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Abstract

Active space debris removal using a tug is a promising technique for removing space de-

bris. These systems consist of a space tug attached to orbiting debris via a thin tether and

benefit from being cost-effective, applicable to a variety of debris shapes and sizes, and

technologically ready for implementation. Unfortunately, the dynamics of the tug-tether-

debris system is highly nonlinear and is susceptible to unstable or even chaotic oscilla-

tions. In this work, the stability of space debris towing systems is studied considering

aerodynamic drag in Low Earth Orbit. The equations of motion are derived using the La-

grangian method in the reference frame of the space tug where motion is confined to the

two-dimensional orbital plane and the space tug has a prescribed orbital motion. Numer-

ical simulation is conducted for a variety of cases to study the behaviour of equilibrium

points, tether oscillations, and stabilization methods. The key parameters of interest are

the aerodynamic properties of the debris, the orientation of the tether, and the effects of

magnitude and direction of thrust applied to the spacecraft. These methods explore the

effect of aerodynamics on tethered satellite systems which remains understudied. Fur-

thermore, modeling the system in the frame of the space tug as opposed to the centre of

mass of the system facilitates the use of these findings in control system design as this

location can be more easily tracked. Understanding the behaviour and dynamics of the

system in these terms is key to the design of space-debris removal systems, control sys-

tems, mission design and end-of-life satellite design.
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Abrégé

L’élimination des débris spatiaux à l’aide d’un remorqueur est une technique promet-

teuse pour éliminer les débris spatiaux. Ces systèmes sont constitués d’un engin spatial

attaché aux débris en orbite via un ancrage et bénéficient d’un bas coût, d’être appli-

cables à une variété de formes et de tailles de débris et prêts technologiquement à être

mis en œuvre. Malheureusement, la dynamique du système est non linéaire et sensible

à des oscillations instables, voire chaotiques. Dans ce rapport, la stabilité des systèmes

de remorquage de débris spatiaux est étudiée en considérant les forces aérodynamiques.

Les équations de mouvement sont dérivées à l’aide de la méthode Lagrangien dans le

référenciel de l’engin spatial où, le mouvement est confiné au plan orbital bidimension-

nel et le mouvement de l’engin spatial est prescrit. Une simulation numérique est réalisée

pour divers cas afin d’étudier le comportement des points d’équilibre, les oscillations

de l’ancrage et les méthodes de stabilisation. Les principaux paramètres d’intérêt sont

les propriétés aérodynamiques des débris, l’orientation de l’ancrage et les effets de la

grandeur et de la direction de la force appliquée au vaisseau spatial. Ces méthodes ex-

plorent l’effet de l’aérodynamique sur les systèmes d’engins satellitaires ancrés, qui de-

meure peu étudié. De plus, la modélisation du système dans le référentiel de l’engin

spatial plutôt que celui du centre de masse du système facilite l’utilisation de ces résultats

dans la conception du système de contrôle, car ce point peut être plus facilement suivi.

Comprendre le comportement et la dynamique du système est essentiel à la conception

de systèmes d’élimination des débris spatiaux, de systèmes de contrôle, de missions et de

satellites.
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Chapter 1

Introduction

1.1 Space Debris

For over sixty years, space-based technologies have enriched society with information

from space exploration, satellite networks, and astronomical research. With the growing

privatization of the space sector, the world is seeing a large increase in space traffic, par-

ticularly with the launching of large satellite networks. Innovation in the space sector is

looking to expand the usefulness of Earth’s orbits; improving internet access, navigation

systems, telecommunications, and meteorologic observation. Furthermore, as govern-

ment agencies prepare for larger space exploration missions to the moon and further;

space research, policy, and safety is of utmost importance.

After decades of space launches, the lower Earth orbit (LEO) has become overrun with

dead satellites, abandoned rocket stages, and other discarded remnants from previous

space missions all known as space debris [9]. Space debris, also known as space junk or

orbital debris, are any man-made non-functional objects orbiting the Earth’s surface. The

generation of space debris originates primarily from human activities leaving objects such

as discarded rocket stages, protective launch vehicle fairings, and abandoned satellites.

Furthermore, collisions between debris objects themselves have the potential to result in

“Kessler Syndrome,” where a series of impacts between large debris create a multitude
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of smaller debris [9, 10]. As of 2020, over 23,000 debris objects were being tracked, and

it is estimated that millions more are unaccounted for [16]. There exists a wide variety

of sizes of debris tabulated in table 1.1 with their estimated quantities in orbit as of 2015

[20]. Figure 1.1 illustrates the catalogued density of debris as a function of altitude in

LEO [16]. Due to such high object density in orbits common to satellite networks, active

spacecraft have an increasing risk of colliding with debris [4,9]. As of now, space stations

and active satellites such as the International Space Station (ISS) (which located at an

altitude of 408km) are being manually maneuvered to avoid flying debris, contributing

to the unnecessary depletion of resources [10].

Figure 1.1: Catalogued density of debris in LEO as a function of Altitude between 2008-

2020 [16]

Space debris poses a significant risk to active spacecraft. For example, a piece of debris

weighing as little as 300mg and size 2 cm3 can reach speeds as high as 15km/s without air

resistance, giving it an equivalent kinetic energy twenty-three times that of dynamite [18].

Figure 1.2 shows an example of experiments done by the European Space Agency (ESA)

into the potential hazards of hyper-velocity impacts in orbit [6]. One notable collision

incident involving space debris is the 2009 collision between the operational Iridium 33
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communications satellite and the defunct Cosmos 2251 satellite in low Earth orbit. This

collision was the first time two satellites are known to have collided in orbit. The event

created over 1,300 tracked pieces of debris [8].

Table 1.1: Approximate size and quantity of space debris in orbit as of 2015 [20]

Name Size (cm) Approximate Quantity of Debris in Orbit
Large >10 23,000

Medium 1-10 600,000
Small 0.1-1 70 to 80 million

Microscopic <0.1 1013 − 1014

Despite space agencies’ previous negligence of this issue, mounting concern regard-

ing dangerous collisions and Kessler Syndrome has spurred awareness and research into

methods of debris removal. Active debris removal (ADR) is the disposal of abandoned

orbiting objects through external influence either by de-orbiting them, moving them to

lower orbit, or destroying them. This often involves directly influencing the dynamics of

the object by manipulation or force [10]. Active space debris removal using a tug is one

promising technique for removing space debris [13]. Tether-based removal systems are

relatively simple; technologically ready for implementation and testing; applicable to a

variety of debris shapes and sizes; and cost-effective [10].

Figure 1.2: Threat of impact of space debris [6]
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End of life design strategies in space debris refers to the consideration of the disposal

of spacecraft and satellites at the end of their operational life. Key elements of this design

mentality are designing systems which are conducive to typical debris removal methods

or even have a plan for removal built into the design of the craft itself. Such strategies in-

clude material and geometry selection, mission design, or even the inclusion of additional

forms of propulsion to lower the craft to disposal orbits [10].

1.2 Tethered Systems

Space tethers are extremely long thin cables which connect objects in space, they can have

lengths from a few hundreds of meters to a few kilometers (see figure 1.3). These tethers

are typically made from special materials able to withstand the conditions of space as well

as be strong enough to perform particularly strenuous tasks [17]. Conductive tethers are

space tethers made of conductive metal fibres or materials which are able to make use of

the Earth’s magnetic field or radiation belts to generate propulsion [10].

Figure 1.3: Tethered space debris removal system [15]

Non-conductive space tethers serve a variety of purposes. Largely, such tethers cou-

ple two or more space objects for the exchange of energy or momentum for towing or
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propulsion. As well, tethered systems can enable groups of satellites to fly in formations.

Formation flying is useful for environmental studies of the cosmos as well as Earth obser-

vation [10, 14].

Space debris removal using a tether employs a powered spacecraft named a space

“tug” which attaches to a target debris using a tether. By applying thrust, the tug then

tows the debris to a disposal orbit where it will lose momentum and fall towards the Earth

to be burned up in Earth’s atmosphere. Debris capture by this method is often done via

tether-net capture or harpoon capture, the dynamics of which are the subject of many

studies [13].

