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the Fonds de Recherche du Québec - Santé (FQR-S). R.W.P. holds the Albert Boehringer

I Chair in Pharmacoepidemiology, and is a member of the Research Institute of the McGill

University Health Centre, which is supported by core funds from FQR-S.

Conflict of Interest

M.E.K. has received accommodation costs from the endMS Research and Training Network

(2011, 2012), Statistical Society of Canada (2016) to present at conferences, and from Pacific

Institute for the Mathematical Sciences (2013), the Canadian Statistical Sciences Institute

(2016) to attend workshops. R. W. P. has received fees for service for consulting from

Abbvie, Amgen, Eli Lilly, and Searchlight Pharma, for teaching from Novartis, and for

scientific steering committee membership from Pfizer.

Availability of Data and Code for Replication

Software code hints are provided in the supporting material (as an eAppendix) for imple-

menting the methods. Retrospective population-based cohort Dataset from the Clinical

Practice Research Datalink (CPRD) is not publicly available due to patient confidentiality

reasons.



Machine Learning alternatives to hdPS 1
Abstract

The use of retrospective healthcare claims datasets is frequently criticized for the lack of complete

information on potential confounders. Utilizing patient’s health status-related information from

claims datasets as surrogates or proxies for mismeasured and unobserved confounders, the high-

dimensional propensity score algorithm enables us to reduce bias. Using a previously published

cohort study of post-myocardial infarction statin use (1998− 2012), we compare the performance of

the algorithm with a number of popular machine learning approaches for confounder selection in high-

dimensional covariate spaces: random forest, least absolute shrinkage and selection operator, and

elastic net. Our results suggest that, when the data analysis is done with epidemiologic principles in

mind, machine learning methods perform as well as the high-dimensional propensity score algorithm.

Using a plasmode framework that mimicked the empirical data, we also showed that a hybrid of

machine learning and high-dimensional propensity score algorithms generally perform slightly better

than the both in terms of mean squared error, when a bias-based analysis is used.

Keywords: confounding; epidemiologic methods; high-dimensional propensity score; machine learn-

ing; observational data analysis.

Abbreviations: PS, propensity score; hdPS, high-dimensional propensity score algorithm; LASSO,

least absolute shrinkage and selection operator; OR, odds ratio; RD, risk difference; EC, empirical

covariate.

Introduction

Observational studies are the most pragmatic means of addressing drug efficacy questions

under ‘real-life’ clinical practice settings1. However, when we collect data from observational

sources, the balance of covariates at baseline may no longer hold. Such imbalance could be

mitigated easily by adjusting for respective confounders in a regression model or in a propen-

sity score2,3 context. However, these methods assume “no unmeasured confounding”4,5 i.e.,

a sufficient set of confounders are recorded and adjusted in the analysis, either directly or

through the propensity score.

Observational studies of drug efficacy often use administrative datasets. These datasets

are not primarily collected for research purposes, so the investigators do not have much con-

trol over what covariates are measured. Therefore, studies based on pharmacoepidemiologic

healthcare claims databases are frequently criticized for the lack of complete information on
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the potential confounders6. Historically, researchers have adjusted for the set of available

and measured covariates via regression or propensity score adjustments. When researchers

perform data analysis and adjustment using only measured confounders, the estimated treat-

ment effects may be biased and subject to residual confounding7.

Fortunately, a wide range of health care utilization databases routinely collect a large

volume of digital electronic administrative records. These data sources additionally contain

longitudinal information about patients’ health status and various related information, such

as unique medical diagnoses, procedures, providers, health insurance plans, and prescription

dispensing, as well as information from electronic medical records, laboratory results, acci-

dent registries, etc. This information, usually in the form of codes that can be translated

into thousands of variables, are potentially correlated with the important unmeasured or

imprecisely measured confounders5,8 and thus, can be used as overall proxies of them9.

As these data are not usually collected for research purposes, it is not clear how to make op-

timal use of such information in an analytic setting. Conventional pharmacoepidemiological

studies do use diagnosis, procedure and drug prescription to define their exposure, outcome

and covariates of interests, but they do not consider all the information. Schneeweiss and his

colleagues10 introduced an algorithm called the high-dimensional propensity score algorithm

that advocated the use of all the information available in health care claim data. Since its

publication, there has been a growing interest in this approach (see eFigure A.1).

Unlike typical pharmacoepidemiologic studies, considering such a massive amount of proxy

data is essentially a big data problem11. According to the epidemiologic literature, in our

propensity score model, we need to include variables associated with the outcome, even if

they are seemingly unrelated to the treatment decision12. Using ‘kitchen-sink’ models that

indiscriminately adjust for all proxy covariates without considering how they affect treatment

and outcome may be counterproductive in terms of reducing bias or obtaining an efficient

estimate of the treatment effect2,12. This is particularly the case for instrumental variables

because adjusting for such variables may amplify bias and increase variance13. However,

variable selection for confounder adjustment in this high-dimensional setting is a challeng-

ing problem because hand-picking such covariates (e.g., by an expert) is not practical. The

proposed high-dimensional propensity score algorithm offers a practical way to select a large
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number of covariates that are suitable for the propensity score model. This algorithm au-

tomates the selection of adjustment covariates in seven well-defined steps10 by empirically

assessing bivariate associations between the proxy variables and outcome variables, adjust-

ing for exposure prevalence. Based on their potential for confounding (usually measured

via a bias score14), variables are assigned a rank (prioritized), and only the highest ranked

variables are selected for inclusion in a propensity score analysis (bias-based ranking). Gen-

erally, the 100 or 500 top-ranked empirical covariates are selected. These ranked empirical

covariates are known as “high-dimensional propensity score variables”6. In simulation and

empirical studies10,15,16, the high-dimensional propensity score algorithm has been shown

to optimally reduce bias in many comparative effectiveness studies. Other criteria such as

exposure based ranking, are also suggested in the literature for situations with few exposed

outcomes15 (eAppendix A.5 for corresponding formulas).

To deal with the challenge of dimensionality, many machine-learning methods have been

proposed in the statistical, epidemiologic as well as big-data literature17,18. Methods based

on, say, classification and regression trees18 are inherently flexible, data-adaptive and as-

sociated with less strict assumptions, and have considerable potential to capture various

features of the data, such as nonlinear patterns, interaction, and higher-order effects19–23.

Most of these machine-learning methods, however, tend to focus on increasing the predictive

accuracy24. Similar to the previously discussed propensity score settings, blindly including

all possible covariates into the machine-learning methods may amplify bias in the analysis

due to the inclusion of covariates that are irrelevant to the outcome13,25.

In this work, we deal with customizing some of these machine-learning methods to incorpo-

rate the appropriate variables that follow the epidemiologic principles (e.g., include variables

associated with the outcome in the propensity score modeling). As the title suggests, the

current research aims at finding out whether the machine-learning Methods, trained with the

relevant epidemiologic principles12, can outperform the high-dimensional propensity score al-

gorithm. We will also consider hybrid approaches to bring together both types of algorithms

and harness their respective strengths.
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Methods

Empirical Dataset

We utilized a retrospective population-based cohort study using the United Kingdom data

from the Clinical Practice Research Datalink (CPRD)26. These data were linked to the

Hospital Episode Statistics database (HES), which contains detailed hospitalization records.

