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SOMMAIRE

La théorie dassique du modéle de Gross-Neveu est revue en détail. De
plus, pour la premiére fois, croyons nous, on montre la solution i un
pole associée & la solution a deux pdles conjugées présentée par Zakharov
et Mikhailov.

. solitons et de doublets est montrée explicitement (matrice X).

De méme, la solution comprenant un nombre arbitraire de
Pour le
cas ol un fermion est présent (N = 1), on calcule analytiauement les
solutions comprenant un soliton, deux solitoﬁs et un doublet. On trouve

un soliton singulier. Les résultats sont généralisés pour un N

arbitraire. Il est démontré que le champ scalaire o est indépendant de N
(résultat conjecturé par Neveu et Papanicolaou). En conclusion, on
discute brievement de la nécessité de pouvoir prédire les ‘propriétés

topologiques d’une solution @ partir de la matrice 5{.

h

-




I1.

Survey of Some Developments in the Gross-Neveu Model

A

ABSTRACT w

. A detailed review of the Gross~-Neveu model at the dassical level is

s
@
H

presented. Moreover, the one~pole solution associated with the
conjugate—pole solution presented by Zakharov and Mikhailov {s shown
for what is believed to be the first time. The solution with an arbitrary
number of solitons and doublets present is also displayed explicitly (X
Matrix). For the one-fermion case (N = 1), we analytically calculate
soliton, two-soliton and doublet solutions. A singular soliton is found.
Results are extended to the arbitrary N case. T he scalar field o is
demonstrated to be N-independent '(r'esults conjectured by Neveu and
Papanicolaou). In the conclusion, the necessity of being able to predict
topological properties of a solution fmnc; the X-matrix is briefly

discussed.
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Su;'vey of Some Developments in the Gross-Neveu Model
¢

Introduction

Eaa

T he Gross—Nevqu model was first introduced in quantum field theor:y in
1974 by D.J. Gross and A. Neveu [16]1. It is a model in (1 + 1) dimen-

sions of N fermions interacting through a scalar interaction. [sem;s
equation (2, 1)] This model exhibited some features that were unde

"close scrutiny at that time: asymptotic freedom, dynamical spontaneous

symmetry breaking (degenerate vacuum), dimensional transmutation of
the coupling constant, etc. Perha'ps more imp;r'tant is the fact that this
paper served to introduce the method of th& 1/N expansion which would
play a significant role in subsequent years in helping to provide inform-
ation on some as yet unsolvable field theories. It is based on the fact

IR S
3

that, in the Gross-Neveu model, aside from the overall mass scale there\
exists no adjustable parameters. Hence ratios of particle masses depend ..
only on N. When the number of particles is large, 1/N can be used as a

D)

small parameter to obtain peturbative results. As N + =, results are

- exact.

Almost at the same time, R.F. Dashen, B. Hasslacher and the same A.
Neveu (DHN) were devising a powerful semiclassical functional method
[10]. (For a good introduction to the subject see [ 13] and [ 14]). T heir
first important application was to the sine - Gordon equation. Surpris-
ingly, they found the exact particle spectrum of the theory. The infinite
set of conservation laws of the sine - Gordon equation were responsible
for this peculiar behavior. In 1975, the WKB method of DHN was applied
to the Gross-Neveu model.[22]." Before starting they had to find classi-

cal solutions which are the necessary input to the method. T he standard

//" e

M

Q ' 1Reference numbers are put in brackets [ ]
" \.\
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inverse scattering method gave them the time - independent solution
while the time - dependent solution was found by a dever trick. They
started with a solution which mimicked the sine - Gordon time - depen-
dent solution (or, doublet) but contained a certain number of parameters
to be fitted. Introducing this solution into the Gross-Neveu equations of
motion, they were able to find the parameters. However, unable to find
this solution’'s Floquet indices (see [ 10] to [ 14]), they had to be content
with finding the particle spectrum to zeroth order of the 1/N expansion
(exact as N ==). The fact that the Gross-Neveu model possessed time-
dependent solutions in"do.ée analogy to the sine - Gordon equation led
theoreticians to believe that the model ha& an infinite set of conservation
laws and was exactly integrable at the classical level.

In- 1978, the research on the Gross-Neveu model expanded on many
fronts. Results were published which fell in the fields of dassical
theory, group theory and quantum theory (S-matrix theory). '

At the quantum level, Alexander ®B. Zamolodchikov and Alexey B.
Zamolodchikov (ZZ) presented their important work on certain relativisticﬂ
quantum field theory models (which included the Gross-Neveu model)
[19], [20]. They presented the exact factorized S-matrix of the
Gross-Neveu model. . The factorization of the S-matrix means that multi-
z;article scattering can always be reduced to a succession of t\vo-‘pari‘icle
scatterings. They e.mmine‘d the relationship between factorization and
the existence of an i;':finite set of conservation laws at the 'quarttumj level.y
Other. work was also done at the quantum level (see, r\e)"frenpeg [15], [17& ~
and [ 18]). ' : ‘ \ ‘ o
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Group theory articdles put the emphasis on the isotopic spin synunetry‘

- group of the model (the internal symmetry of the N fermions) at the

quantum level. This division is somewhat arbitrary since the symmetry
group of the Gross-Neveu model is always more or less ever present in
the worker's mind. E. Witten published interesting properties of the
model [23]. For N = 3, the model was shown to be équivalent to the.
supersymetric sine-Gordon equation while for N = 4, the model was shawr‘;
equivalent to two decoupled sme—Gordon equations (Fermi-Bose ‘
symmetry). Some higher conseg'vataon laws responsible for the exact so!u-
biity of the model were also constructed. References [21] and [22]

' provided more insights on the topic of the long-time- puzzling Fermi-

Bose rélationship as applied to the Gross-Neveu model [a fermion system
(e.g. the Gross-Neveu model) was shown to be equivalent to a boson

system (e.g. the sine-Gordon equation)]. The simultaneity of the work

on the three fronts previously described is shown by the fact that article

[ 20] (quantum level) and article [23] (group theory) both referred to a

preprint of an article to be published i)y~A. Neveu and N. Papanicolaou

(NP) [5]. In this article for the f!rst time, the infinite set of
conservation laws (classical level) were dzsplayed. T he model was shown

to be completely integrable for the case N = 1 and N = 2. An interesting
fact is that the scalar fields o that they found are identical to those

displayed by DHN in [ 12]. This led them to conjecture rightfully (as we

shall see in this work) that the field o is N-independent.

Shortly following (1980) .is a paper by V.E. Zakharov and A.V. Mikhaflov

(ZM) which showed the integrability of the model for any N [7].

I3
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Now that the Gross-Neveu model is almost fully understood it is most-
\ That is, the author uses it to illustrate
some point or help him in some task which is not the comprehension of the
model itself. Reference [26] to [29] fall within this class. For example,
in reference [ 27], T.E. Clark and S.T. Love applied West's proof of
confinement by contradiction to the Gross-Neveu Model (which is non
confining), and to the confining Schwinger model. In both cases they
showed that the contradiction found by West for four-dimensional @ C D

is averted.

Originally, this work was intended as a review of know important results
at the dassical (NP and ZM), semi-classical (DHN) and quantum (ZZ) _
level in the 'field of soliton theory. Working our way in the dassical
theory we found a wealth of new expected and unexpected results. The
original project was then modified. In this work, we- shall provide a
thorough introduction to the vesture method of Zakharov, Shabat and
Mikhailov [4], [6], [7], [8], [9]. Throughout the presentation we keep
our approach as general as possible and even use methods much too
powerful for the present problem (e.g. the reduction problem). *The aim
of this procedure is to constantly remind the reader of the possibility of
applying this method to numerous other equations and to keep the dis-
cussion rigourous. After presenting the vesture method and the work of
NP and ZM, we derive and calculate soliton solutions. '

We [ouhd the one-pole solution to the model which oorrresponds to the
¥ static® solution. The conjugute-pole solution given by ZAl correspond to .
the doublet. Having found the one-pole solution, we are able to give the
solution containing an arbitrary number of solitons containing an
arbitrary number of solitons and doublets. As an application, we give
the soliton-doublet solution. We then calculate solitqn, two-soliton and

F\

‘\qhu ,
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doublet solutions analytically for the case N = 1 using the path pre-
scribed by ZM. An unknown singular soliton of the Gross-Neveu model
is found (and the corresponding two-soliton and doublet solution). The
calculation is extended to tﬁe case of arbitrary N. We find that the
vacuum fermions are degenerate (they have the same amplitude and
velocity). As a consequence the fermionic fields for arbitrary N are
simply related to the Fermion fields for N = 1. Moreover, the field o [see
equation (2,8)] is shown to be N-independent. T his result is a conse~
quence of the degeneracy of the vacuum fermions. Therefore whatever
the field o that we find within the framework of this theory is, it is
N-independent.

For the sake of darity, here are the chapters that represent original
work and those that do not. Chapters 2, 3, 4, 5, sections (6.2) and
(6.3), sections (7.1), (7.2) and ,(/1‘5) are borrowed material from the
litterature (references included iﬁw;he text). Our personal contribution
to this work is included in section (6.3), sections (7.3), (7.4), (7.6)
and (7.7), chapter 8 and chapter 9. The topic of Appendix A is most

probably treated in an original way.

-13_
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2. The Gross-Neveu Model

2.1 The Lagrangian o

'

The Gross—Neveu model is a model of .N massless Dirac fermions inter-
acting through a scalar interaction. It is defined by the Lagrangian

i

N (k) (1) N (k) (k) \

L =17 iv gy g2 1V v
/ =1 2 k=1
(A

where? = Y%t+ Y]'ax and Y%, y! are two-dimensional Dirac matrices.

We can suppress the particle-type index k using the notation

- _ N (k) (k)
ivavy= J iV v
k=1
(2,2)
_ N (k) (k)
and ¥y = ) ¥ ¥
k=1
T he Lagrangian: ,
j' ~

L=Y¢ iy ~-go¥¥ + 120 2

| (2,3)

is equivalent to the Lagrangian (1). Using the equation of motion for ¢

- 14 -
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the equivalence is easily established. ¥'is a two-component -

It
-

. a
spinor: Y

(2,4)
T he coupling constant can be scaled out. Letting ¥ + 1/g ¥ in equation
(1) we can factorize g which becomes irrelevant. The Lagrangian (1),

without g, written in full is

*
- =[z {i ? " (at‘ba ! ax¢a) \
x
il - (2,5)
»* ! «
(v’ (00" - 2 W)} g

‘Introducing light-cone coordinates

n o= 1/2(t + x) E = 1/2(t - x)
(2,6)

the Lagrangian (2,5) simply becomes

i *, * * *
L:[[(i¢93“¢°+itpaazwa)—__lz_{):(wn'¢“+¢“ ¢“)}2
a a

(2,7)

-15-
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2.2 The Equations of Motion
\

From the Lagrangian (2,3) we derive the following equation of motion

dvyY -govr=o0
(2,8)

(2,9)

For the Dirac matrices the representation that we used is

R i B K

(2,10)
0 3, +9 < 0 v )
i + o b= 0 .
at - 81_ 0 0 < ¢ )
(2,11) .
Written in full, the equations are:
* »
iat¢“+iax¢“=w°‘2(¢8¢8+¢B¢°)
' 8
' (2,12)

* *
P2t - 1w =o% T (v B oB + 4 B 48

L
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which, in light-cone coordinates, take the form

* *
3n¢a __iqwaz (ﬂ)B ¢B +¢ B‘PB)
B .

@

[
- -
]

* %
. ,-i¢°‘g(\v8¢3+¢3ws)
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T he Gross-Neveu Model and a L'inear‘ Differential Matrix Equation.

" In this section, we show how the Gross-Neveu model is related to a very

geheral matrix problem whose solutions belong to GL(n,C), the
gener‘a! linear group defined on the field of complex numbers C. We
introduce the concepts of equivalence class, gauge group and reduction
group. We show how interesting systems, whose solutions belong to a
subgroup of GL({I,C), are defined by specifying the equivalence
class, Qhe gaugej group and the reduction group. In particular, we
indicate the,relation between a gauge group, a reduction group, and the

most general internal symmetry group of the Gross—Neveu model: the

_ symplectic group, Sp(2N,R).

3.1 The Problen and its Compatibility Cond\ition

Consider a linear system of 2N X 2N matrices satisfying:

Y, = UY
£
Y = VY
n
wheren =t +x, =t~ xarethelight-cone coordinates.
2" 2 i

We assume that this system is compatible. Hence the mixed partial

must be equal. This leads to the relation.

derivatives¥, and Yn

En £

Un—Vef-[U,V]:O
(3,2)
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t

If no restriction is imposed upon U and 'V, the most general solution is
trivial [6]

(3,3

- 19 -
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3.2 Matrices Represer;ted as Rational Functions of a Parameter 1.

¥
Demanding that the matrices U and V be. rational functions of a cornp;ex'

. parameter ) transforms l(3,2) into a non-trivial non-linear system of

equations. We also require that U and V have the same numbers of poles

and that the U-poles be situated to the opposite of the V—boles.

) -

. k U (g, n)
ulr, &, n) = Ugle, n) ¢ ]
: - n=1 A - a ' '
n
(3,4a)
. k Vn (E: n)
I vir, &, n) = Vo(£9 n) + 1}
’ . n=1 A+ a, .
(3,4b)

The problem can be stated in a more general manner (for example one
might want to include double poles). But with respect to the number of
poles and their r'elati\;e location in U and V, the conditions imposed are
necessary for defining a relativistically invariant problem [6°. In any
case, equation (3,4) as stated is sufficient for our purpose. U and ¥
are now, in addition to being functions of £ and n, matrix functions of
the parameter . System (3,1) should be compatible for any value of this
parameter. We substitute equation (3,4) into eq\uation (3,2) and we
requ ire that the coefficients of 1/(A +a) and 1/x - a ) vanish.

L

Recalling that

(0 - a) (s g )] = [(a, + a)(x = 0]
(3,5

- [{a, *+a ) +a )"

-20- .
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we easily obtain the compatibility condition. T
Uo, - Vog * [Wao, Vo] =0 . "
) . (3,6)
Ut [0 o 1 =0, Vp+ (v ¥ =0,
, (3,7
o ‘ - ' 6
and ; o
k : .
‘ _ m , ' -
6 2 Vo + I g n ., o

o+
n m=I "n m

' 'I'm ‘the next sections, we shull frequent

and (3,7). “ ,

/R

P/

ly refer to_ system (3,6)

b
s
v
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3.3 Gauge Transformation .

However only 2K + 1

equatlons were obtained from . the compatibility condition: K equations

from the matrix coefficients of 1/()\ +a ), K from 1/(\ - a ) and one

* equation at the point ) = =, Heénce there ts one unused degree(of freedom

gnd it corresponds to some zntrmsw mvariance of the system.

Consider the new matrix function

"«Q '6“:9'4’“ . | ‘ :
. . . . (3’9)

‘a' transformation is called a gauge transformation.

&

3

Using equation(59) we rewrite system(31) in term of ¥ and this gives

:‘, |
-1

-

G e e
>

o
- v
ot . ~
. L4
. o . »
! : ° a n
g Kl
.
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a
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[

It

]

(gUug

(gVg

U¥

) -1
o It suffices to defme U=z gUg
o system (3 10) in the same form as system (3,1)

- 22 -

-1
K 99

is obviou

-1, ~ : ’
_—ggg)‘p | ®

and V= ng

)

(’Qty 10) '

+ gg to bring

-

(3,11

The compatibility condition of system 3,11) has the same form as

equat:ons (3,6) and (3,7). It t we can define matrices

* where g is an arbitrar'y,nétnt—degenerate matrix functwn of £ and n. 'Such

o
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o

170, 'Eln, Vo, T’n satisf ying eq. (3,6) and (3,7). These rmatrices are
related to the origifial ones through: ‘

~

Up = g Ugg™ + gpgt » U, = U7

and

% -1 - > - :
Vo = g¥og ~ * 9,90 » V, = gU.g
(3,13) h

Also we note that @n and ‘l’n transform according to the relations. .

It

(3,14)

-1
i
Q
<
. (Q R
+
«Q
ry

(3,15)

Systens expressed in different gauges may have drastically different
aspects. The interest of the gauge transformation concept resides in the
fact that we can group systems into equivalence classes. One then needs
only to study dne member of the class (usually the sxmplqst one which can
be speclfled through a judicious choice of the gauge). The set of all

. possible gauge transformations relating a solution of an equivalence class

to another of the same class forms a group called the gauge group. Many

different classes may have the same gauge group. Hence specifyi?zg Ehe

gauge group is not sufficient for determining the class. One might ask:

how do we specify an equivalence class? The answer is twofjpld: .

a) - The gauge transformation that we consider, being A - independent,
cannot change’the location of the poles a, of Uand V. Therefore
the different U's and V's corresponding to the differents solutions

o

- 23-
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¢

of .a.class must have the same set of poles {an}. The location of
the poles partly specifies a class.

®

b) From equation (3,7), we d?duqe that

(Vn)m =0 m=1, 2, -

(3,16)
Hence the normal Jordan form a’n [f’n) of mtrices Um( v,) depends only
on & (n). ﬁn and f’n are the first integral of system (3,6) and (3,7).
Equation (3,16) is gauge invariant therefore so is the normal Jordan form:

m _ .
3, (u )" =0 ana 3,

of Un and Vn' Determining t he matrices Un’ Vn gives a complete

specification of the equivalence class.

Some gauges have special ndmes. The canonical gauge is the gauge in
g gaug

which ?Jo = '\70 = 0. We go tothis gauge using

-

a transformation matrix go solv ing the equations .

!

aggo +v9%% =0, a“Qro s v0g0% = o
(3,17)

As we shall see, system (3,6) and (3,7) will be studied in the canonical

gauge. ,

- 24-
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3.4 T he Relativistically Invariant Spinor Problem

Un(E ,n) and O (€) are related by a sinilarity transformation
U =¢_ 0(g) ¢ 1

n n o n n

(3, 18)

We want to find out what equation describes ¢, First, we takethe

derivative of equation (3,18) with respect ton and we get

_ -1 _ ~ -1 -1
Upn = ¢ Un(e;) ¢, L Un(t;) T
(3, 19)
- -1 :
- [¢rm ¢n y Un]
( = [@n, Un]

Equation (3, 19) is deduced with the use of equation (3,18) while equation
(3,20) is equation (3,7) rewritten. Un being general it follows that

$ = & ¢

- nn nn

Similarly, we Sdine ""n as t he similarity transformation which relates a

matrix V (€, n) to its Jordan normal form V n(n).

v =, 7 ()9}

n
(3,22)
The equation that describes "n is
. wnE = Yn q’n )
(3,23) '




Survey of Some Developménts in the Gross-Neveu Model

Y (in equation (3,23)) and ¢n(in equation (3,21)) are defined by
equation (3,8). Equation (3,21) and (3,23) can be rewritten in the form.

- -1
‘V & = g 11"m Vm Wm ¢n
nn & a +*a
m=1 n
(3,24)
-1
vy = g ¢m ﬁrn d)m lI’n
£ n m=1 an * am
(3,25)

where we have used equations (3,8), (3,18), (3,22) and defined
VL Ed -V T =3 -U, [V, vgl = 0 (fron (3,6)).

E quation (3,24) and (3,25) have the form of a classical spinor field and
are relativistically invariant. ' We call this system of equations the

relativisitically invariant spinor problem or, in short, the spinor

problem. s

-

)’g"

U nder t he transformation zn = h o Y = !wn, the system (3, 24), (3, 25)

is form invariant:

4’nn mn ’ ‘an = ‘yn 1"’n ;
. 3,26)

- and, ¢ andsn [‘!n and ".I'n] are related to ¢ach other by equation (3,14)
[ 3,15)] with h replacing g. \ ,

b ]
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3.5 The Reduction Problem

In this subsection we adapt a section of the article [9], The Reduction
Problem and the Inverse écattering Method by A.V. Mikhailov, to suit

our needs.
i
|

A reduction is the operation through which one imposes on U and V
algebraic or differential constraints compatible with system (3,6) and
(3,7). The consequence of a reduction is that the solutions to equation
(3,1) 'belong to ‘a subgroup of GL(N,C). The smnaller the subgroup
is, the deeper the reduction. We define the operators LI and L2 such

that

leb = 1!5 -U4¢v =0 ‘
' (3,27)
Lz‘# = *n -V 'JJ_= 0
and"I:I, iz satisf ying
~e ~ ¢ ~ ’
VLI = xpE + U = 0
(3,28)

31'12:@' +§;V=0

If $(&, n, A) is a solution of equation (3,27) then ¢ = \b-‘!obeys equation
(3,28). Also we denote by {¥(A)} a set of solutions to equation (3,27).
As an example, consider the following constraint imposed on U and V.

v=-U", v=-v
(3,29)




. '
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Consequently¥ =yt satisfies equation (3,28) and we have -~

B e ()}

(3,30)
Constraint (3,29) has led to the existence of automorphism (3,30). It -~
can easily be shown that automorphism (3,30) leads to constraint (3,29).

We denote this autormnorphism by

t:v(x) - CRE I 1Y)
n ‘ (3,31),

Assuming that the poles of U and V are located on the real axis of the A-

plane, we can define the following automorphisms

R wa) > B[R e v )
| (3,32)
revex) » 7 [¥(rxX))] e {v(x)}
(3,33)
t: y(r) > t ’[\pt"(t(x))]'l e {v(r)}
(3,34) ;
g: 32> > g [v(g))] e {vr)} e
(3,35)

where ff, #, t, § are non-degenerate complex matrices of £, n, A an;q

h(x), r(A), t(x), g()) are conformal self-mapping of the plane i.

