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English Abstract 

 

Objective—Congenital heart disease (CHD) presents persistent challenges and risks, including 

long-term comorbidities such as heart failure (HF), necessitating precise delivery of care. This 

study aims to develop a machine learning method for assessing the lifespan HF risk trajectories 

by incorporating the comprehensive medical histories of patients with CHD.  

 

Methods—We developed hART (heart failure Attentive Risk Trajectory), a deep-learning model 

to predict HF trajectories in CHD patients. hART is designed to capture the contextual 

relationships between medical events within a patient’s history. Specifically, it uses masked self-

attention mechanisms to focus on the most relevant segments of the past medical events while 

not peaking ahead of the future events. To demonstrate the utility of hART, we used a 

retrospective cohort containing healthcare administrative data from the Quebec CHD database 

(137,493 patients, 35-year follow-up). We evaluated hART’s performance by area under the 

receiver operating characteristic (AUROC) curve and area under the precision-recall curve 

(AUPRC) in predicting future HF compared to the state-of-the-art methods. We further evaluated 

the effectiveness of hART by examining the differences in HF risk trajectory for patient 

subgroups, including those with genetic syndrome and severe CHD lesions, as well as patients 

who died at different ages. Additionally, we computed individualized trajectories and extracted 

attention weights to assess how specific medical events contribute to rising predicted HF risk. 

Finally, we extended hART by developing hART-Generative Pre-trained Transformer (GPT), 

which is pre-trained to learn the clinical language of the diagnoses and comorbidities conditions 

across all patients and then fine-tuned to more accurately predict HF compared to the baseline 

hART that was trained to predict HF from scratch. 

 

Results—hART outperformed existing methods, achieving an AUROC of 0.967 and an AUPRC 

of 0.282 for HF risk prediction. The analysis of computed HF trajectories across different 

populations revealed that patients with severe CHD lesion consistently exhibited elevated HF 

risks throughout their lifespan. This indicates the potential for the use of hART for effective risk 

stratification. Patients with the genetic syndrome of CHD exhibited elevated HF risks until the 

age of 50. Notably, we found a decrease in the impact of the birth condition on long-term risk, 
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emphasizes how hART recognizes the significance of birth conditions and their varying impact 

on HF risk over different lifespans. Moreover, our study showcased how hART captured the 

importance of the timing of medical events, such as surgery. By analyzing the HF trajectory of 

individual patients, hART demonstrated that the timing of arrhythmic surgery had varying 

impacts on lifespan HF risk, as we demonstrated that arrhythmic surgery performed at a younger 

age had minimal long-term effects on HF risk, while surgeries during adulthood had a significant 

lasting impact. This underscores the model’s ability to consider the context and timing of 

medical events. The hART-GPT model demonstrated superior accuracy in predicting 

comorbidities associated with HF, such as stroke, infective endocarditis, sepsis, MI, and acute 

kidney disease. Furthermore, after fine-tuning, it demonstrated slightly improved HF prediction 

over hART.  

 

Conclusions—This study demonstrated that attention-based deep learning models can accurately 

assess lifelong HF risk in patients with CHD. This study developed a model that accurately 

captures both long—and short-range dependencies in patient histories while offering enhanced 

interpretability for clinicians through the inclusion of HF trajectories and attention matrices. The 

interpretable disease trajectories provided by our model have the potential to enable clinicians to 

identify high-risk individuals, optimize intervention timing, and assess the long-term impact of 

comorbidities in CHD patients.  

  



 5 

French Abstract 

 

Objectif—Les cardiopathies congénitales (CC) présentent des défis et des risques persistants, 

notamment des comorbidités à long terme telles que l’insuffisance cardiaque (IC), ce qui 

nécessite une prestation de soins précise. Cette étude vise à développer une méthode 

d’apprentissage automatique pour évaluer les trajectoires de risque d’insuffisance cardiaque tout 

au long de la vie en incorporant les antécédents médicaux complets des patients atteints de 

cardiopathie congénitale.  

 

Méthodes— Nous avons créé hART (heart failure Attentive Risk Trajectory), un modèle 

d'apprentissage profond pour prédire les trajectoires d'insuffisance cardiaque chez les patients 

atteints de maladies coronariennes. hART saisit les liens contextuels entre les événements 

médicaux dans l'historique du patient. Il utilise des mécanismes d'autoattention pour cibler les 

segments pertinents des événements passés, sans anticiper les futurs. Pour montrer son utilité, 

nous avons utilisé des données de soins de santé québécoises (137 493 patients, 35 ans de suivi). 

hART a été évalué en termes d'aire sous la courbe ROC (AUROC) et de précision-rappel 

(AUPRC) pour prédire l'insuffisance cardiaque future comparé à des méthodes avancées. 

L'efficacité de hART a été examinée pour des sous-groupes, y compris patients génétiques et 

atteints de lésions cardiaques graves, ainsi que décédés à différents âges. Des trajectoires 

individualisées et des poids d'attention ont évalué comment des événements spécifiques influent 

sur le risque prédit d'insuffisance cardiaque. hART a été étendu à hART-Generative Pre-trained 

Transformer (GPT), préentraîné pour le langage clinique, puis affiné pour prédire l'insuffisance 

cardiaque avec plus de précision que la base hART. 

 

Résultats—hART a surpassé les méthodes existantes, atteignant un AUROC de 0,967 et un 

AUPRC de 0,282 pour la prédiction du risque d’IC. L'analyse des trajectoires d'IC dans diverses 

populations a montré que les patients souffrant de lésions coronariennes graves avaient 

constamment des risques élevés d'IC tout au long de leur vie, soulignant le potentiel de hART 

pour une stratification précise du risque. Les patients atteints du syndrome génétique de la CC 

présentaient des risques élevés d’hypertension jusqu’à l’âge de 50 ans. Nous avons notamment 

constaté une diminution de l’impact de la condition de naissance sur le risque à long terme, ce 
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qui souligne la façon dont l’étude hART reconnaît l’importance des conditions de naissance et 

leur impact variable sur le risque d’infarctus du myocarde au cours des différentes périodes de la 

vie. De plus, notre étude a illustré comment hART a saisi l'importance du timing des événements 

médicaux, comme les chirurgies. En étudiant les trajectoires d'IC pour les patients, hART a 

révélé que la chirurgie arythmique à un jeune âge avait un impact mineur à long terme sur le 

risque d'IC, tandis que les chirurgies à l'âge adulte avaient un effet important et persistant. Ceci 

souligne la capacité du modèle à considérer le contexte et le timing des événements médicaux. 

Le modèle hART-GPT a affiché une meilleure précision dans la prédiction de comorbidités liées 

à l'IC, telles que AVC, endocardite infectieuse, septicémie, infarctus du myocarde et insuffisance 

rénale aiguë. De plus, après l’ajustement fin, la prédiction de l'IC s'est légèrement améliorée par 

rapport à hART. 

 

Conclusions— Cette étude montre que les modèles d'apprentissage profond basés sur l'attention 

peuvent précisément évaluer le risque d'IC à vie chez les patients atteints de CC. Le modèle 

développé capture les dépendances à court et long terme dans l'historique des patients et offre 

une meilleure interprétabilité pour les cliniciens via des trajectoires d'IC et des matrices 

d'attention. Les trajectoires interprétables de la maladie permettent aux cliniciens d'identifier les 

hauts risques, d'optimiser les interventions et d'évaluer les effets à long terme des comorbidités 

chez les patients atteints de CC. 
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CHAPTER 1: THESIS INTRODUCTION 

 

Congenital heart disease (CHD) is a complex condition characterized by structural 

abnormalities in the heart that are present at birth (1). It is one of the most prevalent types of 

birth defects worldwide, affecting 1% of all births (2). With advancements in medical 

interventions, many patients with CHD now survive into adulthood, presenting unique 

challenges in managing their long-term health outcomes (3, 4). Among these challenges, the risk 

of heart failure (HF) remains a significant concern, as it contributes to increased morbidity and 

mortality in this population (5). Heart failure is one of the most frequent comorbidities of CHD. 

Accurately assessing and predicting its occurrence over a patient’s lifespan is crucial for 

effective management of improving patient outcomes (6). 

The assessment of HF risk in patients with CHD continues to evolve as researchers and 

clinicians seek to improve risk stratification, identify risk factors, and guide treatment decisions. 

Initially, the primary focus of risk assessment models in CHD was to identify biomarkers or 

variables that correlated with negative HF-related outcomes. These models heavily relied on 

clinical characteristics and anatomical parameters to estimate the probability of developing HF 

(7, 8). These models had limitations, including their oversight of the dynamic nature of HF risk 

and the complex interplay between various clinical variables (9, 10). Our laboratory has made 

significant contributions to HF risk modelling in CHD patients by developing various statistical 

methods, including regression (11) and survival (12) models, as well as pioneering the use of 

deep learning (DL) to assess HF risk (13), although the challenges of measuring risk over 

extended observation periods are evident in these models.  

It has become evident that these methods alone have limitations in addressing the long-

term prediction required for effective CHD management and a proactive approach to care. Given 

that HF is a progressive condition that develops over time, early identification of individuals at 

risk holds great potential for timely interventions and improved outcomes. Specifically, 

understanding the long-term trajectory of HF risk and the factors influencing it at different stages 

of life is pivotal in informing resource allocation, specialized care provision, and policy 

decisions aimed at reducing the overall burden of HF (9). To address the need for accurate long-

term risk assessments, researchers have turned to innovative methodologies, including advanced 

statistical techniques and machine learning algorithms (7). These approaches allow for the 



 13 

integration of large numbers of patient-specific factors, such as demographic information, 

genetic predisposition, anatomical complexity, and surgical history, to develop more 

personalized risk prediction models, improved risk stratification precision and precise treatment 

planning (9, 13). 