A total of 32,792 patients aged 18 and older, and diagnosed with an initial post-myocardial

infarction (MI) were drawn from the databases between 1 April 1998 and 31 March 2012.

This cohort consists of 19,121 patients treated with statin within 30 days after the diagnosis

of MI. All-cause mortality was evaluated as any death recorded in the databases during the

one-year follow-up period. Previous research identified five important confounders: age, sex,

obesity, smoking, and history of diabetes26. Twenty-four other potential known confounders

were designated as predefined covariates for the study (listed in the eAppendices A.2 and

A.3). From four linked data dimensions, we create binary proxy covariates, following the

high-dimensional propensity score algorithm10, considering the top 200 most prevalent codes

(details in eAppendix A.4). To distinguish these covariates from the investigator specific

covariates, we call them empirical covariates27. This study was approved by the Independent

Scientific Advisory Committee for Medicines and Healthcare Products Regulatory Agency

database research (protocol number 14 018) and the Research Ethics Board, Jewish General

Hospital, Montreal, Canada.

Adjustment Tools

We have listed the high-dimensional propensity score methods and the machine-learning

alternatives under consideration in Table 1. In this work, we used deciles of the propen-

sity score distribution as a covariate in the outcome analysis. We calculate the odds ratio

(OR) from methods (1-5) for comparison purposes. Approaches (6-7) are high-dimensional

propensity score methods. Pure machine-learning methods, such as least absolute shrink-

age and selection operator (LASSO) (8), were recently proposed as an alternative to the

high-dimensional propensity score algorithm6 (shown via data analysis and simulation). We

propose to use a machine-learning approach in this work known as elastic net (9)28. This

approach is capable to generally selecting a more stable superset of the LASSO selected

confounders29. Random forest method (10)30 is another machine-learning approach that has
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been recently used in another data analysis (but not simulation) context in comparison to

high-dimensional propensity score31. This approach uses a prediction error based criterion

to decide the ‘variable importance’ of each empirical covariate in predicting the outcome.

We also consider hybrid approaches (11-12), that combine high-dimensional propensity score

and machine-learning approaches6,31. eAppendix A.6 discusses the technical details of the

software use.

Plasmode simulation

To evaluate the performance of the high-dimensional propensity score algorithm and the

machine-learning methods in a realistic high-dimensional covariate settings, we conducted

a plasmode simulation16,32 study mimicking our empirical study where associations and

correlations between covariates reflect real-world settings (details in eAppendix A.7).

Simulation Specifications

In total, we considered 18 plasmode simulation settings (parameter specifications are listed

in Table 2). These settings fall under two broad scenarios: (U-set) unmeasured confounding

present, i.e., all variables (empirical as well as investigator-specified) were used to generate

data, but five important confounders were omitted during data analysis, which is the gen-

eral scenario where analysts are more likely to engage a high-dimensional propensity score

analysis, and (A-set) all variables are measured and included in the analysis. Simulation

settings are varied by the true underlying model generating the outcome, assigned covariate

effect multiplier (γ), the prevalence of outcome and exposure (pY and pE respectively), and

the presence of unmeasured confounding, all of which has been identified as useful parame-

ters for plasmode simulations16,33,34. For simplicity, we set the true odds ratio to be 1. To

avoid the problem of noncollapsibility of the odds ratio35,36, we followed the usual practice

in the literature to estimate a measure of effect that is collapsible (e.g., risk difference)32,37

and calculate bias and mean squared error (MSE) accordingly (considering risk difference of

zero to be true parameter). In each of these simulation scenarios, we considered generating

N = 500 datasets with m = 10,000 subjects in each dataset.
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Table 1: Adjustment Tools under consideration: (a) Basic comparators, (b) High-dimensional
propensity score methods, (c) Machine learning methods and (d) Hybrid approaches.

Name Description
Basic comparators
(1) Crude Crude analysis without any covariate adjustment
(2) PS Important PS analysis with only the 5 important covariates.
(3) Regression Regression adjustment with 29 investigator-specified covariates.
(4) Regular PS PS analysis with 29 investigator-specified covariates.
(5) kitchen-sink All empirical covariates (ECs) as well as 29 investigator-specified

covariates are placed in the PS model without any hdPS or machine-
learning pre-selection.

hdPS
(6) 500-hdPS PS analysis with 500 hdPS variables.
(7) 100-hdPS PS analysis with 100 hdPS variables.
Pure machine-
learninga

(8) All-EC-LASSO (a) Initialize the outcome model with all possible ECs. In this
model, based on the relationship with the outcome, LASSO shrinks
a number of unstable estimated covariate coefficients to zero and
eliminates the respective hdPS covariates from the outcome model.
LASSO will return a reduced model with a subset of ECs that
are meaningfully associated with the outcome. (b) We then use
this subset of ECs to build our PS model and (c) subsequently
perform outcome analysis again using the treatment and PS deciles
as covariates.

(9) All-EC-Enet Similar to approach (8), but using elastic net instead of LASSO.
(10) 500-EC-rF (a) Based on the outcome and covariate association in a multivari-

ate random forest model, 500 top important variables are identified
and (b) they are used to build a reduced PS model. (c) Subsequent
outcome-exposure association are then assessed after adjusting for
the estimated PS deciles.

Hybridb

(11) Hybrid-LASSO LASSO models will perform variable selection on the selected 500
hdPS variables and reduce the number of covariates to be used in
the PS model.

(12) Hybrid-Enet Similar to approach (11), but using elastic net instead of LASSO.

PS, propensity score; hdPS, high-dimensional propensity score algorithm; LASSO, least
absolute shrinkage and selection operator; EC, empirical covariate.

a All ECs are entered into in the machine-learning algorithms. No high-dimensional propen-
sity score pre-selections are necessary.

b Only the 500 ECs selected by the high-dimensional propensity score algorithm are entered
into the initial model.
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Table 2: Plasmode simulation settings under consideration modify-
ing the cohort of post-myocardial infarction statin use (1998−2012)

Simulation Scenarioa γb pE
c pY

d Unmeasured confounders
1-U 1 40 5 Yese

2-U 3 40 5 Yes
3-U 5 40 5 Yes
4-U 1 40 10 Yes
5-U 3 40 10 Yes
6-U 5 40 10 Yes
7-U 1 10 5 Yes
8-U 3 10 5 Yes
9-U 5 10 5 Yes
1-A 1 40 5 No
2-A 3 40 5 No
3-A 5 40 5 No
4-A 1 40 10 No
5-A 3 40 10 No
6-A 5 40 10 No
7-A 1 10 5 No
8-A 3 10 5 No
9-A 5 10 5 No

a Each of these scenarios was generated from the follow-
ing plasmode simulation’s outcome generating equation:
logit

[
Pr(Y = 1)

]
= α0 + θ × α1T + γ × α2X. Here, Y

is the outcome, T is the treatment indicator, X is the ma-
trix of investigator-specified and empirical covariates. α0 is
the intercept, α1 and α2 are the treatment effect and the
covariate effects respectively, θ and γ are multipliers of the
treatment effect and the covariate effects respectively. See
eAppendix A.7 for details.

b γ, the covariate effect multiplier, uniformly amplifies ob-
served association between each covariate and the outcome.

c pE is the prevalence of exposure.
d pY is the prevalence of outcome.
e discarding five most important confounders identified in pre-

vious research: age, sex, obesity, smoking, history of dia-
betes.
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Results

Empirical Data Analysis Results

Treatment effect estimation

All our OR estimates are plotted in eFigure A.6 with corresponding confidence intervals.