We remark that automorphism (3,34) represents a generalization of
automorphism (3,31). Equations (3,32), (3,33) and (3,35) also
represent generalizations of fundamen‘tal automorphisms. Mappings
(3,32) - (3,35) are reversible and associative and hence any subset of

then gives rise to a group called the reduction group G R)

- 28 -
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-~

Automorphism (3,32) means that

Lz,z[

from which we deduce that

~

+ R luo) R o=
An analogous equation holds for

Mappings (3,33) - (3,35) imply

5}
i

o sl oy

—f.lfE + f—l U(x) =

o+)

5%, +5 v g -

T he representation of the automorphism is, in general, gauge dependent.

We examine the relation between the mappings in a gauge and the same
We assume a gauge transformation

mappings in another gauge.

h(x)) v(h(X)) = L

7, 2 Aot (RxN]) 1= 0
- (3,36)
u(h(2)) |
(3, 37)
v
g (rmx)) \
(3,38)
-utT (t(2))
(3,39)
U {aix))
(3,40)

f(\, £, n)! which relates two-solutions ¢ and x.

¥y = fx

(3,41)

1T his gauge transformation is slightty more general'than those pre{:io
considered (it is A - dependent).

does not change {an}.

Assume that such a gauge transformation

- 29 ~
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Substitution of equation (3,41) into equation (3,32) leads to -

RLFF(Re) ] (K (rev) ] e (war )

Defining {x (x)}f = {f-lq;(x)}, we require that ?'f must satisfy equation
(3,32) in the gauge f. We find

he = Fre0 RO (r(3) 7!
(3,42)

Analogously,

Roo= el FOOF(r))] . .
| (3, 43)
T, = I TeofrtT o) ]!
(3, 44)
g, = 1710 00 rlg0)]
(3,45)

s

E quations (3,42) - (3,45) means that the mappings of a reduction group

commute with the gauge transformations of a gauge group.

T he gauge group which preserves the representation of the reduction

group is called the intrinsic gauge group, Gg
’;;fz‘;;, ;f:;:, '{f:’t‘, gfzg

(3,40) are form—invariant under a transformadtion

E quations (3,37)
That is, if f ¢ G:] then U and U both satisf y equation

belonging to Ggl.
(3,37)-(3,40).
- 30 -
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3.6 Symplectic Symmetry and the Gross-Neveu Equations of Motion.

In this s&ction, we finally reach the Gross-Neveu model by imposing

additional %:onstraints upon system (3,24), (3,25).

\

First, assume that we work in the canonical gauge and that V has only .

one pole situated at A=1. System (3,1) then becomes

U
2 Y = Iy
¢ A o= 1 «
(3,46)
. v 1 ~ - "
3. ¥ = b 4
n A+
(3,47)
and the spinor system is transformed into
o -1
2 b = vy Vi Yy 4 ~
n" 1 2
{3,48)
- ~ -1
2y = o1 Uy %1 ¥y
g7 1 2 .
(3,49)

Next, we choose the reduction group and its representation. We will not
use automorphims (3,32) and (3,35). We define the automorphism r'

obtained from r by letting

' (3,50)
T he resulting mapping is

rtoz B(A) > T e v ()}
- 31—
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»

Next, we define t' w ith the follow ing T and t(3)

-~

a_ . 0 _
P=d= E, ‘a, £(1) = A
: : (3,52)

where ]l is the N X N unit mtrix. We now work inthe 2N X 2N matrix
space. F = I means that 7 is equal to the 2V X 2N unit matrix.

T he automorphism so defined is

t': W)+ J [wtr(x)J"I e {v(r)} J
' (3,53)

We require that the reduction group be conposed of the identity

automorphism i.

irv) + v)e{vr)}
‘ (3,54)

and the mpping t', r'. qe Gp implies q e{i, t', r'}. Fromthe mapping
r', we deduce that U and V are real at real values of the parameter X.

From the mapping t', we. deduce that U and V belong to the Lie algebra

-of the symplectic group:

(3,55)
We: ask that the gauge group be the intrinsic gauge group and equation
(3,55) is then valid in any gauge. T he gauge group is the set of all real

matrices satisfying

f-l = -~ J ft"J
(3,56)

—32—
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We recognize the fact that the gauge group that we have defmed is the
symplectic group. It follows that the solutions to system (3,46), (3,47),

[or €3,48), (3,49)]' will now belong to the symplectic group.

The matrices U and V have the form (8]

A B
e 4]
\ . (3,57)

where A, B, C are-real N X N matrices and gt T=B, Ctr=C

We want to significantly simplify systen (3,24, (3,25) and we specify the
equ ivalence class by demanding that the rank of U |, and VI be in unity

L;ta =V . and choose

1 1
10« « « 0|
oo. .
A=C=0adB=|. ° - o ]
Lo ...O_J

(3,58)

| -
We now explicity display equation (3,48) and (3,49) that we relate to the
Gross-Neveu equations of motion. We rewrite equation (3,48) as

aﬂ’l = J-.

(3,59)

First notice that

1 Note that equation (3,48) is:equation ('3,47) at x=1 and equation . (3,49) is
. equation (3,46) at A=1 k

,_33...
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.First notice that

(Vi) =1, (FI), =0 (5,008 €1,1)

. Also

(J ¢1)8°5 ’

5 o tr ; try
12417 =1 B0, O, = [

»*

=1 (g, 1) s

j

O Else

a=] =1, vee, N

9

p N
= - (‘bl-)N'*B,G g :: ;’{::";W
N 14 ’
= +(¢1) b5 »B = N+1'moo’m
T ’B*N’s ’ § = 1;-..,m

2

The next step—is multiplying (V wf’) and (J¢,). We get

V. wtr N o~ e -
[(Viser")(981)] 5 = 21 (Vidwi™) (781 ) gy -

N, .
= YEI [(*l]Y*N,I (¢1)Y5

- (‘915).'1 ('h)’!*”p&]

5:1’a'o’m'

- 34 -
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(3,60)

("I)B 1

(3,61)

© (3,62)

(3,63)

»

A
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All other elements.being zero

T he non-linear equation arises only on the elements of the first column

of equation (3,39) (and the associated equation for d.¢ 7/

kY

]

N
' 1 . .
‘j(an¢l)a1 = ; (q’l)az YZI{("V’IJYI (¢1)Y+N’1 - (‘pl)Y'*N,I (¢1)YI}
a=1, «=¢, 2N .
, : . _ (3,64)
Similarly . l

N 3 ' ,
Gy —;-(h)c, L (VA (¢QY+N’1 (n)y 4}

a = 1,---,2\1 . ’
, ~ (3,65) -
The fields (¢1)a1 and (‘hy}1 are two sets of real fields and t hey

prepresent Majorana spinors. They can be combined so as to form Dirac

.ﬁfnora. We form complex, fields.

° '
.

a_l ' a_ =1 )
L -2“ {(q’l)?l + i(h)aﬂﬁN,I} » ¢‘ = 2 {(¢1)a1+ l(¢1)a+N,1}
’ ” (3,66)

It is eay to verifythat w“ and ¢u are described by t he relations

»Q *
B¢t Il BY eV
. (3,87)
o *
agw“=—iq“§(#5w”+¢“ws} o
which are the Gross-Neveu model equations of motion.

-35..
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3.7 Symplectic notation 0 .
w 3 \..

)
e

| In this section, we briefly describe a notation by Neveu and Papanicolaou
This notation is analogous to the

e hpew e e e e

[ N T I Y

"y o

1] | ] Re{v!} ]
u (‘Pl)u I -{w }
\: -:“ 1 : = 5 Re wN
u Sl Il I i Ris
1 A 772 .
I R KA B WL TN
"X ® (3"69)\‘\ u
. —_ ¢ ~ ] . B
Fv 1 . 1,1 FVI FRe{cb 1}
. : N - :/‘
S T I R B A R B -
° . \/_—2‘ N"IIJ * Iy - l ! '
o . Imfe "}
v ' * Yav : . o
¢2N1 X N
] 8 ’ _‘ - _ LIM“) }.—4
| (3,69)
The metric tensor Is |
< \‘ ,’
;l (é)dﬁ = (oJ)q,ﬁ ay,B=lysee, 2N o
. . (3,70)
(E)aﬁ = (JtJ/‘)uB
R 1
\ L i
_ - 36 -

that gives simple equations of motion.
!

tensorial notation.
|

We define two contravariant vectors.
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Raising and lowering of indices follow the usual tensorial rules. Observe

t hat u2= v2= 0, u':"vm = - uava. We define
an invariant field o = uv = u“va
‘ ® (3,71)
T he equations of motion then become
u,, = - ovand v, = du
& n .
- 3,72)
v
§
}
5 ) )
. /
- - 37-
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e

Backlund Transformation

4.1 Bdcklund Transformation for N=1

This section will be descriptive rather than deductive. We present a
Bicklund transformation for N=1 and we will be content with showing

that indeed it is the correct Bdcklund transformation.

First, following Neveu and Papanicolaou [ 3], we derive a mapping of the

Gross-Neveu Model (N=1 only) into the sinh-Gordon equation.

We calculate an equation for Trne

“rng T (u,nv),g = U Vg P UV
(4,1)
Using the equations of motion, we obtain ~ e i ’
Urgn = 7 % u
(4,2)
Hence,
Crgg T MigVog T o3
(4,3)

We definew = Uy Vop - This is an invariant. For N1, uand v cangbeo
used as a basis in which other quantities can be expanded. We expand
u,nand V'E in this basis. '
Writing

u, = Au +;Bv and u,E = Cu + Dv,

n
(4,4)
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We easily find, successively tdkihg nscalar"products of equation (4,4)

with u and v, that

u, v g, uu, -h
A= n = n B = n = ——
‘ /] o] o g
(4,5)
h o,
C=— D=—%
o o
hIE muu, and h2‘£ -vv,g are t he conserved energy-momentum densities:
h1’§ = h2’n = Q.

It follows from equation (4,4) and (4,5) that

LW E U, v, T (a,na,E + hlhz)/p o
(4,6}‘

which if subséituted into equation (4,1) leads to

_ _ 4
oc,ng o,no,e = h1h2 o

(4,7)

" If we introduce a new quantity 8, o = exp O, then we have succeeded in

mapping the Gross-Neveu model (N=1) into -the sinh-Gordon equation
Y
since © satisfies ’
6, =-2sinh B,

ng
(4,8)

provided t hat we choose the conformal frame h1h2=1

-.39 -
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T he Biécklund transformation for' the sinh-Gordon equation is well known

[5]. ‘T he integrability condition of the system.

1 (eE + e'g) = - a sinh (6 -"0')
—2‘ .
(4:9)
g | ¥ 7
i(%-e%]-a sinh (6 +6')
2

implies thgt both 6 and @ satisfy equation (4,8).

Substituting © = &no into equation (4,9), we obglain the Bidcklund

transformation (B.T.) for the field a.

1 -
[5'-] =a (a0%-07%) ' o
R . *
’ (4, 10a)
(c'c), = 1 (02 - o'+2) . \
n Py ‘
s (4,10b)

Now consider the transformation

-]

u'l _ 1 o'/o Yalo u \ ]
vii Y T+Y&Z { =g 1 v f*

’ (4,11)

LI

where we have set hy =Y, ha = 1/¥




-
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7 ©

We will show that ¥ o and o' satisfy the B.T. displayed above then .
‘equation (4,11) represents the B.T. in terms of the fundamental fields.

We take the E-derivative of u' and make -use of equation (4,11)

e 1 _]_ o'] u+[££_]u,£~yw,zgvétv

./'TTT&TL“,E“ o o

(4,12)

We introduce the B.T. for ¢ into (4,12) and, rearranging terms, we:get

!aa’ -vl
u’ =o’{ u

13 .
v 1‘*:7? ‘ x\
1 , 3 (4.19)
+ o (u+ Yov - Y v(qu))}

V1+Ye%2 o2

T he factor in the large parenth{esis belonging to the second term is equal’
to zero. Calling it A, it is very easy to show that Au=Av=0. Therefore
A maps the basis {u,v} into the null space and can only be equal to

zero. . .

-/

We are left with _ ,

u,E = g' v!

La
(4,14)

Similarly, it is possible to show Vin = -g'u, where o' = u'v’. The new
solutl:on is $defined in the same frame as the previous one. That is

= = I = =
hi h1 Y,hz hz Yy

_.’1-
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[

4.2 Algebraic Bdcklund Transformation ’ .

We derive a purely algebraic Bidcklund transformation for the case N=1I.
We rewrite the B.T. in terms of t he fundamental fields ", 4%

I [COCTORE N
' X * 4

¢ (') (1) ||

(4,15) '

Next, we define a new field x through the change of variable x = CY

x| = 1 (Y 1/4) 1/4 —1 ‘pa
2l (V4 (*11/ 1 _1 e

Xo a

(4,16) .
Hence if we denote this y-field B.T. by ¢' = By, the B.T. for the field

will be
o =[c BC x=Bx

where C' relates x' and ¢' : x' = C' {'

- 1 S 7t
arTevy & Ly S e
. o' /o i ya/a 71/4 11/4
*
k_iua' 1 Y"I/4° ‘Y-1/4°

- a2- .
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\} 1 c'/2 + a/20' + iyz/zu,c'/a: - 0720'-
= ~ 1/2 —“Y
S IT+Yaf {0'/20 - o/20’ , ¢!/ + 0o/ ~i ay .
’ ' ’ (4,17)

We defirie B=/1+ vya? B and we observe the system

| B Y o LT
- ' ‘ (4,18)
At Ya =
of Bis zero
- It follows that

i/ » .'5( = 0 defines a non-trivial system since the det ermi nant

- .
C» : Cosh(o'-0) = 112 g’ *¢
' d - A2 g c'! ,
(4,11)
' Cor = = ! -
: ‘ . Sinnlor-e) = —2A T 2.7 2.
1 - XZ o !

which is the algebraic Bdcklund transformation.

This algebraic B.T. can be written in a simple form in terms of ¢ and o':

a,_]l-—l[a

) (1 + 1) ‘ .
. (4,12)

~ 43~
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The Infinite Set of Conservation Laws o 5

$.1 A Fundamental Conservation Law

We also opt for a descriptive aPProach {n this section. We will show that

the conservation law.

2
= Xe (u'o),n

/ 14ya? :
(5,1)

is compatible with the non-algebric Bicklund transformation displayed in
we form the product

(u'u,n) '

the preceding section. Using equation (3,11),

' .
(u urn)-
(' ) 1 -o'y Yoo,
u'y, ) = —_——
n g ag
T

(5,2)
We take the g-derivative of equation (5,2) and we use; equation (4,10a)

for eliminating (o '/0) e

— P -(e?-5P

/ v®

(u'uln) ’E =

(53)
hd f.’iﬂ +°—’B-a—’2£

°';' It
We also

Then we nmake use of equation (4,7) to get rid of o S rpg™ 9y
should be kept in mind that equation (3,7) is valid only for N=1.

set hy hy = 1.

{ - 44 -
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A Y F
It follows that
1 2 .,2
(wlu,,) g = —2— [o? - 4+ 2]
/ 1+Yaz

' 2
i R ) S (0” o

l‘ 4 Y I+ya

»
where the last step was obtained using equation (3, 10b)

by

- 45 -
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N | ,

5.2 The infinite Set of Conservation Laws

In this subsection, we derive an infinite set of conservations laws making
use of equation (5,4) and the Backlund transformation (4,10 and (4,11).

T he Bicklund transformation introduces a free parameter a into the new

solution u',v', a'. Since these relations are valid for all values of the

parameter a, we can expand these functions in powers of a. - Substituting
the expressions thus obtained into equation (5,4), we obtain the infinite
set of conservation laws by equating terms with the same powers of a as

a+ 0. \

We assume

g! = Z o! a
m=0 m
(5,5)

and substitute this e.xpr'essiz)?\info (4, 108)

L] [ ) m ¥
m
z (c,'no), a =°2’{2_ (Z_ o';?_no;')am}
m=1 n m=0 n=0
(5,6)
The zeroth order term immediately yields
0"0 = ¢
. (5,7)
while we get from the first order term
1 = e — ’ = - T
o -~ (00 o),n Iy,
o
0
(5,8)
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The second and third order terms are
’ ) I ; 2 ®ran’
o= L [ ~(oy o)y, - (op?}=—n
2 “20;) 1 n 1 2
N (5,9)
.1 SR
’ - ¥ ‘ - 14
a0y 5 —~ { (02 a),“ 20} °1}
20 :
0
' ’ (5,10)
g, 0,
4 nnln 46 , i " \ ) N

T he recursion ’rela’tion is:

21

Zob

o! = - (o), o),“-nzl (u,;,._rna"])(’} |
. (5,11)

T he next step on our way is the derivation of the Taylor series for u's

We define K

<

w' = ¥ uwae™and uwu,_ = 7 aa™,
mo ™M ;’" m=0 m i
. (5,12)

From equation (4,11) that we use once again we have.

! = = 1 ' u YoV
wo= 1 oug (Tope™ = + ,],

0
il v 1+Yc2

(s, 13)
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We expand : L. in powers of Yaz
/Y 1+yae : .
(1+v2)Y2= ‘2' (=n"(en-n 1! (ya)"

: =0 (2d)! 2"
(5,14)

- 2
= § A, (vw)"
. n=0

. where (2n-1)11="(2n-1)(2n-3) +-+ 5-3-1

andAo=1,A1=—%,A2=

tolca

7

Insertfing equation (5,145 into equation (5,13) leads to

i

o p/z . .
Zu;!un=2 ( [):]NmA a’ ﬁ)up
n p=0 =0 -m 'p-m o, : .
. ' ‘ (5,15) -
-3 N * 4 .
+ 2. (A ym vI) a2l '
mo, G . ,
S

where | p/2] means the largest integer smaller or equal to P/2: p-2m»0

T he zeroth order term yields L

L , .
) ___. - o= LA -
ug . u u, Qou\\ua Uy h, o

y (s, 16)

|
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T he first order term gives
g -~ o, G, Y YO,
u'1=-—1u+1-‘1=-———'—'u+12, 01= LU 1 =9
\ ] o ' o a- o o
(5,17)
' T he second order term is
u u °'n u You /
u', = A, ag! — +Y A_ ol — = —nr 2. 12=
2 o "2 170
° 2 g 20
T (5,18) \
Yo, 2 ,
Q = - nn + —“I—‘
2
. 20 2 |
(
( Thethird
t = ' = Y 2 L4
upy = APy Y APT T YA
e o
o g, U YO u 2 <
____..I.U, +£ ‘an’n i I
g ™ 4 o2 X X
Yo Yo, © Yzat“» 120'
) a. = 'ann . _'nn 'R- ™, n
3 p w0? ‘20 Py
=_Y_{ ? *ann °'nn°’n}
4 g 2
o
(5,19) .
\ .
Ve .
; C} - 49~
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F

We next substitute equation (5,5) and (5,12) into equation (5,4) and we
.lob,l"ain.
o Yy e [p/2] ;
a 2
Z (ﬂ ]v o = Y Z { Z YqA (0'_ O), } P
m g - p=0  q=0 q * pq n .
, ' (5,20) !

'Equating equal powers ofra‘*on each side of equation (5,20) gives us an

infinite set of conservation laws.

For m=0, we have
')“' 3

(@) = hy e =0

I
which expresses conservation of energy -

—

(5,21)
romentum (along with.

h2’n = 0/)
form = 1, (91),5 = 0 is trivially satisfied since@ = 0 .
For m»2 :
' \S
[m/2-1] .
' 1
(ﬂm) ,E = { qzo 'Yq Aq Or;1_q_20 },Tl
(5,22) .
which are the fnon-“-tr'ivial conservation laws .
- For m=2 2
Yo, _-# g, '
- (- nn = 2 iany 2
(?2)’5 = ( 2 )’E Y (G )’T\'( 0‘:“‘1 )’; (20 )’T\
’  (5,23)
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(!,L

For m=2
Yo, ’ 2
(8,),, = (- —22 ), =v(a%), (), =-(27,
2°¢ 20 ' 'n t——"% ) n
(5,23
7
and for m=3
 rqnn Srqn%rn 102
( - )’i = ("U’na = ),ﬂ
4a 40
(5,24)

We note the fact that similar relations hold with u «>.v, E « 1.

[
1

Even though we relied heavily throughout this section on‘results
valid only for N=1, the conservation laws that we have found hold for
any N. For 'more information on this topic we refer the reader to

Neveu and Papanicolaou's article [5).

El
wtpinn 5
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Integrability of the Matrix Problem \Q,.
6.1 The Local Vesture Method

In this section we describe a general method for solving system (3,6),
(3;7). It was first introduced b) Zakharov and Shabat [7]. Contr:«\zry to
the inverse scattering method which is non-local (the Gel'fand-Levitan
equation, an integral equation, is solved) thig®Pmethod is local. Zakharov
and Mikhailov have shown the equivalence to the inverse scatte;‘ing

method for some cases [6].

Knowing one particular solution (usually chosen to be the vacuum
solution) we obtain non-trivial solutions from it. The vacuwn solution is

said to be vested hence the name vesture method.

The solution is obtained by solving the Riemann problem that we describe

in the next sections.

6.1. 1 The Regular Riemann Problem

v J

We quote Zakharov and Mikhailov who give a concise description of the

problem (6] :

"Assume that in the complex plane of the variable A there is given a
contour T and on it an NxN matrix-function G{A] without singularities,
but which in general does not admit an analytic continuation off the
contour. We are required tofind two matrix functions xl(x) » analytic

inside the contour,ﬁand xz(l), analytic outside the contour such that on

the contour.

