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Abstract

One of the main unexpected abilities of large autoregressive language models (LLMs) was their

ability to perform in-context learning (ICL). Through ICL, LLMs learn to perform tasks via task

demonstrations directly in their input context, without any parameter updates being necessary. In

this work, we seek to expand the types of tasks that ICL can be applied to, by augmenting LLMs

with secondary dense retrieval models. These retrieval models allow us to use ICL for classification

tasks whose specification cannot fit in the context window of the model, by retrieving a limited

subset of demonstrations dynamically. We investigate various complex retrieval strategies, that aim

to balance demonstration diversity, class representation, and other factors. By applying LLMs to

short text classification problems with retriever models, we achieve SOTA performance across four

datasets and two domains.

We use this same retrieval framework to investigate whether models can learn to follow instruc-

tions through ICL. We evaluate if an LLM can generalize zero-shot to a set of natural language

tasks using only a small set of demonstration tasks when provided only a task description. This

ability, commonly known as instruction following, usually requires supervised fine-tuning (SFT) or

reinforcement learning from human feedback (RLHF); in this thesis, we examine if it is achievable

through pure ICL only. We demonstrate that irrelevant task demonstrations provided in-context

greatly boost the performance of base LLMs on held-out tasks, both through term-based and model-

based evaluation. Regardless, a gap with RLHF-tuned models remains. However, we demonstrate

that the prompting method is complimentary to RLHF and SFT-based tuning, and show the strongest

results among all models by combining prompting and an RLHF-tuned model.
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Abrégé

L’une des principales capacités inattendues des grands modèles de langage autorégressifs (LLM)

était leur capacité à effectuer un apprentissage en contexte (ICL). Grâce à ICL, les LLM apprennent

à effectuer des tâches via des démonstrations de tâches directement dans leur contexte d’entrée, sans

qu’aucune mise à jour des paramètres ne soit nécessaire. Dans ce travail, nous cherchons à élargir

les types de tâches auxquelles ICL peut être appliqué, en augmentant les LLM avec des modèles

secondaires de récupération dense. Ces modèles de récupération nous permettent d’utiliser ICL pour

des tâches de classification dont la spécification ne peut pas tenir dans la fenêtre contextuelle du

modèle, en récupérant dynamiquement un sous-ensemble limité de démonstrations. Nous étudions

diverses stratégies de récupération complexes, qui visent à équilibrer la diversité des démonstrations,

la représentation des classes et d’autres facteurs. En appliquant les LLM à des problèmes de

classification de textes courts avec des modèles de récupération, nous obtenons des performances

SOTA sur quatre ensembles de données et deux domaines.

Nous utilisons ce même cadre de récupération pour déterminer si les modèles peuvent apprendre

à suivre des instructions via ICL. Nous évaluons si un LLM peut généraliser le zero-shot à un

ensemble de tâches en langage naturel en utilisant uniquement un petit ensemble de tâches de

démonstration lorsqu’il est fourni uniquement une description de la tâche. Cette capacité, com-

munément appelée suivi d’instructions, nécessite généralement un réglage fin supervisé (SFT) ou

un apprentissage par renforcement à partir de la rétroaction humaine (RLHF) ; dans cette thèse,

nous examinons si cela est réalisable uniquement grâce à l’ICL pure. Nous démontrons que les

démonstrations de tâches non pertinentes fournies en contexte améliorent considérablement les

performances des LLM de base sur les tâches suspendues, à la fois par le biais d’une évaluation
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basée sur des termes et sur un modèle. Quoi qu’il en soit, il reste un écart avec les modèles optimisés

pour le RLHF. Cependant, nous démontrons que la méthode d’invite est complémentaire du réglage

basé sur RLHF et SFT, et montrons les résultats les plus forts parmi tous les modèles en combinant

l’invite et un modèle optimisé par RLHF.
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Chapter 1

Introduction

1.1 Motivation

With the advent of large pre-trained autoregressive language models (LLMs), a new mode of learning

appeared on the scene: in-context learning (ICL), or learning without any parameter updates [4]. In

ICL, a few demonstrations of input and output for a specific task the model has not been trained

for are passed directly into the model’s input context window. The advent of ICL set the stage

to make NLP much more accessible to a wider audience than before. No longer would a custom

model need to be meticulously tuned for a downstream task. With ICL, a layperson can write a

few demonstrations and achieve reasonably good performance for their task. Beyond the factor of

accessibility to the average tech-savvy individual, ICL greatly aided NLP practitioners as well, both

because training is computationally expensive, but also because ICL unlocks the use of LLMs for

low-resource tasks (where there is limited data—in other words, it allows for few-shot learning).

In-context learning also has several limitations. One limitation, intimately tied to the fact that the

theoretical understanding of why ICL works is still somewhat lacking, is the brittleness of prompts

and examples [3, 14, 27, 42]. Specifically, when we refer to “brittleness”, what we mean is the

unpredictability of the resulting performance based on the contents of the prompt. This brittleness

can be in relation to which examples are provided in-context, as well as the ordering of the examples

that are provided. Existing work has shown [27] that some permutations give SOTA performance

1



while others may be near random chance, for the same set of in-context examples. The result of this

was the birth of the “prompt engineer”: because prompts could not be trusted to “just work”, a role

sprang up to tune them to the highest possible performance. Another serious limitation of ICL is

the size of the context window. Although models with longer and longer context windows are being

trained constantly, the ability for a model to make effective use of a long context window is still

elusive [24]. As such, ICL is typically limited to tasks whose entire “specification” can be held in

the context window. In the case of text classification tasks with just two or a few labels, it is simple

to fit several examples of each class in the prompt provided to the model, and thereby provide the

model enough information to perform the task via ICL. However, in the case of a text classification

task of several tens or even hundreds of labels, it becomes infeasible to fit enough examples of each

class into the context window for the model to be able to perform the task.

The motivation for this thesis is to examine how ICL functions in the context of a secondary

retrieval model, as well as to investigate what kinds of tasks models can learn via ICL. We know

that LLMs revolutionized the field of NLP through their excellent performance on a wide gamut of

NLP tasks. The benefits of incorporating a retrieval model are several:

1. It allows us to unlock LLM-level performance on tasks that it was previously difficult to apply

LLMs to due to context length limitations,

2. It allows us to increase the computational efficiency of ICL, by providing fewer but more

meaningful examples to the LLM

3. It provides a more flexible approach to ICL, allowing us to dynamically update the retrieval

set and have the right examples be fetched by the retrieval model at test time based on the

query

Along with ICL, the advent of large pre-trained language models eventually unlocked another

mode of function: zero-shot instruction-based task execution. This was the ultimate goal: to have a

system that can perform tasks with no task demonstrations at all, only through a natural language

description of the task. This mode of function was an important step forward for NLP: zero-shot

2



task generalization can be seen as relatively close to human function, where one human can explain

to another in words how to perform a task. Research towards this goal had been performed in the

context of massively pre-trained encoder-decoder models (T5 [35], Flan-T5 [9]), however these

models were limited in the amount of text they could generate due to scaling constraints at the

time and their architecture, and as such were not able to be applied to long-form generation or

dialogue easily. It was really the combination of this goal with large autoregressive language models

for dialogue that unlocked the highest level of usability. The main paradigm that was settled on

was massively pre-training autoregressive models (producing a “base model”), then performing

“instruction tuning” on them, to allow them to shift from few-shot task execution to zero-shot

execution based on descriptions (instructions). In addition to this, the dialogue-based interaction

format was adopted widely, combining zero-shot task execution with an existing well-known chatbot

UI paradigm.

LLMs in their default pre-training state are unable to demonstrate this capability solely from

the next-word prediction, as the most probable continuations from their pre-training data are not

necessarily performing the user’s task as helpfully as possible (this is referred to in the literature as

“misalignment” [33] between the objectives of being a helpful assistant, and best predicting the next

word of the training corpus). As such, ordinary LLMs must be fine-tuned for instruction following,

after which they can demonstrate the ability to follow instructions directly. However, such tuning is

often very costly. There are two main paradigms, supervised fine-tuning and reinforcement learning

from human feedback (RLHF)-based tuning. In the former, large amounts of instruction following

data are necessary. In the latter, both instruction following data is necessary, as RLHF usually

includes a supervised fine-tuning first step, and then also large amounts of human preference data

is necessary, to tune the model on these preference and reach a model state that follows human

expectation (the concept of “alignment”).

In this work, we leverage the insights gleaned from the experiments on ICL with retrieval

on large label set classification tasks, to see if we can perform in-context instruction following.

Simultaneously, whether or not models can learn to instruction-follow in-context tells us something

about how ICL works, specifically with regards to the “superficial alignment hypothesis” [56]. The
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superficial alignment hypothesis states that alignment (and by extension instruction tuning) usually

constitutes tweaking surface-level features of the model’s output (e.g. style of response, etc.) and

does not teach the model to perform any task it did not already acquire the ability to do during

pre-training. If models are able to meaningfully learn instruction-following in-context (i.e. are able

to zero-shot generalize to novel tasks only through a prompt, especially from only a few examples),

this would be evidence in favor of this hypothesis. This ability to “learn how to learn” in-context

would support the idea that fine-tuning, while useful for optimizing performance on specific tasks or

adjusting the model’s output style, is not strictly necessary for the model to understand and perform

new tasks.

1.2 Statement of Contributions

In this work, we demonstrate that using retrieval models in conjunction with LLMs allows us to

apply LLMs to text classification tasks with large label sets. By leveraging the pre-trained knowledge

of LLMs through ICL, we reach SOTA performance across 4 different short text classification

datasets, and either match or in most cases outperform fine-tuned adapter-based methods with the

same amount of data. We perform detailed analysis over the number of demonstrations, showing

that larger models can better take advantage of longer context sizes (more demonstrations). We

perform ablations to investigate what parts of the input the model is using for ICL, demonstrating

that everything plays a role, including the semantic similarity of the demonstrations to the query.

We experiment with various selection methods that aim to balance diversity and class representation

in the prompt, showing that pure nearest neighbor is consistently the most effective out of all

approaches tested. We show that least-to-most-semantically-similar demonstration ordering is the

most effective across all datasets.

In addition to the experiments on short text classification, we apply the same retrieval with ICL

framework to the meta-task of instruction following, to see if models are able to learn to follow

instructions zero-shot without any parameter updates. In these experiments, we provide the model

with irrelevant task demonstrations in-context, and see if it can perform held-out unseen tasks with
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nothing except a task description. We conclude that we are indeed able to significantly improve

performance on the SuperNaturalInstructions multi-task benchmark. We perform model-based

evaluation, showing that although the term-based metrics demonstrate stronger performance than an

RLHF-tuned model, in truth there is still a gap between the RLHF-tuned model and prompted base

models. However, we demonstrate that the RLHF-tuned model can be prompted with irrelevant task

examples as well, and demonstrates significantly increased performance as a result, showing that

prompting and ordinary RLHF-tuning are complimentary approaches.

1.3 Chapter Overview

In Chapter 2, we provide an overview of the related background literature to this work, contextu-

alizing them in relation to the thesis. In Chapter 3, we present and discuss the results of applying

retrieval with ICL to short text classification tasks. In Chapter 4, we present and discuss applying

the same framework to the meta-task of instruction following. Finally, in Chapter 5, we tie these

two chapters together, discussing what broader conclusions we can come to about ICL from the

experiments in both chapters, and discuss potential future work to continue investigating ICL in the

context of retrieval.
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Chapter 2

Background

In this chapter, we provide the relevant context necessary to understand the work presented in this

thesis. First we discuss few-shot in-context learning: what it is, and attempts to understand how

exactly it functions. We talk about existing works on selecting demonstrations and ordering them

most effectively in the prompt. We briefly go over the language models used in this thesis, then talk

about retrieval broadly, giving some context to the use of neural networks in the space. We then

go over the specific tasks tested in this thesis: intent detection, sentiment classification, and the

meta-task of instruction following. Finally, we talk about the Superficial Alignment Hypothesis,

and briefly go into the metrics for evaluating instruction-following.