Without any adjustment, the estimated crude OR is 0.3. The five most important covari-

ates are not well-balanced at baseline (see eAppendix Table A.1). Adjusting for these five

important covariates in the propensity score model resulted in an estimated OR of 0.47.

Considering 24 additional investigator-specified covariates (see eAppendix A.2) resulted in

an OR of 0.62. Adding more covariates moved the OR to some extent. As we are deal-

ing with observational data sources, unmeasured confounding is a concern. To reduce the

effect of potential residual confounding in the analysis, researchers would prefer to adjust

for more variables. Under the assumption that the collected empirical covariates are likely

associated with unobserved confounders and can be used as proxies of the unmeasured con-

founders, we built a propensity score model with all possible empirical covariates as well as

29 investigator-specified covariates (‘kitchen-sink’ approach). The resulting OR is .65, which

is very close to the previous OR 0.62 that we obtained from utilizing only the investigator

specified covariates.

For any propensity score (and high-dimensional propensity score) model building process,

it is essential to assess the balance in the propensity score distribution38. When we had only

29 investigator specified covariates, the propensity score from both exposure group had suffi-

cient overlap (see eFigure A.4). However, when we included all possible empirical covariates

in our kitchen-sink model, control status (0) and exposure status (1) are almost perfectly

predicted by the large propensity score model, and hence there is not sufficient overlap in the

middle, suggesting that the kitchen-sink model does not sufficiently adhere to the diagnostic

criteria (e.g., overlap) recommended for assessing balance.

However, after selecting top 100 high-dimensional propensity score variables, we can see

there is sufficient overlap in the propensity score in both groups. Even when we selected

the top 500 high-dimensional propensity score variables, the overlap seems satisfactory (see

eFigures A.4-A.5). The OR from the 100-high-dimensional propensity score approach is 0.74
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(see eFigure A.6). When we considered more variables, say 500 high-dimensional propensity

score variables, the OR is 0.78.

Using the LASSO selection model, we can get a subset of empirical covariates. Using

them in propensity score analysis, we get the OR 0.76. When elastic net is used for variable

selection, it results in OR of 0.77. We can see that with 500 important empirical covariates

chosen by the random forest approach, the OR is 0.79. Hybrid approaches also resulted in

similar ORs.

Sensitivity analysis

We performed a sensitivity analysis to check whether the use of empirical covariates in the

analysis can somewhat compensate for the omitted confounders. Let us assume that we

have not collected five confounders that were deemed important for this study previously26

and we want to investigate if high-dimensional propensity score analysis can compensate

for such missing or omitted information. We performed high-dimensional propensity score

analysis all over again without those five confounders; results are plotted in eFigure A.7. We

can see that ORs estimated the 500-high-dimensional propensity score, machine-learning

methods and hybrid approaches are apparently higher than that from the propensity score

analysis that included those five confounders (marked by the grey line at OR = 0.62).

Therefore, methods utilizing these surrogate variables that are potentially associated with

the unmeasured confounders, resulted in increasing the ORs (all ORs above 0.62). However,

none of the estimates reached the same level as the earlier analyses, when we included these

five confounders (compared to eFigure A.6, either of the dotted lines).

Simulation Results

If unmeasured confounding present

All the simulation results shown in graphs are sorted in the same order the approaches were

presented in Table 1. Figures A.8 - A.10 demonstrate the performance of each of the ap-

proaches under consideration for simulation scenarios 1-U, 4-U, and 7-U when unmeasured

confounding present (set-U) and high-dimensional propensity score variables are selected

based on bias score. In all of these scenarios, all of the approaches using empirical covariates

(even the 100-high-dimensional propensity score approach) performs better than the regular
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propensity score approach.

When we have a higher exposure prevalence (pE = 40) but a less prevalent outcome

(pY = 5) in simulation scenario 1-U, in general, these approaches are associated with least

bias. Bias was slightly increased when exposure prevalence was lower (pE = 40 and pE = 10

in scenario 4-U), but most biases are related to scenarios when outcome prevalence (pE = 10

and pE = 5 in scenario 7-U) is more. In all of these settings, hybrid methods (Hybrid-Enet

and Hybrid-LASSO) seem to do better in terms of MSE than any of the pure machine-

learning or high-dimensional propensity score algorithms. Except for scenarios 5-U and 6-U,

hybrid methods continue to perform well when we consider stronger covariate associations

(eAppendix A.9.2: eFigures A.11 - A.16). In those two scenarios, pure machine-learning

method 500-EC-rF performs best in terms of both bias and MSE.

When high-dimensional propensity score variables were selected based on exposure-based

selection in the same set-U scenarios, machine-learning methods (All-EC-Enet, 500-EC-rF

and All-EC-LASSO) perform better in all situations, considering MSE as a criterion for

comparison; see eFigures A.17-A.25). Note, however, that estimates obtained from high-

dimensional propensity score, machine-learning methods and hybrid approaches utilizing

the empirical covariates were not much different in any of the settings we have considered

in terms of the magnitude of difference in the effect estimate. Considering fewer variables in

the analysis did not change the results in general (see eAppendix A.9.6).



Machine Learning alternatives to hdPS 11

If all relevant variables are measured

In an unlikely scenario, when all relevant variables are measured and included in the anal-

ysis (set-A), hybrid methods perform well in all scenarios when bias score was used for

ranking (see eFigures A.26-A.34). Again, pure machine-learning methods perform well when

exposure-score was used for ranking (see eFigures A.35-A.43). Table 3 lists all the best ap-

proaches based on the chosen criteria (bias or MSE).

Table 3: Methods performing best in various simulation scenarios in terms of mean squared error
and bias criteria: pure high-dimensional propensity score methods are marked as italic and pure
machine-learning approaches as bold.