Figure 1.4: Diagram depicting the components of tether-based ADR

This method of ADR is controlled and gradual and aims to avoid the generation of

new debris. This method is also able to de-orbit larger pieces of debris and, if equipped

with multiple tethers or by using a tether-net, can de-orbit multiple debris in one mission.

The opportunity to de-orbit multiple debris at once, as well as the low price point of

tethers, make tether-based ADR an economically promising option for ADR [10, 13].
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The dynamics of tethered systems is nonlinear due to the presence of gravitational

forces, tether dynamics, atmospheric drag, coupled variables, and the consideration of

three gravitational bodies, among others. The non-linearity of tethered systems compli-

cates their use engineering as they are vulnerable to chaotic oscillations. Unstable oscil-

lations are liable to put strain on the system as a whole, causing the tether to snap or

complicating control system design as well as mission design. There are many factors to

be considered when modelling tethers in space. For example, material properties such as

mass, density, and elasticity as well as dynamic properties with respect to tension, bend-

ing, and slack in the tether can be difficult to imitate [13]. As a result, tethered systems

are difficult to predict analytically. Thus in-depth study is needed to understand the dy-

namics of the system in response to different parameters as well as initial conditions to

assess the feasibility of tethered systems and their stability.

1.3 Previous Work

The inherent usefulness of tethered systems make their study particularly important con-

sidering their complex, nonlinear, and chaotic dynamics in response to a variety of dif-

ferent factors. There are many factors that impact the stability of the system: orienta-

tion of the tether, the orbital elements of the system, thrust of the tug, properties of the

tether, aerodynamic drag, properties of the debris, etc. Numerous studies have already

examined many of the variables listed above, making a variety of simplifying assump-

tions [1–3, 14, 19]. Previous work has identified configurations near local vertical as typi-

cally stable systems and those near local horizontal as typically unstable. These observa-

tions make these initial conditions of particular interest in future work.

Study of the tug-debris system is often defined in the frame of reference of the centre

of mass of the system [2,3,14] as seen in figure 1.5. It was determined early in the research

of this method the effects of orbital parameters as well as thrust on the stability of the sys-

tem and the existence of equilibrium configurations [3]. Equilibrium configurations refer
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specifically to the orientation of the tether in the reference frame. Chiefly, considering a lo-

cal vertical local horizontal (LVLH) orbital plane, tether configurations wherein the tether

approaches these axes are of particular interest. As well, the properties of the tether itself

such as length [14] and elasticity [7] are of interest as they contribute to longitudinal and

transverse tether oscillations.

Figure 1.5: Tether-tug system in the frame of reference of the system’s centre of mass [3]

The effect of aerodynamic drag present in LEO on the tug-debris system is one pa-

rameter that has not been studied in detail [2]. Specifically, only the transportation stage

(towing from operational orbit to disposal orbit) has been studied in the presence of aero-

dynamic drag among many other parameters [2]. Aerodynamic forces present in LEO

thereby remains an understudied topic in active space debris removal. In addition, mod-

eling the system in the frame of the space tug (rather the centre of mass as done in [2,3,14])

assists in control system design as this location can be more easily tracked.
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1.4 Scope and Outline of the Project

Dynamic study of the tethered space debris removal system is very important for the

success of this method.

This thesis aims to study the stability of space debris towing systems considering aero-

dynamic drag in LEO. The equations of motion are derived using Lagrangian mechanics

where motion is confined to the two-dimensional orbital plane and the space tug has a

prescribed orbital motion. By accurately modeling the dynamics of the system, numeri-

cal simulation will be conducted for a variety of cases. Parameters of interest include the

effects of aerodynamic properties such as surface area, drag coefficient, and lift coefficient

on local horizontal and local vertical equilibrium positions. As well, consideration will

be given to the use of thrust as a stabilization method.

Posing the question in this fashion, this thesis aims to aid in the design of control

systems for space tugs for ADR by placing the frame of reference as the space tug itself.

Opting for stable equilibrium positions near local vertical and local horizontal as seen

in previous work, the study of the stabilizing effects of thrust magnitude and direction

is presented. Furthermore, by considering the physical aerodynamic properties of the

debris, spacecraft can be designed with end-of-life strategies which lend themselves to

stable tether-based ADR.
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Chapter 2

System Definition

2.1 Overall Schematic and Assumptions

In this section, the Earth-tug-tether system is presented. Using the nomenclature pre-

sented in the beginning of the report, the overall system is depicted in figure 2.1. Here,

location T marks the location of the space tug, D marks the location of the debris, and E

marks the location of the Earth. Accordingly, properties with subscript T refer to those of

the space tug and subscript D refers to those of the debris.

The space tug (T) orbits the earth (E) in a counter-clockwise direction attached to de-

bris (D) by a tether. Note the definition of a local vertical—local horizontal (LVLH) coor-

dinate system where the k direction is oriented out of the page. The variable θ represents

the true anomaly of the space tug (T) and is oriented along the positive k axis.

Several simplifying assumptions are taken to model the system. Motion is modelled

in the frame of reference of the space tug using an LVLH coordinate system. A detailed

view of this reference frame is depicted in figure 2.2 where i represents the local vertical,

oriented along R⃗T and perpendicular to this is j representing local horizontal. Angles are

measured counterclockwise in the positive k direction. Tether angle α and debris angle ϕ

are measured from local vertical and the angle of applied force β is measured from local

horizontal.

9



LV

LH

T

D

θ
j

i

EE

Figure 2.1: Overall schematic of system

Assuming the tug as a point mass, analysis is conducted assuming motion is limited

to the two-dimensional orbital plane of said tug and that this space tug takes a prescribed

circular orbit.

The tether is modelled as a massless rigid body of finite length. This assumption

results in the omission of the potential and kinetic energy of the tether. Furthermore, as a

rigid body, any elasticity or slack in the tether is neglected.

Lastly, the debris is modelled as a rigid body of arbitrary shape with parametrized

properties of mass, moment of inertia about it’s centre of mass, cross-sectional area, drag

coefficient, and lift coefficient. Distance d represents the distance between the location of

tether attachment on the debris D and the centre of mass of the debris G. Considering d as

negligible compared to the length of the tether l this distance is omitted in several steps

of the derivation as seen in following sections.
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Figure 2.2: Labeled schematic of relevant variables

2.2 Motion of the Space Tug-Debris System

In this section, the derivation of the equations of motion governing the system described

in the previous section are presented. A Lagrangian approach is employed in four degrees

of freedom defined by the generalized coordinates RT , θ, α, and ϕ depicted visually in

figures 2.1 and 2.2. Generalized forces are described in detail below, including thrust force

F⃗ shown on figure 2.2 applied at an angle β counterclockwise relative local horizontal.

The other forces in consideration are aerodynamic drag and aerodynamic lift described

by parameters: A, CD, and CL depicting cross-sectional area, drag coefficient, and lift

coefficient of the debris as outlined in the nomenclature section.
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Lagrange’s equations of motion are derived by the expression

δ

δt
(
δT

δq̇i
)− δT

δqi
+

δV

δqi
= Qi (2.1)

where T represents the total kinetic energy of the system and V is the total potential

energy of the system. As outlined in the nomenclature, the variables qi, q̇i and Qi represent

the ith generalized coordinate, generalized velocity, and generalized force, respectively.

Evaluating this equation at each of the four generalized coordinates results in a system

of four second-order ordinary differential equations (ODEs) representing the governing

equations of motion of the system. These equations are then implemented in a numerical

simulation in the following sections for analysis.

In the following subsections, the position and velocity terms are presented in terms

of the generalized coordinates. Kinetic and potential energy terms are then derived and

used to generate the left-hand side of equation 2.1. The expressions for the forces acting

on the system are then presented and converted to generalized forces using the previously

derived expressions of velocity and position.