2.1 Few-shot In-Context Learning

Few-shot in-context learning is a relatively recent advance in NLP research, enabled by massive

large language models (LLMs). First introduced with the release of GPT-3, it was demonstrated that

a series of examples could be provided directly in the input context of a Transformer language model,

and the model would follow the pattern and provide a prediction for a novel query following the

same format [5]. Since then, many attempts have been made to understand how exactly in-context

learning (hereafter referred to as “ICL”) works, through various investigations and ablations.
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In [30], authors investigate the mechanisms behind ICL by perturbing the labels provided in

the prompt. Specifically, they demonstrate that for a set of classification and multi-choice datasets,

performance is not significantly affected when random class names are provided instead of the

true ground-truth classes. The implication of this result is that LLMs are not really learning the

input-output correspondence from the examples provided, but rather are learning more superficial

elements from the examples provided in-prompt, for example the output space (set of classes) or the

input distribution (the distribution of examples). Other works, for example [15], attempt to discover

what classes of functions are learnable by LLMs in-context. This specific work demonstrates

that LLMs are able to learn most simple function classes in-context fairly reliably, including

under train-time-to-test-time distribution shifts. In [53], authors examine ICL with the framing of

Bayesian inference, creating a synthetic dataset with long-range dependencies to fully examine

under which conditions ICL emerges. They demonstrate that several phenomena arise with the

synthetic dataset that are also present in the large real-world datasets that LLMs are trained on,

such as order sensitivity, and better ICL correlated with scale. Another work [7] reaches a similar

conclusion, providing evidence that certain properties must be present in the pre-training data to

cause a model to exhibit ICL abilities. Specifically, they discover that the Zipf distribution and

“burstiness” (entities appearing clustered over time) are key ingredients. They also discover that

only Transformers seem to exhibit ICL, and not recurrent networks, and as such, both architecture

and correct data are necessary to produce models capable of ICL.

In [38], authors provide evidence that ICL is not caused by robust reasoning abilities, but rather

is directly correlated with the frequency of certain terms appearing in the pre-training dataset.

Specifically, they demonstrate that performance on arithmetic tasks directly correlates with the

frequency of the given numbers appearing in the pre-training dataset (in other words, numbers

appearing less often in the training data yielded worse performance when used as operands in

arithmetic operations). This implies that LLMs are not generalizing robustly beyond the data they

are fed at training time.
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2.1.1 Demonstration Selection Methods

One of the earliest studies of the role of example selection in ICL is “KATE” [23]. In this paper,

the authors probe the performance of GPT-3 on NLP tasks using KNN retrieval (RoBERTa) for

example selection. They compare this method against random selection and using the retrieval

model directly (plain KNN). They also examine the effect of example ordering on performance

and conclude that the most performant ordering (least-to-most and most-to-least similar orderings

are tested) depends on the dataset. In this thesis, we also experiment with example ordering, and

conclude that least-to-most ordering is the most effective across all datasets and tasks tested.

2.1.2 Works demonstrating ordering instability

Several recent works have demonstrated that the order of in-context examples makes a larger

difference in performance, including [27, 55]. These works demonstrate such order instability that

certain permutations bring near SoTA performance on tasks while others perform at near random

guessing.

2.2 Language Models used in this Thesis

In this thesis, the main two language model families used are OPT [54] and LLaMA [47, 48]. OPT

stands for “Open Pre-trained Transformer”, and is the first major large language model whose

weights were made widely accessible. OPT was developed by Meta AI. OPT was trained on a

corpus of roughly 180B tokens, a combination of all the datasets from RoBERTa [26], the Pile, and

Reddit data. It showed comparable performance to the original GPT-3.

In 2022, DeepMind releases the “Chinchilla” family of models [17]. The DeepMind authors

claimed that LLMs at the time were undertrained, in the sense that with the number of parameters

they have (already in the hundreds of billions at the time), they could be trained on much more data,

such that they would see their loss continue to improve. The authors created a set of “compute-

optimal” predictions, showing how to balance model size vs. training data for a given level of

compute to get the optimally performant LLM.
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Soon after, Meta AI released their second major open large language model: LLaMA. LLaMA

took the lessons from Chinchilla and trained a family of models with far more data than before.

Whereas OPT was trained on 180B tokens, LLaMA-1 was trained on 1 to 1.4 trillion tokens,

depending on model size. This massive pre-training dataset was composed mostly of Common

Crawl 1 (67%) but included a mixture of GithuB, Wikipedia, Books, ArXiv and StackExchange as

well. The authors of LLaMA mention that the loss shows no signs of plateauing at 1 trillion tokens,

suggesting that the dataset size could be made even larger. Sometime later, Meta AI releases the

second version of the model family: LLaMA-2. With LLaMA-2, Meta AI once again increases

the dataset size to 2 trillion tokens, training all the models with a 4K context length (instead of

the 2K length of the original LLaMA). One of the major developments with LLaMA-2 was the

release of “chat” versions of all the models. These chat versions have been tuned with reinforcement

learning from human feedback (RLHF [34]), after a supervised fine-tuning stage. More details

about instruction following are provided in Section 2.6.

In this work, we primarily use LLaMA-1 as well as the base (non-RLHF-tuned) version of

LLaMA2. In the work presented in Chapter 4, we use the RLHF-tuned version of LLaMA-2 as a

point of comparison against our ICL-based instruction following method.

2.3 Retrieval

Information retrieval (IR) is a field with a long and storied history completely independent of

machine learning. IR as a field is primarily focused on information discovery from a set of

documents. In this thesis, retrieval systems are used for short texts to retrieve examples as a way to

enhance ICL-based predictive approaches. In this section, we briefly outline older methods for IR

before diving into more recent ML-enabled advances.

1https://commoncrawl.org/
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TF-IDF(t, d,D) = TF(t, d)× IDF(t,D)

where:

IDF(t,D) = log

(
N

|{d ∈ D : t ∈ d}|

)

Figure 2.1: The TF-IDF equation. TF(t, d) is the number of times term t appears in document f ,

divided by the length of the document. D is the entire corpus, N is the number of documents in the

corpus, and |{d ∈ D : t ∈ d}| is the number of documents t appears in.

2.3.1 Classical Term-Based Retrieval Methods

Before neural methods began to be used, IR primarily relied on term-based retrieval methods. In

this case, term-based refers to the fact that these approaches rely on the direct character overlap

(surface-form similarity) between specified search/query terms and the documents being searched

through. Two of the most well-known of these methods are TF-IDF (the foundations of which

were created in the 1970s [46]) and BM25 [43]. Both methods are used as the ranking function

component of a complete IR system. TF-IDF is composed of two components (see Equation 2.1),

the term frequency (TF) component, which measures how often a term appears in a document, and

the inverse document frequency (IDF) component, which measures how “important” a given term

is. Terms that appear often in many documents (e.g. articles, pronouns, etc.) are given a lower IDF.

Finally, the TF-IDF score is the product of the two components. Terms that are rare over the full set

of documents but appear frequently in a specific document score the highest. To calculate relevance

to a query, documents are ranked by the sum of the TF-IDF scores of each of the terms in the query.

BM25 works similarly to TF-IDF, and can be thought of as a more sophisticated version of it. In

this thesis, BM25-based retrieval is used as a baseline in comparison with neural (dense) retrieval

methods.

2.3.2 Dense Retrieval

Using neural networks over classical term-based retrieval approaches provides several major ad-

vantages. One of the main advantages relates to semantic understanding. As mentioned previously,
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classical methods simply look at term overlap between documents and the query. If a user types

“chicken”, but all the documents refer to “poultry”, what are likely the most relevant documents will

not be returned as there is no mechanism by which to take semantic similarity into account. On

the contrary, neural methods are able to look at the actual semantic similarity between terms, as

measured by the closeness of their representations in the neural model’s representation space. This

allows them to take synonyms and polysemy (the same surface form yielding multiple meanings)

into account in a way term-based methods cannot by definition. Beyond this, neural models take into

account the context and order of words when producing document representations, while term-based

methods simply treat documents as bags-of-words. Again, this more nuanced handling can better

capture meaning and yield better retrieval results.

One of the first tasks BERT [11] was tested on was semantic textual similarity (STS), setting the

stage for later neural retrieval works. One of the first major works to popularize neural retrieval

as such was Sentence-BERT [39]. In this work, a siamese network structure is used to train and

perform inference using BERT networks, enabling fast and accurate retrieval where the query and

document are fed to the same retrieval model separately, producing two output representations

which are then compared by a similarity function (e.g. cosine similarity). An alternative but similar

scheme is employed by DPR [20] for the purposes of Question Answering (QA), where rather than

training a single retrieval model, two separate encoders are trained, one for the query and one for the

document, due to the asymmetric nature of the retrieval (i.e. queries and documents follow different

distributions). In this thesis we primarily employ Sentence-BERT as our retrieval model, as our

retrieval case is symmetric (we are looking for the similarity between a test-time query and a set of

example queries, to retrieve the best possible demonstrations for ICL).

2.4 Intent Detection

Intent detection is one component of a task-oriented dialogue system (e.g. a virtual assistant), and a

key task in the field of NLP. The goal of intent detection is to classify a user utterance (short text

snippet) into one of many intent categories, i.e. to identify what exactly the task the user wishes to
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perform is. Examples of tasks may be to make a calendar event, make a reservation at a restaurant,

or pay a bill. Given the open-ended nature of task-oriented dialogue systems, the number of intent

categories in most datasets for this task can be anywhere between 60 and 150. After correctly

tagging a user utterance into one of these intent categories, a complete task-oriented dialogue system

would then pass this data onto another system that either performs the associated action or generates

clarifying questions and/or responses.

The current state of the art in few-shot intent detection is the ConvFit method [49]. ConvFit uses

a pre-trained LM in a dual-encoder configuration (e.g. BERT or RoBERTa) with two training stages.

The first stage is a conversational fine-tuning stage using a generic conversational corpus with a

retrieval task (using tuples of (context, response) retrieve the correct response for each context).

The second stage is fine-tuning on the specific intent classification dataset with a contrastive loss,

allowing the resulting LM to be used in a KNN fashion.

Intent detection cannot easily be applied for use directly with autoregressive ICL-capable

LLMs due to the limitation of context length. With so many classes, fitting more than a single

demonstration per class quickly reaches the limit of the input length of these models. As such,

existing works leveraging LLMs for intent detection typically use other approaches. In [44], LLMs

are used for data augmentation of existing intent detection datasets. The authors demonstrate that

performing data augmentation via LLM leads to the largest gains when the intent categories are more

distinct. In cases of fine-grained similar intent categories, the LLM augmentation leads to smaller

gains, which the authors hypothesize is due to the LLM generating utterances of similar classes

instead of the one requested (in other words, the LLM has difficulty separating the fine-grained

intent classes for the purposes of augmentation).

2.5 Sentiment Classification

Sentiment classification is a relatively old task in NLP that concerns identifying the sentiment

expressed by an author in text. Most traditional older approaches relied on building sets of positively

and negatively charged terms, then providing a prediction based on identifying which of these
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terms were more present in a given piece of text. For a long time the task was framed exclusively

as a binary prediction task, or at best, a 3-way classification task, with the addition of a “neutral”

class to the mix. More recently, the problem has begun to be framed in a more nuanced way,

including multiple emotion classes such as anger, fear, and happiness (e.g. using the Ekman

emotion taxonomy [13]). In this work, we use the GoEmotions dataset [10], which uses a 28-way

classification setup.