Bias-based Exposure-based
Scenario MSE Bias MSE Bias

1-U Hybrid-Enet Hybrid-Enet All-EC-Enet All-EC-Enet
2-U Hybrid-LASSO 500-hdPS All-EC-Enet All-EC-Enet
3-U Hybrid-LASSO 500-hdPS All-EC-Enet All-EC-Enet
4-U Hybrid-Enet Hybrid-Enet 500-EC-rF 500-EC-rF
5-U 500-EC-rF 500-EC-rF 500-EC-rF 500-EC-rF
6-U 500-EC-rF 500-EC-rF 500-EC-rF 500-EC-rF
7-U Hybrid-Enet 500-hdPS All-EC-LASSO All-EC-Enet
8-U Hybrid-Enet 500-EC-rF All-EC-LASSO All-EC-LASSO
9-U Hybrid-Enet 500-hdPS All-EC-LASSO All-EC-Enet
1-A Hybrid-LASSO All-EC-LASSO All-EC-Enet All-EC-LASSO
2-A Hybrid-LASSO Hybrid-LASSO All-EC-Enet All-EC-Enet
3-A Hybrid-Enet Hybrid-LASSO All-EC-LASSO All-EC-Enet
4-A Hybrid-LASSO All-EC-Enet All-EC-Enet All-EC-Enet
5-A Hybrid-LASSO 500-EC-rF 500-EC-rF 500-EC-rF
6-A Hybrid-Enet 500-EC-rF 500-EC-rF 500-EC-rF
7-A Hybrid-Enet 500-hdPS All-EC-LASSO All-EC-Enet
8-A Hybrid-Enet 500-EC-rF All-EC-LASSO All-EC-Enet
9-A Hybrid-LASSO Hybrid-Enet All-EC-LASSO All-EC-Enet
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Considering ‘bias’ as a criterion

As shown in Table 3, the superior performance of the machine-learning or hybrid approach

is also true when we consider bias as a measure of criterion instead of MSE. 500-high-

dimensional propensity score performed best when the bias-based analysis was conducted in

four scenarios (in set-U) and only once (in set-A) in the absence of unmeasured confound-

ing. In terms of exposure-based analysis, 500-high-dimensional propensity score or any of

the hybrid approaches never came out on top in either criterion (bias or MSE). Consider-

ing exposure-based analysis, pure machine-learning methods are always the best no matter

which criterion you choose.

Proportion of chosen variables in common

Previously it was shown via simulation, that the variables chosen by the LASSO approach

were mostly different than the variables selected by the bias score (bias-based and exposure-

based)6. Apparently, the empirical covariates selected by the random forest method are also

very different than the empirical covariates selected by the LASSO and elastic net method.

In our data analysis context, only about 30% variables are in common when we picked 100

variables from the random forest and 100 high-dimensional propensity score variables from

the elastic net approach (see eAppendix A.10 for scenarios 1, 4 and 7). However, although

the variables were different, the resulting ORs were in close proximity.

Discussion

Application of machine-learning methods in the analysis of high-dimensional health care

databases is not new6,31,34,37,39,40. Unlike much of the previous literature in this context,

we clearly distinguish between high-dimensional propensity score, machine-learning, and hy-

brid approaches and compared them under an unified framework. One of the novel aspects

of the current work is that we have utilized machine-learning for identifying and selecting

confounders (based on the association between the covariates and the outcome) instead of

using them in direct exposure modeling to enhance prediction, as was done in some earlier

works19,31,41. In this paper, in the context of analyzing a healthcare administrative dataset,

under the same framework, we aimed to assess the performances of three machine-learning
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methods as well as two hybrid approaches (combination of high-dimensional propensity score

and machine-learning methods) and compared them with a regular high-dimensional propen-

sity score analysis in adjusting for residual confounding.

We compared high-dimensional propensity score and machine-learning methods in a retro-

spective cohort study of statin use post-MI and the 1-year risk of all-cause mortality. When

considering 500 or more empirical covariates, the estimated ORs were between 0.76 and

0.79. Such findings are consistent with the previous study results based on the same empir-

ical dataset using a double robust estimation approach42: the reported OR was 0.77 and a

sensitivity analysis suggested an OR of 0.8 when the estimated propensity score were trun-

cated at the 1st and 99th percentile to avoid creating extreme inverse probability weights26.

However, from the analysis of observational data, no matter how sophisticated the estimation

approach is, we can’t be sure that we have obtained the right answer. Non-collapsibility of

OR further prevents us from making meaningful comparison between ORs estimated from

various approaches under consideration. Therefore, we have conducted plasmode simulation

studies to assess statistical properties of results from these approaches.

Through assessing empirical data analysis and 18 plasmode simulation scenarios, we found

that results from approaches utilizing empirical covariates are generally similar to each other

and the magnitude of difference in results of these approaches are generally small. This

finding is consistent with the relevant literature6,31. When bias-based ranking is utilized

for selection of high-dimensional propensity score variables, hybrid approaches performed

slightly better than the other approaches when comparing in terms of MSE, irrespective

of whether unmeasured confounding was present or not. When compared with respect to

bias, both high-dimensional propensity score and machine-learning approaches performed

well. Exposure-based analysis results were slightly inferior to the bias-based analysis in our

context, but pure machine-learning methods always performed well in these scenarios. To an-

swer the question in the title in this paper, we were able to train the pure machine-learning

methods to perform almost as good as the high-dimensional propensity score methods in

many scenarios, if not better. We get even more powerful performance when we combine

both approaches.

We need to consider a major limitation of this high-dimensional propensity score algo-
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rithm. In the bias-based analysis, the ranking of the empirical covariates in high-dimensional

propensity score analysis is done separately based on bivariate associations of the confounder

and the outcome43. In high-dimensional setting, one can think a scenario, where many co-

variates are correlated, and they may contribute the same information. Thus, some of these

selected high-dimensional propensity score variables might not have a confounding influence

in the presence of the others44. Further generic limitations of this approach are outlined

in eAppendix A.11. To reduce overfitting problem further, contrary to the regular high-

dimensional propensity score algorithm (that considers bivariate association of the outcome

and an empirical covariate), machine-learning approaches jointly consider all the empirical

covariates in one multivariate model. These multivariate models follow the same epidemio-

logic principle that the empirical covariates associated with the outcome need to be included

in the propensity score model12.

All machine-learning methods, however, do not share the same strengths and limitations.

One of the known limits with LASSO is that for a highly correlated group of variables,

LASSO tends to select only one variable from a group and ignores the rest of them29. How-

ever, one correlated group could include more than one important confounder, and picking

just one of them could potentially result in residual confounding. Elastic net is a compromise

between LASSO and ridge regression and therefore, inherently more stable than a LASSO,

even in the presence of severe multicollinearity. Elastic net allows selection of more than

one variable from a correlated group if they are deemed sufficiently important. In terms

of identifying important risk factors, data analysis examples and simulation studies have

shown that the elastic net approach often outperforms the LASSO approach28. With high-

dimensional propensity score selection as well as random forest approach, we generally do

not know how many of the covariates are optimal to adjust, and generally between 200−500

variables are considered based on subjective judgement. LASSO and elastic net select a

necessary number of risk factors based on association with the outcome, and users do not

have to decide how many variables to use. The computational burden associated with the

machine-learning method is a cause for concern21,22. In high-dimensional setting, the asso-

ciated computational time may be formidably high.

A number of recent studies showed that compared with a mere propensity score adjust-

ment (using investigator-specified confounders only), further adjustment using the high-
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dimensional propensity score algorithm had little or no impact on the estimates45,46. The

propensity score building models used in these high-dimensional propensity score algorithms,

such as parametric logistic regression model, are mostly historical artifacts and likely inad-

equate to exploit the wealth of high-dimensional administrative data properly40,47. In our

work, in terms of MSE, we showed that the hybrid approaches, such as Hybrid-Enet and

Hybrid-LASSO, that further refined the confounder selection from a chosen high-dimensional

propensity score selected variable pool, performed better than the regular high-dimensional

propensity score approaches in most settings.