-52_
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X ,(1) xl(x) = G(A) "
(6, 1)

Here X , X , and ¢ also depend on E,n.

Under the transformation Xp* g'-IX, X2+ ng,equation (6,1) remiins ’
valid. The Riemann problem is said to be regular if det XI’Z# 0 within
their domain of analyticty. To obtain a unique solution, we must set the
normalization, that is, the value o}' XI or Xz at one -point in the X
plane. When X 1(@) =1, the normalization is said to be canonical.

In section (6.2) we shall show how to solve the Riemann problem for the

—

case that concerns us.
i
6.1.2 Prolif eration of solutions;

We show how to obtain solutions for the system under study with the help
of the solution tothe Riemann probler. Gi ven a function GJA) defined

on a contour T, we form the new function

G (En,2) = vO(5,n,0) G () {90 (e, A0}
(6,2a)

and ¥ satisfies

¥ U0 40 = ViV -
, (6,2b)
and Gy(1) is independent of &,n. '




Tus

a

Survey of Some Developments in the Gross-Neveu Model

- -

Assume that the Riemann problem for G is solved. We differentiate

relation | 2] with respect to £ and n,and we obtain
" 0,0 0~-1 0 0, -1
GE(A) =Xy X, + Xy Xy ={Uw} 65 (3) W} v G U
=% X, x, - X, X, U

cn(x) =X X; + Xy X =V Xy X=X Xy Vo
C T (6,4)

(6,3) .

1 i

It is possible to define two functions U and &% analyticall}; continued fram

the contour ! onto the entire complex A-plane.

-

Let \ ,

Uz(xe +x, U9 (7 2o x, o - U0 {x )7 -
| (6,5)
={x} "Xy -V x) | =
% S
velxy, X vl =ox, 0, - v [x 7 /
(6,6)

The second line of equations (6,5) and (6,6) were obtained 'using
e quations (6,3) and (6,4). No poles other t hanthose of Up[ Vo] are ’

L4

B e

e Sttt Ko,

s e

o~ -

YA s s 2l v e
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(

present in (6,5) [ (6,6)] since we deal with a regular Riemann problem!.

—

Fran (6,5) and (6,6), ssw=ebserve that X, is sub fect to
,._,Ja—wf\

v

Xpp =U X =X o
— (6,7a)
xln =
l \ "(6,7b)
If we set X e define a function ¥ obeying the systen.
‘pa = U \') " = V 4’ \‘ \
‘ (5,8)

Hence solving the Rixpnann problem allows us to find a new solution to

system (3,1). We assumeédthgt U, V, U®, VO are rational functions of the

parameter A (ref: eq (3,4))

|
Substituting the explicit formula forU, U, into equation (6,7), we get

K U kK U
st e 1 -% (@ ] —e
el A-a C ) rrl A -a
n n
(6,9)
Defining g= X (2 ==), X = t(a = an),i'(n= X, (2 =-a) we easily

derive

-

IFor the Riemann problem with zeros (section 6.1.3) this is still true but it Is

an imposed condition.
- 55-.
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the relation between Ug, vl and UO’ U ’ .

(1) Letting\ += {n (6,9) (and a similar équation )"oran XI) » we get

-1, -1 -1 o -1
Ug = 9,g gUgg ' Vo=9,9 *9V, 9 |
‘ (8,10)
(2) Let \»a _in(6,9). This gives
0 J-1 3 0
U =X U X", X =6X -X_¢
n n"n"n n “n “n"n nn
(6,11a)
where@n, @: are defined in (2,8)
S;.r_!ilarlyx + - ur; in (6,7b) leads to y -
- rY 0 ~_1 ~ - ~ _ ~ O
A S A L
. "(6,11b) ) .

solution also in the canonical gauge.

Usually the vacuum soluti%s defined in the canonical gauge. Canonical

normalization defines a ne

6.1.3 The Riemann Problem with Zeroes in the Case G=].
Not all solutions of system (3,1) ‘can be found by means of the regular

X, is said to have a simple zero at t he point x=xn i
Working in the canonical

‘Riemann probl em.
X, has a simple pole at that point.

normalization XI takes the form -
A .
X, =1+] —2 ‘ ',
l "A g ‘\1 oL [
n .

o

[ PSR,

\

LU S




kS b1 g

st

3

.
PR

9

Survey of Some Developments in the Gross-Neveu Model

Y

Equations (3,64) and (3,65) described real fields and we frnmediately .

inpose upon X 1 that it be real at real A

Xl(xe R):X’I(AER ) .
XI is then restricted to have the form : (,;
P
n n Kn
X, =1+ {_( + )
n=1 A=A Y .
n _ o .
(6,13) .

~where A denotes canplex conjugation. )

—

We will solve the Riemann problem with the assumption that G = 1.

Obviously, in such a case X, = XIJ. The solutions that we find will be

soliton solution. We will also immediately demand that X1
\

should belong to the symplectic group. It is required to leave invariant

the form.

[or
Y51 o

xfrax,=0 ., -1 - ixtry . .

! (6, 14)

The poles of X, should not coincide with the poles of U,, V,. Moreover
The

the only poles of U V) should still bethe poles of Uy (V).

- 857 ~
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substitution of (6,13) into equations (6,5) [(6,6)] , defining U(V), leads
us to the concl usion that U(V), in addition to the poles of Uy Vo] , might

have sinple and double poles A=) , Yn'

&

Requiring the absence of poles in X.1X= I allows to determine a system
of equation for finding X. By demanding zero residue at the first as
well as t he second order poles of U(V) at x=xn, we can solve this system

uniquely.

J




| G L RORESNE

SN and e

A,

B e T mw e A

[

Survey of Some Developments in the Gross-Neveu Model

6.2 Solution to the Riemann Problem for the Symplectic Group (G=1).

6.2.1 A System of Equation for X.

We now impose the absence-of-pole condition to XX"1=I and we obtain a

set of matrix equations for An.

We first write X~! X=I in full.

- o .
A A . A A
1+ ( D yly i+ 3¢ n _,_1n ;1=
n X’A" X-Xn n R"Xn ﬂX'ln
\ (A
tr +
A A
=l+2.—i——-.’ I+). m +X m J"I
n mn m. _x
(r-2) (A=3) Ty
tr / +
A A A -
+¥ LB A TR ED) m + 7 m 1

- 59 Lad N .'l
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T hen, we define

T =]+ A 4 NS 4L AN

m#n (1 - AP) m (x - X ) .
- (6,16)

kequirin%the absence of simple and second order poles at A = An’ we

obtain (at A =} we simply get the complex conjugate equation).

A _JAall=0
.(6,17a)

An.rr;'” +v Al =0
(6,17b)

We want to find a solution to equation (6,17) consistent with the

requirement that U and V sr:ould not have poles at A=\ , Tn. We write

An in a factorized form

+
AnSMn Fn

(8,18)
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where M F are rectangular matriges rmade up of 2N lines and K,
c\lumns wtth K < 2N. For the sake, of clarity assume that matrices F
are known (we wm show how 1o eq,s‘ly get a consistent solwion) and M

are unknown.

Substituting |(6, 18) into (6, 17a)

M FPIF mtT=o
n n n n
(6,19)
we observe fhat if
+ =
F JF =0;
(6,20)

)
T hen equation (6,17a) is satisfied.independently of .“n’ It is possible

to determine Fn wit hout knowing Mn. We now tackle equation (6,17b)
with the help of equation (6,20). Substitution of the latter into the

former leads to

+ t L L
Mn(Fann") +(r JF)M "=0
(6,21)

Nate that it suffices that F; J F't!r = M;r (since I = =J) to satisfy the
However this may not be consistent with the absence-of-pole

equation.
requirement or U and V. The most general solution is obtained by
letting. ’
v TF =M e

(8,22)

- 61-
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where a  is sone Kn‘X K matric to be determ ined consistently. For

equation (6,21) to be satisfied, we must also have

v Lt (
a =a
n n
(6,23)

Writing equation (6,22) in full, we find that we have obtained a system

of"linear equations for M .
M- M F ry F
J n*z ( m F;JFR m( "-Mnun'
m# niA = A m
m (=2
N
(6, 24)

6.2.2 A‘tz\sence of double polein U and V.

(6, 25a)

(6,25b)
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q

We insert expression (6,13) for X in (6,25a)

°

u=-"|1+7 ( 2n An ) (3€-U0]*‘

n —xn) (~-X)
o (6,26)

n ——
a-2) =X
p

Picking up terms in 1/{2~) 2 and requiring that the residue be zero at
g

x:an, we obtain
- tr _
A (aE uﬂ)‘ JA .= 0

Define D(A,) = (3, - u")l Ao, D{r,)=(a, - ;0){ rea

' An being a factorized matrix, we require that

s

+ . -
F_ D(xr) JF =0
A (6,28)
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+

This represents an additional constraint on Fh and must be canpatible
with equation (6,20). Equation (6,20) and (6’,28) are solved consistently

°

if we assumne

where 8 is sane £,n - dependent matrix. Substituting (6,29) into
(6,28), the latter is identically satisfied due to (6,20).
\ w

Similarly one obtains
+ ~ t
F, D()\n)7J F =0

)
. (6,30)
which is solved by assuming \\ .
AN
D) JF, =JF B, .
(6,31)
Of course, equation (6,29) and (6,31) must satisfy the compatibility
condition ,
aEnJFn=8n§ JFI'! ‘(I

(6,32)

-

- 64~
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Which when written in full is

N

_ 0 = 0 = = -
3n (JF)—UqJFn+U Ja F o+ J(3 F) 8, +J F, (3, 8,)

=V JF, s V0 8 F o+ (3, F) B ¢ IF, (3 B)

. 5 (6,33)
We use equations (6,29), (6,31) to elimi nate,anl?n and aEEn from equation
(6,33).. Two terms drop on each side due to the compatibity condition
of the y0 - system. Then U9 JF B + Vol F 8 cancels on each side

and we are left with

aE ?m-an Bm+[ Bm’ Bm]=0

(6,34)

Since no other constraint is inposed on this equation its solution is

trivial [ 6]

_ -1 ~
B = I9g Im 8= 9m Im
(6,35)

~ 65~
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]

where 9, is any-non-degenerate K X K trix. Solving equation
(6,29) and (6,31) is greatly szmplzfied 1f we note that under the

transformation

(6,36) .
where fn is an arbitrary non-degenerate matriux, An 1s not changed.
This freedom in the choice cf ;"n reflects the ambiguity of the.
factorization of A . Hence choosing a particulars and 8 n’ which
indirectly determmes a gt\ en factorization, wil not affect the fmal result

as long as Fn satisfies eq. (6,29) and (6,31) with this choicel. ‘e

choose simple Bn, En to simplify our task

B, = Bn =
(6,37)
We are left w ith the follow ing equations for F; E
p(» ) JF, = D(A\)JF =0
. {6,38) ~
It sufficsto note that
D(An)w (E,T\,Ar) =

(6,39)

B(x )Y (g, n, A =

To find a solution to equation (6,38): Vo(&, n, An) will give the £, n
dependence o J F and a multiplzcattve constant matrix -will permit
simil taneou$ solutton with equation (6 20).

: |

-4

15ee Appendix A for more details on this topic.
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We let

= =0
=0
JF =v (E,n,2 ) JF
< - (6,40)
where ?g is some constant 2N X Kn matrix. The presence of J on the
right-hand side is a matter of convention and here we follow Zakharov

and VMikhagilov. To obtain a constraint on F:, we must insert equation

(6,404 into equation (6,20)

tr ¢ ~0tr -1, 0tr -1 0 0 -
FOJF =(F_~J "% JYI(J v JF J=0
(6,41)

Since v0 belongs to the sympectic group it satis{ies'wmrl =J {*0}-1

and we are left with

I‘_.OtrJ FO -0 ]
n n )
. (6,42)
- The set of matrices satisf ying equation (6,42) forms a subspace of the

2N X Kn matrix space. And in general, one must describe the bsis

*s\banning this subspace to obtain a complete description of equation

(5,42).
\

6.2.3. Absence of Simple Poles in Ul and V

In (6.2.2), we showed that requirin® absence of double pole in xx’,’
and|abégnce of double poles in U and V was consistent with assuming the

factorization of Am. Here we show that the absence of simple poles in
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xXx1 s conststent with the absence of simple pole in U and V. However
these results are not independent of section (6.2.2) since we will use
equation (6,38). In this section we establish an equation for g, which is
present in equation (6,22), that will eliminate the residue at x-'—'ln in U
and V if it is satisfied. . _ '

that its residue be zerqo. The result is

/ tr ,~1 tr -1 _ 0 tr -1 _
CA D) T T p(x ) J AT A U] ‘nl A, I
\

(6,43)
The last term of this equation is the contribution of U® to the residue.

T here is a term

- 12 0 tr -1 ‘ .
1> » 2 AU Wyra ' J

.

in the erpression for U. Expanding 79(1) in a Laurent series, we see -

that the 1/{x~Xx ) contribution is exactly the last term of equation

(6,43). There is a similar equation where D( ") replaces t he operator
D(An) in (6,43). Making use of equation (6,18), formula (6,43) is

transformed into '

‘ + tr. tr _ + 0 r
M FrD(A) T D(» JIF_MT =M F 3 Uf A"J F, M

6,44)

-~ 68 ~
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Going back to equation (6,.15), we isolate t he 1/(Af}n) term and demand ./
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Since D(Kn] an =0andt J'I?n =-M_a weare left with

tr _ try _ + = aftr
M_F DB JIET oM e 3 (MT) =M F U0 '*:"n JF M
(6,45)
Next we differentiate the transpose of equation (6,22) with resbect\to £.

Fron this, we obtain an equation for ‘(BEM :r) in terms of (agun)

tr tr _ -+ tr + tr
a. (aEMn )+ (ac“n) M =F_J (ag‘n )+ (aEFn) Ju
(6,46)
We then eliminate (aE F:;) fran (6,46). Taking the transpose of equation
(6,38) yields
Otr'

A=)

+ et
(SEFR)J—‘FnJU )

(6,47)

Since Uo belongs to the Lie algetra of the symplectic group it
satisfies [ 2]

vos+su? -0 ’
(6,48)
It follows that
+ - -
(aF})d= FU9 )‘=an
‘ (6,49)
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\

and using this result in (6,46) we deduce \
tr_ _ tr , .+ tr I
cn(azMn) = (ag"n)“n *FnD(‘n)"‘n ,
(6,50) -

Substituting equation (6,50) into formula (6,45) gives the 'differentigi
equation for a, that we sought

= F*a U0 i3
(dga ) = F U b :An.n-'n

/ (6,51)

Similarly, we get

(anan) = F;al ve ‘A--). J.F-n

" (6,52)
Equations (6,51) and (6,52) allow us to determine ﬂf‘l 3, suc.h t hat t here
will be no first order polein Uanrd V at xn,in. Reca pit ul ati ng, we
recall that equations (6,40) and (6,42) determine Fn while equations
(6,51) and (6,52) determine a - Substituting t hese results into
equation (6,24), we obtain a system of linear equations for Mn that can
be solved algebraically. Hence, using equation (6,18), the An's are
determined and so is X. Since the vacuum solution ¢? is given we have

found a non=-trivial solution to our problem

e ) =xEnn) el (&0 ) \
° (6,53)
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6.3 Solution to the Riemann Problem for the Symplectic Group (Part II)
6.3.1 A More General System of Equations for X

In their paper "On the Integrability of Classical Spinor Models in f‘wo—
Dimensional Space-Time”, (7] Zakharov and Mikhallov not only studied
symplectic symmetry but also unitary and orthogonal symmetry. For the
unitary group, they presented 'a solution, with X haVing poles at
conjugate points analogous. to equation (6,13). However they also

showed a solution with only one pole. We quote them:

"In the case of a unitary group there is a solution with only one pole:

o

A - T -1
Xepap) =1-2—2 KR F
‘ Y

0
L (6,54) ,
where F§ ,nj= wo (£,n,A) FO,FO is an arbitrary constant N X K matrix
(det F*” F%+ 0)." |
In the case of symplectic and orthogonal groups they didn't mention these
“one -pole solutions so that one was led to believe that they didn't exist.
We ask ourselves: do these one-pole solutions exist or not?

Jumping to a seemingly unrelated problem, we look at equation (8,24) and
observe that if An is a real parameter, t he third term of this equation
goes to infiniiy. In that case, equation (6,24) ceases to be valid. Is

there.a solution when An is real?

[
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It just happens that the answers to these two questions are identical.
The onc—po!c\ solution for the symplectic group is ‘

-1 .tr
,(,_,,,,x)z,_uﬂg___&_
, (A = x0)

v

(6,55)

where xo ¢ R and, Fand a are real analogs of the matrices described

in the previous subsections. In the following subsection these matrices

will be described thoraughly. '

The oné-pole solution is usually called a soliton solution while the
conjugate-poles solution is called a doublet solution. The generic term
for these two solutions is »soliton”, which is a little confusing.

In this subsection and the two subsequent ones we plan to study -the
solution to the Riemann problem with X having P single poles and Q
double poles. ' This X will yield the R-soliton solution with

”

R=Q’+P. . C

Consider the following - X matrix.

P . A R A 7. S
xX=I+1 m + ( 94, -
mel(A = dp) @PH a0 o - T
' " (6,56)
\ "72"
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~

where R = P + Q and,

for m= 1, sees, P

m

,’a-m:P-} 1, Q...,P+Q

A€
m

We ask, as in section (6.2.1), that poles be absent in XX

5 -

. 'Survey of Some Di\impmcnta in the Gross-Neveu Model ' __

C

A_€¢ R and A"" is elémcnt of the 2N X 2N real matrix spaces,

C and %is-elemcm-»af the 2N X 2N complex matrix space.

1’= I

-1 R An tr R 1 tr
XX “=1+ —_—J (\J ) r”p.).umr'l
m=1 (A=} ) m=1(x-2_)
R A R
+ —~~9—‘JFQ(X)J1+ g L xq(x)A;"JI
q=P+1 = q=P+1 =
A-X A=A
( q) ( q)
R A 4 At g1 R A At 1
+ 2 —m_ m 3 + z _____q
m= 1 (A=Xx_) q= 1 Y )2 )
q .
(6,57)
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©

where

“m
p=1 (K‘A ) p=P+1 A=A oy
e e (x-3,) (A-%)
'rm(A)E I+
P A, R A, R A
+y —— 4 ) —_—t ——r—— , m=P+1,++ , R
n=1(r-1 n=P+1(A-1_) - n=P+1 (r=k )
n n n
n*P
(6,58)
T he absence-of-simple-pole condition. leads to
A JztT +4 JAT =0 n=1,--,R
n n n n ’ ’
(6,59)

A Jit +T_ JAT =0 n=P+l.+,R
n n
where T tn(x n) and rn(k) is ;iefined in equation (6,58).

And the absence-of-double-pole condition gives

A Jatmil=0 m=l,es ,R |
(6, 60)
2 Jat =0 m=P+1,0 e+ ,R
m in ’ ’
R
- 74-
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. ~

Equation (6,60) is solved assuming. ° \

. _ r i
[ 3 An - Mn Fln n=1,"3 ,R . X
(6,61)

where M and Fn are 2N X K matrices which are real for n< P and

complex for n> P.

T he matrices Fn satisfy

Fn J Fflr =0 n:l,l.. 'R
(6,62)
T he solution to equation (6,59) is
{
Tt JF =-M a = atr
n n nn’ n” "n .

(8,63)
where a is a Kn X Kn matrix function which is real for n< P and
complex for n>P. -
For n>P, the accompanying complex equation is
T JF =-M_a

n n n n
. (6,64)
]
- 75_
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Writing equations (563) and 6,64) in full, we obtain

tr tr .
P M _(F-'J F_) P M ( FTJITF )
JF + ) m__m n + 7 ‘1( 9 n
=] A - =P+1 - xoo-x )0
.fn:’*n ) ( n m) I : ( n qJ *
M_ (F.JF )
+ — q; =~-M a n=1,¢%° P =
(- ) n
n q/(,-
(6,65a)
tr Tr
P M (. F M J F
e P JF) B Mg L)
m=1 (= 2,) q—;ﬁ’;‘l (A, - xq)
R M_(F.JF )
+ I )l—-q q - n =-‘~’n“n n=P+1,o.- ’R
q=P+1 (x, - xq)
) (6,65b)
tr , = tr =
pp M _(F2" JF R M_ (F" JF
i CMp (P TFR) R Mg (FTIT)
m=1 (x, - A q=Pt1 (x, - *q) )

= -En ;n n=P+1".. ,R

oty
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6.3.2 Absence of Double Pole inU and V. .

In a way identical to that of section (6.2.2), we find a solution Fnto
equation (6,62) consistent with the absence of double poles in U and V
at X =12 ‘

n

1

'Y

. tr tr
R [A DOV J =z (A)+ T, (A) DO J AL ] 1

U=Uy + } -
me 1 (r-a)
R fl L . - s iy
+ ] —[A D) J 1, (A +T,MDOIITA ]I
P} — q q q q
LA G . )
R y R A
e ] —L—(a b)) s Aty e ) —5— D) a1
mel (A )2 " mEPHL ({3 )2

(6,66
where D()\) = 35 ANEY)
\

We pick up terms in I/(A—An)z and we set t he residue equal to zero at A

— y K ¢
- kn’xno .
tr ' 3 -
AnDﬁn)JAn =0 n=l,eee R
- , (6,67)
.+F- - = oo ¥ ‘
AnD&'n)JAn—o n=P+1l.c++ ,R f
‘ Y
An being a factorized matrix, we ask that
r = = s e ’
Fy DO IR, <0 mlee R g

AT . . (6,68)
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4 L)

T he solution to equation (6,68) is

A

0
JF =v%g,np ) JF)  n=1pee R )
. (6,69)

Since V0 is real at real values of parameter i it follows that F(r’z is a

real 2N X Kn constant matrix for N < P. - It satisfies .
FOrypP=9
n n
. . : 1 v (6,70)
In solving equation (6,68), we assumed T
*

D(An)JFn= 0

- . o S

Similar equations hold for the V-case.