The primary objective of this thesis is to develop a novel deep-learning method that 

leverages electronic health record (EHR) data from patient histories to model the lifespan risk of 

HF. This method is presented in a manuscript titled “hART: Deep Learning-Informed Lifespan 

Heart Failure Risk Trajectories for Patients with Congenital Heart Disease,” which aims to 

provide a more accurate and personalized assessment of HF risk for individuals with CHD. The 

thesis also aims to explore the clinical applications of this novel approach, evaluating its 

potential to inform risk stratification and resource allocation for patients with CHD. The thesis 

includes a comprehensive literature review to evaluate the evolution of methods used in 

assessing and modelling HF risk in CHD patients. We will identify the limitations of existing 

approaches in modelling long-term HF, address the current challenges that persist in achieving 

accurate lifespan HF risk assessment, and discuss the clinical implications of these findings. 

Through these objectives, the thesis aims to contribute to the advancement of lifespan risk 

assessment methodologies and improve the precision of delivery of care, clinical outcomes, and 

disease burden for individuals with CHD at risk of developing HF.  

 

CHAPTER 2: LITERATURE REVIEW 

 

2.1 Overview of Congenital Heart Disease and Heart Failure 

 

Congenital heart disease (CHD) has now been described as a chronic condition, 

characterized by structural abnormalities in the heart present at birth, necessitating long-term 

management and care throughout an individual’s lifetime (6). It encompasses a range of 

conditions, varying in complexity and severity, such as defects in the heart’s chambers, valves, 

or blood vessels. The etiology of CHD is multifactorial and involves a combination of genetic, 

environmental, and epigenetic factors (14). The clinical manifestations and outcomes of CHD 

can vary significantly based on the specific defect, its severity, associated anomalies, and the 
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timing of diagnosis and intervention (15). Advancements in medical technology, such as prenatal 

screening, diagnostics, and surgical innovations, have enhanced early detection, enabling timely 

interventions and ultimately resulting in higher survival rates and improved quality of life for 

individuals with CHD (3). However, despite these advancements, CHD remains a complex and 

challenging condition. Many patients require multiple surgeries or interventions throughout their 

lifetime, and the risk of complications and long-term sequelae, including HF, remains a concern 

(4, 9, 16). The adult CHD (ACHD) population is currently experiencing a significant proportion 

(approximately 20–50%) of advanced HF cases, making it the primary cause of death in this 

population. Furthermore, this trend is projected to continue, resulting in a rising number of 

ACHD patients with advanced HF in the future (17-19). 

Heart failure in CHD patients can arise due to the underlying structural abnormalities, 

resulting in impaired heart function over time (20). The pathophysiology of heart failure in adults 

with CHD is more complex and intricate compared to the general population (21). The complex 

nature of disease progression and the wide heterogeneity in outcomes make it crucial to develop 

accurate prognostic models that can estimate lifespan risk trajectories at both population and 

individual levels (22). By understanding the underlying pathophysiological mechanisms and 

identifying key risk factors specific to patients with CHD, clinicians and researchers can better 

tailor treatment strategies, and allocate healthcare resources more effectively (6). Therefore, 

developing a reliable predictive model for lifespan HF risk in CHD patients is of utmost 

importance and can significantly contribute to improving patient care and outcomes in this 

population (9). 

 

2.2 Evaluating Risk Factors for Heart Failure in Congenital Heart Disease Patients 

 

Risk factors for HF in CHD patients differ from those in individuals without CHD. While 

risk factors for HF reported in the general population, such as hypertension, diabetes, and 

obesity, also apply to CHD patients, there are additional factors specific to this population (10). 

The underlying structural abnormalities of CHD play a significant role in increasing the risk of 

HF (23). The type, severity, and complexity of the congenital heart defect, along with residual 

lesions and the need for surgical interventions, contribute to the heightened risk. Additionally, 

the presence of associated anomalies, abnormal heart rhythms, pulmonary hypertension, and the 
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timing of interventions can impact the likelihood of developing HF in CHD patients (24). 

Overall, the presence of a variety diverse and interconnected risk factors for HF in CHD, 

combined with the inherent heterogeneity of the CHD population, poses significant challenges in 

accurately assessing and managing HF risk (25). Thus, developing model to understand the risk 

factors and risk of comorbidities unique to patients with CHD is essential to precision delivery of 

care for this patient population (6).  

 

2.3 Methods for Assessing Risk of Heart Failure in Patients with Congenital Heart Disease 

 

Over the years, a variety of prognostic models and predictive approaches have emerged 

(7, 26), each with its own set of strengths and limitations. Some of the most common methods 

include traditional statistical approaches (27, 28), regression-based models (8, 10, 11), survival 

models (12, 29), and deep learning approaches (13, 30, 31). Ongoing research in this area, driven 

by the need to tackle the new challenges presented by the aging and increasing complexity of 

care for the population (32), has led to the adoption of new methods that offer unique insights 

into the assessment of risk factors associated with heart failure in CHD patients. Figure 1 

illustrates the progressive evolution of methods in response to the evolving clinical needs of the 

CHD population. Over time, there has been a shift in focus, transitioning from risk scoring to 

disease onset prediction and, more recently, emphasizing the importance of lifespan health 

trajectories. This shift reflects the changing management strategies in CHD. As a result, we 

observe a corresponding advancement in modelling techniques, starting from hypothesis-driven 

approaches and progressing to regression models, with the recent emergence of deep learning 

methods. The utilization of both cross-sectional and longitudinal electronic health records 

(EHRs) has made the development of these sophisticated models possible. In the subsequent 

sections, we will delve deeper into each of these methods and examine their capacity to capture 

the intricate relationships among medical events associated with HF in patients with CHD.  
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Figure 1: Overview of the Evolution of Methods of Modelling HF for CHD patients              
 

 

 

 

 

 

 

 

 

 

 

2.3.1 Heuristic Modelling 

 

Traditional statistical methods used in clinical trials and clinical risk prediction scenarios 

test hypotheses related to one or many independent variables. These approaches based on prior 

knowledge select features to assess the correlation of biomarkers on various CHD-related 

outcomes (27, 28, 33). The biomarkers identified in studies using hypothesis driven methods 

have identified significant risk factors for HF-related admissions (27), and helped classify adult 

patients at higher risk of HF (28, 34). However, their simplistic design limits their ability to 

capture complex relationships between variables and the wide range of possible outcomes, 

making long-term risk estimates using traditional statistical techniques less comprehensive and 

less accurate (33). This is most prominent for the aging population with CHD, which has greater 

heterogeneity and complexity of diseases, along with an increased prevalence of comorbidities, 

particularly due to prior surgeries (34-36).  

 

2.3.2 Regression Modelling 

 

Regression analysis has become a prominent method for developing risk scores in the 

context of HF among patients with CHD. This multivariable approach estimates coefficients, 
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such as log odds or hazard ratios, for each predictor and adjusts them in relation to other 

predictors within the model, offering a quantitative measure of each variable’s contribution to the 

outcome’s risk (37). Several studies have successfully utilized regression analysis to create risk 

scores which stratify high- and low-risk patients (8, 32). Additionally, facilitated by the 

availability of large medical databases and Electronic Health Records (EHR), these methods 

identify how specific medical events and factors contribute to a higher likelihood of HF, such as 

age, sex, CHD lesion severity, recent 12-month HF hospitalization (HFH) history, and 

comorbidities (10, 11). While researchers can easily validate and interpret risk scores developed 

using regression models, the static nature of predictors and outcomes, along with the linear 

nature of regression, limits the ability of these models to capture complex relationships among 

predictors. (8, 10, 11, 32).  

 

2.3.3 Survival-Based Modelling 

 

Unlike linear-based regression, survival models consider the time until the occurrence of 

an event, such as the onset of HF. Thus, they can capture the temporal aspect of risk prediction, 

allowing for an understanding of disease progression and time-dependent factors (38). Several 

studies have successfully identified risk factors and biomarkers which contribute to 1-year HF 

risk, such as age ≥ 50, male sex, recent 12-month HFH history, pulmonary arterial hypertension, 

chronic kidney disease, coronary artery disease, systemic arterial hypertension, and diabetes and 

several other comorbidities (11, 12, 17, 29). Additionally, these methods can identify critical 

short-term periods in subsets of a patient’s lifespan when the risk of HF may increase, enabling 

targeted interventions and monitoring strategies (11, 12, 39). However, the current models 

developed for predicting outcomes in the aging CHD population have primarily focused on 

short-term risk assessment (1-year risk) (11, 12, 29), leaving long-term relationships largely 

unaddressed (9) and limited (40, 41). Although various studies have demonstrated comparable 

performance between survival approaches and machine/deep learning techniques in certain 

contexts (42, 43), our team’s prior research indicates that survival approaches such as Cox 

regression may yield suboptimal accuracy in modeling CHD outcomes (44). Furthermore, 

modelling time-to-event data in the context of CHD presents significant challenges due to the 

heterogeneity and dynamic nature of the condition. The complex interplay of diverse disease 
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presentations and evolving patient profiles further complicates the accurate prediction of long-

term outcomes using survival models (7, 13, 38). 

 

2.3.4 Deep Learning-based Modelling 

 

Deep learning (DL) is a subfield of machine learning (ML) that focuses on training 

artificial neural networks with multiple layers to identify complex patterns and relationships 

within data, without relying on predefined assumptions, linearity or bias of feature selection (45). 