2.6 Instruction Following

Instruction-following on a high level refers to the ability of an LLM to follow instructions expressed

directly in the prompt as directives (e.g., do X, write Y) in zero-shot (i.e. without a series of

input/output examples). This is in contrast to the “default” (from pre-training) behavior of an

LLM, which is simply to predict the most likely next token based on the context. When “base” (no

additional tuning) LLMs are given direct instructions in a zero-shot way, very rarely will they be

able to perform the task they are instructed to do, and are much more likely to simply output related

questions, queries, or something else along these lines (pulling from pre-training context where lists

of questions or instructions are provided together).

2.6.1 Training for Instruction Following

Given that base LLMs do not exhibit this ability, various ways exist to instill this ability into the

model. Two frequently confused concepts are instruction following and the more general principle

of “alignment”. “Alignment” refers to the idea that the model should behave in ways its users

intuitively expect it to, and should generally follow human values and moral guidelines. In this sense,

instruction following is in effect a “subset” of alignment, in that an aligned model is able to follow

prompt instructions zero-shot. However, models can be trained simply to follow instructions, and

not necessarily be aligned in terms of moral values. Alignment has yet to have a widely-accepted

rigorous definition in the literature. Existing works on alignment often tackle alignment in terms

of optimizing against human preferences, without defining more specific criteria or desiderata
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(e.g. reinforcement learning from human preferences or RLHF, [34]). In this thesis, we primarily

approach the problem of instruction following specifically, and do not touch the wider issue of how

to align models most effectively in terms of moral expression, refusal of immoral queries, etc.

One of the first papers to introduce the concept of tuning for instruction following is Natural

Instructions [32]. In this work, the authors crowdsource 61 distinct NLP tasks to form a dataset that

can be used to fine-tune LLMs. They show that fine-tuning a BART model along with human-written

instructions for each task improves cross-task generalization for tasks unseen at training time. The

same work is extended in [51], which is the version of the dataset used in Chapter 4 of this thesis.

The extension greatly widens the gamut of tasks to 1.6k distinct NLP tasks.

2.6.2 RLHF and Learning from Preferences

Reinforcement learning from human feedback, or RLHF [34] is a method to optimize a language

model against a set of expressed human preferences about its own output, to encourage the model

to behave in a way that is consistent with human preference or expectation (“alignment”). RLHF

involves several distinct phases: supervised fine-tuning (SFT), reward modelling, and finally

proximal policy optimization or PPO. In the SFT stage, the pre-trained LM is first tuned directly on

the desired input-output data, usually inputs and desired responses written directly by humans. The

reward modelling stage involves humans judging the outputs of the model after the SFT stage, and

expressing which of the two responses of a pair is preferred. From this, a reward model is trained,

to be able to predict what the human preference would be given two responses. Finally, the LM is

optimized against these preferences via PPO, an RL-based optimization method.

One thing to note from this entire process is the costly requirement of human interaction almost

every step of the way. Humans are required to write the initial desirable responses for SFT, and are

then needed again, for judging the model responses. The amount of preference data needed for the

reward modelling step is not insignificant either. The entire process is quite costly, and as such, any

methods to reduce the amount of human labor involved are highly desirable.
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2.6.3 The Superficial Alignment Hypothesis

In light of what was just mentioned, in terms of reducing the amount of human labor required,

one paper that aims to do this is known as LIMA [56]. LIMA aims to reduce the amount of

human labor required for alignment by using only a small (1K) set of highly curated responses,

and tuning exclusively via SFT. The authors of LIMA simultaneously propose a hypothesis known

as the “Superficial Alignment Hypothesis”. The Superficial Alignment Hypothesis states that the

process of alignment, as performed by previous works, primarily concerns superficial stylistic

elements of input and output, and does not teach the model any new knowledge or abilities that

were not acquired already during pre-training. This hypothesis is introduced in support of the

authors’ endeavor to align a language model with only a small set of 1K input/output examples.

The main relevant baseline the authors provide is measuring against Alpaca-65B, a model trained

from LLaMA-65B by fine-tuning on 52K instruction-based input/output examples. The authors

also investigate how the model behaves towards unsafe queries, showing that it does gain the ability

to refuse to answer, since some refusals were included in the training dataset. This hypothesis is

related to the work presented in Chapter 4, because if this hypothesis is true, then the implication is

that we can potentially enforce this stylistic or surface-level alignment/instruction tuning via ICL as

well, potentially with a very small set of task examples.

2.6.4 Prompting Models for Dialogue

One approach closely related to the content of Chapter 4 is to prompt a base language model to be

a dialogue agent. Such approaches have been explored in the literature before [2, 16]. One major

difference between the work presented in Chapter 4 and these existing works is that these works

use prompting to induce dialogue-agent behavior, i.e. to produce helpful and harmless (“aligned”)

chatbots. Although zero-shot task generalization is potentially a component of the helpfulness axis

of a generic dialogue agent, these works do not systematically investigate the ability for a prompted

LM to generalize to novel unseen tasks like we do.
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2.7 Evaluation of Generative Models

2.7.1 ROUGE metrics and their weaknesses

One of the main methods used to evaluate generative models, that arose from the development of

translation and summarization systems, is a family of metrics known as ROUGE (Recall-Oriented

Understudy for Gisting Evaluation). These metrics take a machine-generated output and a set of

reference outputs written by humans, and evaluate based on different kinds of overlap between the

machine output and the reference outputs. In this work, the main metric that is relevant is ROUGE-L.

ROUGE-L evaluates a text based on the longest common subsequence (LCS) between it and the

reference outputs. In this case, the LCS refers to the longest sequence of terms that appear in the

same order, but are not necessarily contiguous, in both the reference texts and the machine output.

The main problem with ROUGE-L and other similar metrics is that they heavily rely on the

quality and coverage of the set of reference outputs [1]. In other words, they rely on the idea that the

humans writing the reference answers are able to adequately cover the space of all possible correct

outputs to a given query. In most cases, given that cost is attempted to be minimized, this is far from

true. There are many datasets where the set of reference answers is very small, if not only a single

answer. As such, metrics like ROUGE-L may unfairly penalize generative models for answers that,

were they to be evaluated directly by a human would be considered correct, but simply don’t closely

adhere to the wording provided by the reference answers they are being compared to.

2.7.2 Model-based Evaluation

An alternative strategy for evaluation of open-ended generation is model-based evaluation [8,12, inter

alia]. In such a setup, the output of the model is passed to a (potentially much) larger LLM,

potentially along with reference answers, and the larger model scores the generation. In one method,

the larger model compares two generations head-to-head, and expresses a preference for one of the

two, similar to the type of preference data that is generated by humans for RLHF. Another approach

is to simply have the model score the answer quality directly. This method is also problematic,

especially when used in conjunction with larger proprietary models whose pre-training data is
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unknown. This results in there being many questions about the quality of the larger model’s

evaluations, as well as what biases may come into play during the evaluation. Nevertheless, model-

based evaluation seems to be the predominant form of evaluation for open-ended generation for

most new models being released.
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Chapter 3

In-Context Learning for Text Classification

with Many Labels

3.1 Introduction

3.1.1 Text classification with many labels

Text classification with large label sets is a relatively understudied NLP problem area. The majority

of existing datasets involve very few classes, ordinarily under 10 and most often under 5. Looking at

the GLUE benchmark, an extremely popular NLU benchmark that spans a variety of diverse tasks,

the majority of the tasks are binary classification, with a few tasks being three-way classification or

regression tasks instead.

Text classification into many classes in the past has mainly been motivated by practical consid-

erations of building dialogue systems, where one component of a dialogue system is classifying the

user’s intent based on an utterance. One of the main ways to tackle such problems in the past was to

use retrieval models or other traditional information retrieval (IR) approaches. With the advent of

large language models (LLMs), which achieve high performance on a wide variety of tasks without

specialized training, it is natural to wonder what kind of performance would be possible in such
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classification tasks with an LLM. One of the most impressive abilities of LLMs is the ability to

learn without parameter tuning, through in-context learning (ICL).

One of the main obstacles with applying LLMs to tasks involving classification with many labels

is the limited context window these models have. Ordinarily with ICL, at minimum one example

from each class is provided in-context to allow the model to make a choice between all the labels of

the task. Because of this limitation, ICL has not been directly applied to these sorts of problems. In

this work we relax this requirement, allowing the model to see only a subset of the most relevant

labels for the given datapoint we are performing inference on.

3.1.2 Bypassing the context window constraint

In this Chapter, we demonstrate that not only can we apply LLMs to text classification problems

with many labels, but in fact in doing so we can achieve state of the art (SoTA) performance. We

test on intent classification (upwards of 50 classes) and fine-grained sentiment analysis (upwards of

25 classes). By coupling the LLM with an external pre-trained dense retriever model [19, 40], we

can dynamically retrieve a set of examples to provide to the LM in-context, that reflects only the

most relevant labels to the current example in the label space. Most existing work on augmenting

LMs with retrieval models [36, 45] focuses on tuning the retrieval and/or LM. We demonstrate that

even without tuning either, when the pre-trained models are strong enough we can still achieve

SoTA across various tasks using ICL.

3.1.3 Novel contributions

The contributions of this work are:

1. We show that retrieval-augmented ICL is an effective way to tackle text classification tasks

with many labels without additional tuning of either the retriever or the LM, either matching or

outperforming fine-tuned adapter-based and contrastive-pre-training-based methods. Notably,

truncating the dataset by showing only a subset to the LM at a time does not prevent us from
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achieving SoTA performance, and allows us to apply LLMs to problems that they have not

been applied to before,

2. We analyze ICL performance over different numbers of examples and demonstrate that larger

models better are able to take advantage of more examples in-context than smaller models,

which mostly plateau and/or see decreasing performance,

3. We perform several ablation studies to determine what aspects of the inputs and outputs

the model is using for ICL. Certain recent works investigating ICL [31, 37] have recently

called into question how much models are actually “learning” with ICL and what they are

learning from. We ablate three different elements (semantic label names, correct input-output

correspondences, and semantically similar demonstrations to the current input). Contrary to

this emerging literature, our experiments demonstrate that they are all used to varying degrees,

depending on the dataset and domain.

4. We experiment with a large variety of example selection methods, and show that in fact

ordinary nearest-neighbor retrieval is the most effective out of all the different selection

methods tested, across multiple datasets,

5. We show that least-to-most ordering is the most effective way to order retrieved examples

in-context, across multiple datasets and domains,

6. We show that neural retrievers provide a significant boost over BM25, a traditional term-based

retriever,

7. We show that fine-tuning the retriever model does not provide consistent improved perfor-

mance, contrary to intuition,

8. We show that more powerful neural retrievers also do not consistently improve performance,

9. We show that RLHF-aligned models perform worse at few-shot retrieval-augmented classifi-

cation than their equivalent base LMs
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3.2 Datasets

In this section, a brief overview of the datasets used in this Chapter is given. Four datasets were

used in total in this work: HWU64 [25], BANKING77 [6], CLINC150 [21], and GoEmotions [10].

Out of these, 3 are in the broader area of intent detection, and 1 is in the category of emotion

classification. In this section each dataset is briefly described, and some sample datapoints are

provided.

3.2.1 HWU64

HWU64 [25] is an intent detection dataset composed of 64 distinct intent classes, created to mimic

real-world interactions between users and voice assistant systems (e.g. Alexa, Siri). The intent

classes in HWU64 are diverse in nature, and can be broken down into groups like:

1. Querying for information: this category includes intents that are knowledge-seeking, such as

asking for the weather, the news, or stock prices.

