n-1""n-1 n-1"""n-1 n-1 e ot
\// 0 An—)\n_ll
k T oA . Q =1 B (46)
-1 4n-1 %1 n-1  Pp-1 )
' 0 A
n
( p
But the matrix An is well known because it is a scalar, that is, An €eR ,
and since it is a variable we set it equal to An .
Now we will go backwards and we will be galéulating one by one the
. first row of the matrices Ak for k = n-1(~1)1 . Finally we will cal- s
/l‘ I3
culate the first row of A , since A = Al . Vit

¥
3
|
&
2
I
]
1
1
3

. : Y
C -




.
s - i

\

!

1

Now we will describe the kth step of the backward sweep. At the

kth step of the backward sweep we have from (45)
T T
QDY = [0 b 47)
MO Aahd

From the previous. k-1 steps in the backward sweep we will know the first

row of Ak+1 and so the first row aE+1 of Ak+1_lk1 and we want to

evaluate the first row a:} of Ak-lkl and from that the first row of Ak .

Let R

Q =P P (48)

2

where P 1 = 1(1l)n-k are the known rotation matrices (see Definition

i ?
(IX)). We know that first we applied the transformation Qk from the right,
and since this transformation combines the columns of Ak—AkI s we see that

every one of the rotation matrices Pi » 1 = 1(1)n-k affects the first row

of Ak—k I ., But the same thing does not happen with Qk s which combines

’the rows of Ak-k I . As we can see, the only rotation matrix of Qk which

affects the first row of Ak-AkI is the laat one, that 1s Pz-k , because

Pz-k combines tlie first with the second row of (the altered) Ak—AkI . Let
Ty T T ) T
e, Pn-k-l « o e Pl(Ak—-AkI)Qk 0 a (49a) ,
M AN
T |T
e2 . o 0 a K
~ L

69
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Note that a k\L will be available because at the corresponding stage of the

[N

forward sweep we will not combine it with the first row which contains

variable elements. s
Let o= 8 ’ } , then we have (498)
n~-k '{§ k k '
Bk
1
\ )
* -
- T A T T
¢:k sk 0 ak 0 bk e 0 bk => (50)
) T T T
g S | {0 2% 0 a4 & 1% Ak
I
, T T '

T T
a'’ -
g'i ™ _c_.k__k_._ikﬂ. ’ since sk * 3 . '(51)

which determines tine“variable Tow 5: . But from (49a). and the form of the
Pi ,
’, T T ) T

So‘

-(, ak)qk ‘ (52)

70
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‘ From (52) the first row of Ak is
T ~I,.T T
elAk = (0, ak)Qk + Akel (52a)

Thus from knowing the first row of Ak+1 we can find thelfirat row of Ak .
But we know the first (only) row of An in (46) , and so we can go back-

wards to finally produce the first row of A = A1 , our desired result.

Comment: From (51) we can see that if 8, is relatively small then we may
get into numerical trouble. So from now until the end of this section we

will comment o this possible trouble.

Definition (X): Let 'A € ¢ be an upper Hessenberg matrix with elements

aij » 1=1(1)n , J =1(1)n . Then we say A 18 unreduced if ui+l,i + 0

for 1 =1(1)n-1 . ‘ “ ,
¢ | - |

Remark (XV): If we write the result of the kth step of the forward sweep

_
of the explicitly shifted method as ‘ ~ .
T T
- Qe A Q7 | M By

0 A “,

~ * q '
then if. Kkﬂ is unreduced, Ak+1 will also be unreducdi. This result follows

becaufe‘g zero (i.l—ll element of Ak+1 implies that either the corres-

/ ponding (1,i-1) element of Ak ig zero or the corresponding (i+1,1)
>
element of A, 1s zero. This can be seen from the following example of a

3x3 matrix. In the forward sweep oﬁ;fgé/zxplicitl§ shifted method, one

step is described by (

( \ 4




O

1* * & +2* x X -»30 * % +{0 * =% -.50
2 2'
xX X x X x P, x X X 0
; -2
1 . 11
e et

Ak-kkl ' A ‘ . J

Let ak represent the

EN|

(1,j)-element of the kth matrix in this example.

Suppose the first matrix is unreduced, so neither rotation is trivial, and

2 b
suppose agz = (0 . Then we have either

2 1
a32-0 => 032-0 > u22-0 -> a21-0 ;;> 021-0,
ar
5 1 .
ag, =0 = az, = 0 since rotation ] will not exist.

But in both cases we have a’contradiction, so agz ¥ 0 . More formally,

. ;
after some trivial calculations we get: First, from rotation )

: 2 (@ly? -
1 1 . S (3 2. 1.2, 1.2
%326 7 %338, 70, G =75 » 80 1f 0] = (a3)" + (0307, 5
« sy (a3))

-/

~

Similarly from rotation 2

2 2.2 2.2 1.2 2.2
Py = (“21) S (ay,)" - (a7 + (a3)),
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‘ respectively (see definition (IX)), and

Wby Aumay vy, e g TR R TN b, SR s NReT R

Nov wpcan calculate “;zi as follows:

1 -

a 1/2

- 32 1.2 2 .2

- 3 [(qu) + ((:22) ] (5280~

were p,,p, are well known numbers associated with rotations 1 and 2

73

. %22 %23 (53)
2 1
a,, = -— det
22 Py 1 1
' G319 %33 e
e N ‘ -

From (528 ‘we can geé that 1f, agz: 0 then gither a;’é = 0 or both
G‘l =0 a2 =0 . e
21 "2 ) I —_

w

So 1f A, is n_xnredétced then A -A I is unreduced which implies ti‘hat\
Ak_"_l-k I and so A,y are unreduced too. But we koow that A is unreduced
because of the conttollabi, 1ty of the system X = Ax + bu and theorem, (I)

therefore Al' z,....A -1 arc all unreduced. ) LN

\

Now since each mstrix Ak-AkI is unreduced its (2, 1)-31&.«:: is non zero,
! (XY

- lo the rotation Pni-k which 1is maje to elimfnate this ela-ent il non trivm,

thus s ¥ 0. But Y can be relatively small if some of the ,bubdhgon-l
v )
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elements of ’Ak-lkl are small (this can be seen from (528), 1if %3 is
. \ .
saall in comparison with ‘0;3 the (’?2 may be small and so will be the
corresponding s used to, eliminate °;2 if (ng is not small, since
5 \
%32
8 = - .
5.2.,.,5 .2 .
VERESRER | /
. Now from (51) we have /\
T T
‘k‘lI: TSy W -
8, (0, T + (0, a,.) = c (0, a'T) <=> :
(0 & v ) T (0 a7y
o ST T T I, T . :
| 5,0, B0, + (0, a0} = ¢,(0, a'Daf (58
Let :Tk be the first row of Ak s k= 1(1)n . Then from (52a) we know that
(0, &)Q = 3 - A el él;x)
T "Ry "
W 4
_ Ve also know that from:the second row.of (47) . \ '
. - T ~T T o
'Now (54) in view of (54a) and (548) gives us - e
» " S | ~T T ' T,T_ 5 SO SR .
%l ~ Al + O 3 )0 - Aol = o (0 &1 =
" - - . -
~T ST T _ C T T T T, T
58 +0(0, 3500 = (0, a’))Q + s de) + ey (54v)
:'~v » %
Let™
. : L P T ~ T
| e (0 #Da + g Al + 1l = al (546) .
: o .
k'l - 13 " n ﬁ
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.. . which we see is wholly avai;plable from the forward sweep then (54y) in
LG j .

view of (546) gives us

.