2.2.1 Velocity

The velocity of the tug is derived based on the movement of the tug along its radial

coordinate as well as the tangential velocity which is based on orbital rate and orbital

radius of the tug. Considering these effects, the velocity vector of the tug is expressed as

v⃗T = ṘT i⃗+ θ̇RT j⃗, (2.2)

whose magnitude can be expressed as

|vT | =
√

ṘT
2
+ θ̇2R2

T . (2.3)
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The velocity of the point D on the debris can be derived as a direct result of the velocity

of the tug. By adding the relative velocity between the debris and the space tug to the

velocity of the space tug, one obtains

v⃗D = [ṘT + l(α̇ + θ̇)sinα]⃗i+ [θ̇RT − l(α̇ + θ̇)cosα]⃗j, (2.4)

whose magnitude can be expressed as

|vD| =
√

ṘT
2
+ 2ṘT l(α̇ + θ̇)sinα + l2(α̇ + θ̇)2 + θ̇2R2

T − 2lθ̇RT (α̇ + θ̇)cosα. (2.5)

Note that, due to the rotating reference frame, the position of the point D relative point

T is expressed as

⃗rD/T = −l(cosα⃗i+ sinα⃗j)

where the relative rotation is based on the rotation of the tether as well as the orbital rate

of the whole system about the Earth resulting in a rotational speed of

⃗ωtether = (α̇ + θ̇)k⃗

between points T on the tug and D on the debris.

Here, the derivation of the velocity of the centre of mass of the debris (point G) will

be derived for completeness. It is assumed that points D and G are sufficiently close such

that the relative velocity between these points may be neglected and v⃗G ≈ v⃗D.

Using a similar procedure to the derivation above, the relative velocity ⃗vG/D is derived

using the relative position and relative rotation between the points G and D. This value

is then added to v⃗D as described in equation 2.4. Again considering the rotation of the

debris ϕ̇ as well as the orbital rate θ̇, it can be shown that

v⃗G = [ṘT + l(α̇ + θ̇)sinα + d(ϕ̇+ θ̇)sinϕ]⃗i+ [θ̇RT − l(α̇ + θ̇)cosα− d(ϕ̇+ θ̇)cosϕ]⃗j (2.6)
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For the rest of the derivation, ⃗vG/D is neglected by assuming l is large compared to d.

Thus, it is assumed that v⃗G ≈ v⃗D.

2.2.2 Energy

Potential Energy

The gravitational potential energy of both the tug and the debris are presented. Any grav-

itational energy or elastic energy generated by the tether is neglected by the assumptions

presented in section 2.1. The general form of gravitational energy for a point mass is

VT = −µm
R
. (2.7)

where µ is the standard gravitational parameter of Earth whose value is stated in nomen-

clature, m represents the mass of the object being observed, and R represents the magni-

tude of the position of said object from the centre of the Earth.

The tug is assumed to be a point mass located by the generalized coordinate R̃T along

local vertical. Using the standard gravitational parameter of Earth µ whose value is stated

in nomenclature, the gravitational potential energy of the tug is

VT = −µmT

RT

. (2.8)

Similarly, the gravitational potential energy of the debris is derived assuming the mass

of the debris is concentrated to the centre of mass of the debris (G). Based on the previ-

ous assumption that the centre of mass (G) is sufficiently close to the location of tether

attachment (D) the expression for gravitational energy of the debris is simplified to use

equation 2.7 by locating it’s mass to the point located described by the vector R⃗D shown

in diagram 2.2. The expression

VD =
−µmD√

R2
T − 2RT lcosα + l2

(2.9)
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is obtained where the orbital radius R⃗D is described by

R⃗D = (RT − lcosα)⃗i− lsinα⃗j

with magnitude

RD =
√
R2

T − 2RT lcosα + l2.

By summing equations 2.8 and 2.9, we obtain the expression for the total potential

energy of simplified system as

V = −µ(mT

RT

+
mD√

R2
T − 2RT lcosα + l2

) (2.10)

Kinetic Energy

The kinetic energy of the tug and the debris are presented. The kinetic energy of the

tether is neglected in all respects, by the assumption that it is massless. Energy of the

debris is split into translational and rotational. The general form for the translational

kinetic energy of a point mass is

VT =
1

2
mv2 (2.11)

where m is the mass of the object in motion and v is the velocity of the point mass. The

general form for the rotational energy of a rigid body

VT =
1

2
IGω

2 (2.12)

where IG is the moment of inertia of the object in rotation about it’s centre of mass and ω

is it’s angular velocity.

For the derivation of translational kinetic energy of the debris it is again assumed that

the centre of mass (G) is sufficiently close to the point of attachment of the tether resulting

in the use of the approximation ṽG ≈ ṽD. For the rotational energy of the debris, the

rotation of the debris about its centre of mass is considered using the moment of inertia
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ID at a distance of d. The angular velocity of the debris is taken based on the orbital rate

of the reference frame θ̇ as well as the angular velocity of the debris in the LVLH reference

frame as shown in figure 2.2 as ϕ̇.

The translational energy of the tug is expressed as

TT =
1

2
mT (ṘT

2
+ θ̇2R2

T ) (2.13)

where equation 2.3 describes the magnitude of the velocity of the tug.

Similarly, the translational kinetic energy of the debris is expressed as

TD1 =
1

2
mD[ṘT

2
+ 2ṘT l(α̇ + θ̇)sinα + l2(α̇ + θ̇)2 + θ̇2R2

T − 2lθ̇RT (α̇ + θ̇)cosα] (2.14)

by using equation 2.5 as the velocity of the point D on the debris and omitting the effects

of the relative velocity ˜vG/D.

Finally, the rotational kinetic energy of the debris is expressed as

TD2 =
1

2
IGω

2
D =

1

2
IG(ϕ̇+ θ̇)2 (2.15)

by considering rotation of the debris ϕ̇ about the debris’ centre of mass G as well as the

rotation of the reference plane about the earth θ̇.

By summing equations 2.13, 2.14 and 2.15 we obtain the the total kinetic energy of the

system (T) as

T =
1

2
mT [ṘT

2
+ θ̇2R2

T ]

+
1

2
mD[ṘT

2
+ 2ṘT l(α̇ + θ̇)sinα + l2(α̇ + θ̇)2 + θ̇2R2

T − 2lθ̇RT (α̇ + θ̇)cosα]

+
1

2
IG(ϕ̇+ θ̇)2

(2.16)
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2.2.3 Generalized Forces

The generalized forces are derived as the right-hand side of the Lagrange equations de-

scribed by equation 2.1. For each generalized coordinate i the associated generalized force

is described by

Qi = ΣF⃗j ·
δv⃗j

δq̇i
(2.17)

for each applied force j, where vj is the velocity at the position of application of force Fj .

Forces

First, the general equations for the applied forces; thrust, aerodynamic drag, and aerody-

namic lift, are presented. Thrust is applied to the space tug at point T with a magnitude

of F at an angle β measured counter-clockwise from local horizontal as shown in figure

2.2. In vector form, the applied thrust force is

F⃗Thrust = F (−sinβ⃗i+ cosβ⃗j). (2.18)

Aerodynamic drag force acts on the space debris at point G parallel to v⃗D. In vector

form, aerodynamic drag is described by

F⃗D = −CDAρ

2
|vD|v⃗D (2.19)

where v⃗D is described by equation 2.4 and |v⃗D| is described by equation 2.5. Note the use

of the assumption that aerodynamic drag is applied at the location described by R⃗D with

velocity v⃗D, neglecting the influence of distance d.