2. Personal assistant tasks: this category includes intents related to tasks that a personal assistant

would engage in, such as creating calendar events or inviting people to meetings.

3. Internet of things (IoT tasks): this category includes intents related to controlling IoT devices,

such as coffee makers, robotic vacuum cleaners, or controllable lights.

4. Music-related tasks: this category includes intents relating to playing music, pausing, search-

ing for specific tracks, among others.

5. Travel: this category includes intents relating to travel, such as booking train or flight tickets,

booking accommodations, or checking travel conditions.

The dataset includes several other categories similar to the above. Some datapoint samples are

provided in Table 3.1.
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Table 3.1: Sample datapoints from HWU64

Text Gold label

get me a seat on the next train going to new york transport_ticket
mute yourself until five pm audio_volume_mute
is i. b. m. up today qa_stock
should i wear a hat today weather_query
search cost for amtrak luxury to los angeles transport_query
i’ve cancelled the order placed at mcd did it go through takeaway_query
what’s playing at brea plaza five recommendation_movies

Table 3.2: Sample datapoints from BANKING77

Text Gold label

I didn’t get all the cash I requested for at the ATM wrong_amount_of_cash_received
From where can I withdraw? atm_support
I need help changing my last name on my account edit_personal_details
How do people send me money? receiving_money
Is a non-electronic card available as well order_physical_card
When I travel, what will it cost to switch for my currency? exchange_charge
i live in the US can i still get a card? country_support

3.2.2 BANKING77

The BANKING77 dataset [6] is a more fine-grained and domain-specific intent detection dataset

than HWU64. The datapoints in BANKING77 are specifically related to the domain of banking.

The creators of the dataset categorize utterances into 77 banking-related intents, covering a wide

range of banking-related tasks, such as account management, card payments, exchange rate queries,

among others.

Some datapoint samples are provided in Table 3.2.

3.2.3 CLINC150

CLINC150 [21] is the third and final intent classification dataset tested. CLINC150 spans 150

different intent classes, grouped into 10 different domain categories. Domains include travel, work,

banking, and small talk.

Some datapoint samples are provided in Table 3.3.
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Table 3.3: Sample datapoints from CLINC150

Text Gold label

i want to eat mediterranean fare with at least four stars, near me restaurant_suggestion
tell my bank i’ll be in cuba beginning the 2nd travel_notification
i don’t have butter can i use oil ingredient_substitution
will i be charged if i use my card in japan international_fees
how do i say thank you in japanese translate
how much of my time off have i used pto_used
what do i do to fix a dead car battery jump_start

3.2.4 GoEmotions

GoEmotions [10] is a dataset for fine-grained emotion classification. This dataset goes beyond

traditional emotion classification datasets, which typically are either 2-way (positive, negative) or

3-way (positive, negative, neutral) classification. The authors at Google produced a dataset with 28

different fine-grained emotion categories. These include similar emotions such as anger, annoyance,

disapproval, disgust, embarassment, to name a few. Given the fine-grained nature of the categories,

and their frequent similarity or possibly even subjective nature, GoEmotions is a very challenging

dataset, and as such is a great testbed for retrieval-augmented ICL. The dataset is extracted from

comments from the Reddit social media platform, giving it diverse and realistic utterances. These

utterances were then annotated by human raters.

Some sample datapoints are provided in Table 3.4.

3.3 Nearest Neighbor In-Context Demonstration Selection

Retrieval-Augmented ICL: Our setup assumes N classes (unique labels) with K examples in

each class. Each example is composed of an (input, label) tuple. We assume that we have a

limited number of examples M to fit in the prompt, based on the model’s context length. M can

be fixed or based on “saturating” the prompt greedily by selecting examples until we run out of

room in the context window. From our total pool of examples of size N ×K, we retrieve the M

examples using the cosine similarity values given by our retrieval model. Having retrieved our M
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Table 3.4: Sample datapoints from GoEmotions

Text Prediction
LLaMA-2-
70B

Gold label

Lmao the brigading is real amusement amusement
Enjoy the void neutral neutral
I really relate to this. realization approval
This is the only viable way out of Brexit. optimism approval
want* a source on that, sorry. desire remorse
I didn’t know that, thank you for teaching me something today! gratitude gratitude
Well it obviously helps you rationalize your total unwillingness to
take action to make the world a better place. I hope that you grow
past that.

sadness admiration

Damn, we need healthy PGs. sadness annoyance
Welcome to The Church of Jesus Christ of Latter Day Saints,
where families can be SEPARATED forever

sadness gratitude

SBERT
retriever

Retrieval pool

N × K utterances total

Prompt:

Text: "What can I do if my 
card still hasn't arrived after 2 weeks?"

Class: card_arrival

× M

Text: {data point for inference}

Class: <LM begins completion>

LM

Final predicted
class

K (utterance, label)
pairsK (utterance, label)

pairsM (utterance,
label) pairsClass 1

(utterance, label)
(utterance, label)

(utterance, label1)

Class N

(utterance, label)
(utterance, label)

(utterance, labelN)

Figure 3.1: Complete pipeline for intent detection with retrieval-augmented in-context learning

examples, we then produce the prompt by concatenating the (input, label) tuples in a set

prompt format (see Figure 3.1), similar to existing in-context learning setups. The final prediction is

then taken from the LM by having it produce a continuation based on our prompt. A full visual

description of the retrieval process is visible in Figure 3.1.

Retrieval model: The retrieval model used is a Sentence-BERT model trained in a Siamese

dual-network setup to be able to retrieve text based on cosine similarity of the embedding vectors

it produces, described in [41]. The model we use is a contrastively trained model which has been
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pre-trained on a massive generic dataset of text pairs. We use the retrieval model as-is in all

experiments. Cosine similarity is used to retrieve examples from the retrieval pool of examples

(tested in 5-shot and 10-shot scenarios, signifying the number of examples from each class in the

retrieval pool).

3.4 Experimental Setup

Specific retrieval model: For our sentence encoder/retriever, we use the SentenceTransformers

library [40], and use the pre-trained “all-mpnet-base-v2” model (a 110M parameter model pre-

trained on over 1 billion training pairs). The SetFit results are based on contrastively tuning the

same pre-trained model trained by Microsoft through the Setfit library1.

Prompt saturation: The number of examples that fit in-context when greedily filling the context

window depends on the specific dataset. For the intent detection datasets, this number was around

110 examples. For GoEmotions, this number was around 70 (140 using the full 4K context length

of the LLaMA-2 models).

Splits: For the intent detection experiments, to allow for direct comparison with previous works,

we use the same 5-shot and 10-shot sets as DialoGLUE [28]. Experiments are run 3 times and the

accuracies are averaged, except the zero-training LLM setups, which are deterministic. For the

GoEmotions experiments we average the results across 3 different random 10 and 5-shot splits, as

no pre-existing few-shot splits exist. The GoEmotions experiments are composed of the subset of

GoEmotions data (84% of training set, 85% of testing set) where the there is only one emotion

label, to avoid issues of enforcing an ordering on a linearized version of multiple labels in sequence,

as well as to mimic the single-label intent detection datasets setup more closely. Default library

parameters were used.

1https://github.com/huggingface/setfit

25



Computing Hardware and model differences: All experiments were performed on a single

A100 80GB GPU, except those with OPT 175B, which were performed with 8 A100 GPUs. For

LLaMA 65B and 70B 8-bit quantization was used. The main difference between the OPT and

LLaMA models is the amount of pre-training data used. The LLaMA models were trained on

1T-1.4T tokens, while the OPT models were only trained on 180B tokens (see [54] and [47] for

more details). LLaMA-2 models were trained on 2T tokens.

3.5 Nearest Neighbor Results

An overview of the results using nearest neighbor retrieval and ICL are provided in Tables 3.5 and

3.6.

Table 3.5: Intent classification accuracy for retrieval+ICL and baseline methods. All retrieval+ICL

results are with 20 in-prompt examples unless otherwise specified. The retrieval/training dataset

size is given by the second row of the header (10-shot is 10 examples per class, 5-shot is 5).

Model BANKING 77 HWU 64 CLINC 150

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

SBERT 1-NN 78.41 85.39 69.89 75.46 82.51 84.84
ConvFit (reported) - 87.38 - 85.32 - 92.89
SetFit 79.89 ± 0.14 84.51 ± 0.60 78.38 ± 0.73 83.35 ± 0.57 88.68 ± 0.20 90.67 ± 0.29

DeBERTa (Pfeiffer) 81.47 ± 1.6 88.41 ± 0.19 79.80 ± 0.81 86.93 ± 0.052 91.86 ± 0.66 95.05 ± 0.33

OPT 13B 81.23 85.65 78.90 83.64 85.27 89.24
OPT 175B 81.30 86.14 83.74 84.94 90.96 93.09
LLaMA 7B 84.42 87.63 85.87 87.55 88.58 91.73
LLaMA 65B 87.73 90.71 89.03 90.06 91.89 94.47

LLaMA 2 7B 86.40 89.45 87.55 87.82 94.13 95.20
LLaMA 2 7B 4K 85.91 89.48 87.17 90.33 95.35 96.02
LLaMA 2 70B 87.56 90.58 88.20 89.77 96.42 97.13
LLaMA 2 70B 4K 88.96 92.11 90.61 91.73 97.56 98.18
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Figure 3.2: HWU performance as a function of the number of examples in prompt. The x-axis scale

is non-linear, meaning that there are diminishing returns with more examples. “Sat” (saturated)

indicates filling the prompt greedily until the max length is reached.

Figure 3.3: BANKING performance as a function of the number of examples in prompt. The

x-axis scale is non-linear, meaning that there are diminishing returns with more examples. “Sat”

(saturated) indicates filling the prompt greedily until the max length is reached.

27



Table 3.6: Sentiment classification macro F1 score (following prior work) over 3 random splits for

retrieval+ICL and baseline methods. All retrieval+ICL results are from saturating the prompt with

in-prompt examples (with a 2K prompt length unless otherwise specified). The retrieval/training

dataset size is given by the second row of the header (10-shot is 10 examples per class, 5-shot is 5).

+Neut refers to the case where the “neutral” class (lack of emotion) is included in the dataset.

Model GoEmotions

5-shot 10-shot 5-shot +Neut 10-shot +Neut

SBERT 1-NN 9.48 ± 0.58 11.02 ± 1.0 7.55 ± 0.79 8.38 ± 0.48

SetFit 25.44 ± 4.5 34.69 ± 3.6 21.40 ± 3.18 27.78 ± 0.73

DeBERTa (Pfeiffer) 18.43 ± 2.9 32.33 ± 0.77 13.86 ± 1.49 25.42 ± 1.9

LLaMA 7B - - 22.99 ± 0.64 24.61 ± 0.47

LLaMA 65B - - 24.31 ± 0.73 25.63 ± 0.86

LLaMA 2 7B 29.60 ± 1.5 - 23.78 ± 1.1 24.75 ± 0.43

LLaMA 2 7B 4K 28.01 ± 1.2 30.33 ± 1.64 23.79 ± 1.9 23.57 ± 0.52

LLaMA 2 70B 36.14 ± 1.7 37.81 ± 1.3 24.20 ± 0.13 25.29 ± 0.42

LLaMA 2 70B 4K - 37.17 ± 0.37 28.26 ± 0.19 29.10 ± 0.68

LLaMA 2 70B 4K Retrieval w/o Neutral - - - 28.95 ± 0.52

3.5.1 Discussion: Small models cannot use long contexts as effectively as

large models

One trend noticeable from the performance graph as a function of the number of examples for HWU

(see Figure 3.2) is that small models seem to be unable to use more examples as effectively as large

models. The smaller OPT model is unable to effectively make use of the entire context window

when it is filled and remains at relatively low performance. In contrast, OPT 175B shows continual

improvement when more examples are added. A similar trend is visible for the LLaMA models,

where the performance of the 7B model does not change significantly (see Figure 3.2), but the 65B

model is able to continuously improve. The smaller models either level off (OPT-13B) or lose

performance (LLaMA-7B). In the 4K full context window settings for LLaMA-2, the difference

between model scales is even more apparent (Tables 3.5 and 3.6). We see the small model showing

inconsistent use of the longer contexts; sometimes improving, but mostly staying the same or
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Figure 3.4: GoEmotions performance as a function of the number of examples in prompt. The

x-axis scale is non-linear, meaning that there are diminishing returns with more examples. “Sat”

(saturated) indicates filling the prompt greedily until the max length is reached.

worsening performance. Meanwhile, the large model consistently improves with the full context in

almost all cases.