£ y
" T S T T S .
?; s, & + (o, ‘k+l)Qk - dk k = n-1(~1)1 (54¢)
& 4 ,
2 ,
T _ ~Ty T y S
§ NOV let ak (o’--.’o"k) » dk (0,\...,0,dk) 9 Qk Ik—l 9

e, k-1 ‘ k-1

L 0 Qk

for k = 1(1)n, so ;: ’ 3;{ are n-dimensional row vectors and 6k is an

4

f nxn ortb'ogonal matrix, then instead of (54¢) we have the following:

~T T T +T »

- % e Gty 7 -
' aTs L 2T 5T 4 ) N
qkaka + ak+1 = dk Qk . k = n-1(-1)1 (547)

1

Now from (54L) we can observe the following:.

]
- ‘ b

,

-1 ~T by =T ~
For k =.n-1" we have (s ., , 1) n-1 -1 d1 %
: -«
{ ’ -T
H — a
{ n
.,

X T A M.

, AT -~ ~ - AT ~ ~
For k = n-2 we have Ws__, D |a 5,9 ., 4 d_n-?- Qo Qa
ap -
! L 2a-1 ({n—l ,
s So' .finally we get the system:
! T
§ 3 r 3 - - T 3 -
A ( 81 l xl . gl (54“) 3
T T
8, 1 x; 8
(\ ;« . v . )
* . é i.
( 8n__2 1 xn-2 gn-z
T T
; ¢ 80—1 1. xﬂ"l sn-l
LY ] ., xT ‘ . T
: ! 8 J | B J - \-gn J 4
\ 1 n .

- - e bk et PR - .
et a2 V.. wme L e e = L ey

v it AR et bmm e e - o
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T _ ~T = A -
where xy ay Qi Qi+l Qn-l Qn .
, 1 = 1(1)n with Qn =1, (546)
T _ T~ - P ,
4 o B " 91 % Uy o G U

and"since 52 An (see (46)), the first (and only) row of An , we have

T T T “T !
taken s = 1, g, = ('0,...,0,)\n) » Biving x =g . Note thatj»‘ a) is

‘ . T AT _ T T AT ~
the desired first row, and knowing x; we know a; = xg Qn Qn-l e ﬂ'i‘ .

In the system of equations (54n) the unknowns are effectively the rows
T : T AT _ T
a, k = 1(1Jn-1 . So system (54n) can be solved from a to a =aj.

It should be pointed out-:that this effective solution of equations appears .-
to be as late 1in the computation as possible, and probably reffects the
K/ill—condition f the problem. Thus there is some reason to believe that

this algorithm' will be numerically stable, since there is no other solution

'y
[

of equations, and all other computations are nice stable rotations. The
ratio of the largest to smallest singular values of the matrix in (54n) may

well give a measure of the sensitivity of the eigenvalue allocation problem.

(b) Implicitly shifted method:

Here we will describe a method in which every step of the forward sweep
is achieved without having to subtract the eigenvalue from the diagonal and
then restore it. We first describe and prove a theorem which will/t@iB us

» i
develop the implicftly shifted method.'

v

f o
Theorem (V): Let A , Q and H be real nxn matrizes with QTQ =1,

and H upper Hessenberg with elements Nyp14 > 0 f$r 1 = mtl(1)n-1
’

where ¥ <m < n-2 .

4
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If AQ=QH then Q, , H
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Write Q * ( Q, ) H H ‘
rite * R = m .
Q 9 ) 1 l 12 |}
nxm  nxn-m
e eT H } n-m
"1 ,0°1%m 2
S e’
.. ' m n-m
where e and e have n-m and m elements respectively.

, and R(Ql) are uniquely determined by A and

the last column of Q, - If = 0 then R(Ql) is an eigensubspace

nurl'l,m
of A. }f m= 1 then apart from the sig'n of the first column of Q ,

Q and H are uniquely determined.

7
o

Proof: Let Q = (ql’qZ""’qn) be partitioned into columns. Suppose that

= »
we already know q, - Then we have\ ‘ >~

1Y = QTa (55)

Suppose we have already\calculated the last n-k columns of Q , that is,

—~

we have calculated the g { ;E)r 1 = k+tl(1)n . Also suppose that we have
already calculated the last n-k-1 rows of H . Now we will calculate
the (k+1)th row g‘f H and the kth column of Q . From (55) and the

fact that R 1s upper Hessneberg, we obtain, with H = (n,.) .

ij

T T

. ‘
oG bt T Y1 n%n T Y

\ r‘k+1,kq: A, k=n01(-1)1. (56)

7

Since Q 1s& orthogonal, we multiply (56) by 9 from the right to obtain

»

T
'"k+1,i - qk+1Aqi , } = n'(-l)k+l . (57)

#

Now we wil?. calcul‘ate Y and "k+1,k . From (56), we obtain et

L]

&
. - - ~
- K . k3

SRR i e

st P

e




r
~ oawR ey B g

n

k-4

-1 ) , k = n-1(-1)m+l (58)

Q=7 (@C,.a- T n W
k7 Mk et T L M, Y

v

Here (58) and the requirements ]qullz =1 and nk+i k> 0 uniquely
. ’

determine 9y and n This way we obtain all but the first m

k+1l,k °
columns of Q and the first mtl rows of H . The rest of H2 is given

by H2 = QgAQ2 , and R(Ql) "1is that space orthogonal to Q2 . Now

‘ AQ = QH ' (59
T =1 -
so 1f nm+l,m O we have AQl Q1H1 s QlQI I, and R(Ql) is an eigen
subspace of A . If m =1 then Ql =q; is uniquely determined but for
& ,

its sign, so H = QTAQ is uniquely determined to this extent. If m=l1 and

3

"2,1 = 0 then

Aq (59a)

17 % M

80 q; is an eigenvector of A corresponding to the eigenvalue A = Ny

Remark SQVIQ: The requirement that nk+1,k be positive in the statement of
the theorem was necessary only to tie down uufque?ess. Actuﬁ?ly nk+l,k s

k = ml(1l)n-1 and 9 » k = m+l(l)n are determined up to a constant factor
of absolute value unity siﬁbly by‘the requirement that "k+l,k $#0,
_k=mtl(1)n~1 . It is this essential uniqueness of H and Q that we shall

use.

. To see how theorem (V) can he applied to improve the explicitly shifted
method, suppose that one step of the forward sweep with shift A has been

applied to the unreduced upper Hessenberg matrix A to yield an upper
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Hesgenberg matrix H such that H = [A bT with A an unreduced
0 A
> . (
upper Hessenberg matrix. Then, * .
T .
H=Q4Q , and Q 1s lower Hessenberg. '

The following algorithm is an alternate way of computing H .

\

1) Find an orthogonal matrix P such that

Pen - Qen - o . (60)

-

that 1s, P and Q have the same last column. To do ﬂhis choose the

' /

rotation PT such that PTQen = ( 0) = e more will be said on this later.

v
»

would have the form x X bs x
x x x x
x x X
' .
1 x X x J
~—

3) Find orthogonal matrices Ui y 1 = 1(1n-2 to reduce PTAP to upper
. 1 ’

' Hessenberg form H' , that is

T

Un--2

R L 6 ' (61)

- TT
. - UPARU, L. oLU




1

—

ﬁ
\\ ¢ f el
\\
|
\\\ v T
where continuing the same example H' would have the form /
L
[ x X X x|k ik
N
2" \
x X X X .
2 '

L
If we set Q PUl o« v e Un—.2 , then from (61) we obtain
T
Q'AQ' =H',

- ‘ ' ® =
and we see from the form of the Uy that Uien e, » 80 Q'e = Pe Qen

and from Theorem (V) we have effectively Q' = Q , H' = H'. As a result ve

set the (unknown) (2,1) element of H' ¢to zero, and (1,1) "element to

X \

4

To determine P we shjuld find the ‘last row of QT . We know that

(A-AI)Q = R , where R 1is upper triangular matrix with elements Pyq

1=1(1)n, §{=1(1)n . Now VT
(AAI)Q =R =
A AL = RQT =
= dd-am-esdt, 3‘ (62)

T




g
L
(‘ Then we choose P Buch that .

aTP - 1Ha||2 e;r‘ (62a)

(@ P like this can alvays be found, see [12], page 232, theorem 3.4).
! N

So from (62a) we get

S

aT-iHaHZ ez PT =>

) a
enP = % Tm-rz- . (63)
So using the P of (63), the last row of which is a mulgiple of the last
row of A - Al , we ac‘\:omplis'n our aim, to find a matrix P such that _

\ =
\ Pen Qen . )

t
\\ Now we will give an exawple with a 3x3 matrix to demonstrate how the for-

+ ward sweep of the implicitly shifted method works.