Deep learning models excel at handling high-dimensional and unstructured longitudinal data, 

such as medical imaging, text from medical records and event-based diagnosis codes. These 

methods capture evolving risk and personalize predictions over time, thereby modelling long-

term hidden patterns that regression and survival models may not capture (46-48). This 

adaptability is particularly crucial given the variability in disease progression and treatment 

response among individuals with CHD (9, 49). The use of DL to model CHD-related outcomes is 

an emerging topic (49). Diller et al. (2019) demonstrated the utility of deep learning networks by 

combining convolution networks and dense networks to build a disease severity score based on 

clinical data, diagnosis data, imaging, medications, and other variables (30). Lu et al. (2020) 

presented the first use of DL in HF modelling for adult patients with CHD by employing 

recurrent neural networks (RNNs), specifically long-short-term-memory (LSTM) and gated 

recurrent unit (GRU) models, to capture long-range non-linear dependencies in sequential events 

(13). Their supervised longitudinal GRU model accurately predicted HF and other comorbidities 

associated with the patient’s history, surpassing traditional statistical models such as Cox 

proportional hazard models (13). Despite the promising potential of deep learning methods like 

convolutional neural networks and RNNs in modelling the progression of HF risk over a lifespan 

(13, 50), there are still notable limitations to address. These studies reported relatively poor 

accuracy for longer prediction periods (13, 51). There is also the need to develop methods for 

forecasting continuous HF risk estimates in diverse CHD populations (6, 9). Additionally, the 

challenge of limited interpretability and the “black box” nature of deep learning algorithms 

remains a significant concern, particularly when developing tools for clinicians that require a 

clear understanding of the underlying mechanisms (52). 
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2.4 Current challenges for long-term HF risk assessment  

 

While assessing HF in CHD patients, it is important to recognize the remaining 

limitations and challenges associated with the various employed modelling methods presented 

above. This section summarizes key limitations that researchers have encountered in the existing 

literature, hindering the accurate and comprehensive modelling of HF risk in CHD patients. 

 

2.4.1 Modelling the Long Dependencies between Medical Events  

 

One major limitation in HF risk assessment modelling is the difficulty in capturing long-

range dependencies among variables (13, 49). Many traditional models struggle to effectively 

capture and incorporate complex relationships that extend over extended periods of time, leading 

to suboptimal predictions for long-term HF risk trajectories. This limitation hinders the ability to 

accurately forecast HF outcomes and develop personalized intervention strategies for CHD 

patients (13, 49). 

 

2.4.2 Utilizing Longitudinal Electronic Health Records (EHR) 

 

The utilization of EHR data presents unique challenges in HF risk assessment modelling. 

While EHRs offer vast amounts of patient information, including diagnoses, treatments, and 

medical events, effectively harnessing this data for modelling purposes is a complex task. Issues 

such as missing data, data quality, and heterogeneity among EHR systems can impact the 

accuracy and reliability of risk assessment models. Additionally, integrating diverse types of 

EHR data, such as clinical notes, imaging data, and laboratory results, requires sophisticated 

methods to ensure meaningful and comprehensive modelling (9, 46, 50, 53). 

 

2.4.3 Interpretability 

 

The interpretability of a predictive model refers to its capacity to provide human-

understandable justifications for its output, allowing for insights into its inner workings (54). DL 

models often lack interpretability as their complex architectures and high-dimensional 
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representations make it challenging for non-specialists to discern the reasoning behind their 

predictions, limiting the ability to provide clear and understandable explanations (52, 54). 

Interpretability is essential for many tasks, such as medical diagnosis, as it leads to trust in the 

model. As artificial intelligence (AI) methods expand into healthcare, significant restructuring is 

required between the models developed by computer scientists and their application and use by 

clinicians to inform clinical interventions. This is a multifactorial challenge that requires 

improving factors related to clinician acceptability and understanding of AI-based solutions, 

human engineering factors as well as the ability to migrate models into user-friendly informative 

tools to facilitate applied knowledge translation (52).  

 

2.5. Current goals in heart failure risk assessment for patients with congenital heart disease 

 

A state-of-the-art review conducted by prominent researchers in the field of CHD 

emphasized the importance of understanding the lifespan evolving risk of comorbidities, due to 

the changing demographics of the population (6, 9). They discussed the need of modelling 

disease trajectories, depicted in Figure 2, which provide a long-term view of a specific dimension 

of an individual’s life over time. When applied to CHD, trajectories are a construct that “moves 

beyond the notion of episodic illness and towards a dynamic composite measure of disease 

burden” (9). In existing literature, few studies have investigated the modelling of complex 

disease trajectories over a patient’s lifespan outside of survival-based approaches (7, 13). This is 

mainly due to the challenges discuss in section 2.4. However, the availability of longitudinal 

medical databases and recent advancements in DL methods have paved the way for future 

breakthroughs in the field. Therefore, the primary objective in assessing HF for patients with 

CHD is to establish a robust and interpretable lifespan HF prediction model (9, 49). Furthermore, 

future research endeavours should focus on developing models capable of capturing long-term 

patterns in patient histories, while maintaining interpretability and user-friendliness. 
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Figure 2: Disease and Health Trajectory (9) 

 
 

2.6 Proposed Direction 

 

Based on publications from other fields in healthcare, a possible course of research is to 

implement models using an attention-based DL method. The attention mechanism was 

introduced by Bahdanau et al. to address the limitation of previous models in modelling a long 

sequence of data (55). Attention has recently gained popularity due to its success within 

transformers-based model, such as ChatGPT (56). Attention enables the outputted representation 

to have full access to all parts of the input sequence rather than only the “close” time steps, 

allowing for a deeper understanding of the available data. Furthermore, the architecture of the 

attention mechanism facilitates the intuitive interpretation of the model’s outputs using attention 

weights/scores which represent the relative importance between data points (55, 57). This 

method has already seen promise when applied to medical records. Song et al. developed an 

attention-based architecture for processing clinical time-series data which showed better results 

than RNNs (58). An et al. used attention-base neural networks to predict cardiovascular disease 

and comorbidities, such as HF (59). Furthermore, Chen et al. demonstrated that the incorporation 

of attention into a deep learning model can improve both the performance and interpretability of 

predicting readmissions for heart failure patients (60). The hopes are that using attention-based 

model will allow personalize, interpretable models and accurate of prediction of HF trajectories 

for CHD patients.  
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2.7 Clinical Implications 

 

The clinical implications are far-reaching and have the potential to significantly impact 

healthcare practices, leading to improved patient outcomes. Accurate assessment of long-term 

HF risk in patients with CHD based on their past medical history carries substantial clinical 

implications. Figure 3 depicts the clinical usage of this approach. This approach not only enables 

researchers to uncover distinct HF trajectories within sub-populations but also identifies specific 

medical events occurring at times that significantly contribute to individual patient risk.  

 

2.7.1. Risk Stratification  

 

Risk stratification refers to the process of categorizing individuals into different risk 

groups based on their likelihood of developing an outcome. Risk stratification allows for the 

tailoring of follow-up protocols based on the individual patient’s risk profile. High-risk patients 

can be scheduled for more frequent and comprehensive evaluations, including diagnostic tests, 

imaging studies, and specialist consultations. Despite limited availability of specialized care for 

CHD patients (61), regular monitoring and proactive management can help detect early signs of 

heart failure and enable timely interventions, leading to improved outcomes (5, 62). Specifically, 

risk stratification is commonly used to identify patients with CHD needing cardiac operations 

(63). 

 

2.7.2 Precision Delivery of Care  

 

Precision delivery of care refers to the concept of tailoring healthcare interventions and 

treatments to individual patients based on their specific characteristics, needs, and risk profiles. It 

involves utilizing personalized information, such as the patient’s medical history, genetic 

markers, and clinical data, to guide decision-making and optimize the allocation of resources and 

timing of interventions. CHD patients have diverse disease presentations and comorbidities, 

variable disease progression rates, and unique response patterns to interventions. Precision 

delivery of care allows healthcare providers to identify optimal timings for interventions based 

on each patient’s specific needs (6). Additionally, integrating advanced technologies, such as 
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predictive modelling and AI, can facilitate the precision delivery of care into clinical practice (9). 

These tools can leverage large datasets, including patient medical records and genomic data, to 

generate personalized risk assessments and treatment recommendations. This enables healthcare 

providers to make more precise and individualized decisions regarding the delivery of care (6, 

49). 

 

 

Figure 3: Clinical Workflow of Risk Trajectory Modelling   
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Abstract 
 

Objective—Heart failure (HF) results in persistent risk and long-term comorbidities. This is 

particularly true for patients with lifelong HF sequelae of cardiovascular disease (CVD) such as 

patients with congenital heart disease (CHD).  This study aims to develop a machine learning 

method for assessing the lifespan HF risk trajectories by incorporating medical histories using a 

large CHD population to develop our models.  

 

Methods—We developed hART (heart failure Attentive Risk Trajectory), a deep-learning model 

to predict HF trajectories in CHD patients. hART is designed to capture the contextual 

relationships between medical events within a patient’s history. Specifically, it uses masked self-

attention mechanisms to focus on the most relevant segments of the past medical events while 

not peaking ahead of the future events. To demonstrate the utility of hART, we used a 

retrospective cohort containing healthcare administrative data from the Quebec CHD database 

(137,493 patients, 35-year follow-up). We evaluated hART’s performance by area under the 

receiver operating characteristic (AUROC) curve and area under the precision-recall curve 

(AUPRC) in predicting future HF compared to the state-of-the-art methods. We further evaluated 

the effectiveness of hART by examining the differences in HF risk trajectory for patient 

subgroups, including those with genetic syndrome and severe CHD lesions, as well as patients 

who died at different ages. Additionally, we computed individualized trajectories and extracted 

attention weights to assess how specific medical events contribute to rising predicted HF risk. 

Finally, we extended hART by developing hART-Generative Pre-trained Transformer (GPT), 

which is pre-trained to learn the clinical language of the diagnoses and comorbidities conditions 

across all patients and then fine-tuned to more accurately predict HF compared to the baseline 

hART that was trained to predict HF from scratch. 