Conversely, aerodynamic lift acts on the space debris at point G perpendicular to v⃗D

and is described by

F⃗L =
CLAρ

2
|vD|2n⃗ (2.20)
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Where n⃗ can be described by

n⃗ =
1

|vD|
{[θ̇RT − l(α̇ + θ̇)cosα]⃗i− [ṘT + l(α̇ + θ̇)sinα]⃗j} (2.21)

Since aerodynamic drag and aerodynamic lift are applied at the same point, the same

generalized velocity will be used in the formulation of equation 2.17. Thus, to simplify

analysis and future formulations, equations 2.19 and 2.20 are summed to obtain

⃗FAero = [
CLAρ

2
|vD|[θ̇RT − l(α̇ + θ̇)cosα]− CDAρ

2
|vD|[ṘT + l(α̇ + θ̇)sinα]]⃗i

+[−CLAρ

2
|vD|[ṘT + l(α̇ + θ̇)sinα]− CDAρ

2
|vD|[θ̇RT − l(α̇ + θ̇)cosα]]⃗j

(2.22)

Lagrange’s Generalized Forces

Using force equations 2.18 and 2.22 with velocities v⃗T and v⃗D described by equations

2.2 and 2.4 respectively, the generalized forces for each generalized coordinate can be

derived. For the first generalized coordinate of RT , the generalized force is expressed as

QRT
= −Fsinβ +

CLAρ

2
|vD|[θ̇RT − l(α̇ + θ̇)cosα]− CDAρ

2
|vD|[ṘT + l(α̇ + θ̇)sinα] (2.23)

following equation 2.17.

Similarly, the equation for the generalized force

Qθ =FRT cos β

+ |vD|
Aρ

2
{CL[−lθ̇RT sinα− lṘT cosα−RT ṘT − lRT (α̇ + θ̇) sinα] (2.24)

+ CD[lṘT sinα + l2(α̇ + θ̇)− lθ̇RT cosα − θ̇R2
T +RT l(α̇ + θ̇) cosα]}
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is obtained for the generalized coordinate θ. Then, for the generalized coordinate α, the

expression for generalized force is

Qα =|vD|
lAρ

2
{CLθ̇RT sinα + CDṘT sinα (2.25)

− CLṘT cosα− CDθ̇RT cosα + CDl(α̇ + θ̇)}

Finally, the equation for the generalized force for the generalized coordinate ϕ is

Qϕ = |vD|
dAρ

2
{CLθ̇RT sinϕ+ CLl(α̇ + θ̇)sin(α− ϕ)− CDṘT sinϕ

−CDl(α̇ + θ̇)cos(α + ϕ) + CLṘT cosϕ+ CDθ̇RT cosϕ}
(2.26)

Density Model

An exponential model for density ρ described by

ρ = ρ0 exp(−R−R0

H0

) (2.27)

is used in the calculation of air density in atmosphere at orbital radius R. The model is

adapted from work done by Keshmiri, Misra and Modi [12]. The reference value for ρ0 as

well as scale height H0 are taken from experimental data collected by the European Space

Agency at the reference orbital radius R0 [5]. The relevant constants in this formulation

are tabulated in table 2.1.

Table 2.1: Constants used to construct the density model [5]

Parameter Symbol Value Units
Reference orbital radius R0 6771 km

Reference density ρ0 2.62× 10−12 kg/m3

Scale height H0 58.2 km
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2.2.4 Lagrangian Formulation

Following equation 2.1, the left-hand sides of the four governing differential equations

of motion are constructed using the total potential energy V described by equation 2.10

and the total kinetic energy T described by equation 2.16. Similar to the derivation of

generalized forces presented in the previous subsection, the process of deriving equation

2.1 is repeated for each generalized coordinate qi equal to RT , θ, α, and ϕ.

For the generalized coordinate RT , the Lagrangian equation of motion is expressed as

mT R̈T +mD[R̈T + l(α̈ + θ̈)sinα + α̇l(α̇ + θ̇)cosα]−mT θ̇
2RT

−mD(θ̇
2RT − lθ̇(α̇ + θ̇)cosα) + µ(

mT

R2
T

+
mD(RT − lcosα)

(R2
T − 2RT lcosα + l2)

3
2

) = QRT

(2.28)

For the generalized coordinate θ, the Lagrangian equation of motion is expressed as

mT θ̈R
2
T + 2mT θ̇RT ṘT +mD[R̈T lsinα + ṘT α̇lcosα + l2(α̈ + θ̈) + θ̈R2

T + 2θ̇RT ṘT

−lṘT θ̇cosα− lRT θ̈cosα + lα̇RT θ̇sinα] + IG(ϕ̈+ θ̈) = Qθ

(2.29)

For the generalized coordinate α, the Lagrangian equation of motion is expressed as

mD[R̈T lsinα + α̇ṘT lcosα + l2(α̈ + θ̈)− lθ̈RT cosα− lθ̇ṘT cosα + lα̇θ̇RT sinα

−ṘT l(α̇ + θ̇)cosα− lθ̇RT (α̇ + θ̇)sinα +
µRT lsinα

(R2
T − 2RT lcosα + l2)

3
2

] = Qα

(2.30)

For the generalized coordinate ϕ, the Lagrangian equation of motion is expressed as

IG(ϕ̈+ θ̈) = Qϕ (2.31)

Equations 2.28, 2.29, 2.30, and 2.31 form the governing equations of motion based on

the defined system. With Generalized forces described by equations 2.23, 2.24, 2.25, and

2.26.
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2.3 Implementation

A numerical solution to the defined system was implemented in MATLAB for simulation

and analysis. To fulfill this objective, the following section outlines some of the implemen-

tation details regarding the program used where algorithm 1 outlines the entire program

architecture.

The equations of motion described by equations 2.28-2.31 and generalized forces 2.23-

2.26 construct a system of nonlinear second order ODEs. Using the symbolic toolbox in

MATLAB, the generalized coordinates are expressed as symbolic functions of time

RT = R(t), θ = M(t), α = A(t), and ϕ = p(t).

Using this change of variable, the system is translated into MATLAB and the diff() func-

tion is used to represent the time derivatives of the generalized coordinates [11]. Where

ṘT = diff(R) and R̈T = diff(R, 2)

and similarly for the other derivatives of the generalized coordinates.

The physical parameters of the system, as shown in figure 2.2 are defined as constants

in the program with the values outlined in table 2.2.

Table 2.2: Constant physical parameters used throughout test simulations

Parameter Symbol Value Units
Tether length l 50 m

Distance to debris centre of mass d 1 m
Mass of the tug mT 500 kg

Mass of the debris mD 200 kg
Moment of inertia of the debris IG 400 kg ·m 2

The variable parameters being studied are those varying the impact of the generalized

forces; thrust, aerodynamic drag, and aerodynamic lift. Table 2.3 tabulates the values of

the variables being studied.
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Table 2.3: Constant physical parameters used throughout test simulations

Parameter Symbol Values Units
Magnitude of thrust F 0, 0.1, 1, 2 N

Angle of applied thrust β 0, 10 °
Cross-sectional area A 0, 1, 5 m2

Drag coefficient CD 0, 2 -
Lift coefficient CL 0, 0.2, 0.5 -

Following the definition of the governing equations in MATLAB, the function odeToVec-

torField is used to convert the system to state space form [11]. State space form of this

system is characterized by a system of eight first-order ODEs. Furthermore, in equations

with coupled variables, desired variables are isolated such that each function is composed

of only first-derivative terms. This system of symbolic equations is stored in the variable

system (right) with the order of original variable names stored as an array ’Y’ in the vari-

able named variables (left) defined as

Y1 = R

Y2 =
δR
δt

Y3 = M

Y4 =
δM
δt

Y5 = A

Y6 =
δA
δt

Y7 = p

Y8 =
δp
δt

δY1

δt
= Y2

δY2

δt
= f(Y )

δY3

δt
= Y4

δY4

δt
= f(Y )

δY5

δt
= Y4

δY6

δt
= f(Y )

δY7

δt
= Y4

δY8

δt
= f(Y )

Using the MATLAB function matlabFunction(), the system of symbolic state space equa-

tions is converted to a callable MATLAB function by the handle name State space [11].

Finally, the function ode45 is used to numerically solve the system given as an initial

value problem (IVP) by supplying a desired time-frame and a set of initial conditions.

Table 2.4 outlines the initial conditions used for each iteration. Note that all initial con-

ditions are the same between iterations apart from initial tether angle α which varies be-
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tween initial conditions of near local vertical (0.1 radians) and near local horizontal (1.67

radians).

The initial orbital rate θ̇ is determined by a simplified version of Kepler’s Third Law

θ̇ =

√
µ

R3
T

(2.32)

for the orbital rate of an object in a circular orbit of radius RT where RT is the initial orbital

radius of the tug as listed in table 2.4.