6.3.3 Absence of Simple Pole inU and V

L,
T he absenpe—of—simple-pole requirement leads to the equations.

tr tr _ 0, tr _ .
A DO kT +T DO AT - A /U lHn JA;" =0 n=lpe R

.4

T ot JJdrt +7 D& JIAT -4 3 U] = JAT =0qPt1pe.
qqqq,qqqxlx=x-qq"“

(6,72)

e . o
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%
‘One easily deduces that the differential equations satisfied by a are
3
(e )
. 9
O
(6,74) °

We have described the tools for obtaining the R-soliton solution. The

)

r =
an 3, UY| JF_,m= 1R .

(6,73)

A=A
m

A

r bz ...’
Frl o U |X:meFm,m'— 1,4+ R

non—-trivial solution to our problem wil again be , 0

W(E,n ) = X (E,n,0) vlE,n, )
,(6,75) ;

We postpone the discussion of the Gross-Neveu fermion fields in terms of

X and ¥% until section (6. 2) since in order to do so we need to know a

little bit more abM the vacuum solution.
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Integration of the Gross-Neveu ‘odel

7.1 Vacuum Solution

-

Recall that we want to solve

Uo, * Vog* [Ug, Vo] = 0.

(7,1)

N

The sxmplest solution that comes to mind is the one for wh(ch all partzal
derivatives and commutators present in s)zsté'n (7,1) are zero. Hence the
matrices U} (g),v§ (n),U%(&),V%(n) will be called a vacuum solution if
they satisfy-

0 0
[UO’VO]=O’ [Un’én]zo’ {Vn’un =0
(7,2)
0 0
U Vv
Rovg- =ty gy [T
(a, ta ) m (a  *a)
(7,3)

-

When the gauge of system (7,2) coincides wit};i" that of system (7,1) (the-
non-trivial system) we deal with a first order vacuum. “If a gauge:
transformation is necessary to bring system (7 2) to the gauge of system
(7,1) we shall oltain the matrices B0 (e,n), Vg (&), vlem), v 9(5,m)

called a second order vaccuum solutzon.
—ﬂ\

-80-
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T he Gross-Neveu model was deduced from the one-pole problem at
a,=1in the canonical gauge. The canpatibility cond itions were

d U, = 1720 U, v, ] =3V,
\ (7,4)

T he first order vacuum is then directly defined in the cun__ong'oul' gauge’.

-

I

0 0
[ulE), vitm)] =0
. - (7,5
For the second order vacuum- we must go to .a- gauge _\éhich is not

canonical, and solve

0 0 0 XO 0 0 0 1.0
(w%e),v )] = 0,10 G (kY 9in) ¢ & Y] = 0,V Jm)r gle) - 7 ()] = 0
‘ (7,6),
T he second order vacuum is obtained by gaugé transforming this solution

back to the canonical gauge. ’

For the Gross—Neveu model it happens that a m’lpofent matrix describes
the first order vacuum and non-physical results arise from it. We leave
this issue aside and immediately consider the second order vacuum. It is
easier to find the second order vacuum solution directly from the Gross—
Neveu equations of motion. We then use equations (2,18) and (2,22) to
determi ne the ratrices 53 (g,n) and '\73 (g,n()). Using a matrix (g"I) we o
# perform a gauge transformation to the UI and V1 system. It just

]
S
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14

ha ppens t hat Ug and Vg are matrices wit h constant coefficients.
De noting 00, the solution to this system, '0 = goo will be t he second

order vacuum solution in the canonical gauge. We carry out this

progam now.

T he vacuum solution of the Gross-Neveu model corresponds to a constant

o field indicating absence of solitions. T he equations of motion are then

’ ’

1 a _ . a a _ . a
- ‘ 3n¢ = uaow R a5¢ = \l 00¢ )
. (7,7)

T his can be written as~

( - . na =" - =1 ap = constant 0 .
. (7,8) -
From equation (7-,8), we deduce that v, o cah be written as a product

of t wo-functions depending only onf andn respectively. Alsov and
¢a differ at most by a constant. The final result can be put inthe

form s
-1 3] 1/2 ©
¢a=Ba/2Aue 0’4>a=3/ Aaeu .
(7,9)
¢
|
where : ’
N :
N
- - 1 S 2
9 =8 %¢* "o“m‘“”g"’o‘2 a=E1A°‘

s R : “(7, 10)

s
pnd
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-

A, B, are arbitrary real constants!

Tf‘; and~V‘1) are determined from ¢a and wa. o

Lt
&

From equation .(3,22) we have B
’ ’ 0 1 |
' VicviVivg )
i (7,10)
: V_lis defined by (3,58). Hence
~ _, - ' -~ t N
( (v (I))as =W I)aY (v 1)76 (',)Gs (v ’)ea (J)GB \
; =—¢a,1‘pB+N,1 when B < N
‘ (7,11)
whenB N

Vo, 1 ¥8-N, 1

S ,
' ) Summation signs were omitted ifi the first line of equation (7,11)

A i S S et e oIt ok o

L} . ’
i o~
11t &s important to noticé that the fields have been redefined so as to cancel a

factor of four appearing in '[72 and "7(1). The new definitions are
%

L

a

a _ o a _ )
‘p —‘pa,1+i¢a+N,i’¢ ¢(!+N,1 l¢a,1’°

-~ 83 -
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Since g belongs to the symplectic group it has the form

(7,12)

It follows that

n

- i j.- -1/2 ..
(Az)ij ' Rep Iy A'.Aj (3:5;'), SmGjCosei
(Bz)ij Ret Rey kA A (BiB])/ CostCosGi

”Zsmejsmoi

(Cg)yj = b Imy Ap A (ss)
. (7,13)
A similar calculation must also be performed for é
. Ta, I|B i
~ 1 1
vI & .
1 . s
C; ~4
),

T -84~

b

.
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M S




B b S b

Survey of Some Developments in the Gross-Neveu Model

1{

T he result is

/2

- - 1
(Al)ij = A-iAj (BiBj) Sin BiCose].
(B,) =~—A A. 8.8 )IZSine Sin®
‘ 1%if iy ivj i j
‘¢, = A A, B.8)Y%Cos0, Coso
ij i i j7 i i
A ~ . . (7,15)
The gauge transformation 80 = {go}-lwo, with the symplectic matrix of
» \ 3
the form* —
£
0_|%1 92
g =
' 9y 9 .
21 922

(955)y =(agp)y =8 Sino;
1
(glg)ij'(gm)i].=6ijCosejﬂ .

' (7,16) |

transforms .
‘ ~0 ‘ ~0
S Ur v
85w0=‘ S 1l}a’a“‘,)o: 1 0
(x-1) (r+1) N
‘ (7,17

1T he derivation of ‘this result is not shown since it sheds no light on our

main concern. Its validity can easily be verified.

_85-
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L4

(7,18)

(7,19)

(7, 20)

(7,213

into
0 _ 0 0 _ 0
30" =W,e , 98 =W, 0 .
where WI and W2 are matrices with constant coefficients
0 w
‘“3,2
m1,2 0
with
A, A (s, gi)%/z
(ml) < B,68,.. - 1
ij o i {f ( A ’_1)
(‘ 1) ij =°OBI 6lj
and / .
B =172
o a- A, A, (B, B;)
(‘"2)0"’051%;'1'——‘ i e 5
, (x+1)
. . iy
(o) y==9%8¢ &

- 88 -
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We observe that W1 and Wz canmute at all values of the parameter A.

T herefore 89 can be sought in the form

@
EY

0, .
¢ (5 ,R,X) =°3(E 9*) Qg(“ 1Aj

(7,22)
0 0 .
where® | ando‘2 satisfy
0 - 0 < 0 _ 0
230, =W, 3P, W0,
(7,23)
T he formal solution to equation (7,23) is
0 . 0 0 _
ol(g’)\) = expWI(E +g0), °2(“1A) = el'pwz(n *n(j
, (7,24)

- 87";
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7.2 Solution of the Gross—-Neveu Model
7.2.1 Solution of the spinor problem

We remarked t hat the equation satisfied by ¥ is equation (3,1a) at

A= - a. whil e ¢n satisfies equation (3,1b) at XA = - a,. Since we have
shown how to find a non-trivial solution to system (7,21) for any X\ this
suggests an easy way of solving the invarient problem¢n and*n are

obtained from t he non—trivial solution by setting X equal to a, and - a,

in it.

Actually a subtlety arises. There exists an ambiguity in the defintion
of ¥, [q’sn]. The matrix obtained by right-multiplying v, [on] by an
arbitrary matrix ofunction of = [ €]
is also a solution of the spinor problem. The ambiguity is even more
.general and it is discussed in detail by the original authors [ zM].
Making use of this fact simplifies the determination of | We assume a

factorized vacuum solution and we set

o =X (e,n) gle,n) o5 (nya ) |
(7,25a)

s % 0 ]
ll’n = Xn (€,n) g?E,n) °1‘(E’a,n) ,
" (7.,25b)

Taking the derivative of (7,25a) with respect to n we easily obtain. ]

_ 0.0 0.0 _ 0.0 o
¢nn—xnng¢2 (an)+Xn(g 9, (an))n —Onxng ®, y
: 0 0,0 00 -
+ X [-}bng o, (a )+ (g7 o, (an)]n] =3 .6

n n

n
(7,26)

T he last step is obtaired with the help of equation (5,2b) that we use at

...88..
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A =a and which causes cancellation of the term inside the brackets.
Derivation of (7,25b) with respect to & gives equation (3,23).
Hence .we can find a solution to the spinor problem using equation
(7,25). ° '

7.2.2 The Gross—-Neveu Model Solution

The Gross-Neveu Model "is obtained from the one-pole problem with
a, = 1. Taking into account the redefinition of the fields (section7.1), .
“the solution of the Gross-Neveu model is: ’

a _ _ o .o _
v —B)E*'(xa’a(a,n, D +iX .y g(EnmD) goy (€n) (8, 1D

.y -

(7{27a)

1]

6= T (X, g EmetD) =i X, o (50,#1)) Gy E2nX8 ), ()

Byy
~ , ' (7,27b)

L

1:\‘{
P SN
!

_89_
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7.3 Single-Soliton Solution i -

¥
H

Using equation (6,65) we find the matrix X with one soliton (P=1) and ho
doublet (Q=0) present Equation (6,65) has the form ’
1 g Yo

JF=-Ma ™
(7,28)

where we have omitted the unnecessary index.

Su"bsiitution of equation (7,28) into equation (6,61} and (6,56) yields

JEa“IFtr
‘(A"mo)

‘X=.I..

- (7,29)

which is the solution displayed in section (6.3.1)
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<
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7.4 Two-Soliton Solution
Using ‘equation (6,65) we find the matrix X with two -solitions (P=2) and
R ,

]
- -

v, 7 no 'dpubl'et' (Q=0)
i LI ‘ *
. E quation {6,65) reads

L}
[ :
’

, M,
. 2 r - - .
JF, *(A T (F, JFy)=-Mp,
D 17 M2 -
. (7,30)
- E My tr
152.*()\ _—;—T (Fl‘ JFZ)-“-"—Mf.z ’
2 1 . : .
N
- 3
- We define K
= tr tl"=_ |
an N .Fm J Fn ! an an
(7,31)
T he.matrix M | is
~ -1 -1 -1 -1
_; (JF)a, Fy @ F oo, Fpa
M= '(JFJ)“II* (2 2 21)1 1e 1272 21; o
” A,- A _ .-
1 "2 C (A m3y) \
(7,32) |

An analogous equation holds for Mz. For the sake of simplicity we set

K, =1 (n=1,2) and a 4, 0, F o F, becorne functions (no longer

matrices). M is transformed inte

i
o
ot
T -
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.t
» . * . .
;] g
.‘l - 2
=(2y=2; ) TF e+ (2 Ap) (4 1
Ml- re
2
- (AI 12) a0,
f ~
(’\‘) ¢ e _ .

The matrix X takes the form

2.‘ . tr - e tr
et =AY e v P Fy + (g <dg) FaydFp Py,
"D, | (a-xp ,
{ : - ‘ < -
' . ' o _ (v _1 12 r _ . ir
- . : E (r,=2) aIJFth2+(AZ A) FIF,F,
NEEEVA -
l S : : (7,54
. . 2. ) i .
| where Dyp= (g =2y ) ag 8, * FayFiy. B -
1 -
’ -
. ¥
i ) e .
i T~ o - .
p ' . . e

by

. !
§ y ~ 92~ ) .
! o s
o ) e
- AR © _ . N
" . °
4 - b
~ , ’
\ 4 . IS Y + B
- » Lo " o .o . - P
i I\\Q = - ,-‘ . o o Ym;r__';l' »
¥ B ¥ P 5 - . - 4 = i, - -
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7.5 Doublet Solution

We find the matrix X ‘with one doublet (Q = 1) and no soliton (Q = 0).
While solutions (7,29) and (7,34) were not given by Zakharov and
Mikhailoy, the solution that we display here was found by them. It isa
direct consequence of their fundamental work that we have exposed in
chapter 3 and sections 6.1 and 6. 2. E quation (6,65) becomes -

e

-— +‘
H_(F _JF) __ .

()‘0- A0)

JF +

(7,35)
The complex conjugate of equation (7,35) provides the second equation
necessary to find M.

Substitution of M into (35) gives

<

JEGEYL (Fy F ) M (FTTIF)(e) T (FTUF)

JF - — + ) =~Ma
- — \2 :
(2g= %) o ag= %)
. ‘ (7,36)
From equation (7,36), we easily get M. . .
— - - + -1
M--(Ao-lo)[JF-(lo—xo)JF(F JF) "al*
(7,37)

e [FTaF+ |3,-%, 2(a* (FmaF ) ta )]

O f
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tr

where we used o = a towrite

*

o (FrIR) ta=(a' (FIF ) 1a)"  in equation \i}m.

tj‘ ~

-

(7, 38)
The matrix X of equation (7,25) is then /
(a,-1%,) _ _ —y-
X(E,m)= I+ 2 ") [JF-[AO->.O)JF(F+JF)Iu *
A - X
0

([ RTIF + [y =%, P (o’ (P IF e )T ]‘Ir*"‘/

,‘_Elo 0) [JF”(.XO‘TO)JF(FtrJF]_Ia]*

4

[ FIF+ =%, Pt (FmaF )y Ta) 171F

(7,39) .
When o« = 0, the solution becomes
A, - X A, - % :
X€ np) e 10—l JF(FTRIFT - 00 sr(FaR)IF*
- (r - Ao) L (» - XFO)
| (7,40)
[
- 94- ° \
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D = t s ,
st’ LY
(x =)
\ ' (7,41b)
= For s=1,°%,P+Q ,t= R+ 1e-+,R+ 0,.
+ i v
p = te-a)'s
St- b Y ,
( A T A(t—Q)) ,
(7,41c)

-
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7.6 R~Soliton solution (P solitons and € doublets) -

In this section, we determine ‘the form of X when solitons and doublets

are present in arbitrary number. Throughout this section we assume

that K =1and n= I1,.+,R. It follows thata anq/f"' JF are 1X1
n n m n

matrices,that is ordinary functions.
We define a (P + R) X (P+X) matrix function D . : |

~ The didgonal elenents of Dst are

Dss‘z o for s= 1,---1,R ,
// (7, 41‘1‘)

D;s:.—' a.sfor- s=R + 1+ ,P ‘+ X

OSSO TR ST O -

- For s=1,2¢*,P+© yt= 1,2 ,P+.0, s%t

LY
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B

- Fors=R#+ 1,"‘,P+2Q.t=t= 1,000 ,P

tr
b . _FF (o)
st
( Ap © A(s--'Q‘))
(7,41d)
- Fors=R+ 1,0+ ,P+.2Q,t =P+ 1,e0,P +@Q
tr, &
D = Fo JF(s-q)
“- —
( xn B )'s-Q )
. (7,41e)

Iid

- Fors=R+ 1,0s,P+ 2Q,t =R + 1,000 ,P+ 2Q,s¢ t®

+ —_
F(t-Q)JF(s—Q) °

ut

D«

. M-@) T Met-q) )
. (7,4if)
We recall that {Fm] is a set of 2N X 1, matrices defined only f¢

#

N ext, we define a set of N matrices E of dimension (P +29)X 1




e .

-
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p ’

(En)m-"-'(F"Jnm-'-’I,"',R, n= 1”"’ m ,
(7,42q)
d |

(En)mg(F(m-Q)j—n m=R + lpes R+Q, n=1,°°, N
. (7,42b)

the nth component of the mth vector F.

where (En)m means t he mth component o tHe nth T;}dor E and (Fm)n,
We also create a set of (P + 2Q) X (P + 20) matrices C
(p =1, v2e, 2N, r = 1,2+, P+ 20Q) where ther th column of matrix D
has been replaced by Ep. p” and"r” in Cp sho&ld not be confused
w&-h row and column ind{ces. They are labels used to distinguish

different matrices. Indeed, we have
A

P
kS

(Cp') jtr

i = Dy
(7,43)
(C o = (£, ),

where "i” is the row index of matrix Cpr and "j"', the column index
We finally define the last object necessary to obtainning the R - soliton
solution. We formP + X Vectorsc of dimension ZV x 1.

[}

(C’_ )p.=. detcpr r=1,ee P+ZQ ) ' ‘
(7,44) i

where (C r)pmeans the pth elenent of vector Er
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a

Loolirig ot equation (6,65), we observe that

J-C ) .
"g-T-—BT n:l,.o.,‘R
(7,45)
. J C
i .—_—-.——-—-—(_n+ ) nsP+ ] 000 R ' "
" | b
1} '
J C .
= - n_ .
X -,
r’ )
The R-soliton solution now takes the form ’ N
P ;7 c_ Fim | .
Xx=1-13 n_n + /
n=1 | D |( x- 1) U ' |
S . (7,46) :
' tr . +
+.{t'\[_ J CnFn - J EnFn ]
m=P+1 ( A - Xn)l D l ( A - —A—n)' B l -

A’O\ne should be careful in interpreting X.  One might be led to believe
;hgt there is no soliton-doublet interaction since we have separate
summations for solitons and doublets. These interactions are contained
int he mtrices Cn which expresses interaction of a given soliton (or
doublet) .with other solitons and doublets. From equation (7,46), it is
easy to obtain the two fundamental interactions that we left aslde: the
soliton-dou blet interaction and the doublet-dou blet interaction.

. /
(=

- 98-
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7.7 Soliton~doublet Solution .

In this section’ we apply the machinery of section (6.5) to find the
soliton—doublet solution. '

T he matrix D is

B - tr -~ ot
Fz J'FI Fz J FI
®1
/ (- 12) 0 A,)
‘ o tr ( +
FI J Fz F2 J Fz
1] D = . °2
Q. _ (O, 2 ) : (A, X,
tr = tr
F, _‘,’ F, F, J Fz .
T — : 2
* (7,47)
, . t
We symbolically designate -the set of metrices En by
~ ‘ .
- F
E = Fz
| 2]
(7,48)
(7
- 99_
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t

-

It follows that matr\{tcels C pl and C p2 are
FiruF Fir, |
‘ ) 2 1 2 1
p - : -
g (2, =3, (r,-%)
+
c : . | F,J Fy
pl 2)p 2
» CYREY)
. tr o=
P F2 J Fy _
2p e2
= .
. ‘ (7, 49)
‘and
!
. ,
« F2 J FI
Q_‘z} . 1 ’ ) * 1°)p -
by xp)
/
\ FiI* g F , FFIF
1 2 2 2
()«2—- 11) (12- xz)
tr
F© J F
1 2 (F —_
o a
2
{_ 1 2)
) (7,50)
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¥
Il

We do not need matrix C
p3 :

. “

T he determiinant of rpatrices D, Cpl and Cp2 are

{

o

B .
P . o
- . L '

- - /4 v N
- 0 1 n »
\ N i
. F4 -

- + ! -
F,JF Y
_ 2 | 72°%2 12
|D}-01{I02| - } d
A= 3, T
¢ ¢ Ay (7,51)
tr tr 4 tr . &
FZ JF1 FI JF2 _ FZ JF2 FI JFZ
j "ZRe{ [ @, ” ]}
g2y p=2p % a =X O -i,)
2 "2 1 2
Obviously 'DI is a real function. '
4 +
F J F 2
- 2 _ 2 2
Iclp‘ = ( F1 )p { ' 02 l _ }
(lz- xz)
tr +
F J F F, J F
’ 2 1 - _ "2 2
- 2 Re |{ - [ (F e, (3‘2!)p 11}
A ») (A~ %,)
1 2 2 27,
- 101 -
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tr + tr
\ . FJF, _  F,JF, F/JF,
- ”Czp‘ (Fl)p{ M az- -
. A tr o3
Fo, JF F, JF
: 2 1 2
+(Fp) o5, _L }
(AI-AZ) (AI-Az) /
+ gt tr
\ F21F2 F2 J«FI LFIJFZ
-Fy) {a - = x }
P x,) X, )
(12 A, (AI Az A p\
' : \ (7,53)
’ a4 . % The matrix X of 'the soliton-doublet solution Is -
i . ~tr tr - +
\ gt 1645 —chFzﬂ\-JCzF?}
" A (D] \(*"1)("‘ )(1_{2)
v # . - :
' ' b © o, J 2
1 1 ir 2
AR {—H;x} [1FpFl] oy }
" ; - ﬁz XZ)
// - 1
tr +
) - F,  JF, _  F, J
- ZRc(Tz————}\[JF Ftr «, 2 2 JF Ftr 13} #eee
Ay = A _
1 2 o -y
| - 102~
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- ~

% Ltr - + tr
o 1 {_JFIFtr[FIJF2E2_E’2JF2 Fy 7 Fy
- 2% - — -
(A - 2,) A Ay Aq) (O, T, (1, Xy)
tr ., =
F.JF, F:TJF
tr 2 1 1 2
+Jf‘2F2 [a;0,- — ]
(A= X)) (g = ay)
' + + tr
«, F_.JF F,JF F F
tr 1 2 2 2 1 1 2 -
- Fy By [ A ~ J1+w (%)}
. "2"\2)—,”‘1'*,2) (Ay = x,)
5 _ (7,54)
"'k‘ tr - 1
C, Fp

: - where W) = - J ~—S—— %
(:} . (x - 12) . . !