Our findings in this paper have important implications. In all of the scenarios we have

considered in this work, machine-learning and hybrid methods were shown to perform as well

as or better than the conventional high-dimensional propensity score method and hence, can

be considered as reliable alternatives. Routines for these machine-learning approaches are

widely available in almost all of the major software packages (see eAppendix A.6) and they

are easy to implement in situations where an extensive list of features (thousands of vari-

ables) are available32. By design, as empirical covariates are binary variables, we do not

need to worry about nonlinearity while implementing the high-dimensional propensity score

algorithm48. Also, inclusion of interactions in the high-dimensional setting generally does

not affect the effect estimates much10. However, in the process of categorization and not as-

sessing interactions, we do lose information that could be otherwise useful in detecting more

signals from the original non-binary proxy variables using data-adaptive machine-learning

algorithms. However, since the high-dimensional propensity score algorithm is dependent

on Bross’s formula14, the current high-dimensional propensity score algorithm is constrained

only to handle binary covariates, binary exposure and binary outcomes. Regarding handling

various types of variables, many of the pure machine-learning methods are free from such

limitation in general and can be easily extended to handle continuous, count or survival

outcomes49,50 as well as various types of covariates (binary, count, continuous).

The high-dimensional propensity score based analyses are done based on a strong assump-

tion that the selected empirical covariates collectively serve as proxies for all unmeasured

or residual confounders44. As a result of this assumption, residual confounding is thought

to be adjusted by high-dimensional propensity score analysis. However, this assumption is

not empirically verifiable and hence debatable. When we use high-dimensional propensity
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score or alternative machine-learning methods, we do expect to reduce the effect of residual

confounding to some extent, but eliminating residual confounding completely is unlikely in

a real-life setting. The scope of the bias reduction will generally depend on the availability

of the right surrogates of the unmeasured or imperfectly observed factors9,10. As seen in the

sensitivity analysis from our empirical data analysis example, none of the methods adjusting

for numerous proxy variables were able to compensate for the omitted confounders fully. As

a general rule of thumb, one should always consider doing a regular propensity score analy-

sis first and then perform a high-dimensional propensity score analysis. That way, one can

have a sense of the amount and direction of correction and adjustment. In our simulations,

high-dimensional propensity score, machine-learning methods, and hybrid approaches utiliz-

ing the empirical covariates always performed better than a regular propensity score analysis.
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A eAPPENDIX

Abbreviations: PS, propensity score; hdPS, high-dimensional propensity score algorithm; LASSO, least

absolute shrinkage and selection operator; OR, odds ratio; RD, risk difference; EC, empirical covariate.

A.1 Popularity of High-dimensional propensity score adjustment

Schneeweiss and his colleagues1 argued that adjusting for additional proxy information from the

health administrative dataset via a PS model should further reduce bias in estimating the treat-

ment effects. Considering these proxy data in the analysis, they showed data analysis examples

where hdPS analysis results were closer to randomized controlled trial results compared to the

conventional PS analysis results.

eFigure A.1: Citation of the Schneeweiss, S., et al. paper (published in Epidemiology, 2009 that orig-
inally outlined the High-dimensional propensity score algorithm) over the years. Citation data collected
from the Google scholar in 24th April, 2017.

A.2 Investigator-specified predefined covariates

Potential confounders identified as predefined covariates for the study are demographic charac-

teristics (e.g. age, sex), time variables (e.g. year of cohort entry), clinical characteristics (e.g.,

smoking, alcohol use, obesity), comorbidities (e.g. diabetes mellitus, atrial fibrillation, coronary

artery disease recorded > 30 days before the index MI, acute coronary syndrome, cerebrovascular
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disease, congestive heart failure, chronic obstructive pulmonary disease, hypertension, hyperc-

holesterolemia, peripheral vascular disease, previous coronary revascularization, previous stroke,

previous MI, recorded > 30 days before the index MI, and previous medications prescribed. Pre-

vious medications prescribed included aspirin, angiotensin-converting enzyme (ACE) inhibitors,

angiotensin receptor blockers (ARBs), beta-blockers, calcium-channel blockers, diuretics, fibrates,

non-steroidal anti-inflammatory drugs (NSAIDs). We also constructed variables for the number of

prescriptions issued and the number of hospitalizations in the previous year, which are two proxies

for overall health. Age, the number of hospitalization, and prescription count were categorized

into groups, and they were considered as dummy variables along with the year of cohort entry.

A.3 Baseline Characteristics of Post MI Patients with respect to Statins

Use

On average, the statin user group is younger, more of them are male, more are smokers, more

obese, and less are diabetic patients.

eTable A.1: Baseline Characteristics for important confounders

No Statin Statin
Cohort size 13671 19121
Age∗(yrs, SD) 73.14 (13.87) 65.99 (13.22)
Male (%) 7783 (56.9) 13021 (68.1)
Smoking (%) 8580 (62.8) 13003 (68.0)
Obesity (%) 1620 (11.8) 3051 (16.0)
Comorbidities (%)

Diabetes mellitus 1939 (14.2) 1849 (9.7)
∗ Age is considered as a continuous variable in the plasmode simulation and

the data analysis.
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eTable A.2: Baseline Characteristics for additional investigator-specified con-
founders

No Statin Statin
Alcohol use (%) 169 (1.2) 332 (1.7)
Year of entry (%)

1998 905 (6.6) 389 (2.0)
1999 1304 (9.5) 698 (3.7)
2000 1409 (10.3) 970 (5.1)
2001 1483 (10.8) 1190 (6.2)
2002 1282 (9.4) 1559 (8.2)
2003 1158 (8.5) 1738 (9.1)
2004 967 (7.1) 1690 (8.8)
2005 797 (5.8) 1549 (8.1)
2006 737 (5.4) 1598 (8.4)
2007 708 (5.2) 1560 (8.2)
2008 657 (4.8) 1470 (7.7)
2009 687 (5.0) 1472 (7.7)
2010 697 (5.1) 1473 (7.7)
2011 718 (5.3) 1389 (7.3)
2012 162 (1.2) 376 (2.0)

Comorbidities (%)
Atrial fibrillation 2418 (17.7) 1763 (9.2)
Coronary artery disease 2608 (19.1) 1489 (7.8)
Acute coronary syndrome 1344 (9.8) 2412 (12.6)
Cerebrovascular disease 1048 (7.7) 607 (3.2)
Congestive heart failure 3147 (23.0) 2580 (13.5)
Chronic obstructive pulmonary disease 1336 (9.8) 1233 (6.4)
Hypertension 4428 (32.4) 6554 (34.3)
Hypercholesterolemia 1473 (10.8) 4040 (21.1)
Peripheral vascular disease 610 (4.5) 511 (2.7)
Previous coronary revascularization 2076 (15.2) 6875 (36.0)
Previous stroke 690 (5.0) 341 (1.8)
Previous MI 891 (6.5) 380 (2.0)