Table 2.4: IVP Initial Conditions

Parameter Symbol Values Units
Orbital radius RT 6771 km
True anomaly θ 0 rad
Tether angle α 0.1 or 1.67 rad
Debris angle ϕ 0 rad

Radial Velocity ṘT 0 km/s
Orbital Rate θ̇ 0.00113 rad/s

Tether angular velocity α̇ 0 rad/s
Debris angular velocity ϕ̇ 0 rad/s

The function ode45 employs typical a typical Runge-Kutta method, an iterative inte-

gration schemes, to solve a given IVP. The fourth-order Runge-Kutta method (RK4) is one

of the most widely used due to its high accuracy and low computational cost. The MAT-

LAB function ode45 uses RK4 with adaptive time stepping which dynamically adjusts

step size to maximize both efficiency and accuracy [11].

The function ode45 then returns the solution sol which contains the time stamps t as

well as the integrated results for each generalized coordinate RT , θ, α, and ϕ as well

as generalized velocities ṘT , θ̇, α̇, and ϕ̇. This data is then plotted for analysis in the

following section.
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Algorithm 1 Dynamical System Architecture

1: Symbolic functions: R(t), M(t), A(t), p(t)

2: Lagrange’s Equations

3: Equation1← δ
δt
( δT
δṘT

)− δT
δRT

+ δV
δRT

= QRT

4: Equation2← δ
δt
( δT
δθ̇
)− δT

δθ
+ δV

δθ
= Qθ

5: Equation3← δ
δt
( δT
δα̇
)− δT

δα
+ δV

δα
= Qα

6: Equation4← δ
δt
( δT
δϕ̇
)− δT

δϕ
+ δV

δϕ
= Qϕ

7: [system, variables]← odeToVectorField(Equation1, Equation2, Equation3, Equation4)

8: State space← matlabFunction(system, ’vars’, {′t′,′ Y ′})

9: sol← ode45(M, timespan, system 0s)

All documentation relating to the functions used in the formulation of these simula-

tions can be found on the main MATLAB website [11].
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Chapter 3

Numerical Simulation Results

In this chapter, results are presented for the numerical simulation of nine test cases near

both local horizontal and local vertical. Parameters for each test case are outlined in table

3.1.

Once developing the simulation program, a sweep of all relevant design parameters

in the design space (table 2.3) was conducted. All plots were examined to gain an un-

derstanding of the trends in behaviour resulting from the application of thrust and aero-

dynamic force on the defined system. Here, a few interesting cases are highlighted and

general conclusions are discussed.

Table 3.1: Values of Applied Force Parameters for Shown Cases

Thrust
F (N)

Angle of
Applied Thrust

β (°)

Drag
Coefficient

CD

Lift
Coefficient

CL

Cross-Sectional
Area
A (m2)

Case 1 0 0 0 0 0
Case 2 0.1 0 0 0 0
Case 3 2 0 0 0 0
Case 4 0 0 2 0.5 5
Case 5 2 0 2 0.5 5
Case 6 1 0 2 0 5
Case 7 1 0 2 0.5 5
Case 8 1 10 2 0.5 1
Case 9 2 0 2 0 1
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First, a brief validation section is presented using case 9 as an example to show that

the numerical model satisfies conservation of energy and the work-energy principle. The

preliminary results are then presented in section 3.2 to illustrate that the program simu-

lates expected behaviour in free oscillation based on conservation of energy, work-energy

theorem, and knowledge of previous work [1–3, 14]. Preliminary results present the be-

haviour of the four generalized coordinates in case 1; free oscillation, without any applied

forces from either thrust or aerodynamics. Following the validation and identification of

the baseline result, the effects of thrust is examined by presenting cases 2 and 3. Sub-

sequently, the effects aerodynamics are examined, presenting case 4 as the maximum

effect of aerodynamic forces within the given design space, omitting thrust force. Case

5 presents the extreme case of the design space with maximum force parameters. Cases

6 and 7 then show the varying effects of adding and removing aerodynamic lift. Case

8 demonstrates interesting behaviour over a longer time-span wherein multiple equilib-

ria can be identified for the same initial conditions where the solution to the simulation

switches between these equilibrium points. Finally, case 9 displays how the system may

be stabilized with force over time for both local horizontal and local vertical configura-

tions. The mechanism behind this stabilization, as well as its drawbacks and potential for

implementation will also be discussed in this section.

3.1 Validation

In this section, the validation of the numerical model is discussed using case 9 as an

example. To begin, any dynamical system must obey conservation of energy and thereby

work-energy principle,

Work = ∆E (3.1)

where Work is work done on the system and ∆E is the change in energy of the system.

Work can be calculated by multiplying the forces acting on the system by the displace-

ment of the location of applied force in the direction of applied force. In vector form, this
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result can be obtained by dot product. In this model, velocities were used to calculate

displacement by multiplying by the time-step used in numerical integration. Combining

these influences, work was calculated as

Work = F⃗aero · v⃗D + F⃗ · v⃗T (3.2)

where F⃗aero is represented by equation 2.22, v⃗D is represented by equation 2.4, F⃗ is rep-

resented by equation 2.18, and v⃗T is represented by equation 2.2. Change in energy is

simply calculated by summing equations 2.10 and 2.16 and taking the difference at each

time-step. On this basis, the numerical program used in this thesis automatically gener-

ates the energy plots as well as work-energy plots.

Figure 3.1: Case 9: Local vertical - Validation: Work and change in energy vs time
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Figure 3.2: Case 9: Local vertical - Validation: Histogram

For case 9, figure 3.1 shows the work and change in energy plotted on the same axis

over the same time-frame. For this same time-frame, figure 3.2 shows the histogram of

tabulated errors in equation 3.1. For this analysis, a standard deviation of 1270.2 J was

calculated; 0.0791% the average energy of 1.6054 × 106 J. As well, the mean of the error

was calculated 24.59 J. With these results consistent across all test cases (within reason)

simulation was conducted using the presented numerical model for the described test

cases.

3.2 Preliminary Results

In this section, the full analysis of Case 1 is presented for local vertical and local horizontal

configurations. Figures 3.3 and 3.4 show true anomaly θ, orbital rate θ̇, tether angle α, and

fluctuations in orbital radius RT , which are relevant parameters of interest when studying

the orbital system.
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In these preliminary cases we verified the expected behaviour of a circular orbit. In

both figures 3.3 and 3.4 true anomaly shows a relatively linear trend, with a relatively

constant derivative θ̇. Oscillations in orbital rate as well as orbital radius are introduced

as a result of the effects of the tethered system. By verifying conservation of energy, as

seen in appendix A.1, it is expected that energy is transferred between the tug and the

debris via the tether. This coupling results in the oscillation seen in orbital rate and orbital

radius, but remains bounded due to conservation of energy and the omission of external

forces or losses in the system.

Importantly, case 1 sets a baseline for subsequent analysis. As shown in previous

work, configurations near local vertical are typically stable and configurations near local

horizontal are typically unstable [3]. This result is verified in figures 3.3 and 3.4 by exam-

ining the trends in tether angle. In figure 3.3, tether angle is seen to oscillate uniformly

about an equilibrium point of α = 0 radians between the given initial angle 0.1 radians

and its negative, -0.l radians. Conversely, figure 3.4 shows unstable behaviour wherein

tether angle is seen to decrease over the given time-span. Physically, this implies that the

tether does full rotations in the clockwise direction about the space tug from its initial

angle of about 1.67 radians.
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Figure 3.3: Case 1: Local vertical - important orbital parameters

Figure 3.4: Case 1: Local horizontal - important orbital parameters
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Figures 3.5 and 3.6 show the behaviour of debris angle ϕ for the baseline case 1. In

both cases, from an initial value of ϕ = 0 radians, debris angle stays relatively constant,

fluctuating between values in the order of magnitude of 10−4 radians (in local horizontal)

and 10−3 radians (in local vertical), both of which are considered negligible. In the case

near local vertical, the debris is seen to rotate clockwise as shown in figure 3.5. In the

case near local horizontal, the debris is seen to rotate counterclockwise with periods of

oscillation as shown in figure 3.6.