Ong,&{\\proceed in the same way and find the doublet-doublet solutfon

" which we do not display since it is too’ cumbersome.

A
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(4) The Mtrices M n (2X1)

8 E.rplicit Calculations for the Case N = 1 . N

&

We will explicitly perform all the steps necessary to obtain soliton

solutions within the framework of the theory developped in aection

(6.3). 5 '
& '

First we list all the steps necessary to get the solution go that the
reader can follow the oalculation dosely and easily. The [oltowing

<

objects must be calculated.

e

%

(1) The Yacuum solution? (5,n,0) (2 X 2)

“(2) The Functions F n (2 X 1) ‘ ; C .

’

(3) TheFunctionsa, (1X 1) ’
(5) The Matrix X (2X 2)

(6) The Spinorfield | z;g'gj) R
] Rt A R

(7) The Scalar field o(E,n) -

™~ L4

. ’ ¢ i
Steps  (4) to. (7) must be performed separately for each type of -

soliton solution.
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<

a

8.1 The Vdcuum Solution

?

We first solve two ftrst order dszerentml matrix equatzons with constant

co-efficients to “obtain 4’(5 )
)

.

\

~

0 0
KRN
(A+

o(xf-*).‘

]

»

B(X+1)

_ 0 Wy
- .,_(:)Zlo‘l

-

T he most general solution to this system Is

) CirSinh M + C‘;Cosh My

clsinh i)

a

ST SO
v(C Cosh u; + CStnh “i)

Castnh TR +C4Coshp.

(8,2)
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and

Wy = \,‘“1:’1 §,Uy = 4“2:’2 n
“

When it will be nore convenienl, we will display the £ or n dependence
bf the solution by letting By > My £ and Bp* ugn with obvious

(8,3)

redefinitions of u ., u
rr2 ~a,

Also, when necessary we will abbreviate Sinh by Sh and Cosh by Ch.

In dealing specifically with 0(1) and &bg, we will let C;» Hj and C;+ G].,

j: 1,0-.’4.

Two critical and important values of v are v = 0 and v = = (l = =1 and
A = I). We directly’ solve equation (9,1) for these two values. We
demand to be able io obtain the Gross-Neveu-field Vacuum solution from
the gauge-transformed matrix vacuum solution according to equation

(6,27) with X = 1. We display the Gross~Neveu field vacuum solution for

N = 1- //"'\\




1
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/2 e 172 ¢
V= A8 e’ , 0= s
(8-4)
0= 8 -0 8 In+00, o = A
0 0 n » 99 2
and the gauge transformation mratrix
Sin © gos o]
91 -Cos® Sino . .
'(8,5)
T he relevant matrix solutions at » = 1 are then
2 .
0 BI/"A 1
¢L;( C;:—-I/) = @
A B—I/Z _ 2AB3/2£
(8.8)
‘ V2 V2,
Gg( n,a1) = .
0 _ A-18-1/2

R

Note that we display symplectic matrices which in the case of c 2 X 2
matrix space is equivalent to showing unimodular matrices.

f'\_
(S
)
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o

~

T hree constraints must now be imposed upon solution (8,2). ,
, 0 .0 '
(i) ¢ 1({,)«) andoz(n,x) must be symplectic.

(ii) @ ,‘I’(r.,x) andtg(n,l) must be commutative
: g
(iit) ¢ 3(5,1) must reduce to ¢‘I)of equatio;: (8,6) at A = =1 and ¢ gmust
decay io @g of equation (8,6) ati = 1.

W
*

T he most g\enerul matrices 02 (g A), ﬁg (n A), solutions of equation

- (8,1), that are symple’ctic and commutative are.
o
(HS‘xuli- /uaz cn@,»(ﬂcnuldnrf snut) -1
Q‘;(F,,A}Iz - .
ﬁ'l(ncm,ﬁ J1+0 Skru)s (HShu1+/1+H‘? Chuj
\ ' o 8.7)
[GShpz-./qu Chnz), v(HChu2~/1+G? Shuy |
og(n,x)z ' , . .
v ‘vnl(GChuz—v/ 1+E Shul), (GShuI-Jh"E Chug—1

(8,8)

T~ 108 -
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<

If we letH = Sml and G = Sh-tz, then we can write these solutions in
the form. -
‘ B Ch(ul-*'tl) vSh{u,+1,)7]
¢ er)=
b“.ISh(u1+Tl) .Ch(u‘l"'t‘l)_'1
(8,9)
B Ch(uz—'tz} vSh(uz-tZ)—l
Ogn,k)“ :
’ LVISh(uz-rz) Ch(ny=15) |
(8,10)

E quations (8,7) and (8,8) were obtained in the following way: We start
‘ ]

with e, ("1' H,, Hy, Hy) an ¢, (G, G,y Gy G, wherethe H/'sand

G,'s are the coefficients in front of the hyperkolic functions present in

{
equation (8,2). Sympletic matrices are obtained by requiring that.

H, N

, -Hlfzszz , 6,G,4~GC,Gy=1

4 274 1

(8,11)
Then, writing [ ¢3 , ég:l = 0, we obtain four systems of four equations.

Each system corresponds to an element of the 2 X 2 commutator . Each
equation within each system °is obtained by demanding that the
coefficients of the four possible combinations of hyperbolic functions be
zero. For example, the system resulting from the element on the first

row and first column of the commutator is

e
4

=




PN

v
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r'ns 0 ~H, ol - ””GI‘I

0 H, O -H Gyl = 0

H 0 -H, ©O G, .

_f’ H, © -Hz_] L_c;‘,_J N

(8,12)
Demanding that the determinant of the matrix be zero leads to H3 = HI"
H4 = Hz. Then solving the system gives G1‘= GJ' Gz= 64. Using .
equation (8,11), we get

(8,13)

[~ 2,
G,=G,=/ 1+G

3 , G, =G, =G

2 4

[

which ifasubstitutet\into equation (8,2) gives equation (8,7) and (8,8).

T he other three systems yield no new constraints and are compatible with

" equation (8,12). In equation (3,8) the presence of the minus sign in

front o/ 1+ Gz is necessary and will be understood.gs we impose
constraint (iii). This constraint will conpletely de rmtneig and Qg.

Dealing‘ with Qg, constraint (iii) means that at A = 1 wemust have

3

- 110 -
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lim 2 . . _aal/2
oamGShuyg-/ 1+G Chyuy=-A8
(/
ltm -1 2 -
vam Vv (GChu,-/1+G Shu,)=0
(8,14)

Since u, = w, /v, asv+®, Shu,»0and Chu,* 1. Wethen easily

deduce

G’/_A_z—1
(8,15)

-

This limiing procedure is rather tricky. If we look at (43 ) yr ¥e
have .

b3

Lol V2, L gV/2

(8,16)
The left-hand term is obtained from equation (8,6) while the right-hand
term is deduced from equation (BLg‘lnusin equation (8,15). It follows
that the limit of equation at X = 1 cannot be equal to equation (8,6).
E quation (8,15) is right indeed and the paradox is solved as follows

(i) Since the fields arise on the first column of 02, it is
important that they can be obtained from equation (8,8) at A = 1
E quation (8, 15) allows such a task to be performed.

kS _A\ L]
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b
4

-
-

- (ti)  Taking the limit of equation (8,8) is not straightforward congider the -
‘identity ‘ ‘ .

-
; .

Y n g n
v2{cn?(—2)-sn?(—2—)}=v?

g v . 8 v
(8,17) '
Agv+w», ch+ 1, sh+ 0. If we proceeded in a naive manner, we would
0 “ ) ¥ N
use L' éspital’s rule to obtain the linit ofvZsn?( —2—). This
- e~ B v
N \ would lead to . 4
o, N -
v? - ( 0 )2 =y ) ‘
B v
(8,18)

.which is obviously wrong. Therefore o

i

g n
tin vZshi( —2—)+o0
AR I B v ,
is the correct answer.

~
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The limit of equation (8,8) at A = 1is then .
/ 14-62 ' [ ' . . . .

(8,20) .
andve iply that 0+ = =S vG =G :
v

Demanding that we obtain the Gross-Neveu fermion fields from equation
(8, 20) leads to equation (8,15). Equation (8,6) is simply discarded since

it is now irrelevant to our problem.

For ¢1, the situation is even nore tricky. As i+ -1, v+ 0 and we must
/ )
/

have . /
HS hu,+ 1+ 0 Chu,* 0

(8,21) |
u"(HChu1+/ 1+ H? snu1)+As"1/2 f “ ’

/

uy = '&Ivs sqthat as A+ -1, Shy,+» 0and C hyu + 1.
It is obvious that for finite H, eauation (8,12) cannot be solved. We

make the change of variable H = / (vK ) z-—; and equation (8, 12)

becomes , q,

- 113 - ‘ }
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I

-

(8,22) :
vi/(vi f-fc:hul + K-S hu1+A8—I/z

/
. -
. - .

For finite K, this is easily solved and we .obtain

2 ,2
K=v—1f1* v._A
8

(8,23)

/

But since v + 0, K is not finite! Since we know that the limit exists, we

v

/
define u new K to obtain the correct limit

-

K< —_”1 ! L. v2 AZ
(v +¢) B
/(l (8,24)
/ ) .

/

where €/is a small parameter important only when v > 0.

>

! /
In what proceeds we assume that v # 0 and we drope - ;

J b

- 114 -
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&

4

A _ Hence, we obtain®
3 v A
L = p 172 ’
‘ - (8,25)
§
b :
E T he vacuum solution is now completely determined. It has the form.
\.
] s ve
0‘{(.‘1)) ==
} v-lp é i )
o (8, 26)
(. _
where 62 - p2 = 1
8 =Ch(u1+u2+ (1:1-1:2)‘] =C ha
T
) b=uprugr Crpy)
We then have to multiply ¢0 and the matrix S/get the vacuum solution
in the canonical gauge. .
T he result is
!
! Sin66+v-1@;69 v Sinep +Coe0 §
i o B
| o v (Enp) =~
| -Gxeéf\a.lsmep ~-v(CosOp +Sine §
. - Ve .
( ) | = , (8,27

Y
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-

o~

' ‘ 8.2 The Matrices F n

T he matrices Fn satisfy

1,00 o _ ...
F o=l "y (Epa)JF, n=lre,R :
(8,28) . |

T he matrices F: satisf y equation (6,70) identically .

., Let Fz conveniantly be of the form

v a
0 : n
F_ = where ¢ and b
, n n .n
( ¥ — \’ 1/ 2 b t 3

are arbitrary constants which are real for n < P and ¢complex for n > P

T he matrices Fn are then '

“ !
1/2 ~-1/2
,\ * "21 (ln) v bn - *22 ()‘n) v / an :
F, = | '
n , 1/2 ~1/2
, "' (xn) v bp* 952 (xn) v ,an
T (8,29)

CoseYn+SineZn . ,

-Cosezn+SineYn

y .
C - 116 ~
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. o 8.3 The Functions o n

L4

To find unwe‘must solve equation (6,73) and equation (6,74). We

have . N
ngn =c(k n)
(8,30)
0. y “
If we letFn—Fo(xn),:then we have .
. ot" 0 T .
agu(x] =F" (A)a(x) JF (a) S Coe
' . ©(831a) "
o . AN l 'otr 0 . .
r ©oe 3e () =F M) JIF () S
- (8,31b)
‘ 50 -
o wherea (A) = = [ Wo(ln—l ___._l_____2 ‘PO(U '
- ' (r-n?
/ 0: . ; 3;0
wherez () = - [ v (x*n“’ i w"( ) a
- o ) : (k + 1) s
L ‘ ‘We wll show thatn andI can be related to'the vacuum solution ¢ (A)
B . und that they do not depend upon the vacuum solution parameter 6.
: L ~ Using equation (3,32) and (3,33), )
°‘ 4 L .
! °
- 18- k
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|

.

~

we rewrite .and.X
o TR

(",0)‘%1 wg \z-. \(,1’0)"1 ‘p
(x-1) "7 . (2 + 1

3
Q=-

0
n .
)

(8,32)

Since\po= g¢0 ,\PE =g ¢0 +ig ebg (sinilarly for m)
ur;d

u ‘0-1_-1_ ,0,,,0%-1,0 -1,
a=-[ (6971 g 6%+ (4%)7 6.1 (2-1)

=

) (. D - | (8,33)
cr=-[ (0% gl g 00 (%) 62 (2-1)

T he matrices g-l A and g-f g;. do not depend upon® '
0 -
-1 =-~ ::-~ J
g &77% [; é] “1
o (8,34)

[

= [a YT T e 1 (e )
‘ ’ o ° (8,35)

. . R -1.0 )" ‘

» p=-[wy 7 6T+ 69760 (2 +)™?

N
\
9 ’ 4

~ .

« N e

f .
¢
. .
B :
0

. o= 119
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o

R ecalling the form of ¢0 (equation 8,17), we obtuin

. -850 (v )
J(¢O)tr¢ —
V2l (1+v?)
ON-1,0
(67) 9
. E_ v -1,0 _ v
W, v w (‘bO) *n -1
1 2 v
TN
T he matrices a;1d2 are then -
s o (v + v*l)
®
Q= = "7“!‘—5’"
‘A1
R RN R I
5 b
: -§p {v+ \J-.‘l)
[A] =]
A+1 .
| 62(1 + v 2)

T hese two matrices are compatible in the sense that if ‘they
into equation (8,31), they yield a unique a.

- 12

0 —

;(J+v2) 92 7]

- 1-+v2) §24-v2

Op(\)“l*\)) .
(8,36)

8, 37)

5o (v1ev)
(8,38) -

—

L) p( (v_l *?")_} :
(8,39)

3
]
]
-

are insertegl e
& .

¢
E

-~
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5ol (mFs? ]

~

w
—L_ (¥, Y2y

where we used

o+ T=w2(214v7d, 0 D7T=- 201 +v3

LA
-1 ) }
_-(m'ﬁpz"-sp(w I)__H_v 1/2% o
w, i
=-—21 " (v+v Y (bp-a8)?
(x-1)
| (8, 40a)
2
= = vV (V +v-1)2";1 22
(8,40b)
w0 .
==2 (v +v" )2(bs - ap)?
2V
(8,41a)
w
= -—23 (v +v-1)2 Y2
2v
(8,41b)

Part (a) of equations (8,40) and (8,41) is more useful for adtually doing

the integration.
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It follows that
o, =f’(35 a) dE

-1n2 .
/(\-‘ + Vv ) b ,
= {—2 (Shza-2u,+F ()
4 2 . .

-ba( Ch2a +F,n))

-~

+—2 ( sh 2A+2u1+F3(n))}
2

b - 122~

(8, 42)
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»
-

and
}
a2=f(3na)dn . R
(v + v 1)2 »2
= [ —2—(sh 28+ 2u,+G ,&))
4 2 ‘

' (8,43)
2 ‘
-ba(Ch28+G,(E))+ €— (Sh 28- 2u,+G 4)) }
2

Requiring tha't'cl =a,za gives

a=L a”
(8, 44)
.= 1y 2
where L= (v + v )
" 4
and

n'=—Lb—a;—‘-1—2—l—Sh 20-ba Ch2A+(u1-uz)(az~b2) ta,

(8,45)
Togeta , we evaluatea at.} = x';. Of course the result is very similar
to equations (8,44) and (8, 45) - .

- 123-
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\
a =L a'
n
un}&'

-1y 2
GRS
‘n- 4

02+b2

2

Fd

2 2
+ (ag - bl gy - " 2n/ * %on

w\hereuln=w1\’n§ . Mgp =

aOn = constant

- 124~
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8.4 Single - soliton solution ’ -

8.4.1 T he Matrix X

We have already found an expression for X and need not be concerned
with the calculation of M.

We found
tr
x=1--LEF \
3 ()‘ - Xo) ) .
(8,47) '
Hence,
. T B ' » |
( } ‘ o 1+ 152 F§ o
- (x-xo) a, (x =2y e
x(x) = .
. _F.? F F
1 _ 1 2
| 029 5 (-39 wg, |
(8,48) .
where the 2X I matrix F is F = 1
F 1
2 P

given in equation (8,29):

F1= Coso Yo+Sir16 ZO i

: _ y
Fz--CDsG Zo+SlnG Yo a /

v
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S

Using equation (8,48), we define four column vectors 3’(1 , &2, X; X,

\

-~ 5 ~ S—
(XI)iE H()\:"I) ’ (X*z)iE le-()‘::-l)
\ .
»(x)iaxzi(""’)' (X);2x,00 = 1)
B 1 B 2 B
| .- F, F, F}
_ (1+1,) q N (1412w,
X; = A Xy =
- F F,F
2 1+ 172
ﬂ i (1+A0) o | i (1+Ao) a9
( ) (8,49)
B -
FiFy ) - Fy |
1+
) (1-;\0) a, ) (1-2,) ay
:{é : ¥1® 2 X2
- Fz } .- F1F2
] (1->‘0)m0~J i (1"‘0)“0_J'
(8,50)
-~ These vectors will be useful to find ¥ and ¢.
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8.4.2  The Spinor Field [;’:]

We define two new column sectors ?p'o, ?,0

- o I, -1/2
2917‘#1.{1(5»“1 )—‘ ‘ AB / COSG_] .
~0 Y . ! = .
v 1/2
z 921 ¢1.Y1( E’-I ) AR SirG
L-.Y -} L . .-] '*
(8?51)
//
and /
T e ' " 2 ]
I 9, 64 ,(n,-1 )—1 -Ag* Ve sim
x Al .
$0 ) - 1/2
+
zgzr ¢2Y1(n’-1) ABg. Cos0
Y, - R -
: n « (8,52)
From equations (8,49) - (8,52), we easily find the fields ¢ and ¢ - We/
- get '
. ~tr ~try ~0 ! J
v= (X + 10X, )0

- 127 -
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2 2

: _ F, F . F3 Cos® F, Sine
431/2{;9‘_ 1 2 se, 1 _ 2
(1+XO) %) (1#a o)ao (1+lo)ao
- »
A vy, (z,+ iY,)
fr:‘w 1/233{ 1+ —29 0 0 }
’
/ (2+24) Ly e
/ ) . .
_ . o2y (z, +iY,)
\ vg (Vg + v 1) al . '
\ 0 9 '} 0 o v
where
_ 1/2 :- N L2
Y,=v ( bgCha,-q, Sha,)
_.-1/2 } N .
Zy=v ( ag Cha, - b, Sha,) .

-128- N
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v \

_ Simfilarly 5 3
=( i""-*i‘i"")?‘ ’ ’
$=1 4% 1Y%
- 10 | o 2
. F .. F?sim iF% Cos8’
=VA51/2{3‘°-————’-€—£-—- e, 2T _ ¢
(12 g) o, (12 ) a (Fxgle,
. vz, (Y, - iz,) g
eag¥2 9, o' Yo~ 15

(w* w7 o

—— 4

where we used L (1-—)\0)= (vor v ')
0 2v,

The functions present in equation (8,54) are given under

equation (8,53).

~ It should be noted that the onl}; effect of the gauge transformation g on

the field ¢ and ¥ is to introduce the space-time dependent phase factor
{:]
e -

8.4.3 The Fieldo

'

. *
_We first calculate the canplex scalar fieldo'= —12-41 ¢

- 129 - .
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R
T he result is ’
. . o/
! ) , ' (v-I‘szsz)
. 0
°'.=°0{'1+-_?°[Yozo-i Y _010 ]
%y ” ( Vo ¥ Vg )
F 2, 2
) 4i Yozo(yo*zo) }
(vor v D? (ap)?
S (8,57)
' \
The field o thdt we are looking for is pﬁen_
. 2Y,Z,
o=Rel0) =ag{ 1+—2"2}
: Cb

. (8,58)
8.4.4 Verification '
"3

Using

Y = (- 9, By W Zp 2y = (-9 ) ¥

e o,2 o,Y

. 0 0”0

y, = (29, z, =( )
s Tt g R
a;x=i’voz§ Zz

1 o ¢ L)

- 130 - -
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o
-

Vo o ' .

>

Yp=-dod
_ vz s 28 Y,2, . 22, (Zy01¥5) v
=g, A8 e [ -i-
0 n o’ (v, + v-I) a)
0 o "%’ %
2
0 i Yo)

2y, (Yo-iZo) J

solution.