Let A = * % * then we find a rotation matrix P such that if

X x .
we apply it to the matrix A - AI from the right it will eliminate the

(3,2)-element of A - AI into the (3,3)-element of the same matrix. Of

course, P will not do the same to the matrix A unless A = 0 . So we
L
will have the following:
e % ) 5 2% %« ’.;“*.** > % %
SEN
x x x X X x X X x ® *
) 1! )
{ x x x x x x x
- 1

81
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‘// T
Now we set the " ~(l,l)-—ele.-mem: of the 5th matrix equal to X , so the

A .
(2,1)-element of the same matrix becomes zero in view of the theorem (V).

Finally, we have

»'

That 1s what exactly we would have, using the explicitly shifted method,
but without subtracting the shift from the-diagonal of ‘A and then restore

it back.
2

Now we will describe the kth step of the bac kward weep of the im-
plicitly shifted method, which as we will see is almost iflle same as. the
backward sweep of the explicitly shifted method. At the Lkth step, we

have

T T
A =" | A By . (63q)

0 An
Y
As in the explicitly shifted method we know the first row azﬂ of\‘,A.k_‘_1
T N =T
and we want to find the first row a, of A‘k . Let (Ak . ak)

first row of Aka before the effect of applying the orthogonal méatrix

be the

Q: on the left, or, as in the explicitly shifted method, before thé
effect of the rotation matrix P:—k as this is the only rotation matrix

of the matxix Q: that will affect the first row of Aka , .then we have o

l kK %k Ay Ty "M% % (638)




Fa e o s

o mwee

-
{
i
s

et

4 ca'T-szT

from(638) and since

-
o

ﬂ : kY Sk

Ck'Y

R
and

k kk

N a
k k

S0 now we know the first row (Xk . ii) of AQ , that is
Y

T
a,Q = Oy » 7

.a:..(i'k,

- & )
y+ Thus from knowing the first row of Ak+l

+ But we know the first (only) row of An =
80 we can go backwards to finally produce

desired result.

We now: make one remark and prove a theorem based on the remark. This

%heo_renr‘will help us develop an implicitly shifted method for the case of
\

_complex eigenvalues.

=0

= a

T T
I
8

[,
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{v, a'z) "is well known, we obtain

! v
<m>

) (64)

T
k+1

< >

(65)

30, - (66)

\

~

we can find the first row of Ak .

+

)‘n in(63a)with k=n -1 and

the first row of A = AI , our
p

1

/ 4
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Remark (XVII): It may hqyéfbeen noticed that the explicitly and the

implici&}; shifted methods which have been described here are quite similar |
with the QR explicitly and implicitly shifted algorithms,»respectively.

The basic difference is that in our methods instead of trying to get an

upper triangular matrix R by multiplying a matrix A z uI , n e R from

the left by an orthogonal matrix QT ,Jbe multiply A - uI from the right,
where u 1is a well known shift. So the kth step of an algorithm based

on our explicitly shifted method, to calculate the eigenvalues of A ,

would be as follows:

(1) Form Ak - ukI w
(2) Factor the above matrix in the form Ved
(o= WD = B <o CONEN
- wI=mRrot (67a)
A m I = RO

(3)  Finally compute Ak+l as .
b .

- L M

e o

From (67) and (68) we obtain:

»

L

“ A ™ Q: A Q - (68a)

Theorem (VI): Let Qn - ngiﬂ..: Qm and Rm = Rle ces Rm R where’.Qi,Ri
with i = 1(1)m are the orthogonal and upper triangular matrices of the

ith step of the above mentioned algorithm applied for m steps, then

RO = A-wD (- b .. A-u D) . (69)

‘

A sl it e i




e e

R R T e L S T ST

Then obviously, we obtain -

Proof: \Let AZA .
' Ak”'l;a,l{Aak' do A .@}
we will prove (69) by induction. For m = % (69) gives s .
R =ap -w1 - )

T
RiQy =4y -yl

s

which is true if in (67a) we set k = 1 . Suppose (69) is true for m = k-1 ,

M

that ig, suppose that the following relation is true.
R 6” = (A-ul) A-pI)... QA-yu I h (7‘1)
Rt = Ay PRU k-1

Now we will prove that (69) is true for m = k , that is, we will prove that

the relation

e

¥

ika’i =(A-uyD A-wD ... Aoy D G-wD (72)

ia true. (68) because of (70) gives us k

£

T ~T =~
QkR-k - QkAQk = UkI <=>

Q:Rk = 5;11;(A - ukl)ak <=>

S

= (A-wDF
R = QA - w G

B - ik—lall;—l(A - DY < 1:

L RE LD

§



(72a) becuase of (71) gives us

RO = A -wD (A=) ... (- ukI)\ A - uD

wﬁich s (72). v : \
£ 7 N

(2) The case of qﬁplex eigenvalues: \

e

Here wé wjill describe how to accomplish two steps of the forward sweep
of the 1mp11ci ly shifted method in one pass, and we will show how we can

use/:bis.daﬁble step to assign a pair of complex conjugate eligenvalues to
4 .
a matrix A . Let 11 , 7\2 be the two eigenvalues and let A1 = A, then

from (68a) for k=1 and k = 2 we have respectively:

T
A)=Q A Q and

T

A3 = Q; 4, Q) =

A, = ool A, Q Q (73)
37 4 Q Q |

{
———y

where A A2 and A

1° 3

two steps implicitly, we first find an orthogonal matrix P1 such that
v T T.e '

Plen Q1Q2en . . To do this we should find the last row of Qle . From

theorem (VI) we have

T.T
RLR2Q2Q1 = (A - All) (A - 7\21) ’ (74)

' . (1) (2)
where the upper ’triangular matrices Rl . R2 have elements p ij Py i
respectively. From (74) we can see that if qz is the last row of
T.T
Q2Q1 then

(g) ﬁi”% -e (A MDD (A-21) . _a%

are ubper Hessenherg. 1In order to accomplish these

-
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So q: is a multiplé of the last row aT of the matrix (A -w\ll)(A - XZI) .

But A 1s upper Hessenberg so aT has only three non-zero elemeénts,
\

\

T . ‘
a (0"’"°'°‘o,n-2'°o,n—1’°‘0n) say. Then after some trivial calculations,

1

we find that -

7o

c“O,n}g‘{-Z = Q‘n—l,n-Z an,n—l
ulO,n--l - an,n-l[an—l,n-l + %an T (i‘l + 12)] C (76)

a -02+G

O,n nn n,n-1 c‘n-l,n - qnn“l + AZ) + )‘IAZ

Now choose P such that

1
T B}
| o, = ellally of <o
a -iHaHz e:P; <m>

T a
Pl b » TT;'”'; . (77)
~ N "
Thus ’ )4 .