Figure 3.5: Case 1: Local vertical - behaviour of debris angle

Equilibrium points are identified qualitatively in the following sections by plotting the

non-dimensional potential energy W as

W =
F

mT lθ̇2
sinα− 3

2
cos2α (3.3)

derived by authors of previous work [3]. By plotting equation 3.3 for the parameters of

the studied system against the simulated values of tether angle α one can identify equilib-
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Figure 3.6: Case 1: Local horizontal - behaviour of debris angle

rium points by locating the extrema in the plot. Based on theory in nonlinear dynamics,

stable equilibria are marked by local minima and unstable equilibria are marked by local

maxima.

For case 1 in the stable configuration near local vertical, it can be observed that tether

angle in figure 3.3 oscillates about the equilibrium point of 0 radians; exactly local ver-

tical. The same conclusion can be derived by examining the plot of non-dimensional

potential energy W against values of tether angle α shown in figure 3.7. In this figure,

non-dimensional potential energy reaches a local minimum located at a tether angle of 0

radians.
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Figure 3.7: Case 1: Local vertical - non-dimensional potential energy vs tether angle

3.3 Effect of Thrust

In this section, the effect of thrust on the stability of the system is explored by examining

cases 2 and 3 as compared to the baseline results presented in section 3.2. Figures 3.8 and

3.9 show cases 2 and 3 from a near-local-vertical initial configuration and figures 3.10 and

3.11 show these cases from a near-local-horizontal initial configuration.
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Figure 3.8: Case 2: Local vertical - important orbital parameters

Figure 3.9: Case 3: Local vertical - important orbital parameters
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Figure 3.10: Case 2: Local horizontal - important orbital parameters

Figure 3.11: Case 3: Local horizontal - important orbital parameters

35



Figures 3.8 and 3.9 show the effect of increasing thrust in the local vertical initial con-

figuration as compared to the baseline case 1 shown in figure 3.3. The results show that

adding any amount of force increases the amplitude of oscillation of the tether from that

seen in case 1 (vertical configuration).

The stabilizing effects of forces on unstable configurations have been studied previ-

ously [1, 14]. Comparing figure 3.10 to the baseline horizontal case (figure 3.4) it is ob-

served that by applying even a small amount force, the initially unstable system becomes

oscillatory. For both cases 2 and 3, amplitude of oscillation is high for engineering appli-

cations, reaching values above a half-rotation.

Figure 3.12: Case 3: Local horizontal - non-dimensional potential energy vs tether angle

In figure 3.12 the non-dimensional potential energy is plotted against tether angle for

case 3 in local horizontal. Figure 3.12 shows a stable point located around local horizontal

(α ≈ 1.67 radians). The potential energy in this case is shifted towards higher tether an-
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gles, reflecting the same tether angle behaviour seen in figure 3.11 wherein the amplitude

of tether angle is relatively high.

Despite the high amplitudes of oscillation in both cases 2 and 3 in both initial con-

figurations, as time progresses, the amplitude of oscillation decreases. This trend is par-

ticularly apparent in case 3 with a larger magnitude of applied thrust. As well, both

configurations in cases 2 and 3 show an increasing orbital radius which decreases the po-

tential energy of the system. Concurrently, with the applied force on the system, kinetic

energy as well as overall energy in the system increases.

3.4 Effect of Aerodynamics

In this section the effects of aerodynamic lift and drag are presented. First, the effects

of the maximum drag and lift in the design space are observed in the absence of thrust

force. Maximum overall force, including thrust, is presented subsequently. Then, thrust is

decreased to a moderate amount and the effects of varying aerodynamic lift are evaluated

with full drag force. Finally, a special case of the horizontal configuration is presented to

show another form the instability of the system takes.

3.4.1 Maximum Aerodynamic Force

Case 4 defines the parameters which apply the maximum amount of aerodynamic force

to the system within the defined design space in the absence of applied thrust. From these

initial conditions, as well as equations 2.19 and 2.20 the magnitude aerodynamic forces

acting on the system can be calculated simply by taking the magnitude of the above force

vectors at every time-step. Figure 3.13 shows the plotted drag force (left) and lift force

(right) over time for case 4 initial vertical configuration. The oscillatory and increasing

values loosely follow the trends in decreasing orbital radius. These trends are due to

changes in density as well as changes in velocity. Based on the chosen density model

density increases with decreasing radius RT , increasing aerodynamic forces. Further-
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more, lower orbits require a higher orbital rate to maintain, increasing the velocity of the

debris, increasing aerodynamic forces.

Figure 3.13: Case 4: Local vertical - magnitude of applied aerodynamic forces

Overall, figures 3.15 and 3.16 show similar overall trends to their baseline counterparts

in figures 3.3 and 3.4. In this case, figure 3.15 shows stable oscillation in tether angle and

figure 3.16 shows unstable rotations in tether angle.

With the maximum aerodynamic forces within this design space, forces are not high

enough to fully stabilize or destabilize the system.

In the near local vertical configuration, aerodynamic forces shift the oscillations in

tether angle clockwise, ultimately decreasing the amplitude of oscillation over time. In

the near local horizontal configuration, over the same time-span as case 1, we see that the

decrease in tether angle is much more gradual. In both these case, aerodynamic forces

have a similar stabilizing effect as seen by thrust force previously in literature [1, 14] and

section 3.3 as well as to be presented in section 3.5.

Figure 3.14 presents the oscillation in debris angle for the local vertical configuration

of case 4. Similar results were obtained for local horizontal. In this case, we see a stark dif-

ference from the behaviour seen in figures 3.6 or 3.5 from case 1. In figure 3.14, the debris

oscillates uniformly about a value of roughly ϕ = 1.75 with a relatively large amplitude.

This behaviour is not the primary focus of this these but could also pose a danger to engi-

neering systems. Conversely, the behaviour in case 1 show either consistent increasing or
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Figure 3.14: Case 4: Local vertical - behaviour of debris angle

decreasing trends in debris angle. The behaviour seen in figure 3.14 for case 4 could be a

result of the oscillations in tether angle changing the angle at which aerodynamic lift and

drag are applied. This oscillatory pattern, combined with the oscillation in radius and

impact of changing density and velocity, contribute to the periodicity seen debris angle

in the presence of strong aerodynamic forces.
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Figure 3.15: Case 4: Local vertical - important orbital parameters

Figure 3.16: Case 4: Local horizontal - important orbital parameters
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3.4.2 Maximum Overall Force

Case 5 defines the parameters which apply the maximum amount of overall force to the

system within the defined design space.

Figures 3.17 and 3.18 show the results of case 5 for initial conditions near local vertical

and near local horizontal, respectively. In these results we see similar trends to those seen

in case 2 such as the increasing effect of aerodynamic force on initial oscillation amplitude.

As well, over time, we see the amplitude in oscillation in tether angle decrease in both

configurations, tending towards a more maintainable, stable behaviour. As well, these

cases show similar equilibrium points, wherein oscillations occur about an equilibrium

position of local horizontal from both initial tether configurations.