 

Results—hART outperformed existing methods, achieving an AUROC of 0.967 and an AUPRC 

of 0.282 for HF risk prediction. The analysis of computed HF trajectories across different 

populations revealed that patients with severe CHD lesion showed a consistently elevated HF 

risks throughout their lifespan. Patients with genetic syndromes and CHD exhibited elevated HF 

risks until the age of 50. Notably, we found a decrease in the impact of the birth condition on 
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long-term risk, emphasizes how hART recognizes the significance of birth conditions and their 

varying impact on HF risk over different developmental stages of life. By analyzing the HF 

trajectory of individual patients, hART demonstrated that the timing of interventions such as 

arrhythmia surgery had varying impacts on lifespan HF risk, as we demonstrated that arrhythmic 

surgery performed at a younger age had minimal long-term effects on HF risk, while surgeries 

during adulthood had a significant lasting impact. This underscores the model’s ability to 

consider the context and timing of medical events. The hART-GPT model demonstrated superior 

accuracy in predicting comorbidities associated with HF, such as stroke, infective endocarditis, 

sepsis, myocardial infarction, and acute kidney disease. Furthermore, after fine-tuning, it 

demonstrated slightly improved HF prediction over hART.  

 

Conclusions—This study demonstrated that attention-based deep learning models can accurately 

assess lifelong HF risk in patients as developed in patients with CHD. We developed a model 

that accurately captures both long—and short-range dependencies in patient EHR history, while 

offering enhanced interpretability for clinicians through the inclusion of HF trajectories and 

attention matrices. The interpretable disease trajectories we generated have the potential to 

enable clinicians to identify high-risk individuals, optimize intervention timing, and assess the 

long-term impact of comorbidities in patients with lifelong comorbidities such as CHD patients.  
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Introduction 
 

 The delivery of care for chronic illnesses has become increasingly complex as patients 

age and their medical histories expand (1). The lifetime risk of heart failure (HF) ranges from 20-

45% after the age of 45years in the United States (2). With advances in medical and 

interventional therapies, patients with congenital heart disease (CHD), the most common birth 

defect (3) are now surviving to adulthood (4). In patients with CHD, we have shown that HF is 

the leading cause of death with a cumulative incidence rate of 25% by age 65 (5, 6). Adult CHD 

(ACHD) patients face potential lifelong comorbidities. The demographic changes in the CHD 

population have motivated a paradigm shift in disease management with an increasing focus on a 

lifespan perspective and a proactive approach to care (7-9). This shift has refocused attention on 

the study of the comorbidities that affect the disease outcomes of ACHD. Improved management 

of comorbidities such as HF are pivotal to improving health outcomes and optimizing the 

associated healthcare resource utilization for ACHD patients (9-11). While we and others have 

contributed to understanding the prevalence and risk factors of HF in CHD (12-14), there 

remains the need to better understand and measure the long-term trajectory of disease 

progression in this patient population to optimize the timing of medical interventions and 

available resources (15). Incorporating large datasets to optimize the precision delivery of care, 

disease trajectories can provide a framework to assess the impact and relationship of different 

patient presentations, time-varying risk factors and comorbidities on the evolving risk of specific 

outcomes, such as heart failure. 

 Assessing the evolving risk of HF in patients with CHD remains a challenging task due to 

the complexity and the heterogeneity of patient presentations and difficulties in capturing long-

range dependencies among variables (5, 12, 13). For many chronic illnesses, such as CHD, 

modelling the high-dimensional irregular time-varying nature of Electronic Health Record 

(EHR) data has been limited in its capacity to capture temporal patterns of the disease 

progression (5, 13, 16). However, recent advancements in deep learning (DL) have provided 

highly flexible frameworks that can accurately model long-term sequential patient data, 

including complex longitudinal clinical and epidemiological presentations of chronic diseases 

such as CHD (17, 18). Although DL techniques have been shown to be effective in modeling the 

trajectory of HF in lifespan CHD patients (18), capturing long-term temporal patterns of CHD, 
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and generating interpretable trajectories continue to pose a challenge. DL models that use 

Transformer architecture such as Bidirectional Embedding Representations by Transformers 

(BERT) and Generative Pre-trained Transformer (GPT)-3 (19) (i.e., the same framework used in 

the recently popularized ChatGPT) have produced remarkable results in natural language 

processing (NLP) tasks and outperformed recurrent neural networks in modeling sequential data 

(20-22). This is primarily because Transformers can capture long- and short-range temporal 

dependency by computing attention between all pairs of time points in an entire sequence (21, 

23). In the context of our study, it is crucial to model the evolving chronic comorbidity 

conditions caused by CHD (which develops at birth) throughout a patient's lifespan, requiring the 

inclusion of the patient's complete medical history for accurate prediction of disease progression 

(24). Additionally, from an interpretability standpoint, one motivation for using attention-based 

learning to model patient medical data is that it allows for a more comprehensive and contextual 

understanding of the data. Just like how the GPT learns the contextual information within a 

sentence (19), medical events may have different importance and meaning within a patient's 

medical history. Attention-based models can use their attention mechanisms to focus on specific 

aspects of a patient's medical history and other relevant data, allowing them to consider the 

context and individual characteristics of the patient. This can provide a more accurate and 

nuanced understanding of the patient's health and can be used to improve treatment planning and 

decision making. By considering the full context of a patient's medical history, attention-based 

models can make more informed and personalized predictions or recommendations, which can 

ultimately lead to better patient outcomes. Several studies have investigated the use of self-

attention in deep learning for patient representation learning, clinical decision support, and 

predicting future clinical events, and have shown promising results (23, 25-27). 

  In patients with CHD with a high lifespan risk of HF, our objectives were to: (1) Develop 

an attention-based deep learning model, hART (heart failure Attentive Risk Trajectory), using 

longitudinal EHR data to accurately predict lifespan HF risk and compare its performance to 

existing methods. (2) Assess hART's ability to differentiate HF trajectories across populations 

based on CHD severity, genetic syndromes, and age of death. (3) Explore hART's utility in 

evaluating individual patients' HF risk by analyzing the impact of specific medical events over 

time. 
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Methods 
 

Data Sources 

 

 In Quebec, Canada, a unique Medicare number is assigned to individuals in their first 

year of life, enabling comprehensive tracking of diagnoses and health services throughout their 

lifetime. This study utilized administrative databases, including physicians' services and drug 

claims, hospital discharge summaries, and the Quebec Health Insurance Board and Death 

Registry. These databases contain vital statistics, demographic information, and diagnostic and 

procedure codes (ICD-9 and ICD-10) recorded since 1983. The Quebec CHD Database, one of 

the largest of its kind worldwide, was created by merging and cleaning data from these sources, 

identifying CHD patients using validated algorithms and optimizing the accuracy of diagnoses 

through manual audits (4). 

The resulting dataset is from the Quebec CHD database, comprising 137,493 patients with up to 

35 years of follow-up from 1983 to 2017. It includes demographic information, inpatient and 

outpatient diagnoses, surgical history, and vital status. HF events were identified based on 

hospitalizations with heart failure (HFH) as the admission and/or discharge diagnosis. The 

dataset includes demographic variables (sex and age), diagnoses (CHD lesion type, pulmonary 

hypertension, and coronary artery disease), hospitalizations (acute kidney injury and sepsis), and 

surgeries (percutaneous procedures, congenital surgeries, and surgical arrhythmia procedures). 

These variables were selected based on their relevance as potential predictors and common 

confounding factors associated with HF.  

 

Study Population 

 

 The study population cohorts were obtained from the Quebec CHD database. For the 

training and evaluation of our models, we applied two exclusion criteria. Firstly, patients who 

entered the study after the age of 75 were excluded. Secondly, patients with less than 6 months 

of available data were excluded. Following these criteria, a total of 134,446 patients were 

included in the training and evaluation of our models. Out of these patients, 11.74 % experienced 

at least one HFH with the average age of HF being 62.97.  
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Study Design 

 

 This study comprises three phases aimed at developing and evaluating a novel 

longitudinal HF risk prediction model, hART, and exploring its application in clinical practice. 

 The first phase involves a retrospective cohort study designed to develop and evaluate the 

performance of the hART model in predicting the lifespan risk estimation of HF. An attention-

based deep learning model is developed to accurately incorporate patients' entire medical 

histories using longitudinal EHR data from the Quebec CHD database. The following research 

question guides this phase: How does the performance of the novel hART model compare to 

existing methods and baseline models in predicting the lifespan risk estimation of HF? 

 The second phase focuses on analyzing the predicted HF trajectories obtained from hART 

are analyzed to explore the added value it provides in understanding patient populations and 

individualized risk trajectories. One of the key aspects of this phase is the interpretability of the 

DL model, enabling both clinicians and researchers to make informed clinical decisions and 

interventions. We investigate the question: Can hART discern variations in lifelong HF risk 

across diverse patient populations and characteristics? Additionally, we explore hART's potential 

in assessing individual HF risk over time, investigating how distinct medical events influence 

predicted risk. 

 In the third phase, the focus shifts towards transforming the developed hART model into a 

more generalizable model (hART-GPT) capable of predicting all medical events associated with 

a patient's next medical visit. The research question guiding this phase is: Can the incorporation 

of a GPT architecture effectively enhance patient representation learning in hART, enabling 

accurate prediction of a wide range of medical events beyond HF? 