Previous medications prescribed (%)
Aspirin 6546 (47.9) 17127 (89.6)
Ace inhibitors 4518 (33.0) 14533 (76.0)
arBs 768 (5.6) 1269 (6.6)
Beta-blockers 4444 (32.5) 15228 (79.6)
calcium-channel blockers 3231 (23.6) 4303 (22.5)
Diuretics 5723 (41.9) 6076 (31.8)
Fibrates 177 (1.3) 125 (0.7)
nSaiDs 2794 (20.4) 4232 (22.1)

Prescription count∗(SD) 8.67 (6.69) 9.99 (5.25)
# of hospitalization∗(SD) 1.55 (2.02) 1.45 (0.89)
∗ Prescription count and number of hospitalization are considered as con-

tinuous variables in the plasmode simulation and the data analysis.
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A.4 Creating empirical covariates

To deal with residual confounding, we utilized additional information from the same database as

proxies for unmeasured confounding. According to the proposed algorithm1, to convert them into

appropriate covariates, we follow the following steps. Before treatment initiation in the dataset,

a temporal window of 1-year is set when we collect the baseline proxy covariates. This window is

known as the “Pre-treatment covariate assessment period”1. In this time-period, we receive proxy

data columns from 4 data sources or dimensions: (a) general practice data (b) diagnosis data (c)

procedure data (d) medication data. We only allow for the top 200 most prevalent codes. Schuster

et al. (2015) showed that confounder variables with low prevalence may become influential when

the prevalence of either exposure category is low2. Therefore, there is no theoretical justification to

follow this ‘prevalence-targeted pre-selection’ step2 in the hsPS algorithm. To show the detrimental

impact on the estimated risk ratios from the hdPS approach, they used a hypothetical example

of a point-exposure study with a binary outcome. However, to the best of our knowledge, there

hasn’t been a systematic study yet with high-dimensional empirical cohorts that compared the

impact of excluding this step from the hdPS algorithm. The authors did point out that in the

large pharmacoepidemiological studies, the frequencies of exposed patients are generally sufficient

in practice to allow researchers to reliably estimate the measure of effect using the hdPS or even

the general PS method2. As this prevalence-targeted pre-selection step can be useful in reducing

the already high dimensional problem in the dataset and thereby, making the data size manageable

(before series of prioritization calculations are conducted), researchers continue to use this step

heuristically in studies, except for those with infrequent exposures3. Each of these column data is

classified into 3 levels of within-patient frequency of occurrence (i.e., once, sporadic and frequent)

during the baseline period. Based on presence versus absence of the respective occurrence levels,

binary proxy or empirical covariates are created.

A.5 Scores used for Prioritization

Let c be a binary empirical covariate, D be the binary indicator for outcome and E be the exposure

status (also binary). The bias formula proposed by Bross (1966) is provided as follows:

BiasM =


Pc1 (RRCD−1)+1

Pc0 (RRCD−1)+1
, if RRCD ≥ 1

Pc1 (
1

RRCD
−1)+1

Pc0 (
1

RRCD
−1)+1

, otherwise
(A.1)

where, Pc1 = prevalence among treated, Pc0 = prevalence among untreated, PcD1 = prevalence

among dead, PcD0 = prevalence among alive. Here, RRCD = PcD1/PcD0 .
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For the bias-based hdPS algorithm, log(BiasM) is used as a rank score to determine priority

(higher the score, more potential for confounding). The hdPS algorithm calculates the “bias score”

(BiasM) according to this bias formula proposed by Bross4. This formula is used to calculate the

association between an empirical-covariate and the outcome, adjusting for the exposure prevalence

imbalance. According to the magnitude of the absolute log-bias score, all the empirical-covariates

are ranked. Such ranking is known as ‘bias-based’ ranking. For ‘exposure-based’ hdPS algorithm,

the rank score is log(RRCE), where,

RRCE =
Pc1

Pc0

. (A.2)

eFigure A.2 shows top 10 empirical variables chosen by the bias-based ranking in a hypothetical

hdPS analysis. Ranking in terms of exposure-based metric would result in differnt set of empirical

variables.

eFigure A.2: Ranking by log-bias score

As shown in eFigure A.3, the densities of rank scores are also generally different.

Note that, the investigator-specified variables do not go through selection process in the hdPS

methods in the above mentioned prioritization process. Only the empirical covariates are priori-

tized and selected accordingly.

A.6 Software for the Machine learning algorithm

For fitting LASSO and elastic net, we used cv.glmnet function from the glmnet package in R

varying alpha values (alpha = 1 for LASSO and alpha = 0.5 for our elastic net fitting) and
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eFigure A.3: Density of rank scores

setting the following options nfolds = 5 and nlambda = 100. For example: for a given binary

outcome vector y and model matrix x, we can run the elastic net model as follows:

require(glmnet)

fit.k.fold <- cv.glmnet(x, y, family = "binomial", alpha = 0.5,

standardize = TRUE, lambda = NULL,

type.measure = 'deviance', nfolds = 5,

nlambda = 100)

pred <- predict(fit.k.fold$glmnet.fit, newx = x, type = 'response',

s = fit.k.fold$lambda.min)

fit <- list(object = fit.k.fold, useMin = TRUE)

fit$pred <- pred

fit$varname <- dimnames(coef(fit.k.fold))[[1]]

For the above elastic net model fitting, it is possible to choose an optimum alpha value by cross-

validating over a grid of candidate values. But for sake of reducing computational burden, we

chose to use a fixed alpha = 0.5 value. Franklin et al. (2015) is a very useful reference for fit-

ting LASSO (i.e., alpha = 1 in glmnet; see Web Appendix 4 of the reference5) in the same context.

For fitting random forsest, We used rfsrc function from the randomForestSRC package, with

the following options: nsplit = 5, ntree = 50 and importance="permute". For example: after

defining formula.rF as the formula object for a given model setting (e.g., y ~ x), we can run the
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random forest model as follows:

require(randomForestSRC)

fit <- fsrc(formula = formula.rF, data = admin.data, nsplit = 5,

ntree = 50, ntime = 10, importance = "permute")

fit$importance

R package Plasmode6 provides the R functions to simulate plasmode datasets based on user-

supplied example studies. We thank the authors of that package (Franklin et al.) for sharing the

plasmode simulation implementation codes.

A.7 Plasmode simulation

Healthcare claims databases contain numerous (usually thousands) collected variables. Simulat-

ing such a high-dimensional dataset is problematic in a Monte Carlo study because it is difficult

to recreate a realistic data generating process that takes into account of associations among a

large number of covariates under consideration. Plasmode is a simulation technique that relies

on resampling techniques to obtain data that can preserve the empirical associations among the

covariates. During the process of plasmode simulation, the analyst can assign a desired value

for the true treatment effect in the data generating process. Such a plasmode study begins with

an existing cohort, with an assumed data generating process (as in equation (A.3)), and we can

modify the existing cohort and injected known effects (signals) into it.