Vo 2 @ -
a on nn
R 1011 PR 1111 P M A

and we have accomplished our aim. } .
' s, From (76) we can see that if ll-k and >X2-f, vhere A ¢ € and
* X is thg complex conjugate of ) , I’1 is real, and can be found by n;inx

real arithmetic, since A + X and CAX are Teals even when A € € . Now,

after having found Pl » the next ®tep is to \Mtthogonal matrices "Ui .

i = 1(1)n each with Ue = e, » such that the matrix A' 1s upper Hessen-

berg in

Kl ‘

.




N

. T , '
' = = -
A Q AlQ , Wwhere Q Pl U1 - e Un .

v

t

-Then we will have Qen = Plen = + Q1(22en , and since A3 has nonzero '

(i+1 , 1) elements, 1 = 3(1)n-1 » the last n-2 columns of Q and QIQZ
t /
' are essentially the same, as are the last (n-2)x(n-2) diagonal‘blocks

‘

of A' and A This follows from Theorem (V). We will give an example

3
with a 6x6 matrix to demonstrate how the forward sweep of the double

step method works. Let J

b A= * * * * * *

L

,
-

then we find anm orthogonal matrix P such that if we apply it to the matrix

(A - AI.I) (A - AZI) from the right it will first gliminate the (6,4)-element
of (A - )\11) A - AzI) inta the (6,5)-element of the same matrix, and then
‘; the resulting (6,5)-element of (A ~ AlI) (A - )\21) into the (6,6)-element
of the same matrix.—-§o when we first form the matrix PTAP s ‘andy then we

reduce it to upper Hessenberg form, we will have the following:

L .
r




N

. R .
-
f - . N
5 '
1
.
S S YA+ o« o ox w ok I
’ L ]
5
x X x X X X x X, X X _ X * LA LI
1]
, ' s
x X % X X 3 X X x X X LI T LA
5 & ! .
+
x X x x @'\‘QJ\X x x  x x x x
'n; <3 H gy, 2'
. _
e x ox x 2:_7/\‘\'1' Ty x* x x X
! ' -
” 1 2
L | X X 2 @‘v XX x
L NG -

Note: The element 3' cannot be eliminated because after the multiplication

b
. of the rotation matrix 6' , this element ,becomes unknown, as we can Bee

from matrix 3 . Since from Theorem (V) the first two columns of Q span the
-eigenspace of 'A corresponding to Al and Az , we see that the elements
¢(3,1) and (3,2) of matrix 3 must be equal to zero, and the elements

(1,1 , (1,2) , (2,1) , (2,2) of the same matrix will be forced to be equal

to vy ,4 ,€, ¢, resP;zctively, where v + ¢ = 2a " and det[z i] - 02 + 82

A, = a+3j8 and A, = a - jB with jz-—l. In other words, vy , 8§ , €, ¢

1 2

are such that Xl and k2 are the two eigenvalues of the matrix [z 2}

t

Finally, we have after this first double step of the forward sweep

‘ FaQ-(y & b}. .
[ 4 b'g ,
0 0 A .

where b1 . b2 and the first Tow of A are as yet unknown.

Let us now examine the backward sweep when we know the first row of

Ak+2 and we want to find the first row. of A.k .
B -

’
e

89

»>

»
S e




. ) T, . Ty
Let Q A Q ( Y8 by .
T
< € L by
~
0 0 Aet2 J

)

. - . T . q
Let 8142 and a be the first rows of Ak+2 and Ak , reapect\ively.
From ®he above example, we can see that the first row of A was affected
only by rotation 5' , coming from the matrix QT . But in order to cal-
culate the first row of A we should take into consideration rotation 6'

also. So the first three rows of the.last two rotation matrices from the,

left were: , ) R
1 ] [ %1 %kl |7 %1 k0
% %K TRl Skl el k1 %k
/
L TR %k | 1 S e S Y L

Y (o~ . STy T \
( 1 8,1 0 COR { Y 8 b (78)
. T T
B s Y o U A L € ey
: T T
%%kl TR -1 K A 0 0 &,
. J \ J \

«
*

Then, from (78) and since the rows (u , v , fT) and (§ , 7w , gT) are

-

computed in the forward sweep, we Obtain:

-




. vi‘ﬁ ~ T . 7
- Y 3 -
(sksk_1 , skck;g:ﬁkck) a B b (0, o, 8,42
\ e (q\\\\t -
‘ ' T
\sz u v f
T
. S
A
14 ¢ r _ 1
. ) } Bkckvlu ckc .
Ld
&k fk-1
E akck_lv -‘tkn
1 %k-1 3
T T
,B,r skck—lf - Cng + ak+2
8. 8
L | k k-1 J
: .. ~ e ~T '
So the first row of the matrix ARQK is (a , B, b)) that is

T ~ %7
< ’elAka.(a!B)b) >

.

T O YUk
elAk"(Ol,B.b)Qk

e

N

Thus

. T ~ ¥ =~ T
aKﬂ(a!B’b)Qk'
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(79

So knowing the first row of Ak+2 we can find the first row of 2Ak , when

we are using such a double step.

Now if we want to assign a set of eigenvalues Al,Az,...,An . where the com-

plex conjugate pairs appear together, to an unreduced upper Hessenberg

matrix A , we will use a combination of double steps or implicitly shifted

o

- - - Y




Hessenberg matrix with' k = 4 , then we have the following . .

92

single steps, according to what'type of eigenvalue we have to assign at .

-4

each step; a complex conjugate pair or a single real eigenvalue. So '

knowing the first row of An or fAn—l , according to whether the last

eigenvalue to be assigned is a-real one or a complex conjugate pair re-
spectively, we can go backwards to finally produce the first row of

Al £ A, the desired result.

In the following and until the end of this section we shall compare
the two previously described methods of assigning eigenvalues, that is,

the double and the sinéle step.
6

Note that four multiplications are involved when any rotation R , .

is applied to any vector x .

Single step oy,

v

(a) Forward sweep: A

Suppo??”we want to assign one eigenvalue to a kxk unredncéd ubper

\

&

)

A

-

from which we see that rotations 7 and 7' involve 4&4x4 and 4x3 multi- =

plications respectively. Similarly rotations 1 , 1' , 2 and 2' dinvolve
4x4 , 4x4 , 4x3 and 4x4 multiplications.\ Thus the number of multiplica-

tions which are involved in one forward step of a 4x4 matrix c;q_be‘fouﬁd

Il .

as follows:



o
.

. L

) x4 + 4%3

44 + 4x4

4x3 + 4x4 4

: 4
(4x4 + 4 ] 1)
1=3

' So in general we have the following:

4k
4k

4(k-1)

4x4

4x3

4
+ (4x4 + 4 ] 1) =.88
1=3

ot

+ 4x3
+ 4x4

+ 4x5

.
. }

-

+ 4k

+ 4k

k
(4k + 4 ) 1)
o 1=3

k ~ k
+ (k+'4 Y 1) =8k+8 § 1-24
1=1 1=1

4?4+ 12k - 24

4> (80)

te

Hence 1n the single step method one forward step involves multiplications

of the order Akz when it 18 applied to a8 kxk matrix. So the order of .

the number of multiplications involved in the forward‘iy;ep is the follow-

ing:

L]

wies e

where n 1is the order of the matrix

n(n + %)(n +1)

nd %’ @)

1
s

we deal with.
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(b) Backward sweep:

Suppose we are at the kth step of the backward ’sweep, that 1s, we
L. 7 n

are to find the first row of the kxk submatrix knowing the first row

of the (k-1)x(k-1) submatrix, then from (64), (65) and since at this step

’

a'lT( and a:_.il are (k-1l)~vectors, we need k multiplications to calcu-
. .
late the-first row of the kxk submatrix. So the order of the number of
. n
multiplications involved in the backward sweep is ): k * ’;— n2 Y
k-l ! +

Double step

'4
(a) Forward sweep: %:" 1
Suppose we want to assign two eigenvalues to a kxk unreduced upper
Hessenberg matrix with” k = 6 , then we have the following: .
¢ g .
x & * x % * )
5! ! {
x x x x x x
3' 6'
3" x x x x X
5 6 1! y! —
@‘@'/\"x x X X
3 4 n; 2!
@" w;. b x X
\ 1 2 !
; 2
N N
LA n,
from which we see that rotations LIRS ni . né involve 4x6 , 4x6 ,
4x4 and 4x4 multiplications respectively. Similarly we can find the
number of mulriplications involved in rotations 1 , 1' , 2, 2' , 3, 3',
4 , 4" , 5, 5" ,6, & . Thus the number of multiplitations involved ) \

in one forward step of the double step method of a 6x6 mtr;x, can be

found as follows:



[ TR SR

4x6 + 4%6 + 4%4 + 44
‘ o v . 4x6+4x6+4><5:+4><5 -

4x5 4 4x5 + 4x6 + 4x
¢

-

Aaxh 4+ bxb + 4x6 + 4x +

/

-6
4(4x6 + 4 ) 1) -/336
! i=4 ’/

/

» So in general we have the following:

4k + 4k 4+ bxh + 44
4k + 4k + 45 4x5 gy
4(k=1) + 4(R-1) + 46 + 4x6 . ' .

. ~ » L] /

4x5 + 4x5 4+ 4k + 4k

4xb - 4+ bxbh  + Bk + 4k 1

K K
44k +4 § 1) =16k + 16 ) % - 96 .
i=4 L i=1 1

8k% + 24k - 96

n

t \ 812 ‘ (82)

, g N4
Hence in the double step method one forward step/involves multiplications
of the order 8yk2 when it is applied to a kxk matrix. So the order of
the number of multiplications involved in the forward sweep, when n" 1is

even, is the following:

n/2 2 n/2 2
8') (2k)° = 32 k
k=1 kel

- %n3 . (83)




If n 1s odd then obviéusly we will have to use at least one single’stép.

N
Note that th{'forward sweep of the double step method can be carried out

using elementary reflectors [12] instead of rotations.

»

(b) Backward sweep: \

Suppose we-are at the kth step of the backward sweep, then from (79)

1

¢

since f , g and a:+2 are (k-2)~vecfots we need multiplications of

order 2k to calculate the first row of the kxk matrix. So the order of
! 2

the number of multiplicatioris involved in the backward sweep is \%? .

Hence from the above results we can observe that®one double step in-
volves almost as many multiplicat{ons as are ;nvolved~in two single steps,
thus the double step, with rotations, and the single step are equivalent in
aélving the eigengalue allocation problem, in the sense that the} involve

3

the same order of number of multiplications.

K&\
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! - ( CHAPTER 4

' ' (I)- Conclusion
) - Y

‘ »

%

. In the Becond Chapter of this thesis we considered the most widely,
so far, used algorithms in computing contrecllability and we, compared th;m
with a recently devdlpped algorithm(by C. Paige in [2]. The comparison .
was done by using appropriéte counterexamples and 1t showed us that there |
are cases where the algorithms which were used so far fail, while the new
algorithm gives the to;rect r;sulfs. Fihally in the same Chapter we pre-—

sented’an algorithm which using the notion of the distance of a system

from the nearest uncontrollable one determines whether the system is -con-

trollable or not, the same algorithm with some changes (see note at the

end of Chapte£§2) can be used to calculate tﬁe distance of the given system
from the nearest 'uncontrollable one, but it is pointed out why this
algorithm is not efficient. Thus for determining the controllability of a ?
system we have a reasonable algorithm, but for a controllable system we do ‘
not yet have an efficient algorith@ to measure its distance from the
nearest uncontrollable system, bd%jwe have the theoretical approach developed
in section (III% of Chapter 2 of this thesis which may prove useful in’
developing an efficient algorithm. So the efficient'computation of the
distance of a systgm from the nearest uncontroliable one remains an open
problem.

In Chapter 3 we have presented a very efficient; fast and we h?pe
numericaily stable algoritlu: to solve the eigenvalué allocation problem

H

which can be used to detg;mine the feedback such that a single input closed

13
’
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loop system is stable. !’An algorithm for the game problem which vas

‘l'”gg 7
\

suggested by Luenberger in [3] appears to be unstable because it mkes )\ ) '
use of the coefficients of the characteristic polynomial of A which

{
can be found by computing the eigenvalues of A » but we know that the

problem of calculating the eigenvalues is ip general idl—conditfoned
\ N ‘ ¢

(1f" A is not gymmetric), however Luenberger's algorithm can be extendéd

'to multi-input dynamic aystems [10]. The method given here has also been
designed with extension 'to multi-input systems in mind but this has not

yet been done. - . ¢ . '




"its first row and a set L of eigenvalues and evaluates the first row

3

y , APPENDIX o

v PP
- 1
R

Computational results based on theAiinplicit;y shifted

and double step algorithms. Subroutine EVA. .
. ) : .
Based on the implicitly shifted and g{:e double step algorithms, wh%ch

7

were described in Chapter 3 we made(\a/ subroutine named EVA- (Eigenvalue

Allocation) "in FORTRAN IV. This subroutine takes a matrix A without .
‘ N

LJ

of A such that A(A) = L. With this subroutine we checked some cases, ‘
where the reliability of the results was checked as follows: First the

full matrix A was passed to the IMSL routine EQRHIF, in order to calculate’

its eigenvalueé. Then the eigenvalues computed by the EQRH3F routine ‘ p

together with A (without its first row) were given to subroutine EVA and
the first row of A was computqd, and finally the full ﬁatrix A‘ \(twith
its c;)mputed first row) was given again to the IMSL routinfe EQRH3F, in
order to compute its eigenvalues. The re;ults were obtained using single
precision ari‘thmetic on the AMDAHL 470/V7 at McGill University. We also
givé‘aan example in which we point out why using the above way to check EVA
we may obtain results which differ significantly from those expected. This
is not necessarily a fault of the algoritt:m (that is, it does not mean

that the algorithm is necessarily numerically unstable). It may just be . o

a result of the poor conditioni‘.ng of the specific eigenproblem.

o, ’ |



< : '
. - RN 100
~ 3 ~
W \ v
z Example (1) ‘
n=>5 .
h The matrix A (with the original first row) ‘ N :
B o

[ 5.279000 9.125000 4.433000 6.297000 5.687000 )
38.345000  39.492000 3.605000 5.987000 7.77'00,60. -

-5.564000 © 6.396000 6.492006 5.889000

’ . A 3.564000  9.539000  6,364000
{ . © -5.977000  4.796000, |
. ] . >
The elgenvalues of "A using EQRH3F
46.726480
N ,

-3.995152 * |

3.844520 ° r .

o

» 9.463070 + 1 3235559

7 . " 9.463070 - § 3.235559
' /
The first row of A using EVA .