 

hART (heart failure Attentive Risk Trajectory Model) 

 

 This section describes hART, a self-attention model for multivariate sequence modeling 

that predicts a patient's risk of heart failure based on their medical history. The proposed method 

employs a variation of the transformer encoder, which uses a self-attention mechanism to model 

dependencies among events through the assignment of attention scores (21). The transformer 
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architecture and attention networks have been found to achieve superior performance on many 

sequential NLP (Natural Language Processing) benchmarks and to be significantly faster in 

training compared to recurrent networks (21, 26, 28). Furthermore, the context vector and 

attention weights of the transformer architecture allow for the interpretation of how medical 

events contribute to the model's output (29) and provide clinicians with retrospective risk 

trajectories. An overview of the model is depicted in Figure 1. Our hART has four major 

components—input padding, positional encoder, masked multi-head self-attention layers and 

residual connections.  

 Firstly, padding is applied to each patient to extend all inputs to the size corresponding to 

the oldest age of any patient in the dataset, and masking is used to ignore these special tokens in 

loss calculation and predictions. Secondly, in contrast to approaches like RNNs, the attention 

mechanism does not utilize any recurrence or convolutions for sequence modeling. Instead, we 

pass the data through a positional encoder to translate the notion of time within the time steps of 

our sequences (21). The positional encoder is commonly used in NLP problems where the 

transformer is employed. We selected to use the same discrete positional encoder as described in 

the original Transformer paper (21), however, Time2Vec (30), a trainable encoding layer, was 

also tested and yielded inferior results. Positional encoding describes the location or position of 

an entity in a sequence so that each position is assigned a unique representation. Thirdly, we pass 

our data through the attention layers. The attention mechanism was introduced in 2014 to address 

the limitation of previous models in modelling a long sequence of data (31). The self-attention 

mechanism's architecture facilitates the context vector to account for the importance of all past-

time steps and the relationship between them. In the medical context, this implies that when 

predicting HF, the model considers the entire patient's history as well as the relationship between 

each visit. Specifically, we utilize a masked multi-head attention mechanism (21), to improve the 

ability of our model to capture various aspects of the data simultaneously and can help to 

improve the model's performance and interpretability (32). A masked matrix is added to the 

scaled dot product equation to ensure that the attention weights only consider points before the 

predicted time step to be included in the calculation of the context vector (Fig 1.). Each masked 

multi-head attention mechanism is followed a normalization layer and a dropout layer to form an 

attention block. Our proposed model uses two layers of the attention blocks described above, 

where each layer is applied on top of the previous one. This allows the model to build up a 
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hierarchical representation of the input data, with each layer focusing on a different level of 

abstraction. This can help the model to better capture the complex relationships and 

dependencies in the data and can also improve its performance and interpretability (21, 26). 

Finally, the implementation of a residual connection between the two attention blocks in the 

model mitigates the vanishing gradient problem during backpropagation and provides the 

outputted representation with knowledge of the original state of the input, ensuring contextual 

representations of a patient's medical risk assessment represent their medical history (33). 

 The output sequence from the attention layers is a context-aware representation of a 

patient’s health progression, such that each time step’s representation has only considers the past 

medical history. Furthermore, the representation is computed with respect to the future 

occurrence of HF and thus is associated to the evolving risk of HF of a patient. The final 

representation is passed through a final dense layer with a SoftMax activation function. This 

computes a single value HF risk estimate for each time-step. This works as a classification layer 

for each time steps. The output is a sequence of risk score predictions for each 6-month interval. 

Ultimately, our model has combined a patient’s medical history and the future occurrence of HF 

into a deep learning-informed lifespan HF risk trajectory.  

 

hART-GPT (hART - Generative Pre-Trained Transformer) 

 

 hART-GPT is an extension of the hART architecture described earlier, where we replace 

the final dense layer to outputs the 11 time-varying variables that make up a patient's 6-month 

medical visits. By doing so, we can create a generalized patient representation that can be fine-

tuned to predict any outcome, such as heart failure. To this end, we fine-tune the fixed output of 

the attention blocks of the pre-trained hART-GPT by appending a dense layer with one output 

node to predict the HF variable. This approach allows us to leverage GPT's ability to predict the 

next word in a sentence to hART's ability to predict the next medical event. In our case, we are 

fine-tuning the model to predict the next HF event. This combination allows for a more accurate 

and personalized prediction of HF risk based on a patient's medical history, ultimately leading to 

better patient outcomes. 

 

Statistical Analysis 



 34 

 

 In phase one of the study, we utilized a sequence-to-sequence supervised approach to 

predict future HF risk and generate a continuous lifespan trajectory of HF risk. Patient records 

were partitioned into six-month intervals, with each interval comprising a 23-dimensional vector 

encompassing static variables reflecting the patient's condition at birth (such as sex and genetic 

syndrome), a continuous variable (age), and binary-encoded indicators denoting the occurrence 

of particular medical events and medical conditions (such as surgeries and comorbidities). We 

opted for 6-month intervals to enhance the representation of medical events and positive HF 

labels during model training, while also maintaining consistency with our earlier developed 

models (18). The labels were generated using a 1-step sliding window technique based on HF 

hospitalization. This approach enabled us to predict the future 6-month risk of HF at each time 

step, creating a continuous prediction of HF risk based on past patient data. To ensure 

consistency, patient sequences were masked with values of -1, resulting in all sequences being 

standardized to 150 time-steps, which corresponds to the maximum age of 75 years. We 

compared the performance of the proposed model, hART, with three baseline models: logistic 

regression (LR), Support Vector Machine (SVM) and our previously published Deep Heart-

Failure Trajectory Model (DHTM) (18), which utilizes Gated-Recurrent Units (GRU). 

Additionally, to assess the significance of the order of medical events within a patient's medical 

history, we have randomized the time steps and re-evaluated hART (34). We divided our patient 

dataset into a training set and a testing set, with 80% used for training and 20% for evaluation. 

Out of the 80% training set, we further split 15% as a validation set for hyperparameter tuning 

using the Adam optimizer (35). The optimal parameters for each model are listed in Online 

Supplementary Table 1. The As the dataset labels were heavily skewed towards negative 

examples due to the limited number of recorded HF hospitalizations per patient, we employed 

focal loss to improve the precision of our model on the imbalanced dataset. Focal loss down-

weights well-classified examples and focuses on misclassified examples (18, 36). To evaluate the 

performance of our models, we calculated two metrics: Area Under the Precision Recall Curve 

(AUPRC) and the Area Under the Receiver Operating Characteristic (AUROC). AUPRC 

evaluates our model's accuracy and recall, while AUROC measures the balance between true 

positive and false positive rates. In our binary classification task, we utilize the optimized 
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threshold described in (18), which is applied to determine whether a predicted outcome should 

be classified as positive or negative. 

 In the first section of phase two of the study, we compare the predicted lifespan risk of 

HF (HF trajectory) between different patient populations. We examine the average HF trajectory 

and confidence interval of patients in different subgroups of CHD and compute the significant 

difference between the sequences of predicted risk using the Kolmogorov-Smirnov test. 

Specifically, we considered 3 types of subgroups: genetic syndrome, severe CHD (encompassing 

conditions such as tetralogy of Fallot, truncus arteriosus, transposition complexes, endocardial 

cushion defects, or univentricular heart), and age of death. For unbiased analysis, we computed 

the HF trajectories on the held-out patients (testing set), which were not used to train hART. 

Alongside the predicted HF trajectories, we visualize the hART-generated attention weights for 

the exposure group as a heat maps. Finally, we compute the distribution of actual occurrences of 

HF for each subpopulation. Table 1 summarized the characteristics of each population. The 

Fisher's exact test is used to determine the significance of differences between characteristics of 

each patient profile.  

 The ability to personalize treatment for patients with risk of HF is critical for achieving 

better patient outcomes. However, it can be challenging for clinicians to identify the impact of 

specific medical events on an individual's predicted HF risk. In the second section of phase two 

of the study, we address this challenge by exploring the impact of the timing of medical events 

on the HF risk of two patients with CHD who had similar characteristics, but underwent the 

same arrhythmic surgery at different ages (33 and 3 years old, respectively). We display the 

attention scores computed by hART as heat maps for these two representative patients. Moreover, 

we examined the individualized HF risk trajectories of both patients produced by hART and 

compared them to a baseline trajectory calculated from patients with similar initial medical 

profiles. Notably, the baseline trajectory was derived from female patients with non-genetic 

syndrome and non-severe CHD, who lived past the age of 75.  

 In the third phase of the study, we evaluate the performance of the hART-GPT model in 

predicting the 11 medical events which were binary encoded in phase one. These variables 

include myocardial infarction (MI), Stroke, infective endocarditis (IE), arrhythmia (ARR), 

ventricular arrhythmia (VARR), congenital surgery (Congsx), arrhythmic surgery (ARRsx), 

Percutaneous Coronary Intervention (PCI), Sepsis, acute kidney disease (AKD), and HF. The 
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labels for these variables were generated using a 1-step sliding window technique, allowing the 

model to predict the occurrence of these events within the subsequent 6-month period. To assess 

the performance of hART-GPT, the AUROC and AUPRC for each variable was compared 

against a GRU-based model (18). Additionally, we compare the AUROC and AUPRC of the 

fine-tuning of hART-GPT against hART for predicting HF.  

 

Results 
 

HF Prediction Performance 

 

 In terms of predicting the next HF event at time t + 1 based on the sequence up to time t, 

hART achieved an AUPRC score of 0.282 and an AUROC score of 0.967, which outperformed 

the baseline models (Fig. 2). Particularly noteworthy, it outperformed our previously established 

GRU-based model, which attained an AUPRC score of 0.210 and an AUROC score of 0.961. 