In our study, we used the following outcome generation model for the plasmode simulation:

logit
[
Pr(Y = 1)

]
= α0 + θ × α1T + γ × α2X, (A.3)

where Y is the outcome (e.g., all-cause mortality following an acute myocardial infarction), T is

the treatment indicator (whether or not the patient being treated with statin), X is the high-

dimensional covariate matrix that includes the important investigator-specified covariates (listed

in eTable A.1), additional investigator-specified covariates (listed in eTable A.2) and the list of

created empirical covariates obtained by running the hdPS algorithm on the complete statin user

dataset with 32, 792 patients. These empirical variables should act as proxy or surrogate of the

unmeasured confounders. As for the parameters in equation (A.3), α0 is the intercept, α1 is the

treatment effect, α2 is the vector of effects associated with covariates listed in X, θ is the treatment

effect multiplier and γ is the covariate effect multiplier.
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From the above outcome generation model, in each of 18 simulation scenarios considered in this

study, we have generated N = 500 datasets each with m = 10, 000 patients. Note that, for each of

these newly generated datasets (with 10, 000 patients), we have separately prioritized the empirical

covariates by applying the hdPS algorithm on each of these datasets5,7. Therefore, the top 500

hdPS variables for a given dataset may not be identical to those obtained from another dataset.

The variation in the resulting effect measures (RD or OR) from different datasets comes not only

from the differences in hdPS variables in each dataset but also from the resampling procedure (i.e.,

selection of 10, 000 patients with replacement out of 32, 792 patients) integrated in the plasmode

simulation algorithm.

The plasmode simulation algorithm samples exposed and unexposed subjects with replacement

from the empirical dataset in such a way that guarantees a desired study size (m) and a prevalence

of exposure (pE) in the simulated plasmode samples5,7,8. Also, this simulation algorithm allows

researchers to specify the intercept value in the outcome-generating model to guarantee a desired

prevalence of outcome (pY )5,7.

Methodologically, the plasmode simulation realistically generates the data by controlling the

relationship with outcome by retaining α2 estimates (parameter estimates associates with the co-

variates) in the outcome generation model (equation (A.3)) same as the estimates obtained from

the empirical data fitting. The plasmode simulation uses resampling techniques such as bootstrap

to select patients in a specific sample with replacement. Here, the bootstrap samples (of specified

size m) are collected from the complete set of covariate-exposure matrix Z = (T,X). As none

of these variables in the covariate-exposure matrix, Z are permuted or modified in any way, in

each bootstrap sample (of a reasonable size), systematically, the relationships should remain in-

tact among exposure and covariates7. Therefore, relationship with covariates and outcomes are

controlled by fixing α2 values in the outcome generation model and boostrap ensures joint dis-

tribution of exposure and covariates are unaltered, there should not be any obvious reason why

the relationship among covariates and exposure should be different in plasmode samples. In that

sense, in the plasmode simulation, the ‘amount of confounding’ from a covariate (i.e., relationship

of a covariate with the outcome as well as the exposure; both of which relationships are required

for a covariate to be considered as a confounder) is controlled7.

However, among other things, this simulation mechanism do allow researchers to change the

multipliers of the treatment effect and the covariate effects by changing θ parameter value and
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γ parameter vector respectively. In certain combination of these parameters values, it is possible

that an important confounder in the empirical study may not remain important in the plasmode

samples. Future research should investigate further in this issue.

Note that, the important confounders (age, sex, obesity, smoking, and history of diabetes) con-

sidered in this study were not based on their higher strength of association with outcome and

exposure in the empirical data, but based on subject-specific knowledge from previous research9.

The idea of the sensitivity analysis done in our study was not to see the impact of excluding covari-

ates that were highly association with the outcome and the exposure (e.g., strong confounders),

but to see if hdPS algorithm can account for useful information that are not collected during

data collection stage by using proxy data (empirical covariates). Instead of making up new co-

variates, we have decided to delete some real covariates that were considered useful by the experts9.

Plasmode simulations are built based on a given empirical data setting, and the generalizability

of the results is an issue for such simulations. To convince the users and the analysts, more such

plasmode simulations mimicking other healthcare administrative datasets should be conducted to

validate various machine-learning and hybrid methods.
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A.8 Balance diagnostics and Data Analyses

A.8.1 Balance diagnostics

Regular PS Kitchen sink

All-EC-LASSO All-EC-Enet

500-EC-rF 500-hdPS

eFigure A.4: Balance

For the purpose of illustration, we checked the balance of the beta-blocker covariate, and we

observe that there are imbalances in the last few deciles of PSs when we considered all empirical-

covariates. However, when we selected the 500 top ranked hdPS variables, the balance is regained

(see eFigure A.5).
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Regular PS Kitchen sink

All-EC-LASSO All-EC-Enet

500-EC-rF 500-hdPS

eFigure A.5: Balance for beta clocker
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A.8.2 Data Analyses

eFigure A.6: Analysis results from the approaches under consideration. When only the investigator-
specified covariates were considered, the estimated OR was 0.62 in our analysis (represented by the solid
grey line). When considering 500 or more empirical covariates and all the investigator-specified covariates
in the analysis, the estimated ORs were between 0.76 and 0.79 in our analysis (represented by the dotted
lines). Abbreviations: PS, propensity score; hdPS, high-dimensional propensity score algorithm; LASSO,
least absolute shrinkage and selection operator; OR, odds ratio; EC, empirical covariate.
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eFigure A.7: High-dimensional propensity score and machine learning alternative results without the
five important covariates: age, sex, obesity, smoking, and history of diabetes. For comparison with the
analyses with these five covariates, the solid grey line represents the estimated OR of 0.62 (when all
the investigator-specified covariates were considered in our analysis), and the dotted lines represent the
estimated ORs 0.76 and 0.79 (the range of estimated ORs, when considering 500 or more empirical covari-
ates in the analysis including all the investigator-specified covariates in our analysis.) Abbreviations: PS,
propensity score; hdPS, high-dimensional propensity score algorithm; LASSO, least absolute shrinkage
and selection operator; OR, odds ratio; EC, empirical covariate.



14 eAPPENDIX

A.9 Figures from Plasmode simulation

A.9.1 Unmeasured confounding present (Bias-based analysis): Main three scenarios:

eFigure A.8: Side-by-side boxplots of the estimated risk differences (from 500 datasets) via the ap-
proaches under consideration in the plasmode Simulation Scenario 1-U. Corresponding mean values are
marked by ∗. The indicator “Both” means the approach is found best by both MSE and bias criteria.
Abbreviations: PS, propensity score; hdPS, high-dimensional propensity score algorithm; LASSO, least
absolute shrinkage and selection operator; RD, risk difference; EC, empirical covariate.
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eFigure A.9: Side-by-side boxplots of the estimated risk differences (from 500 datasets) via the ap-
proaches under consideration in the plasmode Simulation Scenario 4-U. Corresponding mean values are
marked by ∗. The indicator “Both” means the approach is found best by both MSE and bias criteria.
Abbreviations: PS, propensity score; hdPS, high-dimensional propensity score algorithm; LASSO, least
absolute shrinkage and selection operator; RD, risk difference; EC, empirical covariate.