1]

5.278953 9.124928 4.433008 .6.296913 5.687075

@

The eigenvalues of A , with the computed /ftrst row, using EQRH3F

®

46.72%427

E -3.995148 .
,' , 3.844508 L
9.463083 + § 3.235580

9.4630%3 - § 3.235580 -
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The matrix A with given first row

-

( 9.452000  -4.279000  5.126000
6.474000  -8.345000  79.490000

'4.657000  5.564000

.
»

~0.998000

6.433000
3 7.605000
7.396000
4.564000

-7.463000

The eigenvalues of A using EQRH3F

-21.014220
17.953000 | 2
-2.881598 + j 9.934898

-2.881598 - 1 9.934898

o

. 9.028457

11.750950
e

N

The first row of Nj using EVA

9.452018 -4.278798 5.125249

6.429889

)

3.297000
0.987000
7.492000
9.540000
-7.977000

-9.897000

3.297468,

14

4.687000
8.770000
7.890000
9.364000

3.796000

8.697000 J

L

4.688825

The, eigenvalues of A , with the computed first row, using EQRH3F

A

-21.014265
17.953045

-2.881592 + § 9.934899
-2.881592 - § 9.934899
9.028496

11.750926

101
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r
Example (III)

, n=9 \
The macrix A with given flat row

4.655000
0.768000
5.765000
5. 765000
6.678000
7.456000
7.456000
~6.366000

5.464000

~

6.874562

[8.657000 5.254000 6.254000 -5.565000 6.874000 0.657000 7.364000
3.546000 -6.356000 5.567000 ~6.534 g“ 5.578000 5.546000 4.356000
6.865000 7.456000 6.457135 6845000 -0.176000 9.763060
7.645000 -6.656000 -6.645000 5.657000 7.456000
, 7.565000 5.343000 0.678000 0.567000
' -8.876000 5.684000 8.563000
7.536000 -7.657000
' ~4.453000
.
¥ The eigenvalues of A using EQRH3F
12.579090
9.194291 + j 2.895247 . ' ~8.440416 + § 6.oi7367
9.194291 - § 2.895247 - ~B.440416 - § 6.017367
~0.525684 + 3 6.229814 ) ~12.636600 *
-0.525684 - 3 6.229814 -4,659868
7
The first row of A using EVA
y ¢
8.656885 5.254084 6.254014 ~5.565294
0.657171 7.363661 4.657894 -0.763001

The eigenvalues of A , with the computed first row, using EéﬁHJF -

-8.440431 + j 6.017374

12,.579074
, 9.194260 + 3§ 2.895261 ~8.440431 - 3 6.017374
) 9.194260 ~ 3 2.895261 ~12.636604
~-0.525680 + § 6.229808 n -4.659882

-0.525680 -~ {1 6.229808

102

-0.763000
0.658000
~7.765000
—5.655000.
8.568000
4,357000

~-6.672000

~-6.366000

~4.366000




Example (IV

n =10,

The matrix A with given first row
L] -

f9:‘51000 8.321000 9.789000 5.789000 -9.535000 4.654000
7.355000 6.674000\—8.345000 8.937000 ~3.034000 9.495000
8.657000 4.567000 4.436000 8.543000 6.345000
5.323000 5.778000 ;4.786000 -0.345000

4.453000 5.675000 9.563000

-5.977000" 4.796000

‘ , 3.134000

g
The eigenvalues of . A using EQRH3F

17.525430

' 0.776537 + § 10.545620
0.776537 - § 10.545620
8.885132 + § 5.104329

8.885132 - § 5,104329

The first row of A using EVA

1

9.450891 8.320937 9.788930

4.651105 0.547856 8.618833

H
[N

0.534000 8.654000

7.605000 8.456000

-0.134000 9.453000

5.675000 6.345000
8.534000 5.756000
5.534000 5.543000
5.687000 -0.234000

5.314000 ~5.366000

6.345000
0.987000
0.654000
6.354000
9.324000
8.312000
6.235000

5.456000

103

N

-6.ASSOOd

8.778000
-9.342000
-6.745000

4.354000
98.324000
-9.522000

—6.346009

4.363000 ~4.346000 9.346000

v

-8.598625
2.859068 + 3 2.6954
2.859068 - § 2.6954

-~1.585043

4.878755

Iy

5.789191 -9.535405
6.374817 ~0.460253

0.235000

72
%

4.546000
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The eigenvalues of A , with the computed first row, using EQRH3F

117.525366 .=B8.598647

0.776526 + 1 10.545624 2.859084 + 3 2.695479

0.776526 - 3 10.545624 . . 2.859084 ~ § 2.695479
) 8.885115 + j* 5.104358 - -1.585052

8.885115 - § 5.104358 4.,878776

Remark (XVIII): Using the previous way of checking subroutine EVA we may

get some poor results due to some ill-conditiéned eigenvalue}.*

Example (V):

Let the 10x10 matrix A without its first row be

\ 5 5 4 3 \
8 6 7
L 8 9

Now.using EVA we want to calculate the first row of A such that A will
be assigned 10 eigenvalues each equal to 7 . The first row of A com-

puted by EVA 1s as follows:




gl

L

21.000100 -196.998600
-873.761200 -3130.766000

-11546.110000 ~-11095.480000

i

The magnitude of this first row suggests this was a poorly conditioned

’

problem. Now giving tﬁg full matrix A to EQRH3F we get the following

eigenvalues:

4.653267 + 1 1.855709
4.653267 - § 1.855709
6.345307 + § 2.945413

6,345307 - § 2.945413

646.753&00

-4675.128000

~-1994.128000

-8100.312000

¥

"8.417780 + § 2.677467

8.417780 - j 2.677467

9.807051 + j 1.054002 e

9.807051 - j 1.054002

105

4

"7.531523 4.,021682
4
As we.can see no one of the above eigenvalues is 7 . The above example
N .
does nat necessarily mean that the algorithm gave an inaccurate first row

for A . The difficulty probabf? arises because. unreduced upper Hessenberg
e <
matrices are always defective when they h7&e nultiple eigenvalues and this

hdppens because if ) 1s an eigenvalue of A then rank(A-AI) = n-1 ; so

there is one and only one linearly independent “eigenvector x such that

(A-AI)x = 0, 1{f X 1s a multiple eigenvalue then it has only one linearly
é

independent eigenvector and so A 1is defective. 1In this example the Jordan

canonical form of A 1is a 10x10 Jordan block, the eigenvalues of which

are very ill-conditioned {12, p. 301], {13], and so cannot be computed

accurately.
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GUBRDUTING CVA  {AsNsNI1TIATL o RSTACK, SSTACK N2 OGS TACH)

CVA 1S A SUIDRDUTIMNE WHICH Y CALLING TW0 OTHER SURKOUTTIMES [NRW

“ND PACKW CALCULATCS AND RETURNS THD FIRST ROW OF & OTHOI D t .

TRECIGTON NXM MATRIX A I[N ORDCP TO GIVE (URTAIN nroirrn
FIGCNVALUES |1 L Dviu LN WHICH 'MAY OCCHR IN COMPILT X CON HUIGATT

PAIRG. ,
N ENTRY
A STHEV T PTCTINION BYH ALLATYT WHICH CANTATNG THr
MATRIY WHOST FTROT 0w We S0 CALCU AT . THE

FIRSGT I'OW OF A 15 TOMNORTD AN OUFRWT TN (N
MHE COMPUTATION,

N * INTIGER.
N IS THC ORDIR OF A

N1 THTCCER, °
H1 o IG THE MUMPIR OF TLEMFRTS OF THD ARRAY  TISTL

WHERE N1="%H,

TCGTL SINGLE PRECIGION OMF DIHCNGINAL ARRAY O ORDCR Nt
WHICH CONTAING THE FIGENYALUL S WHTCH AP GOTHG
° TO RE THE-EIGFRVALUES OF A,
CUERY FIGENVALUD OCCUFTCS TWO £ONSTOOTIV TLarrs
N THE ARRAY  TESTL s THE TIRST FOR TT5 FCAL TART
AMD THE SCCONDN FOR TTS IMAGTNARY TART.
COMPLEX CORIUGATD TATIS MUST AFPFAR TOGETHFR.