3.6 Alternative Selection Approaches

In addition to regular nearest-neighbor retrieval, we additionally experiment with several other

retrieval strategies.

3.6.1 Upper-bounded Number of Classes

We try doing the pure nearest example approach, but with a restriction to a fixed M number of

classes represented in the prompt (i.e. as we are adding examples, if we reach a certain M number

of classes represented in the prompt, we stop adding examples of other classes, and just fill the

prompt with examples of the first M classes, in order of similarity). This was to see if the LM

potentially was having issues handling examples of too many classes in the prompt. The number of
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classes (not demonstrations) returned by the retriever as a function of the number of demonstrations

retrieved is shown in Figure 3.8. Once the number of demonstrations reaches 50, the number of

classes retrieved is 15 or more. The reasoning behind trying this selection approach was that this

constitutes too many classes for the LLM to be able to reliably distinguish in a single prompt. The

algorithm is described in Algorithm 1.

Algorithm 1 Max Class Selection Algorithm
Require: Set of demonstrations S
Require: Query datapoint Q
Require: Target number of demonstrations N
Require: Max number of classes represented in the prompt M

1: procedure MAXCLASSSELECTION(Q, S, N , M )
2: # demonstration set for prompt that we will build
3: D ← ∅
4: # set of classes we have already seen
5: C ← ∅
6: # first, order demonstration set by similarity to query
7: S ←ORDERSIM(S, Q)
8: i← 0
9: while LEN(D) < N do

10: if LEN(C) < M then
11: D ← S[i]
12: C ← CLASS(S[i])
13: else
14: # If we have reached the max number of classes,
15: # only allow the example into D if its class is already in C
16: if CLASS(S[i]) ∈ C then
17: D ← S[i]
18: end if
19: end if
20: i← i+ 1
21: end while
22: Return D
23: end procedure

3.6.2 Deduplication

We try a “deduplicative” approach to try a more diverse prompt, where an example would not be

added to the prompt demonstration pool if it was too similar to an existing example in the pool. This
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Figure 3.5: The max classes selection approach, showing performance as a function of the number

of classes ceiling.

algorithm is shown in detail in Algorithm 2. Worth noting is the fact that this algorithm can possibly

fail, if we set too low a threshold. The thresholds tested empirically all succeeded in building a

demonstration set with the target number of demonstrations.

3.6.3 Class Balancing

We try “balancing” the classes in the prompt, i.e. giving a fixed N examples from each of the

nearest M classes, where “nearest M classes” is defined by each class’s nearest example to the

input instance. This algorithm is described in detail in Algorithm 3. The use of a stack makes it so

that N does not need to be evenly divisible by M . There are two supplemental algorithms used in

the main algorithm (Algorithms 4 and 5).
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Figure 3.6: The deduplication selection approach, showing performance as a function of deduplica-

tive threshold.

3.6.4 Discussion: Alternative demonstration selection approaches mostly fail

Most of the alternative demonstration selection approaches fail. Specifically, in the few cases

where they show stronger performance than the default nearest ordering, the performance boost is

relatively slight (in the best case, around 1%). The cases where the alternative selection methods

improved performance seem to universally apply to the smaller 7B model and not to the 70B

model. Furthermore, all of the alternative demonstration methods require tuning an additional

hyperparameter, making them less powerful than simple nearest example selection.

Maximum number of classes selection approach: This approach yielded some small improve-

ments. (see Figure 3.5). For the large model (70B), it either does not produce better results

(BANKING), or produces worse results (HWU) than the baseline (pure nearest neighbor). However,

in the 7B case, there seems to be some limited improvement (around 0.5%-0.6%). The improvement
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Algorithm 2 Deduplicative Selection Algorithm
Require: Set of demonstrations S
Require: Query datapoint Q
Require: Target number of demonstrations N
Require: Deduplicative threshold t

1: procedure DEDUPLICATIVESELECTION(Q, S, N , t)
2: # demonstration set for prompt that we will build
3: D ← ∅
4: # first, order demonstration set by similarity to query
5: S ←ORDERSIM(S, Q)
6: i← 0
7: while LEN(D) < N do
8: for d ∈ D do
9: # If the candidate demonstration is too similar to any previous demonstrations

10: # we have selected, do not add it to D
11: if SIM(d,S[i]) > t then
12: skip← true
13: end if
14: end for
15: if ¬ skip then
16: D ← S[i]
17: end if
18: i← i+ 1
19: end while
20: Return D
21: end procedure

however is marginal, which seems to indicate that the retriever is returning a number of classes

that both the 7B and 70B can relatively reliably handle. In other words, the 15+ classes retrieved

at 50 demonstrations shown in Figure 3.8, in fact not so many that the models completely get

overwhelmed. The 7B model benefitted slightly from the restriction to a maximum number of

classes, but generally both models performed OK, with the larger model performing significantly

worse with the cap at 5 classes in the HWU case. This is likely additional evidence that the large

model specifically is able to make full use of the variety of demonstrations (many classes), so much

so that capping the number of classes so low significantly impedes its performance, while the small

model shows improved performance at this cap in contrast.
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Algorithm 3 Class Balancing Selection Algorithm
Require: Set of demonstrations S
Require: Query datapoint Q
Require: Target number of demonstrations N
Require: Number of Classes to Represent Equally in Prompt M

1: procedure CLASSBALANCINGSELECTION(Q, S, N , M )
2: # demonstration set for prompt that we will build
3: D ← ∅
4: # set of classes we have already seen
5: C ← ∅
6: # first, order demonstration set by similarity to query
7: S ←ORDERSIM(S, Q)
8: Cord ← ORDERCLASSESBYNEAREST(S)
9: # Sort S into a hash table with the key as the class and the value as the

10: # list of demonstrations of that class sorted by similarity to the query
11: Sclasses ← CLASSESDICTORDERED(S)
12: i← 0
13: # the current class we are taking from
14: c← Cord[0]
15: while LEN(D) < N do
16: # treat Sclasses as a stack, pop the next most similar
17: D ← POP(Sclasses[c])
18: i← i+ 1
19: c← Cord[i mod M ]
20: end while
21: Return D
22: end procedure

Algorithm 4 Class Balancing Selection Supplemental Algorithm 1
Require: Set of demonstrations already ordered by similarity S

1: procedure ORDERCLASSESBYNEAREST(S)
2: Cord ← ∅
3: for d ∈ D do
4: if CLASS(d) /∈ C then
5: Cord ← CLASS(d)
6: end if
7: end for
8: Return Cord

9: end procedure

34



Algorithm 5 Class Balancing Selection Supplemental Algorithm 2
Require: Set of demonstrations already ordered by similarity S

1: procedure CLASSESDICTORDERED(S)
2: Sclasses ← ∅
3: # Iterate over all classes represented in S
4: for doc ∈ CLASSES(S)
5: Sclasses[c]← ∅
6: for dod ∈ S
7: if CLASS(d) = c then
8: Sclasses[c]← d
9: end if

10: end for
11: end for
12: Return Sclasses

13: end procedure

Figure 3.7: The class balancing selection approach, showing performance as a function of the

number of classes the prompt is split between.
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Figure 3.8: The number of class represented in the retrieval pool as a function of the number of

demonstrations retrieved.

Deduplication approach: This approach yielded the most improvement out of all the selection

approaches tested, although the improvements are still marginal (see Figure 3.6). At low similarity

thresholds with BANKING (i.e. the most stringent deduplication), both 7B and 70B perform

significantly worse than the baseline. With HWU at a 0.9 similarity threshold, with the 7B model,

there seems to be a slight improvement of around 0.3%. The highest improvement came from

the 70B model on HWU at a 0.7 similarity threshold, where performance went from 91.25% to

92.25%, a difference of 1%. However, this effect was present only at this specific threshold value,

and therefore it is difficult to extract any generalizable conclusions from this.

Classes equally represented in prompt (balancing) approach: This approach performed worse

in all cases for the 70B model (see Figure 3.7). However, for the 7B model we see around

0.5% improvement in BANKING when splitting the prompt among 10 classes, and around 0.25%

improvement for HWU when splitting among 5. It seems that removing the information about the
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distribution of classes in the embedding space neighborhood of the query (which is effectively what

this approach does, by splitting the prompt among the classes equally) harms performance.

3.7 Ablation Experiments

Several ablations studies are done to test what aspects of the retrieved examples the LLM is using

to make the predictions. The ablation studies were done on a random split of the HWU dataset

and the GoEmotions dataset. Ablation results for HWU are shown visually in Figure 3.9 and for

GoEmotions in Figure 3.10.

1. Obfuscated labels: We change all the class names to randomly set enumerated names

(“Class 1”, “Class 2”, etc.). The intent is to disentangle the model’s use of prior (pre-training)

knowledge to perform the task (based on the semantic content of the label names) from the

input-output provided in the prompt.

2. Resampled in-context examples: To test if similarity between the demonstrations provided

in the prompt and the current input example is actually necessary for effective performance.

By resampling from the classes initially retrieved by the retriever model, we preserve the

distribution of labels but change the input demonstrations themselves so that they are no

longer the nearest in the embedding space for each class.

3. Shuffled labels: Similarly to [31], after the retrieval step we shuffle the correspondence

between the inputs and labels of the retrieved examples, such that inputs are matched randomly

from the set of labels the inputs originally belonged to. The intent of this ablation is to

examine if the model requires correct input-label correspondences (something that [31] calls

into question), or if the model is simply using structural (e.g. prompt format) and distributional

(e.g. the distribution of labels in the prompt) elements to produce a prediction.
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Figure 3.9: Classification accuracy for three ablations for HWU64: obfuscated labels (left),

resampled in-context examples (center), shuffled labels (right).

Figure 3.10: Classification accuracy for three ablations for GoEmotions: obfuscated labels (left),

resampled in-context examples (center), shuffled labels (right).
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3.7.1 Discussion: Similarity to current datapoint matters for intent classifi-

cation

In the resampling ablation for HWU (see Figure 3.9) we see that resampling from the initial class

distribution provided by the retriever model damages the performance across both OPT 175B and

LLaMA 7B. This supports the strong performance numbers of the LLMs, showing that the similarity

between in-context demonstrations and the current input matters. This implies that the LM is doing

more than just selecting the most common class or just using the shortlist of class labels from the

full set of classes to select in a more zero-shot fashion. One interesting difference to note is that

OPT 175B, the larger model, shows a larger drop from the resampling as the number of in-context

demonstrations increases, compared to LLaMA-7B, whose performance stays roughly constant (but

lower than non-resampled). This may indicate that the LLaMA models with their additional training

data are more robust to the resampling process, due to stronger pre-training knowledge and/or more

robust performance overall. In the case of GoEmotions, we see almost no variation with resampling,

showing that similarity to the input example is less influential, though the ordering of the examples

relative to each other does seem to make a difference for the 7B model (Table 3.7).