16 eAPPENDIX

eFigure A.10: Side-by-side boxplots of the estimated risk differences (from 500 datasets) via the
approaches under consideration in the plasmode Simulation Scenario 7-U. Corresponding mean values
are marked by ∗. The indicator “RMSE” means the approach is found best by the RMSE criterion
and the indicator “Bias” means the approach is found best by the bias criterion. Abbreviations: PS,
propensity score; hdPS, high-dimensional propensity score algorithm; LASSO, least absolute shrinkage
and selection operator; RD, risk difference; EC, empirical covariate; RMSE, root mean squared error.
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A.9.2 Unmeasured confounding present (Bias-based analysis): Other scenarios:

eFigure A.11: Plasmode Simulation Scenario 2-U
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eFigure A.12: Plasmode Simulation Scenario 3-U
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eFigure A.13: Plasmode Simulation Scenario 5-U
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eFigure A.14: Plasmode Simulation Scenario 6-U
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eFigure A.15: Plasmode Simulation Scenario 8-U
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eFigure A.16: Plasmode Simulation Scenario 9-U
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A.9.3 If unmeasured confounding present (Exposure-based analysis)

eFigure A.17: Plasmode Simulation Scenario 1-A
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eFigure A.18: Plasmode Simulation Scenario 2-A
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eFigure A.19: Plasmode Simulation Scenario 3-A
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eFigure A.20: Plasmode Simulation Scenario 4-A
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eFigure A.21: Plasmode Simulation Scenario 5-A
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eFigure A.22: Plasmode Simulation Scenario 6-A
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eFigure A.23: Plasmode Simulation Scenario 7-A
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eFigure A.24: Plasmode Simulation Scenario 8-A
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eFigure A.25: Plasmode Simulation Scenario 9-A
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A.9.4 If all variables accounted (Bias-based analysis)

eFigure A.26: Plasmode Simulation Scenario 1-A
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eFigure A.27: Plasmode Simulation Scenario 2-A
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eFigure A.28: Plasmode Simulation Scenario 3-A
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eFigure A.29: Plasmode Simulation Scenario 4-A
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eFigure A.30: Plasmode Simulation Scenario 5-A
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eFigure A.31: Plasmode Simulation Scenario 6-A
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eFigure A.32: Plasmode Simulation Scenario 7-A



eAPPENDIX 39

eFigure A.33: Plasmode Simulation Scenario 8-A
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eFigure A.34: Plasmode Simulation Scenario 9-A
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A.9.5 If all variables accounted (Exposure-based analysis)

eFigure A.35: Plasmode Simulation Scenario 1-A
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eFigure A.36: Plasmode Simulation Scenario 2-A
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eFigure A.37: Plasmode Simulation Scenario 3-A
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eFigure A.38: Plasmode Simulation Scenario 4-A
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eFigure A.39: Plasmode Simulation Scenario 5-A
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eFigure A.40: Plasmode Simulation Scenario 6-A
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eFigure A.41: Plasmode Simulation Scenario 7-A
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eFigure A.42: Plasmode Simulation Scenario 8-A
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eFigure A.43: Plasmode Simulation Scenario 9-A



50 eAPPENDIX

A.9.6 Considering fewer variables in the analysis

When the same simulated scenarios were analyzed based on only 100 top hdPS variables, gener-

ally, more bias is associated in the treatment effect estimation, but hybrid methods (Hybrid-Enet

and Hybrid-LASSO based on 100 hdPS variables) continue to dominate almost all the scenarios

(see eFigures A.44-A.52 and eFigures A.53-A.61). Only in a few cases with amplified confounding

effect (γ = 3 or 5), 100-EC-rF performed best when the analysis was based on exposure-based

ranking and in two cases, 100-hdPS performed best when bias-based ranking was conducted.
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A.9.7 If unmeasured confounding present (Based on top 100 selected variables)

eFigure A.44: Plasmode Simulation Scenario 1-A
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eFigure A.45: Plasmode Simulation Scenario 2-A
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eFigure A.46: Plasmode Simulation Scenario 3-A
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eFigure A.47: Plasmode Simulation Scenario 4-A
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eFigure A.48: Plasmode Simulation Scenario 5-A
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eFigure A.49: Plasmode Simulation Scenario 6-A
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eFigure A.50: Plasmode Simulation Scenario 7-A
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eFigure A.51: Plasmode Simulation Scenario 8-A
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eFigure A.52: Plasmode Simulation Scenario 9-A
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A.9.8 If all variables accounted (Based on top 100 selected variables)

eFigure A.53: Plasmode Simulation Scenario 1-A



eAPPENDIX 61

eFigure A.54: Plasmode Simulation Scenario 2-A
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eFigure A.55: Plasmode Simulation Scenario 3-A
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eFigure A.56: Plasmode Simulation Scenario 4-A
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eFigure A.57: Plasmode Simulation Scenario 5-A
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eFigure A.58: Plasmode Simulation Scenario 6-A
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eFigure A.59: Plasmode Simulation Scenario 7-A
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eFigure A.60: Plasmode Simulation Scenario 8-A
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eFigure A.61: Plasmode Simulation Scenario 9-A
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A.10 Proportion of common variables

eFigure A.62: Histogram for scenario 1
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eFigure A.63: Histogram for scenario 4
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eFigure A.64: Histogram for scenario 7
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A.11 General Limitations of hdPS approach

Depending on how well the baseline is defined, the Bross formula may detect colliders as con-

founders, and adjusting for these variables may amplify bias (popularly known as “M-bias”10).

Also, when it is difficult to determine whether a covariate is a confounder or an instrument, simu-

lation studies in low-dimensional setting suggest that net bias will reduce if we decide to adjust for

it (“Z-bias”11). Both of these limitations will still apply when machine learning methods are used.

It is, however, argued that, in a high-dimensional setting, net bias resulting from the theoretical

presence of M and Z-bias should be minimal12.

In general, empirical-covariates are not collected for research purpose, and the interpretation is

unclear12. Fortunately for PS-type models, the prediction is of main interest. There are many

ways to utilize propensity score in the analysis, such as matching, stratification and weighting13.

In this paper, we considered deciles of propensity scores as a covariate in the corresponding out-

come analysis (as in previous literature1, even tough this may not be the most optimal proposnsity

score adjustment approach14). Here, propensity scores are used as a tool for data reduction. Such

propensity score-type analysis is more appropriate than the regression adjustment in the high-

dimensional setting we are considering here and the results from both analysis should be different,

unlike the low-dimensional setting15–17.

The hdPS analysis is a robust approach primarily to deal with residual confounding10. How-

ever, conceptually, this is not a straightforward extension to PS analysis. The original proposal of

variable selection for the PS model was based on achieving better covariate balance. Researchers

have repeatedly cautioned against the use of outcome information form the data while estimating

the PSs18–22. However, when considering bias-based hdPS methods, we do exactly that; we rank

and select empirical-covariates based on the relationship with the outcome. This criticism is also

valid for machine-learning and hybrid methods; we also use information from an outcome analysis

to identify important risk factors to be used later in building a PS model. Use of such informa-

tion in the PS model generally prevents us from separating the design and analysis stages of a

study23,24. However, this original proposal of relying on balance measures did assume that there all

confounders are known and measured, which is a steep departure from the scenarios where hdPS

analyses are generally attempted12. However, exposure-based hdPS are free from this criticism.

Then again, exposure-based ranking scores utilize information about exposure prevalence to rank

variables, and their performances are generally inferior in most settings5.
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