The improvements are most pronounced at the 1% recall rate, where our model achieved over 

80% precision outperforming the other models by 10%, signifying that our model predicts the 

occurrence of HF within a 6-month period with 80% accuracy. This is promising given the high 

class imbalance, where HF instances account for only roughly 1% of time steps. The attention 

model trained on the randomized time steps conferred an AUPRC score of 0.2097 and an 

AUROC score of 0.9563, which are much lower compared to the hART trained on the original 

time step sequence. This implies that hART can leverage the temporal order to improve HF 

prediction.  

 

Population-based HF Trajectories: Severity  

 

 The results of our study demonstrate a significantly higher estimated risk of HF for 

patients with severe CHD compared to those with non-severe CHD throughout their entire 

lifespan (p <0.05, KS-test) (Fig. 3a). Specifically, out of 124,898 patients with non-severe CHD, 

11.56% had HF, whereas out of 9,548 patients with severe CHD, 14.04% had HF (p <0.05, 

Fisher’s exact test). Additionally, the hART model effectively predicted the actual distribution of 

HF among severe patients, with the predicted HF trajectory indicating a significant rise in risk 10 
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years earlier than the actual incidence of HF. The highest risk in severe CHD patients begins at 

30 years of age, while the incidence of HF rises at 40 years of age. The computed attention 

matrix for patients with severe CHD highlights the most important time steps for risk prediction, 

with significant attention given to the time of birth and the period from 10 to 40 years of age.  

 

Population-based HF Trajectories: Genetic Syndrome 

  

 In this study, we analyzed the impact of genetic variants associated with CHD on the risk 

of HF using our hART model. Our results showed that patients with known genetic syndrome 

associated with CHD have a higher risk of developing HF until the age of 50 (p < 0.05, KS-test), 

after which the risk trajectories intersect with those of non-genetic patients (p > 0.05, KS-

test).  The comparison between predicted HF trajectories and actual HF distribution in genetic 

and non-genetic patients reveals similar deviations in both groups, with hART predicting the 

intersection of HF occurrence earlier. This suggests that the predictive model is effective in 

identifying the risk of HF in genetic patients more than 10 years earlier than the actual 

occurrence. The most important timesteps for predicting HF in genetic patients were found to be 

from birth to 20 years of age, with decreasing importance until age 50. Interestingly, the initial 

condition became less important for rises in risk over time, which is supported by the intersection 

of risk mentioned above. Our hART model demonstrates the ability to identify early rises in HF 

risk in genetic CHD patients and highlights the importance of early interventions in this patient 

population. 

 

Population-based HF Trajectories: Age of Death 

 

 We also examined the correlation between increased risk of mortality and HF (Fig. 4). 

Our CHD dataset contains 2598 patients who died before 40 years old, 4031 which died between 

40 and 70 and 11541 who died after 70, of which 19.25%, 43.81% and 56.44%, respectively, had 

HF (p<0.05, Fisher’s exact test). By taking the reciprocal of the predicted HF risk and scaling the 

trajectory with respect the HF risk at age of death, we can illustrate the depreciation of overall 

health. First, we find that the initial medical condition of patients who die younger is associate in 

a lower initial predicted overall health. Secondly, hART model predicts that the estimated risk of 
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HF for CHD patients who die younger have significantly earlier decreases in overall heath in 

predicted HF risk.  As expected, the average age of the first HF was lower for patients who had 

earlier death (p-value < 0.05, KS test). Furthermore, the patient who died before 40 had a 

significantly higher proportion of surgeries (19.71% vs 9.90% for patients who died between 40 

and 70 vs 5.09% for patients who died after 70) (p < 0.05, Fisher’s exact test). By looking at the 

attention matrix of our population who died before 40, we find that the patient history from birth 

to the age of 10 contribute significantly to the rapid depreciation of overall health. Although the 

indication of death was not included in the training of hART, we identified a strong association 

between predicted HF risk and mortality, indicating the potential use of hART as a tool for 

mortality risk stratification and survival analysis in CHD patients. 

 

 

Connecting the dots backward: using the event-based attention to associate HF hospitalization 

with past medical events in the CHD patient records 

 

 We investigated the impact of the timing of medical events on the individualized HF risk 

trajectories for two representative CHD patients. Patient A had arrhythmic surgery at the age of 

33, and their risk trajectory deviated from the baseline after the surgery. The attention scores 

computed by hART indicated that the surgery remained important to the HF trajectory for the rest 

of the patient's life, contributing to the deviation from the baseline (Figure 5a). Patient B had 

arrhythmic surgery at the age of 3, and their risk trajectory had a significant deviation from the 

baseline from the age of 4 to 45. However, hART's attention scores showed that the importance 

of the surgery in predicting HF decreased over time, and its impact was minimal around the age 

of 45 (Figure 5b). These findings suggest that hART can capture the understanding of how the 

context and timing of past medical events affect the lifespan trajectories of individual patients. 

Such knowledge can be beneficial in designing personalized treatment regimens for CHD 

patients. 

 

Pre-training on future comorbidities and fine-tuning on HF prediction 
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 In this section, we aimed to evaluate the performance of our extended attention-based 

model, hART-GPT, in predicting the complete next time step for CHD patients and compare it to 

the GRU-based model. Figure 6a illustrates that hART-GPT outperformed the GRU model for all 

variables and was particularly effective at predicting comorbidities associated with HF, such as 

stroke, infective endocarditis, sepsis, myocardial infarction, and acute kidney disease. This could 

be attributed to the fact that the selection of variables was made to include confounding variables 

for HF. Additionally, we examined the performance of fine-tuning hART-GPT on predicting the 

next HF and compared it to hART and other baseline models (Figure 6b). We observed that 

hART-GPT slightly outperformed hART with an AUROC of 0.979 and an AUPRC of 0.2900. 

These results suggest that hART-GPT is a promising tool for predicting the risk of HF and 

associated comorbidities in patients. 

 

Discussion 
 

 HF trajectories enables the assessment of the progression of chronic diseases and 

comorbidities throughout a patient’s life. By analyzing long-term sequential patient data, this 

approach can provide insight into the evolution of a disease over time, including the impact of 

several factors such as age, sex, and individual patient characteristics. This valuable capability 

holds the potential to inform precision delivery of care, leading to improved patient outcomes 

and optimized resource allocation for individuals with CHD (9). In this study, we present the 

first use of attention-based deep learning. Our developed approach called heart-failure Attentive 

Risk Trajectories (hART) is a step towards a deep understanding of the lifespan disease 

progression of CHD, and specifically the leading comorbidity, HF. We demonstrate the capacity 

of hART on modeling sequential administrative diagnostic data from Quebec CHD patients and 

its ability to accurately predict their HF trajectories. The remarkable performance of hART 

compared to existing approaches demonstrates the efficacy of the attention mechanism in 

effectively modeling long-term sequential patient data. It allows for contextualization and 

focused attention on specific medical events within a patient's comprehensive medical history. 

Moreover, we showed that the temporal order is important to achieve the highest prediction 

accuracy of hART, implying its ability to learn hidden semantics from the sequential medical 

data. Additionally, we showed the potential of a GPT framework (hART-GPT) to improve the 
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accuracy of predicting the risk of HF and associated comorbidities in patients, suggesting that 

these models could be valuable tools for patient representation learning and can be fine-tuned to 

tackle a wide array of medical problems (23). 

 Furthermore, we demonstrate the use of predicted HF trajectories to gain a deeper 

understanding of patient’s HF risk and medical profile. Our model has captured how different 

medical events and patient population of CHD patients can lead to different level of long-term 

HF risk. Assessing HF trajectories based on population reveal substantial findings. Firstly, 

despite severity not being included in the training of our model, hART identified that patients 

with severe CHD exhibited consistently elevated risks of HF throughout their lifespan, which 

supports recent studies (14). Our results suggest that future studies can use the model to 

effectively stratify patients into risk groups, which could inform the allocation of resources 

towards patients with higher severity. Secondly, our findings provide evidence that the predicted 

HF trajectory for patients with genetic CHD aligns with previous studies indicating a higher 

likelihood of surgery, complication, and HF in this specific cohort (37). We observe that once 

patients with genetic syndrome reach the age of 50, their risk profile starts resembling that of 

patients without the genetic syndrome. Moreover, by utilizing the attention matrix heat maps, we 

can identify the diminishing influence of early time steps in patients with genetic syndrome over 

time. These results highlight the ability of hART to understand the significance of birth 

conditions and their evolving impact on HF throughout individuals' lifespans, which is crucial in 

managing congenital and chronic diseases. Thirdly, our results support the correlation between 

the evolving risk of HF and mortality, indicating that the model can accurately capture this 

relationship despite age of death not being included in the training (38). This motivates the use of 

HF trajectories to assess the overall lifespan health condition of patients with CHD and to inform 

clinical decision-making and the timing of specialty referral (6, 12). Finally, our study 

showcased how hART can assess HF risk for individual patients and can capture the importance 

of the timing of medical events, such as arrhythmic surgeries. Our findings underscore the 

attention mechanism’s ability to contextualize medical events within patient histories. 

This study also provides one of the first graphical representation of lifelong HF trajectories, 

providing a novel tool for clinicians to use the power of deep learning to inform their 

interventions (9, 15). Comparing patient populations can help clinicians understand the trends 

and impacts of patient histories on lifespan HF risk. Additionally, the use of HF trajectories at an 
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individualized level can facilitate the precision delivery of care by identifying turning points and 

transitions periods based on process of health development, i.e., medical events and genetics, and 

determinants of health (9, 39, 40). The attention mechanism in hART provides an advantage over 

previously used RNN models (18) by offering interpretability for clinicians, allowing for a clear 

understanding of the factors, specifically how the timing of medical events contribute to the 

model's predictions (26). The addition of the informative attention weights can provide valuable 

information to clinicians about the most important medical events in a patient's life. By 

visualizing the attention weights at each time point, we can show which data points the model is 

focusing on and the relative importance of each data point. This can help clinicians identify key 

medical events, such as the onset of a disease or the start of a treatment and understand their 

impact on the patient's overall health.  