It should be noted that the results with aerodynamic forces contain much more fluc-

tuations than those with only thrust force. This result is consistent among the conducted

tests. Aerodynamic forces depend on many variables within the dynamic system, lead-

ing to more fluctuations in the solution over time. Changes and oscillations in any of the

generalized coordinates are liable to change the magnitude of aerodynamic force either

through varying air density or varying debris velocity.
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Figure 3.17: Case 5: Local vertical - important orbital parameters

Figure 3.18: Case 5: Local horizontal - important orbital parameters
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3.4.3 Aerodynamics with Increasing Lift

Cases 6 and 7 present scenarios with moderate thrust for increasing lift coefficient within

the bounds of the design space. Figures 3.19 and 3.20 show the results for case 6 from

initial near local vertical and near local horizontal. Similarly, results for case 7 are pre-

sented in appendix A.2. Results for case 6 and case 7 were very similar as a result of such

a narrow design space. In reality, the choice of lift coefficients reflect an accurate span as

lift coefficients do not tend to vary significantly for common object shapes. As a result,

cases 6 and 7 visually appear similar to case 5 in section 3.4.2, leading to the conclusion

that lift has very little impact on system stability in space debris towing systems.
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Figure 3.19: Case 6: Local vertical - important orbital parameters

Figure 3.20: Case 6: Local horizontal - important orbital parameters
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3.4.4 Shifting Equilibrium

Case 8 is one set of conditions which produced particularly interesting results from an

initial local horizontal configuration. Figure 3.21 shows the behaviour of case 8 over an

extended time frame. In this simulation, we see the tether switch between several equi-

libria. Oscillations about these equilibria were typical for simulations conducted with

aerodynamic forces and thrust as observed in previous cases (around 1.5 radians). Al-

though large oscillation amplitude remains a problem in systems with applied external

forces, case 8 provides an interesting example in the non-linear dynamics of the tether tug

system.

Figure 3.21: Case 8: Local horizontal - important orbital parameters

Figure 3.22 shows the plotted non-dimensional potential energy of the system. In

this figure, one can observe several maxima and several minima, marking the stable and

unstable equilibria of the system as discussed in section 3.2 regarding equation 3.3. Com-

paring the equilibrium qualitatively between the plot of tether angle in figure 3.21 and
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the local minima in figure 3.22, one can clearly draw connections between the behaviour

of the two plots.

Figure 3.22: Case 8: Local horizontal - non-dimensional potential energy

3.5 Stabilization with Force

In this section, case 9 is presented. With an increased amount of thrust force over an

extended time-frame, the stabilizing effect of applied thrust force is clearly illustrated as

expected from literature [1, 14]. Several example tests were conducted which illustrated

this result with varying aerodynamic forces, all producing the same trends in stabilizing

behaviour, albeit within different speeds of stabilization.

The trend is that increasing the magnitude of force, increases the speed of stabiliza-

tion. Ultimately, oscillation amplitude decreases to values around 0.1 radians from local

horizontal in the local vertical configuration case at the end of 1,000,000 s as shown here
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in figure 3.23. For the near local horizontal case, stability is slower to progress, reaching

an oscillation amplitude of about 0.15 radians. In either case, the end results are stable os-

cillations about the local horizontal position with reasonable amplitude, offering promise

for future applications. For the design space used in this thesis, the thrust values were

too low to stabilize the system within a time-span useful for active debris removal.

With increasing force on the system, stability is approached more rapidly, offering

hope to the concept of designing satellites with high lift and drag coefficients at the time

of decommission. With fuel-savings in mind, increasing aerodynamic force suitably at

this time in the satellite’s lifespan could reduce the amount of thrust needed to reach

stability to safely de-orbit non-functional space debris.

47



Figure 3.23: Case 9: Local vertical - important orbital parameters

Figure 3.24: Case 9: Local horizontal - important orbital parameters
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3.6 Discussion

In this chapter, numerical simulation is presented for nine key test cases. An example

of validation through work-energy theorem, as well as conservation of energy, is shown;

lending credibility to the results discussed here-within.

Building on previous work [1, 2, 13, 14], preliminary results showed the expected be-

haviour of tethered systems in free oscillation from near local vertical and near local hor-

izontal initial conditions. Namely, stable behaviour was observed for systems beginning

near local vertical and unstable behaviour was observed for systems beginning near local

horizontal.

Subsequently, a study was conducted to demonstrate the effects of applied forces

thrust, aerodynamic drag, and aerodynamic lift on the tethered system. The behaviour of

the tether (chiefly tether angle α was of key interest in analysis). As well, non-dimensional

potential energy W whose formula is derived from literature [3] is used to examine equi-

librium point behaviour.

In case 4, the effects of aerodynamic forces are apparently negligible. With very small

calculated force values it is understandable in the context of this simulation that case 4

should not differ significantly from case 1 (free oscillation). This is thought to be a limi-

tation of the selected design space. Although realistic for typical objects, a more design-

oriented approach may consider taking a less nominal range of coefficients; with the in-

tention of designing systems to fit these debris properties.

Initially, it appears applying force to the system increases the amplitude of oscillation

of the tether. In these cases, this behaviour was explained as a result of changing energy

in the system, either by adding energy due to thrust or initially pushing the tether to a

new equilibrium point.

Overall, stability in the oscillation in tether angle can be seen to stabilize with in-

creasing amounts of applied force. Previously, thrust has been examined as a stabilizing
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mechanism [1, 14]. Here, it is suggested that aerodynamic properties may be used in

decommission to apply more force to the system without expending more fuel.

The most common equilibrium point throughout simulation tended to local horizon-

tal, even in cases of initial configurations near local vertical. This behaviour was sus-

pected to be a result of a perceived moment applied between the thrust force and aero-

dynamic drag. This couple moment is thought to rotate the tether preferentially into

horizontal configuration, parallel to the direction of applied force in most shown config-

urations.

Finally, oscillation in of the debris is considered negligible in most test cases. How-

ever, stable oscillation of the debris can be seen in case 4. This behaviour is analysed in

section 3.4.1 with reference to the combined oscillatory effects of the orbital elements of

the system and the tether, as well as the influence of debris velocity as well as the effect

of orbital radius on air density.
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Chapter 4

Conclusion

Satellite and space-based technologies are an important part of the modern world as re-

search and exploration expands beyond Earth’s atmosphere. The escalating challenge of

space debris in lower Earth orbit (LEO) necessitates effective mitigation strategies, with

active space debris removal using tether-based systems emerging as a promising and

cost-effective solution.

This thesis presents a numerical simulation of the dynamics of the tethered tug-debris

system in four dimensions. Using a Lagrangian approach, the equations of motion are

derived within the reference frame of the space tug. As well, an exponential model is

used for air density in lower Earth orbits.

This work places emphasis on the effect of aerodynamic drag present in low earth

orbit on the stability of the tethered system, exploring a historically understudied facet

of this complex system. By implementing these equations into a numerical program in

MATLAB, numerical simulation is conducted to explore a range of scenarios. The dy-

namics of the tug-tether-debris system are analyzed, emphasizing the nonlinear nature

and potential instability of such systems.

Throughout analysis, focus is placed on the behaviour of equilibrium points, tether

oscillations, and the effectiveness of stabilization methods. Key parameters such as the
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aerodynamic properties of debris, tether orientation, and thrust magnitude and direction

are thoroughly investigated within a realistic design space.

This thesis replicates results seen in previous research as to the stability of local vertical

configurations and the instability of local horizontal configurations. Furthermore, the

stabilizing effects of applied force on tethered satellite systems is expanded, suggesting

fuel-saving methods by designing systems with aerodynamic properties conducive to

stable towing configurations.

This work strives to contribute to the fundamental knowledge of tethered satellite

systems and introduce novel insights into the impact of aerodynamics on the stability of

space debris towing systems. Modeling the system in the frame of the space tug facili-

tates practical applications in control system design, enabling more effective tracking and

implementation. As we strive to enhance space debris removal systems, control mech-

anisms, mission planning, and end-of-life satellite design, the findings presented in this

study lay the groundwork for future aerospace design.
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Appendix A

Additional Plots

A.1 Preliminary Results: Conservation of Energy

Figure A.1: Potential Energy vs Time from Local Vertical in Free Oscillation (Case 1)
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Figure A.2: Kinetic Energy vs Time from Local Vertical in Free Oscillation (Case 1)

Figure A.3: Potential Energy vs Time from Local Horizontal in Free Oscillation (Case 1)
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Figure A.4: Kinetic Energy vs Time from Local Horizontal in Free Oscillation (Case 1)
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A.2 Case 7: Effects of Aerodynamics

Figure A.5: Case 7: Local vertical - important orbital parameters

Figure A.6: Case 7: Local horizontal - important orbital parameters
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Appendix B

MATLAB Code

1 tic

2 input = readtable("Testing Plans.xlsx",’Sheet’, 2 ,’Range’,’D5:T26’);