3.7.2 Discussion: Semantically significant label names matter greatly for

sentiment classification

In the obfuscation ablation (see Figure 3.9), we see that all models are hurt by obfuscating label

names. We see however that models are still able to learn to perform the task effectively, and in fact

show similar improvement curves with increasing number of examples, just with a lower starting

performance. This demonstrates that the semantic content of the labels is significantly useful to

the models but simultaneously it is not integral to performing the task, which can also be done

without semantically significant labels. In the case of GoEmotions, we see that the obfuscated

labels particularly hurt the model, bringing it down significantly. It seems to be the case that the

class names are integral to performance, but at the same time more examples are still helpful to the

model, as in the 4K context window it still sees improved performance.
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3.7.3 Discussion: Input-label correspondence matters for all datasets

Shuffling the input-label correspondence is the ablation in which we see the performance of all the

models decrease the most in the intent detection case (see Figure 3.9). Specifically, we see that the

performance drop is proportional to the number of examples (more shuffled examples brings a larger

drop). That being said, it is noteworthy that the performance of both models in this shuffled regime

is still significantly above random chance for every number of demonstrations shown, implying

perhaps that the LM’s prior knowledge based on the label names is still contributing significantly

to performance. As such, this can be seen as a confirmation of the results of [31], where the

authors show that randomizing labels does not drastically hurt performance. In our case the impact

on performance is apparent, but since the model does not go down to random chance, it is still

leveraging its knowledge and ignoring the incorrect input-output correspondence given in-context.

In all 4 datasets (intent classification and GoEmotions), shuffling the labels hurts the large model

more in particular. This aligns with the results of [52], whose authors show that larger models are

more able to learn perturbed input correspondences than smaller models, which manifests in this

experiment as lower performance. In other words, the larger model is trying to learn the perturbed

input correspondence, and thus losing more and more performance with more examples, while the

smaller model is able to more effectively ignore the perturbation.

3.8 Retriever and LM Generalization

One interesting result from our experiments is the fact that generic retrievers seem to be able to

quite effectively generalize across domains and tasks. Using the same exact retriever model across

3 different intent detection datasets (which according to the taxonomy of [18] constitutes cross-task

generalization) as well as a sentiment classification dataset (according to the previous taxonomy, a

cross-domain generalization) demonstrates SoTA or better performance in almost all cases. The

distribution shift locus for both the retriever and the language model generating the final prediction,

is from pretraining to testing time, as both the retriever and language model are pre-trained on

massive generic data before being tested in a zero-shot setting.
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3.9 Best ordering for demonstrations

Table 3.7: Comparison of select LLaMA and OPT model sizes vs. prompt orderings on intent

detection datasets (20 examples in prompt, 10-shot), random split. MTL is most-to-least similar and

LTM is the inverse.

Model BANKING HWU CLINC GoEmotions

MTL LTM MTL LTM MTL LTM MTL Random LTM

OPT 13B 73.64 85.65 76.39 83.64 81.11 89.24 - - -
ShearedLLaMA 2.7B 77.69 86.23 80.29 84.20 87.82 92.44 - - -
LLaMA 7B 83.64 87.63 86.99 87.55 90.20 91.73 15.91 20.89 ± 0.85 23.58
LLaMA 65B 88.08 90.71 89.03 90.06 93.47 94.47 - - -

One thing we see from the ordering experiments (Table 3.7) that goes against previous literature

on the subject [23] is that the least-to-most (LTM) similar ordering seems to outperform other

orderings across all datasets and domains tested. Previous literature found that the best ordering

may be dependent on the specific dataset tested, but in our experimentation LTM ordering wins

every time. Additionally, order sensitivity does not seem to be correlated with model size exactly

(see Table 3.7). ShearedLLaMA is significantly smaller than OPT 13B but exhibits significantly

less variation. The correlation rather seems to be with model performance (i.e. the stronger models

are less sensitive to ordering).

3.10 Using more powerful neural retrievers

Results using a more powerful neural retriever (GTR-XL) are shown in Table 3.8. GTR-XL is a

T5-based retriever with 1.24B parameters.

Looking at the T5 (GTR-XL) experiment results (Table 3.8), we see that more powerful neural

retrievers do not always improve performance. This is interesting as it implies the bottleneck is not

the retriever, but rather the LM making the final prediction, and that there is not a consistent rule

of more similar examples in the context window leading to better performance. In other words,

this seems to indicate that the performance of all of the neural retrievers is “saturated” with regards
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Table 3.8: Comparison vs. GTR-XL Retriever (50-ex)

Model BANKING HWU

10-shot 10-shot

LLaMA-2-7B (mpnet) 89.64 89.13
LLaMA-2-7B (GTR-XL) 89.19 88.66

to the tasks we evaluated, in that they are all equally effective at retrieving demonstrations for the

language model.

3.11 Using classical retrievers

In this section we compare the SentenceTransformers neural BERT-based retriever against a clas-

sic Okapi-BM25 retriever on the HWU64 dataset. In Table 3.9 we can see that the traditional

retriever performs measurably worse than the neural SentenceTransformer retriever, indicating that

semantically-aware neural retrieval is necessary for high performance.

Table 3.9: Comparison vs. Classical (BM25) Retriever

Model BANKING HWU

10-shot 10-shot

LLaMA-2-7B (neural) 89.45 87.82
LLaMA-2-7B (BM25-Okapi) 84.90 84.02

The BM25 retriever tested is significantly worse than the neural retrievers tested. The difference

between classical and neural retrieval is discussed extensively in Chapter 2. This was an expected

result, as the BM25 retriever is exclusively surface-form based, and therefore cannot handle the

use of synonyms in the utterance vs. the query. Additionally, it is a known weakness of BM25 and

other similar term-based retrieval methods that include a term frequency component (TF) that they

are not as effective for short texts. The reason for this is that in short texts, especially as short as in

this work, terms are most likely to appear only once or twice, effectively reducing the ability of

BM25 to differentiate documents based on this term. In addition, the inverse document frequency
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(IDF) component becomes less informative, as the probability of having unique terms decreases.

Along the same lines, all the tasks tested involve dataset with relatively simple, everyday language.

This kind of language involves a high frequency of common terms, again reducing the effectiveness

of both the TF and IDF components. In general, BM25 was designed for long documents. The type

of data we are dealing with requires the ability to grasp the semantics of the text to some extent,

which is only possible with a neural retriever.

3.12 Fine-tuning retrievers

Table 3.10: Comparison of Models with Fine-tuned Retriever (20 examples in prompt), compared

against non-fine-tuned performance

Model BANKING HWU CLINC

10-shot 10-shot 10-shot

SBERT KNN 87.40 ± 0.21 83.05 ± 0.47 91.48 ± 0.13

vs. frozen + 2.0% + 7.6% + 6.64%

OPT 13B 87.71 ± 0.18 83.83 ± 0.83 91.83 ± 0.22

vs. frozen + 2.06% + 0.19% + 2.59%

LLaMA 7B 87.39 ± 0.081 87.98 ± 0.75 94.17 ± 0.32

vs. frozen - 0.24% + 0.43% + 2.44%

LLaMA 65B 88.93 ± 0.056 90.12 ± 0.51 95.62 ± 0.17

vs. frozen - 1.79% + 0.062% + 1.16%

The contrastively fine-tuned retriever was trained for one epoch to avoid overfitting, using three

times as many negative pairs as positive pairs (roughly 5-10 mins depending on the dataset).

We note large improvements in the pure 1-NN mode accuracy, as expected, as we are optimizing

a metric that is directly correlated with 1-NN performance. With fine-tuning, the pure 1-NN setup

becomes near-competitive with ConvFit, the previous SoTA. In terms of retrieval+ICL performance,

we see mixed results. In general the performance delta is quite small, suggesting that there is no

significant retrieval quality bottleneck. In general, the fine-tuned CLINC retriever provides the most
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boost, which is also the least data-scarce scenario (it is reasonable to expect the retriever fine-tuning

to be more effective with more data).

3.13 RLHF models compared to unaligned LMs

Table 3.11: Comparison vs. RLHF-LLaMA (50-ex)

Model BANKING HWU

10-shot 10-shot

LLaMA-2-7B 89.64 89.13
LLaMA-2-7B-chat 85.94 86.80

Looking at Table 3.11, we see that the RLHF-aligned LLM performs significantly worse at both

BANKING and HWU than the base version, supporting the idea of a non-insignificant “alignment

tax”, mentioned in the seminal RLHF paper [33].
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Chapter 4

In-Context Instruction Following

In the previous chapter we demonstrated that neural retrieval allows us to apply LLMs to tasks

where the number of classes precludes us from using a fixed prompt of static demonstrations. Not

only does retrieval enable us to use LLMs for these tasks, but LLMs are able to achieve SOTA

results in such a setup. The next question we seek to tackle is: is instruction-following fine-tuning

necessary to enable LLMs to follow instructions, or is it possible to use a similar retrieval-augmented

regime to unlock this ability in-context? In the process, we will gather some evidence as to the

“Superficial alignment hypothesis” mentioned in Chapter 2. If we are able to learn instruction

following in-context, this suggests that fine-tuning for instruction following does not teach the

model to perform any tasks that it hadn’t already acquired the knowledge to be able to do from its

pre-training.

4.1 Introduction

Most research on instruction-following thus far has focused on enabling LLMs to follow instructions

via gradient-based optimization, i.e. supervised fine-tuning on description/input/output triples. Fine-

tuning on large amounts of data in this format allows us to teach models to generalize to novel

tasks, as the model learns how to follow instructions, rather than how to perform a specific task at

training time. Supervised instruction-tuning is often accompanied by reinforcement learning from
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human feedback (RLHF) to perform “alignment”, or to bring model outputs in line with human

expectations when interacting with the system. In this chapter, we focus on instruction tuning only

(in a sense, a component or form of alignment itself), and see if we can replicate the results of

instruction-tuning with supervised training by simply using ICL.

In this chapter, we focus on the following set of research questions:

1. Are we able to unlock instruction following capabilities in base language models without any

fine-tuning using in-context learning with unrelated task demonstrations?

2. Does retrieval boost performance over using random demonstrations?

3. Is the base model able to generalize effectively to both classification and generation tasks?

4. How can we best condition the retrieval?

5. How closely does the ROUGE-L metric correlate with evaluation from a large SoTA model?

6. Is the base model able to generalize effectively to both classification and generation tasks?

7. Does the demonstration set matter?

8. Do unrelated task demonstrations help already instruction-tuned or RLHF-tuned models?

4.2 Method

We assume we have access to N instances of (task description, input, output)

triples that compose our pool of demonstrations S. These demonstrations are for tasks that are

completely unrelated to our current query/task. The goal of the work is to see if these unrelated

demonstrations can nevertheless teach the model in-context how to follow instructions, such that it

can complete the novel task it is seeing at test time. The intuition here is that the model may be able

to learn the relationship between task description, input, and output through ICL, and thus be able

to generalize effectively to the novel task.
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Task 1

Task 2

Task 3
Retriever

N (task description,
input, output) triples

🤖LM Response
(performing task)

Test query (unseen
task with description)

Demonstration pool of tasks

Figure 4.1: Complete pipeline for ICL Instruction Following

When retrieving from this pool of triples, we investigate 2 different ways we can query the

retriever:

1. Querying based on the task description only

2. Querying jointly with task description and input

Alternatively, we can sample randomly from our pool of demonstrations.

When retrieving based on task description only, since each task will potentially have many data

points, we retrieve randomly from within this set if we need to.

As with Chapter 3, we use a small dense retrieval model for retrieving the appropriate demon-

strations.