 Future research in the field of CHD will focus on analyzing the capabilities of deep 

learning-informed disease trajectories to better understand the complex nature of lifespan 

diseases, incorporating a wide range of medical data, and assessing different outcomes (9). While 

the current model shows promise with its flexibility and generalizability, there are limitations to 

be addressed. One limitation of modeling patient data in discretized time intervals using attention 

is that it may not capture the full complexity of the data. In many cases, medical data is recorded 

at irregular intervals, which can provide deeper insight into the progression of a disease (41). 

Additionally, discretizing the time intervals may make it more difficult to model the 

autoregressive nature of the data, where future time points are predicted based on previous ones. 

Another limitation which we will address in future studies is the inclusion of only 23 selected 

variables. The flexibility and generalizability of hART will facilitate the inclusion of more patient 

features, and assessment of different outcomes in future studies. In terms of clinical applications, 

the success of our model will motivate its use to analyze other clinical questions such as, finding 

the optimum time for intervention for an individual patient, stratifying patients into risk group 

based on trajectories, and examining the impact of specialist follow-ups on the quality of life of 

CHD patients (15). For example, one way to find the optimal time for follow-up using predicted 

disease trajectories is to identify the points in the trajectory where there is a significant change in 

the risk of the disease or in the patient's overall health. These points may indicate a need for 

additional medical attention or intervention and can provide guidance on the timing of follow-up 

visits. Moreover, comparing the predicted trajectories of different patients can provide insight 
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into common patterns and trends, which can inform the development of general follow-up 

guidelines. By using predicted disease trajectories in combination with clinical expertise, it is 

possible to find the optimal time for follow-up and ensure that the right patient receives the right 

care at the right time (6, 9). 

 

 In conclusion, with the increasing complexity of care for patients with chronic illness, the 

ability to deliver precise individualized care has become essential. In this study, we have 

developed a deep learning-informed framework to assess the lifespan risk of HF for patients with 

CHD. Our attention-based model was trained on the largest database of CHD patients and 

addressed limitations observed in previous studies by accurately captures long and short-range 

dependencies in patient histories while offering enhanced interpretability for clinicians through 

the inclusion of HF trajectories and attention matrices. The graphical framework of lifelong HF 

trajectories provided by this study empower clinicians to effectively identify high-risk 

individuals, optimize intervention timing, and assess the evolving impact of comorbidities in 

CHD patients. Overall, this study highlights the value of disease trajectory modeling in 

improving our understanding of the long-term effects of CHD complications. 
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FIGURES AND TABLES 

 

Table 1: Comparison of selected demographic and clinical characteristics between different 

CHD patient profiles. The percentage of patients within specific patient profiles who have 

experienced heart failure (HF) and undergone surgery, as well as the prevalence of certain 

medical and demographic characteristics. Additionally, the table provides the average age at 

which medical events occurred within each patient profile. The table is intended to provide 

insights into the distribution of medical events and patient characteristics within the studied 

patient profiles, and to facilitate further analysis of patient subgroups. 

  HF (%)  HF Age  Surgery 
(%)  

Surgery 
Age  

Female 
(%)  

Severe 
CHD (%)  

Genetic  
Syndrome 
(%)  

All Patients   
(n = 137493)  
  

11.74  62.97   7.30  23.09  50.17  7.10  8.32  

Male  
(n = 68514)  
  

12.41 *  61.26*  7.86*  23.82    6.86  8.68*  

Female  
(n = 68979)  
  

11.07 *  64.88*  6.74*  22.24  
  

  7.35  7.95*  

SevereCHD  
(n = 9764)  
  

14.04*  23.22*  39.54*  8.16*  51.89    21.01*  

Non SevereCHD  
(n = 127729)  
  

11.56*  66.66*  4.84*  32.41*  50.04    7.35*  

Genetic Syndrome  
(n = 11433)  
  

10.85  35.02*  15.68*  7.24*  47.96*  17.94*    

No Genetic Syndrome  
(n = 126060)  
  

11.82  65.30*  6.54*  26.53*  50.37*  6.12*    

Age of Death  
(<40 years old)  
(n = 2598)  
  

19.25*  12.27*  19.71*  5.01*  45.30  33.56*  28.87*  

Age of Death   
(>40 and <70 years old)  
(n = 4031)  
  

43.81*  56.85*  9.90*  54.04*  42.12  6.70*  7.24*  

Age of Death   
(>70 years old)  
(n = 11541)  

56.44*  76.84*  5.09*  70.56*  51.10  1.44*  3.51*  

* Statistically significant at P<0.05.  
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Supplementary Table 1: Selected Variables 
Demographic: Sex (2), Age, Genetic Syndrome (2) 

Medical Events: Myocardial Infarction (MI), Stroke, Infective Endocarditis (IE), Arrhythmia (ARR), Ventricular 

Arrhythmia (VARR), Sepsis, Acute kidney disease (AKD), Heart Failure (HF), Hypertension, Pulmonary 

Hypertension (PH), Diabetes, Chronic Kidney Disease (CKD), Chronic Liver Disease (CLD), Chronic Obstructive 

Pulmonary Disorder (COPD), Obstructive Sleep Apnea (OSA), Congenital surgery (Congsx), Arrhythmic surgery 

(ARRsx), Percutaneous Coronary Intervention (PCI) 

 

Figure 1: hART method overview. (a) A conceptual illustration of the input longitudinal record 

of a CHD patient. (b) A retrospective patient HF risk trajectory output by hART. (c) Attention-

based architecture of hART. Time steps at t-1 and t are passed through hART to output the 

predicted values of the future 6-month HF risk, represented as yt and yt+1. Each input time step is 

passed through two attention blocks connected by a fully connected layer, then a final dense 

layer that allows the model to output a single value per input. The model also has a skip 

connection around the second attention block. (d) Masked multi-headed self-attention 

mechanism of the attention block to prevent the model from peeking into the future.  

 

 

Figure 1:  Heart Failure Trajectory Framework (Central Figure)
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Figure 2. Performance results of hART (attention) and the baseline models. A) PRC b) ROC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Model Performance

a) b)
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Figure 3: Patient Population Trajectories. The top row depicts a comparison of the predicted HF 

trajectory between the population with and without a specified characteristic (a. severe CHD 

lesion; b. genetic syndrome). The trajectories are shown as the mean trajectory and the 

confidence interval of all patients from each population. The middle row depicts the average of 

attention weight matrix computed over the exposure population, with darker blue representing 

the time step which contributes more to the HF risk prediction at the given time step (y-axis 

row). The bottom row depicts the actual distribution of heart failure occurrence based on the 

patient population of CHD. 

 

 

 

 

 

 

 

 

 

Figure 3: Patient Population Trajectories a)

b)

Predicted HF Trajectories

hART Computed 
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Figure 4: Trajectories based on Age of Death. Figure 4a depicts the trajectories in terms of 

overall health for populations divided based on the age at death. Overall health was calculated by 

scaling the reciprocal of predicted HF risk by the reciprocal of the risk of HF at age of death. The 

trajectories reflect the depreciation of overall health related to heart failure. Figure 4b illustrated 

the attention weights associated to the population of patients who died before the age of 40. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Trajectories based on Age of Death

Attention Heat Map (Died Before 40)

Patient Age

a) b)
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Figure 5: Example of Individualized Trajectories. The top row depicts a comparison of the 

predicted HF trajectory for the selected individual patient and the baseline. The middle row 

depicts the individual patient’s medical history, with a dark line representing the occurrence of a 

specified medical event at the given time. The bottom row illustrates the attention weight matrix 

computed by hART for the individual patient. The red boxed illustrate the timing of arrhythmic 

surgery, highlighting the enduring impact of this event at age 33 (Patient A) compared to the 

transient effect when it occurred at age 3 (Patient B). The baseline trajectory is the mean 

trajectory and the confidence interval of all patients from the sub-population which Patient A and 

B belong (i.e., non-severe CHD lesion, Non-genetic Female Patients with CHD). 
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Figure 6: GPT Performance. Figure 6a shows a comparison of the AUROC and AUPRC for 

predicting each of the 11 time-varying variables between the attention-based hART-GPT model 

and the GRU-based model. Figure 6b shows the ROC and PRC curves for the HF fine-tuning of 

hART-GPT compared to hART. 

 

 

 

Abbreviations: Myocardial Infarction (MI), Stroke, Infective Endocarditis (IE), Arrhythmia 

(ARR), Ventricular Arrhythmia (VARR), Congenital surgery (Congsx), Arrhythmic surgery 

(ARRsx), Percutaneous Coronary Intervention (PCI), Sepsis, Acute kidney disease (AKD), and 

HF (Heart Failure) 

 

 

 

 

 

 

Figure 6: hART-GPT Performance
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CHAPTER 4: THESIS DISCUSSION 

 

Modelling risk in CHD is a topic of high priority due to the increasing number of adults 

with CHD and the associated long-term risk of comorbidities, such as HF. With CHD being one 

of the most prevalent birth defects globally, lifespan risk assessment is needed to facilitate the 

precision of delivery of care for this population. This thesis aimed to investigate the assessment 

and modelling of HF risk in individuals with CHD. This study centres around enhancing the 

accuracy of long-term HF risk assessment in patients with CHD.  

 

Significant Findings 

In this thesis, we conducted a review of existing methodologies for assessing and 

modelling HF risk in patients with CHD revealing a notable scarcity of approaches capable of 

generating interpretable long-term HF trajectories. Common methods identified were traditional 

statistical approaches, regression-based models, survival models, and deep learning approaches. 