3 for i= 1:length(input{1,:})

4 folder_name=’’; F=0; beta_degrees=0; C_D=0;

5 C_L=0; area=0; l=0; d=0; m_T=0; m_D=0;

6 I_G=0; R0=0; M0=0; A0=0; p0=0; dR0=0;

7 dA0=0; dp0=0; timespan=[];

8

9 column = input(:,i);

10 [folder_name, F, beta_degrees, C_D, C_L, area, l, d, m_T, m_D, I_G,

R0, M0, dM0, A0, p0, dR0, dA0, dp0, timespan] = myread_excel(

column);

11

12 syms R(t) M(t) A(t) p(t)

13

14 %Constants

15 mu= 3.98*10ˆ14; %Standard gravitational parameter for

Earth (mˆ3/sˆ2)

16 R_E= 6371*10ˆ3; %Radius of the Earth (m)
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17

18 %Adjustments

19 beta= beta_degrees*pi/180; %angle of applied thrust (radians)

20

21 system_0s = [A0 dA0 R0 dR0 M0 dM0 p0 dp0];

22

23 reference= 6771000;

24 rho_0 = 2.62*10ˆ(-12); % Density of air (kg/mˆ3)

25 H_0 = 58200; % Scale height (from Paper "Effects of

Aerodynamic Lift on the Stability of Tethered Satellite Systems

" )

26

27 %symbolic stuff

28 rho = rho_0*exp(-(R-reference)/H_0);

29

30 v_d = sqrt(diff(R)ˆ2+2*diff(R)*l*(diff(A)+diff(M))*sin(A)+lˆ2*(diff

(A)+diff(M))ˆ2+diff(M)ˆ2*Rˆ2-2*l*diff(M)*R*(diff(A)+diff(M))*cos

(A)) ;

31

32 Q_R= -F*sin(beta)+C_L*area*rho/2*v_d*(diff(M)*R-l*(diff(A)+diff(M))

*cos(A))-C_D*area*rho/2*v_d*(diff(R)+l*(diff(A)+diff(M))*sin(A))

;

33 Q_M= F*R*cos(beta)+v_d*area*rho/2*(C_L*(-l*diff(M)*R*sin(A)-l*diff(

R)*cos(A)-R*diff(R)-l*R*(diff(A)+diff(M))*sin(A))+C_D*(l*diff(R)

*sin(A)+lˆ2*(diff(A)+diff(M))-l*diff(M)*R*cos(A)-diff(M)*Rˆ2+R*l

*(diff(A)+diff(M))*cos(A)));

34 Q_A= v_d*l*area*rho/2*(C_L*diff(M)*R*sin(A)+C_D*diff(R)*sin(A)-C_L*

diff(R)*cos(A)-C_D*diff(M)*R*cos(A)+C_D*l*(diff(A)+diff(M)));
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35 Q_p= v_d*d*area*rho/2*(C_L*diff(M)*R*sin(p)+C_L*l*(diff(A)+diff(M))

*sin(A-p)-C_D*diff(R)*sin(p)-C_D*l*(diff(A)+diff(M))*cos(A+p)+

C_L*diff(R)*cos(p)+C_D*diff(M)*R*cos(p));

36

37 %Lagrangian Equations

38 R_T = m_T*diff(R,2) + m_D*(diff(R,2)+ l*(diff(A,2) + diff(M,2))*sin

(A) + diff(A)*l*(diff(A)+diff(M)))*cos(A) - m_T*diff(M)ˆ2*R -

m_D*(diff(M)ˆ2*R-l*diff(M)*(diff(A)+diff(M))*cos(A))+mu*(m_T/(R

ˆ2)+m_D*(R-l*cos(A))/(Rˆ2-2*R*l*cos(A)+lˆ2)ˆ(3/2)) == Q_R;

39 theta = m_T*diff(M,2)*Rˆ2 + 2*m_T*diff(M)*R*diff(R) + m_D*(diff(R

,2)*l*sin(A) + diff(R)*diff(A)*l*cos(A) + lˆ2*(diff(A,2)+diff(M

,2)) + diff(M,2)*Rˆ2 + 2*diff(M)*R*diff(R) - l*diff(R)*diff(M)*

cos(A) - l*R*diff(M,2)*cos(A) + l*diff(A)*R*diff(M)*sin(A)) +

I_G*(diff(p,2) + diff(M,2))== Q_M;

40 alpha = m_D*(diff(R,2)*l*sin(A) + diff(A)*diff(R)*l*cos(A) + lˆ2*(

diff(A,2)+diff(M,2)) - l*diff(M,2)*R*cos(A) - l*diff(M)*diff(R)*

cos(A) + l*diff(A)*diff(M)*R*sin(A) - diff(R)*l*(diff(A)+diff(M)

)*cos(A) - l*diff(M)*R*(diff(A)+diff(M))*sin(A) + mu*R*l*sin(A)

/(Rˆ2-2*R*l*cos(A)+lˆ2)ˆ(3/2)) == Q_A;

41 phi = I_G*(diff(p,2) + diff(M,2)) == Q_p;

42

43 [system, variables]= odeToVectorField(R_T, theta, alpha, phi);

44 statespace= matlabFunction(system, ’vars’, {’t’, ’Y’});

45

46 % disp(variables)

47

48 sol= ode45(statespace, timespan, system_0s);

49

50 alpha_data = sol.y(1,:);

51 alphadot_data = sol.y(2,:);

63



52 R_data = sol.y(3,:);

53 dR_data = sol.y(4,:);

54 theta_data = sol.y(5,:);

55 thetadot_data = sol.y(6,:);

56 phi_data = sol.y(7,:);

57 phidot_data = sol.y(8,:);

58

59 tug_vel = sqrt(dR_data.ˆ2+thetadot_data.ˆ2.*R_data.ˆ2);

60

61 debris_vel = sqrt(dR_data.ˆ2+2.*dR_data.*l.*(alpha_data+theta_data)

.*sin(alpha_data)+l.ˆ2.*(alpha_data+theta_data).ˆ2+theta_data

.ˆ2.*R_data.ˆ2-2.*l.*theta_data.*R_data.*(alpha_data+theta_data)

.*cos(alpha_data)) ;

62 F_drag = C_D.*area.*rho_0.*exp(-(R_data-reference)./H_0)./2.*

debris_vel.ˆ2;

63 F_lift = C_L.*area.*rho_0.*exp(-(R_data-reference)./H_0)./2.*

debris_vel.ˆ2;

64

65 properties = [l, d, m_T, m_D, I_G, F, F_drag, F_lift, debris_vel,

tug_vel];

66 data= [[sol.x]; [R_data]; [dR_data]; [theta_data]; [thetadot_data];

[alpha_data]; [alphadot_data]; [phi_data]; [phidot_data]];

67 initial_conditions = [R0, M0, A0, p0, dR0, dM0, dA0, dp0];

68

69 plot_function(folder_name, data, initial_conditions, properties)

70 end

71

72 total_time = toc;

73 disp(strcat("total time elapsed:", string(total_time)))

74
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75 %Functions

76 %returns the megnitude (or length) of the given vecor v

77 function len=magnitude(v)

78 len= sqrt(v(1)ˆ2 + v(2)ˆ2 + v(3)ˆ2);

79 end

80

81 %returns a vector normal to the given 2D vecor v

82 function norm=normal2D(v)

83 norm= magnitude(v)*[v(2), v(1), 0];

84 end

85

86 %Density

87 function rho = density(radius)

88 %Reference Density of Air

89 h= radius-6671000;

90 rho_0 = 2.62*10ˆ(-12); % Density of air (kg/mˆ3)

91 H_0 = 58200; % Scale height (from Paper "Effects of

Aerodynamic Lift on the Stability of Tethered Satellite Systems

" )

92 rho = rho_0*exp(-h/H_0);

93 disp(rho)

94 end

95

96 function result = mydot(v, u)

97 result = v(1)*u(1) + v(2)*u(2)+ v(3)*u(3);

98 end

Listing B.1: Main MATLAB code
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