4.3 Dataset

In our experimentation we use the existing dataset of Super-NaturalInstructions, which is composed

of 1616 distinct natural language tasks. These tasks include both generative tasks, which may

involve providing one word, a few words, or generating short free-form text; and classification

tasks, which involve outputting a single or a few tokens representing a class name from a fixed set

of classes. We take the first 100 instances from each of the 119 test tasks, leading to a test dataset

of 11900 instances. This constitutes the official minimal test set, established by the authors of the

paper. Some datapoint samples are provided in Table 4.1.
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Table 4.1: Sample datapoints from SNI. Note that the third example contains a dataset error, the

label should be “Past”.

Instruction Input Output

In this task, you are given two questions
about a domain. Your task is to combine the
main subjects of the questions to write a new,
natural-sounding question. (abriged)

What college did this president
attend? Where did this president
meet his wife?

Did this president
meet his wife in col-
lege?

You are provided with an arithmetic question.
Your task is to compute the solution using the
given arithmetic operations. The only arith-
metic operators needed to answer the ques-
tions are’+’(addition) and’-’(subtraction). The
answer should be correct to one decimal place.

Tom has 9 yellow balloons Sara
has 8 yellow balloons. How
many yellow balloons do they
have in total?

17.0

In this task you are given a sentence. You must
judge whether the main verb of the sentence is
in present or past tense. Label the instances as
“Present” or “Past” based on your judgment.
If there is no verb in the given text, answer
“Present”.

I quietly snuck up to him and
pulled at his sleeve.

Present

4.4 Metrics

As mentioned previously, the tasks contained within Super-NaturalInstructions can broadly be

split into two categories: generative and classification tasks. Generative tasks can be evaluated via

ROUGE-L overlap, however it is well known that token overlap metrics are a poor proxy for actual

generation quality, and can sometimes unfairly penalize models for reasonable generations, and

thus need to be accompanied by additional metrics [1, 22]. This is especially the case when the set

of ground-truth responses is relatively small, and thus does not adequately cover the space of all

possible correct responses to the query (this seems to be the case in SuperNI, where a majority

of queries have only one ground-truth response). As such, we provide a mix of several different

metrics and testing setups. These additional metrics also seek to answer the research question of

which kinds of tasks the model is able to learn to do in-context with unrelated demonstrations.
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4.4.1 ROUGE-L

One of the metrics we provide is the standard ROUGE-L metric ordinarily used with the Super-

NaturalInstructions dataset. We provide results using ROUGE-L on only the generative subset of

the dataset, as the meaning of ROUGE-L on the classification subset is somewhat unclear. ROUGE-

based metrics have some flaws (discussed extensively in Chapter 2), and thus we compliment the

ROUGE metrics with several other metrics in our analysis.

4.4.2 Recall

A naive metric for the classification subset is exact match accuracy (EM). Unfortunately, through

empirical testing we determined that EM vastly underestimates the performance of the LM. The

reason for this is that these models will often provide additional textual content around the class

name, instead of just the class name directly, which the exact match accuracy penalizes them for.

For example, instead of returning the text “contradiction” for an entailment task, the LM may

return “The class for this datapoint is contradiction. The explanation for this is...”. As such, using a

recall-based metric is more reasonable. In this case, the metric is checking if the correct class name

is contained within the text the LM returns. This is not without issue however, as the LM’s response

may contain multiple class names, e.g. if it returns something along the lines of “I am unable to

determine if this datapoint belongs to the contradiction or entailment classes”. In this case, recall

would score the response as correct, despite the model not actually making a choice.

4.4.3 Dense similarity on output

Another way to get around the issue with exact match accuracy is to perform an operation similar to

what was used in Chapter 3, where as an additional post-processing step, we take the output of the

language model and pass it through the dense similarity model we use for retrieval. As such, we

constrain the pipeline’s output to be one of the known classes for the given task, allowing the model

some flexibility in returning the exact correct class name. For example, if the model were to return
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“Sentence 1 entails sentence 2”, then the dense similarity model would match this with the class

name “entailment”, despite the model not using the class name directly.

4.4.4 Evaluation from a large SoTA model

The final approach to evaluation is evaluation from a large SoTA model. In this case, we take the

output of the model, and provide it to an already instruction-tuned language model, asking it to make

a determination on whether the model’s response successfully accomplished the task. There are two

possible variants of the evaluation from a large SoTA model: reference-based and reference-free.

In the reference-based case, we provide the evaluator model a reference answer in addition to the

model response. This reference answer will be taken from the set of reference answers provided

by the dataset and used to calculate the standard ROUGE-L score. In the reference-free case, the

evaluator model is given the model response, and will have to make its own determination, with no

grounding in any sample answers, of whether or not the model effectively solved the task with its

response. In our case, since we have reference answers from the SuperNI dataset, we report only

the grounded task completion rate.

4.5 Retrieval Sets

We evaluate the ability of LLaMA-7B to perform instruction-following via ICL on two different

sets of demonstrations.

4.5.1 Super-NI itself

We use the train split of Super-NI itself as our first set of demonstrations. Using the train split

ensures there is no task overlap between the demonstrations we will be providing to the model and

the tasks we are evaluating it on. Our retrieval set is composed of the first 100 examples of each of

the training tasks. This constitutes 75.600 triples examples in total.
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4.5.2 Self-instruct Seed Task Set

Our second set of demonstrations comes from the Self-instruct paper [50], and is composed of the

175-example seed set of handwritten task-description-input-output examples that the authors use to

build their instruction-tuning dataset. We use this as our set of demonstrations to see how little data

we can make use of and still have an effective ICL-based instruction-following model.

4.6 Baselines

We provide 2 baselines/points of comparison for our ICL-based instruction-following model.

4.6.1 LLaMA zero-shot

Our first baseline is simply using the LLaMA model in zero-shot fashion, with no task demonstra-

tions provided at all. We simply provide the query task description, input, and query the model for

the output.

4.6.2 LLaMA-2-chat

With the release of LLaMA-2, there now exist open-access fully-RLHF-tuned models released by

Meta. LLaMA-2-chat has been RLHF-tuned using human preference data, and thus fulfills both the

criterion of instruction-following and also the criterion of broader harmlessness and helpfulness-

based alignment. Given the use of external preference data, we expect that the LLaMA-2-chat

model will likely perform better than our approach, which only uses Super-NI or the seed set of

Self-Instruct.
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Table 4.2: Performance of In-Context Instruction Following vs. Fully fine-tuned instruction-tuned

models. “R-L” denotes the ROUGE-L score on the generative subset, “R” denotes the Recall score

on the classification subset, and “D” denotes the EM score after the “dense similarity on model

output” procedure. “L1” refers to LLaMA-1 and “L2” refers to LLaMA-2. “Saturated” refers to

greedily filling the context window with examples. “Inst-only” refers to using just the instruction

text to condition the retrieval; “joint” uses both the instruction text and the input text. If the model

output mentions multiple classes in the classification task subset, we zero the prediction to not skew

the recall numbers. “Random class selection” refers to selecting from the task classes randomly

(classification subset only).

Model SuperNI Retrieval set Self-Instruct Retrieval set

R-L (gen) R (class) D (class) R-L (gen) R (class) D (class)

Copying input 21.97 - - 21.97 - -
Random classes - 43.29 43.29 - 43.29 43.29

L1 1-shot random 30.47 ± 9.00 43.76 ± 6.75 48.31 ± 1.23 31.37 ± 7.04 39.27 ± 6.33 47.83 ± 1.27

L1 Saturated random 37.59 ± 0.87 43.22 ± 0.80 49.07 ± 0.53 37.19 ± 0.77 41.67 ± 2.08 49.47 ± 0.40

L1 1-shot inst-only 36.07 41.29 48.45 35.29 40.45 48.29
L1 Saturated inst-only 35.79 41.73 47.63 38.42 41.39 48.55
L1 1-shot joint 35.52 41.94 47.86 32.51 40.49 47.69
L1 Saturated joint 36.93 43.49 49.67 36.32 42.35 48.92
L2 1-shot inst-only 37.86 42.37 49.31 34.50 40.84 48.27
L2 Saturated inst-only 37.53 42.67 49.55 37.84 44.05 49.82
L2 1-shot joint 37.22 42.92 49.96 33.77 40.14 48.10
L2 Saturated joint 38.38 43.98 49.43 35.88 43.90 49.16

L1 Zero-shot 7B 23.67 39.06 47.25 23.67 39.06 47.25
L2 Zero-shot 7B 26.34 46.59 48.94 26.34 46.59 48.94
L2 Z-S 7B-chat 31.17 42.84 50.18 31.17 42.84 50.18

4.7 Results and Discussion

4.7.1 Can we achieve zero-shot task generalization from a base LLM, with

unrelated task demonstrations through ICL?

The answer to this research question seems to be yes, to some extent. When comparing to a strong

RLHF-baseline (LLaMA-2-7B-chat), the prompted models are able to perform significantly better
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on average on the SuperNI testing task subset using the ROUGE-L metrics (see Table 4.2, top

performance from prompted model of 38.42 on the generative subset vs. 31.17 from the RLHF-

tuned LLaMA-2-7B model). When using the alternative evaluation from a large SoTA model

however, it is clear there is still a gap between the RLHF-tuned model and the best prompted model

(see Table 4.5, LLaMA-2-7B-chat task completion rate of 34.9% vs. best prompted model of

32.8%). The gap is relatively small, and the improvement compared to just using the base model

out-of-the-box zero-shot is stark (from Table 4.5, task completion rate of 22.4% or 25.9% for

LLaMA-1 and LLaMA-2 respectively). Looking at Table 4.4, we also see that more examples

generally correlates to better performance on the unrelated test-time tasks (on the generative subset

only; on the classification subset, retrieval does not seem to help).

One interesting observation is that the performance of almost all models by default on the

classification subset is below random chance (see Table 4.2, row “Random classes”, 43.29). This is

surprising, as the expectation was that the classification tasks are the easier subset of the dataset, but

this seems to not be the case. By using the dense similarity on output technique, all of the models

climb to above random chance, but even the best performing model is only able to perform 6.89%

better than random chance (see Table 4.2, LLaMA-2-chat performs at 50.18% accuracy).

4.7.2 Does retrieval boost performance over random demonstration selec-

tion?

The answer to this research question seems to be somewhat mixed. In certain cases, retrieval does

seem to boost performance compared to random selection, but the difference is relatively small

(see Table 4.2). As such, retrieval does not seem to be an integral part of the instruction-following-

through-ICL recipe, although it provides a bit of extra performance. Another argument for retrieval

is that it is able to consistently give good results, while with random selection certain prompts

provide poorer results and others better (see standard deviations for random demonstration selection

in Table 4.2).
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Worse performance with increasing examples on classification subset For the classification

subset specifically, more examples seem to hurt model performance, especially if we are providing

only classification examples in-context. Looking at Table 4.3, we see that the best performing

models are all 1-shot (either instruction-only or joint conditioning).

One idea that we examined about this phenomenon was that overlapping class names between the

demonstrations and the test task were causing the LM to become confused. As such, an experiment

was run with avoiding overlapping class names between the demonstrations and test task (shown in

Table 4.3, the “No-OV” rows). Removing the overlapping class names improved the performance

very slightly (regular score of 48.55% on the classification subset, adding No-OV improves the

score to 48.83% for the instruction-only conditioning case).

4.7.3 Is the base model able to generalize effectively to both classification

and generation tasks?