-

e Lo

- 131~
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We shall wait until chapter § and 10 for an extensive discussion of this
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. . R 3

G

3 8.5 'I‘w&-So}iton Solution . ‘ " -
' 8.5.1 The Matrix X ,
by ! ’ 5 . ’ N .
-’ . We rewrite equation (7,34) in the form '
‘ RS ! ' L PR tr _ tr
xegs L z2 (A2) e JF Fy (A2 Fo JF Fy
. ~ o D12 i,j=1 =2y
S ) b
- ' (8, 61)
, The solution will be defined in the center-of-mass system and can~be
' . obtained in any fr{me by a Lorentz boost. Set xl =-Ag= Ao. A
v slightly different notation than that of section (8,4) will be used for
- , , . the matrices F, - K b -
- o Fi . i »
" F= | %) i=1n2 L
) T i Fi o . ’ ’
. b J\ , ‘ R
o " : : (8,62) T
T ‘A n
: C It follows that 0 .
o - { gl { gl
(- F.Fy) (-F,F
: i i i .
o (sl FY (FLFD m
k v T (8,63)
n _ tr S N S I -
. . F”-— Fy f’Fj Fa Fy - Fy Fa
‘ . (8,64)'
. - 132 -
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v ’ T he matrix X's elements are then ' ‘
i, ij
X = 1+ Z’ FO' Ab ,
11 Ji j (A=X i ] .
’
(8,65a) .
" i i
. Ab]
X12 izj %)
?
. (8,65b)
o Fi A ij ) E "
DX — - 2' a a 4
L 21 i) [ A—Ai ) “
b} .
(8,65¢)
. kLl “
2 { 8} X = 1 '—5‘ bﬁ_ a
( 2”170 TORT
o i ¥ .
3 . - (8,65d)
Eome where
! . o
. o c 2 i _ g gl
Aij- 4 )‘0 a Fa H Fa
.a . \ D12 .
: ‘ , (8,65e) -
’ 2 i _ j '
Al 410 @, Fb HFé )
b.‘" ' D .
) ‘ 12 e ) E .
b . . B (8,65):)
- PR
o ! -.‘t‘: .
. ~1B3-
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H=z(x, —xj) Fi; =2 ,(2,Y,-Y, z,)

FlzCoso Y, + Sino Z,
a 1 1

Flz =Cose Z. +Sin® Y.
o i i

(8,65qg)

(8,65n)

(8,65i)

and the prime in L' means that elements with i = | are forbidden.

Next, the convenient column vector X' is defined

v
0 Xt Xy
X (A = -
Xpp * Xy
For example, at } = -1, X' takes the form.
R ML 7 N S A
1- 7 F (8, -ia, )
X (-1) = (3]
. L N ) BN |
i- 1 F (8, -ia])
" LI ) .

8.5.2 The Spinor Field

——

[o]

(8,66)

(8,67)

Using Equations (8,51) and (8,52), the spinor field is calculated
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v=x"-17°
< - . , (Al - iAij) . .
’ = AB 1/2{919-2 €1+)\.3l (F;Cose+F;,Sine)}\
i
(8,680 -
¢=X,t7‘(1)$0 E) ’

ij ijt
-1/2( i8 o (2 "Ma) SRR |
= a8 V20 -4y (1-7;) (-F:!Smei-FbCose)

(8,68b)
jAUsing equations (65h,i), we have
F; Coso + F:; Sin® = Y:
(8,69q)
-F, Sin® + F, Cos0 = - N |
o (8,69b)
Also
ij _ ij _ 1 2 i _ iy _ _ j
all - sl = D12( rga; (F, - 7)) u(p{, i)
N (8,70a)
| and :
F-ifd=-ef(z+iv)
b a ! i i
‘ (8,70b)

AL 4 N e

s T T T TSP T i
I \

&

- 135 -

Substituting equations ( 8,69) and (8,70) into equation (8,68), the spinor
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field is obtained at a mathematical level equivalent to that of equations
(8,53) and (8,54) (which defined the single-soliton solution).

£
- ' 2 .
- . y | 42 a.(z.+iy)-H(z.+fy)1
v =M 1/2916{1_*_1_ 3 0~j \“i i - ) ¥ v
D, i] (2+x, ) ]
(8,71a)
5 .
oz i 4x0uj(zi+n'i)-H(zj+‘iyj)_l |
¢ = A8 e {1 z - _Izi}
D, 1,j (I—Xi)
2 -
w vz ge g, g | Dol E) T 2],
D1z 4, (1+1x;) R

(8,71b)
8.5.3 The Fieldo

If equations (8,71a) and (8,71b) are substituted intoo = 1/2 Re {v*e}], it
is found that, at first sight, o will have terms proportional to ( 1/012)
and ( 1/D,,) 2. It easy to trace back the origin o thesejtwo terms by
looking at equation(8,71). The field o will have the form

o o

- 1 2
g —60(1+D12 +———Dz )
12

(8,72)

-136..
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*

”

We believe that the definition of 9, and 9, is obv ious -

2 —
12 (z» o, Y zm) HY,Z;

o,=1'{ % }
I‘i,j (1+AJ“

(7,73)
"where 1 = iyjy m=1i,j, 1l #+ m. The second prime inLt" is to remind us that
m and l are meta-indices. That is, indices whose values they take are

themselves indices.- .
. D Q
And - %
2 ,
°"=Z" Yizi4xo(zi Y, Yizj) H(aj uj)
2 (1+ll.)(1-1 i]

. 4 g2 v,
+2,_f£i Z; (16 2, a, o, - H B (mzl.yi Yi‘zj)
(1 + Ai)z

(8,74)

where we used \

(z,- @) (v, - z) =~ 1(v] + z)

(zi - in.) (Y). - tzj) =(ziy’. ”’.-z;) -:[yiyi+ zizi) ;

Notice that the first term of equation (8,74) is zero (of couru.']‘?‘,
We left it there so that the reader can retrace t}e' orlgin of the

calculation more easily. Using )

- 137 -
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<

2, a4 )
4)«0 D12_ 16X0aia]. Hz
(8,75)
together with equations (8,73) and (8,74) in equation (8,72), the field o
. s deduced. oo s
a2 (1 z) 2Y, 2 H
1 42 (I oy ¥, Z) i %
o +°0{ 1+ D 1 [ S » 2] }
12 i,j (1 + 1) ‘ (17+ 1)

e (8,76)

3

8.5.4 Verffication

—

Since equatiéns (8,71) anb (8,76) are displayed for the first time, we
believe that & is important to show explicityly that they satisfy the

Cross—Neveu equations of mation.

('131’12)E and (H )E are found using equation (8,58) and

2
o & %

(1-11)2‘

20

("l )E =

L - 138 -
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-

We find

2

" ' Zi 4Ao a,; Zj
(D12}5=20032 (1+Aij [ (7+xi) 'Hzi]
(8,28a) ,
zZ, Z -
_ 2 ' i i ;
(H) = 42,0,8] (177 ) (8,79b)
Let's calculate aq;. It takes the form
: (s8), (o0)
o¢§ooA81/2ew{1+ ) 1, 22}
1] 12 D !
. 12 .
(8,79)

Again, (o ¢)1 and (o ), are defined by isolating the terms proportional
to( DIZJTI and ( DIZ)—Z immediately after t he multiplication of ¢ ana.

.One finds that (o cb)z contains a term proportional to D ,,. Define

(°¢)25(°¢)3012+(°¢)4 ‘

;/
N )
'

e | . :

- 159 - RN
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T he final result is:

~

2 - i ta,Y, Z
(o#), =37 *ro log(or; - 12,02 *e; ¥, 3
1Y) —(1+Ai)
(8,81a)
2Y,Z H HzL(yi - i.zi)
- 2 (1 + ]
, [1+li] i ~
,' 2 .
i Lz, Z, (Y, - iZ,
0=y (e Nt e T
3° L. (1-2,)2
L] (1 +Xi) i
(8,81b)
L4 .

. Z f .
e~y e Yt 2 Uy T ) R oy
RS (1+2,)% (1-1))

4 2 2
, 32 191 zj (YI 121)0;!.
2
(1+ )‘) (I-Ai)
2 . .
i 16 3y Y. Z; Z; (Y) ;zj) a
(1+)‘i) (1-)‘1')
,, 2 2 _ .
i 81y Y, Z (Yj : zzj]al
\ (1+ 2%
+‘..
\
- 140 -
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. N

2 2 .
RYRIET (v, - iz;}) a; H

o 0 "j
. (1+2)% (1-2)

2y, 2 (v, - iz)) u?
+ i i i }
¥ 3
| (1 +2))
(8,81c)
N
T he next step is the calculation of iV £
Its form is '
- v v |
v, =0 Asl/ze'e{ 1+__1_+____2___
4 0 D D
’ 12 12 }
(8,82

Again ’4’2 contains a term proportional to D12 and we define

~

Vo= gDty
(8,83)

@

¢ = 141-
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T he calculation yields

2 .
- =Z'{ 42, o, (2 Y, - i zj) Z; +ajyizi]}
s, CL ) -
2Y,Z.H Hz, (v, - iz)
- i J _ j i i ‘
(1+2))7 (1+1))
(8,84a)
o 3 2 2 2
i 8‘:\0;'!. zl.(yi- iz;) . 8 Ay Y, Z,-Z,-(",-' zZ)}
(1+2)° (1+2)%(1-1))
— 2 2 2 .
Y 81y Y, Z7 (v, - iz.) i 16 1y, yizl.zj(yl - zzl)
S (1)’ (1+2)%(1-1))
(8,84b)
4
64 A .z, Z (y., - iz.) .
¢,=z'{ o Yifi %Y lrj’“lall
4 . 2 i
) (1+>‘) (1-)‘1')
4 2
X 32xg Y, 27 (Y, - iZ;) a
(1+21) (1-1)7
+...

- 142 ~




> iR

P i iaa mar LT L R N T

%

-

Survey of Some De\;clopmgnts in the Gross-Neveu Model

-

2 - g :
0 Y; z, zj(y‘ 1zi) aLH . .

. (1 -12,) (1+'xi)2 :“1'

16 A

2 2
0o Yi zj (YL—

(1 + xi)"

?X l'Zj) a,; H -

2 2
) 81y Y, Z (Yj_- le) o, H
(1 + Al.) (1 -_l!.‘)‘?

2 ’ 2
2Y, z].(yl.- iZ‘) H

+ (1**,-)3 /’

(8,84c)

T he insertion of equations (8,81) and (8,84) into equations (8,79) and -
_(8,82) respectively yields. ‘

Fve »

1:5 ==-iagy <
‘ . ' (8,85)

‘which is the desired resuli.

One can similarly deduce that v, = -i 0 . As in the one-soliton
~ solution case, we wait until chapters 9 and 10 for further comments.

. ~- 143 -




‘

&

- Survey of Some Developments in the Gross-Neveu Model

tou

8.6 Doublet Soiution

)

1 ¢

> ° *
.
v /
-

8.6.1 From the Two ~ Soliton Solution to the Doublet Solution. |

Doublets are generally described as two bound

os::rllati ng solitons. The

frequency of oscilation is ~cons'tc.mt. Apart from ‘their niass, two

‘parameters are needed to describe doublets:

and their frequency of oscillation. °
\

]

their translation velocity

The matrix X. from which the doublet is obtained is defined in equation

(7,39). 'fhis equation can be cast into the f‘orm.

T means that, to the termin curly brackets, . we

© /
: ~ - T 2 = otr Y B = otr
21 (g X)T I FF7 + (A %)) FIFF ‘
X = ~ I O =-x,) 1
. . D 0
12 \ : .
: (8,86a) ‘
" where o n ;
Y. LT 12102 12 .
D,z |2y =%, 1" Jal m \ 1
. : S . (8,86b)
Fs= F+JF )
(8,86¢c)

must add a term which is

the °oanplérvconjugate of the curly-bracket term evaluqfed at A = A.
1

l 4 *

'xo is, in general, a canplex number.’ Set




: of an element in equation (8,86). This is due to the fact that Tq/'= =2

o
I ? e

Survey of Some De\;clbpments in the Gross~-Neveu Model

.
.
- ﬁ

il
C >em
+

do=2o* 1.
- ‘ (8,87)

io is the velocity of the center of nﬁsq and 1‘0 is related to the

oscillation frequency of the doublet (In a similar wayxl in section

(8. 5) was related to the velocity at which the two solitons were getting

closer (away) to (from) 'eac_h/pth’er. We shall describe doublets at rest so

‘that we set xb =9 3:0. It follows that 'i"'o= - Ao.a Comparing equation

(8,86) ~and (8,61) ‘in the center—of-mass system shows that they are
almost uidentical.b Evaluatmg an element correspondtng to the second
soliton in equation (8,61) is equivalent to taking the complex conjugate

corresponds to. J\z = - 11. Consequently, the doublet solution is
obtained by analytically continuing the two-soliton solution to can}pleaq

val yes of the pardmeter xo T he doublet solutnon shall be given

explicity only in chapter 9.

~




T R bt v s~y e s € O TR

M
4 “

o

TN YA 4 L (€ AAATE AL oA Bk AT i Bt % sty s mr o D s T U P NP

L]

Survey of Some Developments in the Gross—Neveu Model

8.7 General Remark

In this chapter we have developped the tools necessary to obtain explicit
solutions. We have found the single-soliton solution, the two-soliton
solution and from it the doublet solution. - All the'se calculation were
described in great detail. Due to lack of space we do not give the
soliton—-doublet solution. After what was done, it is obvious that it
represents a straightforward application of equation (7,54). However
the algebra should be quite complicdted. Firzding this solution would not
bring forth any new theoretical point. Instead, our energies shall be
.spent on calculating solutions when an arbitrary number of fermions are

présent. This is the aim of chaptc—;r 9.

»
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Soliton Solution for Arbitrary N.

9.1 The Vacum Solution
In this section, we shall solve equation (7,18) far an arbitrary number of
fermions N. We shall find two matrices S(& sA) and T (n5)\) satisfying )

]

39S =W,S .
9,1

- ©

9, T =W,T ’ gt o
(9,2) ‘
where S and T are 2N X 2N matrices which are symplettic and

commutative. Wl and Wz are defined in equation (7,19), (7,20) and

(7y:21).

T he vacuum solution in the non-canonical gauge will be.
Ve K
. .

fena)=5ENT ()

4

¢ .“2' (9’ 3)
T hroughout this section we shall implicitly rely upon section & to_ma'ke

symplif ying assumptions.

b
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9.1.1 The Matrix S(E,\)

In this section we shall find the matrix S.

We write S in the form

(9,4)
T he matrices S' are N X N matrices.

*

T hree vectors r, s, L are defined through the relations

1/2
= 2 . 01 71 -
re=(o;8,)% 5 52 » G EA B

(9,5)

- ©

E quation (9,1) can be expressed as Jour systems of equations:

t
r

1 /2 .3 i : 3
sty =-p¥< 8° - S
( i])E Ti ij % g_ B. rj
(9,6)
-t
2 /2 A Sq r 4
S..), =~ / - S
(Sl =-r7 Sy~ 5, L 5 S
(9,7)
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3, _ 12 1 l\é
(S%le=ri Sy
: . (9,8)
4 _ 12 .2 ,
(Syle=ri™ Sy
. (9,9)

These systems can be decoupled. Fo example, if we take the -

&
derivative of equation (9,8) and use equation (9,6), we get a second

order differential equation for S?j

The decoupled system is N
p
1y . C 1
_ (Sidgg =it Sy s 'Z_ L
(9,10)
3 ,/g/“ 3 _ v
[Slj ) ET Su 5 ’Z_ b O
(9,11)
3/2 .
P V2 g

L 0 ! !l =
where 5 O - 1) s U= A B,

Identical equations are obtained ¥ we let I'> 2 in equation (9,10) and

3+ 4 in equation (9,11).

- 149 -
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Now, we shall solve equation (9,10) for j = 1. Define

n

S =z S, i= 1pe¢¢ , N

Next, we assume that

N~

all2¢ 4 ¢ )

S, ,
i P P

chipcn( B

(9, 12)
where, as of now, Cip’ A p and cp are arb itrary paraneters.

Substituting equation (9,12) into equation (9,10) leads to

B B 1/ -
DUCipt* riCip* 51t Crp) chlar/%+e,) =0
(9,13)
The Ch{ a;/z E+ vp)'s being independent functions, every coefficient

in the summation must vanish. We can form a. system of linear equations
| .

for the Cip's
P ﬂp+r1+ :11 tl * 31 t2 ese 31 tN C.Ip
1, s ¢ . . e =90
Iy m a, + o ey ty | qvp
] 9,14
("’ ) '31,..-"
! ,/
3
oy f

-—150_




Survey of Some Developments in the Gross-Neveu Model

Sy
To obtain a non-trivial solution to equation (9, 14), the determingnt of
t he matrix must vanish. This yieldsa Nth order polynomial equation

for the a's which allows t heir determination. After afew simple

operations we rewrite equation (9,14) as. g

i A T [y,

( OL+ N ) 51 tI
1 o ssve () - 1 m
0 1 ( Ap+r1 ) ¥ 9\7
E \ . '.. : 4 : =0
1( ‘
a +r) N s.t.
-—;0 sooe _E_—-LJ— [ ‘}: ._....l_.}———- + 1] tN%
(sNtN ) i=1 ap+ri ;
- . - -
FFI,...,N
) //.'\ (9'15)
The first N - 1 diagonal terms W one. The last diagonal term
a + ry /N//sft‘. ‘
is(—FL Y} ————+1 . Thelast column's nth
T €, i< a_+r
N N P i
. a, + ry s, th .
- element is = ( ) ( J,n= 1,000, N=1. Al other
a + r . s, t
p n NN .

elements are zero.
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) i.

O bviously, the determinant is equal to zero if and only {f

(9716)
T his is equ_ivalent to the polynomial of order N previously anticipated.
CN;} is now considered a free parameter and we have

N i
c, =(—=£ =3 ( 3 Cy
tp a + r s P
p. i N
R ' ) (9,17)
It folléﬂws that
a
spesty= 1 ch(——*B-«--—)( —Lyen(a¥% + ) :
p=1 ap try s,
(9,18)

\
We omit the index N in CNp which has become irrelevant and replace it
by an index j which corresponds to t he column index o S:l. We also
add an index j to cp. ThematrixOI is then

1o Pl - '

N A : (9 1’ )

- 152 - :
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§ ¢

where M and P are N X "N matrices . .

1 %m "Ny Sny
Mnm—( .+ ) ( s/ ) |
m n . R
(9,20)
1 _ 1/2
an-CnmCh (txn 13 *cnm)
(/ (9,21)
and C and ¢ are arbitrary constants.
nm nm
U sing equation (9,8), we obtain '5'3
3 _ ‘ 1 - < ‘ “ . l
(Sij)"",oﬂi!S(jdE bt /
- | ‘ ' /
=( ml 1 Ve Lo !
=(M oosif P dE )ii
. =M3p . \
‘ S ; (9,22) |
where: / “ \
3 _ 1
Mom %08 n Mnm ' . . ,
3 __"nm /2
Prm sh(a, E+cep)
aI/Z
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Y

For Sz, ‘we start with a Sh series and find
. ) o

s? = ml p?- a . ~ ‘
" (9,23) ‘

2" ‘ , . . :
where P- = E . Sh ( « E+ e, ) amd M is defined in

equation (9,20). Enm and e~ are arb itrary constunt’s.

-

.

/2
n

Similarly, ' ) ' .

sti= a8 p? .,
(9,24) -

v

4 / 2
\ n . , %,

lequation (9,22). L

where P4 = _f_'lm—- ch( 1/2 E + e and M3 is d fx'nedd in
. N ai Cn mn) € -

—

\ .
Thus\. -we found the most genekcl solution to equaticn (81). It'is a firs!

ordpr\2‘¥ X 2N natrix differediidl equetion und shoul d contain 4N~ free

parameters. These are C an-i enm' S ig cast in a

, ¢, F
nm nm nm
convenient {orm.

]

90102 The Matrix T(Tl,l) '

To find the matrix T{n,)), we proceed in the same fashion. We state the

result. T is written in the form ¢

e 1




PR

1 T2
T=
Ty T4
(9,25)
The differential equation satisfied by the T"s are
1 __ 2.3
(T4 ) =9 " Ty ’
2 __ /2 4 .
('I,;ij by =y Ty ‘ _ .
, /
3 1/2 .1 Vi
(1, ) =u’°“T:. - V w, 8, T
ij ‘n i ij a0 p k "k " ij A
(14 ) = o272 Vi I w s, 1Y
ij /n i ij kPk if
%9 k
(9, 26)
g : o, A A
whereui=(-~—8—0—)2,vi— 9_ ¢ ,wi____._‘___.
‘ (r+1)8l/2 g2 /,_J
The solution is
3 3 “ A
™=~ NJ R ~/ .
’ (9,27)

!
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L3 b, *+ uy Vi
where N°_z { ) ( ) - \ -
nm b + u Y
n m N
3 . 1/2. +
. andRp = DnmSh(bn n dm)
0 \ ™
R )
- ©(9,28)
o, - -
. 1 - - 0 3
whgre Nnm" Bn ) Nnm ‘ ,
D ..
1 _ __nm__ vz . 4 ™
R, % NVZ Ch(bnnw*drrJ fo
' “n
-~ N KR! ‘
(9,29)
" where rY -F _cn (bl/zn +f ") N3 s defined‘in equation (9,27)
nm nm n nnt'° !
T25 - NI Rl
F- N
where R1 = ——8m_ sp( b/ 24 4¢ ) N is defined in
nm n nm .
81/2
. n -
equation (9,28).
4
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T he paraneters b are determined by the formula

n Vl wi '
) - 1=0 n= 1pe+,N
t—

= 1 bn"' u;

(9,30)

D ’ frun are the free parameters.