Our main finding suggests that the increased complexity and variety of patient disease 

presentation, coupled with the evolving demographics and management strategies for patients 

with CHD, have driven the adoption of more powerful methods supported by the wealth of data 

available from EHR databases. However, challenges persisted in modelling the complexity of 

EHR, handling long dependencies, and generating interpretable trajectories. To overcome these 

limitations, we drew inspiration from the remarkable achievements of attention-based deep 

learning models, including BERT and GPT-3, which excel in contextualizing words within 

sentences. Motivated by this success, we applied a similar approach to the medical domain, 

aiming to contextualize medical events within a patient’s comprehensive medical history. 

One of the most significant findings from our study is the superior performance of 

attention-based modelling in predicting lifelong HF. This approach outperformed regression-

based approaches and other deep learning-based methods, demonstrating its effectiveness in 

modelling longitudinal patient data. Additionally, we successfully assessed the differences in 

lifespan risk estimates of HF between population profiles. Notably, patients with severe CHD 

exhibited consistently elevated HF risks throughout their lifespan, highlighting the potential of 

our model, hART, for effective risk stratification. Furthermore, the birth condition of patients 

with genetic syndromes of CHD only leads to increased risk until the age of 50. Additionally, we 
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have identified that the lifelong evolving risk of HF predicted from hART as an indicator of 

overall health. Our analysis of individual HF trajectories, combined with attention matrix heat 

maps, allowed us to evaluate the influence of significant medical events on the lifespan risk of 

HF. Specifically, we found that the timing of arrhythmic surgery had varying effects on HF risk 

over time. Finally, the extended attention-based model, hART-GPT, demonstrated superior 

performance compared to the GRU model in predicting all time-varying variables for the next 

step, notably excelling in forecasting comorbidities associated with HF including stroke, 

infective endocarditis, sepsis, myocardial infarction, and acute kidney disease. Fine-tuning 

hART-GPT specifically for predicting the occurrence of HF resulted in slightly improved 

performance compared to hART. 

 

Interpretation of Findings 

Compared to the existing models examined in our literature review, the hART and hART-

GPT models demonstrate the most promising outcomes, exhibiting superior performance and 

interpretable estimates. This highlights the potential of attention-based deep learning approaches 

in being able to model long-term dependencies and complex relationship between medical events 

present in the medical history of patients with chronic illnesses. These findings support the 

notion that incorporating deep learning and longitudinal patient data can provide accurate 

estimations of disease trajectories at both an individual and population-level.  

In addition to the increased accuracy demonstrated by attention-based learning, our study 

highlights the potential for interpretable AI. Transformers have consistently demonstrated 

superior performance in NLP tasks (57). However, it was only with the advent of interpretable 

and informative interfaces like ChatGPT that these models gained widespread popularity and 

practical usage. The integration of AI algorithms into clinical practice has long been a challenge, 

primarily due to concerns regarding acceptability, interpretability, and trust of the model’s output 

(9, 52, 60). In this regard, hART and hART-GPT represent significant advancements as they 

empower clinicians with a comprehensive lifespan assessment of HF risk, through disease 

trajectories. Moreover, these models provide an avenue to glimpse into the “black box” of deep 

learning-informed risk estimations through the examination of the computed attention matrix.  

The concept of lifespan HF trajectories and the ability to assess the impact of specific 

medical events on long-term HF risk hold significant potential for delivering precise 
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individualized care, especially in the face of the increasing complexity of care for patients with 

chronic illnesses like CHD. By understanding the long-term trajectory of HF and identifying 

critical events that influence its progression, healthcare providers can tailor interventions and 

treatments to each patient’s unique needs(6). This approach enables a proactive and personalized 

approach to care, optimizing outcomes and enhancing the quality of life for individuals with 

chronic conditions. Additionally, by incorporating the insights gained from assessing long-term 

HF trajectories, clinicians can adapt care plans and interventions based on a patient’s evolving 

risk profile, ensuring that the care provided remains aligned with the changing needs of the 

individual over time (9). 

The use of the GPT framework, hART-GPT, to model patient data also represents a 

significant advancement for patient representation learning. By leveraging these sophisticated 

methodologies, patient representation learning aims to capture the complex and meaningful 

patterns embedded within the EHR data, enabling a more comprehensive understanding of the 

patient’s health profile (64, 65). Current models for patient representation learning primarily 

concentrate on predicting individual diseases, often overlooking the intricate interplay and 

holistic aspects of a patient’s overall health (64, 65). At the heart of patient representation 

learning is pre-training, a fundamental concept in DL, which enables the acquisition of 

meaningful and generalizable features from large-scale healthcare data. hART-GPT exhibited 

superior pre-training performance over the current benchmark GRU-based approach. The 

findings from other studies align with the performance of pre-training hART-GPT, reinforcing 

the notion that attention and transformer-based models represent a significant advancement in 

capturing the intricate temporal dynamics and complexities present in patient data (58, 59, 66). 

Thus, we believe that the flexible framework of the GPT framework presented in the hART-GPT 

can revolutionize lifespan patient representation learning by offering a powerful tool to model 

and analyze long-term patient data comprehensively. 

With successful pre-training and patient representation learning comes the ability to 

tackle disease-specific challenges. Fine-tuning involves training the model on task-specific data 

to adapt its pre-learned knowledge to the specific context and requirements of the task (65). This 

process allows the model to specialize and refine its predictions for the target application. For 

example, in the case of ChatGPT, the model undergoes extensive pre-training on a vast amount 

of Internet text to develop a general understanding of human language (56). Then, during fine-
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tuning, it is further trained to adapt its knowledge for generating humanlike responses in a 

chatbot scenario and predict the next word. Similarly, hART-GPT is pre-trained to capture the 

intricate relationships and patterns within an entire patient history, providing a foundation of 

generalizable knowledge. By fine-tuning this model, we can leverage its capabilities to predict 

not only heart failure but also diverse comorbidities and tasks, opening up significant 

possibilities for more comprehensive healthcare applications (66). 

 

Limitation and Future Work 

The present research represents an important step towards understanding the complex 

nature of lifespan disease, specifically in the context of CHD. However, there are several 

limitations that should be acknowledged, and avenues for future research that can further 

enhance the applicability and performance of the deep learning-informed disease trajectories. 

One limitation of the current study is the selection of only 23 variables for training the 

model. Although we carefully chose these variables based on their relevance to HF risk 

prediction, we can potentially achieve further improvement by incorporating additional patient 

features and investigating alternative outcomes. The flexibility and generalizability of the model 

allow for the incorporation of more diverse data, which can contribute to a more comprehensive 

understanding of disease trajectories. Additionally, the application of the model to other 

comorbidities and chronic diseases would be valuable in assessing its accuracy and 

generalizability. Currently, we are actively extending the application of hART-GPT by training it 

on a comprehensive dataset of patient data representing the general population (67). This 

expansion allows for the inclusion of an extensive range of features, textual information, and 

diseases, enhancing the model’s capability to capture a broader spectrum of patient 

characteristics. By fine-tuning hART-GPT specifically for patients with CHD, we aim to 

incorporate the nuanced differences in risk associated with CHD compared to the general 

population. This targeted approach enables us to deliver more accurate and personalized risk 

assessments, addressing the unique challenges and considerations specific to CHD patients. 

It is essential to acknowledge that the hART model’s reliance on a specific format of 

patient data introduces challenges in its practical application. The model’s requirement for 

specific variables and data format implies that patients must possess comprehensive information 

related to these variables to ensure accurate predictions of HF risk. This limitation constrains the 
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usability of the hART model to specific EHR systems that capture the necessary variables. As a 

result, the model’s effectiveness may be limited to patient populations whose EHRs adhere to the 

required data format. To overcome this limitation, we will explore incorporating data from 

diverse EHR systems and various modalities such as textual patient notes, medical imaging, and 

additional health records. By expanding the scope of data sources, we can enhance the model’s 

applicability and extend its benefits to a wider range of patients and healthcare settings. 

Finally, the successful prediction of disease trajectories by the model offers promising 

opportunities for various applications. One such application is the identification at-risk 

individuals needing referral to specialized care, which is a limited resource but has been shown 

to improve outcomes for patients with CHD (5). Additionally, by utilizing the predicted 

trajectories, clinicians can pinpoint crucial points in the trajectory where there is a notable shift 

in disease risk or overall health, thus optimizing the timing for these referrals. This information 

can guide the timing of follow-up visits and aid in providing timely medical attention or 

intervention, ensuring that patients receive precise and appropriate care at the most opportune 

moments (6, 9). 
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CHAPTER 5: CONCLUSION 

 

In conclusion, this thesis makes significant contributions to addressing the increasing 

complexity of care for patients with CHD and assessing their long-term risk of HF. In this study, 

we developed hART (heart failure Attentive Risk Trajectory), an attention-based deep-learning 

model, which incorporates HF trajectories and attention matrices to empower clinicians to 

identify high-risk individuals, optimize intervention timing, and evaluate the long-term impact of 

comorbidities. These capabilities have profound implications for precision care delivery, leading 

to improved patient outcomes and optimized resource allocation for individuals with CHD. The 

study demonstrates the effectiveness of attention-based deep learning models in capturing both 

long—and short-range dependencies in patient histories, overcoming limitations observed in 

previous studies. By providing a deeper understanding into the intricate interplay of clinical 

variables and their effects on heart failure outcomes, hART enables healthcare providers to 

understand HF risk trajectories at a population level, allowing for the identification of high-risk 

subgroups and appropriate resource allocation. Moreover, the model facilitates individualized 

risk predictions, enabling personalized interventions and treatment strategies that enhance 

clinical decision-making and ultimately improve patient outcomes. Overall, this study highlights 

the value of deep-learning informed HF trajectory to drive precision delivery and management of 

care for patients with CHD.  
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