It seems to be the case that there is a difference between the classification and generative subsets of

the dataset. Specifically, it seems that the 7B base-model, even with no prompting or tuning, and

equipped with the dense similarity on output, is able to perform meaningfully better than the random

class selection baseline (see Table 4.2, LLaMA-1 zero-shot base model gets 47.25%, LLaMA-2

zero-shot base model gets 48.94%, random chance is 43.29%). However none of the 7B models are

able to significantly improve beyond this random selection baseline (the best improvement is 6.89%

above the baseline, with 50.18%). This may imply that not only are these specific classification

tasks difficult to generalize to in-context, but also that none of the models were able to generalize

effectively from their pre-training data to be able to solve these classification tasks. This also seems

to support the Superficial Alignment hypothesis, in that even the RLHF-tuned model was unable to

perform well in them. In other words, even instruction fine-tuning and human-preference-based-

tuning was unable to teach the 7B-chat model to solve these tasks, supporting the idea that alignment

tuning is unable to teach the model to perform new tasks it has not already seen in some form during

pre-training.
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In terms of the types of demonstrations we provide, we can see in Table 4.3 that providing

classification-only demonstrations slightly boosts performance on the classification set, but not

on the generative split (peak score with LLaMA-1 and all examples, generative and classification,

of 48.92% on the classification split from Table 4.2, while giving class-only examples gives a

performance of 49.98% with the same base model). However, given that this method is simply

prompting, one can envision a real-world use case where a different prompt (set of demonstrations)

is given to the model depending on if the user’s query is a classification or generative task.

Table 4.3: Ablation with classification-only demonstrations, using the Self-Instruct Retrieval set.

“No-OV” refers to not selecting demonstrations whose class names overlap with the class names of

the task the query belongs to.

Model R-L (gen) R (class) D (class)

1-shot class-only random 35.05 ± 0.69 42.95 ± 0.65 49.00 ± 0.79

5-shot class-only random 35.68 ± 0.53 43.73 ± 0.54 48.97 ± 0.48

1-shot class-only inst-only 34.64 41.16 49.20
5-shot class-only inst-only 34.46 41.84 46.29
10-shot class-only inst-only 34.54 42.57 47.33
Saturated class-only inst-only 34.74 41.59 46.88

Saturated inst-only No-OV 38.49 40.61 48.63
Saturated inst-only class-only No-OV 35.41 41.57 46.57

1-shot class-only joint 34.66 43.76 49.98
5-shot class-only joint 34.94 42.05 48.02
10-shot class-only joint 35.02 41.00 46.43
Saturated class-only joint 35.33 41.61 46.53

Saturated joint No-OV 35.65 42.82 48.94
Saturated joint class-only No-OV 35.41 41.57 46.57

4.7.4 How can we best condition the retrieval?

The best way to condition the retrieval seems to be somewhat dependent on the demonstration dataset

and type of test-time query. Using the Self-Instruct Retrieval set, the instruction-only retrieval mostly

wins out (Table 4.2, in both the LLaMA-1 and LLaMA-2 categories instruction-only wins against

joint conditioning for the generative subset, with 38.42 and 37.84 ROUGE-L scores respectively vs.
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the joint scores of 36.32 and 35.88 respectively). However, for the classification subset, it seems

that in certain cases the joint conditioning also wins. In general, as mentioned previously, retrieval

seems to mostly hurt performance on the classification split.

Table 4.4: Ablations across number of demonstrations, using the Self-Instruct Retrieval set (LLaMA-

1).

Model R-L (gen) R (class) D (class)

1-shot inst-only 35.29 40.45 48.29
5-shot inst-only 37.27 42.22 49.00
10-shot inst-only 38.14 43.04 48.75
15-shot inst-only 38.38 41.22 48.41
Saturated inst-only 38.42 41.39 48.55

1-shot joint 32.51 40.49 47.69
5-shot joint 35.57 41.74 49.31
10-shot joint 35.95 42.16 49.11
15-shot joint 36.05 42.78 49.00
Saturated joint 36.32 42.35 48.92

Figure 4.2: Performance vs. Number of Examples on SuperNI test subset
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Table 4.5: Performance of In-Context Instruction Following vs. Fully fine-tuned instruction-tuned

models, evaluation from a large SoTA model (GPT-4-Turbo). Numbers are from the generative

subset only (sample of 1000).

Model Task Completion Success Rate (GPT-4-Turbo)

Zero-shot LLaMA-1-7B 22.4%
Zero-shot LLaMA-2-7B 25.9%
1-shot ICL LLaMA-1-7B (inst) 28.0%
Saturated ICL LLaMA-2-7B (joint, SNI retrieval) 30.5%
1-shot ICL LLaMA-2-7B (inst) 31.4%
Saturated ICL LLaMA-1-7B (inst) 31.9%
Saturated ICL LLaMA-2-7B (inst) 32.8%
LLaMA-2-7B-chat 34.9%
Sat ICL + LLaMA-2-7B-chat 47.7%

Figure 4.3: Comparison of ROUGE-L vs. LLM-based vs. classification evaluation. We can see

that the performance of LLaMA-2-7B-chat seems to be underestimated by ROUGE-L significantly.

The classification performance seems to be a more accurate predictor of the LLM-based evaluation

result.
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4.7.5 How closely does the ROUGE-L metric correlate with evaluation from

a large SoTA model?

The evaluation from a large SoTA model seems to only partially correlate with ROUGE-L (see

Figure 4.3 for a visual comparison of the two metrics). For example, with a single example

in-context, we already beat LLaMA-2-7B-chat, the RLHF-tuned model, in terms of generative

ROUGE-L (see Table 4.2 35.29 ROUGE-L score for 1-shot vs. 31.17 chat). However, when

comparing with the evaluation from the large SoTA model with task completion rate, we see that

LLaMA-2-7B-chat actually wins, although the margin is reasonable (LLaMA-2-7B-chat with a

completion rate of 34.9% vs. the top prompted model completion rate of 32.8%). The ROUGE-L

scores seem to be overestimating the performance of the prompted models, and underestimating the

performance of the 7B RLHF-tuned model (see visual comparison in Figure 4.3).

4.7.6 LLaMA-2-7B-Chat Failure Mode: Output Description

One failure mode observed in the LLaMA-2-7B-chat model is that the model will simply describe

what the output should look like rather than providing an actual answer to the query. For example,

for the task of writing a title for a given article, the model may respond with “A title for the article.”

rather than actually performing the task. It was observed that whenever this behaviour occurs, it

occurs for every datapoint of a given task, regardless of what the input is, such that there are entire

tasks that the Chat model is unable to perform and gets a 0 ROUGE-L score on.

4.7.7 Does the set of demonstrations matter?

One interesting observation is that the set of demonstrations does not seem to particularly matter in

terms of triggering the base model’s “instruction-following mode” in-context. Looking at Table

4.2, we see slight differences between using the SuperNI retrieval set vs. the Self-Instruct retrieval

set (performance differences of <1%). However, it is worth noting that the Self-Instruct set is

composed of 175 examples, while the SuperNI Retrieval set is composed of 75.600 examples. It
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seems safe to conclude that the size of the demonstration set plays a very small role, if any, in the

final performance.

Table 4.6: In-context learning with already fine-tuned models, using the Self-Instruct Retrieval set.

Model R-L (gen) R (class) D (class)

LLaMA-2-7B-chat (unprompted) 31.17 42.84 50.18
LLaMA-2-7B-chat (prompted) 35.65 45.29 55.31

4.7.8 Do unrelated task demonstrations help already instruction-tuned or

RLHF-tuned models?

Already-instruction-tuned models also seem to significantly benefit from unrelated task demonstra-

tions. Looking at Table 4.6, we see a reasonably large boost in ROUGE-L on the generative subset

as a result of using a similar prompting setup but with LLaMA-2-7B-chat which has been RLHF-

tuned (35.65 vs. 31.17 ROUGE-L score) . With the dense-similarity-on-output mechanism on the

classification subset, we see the strongest classification performance out of all the models tested

(55.31% accuracy). Although the generation ROUGE-L is also improved, it is not the strongest

ROUGE-L out of all models tested, which rests with the Saturated instruction-only ICL base model.

However, an interesting observation is that in the evaluation from a large SoTA model (Table 4.5),

combining prompting with the already RLHF-tuned model provides the highest task completion

success rate out of all 7B models tested (47.7% task completion success rate, a significant jump

from the zero-shot LLaMA-2-chat of 34.9%). This demonstrates that the irrelevant task prompting

method is actually complimentary to RLHF tuning, and not necessarily in contrast with it. The

implications of this are interesting; one conclusion to be drawn could be that existing methods for

instruction-tuning/RLHF-tuning are not fully “capturing” the model’s zero-shot task generalization

abilities.
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Chapter 5

Conclusion

5.1 Summary of Thesis

In this thesis, we investigated the use of retrieval systems in combination with in-context learning.

We used dense retrieval models to enable the use of LLMs for classification tasks with large

label sets, where ordinarily context window limitations would make the use of LLMs difficult.

In addition, we investigate using ICL for instruction following, to avoid the regular procedure of

regular instruction-tuning and RLHF alignment, which is extremely costly due to the degree of

human input it requires.

5.2 Contributions to the Literature

Our contributions to the literature are several. We achieved SOTA performance with 4 different

short text classification datasets, where the number of classes ranges from 28 to 150. We analyzed

model performance across different model scales and numbers of demonstrations, showing that

larger models are better able to use more demonstrations effectively. We investigated the effect

of the ordering of demonstrations in-context, showing that the order of demonstrations matters

significantly, and retrieval models can be used simply to reorder demonstrations for a performance

boost. We performed several ablations on different aspects of the demonstrations, demonstrating that
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the similarity of the query to the demonstrations, the correct input-output correspondence, and the

semantically-significant class names all play a significant role in the final performance of the system.

We compare with classical (BM25) and larger neural retrievers, showing that larger retrievers are not

necessarily more performant. We also demonstrate that fine-tuning the retriever does not necessarily

lead to performance gain, especially when data is the most scarce. The contribution of this part of

the work concludes with showing that RLHF-aligned LLMs perform worse on the task than their

base versions, supporting the idea of a non-insignificant “alignment tax”, mentioned in the seminal

RLHF paper [33].

In the second part of the thesis, we investigate the use of ICL for instruction-following, with

the dual aim of a) reducing the costliness of training instruction-tuned and RLHF-aligned models,

and b) investigating the “Superficial Alignment Hypothesis”. We demonstrate that using irrelevant

task demonstrations greatly boosts the instruction-following ability of the base model, however

according to the model-based evaluation a gap still exists between the prompted and RLHF-tuned

equivalent-model. However, we demonstrate that the irrelevant task demonstration approach is

actually complimentary to RLHF-tuning, and improves the performance of the RLHF-tuned model

both in ROUGE-L scores and also in model-based evaluation, where the prompted and RLHF-tuned

model reached the highest performance out of all the 7B models tested.

5.3 Future Work

Future work extending retrieval-augmented in-context learning for complex classification tasks with

large label sets (the content of Chapter 3) could involve scaling up the size of the label set even

further, into hundreds or thousands of labels, to investigate if the LLM is still able to perform the

task effectively in combination with the retrieval model. Beyond this, although all of the alternative

retrieval strategies that we tried did not perform meaningfully better than nearest neighbor, it is

possible that there are even more complex strategies that would. Future work could investigate other

strategies, or perhaps investigate why exactly nearest neighbor is so effective. More specifically,

we do not have a compelling explanation for why increasing the diversity of in-context examples
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does not boost performance, as it intuitively seems like it should. The idea of removing “redundant

examples” seems intuitive but fails in practice, and the mechanism behind why this happens is still

very unclear.

Future work extending the use of in-context learning for instruction following (the contents

of Chapter 4) could take the form of investigating the reason behind why the 7B-chat model’s

performance is so severely underestimated by the ROUGE-L metric. Future work could also

investigate the use of in-context learning more broadly for alignment, rather than just for instruction

following, as was done in this thesis. Instruction following is only one component of alignment;

and since ICL has been demonstrated to perform well in this context, it’s possible it can be used

more broadly for safety and other types of alignment as well.
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