I

nm’ an’ d

9.1.3 Symplectic Solutions ) _

T he conditions that the matrices S and T must satisfy to be symplectic

are given.

Symplectic matrices satisfy.

ATJ AsJ

. -
»~

., (9,31a)
where J is the symplectic form that we have often encountered.
We first consider S. Equation (9,31) in terms of the matrices S bcocmn

c
\ . N

s
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- . . - Q“‘i ) . N ’
( s’\t’ s° =(57) T, ;/fj

Tl \ (9,31b)

( SZ)ﬁ\s4 __:( s«l)tr SZ

(9,31b)
(Sl)trs4_(s3)'b’s?.‘___1 : ‘
(9,31c) /
Lets define .
) Lo g dtr 3
Knd{M "~ M ) nm
(9,32)

)

Substituting equation (9,20) and equation' (8,22) into equation (9,32)

. gives

-

2

0 _(Snl MmN
sy 1{a

K =
mmo(x - 1) sy

1 4

n? rl') (am * rl)
(9,33)
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e
e

|

N

Substracting equation(916). from itself yields

sl tl (am " dn)

!

l(an + rl] (am + r!)

That is

rdé

l (9,34)
_ 8, t s ful—
i (a, + rl)z nm _
(9,35)

Kmfl = Kn 6 nm
> 2
4 % . [a
where Kn =
(a-1)
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We use this result into equation (31b) which written in full is

K
tr —
e Kpa)nm-):l a1/2‘ In“lm
) n = '
_ Itr 3
. =(P K P)

The last equality will be satisfied oqu if -

3

-

Now‘ we get the constraint deriving from (9,31d):

1 .4 .3 .2 .
I K, (PPl PrmPin )= mn

1

- 160 ~
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(9, 38)

(9,39
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Inserting the values of the P''s inta (9,39), we obtain

K
l -
L CimErnCr L= )=8 :
l 1/2 -~
%
(9,40) _
We want to decouple t he val ue of the matrices Clm’ Elmfrom e ¢ so
that we let e = c- Consequently ) .
¢
5 Kl
[ S, C E . ::6 -
i 01/2 lm t‘n mn
1 ’ .
3 ! (9,41)
For N = 1, this reduces ,to the condition of unimodularity that we
imposed. |
T he same conétraints applied to T leads to
dnm = fnm = dn -
(9,42)
aﬁnd
Ll ’
DlmFln = °mn
l b1/2 -
l &
I% , ~ (9,43)

R L T O S SR Y S T
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\
1
where /
2
L = 00 [ bn * un12 vl,wl 5
= ] ——
no(a-1) v, 1 (b '+ u,)?

9.1.4 Commutative Solutions

In this section, it is required that the matrices S(¢,)) and T(n,)) be

commutative. Four systems of equations must be solved:
[i}

S, T, *+ ST, =T, S, + T,8;
(9, 44a)
5,T, + S,T, = T35, + 1,5,
(9,44b) |
S, T, + S,T, =TS, + TyS, ,, Q
(9,44c)
i
SyTy + SyTy =T3S, * TS5, .
(9,44d)

T hese equations will constraint the matrices C, D, E, F but not the

matrices ¢, d, e, f. Hence 4\’2 paraneters at our disposal.
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%
i

i

-

Y

Written in full, equations (9,44a) to (9,44d) are at our disposal.

1 1
C . N;
m j in 1 _ _im__nm 1y,
L ="z [P Mid - 72 L(Cog Nip) § Chupy Ol
My n n D
1
. Y Nin mi XF ."3 - A 1 D ‘;E A'.? 'YSh Sh _0
- 1/ 2 1/2 nr o lm im am; ml "1 H ¥ ™
myn b 1 1
. n m
(9,45a)
where v Za1/25+c
m n n
- bl/zn + d
m n n
M?m Dn{ 3 N?n mj 3
L= T Eg M) — 77— ) Fu M) [ O Ol
m,n a 1 a l g
m - n
. 2 { 1‘-’_?__!’_71 Dnj V (C 1 )"N3 D’ 5([) A11 3 Sh Sh
mon ~b1/~2 aI/Z a0 ml In” im” ny g nl lm) i R
’ n m . i
(9,45b)
(
- 163 -, -
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N .

r

“—
1 1
N En . ) ;
) mIn [ —-b 1/2 g(Dnl Mlm) -(Mianj %(Eml Nln)]Chun'Chum
1
n
N:n E | Milm Fn‘ 1
r - =
R 75 1/2 nlMlm T L€y Ny ] Sk Sk =0
m,n b n m l b n 1 , _
u (9, 45¢c)
3
M° D .
3 ¢t 1 _im_“ni_ 3
mZ [ Nin Com }(D,,, M) y )lj(cm, N Y] sm Cm
,n 1 |
N—-~—?" ———J-Cm' 3 Mlsm Dn i 1
] m o .
b (9,45d)
)
Next, define L .
AAAAA T . 1 _ . .
v, = S?' €M v Wom® % E, N‘I?m
(9,46a)
. K , _
vnm=§ D, M, znm=§ F, M‘l’m
\ (9, 46b)

Back to equation (9 45), we find that the coefficients of the "composike”
hyperbolic functlons (e.g- Shu Chv ) must vanish since the Igunctions

are independent from one antoher for any value of m and n. A set of

[y
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eight systems of equations is then obtained!. ‘These eight systems of
equations give us 4N4 equations to solve but, as we said, only 4N2
parameters are available. Unless strong symmetries exist or can be
imposed upon the system, in general it will not be solvable (except for
N-= 1). Using equation (9,46) and performing simple algebraic

manipulations. upon the coefficients of equation (9,45), we obtain.

’
1 °04 3
M: D .V +(——)N; C .Y =0
im =~ nj mn 8 in m " nm
' i
(9,47a)
172 1/2
1 P m 3 ‘
M . - { - )N, E Y =0
im™ nj mn o. B in m  nm
i i
. (9,47b)
J\
— ’
) . f 0 3 e -
MimDnj“mn *6 1/2 1/2)A:incny’znm 0
- B 'bn %m :
(9,47c)

!
!But as we shall see,” only four are independent.

L

©
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1 . 1 3 -
Mianj mn ( o B )NinEny' Zm=0
o i ;
(9, 47d)
al/?
1 , _ m_ N3 -
MimDnj mn (0 8 )Nincmjynm 0
0 i
(9,47e)
o
1 0 3 -
Mim nrj  mn 1/2 Nin mj am= 9
Bi bn
(9,47f)
172
M (—2n Nl e vy =0
im ™~ nj mn o b in " m nm
. 0 i
o (9,47g)
<
1 0 3 -
v ianj " mn +{ 6 1/2)NinEnzjznm_-o
i %m ,
(9,47h)
From the operation (47d) minus (47f); we get
. b’1!/2
Y +—2 =0
nm 2 mm
%0
(9,48a)

-1“-
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3

An identical equation is the result of the operation (47a) - (47g). From
(47¢c) - (47e) or (47b) - (47h), we have

¢ (9,48b)

Solving equation (47) in terms of V and W instead of Y and Z yields.

2
v . 0"0 wmrl =0
( . mn a1/2 N
. b m
. - (9.490)
and
} bn a:'/z
an+ ; Wmn: 0
o
0

(9,49b)

B s i o

/_,i .
. Equations (9,48) and (9,49) can be solved if and only if

| A | |

! P boan=9% .

4 ) « i . a (9,50)

F . - 167 -
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From which it follows that ' ‘ o \

|
\ £ ¢

(9,51)

The roots of equations (9,16) and (9,30) are \N times
Solving equation (9,16) and (9,30) in such a case yields.

_ - _ 2
Bi —B,Ai —A,Oo—NA)
(9,52)
and
a=~-pr~ Nst =+o§82%1%=ogazv2 .
1-2
(9,53) .
wherev = ——-H-L and
b o)
02 02
b=-u+Nvw= g -y = 20
'8 » B v
0,50

, , |
Pops A MO b 5 ﬂ,o-@\-mwwﬂwml e T T L s oot

L=

degenerate.
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For convenience, choose

\ (9,55)

Now, we exami»zne the consequence of the degenaracy of the am's and

]
bns. umandv look like

W= 01/25 te v = bf/zn + dn

/ \ (9,56)
The role of the cm's and dn's is to define the vacuum solution in such a
way that at A = 1l and A = -1, the Gross-Neveu vacuum fermion fields are
obtained. Since the vacuum fermions are all identical (see equation‘
(9,52)), so are the cm's and the dn's. We let c _=c and dn =d. It

follows that

_ 1/ 1/2 I | .
w,=a E +cz u, Vo= 5 n+dzv
‘ (9,57)
. Products of hyperbolic functions are no longer independent. Indeedl, we
1

have Chu_ Chv = Chu Chv', Chu Shv = Chy sw! and so on.
Thcrcforc, cquatlon (9, 47’0) to cquatlon (9,47h) must be summed over

t he indices m and n.

1Do not confuse this v with the one defined in equation (9,53)
X
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t

For example equation (9,47a) and equation (9,47d) become -

1L o Lm0

2

) %{aFnjgnEnd-z'EijFnl}zo

n n

If we define

c.z¢,) p,=D,] D.,=D,] C
mz,l i ng:,l ml 2n nj fym m
E .= E, F =F,YE =E,,) F .=
mz.l'"' rr?,l"i Zm”f fzm'"f

then equation (9,58) can be rewritten as

D C-C D=0 f=l14eee,N
F, E-E F=0 j=1,00¢,N

i i

(9,58z)

(9,56a)

(9,500)

(9,60a)

(9,60p)

The sum over 1 is omitted since it is completely uieless.
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o ‘ '
T he remaining six equations are
F,.C-E.D=0
J j
(9,60c)
D.E-C.F=0 ~
J I _ - .
Dj E-v Cj D=0 .
) (9,60e)
' F.E-vE,D=0 '
| |
. (9,60f)
ch-wqcino
(9,60¢g)
%* ¢c-v3iE F=
i -V jF =0
(9,60h)

\

T his system is contradiction-free if

vD=F ,vC=E

1 (9,61)

n/of equation (9,61) into equation (9,60c-h) yields
equa '(9,60a) and equation (9,60b). Hence the system involves (at
,,-‘U 2N + 2 independent constraints (equation (9,60) and
‘equation (9,61). | -

e

L - /W
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4

~

9.1.5 Symplectic and Commutative Solutions \.

In this section, we combine\ the constraints o'f sections (9..;.3) and
(9.1.4) in a contradiction-free fashion. The constraints that we combine
are equations (9,41), (9,43), (9,60) and (9,61) along with minor

conditions defined throughout the two preceding sections.

)

(Substituting equation (9,52). into equation (9,41) ‘and equation (9,43),

we get

.

Y = v .—
§ Dlm Fln N Gmn
(9,62)
[4
)
); i Ein N $mn . N .
. (9,63) '

An important point to notice (s that, due to the strong sx,m'met'r{es
imposed by equation (9,52), t he individual matrix elements Clm’ Dlm!

E v Flm no longer appear in the vacuum solution but only t he sums of

t hese elements over t heir line-index do. These object’s (Cj’ Di’ Ei' F!]
are defined in equation (9,59). Hence the individual matrix elements

have become irrelevant only their sum is relevant.
To solve equations (9,62), (9,83), we assume that

im~ C}mslm’ Dlm = Dmslm’ Elm = Emslm’Flm = Fm'slm

’ (9,64)

c
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and we get .
) oy .
D Fnlmn = N $mn . o
(9,65)
— v __-Q:L
Cm Ebmn = N Smn 1
(9,66)
From equations (9,65) and (9,66), we deduce
L4 -
D =D . oy F =F
m. n |
(9,67a)
°Cc_z F , E = F
m n ]
(9,67b) .
p=2(F)!, T=2(E} ,
N N
(9,67¢c)

E quation (9,60) is automatically satisfied while eguation (9,61) yields

. .
~ - —t

F=vD - , E=vC -
. (9,68)
Simultaneously solving equation (9,'68) and equation (9,67) gives
D= 1 F= v T = 1 %= Y
ST/ f T 172 =172 1/2
N N N N
(9,69)
9.1.8 T he Vacuum Solution
" From section 8, we infer that the parameters c and e are ‘ -

N

1/2 . ,,
e= iV | o= sntl( NY2 JaZe”l) -
1/ 2. . - -

. 8

<
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- / o —
N
T he matrices S(E,A) and T(n,)) take the form / -

st &

T o R A it 1 0 i ANt b
'

SE,N) =
s3 st
(9,71) <4
where
( 81 )” = —;/2 Ch( 00 B“E + C) i=1,"‘ ,N j:I,:-o ’N
N I
2 V= i N |
[ S ) = 1/2 Sh ( oo BvE + ¢ ) i=1,u¢-0!N j—‘:l,-‘:-,N '
i N a
3 v-‘l *
( S )lj 1/2 Sh( Uo BVE +c) i:l,o.c’N j‘=11'_.‘,N
i3 N
’( S4 )u = ;'%7‘5 Ch(oo BYE +‘c) =100 N j=1,"- N .
‘ ' -
c advz |-
R
’hAANd q\}
)
T = -
‘ B DA L R | :
S T~
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w‘here‘

(19 === nt-2E o b
(Tz)ijz'—?;,'i"\}—z— S"(T‘*;f?; +e)

(Tsju*——zv%gs’l(- :3“ "el . |
(19 =-—ghr en(-—2 re), ,

{= b--.;N j:‘.—"l,co-’N

T he vacuum solution 00(8; ma\) s

“

Cha \()ShA

o%e,n) =- .
vIisha Ccha
(9,73)

0071

whered =0, 8V £ ~ + c + e and Chh representsa N X N matrix

» . 8
whose elements are all identical to Ch A. Similarly, Sh A isa N X N

matrix whose elements are all identical to Sh A.

It follows(ghat the vacuum solution in the canonical gauge will be very
similar to equation (8,27). the only difference is that the elements of
equation (8,27) (N = 1) must now be interpreted as N X N matrices whose,

elements are all identicall. . \ C

1To symplify, we assume that 02 =07 so that o, =90 '

Lo .., =175 -

? - ‘ .o
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9.2 The Matrices F n

2

E quation (8,28) must now be given for arbitrary N. In this section,

results are almost identical to those of section (8.2) except that we state

them using a different parametrization rfor the free pargmneters a and b/

»
P

Due to the simple form of t he vacuum solution, Fg, which in prirnciple

/countains 2N free parameters, can be described using only two free
9

parameters. We have

0y _ )
( Fn)i N1/2 : Bl N
(9,74a)
. V172 b,
( Fn)jz <177 joN+1eee \ N
_ \ (9,74b)
. B %
- 176 - ‘ i
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T he rmutrices Fn have t he elements

]

(F ). =Cose Y_+5Sin9Z i=1pee ¥
n n n .
(9,75a)
(F ) =-Cos® Z +Sin0Y N+ Ieee N
n’j n n -
(9,75b)
where
1/2 ( ) '
Y = —— {a_p_-Db .
J172 )
z =- (a 86, -b 0.) -

n n n
N172 -

I nstead of using the "cartesian coordi nates® a, and bn’ we introduce

"hyperbolic coord inates".Rn and X, through

n n ,
. (9,76a).

~(9,76b)

1

-_177 -




)

Survey of Some Developments in the Gross-Neveu Model

£

[
l&ence)’ and Z become
n n
\
o 172 .
Y =- — R Ch(An]
172 \ ,
D~ _ (9,77a)
,1/2 . n
Z = ———— R _Sh(s_ )
" 172 " "
) N
L (9,77b)
y _ L1+ ’
where An—A(vn) ,\an»\i .

AnzAn§yn 3
o

Hence the matrix elanents(Fn]i take the simpler form

v]/?

R
o e ..r.l_ A - 1 A =] o ee
(Fn)i =TT (Cos@Chs -8in® ShAn) =1, Q,N
(9,78a)
1/ 2, '
v R . .
- ______.___.~_—..._n A ), A j=] .o es
(Fn)]. = TE; (Cos® ShA +8ino0 cnan) =10 % 4N
\ : ‘ (9,78b)
< ,
- 178 -
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9.3 The Functions a n

The functions e are independent of the number of fermions N. We

have
|
a =L _« N
n nn
(9,79}
: * \)
(v * v )

where Ln‘—:

v

2 “ :
R - .

[ - t -
ST (Ch2x,Shza -Sh2x Ch2a + 2(upp=1p) * 9,

(9, 80)
R? :
n ~
:—;h-[ShZAn+2(u2n-u1n)l+u0n
. - 179 - “
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9.4 Single - Soliton Solution
F 9.4.1 The matrix X v
We ‘easily generalize equation ( 8,48)5'41@ get %
- e . ;
B tr - ' tr ] i
. F_F F_F
I s 21 ‘ 22
().—Ao)ao (A-lo)ao )
x(2) =, o L
tr tr . L ;
S B Fy o _F R
. - \ L (X-XO)QO . { (A—\xo)qu “:

Each "element” of this matrix represents a N X N matrix. Iisthe NX N

-~

identity matrix.

1
The, matrix F has the form F = Fz]where Fy and F2 are
° F

.
. s . .
‘! =

N X 1 matrice and

(Fl)i = Cos@ Yo +Sin® Zoi i=1,00 ;N

(F,), S-Cos0 Zy + Sin® Y, i=1,ees N . : ﬂ
) . : (9,82) :
Yo and Z , are defined in equation (9,773.
Generalizh‘(%ng equation (8,49) to equation(8,52) is easy. Equation (8,49)
* and (8,50) become 2N X N matrices while equation (8,51) and (8,52)
C}‘ k become 2N X 1 matrices. We shall not show the generalization of these

equations explicitly.

- 180 -




b
.
2

Survey of Some Developments in the Gross-Neveu Model

9.4.2 The Spinor Field

-

T he.generalization of equation (8,53) is a N X 1 matrix. Each element of
this N X 1 matrix represents one of the Nﬁ“-—fields t hat we are looking

for. We have

1(FiFylg ] (FyF g @om

-Y2 8 ! 8
V=a8 " - + i
My, (] Ja,
| “ o
] (5, ) gsie
(Iﬂo] g |
-V2 @ ¥, (2+1Y,)
e e { 1 / -1 }(FL‘Q‘,N
v(vtv )a’o
il (9,83 -
i
Yyzv,(N=1) = Y N
‘ R _ V2
L Z,22,(N=1)=N""2,(N) :

v - 181 -
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Similarly, we find

\ a 172 @ 2v o~ ~
0= e 1+ ——— Z, (Y,-12%,)}
(\H-v 1) 0 0 0

(9,84)

When ef=e° doesre't hold, the solution becanes -
'y (2, 17)
. on 0 e Y Z, + iY,/
w.‘!:AB 1/2 ele { elea 4+ o 91 o }
v ([ vty ) ap

(9,85)

where N g
10 AN :
6 =<0 BE - 0
¢ B
)
~0 _ 0
e =1 9o,
a

——
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9.4.3 The Fieldo

The Field o is

1 N a*, a
o=~ § Re((" ") : ' .
2 =1 )
. (9,86)

&

»

Using equation (9,85) and t he equivalent equatio;z for %, wefind

e G S b i s B s o o w

2% %oy o
a : E

—- (9,87) 3
Thus, we have shown the field o is independent of the number (N) of
fermions present in the system. The result will generally be true for

any type of solution of the Gross-Neveu model (two-soliton solution,

a=oo{’1+

PR

'
0

ot a4 *

dmin

doublet solution, etc). :

Using.t he representation of o interms o R, and x5y Wwe find. 3

2 ~ s
2R, ChE, Shi; ' | \
o =ao{ 1- }
2 ~

) ‘ I/ZRO [ShZAO"'Z( uzo-ulo)]'f‘aw

\* ‘ (9,88a)

2 Sh'A ’
\ 0 ,
| @ =o,{ 1- }
. S Isn2Byr 2y mug) e

. : (9,88b)
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- p-2

g where a_ = RO a and A0=Ao = X

kY

o

°E quation (9,88a) is not a pure soliton since it implicitly contains the two
vacusof the Gross—-Neveu model. Indeed at RO = 0 and R0=e-, we have
o =0, andag = =9, respectively. The fact that t he other vacuum can be’
obtained as a particular case of equation (9,88a) is a little suprising
since, up until now, no reference whatsoever has been made to this
vacuum-. I;"quation (9,88a) has the interesting feature of possessing a
paramet er which can be used to expand the solution. We assume that R'z

is infin itesinal and, up to first order in R‘g, o is

et 2 ~
. e (11~ ZROChZAO} )
0 \ _ a

(9,89)

il

"On the. other hand, equation (9,88b) is a perfectly well-formed soliton
d no reference is mide to t he parameter Ro.  We also notice t MGt since

a
%f\s‘\\an arbitrary parameter, ¢ and e in Ao are useless. We redefine Ao
7a \ Y

and Xop in such a way that

The fact that the field o is N-independent was |conjectured before by
expﬁcitly for the first

N.P. [ 5] . However, we believe that this is show
time. As we have seen,this is a consequence of the degeneracy
of the am's and bn's which was required by the¢ commutativity condition.

,'

- 184 -
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3

But what is the physical basis of the commutativity condition? Nothing
else than the relativistic invariance of the equation! Indeed, it is only in
commutative vacuum solutions that £ and n play a symmetric role.

Let's examine our

we introduce a v

oliton in the physical coordinates x and t. But first,
oclty paramet er x related to 8.