RSTACK STINGLE FFECTSION HYN AFFAY,
FGTACK 10 A WOFK ARRAY.

3STACK INTEGER ONE DIMENSTONAL ARRAY OF ORIFR N .
CSTACK IS A WORK ARRAY.

N2 INTEGEF .
N2 I3 THE NUMLFR OF ROWS OF THF ALKAY  QSTACK
WHERE N2=(N¥(N-1377) 1

QASTACK SINGLE FRECISTON N2X3 ARRAY, .
QOTACK IS5 4 WOFh ARPAY.
ON RETURN
A SEE THE FREVIOUS DISCUSSINON AROUT A B
O RETURN WE HAVE THO NESIRED FIRSYT ROW OF A
THE REST OF & I3 AS DN ENTRY.

INTEGER N:SSTACK(N)  INDEX,ISTEPYRETER
REAL A(N/N) s TESTLINL) »QSTACK (NZ»3) +RGTACK(NsN)

WE REARRANGE THE EIGENUALUES SUCH THAT THE 1 AST TWO FINCNVALUES
CONSEST EITHLR A COMPLEX CONJURATL FATR IR & MAIL OF TWO RFAl

s
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TS0

o

s BeRoReNaid > BeRelaly]

noooDOo

ooon

.

=
)

30

N7
\\\“m/
z
v > Land
FIDENVAL UES, .
IF (ARSITESTLIND Y W GT . 0,50 S ORANG(TESTL (I LI T 0,51 &, api
1 ABSITESTL (NT-2)) LELO.SFE-5) 0O TN & s

C=TISTL(NL-Y)

TEGTI (N1-1)=TIOTI (Nt -5)

TCSTLANL-S) =0
TCSTHNDI=TESTE (M1 A)
IFSTIL(N1-4)=0,

+

1 N7

CALL TORW (NyNL, THRE G ISTRRSRSTIOR A TESTL S TAL R RN TACK » OS T AL B,

CALL DACKNW (NsHAEMTTY » TOTIESRETIT AR TSI L OGYACh yF STACK 1 7y

1 S0TAEEDY
RETURN
IHD

SURROUTIND FORW (N N1y INDEXy TSTERyRSTOT v A TEDTE v QU TR of G110

¢

1 P GETACKIND) -
] .
FORW SUBROUTING [CRFOMMOS T FOPRART LT, ‘

COMMON /R1/ CyGiRyH

INT@GER  RSTEFRYFYy TSTIT e SWs My DROF« THUF XoN F TNE s TIRDP 1y SSTACK CN)
REAL 10y S, ANy TESTLONL) o RSTALLCND y I o RSTACK (NS NDY sy ANy 1t 1

1 AN
INITIALIZATION
INDEX=1 e
STEF =1
RSTC=1
FU=1

a

WE DETERMINE THE FORWARD

" M=N-RSETEP+1
DROF=N-H .

s

¢ v
0 s

re
SWEFFy STARTING FROX N UNTIL 2

&

THE LAST TUW0 EIGENVALUES FOR SIMFI ICITY ARE TREATEN TOGETHFR.

IF (M.ER.2) GO YO 10
e

WE CHECK IF THE COMING €IGENVALUE 10 COMFLEX OR REAL.




Y

e e le Nael

aanonoann

-

20

1)
4]

IF (ARS(TESTL(EVH1)).GT.0.5C-%) G0 TO =
IN THIS PROGRAM SEGMENT WF DFAL WTTH REAL TIGRMUAL UFS, ‘

SOTACK(ISTEF ) -1
ISTFP=I5TFF 1 ‘ »

WE DNETFRMINE THE TRANSENRMATTIOM MATRIX WHTCH WILL IO P 1S MOUE odr
FORWARD STEF « DY TALCULATING TTS LAST €01 UMN, ,

SS=A(N/N-1) .
CC=R(thN) TISTLALW

U APFLY THE TRANSFORMATION,

] -

CALL RROT (QSTACKR+N 1y HyS5CCr Ay INDEX s Mo NS>
IRV VR %)
GW=1
'CALL LROT (AyN-1sNsSWsN)
LINF=DROM 4
J=LINE-1 .
IF(M.EQ.7) 00 TO 15
[0 20 TI=LINC-N
JI=N4LINC IT
SS=A(I 1 D -
CC=ACI,I -1
CALL RROT (QSTACKRT 2¢1-1,50,CCrA» INIEPY Ny ND)
CALL LROT (AyI-291-1+SWeH)
CONTINUF
I=1-1
8S=ACI,1 -7
CC=ACI,I-1)
CALL RROT rOSTACKST 2,1 -1,SS G0, Ay INDITY Ny HDDY
DROF1=DROF ¢ 1
D0 25 JJ=TIROF1,N
JENADROFPS - 3
RSTACKN(RSTEF s J)=A(1~14.0) . !
CONTINUE |
RSTEP=RSTEF+1
GO TO 30

IN THIS PROGRAM SEGMENT WE DEAL WITH TWO EIGENVALUES WHICH ARC

- COMPLEX CONJUGATES., . s
S50 WE DETERMINE THE TRANSFORMATION MATRIX WHICH WILL HELF (1S MOUE
TWO FORWARD STEPS RY CALCULATING 175 LAST COLUMN.

ANZ2=A(H~1sN-2)RA(NsN-1) -
AN1=A(N/N-1)XCA(N-1/N-1)Y4AINI NI -2 XTESTL(FY))
AN=A (N NIRX2HACNIN-1IXA(N-1/N)~AIN NI X2 XTESTL (CV) HTESTL (CVY %%2
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recy

1 ITOSTL(CVE1) 22 1
LU=yt 4 .

X SSTACKCISTORY =" .

. ISTER= TGTIT 41

. € WE APFL Y TUD TRANCEOUMATION .
C
' CALL RROT FOGTACK N 20N T,ANTsANT Ay INDEY $Ne MDD
U=t
. CALL LIRNT f8,N Dol 1 5yGWIND
T=r X -
CALL REDT (OSTACKR N -1y No ToANsA» INITX s NN )
GU=7
CALL LROT (asH LyNeUWoth ‘ ’
VINC=TROF t5 -
I=L TNE 1 .
Ir (M.00Q.4) GO TN 3% ’
No A0 TI-LINCWN
~ T=MILING-TT .
- . G5=ACI,I )
CC=A(T,T -2 ’
CALL PROT (QSTACKY T ToT 2,60, 00 A THRIX 1 N7
SW=1 .
CALL LROT (AL 3,1 254UWetD
§S=A(IyT 2)
Co=A(TsT 1)
. CALL RREOT (QLTACKsT 25T -1oGSal 0 as THUMY Ny D
’ GW=2
. CALL LROT (AsT-2yI-155WsND
40 CONTIMNUE

I=I-1 ~
s §8=A(T,I-3) ‘\
CC=A(I»I-2)
{( CALL RROT (GSTACKsI-3»1-2588,CCsAsINDEXsNIND)
SG=A(TeI-2)
CC=A(I,I1-1)
CALL RROT (QSTACK»I-2,1-1,55+CCrArINIEX»NiND)
‘ IROF1=DIROF+1
[0 45 JJ=DROF1+HN
. J=N+DROFL~J]
RSTACK(RSGTEF,.1)=A(T-2+ 1)
RSTACK(RSTEF+1y 1 rACT~1s.0)
as OONT TNUE .
RSTEF=RSTEF42 .
GO TO 20

. SFECIAL TREATMENT FOR THF 2X2  MATRIX, \
INSTEAD OF MOVING ONE FORWARD STEF AND THEN ONE" BACKUWARD STEFvIN
ORTIER TO CALCULATE THE FIRST ROW OF THD 2X2 MATRIX. WL IO THIS
DIRECTLY USING TWO FORMULAS,

. .