)

(9,91)
y Stands forl' "vacuum” since X is the velocity of the
vacuun fermions. The physically measurable velocity ofthe field o is Ac

and is related to XV and Ao through

T he "V"

v 0

L+, A ’ ,
0"v i
(9,92)
whlch is the rule of velocity addition in classical relativistic mechanics. ,

Therefore 7\0 is interpreted as the velocity of the field c measured w lth ¢ !
respect to the vacuum fermions. The following relationships hold

\ «

1 22, 1 2 , s
3\) - B\) = ’ B\) + BV =
1-22 1-22
[¢) [+ § .
' (9,93)
i '{_‘, - 185 -
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2

-

Consequently, the field o in physical coordinates is

.

[ m, eoh trx) ] 5

- Sh g -2oo(x,x+t)+a

g
2 “
I-xo i .
_.~ —
=0, \

[ 2)‘0 (I-Xat‘*x() —J

- + +a
Sh 200(Aax t)+a
C 1-32
= N
- o
— (9,94)
where;; constant . . -
Our soliton at rest is:
- -Sh( 20y%) - 205t +3
0=0'0 — . ’XO"‘O g
Sh( 200x)-200t+a X @ 5
(9,95)
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But what a strange soliton, indeed!

v
1

The usual type of soliton is described as a solitary -wave . propagating
unchanged in shape with constant velocity. E quation (9,95) is quite

different. T he important, and tragic, point to notice is that it is

singular at . .

t=Sh ( 20, x) + a

- 20

0

* So this soliton is not well-behaved and cannot serve as an elementary-

particle-model solution. However it might have other applications. The
second point to notice (which is obvious) is that contrary to the usual
static solitons this soliton’s shape is time-dependent.

FAl
»

T his soliton is not a bag soliton because of its topological properties. A
bag behaves as follows: ast+ *® or X+*tw, g+ 9g This solution

behav es according too ra,as t+ ando + -annd X+t o,

We close this section with an examble of possible application of this type
of sdliton. It is very elementary and we borrow it to the field of
meteoralogy. This soliton might describe a pressure front denéicy. "The
singularity simply means that the pressure is discontinuous at the border
of the cold fr‘oﬁt and warm front. Measuring the pressure density with

respect too = o we find that the pressure is

- 187 -
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' '(9,96)

Wher‘e a=- Za‘,o t+a
r“\

-

The analogy is not perfect but we only wanted to show that a singuler

soliton was not totally senseless from a physical point of view. Note the

. pressure discontinuity in equation (9,96)
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)

9.5 Two—Solitpn Solution

Our main task in this section wil ay the ‘explicit analytic form
of equation (8,76) using the gfotation developped earlier i this chapter.
E quation (8,71) ctn be very éasily generalized so that, we’ will not-display

¥ and ¢- for arbitrary N. Written in full the fieldo takes the form

°

- \ 2\ " s . R -
_ 1 4A0(a1Y2ZZ+a2Y121)
6 =a,{ 1+ [
0 D12 (1 -2y C
. 0 N
- Y.l 22 n Y‘? ZI Q)}}“’ K] 1
(1+2,0% (1 -2
0 0 ,
. . ’ (9,97
a . ~ g2 o Q
whereD12=4Aoa1a2—-—;——2- .
‘o
Y b)
. . - ;
— H
’ ’ ;o . .
N ' }
- ’ A
q
* \ 4
- \'
i B )
{ - :
! T 't
~|‘('“ ‘\ - ; N " ;
. . ";{\9;
. ’ 189 - » —
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Define
L= Y%, Y24
- 2 2
(1 + ) (1 - 2p)
(9,98)
412
K: —L_"(a, v, z,+ z,)
- 2 17272 72 1
(1 - 10) LY
(9,99)
M=z=K-2HL
(9, 100)
T he field o isag = 1+——D.L
12
We have: <
2x.R, R
_ 01 "2
fH = INSTF, (ShRT +x, Sk X)
(1 -Ao)
(9,101a)
' 1
2ookot . Zao:c

“hereTz—ﬁ—’ X=_ﬁ-—-'
I*Xa 1"1\0

1
Xo1 and X gp Vere set equal to zero for convenience.
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Ry Ry
L=- 5. 373 ( ShX-x,ShT)
(1 - l0)
(9, 101b)
1o R1 RS
K=- {ChX -ChZ - 40 )y xCh X Sh T -4a, tShX ChT
2\ 2 0 0
(1 - X0)
v \
;1 ;2
+ —5 Sh 28, + 35 Sh 24}
R R
1 2
(9, 101c)
- whereA, =X + T anda_=X =T ’
‘ ¢
Ry R} 3, , ’
M = (2, Chzx -chzr] +4(i-2) Shx shT
(1 _ X2)2 0
0
2 B
+ 40, A x Ch X ShT +4),0, tSh X ChT
a a
-—L—sn2a, -—F—sn 2}
R R
1 2
(9, 101d)
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+ 400 tShX Ch

rR? R? ' 22
- 1 72 1 2 _ 0 2
-(1_12)2 (-3 *2g) Ch X +( -2+—5—)2y Ch T
0 ,

T + 400A0xChX ShT

o )

a a
+—L shoa +—2 shoa + 4020 2222
2 +* T2 0 0
R R )
1 2
"N ~~ -~ ~ -
o a a [+ 3
1 2, 1 2
* B4k, x 2 Rz)'z’o‘(—,;z* Rz)
1 2 1 2
4
+(1~A0)}

'(9,101e)

The two-soliton solution defined by equations (9,101d) and (9,101e) is

not a pure solution. By playing with particular values of RI and »

R,,

nanely (R = OorR,==) and/or (R ,= 0’orR2=-). one can );tnd:

(i)

The t wo Vacua o =g 5y 6 =70

(ii) Solitons or antisolitons travelling in ether directions.

We now assume that RI

t+ 0, = or Rzal 0, » and let

-
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~ ~ —
%1 o~ %2 o~
—233,, —< +a,and we give the "pure” two-soliton solution.
2 1 2 2 :
R R
1 2
o=1+ -2
Dyp
(9, 102a)
where
M=x,{r,[ Ch2X- Ch2T ]+ 4(1—x§§ Sh X-ShT
| , .
+ 40,1 X Chx SHT + 4aoxo;g\sr:x ChT
-a,Sh 24, -c, Sh 24_} ,1
(9, 102b)

2
N x ;
s — - 1 2 f_ 0 2
D, = { (- ”o) Chzx +(- 1+ z)xocmx

t ShXChT+ 40, ,xChX ShT

+ 4o 0’0

0

~ ~ » 2.2 .2
+3 ShB + 3, Sha -+ 4og(t -2

+ 20,1 3(31-32)-'7.00:('514'32)*(1- }
: ~/ (9,102)
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e~ Towe o
~ -

9.6 Doublet Solution.

El

N The doublet is obtained by a very simple transformation’ of
‘equation (102). Let §2+ :1 (t he compl ex—-conjugate ole) andi,+ { Ay
';1 will, in general, be a complex number. ‘

: Define

a+iB

tt

. ~
° a
- 1

(9,103)

v

(:; : ( Zooxt J.azo.r

It follaws that T = i adX = .
) . h+13 E+x3» 1 -

Let'T»-iT , X+ X.

o e i

T he doublet is described by the equation . )
6=1+—8— )
12
' ‘ (9, 104a)
: L '
(n L. 14
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L e R
9

.
H Where

n i ’ \
< . ) .

’

M=% (X [ Cosh 2X- Cos 2T ] + 4(1+ %9 Sinh X StnT
) -4003\'2x Cosh X Sin T-+ 4'oo'i'tSinhx Cos T

+ 2a Sinh ‘X CosT- 28 Cosh X Sin T}
‘ ' (9,104b)

- i

3

g
i g 1 w2 3% (2 "
’ C5 . 0124(-—5—+x ) Cosh X - ( 1+ )X Cos 2T
i - T
i - 40,t Sinh X Cos T+4oOXXCoshx Sinh T
+ 2% Sinh XCos T-28 Cosh XSin T
" L
" 2,.2 %2 .2 ‘o ' ' S
 +dap(tC ) x“)+( 1+3%) y S .
+40,)x 8B "4dotn'} | C ‘ T
) -~ ~‘ /
< where a and 8 are arbitrary redl parameters and , )
j // l Y : o
- /’ v ~ v N -
20, x 20,12 t
0 0 .
. X = . = , T/= -
e 1+ / 1+ ‘
r . // B 0, [
O / ~
- / . , \
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10 Conclusion

The known non-singular (bounded) single soliton solution of the Gross-.
Neveu model is [5] . T
R ! R v ) .
_ 1/2 {a - [0
"-(',52—') A[I-—E—;i—;—(l-tanhp)]c " I
. b=2 —-—--A—-ﬁ—é-—[ tanhp‘i- la (1 - tanhp) ]“;iﬂ
(2¢) : {+ia '
\ g =%tg tar‘zh‘p g, =A% ) ‘ i
0 Y/
N ezcn+c le " pzalg-an \
‘> ' =

T he topological properties of this solution are very d{fferent from those of

equation (9,95). This solutionlinksthe two vacua. Asp+=, g+ % %
andaso+—~,a+'+’ao. ’ '

We have tried to deduce the known soliton within the framework of the

Ly theory developped in the preceding chapters. But things behave as if

the matrix structure of the solution (the X matrix) constrains the soliton

- to some \;aell-defineld topological properties (which are not those of the

bounded solitons). The topological structure implied by a given X matrix

cannot be predicted without further resort topology. No doubt another X

' matrix exists which would allow the derivatlon of this known soliton using

_the vesture method. It remains to be found (to our knowledge).

\
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f
W,

i

P

| .
he present work, we have. , . T

Found the one-pole solution corresponding to the coh]ugate-pole
solution given by Zakharov and Mikhailov. ‘
Derived the associated solution. containing an arbitrary numbér of
solitons and doublets. (As an example, the soliton—doublet solutfon
was display}ed).

J
'y i

Cdlculated the vacuum solution .when an arbitrary number of fermions
are present. It was found that vacuum fermions were degenerate in

amplitude and velocity. As a consequence any o-field of the Gross-

' Neveu model is N-independent. The fermion fields in the case of

(iv)

arbitrary N are trivially related to the case N = 1. A practical
consequence is that the worker is relieved from the burden of
working with 2N X 2N matrices.

Found the analytic expression for the single-soliton, two-soliton and ‘
doublet solution. All these solutions have a singdlarity and a time—.
dependent amplitude.

L4

As a closing remark, we might \say that it would be an important advance if

the topological property of a solution could be predicted regardless of its

analytic form (for example,’ if topological properties could be obtained

from the X-matrix). Also one might contest the usefulness of searching

for

the tanhp soliton since it has already been derived \3ithin the

framework of the standard inverse scattering theory. It appears clear to

us that the solution of this problem could be transposed to other

equations (see articles [7] and [4]) and provide clues to the solution of

the topological property problem, hence, it is a relevant questitiy.

’
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Appendix A:Factorization of the Matrix A /

. ) ,
) / » -
’ o !
.

In this appendix, we solve equations (6,29) and (6,31) for arbitrary B
aqd 8. We prove that the fiel ds found are independent of a.given
factorization. We use a new procedure: all quantities are first worked
out In the non-canonical gauge. The fields in this gauge are easiy

o cqnvcrted to the canonical gauge. T his method, which is simpler that

the one we used came up to our mind only dfter chapters 2 to 9 were

written. - .

, [ ]
[

So as not to confuse 8 with the velocty parameter of the wvacuum
fermions (also ), we redefine the functions § andB : 8+ Y,
8 +y . Equation (6,68) and its n-counterpart become

D()JF=xyJF : ) ‘
. : : (A, 1a)
D) JF=YJIF '
B ' (A, 1b)
while (8,51) and (6,52) are transformed Into

0

. Frod s F ]
. ﬂza-r‘va‘-'- - 7 a
s = - (A, 2a)
9

/ ' PO s
i FUr vl aF
3“a—ra=- . %‘»wz
- (1+2) . (A,2b)
- ) 3 . , . ’
7
I "‘198"
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\ - .' »
' L
_We define a new 2 X 1 matrix! E , L
E = g-" F [
wheve g is given in e quation (8,5). | (A,3)
\ " ' ( N

Equations (A,1) and (A;Zl in the_non-canonical- gauge then become

(a€~w1).rs=y JE

\ (4,40)
('ag—wz).ls=us ‘
(AM4b)
- : et vl E '
o —ya =~ .
£ (1 - x)2
- . (A,5q)
O - T visF
. . 3 a -~ “Y'(! = - I 2 . S - l ¢
‘ n (1 +1) }
- : b {A,5b) :
\
where
0o 0 1
go‘ ;
‘ WI‘-'HOB Wz,ﬂ’-—s-—
\ 1 0 v ol
(A,6a)
b
- O ' lWe no longer work in the arbitrary N case (see section 9.1)

Y
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h; h
If we assume Yy = -’-!5- andy = =1 , then the solutions to equation (A,8)

b

are . o )
~ £ ’ Q
El-»h{Ae.rp(A)+Be.rp(-A)}ahH1 g ‘

(A,9a)
E,=h{ Aexp(s) - Bexp(-4) }= h H,

(A, 9b)
»

where A and B are arbitrary constants while
= - ’ ’ o
A ,-oo ( B\,£ 8\] ) i .

To solve (A, 2), assume that h = fa where f is an arbitrary furzction.' We

find
foo ;
- = - —J—- . ’
SEu Yo 7 |
(A, 10a)
ana -ya = - -?—'L '
, . "(A, 10b)
4 o ‘
! 0
- Y . 4
' ¢
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t

0 4

T herefore

f:ﬂ_ | ‘ ’ ‘ ’

1-A
, 262

(A’ 11) ‘
3 - 2 _ o Ba,.
‘her;e ,GE =g, Bva fll and Gn =0, ( v ) Hf,

Substituting these results into the one-soliton solution, we find

(1 - Agle Hy (Hy+ v Hy)

Il

L .-1/2 08 I .
V=48 ;e {1+ — TR - 1
S . (A, 12a)
. « -1 " - .
S 1+x,}Ja H, (H,~ iv ° H.) ‘
. 172 e ( 0+ 1 2. .71 § .
v=As " e {1+ T —=} :
‘ , 4 . v (A, 12b) .
a H, H :
- -‘v--———-——ls-—--z- ‘ A' ’
o-—oo{ 1 —53 } .
(A, 12¢)

If equation (A, 12) is inserted into the equations of motfon, it is found

t hat the solution is one indeed only if a = 0. Thus, we fall back on

th§ previously known solution.
2

¥

U seful relationships are

Hyp =Hy(op8v ) Hp = —~V H v :
~ e (A,13a) ,
. . o, , -¢ B -
’ ! . = -—q.@.— '
Hz 4'-'{11(00“8\’) 3 th i v HI

VI RGBSR s WD e o v peek 4 e g SO TR, w7

e




N I

Sl

Survey of Some Developments in the Gross-Neveu Model

)

BIBLIOGRAPHY

THE GROSS-NEVEU MODEL

-l

I. GENERAL &

(1)

(2)

- (3)

Elenberger, G.; Solitons, Springer Verlag, Berlin, Germany

(1981) 1

hi

Gourdin, M.; _.Basics of Lie Groups, Editions Frontieres, France

(1982)
A

L. L

Scott, A.C.; Chu, E.Y.F.; McLaughlin, D.W., "The Soliton:
A new Concept in Applied Science", proc. IEEE, October 1973

ve

II CLASSICAL THEORY

(4)

*(5)

(6)

Mikhailov, A.V.; " The Reduction Problem and the Inverse
Scattering Method”, Physica 3D(1981)

Neveu, A.; Papanicolaou, N.; " Integrability of the Classical

- 2 - 2_ - 2 .
[ b,V ], and [ v, v, 1o- [ vse, ]zlntenagtions ,
Commun. Math. Phys., 58, 31 (1978)-

.

Zakharov, V.E.; Mikhailov, A.V.; " Relatiyistically Invariant
Two- Dimensiénal Models of Field T heory Which Are Solved by
Means of the Inverse Scattering Qroblem Method", Zh. Eksp.

eor:~Fiz, 74, (Jupe 78)

1

- 20%-




*(7)

(8)

(9)

Survey of Some Developments in the Gross-Neveu Model

. o .
Zakharov, V._E.,- Mikhalov, A.V.; "On_the Integrabiity of
Classical Spinor Models in Two-Dimensional Space-Time”,

Commun., Math. Phys., 74, 21 (1980)

Zakharov, V.E.; Shabat, A.B.; " A Scheme for Integrating the
Nonlinear Equations of Mathematical Physics by the Method of the
Inverse Scattering Problem I", Funct. Anal. its Appl. 9, 226

(1975)

Zakharov, V.E.; Shabat, A.B.; " Integration of Nonlinear
E quations of Mathematical Physics by the Method of Inverse
Scattering II", Funct. Anal. its Appl., 13, 13 (1979)

I SEMICLASSICAL THEORY

(10)

(11)

*(12)

Dashen, R.F.; Hasslacher, B.; Neveu, A.; " Nonperturbative
Methods and Extended - Hadron Models in Field Theory. I.
Semi- dassical Functional Methods", Phys. Rev D 10, 4114

(1974)

Dashen, R.F.; Hasslacher, B.; Neveu, A.; " Particle Spectrum
in Model Field T heories from Semiclassical Functional (Integral
Techniques”, Phys. Rev. D11, 3424 (1975).

A\

Dashen, R.F.; Hasslacher, B.; Néj'eu, A.; "Sen%:sioal Bound

\

States in an Asymplotically Free Theory”, Phys. R¥& D 12, 2443
(1975)

- 208 -




Survey of Some Developments in the Gross-Neveu Model

(13) Rajaraman, R.; "Some Non-Perturbative Semi-Classical Methods in
Quantum Field Theory (A Pedagogical Review)", Physics Reports
21, 221 (1975) \

0w (14) Rajaraman, R.; Solitons and Instantons in Field T heory, North-
Holland Publisher, 1982 \

©

IV QUANTUM THEORY

*(15) Berg, B.; Karowski, M. ; Kurak, V.; Weisz, P.; "Scattering
Amplitudes of the Gross-Neveu and Nonlinear oc-Models in higher
Orders of the 1/N-Expansion", Phys. lett., 76b, 502 (1979)

(‘ A *(16) Gross, D.J.; Neveu, A.; " Dynamical Symmetry Breaking in
Asymptotically Free Field Theories”", Phys. Rev D10, 3235
(1974)

*(17) Guerin, F.; Kenway, R.D.; "A Strong-Coupling Expansion for
Fermion Field T heories and the Large-N Limit of the Gross-i\levgu
Model", Nuclear Physics B 176, 168 (1980)

*(18) Karowski, M.; Weisl, P.; " Exact Form Factors in (1 + 1)-
Dimensional Field T heoretic Models with Soliton Behavior”, Phys.
RW- D, ]

-

*(19)  Zamolodchikov, A.B.; Zamolodchikov, A.B.; "Exact S Matrix of
' ' Gross-Neveu * Elementary” Fermions", Phys. , Lett. 72B,
481(1978)

- 20’5-




i

Survey of Some Developments in the Gross-Neveu Model

*(20)

V. GROUP

(21)

*(22)

*(23)

Zamolodchikov, A.B. ; . Zamolodchikov, A.B.; "Factorized S-
Matrices in Two-Dimensions as the Exact Solutions of\ Certain
Relativitic Quantum Field Theory Models”, Annals of Physics,
120, 253 (1979)

THEORY

Ha, Y.K.; " Fermion-Boson Metamorphosis in a Chiral Invariant
T heory", Phys. Lett. 117B, 213 (1982) ' —

~

Shankar, R.; "Some Novel Features of the Gross-Neveu Model",
Phys. Lett. 92B, 333(1980)

uitten, E.; "Some Properties of the 0; Model in Two
Dimensions"”, Nuclear Phys. B142, 285 (1978)

VI RELATED MODELS

(24)

(25)

-

Gonsalves, R.J.; Shei, S.S.; "Semidassical Approach to Lattice
T heories", Nuclear Phys. B130, 221 (1977)

Shigemitsu, J.; Elitzur, S.; " Lattice Hamiltonian Results for
the Spectrum of a (1 + 1)-Dimensional Asymplotically Free Field
T heory”, Phys. Rev D14 , 1988 (1976) By '

VII AS A RESEARCH TOOL

*(26)

*(27)

Campbell, D.K.; Bishop, A.R.; "Soliton Excitations in
Polyacetylene and Relativistic Field Thhory Models", Nucdl.
Phys. B200, 297 (1982)

L

Clark, T.E.s Love, S.T.; "West's Proof of Confinement and
Two~ Dimensional Model;s"zofﬂys. Rev. D25, 2673 (1982).




'

*(28)

*(29)

*(30)

NOTE 1.

NOTE 2:

NOTE 3;

Survey of Some Developments in the Gross-Neveu Model

¥llwanger, U,; "Composite Field Condensation and the
Renormalization Group”, Nucl. Phys. B207, 447(1982)

. Em;va, Z.F. Iwazaki, A.; "Scale-Dependent Analysis of Phase

Structure in Quantum Field Theories”", Phys. Rev. D26, 1380
(1982) . -

Stone, M;: "Schwinger Mechanism for Dynamically Massive
Fermions", Phys. rev. D15, 1150 (1977)

Articles preceded by an Asterisk (*) treat directly of the Gross-
Neveu Model. The others are complementary references.

f

Book's titles are underlined while article's tit’les are stated within

quotes.

v

. \
Within each dass artides are placed in authors' alphabdetical

order. Classes may overlap.

“