OOOoOoGoon

| "10- AIN-TeNI=—(AININI¥XZ-(TESTL(EV)+TESTLC(EV42) ) XA (NS NIHTESTE (LU Y
| 1 TESTL(FUEDI4TESTI (EV+H1)I¥K2) /ACNeN-1)
/ . AN=-1sN-1)=TECTL (EVI+TESTL(EV+2) -A(N/N)
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RCTURN - .
END

SUBROUTINE RROT (QSTACKy J1+J2951,C1sAs INDEX, Ny N2) ’
~ .

v

REOT IS A SUBROUTINC WHICH MULTIFLIES THT MATRIX A [ ROM THF
RIGCHT BY A ROTATION MATRTX, COMRINING THE J1+.7 COLUMNG nrv [

COMMON* /Ry Ch 59k M
THTEGER MsNsT1r 1,07
REAL C-SykrﬁleIoA(NvN)-OSTAPN(NQv?)vn]vﬁﬂ

C=C1 -
3=81

REGORT (SAHTLCKED)

T1=N-HiD -

no 5 I=It,M v

AL=(ACLy J1)YC-ACT, J2) &5\ /K
A=A, JJIRSHACT U2 H0) /R
ALy 1) =A1
- AT J2)=A2
CONTINUE,
QSTACK (TNIIEX 1) =C
. QSTACK(INDEX»2)=§
., QSTACKCINDEX,3)=R
INDEX=INDEX+1
RETURN -
END

SUBROUTIN? LROT (AsI1+12,SUsN) .

LROT IS A SUEROUTINE WHTCH MULTIPLYES THE MATRIX
BY A ROTATION MATRIX COMRINING THE 11,I2 ROWS OF A

COMMON /B1/ CrSeReM
INTEGER I1+12,N»J1,GW
REAL A(N/N)XvCrS/ReAT,AD
Ji=11-SW
DO S J=J1.N .
cAL=(A(I1, D)RC-A(I2, XS /R
AZ=(A(I1y I)XG+ACI2» D XC) /R
Al(IlsJ)=A1
ACI2,J)=A2
CONTINUE
RETURN
END

‘

A FROM TUF LEFT

10 oo

-
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SUBROUTINE RACKW (N¢N1,INDEX, FSTEFsRSTEF Ay TEGTI ASTACK s RGTACK s Ny

1 G8TACK)
{ ! 7

BACKW IS A SUBROUTINE WHICH FEFTORMES THF DACKRWAKD SWEEF,

REAL A(NDN)ITESTL(Ni)vﬂﬂTAFf\(N?rz)vRSTA(“'\(N'P”v_r'vr;rA1 rAD 1A Sy
1 €18t "
INTEGER SSTACK(N) yNO,LINE,RSTFF
INDEX=INDEX-1"
RrﬂSTACR(INDEXvJ)
=RSTACK(INDEX s 1) /R 1
=QQTGCK(1NUth Y/R
~ ISTEFP=ISTEP-1
RGTEF=RSTEF-SSTACK (ICTIFy * . :
- M=N-~-FRSTEFP}] .
L INE=RSTEF ,

WE DETFRMINE IF THE CURRENT BACKWARD STFP 145 ASSOCIATID WITH A
REAL CIGEMVALUE OR WITH A COMFLEX CONJUGATF PATI OF 1L1GFYALUCS,

)

IF (SSTACKCISTER).EQ.2) GO TN 5

HERE WE MOVE ONE BACKNWAKD STCP BRECAUSE THE (URKRFNT STER (5
ASSOCTATED WITH A REaL £ IGENVALUE.

NO=H-1 ’ .

:

™
FIRST WE FIND HOW THE FIRST ROW OF A SUBMATRIX OF A ,ASSOCIATFD
WITH THE CURRENT' STEF» WASs BEFORE THE EFFECT DF THE -
TRANSFORMATION MATRIX FROM THE LEFTy

A(LINE,LINEY=—C*RSTACh (RSTEP,RSTEP)/S
LINE1=LINE+Y
0 10 J=LINE1wN
A(LINE, J)—(~F#RGTACK(RSTFP;J)#Q(LINE+1vJ))/5 ?ﬂ
CONTINUE :

HERE WE FIND THE CORRECT FIRST ROW OF THE SAME SURMATRIX OF &

DO 15 J=1,NO
AL=ACLINEsLINE+J-1)XCHACLINE/LINES ) 25
A2=-AC(LINEsLINE+J-1) XS+A(LINE,LINE+J)*C
A(LINE,LINE+J-1)=A1
ACLINE,LINE+J)=A2
INDEX=INDEX~1 .
/\IE/ CINDEX.EQ@.0) GO TQ 35
R=OSTACK (INDEX,3)
C=0STACK (INDEX»1) /R
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G=QSTACK(INDEX,2) /R
1% CONTINUE

6o TO 20
C ]
c g \
€ HERE UE MOVE TWO BACKWARD STFT'S TFCAUSE THC NURRFNT STrP 16
r ASSOCTIATED WITH A COMPLEX CONJUGATE FAIR OF CIGEMUALULS,
C
c
5  R1=0STACK(INDEX-1,3)
C1=0STACK (INDEX-1s1) /T 1
81=08TACK (INDEX-'142) 7F:1
NO=DXM -4 ‘
c
c
€’ FIRST UE FIND HOW THE FIFST ROW OF A SURMATRIX OF A ,ASSOCIATCD
C ' WITH THE CURRENT STEF, WAS, BEFNRE THC EFFFCT OF THE
C TRANSFORMATION MATRIX FROM THE LEFT.
C “
c
: A(LINELINE)=( -SXCLARSTACKN (RSTIE RSTIF) CRRETACK (RGTEF+H1 s RETER)
1 Y/(SrSD)
ACLINEPLINEHL) = (=S¥CIYRSTACM (ROTIT RSO H1)- CYRSTACK CRGTER 1,
1 RETEF 1197/ (S451)
LIHEQ=LINE+D :
N0 25 J=LINE2,N
ACLINE » )= (~O#M 1 ¥PSTACK(RGTEF y 1) -CHROTACK (LSTE 1, 1) b
1 ACLINE4D, 1))/ (5%51)
25 CONTTNUE .
NO=NO/ 2
c i
c
C  HERE WE FIND THE CORRECT FIRST ROW OF THE SAME SURMATRIX OF A .
c
c '
no 30 J=1,N0O : N
Al=A(LINEsLINE4J-1)XC1+ACLINE L INF41)%CKS1 \‘
1 tACLINESLINE+ J41) 551
AZ=-A(LINE,LINE+J-1)XSLHACLINE sLINE b ) RE¥C1+
1 ACLINEsLINE+I+1)¥SXC1 ~

AJ=~A(LINE,LINE+J)KSAR(LINE,LINE+JHL)YXC
ACLINE SLINE+S-1)=A1

A(LINE+LINE+J) =AD -

A(LINEsLINE4J+1)=R3 - ’ )
INDEX=INDEX-2

IF (INDEX.ED.0) GO TOD 35

R=QSTACK(INDEX,3)

C=QSTACK(INDEX 1) /R

S=QSTACK ( INDEXs2) /R

R1=QRSTACK(INDEX-1,3) ,

C1=QSTACK{INDEX-1,1) /K1 s
S1=ASTACK(INDEX-1,2)/K1 . .
30 CONTINUE
GO T0 20 - .
35 RETURN
END
2
‘v, 1
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